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ABSTRACTF�ELIX HERN�ANDEZ-CAMPOS: Generation and Validation ofEmpiri
ally-Derived TCP Appli
ation Workloads.(Under the dire
tion of Kevin Je�ay)This dissertation proposes and evaluates a new approa
h for generating realisti
 traÆ
in networking experiments. The main problem solved by our approa
h is generating 
losed-loop traÆ
 
onsistent with the behavior of the entire set of appli
ations in modern traÆ
mixes. Unlike earlier approa
hes, whi
h des
ribed individual appli
ations in terms of the spe
i�
semanti
s of ea
h appli
ation, we des
ribe the sour
e behavior driving ea
h 
onne
tion in ageneri
 manner using the a-b-t model. This model provides an intuitive but detailed way ofdes
ribing sour
e behavior in terms of 
onne
tion ve
tors that 
apture the sizes and ordering ofappli
ation data units, the quiet times between them, and whether data ex
hange is sequentialor 
on
urrent. This is 
onsistent with the view of traÆ
 from TCP, whi
h does not 
on
ernitself with appli
ation semanti
s.The a-b-t model also satis�es a 
ru
ial property: given a pa
ket header tra
e 
olle
ted froman arbitrary Internet link, we 
an algorithmi
ally infer the sour
e-level behavior driving ea
h
onne
tion, and 
ast it into the notation of the model. The result of pa
ket header pro
essing isa 
olle
tion of a-b-t 
onne
tion ve
tors, whi
h 
an then be replayed in software simulators andtestbed experiments to drive network sta
ks. Su
h a replay generates syntheti
 traÆ
 that fullypreserves the feedba
k loop between the TCP endpoints and the state of the network, whi
his essential in experiments where network 
ongestion 
an o

ur. By 
onstru
tion, this type oftraÆ
 generation is fully reprodu
ible, providing a solid foundation for 
omparative empiri
alstudies.Our experimental work demonstrates the high quality of the generated traÆ
, by dire
tly
omparing tra
es from real Internet links and their sour
e-level tra
e replays for a ri
h set ofiii



metri
s. Su
h 
omparison requires the 
areful measurement of network parameters for ea
h
onne
tion, and their reprodu
tion together with the 
orresponding sour
e behavior. Our �nal
ontribution 
onsists of two resampling methods for introdu
ing 
ontrolled variability in networkexperiments and for generating 
losed-loop traÆ
 that a

urately mat
hes a target o�ered load.

iv
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CHAPTER 1Introdu
tionAs far as the laws of mathemati
s refer to reality, they are not 
ertain; and asfar as they are 
ertain, they do not refer to reality.| Albert Einstein (1879{1955)Humankind 
annot stand very mu
h reality.| T. S. Elliot (1888{1965)Resear
h in networking has to deal with the extreme 
omplexity of many layers of te
hnol-ogy intera
ting with ea
h other in frequently unexpe
ted ways. As a 
onsequen
e, there is abroad 
onsensus among resear
hers that purely theoreti
al analysis is not enough to demon-strate the e�e
tiveness of network te
hnologies. More often than not, 
areful experimentationin simulators and network testbeds under 
ontrolled 
onditions is needed to validate new ideas.Every resear
her therefore fa
es, at some point or another, the need to design realisti
 net-working experiments, and syntheti
 network traÆ
 is a foremost element of these experiments.Syntheti
 network traÆ
 represents not only the workload of a 
omputer network, but also thedire
t or indire
t target of any optimization. For instan
e, 
ongestion 
ontrol resear
h fo
useson preserving as mu
h as possible the ability of a network to transfer data in the fa
e of over-load. Therefore, evaluating a new 
ongestion 
ontrol me
hanism in a transport proto
ol su
has the Transport Control Proto
ol (TCP) [Pos81℄ usually requires 
onstru
ting experiments inwhi
h a number of network hosts ex
hange data using this proto
ol in an environment with oneor more saturated links. The value of the new me
hanism is then expressed as a fun
tion ofthe performan
e of these data ex
hanges. For example, the new me
hanism may be optimizedfor a
hieving a higher overall throughput or a more fair allo
ation of bandwidth.



A fundamental insight, whi
h provides the main motivation for this dissertation, is thatthe 
hara
teristi
s of syntheti
 traÆ
 have a dramati
 impa
t on the out
ome of networkingexperiments. For example, a new me
hanism that improves the throughput of bulk, long-lasting�le transfers in a 
ongested environment may not improve and may even degrade the responsetime of the small data ex
hanges in web traÆ
. This was pre
isely the 
ase of Random EarlyDete
tion (RED), an A
tive Queue Management (AQM) me
hanism. The original analysis byFloyd and Ja
obson [FJ93a℄ 
learly demonstrated the bene�ts of RED over the basi
 First-In First-Out (FIFO) queuing me
hanism for bulk transfers. In this study, RED queues wereexposed to a small number (2{4) of large �le transfers. However, a later experimental study byChristiansen et al. [CJOS00℄ showed that this �rst AQM me
hanism degraded the performan
eof web traÆ
 in highly 
ongested environments. In 
ontrast to the original evaluation, webtraÆ
 mostly 
onsists of a very large number of small data transfers, whi
h 
reate a verydi�erent workload. The emergen
e of the web 
learly 
hanged the nature of Internet traÆ
, andmade it ne
essary to revisit existing results obtained under di�erent workloads. The systemati
evaluation of network me
hanisms must therefore in
lude experiments 
overing the wide range oftraÆ
 
hara
teristi
s observed on Internet links. It is 
riti
al to provide the resear
h 
ommunitywith methods and tools for generating syntheti
 traÆ
 as representative as possible of this rangeof 
hara
teristi
s.The 
on
ept of sour
e-level modeling introdu
ed by Paxson and Floyd [PF95℄ 
onstitutesa major in
uen
e on this dissertation. These authors advo
ated for building models of thebehavior of Internet appli
ations (i.e., the sour
es of Internet traÆ
), and generating traÆ
 innetworking experiments by driving network sta
ks with these appli
ation models. The mainbene�t of this approa
h is that traÆ
 is generated in a 
losed-loop manner, whi
h fully preservesthe fundamental feedba
k loop between network endpoints and network 
hara
teristi
s. Forexample, a model of web traÆ
 
an be used to generate traÆ
 using TCP/IP network sta
ks,and the generated traÆ
 will properly rea
t to di�erent levels of 
ongestion in networkingexperiments. In 
ontrast, open-loop traÆ
 generation is asso
iated to models of the pa
ketarrivals on network links, and these models are insensitive to 
hanges in network 
onditions, and
2



tied to the original 
onditions under whi
h they were developed. This makes them inappropriatefor experimental studies that 
hange these 
onditions.The main motivation of our work is to address one important diÆ
ulty with sour
e-levelmodeling. In the past, sour
e-level modeling has been asso
iated with 
hara
terizing the be-havior of individual appli
ations. While this approa
h 
an result in high-quality models, it is adiÆ
ult pro
ess that requires a large amount of e�ort. As a 
onsequen
e, only a small numberof models is available, and they are often outdated. This is in sharp 
ontrast to the traÆ
observed in most Internet links, whi
h is driven by ri
h traÆ
 mixes 
omposed of a large num-ber of appli
ations. Sour
e-level modeling of individual appli
ations does not s
ale to moderntraÆ
 mixes, making it very problemati
 for networking resear
hers to 
ondu
t representativeexperiments with 
losed-loop traÆ
.This dissertation presents a new methodology for generating network traÆ
 in testbed ex-periments and software simulations. We make three main 
ontributions. First, we developa new sour
e-level model of network traÆ
, the a-b-t model , for des
ribing in a generi
 andintuitive manner the behavior of the appli
ations driving TCP 
onne
tions. Given a pa
ketheader tra
e 
olle
ted at an arbitrary Internet link, we use this model to des
ribe ea
h TCP
onne
tion in the tra
e in terms of data ex
hanges and quiet times, without any knowledge ofthe a
tual semanti
s of the appli
ation. Our algorithms make it possible to eÆ
iently deriveempiri
al 
hara
terizations of network traÆ
, redu
ing modeling times from months to hours.The same analysis 
an be used to in
orporate network-level parameters, su
h as round-triptimes, to the des
ription of ea
h 
onne
tion, providing a solid foundation for traÆ
 genera-tion. Se
ond, we propose a traÆ
 generation method, sour
e-level tra
e replay , where traÆ
is generated by replaying the observed behavior of the appli
ations as sour
es of traÆ
. Thisis therefore a method for generating entire traÆ
 mixes in a 
losed-loop manner. One 
ru
ialbene�t of our method is that it 
an be evaluated by dire
tly 
omparing an original tra
e andits sour
e-level replay. This makes it possible to systemati
ally study the realism of syntheti
traÆ
, in the terms of how well our des
ription of the 
onne
tions in the original traÆ
 mixre
e
ts the nature of the original traÆ
. In addition, this kind of 
omparison provides a means3
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Figure 1.1: Network traÆ
 seen from di�erent levels.to understand the impa
t that the di�erent 
hara
teristi
s of a traÆ
 mix have on spe
i�
 tra
esand on Internet traÆ
 in general. Third, we propose and study two approa
hes for introdu
ingvariability in the generation pro
ess and s
aling (up or down) the level of traÆ
 load in theexperiments. These operations greatly in
rease the 
exibility of our approa
h, enabling a widerange of experimental investigations 
ondu
ted using our traÆ
 generation method.1.1 Abstra
t Sour
e-Level ModelingThis dissertation presents a methodology for generating syntheti
 network traÆ
 that ad-dresses some of the main short
omings of existing te
hniques. Figure 1.1 illustrates the levelsof detail at whi
h Internet traÆ
 
an be studied, providing a good starting point for framingour dis
ussion. We fo
us on the traÆ
 on a single Internet link, su
h as the one between theUniversity of North Carolina at Chapel Hill (UNC) and the Internet. We 
an study the traÆ
in this link at di�erent levels of detail. The top-most time-line represents traÆ
 observed inthe link between UNC and the Internet as a sequen
e of pa
ket arrivals. This level of detail4



is known as the aggregate pa
ket arrival level. Here pa
kets from many di�erent 
onne
tionswere interleaved 
reating a 
omplex arrival pro
ess in the network link. In general, TCP traÆ
a

ounts for the vast majority of the pa
kets on Internet links (usually between 90% and 95%),whi
h justi�es our fo
us on TCP in this work. The se
ond time-line depi
ts the pa
ket arrivalsthat belonged to a single TCP 
onne
tion. These pa
kets were used to send data ba
k andforth between two network endpoints, one lo
ated at UNC, and the other one somewhere onthe Internet. The sour
es of these data are appli
ations running on the endpoints, whi
h relyon the pa
ket swit
hing servi
e provided by the Internet to 
ommuni
ate. Prominent examplesof these appli
ations are the World Wide Web, email, �le sharing, et
. Hundreds of di�erentappli
ations are 
ommonly found on Internet links. The traÆ
 observed at an Internet link istherefore the result of multiplexing the 
ommuni
ation of a large number of endpoints drivenby a wide range of appli
ations. This dissertation 
onsiders the problem of generating traÆ
 innetworking experiments that preserves both the aggregate-level and the 
onne
tion-level prop-erties of traÆ
 observed in a real network link. Note that we restri
t ourselves to this most basi
form of the problem where only a single link is 
onsidered both for observing traÆ
 and forreprodu
ing it in networking experiments. Our �ndings 
an 
ertainly be applied to a broader
ontext, e.g., multiple links along a path following the \parking lot topology" [PF95℄, links inan ISP, et
., but we 
hoose to keep to this problem in its most essential form throughout thisdissertation.As mentioned before, every 
onne
tion on the Internet is driven by an appli
ation ex
hangingdata between two endpoints. It is therefore possible to examine traÆ
 at a higher-level, wherethe 
ommuni
ation is des
ribed in terms of appli
ation data units (ADUs) rather than networkpa
kets. This appli
ation level is illustrated in the bottom time-line of Figure 1.1, whi
h revealsthat the sour
e of the pa
kets in the se
ond time-line was the ex
hange of data between a webbrowser and a web server using a TCP 
onne
tion. The time-line shows a �rst ADU of 2,500bytes, whi
h 
arried a request for an HTML page. The way the data is organized within thisADU and its meaning is given by the spe
i�
ation of the HyperText Transfer Proto
ol (HTTP)[FGM+97℄, whi
h standardizes the ex
hange of data between web browsers and web servers.
5



The time-line shows a se
ond ADU, sent by the web server to the web browser in response tothe �rst ADU. It 
arried the a
tual HTML sour
e 
ode of the page requested by the browser.Its size was 4,800 bytes, whi
h in
luded not only the HTML sour
e 
ode but also an appropriateHTTP header. The time-line shows another pair of ADUs that also 
orresponded to an HTTPrequest and an HTTP response, whi
h this time 
arried an image �le. Ea
h ADU is asso
iatedto one or more pa
kets in the se
ond time-line. The amount of data in these ADUs and itsmeaning was de
ided by the appli
ation, while the a
tual number of pa
kets, their sizes, theneed for retransmissions, et
., were de
ided by lower layers (transport and below).The appli
ation level provides the starting point for the traÆ
 modeling and generationmethodology developed in this dissertation. Our approa
h to traÆ
 generation relies on thenotion of sour
e-level modeling , advo
ated by Paxson and Floyd [FP01℄. Rather than dire
tlygenerating pa
kets a

ording to some tra
e or some pa
ket arrival model, sour
e-level modelinginvolves simulating the behavior of the appli
ations running on the endpoints and allowinglower layers to 
ontrol the a
tual ex
hange of pa
kets. For example, generating traÆ
 with asour
e-level model of web traÆ
 means to simulate web browsers and web servers a

ording tostatisti
al models of web page sizes, the durations of user think times and other sour
e-levelparameters [Mah97, BC98, SHCJO01℄.Modeling traÆ
 at the sour
e level produ
es des
riptions of traÆ
 that are mostly indepen-dent of the underlying proto
ols and network 
onditions, so they 
an be used to drive traÆ
generation in experiments that modify these same proto
ols and 
onditions. For this reason,sour
e-level models are also known as network-independent model . For example, the size of anHTML page 
arried in a TCP 
onne
tion does not 
hange with the degree of 
ongestion (italways has the same number of 
hara
ters). Therefore, its size is a network-independent prop-erty. Lower-level des
riptions of traÆ
, su
h as 
hara
terizations of pa
ket arrivals, are networkdependent . For example, the rate at whi
h the pa
kets of a TCP 
onne
tion arrive de
reasesas the degree of 
ongestion in
reases, sin
e TCP uses a 
ongestion 
ontrol algorithm that de-
reases the sending rate as the loss rate in
reases. Also, pa
ket losses for
e TCP endpoints toperform retransmissions. This means that the transmission of the same amount of data at the6



sour
e-level (e.g., an HTML page) at di�erent times may require di�erent numbers of pa
ketsto be transferred, depending on the number of lost pa
kets. A sour
e-level model des
ribesthe sizes of ADUs, but not the times at whi
h a 
onne
tion should lower its sending rate orretransmit a pa
ket. For this reason, the same model 
an be used to generate traÆ
 underdi�erent network 
onditions, su
h as low and high levels of 
ongestion. Endpoints generatingtraÆ
 using these models are able to adapt to ea
h spe
i�
 set of network 
onditions in theexperiments. This preserves the fundamental feedba
k loop that exists between endpoints andnetwork 
onditions. For this reason, this type of traÆ
 generation is said to be 
losed-loop.On the 
ontrary, traÆ
 generated a

ording to lower level models is ne
essarily open-loop. Forexample, t
preplay [t
pb℄ 
an be used to reena
t the sending of every pa
ket re
orded in a tra
e,whi
h results in open-loop traÆ
 that is insensitive to the underlying network 
onditions. ThistraÆ
 is inappropriate for experiments where network 
onditions are important, su
h as theevaluation of 
ongestion 
ontrol me
hanisms.In the past, sour
e-level modeling has been 
onsidered a synonym of appli
ation modeling,so resear
hers have developed a number of appli
ation-spe
i�
 models in
luding models forweb traÆ
, �le transferring and other individual appli
ations. This approa
h is good if oneis interested in the traÆ
 generated by a single appli
ation (or by a handful of appli
ations).However, if one is interested in realisti
 traÆ
 mixes, appli
ation-spe
i�
 traÆ
 modeling hassome important short
omings. The �rst problem is that appli
ation spe
i�
 modeling does nots
ale well to the large number of appli
ations that form 
ontemporary traÆ
 mixes. For exam-ple, the weekly traÆ
 report from Internet2 [Con04℄ 
olle
ts separate statisti
s for more than80 di�erent appli
ations that make up Internet2 traÆ
. Using existing te
hnology, it is simplytoo time-
onsuming to develop and populate individual models for ea
h appli
ation. Moreover,even if we had the resour
es to examine the behavior of all appli
ations, many appli
ations useproprietary proto
ols, so painstaking reverse engineering is needed to understand and modeltheir behavior. In addition, Internet traÆ
 evolves qui
kly, sin
e new appli
ations and improvedversions of the existing ones appear very frequently.This dissertation proposes a more general solution to the sour
e-level modeling and the7
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Figure 1.2: An a-b-t diagram illustrating a persistent HTTP 
onne
tion.traÆ
 generation problems. We develop an abstra
t model of network data ex
hange whereinea
h 
onne
tion is des
ribed independently of the semanti
s of the appli
ation initiating the
onne
tion. This idea is illustrated in the third time-line of Figure 1.1. Here the 
ommuni
a-tion is des
ribed in generi
 terms, simply as a sequen
e of ADU ex
hanges between the twoendpoints of the TCP 
onne
tion, without atta
hing any meaning to the ADUs. Other generi

hara
teristi
s of traÆ
 in
lude the dire
tion in whi
h the ADUs are sent, from the 
onne
-tion initiator or from the 
onne
tion a

eptor, and the duration of quiet times between ADUs,whi
h are due to user behavior and pro
essing times. These 
hara
teristi
s 
an generally beused to des
ribe the behavior of any spe
i�
 appli
ation. For example, the ADUs of web traÆ
are HTTP requests and responses, while the inter-ADU times are user think times and serverpro
essing times. The 
ru
ial observation is that the sizes of ADUs and the times between them
an be measured from the pa
ket tra
es of two 
onne
tions without knowledge of the behaviorof the appli
ation driving the 
onne
tion. This makes it possible to 
onstru
t a sour
e-leveldes
ription of the entire set of 
onne
tions observed in a measured link, instead of only the
onne
tions driven by one or a few well-known appli
ations. Any tra
e of pa
kets traversinga network link 
an be transformed into an abstra
t sour
e-level tra
e, without examining thepayload of the pa
kets and without instrumenting the endpoints.Our approa
h to sour
e-level modeling results in an abstra
t representation of a TCP 
on-ne
tion using a notation that we 
all an a-b-t 
onne
tion ve
tor . We also refer to this idea asthe a-b-t model , in the sense that it provides a mental model for understanding network traÆ

8



at the sour
e level, rather than in the sense of a mathemati
al or statisti
al model1. The terma-b-t is des
riptive of the basi
 building blo
ks of this model: a-type ADUs (a's), whi
h are sentfrom the 
onne
tion initiator to the 
onne
tion a

eptor, b-type ADUs (b's), whi
h 
ow in theopposite dire
tion, and quiet times (t's), during whi
h no data segments are ex
hanged. We willmake use of these terms to des
ribe the sour
e-level behavior of TCP 
onne
tions throughoutthis dissertation.Our a-b-t model has a sequential version and a 
on
urrent version. The sequential versionapplies to 
onne
tions where the endpoints follow a stri
t order in their ex
hange of ADUs. Inthis version, a TCP 
onne
tion is des
ribed by a ve
tor of epo
hs (e1; e2; : : : ; en). Ea
h epo
hhas the form ej = (aj ; taj ; bj ; tbj), where aj is the size of an ADU sent from the 
onne
tioninitiator to the 
onne
tion a

eptor, bj is the size of an ADU sent in the opposite dire
tion,and taj and tbj are inter-ADU quite times (during whi
h the endpoints are idle). We 
allthis representation of sour
e-level behavior a sequential 
onne
tion ve
tor . For example, the
onne
tion illustrated in Figure 1.2 is represented as((329; 0; 403; 0:12); (403; 0; 25821; 3:12); (356; 0; 1198; 15:3))using the sequential a-b-t model. This 
onne
tion has three epo
hs, ea
h 
arrying one HTTPrequest/response pair. The �rst epo
h has an ADU a1 of size 329 bytes, whi
h was sent fromthe 
onne
tion initiator (a web browser) to the 
onne
tion a

eptor (a web server), and an ADUb1 of size 803 bytes, whi
h was sent in the opposite dire
tion. We also observe some quiet timesbetween the ADUs, su
h tb2, whi
h had a duration of 3.12 se
onds. While Figure 1.2 in
ludeslabels for HTTP requests, responses and do
uments, our a-b-t notation is 
ompletely generi
.We 
onsider this TCP 
onne
tion sequential be
ause only one endpoint sent data to theother one at any point in the lifetime of the 
onne
tion. It is important to iterate that an ADUis not a TCP segment (i.e., TCP pa
ket), but an appli
ation message that is independent of its1Our a-b-t model provides however a good foundation for developing mathemati
al and statisti
al models oftraÆ
 at the sour
e-level. This dissertation 
onsistently follows a non-parametri
 approa
h to traÆ
 modeling.The only ex
eption is the Poisson Resampling method presented in Chapter 7, for whi
h we also o�er a morepowerful non-parametri
 alternative, blo
k resampling.9
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tion between two BitTorrent peers.a
tual network representation as a link-level pa
ket. As su
h, an ADU 
an be of arbitrary size,like the smaller a1 = 329 bytes and the larger b2 = 25; 821 bytes in the previous example. Thetransferring of a1 would usually involve a single TCP segment, but it is also possible that thissegment gets dupli
ated, or lost and then retransmitted. In this 
ase, the TCP endpoint sendinga1 would result in the generation of two or more segments 
arrying this ADU. Our notationwould still des
ribe this part of the TCP 
onne
tion as a single 329-byte ADU, and not as thesequen
e of TCP segments used to transfer the data. Similarly, transferring b2 = 25; 821 bytesrequires a minimum of 18 TCP segments in a path without loss and with a regular MaximumSegment Size (MSS) of 1,460 bytes (the one derived from Ethernet's Maximum TransmissionUnit (MTU) of 1,500 bytes, after subtra
ting 20 bytes for the IP header and 20 bytes for theTCP header). It may require many more segments in a lossy environment, or in a path with alower MTU. However, these details are irrelevant at the abstra
t sour
e level, where b2 
apturesthe need of one of the endpoints to send 25,821 bytes of data, and this need is independent ofthe way in whi
h the data is transferred by the network. Our modeling is therefore network-independent, whi
h makes it suitable for generating 
losed-loop traÆ
.While most TCP 
onne
tions are driven by appli
ations that follow a sequential pattern ofADU ex
hanges, we 
an also �nd 
ases in whi
h the two endpoints send data to ea
h other atthe same time. This is illustrated in Figure 1.3 using a BitTorrent [Coh03℄ 
onne
tion, where we
an see ADUs whose transmission overlaps in time (i.e., the ADUs are ex
hanged 
on
urrently).This pattern is 
ertainly less 
ommon that the sequential one, but it is supported in importantproto
ols like HTTP/1.1 (pipelining), NNTP (streaming mode) and BitTorrent. Our analysisshows that while the fra
tion of 
onne
tions with 
on
urrent data ex
hanges is usually small,(17.4%), su
h 
on
urrent 
onne
tions often 
arry a signi�
ant fra
tion (15%-35%) of the total10



bytes seen in a tra
e, and hen
e modeling these 
onne
tions is 
riti
al if one wants to generaterealisti
 traÆ
 mixes.To represent 
on
urrent ADU ex
hanges, the a
tions of ea
h endpoint are 
onsidered too

ur independently of ea
h other. Thus ea
h endpoint is a separate sour
e generating ADUsthat appear as a sequen
e of epo
hs following a unidire
tional 
ow pattern. Formally, thismeans that we represent ea
h 
onne
tion as a pair (�; �) of 
onne
tion ve
tors of the form� = ((a1; ta1); (a2; ta2); : : : ; (ana ; tana))and � = ((b1; tb1); (b2; tb2); : : : ; (bnb ; tbnb));where ai and bi are sizes of ADUs sent from the initiator and from the a

eptor of the TCP
onne
tion respe
tively, and tai and tbi are quiet times between the ADUs. We 
all this repre-sentation of sour
e-level behavior a 
on
urrent 
onne
tion ve
tor . Unlike the sequential versionof the a-b-t model, this representation does not 
apture any 
ausality between the two dire
-tions of a TCP 
onne
tion. As a 
onsequen
e, traÆ
 generated a

ording to this version of themodel usually exhibits a substantial number of 
on
urrent data ex
hanges.The a-b-t model provides a simple yet expressive way of des
ribing sour
e-level behavior in ageneri
 manner that is not tied to the details of any appli
ation. In addition, this non-parametri
model was designed to in
orporate quantities (ADU sizes, ADU dire
tionality, and inter-ADUquiet time duration) that 
an be extra
ted from pa
ket header tra
es in a eÆ
ient, a

uratemanner. We 
an easily imagine more 
omplex and expressive models of TCP 
onne
tions forwhi
h no eÆ
ient data a
quisition algorithm exists, or models that deal with 
hara
teristi
s ofsour
e-level behavior that 
annot be extra
ted purely from pa
ket headers. In the 
ase of the a-b-t model, we have developed a data a
quisition algorithm that relies on TCP sequen
e numbersfor measuring ADU sizes, and on the pa
ket arrival timestamps obtained during tra
e 
olle
tionto determine inter-ADU quite times. Our algorithm 
onstru
ts a data stru
ture in whi
h TCPsegments are ordered a

ording to their logi
al data order , i.e., the order in whi
h data must11
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e-level Tra
e Replay.be delivered to the appli
ation layer of the re
eiving endpoint. In re
onstru
ting this logi
alorder for ea
h 
onne
tion, we have developed methods for dealing with network pathologiessu
h as arbitrary segment reordering, dupli
ation and retransmission. Furthermore, when thedata segments in a TCP 
onne
tion 
annot be ordered a

ording to the logi
al data order, we
an 
lassify the 
onne
tion as 
on
urrent with 
ertainty. Our data stru
ture supports bothsequential (i.e., bidire
tional) and 
on
urrent (i.e., unidire
tional) ordering, making it possibleto extra
t ADU sizes and quiet times with a single pass over the segments of a TCP 
onne
tionfound in a tra
e. The analysis 
an be performed in O(sW ) time, where s is the number of datasegments in the 
onne
tion and W is the maximum size of the TCP window (whi
h bounds themaximum amount of reordering).1.2 Sour
e-Level Tra
e ReplayOur abstra
t sour
e-level modeling of TCP 
onne
tion provides a solid foundation for gen-eration traÆ
 mixes in simulators and network testbeds. We propose to generate traÆ
 usingsour
e-level tra
e replay , as illustrated in Figure 1.4. Given a pa
ket header tra
e Th 
olle
tedfrom some Internet link, we �rst use our data a
quisition algorithm to analyze the tra
e anddes
ribe its 
ontent as a 
olle
tion of 
onne
tion ve
tors T
 = f(Ti; Ci)g, where Ti is the relative12



start time of the i-th TCP 
onne
tion, and Ci is the sequential or 
on
urrent 
onne
tion ve
tor
orresponding to this 
onne
tion. The basi
 approa
h for generating traÆ
 a

ording to T
 isto replay every 
onne
tion ve
tor Ci. Ea
h 
onne
tion ve
tor Ci is replayed by starting a TCP
onne
tion pre
isely at Ci's relative start time Ti, and transmitting the measured sequen
e ofADUs (aj and bj) separated in time by the inter-ADU measured quiet times (tai and tbi). Inthis dissertation, we evaluate a spe
i�
 implementation of this approa
h for FreeBSD networktestbeds, where traÆ
 is generated using a tool we developed 
alled tmix .The goal of the dire
t sour
e-level tra
e replay of T
 is to reprodu
e the sour
e-level 
har-a
teristi
s of the traÆ
 in the original link, generating the traÆ
 in a 
losed-loop fashion.Closed-loop traÆ
 generation implies the need to simulate the behavior of appli
ations, usingregular network sta
ks to a
tually translate sour
e-level behavior into network traÆ
. In par-ti
ular, our experiments use an implementation whi
h relies on the standard so
ket interfa
eto reprodu
e the data ex
hanges in ea
h 
onne
tion ve
tor. Generating traÆ
 in this manneris 
losed-loop in the sense that it preserves the feedba
k me
hanism in TCP, whi
h adaptsits behavior to 
hanges in network 
onditions, su
h as loss and re
eiver saturation. In 
on-trast, pa
ket-level tra
e replay, the dire
t reprodu
tion of Th, is an open-loop traÆ
 generationmethod in the sense that TCP 
ontrol algorithms are not used during the generation, and hen
ethe traÆ
 does not adapt to network 
onditions.The evaluation of our methodology 
onsists of 
omparing the original tra
e Th and thesyntheti
 tra
e T 0h obtained from the sour
e-level tra
e replay. Validating our traÆ
 generationmethod 
onsists of transforming T 0h into a set of 
onne
tion ve
tors T 0
 , using the same methodused to transform Th into T
. We then 
ompare the resulting set of 
onne
tion ve
tors T 0
 withthe original T
. In prin
iple, they should be identi
al, sin
e T
 represents the invariant sour
e-level 
hara
teristi
s of Th. There are however some di�eren
es that are explained by the natureof the model and our measurement methods.The dire
t 
omparison of Th and T 0h also provides a way to study the a

ura
y of ourapproa
h in terms of how well traÆ
 is des
ribed by the a-b-t model. This is however a subtleexer
ise. The a
tual replay of T
, whi
h 
reates T 0h, ne
essarily requires the sele
tion of a13



a set of network-level parameters, su
h as round-trip times and TCP re
eiver window sizes,for ea
h TCP 
onne
tion in the sour
e-level tra
e replay. The exa
t set of generated TCPsegments and their arrival times is a dire
t fun
tion of these parameters. As a 
onsequen
e, ifwe 
ondu
t a sour
e-level tra
e replay using arbitrary network-level parameters, we obtain a T 0hwith little resemblan
e to the original Th. The replayed a-b-t 
onne
tion ve
tors may be a perfe
tdes
ription of the sour
e behavior driving the original 
onne
tions, but the generated pa
ket-level tra
e T 0h would still be very di�erent from the original Th. To address this diÆ
ulty, ourreplay in
orporates network-level parameters individually derived from ea
h 
onne
tion in Th.We have also in
orporated methods for measuring three important network-level parameters(round-trip time, TCP re
eiver window size and loss rate) into our analysis and generationpro
edure. While this set of parameters is by no means 
omplete, it does in
lude the mainparameters that a�e
t the average throughput of a TCP 
onne
tion found in a tra
e. Thisenables us to generate traÆ
 in a 
losed-loop manner that approximates measured tra
es very
losely.In
orporating network-level properties is important, but it is 
riti
al to understand themain short
oming of this approa
h. The goal of our work is not to make the generated traÆ
T 0h identi
al to the original traÆ
 Th, whi
h 
ould be a

omplished with a simple pa
ket-levelreplay. As mentioned before, pa
ket-level replays generate traÆ
 that does not adapt to 
hangesin network 
onditions, resulting in open-loop traÆ
. Our goal is to develop a 
losed-loop traÆ
generation method based on a detailed 
hara
terization of sour
e behavior. TraÆ
 generatedin a 
losed-loop manner 
an adapt to di�erent network 
onditions, whi
h are intrinsi
 whenevaluating di�erent network me
hanisms. Our 
omparison of Th and T 0h is only a means tounderstand the quality of traÆ
 generation method, where quality is 
onsidered to be higheras the original tra
e is more 
losely approximated. If enough parameters of the original traÆ
are a

urately measured and in
orporated into the traÆ
 generation experiment, we expe
t toobserve a great similarity between Th and T 0h. On the 
ontrary, if we are missing some importantparameters, we expe
t to observe substantial di�eren
es between tra
es.By 
onstru
tion, traÆ
 generated using sour
e-level tra
e replay 
an never be identi
al to14



the original traÆ
. The statisti
al properties of original pa
ket header tra
es are the result ofmultiplexing a large number of 
onne
tions onto a single link, and these 
onne
tions traverse alarge number of di�erent paths with a variety of network 
onditions. It is simply not possible tofully 
hara
terize this environment and reprodu
e it in a laboratory testbed or in a simulation.This is both be
ause of the limitations of passive inferen
e from pa
ket headers, and be
ause ofthe sto
hasti
 nature of network traÆ
. Sour
e-level tra
e replay 
an never in
orporate everyfa
tor that shaped Th, and therefore di�eren
es between Th and T 0h are unavoidable. Still, �ndinga 
lose mat
h between an original tra
e and its replay, even if they are not identi
al, 
onstitutesstrong eviden
e of the a

ura
y of the a-b-t model and the data a
quisition and generationmethods we have developed. It also demonstrates the feasibility of generating realisti
 networktraÆ
 in a 
losed-loop manner that resembles a ri
h traÆ
 mix.1.3 Tra
e Resampling and Load S
alingAs long as the network setup of a simulation or testbed experiment remains un
hanged, thesour
e-level tra
e replay of a 
onne
tion ve
tor tra
e T
 = f(Ti; Ci)g always results in traÆ
that is similar to the original tra
e. Every replay 
ontains the same number of TCP 
onne
tionsbehaving a

ording to the same 
onne
tion ve
tor spe
i�
ation and starting at the same times.Only tiny variations are introdu
ed on the end-systems by 
hanges in 
lo
k syn
hronization, op-erating system s
heduling and interrupt handling, and at swit
hes and routers by the sto
hasti
nature of pa
ket multiplexing. Sour
e-level tra
e replay has therefore two desirable properties:� The quality of the syntheti
 traÆ
 
an be evaluated by dire
tly 
omparing syntheti
 andoriginal traÆ
. This makes it possible to study the a

ura
y of the analysis methods andthe generation system with 
omplete freedom, using any metri
 that 
an be derived fromreal traÆ
. In 
ontrast, more abstra
t methods based on parametri
 models of traÆ
 areinherently sto
hasti
 and therefore more diÆ
ult to evaluate. For su
h methods, it is lessobvious whether the observed di�eren
e between the traÆ
 generated using the parametri
model and the original traÆ
 from whi
h the model derives should be admitted.15



� The generation of the syntheti
 traÆ
 is fully reprodu
ible. A resear
her 
an expose a
olle
tion of network proto
ols and me
hanisms to exa
tly the same 
losed-loop traÆ
,whi
h provides the right foundation for fair 
omparative studies. In 
ontrast, sto
hasti
variation in the traÆ
 generated using parametri
 models is often diÆ
ult to 
ontrol. Forexample, experiments with models that rely on heavy-tailed distributions 
onverge veryslowly to 
omparable 
onditions, as dis
ussed by Crovella and Lipsky [CL97℄.While these properties are important, the pra
ti
e of experimental networking often requiresto introdu
e 
ontrolled variability in the generated traÆ
 for exploring a wider range of s
e-narios. This motivates the development of methods that manipulate T
 in order to generatedi�erent traÆ
 that still resembles the original one. Furthermore, developing a statisti
allysound way of manipulating T
 is essential for generating traÆ
 with di�erent levels of o�eredload. This manipulation to mat
h a target o�ered load is a very 
ommon need in experimentalnetworking resear
h. This is be
ause the performan
e of a network me
hanism or proto
ol isoften a�e
ted by the amount of traÆ
 to whi
h it is exposed. Therefore, rigorous experimentalstudies frequently require to generate a 
omplete range of target loads.In this dissertation, we propose two 
exible methods for introdu
ing variability in traÆ
generation experiments. In both 
ases, the set of 
onne
tion ve
tors in T
 is randomly resampled,resulting in a new set T 0
 that preserves the aggregate sour
e-level 
hara
teristi
s of the originaltraÆ
. In our �rst method, Poisson Resampling , we 
onstru
t a new 
onne
tion ve
tor tra
eT 0
 by randomly resampling 
onne
tions from T
, and assigning them exponentially distributedinter-arrival times. As a result, 
onne
tions in T 0
 arrive a

ording to a Poisson pro
ess. Inthe se
ond method, Blo
k Resampling , we resample blo
ks (groups) of 
onne
tions rather thanindividual 
onne
tions. This method results in a more realisti
 
onne
tion arrival pro
ess, whi
hmat
hes the substantial burstiness observed in real tra
es. In more te
hni
al terms, Blo
kResampling preserves the moderate long-range dependen
e found in real 
onne
tion arrivalpro
esses, while Poisson Resampling results in a short-range dependent 
onne
tion arrivalspro
ess. This di�eren
e is demonstrated in our experimental evaluation of the two methods.In addition, the evaluation shows that the duration of the resampling blo
k 
reates a trade-16



o� between shorter blo
ks (whi
h in
rease the number of distin
t resamplings) and long-rangedependen
e (whi
h disappears for short blo
ks). Our analysis demonstrates that blo
k durationsbetween 1 and 5 minutes o�er the best 
ompromise.Resear
hers often need to 
ondu
t a set of experiments with a range of di�erent traÆ
 loads.When using a traditional sour
e-level model, e.g., a model of web traÆ
, resear
hers have to �rst
ondu
t a preliminary experimental study to determine how the parameters of the model, e.g.,the number of user equivalents, a�e
t the generated load [CJOS00, LAJS03, K
LH+02℄. Thisis usually known as the 
alibration of traÆ
 generator. Our resampling methods eliminate this
ommon need for 
alibrating traÆ
 generators, sin
e the resampling pro
ess 
an be 
ontrolledto mat
h a spe
i�
 target load (i.e., generated load is known a priori). In the 
ase of PoissonResampling, this is a

omplished by 
hanging the mean arrival rate of 
onne
tions. In the
ase of Blo
k Resampling, o�ered load is manipulated using blo
k thinning (i.e., subsampling)and blo
k thi
kening (i.e., 
ombining blo
ks). Our work reveals that load s
aling 
annot bebased simply on 
ontrolling the number of 
onne
tions. Su
h an approa
h frequently resultsin o�ered loads that are far from the target, be
ause the number of 
onne
tions in a resampleis not strongly 
orrelated with the o�ered load represented by these 
onne
tions. We addressthis diÆ
ulty by developing byte-driven versions of Poisson Resampling and Blo
k Resampling,whi
h s
ale load using a running 
ount of the total data in the resampled tra
e T 0
 . Unlikethe number of 
onne
tions, the total amount of data in T 0
 is strongly 
orrelated to traÆ
load o�ered by T 0
 . Our experiments 
on�rm that byte-driven resampling is highly a

urate,eliminating the 
ommon need for 
alibrating traÆ
 generators.1.4 Thesis StatementThis dissertation 
onsiders the following thesis:1. An abstra
t sour
e-level model 
an des
ribe in detail the entire set of TCP appli
ationbehaviors observed in real networks. 17



2. Des
riptions of abstra
t sour
e-level behavior 
an be empiri
ally derived from pa
ketheader tra
es in an eÆ
ient, a

urate manner.3. TraÆ
 generation based on this abstra
t sour
e-level modeling results in syntheti
 traÆ
that is realisti
 and suitable for experimental networking resear
h.4. The abstra
t sour
e-level model of a tra
e 
an be manipulated to introdu
e statisti
allyvalid variability in the generated traÆ
 and also to a

urately mat
h a target o�ered loadwhile preserving appli
ation 
hara
teristi
s.1.5 ContributionsWe highlight the following 
ontributions from this dissertation:� We develop the 
on
ept of abstra
t sour
e-level modeling and the a-b-t notation for de-s
ribing the sour
e-level behavior of entire traÆ
 mixes. We identify a fundamental di-
hotomy in sour
e-level behavior between 
onne
tions that ex
hange data sequentiallyand 
onne
tions that ex
hange data 
on
urrently. Our a-b-t notation in
ludes a sequen-tial version and a 
on
urrent version that makes it possible to appropriately des
ribe thesetwo types of behaviors.� We formulate a formal test of 
on
urren
y that 
an be applied to the pa
ket headers ofany TCP 
onne
tion, and that does not su�er from false positives. This enables us toa

urately 
lassify 
onne
tions as sequential or 
on
urrent. We show that only a smallfra
tion of TCP 
onne
tions (less than 4% in our tra
es) ex
hange data 
on
urrently, butthat these TCP 
onne
tions a

ount for a substantial fra
tion (up to 32%) of the totaltraÆ
.� We present an eÆ
ient algorithm for transforming a pa
ket header tra
e into a 
olle
tionof sequential and 
on
urrent a-b-t 
onne
tion ve
tors. Given a TCP 
onne
tion for whi
hwe observe s segments and that has a maximum re
eiver window size ofW , the asymptoti
18




ost of our algorithm is O(sW ). We demonstrate that this algorithm is a

urate usingtraÆ
 generated from syntheti
 appli
ations (i.e., with known 
hara
teristi
s).� We develop sour
e-level tra
e replay, a 
losed-loop traÆ
 generation method that uses a-b-t 
onne
tion ve
tors as a non-parametri
 model of network traÆ
. One key bene�t of thisapproa
h is the possibility of dire
tly 
omparing original and generated traÆ
, whi
h weuse to evaluate the \realism" of our traÆ
 generation approa
h. This 
omparison requiresus to in
orporate some network-level parameters (round-trip times, maximum re
eiverwindow sizes, and possibly loss rates) into the traÆ
 generation. These parameters 
an bemeasured from pa
ket header tra
es. We pay spe
ial attention to passive round-trip timeestimation in our data a
quisition, developing the 
on
ept of One-Side Transit Time andstudying the impa
t of delayed a
knowledgments on passive round-trip time estimation.� We implement our traÆ
 generation method in a network testbed, developing a new dis-tributed traÆ
 generation tool, tmix . We use this implementation to study the results ofa large 
olle
tion of tra
e replay experiments, evaluating the need for detailed sour
e-levelmodeling and the impa
t of losses on measured network traÆ
. Our results demonstratethat detailed sour
e-level modeling is often required for a

urately approximating realtraÆ
, whi
h demonstrates that sour
e-level behavior is a major fa
tor shaping InternettraÆ
. The most substantial di�eren
es are observed for the number of a
tive 
onne
tionsand the number of pa
ket arrivals per unit of time. Byte arrivals per unit of time andlong-range dependen
e do not improve so 
onsistently with the use of detailed sour
e-levelmodeling. We also show that losses had only a se
ondary e�e
t in our tra
es, but theyare not negligible when 
omparing original and generated traÆ
.� We present two tra
e resampling algorithms whi
h 
an be used to derive new tra
es froman existing one, preserving its statisti
al 
hara
teristi
s at the sour
e-level. Our 
ompar-ison of the two methods reveals that the observed long-range dependen
e in 
onne
tionarrivals has no apparent impa
t on the long-range dependen
e of pa
ket and byte arrivals.� We demonstrate the need for byte-driven rather than 
onne
tion-driven resampling inorder to a

urately s
ale o�ered loads, and develop byte-driven versions of our two re-19



sampling methods. This approa
h eliminates the need for the experimental 
alibration oftraÆ
 generators (whi
h study the relationship between the parameters of the generatorand the o�ered traÆ
 load).� Our entire methodology makes it possible to 
ondu
t networking experiments with 
losed-loop syntheti
 traÆ
 derived from real tra
es in an automated manner. This eliminatesthe need for painstaking parametri
 modeling.1.6 OverviewChapter 2 presents a review of the state-of-the-art in syntheti
 traÆ
 generation. We �rstexpand our dis
ussion of pa
ket-level traÆ
 generation and data a
quisition, and then examinesour
e-level traÆ
 generation more in depth. We review the literature on appli
ation-spe
i�
modeling, dis
ussing models of web traÆ
 and other appli
ations, and also 
onsider severalapproa
hes for generating traÆ
 driven by more than one appli
ation. We also dis
uss existingmethods for 
ontrolling the traÆ
 load 
reated in networking experiments. The 
hapter �nally
onsiders some resear
h e�orts addressing implementation issues.Chapter 3 dis
usses abstra
t sour
e-level modeling, presenting several examples of real ap-pli
ations and how their behavior 
an be des
ribed using our a-b-t notation. We also presentour measurement algorithm for transforming a pa
ket header tra
e into a 
olle
tion of sequen-tial and 
on
urrent a-b-t 
onne
tion ve
tors. The 
hapter also in
ludes a validation of themeasurement method using syntheti
 appli
ations, and a measurement study that examinesthe statisti
al properties of the a-b-t 
onne
tion ve
tors extra
ted from �ve real tra
es.Chapter 4 fo
uses on network-level measurement. We �rst des
ribe our methods for mea-suring round-trip times, window sizes and loss rates, and an evaluation of their a

ura
y. Whilethis set of parameters is by no means 
omplete, it does in
lude the main parameters that a�e
tthe average throughput of a TCP 
onne
tion found in a tra
e. The se
ond part of Chapter 4des
ribes the network-level metri
s that we 
onsider in the evaluation of our traÆ
 generation20



method: pa
ket and byte throughput time series, their marginal distributions, wavelet spe
tra,Hurst parameter estimates and time series of a
tive 
onne
tions.Chapter 5 des
ribes sour
e-level tra
e replay and our implementation in a network testbed.We present a validation of this implementation using the sour
e-level tra
e replays of �vetra
es. For ea
h tra
e, we study the a-b-t 
onne
tion ve
tors extra
ted from the original tra
esand those found in replays with and without pa
ket losses at the network links. The resultsdemonstrate the a

ura
y of our approa
h, and also un
over some diÆ
ulties, whi
h are in some
ases inherent to the a-b-t model and its passive method of data a
quisition.Chapter 6 examines the results of several sour
e-level tra
e replay experiments. Our anal-ysis 
ompares original tra
es and their sour
e-level tra
e replays using the ri
h set of metri
sintrodu
ed in Chapter 4, revealing a remarkably 
lose approximation. This study also in
ludesa 
omparison of traÆ
 generated with the a-b-t model and with a simpli�ed version that \dis-ables" sour
e-level modeling, whi
h is shown to perform well for some metri
s and poorly forothers. As in the previous 
hapter, we also 
onsider experiments with and without arti�
iallosses, showing that loss did not have a dominant impa
t on the 
hara
teristi
s of the originaltraÆ
. In general, our results provide a strong justi�
ation of our sour
e-level modeling ap-proa
h, demonstrating that the 
losed-loop replay of a-b-t 
onne
tion ve
tors 
losely resemblesreal traÆ
.Chapter 7 presents our two resampling methods, Poisson Resampling and Blo
k Resampling.These methods enable the resear
her to introdu
e 
ontrolled variability in sour
e-level tra
ereplay experiments, without sa
ri�
ing reprodu
ibility. In addition, we 
onsider the problemof load s
aling, i.e., how to 
ontrol the resampling pro
ess to obtain a new tra
e with a targeto�ered load. Our work demonstrates that this task 
an be a

omplished by keeping tra
k of thetotal number of data bytes in the resampled tra
e, but not by keeping tra
k of the number of
onne
tions. Our s
aling methods eliminate the 
ommon need for running a preliminary studyto 
alibrate the traÆ
 generator.Chapter 8 presents our 
on
lusions and dis
usses future work.21



CHAPTER 2Related WorkA s
ienti�
 theory should be as simple as possible, but no simpler.| Albert Einstein (1879{1955)The greatest 
hallenge to any thinker is stating the problem in a way that willallow a solution. | Bertrand Russell (1872{1970)This 
hapter presents an overview of the resear
h literature relevant for realisti
 traÆ
 gen-eration. We 
onsider two types of works. First, we dis
uss the body of literature that developedthe 
on
epts and te
hniques 
urrently in use for generating syntheti
 traÆ
 in simulations andtestbed experiments. Se
ond, we examine the Internet measurement literature that informsthe dis
ussion of what is meant by \realisti
" traÆ
 generation. Intuitively, syntheti
 traÆ
resembling Internet traÆ
 
an only be realisti
 if derived from measurements 
ondu
ted fromreal network links. We 
ould argue that any Internet measurement paper helps to gain a betterunderstanding of the nature of the Internet and its traÆ
, being therefore relevant for realis-ti
 traÆ
 generation. However, the sheer size of the Internet measurement literature makes a
omplete overview impra
ti
al, so we will restri
t ourselves to the main works that had a dire
timpa
t on Internet traÆ
 generation. It is also interesting to note that the most re
ent trendin the �eld of traÆ
 generation is pre
isely to 
ombine traÆ
 measurement and generation intoa single, 
oherent approa
h [HCJS+01, LH02, SB04, HCSJ04℄.TraÆ
 generation for experimental networking resear
h was identi�ed as one of the key 
hal-lenges in Internet modeling and simulation by Paxson and Floyd [PF95℄ in 1995. Interestingly,



Floyd and Kohler [FK03℄ made a similar point in 2003, and argued that it was still diÆ
ult to
ondu
t experiments with representative, validated syntheti
 traÆ
. While traÆ
 measurementand Internet measurement in general have be
ome in
reasingly popular in re
ent years, moststudies are exploratory and provide little foundation to build traÆ
 generators. This 
hapterprovides an overview of the major works in the �eld of Internet traÆ
 generation, 
onsidering�rst pa
ket-level traÆ
 generation and then sour
e-level traÆ
 generation. Other aspe
ts oftraÆ
 generation, su
h as load s
aling, in
orporating network-dependen
ies and implementationissues are dis
ussed at the end of the 
hapter.2.1 Pa
ket-Level TraÆ
 GenerationIn this dissertation we restri
t the question of generating realisti
 traÆ
 to a single link.This is the most essential form of the traÆ
 generation problem. It does not seem possibleto ta
kle the problem of generating traÆ
 for multiple links, say the ba
kbone of an ISP, ifsingle-link traÆ
 generation is not fully understood.The simplest way of generating realisti
 traÆ
 on a single link is to inje
t pa
kets into thenetwork a

ording to the 
hara
teristi
s of the pa
kets observed traversing a real link. Wewill use the term pa
ket-level traÆ
 generation to refer to this approa
h. Pa
ket-level traÆ
generation 
an mean either performing a pa
ket-level replay , i.e., reprodu
ing the exa
t arrivalsand sizes of every observed pa
ket, or inje
ting pa
kets in su
h a manner as to preserve some setof statisti
al properties 
onsidered fundamental, or relevant for a spe
i�
 experiment. Pa
ket-level replay, whi
h has been implemented in tools like t
preplay [t
pb℄, is a straightforwardte
hnique that is useful for 
ertain types of experiments where 
on�guration of the network isnot expe
ted to a�e
t the generated traÆ
. In other words, whenever it is reasonable to generatetraÆ
 that is invariant of (i.e., unresponsive to) the experimental 
onditions, then pa
ket-levelreplay is an e�e
tive means for generating syntheti
 traÆ
. For example, pa
ket-level replaysof tra
es 
olle
ted from the Internet have been used to evaluate 
a
he repla
ement poli
ies inrouting tables [Jai90, Fel88, G
C02℄. In this type of experiments, di�erent 
a
he repla
ement23



poli
ies are 
ompared by feeding the lookup 
a
he of a routing engine with a pa
ket tra
e and
omputing the a
hieved hit ratio. Also, studies that require mali
ious traÆ
 generation 
anoften make use of pa
ket-level replay [SYB04, RDFS04℄. Mali
ious traÆ
 (e.g., a SYN 
ood)is frequently not responsive to network 
onditions (and their degradation).Before 
ondu
ting an experiment in whi
h traÆ
 is generated using pa
ket-level replay, re-sear
hers must obtain one or more tra
es of the arrivals of pa
kets to a network link. Thesetra
es are 
olle
ted using a pa
ket \sni�er" to monitor the traÆ
 traversing some given link.This pa
ket 
apturing 
an be performed with and without hardware support. The most promi-nent example of software-only 
apture is the Berkeley Pa
ket Filter (BPF) system [MJ93, t
pa℄.BPF in
ludes a pa
ket 
apturing library, libp
ap, and a 
ommand-line interfa
e and tra
e analy-sis tool, t
pdump. BPF relies on the promis
uous mode of network interfa
es to observe pa
ketstraversing a network link and to 
reate a tra
e of them in the \p
ap" format. Due to priva
y andsize 
onsiderations, most tra
es only in
lude the proto
ol headers (IP and TCP/UDP) of ea
hpa
ket and a timestamp of the pa
ket's arrival. Monitoring high-speed links with a software-only system is problemati
, given that traÆ
 has to be forwarded from the network interfa
e tothe monitoring software using the system bus. The system bus may not be fast enough for thistask depending on the load on the monitored link. High loads 
an result in \dropped" pa
ketsthat are absent from the 
olle
ted tra
e. Furthermore, the extra forwarding from the wire tothe monitoring program, whi
h usually involves bu�ering in the network interfa
e and in op-erating system layers, makes timestamps rather ina

urate. In the 
ase of BPF, timestampingina

ura
ies of a few hundreds of mi
rose
onds are quite 
ommon. In order to over
ome thesediÆ
ulties, resear
hers often make use of spe
ialized hardware that 
an extra
t headers andprovide timestamps without the intervention of the operating system. This is of 
ourse farmore expensive, but it dramati
ally improves timestamp a

ura
y and in
reases the volume oftraÆ
 that 
an be 
olle
ted without drops. The DAG platform [Pro, GMP97, MDG01℄ is agood example of this approa
h, and it is widely used in network measurement proje
ts. Thetimestamping a

ura
y of DAG tra
es is on the order of nanose
onds. Multiple DAG 
ards,possibly at di�erent lo
ations, 
an also be syn
hronized using an external 
lo
k signal, su
h
24



as the one from the Global Positioning System (GPS). Besides 
olle
ting their own tra
es, re-sear
hers 
an also make use of publi
 repositories of p
ap and DAG tra
es, su
h as the InternetTraÆ
 Ar
hive [Int℄ and the PMA proje
t at NLANR [nlab℄.While pa
ket-level replay is 
on
eptually simple, it involves a number of engineering 
hal-lenges. First, traÆ
 generators usually rely on operating systems layers and abstra
tions, su
has raw so
kets, to perform the pa
ket-level replay. Most operating systems provide no guaranteeon the exa
t delay between the time of pa
ket inje
tion by the traÆ
 generator and the timeat whi
h the pa
ket leaves the network interfa
e. Servi
ing interrupts, s
heduling pro
esses,et
., 
an introdu
e arbitrary delays, whi
h make the arrival pro
ess of the pa
ket replay di�erfrom the original and intended arrival pro
ess. This ina

ura
y may or may not be signi�
antfor a given experiment. Another 
hallenge is the replay of tra
es 
olle
ted in high-speed links.The rate of pa
ket arrivals in a tra
e 
an be far higher than the rate at whi
h a single host 
angenerate pa
kets. For example, the speed at whi
h a 
ommodity PC 
an inje
t pa
kets into thenetwork is primarily limited by the speed of its bus and the bandwidth of its network interfa
e.As a 
onsequen
e, replying a high rate tra
e often requires an experimenter to partition thetra
e into subtra
es that have to be replayed using a 
olle
tion of hosts. In this 
ase, it isimportant to 
arefully syn
hronize the replay of these hosts. This is generally a diÆ
ult task,sin
e the syn
hronization has to be done using the network itself, whi
h introdu
es variable I/Odelays. Clo
k drift is also a 
on
ern with 
ommon PC 
lo
ks.Ye et al. [YVIB05℄ dis
ussed pa
ket-level replay of high rate tra
es, fo
using on OC-48, andhow to evaluate the a

ura
y of the replay. They proposed 
ow-based splitting to 
onstru
t apartition of the original tra
e that 
an be a

urately replayed by an ensemble of traÆ
 genera-tors. This addresses the 
hallenge of replaying a tra
e using multiple traÆ
 generators withoutreordering the pa
kets within a 
ow. In 
ontrast, round-robin assignment of pa
kets to traÆ
generators, 
alled 
hoi
e of N in this work, results in pa
kets belonging to the same 
ow gener-ated by di�erent traÆ
 generators. As a 
onsequen
e, the generated traÆ
 exhibits substantialpa
ket reordering. This reordering is due to the diÆ
ulty of maintaining the generators per-fe
tly syn
hronized with 
ommodity hardware, so one generator 
an easily get ahead of another25



and modify the order of pa
kets within a 
ow. Ye et al. also dis
ussed the diÆ
ulties 
reatedby bu�ering on the network 
ards, whi
h modi�es the properties of the pa
ket arrival pro
ess at�ne s
ales. An alternative to the approa
h in Ye et al. is to rely on spe
ialized hardware. MostDAG 
ards support pa
ket-level replay, bypassing the network sta
k. However, no informationis available on how a

urately the generated traÆ
 preserves the properties of original pa
ketarrival pro
ess.Pa
ket-level replay has two important short
omings: it is in
exible and it is open-loop.Given that a pa
ket-level replay is the exa
t reprodu
tion of a 
olle
ted tra
e, both in termsof pa
ket arrival times and pa
ket 
ontent, there is no way to introdu
e variability in theexperiments other than a
quiring a 
olle
tion of tra
es and using a di�erent tra
e in di�erentruns of the experiments. This makes pa
ket replay in
exible, sin
e the resear
her has to limithis experiments to the available tra
es and their 
hara
teristi
s. The \right" tra
es may not beavailable or may be diÆ
ult to 
olle
t. Even 
ondu
ting experiments that study simple questions
an be 
umbersome. For example, a resear
her that intends to test a 
a
he repla
ement poli
yunder heavy loads must �nd tra
es with high pa
ket arrival rates, whi
h may or may notbe available. Similarly, evaluating a queuing me
hanism under a range of (open-loop) loadsrequires one to �nd tra
es 
overing this range of loads, and may involve mixing tra
es fromdi�erent lo
ations, whi
h 
ould 
ast doubt on the realism of the resulting traÆ
 and thus onthe 
on
lusions of the evaluation.More 
exible traÆ
 generation 
an be a
hieved by generating pa
kets a

ording to a setof statisti
al properties derived from real measurements. The 
hallenge then is to determinewhi
h properties of traÆ
 are most important to reprodu
e so that the syntheti
 generatedtraÆ
 makes the experiments \realisti
 enough." For example, Internet traÆ
 has been foundto be very bursty, showing very frequent 
hanges in throughput (both for pa
kets and bytes perunit of time). Therefore, most experiments should make use of syntheti
 traÆ
 that preservesthis observed burstiness. Leland et al. [LTWW93℄ observed that this burstiness 
an be studiedusing the framework provided by statisti
al self-similarity . At a high-level, self-similarity meansthat traÆ
 is equally bursty, i.e., equal varian
e in arrival times, a
ross a wide range of time26



s
ales. This is similar to the geometri
 self-similarity that fra
tals exhibit. Mathemati
ally,statisti
al self-similarity manifests itself as long-range dependen
e, a sub-exponential de
ay ofthe auto
orrelation of a time-series with s
ale. This is in sharp 
ontrast to Poisson modelingand its short-range dependen
e, whi
h implies an exponential de
ay of the auto
orrelation withs
ale. Therefore, it is generally diÆ
ult to a

ept experimental results where syntheti
 traÆ
does not exhibit some degree of self-similarity. A

ordingly, some experiments may simplyrely on some method for generating a self-similar pro
ess [Pax97℄ and inje
t pa
kets into theexperiments a

ording to this pro
ess. Studies on queuing dynami
s, e.g., [ENW96℄, made useof this traÆ
 generation approa
h.Other experiments with a more stringent need for realism may also attempt to reprodu
eother known properties of traÆ
. For example, a realisti
 distribution of IP addresses is essentialfor experiments in whi
h route 
a
hing performan
e is evaluated. To a

omplish this, pa
ket-level traÆ
 generation 
an be 
ombined with a statisti
al model of pa
ket arrival and a model ofaddress stru
ture. As one example, Aida and Abe [AA01℄ proposed a generative model based onthe �nding that the popularity of addresses follows a powerlaw (a heavy-tailed distribution witha hyperboli
 shape). In 
ontrast, Kohler et al. [KLPS02℄ fo
used on the hierar
hi
al stru
tureof addresses and pre�xes, whi
h is shown to be well-des
ribed by a multi-fra
tal model. Bothstudies 
ould be used to enri
h pa
ket-level traÆ
 generation.2.2 Sour
e-Level TraÆ
 GenerationWhile pa
ket-level traÆ
 generation based on a set of statisti
al properties is 
onvenientfor the experimenter, and attra
tive from a mathemati
al point of view, it fails to preserve anessential property of Internet traÆ
. As Floyd and Paxson [PF95℄ point out, pa
ket-level traÆ
generation is open-loop, in the sense that it does not preserve the feedba
k loop that existsbetween the sour
es of the traÆ
 (the endpoints) and the network. This feedba
k loop 
omesfrom the fa
t that endpoints rea
t to network 
onditions, and this rea
tion itself 
an 
hangethese 
onditions, and therefore trigger further 
hanges in the behavior of the endpoints. For27



example, TCP traÆ
 rea
ts to 
ongestion by lowering its sending rate, whi
h in turn de
reases
ongestion. A tra
e of pa
ket arrivals 
olle
ted at some given link is therefore spe
i�
 to the
hara
teristi
s of this link, the time of the tra
ing paths of the 
onne
tions that traversed it,et
. Therefore, any 
hanges that the experimenter makes to the experimental 
onditions makethe pa
ket-level traÆ
 invalid sin
e the traÆ
 generation pro
ess is insensitive to these 
hanges(unlike real Internet traÆ
). For example, pa
ket-level replay of TCP traÆ
 does not rea
t to
ongestion in any manner.The solution is to model the sour
es of traÆ
, i.e., to model the network behavior of theappli
ations running on the endpoints that 
ommuni
ate using network 
ows. Sour
e-levelmodels are then used to drive network sta
ks whi
h do implement 
ow and 
ongestion 
ontrolme
hanisms, and therefore rea
t to 
hanges in network 
onditions as real Internet endpointsdo. As a result, the generated traÆ
 is 
losed-loop, whi
h is far more realisti
 for a wide rangeof experiments.The simplest sour
e-level model is the in�nite sour
e model . The starting point of thein�nite sour
e model is the availability of an in�nite amount of data to be 
ommuni
atedfrom one endpoint to another. Generating traÆ
 a

ording to this model means that a traÆ
generator opens one or more transport 
onne
tions, and 
onstantly provides them with data tobe transferred. This means that, for ea
h 
onne
tion, one of the endpoints is 
onstantly writing(sending data pa
kets) while the other endpoint is 
onstantly reading (re
eiving data pa
kets).The sour
es are never the bottlene
k in this model. The only pro
ess that limits the rate atwhi
h the endpoints transmit data is the network, broadly de�ned to in
lude any me
hanismbelow the sour
es, su
h as TCP's maximum re
eiver window.The in�nite sour
e model is very attra
tive for several reasons, whi
h make it rather popularin both theoreti
al and experimental studies [FJ93b, KHR02, AKM04, SBDR05℄. First, thein�nite sour
e model has no parameters and hen
e it is easy to understand and amenable toformal analysis. It was, for example, the foundation for the work on the mathemati
al analysisof steady-state TCP throughput [PFTK98, BHCKS04℄. Se
ond, its underlying assumptionis that the largest 
ows on the network, whi
h a

ount for the majority of the pa
kets and28



the bytes, \look like" in�nite sour
es. For example, an in�nite sour
e provides a 
onvenientapproximation to a multi-gigabyte �le download using FTP. Third, in�nite sour
es are well-behaved, in the sense that, if driving TCP 
onne
tions, they try to 
onsume as mu
h bandwidthas possible. They also result in the ideal 
ase for bandwidth sharing. This makes them useful forexperiments in the area of 
ongestion 
ontrol, sin
e in�nite sour
es 
an easily 
ongest networklinks.Despite their 
onvenien
e, in�nite sour
es are unrealisti
 and do not provide a solid founda-tion for networking experiments, or even for understanding the behavior and performan
e of theInternet. The pioneering work by C�a
eres et al. [CDJM91℄, published as early as 1991, provideda �rst insight into the substantial di�eren
e between in�nite sour
es and real appli
ation traÆ
.These authors examined pa
ket header tra
es from three sites (the University of California atBerkeley, the University of Southern California, and Bell
ore in New Jersey) using the 
on
eptof appli
ation-level 
onversations. An appli
ation-level 
onversation was de�ned as the set ofpa
kets ex
hanged between two network endpoints. These 
onversations 
ould in
lude one ormore \asso
iations" (TCP 
onne
tions and UDP streams). A general problem when studyingtraÆ
 for extended periods is the need to separate traÆ
 into independent units of a
tivity,whi
h in this 
ase 
orrespond to 
onversations. Endpoints may ex
hange traÆ
 regularly, sayevery day, but that does not mean that they are engaged in the same 
onversation for days.Danzig et al. separated 
onversations between the same endpoints by identifying long periodswithout any traÆ
 ex
hange, whi
h are generally referred to as idle times or quiet times inthe literature. In their study, they used a threshold of 20 minutes to di�erentiate between two
onversations. The authors examined 
onversations from 13 di�erent appli
ations, 
hara
teriz-ing them with the help of empiri
al 
umulative distribution fun
tions (empiri
al CDFs). Theresults in
lude empiri
al CDFs for the number of bytes in ea
h 
onversation, the dire
tionalityof the 
ow of data (i.e., whether the two endpoints sent a similar amount of data), the distri-bution of pa
ket sizes, the popularity of di�erent networks, et
. Danzig and Jamin [DJ91℄ usedthese distributions in their traÆ
 generation tool, t
plib. The results from this work are furtherdis
ussed in Se
tion 2.2.2.
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C�a
eres et al. pointed out a number of substantial di�eren
es between their results and theassumptions of earlier works. First, the majority of 
onne
tions 
arried very small amounts ofdata, less than 10 KB in 75-90% of the 
ases. This is true for both intera
tive appli
ations (e.g.,telnet and rlogin) and bulk transfer appli
ations (e.g., FTP, SMTP). This is in sharp 
ontrastto the in�nite availability of data to be transferred assumed in the in�nite sour
e model. Thedynami
s of su
h short data transfers are 
ompletely di�erent from those of in�nite sour
es,whi
h for example have time to fully employ 
ongestion 
ontrol me
hanisms. The se
onddi�eren
e was that traÆ
 from most appli
ations was shown to be strongly bidire
tional, and itin
luded at least one request/response phase, i.e., an alteration in the role of the endpoints assenders of data. The in�nite sour
e model is inherently unidire
tional, with one of the endpointsalways a
ting as the sender, and the other endpoint always a
ting as the re
eiver. Third, theauthors observed a wide range of pa
ket sizes, and a large fra
tion of the data pa
kets weresmall, even for bulk appli
ations. Data pa
kets from an in�nite sour
e are ne
essarily full size,sin
e there is by de�nition enough data to 
ompletely �ll new pa
kets.These measurement results highlighted a substantial di�eren
e between in�nite sour
es andreal traÆ
, and later experimental studies demonstrated the perils of using traÆ
 from in�nitesour
es in the evaluating of network me
hanisms. Joo et al. [JRF+99, JRF+01℄ demonstratedthat in�nite TCP sour
es tend to be
ome syn
hronized, so they in
rease or de
rease theirtransmission rate at the same time. This pattern is 
ompletely absent from more realisti
experiments in whi
h the majority of the sour
es have small and diverse amounts of data tosend. As a result, loss patterns, queue lengths and other 
hara
teristi
s are strikingly di�erentwhen more realisti
 syntheti
 traÆ
 is used. Joo et al. also studied the di�eren
e betweenopen-loop and 
losed-loop traÆ
 generation.The area of a
tive queue management has provided several illustrations of the misleadingresults obtained with the unrealisti
 in�nite sour
es. The �rst AQM s
heme, RED, was pre-sented by Floyd and Ja
obson in [FJ93b℄, and evaluated using in�nite sour
es. Their resultsshowed that RED signi�
antly outperformed FIFO, the usual router queuing me
hanism. Laterwork by Christiansen et al. [CJOS00℄ demonstrated that RED o�ers very little bene�t, if any,30



when exposed to more realisti
 traÆ
 where sour
es are not in�nite. In parti
ular, they used amodel of web-like traÆ
, whi
h is dis
ussed later in this 
hapter.Paxson's analysis [Pax94℄ of pa
ket header tra
es from seven di�erent network links pro-vided further support for the 
on
lusions of C�a
eres et al. In addition, Paxson 
onsidered theparsimonious modeling of traÆ
 from di�erent appli
ations. He 
hara
terized four prominentappli
ations, telnet, NNTP, SMTP and FTP, using analyti
 models to �t the empiri
al distri-butions. Analyti
 models are more 
ommonly known as parametri
 models in the statisti
alliterature, and 
orrespond to 
lassi
al distributions, su
h as the Pareto distribution, that 
an befully 
hara
terized with a mathemati
al expression and only one or a few parameters. As Paxsonpointed out, the use of analyti
 models results in a 
on
ise des
ription of network appli
ationsthat 
an be easily 
ommuni
ated and 
ompared, and are often mathemati
ally tra
table. Hismethodology has had a lasting in
uen
e in appli
ation-level modeling. He 
learly demonstratedthat analyti
 �ts (i.e., parametri
 models) of the observed distributions 
an 
losely approximatethe 
hara
teristi
s of real appli
ations. However, it is important to remember that traÆ
 is notne
essarily more realisti
 when generated by analyti
 models as opposed to empiri
al models.Empiri
al CDFs, derived from network measurement of suÆ
ient size, provide a perfe
tly validfoundation for traÆ
 generators. Furthermore, �nding analyti
 �ts of 
omplex random variablesthat do not mat
h well-known statisti
al distributions is a daunting task.2.2.1 Web TraÆ
 ModelingModeling web traÆ
 has re
eived substantial attention sin
e the sudden emergen
e ofthe World Wide Web in the mid-nineties. Arlitt and Williamson [AW95℄ proposed an earlymodel for generating web traÆ
1, based on pa
ket header tra
es 
olle
ted at the Universityof Saskat
hewan. The model was 
entered around the 
on
ept of a 
onversation, as proposedby C�a
eres et al. [CDJM91℄. In this 
ase, a 
onversation was the set of 
onne
tions observedbetween a web browser and a web server. These authors were the �rst to 
onsider questions1To be more spe
i�
, Arlitt and Williamson proposed a model of \Mosai
" traÆ
. Mosai
 was the �rst webbrowser. 31



su
h as the distribution of the number of bytes in requests and responses, the arrival rates of
onne
tions, et
. In general, the proposed model has parameters that are quite di�erent fromthose of later works. For example, an Erlang model of response sizes was used, whi
h is insharp 
ontrast to the heavy-tailness observed by other authors. While Arlitt and Williamsondid not provide any details on the statisti
al methods they employed, it is likely that the smallsample size (less than 10,000 TCP 
onne
tions) made it diÆ
ult to develop a more statisti
allyrepresentative model.One of the major e�orts in the area of web traÆ
 modeling oriented toward traÆ
 generationtook pla
e at Boston University. Cunha et al. [CBC95℄ examined 
lient tra
es 
olle
ted byinstrumenting browsers at the Department of Computer S
ien
e. Unlike the pa
ket headertra
es used in Arlitt and Williamson, 
lient tra
es in
lude appli
ation information su
h as theexa
t URL of ea
h web obje
t requested and downloaded in ea
h TCP 
onne
tion. The authorsmade use of this information to study page and server popularity, whi
h are relevant for web
a
hing studies. In addition, the authors proposed the use of powerlaws for 
onstru
ting aparametri
 model of web traÆ
. They relied on the Pareto distribution for modeling the sizesof downloaded obje
ts, and the parameterless Zipf's law for modeling the popularity of spe
i�
pages. Crovella and Bestavros [CB96℄ used these �ndings to explain the long-range dependen
eobserved in the pa
ket arrivals of web traÆ
. Their explanation was derived from earlier workby Willinger et al. [WTSW97℄, whi
h showed that the multiplexing of heavy-tailed ON/OFFsour
es results in long-range dependent traÆ
. Crovella and Bestavros demonstrated that theunderlying distributions of web obje
t sizes, the e�e
ts of 
a
hing and user preferen
e in �letransferring, the e�e
t of user \think time", and the superimposition of many web transferspre
isely 
reates the multiplexing pro
ess hypothesized by Willinger et al.Crovella and Bestavros also showed that the explanation behind the suitability of powerlawsfor des
ribing the sizes of web obje
ts is that the sizes of �les are well des
ribed by powerlaws.This re�ned previous studies of �le-system 
hara
teristi
s (e.g., [BHK+91℄), whi
h observedlong-tailed distributions of �le sizes (but did not propose powerlaw models).Powerlaw modeling has had a lasting impa
t on traÆ
 modeling, whi
h is natural given32



that the transfer of �les is one of the most 
ommon uses of many appli
ation proto
ols. Count-less studies have 
on�rmed the usefulness of powerlaws for modeling appli
ation traÆ
. Theeloquent term \mi
e and elephants" [GM01, MHCS02, EV03℄, often applied to Internet traÆ
,pre
isely refers to the basi
 
hara
teristi
 of powerlaws: a majority of values are small (mi
e)but the un
ommon large values (elephants) are so large that they a

ount for a large fra
tionof the total value. For example, web traÆ
 usually shows around 90% of web obje
ts below10 KB, but larger obje
ts often a

ount for 90% of the total bytes. Resear
hers have usedthis general �nding of powerlaw sizes to develop a generi
, and mostly ad ho
, sour
e-levelmodel. TraÆ
 generated a

ording to this model 
onsists of a 
olle
tion of TCP 
onne
tionsthat transfer a single �le, su
h that the distribution of �le sizes follows a powerlaw. Resear
hersoften refer to this kind of syntheti
 traÆ
 as \mi
e-and-elephants-like" or \web-like" traÆ
[MGT00, KHR02℄. This simple approa
h is rather 
onvenient for traÆ
 generation, but it ig-nores the more 
omplex patterns of 
onne
tion usage (e.g., bidire
tionality, quiet times, et
.),and the di�eren
es among appli
ations present in real Internet traÆ
.It is important to note that re
ent work on the 
hara
terization of web traÆ
 has improvedour understanding of powerlaw/heavy-tailed modeling. Downey revisited the modeling of �lesizes in [Dow01b℄ and of 
ow sizes in [Dow01a℄, suggesting that lognormal distributions aremore appropriate than powerlaws (or heavy-tailed distributions). The histori
al survey byMitzenma
her [Mit04℄ un
overed similar 
ontroversies in other �elds, su
h as e
onomi
s andbiology. Hern�andez-Campos et al. demonstrated that lognormal distributions and powerlawso�er similar results in the regions of the distribution for whi
h enough samples are available,spe
i�
ally in the body and in the \moderate" tail. Beyond these regions, in the \far" tail, thela
k of samples makes it impossible to 
hoose between di�erent models. This is be
ause, for a�xed set of parameters and a �xed sample size equal to the original number of observations,some samplings of the lognormal and the powerlaw models mat
h the original distribution, whileother samplings do not. Hern�andez-Campos et al. also proposed the use of a mixture model(i.e., a 
ombination of several 
lassi
al models), the double Pareto lognormal, whi
h enablesfar more a

urate �ts than those a
hieved with Pareto or lognormal models. The inherently
33



more 
exible double Pareto lognormal model 
an 
apture the systemati
 deviations from simplermodels that are 
ommonly observed in the tails of the distributions of web obje
t sizes. Nuzmanet al. [NSSW02℄ modeled HTTP 
onne
tion arrivals using the biPareto distribution, whi
hprovides a simpler but powerful alternative to mixture models. A Pareto distribution appearslinear in a log-log s
ale, while the biPareto distribution shows two linear regions and a smoothtransition between them. The biPareto distribution is therefore a generalization of the Paretodistribution.The modeling e�orts at Boston University 
ulminated with the development of the SURGEmodel of web traÆ
 [BC98℄. The SURGE model des
ribed the behavior of ea
h user as asequen
e of web page downloads and think times between them. Ea
h web page download
onsisted of one or more web obje
ts downloaded from the same server. Barford and Crovellaprovided parametri
 �ts for ea
h of the 
omponents of the SURGE model, heavily relying onpowerlaws and other long-tailed distributions. They also studied how SURGE traÆ
 stressedweb servers, and found SURGE's high burstiness far more demanding in terms of server CPUperforman
e than that of less elaborate web traÆ
 generators, su
h as the 
ommer
ial Web-Stone.A model of web traÆ
 
ontemporary to SURGE was also presented by Mah [Mah97℄. Itdes
ribed web traÆ
 using empiri
al CDFs, whi
h were derived from the analysis of pa
ketheader tra
es. As in the 
ase of the SURGE model, the data 
ame from the population of usersin a 
omputer s
ien
e department. The two models were 
ompared by Hern�andez-Campos etal. [HCJS03℄, showing substantial 
onsisten
y.The introdu
tion of persistent 
onne
tions in HTTP motivated further work on web traÆ
modeling. Barford et al. studied the performan
e impli
ations of persistent 
onne
tions [BC99℄,and modi�ed the SURGE model to in
orporate persisten
y [BBBC99℄. The analysis of persis-tent 
onne
tions was also a major topi
 in Smith et al. [SHCJO01℄ and Hern�andez-Campos etal. [HCJS03℄. These studies were far larger in s
ope, fo
using on the web traÆ
 of an entireuniversity rather than of a single department. These latter two works provided the startingpoint for the analysis method presented in this dissertation.34



Many experimental studies made use of syntheti
 traÆ
 generated a

ording to one of theaforementioned web traÆ
 models. For example, Christiansen et al. [CJOS00℄ made use of theMah model, while Le et al. [LAJS03℄ used the Smith et al. model. The popular NS-2 [BEF+00℄network simulator also supports web traÆ
 generation using models that are stru
turally similarto the SURGE model. This feature of NS was used in Joo et al. [JRF+99, JRF+01℄ to 
ompareweb traÆ
 and in�nite sour
es, and by Feldmann et al. [FGHW99℄ to study the impa
t ofdi�erent parameters of the web traÆ
 model on the burstiness of the generated traÆ
. Anotherweb traÆ
 generator available in NS-2 was developed by Cao et al. [CCG+04℄. Unlike otherweb traÆ
 models, it was 
onne
tion-oriented rather than user-oriented, and in
luded non-sour
e-level 
hara
teristi
s, su
h as pa
ket sizes.An important e�ort in web traÆ
 analysis and generation was \Monkey See, Monkey Do"method, developed by Cheng et al. [CHC+04a℄. The method involved re
ording sour
e-leveland network-level 
hara
teristi
s for ea
h observed 
onne
tion, and reprodu
ing these 
hara
-teristi
s using a syntheti
 workload generator. This idea is similar to the one developed in thisdissertation, although we ta
kle the modeling and generation of entire traÆ
 mixes and notjust web traÆ
. In addition, their measurement methods were optimized for monitoring traÆ
near Google's web servers. The authors assumed independent short 
ows, data a
quisition 
loseto well-provisioned web servers, and no 
ongestion in the 
lient-to-server dire
tion (whi
h wasplausible in the 
ontext of requests that were far smaller than responses).2.2.2 Non-Web TraÆ
 Sour
e-level ModelingTwo prominent sour
e-level modeling e�orts took pla
e before the invention of the WorldWide Web. Danzig and Jamin [DJ91℄ developed t
plib, a 
olle
tion of sour
e-level des
riptionsof traÆ
. It in
luded des
riptions of the following appli
ations:� Telnet was des
ribed using three random variables: 
onne
tion duration, pa
ket inter-arrival time, and pa
ket size. The initiator of the Telnet 
onne
tion always sent one-bytepa
kets, while the a

eptor responded with pa
kets mat
hing the pa
ket size distribution.35



The authors 
laimed that rlogin 
onne
tions were also well-des
ribed by this model.� File Transfer Proto
ol (FTP) was des
ribed using three random variables: number ofitems transferred, item size (i.e., �le size), and pa
ket size. The model only des
ribedFTP-DATA transa
tions used to transfer a single �le or a dire
tory listing. It did notdes
ribe the FTP-Control 
onne
tion that ea
h 
lient/server pair must use to manageea
h FTP-DATA transa
tion.� Simple Mail Transfer Proto
ol (SMTP) was des
ribed using only one random variable:item size, whi
h in
luded size of mail message and address veri�
ation (i.e., 
ontrol)messages. Responses from the a

eptor were 
onsidered negligible, and not modeled.� Network News Transfer Proto
ol (NNTP) was des
ribed using two random variables:number of items transferred, and size of items (i.e., NNTP arti
les). The bidire
tionalnature of the proto
ol and the use of 
ontrol messages was not part of the model.T
plib also in
luded a model of phone 
onversations with two random variables, talk spurt du-ration and quiet time (i.e., pause) duration, borrowed from [Bra65℄. Ea
h random variable wasspe
i�ed using an empiri
al CDF. TraÆ
 generation involved using the inverse transformationmethod [Jai91℄ to sample ea
h empiri
al CDF independently.In general, the appli
ation models in t
plib were rather simplisti
, but they represented agiant step forward from the non-measurement-derived models of the early 90s. However, the useand 
apabilities of the modeled appli
ations has dramati
ally 
hanged sin
e the development oft
plib. For example, the size of atta
hments in SMTP 
onne
tions has dramati
ally in
reaseddue to the widespread implementation of Multipurpose Internet Mail Extensions (MIME). Inaddition, newer appli
ations have be
ome prominent or repla
ed the ones in t
plib. For example,the Telnet proto
ol has been mostly repla
ed by the Se
ure Shell (SSH) proto
ol. SSH is anen
rypted proto
ol, so it requires more bytes per message. It also supports port forwarding,wherein other appli
ations 
an 
ommuni
ate through SSH 
onne
tions.
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Paxson [Pax94℄ studied the same four appli
ations as in t
plib, developing parametri
 mod-els for ea
h of them. Paxson also dis
ussed how appli
ation 
hara
teristi
s 
hange over timeand a
ross sites. This inherent variability motivated the use of parametri
 models, whi
h arene
essarily approximations of the empiri
al data. This approximation is not worse than the vari-ability observed over time and a
ross sites, so the author argued that parametri
 models wereas a

urate as empiri
al ones, but with the added bene�ts of being mathemati
ally tra
tableand parsimonious. His analysis showed that bulk-transfer sizes were generally well-modeled bythe log-normal distribution. Another of his �ndings was that 
onne
tion inter-arrivals (ex
eptthose of NNTP 
onne
tions) were 
onsistent with non-homogeneous Poisson arrivals, with �xedhourly rates.The methodologi
al 
ontribution in Paxson's work is substantial. He demonstrated the dif-�
ulty of providing statisti
ally valid parametri
 models of the distributions asso
iated withInternet traÆ
. He 
onsistently observed parametri
 �ts that were 
learly adequate when ex-amined graphi
ally, but that failed traditional goodness-of-�t tests. This was 
aused by themassive sample sizes, an endemi
 
hara
teristi
s of traÆ
 measurement datasets. As an al-ternative to the statisti
al tests, Paxson proposed the use of a goodness-of-�t metri
, whi
hprovides a quantitative assessment of the distan
e between the empiri
al data and the para-metri
 model. His proposed metri
 is however insensitive to deviations in the tails, 
astingdoubt on the approa
h due to the ubiquitous �nding of heavy-tailed phenomena in networktraÆ
.Web traÆ
 qui
kly dominated most traÆ
 mixes after its emergen
e in 1995, and remainedthe most prominent traÆ
 type until �le-sharing appli
ations surpassed it in re
ent years. Thismotivated a large body of work on web traÆ
 
hara
terization, and little attention was paidto other traÆ
. The models developed by Danzig, Jamin and Paxson, were not improved orupdated by other resear
hers.File-sharing appli
ations 
urrently rival or frequently surpass web traÆ
 in terms of traf-�
 volume. They also represent a harder modeling problem than web traÆ
. The number of�le-sharing appli
ations is large and they use widely di�erent 
ommuni
ation strategies. Fur-37



thermore, the set of popular �le-sharing appli
ations is 
onstantly 
hanging. There is a growingbody of traÆ
 modeling literature fo
using on �le-sharing appli
ations, but no traÆ
 gener-ator is yet available. Two prominent modeling studies were 
ondu
ted at the University ofWashington. Sariou et al. [SGG02℄ studied Napster and Gnutella traÆ
, and Gummadi etal. [GDS+03℄ studied Kazaa traÆ
. Karagiannis et al. [KBBk
03℄ examined a larger set of�le-sharing appli
ations in ba
kbone links.Modeling of multimedia traÆ
 has also re
eived some attention. Variable bit-rate video wasstudied in Garret et al. and Knightly et al. [GW94, KZ97℄. Real Audio traÆ
 was studied byMena and Heidemann [MH00℄, providing a �rst sour
e-level view of streaming-media, mostlyon UDP 
ows.There are 
ommer
ial syntheti
 traÆ
 generation produ
ts su
h as Chariot [In
℄ and IXIAbut these generators are typi
ally based on a limited number of appli
ation sour
e types. More-over, it is not 
lear that any are based on empiri
al measurements of Internet traÆ
.2.2.3 Beyond Single Appli
ation ModelingThe need for more representative traÆ
 generation has motivated resear
h on methods that
an ta
kle the modeling of the entire suite of appli
ations using an Internet link. The workin this dissertation lies in this area. Our preliminary steps were an extension of the methodsused to model web traÆ
 in Smith et al. [SHCJO01℄ to model other appli
ations, as des
ribedin Hern�andez-Campos et al. [HCJS+01℄. The same kind of analysis of TCP header sequen
enumbers, a
knowledgment numbers and 
onne
tion quiet times applied to web traÆ
 was usedto populate models of SMTP and NNTP traÆ
. These models were derived from pa
ket headertra
es 
olle
ted at the University of North Carolina at Chapel Hill, and 
onsisted of empiri
aldistributions 
apturing di�erent sour
e-level 
hara
teristi
s of these proto
ols, su
h as obje
tsizes. Lan and Heidemann [LH02℄ 
ondu
ted a related e�ort, reusing the same te
hniques andsoftware tools for data a
quisition. Their RAMP tool populated models of web and FTP traÆ
dire
tly from pa
ket header tra
es, and generate traÆ
 a

ordingly.38



Harpoon [SB04℄ also ta
kled the same problem that is the fo
us of this dissertation. They
onsidered the problem of analyzing entire traÆ
 mixes and generating traÆ
 a

ordingly. Theirmeasurement methods were far less elaborate. Rather than the detailed models of the ADUex
hange in TCP 
onne
tions used in our work, Harpoon fo
used on modeling 
ows. Flows arede�ned as sets of pa
kets with the same sour
e and the same destination. As a 
onsequen
e,Harpoon modeled ea
h TCP 
onne
tion as two unidire
tional 
ows. Another di�eren
e withour approa
h is that Harpoon did not in
orporate the notion of bidire
tional data ex
hange,neither sequential nor 
on
urrent, essentially treating multiple ADUs (as de�ned in the a-b-tmodel) as a single ADU. Idle times within 
onne
tions were not part of the Harpoon traÆ
model either. In addition, any measured 
ow (i.e., one side of a 
onne
tion) with only a smallamount of data or with only a
knowledgment pa
kets was not used for traÆ
 generation. Thissubstantially simpli�ed the modeling, but it eliminated the ri
h pa
ket-level dynami
s observedin TCP 
onne
tions, and demonstrated in later 
hapters of this dissertation. In addition tothis, network-level parameters were not part of the data a
quisition, so round-trip times andmaximum re
eiver window sizes were arbitrarily 
hosen. Harpoon 
ould also generate UDPtraÆ
. The underlying model was to send pa
kets at a 
onstant bit rate, with either �xed orexponentially distributed interval arrivals. These models were not populated frommeasurement.Another novel feature of Harpoon was the ability to generate traÆ
 that reprodu
ed IP addressstru
ture a

ording to a measured distribution of address frequen
y. Their study in
luded a
omparison between Harpoon's 
losed-loop traÆ
 and traÆ
 from a 
ommer
ial (open-loop)pa
ket-level traÆ
 generator, demonstrating substantial di�eren
es. For example, 
losed-loopsour
es were shown to ba
k o� as 
ongestion in
reases, while open-loop sour
e did not. Like thework in this dissertation and Lan and Heidemann, Harpoon provided an automated method toa
quire data and use it to generate traÆ
, whi
h Sommers and Barford eloquently 
alled \self-tuning" traÆ
 generation. We 
ould say that there is a growing 
onsensus in the �eld of traÆ
generation regarding the need to develop tools that 
ombine measurement and generation tota
kle the wide variability over time and a
ross links found in real Internet traÆ
.
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2.3 S
aling O�ered LoadOne of the key requirements of traÆ
 generation is the ability to s
ale the o�ered load ,i.e., to generate a wide range of link loads with the same model of appli
ation behavior. Thismakes it possible to evaluate the performan
e of a network me
hanism under various loads,whi
h translates into di�erent degrees of 
ongestion, while preserving the same appli
ationmix. For example, the evaluation of AQM me
hanism in [CJOS00, LAJS03℄ 
ompared theperforman
e of FIFO to RED and other AQM me
hanisms for loads between 50% to 110%of a link's 
apa
ity where the queuing me
hanism was used. In these studies, the authorspre
eded their study by a set of 
alibration experiments. These experiments were used toderive an expression for the linear dependen
y between the number of (web) user equivalentsand the average o�ered load, whi
h enabled the resear
hers to systemati
ally s
ale o�ered loadsin their evaluation experiments. Calibration is generally appli
able to any appli
ation-levelmodel. When 
alibrating, the resear
hers try to relate one or more parameters of the modeland the average o�ered load to obtain a 
alibration fun
tion. Deriving a 
alibration fun
tionis a time-
onsuming pro
ess, sin
e an entire 
olle
tion of experiments must be run to 
orrelateo�ered load and model parameters with 
on�den
e.Kamath et al. [K
LH+02℄ studied load s
aling methods, but they 
on
entrated only ons
aling up the o�ered load. Their intention was to 
ondu
t experiments with mu
h higher o�eredloads than those observed during measurement. In parti
ular, they 
onsidered the problem ofgenerating traÆ
 for loading a 1 Gbps link using only measurements from a 10 Mbps link, an11-hour pa
ket header tra
e. The authors 
onsidered three di�erent te
hniques. The �rst twote
hniques involved a transformation of the original tra
e into a s
aled-up version, and then apa
ket-level replay. The �rst transformation te
hnique was pa
ket arrival s
aling, whi
h s
alesup the load by multiplying the arrival time of ea
h pa
ket in the original tra
e by a 
onstantfa
tor between 0 and 1 (i.e.,,shrinking pa
ket inter-arrivals). In their study, they used a s
alingfa
tor of 0.001. The se
ond transformation te
hnique is tra
e merging, whi
h s
ales up load bymerging, i.e., superimposing, the pa
ket arrivals from more than one tra
e. They divided the11-hour tra
e into 100 subtra
es and then 
ombined them to form a shorter, higher-throughput40



tra
e. The third te
hnique is stru
tural modeling whi
h meant to develop a web traÆ
 modelfrom the original tra
e using the methods in Smith et al. [SHCJO01℄. The authors did notdis
uss how the load 
reated by this stru
tural model was in
reased. Their analysis 
ompared anumber of distributions from the generated tra
es to those from the original tra
e. Pa
ket arrivals
aling was shown to 
ompletely distort 
ow durations and destination address diversity. Tra
emerging reprodu
ed 
ow and pa
ket arrival properties a

urately, but it distorted destinationaddress 
hara
teristi
s (studied using the number of unique addresses observed per unit of time).Web traÆ
 generation was a

urate, but it showed far less 
omplex distributions of 
onne
tionbytes, pa
ket sizes, and 
onne
tion durations. This is be
ause a stru
tural model based only onweb traÆ
 la
ks the diversity of appli
ation behavior, and therefore 
ommuni
ation patterns,in the original tra
e, whi
h in
luded traÆ
 from many di�erent appli
ations and not just webtraÆ
.2.4 Implementing TraÆ
 GenerationSour
e-level traÆ
 generators for network testbeds (rather than for software simulators)are usually implemented using user-level programs that make use of the so
ket interfa
e togenerate traÆ
. This is the 
ase for t
plib [DJ91℄, httperf [MJ98℄, SURGE [BC98℄, and otherweb traÆ
 generators [BD99, CJOS00℄. In order to introdu
e network-level parameters in test-bed experiments, su
h as a realisti
 distribution of round-trip times, it is ne
essary to rely on alayer of simulation either in the end hosts or somewhere in the path of the traÆ
. For example,Rizzo's dummynet [Riz97℄ makes it possible to apply arbitrary delays, loss rates and bandwidth
onstraints on the end systems to spe
i�
 network 
ows or 
olle
tions of network 
ows (thatshare a network pre�x). The implementation 
ombines event-driven simulation and pa
ketqueuing, and sits between the IP and link layers. Dummynet is part of the standard distributionof the FreeBSD operating system. The experiments in this dissertation were performed usingan extended version of dummynet that 
an be 
ontrolled from the appli
ation layer2.2This is also possible in the original implementation, using one �rewall rule for ea
h 
ow, but it does not s
aleto the hundreds of simultaneous 
ows in our experiments.41



Kamath et al. [K
LH+02℄ argue that sour
e-level traÆ
 generation is mu
h more demandingin terms of CPU and memory pro
essing than pa
ket-level replay. While it is indeed truethat far more CPU time is needed to simulate endpoint behavior and use network sta
ks,memory requirements are a
tually far more stringent for pa
ket-level replay. This is be
ausepa
ket header tra
es are mu
h longer than their sour
e-level representations. For example, theapproa
h in this dissertation 
onsiders the replay of sour
e-level tra
es that are roughly 100times smaller than the pa
ket header tra
es from whi
h they were derived.2.5 SummaryOur review of related work has fo
used on the existing literature in network traÆ
 gen-eration, in
luding works relevant for data a
quisition and traÆ
 modeling. Chara
terizingnetwork traÆ
 at the pa
ket level provides important insights, su
h as the �nding of pervasiveself-similarity by Willinger et al. [WTSW97℄. However, this approa
h does not provide theproper foundation for generating traÆ
 for most experimental studies. As argued by Floyd andPaxson [PF95℄, pa
ket-level traÆ
 generation breaks the end-to-end feedba
k loop in adaptivenetwork proto
ols, su
h as TCP, resulting in traÆ
 that does not rea
t to the experimental 
on-ditions realisti
ally. On the 
ontrary, sour
e-level models enable 
losed-loop traÆ
 generation,so they are appli
able to a wider range of situations.In the past, sour
e-level traÆ
 generation has been asso
iated with models of appli
ationbehavior. Our overview of the state-of-the-art dis
ussed several highly in
uential works devotedto appli
ation-level modeling. C�a
eres et al. [CDJM91℄ introdu
ed empiri
al appli
ation modelsto networking resear
h. Paxson [Pax94℄ proposed the use of more statisti
ally rigorous methodsfor developing parametri
 sour
e-level models. Crovella et al. [CB96℄ developed a ri
h modelof web traÆ
, and explained self-similarity in terms of sour
e-level 
hara
teristi
s.Appli
ation-level modeling has some important short
omings that provide the motivationfor this dissertation. Internet traÆ
 mixes are 
reated by a large number of distin
t appli
ations,so single appli
ation models are not representative of real traÆ
. Furthermore, the 
omposition42



of traÆ
 mixes is 
onstantly 
hanging, and even individual appli
ations often evolve, modifyingthe way in whi
h they intera
t with the network. As a 
onsequen
e, the number of high-quality appli
ation-level models is small (and insuÆ
ient), and these models are hardly everupdated. In this dissertation, we propose a more s
alable approa
h to sour
e-level modeling,where appli
ation behavior is des
ribed in a generi
, but still detailed, manner. Furthermore,our data a
quisition methods are eÆ
ient and mostly automated, dramati
ally redu
ing thetime to go from measurement to traÆ
 generation.Our 
ombination of data a
quisition and traÆ
 generation is most 
losely related to two
ontemporary works. Sommers and Barford [SB04℄ developed the Harpoon approa
h for gen-erating traÆ
 mixes whose 
hara
teristi
s are derived from measurements in an algorithmi
manner. Their approa
h did not in
lude any detailed sour
e-level modeling of TCP 
onne
-tions. They des
ribed a 
onne
tion simply as a unidire
tional �le transfer whose size is equalto the total amount of payload in its pa
kets. In 
ontrast, our primary emphasis is on detailedsour
e-level modeling, where we introdu
e the a-b-t model and un
over the di
hotomy betweensequential and 
on
urrent data ex
hange. Harpoon made use of simpli�ed network-level pa-rameters, whi
h are set to arbitrary 
onstants. In our approa
h, network-level parameters are
arefully measured and in
orporated into the traÆ
 generation. The work by Sommers andBarford 
onsidered two issues that are not addressed in our own work. First, they proposed amethod for generating UDP traÆ
. The underlying sour
e-level model is however not derivedfrom measurement. Se
ond, they reprodu
ed the IP address distribution in the replayed tra
e.This 
annot be performed with publi
ly available tra
es, like ours, sin
e they are anonymized.Another work similar to ours is Cheng et al. [CHC+04a℄. The authors presented a methodfor 
hara
terizing pa
ket header tra
es of web traÆ
 and a

urately replaying them. GeneratedtraÆ
 was evaluated by 
omparing the original tra
e with its syntheti
 version generated in atestbed. We ta
kle the same sour
e-level tra
e replay problem but applied to every appli
ationrather than only to web traÆ
. Our approa
h is more ambitious and ne
essarily more abstra
t.Our work also 
onsiders the 
ommon problems of resampling and s
aling traÆ
 load innetworking experiments. In general, s
aling o�ered load has been performed by 
ondu
ting43



a preliminary experimental study to relate the parameters of the sour
e-level model and theo�ered load. For example, Christiansen et al. [CJOS00℄ 
omputed a 
alibration fun
tionthat des
ribed o�ered load as a fun
tion of the number of user equivalents employed in webtraÆ
 generation. We propose an alternative approa
h that eliminates the need for preliminary
alibration studies.
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CHAPTER 3Abstra
t Sour
e-level Modelingmodel: (11a) a des
ription or analogy used to help visualize something (as anatom) that 
annot be dire
tly observed.| Merrian{Webster English Di
tionaryAnything that has real and lasting value is always a gift from within.| Franz Kafka (1883{1924)Abstra
t sour
e-level modeling provides a method to des
ribe the workload of a TCP 
on-ne
tion at the sour
e level in a manner than is not tied to the spe
i�
s of individual appli
ations.The starting point of this method is the observation that at the transport level, a TCP endpointis doing nothing more than sending and re
eiving data. Ea
h appli
ation (i.e., web browsing,�le sharing, et
.) employs its own set of data units for 
arrying appli
ation-level 
ontrol mes-sages, �les, and other information. The a
tual meaning of the data is irrelevant to TCP, whi
his only responsible for delivering data in a reliable, ordered, and 
ongestion-responsive manner.As a 
onsequen
e, we 
an des
ribe the workload of TCP in terms of the demands by upperlayers of the proto
ol sta
k for sending and re
eiving Appli
ation Data Units (ADUs). Thisworkload 
hara
terization 
aptures only the sizes of the units of data that TCP is responsiblefor delivering, and abstra
ts away the details of ea
h appli
ation (e.g., the meaning of its ADUs,the size of the so
ket reads and writes, et
.). The approa
h makes it feasible to model the entirerange of TCP workloads, and not just those that derive from a few well-understood appli
a-tions as is the 
ase today. This provides a way to over
ome the inherent s
alability problem ofappli
ation-level modeling.



While the work of a TCP endpoint is to send and re
eive data units, its lifetime is notonly di
tated by the time these operations take, but also by quiet times in whi
h the TCP
onne
tion remains idle, waiting for upper layers to make new demands. TCP is only a�e
tedby the duration of these periods of ina
tivity and not by the 
ause of these quiet times, whi
hdepends on the dynami
s of ea
h appli
ation (e.g., waiting for user input, pro
essing a �le, et
.).Longer lifetimes have an important impa
t, sin
e the endpoint resour
es needed to handle TCPstate must remain reserved for a longer period of time1. Furthermore, the window me
hanismin TCP tends to aggregate the data of those ADUs that are sent within a short period of time,redu
ing the number of segments that have to travel from sour
e to destination. This is onlypossible when TCP re
eives a number of ba
k-to-ba
k requests to send data. If these requestsare separated by signi�
ant quiet times, no aggregation o

urs and the data is sent using atleast as many segments as ADUs.We have formalized these ideas into the a-b-t model , whi
h des
ribes TCP 
onne
tions assets of ADU ex
hanges and quiet times. The term a-b-t is des
riptive of the basi
 buildingblo
ks of this model: a-type ADUs (a's), whi
h are sent from the 
onne
tion initiator to the
onne
tion a

eptor, b-type ADUs (b's), whi
h 
ow in the opposite dire
tion, and quiet times(t's), during whi
h no data segments are ex
hanged. We will make use of these terms to des
ribethe sour
e-level behavior of TCP 
onne
tions throughout this dissertation. The a-b-t modelhas two di�erent 
avors depending on whether ADU interleaving is sequential or 
on
urrent.The sequential a-b-t model is used for modeling 
onne
tions in whi
h only one ADU is beingsent from one endpoint to the other at any given point in time. This means that the twoendpoints engage in an orderly 
onversation in whi
h one endpoint will not send a new ADUuntil it has 
ompletely re
eived the previous ADU from the other endpoint. On the 
ontrary,the 
on
urrent a-b-t model is used for modeling 
onne
tions in whi
h both endpoints send andre
eive ADUs simultaneously.The a-b-t model not only provides a reasonable des
ription of the workload of TCP at thesour
e-level, but it is also simple enough to be populated from measurement. Control data1Similarly, if resour
es are allo
ated along the 
onne
tion's path, they must be 
ommitted for a longer period.46




ontained in TCP headers provide enough information to determine the number and sizes ofthe ADUs in a TCP 
onne
tion and the durations of the quiet times between these ADUs. Thismakes it possible to 
onvert an arbitrary tra
e of segment headers into a set of a-b-t 
onne
tionve
tors, in whi
h ea
h ve
tor des
ribes one of the TCP 
onne
tions in the tra
e. As long asthis pro
ess is a

urate, this approa
h provides realisti
 
hara
terizations of TCP workloads,in the sense that they 
an be empiri
ally derived from measurements of real Internet links.In this 
hapter, we des
ribe the a-b-t model and its two 
avors in detail. For ea
h 
avor,we �rst dis
uss a number of sample 
onne
tions that illustrate the power of the a-b-t modelto des
ribe TCP 
onne
tions driven by di�erent appli
ations, and point out some limitationsof this approa
h. We then present a set of te
hniques for analyzing segment headers in orderto 
onstru
t a-b-t 
onne
tion ve
tors and provide a validation of these te
hniques using tra
esfrom syntheti
 appli
ations. We �nally examine the 
hara
teristi
s of a set of real tra
es fromthe point of view of the a-b-t model, providing a sour
e-level view of the workload of TCP.3.1 The Sequential a-b-t Model3.1.1 Client/Server Appli
ationsThe a-b-t 
onne
tion ve
tor of a sequential TCP 
onne
tion is a sequen
e of one or moreepo
hs. Ea
h epo
h des
ribes the properties of a pair of ADUs ex
hanged between the twoendpoints. The 
on
ept of an epo
h arises from the 
lient/server stru
ture of many distributedsystems, in whi
h one endpoint a
ts as a 
lient and the other one as a server. The 
lient sendsa request for some servi
e (e.g., performing a 
omputation, retrieving some data, et
.) that isfollowed by a response from the server (e.g., the results of the requested a
tion, a status 
ode,et
.). An epo
h represents our abstra
t 
hara
terization of a request/response ex
hange. Anepo
h is 
hara
terized by the size a of the request and the size b of the response.The HTTP that underlines the World-Wide Web provides a good example of the kinds ofTCP workloads 
reated by 
lient/server appli
ations. Figure 1 shows a simple a-b-t diagram47



that represents a TCP 
onne
tion between a web browser and a web server, whi
h 
ommuni
ateusing the HTTP 1.0 appli
ation-layer proto
ol [BLFF96℄. In this example, the web browser(
lient side) initiates a TCP 
onne
tion to a web server (server side) and sends a request for anobje
t (e.g., HTML sour
e 
ode, an image, et
.) spe
i�ed using a Universal Resour
e Lo
ator(URL). This request 
onstitutes an ADU of size 341 bytes. The server then responds by sendingthe requested obje
t in an ADU of size 2,555 bytes. The representation in the �gure 
aptures:� the sequential order of the ADUs within the TCP 
onne
tion (�rst the HTTP requestthen the HTTP response { in this 
ase, order also implies \
ausality"),� the dire
tion in whi
h the ADUs 
ow (above the time line for the ADU sent from the
onne
tion initiator to the 
onne
tion a

eptor; below the time line for the ADU sentfrom the 
onne
tion a

eptor to the 
onne
tion initiator), and� the sizes of the ADUs (using annotations and the lengths of the re
tangles, whi
h areproportional to the number of bytes).The diagram provides a visualization in the spirit of abstra
t sour
e-level modeling, sin
e it doesnot in
orporate any spe
i�
 information about the a
tual 
ontents of the ADUs. The bytes inthe �rst ADU (HTTP request) represent an HTTP header that in
ludes a URL, and the bytesin the se
ond ADU (HTTP response) represent an HTTP header (with a su

ess 
ode of 200OK) followed by the requested obje
t (e.g., HTML sour
e 
ode). In this example, the purposeof this parti
ular 
onne
tion was well-understood, and that allowed us to assign labels to theADUs (HTTP request and response) and to the TCP endpoints (web browser and server). Ingeneral, when we examine how the ADUs 
ow in an arbitrary TCP 
onne
tion, we do not havethis appli
ation-spe
i�
 information (or we 
an only guess it). The same diagram (without the���������	
������	
� �
�����	
��
�����	
�������������������� �����
��
�	 �����
�����
Figure 3.1: An a-b-t diagram representing a typi
al ADU ex
hange in HTTP version 1.0.48
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Figure 3.2: An a-b-t diagram illustrating a persistent HTTP 
onne
tion.HTTP-spe
i�
 labels) 
ould be used to represent di�erent 
onne
tions with 
ompletely di�erentpayloads in ADUs of the same size. The diagram does not in
lude any network-level informationeither, so this diagram 
ould also represent 
onne
tions with very di�erent maximum segmentsizes, round-trip times, and other network properties below the appli
ation level. Note thatthis example, and the following ones, 
ame from real 
onne
tions that were a
tually observed.In some 
ases, we had a

ess to the a
tual segment payloads and used them to add annotationsto the ADUs. In other 
ases, we used port numbers and our understanding of the proto
ols toadd these annotations.Some 
lient/server appli
ations use a new 
onne
tion for ea
h request/response ex
hange,while other appli
ations reuse a 
onne
tion for more than one ex
hange, 
reating 
onne
tionswith more than one epo
h. As long as the appli
ation has enough data to send, multi-epo
h
onne
tions 
an improve performan
e substantially, by avoiding the 
onne
tion establishmentdelay and TCP's slow start phase. For example, HTTP was revised to support more than onerequest/response ex
hange in the same \persistent" TCP 
onne
tion [FGM+97℄. Figure 3.2illustrates this type of intera
tion. This is a 
onne
tion between a web browser and a webserver, in whi
h the browser �rst requests the sour
e 
ode of an HTML page, and re
eives itfrom the web server, just like in Figure 3.1. However, the use of persistent HTTP makes itpossible for the browser to send another request using the same 
onne
tion. Unlike the examplein Figure 3.1, this persistent 
onne
tion remains open after the �rst obje
t is downloaded, sothe browser 
an send another request without �rst 
losing the 
onne
tion and reopening a newone. In Figure 3.2 the web browser sends three ADUs that spe
ify three di�erent URLs, and49



the server responds with three ADUs. Ea
h ADU 
ontains an HTTP header that pre
edes thea
tual requested obje
t. If the requested obje
t is not available, the ADU may only 
ontainthe HTTP header with an error 
ode. Note that the diagram has been annotated with extraappli
ation-level information showing that the �rst two epo
hs were the result of requestingobje
ts from the same do
ument (i.e., same web page), and the last epo
h was the result ofrequesting a di�erent do
ument.The diagram in Figure 3.2 in
ludes two time gaps between epo
hs (represented with dashedlines). In both 
ases, these are quiet times in the intera
tion between the two endpoints. We
all the time between the end of one epo
h and the beginning of the next, the inter-epo
h quiettime. The �rst quiet time in the a-b-t diagram represents pro
essing time in the web browser,whi
h parsed the web page it re
eived, retrieved some obje
ts from the lo
al 
a
he, and thenmade another request for an obje
t in the same do
ument (that was not in the lo
al 
a
he).Be
ause of its longer duration, the se
ond quiet time is most likely due to the time taken bythe user to read the web page, and 
li
k on one of the links, starting another page downloadfrom the same web server.As will be dis
ussed in Se
tion 3.3, it is diÆ
ult to distinguish quiet times 
aused by ap-pli
ation dynami
s, whi
h are relevant for a sour
e-level model, and those due to networkperforman
e and 
hara
teristi
s, whi
h should not be part of a sour
e-level model (be
ausethey are not 
aused by the behavior of the appli
ation). The basi
 heuristi
 employed to dis-tinguish between these two 
ases is the observation that the s
ale of network events is hardlyever above a few hundred millise
onds2. Going ba
k to the example in Figure 3.2, the onlyquiet time that 
ould be safely assumed to be due to the appli
ation (in this 
ase, due to theuser) is the one between the se
ond and third epo
hs. The 120 millise
onds quiet time betweenthe �rst and se
ond epo
hs 
ould easily be due to network e�e
ts (su
h as having the sendingof the se
ond request delayed by Nagle's algorithm [Nag84℄), and therefore should not be partof the sour
e-level behavior. Similarly, the two a-b-t diagrams shown so far have not depi
ted2Some infrequent events, su
h as routing 
hanges due to link failures, 
an last several se
onds. We generallymodel large numbers of TCP 
onne
tions, so the few o

asions in whi
h we 
onfuse appli
ation quiet times withlong network quiet times have no measurable statisti
al impa
t when generating network traÆ
.50



any time between the request and the response inside the same epo
h. In general, web serverspro
ess requests so qui
kly that there is no need to in
orporate intra-epo
h quiet times in amodel of the workload of a TCP 
onne
tion. While this is by far the most 
ommon 
ase, someappli
ations do have long intra-epo
h quiet times, and the a-b-t model 
an in
lude these.Formally, a sequential a-b-t 
onne
tion ve
tor has the form Ci = (e1; e2; : : : ; en) with n � 1epo
h tuples. An epo
h tuple has the form ej = (aj ; taj; bj ; tbj) where� aj is the size of the jth ADU sent from the 
onne
tion initiator to the 
onne
tion a

eptor.aj will also be used to name the jth ADU sent from the initiator to the a

eptor.� bj is the size of the jth ADU sent in the opposite dire
tion (and generally in response tothe request made by aj).� taj is the duration of the quiet time between the arrival of the last segment of aj and thedeparture of the �rst segment of bj . taj is de�ned from the point of view of the a

eptor(often the server), but ultimately our estimate of the duration is based on the arrivaltimes of segments at some monitoring point.� tbj is either the duration of the quiet time between bj and aj+1 (for 
onne
tions with atleast j + 1 epo
hs), or the quiet time between the last data segment (i.e., last segmentwith a payload) in the 
onne
tion and the �rst 
ontrol segment used to terminate the
onne
tion.Note that taj is a quiet time as seen from the a

eptor side, while tbj is a quiet time as seenfrom the initiator side. The idea of these de�nitions is to 
apture the network-independent
omponent of quiet times, without being 
on
erned with the spe
i�
 measurement method. Ina persistent HTTP 
onne
tion, a's would usually be asso
iated to HTTP requests, b's to HTTPresponses, ta's to pro
essing times on the web server, and tb's to browser pro
essing times anduser think times. We 
an say that a quiet time taj is \
aused" by an ADU aj , and that a quiettime tbj is 
aused by an ADU bj. Both time 
omponents are de�ned as quiet times observedat one of the endpoints, and not at some point in the middle of the network where the pa
ket51



header tra
ing takes pla
e.As mentioned in the introdu
tion, the name of the model 
omes from the three variablenames used in this model, whi
h are used to 
apture the essential sour
e-level properties: datain the \a" dire
tion, data in the \b" dire
tion, and time \t" (non-dire
tional, but asso
iatedwith the pro
essing of the pre
eding ADU, as dis
ussed in Se
tion 3.1.1). Using the notation ofthe a-b-t model, we 
an su

in
tly des
ribe the HTTP 
onne
tion in Figure 3.1 as a single-epo
h
onne
tion ve
tor of the form ((341; 0; 2555; 0))where the �rst ADU, a1, has a size of 341 bytes, and the se
ond ADU, b1, has a size of 2,555bytes. In this example the time between the transmission of the two data units and the timebetween the end of b1 and 
onne
tion termination are 
onsidered too small to be in
luded inthe sour
e level representation, so they are set to 0. Similarly, we 
an represent the persistentHTTP 
onne
tion shown in Figure 3.2 as((329; 0; 403; 0:12); (403; 0; 25821; 3:12); (356; 0; 1198; 15:3))where quiet times are given in se
onds. Noti
e that tb3 is not zero for this 
onne
tion, but alarge number of se
onds (in fa
t, probably larger than the duration of the rest of the a
tivityin the 
onne
tion!). Persistent 
onne
tions are often left open in 
ase the 
lient de
ides to senda new HTTP request reusing the same TCP 
onne
tion3. As we will show in Se
tion 3.5, thisseparation is frequent enough to justify in
orporating it in the model. Gaps between 
onne
tionestablishment and the sending of a1 are almost nonexistent.As another example, the Simple Mail Transfer Proto
ol (SMTP) 
onne
tion in Figure 3.3illustrates a sample sequen
e of data units ex
hanged by two SMTP servers. The �rst server(labeled \sender") previously re
eived an email from an email 
lient, and uses the TCP 
on-ne
tion in the diagram to 
onta
t the destination SMTP server (i.e., the server for the domain3In general, persistent HTTP 
onne
tions are 
losed by web servers after a maximum number of re-quest/response ex
hanges (epo
hs) is rea
hed or a maximum quiet time threshold is ex
eeded. By default,Apa
he, the most popular web server, limits the number of epo
hs to 5 and the maximum quiet time to 15se
onds. 52
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onne
tion.of the destination email address). In this example, most data units are small and 
orrespondto appli
ation-level (SMTP) 
ontrol messages (e.g., the host info message, the initial HELOmessage, et
.) rather than appli
ation obje
ts. The a
tual email message of 22,568 bytes was
arried in ADU a6. The a-b-t 
onne
tion ve
tor for this 
onne
tion is((0; 0; 93; 0); (32; 0; 191; 0); (77; 0; 59; 0); (75; 0; 38; 0); (6; 0; 50; 0); (22568; 0; 44; 0)):Note that this TCP 
onne
tion illustrates a variation of the 
lient/server design in whi
h theserver sends a �rst ADU identifying itself without any prior request from the 
lient. Thispattern of ex
hange is spe
i�ed by the SMTP proto
ol wherein servers identify themselves to
lients right after 
onne
tion establishment. Sin
e b1 is not pre
eded by any ADU sent fromthe 
onne
tion initiator to the 
onne
tion a

eptor, the ve
tor has a1 = 0 (we sometimes referto this phenomenon as a \half-epo
h").This last example illustrates an important 
hara
teristi
 of TCP workloads that is oftenignored in traÆ
 generation experiments. TCP 
onne
tions do not simply 
arry �les (andrequests for �les), but are often driven by more 
ompli
ated intera
tions that impa
t TCPperforman
e. An epo
h where aj > 0 and bj > 0 requires at least one segment to 
arry ajfrom the 
onne
tion initiator to the a

eptor, and at least another segment to 
arry bj in theopposite dire
tion. The minimum duration of an epo
h is therefore one round-trip time (whi
his pre
isely de�ned as the time to send a segment from the initiator to the a

eptor plus thetime to send a segment from the a

eptor ba
k to the initiator). This means that the number ofepo
hs imposes a minimum duration and a minimum number of segments for a TCP 
onne
tion.The 
onne
tion in Figure 3.3 needs 4 round-trip times to 
omplete the \negotiation" that o

ursduring epo
hs 2 to 5, even if the ADUs involved are rather small. The a
tual email message in53
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Figure 3.4: Three a-b-t diagrams representing three di�erent types of NNTP intera
tions.ADU b6 is transferred in only 2 round-trip times. This is be
ause b6 �ts in 16 segments4, and itis sent during TCP's slow start. Thus the �rst round-trip time is used to send 6 segments, andthe se
ond round-trip time is used to send the remaining 10 segments. The duration of this
onne
tion is therefore dominated by the 
ontrol messages, and not by the size of the email. Inparti
ular, this is true despite the fa
t that the email message is mu
h larger than the 
ombinedsize of the 
ontrol messages. If the appli
ation proto
ol (i.e., SMTP) were modi�ed to somehow
arry 
ontrol messages and the email 
ontent in ADU a2, then the entire 
onne
tion would lastonly 4 round-trip times instead of 6, and would require fewer segments. In our experien
e, itis 
ommon to �nd 
onne
tions in whi
h the number of 
ontrol messages is orders of magnitudelarger than the number of ADUs from �les or other dynami
ally-generated 
ontent. Clearly,epo
h stru
ture has an impa
t on the performan
e (more pre
isely, on the duration) of TCP
onne
tions and should therefore be modeled a

urately.Appli
ation proto
ols 
an be rather 
ompli
ated, supporting a wide range of intera
tionsbetween the two endpoints. Most of them assume a 
lient/server model of intera
tion and4This assumes the standard maximum segment size, 1,460 bytes, and a maximum re
eiver window of at least10 full size segments. A large fra
tion of TCP 
onne
tions observed on real networks satisfy these assumptions.54



hen
e 
an be 
ast into the sequential a-b-t model. For example, Figure 3.4 shows three types ofintera
tions that are supported by the Network News Transfer Proto
ol (NNTP) [KL86, Bar00℄.The �rst a-b-t diagram exhibits the straightforward behavior of an NNTP reader (i.e., a 
lientfor reading newsgroup postings) posting a new arti
le. The two endpoints ex
hange a few
ontrol messages in the �rst three epo
hs, and then the 
lient uploads the 
ontent of the arti
lein ADU a4.The se
ond 
onne
tion shows an NNTP reader using a TCP 
onne
tion to �rst 
he
k whetherthe server knows about any new arti
les in two newsgroups (un
.support and un
.test). Afterthat, the reader requests an overview of those messages (using XOVER). The server replieswith the subje
ts of the new arti
les and some other information. Finally, after a 5.02 se
ondsof ina
tivity, the reader requests the 
ontent of one of the new arti
les. This relatively longtime suggests that the user of the NNTP reader waited some time before a
tually requestingthe reader to display the 
ontent of a new arti
le.The way NNTP servers intera
t is illustrated in the third 
onne
tion. One of the peerswill ask the other about new newsgroups and arti
les. This typi
ally involves hundreds or eventhousands of ADUs sent in ea
h dire
tion. The 
onne
tion shown here has only a small subsetof the ADUs observed in one of these 
onne
tions between NNTP peers. Here the initiator peerasked for new groups �rst, and then for new arti
les. One arti
le was sent from the initiator tothe a

eptor, and another one in the opposite dire
tion.These examples provide a good illustration of the 
omplexity of modeling appli
ations oneby one, and they provide further eviden
e supporting the 
laim that our abstra
t sour
e-levelmodel is widely appli
able. In general, the use of a multi-epo
h model is essential to a

uratelydes
ribe how appli
ations drive TCP 
onne
tions.In
orporating Quiet Times into Sour
e-Level ModelingUnlike ADUs, whi
h 
ow from the initiator to the a

eptor or vi
e versa, quiet times arenot asso
iated with any parti
ular dire
tion of a TCP 
onne
tion. However, we have 
hosen55



to use two types of quiet times in our sequential a-b-t model. This 
hoi
e is motivated by theintended meaning of quiet time, and by the di�eren
e between the duration of the quiet timesobserved at di�erent points in the 
onne
tion's path. When we were developing the model, weinitially 
onsidered quiet times independent of the endpoint 
ausing them. They were simply\
onne
tion quiet times". In pra
ti
e, quiet times in sequential 
onne
tions are asso
iated withsour
e-level behavior in only one of the endpoints. For example, a \user think time" in anHTTP 
onne
tion is asso
iated with a quiet time on the initiator side (whi
h is waiting forthe user a
tion), while a server pro
essing delay in a Telnet 
onne
tion is asso
iated with thea

eptor side (whi
h is waiting for a result). In every 
ase, one endpoint is quiet for some periodbefore sending new data, and the other endpoint remains quiet, waiting for these new data toarrive. Having two types of quiet times, ta and tb, makes it possible to annotate the side of the
onne
tion that is the sour
e of the quiet time.The se
ond reason for the use of two types of quiet times is that the duration of the quiettime depends on the point at whi
h the quiet time is measured. The endpoint that is not thesour
e of the quiet time will observe a quiet time that depends on the network and not only onthe sour
e-level behavior of the other endpoint. This is be
ause the new ADU whi
h de�nesthe end of the quiet time needs some time to rea
h its destination. In the example in Figure3.2, the quiet time between a1 and b1 observed by the server endpoint is very small (only thetime needed to retrieve the requested URL). However, this quiet time is longer when observedby the 
lient, sin
e it is the time between the last so
ket write of a1 and the �rst so
ket readof b1. It in
ludes the server pro
essing time, and at least one full round-trip time. Ideally, wewould like to measure this quiet time ta1 on the server side, in order to 
hara
terize sour
e-levelbehavior in a 
ompletely network-independent manner. Similarly, we would like to measuretb1 on the 
lient side. In summary, sour
e-level quiet times are non-dire
tional, in the sensethat they do not travel in one dire
tion or the other, but they are asso
iated with one of theendpoints, whi
h is the sour
e of the quiet time.
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Figure 3.5: An a-b-t diagram illustrating a server push from a web
am using a persistentHTTP 
onne
tion.3.1.2 Beyond Client/Server Appli
ationsNot all appli
ations follow the stri
t pattern of requests and responses that 
hara
ter-izes traditional 
lient/server appli
ations. For example, HTTP is 
ommonly used for serverpush operations5, in whi
h the server periodi
ally refreshes the state of the 
lient withoutany prior request. Figure 3.5 illustrates this behavior using a TCP 
onne
tion where a webbrowser �rst requests a web
am URL (UNC's \Pit
am" in this example), and the web serverresponds with a sequen
e of image frames separated by small quiet times. The browser ren-ders ea
h frame as soon as it is re
eived, 
reating a 
ontinuous movie. Ea
h frame 
an be
onsidered an individual ADU, so this 
onne
tion does not follow the basi
 request/responsesequen
e of previous examples. The notation provided by the sequential a-b-t model 
an stillbe used to represent this sour
e-level behavior using the 
onne
tion ve
tor (e1; e2; e3; e4; e5)where e1 = (392; 0:041; 97939; 0); e2 = (0; 0:057; 97942; 0); e3 = (0; 0:035; 97820; 0); e4 =(0; 0:054; 97820; 0); and e5 = (0; 0:037; 98019; 0): While this 
onne
tion has no natural epo
hsin the request/response sense, we 
an des
ribe the 
onne
tion by assigning ea
h frame to a sep-arate bj, and ea
h quiet time between frames to a taj (sin
e the 
onne
tion ve
tor is intendedto 
apture a quiet time on the server side).The same type of server push behavior is found in streaming appli
ations. A TCP 
onne
-tion 
arrying I
e
ast traÆ
 (from ibiblio.org) is shown in Figure 3.6. I
e
ast is a popular5HTTP server push is implemented using a spe
ial 
ontent type, x-mixed-repla
e, whi
h makes the browserexpe
t a response obje
t that is 
omposed of other obje
ts (separated by a 
on�gurable boundary string). Sin
eno limit is imposed on the number of obje
ts in this 
omposite, web
am movies are usually implemented asa simple sequen
e of JPEG images that the web browser reads and renders 
ontinuously until the user movesto another page. This type of web servi
e should not be 
onfused with HTML's automati
 page refresh tag,whi
h is 
ommonly used for slow rate web
ams (e.g., one image every 30 se
onds). In this 
ase, the browserrefreshes the 
urrent page by downloading again the 
urrent page and hen
e the intera
tion follows the regularrequest/response pattern. 57
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Figure 3.6: An a-b-t diagram illustrating I
e
ast audio streaming in a TCP 
onne
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csttounvst*wxhy}~n~| csttounvst&wxhy}~n~|Figure 3.7: Three a-b-t diagrams of 
onne
tions taking part in the intera
tion between anFTP 
lient and an FTP server.audio streaming appli
ation that follows the same pattern of ADUs dis
ussed in the previousparagraph, and 
an be des
ribed using the same type of 
onne
tion ve
tor. Ea
h bj is asso
iatedto an MPEG audio frame. Note that the sizes of the ADUs and the durations of the quiet timesbetween them are highly variable, unlike the example in Figure 3.5. Perhaps surprisingly, TCPis widely used for 
arrying streaming traÆ
 today, despite its inability to perform the typi
altrade-o� between loss re
overy and delay in multimedia appli
ations. Streaming over TCP hastwo signi�
ant bene�ts:� Streaming traÆ
 
an use TCP port numbers asso
iated with web traÆ
 and thereforeover
ome �rewalls that blo
k other port numbers. This is important for web sites thatdeliver web pages and multimedia streams, sin
e it guarantees that the user will be ableto download the multimedia 
ontent.� Most 
lients experien
e su
h low loss rates, that TCP's loss re
overy me
hanisms have aninsigni�
ant impa
t on the timing of the stream. The 
ommon use of stream bu�eringprior to the beginning of the playba
k further redu
es the impa
t of loss re
overy.The intera
tion between the two endpoints of a 
lient/server appli
ation does not generally58



require more than one TCP 
onne
tion to be opened between the two endpoints. As we haveseen, some appli
ations use a new 
onne
tion for ea
h request/response ex
hange, while othersmake use of multi-epo
h 
onne
tions (e.g., persistent 
onne
tions in HTTP/1.1). Handlingmore than one TCP 
onne
tion 
an have some performan
e bene�ts, but it does 
ompli
atethe implementation of the appli
ations (e.g., it may require using 
on
urrent programmingte
hniques). However, some appli
ations do intera
t using several TCP 
onne
tions and this
reates interdependen
ies between ADUs. For example, Figure 3.7 illustrates an FTP session6between an FTP 
lient program and FTP server in whi
h three 
onne
tions are used. The
onne
tion in the top row is the \FTP 
ontrol" 
onne
tion used by the 
lient to �rst identifyitself (with username and password), then list the 
ontents of a dire
tory, and then retrievea large �le. The a
tual dire
tory listing and the �le are re
eived using separate \FTP data"
onne
tions (established by the 
lient) with a single ADU b1. The �gure illustrates how thestart of the data 
onne
tions depends on the use of some ADUs in the 
ontrol 
onne
tion (i.e.,the dire
tory listing LIST does not o

ur until after the RETR ADUs has been re
eived), andhow the 
ontrol 
onne
tion does not send the 226 Complete ADU until the data 
onne
tionshave 
ompleted.While the sequential a-b-t model 
an a

urately des
ribe the sour
e-level properties of thesethree 
onne
tions, the model 
annot 
apture the interdependen
y between the 
onne
tions. TheFTP example in Figure 3.7 shows three 
onne
tions with a strong dependen
y. The two FTPdata 
onne
tions ne
essarily followed a 150 Opening operation in the FTP 
ontrol 
onne
tion.Our 
urrent model 
annot express this kind of dependen
ies between 
onne
tions or between theADUs of more than one 
onne
tion. It would be possible to develop a more sophisti
ated model
apable of des
ribing these types of dependen
ies, but it seems very diÆ
ult to populate su
ha model from tra
es in an a

urate manner without knowledge of appli
ation semanti
s. As analternative, the traÆ
 generation approa
h proposed in this dissertation 
arefully reprodu
esrelative di�eren
es in 
onne
tion start times, whi
h tend to preserve temporal dependen
iesbetween 
onne
tions. Our experimental results also suggest that the impa
t of inter
onne
tion6This is an abbreviated version of the original session, in whi
h there was some dire
tory navigation and moredire
tory listings. The 
ontrol 
onne
tion used port 21, while the data 
onne
tions used dynami
ally sele
tedport numbers. Note also that signi�
ant inter-ADU times due to user think time are not shown in the diagram.59
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hange 
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urren
y.
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tion between two BitTorrent peers.dependen
ies is negligible, at least for our 
olle
tion Internet tra
es.3.2 The Con
urrent a-b-t ModelIn the sequential model we have 
onsidered so far, appli
ation data is either 
owing fromthe 
lient to the server or from the server to the 
lient. However, some TCP 
onne
tions arenot driven by this traditional style of 
lient/server intera
tion. Some appli
ations send datafrom both endpoints of the 
onne
tion at the same time. Figure 3.8 shows an NNTP 
onne
tionbetween two NNTP peers (servers) in whi
h NNTP's \streaming mode" is used. As shown inthe diagram, ADUs b5 and b6 are sent from the 
onne
tion a

eptor to the 
onne
tion initiatorwhile ADU a6 is being sent in the opposite dire
tion. ADUs b5 and b6 
arry 438 messages,where the a

eptor NNTP peer tells the initiator that it is not interested in arti
les id3 andid4. ADU a6 
arried arti
le id2 in the opposite dire
tion. There is no 
ausal dependen
ybetween these ADUs, whi
h make it possible for the two endpoints to send data independently.Therefore this 
onne
tion is said to exhibit data ex
hange 
on
urren
y in the sense that one ormore pairs of ADUs are ex
hanged simultaneously. In 
ontrast, the 
onne
tions illustrated in60



previous �gures ex
hanged data units in a sequential fashion. A fundamental di�eren
e betweenthese two types of 
ommuni
ation patterns is that sequential request/response ex
hanges (i.e.,epo
hs) always take a minimum of one round-trip time. Data ex
hange 
on
urren
y makes itpossible to send and re
eive more than one ADU per round-trip time, and this 
an in
reasethroughput substantially. In the �gure, the initiator NNTP peer is able to send 
he
k requeststo the other party qui
ker be
ause it 
an do so without waiting for the 
orresponding responses,ea
h of whi
h would take a minimum of one full round-trip time to arrive.Another example of 
on
urrent data ex
hange is shown in Figure 3.9. Here two BitTorrentpeers [Coh03℄ ex
hange pie
es of a large �le that both peers are trying to download. TheBitTorrent proto
ol supports the ba
klogging of requests (i.e., pie
es k and m of the �le arerequested before the download of the pre
eding pie
e is 
ompleted), and also the simultaneousex
hange of �le pie
es (i.e., the transmission of pie
es k and l of the �le 
oexist with thetransmission of pie
e m). As dis
ussed above, this type of behavior helps to avoid quiet timesin BitTorrent 
onne
tions, thereby in
reasing average throughput. Furthermore, this exampleillustrates a type of appli
ation in whi
h both endpoints a
t as 
lient and server (both requestand re
eive �le pie
es).Appli
ation designers make use of data 
on
urren
y for two primary purposes:� Keeping the pipe full, by making use of requests that overlap with un
ompleted responses.Rather than waiting for the response of the last request to arrive, the 
lient keeps sendingnew requests to the server, building up a ba
klog of pending requests. The server 
antherefore send responses ba
k-to-ba
k, and maximize its use of the path from the serverto the 
lient. Without 
on
urren
y, the server remains idle between the end of a responseand the arrival of a new request, hen
e the path 
annot be fully utilized.� Supporting \natural" 
on
urren
y, in the sense that some appli
ations do not need to fol-low the traditional request/response paradigm. In some 
ases, the endpoints are genuinelyindependent, and there is no natural 
on
ept of request/response.
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Examples of proto
ols that attempt to keep the pipe full are the pipelining mode in HTTP,the streaming mode in NNTP, the Rsyn
 proto
ol for �le system syn
hronization, and theBitTorrent proto
ol for �le-sharing. Examples of proto
ols/appli
ations that support natural
on
urren
y are instant messaging and Gnutella (in whi
h the sear
h messages are simply for-warded to other peers without any response message). Sin
e BitTorrent supports 
lient/serverex
hanges in both dire
tions, and these ex
hanges are independent of ea
h other, we 
an saythat BitTorrent also supports a form of natural 
on
urren
y.For data-
on
urrent 
onne
tions, we use a di�erent version of our a-b-t model in whi
hthe two dire
tions of the 
onne
tion are modeled independently by a pair (�; �) of 
onne
tionve
tors of the form � = ((a1; ta1); (a2; ta2); : : : ; (ana ; tana))and � = ((b1; tb1); (b2; tb2); : : : ; (bnb ; tbnb))Depending on the nature of the 
on
urrent 
onne
tion, this model may or may not be a simpli-�
ation. If the sides of the 
onne
tion are truly independent, the model is a

urate. Otherwise,if some dependen
y exists, it is not re
e
ted in our 
hara
terization (e.g., the fa
t that requestai ne
essarily pre
eded response bj is lost). Our 
urrent data a
quisition te
hniques 
annotdistinguish these two 
ases, and we doubt that a te
hnique to a

urately distinguish them ex-ists. In any 
ase, the two independent ve
tors in our 
on
urrent a-b-t model provide enoughdetail to 
apture the two uses of 
on
urrent data ex
hange in a manner relevant for traÆ
generation. In the 
ase of pipelined requests, one side of the 
onne
tion mostly 
arries largeADUs with little or no quiet time between them (i.e., ba
klogged responses). The exa
t timingat whi
h the requests arrive in the opposite dire
tion is irrelevant as long as there is always anADU 
arrying a response to be sent. It is pre
isely the purpose of the 
on
urren
y to de
ouplethe two dire
tions to avoid the one round-trip time per request/response pair that sequential
onne
tions must in
ur in. There is, therefore, substantial independen
e in 
on
urrent 
onne
-tions of this type, whi
h supports the use of a model like the one we propose. In the 
ase of
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onne
tions that are \naturally" 
on
urrent, the two sides are a

urately des
ribed using twoseparate 
onne
tion ve
tors.3.3 Abstra
t Sour
e-Level MeasurementThe a-b-t model provides an intuitive way of des
ribing sour
e behavior in an appli
ation-neutral manner that is relevant for the performan
e of TCP. However, this would be of littleuse without a method for measuring real network traÆ
 and 
asting TCP 
onne
tions into thea-b-t model. We have developed an eÆ
ient algorithm that 
an 
onvert an arbitrary tra
e ofTCP/IP proto
ol headers into a set of 
onne
tion ve
tors. The algorithm makes use of thewealth of information that segment headers provide to extra
t an a

urate des
ription of theabstra
t sour
e-level behavior of the appli
ations driving ea
h TCP 
onne
tion in the tra
e. Itshould be noted that this algorithm is a �rst solution to a 
omplex inferen
e problem in whi
hwe are trying to understand appli
ation behavior from the segment headers of a measured TCP
onne
tion without examining payloads, and hen
e without any knowledge of the identity of theappli
ation driving the 
onne
tion. This implies \reversing" the e�e
ts of TCP and the networkme
hanisms that determine how ADUs are 
onverted into the observed segments that 
arry theADU. The presented algorithm is by no means the only one possible, or the most sophisti
atedone. However, we believe it is suÆ
iently a

urate for our purpose, and we provide substantialexperimental eviden
e in this and later 
hapters to support this 
laim.3.3.1 From TCP Sequen
e Numbers to Appli
ation Data UnitsThe starting point of the algorithm is a tra
e of TCP segment headers, Th, measured on somenetwork link. Our te
hnique applies to TCP 
onne
tions for whi
h both dire
tions are measured(known as a bidire
tional tra
e), but we will also 
omment on the problem of extra
ting a-b-t
onne
tion ve
tors from a tra
e with only one measured dire
tion (a unidire
tional tra
e). Whilemost publi
 tra
es are bidire
tional (e.g., those in the NLANR repository [nlaa℄), unidire
tionaltra
es are sometimes 
olle
ted when resour
es (e.g., disk spa
e) are limited. Furthermore,63
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Figure 3.10: A �rst set of TCP segments for the 
onne
tion ve
tor in Figure 3.1: losslessexample.routing asymmetries often result in 
onne
tions that only traverse the measured link in onedire
tion.We will use Figure 3.10 to des
ribe the basi
 te
hnique for measuring ADU sizes and quiettime durations. The �gure shows a set of TCP segments representing the ex
hange of dataillustrated in the a-b-t diagram of Figure 3.1. After 
onne
tion establishment (�rst threesegments), a data segment is sent from the 
onne
tion initiator to the 
onne
tion a

eptor.This data segment 
arries ADU a1, and its size is given by the di�eren
e between the endsequen
e number and the beginning sequen
e number assigned to the data (bytes 1 to 341). Inresponse to this data segment, the other endpoint �rst sends a pure a
knowledgment segment(with 
umulative a
knowledgment number 342), followed by two data segments (with the samea
knowledgment numbers). This 
hange in the dire
tionality of the data transmission makes itpossible to establish a boundary between the �rst data unit a1, whi
h was transported using asingle segment and had a size of 341 bytes, and the se
ond data unit b1, whi
h was transportedusing two segments and had a size of 2,555 bytes.The tra
e of TCP segments Th must in
lude a timestamp for ea
h segment that reports thetime at whi
h the segment was observed at the monitoring devi
e. Timestamps provide a way64



of estimating the duration of quiet times between ADUs. The duration of ta1 is given by thedi�eren
e between the timestamp of the 4th segment (the last and only segment of a1), andthe timestamp of the 6th segment (the �rst segment of b1). The duration of tb1 is given by thedi�eren
e between the timestamp of the last data segment of b1 (7th segment in the 
onne
tion)and the timestamp of the �rst FIN segment (8th segment in the 
onne
tion).Note that the lo
ation of the monitoring point between the two endpoints a�e
ts the mea-sured duration of ta1 and tb1 (but not the measured sizes of a1 and b1). Measuring the durationof ta1 from the monitoring point 1 shown in Figure 3.10 results in an estimated time t1 that islarger than the estimated time t2 measured at monitoring point 2. Inferring appli
ation-layerquiet time durations is always 
ompli
ated by this kind of measurement variability (amongother 
auses), so short quiet times (with durations up to a few hundred millise
onds) shouldnot be taken into a

ount. Fortunately, the larger the quiet time duration, the less signi�
antthe measurement variability be
omes, and the more important the e�e
t of the quiet time is onthe lifetime of the TCP 
onne
tion. We 
an therefore 
hoose to assign a value of zero to anymeasured quiet time whose duration is below some threshold, e.g., 1 se
ond, or simply use themeasurement disregarding the minor impa
t of its ina

ura
y.If all 
onne
tions were as \well-behaved" as the one illustrated in Figure 3.10, it would betrivial to 
reate an algorithm to extra
t 
onne
tion ve
tors from segment header tra
es. This
ould be done by simply examining the segments of ea
h 
onne
tion and 
ounting the bytessent between data dire
tionality 
hanges. In pra
ti
e, segment reordering, loss, retransmission,dupli
ation, and 
on
urren
y make the analysis mu
h more 
ompli
ated. Figure 3.11 showsa se
ond set of segment ex
hanges that 
arry the same a-b-t 
onne
tion ve
tor of Figure 3.1.The �rst data segment of the ADU sent from the 
onne
tion a

eptor, the 6th segment, is lostsomewhere in the network, for
ing this endpoint to retransmit this segment some time later asthe 9th segment. Depending on the lo
ation of the monitor (before or after the point of loss),the 
olle
ted segment header tra
e may or may not in
lude the 6th segment. If this segmentis present in the tra
e (like in the tra
e 
olle
ted at monitoring point 2), the analysis programmust dete
t that the 9th segment is a retransmission and ignore it. This ensures we 
ompute65
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Figure 3.11: A se
ond set of TCP segments for the 
onne
tion ve
tor in Figure 3.1: lossyexample.the 
orre
t size of b1, i.e., 2,555 bytes rather than 4,015 bytes. If the lost segment is not presentin the tra
e (like in the tra
e 
olle
ted at monitoring point 1), the analysis must dete
t thereordering of segments using their sequen
e numbers and still output a size for b1 of 2,555 bytes.Measuring the duration of ta1 is more diÆ
ult in this 
ase, sin
e the monitor never saw the6th segment. The best estimation is the time t1 between the segment with sequen
e number341 and the segment with sequen
e number 2555. Note that if the 6th segment is seen (as fora tra
e 
olle
ted at monitoring point 2), the best estimate is the time t2 between 5th and 6thsegments. A data a
quisition algorithm 
apable of handling these two 
ases 
annot simply relyon 
ounts and data dire
tionality 
hanges, but must keep tra
k of the start of the 
urrent ADU,the highest sequen
e number seen so far, and the timestamp of the last data segment. In ouranalysis, rather than trying to handle every possible 
ase of loss and retransmission, we rely ona basi
 property of TCP to 
onveniently reorder segments and still obtain the same ADU sizesand inter-ADU quiet time durations. This makes our analysis simpler and more robust.
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3.3.2 Logi
al Order of Data SegmentsA fundamental invariant that underlies our previous ADU analyses is that every byte ofappli
ation data in a TCP 
onne
tion re
eives a sequen
e number, whi
h is unique for itsdire
tion7. This property also means that data segments transmitted in the same dire
tion 
analways be logi
ally ordered by sequen
e number, and this order is independent of both the timeat whi
h segments are observed and any reordering present in the tra
e. The logi
al order ofdata segments is a very intuitive notion. If segments 6 and 7 in Figure 3.10 
arried an HTMLpage, segment 6 
arried the �rst 1,460 
hara
ters of this page, while segment 7 
arried theremaining 1,095. Segment 6 logi
ally pre
eded segment 7. When the same page is transmittedin Figure 3.11, the �rst half of the HTML is in segment 6 (whi
h was lost) and again in segment9. Both segments 6 and 9 (whi
h were identi
al) logi
ally pre
ede segment 7, whi
h 
arried these
ond half of the HTML page.The notion of logi
al order of data segments 
an also be applied to segments 
owing inopposite dire
tions of a sequential TCP 
onne
tion. Ea
h new data segment in a sequential
onne
tion must a
knowledge the �nal sequen
e number of the last in-order ADU re
eivedin the opposite dire
tion. If this is not the 
ase, then the new data is not sent in responseto the previous ADU, and the 
onne
tion is not sequential (i.e., two ADUs are being sentsimultaneously in opposite dire
tions). In the previous examples in Figures 3.10 and 3.11, we
an see that both data segments 
omprising b1 a
knowledge the �nal sequen
e number of a1.Intuitively, no data belonging to b1 
an be sent by the server until a1 is 
ompletely re
eived andpro
essed. The data in a1 logi
ally pre
ede the data in b1, and therefore the segment 
arrying a1logi
ally pre
edes the segments 
arrying b1. Given the sequen
e and a
knowledgment numbersof two data segments, 
owing in the same or in opposite dire
tions, we 
an always say whetherthe two segments 
arried the same data, or one of them logi
ally pre
eded the other.Conne
tions that �t into the sequential a-b-t model are said to preserve a total order of data7This is true as long as the 
onne
tion 
arries 4 GB or less. Otherwise, sequen
e numbers are repeated dueto the wraparound of their 32-bit representation. We dis
uss how to address this diÆ
ulty at the end of Se
tion3.3.3. 67



segments with respe
t to the logi
al 
ow of data:For any pair of data segments p and q, su
h that p is not a retransmission of qor vi
e versa, either the data in p logi
ally pre
edes the data in q, or the data in qlogi
ally pre
edes the data in p.In the example in Figure 3.11, the data in segment 9 logi
ally pre
edes the data in segment 7(e.g., segment 9 
arries the �rst 1460 bytes of a web page, and segment 7 
arries the rest ofthe bytes). We know this be
ause the sequen
e numbers of the bytes in segment 9 are belowthe sequen
e numbers of the bytes in segment 7. The �rst monitoring point observes segment7 before segment 9, so temporal order of these two segments did not mat
h their logi
al dataorder. A total order also exists between segments that 
ow in opposite dire
tions. In theexample in Figure 3.11, the data in segment 4 logi
ally pre
ede the data 
arried in the rest ofthe data segments in the 
onne
tion. Timestamps and segment reordering play no role in thetotal order that exists in any sequential 
onne
tion.Logi
al data order is not present in data-
on
urrent 
onne
tions, su
h as the one shownin Figure 3.8. For example, the segment that 
arried the last b-type ADU (the 438 don'tsend ADU) may have been sent roughly at the same time as another segment 
arrying someof the new data of the data unit sent in the opposite dire
tion (su
h as a CHECK ADU). Ea
hsegment would use new sequen
e numbers for its new data, and it would a
knowledge the datare
eived so far by the endpoint. Sin
e the endpoints have not yet seen the segment sent fromthe opposite endpoint, the two segments 
annot a
knowledge ea
h other. Therefore, there isno 
ausality between the segments, and no segment 
an be said to pre
ede the other. Thisobservation provides a way of dete
ting data 
on
urren
y purely from the analysis of TCPsegment headers. The idea is that a TCP 
onne
tion that violates the total order of datasegments des
ribed above 
an be said to be 
on
urrent with 
ertainty. This happens whenevera pair of data segments, sent in opposite dire
tions, do not a
knowledge ea
h other, and therefore
annot be ordered a

ording the logi
al data order.Formally, a 
onne
tion is 
onsidered to be 
on
urrent when there exists at least one pair of68



data segments p and q that either 
ow in opposite dire
tions and satisfyp:seqno > q:a
kno (3.1)and q:seqno > p:a
kno; (3.2)or that 
ow in the same dire
tion and satisfyp:seqno > q:seqno (3.3)and q:a
kno > p:a
kno: (3.4), Where p:seqno and q:seqno are the sequen
e numbers of p and q respe
tively, and p:a
kno andq:a
kno are the a
knowledgment numbers of p and q respe
tively. Note that, for simpli
ity, our:a
kno refers to the 
umulative sequen
e number a

epted by the endpoint (whi
h is one unitbelow the a
tual a
knowledgment number stored in the TCP header [Pos81℄). The �rst pairof inequalities de�nes the bidire
tional test of data 
on
urren
y, while the se
ond pair de�nesthe unidire
tional test of data 
on
urren
y. We next dis
uss why a 
onne
tion satisfying one ofthese tests must ne
essarily be asso
iated with 
on
urrent data ex
hanging.We 
onsider �rst the 
ase where p and q 
ow in opposite dire
tions, assuming without lossof generality that p is sent from initiator to a

eptor and q from a

eptor to initiator. If theyare part of a sequential 
onne
tion, either p is sent after q rea
hes the initiator, in whi
h 
asep a
knowledges q so q:seqno = p:a
kno, or q is sent after p rea
hes the a

eptor in whi
h 
asep:seqno = q:a
kno. Otherwise, a pair of data segments that do not a
knowledge ea
h otherexists, and the 
onne
tion exhibits data 
on
urren
y.In the 
ase of segments p and q 
owing in the same dire
tion, we assume without loss ofgenerality that p:seqno < q:seqno. The only way in whi
h q:a
kno 
an be less than p:a
kno iswhen p is a retransmission sent after q, and at least one data segment k with new data sent69



from the opposite dire
tion arrives between the sending of p and the sending of q. The arrivalof k in
reases the 
umulative a
knowledgment number in p with respe
t to q, whi
h means thatq:a
kno < p:a
kno. In addition, k 
annot a
knowledge p, or p would not be retransmitted.This implies that the 
onne
tion is not sequential, sin
e the opposite side sent new data in kwithout waiting for the new data in p.Thus, only data-
on
urrent 
onne
tions have a pair of segments that 
an simultaneouslysatisfy inequalities (3.1) and (3.2) or inequalities (3.3) and (3.4). These inequalities providea formal test of data 
on
urren
y, whi
h we will use to distinguish sequential and 
on
urrent
onne
tions in our data a
quisition algorithm. Data-
on
urrent 
onne
tions exhibit a partialorder of data segments, sin
e segments 
owing in the same dire
tion 
an always be ordereda

ording to sequen
e numbers, but not all pairs of segments 
owing in opposite dire
tions 
anbe ordered in this manner.Situations in whi
h all of the segments in a 
on
urrent data ex
hange are a
tually sentsequentially are not dete
ted by the previous test. This 
an happen purely by 
han
e, whenappli
ations send very little data or send it so slowly that 
on
urrent data sent in the reversedire
tion is always a
knowledged by ea
h new data segment. Note also that the test dete
ts
on
urrent ex
hanges of data and not 
on
urrent ex
hanges of segments in whi
h a data segmentand an a
knowledgment segment are sent 
on
urrently. In the latter 
ase, the logi
al order ofdata inside the 
onne
tion is never broken be
ause there is no data 
on
urren
y. Similarly, thesimultaneous 
onne
tion termination me
hanism in TCP in whi
h two FIN segments are sent
on
urrently is usually not asso
iated with data 
on
urren
y. In the most 
ommon 
ase, noneof the FIN segments or only one of them 
arries data, so the data 
on
urren
y de�nition is notappli
able. It is however possible to observe a simultaneous 
onne
tion termination where bothFIN segments 
arry data, whi
h is 
onsidered 
on
urren
y if these segments satisfy inequalities(3.1) and (3.2).
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3.3.3 Data Analysis AlgorithmWe have developed an eÆ
ient data analysis algorithm that 
an determine whether a 
on-ne
tion is sequential or 
on
urrent, and 
an measure ADU sizes and quiet time durations inthe presen
e of arbitrary reordering, dupli
ation, and loss. Rather than trying to analyze everypossible 
ase of reordering, dupli
ation/retransmission, and loss, we rely on the logi
al dataorder property, whi
h does not depend on the original order and timestamps.Given the set of segment headers of a TCP 
onne
tion sorted by timestamp, the algorithmperforms two passes:1. Insert ea
h data segment as a node into the data stru
ture ordered segments. This is alist of nodes that orders data segments a

ording to the logi
al data order (bidire
tionalorder for sequential 
onne
tions, unidire
tional order for 
on
urrent 
onne
tions). Theinsertion pro
ess serves also to dete
t data ex
hange 
on
urren
y. This is be
ause 
on-ne
tions are initially 
onsidered sequential, so their segments are ordered bidire
tionally,until a segment that 
annot be inserted a

ording to this order is found. No ba
ktra
kingis needed after this �nding, sin
e bidire
tional order implies unidire
tional order for bothdire
tions.2. Traverse ordered segments and output the a-b-t 
onne
tion ve
tor (sequential or 
on-
urrent) for the 
onne
tion. This is straight-forward pro
ess, sin
e segments in the datastru
ture are already ordered appropriately.The �rst step of the algorithm 
reates a doubly-linked list, ordered segments in whi
h ea
hlist node represents a data segment using the following four �elds:� seqnoA: the sequen
e number of the segment in the initiator to a

eptor dire
tion (thatwe will 
all the A dire
tion). This sequen
e number is determined from the �nal sequen
enumber of the segment (if the segment was measured in the \A" dire
tion), or from the
umulative a
knowledgment number (if measured in the \B" dire
tion).71



� seqnoB: the sequen
e number of the segment in the a

eptor to initiator dire
tion.� dir: the dire
tion in whi
h the segment was sent (A or B).� ts: the monitoring timestamp of the segment.The list always preserves the following invariant that we 
all unidire
tional logi
al data order :for any pair of segments p and q sent in the same dire
tion D, the ordered segments node ofp pre
edes the ordered segments node of q if and only if p:seqnoD < q:seqnoD. At the sametime, if the 
onne
tion is sequential, the data stru
ture will preserve a se
ond invariant that we
all bidire
tional logi
al data order , whi
h is the opposite of the data 
on
urren
y 
onditionsde�ned above: for any pair of segments p and q, the ordered segments node of p pre
edes theordered segments node of q if and only if(p:seqnoA < q:seqnoA) ^ (p:seqnoB = q:seqnoB)or (p:seqnoA = q:seqnoA) ^ (p:seqnoB < q:seqnoB):Insertion of a node into the list starts ba
kward from the tail of the ordered segmentslooking for an insertion point that would satisfy the �rst invariant. If the 
onne
tion is stillbeing 
onsidered sequential, the insertion point must also satisfy the se
ond invariant. Thisimplies 
omparing the sequen
e numbers of the new segment with those of the last segment inthe ordered segments. The 
omparison 
an result in the following 
ases:� The last segment of ordered segments pre
edes the new one a

ording to the bidi-re
tional order above. If so, the new segment is inserted as the new last element ofordered segments.� The last segment of ordered segments and the new segment have the same sequen
enumbers. In this 
ase, the new segment is a retransmission and it is dis
arded.
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� The new segment pre
edes the last segment of ordered segments a

ording to the bidi-re
tional order. This implies that network reordering of TCP segments o

urred, andthat the new segment should be inserted before the last segment of ordered segments topreserve the bidire
tional order of the data stru
ture. The new segment is then 
omparedwith the prede
essors of the last segment in ordered segments until its proper lo
ationis found, or inserted as the �rst segment if no prede
essors are found.� The last segment of ordered segments and the new segment have di�erent sequen
e num-bers and do not show bidire
tional order. This means that the 
onne
tion is 
on
urrent.The segment is then inserted a

ording to its unidire
tional order.Sin
e TCP segments 
an be re
eived out of order by at most W bytes (the size of the maximumre
eiver window), the sear
h pass (third bullet) never goes ba
kward more than W segments.Therefore, the insertion step takes O(s W ) time, where s is the number of TCP data segmentsin the 
onne
tion.The se
ond step is to walk through the linked list and produ
e an a-b-t 
onne
tion ve
tor.This 
an be a

omplished in O(s) time using ordered segments. For 
on
urrent 
onne
tions,the analysis goes through the list keeping separate data for ea
h dire
tion of the 
onne
tion.When a long enough quiet time is found (or the 
onne
tion is 
losed), the algorithm outputsthe size of the ADU. For sequential 
onne
tions, the analysis looks for 
hanges in dire
tionalityand outputs the amount of data in between the 
hange as the size of the ADU. SuÆ
iently longquiet times also mark ADU boundaries, indi
ating an epo
h without one of the ADUs.Reordering makes the 
omputation of quiet times more 
omplex than it seems. As shownin Figure 3.11, if the monitor does not see the �rst instan
e of the retransmitted segment, thequiet times should be 
omputed based on the segments with sequen
e numbers 341 and 2555.This implies adding two more �elds to the list nodes:� min ts: the minimum timestamp of any segment whose position in the order is not lowerthan the one represented by this node. Due to reordering, one segment 
an pre
ede73



another in the bidire
tional order and at the same time have a greater timestamp. In this
ase, we 
an use the minimum timestamp as a better estimate of the send time of thelower segment.� max ts: the maximum timestamp of any segment whose pla
e in the order is not greaterthan the one represented by this node. This is the opposite of the previous min ts �eld,providing a better estimate of the re
eive time of the greater segment.These �elds 
an be 
omputed during the insertion step without any extra 
omparison of seg-ments. The best possible estimate of the quiet time between two ADU be
omesq:min ts� p:max tsfor p being the last segment (in the logi
al data order) of the �rst ADU, and q being the �rstsegment (in the logi
al data order) of the se
ond ADU. For the example in Figure 3.11, atmonitoring point 1, the value of min ts for the node for the 9th segment (that marks a datadire
tionality boundary when segment nodes are sorted a

ording to the logi
al data order) isthe timestamp of the 7th segment. Therefore, the quiet time ta1 is estimated as t1. Note thatthe use of more than one timestamp makes it possible to handle IP fragmentation elegantly.Fragments have di�erent timestamps, so a single timestamp would have to be arbitrarily setto the timestamp of one of the fragments. With our algorithm, the �rst fragment providessequen
e numbers and usually min ts, while the last fragment usually provides max ts.Other Issues in Tra
e Pro
essingOur tra
e pro
essing algorithm makes two assumptions. First, it assumes we 
an isolatethe segments of individual 
onne
tions. Se
ond, it assumes that no wraparound of sequen
enumbers o

urs (otherwise, logi
al data order would not be preserved). These two assumptions
an be satis�ed by prepro
essing the tra
e of segment headers. Isolating the segments ofindividual TCP 
onne
tions was a

omplished by sorting pa
ket header tra
es on �ve keys:sour
e IP address, sour
e port number, destination IP address, destination port number, and74



timestamp. The �rst four keys 
an separate segments from di�erent TCP 
onne
tions as longas no sour
e port number is reused. When a 
lient establishes more than one 
onne
tion to thesame server (and servi
e), these 
onne
tions share IP addresses and destination port numbers,but not sour
e port numbers. This is true unless the 
lient is using so many 
onne
tions thatit reuses a previous sour
e port number at some point. Finding su
h sour
e port numberreuses is relatively 
ommon in our long tra
es, whi
h are at least one hour long. Sin
e segmenttra
es are sorted by timestamp, it is possible to look for pure SYN segments and use them toseparate TCP 
onne
tions that reuse sour
e port numbers. However, SYN segments 
an su�erfrom retransmissions, just like any other segment, so the pro
essing must keep tra
k of thesequen
e number of the last SYN segment observed. Depending on the operating system of the
onne
tion initiator, this sequen
e number is either in
remented or randomly set for ea
h new
onne
tion. In either 
ase, the probability of two 
onne
tions sharing SYN sequen
e numbersis pra
ti
ally zero.Segment sorting a

ording to the previous 5 keys requires O(s log s) time (we use the Unixsort utility for our work). It is also possible to pro
ess the data without an initial sorting stepby keeping state in memory for ea
h a
tive 
onne
tion. On the one hand, this 
an potentiallyeliminate the 
ostly O(s log s) step, making the entire pro
essing run in linear time. On theother hand, it 
ompli
ates the implementation, and in
reases the memory requirements sub-stantially8. Dete
ting the existen
e of distin
t 
onne
tions with identi
al sour
e and destinationIP addresses and port numbers requires O(s) time, simply by keeping tra
k of SYN sequen
enumbers as dis
ussed above. In our implementation, this dete
tion is done at the same time assegments are inserted into ordered segments data stru
ture, saving one pass.TCP sequen
e numbers are 32-bit integers, and the initial sequen
e number of a TCP
onne
tion 
an take any value between 0 and 232�1. This means that wraparounds are possible,8The well-known t
ptra
e tool [Ost℄, provides a good example of the diÆ
ulty of eÆ
iently implementingthis te
hnique. t
ptra
e 
an analyze multiple 
onne
tions at the same time, by keeping separate state for ea
h
onne
tion, and making use of hashing to qui
kly lo
ate the state 
orresponding to the 
onne
tion to whi
h anew segment belongs. When this tool is used with our tra
es, we qui
kly run out of memory on our pro
essingma
hines (whi
h have 1.5 GB of RAM). This o

urs even when we use t
ptra
e's real-time pro
essing mode,whi
h is supposed to be highly optimized. We believe it is possible to perform our analysis without the sortingstep, but it is 
ertainly mu
h more diÆ
ult to develop a memory-eÆ
ient implementation.75



and relatively frequent. One way to handle sequen
e number wraparound is by keeping tra
kof the initial sequen
e number and performing a modular subtra
tion. However, if the SYNsegment of a 
onne
tion is not observed (and therefore the initial sequen
e number is unknown),using modular arithmeti
 will fail whenever the 
onne
tion su�ers from reordering of the �rstobserved segments. In this 
ase the subtra
tion would start in the wrong pla
e, i.e., from thesequen
e number of the �rst segment seen, whi
h is not the lowest sequen
e number due to thereordering. One solution is to use ba
ktra
king, whi
h 
ompli
ates the pro
essing of tra
es.A related problem is that representing sequen
e numbers as 32-bit integers is not suÆ
ientfor 
onne
tions that 
arry more than 232 bytes of data (4 GB). The simplest way to addressthis measurement problem is to en
ode sequen
e numbers using more than 32 bits in theordered segments data stru
ture. In our implementation we use 64 bits to represent sequen
enumbers, and rely on the following algorithm9 to a

urately 
onvert 32 bit sequen
e numbers to64-bit integers even in the presen
e of wraparounds. The algorithm makes use of a wraparound
ounter and a pair of 
ags for ea
h dire
tion of the 
onne
tion. The obvious idea is to in
rementthe 
ounter ea
h time a transition from a high sequen
e number to a low sequen
e number isseen. However, due to reordering, the 
ounter 
ould be in
orre
tly in
remented more than on
e.For example, we 
ould observe four segments with sequen
e numbers 232�1000; 1000; 232�500,and 2000. Wraparound pro
essing should 
onvert them into 232 � 1000; 232 + 1000; 232 � 500,and 232+2000. However, if the wraparound 
ounter is in
remented every time a transition froma high sequen
e number to a low sequen
e number is seen, the 
ounter would be in
rementedon
e for the segment with the sequen
e number 1000 and again for the segment with sequen
enumber 2000. In this 
ase, the wraparound pro
essing would result in four segments withsequen
e numbers 232� 1000; 232+1000; 232� 500, and 232+232+2000. The se
ond in
rementof the 
ounter would be in
orre
t.The solution is to use a 
ag that is set after a \low" sequen
e number is seen, so the 
ounter9We have not addressed the extra 
omplexity that TCP window s
aling for Long-Fat-Networks (RFC 1323[JBB92℄) introdu
es. It is often the 
ase that TCP options are not available in the tra
es, so the use of windows
aling and TCP timestamps has to be inferred from the standard TCP header. This is a daunting task. If theoptions are available, it is straightforward to 
ombine regular sequen
e numbers and timestamps to handle this
ase. 76



is in
remented only on
e after ea
h \
rossing" of 232. This opens up the question of whento unset this 
ag so that the next true 
rossing in
rements the 
ounter. This 
an be solvedby keeping tra
k of the 
rossing of the middle sequen
e number. In our implementation, weuse two 
ags, low seqno and high seqno, whi
h are set independently. If the next segmenthas a sequen
e number in the �rst quarter of 232 (i.e., in the range between 0 and 230 � 1),the 
ag low seqno is set to true. If the next segment has a sequen
e number in the fourthquarter of 232 (i.e., in the range between 231 and 232 � 1), the other 
aghigh seqno is set totrue. These 
ags are unset, and the 
ounter in
remented, when both 
ags are true and thenext segment is not in the �rst or the fourth quarter of 232. Sequen
e numbers in the �rstquarter are in
remented to 232 times the 
ounter plus 1. The rest are in
remented by 232 plusthe 
ounter. This handles the pathologi
al reordering 
ase in whi
h the sequen
e number of the�rst segment in a 
onne
tion is very 
lose to zero, and the next segment is very 
lose to 232. Inthis 
ase the low sequen
e number would be in
remented by 232. This algorithm requires noba
ktra
king, and runs in O(s) time. In our implementation, the sequen
e number 
onversionalgorithm has been integrated into the same pass as the insertion step of the ADU analysis.Our data a
quisition te
hniques have been implemented in the analysis program t
p2
ve
.The program also handles a number of other diÆ
ulties that arise when pro
essing real tra
es,su
h as TCP implementations that behave in non-standard ways. In addition, it also implementsthe analysis of network-level parameters des
ribed in the next 
hapter.3.4 Validation using Syntheti
 Appli
ationsThe data analysis te
hniques des
ribed in the previous se
tion are based on a number ofproperties of TCP that are expe
ted to hold for the vast majority of 
onne
tions re
orded. Forexample, the logi
al data order property should always hold, sin
e TCP would fail to deliverdata to appli
ations otherwise. There are, however, a number of possible sour
es of un
ertaintyin the a

ura
y of the data a
quisition method, and this se
tion studies them using testbedexperiments. 77



The 
on
ept of an ADU provides a useful abstra
tion for des
ribing the demands of appli-
ations for sending and re
eiving data using a TCP 
onne
tion. However, the ADU 
on
ept isnot really part of the interfa
e between appli
ations and TCP. In pra
ti
e, ea
h TCP 
onne
-tion results from the use of a programming abstra
tion, 
alled a so
ket, that re
eives requestsfrom the appli
ations to send and re
eive data. These requests are made using a pair of so
ketsystem 
alls, send() (appli
ation's write) and re
v() (appli
ation's read). These 
alls pass apointer to a memory bu�er where the operating system 
an read the data to be sent or writethe data re
eived. The size of the bu�er is not �xed, so appli
ations are free to de
ide howmu
h data to send or re
eive with ea
h 
all and 
an even use di�erent sizes for di�erent 
alls.As a result, appli
ations may use more than one send system 
all per ADU, and there may besigni�
ant delays between su

essive 
alls belonging to the same ADU. These operations 
anfurther intera
t with me
hanisms in the lower layers (e.g., delayed a
knowledgment, TCP win-dowing, IP bu�ering, et
.) 
reating even longer delays between segments 
arrying ADUs. Su
hdelays distort the relationship between appli
ation-layer quiet times and segment dynami
s,
ompli
ating the dete
tion of ADU boundaries due to quiet times.To test the a

ura
y of our data a
quisition te
hniques, we 
onstru
ted a suite of testappli
ations that exer
ise TCP in a systemati
 manner. The basi
 logi
 of ea
h test appli
ationis to establish a TCP 
onne
tion and send a sequen
e of ADUs with a random size, and withrandom delays between ea
h pair of ADUs. In the a-b-t model notation, this means 
reating
onne
tions with random ai, bi, tai and tbi. As the test appli
ation runs, it logs ADU sizes andvarious time intervals as measured by the appli
ation. In addition, the test appli
ation 
an setthe so
ket send and re
eive 
alls to random I/O sizes, and 
an introdu
e random delays betweensu

essive send or re
eive 
alls within a single ADU. In our experiments, the test appli
ationwas run between two real hosts, and tra
es of the segment headers were 
olle
ted and analyzedusing our measurement tool. Our validation 
ompared the result of this analysis and the 
orre
tvalues logged by the appli
ations.We 
ondu
ted an extensive suite of tests, but limit our report to only some of the results.Spe
i�
ally we only show the results with the most signi�
ant deviations from the 
orre
t values78
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 appli
ations.for ADU sizes or quiet time durations. Figure 3.12 shows the relative error, de�ned asvalue� approximationvalue, in measuring the randomly generated ADU sizes when random send/re
eive sizes and randomdelays between so
ket operations were used in the test appli
ations. The distribution of sizes ofa-type ADUs as logged by the appli
ation is labeled \A Input", while the distribution of sizesof a-type ADU measured from segment headers is labeled \A Measured". There is virtually nodi�eren
e between the 
orre
t and inferred values. Figure 3.12 also shows the same data for theb-type distributions whi
h appear equally a

urate. This means that our analysis will 
orre
tlyinfer ADU sizes even though send/re
eive sizes and so
ket operation delays are variable.In general, we found only two 
ases that expose limitations in the data a
quisition methodwhen analyzing sequential 
onne
tions. While random appli
ation-level send and re
eive sizes,and random delays between su

essive send operations within a data unit do not have a signif-i
ant e�e
t, random delays between su

essive re
eive operations produ
e errors in estimatingsome quiet time durations. In this 
ase, the appli
ation in
ates the duration of a quiet timeby not reading data that may already be bu�ered at the re
eiving endpoint. The 
onsequen
eis a di�eren
e between the quiet time as observed at the appli
ation level and the quiet timeobserved at the segment level. The quiet time observed by the appli
ation is the time between79



the last read used to re
eive the ADU ai (or bi) and the �rst write used to send the next ADUbi (ai+1). The quiet time observed at the segment level is the time between the arrival of thelast segment of ai (bi) and the departure of the �rst segment of bi (ai+1). If the appli
ationreads the �rst ADU slowly, using read 
alls with signi�
ant delays between them, it will �nishreading ai (bi) well after the last segment has rea
hed the endpoint. In this 
ase, the quiet timeappears signi�
antly shorter at the appli
ation level than at the segment level.For example, a data unit of 1,000 bytes may rea
h the re
eiving endpoint in a single segmentand be stored in the 
orresponding TCP window bu�er. The re
eiving appli
ation at thisendpoint 
ould read the ADU using 10 re
v() system 
alls with a size of only 100 bytes, andwith delays between them of 100 millise
onds. The reading of this ADU would therefore take900 millise
onds, and hen
e the appli
ation would start measuring the subsequent quiet time900 millise
onds after the arrival of the data segment. Our measurement of quiet time fromsegment arrivals 
an never see this delay in appli
ation reads, and would therefore add 900millise
onds to the quiet time. For most appli
ations we 
laim there is no good reason to delayread operation more than a few millise
onds. Therefore, the ina

ura
y demonstrated hereshould be very infrequent. Nonetheless we have no dire
t means of assessing this type of errorin our tra
es.Figure 3.13 shows the relative error in the measurement of quiet time duration when thereare random delays between su

essive read operations. The worst error is found when measuringquiet times between ai and bi (i.e., within an epo
h) when random read delays o

ur on the
onne
tion a

eptor (re
eiver of ai and bi). Even in this 
ase, 70% of values have less than20% error in an experiment with what we 
onsidered severe 
onditions of delays between readoperations for a single ADU (random delays between 10 and 100 millise
onds).We also studied the impa
t of segment losses on the a

ura
y of the measurements. Ingeneral, the algorithm performs well, but the analysis helped us to identify one troublesome
ase. If the last segment of an ADU is lost, the re
eiver side does not a
knowledge the lastsequen
e number of the ADU. After a few hundred millise
onds the sender side times out andresends the last segment. If the loss of the segment o

urs before the monitoring point, no80
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 appli
ations.retransmission is observed for this last segment. If the time between this last segment andits prede
essor is long enough (due to the TCP timeout), the ADU is in
orre
tly divided intotwo ADUs. Other types of segment loss do not have an e�e
t on the measurement, sin
e thealgorithm 
an use the observation of retransmission and/or reordering to identify quiet timesnot 
aused by sour
e-level behavior. The troublesome 
ase is so infrequent that we did not tryto address it. However, we note that it seems possible to develop a heuristi
 to dete
t this typeof problem. The idea would be to estimate the duration of the TCP retransmission timeout,and ignore gaps between segments that are 
lose to this estimate. The implementation of thisheuristi
 would be 
ompli
ated by the need to take into a

ount di�eren
es in the resolutionof the TCP retransmission timers, round-trip time variability and the possibility of 
onse
utivelosses.Measuring the size of ADUs in 
on
urrent 
onne
tions is generally more diÆ
ult. This isbe
ause a 
hange in the dire
tionality of sequen
e number in
reases does not 
onstitute an ADUboundary and thus we have to rely instead on quiet times to split data into ADUs. Figure 3.14
ompares the input distribution of ADU sizes (from both a-type and b-type ADUs) and themeasured sizes when the sizes of so
ket reads/writes and the delays between them are random.The measurement is generally very a

urate, although some ADUs that were sent with smallquiet times between them are mistakenly joined into the same measured ADU. This 
reates a

81



longer tail in the measured distributions. Redu
ing the quiet time threshold from 500 to 250millise
onds does little to redu
e the measurement ina

ura
y.The measured quiet times are also quite 
lose to those at the appli
ation level, as shown inFigure 3.15. The small ina

ura
y 
omes again from ADUs that are joined together when theirinter-ADU times are short. This ina

ura
y biases the measured distribution of quiet timesagainst small values (noti
e that the measured distributions start at a higher value). Redu
ingthe minimum quiet time threshold to 250 millise
onds makes the measured distribution 
loserto the a
tual distribution.3.5 Analysis ResultsThe a-b-t model provides a novel way of des
ribing the workload that appli
ations 
reateon TCP 
onne
tions. Thanks to the eÆ
ien
y of the analysis method presented in Se
tion3.3, we are able to pro
ess large pa
ket header tra
es from several Internet links. This se
tionpresents our results. The analysis of the a-b-t 
onne
tion ve
tors extra
ted from disparatetra
es reveals that 
ertain distributional properties remain surprisingly homogeneous a
rosslinks and times-of-day, while others 
hange substantially. To the best of our knowledge, this isthe �rst 
hara
terization of the behavior of sour
es driving TCP 
onne
tions that 
onsiders theentire mix of appli
ation traÆ
 rather than just one or a few appli
ations.Our results 
ome from the �ve tra
es shown in Table 3.1. This table reports statisti
sthat 
ompare the number of 
onne
tions that are determined to be sequential and those thatSequential Conne
tions Con
urrent Conne
tionsTra
e Count % GB % Count % GB %Abilene-I 2,335,428 98.4 400.36 68.1 39,260 1.7 187.95 31.9Leipzig-II 1,836,553 96.4 46.08 78.3 68,857 3.6 12.77 21.7UNC 1 AM 529,381 98.5 90.35 82.4 8,345 1.6 19.34 17.6UNC 1 PM 2,124,431 99.1 189.75 87.9 18,855 0.9 26.11 12.1UNC 7:30 PM 808,857 98.7 102.04 76.8 10,542 1.3 30.83 23.2Table 3.1: Breakdown of the TCP 
onne
tions found in �ve tra
es.82



are determined to be 
on
urrent a

ording to the analysis algorithm des
ribed in se
tion 3.3.The main lesson from Table 3.1 is the very di�erent view of aggregate sour
e-level behaviorthat 
ounting 
onne
tions or 
ounting bytes provide. In terms of the number of 
onne
tions,
on
urrent 
onne
tions appear insigni�
ant, a

ounting for a mere 3.6% of the 
onne
tions inthe Leipzig-II tra
e. The pi
ture is 
ompletely di�erent, however, when we 
onsider the totalnumber of bytes 
arried in those 
on
urrent 
onne
tions. In this 
ase, 
on
urrent 
onne
tionsa

ount for 21.7% of the Leipzig-II workload, 
learly suggesting that 
on
urren
y is frequentlyasso
iated with TCP 
onne
tions that 
arry large amounts of data. Abilene-I provides an evenmore striking illustration, where 31.9% of the bytes were 
arried by 
on
urrent 
onne
tions,whi
h only a

ounted for 1.7% of the total number of 
onne
tions in the tra
e. This is not sur-prising given that one of the motivations for the use of data ex
hange 
on
urren
y is to in
reasethroughput. Appli
ations with a substantial amount of data to send 
an greatly bene�t fromhigher throughput, and this justi�es the in
rease in 
omplexity that implementing 
on
urren
yrequires. On the 
ontrary, appli
ations whi
h generally transfer small amounts of data haveless in
entive to 
ompli
ate their appli
ation proto
ols in order to support 
on
urren
y. In thisfashion, intera
tive traÆ
 (e.g., telnet, SSH, IRC), whi
h tends to be asso
iated with largenumbers of small ADUs, does not usually pro�t from 
on
urren
y.It is important to note that two types of TCP 
onne
tions are not in
luded in the statisti
sin Table 3.1: unidire
tional 
onne
tions and 
onne
tions that 
arried no appli
ation data (i.e.,no segment 
arried a payload). Unidire
tional 
onne
tions are those for whi
h the tra
e 
ontainsonly segments 
owing in one dire
tion (either data or ACK segments). There are two major
auses for these types of 
onne
tions10. First, attempts to 
onta
t a nonexistent or unavailablehost may not re
eive any response segments. In this 
ase, the tra
e would show only one or afew SYN segments 
owing in one dire
tion, and no 
ommuni
ation of appli
ation data betweenthe two hosts. Attempts to 
onne
t to �rewalled hosts also result in similar unidire
tional
onne
tions. Se
ond, routing asymmetries, that are known to be frequent in the Internetba
kbone, may result in 
onne
tions that traverse the measured link only in one dire
tion.10It is very unlikely that any of these 
onne
tions was measured as unidire
tional due to measurement losses.The tra
es studied in this se
tion were 
olle
ted using a high-performan
e monitoring devi
e, a DAG 
ard [Pro℄,that did not report any losses during data a
quisition.83



Among our tra
es, routing asymmetries are only possible for the Abilene-I tra
e. The UNCand Leipzig-II tra
es were 
olle
ted from border links that 
arry all of the network traÆ
 toand from these two institutions. Two other possible 
auses of unidire
tionality, that we believehave a mu
h smaller impa
t on the 
ount of unidire
tional 
onne
tions, are the e�e
ts of tra
eboundaries, whi
h 
an limit the tra
ing to only a few segments 
owing in one dire
tion; andmis
on�gurations, where in
orre
t or spoofed sour
e addresses are used.In the UNC and Leipzig-II tra
es, the number of unidire
tional 
onne
tions was relativelyhigh. We found between 249,923 (Leipzig-II) and 1,963,511 (UNC 1 AM) unidire
tional 
on-ne
tions. Sin
e these are tra
es without any routing asymmetry, it is 
lear that a substantialnumber of attempts to establish a TCP 
onne
tion failed. For example, the UNC 1 AM tra
ehas approximately one million more unidire
tional 
onne
tions than the other two UNC tra
es.These 
onne
tions are likely related to some traÆ
 anomaly, su
h as mali
ious network s
an-ning11 and port s
anning12. We have not studied this phenomenon further, but it is 
learlyimportant to �lter out unidire
tional 
onne
tions to produ
e the results in Table 3.1. Other-wise, the per
entages would be misleading, sin
e this table is about 
onne
tions that ex
hangedone or more ADUs during TCP appli
ation 
ommuni
ation, and unidire
tional 
onne
tionsdid not engage in any kind of useful 
ommuni
ation. Furthermore, unidire
tional 
onne
tionsa

ounted for less than 0.15% of the bytes in the Leipzig-II and UNC tra
es.The number of unidire
tional 
onne
tions in the Abilene-I tra
e was even larger: 2.6 millionsin the Indianapolis to Cleveland dire
tion and 22.3 millions in the opposite dire
tion. Unlike theUNC and Leipzig-II tra
es, these 
onne
tions a

ounted for a signi�
ant fra
tion of the bytesin ea
h dire
tion (1.63% and 14.42%). This fa
t, and a 
loser examination of the 
onne
tions13,11Network s
anning is a te
hnique for dis
overing the hosts atta
hed to a network by probing ea
h possible IPaddress in a network domain. The basi
 te
hnique is to send a pa
ket whi
h generally requires a response fromthe host that re
eived it (e.g., an ICMP e
ho request, a TCP SYN segment). Mali
ious users often s
an remotenetworks to �nd hosts before trying to break into them. Network s
anning with TCP segments is available inmany popular tools, e.g., nmap.12Port s
anning is similar to network s
anning, but it involves probing a range of port numbers (for a singleIP address) rather than probing a range of IP addresses. The goal of port s
anning is to dis
over a
tive servi
es,whi
h 
ould potentially have vulnerabilities. Port s
anning is performed using any TCP segment (or UDPdatagram) that eli
its a response from the vi
tim (e.g., a SYN segment requires a SYN-ACK in response, amalformed segment requires a RST segment in response).13We found numerous 
onne
tions that had data segments with in
reasing sequen
e numbers.84




on�rmed that routing asymmetry is present in the Abilene-I tra
e. Asymmetri
 
onne
tions
an 
arry appli
ation data, and therefore should be 
onsidered in sour
e-level studies. However,our 
on
urren
y test requires bidire
tional measurements, so the type of breakdown shown inTable 3.1 
annot be performed with the unidire
tional 
onne
tions in the Abilene-I tra
e.Our tra
es also in
lude a signi�
ant number of 
onne
tions that did not 
arry any appli
ationdata (i.e., TCP 
onne
tions that were established and terminated without transmitting a singledata segment14). The number of 
onne
tions without any data units varied between 75,522in the UNC 1 AM tra
e and 400,853 in the Abilene-I tra
e. These \dataless" 
onne
tions
an again be due to network and port s
anning, and also to failed attempts to establish TCP
onne
tions. These failures 
an 
ome from attempts to 
onta
t endpoint port numbers on whi
hno appli
ation is listening15. They 
an also 
ome from aborted 
onne
tions whi
h are due tohigh loss rates, ex
essive round-trip times, or implementation problems. While the numberof 
onne
tions without appli
ation data is relatively high when 
ompared with the number of
onne
tions in Table 3.1, these 
onne
tions a

ounted for less than 0.11% of the bytes.The rest of this se
tion examines the distributional properties of the 
onne
tion ve
torsderived from the tra
es. Conne
tion ve
tors 
onstitute a ri
h data set that 
an be explored alongdi�erent axes. We have 
hosen to �rst 
ompare tra
es 
olle
ted at di�erent sites. This helpsus study variability in sour
e-level behavior originating from di�eren
es in the populations ofusers and servi
es. The se
ond part of the se
tion studies the three tra
es from UNC, analyzingthe 
hanges in sour
e-level behavior due to the strong time-of-day e�e
ts that most Internetlinks exhibit. At the same time, this se
tion illustrates the signi�
ant di�eren
e between TCP
onne
tions initiated from one side of the link (by 
lients inside UNC) and those initiated fromthe other side (by 
lients outside UNC that 
onta
ted servers inside UNC).Note that the analysis below reports only on those 
onne
tion ve
tors derived from TCP
onne
tions that were fully 
aptured , i.e., those for whi
h we believe that every segment was14In some 
ases, these 
onne
tions showed some data segments with a sequen
e number above that of the FINsegments. These 
ases seemed to be 
aused by TCP implementation errors.15In this 
ase the destination endpoint responds with a TCP reset segment, and no appli
ation-level 
ommu-ni
ation takes pla
e. 85
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ti
e, we 
onsider that a 
onne
tion was fully 
aptured when we observe boththe start of the 
onne
tion, marked by SYN and SYN-ACK segments, and the end of the
onne
tion, marked by FIN or RST segments. This does not ne
essarily mean that we observedevery single segment of the 
onne
tion16, but it does imply that the full sour
e-level behavior ofthe 
onne
tion is observed. Another reason to work only with fully 
aptured 
onne
tions is thatthe absen
e of 
onne
tion establishment segments prevents us from identifying the 
onne
tioninitiator. It is often the 
ase that the a

eptor is listening on a reserved port number (< 1024),whi
h provides a way to address this diÆ
ulty. However, there is still a large fra
tion of the
onne
tions that use dynami
 port numbers, and for whi
h the initiator 
annot be identi�edwith 
ertainty.3.5.1 Variability A
ross SitesSequential Conne
tionsWe start our statisti
al analysis with the 
hara
terization of sequential 
onne
tions fromdi�erent sites. Figure 3.16 examines the distributions of the sizes of the ADUs for three tra
es:Abilene-I, Leipzig-II and UNC 1 PM. We use the letter \A" to refer to a distribution of a-type16In some (rare) 
ases, we may miss some segments before 
onne
tion establishment (e.g., we miss the �rstSYN segment but observe its retransmission), or we may miss some segments after 
onne
tion establishment(e.g., we miss the retransmission of the �nal FIN segment and its a
knowledgment).86



ADU sizes, and the letter \B" to refer to a distribution of b-type ADU sizes. The distributionsin this �gure only in
lude samples from sequential 
onne
tion ve
tors. We 
an distinguish tworegions in this plot. For sizes of ADUs above 250 bytes, the shape of the A distributions isremarkably similar for all three tra
es, and quite di�erent from the shapes of the B distributions.The vast majority of the ADUs sent from the 
onne
tion initiator (92%) had a size below 1,000bytes. This is 
onsistent with the idea that a-type ADUs mostly 
arry small requests and 
ontrolmessages. Most a-type ADUs 
an therefore be 
arried in a single standard-size segment of 1960bytes. The shape of the B distributions is also 
onsistent with our intuition, although theLeipzig-II distribution is signi�
antly lighter than the others. The B distributions are heavierthan the A distributions. Between 38% and 27% of the b-type ADUs are larger than 1460 bytes,so they require two or more segments to be transported from the 
onne
tion a

eptor to the
onne
tion initiator. Only 8% to 12% of the b-type ADUs 
arried 10,000 bytes or more. Wealso note that for ADU sizes below 250 bytes, the plot shows less similarity among distributionsof the same type. However, the logarithmi
 s
ale on the x-axis 
an be misleading. The largeseparation between the 
urves 
orresponds to only a few tens of bytes, and this has little impa
ton TCP performan
e. ADUs as small as 250 bytes 
an always be transported in a single (small)segment.Figure 3.17 shows the tails of the A and B distributions using 
omplementary 
umulativedistribution fun
tions. It shows that even a-type ADUs 
an be quite large, and that thedistributions are 
onsistent with heavy-tailness (i.e., exhibits linear de
ay in the log-log CCDF).For this reason, Pareto or Lognormal models 
ould provide a good foundation for analyti
almodeling of the distributions17. Interestingly, when we 
ompare A and B distributions for thesame tra
e, we �nd that B distributions are only slightly heavier than A distributions, espe
iallyfor Abilene-I and Leipzig-II. This implies that there are proto
ols in whi
h the initiator sendslarge ADUs to the a

eptor. For example, web browsers are often used to upload �les andemail atta
hments for web-based email a

ounts. It is also interesting to note that Abilene-I's A distribution is heavier than UNC's and Leipzig-II's B distributions, and that UNC's B17The tail of a Pareto distribution is always linear in a CCDF, and the tail of a Lognormal distribution 
anbe linear for an arbitrary number of orders of magnitude.87
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antly heavier than Leipzig-II's B distribution. We believe this re
e
ts thetype of network measured and/or the population of users. Transferring large ADUs is morefeasible in higher 
apa
ity networks, and this fosters the use of more data-intensive appli
ationsand more data-intensive uses of appli
ations. Abilene is a well-provisioned ba
kbone networkthat 
arries traÆ
 between well-
onne
ted Ameri
an universities, so it seems more likely toexhibit 
onne
tions with larger ADUs.The small probabilities of �nding large ADUs shown in Figures 3.16 and 3.17 
an give thefalse impression that only small ADUs are important. Figure 3.18 
orre
ts this view by plottingthe probability that a byte is 
arried in an ADU of a given size. The �gure shows that themajority of the bytes in the network were 
arried in large ADUs. For example, the probabilitythat a byte was 
arried in an ADU of 100,000 bytes or more was as high as 0.9 for Abilene-I.This is in stark 
ontrast to the 
orresponding Abilene-I distribution in Figure 3.16, where theprobability of an ADU of 100,000 bytes or more is as low as 0.01 for the three tra
es.The three networks show remarkably di�erent distributions in Figure 3.18. This is in partdue to the impa
t of sampling on this type of analysis, whi
h is rather sensitive to the numberof samples in the tail of the distribution. Adding a single very large sample 
an shift the entiredistribution downward, sin
e the probability of �nding a byte in the rest of the ADU sizesde
reases signi�
antly. However, we 
an still make interesting observations about the bodies of88
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Figure 3.21: Tails of the E distributions forAbilene-I, Leipzig-II and UNC 1 PM.these distributions based on their shapes (whi
h are not a�e
ted by sampling artifa
ts). Thedistributions for UNC and Leipzig-II show two striking 
rossover points, the �rst one around10 KB and the se
ond one around 10 MB. The 
urves before the �rst 
rossover point show thatthe ADUs 
arrying 20% of the a-type bytes tended to be mu
h smaller than those 
arrying20% of the b-type bytes. The 
urves between the two 
rossover points show the opposite forlarger ADUs. Here 50% of the a-type bytes are 
arried in ADUs that tended to be mu
hlarger than those ADUs 
arrying b-type bytes. The situation reverses again after the se
ond
rossover point. This shows that the A distributions are strongly bimodal: obje
ts are eithermu
h smaller or mu
h larger than the average b-type ADU. The same phenomenon is found inthe Abilene-I distributions between 10 KB and 1 MB, but the di�eren
e in probability is mu
hsmaller here (and 
ould be explained by tail sampling artifa
ts). In addition, there is a third
rossover point in the Abilene-I distributions, whi
h de�nes a new region between 15 and 250MB.The distribution of the number of epo
hs E in ea
h set of 
onne
tion ve
tors is shownin Figure 3.19. Between 58% and 66% of the 
onne
tion ve
tors have a single epo
h. Thisin
ludes a signi�
ant number of 
onne
tions with a single half-epo
h that 
ome from FTP-DATA 
onne
tions. Only 5% of the 
onne
tions have more than 10 epo
hs. This does notmean that 
onne
tions with a large number of epo
hs are unimportant. As Figure 3.20 shows,
89
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Figure 3.22: Average size aj + bj of theepo
hs in ea
h 
onne
tion ve
tor as a fun
-tion of the number of epo
hs, for UNC 1PM, Abilene-I and Leipzig-II
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Figure 3.23: Average of the median size ofthe ADUs in ea
h 
onne
tion ve
tor as afun
tion of the number of epo
hs, for UNC1 PM.
onne
tions with a large number of epo
hs are responsible for a large fra
tion of the bytes. Forexample, 
onne
tions with 10 epo
hs or more, whi
h represent 3% of the 
onne
tions, 
arriedbetween 30% and 50% of the total bytes, depending on the tra
e.Figure 3.20 shows that UNC's E distribution is substantially heavier than the ones for theother two tra
es when probability is 
omputed over the total number of bytes. This suggeststhat the type of traÆ
 in the UNC tra
e in
ludes appli
ations that make more use of multi-epo
h 
onne
tions. This also provides eviden
e that 
onne
tions with moderate numbers ofepo
hs 
an �t within the shorter duration (1 hour) of this tra
e. Otherwise, the Abilene-Itra
e (2 hours long) and the Leipzig-II tra
es(2 hours and 45 minutes long) would show heavierbodies. On the 
ontrary, the tails of the E distributions shown in Figure 3.21 are signi�
antlyheavier for Abilene-I and Leipzig-II than for UNC. This perhaps suggests that 1-hour tra
es aretoo short to observe 
onne
tions with thousands of epo
hs. The sharp 
hange in the slope ofthe tail of UNC's E distribution 
ould be explained by a 
ommon appli
ation that has a �xedlimit on the number of epo
hs (perhaps 110). However, we know of no su
h appli
ation.One interesting modeling question is whether there is any dependen
y between the size ofthe ADU in one epo
h and the number of epo
hs in the 
onne
tion. If these are independent,it would be straightforward to generate syntheti
 
onne
tion ve
tors simply by �rst samplinga number of epo
hs E and then assigning ADU sizes by sampling from A and B. Figure 3.2290
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Figure 3.24: Average of the median sizeof the ADUs in ea
h 
onne
tion ve
tor asa fun
tion of the number of epo
hs, forLeipzig-II.
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Figure 3.25: Average of the median sizeof the ADUs in ea
h 
onne
tion ve
tor asa fun
tion of the number of epo
hs forAbilene-I.shows that this independen
e does not exist. The average size of an epo
h (i.e., aj+bj) in
reasesvery qui
kly for 
onne
tions up to 30 epo
hs (noti
e the logarithmi
 y-axis). Conne
tions withmore epo
hs show high variability in the average size of their epo
hs. UNC and Abilene-I havequite similar averages that are mu
h larger than those found in Leipzig-II (but note the sharpin
rease in average sizes for 
onne
tions with 60 to 80 epo
hs).Figures 3.24-3.26 provide further eviden
e against the independen
e of ADU sizes and num-ber of epo
hs, and illustrate some remarkable 
omplexity and site dependen
e. The plotsillustrate how the number of epo
hs 
hanges the size of the typi
al ADU, where "typi
al" isde�ned as the median of the sizes of the ADUs in ea
h 
onne
tion ve
tor. Sin
e a large numberof 
onne
tion ve
tors have the same number of epo
hs, we summarized these data by plottingthe average of the median sizes vs. the number of epo
hs. Unlike the data in Figure 3.22, weanalyzed median ADU sizes for a-type and b-type ADUs separately.The two distributions for UNC tra
e in Figure 3.23 are 
ompletely di�erent (the mediansizes for b-type ADU are mu
h larger). There are, however, some epo
hs sizes between 25and 50 for whi
h a-type data units 
an be as large as b-type data units. Leipzig-II shows a
ompletely di�erent stru
ture in Figure 3.24, where a-type ADUs are shown to be as large asb-type ADUs, and both are larger than UNC's a-type ADUs, and smaller than UNC's b-typeADUs. Abilene-I's distribution of b-type ADUs is similar to that of UNC. On the 
ontrary,91
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Leipzig-II TBFigure 3.27: Tails of the TA and TB distri-butions for Abilene-I, Leipzig-II and UNC1 PM.Abilene-I's distribution of a-type ADUs shows extreme variability for 60 epo
hs or more, andthis phenomenon is 
ompletely absent in UNC's distribution. The 
on
lusion of these four plotsis 
lear: it is quite unrealisti
 to generate syntheti
 
onne
tion ve
tors using a simple modelthat assumes independen
e between ADU sizes and number of epo
hs.Figure 3.26 examines the distributions of quiet times between ADUs. Shown are the dis-tributions TA for taj and TB for tbj . Note that the quiet times between the last ADU and
onne
tion termination, i.e., tbj for the last epo
h, are not in
luded in TB. The plot showsthat, as the durations of the quiet times in
rease, the bodies of the TA distributions be
omein
reasingly lighter than those of the TB distributions. This is 
onsistent with our understand-ing of 
lient/server appli
ations. Inter-epo
h quiet times (TB) are usually user-driven, whileintra-epo
h quiet times (TA) are usually due to server pro
essing delays. Server pro
essingdelays should generally be far shorter than user think times. For UNC and Abilene-I, most ofthe probability mass of TA is below 100 millise
onds, while that of TB is spread more widely.This is a strong indi
ation that quiet times on the order of a few hundred millise
onds mostlyre
e
t sour
e-level quiet times. Observing TA being signi�
antly lighter than TB is explainedby the presen
e of user think times. Neither network delays nor the lo
ation of the monitor 
anprovide an alternative explanation of the di�eren
e, sin
e both fa
tors have exa
tly the sameimpa
t on both distributions. The bodies Leipzig-II's TA and TB distributions are substan-tially heavier than the 
orresponding bodies of the other two tra
es. This 
ould be due in part92
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onne
tion termination.to network-level 
omponents of these distributions. Sin
e Leipzig is in Europe, 
lients in theLeipzig-I tra
e su�er far longer round-trip times to US servers than 
lients found in the UNCand Abilene-I tra
es.Unlike the bodies, the tails of the distributions shown in Figure 3.27 do not show the samedi�eren
e between Leipzig-II and the other tra
es. This is 
onsistent with the expe
tation thatthese longer quiet times are 
ompletely dominated by sour
e-level behavior, and not by theimpa
t of network lo
ation (i.e., Europe vs. U.S.A.). We observe that Abilene-I's and UNC'sTB are both substantially heavier than Leipzig-II's TB. Also, Leipzig-II's TA be
omes lighterthan Abilene-I's TA for quiet times above 11 se
onds. Interestingly, we also �nd a similar shapefor the two heaviest tails, Abilene-I's and UNC's TB, whi
h 
ame from tra
es of very di�erentdurations (2 hours vs. 1 hour). This provides strong eviden
e that tra
e boundaries are notintrodu
ing artifa
ts in our 
hara
terization of inter-ADU quiet times, despite the hard upperlimit that tra
e duration imposes on quiet time duration.Figure 3.28 shows the distribution of extra quiet times between the last ADU in a 
onne
tionand TCP's 
onne
tion termination. In the UNC and Abilene-I tra
es, 84% of the 
onne
tionshad extra quiet times below 1 se
ond. The extra quiet time is a
tually zero for 83% of the
ases, where the last segment of the last ADU had the FIN 
ag enabled. Leipzig-II showed aneven higher per
entage, 65%, of long quiet times after the last ADU. In all 
ases, we �nd large93
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Figure 3.30: Tails of the A and B distri-butions for the 
on
urrent 
onne
tions inAbilene-I, Leipzig-II and UNC 1 PM.jumps in the probability for some values (e.g., 7, 11 and 15 se
onds). Moreover, the tails aresurprisingly long. Sin
e most 
onne
tions transfer small amounts of data, this high frequen
yof extra quiet times has an important impa
t on the lifetimes of TCP 
onne
tions observedfrom real links, and play an important role in realisti
 traÆ
 generation.Con
urrent Conne
tionsCon
urrent 
onne
tions exhibit substantially di�erent distributions. Figure 3.16 showeddistributions of a-type ADU sizes with bodies that were 
learly lighter than those of b-typeADU sizes. In 
ontrast, Figure 3.29 shows that 
on
urrent 
onne
tions made use of largera-type ADUs, and that the shapes of A and B are not 
onsistent a
ross sites. Abilene-I doesnot show any signi�
ant di�eren
e between A and B, while Leipzig-II and UNC distributionsdo show a heavier B. The tails of these distributions shown in Figure 3.30 are as heavy as thosefor sequential 
onne
tions, with the same three distributions (Abilene-I's A and B and UNC'sB) having mu
h longer tails that the other three. This phenomenon is far more striking for
on
urrent 
onne
tions.The distributions of quiet time durations shown in Figure 3.31 reveal that 
on
urrent 
on-ne
tions do not exhibit the 
lear separation between TA and TB that was observed for thesequential 
onne
tions in Figure 3.26. This is 
onsistent with the motivations for using 
on-94
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onne
tions inAbilene-I, Leipzig-II and UNC 1 PM.
urrent data ex
hanges given in se
tion 3.2. Conne
tions that use 
on
urren
y to improvethroughput by keeping the pipeline full do so to redu
e the impa
t of user delays and 
lientpro
essing, thereby making TB lighter. Conne
tions used by appli
ations that are naturally
on
urrent should not exhibit any systemati
 di�eren
e between TA and TB distributions. Notethat the minimum quiet time was 500 millise
onds, whi
h was the duration of our thresholdseparating ADUs in 
on
urrent 
onne
tions.The TA distribution for 
on
urrent 
onne
tions is signi�
antly heavier for UNC. This sug-gests the presen
e of a 
on
urrent appli
ation at UNC that is rather asymmetri
 and that isnot so 
ommon in Abilene-I and Leipzig-II. The tails of the TA and TB distributions for 
on-
urrent 
onne
tions shown in Figure 3.32 exhibit similar shapes and lengths to those found forsequential 
onne
tions.3.5.2 Time-of-Day Variability and Workload Dire
tionalityThe previous analysis illustrated the variability of the a-b-t distributions when several sitesare 
ompared. It also pointed out a number of features that are 
onsistent with the 
ommu-ni
ation patterns that motivate our models. TCP workloads at the same site 
an also exhibitsigni�
ant di�eren
es, as the set of dominant appli
ations 
hanges throughout the day. Forexample, we expe
t to �nd substantial traÆ
 from appli
ations that are used for study and95



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Size of Data Unit in Bytes

UNC Initiated 1 AM
UNC Initiated 1 PM

UNC Initiated 7:30 PM
Inet Initiated 1 AM
Inet Initiated 1 PM

Inet Initiated 7:30 PM

Figure 3.33: Bodies of the A distributionsfor UNC 1 AM, UNC 1 PM and UNC 7:30PM.
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Figure 3.34: Bodies of the B distributionsfor UNC 1 AM, UNC 1 PM and UNC 7:30PM.work a
tivities (e.g., e-business, resear
h digital libraries) from 8 AM to 5 PM in the a
ademi
environment. In 
ontrast, our guess is that traÆ
 from gaming and other leisure time appli
a-tions should be more 
ommon after 5 PM, mostly 
oming from the dorms where students live.This 
hange in the mix of appli
ations should have an impa
t on the sour
e-level properties ofthe traÆ
.Another important dimension of traÆ
 variability that was not 
onsidered in the previousse
tion was the fa
t that traÆ
 may be asymmetri
. For example, traÆ
 
reated by UNC 
lientsis representative of the network a
tivity of a large population of users (30,000) that 
an a

essany kind of servi
e on the Internet. On the 
ontrary, traÆ
 
reated by 
lients from outsideUNC is representative of the type of servi
es that an a
ademi
 institution o�ers to the restof the Internet. This di
hotomy should have an impa
t on the sour
e-level properties of thetraÆ
, as traÆ
 from UNC's 
onne
tion initiators is expe
ted to be driven by a rather di�erentmix of appli
ations than that of UNC's 
onne
tion a

eptors.Figure 3.33 provides a �rst illustration of the impa
t of these two kinds of variability onsour
e-level properties. The plot shows A distributions for sequential 
onne
tions observed atUNC during three di�erent intervals (1 to 2 AM, 1 to 2 PM, and 7:30 to 8:30 PM). The plotsseparate data from 
onne
tions initiated by UNC 
lients (labeled \UNC Initiated") and datafrom 
onne
tions initiated by 
lients outside UNC (labeled \Inet Initiated"). The signi�
ant96
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e between A distributions for UNC initiators is in sharp 
ontrast with the quite similarA distributions for UNC a

eptors. This shows that time-of-day variation is substantial for
onne
tions initiated at UNC, but not for 
onne
tions initiated outside UNC. This is 
onsistentwith the observation that UNC servi
es, su
h as the large software repository ibiblio.org,are available 24 hours a day, and they serve 
lients from di�erent parts of the world throughoutthe entire day. On the 
ontrary, the a
tivities of UNC 
lients are a fun
tion of 
ampus a
tivityand its evolution along a diurnal 
y
le. The distributions of b-type ADU sizes in Figure 3.34also re
e
t this di
hotomy. The B distributions on UNC initiated 
onne
tions for the 1 AMand 1 PM tra
es form an envelope around the other distributions, while the three distributionsfor non-UNC initiators are remarkably similar.Figure 3.35 serves to illustrate the impa
t of monitor lo
ation on the measurement of quiettimes. UNC tra
es were 
olle
ted on the border link between UNC and the rest of the Internet.This means that the monitoring o

urred very 
lose, in terms of delay, to UNC 
lients and UNCservers. Going ba
k to the diagram in Figure 3.10, this means that 
onne
tions initiated fromUNC are seen from the �rst monitoring point (very 
lose to the 
lient), while those initiatedfrom outside UNC are seen from the se
ond monitoring point (very far from the 
lient). As a
onsequen
e, TB distributions from UNC 
lients, whi
h measure the time between the end ofa response bj and the beginning of a new request aj+1, are observed mu
h 
loser to the 
lients,and are 
hara
terized very a

urately. TB distributions from non-UNC 
lients are measured97
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h further from the 
lient, so they tend to overestimate true quiet times. As dis
ussed before,this type of ina

ura
y is a fun
tion of round trip time. This is 
learly shown in Figure 3.35,where TB distributions from UNC initiators are mu
h lighter than those for non-UNC initiatorsfor quiet times below 1 se
ond. As quiet times get larger and larger, the ina

ura
y due tothe pla
ement of the monitoring point be
omes less and less signi�
ant. The 
rossing pointsof the distributions between 500 millise
onds and 1 se
ond suggest that the 
hara
teristi
s ofappli
ations and user behavior start to dominate measured quiet times above a few hundredmillise
onds.The same observations regarding the impa
t of the monitoring point also holds for the TAdistributions in Figures 3.37 and 3.38. Here the e�e
t of the monitoring point is reversed: taj isobserved far from the 
lient for UNC initiated 
onne
tions, and 
lose to the 
lient for non-UNCinitiated 
onne
tions).Time-of-day e�e
ts are less 
lear in Figure 3.35. If we look at quiet times above 1 se
ond(the relevant ones), we 
an see that the distributions for 1 PM and 7:30 PM are quite similar forboth dire
tions, while those for 1 AM are lighter and not 
onsistent with ea
h other (espe
iallyfor UNC a

eptors). This is also true for the tails of these distributions shown in Figure 3.36for quiet times below 500 se
onds. The tails of the TA distributions in Figure 3.38 do not showany 
onsistent pattern (i.e., no grouping based on time-of-day or dire
tionality). They are also98



somewhat lighter than the TB distributions.3.6 SummaryThis 
hapter presented our method for des
ribing sour
e-level behavior in an abstra
t man-ner using the a-b-t model . The basi
 observation behind this model is that the job of a TCP
onne
tion is to transfer one or more appli
ation data units (ADUs) between two network end-points. TCP is sensitive to the sizes of these ADUs, whi
h determine the number of segmentsrequired to transfer them, but it is insensitive to the a
tual semanti
s of ea
h ADU. Conse-quently, we proposed to des
ribe the sour
e-level workload of TCP 
onne
tions in terms ofADUs, 
hara
terizing their number, order, and sizes. Additionally, we also observed that appli-
ations may remain ina
tive during long periods of time (e.g., during user think times), whi
hoften results in TCP 
onne
tions that last far longer than required to transfer their ADUs.This motivated us to also in
orporate quiet times into our generi
 des
riptions of sour
e-levelbehavior. We formulated these ideas into the a-b-t model, whi
h des
ribes sour
e-level behaviorin abstra
t terms 
ommon to all appli
ations. The model distinguishes a-type ADUs, sent fromthe 
onne
tion initiator to the 
onne
tion a

eptor, and b-type ADUs, sent in the oppositedire
tion the 
onne
tion. It also distinguishes between quiet times due to ina
tivity on theinitiator endpoint and due to ina
tivity on the a

eptor endpoint.Our analysis of TCP 
onne
tions observed on real Internet links revealed two types ofsour
e-level behavior, whi
h motivated us to develop two di�erent versions of our a-b-t model.Most TCP 
onne
tions ex
hange ADUs in a sequential, alternating manner, where a-type ADUsusually play the role of request from 
lient and b-type ADUs usually play the role of responsesfrom servers. We des
ribe this �rst type of sour
e-level behavior using the sequential versionof our a-b-t model, whi
h 
onsists of a sequen
e of epo
hs, where ea
h epo
h 
aptures oneex
hange of ADUs (i.e., one a-type ADU and one b-type ADU). The rest of the TCP 
onne
-tions exhibit data ex
hange 
on
urren
y , where their endpoints send at least one pair of ADUssimultaneously. We des
ribe this se
ond type of sour
e-level behavior using the 
on
urrent ver-99



sion of our a-b-t model, where the ADUs and the quiet times from ea
h endpoint are des
ribedindependently. The examples from real appli
ations examined in this 
hapter demonstratedthe ability of the a-b-t model to provide a detailed des
ription of sour
e-level behavior for bothsequential and 
on
urrent data-ex
hanges. This means that our approa
h is able to 
hara
terizethe sour
e-level behavior of entire traÆ
 mixes without any need to understand the spe
i�
semanti
s of ea
h individual appli
ation present in the mix.A fundamental strength of abstra
t sour
e-level modeling is the possibility of a
quiring datafrom pa
ket header tra
es in an eÆ
ient manner. This is 
riti
al to make the approa
h widelyappli
able. Pa
ket header tra
es do not 
ontain any appli
ation-level payload, so they are easyto anonymize simply by repla
ing IP addresses. As a 
onsequen
e, many organizations havemade pa
ket header tra
es of their Internet links publi
 [nlab℄. We proposed a data analysisalgorithm that 
an transform the set of segment headers observed for ea
h 
onne
tion in a tra
einto an a-b-t 
onne
tion ve
tor. The 
ost of this algorithm is O(sW ), where s is the numberof segments and W the maximum window size. The algorithm relies on the 
on
ept of logi
aldata order (i.e., the order of data as understood by the appli
ation layer) to robustly handlesegment reordering and retransmission. This approa
h enables us to measure the real size ofADUs at the appli
ation level, to distinguish between sour
e-level quiet times and quiet timesdue to losses, and to identify data ex
hange 
on
urren
y without false positives. We validatedthis algorithm using syntheti
 appli
ations, studying the impa
t of the sizes of so
ket reads andwrites, delays between so
ket operations and pa
ket loss. The results demonstrated that ourdata a
quisition algorithm is very a

urate. Our validation also studied the a

ura
y of ourdata a
quisition when our basi
 algorithm is extended with a quiet time threshold to separate
onse
utive ADUs 
owing in the same dire
tion. Even in this 
ase, we only un
overed minorina

ura
ies in the measured inter-ADU quiet times when arbitrary delays between so
ket readsare used and when 
onne
tions su�ered from pa
ket loss.We 
on
luded the 
hapter with a statisti
al analysis of the a-b-t 
onne
tion ve
tors in �vepa
ket header tra
es. Three of these tra
es 
ame from our own data 
olle
tion e�ort at theUniversity of North Carolina at Chapel Hill, and the other two tra
es, Leipzig-II and Abilene-I,100




ame from NLANR's publi
 repository of pa
ket header tra
e. Before we presented the analysis,we pointed out the need to �lter out the following two types TCP 
onne
tions:� Conne
tions for whi
h no observed segment 
arried appli
ation data, and therefore hadno ADUs. They 
orresponded to failed attempts to establish a TCP 
onne
tion (e.g., dueto 
losed ports), denial-of-servi
e atta
ks (e.g., SYN atta
ks), and port s
anning a
tivity.These 
onne
tions were very numerous, but they 
arried an insigni�
ant fra
tion of thetotal traÆ
 in ea
h tra
e. Properly 
hara
terizing these \ADU-less" 
onne
tions is outsidethe s
ope of this dissertation.� Conne
tions for whi
h segments are observed in only one dire
tion. We found a signi�
antnumber of unidire
tional 
onne
tions only in the 
ase of Abilene-I, sin
e this tra
e was
olle
ted traÆ
 in a ba
kbone network where asymmetri
 routing was 
ommon. Distin-guishing between sequential and 
on
urrent 
onne
tions require to observe both dire
tionsof a 
onne
tion, so we ignored unidire
tional 
onne
tions in our later analysis and traÆ
generation.In addition, our statisti
al analysis of the tra
es 
onsidered only fully-
aptured TCP 
onne
-tions, those for whi
h we observed both the segment performing 
onne
tion establishment and
onne
tion termination. We therefore ignored partially-
aptured 
onne
tions, whi
h 
ontainedonly partial information about sour
e-level behavior. Our results 
onsidered sequential and
on
urrent 
onne
tions separately. We 
an highlight the following observations from theseresults:� Every tra
e showed a small fra
tion of 
on
urrent 
onne
tions, at most 3.6%, but theya

ount for a far more substantial fra
tion of the total bytes, between 18% and 32%. Thisis 
onsistent with our observation that 
on
urren
y 
an in
rease throughput, so it is oftenimplemented in bulk appli
ations that transfer large amounts of data.� Regarding the bodies of distributions of ADU sizes, sequential 
onne
tions showed asubstantial di�eren
e between a-type and b-type ADUs. The sizes of 90% of the a-type101



ADUs were at most 1,000 bytes, while the sizes of 90% of the b-type ADUs were atmost 10,000 bytes. The observed di�eren
es a
ross sites paled in 
omparison to thisphenomenon. On the 
ontrary, the tails of the distributions appeared similar for a-type and b-type ADUs, being 
onsistent with heavy-tailness in both 
ases. Con
urrent
onne
tions did not show a systemati
 di�eren
e between a-type and b-type ADUs, buttheir size distributions varied widely for the three sites and also exhibited heavy-tailness.Another interesting observation is that between 80% and 90% of the bytes were 
arriedin ADUs whose size was above 10,000 bytes.� Regarding the distribution of the number of epo
hs, we found a large fra
tion of 
onne
-tions, between 57% and 65%, with only one epo
h. However, these 
onne
tions a

ountedfor a far smaller fra
tion of the total bytes, between 22% and 38%. Most of the remaining
onne
tions had a moderate number of epo
hs, between 2 and 10. Conne
tions with tensor hundreds of epo
hs represented only 5% of the 
onne
tions, but they 
arried 30% to50% of the bytes.� Our joint analysis of ADU size and number of epo
h revealed a 
omplex inter-dependen
y.The average amount of data in an epo
h and the median size of ADUs showed substantialvariability for di�erent values of the number of epo
hs in a 
onne
tion, without anyapparent pattern. In addition, the results of the joint analysis are very di�erent a
rosssites. It does not seem possible to develop a simple parametri
 model for these data.� Regarding the bodies of the distributions of quiet times, sequential 
onne
tions showeda larger fra
tion of durations above 1 se
ond for quiet times on the 
lient side, betweena b-type ADU and the a-type ADU that follows it. Quiet times on the server side, be-tween an a-type ADU and the following ADU, were less substantial but also signi�
ant.This motivated us to in
orporate server-side quiet times on our model. Both distribu-tions showed substantial tails. The di�eren
e between the two distributions of quiet timedurations appear less signi�
ant for 
on
urrent 
onne
tions.� A signi�
ant per
entage of 
onne
tions, between 65% and 83%, showed a quiet time be-tween the last ADU and TCP's 
onne
tion termination with a duration above 1 se
ond.102



This quiet time often in
reased the duration of the 
onne
tion dramati
ally, sin
e 
on-ne
tions with little data 
ompleted their data transfer very qui
kly, but remained idlewaiting to be 
losed. This �nding justi�ed the addition of a �nal quiet time duration toour a-b-t model.� Our 
omparison of the distributions from the three UNC tra
es, whi
h were 
olle
ted atthree di�erent times of the day, revealed 
lear di�eren
es in the data. These di�eren
esare however less dramati
 than those observed when tra
es from three di�erent sites are
ompared.

103



CHAPTER 4Network-Level Parameters and Metri
sIf you are distressed by anything external, the pain is not due to the thing itself,but to your estimate of it; and this you have the power to revoke at any moment.| Mar
us Aurelius (121{180)Reality 
ontinues to ruin my life.| Bill Watterson (1958{), Calvin and HobbesThe workload of TCP 
onne
tions represents the demands of appli
ations for sending andre
eiving data in a reliable, ordered, and 
ongestion-responsive manner. How well TCP 
ansatisfy these demands depends on the 
onditions of the network path between the two endpointsof ea
h TCP 
onne
tion, and the way TCP rea
ts to these 
onditions. An obvious exampleof a network 
ondition that a�e
ts TCP is 
ongestion that leads to segment loss. When adata segment is lost, TCP must retransmit it, and this implies some redu
tion in performan
e(e.g., throughput) as the same data segment (rather than a new one) has to be sent again. Inaddition, TCP 
onsiders loss as an indi
ation of network 
ongestion, and rea
ts by redu
ing itssending rate. Di�erent versions of TCP implement di�erent ways of adjusting this sending rate.This means that the 
hara
teristi
s of the set of segments in a TCP 
onne
tion are not just afun
tion of the sour
e-level behavior of the endpoints. This fa
t will have profound impli
ationsfor the validation of our approa
h to syntheti
 traÆ
 generation.Intuitively, demonstrating that syntheti
 traÆ
 is \realisti
" must be based on a 
omparisonof the statisti
al properties of real and syntheti
 traÆ
. If these properties are reasonably ap-proximated, we 
an argue with 
on�den
e that the traÆ
 generation method and its underlying



statisti
al model provide an adequate foundation for experimental networking resear
h. The
omparison 
an be performed at two levels. First, we 
an 
ompare sour
e-level properties usingthe a-b-t modeling approa
h (see for example se
tion 3.5). Se
ond, we 
an 
ompare network-level properties, i.e., properties of the a
tual segments that make up individual 
onne
tions inreal and generated traÆ
. The material in this 
hapter is 
on
erned with developing methodsfor making this latter 
omparison meaningful.Sin
e network 
onditions have an important impa
t on TCP 
onne
tions, 
omparing realand syntheti
 traÆ
 at the network-level is diÆ
ult if network 
onditions are not in
orporatedto some extent into the traÆ
 generation system. For example, if we generate traÆ
 that isintended to resemble that of some real link, and 
onne
tions on this link experien
e substantialloss rates, the 
hara
teristi
s of the syntheti
 traÆ
 would be rather di�erent if the syntheti
traÆ
 did not experien
e 
omparable loss rates. Otherwise, the syntheti
 traÆ
 would expe-rien
e higher transfer rates, shorter durations, et
. The �rst part of this 
hapter 
onsidersmethods for 
hara
terizing three important, and perhaps the dominant, network-level proper-ties of TCP 
onne
tions: round-trip times, re
eiver window sizes, and loss rates. These threeproperties will be in
orporated in our traÆ
 generation method as input parameters, and willmake syntheti
 traÆ
 more 
omparable to real traÆ
. Additionally, we also examine the prop-erties of a number of real tra
es to illustrate the wide range of network 
onditions in whi
hTCP operates, and how this range 
hanges from one network link to another.The se
ond part of the 
hapter 
onsiders the a
tual problem of 
omparing traÆ
 at thenetwork-level. The resear
h literature has identi�ed a number of statisti
al properties of traÆ
that 
an serve as metri
s for assessing the realism of syntheti
 traÆ
. We des
ribe theseproperties and 
onsider their appli
ation in the 
ontext of 
omparing traÆ
 tra
es. We alsoexamine a number of real tra
es in light of these metri
s. Our analysis reveals importantdi�eren
es between the tra
es, and un
overs some dependen
ies between network-level metri
sand types of sour
e-level behavior.
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4.1 Network-level Parameters4.1.1 Round-Trip TimeThe Round-Trip Time (RTT) between two network hosts is de�ned as the time required tosend a pa
ket from one host to another plus the time required to send a pa
ket in the reversedire
tion. These two times are often very similar, but may sometimes vary 
onsiderably (e.g.,in the presen
e of asymmetri
 routing). In general, round-trip times are not 
onstant, sin
equeuing delays, swit
hing fabri
 
ontention, route lookup times, et
., vary over the lifetime ofa 
onne
tion.Impa
t of Round-Trip TimeRound-trip times play a very important role in TCP 
onne
tions. As indi
ated in Chapter3, the ex
hange of a request ADU and its response ADU (i.e., an epo
h) in a TCP 
onne
tionrequires at least one round-trip time. This is independent of the amount of data ex
hanged. Inaddition, the speed at whi
h data 
an be delivered (known as throughput1), is also a fun
tionof the round-trip time of the TCP 
onne
tion.The minimum time between the sending of a data segment and the arrival of its 
orrespond-ing a
knowledgment is exa
tly one round-trip time. Without TCP's window me
hanism, TCPwould only be able to send one segment per round-trip time, sin
e it would have to wait forthe a
knowledgment before sending the next data segment. Therefore, peak throughput wouldbe given by the maximum segment size S divided by the round-trip time R. This would implythat the longer the round-trip time, the lower the throughput S=R of the 
onne
tion would be.In order to in
rease performan
e, a TCP endpoint 
an send a limited number of segments, awindow , to the other endpoint before re
eiving an a
knowledgment for the �rst segment. Thenumber of segments W in the window gives the peak throughput of a TCP 
onne
tion, W�SR .1More pre
isely, throughput is the rate of transfer taking into a

ount not only appli
ation data but also
ontrol headers added by TCP and lower network layers. A related 
on
ept, goodput, is the rate of transfer ofappli
ation data, i.e., TCP payload. This distin
tion is important, but in the dis
ussion above, throughput andgoodput are a�e
ted similarly by round-trip times, so we simply talk about throughput.106



This peak throughput 
an be lower if the path between the two endpoints has a 
apa
ity Cthat is lower than W�SR , so the peak throughput of a TCP 
onne
tion is given by min(W�SR ; C).This implies that if W is not large enough to �ll the available 
apa
ity C, R is the limitingfa
tor in the peak throughput of a TCP 
onne
tion.A new TCP 
onne
tion is not allowed to rea
h its peak throughput until it 
ompletes a\ramp-up" period known as slow start [Pos81℄. The throughput of TCP during slow-start isalso highly dependent on round-trip time. At the start of ea
h 
onne
tion, TCP does notmake use of the entire window to send data, but rather probes the 
apa
ity of the networkpath between the two endpoints by sending an exponentially in
reasing number of segmentsduring ea
h round-trip time. This normally means that TCP sends only 1 segment in the �rstround-trip time, 2 in the se
ond one, 4 in the third one, and so on, doubling the number ofsegments after ea
h round-trip time until this number rea
hes a maximum of W segments. Thethroughput of the slow-start phase is therefore a fun
tion of round-trip time and maximumsegment size, but it depends little on re
eiver window size and 
apa
ity. For example, an ADUthat �ts in 4 segments, requires 3 round-trip times to be transferred in the slow-start phase(one segment is sent in the �rst round-trip time, two in the se
ond one, and one more in the�nal one), so the throughput of the 
onne
tion is 4S3R . For 
ommon values of R and S, S = 1460bytes and R = 100 millise
onds, the throughput would be 156 Kbps. This same ADU sent laterin the 
onne
tion using a single window would a
hieve a mu
h higher throughput (e.g., the foursegments 
ould be sent ba
k to ba
k, so they would rea
h the destination after only one halfthe round-trip time, R2 , a
hieving a throughput of 8SR = 934 Kbps).Passive Estimation of Round-Trip TimesThe dependen
y between TCP throughput and round-trip time implies that the distributionof round-trip times of the TCP 
onne
tions found on a link has a substantial impa
t on the
hara
teristi
s of a tra
e. If we intend to 
ompare the throughputs of 
onne
tions in tra
esfrom real links with those in syntheti
 tra
es, traÆ
 generation must employ similar round-trip times. This requires us to be able to extra
t RTTs from a tra
e by analyzing pa
ket107



dynami
s. Extra
ting round-trip times from pa
ket tra
es has re
eived only limited attentionin the literature [JD02, AKSJ03℄. Nonetheless we 
an re�ne some of the existing ideas to obtainthe distribution of round-trip times of 
onne
tions in a tra
e in a manner that is useful for traÆ
generation.Before we des
ribe several methods for 
hara
terizing round-trip times, it is important topoint out that the round-trip time of a TCP 
onne
tion is not a �xed quantity. The timerequired for a segment to travel from one endpoint to another has several 
omponents. Trans-mission and propagation delays are more or less 
onstant for a given segment size, but queu-ing delays, medium a

ess 
ontention, and router and endpoint pro
essing, introdu
e variableamounts of extra delay. The TCP segments observed in our tra
es are exposed to these de-lays, whose variability is not always negligible, as our later measurement results illustrate. Insummary, the segments of a TCP 
onne
tion are exposed to a distribution of round-trip times,rather than to a �xed round-trip time.We 
an think about the segments of a TCP 
onne
tion as probes that sample the dynami
network 
onditions along their path, experien
ing variable delays. As shown in the previous
hapter, most TCP 
onne
tions 
arry a small amount of data, providing only a few samples ofthese underlying 
onditions. This makes it very diÆ
ult to fully 
hara
terize the distributionof round-trip times experien
ed by an individual 
onne
tion using only passive measurementmethods (i.e., only by looking at pa
ket headers). In addition to the low number of samplesper 
onne
tion, TCP's delayed a
knowledgment me
hanism adds extra delays to some samples.This introdu
es even more variability, this time unrelated to the path of the 
onne
tion. Aswe dis
uss below, the presen
e of delayed a
knowledgments makes statisti
s (su
h as the meanand standard deviation) 
omputed from RTT samples, grossly overestimate the true mean andstandard deviation of the underlying distribution of round-trip times. In our work, we favormore robust statisti
s, su
h as the median, or the minimum, whi
h provide a good way of
hara
terizing the non-variable 
omponent of a 
onne
tion's round-trip time. For simpli
ity,our traÆ
 generation will simulate the minimum round-trip time observed for ea
h 
onne
tion.
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a c k n o s2Figure 4.1: A set of TCP segments illustrating RTT estimation from 
onne
tion establish-ment.The SYN EstimatorThe simplest way of estimating the round-trip time of a 
onne
tion from its segment headeris to examine the segments sent by the initiator endpoint during 
onne
tion establishment.The use of this SYN estimator is illustrated in Figure 4.1. The initial SYN segment sentfrom the initiator to the a

eptor is supposed to be immediately a
knowledged by a SYN-ACK segment sent in the opposite dire
tion. The initiator endpoint would then respond to theSYN-ACK segment2 with an ACK segment. The initiator may or may not piggy-ba
k dataon this segment, but this does not a�e
t RTT estimation signi�
antly. The time between thearrival of the SYN segment and the arrival of the ACK segment is the round-trip time R of the
onne
tion (more pre
isely, a sample of the round-trip time). Measuring R using the departuretimes of the SYN and the ACK segments from the initiator endpoint gives approximately thesame result as measuring R using the arrivals of these segments at either the monitoring pointor the 
onne
tion a

eptor. In general, the SYN estimator is a good indi
ator of the minimumround-trip time, i.e., total transmission and propagation delay. This is be
ause TCP endpointsrespond immediately3 to 
onne
tion establishment segments, and also be
ause the small pa
ketsused by the SYN estimator are less likely to en
ounter queuing delays that the larger ones foundlater in the 
onne
tion. The SYN estimator has been a popular means of estimated round-trip2For simpli
ity, our illustrations use a
knowledgment numbers that refer to the 
umulative sequen
e numbera

epted by the endpoint, whi
h is one unit below the a
tual a
knowledgment number stored in the TCP header[Pos81℄.3Endpoints are not required to behave in this manner by any RFC, but it makes little sense to delay the a
-knowledging of SYN segments. On the 
ontrary, delaying the a
knowledging of data segments gives the endpointsa 
han
e to re
eive a se
ond data segment and a
knowledge both data segments using a single a
knowledgment.109
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Figure 4.2: Two sets of TCP segments illustrating RTT estimation ambiguities in thepresen
e of loss (left) and early retransmission (right) in 
onne
tion establishment.times [AKSJ03, CCG+04℄.The SYN estimator has a number of short
omings. First, the estimator provides a singlesample of the round-trip time, whi
h may be a poor representative of the average round-triptime of the 
onne
tion. Se
ond, partially-
aptured 
onne
tions in a tra
e may not in
lude
onne
tion establishment segments, so the SYN estimator 
annot be used to determine theirround-trip times. Third, the round-trip time of a 
onne
tion with a retransmission of the SYNsegment (or of the SYN-ACK segment), 
annot be estimated with 
on�den
e, sin
e the 
ouplingof the SYN and the ACK segments be
omes ambiguous. The problem is that the monitor maysee two instan
es of the SYN segment, and either one 
ould be 
oupled with the ACK for thepurpose of 
omputing the RTT. This diÆ
ulty is illustrated in Figure 4.2. The left side of the�gure shows an example of 
onne
tion establishment in whi
h the �rst SYN segment is lost. Inthis 
ase R is the time between the arrival of the se
ond SYN segment and the arrival of theACK segment, and not the time between the �rst SYN segment and the arrival of the ACKsegment. However, it is not always 
orre
t to 
ouple the last retransmission of the SYN withthe ACK, and this is illustrated in the right side of the �gure. The diagram shows a 
onne
tionwith su
h a large R that the initiator endpoint times out before the re
eipt of the SYN-ACKand sends an early (i.e., unne
essary) retransmission of the SYN before the SYN-ACK rea
hesthe initiator. In this 
ase, R should be 
omputed as the di�eren
e between the arrival times
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Figure 4.3: A set of TCP segments illustrating RTT estimation using the sum of twoOSTTs.of the �rst SYN and the ACK, and not between the arrival times of the se
ond SYN and theACK. Note that standard TCP implementations time out and retransmit SYN segments after3 se
onds without re
eiving an a
knowledgment [APS99℄. The two 
ases result in exa
tly thesame sequen
e of segments observed at the monitoring point, so it is not generally possible toa

urately 
hoose the right SYN to 
ouple with the 
orresponding ACK segment by lookingonly at the sequen
e of segments [KP88a, Ste94℄.The early retransmission of SYN segments when the RTT is greater than 3 se
onds impliesthat the simple SYN estimator, at least in this basi
 form, 
annot be used to study the tail ofthe round-trip time distribution (this issue has been overlooked in the literature). In theory, one
ould disambiguate the 
ase of a timed-out SYN-ACK using the observation that SYN segmentsare retransmitted only after 3 se
onds without re
eiving the SYN-ACK [Bra89℄. However, ourempiri
al observations show that this heuristi
 is unreliable as the timing of arrivals is impre
ise,and not all TCP implementations seem to use the 3-se
ond timeout properly. Dete
tion ofan unexpe
ted retransmission of the SYN-ACK (or the ACK) 
an also be used to develop aheuristi
, but 
ases with multiple losses 
an be very 
ompli
ated to disambiguate.
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The OSTT EstimatorA se
ond te
hnique for estimating round-trip times is illustrated in Figure 4.3. The lo
ationof the monitor divides the path of a 
onne
tion into two sides, and we 
an estimate the One-Side Transit Time (OSTT) independently for ea
h side. The sum of the two OSTTs gives anestimate of the round-trip time of the 
onne
tion. The idea is that the arrival times of a datasegment and its a
knowledgment segment at the monitor provides an estimation of the OSTTfrom the measurement point to one of the endpoints. Round-trip time estimation using theOSTT method requires the 
olle
tion of one or more samples of the OSTT between the initiatorand the monitoring point, and one or more samples of the OSTT between the a

eptor andthe monitoring point. In Figure 4.3, a sample R1 of the OSTT for the right side of the path(i.e., OSTT between the a

eptor and the monitoring point) is given by the di�eren
e in thearrival times of segments 2 and 3. A sample R2 of the OSTT for the left side of the path (i.e.,between the initiator and the monitoring point) is given by the di�eren
e in the arrival times ofsegments 4 and 5. Thus, a sample of the full round-trip time R is given by R1 +R2. One wayof seeing this graphi
ally is to do the mental exer
ise of shifting the monitoring point towardthe initiator. As we do this, the R1 in
reases, while R2 de
reases. When the monitoring pointrea
hes the initiator endpoint, R1 is exa
tly the round-trip time of the 
onne
tion, and R2 iszero.The OSTT-based estimation of the RTT is independent of the lo
ation of the monitoringpoint. For example, the arrival of segments at the se
ond monitoring point in Figure 4.3 providesa sample R01 + R02 whi
h is equal to R1 + R2. This is a substantial improvement over existingmethods, sin
e it implies that we 
an perform RTT estimation for 
onne
tions observed at anypoint on their path. Previous work, su
h as Aikat et al. [AKSJ03℄, 
onstrained itself to tra
es
olle
ted very 
lose the edge of the path, so they 
ould assume that the delay between themonitoring point and lo
al networks was minimal. This results in an estimate in whi
h onlyR1 is 
omputed under the assumption that R2 is very small. The use of the sum of the OSTTsis more 
exible, sin
e it makes it possible to extra
t RTTs from any tra
e, and not just edgetra
es. This allowed us to analyze a ba
kbone tra
e like Abilene-I, making our traÆ
 analysis112
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Figure 4.4: A set of TCP segments illustrating the impa
t of delayed a
knowledgments onOSTTs.and generation te
hnique more widely appli
able.There are, however, a number of diÆ
ulties with OSTT-based round-trip time estimation.A �rst problem is that ea
h pair of segments provides a di�erent estimation of the OSTT (due todi�eren
es in queuing delay and other sour
es of delay variability), so we have to de
ide how to
ombine the OSTT samples from one side of the 
onne
tion with those from the other side. Inother words, ea
h 
onne
tion provides a set of OSTT samples for one side, fR11; R12; : : : ; R1ng,and another set of OSTT samples for the other side, fR21; R22; : : : ; R2mg, where n � 0 andm � 0 are not ne
essarily equal. The question is then how to 
ombine these samples into asingle estimate of R, whi
h we will 
all R̂. If we assume low variability, we 
ould simply sumthe means of the two sets of estimates,R̂ = Pni=1R1in + Pmi=1R2im : (4.1)However, as we dis
uss in the next se
tion, the sum of means 
an introdu
e substantial ina

u-ra
y due to TCP's delayed a
knowledgment me
hanism.A se
ond problem is that the sum of OSTT samples requires at least one sequen
e num-ber/a
knowledgment number pair for ea
h side of the 
onne
tion. Otherwise, one of the setsof OSTT samples is empty, and we have no information about the delay on one side of the
onne
tion. This prevents us from using the sum of OSTTs estimator for 
onne
tions that senddata only in one dire
tion. 113



Finally, we must note that the time between the arrival of a data segment and its �rsta
knowledgment is not always a good estimator of the OSTT. This is mostly due to two 
auses:retransmission ambiguity and delayed a
knowledgments. Retransmissions may 
reate ambigu-ous 
ases in whi
h we 
annot mat
h the pair of data and ACK segments. This is the well-knownretransmission ambiguity problem, whi
h was �rst dis
ussed by Karn and Partridge [KP88b℄in the 
ontext of estimation of TCP's retransmission timeout. Whenever a data segment isretransmitted, it is not possible to de
ide whether to 
ompute the OSTT using the �rst or these
ond instan
e of the data segment. These data segments 
annot therefore be used to ob-tain a new OSTT sample. This retransmission ambiguity is similar to the SYN retransmissionproblem shown in Figure 4.2.Delayed a
knowledgments 
an add up to 500 millise
onds4 [Bra89℄ of extra delay in theOSTT estimates, whenever a segment is not a
knowledged immediately. Figure 4.4 illustratesthis problem. The right side OSTT is 200 millise
onds larger than it should be due to thedelayed sending of the a
knowledgment in segment 2. The distortion of OSTT samples 
ausedby delayed a
knowledgments is pervasive, sin
e the number of segments in a window is oftenan odd number, and TCP implementations are allowed to keep (at most) one una
knowledgedsegment. An odd number of segments in a window means that the last segment does nottrigger an immediate a
knowledgment, whi
h adds an extra delay to its 
orresponding sample.Furthermore, performan
e enhan
ement heuristi
s implemented in modern TCP sta
ks oftenadd PUSH 
ags to TCP segments 
arrying data in the middle of an ADU, and this 
ag for
esthe other endpoint to immediately send an a
knowledgment [Pos81℄. This 
reates even more
ases in whi
h the last segment of the window has to be a
knowledged separately using a delayeda
knowledgment. The empiri
al results presented below illustrate the impa
t of this problem.Validation of Round-Trip Time EstimatorsWe evaluated the round-trip time estimation te
hniques proposed above using syntheti
traÆ
 in a testbed where RTTs 
ould be 
ontrolled pre
isely. Figure 4.5 shows the results of4Typi
al values are between 100-200 millise
onds. 114
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 tra
e: no loss and disableddelayed a
knowledgments.a �rst experiment, in whi
h a uniform distribution of round-trip times between 10 and 500millise
onds was simulated using a modi�ed version of dummynet [Riz97℄. Ea
h 
onne
tionhad exa
tly the same round-trip time throughout its lifetime, so every one of its segments wasarti�
ially delayed by the same amount. During the experiment, a large number of single epo
h
onne
tions was 
reated. The sizes of a1 and b1 for ea
h 
onne
tion were randomly sampled froma uniform distribution with values between 10,000 and 50,000 bytes. We 
olle
ted a segmentheader tra
e of the traÆ
 and applied the round-trip time estimation te
hniques des
ribedabove. Figures 4.5 and 4.6 
ompare the results. As shown in Figure 4.5 the SYN estimator
an measure the distribution of round-trip times 
awlessly in this experiment. The inputdistribution of RTTs (marked with white squares) exa
tly mat
hes the distribution 
omputedusing the SYN estimator (marked with white triangles).Figure 4.5 also studies the a

ura
y of several OSTT-based estimators. As dis
ussed inthe previous se
tion, the analysis of the OSTTs in a TCP 
onne
tion results in two sets ofestimations, fR11; R12; : : : ; R1ng and fR21; R22; : : : ; R2mg, for the initiator-to-monitor side andfor the a

eptor-to-monitor side respe
tively. For ea
h 
onne
tion, the estimated round-triptime R̂ has to be derived from these 
olle
tions of numbers. The �gure shows the resultof 
omputing the distribution of round-trip times using four di�erent methods of derivingR̂. The �rst method is the sum-of-minima, where R̂ is the sum of the minimum value in

115



fR11; R12; : : : ; R1ng and the minimum value in fR21; R22; : : : ; R2mg. In the �gure, the sum-of-minima estimation of the distribution of round-trip times (marked with white 
ir
les) is exa
tlyon top of the input distribution, so this estimator is exa
t. The same is also true when the sumof medians is used. This shows that there is no signi�
ant variability between the minimumand the median of ea
h set of OSTTs, whi
h is expe
ted in our un
ongested experimentalenvironment.Figure 4.5 shows another two distributions derived from OSTT samples that are less a

urate
hara
terizations of the real RTT distribution in the testbed experiment. The distribution(marked with bla
k triangles) of round-trip times obtained using the sum of the mean of theOSTTs, i.e., Equation 4.1, is slightly heavier that the real distribution of round-trip times. Thisis due to the presen
e of a few OSTT samples that are above the real OSTT of the 
onne
tion,whi
h skew the mean but not the median or the minimum. The magnitude of these largersamples is strikingly illustrated by the 
urve 
orresponding to the sum of the maximum OSTTs(marked with ba
k 
ir
les). This 
urve is far heavier than the previous one, and 
ertainly a poorrepresentative of the original distribution of round-trip times. The use of the maximum makesthis last estimator fo
us on the largest OSTTs, whi
h are shown to be quite far from the truevalues of the OSTT. The exa
t 
ause of this ina

ura
y is the use of delayed a
knowledgmentsin TCP, whi
h was illustrated in Figure 4.4. Delayed a
knowledgments make some OSTTsamples in
lude extra delays due to the behavior of the TCP sta
k and not the path between theendpoints. In parti
ular, the distribution 
omputed using the sum-of-maxima is 200 millise
ondsheavier than the input distribution for most of its values. This is 
onsistent with the defaultvalue of FreeBSD's delayed a
knowledgment me
hanism, whi
h is 100 millise
onds. Conne
tionswhere both the initiator-to-monitor and theR1 a

eptor-to-monitor sets of OSTTs have valuesfrom delayed a
knowledgments result in values of R̂ equal to R+ 100 + 100 millise
onds.To 
on�rm this hypothesis, we 
ondu
ted a se
ond experiment, with exa
tly the samesetup, although this time TCP's delayed a
knowledgment me
hanism was 
ompletely disabled.The results of estimating the distribution of round-trip times in this se
ond experiment areshown in Figure 4.6. Every estimation method is a

urate in this 
ase, whi
h proves our116
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 tra
e: loss rates uniformlydistributed between 0% and 10%.hypothesis about the impa
t of delayed a
knowledgments. The 
on
lusion is that the �rst threeestimators are preferable, sin
e they are robust to the ina

ura
y that delayed a
knowledgmentsintrodu
e when measuring round-trip times from segment header tra
es. Interestingly, theimpa
t of delayed a
knowledgment on passive RTT estimation has been overlooked in theliterature [Ost, AKSJ03, JD02℄.The dis
ussion of the RTT estimation methods in the previous se
tion pointed out theneed to �lter out samples from retransmissions. The previous two experiments were run in anun
ongested testbed, where no losses were expe
ted. Sin
e loss is 
ommon in the real tra
esthat we study in this dissertation, we further validated these methods using experiments wheredummynet was used to introdu
e arti�
ial loss rates under our 
ontrol. Figure 4.7 
omparesthe six distributions obtained using the six RTT estimators in an experiment with a �xed lossrate of 1%. On
e again the �rst three estimators measure the distribution of physi
al round-trip times a

urately, while the sum-of-means and the sum-of-maxima overestimate the truedistribution. The overestimation is even more pronoun
ed in another experiment in whi
h lossrates were uniformly distributed between 0% and 10%. The estimated RTT distributions areshown in Figures 4.8 and 4.10. The �rst �gure uses the same range in the x-axis as Figure4.7, while the se
ond �gure uses a broader range in the x-axis, between 0 and 5 se
onds. The�rst three estimators are not a�e
ted by losses, but the RTT distribution 
omputed by thesum-of-means estimator is substantially heavier than the original. Similarly, the distribution117
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Figure 4.9: A set of TCP segments illustrating an invalid OSTT sample due to the inter-a
tion between loss and 
umulative a
knowledgments.
omputed by the sum-of-maxima is several times larger than the real distribution.The 
ause of the additional ina

ura
y in the sum-of-means estimator is the intera
tionbetween losses and TCP's 
umulative a
knowledgment me
hanism, whi
h prevent us from dis-ambiguating samples from retransmissions. This problem is illustrated in Figure 4.9. Segments1 and 2 with sequen
e numbers s1 and s2 respe
tively are sent from the initiator to the a

ep-tor, but segment 1 is lost before the monitor. Sin
e TCP's a
knowledgments are 
umulative,this means that the a

eptor endpoint 
annot a
knowledge segment 2 alone5. Some time later,after the initiator times out, another segment with sequen
e number s1 is sent from initiatorto a

eptor. Upon its arrival, the a

eptor 
an send a 
umulative a
knowledgment with se-quen
e number s2. Using the timestamps of segments 2 and 4, we 
ould 
ompute an OSTTRi. However, Ri is 
learly not a good representative of the OSTT between the monitor andthe a

eptor, and therefore this sample is in
orre
t. The true value of the OSTT would be thedi�eren
e between the timestamps of segments 3 and 4, whi
h is mu
h smaller than Ri. Inthis example, �ltering samples from retransmitted sequen
e numbers does not help, sin
e noretransmission was observed for s2. In general, it is important to either �lter out any sampleasso
iated with reordering (e.g., segment 3 whi
h has a lower sequen
e number than segment2), or use an estimator, su
h as the sum-of-medians, that is robust to the distortion 
reated bysamples like Ri. Otherwise, OSTTs 
an be substantially overestimated, as illustrated in Figure5Some implementations send an ACK whenever an out-of-order data segment is re
eived, like Segment 2 inthis 
ase, but this behavior is not mandated by Internet standards. RFC 2581 [APS99℄ only re
ommends it.118
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Sum-of-Maxima EstimatorFigure 4.11: Comparison of RTT estimatorsfor syntheti
 tra
es: �xed loss rate of 1%;real RTTs up to 4 se
onds.4.8.Figure 4.11 reports on another experiment in whi
h round-trip times were distributed be-tween 10 and 4,000 millise
onds, and the underlying loss rate was 1%. Unlike the previousexperiments, the SYN estimator results in a lighter distribution of round-trip times than theoriginal one. This is due to the SYN retransmission timeout, whi
h is set to 3 se
onds [Bra89℄.Conne
tions with a round-trip time above 3 se
onds always retransmit their SYN segment, andtherefore make their SYN estimator invalid. Therefore, these 
onne
tions provide no sampleswhen the SYN estimator is used, resulting in a distribution of RTTs limited to a maximum of3 se
onds. However, in these 
ases, the sum-of-minima and the sum-of-medians estimator wereagain able to estimate the distribution of round-trip times a

urately.Measurement ResultsFigure 4.12 shows the distributions of round-trip times 
omputed using the sum-of-minimaestimator for the �ve tra
es listed in Table 3.1. The �rst observation is that the distributionof round-trip times is signi�
antly variable a
ross sites and for di�erent times of the day at thesame site. While the majority of round-trip times are between 7 millise
onds and 1 se
ond forUNC and Leipzig, they are distributed in a far narrower range, between 20 millise
onds and400 millise
onds, for Abilene-I. This is probably due to the fa
t that the Abilene-I tra
e was119
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es.
olle
ted in the middle of a ba
kbone network that mostly 
arries traÆ
 between US universitiesand resear
h 
enters so inter
ontinental round-trip times are very un
ommon in this tra
e. Thisis also a lightly loaded network, so extra delays due to queuing are very un
ommon. Note alsothat the distributions for UNC be
ome lighter as we 
onsider busier times of the day. The 
ausefor this is an open question. The distribution for Leipzig-II does not exa
tly mat
h any of theones for UNC, but its body 
u
tuates within the envelope formed by the UNC distributions.Figure 4.13 shows the same distributions but the probability of ea
h round-trip time is
omputed for ea
h byte rather than for ea
h 
onne
tion. A probability of 0.5 in this plot meansthat 50% of the bytes were 
arried in 
onne
tions with a round-trip time of a given value orless. For example, for the UNC 1 AM tra
e, 50% of the bytes were 
arried in 
onne
tionsthat experien
ed round-trip times of 110 millise
onds or less. Previously (e.g., Figure 4.12) aprobability of 0.5 meant that 50% of the 
onne
tions experien
ed round-trip times of a givenvalue or less. In general, we observe that the smallest round-trip times are somewhat lesssigni�
ant in terms of bytes than they are in terms of 
onne
tions. Interestingly, Abilene-I doesnot di�er mu
h from the other distributions in this 
ase. Another interesting observation isthat a substantial number of bytes in the Leipzig-II tra
es were 
arried in 
onne
tions withround-trip times between 300 millise
onds and 3 se
onds, and this phenomenon is not observedfor the other distributions. This 
ould be explained by the lo
ation of this link in Europe, andthe fa
t that it may 
arry a signi�
ant amount of traÆ
 to distant US servers.120
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ompare the variability in the results when di�erent estimators areused for the same tra
e. In the UNC 1 PM tra
e and the Leipzig-II tra
e, the sum-of-mediansestimator results in a somewhat heavier distribution of round-trip times but maintains more orless the same shape of the distribution. Given that these estimators were shown to be robust tolosses and TCP artifa
ts in the previous se
tion, the di�eren
e between the sum-of-minima andthe sum-of-medians seems due to true round-trip time variability. While we are not implement-ing RTT variability within individual TCP 
onne
tions in our experiments, it seems possible toreprodu
e this variability during traÆ
 generation. This 
ould be a
hieved by 
ombining thedistributions from the sum-of-minima and the sum-of-medians to give 
onne
tions more vari-able round-trip times. For example, given a 
onne
tion with a sum-of-minima estimate of R̂minand sum-of-medians estimate of R̂median, let Æ = R̂median� R̂min. During traÆ
 generation, thesegments of this 
onne
tion 
ould be delayed by a random quantity between R̂median � Æ andR̂median + Æ, or some variation of this s
heme. Note that this basi
 method needs to be re�nedto eliminate segment reordering, whi
h would o

ur frequently with the des
ribed approa
h.4.1.2 Re
eiver Window SizeWhen a segment is re
eived by a TCP endpoint, its payload is stored in an operating systembu�er until the appli
ation uses a system 
all to re
eive the data. In order to avoid over
owing121



this bu�er, TCP endpoints use a �eld in the TCP header to tell ea
h other about the amountof free spa
e in this bu�er, and they never send more data than 
an possibly �t in this bu�er.This me
hanism, known as 
ow 
ontrol , imposes a limit on the maximum throughput of aTCP 
onne
tion. A sender 
an never send more data than the amount of free bu�er spa
e atthe re
eiver. We refer to this free spa
e as the re
eiver window size. The TCP header of ea
hsegment in
ludes the size of the re
eiver window on the sender endpoint at the time the segmentwas sent. This value is often 
alled the \advertised" window size, and de�ned as a \re
eiver-sidelimit on the amount of outstanding (i.e., una
knowledged) data" by RFC 2581 [APS99℄. Thesize of the advertised window shrinks as new data rea
h the endpoint (sin
e data are pla
ed inthe TCP bu�er), and grows when the appli
ation using the TCP 
onne
tion 
onsumes thesedata (whi
h are removed from the TCP bu�er).A TCP 
onne
tion with a maximum re
eiver window of W segments6, a maximum segmentsize of S bytes, and a round-trip time of R se
onds, 
an at most send data at W�SR bytes perse
ond. This peak throughput 
an be further 
onstrained by the 
apa
ity of the path C, sopeak throughput ismin(W�SR ; C). As we will show, 
onne
tions often use small re
eiver windowsizes that signi�
antly 
onstrain performan
e, i.e., W�SR << C, and this should be taken intoa

ount during traÆ
 generation.We 
an measure the distribution of re
eiver window sizes by examining segment headers.As pointed out in [CHC+04b℄, some TCP implementations (e.g., Mi
rosoft Windows) do notreport their maximum re
eiver window size in their �rst segment (i.e., the SYN or SYN-ACK)as one would expe
t, but do it in their �rst data segment. This is be
ause some implementationsallo
ate a small amount of bu�ering (e.g., 4 KB) to new TCP 
onne
tions, but in
rease thisamount after 
onne
tion establishment is su

essfully 
ompleted (e.g., in
reasing it to 32 KB).In our work, we 
ompute the maximum re
eiver window sizes as the maximum value of theadvertised window size observed in the segments of ea
h TCP 
onne
tion. This gives us twomaximum re
eiver window sizes per 
onne
tion, one for ea
h endpoint. There is no reason whythe two endpoints must use re
eiver windows of equal size.6The advertised re
eiver window size is given in bytes in the TCP header. We des
ribe it here and in se
tion4.1.1 in terms of segments for 
onvenien
e when 
onsidering the impa
t of round-trip times.122
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eiver window sizes with per-byte probabilities for the �ve tra
es.Figure 4.16 shows the distribution of maximum re
eiver window sizes in �ve tra
es. Ingeneral, window sizes are a multiple of the maximum segment size (usually 1,460 bytes), sowe observe numerous jumps in the 
umulative distribution fun
tion. Noti
e for example thejumps at 12 segments, 1; 460 � 12 = 17; 520 bytes (approximately 16 KB), and 44 segments,1; 460 � 44 = 64; 240 bytes (approximately 64 KB). The �eld in the TCP header that spe
i�esthe re
eiver window size is 16 bits long, so the maximum re
eiver window size is 65,535 bytes7.We 
an make two interesting observations from Figure 4.16. First, a signi�
ant fra
tion ofthe 
onne
tions used small re
eiver window sizes in all tra
es. For example, between 45% and65% of the 
onne
tions had window sizes below 20,000 bytes. Se
ond, we observe a surprisingdi�eren
e between the UNC distributions and those from Leipzig-II and Abilene-I. We see amu
h larger fra
tion of the largest windows at UNC, suggesting a di�erent distribution of end-point TCP implementations, or widespread tuning of the servers lo
ated on the UNC 
ampus.This is in sharp 
ontrast to the results for round-trip times, where Leipzig-II and UNC werealike and quite di�erent from Abilene-I.7Some implementations support the window s
aling option des
ribed in [JBB92℄, whi
h enables larger win-dows. These larger windows are spe
i�ed as the produ
t of the re
eiver window size en
oded in a 16-bit �eld inthe TCP header, and a multiplier en
oded in a TCP option (almost always 64 KB). We have not studied thisfeature in our work. The use of the window s
aling is negotiated by the endpoints using a TCP header option,and TCP options are often not in
luded in segment header tra
es, making the analysis diÆ
ult. It would howeverbe possible to study the maximum amount of una
knowledged data in ea
h 
onne
tion, whi
h would allow usto identify violations of the advertised window. For these 
ases, we 
ould estimate the s
aled window size bymultiplying the advertised window by 64 KB. 123



Figure 4.17 shows an alternative view of the distributions of maximum re
eiver windowsizes by 
omputing the probability that ea
h byte in the tra
es was 
arried in a 
onne
tionwith 
ertain maximum re
eiver window size. The plot shows that 
onne
tions with the largestwindow sizes 
arry many more bytes than those with small sizes. This is likely to be explained bytuning of the TCP endpoint parameters by administrators and server vendors in environmentswith large data transfers.4.1.3 Loss RateTCP rea
ts to loss by retransmitting segments, whi
h makes TCP a reliable transport pro-to
ol, and redu
ing its sending rate, a me
hanism known as 
ongestion 
ontrol . The redu
tionin sending rate is implemented using a TCP variable known as the 
ongestion window sizeG, whi
h further limits the maximum number of pa
kets that 
an be sent by one endpoint.Throughout the lifetime of a TCP 
onne
tion, TCP endpoints are only allowed to have a max-imum of min(G;W ) outstanding (una
knowledged) segments in the network. This limits peakthroughput to min(min(G;W )�SR ; C).The size of the 
ongestion window is redu
ed every time TCP dete
ts loss, so lossy 
on-ne
tions have lower throughput than lossless ones. Numerous papers have developed analyti
alexpressions that 
onsider the impa
t of loss on average throughput. These papers make use ofdi�erent analysis te
hniques and 
onsider di�erent models of TCP behavior and loss patterns.However, the simple relationship between loss and rate given in [MSM97℄ is enough to illustratethe basi
 impa
t of loss. In general, the average throughput of a TCP 
onne
tion is S�KRpp , whereS is the maximum segment size, K is a 
onstant equal to q32 , R is the round-trip time and pis the loss rate. Therefore, average throughput is inversely proportional to the square root ofthe loss rate p, and it de
reases very qui
kly as p in
reases. Note that the maximum windowsize is not part of this equation, but peak throughput is still limited by W (and by round-triptime), as mentioned above.We de�ne the loss rate of a TCP 
onne
tion as the number of lost segments divided by the124



total number of segments sent, l=s. Assuming segments have an equal probability of loss, theloss rate is equal to the probability of losing an individual segment. Measuring the exa
t lossrate experien
ed by a TCP 
onne
tion depends on our ability to 
ount all segments, in
ludingthose that may be lost before the monitoring point, and dete
ting all losses, whi
h may o

urbefore or after the monitoring point. The exa
t 
al
ulation of the loss rate of a 
onne
tion isa very diÆ
ult task. In our work, we make use of two heuristi
s that should provide a goodapproximation of a 
onne
tion's loss rate. We make no attempt to address the most diÆ
ultand ambiguous 
ases of loss dete
tion, whi
h our experien
e leads us to believe are un
ommon.Our measurement of loss rate from tra
es of segment headers relies on dete
ting retransmis-sions and making use of the same indi
ations of loss that TCP employs. For ea
h 
onne
tion,we 
ompute the total number of segments transmitted s as the total number of data segments inthe 
onne
tion. In addition, we 
ompute the total number of lost segments l using the numberof retransmitted data segments r, and the number of triple dupli
ate a
knowledgment eventsd. We need both numbers r and d, sin
e they provide 
omplementary information. Tripledupli
ates 
an tell us about losses that o

ur before the monitoring point, whi
h do not 
re-ate observable retransmissions. Retransmissions 
an tell us about losses re
overed using theretransmission timer, whi
h do not 
reate triple dupli
ates.Estimating the loss rate p of a TCP 
onne
tion simply as (r + d)=s tends to overestimateloss rate when the monitoring point is lo
ated after the point of loss. In the most 
ommonsituation, when the loss of a segment in one dire
tion happens before the monitoring point, thetra
e 
olle
ted at the monitoring point in
ludes no retransmission and sends three dupli
atea
knowledgments in the opposite dire
tion. These a
knowledgments share the same sequen
enumber, whi
h 
orresponds to the sequen
e number of the segment that pre
eded (a

ordingto TCP's logi
al data order) the lost segment. However, when the loss happens after themonitoring point, the tra
e in
ludes both a retransmission, in the dire
tion in whi
h the losso

urred, and a triple dupli
ate a
knowledgment event, in the opposite dire
tion. We 
antherefore 
ompute a better estimate of loss rate by ignoring the triple dupli
ate events whenevera 
orresponding retransmission is observed. Doing so means that triple dupli
ates are used to125
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tions of the TCP 
onne
tions.estimate loss before the monitoring point, while retransmissions are used to estimate loss afterthe monitoring point. Applying this idea, the estimate of loss rate that we use in our work istherefore (r+ d0)=s, where d0 in
ludes only triple dupli
ate events not asso
iated with observedretransmissions.Note also that our 
omputation of the loss rate 
onsiders only losses of data segments, andnot losses of pure a
knowledgments. Losses of a
knowledgments 
an also redu
e the size of the
ongestion window G, but measuring a
knowledgment loss rate is even harder given the 
umu-lative nature of the a
knowledgment numbers and the fa
t that endpoints may a
knowledgeevery data segment re
eived, or every other data segment. We are not overly 
on
erned by thissimpli�
ation. This is be
ause under the assumption that losses are 
aused by 
ongestion, purea
knowledgments are far less likely to be dropped given their mu
h smaller size.In order to study the a

ura
y of our estimation of loss rates, we 
ondu
t a number of
ontrolled experiments similar to those used to evaluate the di�erent round-trip time estimationte
hniques. Figure 4.18 shows the results of two laboratory experiments in whi
h an arti�
ialloss rate of 1% was imposed on 
onne
tions 
arrying a single epo
h with a1 = b1 = 10; 000; 000bytes. Transferring ADUs of this size requires a minimum of 6,850 data segments. Losseswere 
reated using dummynet , so ea
h 
onne
tion in the experiment had a drop probabilityequal to 0.01. The �gure illustrates several points about our loss rate 
omputation. We �rst126




ompare the measured loss rates for two s
enarios: one where a segment loss probability of 0.01was applied by dummynet only to one dire
tion of the 
onne
tions, and another one where itwas applied to both dire
tions. In Figure 4.18, the �rst s
enario is labeled \unidire
tional lossexperiment" and the se
ond is labeled \bidire
tional loss experiment". The mean value of thedata segment loss rate in the unidire
tional loss experiment (marked with white triangles) was1%, exa
tly the intended value. We also observe that 90% of the 
onne
tions experien
ed lossrates between 0.5% and 1.5%. The bidire
tional loss experiment (results marked with whitesquares) illustrates the dependen
y between the two dire
tions of a TCP 
onne
tion. Themean of the CDF is substantially higher for this experiment, and the distribution shows a �xedpositive o�set of 20%. This is be
ause losses of a
knowledgments in one dire
tion also triggeredretransmissions in the other, in
reasing the measured (data segment) loss rate. In other words,loss of a
knowledgments in
ated the estimated loss rates, sin
e data was not really lost.Our se
ond observation about Figure 4.18 is that the range of the two distributions is quitewide, showing substantial variability around the target loss rate of 1%. This is partly explainedby the random sampling in dummynet 's implementation of per-
ow loss rates. Dummynetdrops segments in an independent manner, by generating a random number between 0 and 1for ea
h segment, and only dropping a segment if its 
orresponding random number is between0 and 0.01. This means that even with large ADUs, the drop probability rate experien
ed bythe 
onne
tion in the testbed experiments was not exa
tly 0.01.In order to study the impa
t of this random sampling, we 
ondu
t a numeri
al simulation,and the result is illustrated using the third CDF in Figure 4.18. This distribution 
omes fromsimulating ea
h 
onne
tion by sampling a uniform distribution (with a range between 0 and 1)6,850 times (the number of data segments in 10 MB). Ea
h sample is meant to simulate onesegment that may or may not be lost. If the value of the sample is equal to or greater than0.01, the segment is not 
ounted as a loss. If the sampled value is less than 0.01, the segmentis 
ounted as a loss. In this 
ase, we 
ontinue to sample the uniform distribution until thevalue obtained is equal to or greater than 0.01. These extra samples are used to simulate thepossibility of losing retransmissions, whi
h 
an also be dropped by dummynet with the same127



probability. The result of this sampling pro
ess is two 
ounts:� the total number of segments s� in the simulated 
onne
tion, whi
h is the number of timesthat the uniform distribution was sampled, and� the total number of loss events l�, whi
h is the number of times that the samples fromthe uniform distribution were less than 0.01.The ratio l�=s� is the simulated loss rate p� for one 
onne
tion. We repeated this pro
ess 4,200times, whi
h was the number of 
onne
tions in the testbed experiments, and 
onstru
ted aCDF of the resulting loss rates whi
h is shown in Figure 4.18. The CDF exhibits substantialvariability around 1%. Therefore, sampling variability partially explains the variability observedin the loss rates that we measured from the testbed experiments. Note that the variability inour lab experiments and in the numeri
al simulation is tied to the size of the ADU (10 MB in aminimum of 6,850 segments). In
reasing this size would redu
e the variability of the measuredloss rates in proportion to the square root of the number of segments (a basi
 probability resultfor sample means). However, our illustration of the sampling variability using 10 MB ADUs isalready 
onservative, sin
e most TCP 
onne
tions 
arry far less data and therefore need fewersegments.The CDF from the numeri
al simulation provides us with a gold standard for our measure-ments, sin
e our loss rate estimates should re
e
t the a
tual drop rates that dummynet imposedto the 
onne
tions in the testbed. Still, further work is need to explain the remaining di�eren
e,and possibly re�ne our measurement te
hnique. In any 
ase, the experiments serve to 
on�rmthat our loss rate estimate is reasonably 
lose to the true loss.The distributions of loss rates in our 
olle
tion of real tra
es is shown in Figure 4.19. Be-tween 92.5% and 96.2% of the 
onne
tions did not experien
e any losses, while the remaining
onne
tions did experien
e quite signi�
ant loss rates. This is 
onsistent a
ross all measuredsites. The result is quite di�erent when the probability is 
omputed in terms of bytes ratherthan in terms of 
onne
tions, as shown in Figure 4.20. Most bytes were 
arried in 
onne
tions128
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es.that experien
e at least some loss. We 
an also observe that Abilene-I's 
onne
tions were sub-stantially less a�e
ted by loss than the 
onne
tions in the other tra
es, sin
e Abilene-I's CDFshows higher 
umulative probabilities. For example, the distribution for the Abilene-I tra
eshows that only 8% of the bytes were 
arried in 
onne
tions with 1% loss or more. The distri-butions for the rest of the tra
es show that between 20% and 34% of the bytes were 
arried in
onne
tions with 1% loss or more. Loss is spe
ially signi�
ant at UNC, where 34% of the byteswere 
arried by 
onne
tions with loss rates above 1% (a high loss rate). Interestingly, the UNCtra
e with the highest load (UNC 1 PM) had a lighter distribution of per-byte loss rates.4.2 Network-level Metri
sThe previous se
tion 
onsidered methods for 
hara
terizing network-level properties of traÆ
that 
an be in
orporated into traÆ
 generators as input parameters. Here we 
onsider othernetwork-level properties that 
an be used to 
ompare tra
es, providing a way to assess therealism of syntheti
 traÆ
. In order to make the distin
tion between these two types of network-level properties 
learer, we apply the term network-level parameter to those properties that arepart of the input of the traÆ
 generation method, and the term network-level metri
 to thoseproperties that are not part of the input but are still useful for 
hara
terizing the output(i.e., the syntheti
 traÆ
). The key idea, demonstrated in Chapter 6, is that syntheti
 traÆ
129




an 
losely approximate real traÆ
 in terms of these network-level metri
s, as long as sour
e-level and network-level parameters are in
orporated into the traÆ
 generation method. Thesu

ess of this approa
h 
on�rms that the parameters we have in
orporated in our approa
hare signi�
ant, and that the data a
quisition methods we propose are suÆ
iently a

urate toa
hieve high realism in traÆ
 generation.4.2.1 Aggregate Throughput Time SeriesA basi
 property of the performan
e of a network link is the number of bytes and pa
kets8that traverse the link per unit time. We will 
all this property aggregate throughput, sin
e itis the result of multiplexing the throughputs of the individual 
onne
tions that form the traÆ

arried by a network link. A

urately reprodu
ing aggregate throughput will be an importantpart of our evaluation.Aggregate throughput is generally very variable, so resear
hers (and pra
titioners) usuallystudy the time series of aggregate throughputs in order to understand the dynami
s of networktraÆ
. Formally, an aggregate throughput time series at s
ale t is de�ned as a ve
tor Xt =(Xt1; Xt2; : : : ;Xtn) where Xti is the number of bytes (or pa
kets) observed at a measurement pointbetween time t(i� 1) and time ti for some 
onstant interval t. This 
onstant integral t is 
alledthe s
ale of the time series. Xi is often referred to as the i-th bin of the time series, whi
h issometimes 
alled a time series of bin 
ounts.We 
onsider three ways of studying aggregate throughput time series in this dissertation.First, we make use of plots of aggregate throughput against time, \throughput plots", whi
hprovide a simple yet informative visualization of the dynami
s of the traÆ
 throughout theentire tra
e. Se
ond, we examine the marginal distribution of the time series using a CDF,whi
h enables us to study the �ne s
ale 
hara
teristi
s of the throughput pro
ess. These twomethods are des
ribed in more detail below. While they are useful, they are sensitive to the8In this se
tion, we will often use the term pa
ket rather than segment. In the 
ontext of TCP traÆ
, a timeseries of pa
kets per unit time and a time series of segments per unit time are the same thing. However, thetraÆ
 measurement literature generally talks about pa
ket throughput (not segment throughput), often usingthe unit Kilo pa
ket per se
ond (Kpps). 130
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Figure 4.21: Breakdown of the bytethroughput time series for Leipzig-II in-bound.
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ketthroughput time series for Leipzig-II in-bound.s
ale t at whi
h the time series is analyzed (e.g., throughput per minute is mu
h smoother thanthroughput per millise
ond). For this reason, we 
omplement our analysis with a third method,wavelet analysis. Wavelet analysis is a multi-resolution method parti
ularly suitable to studyhow the statisti
al nature of Xt 
hanges as a fun
tion of t. This type of study, often knownas \traÆ
 s
aling", is spe
ially important for Internet traÆ
, whi
h exhibits strong long-rangedependen
e. We employ both plots of the wavelet spe
trum of a throughput time series, andwavelet-based estimates of Hurst parameters with 
on�den
e intervals.When it 
omes time to validate syntheti
 traÆ
 generation methods, an important aspe
tof the validation will be a qualitative 
omparison of plots of throughput time series and plots oftheir marginal distributions and wavelet spe
tra. Here we des
ribe the use of these visualizationsto understand the nature of throughput on the links we have measured.Throughput PlotsFigure 4.21 shows a breakdown of the aggregate byte throughput of the Leipzig-II tra
e inthe inbound dire
tion (i.e., TCP traÆ
 
oming into the University of Leipzig). The s
ale of thetime series (the bin size) is one minute. The time series of all byte arrivals has been partitionedinto six time series a

ording to the type of abstra
t sour
e-level behavior (sequential, 
on
urrent
131



or no payload9), depending on whether the start and the end of the 
onne
tion were observed(fully or partially 
aptured 
onne
tions), and whether the 
onne
tion was observed only in onedire
tion of the link (unidire
tional 
onne
tions) or in both. The analysis of abstra
t sour
e-level behavior des
ribed in Se
tion 3.5 was used to 
lassify 
onne
tions into these 
ategories,and then the original segment header tra
es were partitioned a

ording to this 
lassi�
ation.This type of analysis 
omplements the one performed at the sour
e-level in Se
tion 3.5, givingus a sense of the relative importan
e of sequential and 
on
urrent 
onne
tions. Also, our traÆ
generation will only make use of 
onne
tions that were fully 
aptured, i.e., fully 
hara
terized,so it is important to understand the importan
e of the traÆ
 in the rest of the 
onne
tions (sowe know what we are missing).Figure 4.21 shows that sequential 
onne
tions that were fully 
aptured a

ount for the vastmajority of the bytes to Leipzig-II inbound. Sin
e 
onne
tions observed near the boundariesof the tra
e are more likely to be observed only partially, the time series shows a mu
h smallernumber of bytes in the �rst and in the last ten minutes of the tra
e. On the 
ontrary, thetime series of partially-
aptured sequential 
onne
tions has a mu
h larger number of bytes inthe �rst and the last ten minutes. This is be
ause the probability of observing only part of a
onne
tion in
reases as we get 
loser to the tra
e boundaries. For this reason, in the �rst tenminutes we see many more 
onne
tions that started before the start of the tra
e, and in the lastten minutes we see many more 
onne
tions that ended after the end of the tra
e. We will referto this in
reased likelihood of �nding partially-
aptured 
onne
tions near tra
e boundaries asthe 
onne
tion sampling bias.The solid line with white squares in Figure 4.21 shows the time series of fully-
apturedsequential 
onne
tion. When we examine the stable region of this time series (i.e., ignoring the�rst and last 10 minutes), we 
an see substantial variability between the minimum of 22 Mbpsand the maximum of 38 Mbps. The rest of the time series in this plot are far less \bursty".The average throughput of the time series for 
on
urrent 
onne
tions is mu
h smaller, andpartially-
aptured 
onne
tions only a

ount for a tiny fra
tion of the bytes. The number of9A 
onne
tion without any useful TCP payloads has an empty 
onne
tion ve
tor sin
e no ADU is sent.132
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Figure 4.23: Breakdown of the bytethroughput time series for Leipzig-II out-bound.
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ketthroughput time series for Leipzig-II out-bound.bytes in 
onne
tions without any useful data payload is insigni�
ant, as one would expe
t in aproperly working network in whi
h little mali
ious a
tivity is taking pla
e10.Figure 4.22 shows the time series of pa
ket arrivals for the inbound dire
tion of the Leipzig-IItra
e. As in the previous �gure, fully-
aptured sequential 
onne
tions a

ount for the major-ity of the pa
kets, and the time series exhibits substantial variability. Noti
e however thatthe number of pa
kets in fully-
aptured 
on
urrent 
onne
tions is more signi�
ant in terms ofpa
kets than in terms of bytes (the per
entage of pa
kets was higher than the per
entage ofbytes). The time series of the number of pa
kets in \no payload" 
onne
tions and in unidi-re
tional 
onne
tions is also more signi�
ant. Noti
e the large spikes at the end of the timeseries of unidire
tional 
onne
tions. These spikes 
ould be related to some mali
ious a
tivity,like network or port s
anning11, or 
onne
tion attempts to a popular server that is temporarilyo�ine12. This feature was not present in the 
orresponding time series of byte arrivals.The same time series for the reverse dire
tion of the Leipzig link are shown in Figures 4.2310The \no payload" time series would have been mu
hmore signi�
ant if, for example, a denial-of-servi
e atta
kusing SYN segments had taken pla
e. These segments, and the likely SYN-ACK segments sent in response bythe vi
tim, would have not 
arried any (useful) payloads (no appli
ation-level 
ommuni
ation would have takenpla
e), and would have been 
lassi�ed as \no payload" traÆ
.11This type of a
tivity 
reates unidire
tional traÆ
 whenever the target host is �rewalled, or otherwise un-rea
hable, or the target IP does not exist. The lo
ation of these spikes at the end of the tra
e is purely a

idental.12In this 
ase, 
lients would try to open a 
onne
tion by sending a SYN segment (and several retransmissions),whi
h will re
eive no response sin
e the destination server is not online. These types of 
onne
tion attempts too�ine hosts show up as unidire
tional 
onne
tions in segment header tra
es.133
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Figure 4.25: Breakdown of the bytethroughput time series for Leipzig-II out-bound.
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ketthroughput time series for Leipzig-II out-bound.and 4.24. The magnitude of the throughput time series is signi�
antly smaller in this 
ase,suggesting that the University of Leipzig is mostly a 
onsumer of 
ontent from the rest of theInternet. Sequential 
onne
tions that were fully 
aptured exhibit some sharp spikes in threeshort time intervals. A 
loser look revealed that only a few large 
onne
tions with small round-trip times (in parti
ular, three 
onne
tions in the �rst spike in minute 78) 
reated this suddenin
rease in throughput. As in the inbound dire
tion, partially-
aptured sequential 
onne
tionsare only signi�
ant for the �rst and the last few minutes of the tra
e. Con
urrent 
onne
tionsalso show the same pattern, but partially-
aptured 
onne
tions exhibit a steady in
rease forthe last 50 minutes of the tra
e. Interestingly, the separation between the time series for fullyand partially 
aptured sequential 
onne
tions is mu
h larger for pa
kets than for bytes. Thissuggests that the pa
kets in this dire
tion are very small, and mostly 
onsist of a
knowledgmentsegments that do not have a payload. This is another 
on�rmation of the 
ontent-
onsumernature of the university of Leipzig.Figures 4.25 and 4.26 illustrate the impa
t of s
ale on the throughput time series for theLeipzig-II outbound tra
e. These plots have a s
ale of 5 se
onds, and only the �rst 60 minutes(rather than entire 166 minutes) are shown to redu
e the amount of over-plotting. Both byteand pa
ket throughputs are 
learly more bursty at this s
ale. The largest spikes of time seriesfor fully-
aptured sequential 
onne
tions are even larger (and therefore narrower) than those inthe 1-minute time series. For example, the spike in the eleventh minute rea
hes 17 Mbps in the134
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Figure 4.27: Breakdown of the bytethroughput time series for Abilene-IIpls/Clev.
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ketthroughput time series for Abilene-IIpls/Clev.5-se
ond s
ale, while the 
orresponding region in the 1-minute s
ale plot in Figure 4.23 did notgo above 9 Mbps. De
reasing the s
ale provides a better pi
ture of the burstiness of traÆ
, butit in
reases over-plotting, and does not 
hange the overall view (i.e., the relative magnitude ofthe di�erent time series). The same lesson holds for pa
ket arrivals, but noti
e that the largestbyte throughput spikes do not appear to have 
orresponding pa
ket throughput spikes. Thisshows that a relatively small number of full pa
kets sent in short periods 
reated the observedthroughput spikes (and not a large number of small pa
kets).The stru
ture of the throughput time series for the Abilene-I tra
e is remarkably di�erent.Figure 4.27 shows the time series of byte arrivals at a 1-minute s
ale for the Abilene-I traÆ
sent from Indianapolis to Cleveland. As in the Leipzig-II 
ase, fully-
aptured sequential 
onne
-tions a

ount for the largest per
entage of the traÆ
. However, bytes from partially-
apturedsequential 
onne
tions are mu
h more signi�
ant here, with a mean throughput that is roughlyhalf of the mean throughput for fully-
aptured sequential 
onne
tions. While we still observemu
h larger throughputs in the �rst and last few minutes of the time series, the middle partstill a

ounts for a very large number of bytes. This is in sharp 
ontrast to the Leipzig-II tra
e,and 
annot be explained by the duration of the tra
e, whi
h is almost as long (2 hours vs. 2hours and 46 minutes). Note also that the partially-
aptured 
onne
tion time series is almostas bursty as the time series for fully-
aptured 
onne
tions.
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Con
urrent 
onne
tions in this dire
tion of the Abilene-I tra
e show a surprising stru
ture.The number of bytes in 
on
urrent 
onne
tions that were partially-
aptured was mu
h largerthan the number of bytes in 
onne
tions that were fully-
aptured. This suggests that 
on
urrent
onne
tions in this tra
e tend to have extremely long durations. Both time series are mu
hsmoother than those for sequential 
onne
tions, and tra
e boundaries have very little impa
ton them. Conne
tions with no payload 
arried an insigni�
ant number of bytes, but, unlikethe Leipzig-II tra
e, unidire
tional traÆ
 is non-negligible. Rather than some malfun
tion ormali
ious a
tivity, this is explained by asymmetri
 routing in the Abilene ba
kbone. Only onedire
tion of these 
onne
tions goes through the measured link, and hen
e these 
onne
tionsappear in our tra
e as unidire
tional. We also observe two major throughput spikes at the 6thand the 38th minutes that 
ould also be explained by transient routing 
hanges, but mali
ioustraÆ
 
annot be ruled out without further analysis. Both spikes rea
h throughputs as high as350 Mbps when the time series is examined at the 5-se
ond s
ale.The pa
ket throughput time series for the Abilene-I tra
e shown in Figure 4.28 has a sim-ilar stru
ture, in whi
h partially-
aptured 
onne
tions also a

ount for a large per
entage ofthe tra
e. It is interesting to note that fully-
aptured 
on
urrent 
onne
tions 
arry a largerper
entage of pa
kets than bytes, so pa
kets in these 
onne
tions are likely to be small. Wealso observe a third spike in the time series for unidire
tional 
onne
tions that did not show upin the byte throughput time series, and a smaller spike in the \no payload" time series.The reverse dire
tion, Cleveland to Indianapolis, of the Abilene-I tra
e o�ers a rather di�er-ent view in Figure 4.29. Partially-
aptured sequential 
onne
tions are mu
h less signi�
ant inthis 
ase, although this time series still exhibits remarkable variability. Similarly, the numberof bytes in partially-
aptured 
on
urrent 
onne
tions is mu
h lower in relative terms, and quite
lose to the number of bytes in fully-
aptured 
on
urrent 
onne
tions. The most striking fea-ture of this plot is the time series of unidire
tional 
onne
tions. The byte throughput of these
onne
tions shows enormous variability, and even rea
hes the magnitude of fully-
aptured se-quential 
onne
tions. This is either a strong indi
ation of substantial instability in the routingof the Abilene ba
kbone, or the existen
e of 
ows with extremely high throughput that only136
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Figure 4.29: Breakdown of the bytethroughput time series for Abilene-IClev/Ipls.
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ketthroughput time series for Abilene-IClev/Ipls.show up in one dire
tion of the measured link. In any 
ase, byte throughput is always above 50Mbps, so part of the traÆ
 that is routed asymmetri
ally did not experien
e any major routing
hanges.The pa
ket throughput time series from Cleveland to Indianapolis shown in Figure 4.30o�er yet another pattern in the breakdown of traÆ
 per 
onne
tion type. The sharp 
hanges inthe throughput of the time series of unidire
tional traÆ
 have a smaller magnitude, suggestingthat large pa
kets dominate traÆ
 in this dire
tion of the Abilene-I tra
e. Partially-
aptured
on
urrent 
onne
tions 
arried signi�
antly more pa
kets than fully-
aptured 
onne
tions. Thisis the opposite of the phenomenon in Figure 4.28 and 
an be explained by an asymmetry inthe sizes of the ADUs of the 
onne
tions. This asymmetry results from 
onne
tions with amajority of data segments in the same dire
tion and a majority of a
knowledgments in theother dire
tion.The byte throughput time series for the UNC 1 PM tra
e in the inbound dire
tion resemblesthat of Leipzig-II (whi
h is also an edge tra
e). Figure 4.31 shows that fully-
aptured sequential
onne
tions 
arry the vast majority of the bytes, although the relative per
entage of bytes inpartially 
aptured 
onne
tions is larger. This is 
an be explained by the shorter duration ofthis tra
e (1 hour). The most signi�
ant di�eren
e, however, is in the time series for partially-
aptured 
on
urrent 
onne
tions. In this 
ase, we �nd a very stable throughput of 20 Mbps137
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Figure 4.31: Breakdown of the bytethroughput time series for UNC 1 PM in-bound.
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Figure 4.32: Breakdown of the pa
ketthroughput time series for UNC 1 PM in-bound.
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Figure 4.33: Breakdown of the bytethroughput time series for UNC 1 PM out-bound.
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Figure 4.34: Breakdown of the pa
ketthroughput time series for UNC 1 PM out-bound.without any 
lear boundary e�e
ts. This is similar to the type of 
on
urrent traÆ
 found inAbilene-I. Fully-
aptured 
on
urrent 
onne
tions show an interesting jump between the 37thand the 39th minutes, and a 
ouple of spikes around the 45th minute. This 
ould be explainedby a single 
onne
tion with signi�
ant throughput (10 Mbps). Pa
ket throughput time seriesare similar, but we observe a signi�
antly higher per
entage of pa
kets in partially-
apturedsequential 
onne
tions. As the analysis of the other dire
tion will suggest, this is due to thepresen
e of many pure a
knowledgment segments.The byte throughput time series for the outbound dire
tion of UNC 1 PM are shown inFigure 4.33. They are remarkably di�erent from those of the Leipzig-II tra
e, where throughput138



on the inbound dire
tion (
reated by lo
al users downloading 
ontent from the Internet) wasmu
h higher than the throughput in the outbound dire
tion. We observe the opposite here.The mean overall utilization in the outbound dire
tion is mu
h higher than the inbound di-re
tion, 325 Mbps versus 100 Mbps. Also, partially-
aptured sequential 
onne
tions are mu
hmore signi�
ant. The obvious explanation is the presen
e at UNC of ibiblio.org, a popularrepository of software and other 
ontent. Hosts outside UNC retrieve large amounts of datafrom the ibiblio.org servers, making the load in the outbound dire
tion of the UNC linkmu
h higher than the load on the inbound link. Furthermore, ibiblio.org 
lients often down-load large obje
ts, and this requires long 
onne
tions that are more likely to be only partially
aptured. This provides a good explanation for the extreme boundary e�e
ts in the �rst andlast 10 minutes of the throughput time series. The high throughput in the stable region of thistime series 
ould be due to long 
onne
tions that 
arry large amounts of data, although furtheranalysis is needed to verify this 
laim.Con
urrent traÆ
 in the outbound dire
tion appears similar to the inbound dire
tion, show-ing remarkable load symmetry for partially-
aptured 
on
urrent 
onne
tions. We do not ob-serve mu
h variation in the time series for pa
ket throughput (shown in Figure 4.34). Partially-
aptured sequential 
onne
tions 
arried a smaller number of pa
kets than bytes, and this agreeswith the idea that large numbers of bytes are downloaded from ibiblio.org. These downloadsshow up as large data pa
kets in the outbound dire
tion and small a
knowledgment pa
ketsin the inbound dire
tion. In the most 
ommon 
ase, a full TCP segment has a size of 1500bytes, while an empty one (no payload) is only 40 bytes. This means that the ratio of bytesin a 
onne
tion 
arrying a large �le is 1500:40. Furthermore, sin
e most TCP implementationsa
knowledge only every other data segment, we have a ratio of 3000:40 for bytes and a ratio of2:1 for pa
kets. A link that is dominated by large �le downloads should show similar byte andpa
ket ratios. If large �le downloads from ibiblio.org were the only 
ause of the large fra
tionof bytes in partially 
aptured 
onne
tion, then we would expe
t similar ratios between the twodire
tions of the UNC link. However, this is not so 
lear in Figures 4.31 to 4.34, suggestingthat phenomena other than ibiblio.org also 
ontribute to making UNC a sour
e rather than
139
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ketthroughput time series for the three UNCtra
es.a sink of 
ontent. As an example, �le-sharing a
tivity from 
ampus dorms 
ould also play asigni�
ant role. Sin
e �le-sharing implies both uploading and downloading, it usually tends tomake the byte and pa
ket ratios more balan
ed.Network a
tivity usually follows a 
y
li
 daily pattern, in whi
h traÆ
 in
reases throughoutthe morning and de
reases in the evening, being at its lowest during night hours. This diurnalpattern in the time series for the UNC tra
es is evident in Figures 4.35 and 4.36. These timeseries 
orrespond to fully-
aptured sequential 
onne
tions. Byte throughputs for the 1 PMtra
es are mu
h higher in both dire
tions and we observe that even the 1 AM tra
e has a largethroughput in the outbound dire
tion. This suggests that 
ontent from UNC is downloadedthroughout the day, although a diurnal pattern is still present. On the 
ontrary, UNC 
lients aremu
h less a
tive later in the day. A similar plot (not shown) for partially-
aptured 
on
urrent
onne
tions shows little redu
tion in throughput between the 1 PM and the 7:30 PM tra
es, anda redu
tion of only 15 Mbps in the 1 AM tra
e. The pa
ket throughput time series illustrateagain the di
hotomy between the large data segments in the outbound dire
tion, 
arrying UNC
ontent, and the small segments in the inbound dire
tion, 
arrying a
knowledgments. Thedi�eren
e is substantially less signi�
ant later in the day.
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Figure 4.37: Byte throughput marginals of Leipzig-II inbound, its normal distribution �t,the marginal distribution of its Poisson arrival �t, and the normal distribution �t of thisPoisson arrival �t.4.2.2 Throughput MarginalsPlots of throughput time series provide a good overview of the 
oarse-s
ale 
hara
teristi
sof the traÆ
 tra
e. However, they are not very pra
ti
al for studying �ner-s
ale features. Ourtra
es are long enough that any plot at a s
ale of 1 se
ond or below is dominated by over-plotting, and does not provide any useful information. This is spe
ially true when the goal ofthe plot is to 
ompare two time series that are already rather similar. Finer-s
ale di�eren
es
an be of great importan
e for 
ertain experiments. For example, two tra
es 
ould have exa
tlythe same average throughput, and appear identi
al at the 1-minute s
ale, but be 
ompletelydi�erent at the 1-se
ond s
ale. One of them 
ould show a sequen
e of sharp spikes and dit
hes,while the other one 
ould remain 
ompletely smooth. If we were to expose a router queue tothese two tra
es, we 
ould obtain two 
ompletely di�erent distributions of router queue length(and therefore of pa
ket delay through the router). This would for example be the 
ase if thespikes ex
eed the output rate of the queue (
reating a ba
klog), while the smooth tra
e alwaysremains below output rate. In the �rst 
ase, pa
kets would experien
e variable queuing delay,while in the se
ond 
ase no queuing delay would o

ur.There are several ways in whi
h we 
an 
ompare tra
es at �ner time s
ales. The mostobvious one is to examine throughput for a limited period. While this approa
h is useful in somesituations, it does not s
ale for 
omparing entire tra
es, espe
ially as we de
rease the s
ale and141
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Figure 4.38: Pa
ket throughput marginals of Leipzig-II inbound, its normal distribution�t, the marginal distribution of its Poisson arrival �t, and the normal distribution �t ofthis Poisson arrival �t.the number of possible periods to examine grows. In this dissertation, we will make use of twoalternative methods for studying the throughput of our tra
es at �ner granularities. Our �rstmethod is to examine the marginal distributions of throughput time series at a rather �ne times
ale, 10 millise
onds. Plots of the bodies of marginal distributions help us to understand themost 
ommon �ne-s
ale throughputs in a tra
e, while plots of the tails of marginal distributionsexplore the episodes of highest throughput in a tra
e. We des
ribe this type of analysis in therest of this se
tion. Our se
ond method is to study the way throughput varian
e 
hanges withs
ale, whi
h we will approa
h using the 
on
epts of self-similarity and long-range dependen
e.We dis
uss this type of analysis in the next se
tion.Our analysis of throughput marginals examines the time series of throughput at the 10-millise
ond time-s
ale, 
onstru
ting the empiri
al distribution of the values of the time series.This empiri
al distribution assigns a 
ertain probability to ea
h observed value of the time seriesequal to the fra
tion that this value represents of the total set of values in the time series. Asin previous 
ases, we will study the bodies of the marginal distributions using plots of CDFsand the tails using plots of CCDFs. For example, Figures 4.37 and 4.38 show respe
tively themarginal distribution of byte and pa
ket throughput for the inbound dire
tion of the Leipzig-IItra
e (depi
ted using solid lines marked by white squares). The CDF in the left plot providesa good overview of the body of the marginal distribution using linear axes. The CCDF in theright plot shows the tail of the distribution using a logarithmi
 y-axis. These visualizations of142
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Figure 4.39: Byte throughput marginals of UNC 1 PM outbound, its normal distribution�t, the marginal distribution of its Poisson arrival �t, and the normal distribution �t ofthis Poisson arrival �t.the marginals are parti
ularly useful for 
omparing multiple distributions, and we will use themextensively in Chapter 6.As stated before, our goal with the analysis of marginal distributions is to understand �ne-s
ale 
hara
teristi
s of throughput. We will use this type of analysis to determine whether ourproposed traÆ
 generation method results in syntheti
 traÆ
 whose distribution of �ne-s
alethroughputs is \realisti
". By 
onstru
tion, and as explained in Chapter 5, the determinationof this realism is a

omplished by dire
tly 
omparing the marginal distributions of an originaltra
e and its syntheti
 version. This non-parametri
 analysis is 
onsistent with other methodsused in this dissertation.We have also 
onsidered doing some parametri
 analysis of the marginal distributions ofthroughput time series. When modeling an arrival pro
ess, the �rst approa
h that 
omes tomind is the Poisson modeling framework. Poisson arrivals are very 
onvenient from an analyti
alperspe
tive, and 
on
isely des
ribe an arrival pro
ess using a single parameter. As pointed outby Floyd and Paxson [PF95℄, empiri
al studies do not support the use of this model, primarilybe
ause Poisson arrivals are far less \bursty" than Internet pa
ket and byte arrivals. Thisimportant issue is dis
ussed in the next se
tion. In addition, we show here that Poisson arrivalshave marginal distributions that are very far from the ones in our tra
es.Given a throughput time series, we 
an �t a Poisson arrival model simply by 
omputing the143
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Figure 4.40: Pa
ket throughput marginals of UNC 1 PM outbound, its normal distribution�t, the marginal distribution of its Poisson arrival �t, and the normal distribution �t ofthis Poisson arrival �t.mean of the time series and using it as the rate of the Poisson model. From this �tted model, we
an easily obtain a marginal distribution using Monte Carlo simulation. Figure 4.37 shows themarginal distribution of byte throughput in the inbound dire
tion of the Leipzig-II tra
e, andthe marginal distribution of the Poisson �t of this throughput pro
ess (depi
ted using a dashedline with white triangles). Both marginal distributions have the same mean, 39.24 Kilobytesper 10-millise
ond interval. As shown in the �gure, the two marginals are very di�erent, withthe Poisson �t exhibiting a far narrower body. The standard deviation of the Poisson model isonly 6.25, while the one for the real marginal distribution is 15.13, more than twi
e as large. Inaddition, the tail of the marginal distribution from Poisson arrivals is far lighter than the onefrom the tra
e. Intuitively, this means that the real traÆ
 is far more aggressive on the network,
onsistently rea
hing far higher throughput values. Poisson arrivals are equally inadequate formodeling pa
ket arrivals, at least in terms of their marginal distributions, as shown in Figure4.38. Figures 4.39 and 4.40 repeat the same analysis for the outbound dire
tion of UNC 1PM. The plots 
on�rm the poor �t from the Poisson arrival model, even for a tra
e with athroughput that is eight times higher. The same is true for every other tra
e examined in thisdissertation.The empiri
al results in Fraleigh et al. [FTD03℄ and the analysis in Appenzeller et al.[AKM04℄ support the idea that throughput values are normally distributed in Internet traÆ
,as long as suÆ
ient traÆ
 aggregation exists. If this were true, studying (and 
omparing)144



marginal distributions of throughput 
ould easily be a

omplished by looking at means andvarian
es. Our analysis of the throughput marginals in our tra
es shows that they do resemblea normal distribution, but that this model is not 
ompletely satisfa
tory.We 
an easily �t a normal model to the marginal distributions from our tra
es by 
omput-ing their means and standard deviations. Figures 4.37, 4.38, 4.39 and 4.40 
ompare the realmarginals and their �ts, 
onsistently showing the following two di�eren
es:� The bodies of the marginal distributions from the real tra
es appear somewhat narrower.The di�eren
e is slightly larger for pa
ket throughput in the Leipzig-II tra
e.� The tails of the marginal distributions from the real tra
es are substantially heavier. Thelargest values for the Leipzig-II tra
es are 75% larger, while those for the UNC 1 PMtra
e are 20-25% larger.These deviations are present in every one of our tra
es, showing that throughput marginaldistributions deviate from the normal distribution systemati
ally.The deviation from normality of the empiri
al marginal distributions is statisti
ally signif-i
ant. First, every marginal distribution from the tra
es fails the Kolmogorov-Smirnov testof normality [NIS06℄. Se
ond, every Quantile-Quantile (Q-Q) plot [NIS06℄ shows a 
lear de-parture from normality. This is true not only for the 10-millise
ond time-s
ale, but also forthe 100-millise
ond, the 1-se
ond time series, and even for the 10-se
ond time series in some
ases. We illustrate this type of analysis again using the throughput marginals of Leipzig-IIinbound and UNC 1 PM outbound. The plots in Figures 4.41 and 4.42 show Q-Q plots fordi�erent time-s
ales, where the quantiles of the data and the theoreti
al normal distributionare 
ompared using a thi
k line with white dots. If the data were normally distributed, theQ-Q line would 
losely follow the the dashed 45 degree line. This is 
learly not the 
ase, butthe Q-Q plot does not provide any sense of statisti
al signi�
an
e. To address this de�
ien
y,the plots also show simulation envelopes, depi
ted using thin, dark-gray lines, following themethodology in Hern�andez-Campos et al. [HCMSS04℄. They are easiest to see in the 10-se
ond145
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time series, the ones with the least over-plotting. Ea
h line in the envelope 
orresponds toa distribution 
onstru
ted by sampling the theoreti
al normal distribution as many times asvalues were present in the empiri
al marginal distribution. The envelope therefore 
aptures thenatural variability of the normal distribution for the given sample size. If the Q-Q line 
om-paring the empiri
al marginal and the theoreti
al normal distribution is outside this envelope,the deviation from normality is 
onsidered statisti
ally signi�
ant. This is 
learly the 
ase forevery marginal distribution in the plots, ex
ept the ones at the 10-se
ond s
ale of Leipzig-IIinbound.The plots in Figures 4.41 and 4.42 also show the results of the Kolmogorov-Smirnov test(K-S), a formal test of normality. The third line in the inside legend, below the sample mean� and the standard deviation �, shows the result of the formal test. The null hypothesis (non-normality) 
an only be reje
ted for the marginals of the Leipzig-II throughput at the 10-se
ondtime-s
ale. The plots show a H0 = 0 when the null hypothesis 
an be reje
ted, and a H0 = 1when it 
annot be reje
ted. Given these results, assuming normality to study the marginals ofour tra
es (and those of their syntheti
 versions) is of dubious value. We will restri
t ourselvesto 
omparative plots of CDFs and CCDFs for 
omparing throughput marginals.Note that we are not arguing that our �nding of pervasive deviations from normality inval-idates earlier studies based on the assumption of normality in throughput marginals. From ouranalysis, the bodies of the marginals are 
lose enough to the normal distribution that assumingnormality 
an provide a useful simpli�
ation. As long as signi�
ant deviations from normalityin the tails have little or no e�e
t on the reasoning, assuming normality makes analyti
al studiesmore treatable and even more intuitive.Our �nding of non-normality in our tra
es is 
onsistent with the observation by Sarvothamet al. [SRB01℄. These authors demonstrated that deviations of the throughput marginal fromnormality 
an be explained by the presen
e of an alpha 
omponent in Internet traÆ
. AlphatraÆ
 is 
omposed of 
onne
tion with high throughputs that transfer large amounts of data.In 
ontrast, 
onne
tions with moderate or low throughputs and 
onne
tions with moderateor small amounts of data to transfer are 
onsidered beta traÆ
, whose throughput marginal148



is normally distributed. Intuitively, a traÆ
 generation method should be able to reprodu
eboth the alpha and the beta 
omponents of Internet traÆ
. Sarvotham et al. also proposedto 
onsider traÆ
 bursty when its throughput marginal deviates from normality. This is analternative (and 
omplementary) view of traÆ
 burstiness, whi
h is more 
ommonly asso
iatedwith long-range dependen
e in the arrival pro
ess, as we will dis
uss next.4.2.3 Throughput Self-Similarity and Long-Range Dependen
eA remarkable 
hara
teristi
 of Internet traÆ
 is its high variability in throughput a
rossa wide range of time s
ales, and how that variability 
hanges as s
ale in
reases. If we plotthe number of pa
kets or bytes that arrive at a network link, say every 1 or 10 millise
onds,we observe a highly variable pro
ess where the number of arrivals is 
onstantly 
hanging. Ifwe plot these arrivals at a 
oarser s
ale, say every 100 millise
onds or 1 se
ond, this highvariability does not de
rease signi�
antly. In 
ontrast, Poisson arrivals exhibit a rapid de
reasein variability as we in
rease the s
ale of the time series. For this reason, it is often said thatInternet traÆ
 has a \very bursty" arrival pro
ess, far more variable than that of 
all arrivalsin a phone network. Starting with the work of Leland et al. [LTWW93℄, traÆ
 burstiness hasusually been 
hara
terized using the theoreti
al framework of statisti
ally self-similar pro
esses.This framework provides some powerful methods to study traÆ
 burstiness and quantify itsstrength.The motivation behind the study of traÆ
 burstiness is the observation that an in
rease inthe burstiness of traÆ
 results in a more demanding network workload. For example, Erramilliet al. [ENW96℄ demonstrated that router queues exhibit dramati
ally heavier distributionsof queue lengths as the burstiness of the input pa
ket arrival pro
ess in
reases. Numerousmeasurement studies, e.g., [WTSW97, ZRMD03, PHCMS05, PHCL+℄, have examined InternettraÆ
 and 
onsistently observed highly bursty arrivals that appear self-similar for s
ales betweena few millise
onds and tens of se
onds. It is therefore expe
ted that representative syntheti
traÆ
 reprodu
es this high burstiness. In this dissertation, we employ well-known methodsto assess the self-similarity of real and syntheti
 traÆ
, and verify that our traÆ
 generation149



methods 
an reprodu
e the level of burstiness in Internet traÆ
.The term self-similarity 
omes from the study of fra
tal obje
ts. Fra
tals are geometri
al
onstru
ts that appear similar a di�erent s
ales. The most famous example of fra
tal is theMandelbrot set, whose 
ardioid shape repeats itself as we zoom into the set. In this fashion,a se
ond-order self-similar time series shows a similar pattern of variation at di�erent time-s
ales. For this reason, self-similarity is also known as s
ale-invarian
e. Some authors talkabout \traÆ
 s
aling" or simply \s
aling" to refer to the observed self-similarity in networktraÆ
.Quantitatively, the 
hange in the arrival varian
e for a self-similar time series of bin 
ountsXt is proportional to t2H�2, where t � 1 represents s
ale as the aggregation of arrival 
ounts,and H is known as the Hurst parameter. For example, the varian
e in bin 
ounts in a Poissonpro
ess is proportional to 1H = t2( 12 )�2. That is, a Poisson arrival pro
ess has H = 0:5. Astationary, long-range dependent pro
ess has 0:5 < H < 1. The 
loser the value of the Hurstparameter is to 1, the slower the varian
e de
ays as s
ale (t) in
reases, and the traÆ
 is said to bein
reasingly more bursty (than Poisson arrivals). The slow de
ay of the arrival varian
e in self-similar traÆ
, as s
ale in
reases, is in sharp 
ontrast to the mathemati
al framework providedby Poisson modeling, in whi
h the varian
e of the arrivals pro
ess de
ays as the square root ofthe s
ale (see [LTWW93, PF95℄). This quantitative 
hara
terization of self-similarity providesus with the right framework to 
ompare real and syntheti
 traÆ
, assessing the validity of thetraÆ
 generation pro
ess in terms of the burstiness of the pa
ket/byte arrival pro
ess.Self-similarity also manifests itself as Long-Range Dependen
e13 (LRD) in the time seriesof arrivals. This means that there are non-negligible 
orrelations between the arrival 
ountsin bins that are far apart. A 
ommon way of studying these 
orrelations is to 
ompute theauto
orrelation �(k) of a time series, where k is the auto
orrelation lag. The auto
orrelationat lag k, �(k) = Pn�ki=1 (Xti �X t)(Xti+k �Xt)Pni=1(Xti �Xt)2 ;13Long-range dependen
e is sometimes referred to as long memory.150



is the 
orrelation between a time series and a shifted version of itself, where the i-th value in theoriginal time series be
omes the i + k-th value in the shifted time series. The auto
orrelationfun
tion �(k) of a long-range dependent time series de
ays in proportion to k�� as the lag ktends to in�nity, where 0 < � < 1. The Hurst parameter is related to � via H = 1��=2, so the
loser the value of the Hurst parameter is to 1, the more slowly the auto
orrelation fun
tionde
ays. In 
ontrast, Poisson pro
esses are short-range dependent, i.e., their auto
orrelationde
ays exponentially as the lag in
reases.The 
on
epts and de�nitions of self-similarity and LRD assume that the time series ofarrivals is se
ond-order stationary (also 
alled weakly stationary). Loosely speaking, this meansthat the varian
e of the time series (and more generally, its 
ovarian
e stru
ture) does not 
hangeover time, and that its mean is 
onstant (so the time series 
an always be transformed into azero-mean sto
hasti
 pro
ess by simply subtra
ting the mean). The intuitive interpretationof this 
on
ept is that the time series should not experien
e any major 
hange in varian
e,whi
h would be asso
iated with a fundamental 
hange in the nature of the studied pro
ess. Forexample, a link usually used by 1,000 hosts that suddenly be
omes used by 10,000 hosts (e.g.,due to a \
ash 
rowd") would show a massive throughput in
rease, and mu
h higher varian
e,whi
h would make it non-stationary. These types of major 
hanges are outside the s
ope ofLRD analysis. They represent a 
oarse-s
ale feature of the time series whi
h should be studiedusing other methods (e.g., trend analysis using SiZer [CM99℄).TraÆ
 is 
ertainly not se
ond-order stationary at the s
ales at whi
h time-of-day e�e
ts areimportant. For example, a 24-hour tra
e is usually non-stationary due to the sharp de
reasein network utilization at night. The number of sour
es at night is far smaller, whi
h de
reasesvarian
e, violating the se
ond-order stationarity assumption. Trying to estimate the Hurstparameter of a 24-hour tra
e that exhibits a time-of-day e�e
t results in a meaningless number.In our traÆ
 generation work, we will estimate Hurst parameters (and other measures of self-similarity) for tra
es that are se
ond-order stationary. Our tra
es have moderate durations,between 1 and 4 hours, whi
h greatly diminishes the impa
t of time-of-day variations. We also
arefully examined the pa
ket and byte arrival time series of our tra
es and found no eviden
e151



of sharp 
hanges that 
ould be asso
iated with se
ond-order non-stationary.Estimation of Hurst parameters is not a trivial exer
ise. Besides ensuring that no signi�
antse
ond-order non-stationarity is present in the data, 
ommon estimation methods are verysensitive to outliers and trends in the data, as pointed out by Park et al. [PHCL+℄. ThesediÆ
ulties motivate some prepro
essing of the studied time series (e.g., detrending) or to employrobust methods. In this dissertation, we will make use of wavelet analysis to study the s
alingproperties of real and syntheti
 traÆ
. We will follow the analysis method of Abry and Veit
h[AV98℄ and make use of their Matlab implementation of the method. In general, we will
ompute what is 
alled the wavelet spe
trum of the time series of pa
ket and byte 
ounts in10 millise
ond intervals. This is also referred to as the logs
ale diagram in some works14. Thewavelet spe
trum provides a visualization of the s
ale-dependent variability in the data (seeFigure 4.43 for an example). Brie
y, a logs
ale diagram plots the logarithm of the (estimated)varian
e of the Daube
hies wavelet 
oeÆ
ients, the energy , as a fun
tion of the logarithm of thes
ale j = log2(t), where t is the time s
ale and j is known as the o
tave. The Daube
hies wavelet
oeÆ
ients 
ome from a de
omposition of the time series in terms of the Daube
hies waveletbasis, whi
h is a 
olle
tion of shifted and dilated versions of a mother Daube
hies wavelet (afun
tion) [Wal99℄. Intuitively, this de
omposition is similar to the Fourier transform, whi
hde
omposes a time series in terms of sinusoidal fun
tions. The wavelet transform also performsa de
omposition but it uses a 
ompa
t support, so it 
an represent lo
alized features (sinusoidalfun
tions have in�nite support). Besides this property, the bene�t of the wavelet transform isits robustness to trends in the data, whi
h 
an easily 
onfuse other types of analysis, su
h asthe varian
e-time plot [LTWW93℄. Wavelet analysis is robust to moderate non-stationarities.For pro
esses that are long-range dependent, the wavelet spe
trum exhibits an approxi-mately linear relationship with a positive slope between energy and o
tave. For Internet traÆ
,the region where this linear s
ale relationship begins is generally on the order of a few hundredmillise
onds (4th to 6th o
tave for 10-millise
onds time series). An estimate of the Hurst pa-14The rationale for 
hoosing the term \logs
ale diagram" 
an be 
onfusing, sin
e it is appli
able to any kindof plot in whi
h one or more axes show a logarithmi
 transformation of the data. The term \wavelet spe
trum"is more spe
i�
 and seems more appropriate and has be
ome the standard in the literature.152
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Figure 4.43: Wavelet spe
tra of the pa
ketthroughput time series for Leipzig-II in-bound and its Poisson arrival �t. 2 4 6 8 10 12 14
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Figure 4.44: Wavelet spe
tra of the bytethroughput time series for Leipzig-II in-bound and its Poisson arrival �t.rameter H along with a 
on�den
e interval on the estimate 
an be obtained from the slope ofthe wavelet spe
trum, H = slope+12 . See the book edited by Park and Willinger [PW00℄ for amore 
omplete overview of long-range dependen
e in network traÆ
, and papers by Veit
h etal. [AV98, HVA02℄ and Feldmann et al. [FGHW99, Fel00℄ for more detail on traÆ
 analysisusing wavelets.Figure 4.43 shows the wavelet spe
tra of the time series of pa
ket throughputs for fully-
aptured sequential 
onne
tions in the Leipzig-I tra
e. As explained in Se
tion 4.2.1, thistype of 
onne
tion is responsible for the overall burstiness of the traÆ
 in our tra
e15. For
omparison, Figure 4.43 also plots a simulated time series of Poisson arrivals with the samemean (38.94 pa
kets per 10-millise
ond bin16). Note that only the middle 150 minutes of theLeipzig time series were used, eliminating the non-stationarity 
reated by the boundaries ofthe tra
e. The plot shows the varian
e of the wavelet 
oeÆ
ient (or energy) as a fun
tion ofthe o
tave. The �rst o
tave 
omes from the dyadi
 aggregation of 10-millise
onds bins, so itrepresents the energy at the 20-millise
ond s
ale. The se
ond o
tave 
omes from the dyadi
aggregation of the bins aggregated in the previous o
tave, so it represents the energy at the15The only ex
eption is the Abilene-I tra
e in the dire
tion from Cleveland to Indianapolis, where routingasymmetries are responsible for most of the burstiness.16Note that the simulated time series had exa
tly this mean, but the number of pa
kets in ea
h bin was alwaysan integer number. 153
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Figure 4.45: Wavelet spe
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Figure 4.46: Wavelet spe
tra of the bytethroughput time series for Abilene-I.40-millise
ond s
ale. The same dyadi
 aggregation is used for every su

essive s
ale, so o
tave12 represents the energy at the 10 millise
onds times 212 s
ale, i.e., at the 40.96-se
ond bins.To make the plot more readable, we added labels on top of the plot with the s
ale given inse
onds. Due to the nature of the wavelet basis, the exponential de
ay of the auto
orrelationin a short-range dependent pro
ess results in a wavelet spe
trum with a slope of zero. On the
ontrary, the de
ay in a long-range dependent pro
ess is slower than exponential, and resultsin a wavelet spe
trum with a positive slope. The wavelet spe
trum of Leipzig-II has a positiveslope that indi
ates long-range dependen
e, while the syntheti
 Poisson time series does notshow su
h a trend (it is short-range dependent). Note also that the height of the 
urves is ratherdi�erent. This is be
ause the overall varian
e of the Poisson arrivals is smaller. The standarddeviation of the aggregate pa
ket throughput time series was 12.96 while that of the syntheti
Poisson arrivals was 6.23. The estimated Hurst parameters were 0.940 (with 
on�den
e interval[0.931,0.949℄) for the Leipzig-II tra
e and 0.496 (with 
on�den
e interval [0.487, 0.505℄) for thesyntheti
 Poisson arrivals.The same qualitative results hold for byte arrivals, as illustrated in Figure 4.44. Here themean number of bytes per 10-millise
ond bin for Leipzig was 34,400, and the standard deviationof the tra
e was 14,000, while the standard deviation of the syntheti
 Poisson arrivals was only188. The estimated Hurst parameters were 0.941 (with 
on�den
e interval [0.932,0.950℄) for154
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Figure 4.47: Wavelet spe
tra of the pa
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Figure 4.48: Wavelet spe
tra of the bytethroughput time series for UNC 1 PM.Leipzig-II and 0.496 (with 
on�den
e interval [0.487, 0.505℄) for the syntheti
 Poisson arrivals.Figure 4.45 shows the wavelet spe
trum of the pa
ket throughput time series for Abilene-I (inthe two dire
tions: Indianapolis to Cleveland and Cleveland to Indianapolis). While the overallimpression is similar to that of the previous �gures, we �nd a 
hange in slope after the 11tho
tave. Note that both dire
tions exhibit similar long-range dependen
e. The estimated Hurstparameters were quite high: 1.016 (
on�den
e interval [1.005, 1.027℄) for the Indianapolis toCleveland tra
e, and 1.009 (
on�den
e interval [0.998, 1.019℄) for the opposite dire
tion. Bytethroughput for the same tra
e shown in Figure 4.46 is qualitatively similar. The estimatedHurst parameters were 1.169 (
on�den
e interval [1.158, 1.180℄) and 1.046 (
on�den
e interval[1.035, 1.057℄). Both are signi�
antly above 1, so some non-stationarity is present in the tra
e.Another example of this type of analysis is given in Figures 4.47 and 4.48. For UNC 1PM, these diagrams show a large separation between the two dire
tions, that translates intosigni�
antly di�erent Hurst parameters. The entire set of Hurst parameters for the tra
es
onsidered in this dissertation is shown in Tables 4.1 and 4.2.
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Tra
e Estimated ParametersLeipzig-I Inbound H=0.940356 C.I.=[0.931459, 0.949254℄Leipzig-I Outbound H=0.968425 C.I.=[0.959527, 0.977322℄Abilene-I Ipls/Clev H=1.016014 C.I.=[1.005242, 1.026786℄Abilene-I Clev/Ipls H=1.008771 C.I.=[0.998000, 1.019543℄UNC 1 PM Outbound H=0.890024 C.I.=[0.872508, 0.907541℄UNC 1 PM Inbound H=0.926588 C.I.=[0.909072, 0.944105℄UNC 1 AM Outbound H=0.906053 C.I.=[0.888537, 0.923569℄UNC 1 AM Inbound H=0.932574 C.I.=[0.915058, 0.950091℄UNC 7:30 PM Outbound H=1.001424 C.I.=[0.983908, 1.018940℄UNC 7:30 PM Inbound H=0.981452 C.I.=[0.963935, 0.998968℄Table 4.1: Estimated Hurst parameters and their 
on�den
e intervals for the pa
ketthroughput time series of �ve tra
es.
Tra
e Estimated ParametersLeipzig-I Inbound H=0.941176 C.I.=[0.932278, 0.950073℄Leipzig-I Outbound H=1.019947 C.I.=[1.011049, 1.028844℄Abilene-I Ipls/Clev H=1.169007 C.I.=[1.158236, 1.179779℄Abilene-I Clev/Ipls H=1.045921 C.I.=[1.035149, 1.056692℄UNC 1 PM Outbound H=0.820944 C.I.=[0.803428, 0.838460℄UNC 1 PM Inbound H=0.925690 C.I.=[0.908174, 0.943206℄UNC 1 AM Outbound H=0.906226 C.I.=[0.888710, 0.923742℄UNC 1 AM Inbound H=0.957370 C.I.=[0.939854, 0.974887℄UNC 7:30 PM Outbound H=0.963306 C.I.=[0.945789, 0.980822℄UNC 7:30 PM Inbound H=0.970991 C.I.=[0.953474, 0.988507℄Table 4.2: Estimated Hurst parameters and their 
on�den
e intervals for the byte through-put time series of �ve tra
es.
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t of the de�nition of a
-tive 
onne
tion on Leipzig-II.4.2.4 Time Series of A
tive Conne
tionsAnother important metri
 for des
ribing the workload of a network is the number of 
on-ne
tions that are simultaneously a
tive. The feasibility of deploying me
hanisms that mustmaintain some amount of state for ea
h 
onne
tion is highly dependent on this metri
. Forexample, stateful �rewalls 
an sele
tively admit pa
kets belonging to 
onne
tions started froma prote
ted network, and not those pa
kets from 
onne
tions that originated somewhere elseon the Internet. This kind of �ltering requires to maintain state for every 
onne
tion observedin the re
ent past. Similarly, network monitoring equipment often reports on the number of
onne
tions and their aggregate 
hara
teristi
s, and tries to identify heavy-hitters that 
onsumelarge amounts of bandwidth. This also requires per-
onne
tion state. A good example of thistype of monitoring is Cis
o's NetFlow [Cor06℄. The performan
e of other me
hanisms, su
h asroute 
a
hing, may also be a�e
ted by the number of a
tive 
onne
tions. Evaluating these typesof me
hanisms and their resour
e 
onsumption requirements 
an only be a

omplished usingsyntheti
 traÆ
 that is realisti
 in terms of the number of 
onne
tions that are simultaneouslya
tive.One important diÆ
ulty when analyzing the time series of a
tive 
onne
tions is the way
onne
tion start and end times are de�ned. The most obvious way to de�ne 
onne
tion startand end times is to 
onsider the �rst and the last segment of a 
onne
tion as the boundaries157
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t of the de�nition of a
-tive 
onne
tion on Abilene-I.of the 
onne
tion. Figure 4.49 shows the time series of a
tive 
onne
tions in 1-se
ond intervalsusing this te
hnique for the Leipzig-II tra
e. As in the throughput time series in Figures 4.21and 4.22, the number of a
tive 
onne
tions from fully-
aptured sequential 
onne
tions is mu
hlarger than the number of a
tive 
onne
tions for the other types of 
onne
tions.As the fo
us of our work is on the e�e
t of sour
e-level behavior, we 
an also use analternative de�nition in whi
h a 
onne
tion is 
onsidered a
tive as soon as it sends the �rstdata segment, and ina
tive as soon as it sends the last data segment. Interestingly, thesetwo de�nitions result in quite di�erent time series. Figure 4.50 
ompares the time series forfully-
aptured sequential and 
on
urrent 
onne
tions (the time series for partially-
aptured
onne
tions 
hanged very little). The average number of a
tive 
onne
tions is mu
h smallerwhen only the data ex
hange portion of TCP 
onne
tions is 
onsidered. The main 
ause ofthis di�eren
e is the presen
e of signi�
ant quiet times between the last ADU and 
onne
tiontermination. Figure 3.28 in the previous 
hapter showed the distribution of this quiet time. Insome 
ases, we also observe quiet time between 
onne
tion establishment and the �rst ADU.The duration of 
onne
tion establishment and 
onne
tion termination is generally very short(around two round-trip times), but we have observed numerous 
ases in whi
h losses and TCPimplementation problems17 lengthened them substantially. We believe the se
ond de�nition,
onsidering only duration between data segments, is more useful for studying the realism of17For example, some implementations send several reset segment after a lossy 
onne
tion termination, andthese segments are often separated by long period of ina
tivity.158
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t of the time-of-day onthe a
tive 
onne
tions time series for thethree UNC tra
es.syntheti
 traÆ
, sin
e 
onne
tion establishment and termination 
reate very little network loadwhen 
ompared to the a
tual ex
hanges of data. Furthermore, 
ongestion 
ontrol plays littlerole when no data is being ex
hanged. We will use this se
ond de�nition of a
tive 
onne
tionin the rest of this work.The breakdown of the a
tive 
onne
tion time series for Abilene-I is shown in Figure 4.51.Partially-
aptured sequential 
onne
tions are far more signi�
ant for this tra
e, rea
hing 2/3of the average number of fully 
aptured sequential 
onne
tions. We also note that the timeseries exhibits surprisingly small variability ex
ept for a few very small spikes in the middle.Finally, and in 
ontrast to the breakdown of byte throughput for Abilene-I, the number of a
tive
onne
tions from partially-
aptured 
on
urrent 
onne
tions is less than half of the number ofa
tive 
onne
tions from partially-
aptured sequential 
onne
tions.Figure 4.52 illustrates the impa
t of the de�nition of a
tive 
onne
tion. The time seriesfrom both fully- and partially-
aptured sequential 
onne
tions de
rease 
onsiderably when onlythe data ex
hange part of the 
onne
tion is 
onsidered. Note also that the spikes in the timeseries of partially-
aptured 
onne
tions are not a�e
ted by the 
hange in the de�nition. This isinteresting when we observe that the magnitude of the variability of the other time series didde
rease signi�
antly.The largest number of a
tive 
onne
tions was found in UNC 1 PM as shown in Figure 4.53.159



This is surprising given that Abilene-I 
arries more bytes and pa
kets, and should be explainedby the di�eren
es in the mix of appli
ations that drives the traÆ
 in these two links. The plotsshows that fully- and partially-
aptured sequential 
onne
tions are a�e
ted in a very di�erentway by the de�nitions of a
tive 
onne
tions. While the number of a
tive 
onne
tions for fully-
aptured sequential 
onne
tions de
reases very signi�
antly, the number for partially-
apturedones is almost the same. This 
an be explained by long 
onne
tions that were a
tive throughoutthe entire duration of the tra
e.Finally, Figure 4.54 studies the impa
t of the time of the day on the time series of a
tive
onne
tions for sequential 
onne
tions. The number of fully-
aptured sequential 
onne
tionsis more sensitive to the de�nition of a
tive 
onne
tion than the number of partially-
apturedsequential 
onne
tions.4.3 SummaryThe �rst part of this 
hapter presented our approa
h for introdu
ing realisti
 network-level parameters in our traÆ
 generation methodology. In parti
ular, we 
onsidered how tomeasure three basi
 network parameters that have a major impa
t on the throughput of aTCP 
onne
tion: round-trip time, re
eiver window size, and loss rate. As in our analysis ofsour
e-level behavior, we fo
used on the eÆ
ient analysis of segment headers for extra
tingthese network parameters, and evaluated the a

ura
y of our 
hosen measurement methodsusing testbed experiments.Our dis
ussion on measuring round-trip time 
onsidered the 
lassi
 SYN estimator, andproposed a novel te
hnique based on 
omputing one-side transit times (OSTTs). Our te
hniquehas two main advantages. First, it is appli
able to 
onne
tions observed both on the edges andon the 
ore of the network. In either 
ase, it provides us with a way to measure the distan
e,in terms of network delay, between the monitoring point and the end hosts taking part inea
h 
onne
tion. Se
ond, OSTT-based estimation provides a number of samples proportionalto the number of data segments on a TCP 
onne
tion, unlike the single sample that 
an be160



obtained using the SYN estimator. This provides a better way to understand the inherentvariability in round-trip times. It also served us to study the impa
t of delayed a
knowledgmentson path round-trip time estimation from segment headers. We 
learly showed that delayeda
knowledgments substantially in
ate estimates of round-trip time that rely on non-robuststatisti
s like averages and maxima. For this reason, we favor the use of minima or mediansto estimate path round-trip time, whi
h were proved to be highly a

urate in our testbedexperiments.We also studied the empiri
al distributions of round-trip times in our 
olle
tion of �vetra
es. We 
an highlight several observations. The edge tra
es from UNC and Leipzig showedbetween 20% and 35% of 
onne
tions with very short round-trip times below 20 millise
onds.In 
ontrast, the ba
kbone tra
e from Abilene showed less than 1% of 
onne
tions with thesesmall round-trip times. Our analysis of the total number of bytes 
arried in 
onne
tions with agiven round-trip time revealed that Leipzig-II had a far larger fra
tion of bytes (10%) 
arriedin 
onne
tions with round-trip times above 500 millise
onds. The distributions of round-triptimes did not only di�er substantially on their range, but also on their shapes, even among those
olle
ted on the same site. For example, the UNC 1 PM tra
e showed only 15% of 
onne
tionswith round-trip times above 100 millise
onds, while this per
entage be
ame 25% and 38% forUNC 7:30 PM and 1 AM respe
tively.The se
ond parameter we 
onsidered is the maximum size of the re
eiver window, whi
h, in
ombination with the round-trip time, puts a hard limit on the maximum throughput of a TCP
onne
tion. This parameter is straight-forward to measure, sin
e ea
h TCP segment 
ontainsa �eld with the size of the re
eiver window at the time of its sending. Taking the maximumof the observed re
eiver windows provides an a

urate way of measuring the largest re
eiverwindow supported by an endpoint, even for 
onne
tions that grow their limit some time afterthe 
onne
tion is opened. We used this te
hnique to study the distribution of maximum re
eiverwindow sizes in our tra
es, and found a large fra
tion of 
onne
tions with a small maximum.Between 45% and 65% of the 
onne
tions had maximum re
eiver window sizes below 20 KB,whi
h is well below the 64 KB limit. 161



The last network parameter that we studied was the segment loss rate. Loss has a substantialimpa
t on TCP 
onne
tions. First, losses for
e the endpoints to retransmit segments to maintaina reliable 
ommuni
ation. Se
ond, TCP endpoints use losses as the signal of 
ongestion, andrea
t to them by lowering their sending rate. For these two reasons, even a small numberof losses 
an have a dramati
 e�e
t on a TCP 
onne
tion. Measuring loss rates purely fromsegment headers must ne
essarily be based on the same me
hanisms used by TCP endpointto dete
t losses: retransmissions and dupli
ate a
knowledgments. We proposed a te
hnique tomeasure the loss rate of data segments using these signals, where di�erentiating between lossesbefore the monitoring point, dete
ted using dupli
ate a
knowledgments, and losses after themonitoring point, dete
ted using retransmissions. Our evaluation using testbed experimentsshowed that our te
hnique is reasonably a

urate. The experiments also illustrate the impa
tof lost a
knowledgments, whi
h in
rease data segment loss rates, and variability introdu
ed bysimulating losses using dummynet 's dropping me
hanism. We also studied the loss rates in ourtra
es, and found that between 92.5% and 96.2% of the TCP 
onne
tions experien
ed no losses.However, 
onne
tions with one or more losses a

ounted for 46% (Leipzig-II) to 78% (UNC 1AM) of the total bytes in tra
es, and 
onne
tions with loss rates above 1% (i.e., moderatelyhigh) a

ounted for 8% (Abilene-I) to 34% (UNC 1 AM) of the total bytes.The se
ond part of this 
hapter des
ribed our approa
h for 
omparing real and syntheti
traÆ
 using several network-level metri
s. The goal of su
h a 
omparison is to evaluate how
losely syntheti
 traÆ
 generated on a 
losed-loop manner 
an reprodu
e the aggregate 
hara
-teristi
s of real traÆ
. This type of 
omparison 
on
erns itself with the extrinsi
 
hara
teristi
sof the generated traÆ
, whi
h were not a dire
t input to the traÆ
 generators. On the 
on-trary, evaluating how well sour
e-level properties and network-level parameters are preservedby our traÆ
 generation method and its implementation fo
uses on intrinsi
 
hara
teristi
 ofthe generated traÆ
, whi
h are the input to the traÆ
 generation system. We �rst dis
ussedhow to study the time series of pa
ket and byte throughputs, using plots of time series at a
oarse s
ale, tens of se
onds. This broad view was spe
ially useful to identify major trends andfeatures in the traÆ
. We used this approa
h to study the 
omposition of our tra
es, �nding
162



that sequential 
onne
tions are mostly responsible for the features of the time series, being theaggregate throughput for 
on
urrent 
onne
tions generally smooth. We further di�erentiatebetween traÆ
 from 
onne
tions for whi
h we observed every pa
ket between TCP 
onne
tionestablishment and termination, un
overing substantial boundary e�e
ts in the UNC tra
es andto some extent in the Abilene-I tra
e. We also showed that the fra
tion of the total throughputfrom unidire
tional 
onne
tions is generally negligible. The only ex
eption is Abilene-I, whererouting asymmetries explain the �nding that 1/4 of total Cleveland-to-Indianapolis bytes were
arried in 
onne
tions whose pa
kets appear in only one dire
tion of the tra
e.The se
ond way in whi
h we proposed to examine throughput was to 
onstru
t the marginaldistributions of the time series at a �ne-s
ale (10 millise
onds). While marginals ignore depen-den
y stru
ture, their interpretation in networking terms is intuitive. Plots of the body of themarginal distribution provide an overview of the range of �ne-s
ale throughputs in a tra
e,while plots of the tail of the marginal distribution make the highest (�ne-s
ale) throughputsstand out. The analysis of our tra
es showed that Poisson arrivals 
annot be used to modelneither pa
ket or byte throughputs. The bodies of the marginal distributions from our tra
esare between 2 and 3 times more variable that the ones from Poisson arrivals with the samemean. We also showed that the marginal distributions from our tra
es have statisti
ally signi�-
ant departures from normality, whi
h are most prominent on the tails. This was demonstratedusing two methods, Q-Q plots with simulation envelopes and the Kolmogorov-Smirnov test ofnormality. Both methods were applied to s
ales of aggregation between 10 millise
onds and 10se
onds. While the distributions be
ame 
loser to normality as s
ale in
reased, only a few ofthem were statisti
ally 
onsistent with the normal distribution at the 10 se
ond s
ale. For thisreason, our analysis of marginal distribution will rely on CDFs of the bodies and CCDFs of thetails, rather than making assumptions about the underlying statisti
al distribution.Our third type of analysis of throughput fo
used on the long-range dependen
e of traÆ
. Weemploy the wavelet analysis for this purpose, whi
h has been shown to be robust and a

urate inthe literature. This method provides both an overview of the way in whi
h variability 
hangeswith s
ale using wavelet spe
tra plots, and a state-of-the-art estimator of Hurst parameter163



with 
on�den
e intervals. Our dis
ussion illustrated how 
learly wavelet spe
tra and Hurstparameter estimates di�erentiate between the short-range dependen
e in Poisson arrivals andthe long-range dependen
e in our tra
es. Our tra
es show remarkably high Hurst parameterestimates, well above 0.9 for both pa
ket and byte throughput.Finally, the 
hapter introdu
ed the plot of the time series of a
tive 
onne
tions. This typeof analysis is essential to validate the realism of traÆ
 generation for 
ertain experiments whereper-
onne
tion state is important. Our analysis 
onsidered two de�nitions of a
tive 
onne
tions:a 
onne
tion was 
onsidered a
tive between the arrivals of its �rst and last segments, or betweenthe arrivals of its �rst and last segments that 
arried appli
ation data, i.e., not 
ontrol segments.We demonstrated that these two de�nitions have a dramati
 impa
t on the number of a
tive
onne
tions. We will favor the latter de�nition (data a
tive 
onne
tions) for our evaluation inChapter 6, sin
e the fo
us of our modeling is the sour
e-level behavior in terms of useful dataex
hanges. Our dis
ussion of a
tive 
onne
tions also 
onsidered the e�e
t of tra
e boundaries,revealing a large fra
tion of a
tive 
onne
tions from partially-
aptured 
onne
tions.
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CHAPTER 5Generating TraÆ
Today's s
ientists have substituted mathemati
s for experiments, and they wan-der o� through equation after equation, and eventually build a stru
ture whi
hhas no relation to reality. | Nikola Tesla (1857{1943)Reality is merely an illusion, albeit a very persistent one.| Albert Einstein (1879{1955)This 
hapter dis
usses the use of the data a
quisition and modeling methods presented inthe two previous 
hapters to generate traÆ
 in network experiments. In addition, it dis
ussesthe overall methodology we have developed for validating our traÆ
 generation approa
h. Wewill distinguish between validating the method itself, and studying how 
losely the generatedtraÆ
 approximates real traÆ
 for properties not dire
tly in
orporated in the method. Inthis 
hapter, we 
onsider the validation of the method itself, whi
h means to verify that thesour
e-level properties and network-level parameters of the traÆ
 are preserved by the traÆ
generation method. The study of other properties is left for the next 
hapter.5.1 Replaying Tra
es at the Sour
e-LevelOur approa
h to traÆ
 generation is illustrated in Figure 5.1. Given a pa
ket header tra
eTh 
olle
ted from some Internet link, we �rst use the methods des
ribed and evaluated inChapters 3 and 4 to analyze this tra
e and des
ribe its 
ontent. This des
ription is a 
olle
tionof 
onne
tion ve
tors T
. Ea
h ve
tor des
ribes the sour
e-level behavior of one of the TCP



Tmix Traffic 
Generators

Tmix Traffic 
Generators

Trace Partitioning

TESTBED

Original Packet 
Header Trace
Th

Original Packet 
Header Trace
Th

Original
Connection Vectors

Tc

Original
Connection Vectors

Tc

Trace Analysis

Generated Packet 
Header Trace
Th′

Generated Packet 
Header Trace
Th′

Replayed
Connection Vectors

Tc′

Replayed
Connection Vectors

Tc′
Trace AnalysisFigure 5.1: Overview of Sour
e-level Tra
e Replay.
onne
tions in Th using either the sequential or the 
on
urrent a-b-t model. In addition, ea
hve
tor in
ludes the relative start time of ea
h 
onne
tion, and its measured round-trip time,TCP re
eiver window sizes and loss rate. The basi
 approa
h for generating traÆ
 a

ordingto T
 is to replay ea
h 
onne
tion ve
tor. For ea
h 
onne
tion ve
tor, the replay 
onsists ofstarting a TCP 
onne
tion, 
arefully preserving its relative start time, and reprodu
ing ADUsand inter-ADU quiet times. We 
all this traÆ
 generation method sour
e-level tra
e replay,and we have implemented it in a network testbed. Sour
e-level tra
e replay in our environmentimplies the need to �rst partition T
 into disjoint subsets and then assign ea
h subset to a pairof traÆ
 generators. Partitioning is important in our environment, sin
e the high throughputand large number of simultaneously alive 
onne
tions in our real tra
es prevents us from usinga single pair of traÆ
 generators. We provide further details on our partitioning method in5.1.1.The goal of the dire
t sour
e-level tra
e replay of T
 is to reprodu
e the sour
e-level 
har-a
teristi
s of the traÆ
 in the original link, generating the traÆ
 in a 
losed-loop fashion.Closed-loop traÆ
 generation requires to simulate the behavior of appli
ations, using regularnetwork sta
ks to a
tually translate sour
e-level behavior (the input of the generation) intonetwork traÆ
 (the output of the generation). In our implementation, des
ribed in Se
tion5.1.2, this is a

omplished by relying on the standard so
ket interfa
e to reprodu
e the 
om-166
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Figure 5.2: Diagram of the network testbed where the experiments of this dissertationwere 
ondu
ted.muni
ation in ea
h 
onne
tion ve
tor. This is a 
losed-loop manner of generating traÆ
 in thesense that it preserves the feedba
k me
hanisms in the TCP layer, whi
h adapt their behaviorto 
hanges in network 
onditions, su
h as in 
ongestion. In 
ontrast, pa
ket-level tra
e replay,whi
h means to dire
tly reprodu
e Th, is an open-loop traÆ
 generation method where TCPand lower layers are not used, and the traÆ
 does not adapt to network 
onditions.A new pa
ket header tra
e T 0h 
an be obtained from the sour
e-level tra
e replay of T
. Ourvalidation of the traÆ
 generation method is then based on analyzing this tra
e using the samemethods used to transform Th into T
. We then 
ompare the resulting set of 
onne
tion ve
torsT 0
 with the original T
. In prin
iple, they should be identi
al, sin
e T
 represents the invariantsour
e-level 
hara
teristi
s of Th. Se
tion 5.2 studies the results from the sour
e-level tra
ereplay of three tra
es, assessing how 
losely T 0
 approximates T
. T 0h is ne
essarily di�erent fromTh. Besides the sto
hasti
 nature of network traÆ
, this is be
ause T 0h is generated a

ordingto T
, whi
h is a simpli�ed des
ription of the sour
e-level behavior and network parameters inthe original tra
e Th. It is however important to understand the di�eren
e between Th and T 0hin order to understand to what extent T
 des
ribes the original traÆ
. Chapter 6 is an in-depthstudy of this question.
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5.1.1 Tra
e PartitioningThe fo
us of our traÆ
 generation work is the generation of wide-area traÆ
 in a 
losed-loopmanner. This type of generation pro
ess requires to drive a large number of 
onne
tions bysimulating the behavior of the appli
ations on the endpoints. For example, the experimentspresented in the latter part of this 
hapter involve several millions of TCP 
onne
tions, behavingin the manner spe
i�ed by as many 
onne
tion ve
tors. At any given point in time during thegeneration, tens of thousands of 
onne
tions are a
tive. Given CPU, memory and bus speedlimitations, a single pair of traÆ
 generators 
annot handle su
h loads, so we generate traÆ
in our experiment in a distributed fashion. Experiments are 
ondu
ted in the environmentillustrated in Figure 5.2. The goal of the experiment is to generate traÆ
 on the link betweenthe two routers. TraÆ
 is generated by 42 traÆ
 generators, 21 on ea
h side of the network.This type of topology is usually known as the \dumbbell" topology.Ea
h pair of traÆ
 generators (one on ea
h side) is responsible for replaying the sour
e-levelbehavior of a (disjoint) subset of the 
onne
tion ve
tors in T
. In our experien
e, assigning
onne
tion ve
tors to subsets in a round-robin fashion works well. While the resulting subsetsare far from being 
ompletely balan
ed, this simple partitioning te
hnique results in subsets that
an be easily handled by a pair of traÆ
 generators. We 
arefully 
olle
ted statisti
s on CPUand memory utilization from our sour
e-level tra
e replay experiments, and found that no pairof traÆ
 generators was ever overloaded. For the results in this dissertation, CPU utilizationswere never above 60%, and usually well below that. The use of network 
onne
tions involvesallo
ating and deallo
ating pie
es of memory known as \mbufs" for bu�ering purposes. Norequest for this type of memory was ever denied for the experiments reported in this dissertation.While larger tra
es than the ones we use in this dissertation 
ould 
ertainly overload our spe
i�
environment, our approa
h is fully s
alable, in the sense that T
 
an be partition into anarbitrary number of subsets. This means that the number of traÆ
 generators 
an in
rease asmu
h as ne
essary to handle the replay of any tra
e without running into resour
e 
onstraints.This is obviously true as long as no individual 
onne
tion requires more resour
es than thoseprovided by an entire traÆ
 generator end host.168
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Figure 5.3: End-host ar
hite
ture of the traÆ
 generation system.5.1.2 Condu
ting ExperimentsWe have developed a traÆ
 generation tool, tmix , whi
h a

urately replays the sour
e-levelbehavior of an input set of 
onne
tion ve
tors using real TCP so
kets in a FreeBSD environment.In addition, we make use of a modi�ed version of dummynet [Riz97℄ to apply arbitrary pa
ketdelays and pa
ket drop rates to the segments in ea
h 
onne
tion1 Our version of dummynet ,that we will 
all usernet in the rest of this text, implements a user-level interfa
e that 
an beused by tmix instan
es to assign per-
onne
tion delays and loss rates read from the input setof 
onne
tion ve
tors. Finally, a single program, treplay , is used to 
ontrol the setup of theexperimental environment, 
on�gure and start tmix instan
es (assigning them a subset of T
and a traÆ
 generation peer), and 
olle
t the results.Tmix is a user-level program that re
eives a 
olle
tion of 
onne
tion ve
tors as input, andgenerates traÆ
 a

ording to their sour
e-level behavior. Figure 5.3 illustrates the relationshipbetween tmix and the network layers in the traÆ
 generation end host in whi
h a tmix instan
eruns. Tmix instan
es rely on the standard so
ket interfa
e to 
reate a 
onne
tion, send andre
eive ADUs, and to 
lose the 
onne
tion. The so
ket interfa
e is an Appli
ation Programming1We thank the members of the FreeBSD proje
t in general, and in parti
ular the 
reator of dummynet , LuigiRizzo, for their outstanding work. Our empiri
al work would not have been possible without their generouse�orts. 169



Interfa
e (API) that enables user-level programs, su
h as tmix , to 
ommuni
ate with other endhost using a programming abstra
tion similar to a �le. Calls to the so
ket interfa
e are trans-lated by the kernel into requests to use the pro
ess-to-pro
ess 
ommuni
ation servi
e providedby the transport layer (TCP). The transport layer itself uses the host-to-host 
ommuni
ationservi
e provided by the network layer (IP), and the network layer uses the link layer (Ethernetin our 
ase) to handle the network interfa
e and 
reate physi
al pa
kets.UsernetOur experiments also require a spe
ial simulation servi
e, usernet , whi
h is a modi�edversion of dummynet , that provides a highly s
alable way of imposing per-
onne
tion round-trip times and loss rates. These per-
onne
tion round-trip times and loss rates are dire
tly
ontrolled from the user level by tmix instan
es. This requires a dire
t 
ommuni
ation betweenthe tmix instan
e and the usernet layer that is not dire
tly supported by the network sta
k.In order to over
ome this diÆ
ulty, we use a 
overt 
ommuni
ation 
hannel: the sour
e portnumber of ea
h replayed 
onne
tion. By having tmix assigning spe
i�
 sour
e port numbersto ea
h 
onne
tion, we 
an then use io
tl 
alls to modify a table at the usernet layer thatmaps sour
e port numbers to round-trip times and loss rates. When a segment is re
eivedby usernet (from the higher layer), usernet 
an appropriately use the sour
e port number tode
ide whi
h network parameters should be applied. Sour
e port numbers are unique for ea
ha
tive 
onne
tion in the same end host, and they are always present in TCP segments2. Theuser-level program, i.e., the tmix instan
e, has therefore to keep tra
k of the (dynami
) sour
eport number that is used for ea
h new TCP 
onne
tion it opens. Using this te
hnique, usernet
an determine the delay and loss rate that should be applied to ea
h segment simply by readingan entry in a table indexed by sour
e port number, so the lookup time is O(1). The numberof sour
e port numbers is small (216), so this table does not require too mu
h kernel memory(524 KB). No spe
ial infrastru
ture was required to a

urately replay the re
eiver window sizesmeasured for ea
h 
onne
tion. This is be
ause these parameters 
an be dire
tly modi�ed by tmix2Fragmentation takes pla
e below the usernet layer. Figure 5.3 
an be 
onfusing in this regard, sin
e frag-mentation does take pla
e at the IP layer. Usernet is a
tually embedded in the IP layer.170



instan
es using a FreeBSD system 
all. This approa
h has worked very well in our experiments.An alternative solution using traditional dummynet would be to use the programmable APIof ipfw, whi
h makes it possible to add new dummynet rules from a user-level program. Theidea would be to add a new rule for ea
h 
onne
tion, again using the sour
e port number tomap delay/loss to individual 
onne
tions. However, this will mean an O(n) lookup 
ost for ea
hsegment, where n is the number of rules, sin
e the 
urrent implementation of ipfw sear
hesthrough the rules in a sequential fashion. Given the large number of 
onne
tions that ea
h endhost handles during the experiments, this per-segment lookup is una

eptable.Another way of introdu
ing per-
onne
tion round-trip times was used by Le et al. [LAJS03℄.This study used random sampling from a uniform distribution whose parameters were be setat the start of the experiment. As seen in Se
tion 4.1.1, the uniform distribution is not a goodapproximation of real round-trip times. A later re�nement enabling sampling from an empiri
aldistribution was rather in
exible, sin
e it required to modify the dummynet sour
e 
ode andre
ompile it for ea
h experiment. The use of usernet , whi
h is fully 
ontrollable from the userlevel, is far more 
onvenient.Replaying an a-b-t Conne
tion Ve
torTwo instan
es of tmix 
an replay an arbitrary subset of T
 by establishing one TCP 
onne
-tion for ea
h 
onne
tion ve
tor in the tra
e, with one instan
e of the program playing the roleof the 
onne
tion initiator and the other instan
e playing the role of the 
onne
tion a

eptor.To begin, the 
onne
tion initiator opens the 
onne
tion and performs one or more so
ket writesin order to send exa
tly the number of bytes spe
i�ed in the �rst ADU a1. The other endpointa

epts the 
onne
tion and reads as many bytes as spe
i�ed in the ADU a1. For eÆ
ien
y, thesize of these read and write operations was 
hosen to be a multiple of the MSS in our Ethernettestbed (1,460 bytes). We made no attempt to a
tually measure and reprodu
e the size of theI/O operations in the original 
onne
tions. The impa
t of this simpli�
ation is likely to besmall, given the results in Se
tion 3.4. 171



One important issue is how to syn
hronize the two endpoints (i.e., instan
es of tmix ) ofthe 
onne
tion to replay exa
tly the same 
onne
tor ve
tor. This is a

omplished by havingthe �rst ADU unit in ea
h generated 
onne
tion in
lude a 32-bit 
onne
tion ve
tor id in theADU's �rst four bytes. Conne
tion ve
tor ids are assigned to ea
h 
onne
tion ve
tor prior tothe traÆ
 generation, and they are unique. Sin
e this id is part of the 
ontent of the �rst dataunit, the a

eptor 
an unambiguously identify the 
onne
tion ve
tor that is to be replayed inthis new 
onne
tion. If a1 is less than 4 bytes in length, the 
onne
tion initiator will openthe 
onne
tion using a spe
ial port number designated for 
onne
tions for whi
h the id isprovided by the 
onne
tion a

eptor. This approa
h guarantees that the two tmix instan
esalways remain properly syn
hronized (i.e., they agree on the Ci they replay within ea
h TCP
onne
tion) even if 
onne
tion establishment segments are lost or reordered. It also makes itpossible to generate traÆ
 without introdu
ing any 
ontrol traÆ
 into the experiment, i.e.,traÆ
 
omes only from the replay of 
onne
tion ve
tors, and from any need to manage thebehavior of the tmix instan
es.One important design 
onsideration in the implementation of our traÆ
 generation approa
his the assumption of independen
e among 
ows. While this is not 
ompletely realisti
, the levelof aggregation at whi
h we generate traÆ
 makes it a reasonable approa
h (see Hohn et al.[HVA02℄ for a related dis
ussion). This assumption makes traÆ
 generation fully s
alable,sin
e T
 
an be partitioned into an arbitrary number of subsets. As long as there are enoughtraÆ
 generation hosts, we 
an replay traÆ
 from arbitrarily large tra
es.5.1.3 Data Colle
tionWe obtain two types of data from ea
h experiment. First, we 
olle
t a new pa
ket headertra
e T 0h, whi
h 
an be dire
tly 
ompared with the original pa
ket header tra
e Th and analyzedwith our methods to extra
t a new set of 
onne
tion ve
tors T 0
 . This new set 
an be dire
tly
ompared to T
. Se
ond, tmix instan
es 
reate a number of logs. Some tmix logs 
an be usedto verify that the traÆ
 generation host did not run out of resour
es during traÆ
 generation,and they su

essfully replayed their subset of T
. Other tmix logs report on the performan
e of172



the TCP 
onne
tions in the experiments. This in
ludes 
onne
tion and epo
h response timesand the list of un
ompleted 
onne
tions with a des
ription of their progress by the end of theexperiment.5.2 Validation of Sour
e-level Tra
e ReplayIn this se
tion, we 
onsider the sour
e-level tra
e replay of the three pa
ket header tra
es:Leipzig-II, UNC 1 PM, and Abilene-I. The �rst goal is to study how well the replay experimentspreserve the sour
e-level input, whi
h is the 
olle
tion of 
onne
tion ve
tors T
 extra
ted fromthe original tra
e Th. In prin
iple, the 
hara
terization of sour
e-level behavior using the a-b-tmodel represents 
hara
teristi
s of ea
h 
onne
tion that are invariant to network 
onditions, sothe analysis of the generated tra
e Th should result in a 
olle
tion of 
onne
tions ve
tors T 0
that is identi
al to T
. In pra
ti
e, there are some pra
ti
al limitations that make the two setsof 
onne
tion ve
tors di�erent. We will dis
uss the possible 
auses in this se
tion, and presenta statisti
al 
omparison of T
 and T 0
 .The se
ond goal of this se
tion is to study the impa
t of introdu
ing pa
ket losses in thegenerated pro
ess. For this purpose, we 
ondu
ted two sour
e-level tra
e replays of ea
h originaltra
e. The lossless replay reprodu
ed the a-b-t 
onne
tion ve
tor of ea
h original 
onne
tion,and gave ea
h 
onne
tion its measured round-trip time and TCP re
eiver window sizes. Thelossy replay additionally applied its measured loss rate to ea
h replayed 
onne
tion. Di�eren
esbetween the lossless and lossy replays tell us about the robustness of both our sour
e-level 
har-a
terization and traÆ
 generation tools in the presen
e of losses. These losses are 
ompletelyabsent from our experiments unless they are arti�
ially introdu
ed using usernet , as in thelossy replay.
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e-level tra
ereplays.5.2.1 Leipzig-IIThe plots in Figure 5.4 
ompare the distributions of a-type ADU sizes, A, for the originalset of 
onne
tion ve
tors in Leipzig-II, and for the sets of 
onne
tion ve
tors extra
ted fromits lossless and lossy replays. In ea
h plot, the three distributions marked with white symbols
orrespond to sequential 
onne
tion ve
tors, and the ones marked with bla
k symbols to 
on-
urrent 
onne
tion ve
tors. The left plot shows the bodies of the distributions, using CDFs inlog-linear axes. The right plot shows the tails of the distributions, using CCDFs in log-log axes.In general, there is an ex
ellent agreement between the original distributions and those fromthe sour
e-level replays.The bodies of the distributions from sequential 
onne
tions lie on top of ea
h other, evenif per-
onne
tion loss rates are used during the experiments. As dis
ussed in 3.4, our ADUmeasurement algorithm 
an sometimes be ina

urate when one of the last segments of a TCPwindow is lost before the monitor. In this 
ase, the loss is re
overed after a timeout, whi
h
an 
reate a quiet time between the 
onse
utive segment that is long enough to unne
essarilysplit an ADU. This means that a sample ai from one of the a-type data units in T
 be
omestwo samples a0i and a0i+1 in T 0
 , su
h that a0i + a0i+1 = ai. The validation of the data a
quisitionmethods in Se
tion 3.4 demonstrated that ADU splitting due to TCP timeouts is possible,although its impa
t was small even when large data units and aggressive loss rates were used.
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e-level tra
ereplays.The 
omparison of the Leipzig-II lossless and lossy replays, whi
h represent mu
h more realisti
traÆ
, shows that ADU splitting due to TCP timeouts has very little impa
t in pra
ti
e, atleast for the relatively light distribution of loss rates in Leipzig-II. We 
an hardly observe anydi�eren
e between the bodies of the A distributions when losses are added to the replay. The twobodies from the replay are also very similar to the body of the original distribution. The sameis true for the tails, whi
h do not show any signi�
ant di�eren
e. This analysis demonstratesthat tmix 
an a

urately reprodu
e the sizes of a-type data units in sequential 
onne
tions,even when ADUs are large and when experiments are lossy.There is also a very good mat
h between the A distributions for 
on
urrent 
onne
tionve
tors. In some regions, we noti
e somewhat thi
ker lines that 
ome from small o�sets ofthe 
urves. The tails of the A distribution for 
on
urrent 
onne
tions are also very similar,although the one from the lossy replay is slightly heavier for values below 5 MB, and slightlylighter for values above that. This 
ould be explained by the ina

ura
y dis
ussed above, orby tra
e boundaries. In the latter 
ase, losses redu
e throughput, making the replay of lossy
onne
tions are slower than the replay of lossless ones. This means that some a-type ADUsmay not have time to 
omplete their transmission before the end of the experiment.Figure 5.5 
ompares the distribution of b-type ADU sizes, B, for the 
onne
tions ve
torsextra
ted from the original Leipzig-II tra
e and their lossless and lossy sour
e-level replays.For sequential 
onne
tion ve
tors, both the bodies and the tails are identi
al. For 
on
urrent175




onne
tion ve
tors, the distributions show slightly di�erent bodies, but identi
al tails. Thedi�eren
es 
annot be explained by the ADU splitting due to TCP timeouts. If so, we wouldsee a di�eren
e between the distributions from the lossless replay and the ones from the lossyreplay, but this is not the 
ase. The sour
e of the di�eren
e is an inherent problem with thereplay of 
on
urrent 
onne
tions, the mis
lassi�
ation of the replayed 
on
urrent 
onne
tions.While tmix always replays a 
on
urrent 
onne
tion ve
tor in the right way (i.e., de
ouplingthe two dire
tions), the a
tual set of segments observed at the monitor may simply not haveany pair of data segments that satisfy the 
on
urren
y test given in Se
tion 3.3.3. In otherwords, the segments of a replayed 
on
urrent 
onne
tion may exhibit a fortuitous sequentialordering. As a 
onsequen
e, the data analysis algorithm 
lassi�es as sequential some 
onne
tionsfrom the replay that were 
on
urrent in the original tra
e. The sizes of the b-type ADUs inthese mis
lassi�ed 
onne
tions are then absent from the B distribution for replayed 
on
urrent
onne
tions. The small di�eren
e in the plot between the original and replayed distributionsdemonstrates that the number of mis
lassi�
ations is relatively small, so the majority of the
on
urrent 
onne
tions still exhibit 
on
urrent behavior in the replays.It is important to note that the probability of a mis
lassi�
ation de
reases as the sizes of theADUs in
rease, sin
e the larger number of data segments makes �nding a 
on
urrent pair morelikely. Therefore, mis
lassi�
ations be
ome less signi�
ant for the tails of the distributions,sin
e the 
onne
tions whose samples are in the tail have ne
essarily at least one large ADU(the one we see in the tail), and are less likely to be mis
lassi�ed. There is no appre
iabledi�eren
e between the tails of the B distributions from 
on
urrent 
onne
tions, in agreementwith our observation regarding the lower likelihood of mis
lassi�
ation for 
onne
tions withlarge ADUs. Mis
lassi�ed 
onne
tions are des
ribed using the sequential a-b-t model, so theyresult in additional samples for the distributions that 
hara
terize sequential 
onne
tion ve
tors.These extra samples have a mu
h smaller e�e
t on the CDFs, sin
e the number of samples fromsequential 
onne
tions is far larger anyway.Figure 5.6 
onsiders the distribution of the number of epo
hs E extra
ted from the originaland from the generated pa
ket header tra
es. The distributions from the replays are very similar176
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Figure 5.6: Bodies and tails of the E distributions for Leipzig-II and its sour
e-level tra
ereplays.
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e-level tra
ereplays.to the original one. The small di�eren
e 
omes again from the small number of mis
lassi�ed
on
urrent 
onne
tions that were 
onsidered sequential. Mis
lassi�ed 
onne
tions add extrasamples to E whi
h slightly distort the distributions from the replays. There is a somewhatbigger di�eren
e in the far tail, for 
onne
tion ve
tors between 1250 and 1500 epo
hs. Thisdi�eren
e 
ould be explained by mis
lassi�
ation and by tra
e boundaries (
onne
tions replayedmore slowly than in the original that do not replay all of their epo
hs). We observe no di�eren
ebetween lossless and lossy replays in this part of the tail.The next pair of plots, shown in Figure 5.7, examines the distribution TA of the quiet timeson the a

eptor side of TCP 
onne
tions, i.e., between ai and bi. The plot of the bodies showsa very good mat
h between the original distribution and the ones measured from the replays177



of sequential 
onne
tions. The slightly heavier distributions from the replays is due to a smallsimpli�
ation we made regarding the replay of quiet times. Tmix will replay the exa
t quiettimes spe
i�ed in ea
h 
onne
tion ve
tor. However, as dis
ussed in Se
tion 3.3.1, when thesequiet times are extra
ted from a pa
ket header tra
e, the measured quiet time is the sum of two
omponents. The �rst 
omponent 
omes from the quiet time q at the end host, and the se
ond
omponent 
omes from the delay d between the monitor and the endpoint. When tmix replaysa quiet time, it remains quiet for the exa
t duration of the sum of these 
omponents, q + d.Given that the replay in the testbed uses usernet to reprodu
e the measured round-trip timeof ea
h 
onne
tion, there is also a delay between tmix end hosts and monitor, so the analysis ofthe generated pa
ket header tra
e results in quiet times of the form q+2d. It would have beenpossible to eliminate this ina

ura
y by subtra
ting d from the originally measured quiet times.The value of d is equal to half of the one-side transit time, although delayed a
knowledgmentsand queuing 
an a�e
t individual samples. We did not try to in
orporate a 
orre
tion forthis quiet time overestimation problem in our experiments. Besides measurement diÆ
ulties,the extra delay be
omes less signi�
ant in larger quiet times, for whi
h d is far smaller thanq. Larger quiet times are far more signi�
ant, sin
e they are the ones that 
an in
rease theduration of TCP 
onne
tions substantially.There is also a good agreement in the tails of the TA distributions, although the distributionsfrom the replays are slightly heavier than the original distributions. This is not explainedby the previous overestimation of quiet times due the lo
ation of the monitor, be
ause themagnitude of the quiet times in the tail is far larger than the magnitude of d. The sour
e ofthis small mismat
h is the mis
lassi�
ation of some 
on
urrent 
onne
tions. This is true forboth the di�eren
es between the tails from sequential 
onne
tion ve
tors and between the tailsfrom 
on
urrent 
onne
tion ve
tors. It may seem 
ounter-intuitive that the mis
lassi�
ationsmakes both types of tails heavier, instead of making one type of tail heavier and the other onelighter. The explanation is that mis
lassi�
ations move samples from 
on
urrent 
onne
tionsto sequential 
onne
tions. These moved samples satisfy at the same time the following twoproperties:
178
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Lossy Replay Leipzig-II Conc TBFigure 5.8: Bodies and tails of the TB distributions for Leipzig-II and its sour
e-level tra
ereplays.� They have a lighter tail than the tail of the samples left in 
onne
tions 
orre
tly 
lassi�edas 
on
urrent in the analysis of the generated traÆ
. The removal of these samplestherefore makes the shown distributions from 
on
urrent 
onne
tions in the replays heavierthan the one in the original tra
e.� They have a heavier tail than the tail of the samples that they joined in 
onne
tions
orre
tly 
lassi�ed as sequential in the analysis of the generated traÆ
. The addition ofthese samples therefore makes the shown distributions from the sequential 
onne
tions inthe replays heavier than the one in the original tra
e.The distribution TB of quiet times on the initiator side of TCP 
onne
tions, i.e., betweenbi and ai+1, is 
ompared for original and replayed tra
es in Figure 5.8. The bodies of thedistributions show the same kind of mismat
h that we dis
ussed for the TA distributions.For values below a few se
onds the TB distribution from the replay of sequential 
onne
tionsappears heavier that the original distribution. This is due to the overestimation of quiet times,whi
h be
omes less signi�
ant as the quiet time be
omes larger. We 
an also observe thatthe di�eren
e in the shortest quiet time is larger for TB than for TA. The reason is not
ompletely 
lear, but it is probably related to the absen
e of samples in TB from the largesubset of 
onne
tion ve
tors with only one epo
h. The TB distribution from the replay of
on
urrent 
onne
tions appears lighter than the original for values above one se
ond. Thisis due to 
on
urrent 
onne
tion mis
lassi�
ation. The mu
h larger number of samples in the179
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Lossy Replay Leipzig-II ConcFigure 5.9: Bodies of the round-trip time and re
eiver window size distributions for Leipzig-II and its sour
e-level tra
e replays.distributions for sequential 
onne
tions makes the impa
t of the mis
lassi�
ation very small.Besides the replay of the sour
e-level 
hara
teristi
s of the 
onne
tions in Leipzig-II, ourexperiments also involved replaying the network-level parameters measured for ea
h 
onne
tionin T
. The left plot in Figure 5.9 
ompares the distributions of round-trip times extra
ted fromthe original and the generated pa
ket header tra
es. The reprodu
tion was very a

urate forsequential 
onne
tion ve
tors, and the three distributions exa
tly lie on top of ea
h other. Onthe 
ontrary, the distributions for the replayed 
on
urrent 
onne
tions show a strange jump inprobability at 100 millise
onds. The reason for this anomaly, whi
h 
hanged the shape of therest of the distribution, is un
lear.The right plot of Figure 5.9 
ompares the distributions of re
eiver window sizes. Notethat the probability was 
omputed over the total number of data bytes transferred, to givea better sense of the amount of data asso
iated with ea
h re
eiver window size. There is anex
ellent mat
h between the distribution obtained from the Leipzig-II tra
e and those from itstwo sour
e-level replays.The �nal 
omparison examines the distributions of loss rates. The left plot of Figure 5.10shows the distribution of the measured loss rates for the original Leipzig-II tra
e and its replays.There is a reasonable mat
h between the original and the lossy replays, espe
ially for sequential
onne
tions. This is a good result given that usernet 
reates losses by generating random180
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Lossy Replay Leipzig-II ConcFigure 5.10: Bodies the loss rate distributions for Leipzig-II and its sour
e-level tra
ereplays, with probabilities 
omputed per 
onne
tion (left) and per byte (right).numbers in an independent manner. The small di�eren
e is probably explained by a samplesize problem in short 
onne
tions with non-zero loss rates, as dis
ussed in Se
tion 4.1.3, and by
on
urrent 
onne
tion mis
lassi�
ation.Note that we measured some non-zero loss rates in the lossless experiment, in whi
h no ar-ti�
ial losses were introdu
ed. This suggests some problem with the experimental environment,perhaps some network interfa
es that were dupli
ating segments. Su
h dupli
ates 
onfuse theloss rate measurement algorithm, whi
h 
onsiders ea
h retransmission a loss event3. If dupli-
ation is behind our observations, the impa
t on the experiments would be minimal. True lossslows down TCP, but dupli
ation does not.The right plot of Figure 5.10 shows the distributions of loss rates per byte, rather than per
onne
tion as in the left plot. The CDFs show the probability that ea
h byte had of being
arried in a 
onne
tion with at most the given loss rate. For example, the CDFs for the originalsequential 
onne
tions shows that 80% of the bytes were 
arried in 
onne
tions with a loss rateof 1% or less. The CDFs in the right plots are easier to read than those in the left plot, sin
ethey are far smoother. They are also more signi�
ant, sin
e they pay more attention to the
onne
tions that 
arry more bytes, whi
h are those than have a larger impa
t on the load ofthe network. There is a good mat
h between loss rate distributions for the original and thelossy replay. Both the distribution from the replayed sequential 
onne
tions and the one from3This approa
h 
ould 
ertainly be re�ned using the IP ID �eld to distinguish dupli
ations from retransmissions.181



replayed 
on
urrent 
onne
tions are slightly heavier than those from the original tra
es.In general, we always observe heavier loss rates in the replays than in the original data. Theexplanation is the dropping of pure a
knowledgment pa
kets, whi
h was dis
ussed in Se
tion4.1.3. The analysis of the original tra
e 
onsiders only the loss rate of data segments, and notthe 
ombined loss rate of data and a
knowledgment segments. However, the arti�
ial droppingme
hanisms in usernet that is used to 
reate per-
ow losses is applied to all of the pa
kets in the
onne
tions. This means that both data segments and a
knowledgment segments are droppeda

ording to the original loss rates of data segments. The dropping of a
knowledgment segments
an in
rease the loss rate of data segments in the replay, be
ause missing a
knowledgments
an trigger unne
essary retransmissions. Every retransmission is 
onsidered a loss event, andtherefore we have an in
rease of loss rate in the replays, whi
h makes the measured distributionsof (data segment) loss rates heavier for the replays than for the original. It is 
ertainly possibleto modify usernet to apply the dropping rate to data segments only, but our experiments didnot in
orporate this re�nement. It is somewhat unrealisti
 to use a biased dropping me
hanism,so it would be better to re�ne the data a
quisition algorithm to 
onsider both data and purea
knowledgment losses. Measuring pure a
knowledgment loss rates is far more diÆ
ult thatmeasuring data segment loss rates. Endpoints may a
knowledge every data segment, or everyother data segment, and they do so using 
umulative a
knowledgment numbers, rather thanindividual sequen
e numbers as it is done for data segments. It is therefore more diÆ
ult todetermine when an a
knowledgment does not arrive as expe
ted.5.2.2 UNC 1 PMThe se
ond tra
e 
onsidered in our validation of the sour
e-level tra
e replay approa
his the UNC 1 PM tra
e. This tra
e is shorter than Leipzig-II (1 hour vs. 2 hours and 45minutes) but it has mu
h higher throughput, whi
h results in a substantially larger number ofsamples in the distributions that we will examine in this se
tion. Figure 5.11 
ompares the Adistributions extra
ted from the UNC 1 PM and its lossless and lossy replays. The bodies of theA distributions from sequential 
onne
tions reveal no di�eren
e between original and generated182
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Lossy Replay UNC Conc AFigure 5.11: Bodies and tails of the A distributions for UNC 1 PM and its sour
e-leveltra
e replays.tra
es. The tail of the A distribution from the lossy replay is slightly lighter than the one fromthe original tra
e and the one from the lossless replay. This di�eren
e 
an be attributed totra
e boundaries. Losses make the replay of some 
onne
tions slower, whi
h 
an easily resultin some 
onne
tions that do not have time to �nish during the replay experiment. This e�e
tis more important for the largest data units, those in the tail of the distribution, sin
e they arethe ones that require a substantial amount of time to 
omplete their transmission even withoutlosses.Con
urrent 
onne
tions show a slightly worse mat
h. This is due to the mis
lassi�
ationproblem des
ribed in the previous se
tion. As pointed out before, mis
lassi�
ations are morelikely to o

ur in 
on
urrent 
onne
tions with small ADUs. These 
onne
tions have a smallnumber of pa
kets, making the observation of 
on
urrent pairs less likely. As a result, thebodies of the distributions from the replays are slightly heavier, sin
e some fra
tion of thesmall ADUs disappeared from the A distribution for 
on
urrent 
onne
tions. On the 
ontrary,mis
lassi�
ations had no visible impa
t on the A distribution for sequential 
onne
tions. Thisis be
ause the number of a-type ADUs in sequential 
onne
tion ve
tors is mu
h larger thanthe number of samples from mis
lassi�ed 
onne
tions. The tails of the A distributions for
on
urrent 
onne
tions show a good agreement.The B distributions from the original UNC 1 PM tra
es and its replays are even 
loser,as Figure 5.12 shows. We 
an barely see any di�eren
es in bodies of the distributions from183
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Figure 5.13: Bodies and tails of the E distributions for UNC 1 PM and its sour
e-leveltra
e replays.
on
urrent 
onne
tions and no di�eren
e for those from sequential 
onne
tions. The tails arealso very similar, and the slight di�eren
es 
an be explained using the same arguments putforward in the dis
ussion of the A distributions (i.e., tra
e boundaries and mis
lassi�
ations).Figure 5.13 shows an ex
ellent mat
h between the number of epo
hs in sequential 
onne
tionve
tors measured from the UNC 1 PM tra
es, and those measured from the replays. The bodiesof the distributions are identi
al, and the tails show only a very minor di�eren
e. We thereforeobserve a better agreement between original and replay for UNC 1 PM than for Leipzig-II (seeFigure 5.6).The plots in Figure 5.14 study the TA distributions. The bodies for sequential 
onne
tionsshow an ex
ellent mat
h between the inter-ADU quiet time measured from the original UNC 1184
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e-leveltra
e replays.PM tra
e, and those measured from the generated tra
es. The bodies for 
on
urrent 
onne
tionsare also very similar. The small di�eren
e for the smallest values requires further investigation.We should not see these samples here be
ause our only method for dete
ting inter-ADU quiettimes in 
on
urrent 
onne
tions is to identify periods of ina
tivity above 500 millise
onds. Wedo not observe su
h a di�eren
e for Leipzig-II and Abilene-I. The tails of the distributions arevery similar for sequential and 
on
urrent 
onne
tions. As it was also the 
ase in the data fromLeipzig-II shown in Figure 5.7, we observe slightly heavier tails from the replays, whi
h 
an beexplained by mis
lassi�
ations.Figure 5.15 shows the bodies and the tails of the TB distributions. Data from sequential
onne
tions shows an ex
ellent mat
h for values above 1 se
ond, and even the far tail is very185
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Figure 5.16: Bodies of the round-trip time and re
eiver window size distributions for UNC1 PM and its sour
e-level tra
e replays.
losely approximated. For values below 1 se
ond, we observe that the replays have heavier dis-tributions. This is explained by the quiet time overestimation problem dis
ussed in the analysisof the Leipzig-II results. Con
urrent 
onne
tions also show an ex
ellent mat
h between originaland generated tra
es. The artifa
t in the smallest inter-ADU quiet times that was observed forthe TA distributions from 
on
urrent 
onne
tions is also present in the TB distributions from
on
urrent 
onne
tions.The next four plots study how 
losely the replays of UNC 1 PM approximated the network-level parameters observed in the original plot. The left plot of Figure 5.16 shows the distri-butions of round-trip times. For sequential 
onne
tions, there was no di�eren
e between theround-trip times obtained from the original tra
e and those obtained from its replays. For 
on-
urrent 
onne
tions, there is only a very small di�eren
e, whi
h we 
an attribute to 
on
urrent
onne
tion mis
lassi�
ations. The large masses of probability for 100 millise
onds observed inthe Leipzig-II replays are not present in the UNC 1 PM replays.Regarding the distribution of TCP re
eiver window sizes, the plot on the right in Figure5.16 shows a good mat
h between the original data and the one obtained from the analysis ofthe generated pa
ket header tra
es. The tiny di�eren
e 
an again be explained by 
on
urrent
onne
tion mis
lassi�
ations, but it is 
lear that the replayed traÆ
 a

urately 
aptured theuse of TCP re
eiver window sizes.
186
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Lossy Replay UNC ConcFigure 5.17: Bodies of the loss rate distributions for UNC 1 PM and its sour
e-level tra
ereplays, with probabilities 
omputed per 
onne
tion (left) and per byte (right).Figure 5.17 studies the distributions of loss rates rates obtained from original and replayedtraÆ
. As indi
ated in the analysis of the replays of Leipzig-II, mat
hing loss rate is diÆ
ultgiven the use of independent pa
ket dropping in usernet . Consequently, we 
an 
onsider theapproximation of the loss rates shown in the left plot of the �gure reasonable, espe
ially in the
ase of sequential 
onne
tions, for whi
h many more samples were available. In 
ontrast to theseper-
onne
tion loss rates, the right plot of the �gure shows a substantially 
loser approximationwhen loss rate per bytes are 
onsidered. Note also that di�eren
e between distributions of lossrates for sequential and 
on
urrent 
onne
tions is far smaller in the 
ase of probabilities perbyte.5.2.3 Abilene-IWe 
on
lude the validation of our sour
e-level tra
e replay method by 
omparing the origi-nal Abilene-I tra
e and its lossless and lossy replays. This is the tra
e with the highest averagethroughput. Figure 5.18 shows that the A distributions measured from the replayed tra
esare very similar to those measured from the original tra
e. Given the 
ompletely di�erent Adistributions for sequential and 
on
urrent 
onne
tions, we would expe
t that any substantialnumber of mis
lassi�ed 
on
urrent 
onne
tions would result in distributions from the replaysthat signi�
antly diverge from the original distributions. The ex
ellent approximation in this�gure, and for the B distributions shown in Figure 5.18, suggest that the number of mis
las-187
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e-level tra
ereplays.si�
ations was very small. We also observe a very good mat
h for the tails where the onlydi�eren
e is found for the largest values. In some 
ases, the replay is slower than the originaltra
e, so some of the largest ADUs may not have had enough time to 
omplete. Adding lossesto the replay experiment did not introdu
e any noti
eable di�eren
e in the measured distri-butions, whi
h 
on�rms the robustness of the data a
quisition and generation methods to the
hallenge of lossy environments.The two plots in Figure 5.19 show that the original distribution of b-type ADU sizes isalmost identi
al to the ones obtained from the lossless and lossy replays. This is true both forthe bodies studied in the plot on the left, and for the tails studied in the plot on the right. It isquite diÆ
ult to �nd any region where the distributions di�er. It is also 
lear that the additionof losses to the replay did not modify the sizes of the ADUs in the experiment.Figure 5.20 shows that the bodies and the tails of the distributions of the numbers of epo
hsare 
losely approximated in the sour
e-level replays. There is only a very slight di�eren
e in thefar tail of the distributions. This 
ould be attributed to a few 
onne
tions that were replayedmore slowly than in the original tra
e, so they did not have time to 
omplete all of their epo
hs.Another possibility is that a small number of 
on
urrent 
onne
tions with a large number ofepo
hs were mis
lassi�ed. The probabilities in the tail are so small, that even a few samples
an 
reate a visible di�eren
e.
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e-leveltra
e replays.The quality of the replay of quiet times between ADUs is studied in the next two �gures.Figure 5.21 shows that the TA distributions are a

urately approximated in the replays. Thisis true both for sequential and 
on
urrent 
onne
tions. We only observed a small di�eren
e inthe far tail, where the replays show slightly heavier values for quiet times above 1000 se
onds.As in the 
ase of the E distributions, both experiment boundaries and 
on
urrent 
onne
tionmis
lassi�
ation 
an explain the di�eren
e.Figure 5.22 examines the distribution TB of quiet times on the initiator side. As shownon the left, there is an ex
ellent mat
h between the bodies of the distributions from the orig-inal tra
e and those from the replays. The only di�eren
e is found in the distributions fromsequential 
onne
tions for quiet times below 1 se
ond. The quiet times measured from thereplays be
ame in
reasingly heavier than those from the original tra
e as their magnitude de-
reased. This �nding is 
onsistent with ina

ura
ies due to the overestimation of quiet times,sin
e end-host lo
ation has a larger impa
t on the measured quiet time as the magnitude ofthe appli
ation-level quiet time de
reases. The tails of the distributions reveal an ex
ellentapproximation. It is also important to note that the distributions for 
on
urrent 
onne
tionsdo not show the unexpe
ted values below 500 millise
onds that were observed for UNC 1 PM.The analysis of the round-trip times in Figure 5.23 reveals an ex
ellent mat
h between theoriginal and the replay distributions of round-trip times. The replay of 
on
urrent 
onne
tionsexhibits the same artifa
t at 100 millise
onds en
ountered in the replays of the Leipzig-II tra
e,190
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ereplays, with probabilities 
omputed per 
onne
tion (left) and per byte (right).but the magnitude is far smaller. The distributions of re
eiver window sizes show very 
loseapproximations, with only a small divergen
e for 
on
urrent 
onne
tions, whi
h 
an be easilyexplained by a small number of mis
lassi�
ations.The distribution of loss rates in the lossy replay is very 
lose to the original distribution,as shown in Figure 5.24. The CDFs on the left plot show 
umulative probabilities 
omputedper 
onne
tion, and they reveal a remarkably good mat
h between the original and the lossyreplay, both for 
on
urrent and sequential 
onne
tions. This is signi�
antly better than in the
ases of Leipzig-II and UNC 1 PM, whi
h were studied in Figures 5.10 and 5.17. The bettermat
h is mostly explained by two 
hara
teristi
s of the original data. First, Abilene-I hasthe largest fra
tion of lossy 
onne
tions, whi
h more than doubles the one in Leipzig-II. This191



means a wider y-axis that redu
es the distan
e between the distributions in the plot. Se
ond,the heavier distribution of 
onne
tion sizes in the Abilene-I tra
e means a larger number ofpa
kets, whi
h makes the use of independent drops approximate the intended loss rates morea

urately. The right plot shows a good mat
h when the distributions of the per-byte loss ratesare 
onsidered.5.3 SummaryThis 
hapter presented our traÆ
 generation method, sour
e-level tra
e replay. The �rststep in sour
e-level tra
e replay is to transform a pa
ket header tra
e into a set of 
onne
tionve
tors, whi
h des
ribe its sour
e-level behavior using the sequential or the 
on
urrent versionof the a-b-t model. Conne
tion ve
tors also in
lude three network-level parameters, round-triptime, TCP re
eiver window size and loss rate. The a
tual traÆ
 generation 
onsists of replayingthe 
hara
teristi
s of ea
h 
onne
tion ve
tor in an a

urate manner. We demonstrated thepossibility of this approa
h using an implementation in a network testbed, whi
h in
ludes adistributed traÆ
 generator, tmix , that 
an replay sour
e-level behavior, and 
oordinate witha pa
ket manipulation layer, usernet , to impose spe
i�
 round-trip times and loss rates toea
h 
onne
tion. The approa
h, and its implementation, was then validated by 
omparing thestatisti
al 
hara
teristi
s of three tra
es and those of their replays. This 
omparison fo
usedon how well the replay preserved the original parameters, i.e., the sour
e-level des
ription andthe network-level 
hara
teristi
s.The validation results showed a good mat
h between original tra
es and their replays, whi
h
on�rms the highly a

urate reprodu
tion of sour
e-level properties that 
an be a
hieved withour approa
h. The di�eren
es, whi
h are shown to be small or nonexistent in every 
ase, aredue to the following 
auses:� There is no guarantee that the replay of a 
on
urrent 
onne
tion exhibits measurable
on
urren
y, i.e., that a pair of 
on
urrent data segments 
an be observed in the gener-192



ated tra
e. This results in 
onne
tions that are replayed as 
on
urrent but 
lassi�ed assequential in T 0
 , therefore adding spurious samples to the 
hara
terization of sequential
onne
tions, and removing samples from the 
hara
terization of 
on
urrent 
onne
tions.In general, this a�e
ts the 
omparison of 
on
urrent 
onne
tions more substantially, sin
ethe number of samples from 
on
urrent 
onne
tions is usually far smaller. This problemis inherent to the form of the 
on
urrent a-b-t model used in this dissertation.� Our measurement of quiet times tended to overestimate their durations, sin
e it did not
ompensate for the delay between the end host and the monitor. This di�eren
e is onlysigni�
ant for the smallest quiet times, whose magnitude is similar to that of networkdelays. A possible re�nement of our measurement method that would eliminate theoverestimation of quiet times and make the replay of quiet times even more a

urate, isto subtra
t the 
orresponding one-side transit time from ea
h measured quiet time.� Usernet uses independent dropping to simulate losses, and this is not 
ompletely a

u-rate. Conne
tions often have too few pa
kets to 
onverge to the intended loss rate per
onne
tion. If loss rates per byte are 
onsidered, the replay is shown to be very 
lose tothe original distribution. A
hieving a 
lose approximation of the original loss rate wouldinvolve some form of dependent dropping.� Measured drop rates 
onsider only data segments, but the loss rate simulation also dropspure a
knowledgments with the same probability. This makes the distributions of lossrates in the lossy replays slightly above the intended values. Addressing this ina

ura
yrequires developing a measurement algorithm that 
an determine the loss rate of purea
knowledgments, whi
h seems rather diÆ
ult, or modifying usernet to drop only datasegments, whi
h is a somewhat arti�
ial solution.The analysis of the validation results also served us to verify the robustness of our dataa
quisition and generation method to the introdu
tion of losses with regard to the sour
e-level
hara
teristi
s. We found very little di�eren
e, if any, between the results from the lossless andlossy replays, whi
h 
on�rms the a

ura
y of the analysis even in the fa
e of pa
ket losses and193



reordering. TCP timeouts, whi
h 
an sometimes 
onfuse the heuristi
 used to split ADUs inthe same dire
tion, do not appear to have any signi�
ant e�e
t.
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CHAPTER 6Reprodu
ing TraÆ
Sometimes the appropriate response to reality is to go insane.| Philip K. Di
k (1928{1982), ValisDissertations are not �nished; they are abandoned.| Frederi
k P. Brooks, Jr. (1931{)This 
hapter examines the statisti
al 
hara
teristi
s of sour
e-level tra
e replay experiments,
omparing them to those of their 
orresponding original tra
es. As dis
ussed in Chapter 5, andillustrated in Figure 5.1, a pa
ket header tra
e Th and its sour
e-level tra
e replay 
an be
ompared at two levels. The �rst level is how well the set of 
onne
tion ve
tors T
 extra
tedfrom Th are preserved by the tra
e replay experiments. This means to 
olle
t a pa
ket headertra
e T 0h from the replay and extra
t a new set of 
onne
tion ve
tors T 0
 . Se
tion 5.2 presented a
omparison of T
 and T 0
 for three tra
es. It demonstrated that the 
hara
teristi
s of Th 
apturedby T
 are a

urately reprodu
ed by the traÆ
 generation method and its implementation. These
ond level at whi
h tra
es and their replays 
an be 
ompared is to dire
tly extra
t statisti
sfrom Th and T 0h. If these statisti
s are reasonably 
lose, we 
an say that the traÆ
 generationmethod reprodu
es the original traÆ
 using 
losed-loop traÆ
 generation. This is the typeof 
omparison dis
ussed in this 
hapter. As we will show, sour
e-level tra
e replay generallyresults in a good approximation of the statisti
al 
hara
teristi
s of the original traÆ
, whi
hsupports the use of the a-b-t model as a foundation for realisti
 traÆ
 generation.



6.1 Beyond Comparing Conne
tion Ve
torsThe main goal of this dissertation is to improve the state-of-the-art in 
losed-loop traÆ
generation by developing a better approa
h to sour
e-level modeling. In parti
ular, we presentedin Chapter 3 the sequential and 
on
urrent versions of the a-b-t model, whi
h provide a �rstmethod for des
ribing sour
e-level behavior in an appli
ation-independent manner. We alsodis
ussed an eÆ
ient data a
quisition algorithm for extra
ting a-b-t 
onne
tion ve
tors fromthe pa
ket headers of TCP 
onne
tions. The �rst way in whi
h we justi�ed our sour
e-levelmodel was by examining 
onne
tions from di�erent appli
ations, and demonstrating that theirsour
e-level des
riptions in terms of a-b-t 
onne
tion ve
tors properly 
aptured their sour
e-levelbehavior. The se
ond way in whi
h we 
an justify the model is to study the traÆ
 generatedusing this model. If generated traÆ
 is shown to 
losely approximate original traÆ
, this wouldstrongly support the 
laim that the a-b-t model is a good des
ription of sour
e behavior. Inother words, given that the statisti
al 
hara
teristi
s of Th are obviously a fun
tion of sour
ebehavior, being able to generate a T 0h statisti
ally similar to Th would 
on�rm the quality of T
as a des
ription of the original sour
e behavior.Comparing Th and T 0h is however a subtle exer
ise. The a
tual replay of T
 ne
essarilyrequires 
hoosing a set of network-level parameters, su
h as round-trip times and TCP re
eiverwindow sizes, for ea
h TCP 
onne
tion in the sour
e-level tra
e replay experiment. The exa
tset of pa
kets and their arrival times is a dire
t fun
tion of these parameters, as explained inChapter 4. As a 
onsequen
e, if we were to 
ondu
t a sour
e-level tra
e replay using arbitrarynetwork-level parameters, we would obtain a T 0h with little resemblan
e to the original Th. Thereplayed a-b-t 
onne
tion ve
tors may be a perfe
t des
ription of the sour
e behavior drivingthe original 
onne
tions, but the generated T 0h would still be very di�erent from the original Th.To address this diÆ
ulty, the replay should in
orporate network-level parameters individuallyderived from Th for ea
h 
onne
tion. In Chapter 4, we des
ribed and evaluated methods formeasuring three important network-level parameters: round-trip time, TCP re
eiver windowsize and loss rate. While this set of parameters is by no means 
omplete, it does in
lude themain parameters that a�e
t the average throughput of a TCP 
onne
tion, [PFTK98℄. In this196




hapter, we examine the results of several sour
e-level tra
e replay experiments, showing thatthe generated traÆ
 is remarkably 
lose to the original traÆ
. This is a strong justi�
ation ofour sour
e-level modeling approa
h, sin
e it demonstrates that the 
losed-loop replay of a-b-t
onne
tion ve
tors provides a good approximation of the original traÆ
.In
orporating network-level properties is important, but it is 
riti
al to understand the mainshort
oming of this approa
h. The goal of our work is not to make the generated traÆ
 T 0hidenti
al to the original traÆ
 Th, whi
h 
ould be a

omplished with a simple pa
ket-level replay.The goal is to develop a 
losed-loop traÆ
 generation method based on a ri
h 
hara
terizationof sour
e behavior. Comparing Th and T 0h is a means to understand the quality of traÆ
generation method, where quality is 
onsidered to be higher as the original tra
e is more 
loselyapproximated. By 
onstru
tion, traÆ
 generated using sour
e-level tra
e replay 
an never beidenti
al to the original traÆ
. The statisti
al properties of original pa
ket header tra
es arethe result of multiplexing a large number of 
onne
tions into a single link, and these 
onne
tionstraverse a large number of di�erent paths with a variety of network 
onditions. It is simplynot possible to fully 
hara
terize this environment and reprodu
e it in a laboratory testbedor in a simulation. This is both be
ause of the limitations of passive inferen
e from pa
ketheaders, and be
ause of the sto
hasti
 nature of network traÆ
. Sour
e-level tra
e replay 
annever in
orporate every fa
tor that shaped Th, and therefore di�eren
es between Th and T 0hare unavoidable. Still, �nding a 
lose mat
h between an original tra
e and its replay, even ifthey are not identi
al, 
onstitutes strong eviden
e in favor of our a-b-t model and our dataa
quisition and generation methods. It also demonstrates the feasibility of generating realisti
network traÆ
 in a 
losed-loop manner that resembles a ri
h traÆ
 mix.Besides evaluating sour
e-level tra
e replay by 
omparing original tra
es and their re-plays, this 
hapter also 
onsiders whether detailed sour
e-level modeling is ne
essary to a
hievehigh-quality traÆ
 generation. This is a

omplished by 
omparing traÆ
 generated using T
(i.e., replaying 
onne
tion ve
tors and network-level parameters) and traÆ
 generated usinga simpli�ed version of T
 with 
ollapsed epo
hs, whi
h we will name T 
oll
 . Formally, givena sequential 
onne
tion ve
tor Ci = (e1; e2; : : : ; en); n � 1, with epo
h tuples of the form197



ej = (aj ; taj ; bj ; tbj), we de�ne the version of Ci with 
ollapsed epo
hs asC
olli = (( nXi=1 ai; 0; nXi=1 bi; 0)):The only a-type ADU size in the resulting 
onne
tion ve
tor is the total amount of data sentfrom the 
onne
tion initiator to the 
onne
tion a

eptor, and the only b-type ADU size is thetotal amount of data sent from the 
onne
tion a

eptor to the 
onne
tion initiator. No quiettime is part of a 
onne
tion ve
tor after 
ollapsing its epo
hs. Similarly, given a 
on
urrent
onne
tion ve
tor Ck = (�; �), where� = ((a1; ta1); (a2; ta2); : : : ; (ana ; tana))and � = ((b1; tb1); (b2; tb2); : : : ; (bnb ; tbnb));we de�ne the version of Ck with 
ollapsed epo
hs asC
ollk = (( naXi=1 ai; 0); ( nbXi=1 bi; 0)):TraÆ
 generated a

ording to T 
oll
 does not in
orporate any internal sour
e-level stru
ture of
onne
tions, i.e., epo
hs and inter-ADU quiet times are ignored. For this reason, we say thatthe 
ollapsing of epo
hs \removes" detailed sour
e-level modeling. Note however that even ifepo
hs are 
ollapsed, the total amount of data transferred in ea
h dire
tion does not 
hange.The results in this 
hapter demonstrate that traÆ
 generated using T
 is substantially 
loser tothe original traÆ
 than traÆ
 generated using T 
oll
 .The evaluation of sour
e-level tra
e replay presented in this 
hapter examines the results ofreplaying �ve tra
es. These tra
es were �rst 
onsidered in Se
tion 3.5: Leipzig-II, UNC 1 PM,UNC 1 AM, UNC 7:30 PM and Abilene-I. Our analysis 
ompares the statisti
al 
hara
teristi
sof ea
h of these tra
es and their replays using the following metri
s:
198



� time series of byte throughput,� time series of pa
ket throughput,� Body and tail of the marginal distribution of byte throughput,� Body and tail of the marginal distribution of pa
ket throughput,� Wavelet spe
trum (logs
ale diagram),� Estimated Hurst parameter and its 
on�den
e interval, and� time series of the number of a
tive 
onne
tions.These metri
s were introdu
ed in Se
tion 4.2. For ea
h original tra
e, we 
ompare four di�erentreplays, 
ondu
ted using tmix and usernet in the testbed shown in Figure 5.2. The �rst replayis the lossless replay , whi
h replayed the a-b-t 
onne
tion ve
tors in T
, giving ea
h TCP
onne
tion its measured round-trip time and TCP re
eiver window sizes. The se
ond replayis the lossy replay, whi
h was identi
al to the �rst one, but it also applied random pa
ketdropping to ea
h TCP 
onne
tion a

ording to its measured loss rate. The third replay, is thelossless replay with 
ollapsed epo
hs, whi
h replayed the a-b-t 
onne
tion ve
tors after they hadtheir epo
hs 
ollapsed, and it also gave ea
h 
onne
tion its measured round-trip time and TCPre
eived window sizes. The fourth replay is the lossy replay with 
ollapsed epo
hs, whi
h wasidenti
al to the third one but in
orporated loss rates. We will often refer to the �rst two replaysas full replays and to the se
ond two replays as 
ollapsed-epo
hs replays.It is important to note that our method for in
orporating losses into the experiments,random dropping a

ording to the measured probability of loss per 
onne
tion, is not 
onsistentwith 
losed-loop traÆ
 generation. We are by no means suggesting that loss rates should bein
orporated in this manner into regular networking experiments that require 
losed-loop traÆ
generation. In su
h experiments, losses should only be the result of 
ongestion on network linksand bu�ering limitations. If this is the 
ase, the endpoints generating syntheti
 traÆ
 
an notonly rea
t to the network 
onditions (e.g., redu
ing sending rates when 
ongestion is dete
ted),but also modify them (e.g., redu
ing overall 
ongestion thanks to the lower sending rates). This199



is the right approa
h to reprodu
e the essential feedba
k loop in TCP whi
h should be used inempiri
al studies of TCP performan
e.However, loss is an important fa
tor in TCP behavior (see Se
tion 4.1.3), so our lossyexperiments should result in a T 0h that is 
loser to the original Th. By in
orporating losses,we eliminate one possible 
ause of divergen
e between original and replayed tra
es whi
h 
ould
onfuse our assessment of our sour
e-level modeling approa
h. Comparing lossless and lossyreplays enables a more systemati
 evaluation of our traÆ
 modeling and generation methods,and it also helps to understand the impa
t of loss rates on the generated traÆ
. Losses areshown to have only a minimal e�e
t on some tra
es and for some metri
s, but a mu
h moresubstantial e�e
t on others.The analysis in this se
tion 
on�rms the high-quality of the syntheti
 traÆ
 generated usingsour
e-level tra
e replay. Our analysis reveals some (mostly minor) di�eren
es between originaltraÆ
 and replay traÆ
. While we put forward some hypotheses about the 
ause of thesedi�eren
es, their 
on�rmation requires further analysis. This additional work, whi
h wouldinvolve both analysis and experimentation, would 
ertainly be enlightening. It would tell usmore about the limitations of our approa
h, and even about the inherent limitations of testbedexperimentation. However, we have 
hosen not to pursue this avenue here. As dis
ussed above,our goal is not to generate a T 0h equal to Th, but to 
onvin
ingly demonstrate the bene�ts ofour 
losed-loop traÆ
 generation method. We believe this 
hapter a
hieves this goal, so we donot present any further analysis beyond the 
omparison of �ve tra
es and their four types ofsour
e-level replays using a ri
h set of metri
s.6.2 Sour
e-level Replay of Leipzig-II6.2.1 Time Series of Byte ThroughputThe �rst tra
e we 
onsider in this 
hapter is Leipzig-II. It has a duration of 2 hours and45 minutes, and its average throughput is relatively low. We will �rst 
onsider the traÆ
200
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Lossy Replay with Collapsed EpochsFigure 6.1: Byte throughput time series for Leipzig-II inbound and its four types of sour
e-level tra
e replay.re
eived by Leipzig's hosts from Internet hosts, i.e., in the inbound dire
tion with respe
t tothe University of Leipzig. Figure 6.1 
ompares the original time series of byte throughput (solidline) and four di�erent sour
e-level tra
e replays (dashed lines). The plot on the left shows thefull replays of T
 with and without imposing loss rates using usernet . The plot shows that theoriginal time series is highly bursty1, even when 1-minute bins are 
onsidered. Both replays
losely approximate the original traÆ
, showing a strikingly good mat
h in most regions. Italso shows very little di�eren
e between lossless and lossy replays. This suggests that losseshad a very moderate impa
t in the original tra
e, at least regarding the time series of bytethroughput.We also observe in the left plot of Figure 6.1 several major throughput spikes, e.g., inminutes 25 and 105, that are very 
losely approximated by both replays. It is 
lear that thesour
e-level nature of these spikes was a

urately 
aptured by our modeling approa
h. In a fewother regions, the original and the replayed tra
es do not mat
h so well. We have for example aspike in the throughput of the replays in minute 55 that was not present in the original traÆ
.This suggests that, for some number of 
onne
tions a
tive in that region of the tra
e, our modeldid not 
apture a signi�
ant limitation of throughput that was present in the original tra
e.This limitation 
ould be at the sour
e level or at the network level, but there is no way to know1The term bursty does not have a unique meaning. In this paragraph, it simply refers to high variability. Someauthors 
onsider traÆ
 more bursty as its long-range dependen
e be
omes stronger [WP98℄, while others as itsmarginal distribution be
omes less Gaussian [SRB01℄. We make use of these more formal de�nitions, dis
ussedin Chapter 4, in later se
tions. 201
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Lossy Replay with Collapsed EpochsFigure 6.2: Byte throughput time series for Leipzig-II outbound and its four types ofsour
e-level tra
e replay.without further analysis. Given our traÆ
 generation methods, we 
an however say that loss isvery unlikely to be behind this di�eren
e, sin
e both lossless and lossy replays show the samespike. We 
an also observe the opposite phenomenon in several lo
ations, su
h as minutes 90and 152, were we �nd dit
hes in the throughput of the replays. Here our measurement andmodeling approa
h seems to be imposing an arti�
ial limitation to the throughput of one ormore 
onne
tions. While this suggests that further re�nement is possible, the plot 
learly showsthat our approa
h result in an ex
ellent approximation of the original byte arrival pro
ess andits overall burstiness.The right plot of Figure 6.1 
ompares the original time series of byte throughput and the onesfrom the lossless and lossy replays with 
ollapsed epo
hs. The approximation is also generallygood, but the replays appear more bursty, whi
h seems rather signi�
ant given the high level ofaggregation (1-minute bins). The replays with 
ollapsed epo
hs results in several new spikes inwhi
h the replay is well above the original throughput. This means that removing the sour
e-level stru
ture enabled arti�
ially higher throughputs for some number of replayed 
onne
tions.Despite these diÆ
ulties, it is important to note that the 
ollapsed-epo
hs replay a
hieves areasonably good approximation of original throughput with a mu
h simpler sour
e-level model.The 
ollapsed-epo
hs replays 
ould then be suÆ
ient for some kinds of experimental studies inwhi
h only a good reprodu
tion of the time series of byte throughput is required.The time series of byte throughput in the outbound dire
tion is studied in Figure 6.2. The202
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ket throughput time series for Leipzig-II inbound and its four types ofsour
e-level tra
e replay.
omparison of the original and the full replays is found in the left plot. As we observed for theopposite dire
tion, the time series from the replays 
losely tra
k the original one, and losses donot have a signi�
ant impa
t. We �nd a number of sharp spikes and dit
hes from the originaltraÆ
 that are well reprodu
ed by the replays, e.g., minutes 88, 97 and 143. We also �nd somearti�
ial ones not present in the original, notably the spike in the replay on minute 38 and thedit
h around minute 70. The right plot 
ompares the original and the 
ollapsed-epo
hs replays,whi
h are again shown to be somewhat more bursty that the full replays throughout the tra
e.6.2.2 Time Series of Pa
ket ThroughputThe analysis of the time series of pa
ket throughput reveals larger di�eren
es betweenoriginal and replayed traÆ
. Figure 6.3 shows the time series for the inbound dire
tion. The
omparison of the time series from the original tra
e and those from the full replays reveals a
lose approximation for the �rst 60 minutes, and a 
onsistently lower pa
ket throughput forthe rest of the tra
e. The replays generally have between 2% and 5% less pa
kets per 1-minutebin that the original tra
e, although they mostly tra
k the original shape. The right plot showsthat the 
ollapsed-epo
hs replays result in far lower pa
ket throughput for the entire tra
e,between 20% and 40% below the original. This 
learly shows that the detailed modeling ofsour
e-level stru
ture a

omplishes a more realisti
 traÆ
 generation in terms of the numberof generated pa
kets. The main reason is the modeling of epo
hs, whi
h often in
reases the203



number of segments per 
onne
tion. Replaying an epo
h with non-zero ADU sizes ne
essarilyinvolves sending two pa
kets, even if the sizes of the ADUs are very small. An epo
h involves ane
essary ex
hange of data, so at least one pa
ket is used to 
arry the ADU ai from the initiatorto the a

eptor, and another one to 
arry the ADU bi from the a

eptor the initiator. Thismeans for example that a 
onne
tion with 10 epo
hs, and ADUs with a size of 100 bytes inboth dire
tions requires 20 pa
kets to be fully replayed. On the 
ontrary, the 
ollapsed-epo
hsversion of this 
onne
tion 
an be replayed with a single pair of pa
kets, sin
e the 10 ADUs inea
h dire
tion 
an �t into a single TCP segment (it is only 1,000 bytes). Another reason for themore realisti
 time series of pa
ket throughput when the full replay is used is the modeling ofquiet times. Quiet times between two ADUs sent in the same dire
tion (see Se
tion 3.1.2) 
analso result in a larger number of pa
kets per 
onne
tion, sin
e they often prevent 
onse
utivesmall ADUs from sharing pa
kets.While the results in Figure 6.3 
onvin
ingly demonstrate a substantially more realisti
traÆ
 generation with the full model, there is still some room for improvement. We 
an thinkof several possible re�nements, whi
h should improve the approximation. First, we made noattempt to model the Maximum Segment Size (MSS) supported by the path of ea
h TCP
onne
tion. Instead of relying on the default size derived from Ethernet's MTU (1,500 bytes),as we do in our experiments, it seems possible to 
olle
t MSS information for ea
h 
onne
tionand extend tmix to make use of these measurements2. Conne
tions replayed using smallerMSS values would frequently require more pa
kets to be replayed. Se
ond, the measurementte
hniques we used to determine ADU boundaries for data sent in the same dire
tion rely on a
onstant inter-ADU quiet time threshold equal to 500 millise
onds. Some appli
ations may beusing smaller quiet times between their writes, whi
h 
ould result in a larger number of pa
ketsper 
onne
tion. Simply redu
ing the threshold is problemati
, sin
e this would in
rease thenumber of spurious splits of ADUs due to network delays (rather than appli
ation behavior).To avoid this, we 
ould make the inter-ADU quiet time threshold a multiple of the measured2MSS is a system-wide 
onstant in FreeBSD, so generating traÆ
 that preserves per-
onne
tion MSS is notdire
tly possible with our 
urrent implementation. However, there is a relatively simple way to extend ourmethod to support per-
onne
tion MSS values. We 
ould use a �rst step to group 
onne
tions with the sameMSS and then assign ea
h group to a host 
on�gured with that MSS. Fortunately, only a few MSS values are
ommon on the Internet, so it seems feasible to implement this extension without in
reasing the number of hosts.204
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ket throughput time series for Leipzig-II outbound and its four types ofsour
e-level tra
e replay.round-trip time. Given the typi
al distributions of round-trip times (see Se
tion 4.1.1), thismethod would redu
e the threshold for most 
onne
tions and in
rease the sensitivity of themeasurements. Another approa
h is to study segment sizes, using non-full segments to markADU boundaries. This would require some further re�nement, sin
e non-full segments 
aneasily 
ome from appli
ation writes whi
h are not a multiple of the MSS. Two 
onse
utivenon-full segments are for example far more likely to mark a true ADU boundary.The lesson is similar for the outbound dire
tion results, whi
h are shown in Figure 6.4. Theleft plot shows that the full replays are generally a good approximation to the original, but theyexhibit a somewhat lower number of pa
kets in some regions. On the 
ontrary, 
ollapsed-epo
hsreplays 
onsistently show a far lower number of pa
kets.The reader may be puzzled by the �nding of very similar shapes for the inbound andoutbound time series of pa
ket throughput, whi
h show spikes and dit
hes lo
ated at the sameminutes. This is due TCP's a
knowledgment me
hanism, whi
h for
es TCP endpoints to atleast send one a
knowledgment for ea
h pair of data segments re
eived. As 
onsequen
e, a
onne
tion that sends a large number of data segments in one dire
tion, 
reating a spike inthe time series, must ne
essarily re
eive a large number of a
knowledgments in the oppositedire
tion, 
reating a similar spike.
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Lossy Coll. EpochsFigure 6.5: Byte throughput marginals for Leipzig-II inbound and its four types of sour
e-level tra
e replay.6.2.3 Marginal DistributionsOne important limitation of the type of analysis in the previous se
tion is the use of arelatively 
oarse level of aggregation (1-minute bins). The obvious question is whether the 
losemat
h between original traÆ
 and its sour
e-level replays is also found at �ner s
ales, whi
h arearguably more important for some kinds of studies, su
h as router queuing evaluation. Giventhe highly bursty nature of the throughput time series, simply plotting the time series at �nerlevels of aggregation just makes the plots 
ompletely unreadable. In this se
tion, we rely on adi�erent kind of analysis to examine the di�eren
e between original and replayed traÆ
 at a�ner level of aggregation. Instead of the 1-minute bins used in the previous se
tion, this se
tionexamines throughput using CDFs of the marginal distributions extra
ted from time series of10-millise
onds bins. Se
tion 4.2.2 further dis
usses the reasoning behind this type of analysis.Figure 6.5 plots the marginal distributions of the byte throughput in the inbound dire
tion,showing the data for the original time series and the four types of replay. The left plot showsthe body of the marginal distributions using CDFs in linear axes. The right plot shows the tailof the marginal distributions using CCDFs in a logarithmi
 y-axis. The plot of the tail providesinformation about the 10-millise
ond bins with the highest throughput, giving us a better senseof how well the most \aggressive" regions (i.e., with the highest throughput) of the time seriesare reprodu
ed by the replays. The vast majority of the plot 
omes from throughputs that are

206



relatively un
ommon, e.g., half of the plot shows data from only 0.1% of the distribution. Onthe 
ontrary, the plot of the body provides information about the most 
ommon bins, showingthe entire distribution without fo
using on any parti
ular region. These two visualizations are
omplementary. The body plot shows the overall mat
h, whi
h is relevant for experiments inwhi
h produ
ing a realisti
 range of �ne-s
ale throughputs is important. The tail plots showsthe extremal mat
h, whi
h is relevant for experiments in whi
h reprodu
ing the magnitudeand frequen
y of peak throughputs is important. None of these plots says anything about thedependen
y stru
ture of the time series, whi
h is important and that we study in a later se
tionusing wavelets. While wavelets are a powerful analysis tool, marginals are far easier to interpretin networking terms.The left plot shows the original data using a solid 
urve marked with white squares, and thereplay data using dashed 
urves. The full replay experiments are marked with white symbols,and the 
ollapsed-epo
hs replay experiments with bla
k symbols. We 
an make several obser-vations about this plot. The position of the original 
urve with respe
t to the replay 
urvesde�nes two di�erent regions in the plots. Below 40 KB, the distribution from the original datais slightly heavier than those from the replays. Above 40 KB, the distribution is slightly lighter.This means that the replays tended to be less 
on
entrated around the 
entral value than theoriginal data, For example, the number of bins with 10 KB is negligible in the original data, but
orresponds to between 2% and 5% of the bins in the replays. We 
ould therefore say that thereplays are somewhat more bursty, in the sense that we �nd more bins with small values andmore bins with large values in the CDFs from the replays than in the CDFs from the originaldata. The exa
t reason is un
lear, but we 
an make a hypothesis. We know from the previousse
tion that the total number of bytes is similar in original and replay time series. This meansthat the presen
e of a larger number of bins with more bytes in the replay must ne
essarily bea

ompanied by a larger number of bins with fewer bytes to 
ompensate. Conne
tions in thereplay are exposed to more homogeneous delays (primarily be
ause round-trip times are �xed),whi
h gives replayed 
onne
tions a 
han
e to a
hieve higher throughput. In the aggregate, andwhen 
onsidering su
h �ne s
ales, the presen
e of one or a few replay 
onne
tions with higher
207



throughput than originally observed 
reates bins with more bytes, whi
h are part of the upperportion of the body of the marginal distribution. Faster 
onne
tions run out of data sooner,in turn 
reating bins with fewer bytes than originally observed, whi
h show up in the lowerportion of the body of the marginal distribution. Therefore, the somewhat milder 
onditionsin the replay 
an explain the wider spread of marginal distributions from the sour
e-level tra
ereplay experiments.Another observation from the plot of the bodies is that the 
ollapsing of the epo
hs of thereplayed 
onne
tion ve
tors has no e�e
t on the marginal distribution of byte throughput. Thisis an interesting �nding, given that we did �nd a di�eren
e for the plots in Figure 6.1. Itmeans that the slightly more bursty replays with 
ollapsed epo
hs 
ome from a less realisti

orrelation stru
ture rather than from a �ne-grain di�eren
e in the values of the bins. Theplot also shows that the distributions from the lossy replays are slightly 
loser to the originalthan those from the lossless ones. This is eviden
e in support of the statement in the previousparagraph regarding the impa
t of more 
omplex network dynami
s, whi
h make the highestthroughput of many 
onne
tions lower in the original tra
e. Adding losses has pre
isely thise�e
t, making the marginal distributions from the replays 
loser to the marginal distributionfrom the original.The analysis of tails in the right plot 
on�rms the last observation. The plot of the bodyshows a lighter se
ond half of the distribution. The plot of the tails shows heavier tails fromthe lossless experiments, and slightly lighter tails from the lossy experiments. The tail fromthe lossy full replay is a
tually an ex
ellent �t of the original data. Lossless replays gave some
onne
tions the opportunity to rea
h higher throughputs, whi
h in turn 
reated bins with alarger number of bytes than in the original. Adding losses avoided this problem. In general,the results in Figure 6.5 are very reassuring.The marginal distributions for the time series of byte throughput in the outbound dire
tionare shown in Figure 6.6. The bodies of distributions (left plot) exhibit a substantial tail, whi
hmakes them less Gaussian than distributions from the inbound data. As in the previous 
ase,the range of bin sizes with a signi�
ant number of samples is wider for the replays than for208
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e replay.
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ket throughput marginals for Leipzig-II inbound and its four types ofsour
e-level tra
e replay.the original. The relative di�eren
e seems slightly larger in this 
ase, although the absolutedi�eren
e is of the same magnitude. Lossy replays are again slightly 
loser to the original.The tails of the marginal distributions shown in the right plot are not as 
lose to a straightline as those found for the inbound dire
tion. The shape of the tail is most 
omplex for theoriginal data, espe
ially in the region above 90 KB. All of the replays a
hieve a good mat
hbelow 90 KB, but are substantially lighter than the original above that value. The reason isun
lear. The di�erent shape 
an easily be due to the 
hara
teristi
s of a few 
onne
tions (giventhe very small probabilities 
onsidered). The four replays result in similar tails.As in the previous se
tion, we follow our analysis of byte throughput with an analysis ofpa
ket throughput. The marginal distributions for the inbound dire
tion are shown in Figure209
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ket throughput marginals for Leipzig-II outbound and its four types ofsour
e-level tra
e replay.6.7. The 
omparison of the bodies reveals a quite di�erent result for pa
ket throughput. Ingeneral, the distributions from the replays are signi�
antly lighter than the distribution fromthe original. The di�eren
e is far larger for the 
ollapsed-epo
hs replays. The reason wasalready dis
ussed in the previous se
tion. Collapsing epo
hs 
an often redu
e the number ofsegments in a 
onne
tion, sin
e it enables 
onne
tions to 
ombine small ADUs from di�erentepo
hs into a single ADU, in
reasing pa
ket utilization. Our full replay, while mu
h 
loser thanthe 
ollapsed-epo
hs replay, is still lighter than the original. The possible extensions des
ribedin the previous se
tion 
ould improve the mat
h further. Note also that the improvement whenlosses are used is quite minor, so retransmissions are not likely to explain the di�eren
e betweenoriginal and replay distributions.The tails of the marginal distributions from the replays are lighter than those from theoriginal data. Interestingly, the best mat
h is a
hieved by the lossless replay with fully 
har-a
terized epo
hs rather than by the lossy replay. The mat
h is ex
ellent below 10�4. Abovethis value, the shape of the tail from the original data is less linear, whi
h 
ould be 
aused bya small number of 
onne
tions with 
hara
teristi
s that we do not model well. Lossy replaysresult in signi�
antly lighter tails, as expe
ted given the loss-indu
ed redu
tion in 
onne
tionthroughput.Figure 6.8 shows the same analysis for the outbound dire
tion. Collapsed-epo
hs replaysagain resulted in bodies that are substantially lighter than the body of the original distribu-210



tion. In 
ontrast, the full replay a
hieved a mu
h 
loser approximation, even overlapping theoriginal distribution for the largest values. Adding losses to the experiments made the replaysonly a bit 
loser to the original. This is a strong indi
ation that sour
e-level stru
ture, andnot loss/retransmission, is behind the di�eren
es between original and replay tra
e. We 
andistinguish two regions in the plot of the tails. Below 80 Kpps, the replays with fully 
hara
ter-ized epo
hs provide an ex
ellent mat
h, while those with 
ollapsed epo
hs result in signi�
antlylighter tails. Above 80 Kpps, the slope of the tail from the original tra
e is far higher than theslopes of the tails from the replays.6.2.4 Long-Range Dependen
eAnother way of looking at the time series of byte and pa
ket arrivals is to study the 
har-a
teristi
s of the time series for a wide range of time s
ales. This 
an be a

omplished usings
aling analysis tools, su
h as the wavelet transform, whi
h was introdu
ed in Se
tion 4.2.3.In this se
tion, we use wavelet spe
trum plots and Hurst parameters estimates to 
ompare thes
aling of the arrival pro
esses found in original and replay tra
es. Figure 6.9 shows the waveletspe
tra of the time series of byte arrivals in the inbound dire
tion. The left plot reveals anex
ellent mat
h between the original and the full replays. The linear region between o
taves 6and 14 is very similar in the three spe
tra. This tells us that the kind of long-range dependen
efound in the original and in the replay tra
es is very similar. If we equate burstiness to long-range dependen
e, we 
an say that the generated traÆ
 faithfully reprodu
ed the burstiness ofthe original traÆ
. The �nest time s
ales show a somewhat larger di�eren
e between o
taves 1and 5. The spe
trum of the original data starts at a lower energy level than the spe
tra of thereplay data. It also shows a linear trend with an upward slope, whi
h is far less 
lear in thereplay data.The exa
t 
ause of the small di�eren
e is not 
ompletely 
lear. Our additional experimentsstrongly suggest that it is due to more 
omplex network-level 
hara
teristi
s in the Internetthan in the network testbed. We 
ondu
ted a large set of experiments (not reported here)whi
h betrayed that the energy levels at the �nest time s
ales are dominated by round-trip211
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Figure 6.9: Wavelet spe
tra of the byte throughput time series for Leipzig-II inbound andits four types of sour
e-level tra
e replay.
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Figure 6.10: Wavelet spe
tra of the byte throughput time series for Leipzig-II outboundand its four types of sour
e-level tra
e replay.Tra
e Inbound OutboundLeipzig-II H C. I. H C. I.Original 0.9201 [0.8990, 0.9412℄ 0.9973 [0.9762, 1.0184℄Lossless Replay 0.9863 [0.9652, 1.0074℄ 1.0475 [1.0264, 1.0686℄Lossy Replay 0.9583 [0.9372, 0.9794℄ 0.9832 [0.9621, 1.0043℄Lossless Coll. Epo
hs 0.9986 [0.9775, 1.0197℄ 1.0473 [1.0262, 1.0684℄Lossy Coll. Epo
hs 0.9668 [0.9457, 0.9879℄ 1.0083 [0.9872, 1.0294℄Table 6.1: Estimated Hurst parameters and their 
on�den
e intervals for the byte through-put time series of Leipzig-II and its four types of sour
e-level tra
e replay.212



times and other network-level parameters3. The slightly better mat
h a
hieved with the lossyreplay is 
onsistent with this 
laim. Further work on network-level modeling may help improvethe mat
h, but it is beyond the s
ope of this dissertation. The approximation seems a

eptablefor most experimental studies.The wavelet spe
tra of the 
ollapsed-epo
hs replays is similar to the wavelet spe
trum of theoriginal tra
e, as shown in the right plot of Figure 6.9. The spe
tra from the replays exhibitsa slightly higher slope in the linear region, and a slightly worse approximation of the �ne-s
aleregion. The bene�t of modeling sour
e-level behavior is relatively small, in terms of s
alingbehavior, for this tra
e, but present nonetheless.Figure 6.10 shows the analysis of the wavelet spe
tra of the time series of byte throughputin the outbound dire
tion. One interesting observation is that the wavelet spe
trum of theoriginal is far from the expe
ted straight line. This is due to the low mean throughput on thisdire
tion. A handful of 
onne
tions 
an have a large impa
t in the aggregate throughput, whi
hmakes the aggregate less stable, showing a less 
lear s
aling. The full replays are very 
lose tothe original in the s
aling region, but show a larger gap at �ne s
ales. The 
ollapsed-epo
hsreplays result in a slightly worse approximation.Estimated Hurst parameters for the byte throughput time series are shown in Table 6.1. Theoriginal tra
e exhibits a smaller estimated Hurst parameter than the replays. The estimate forthe lossy replay is however within the 
on�den
e interval of the original for the outbound andvery 
lose to the upper bound for the inbound. In general, lossless replays have higher Hurstparameters than lossy replays, and the replays with 
ollapsed epo
hs have somewhat higherHurst parameters than the full replays. Note also that several estimated Hurst parameters forthe outbound dire
tion are above 1, with the lossless replay even having the lower bound ofthe 
on�den
e interval above 1. Non-stationarities, properly 
aptured by the sour
e-level tra
ereplay, may be behind this extreme burstiness. It is important to note that non-stationarity,even if present, does not 
hange the fa
t that our 
omputation of wavelet energy and Hurst3More spe
i�
ally, we learned that the range of the distribution of round-trip times determines the knee ofthe spe
trum, while the distribution of window size determines the level of energy at the �nest s
ales. Relatedresults from web traÆ
 simulations 
an be found in [FGHW99℄.213



estimates is identi
al in all 
ases. This makes the 
omparative results meaningful, at least inrelative terms.Figure 6.11 shows the wavelet spe
tra for the time series of pa
ket throughput in the inbounddire
tion. As in the 
ase of byte throughput, the spe
tra of the replays are quite similar to thespe
trum of the original, espe
ially in the linear region. The spe
tra of the 
ollapsed-epo
hsreplays are somewhat farther from the original spe
trum than the ones from the full replays.The slope of the linear region is again higher for the 
ollapsed-epo
hs replays, and the di�eren
eis also larger at the �nest s
ales.The analysis of the pa
ket throughput in the output dire
tion shown in Figure 6.12 revealsa 
lose approximation of the original spe
trum by the full replays. Collapsed-epo
hs replaysare slightly worse. Note also that the spe
trum of the original tra
e is smoother here than inFigure 6.10. The phenomenon that distorted the linear s
aling in the original time series ofbyte throughput seems far less signi�
ant for the time series of pa
ket throughput.Table 6.2 presents the estimates of Hurst parameters and 
on�den
e intervals for the originaland replay time series of pa
ket throughput. The original and the lossy full replays have almostidenti
al estimated Hurst parameters for the inbound dire
tion, while the other replays showhigher Hurst parameters. The estimated Hurst parameter of the lossy full replay is again the
losest one to the original estimate for the outbound dire
tion. It is somewhat lower thanthe original, but within the 
on�den
e interval. The other replays show signi�
antly higherestimated Hurst parameters. Note also that the estimated Hurst parameters for the outbounddire
tion do not go above 1 in this 
ase.6.2.5 Time Series of A
tive Conne
tionsThe �nal metri
 we examine in this 
hapter to evaluate how 
losely original and generatedtraÆ
 mat
h is the time series of a
tive 
onne
tions. The left plot in Figure 6.13 shows thetime series from the original tra
e using a solid line, and the time series from the four replaysusing dashed lines. The �rst observation from this plot is that the 
ollapsed-epo
hs replays214
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Figure 6.11: Wavelet spe
tra of the pa
ket throughput time series for Leipzig-II inboundand its four types of sour
e-level tra
e replay.
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Figure 6.12: Wavelet spe
tra of the pa
ket throughput time series for Leipzig-II outboundand its four types of sour
e-level tra
e replay.Tra
e Inbound OutboundLeipzig-II H C. I. H C. I.Original 0.9208 [0.8975, 0.9442℄ 0.9399 [0.9165, 0.9633℄Lossless Replay 0.9716 [0.9482, 0.9950℄ 0.9701 [0.9468, 0.9935℄Lossy Replay 0.9271 [0.9038, 0.9505℄ 0.9194 [0.8961, 0.9428℄Lossless Coll. Epo
hs 0.9883 [0.9649, 1.0116℄ 0.9925 [0.9692, 1.0159℄Lossy Coll. Epo
hs 0.9587 [0.9353, 0.9820℄ 0.9635 [0.9402, 0.9869℄Table 6.2: Estimated Hurst parameters and their 
on�den
e intervals for the pa
ketthroughput time series of Leipzig-II and its four types of sour
e-level tra
e replay.215
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Lossy Leipzig-IIFigure 6.13: A
tive 
onne
tion time series for Leipzig-II and its four types of sour
e-leveltra
e replay.resulted in a strikingly lower number of a
tive 
onne
tions that the full replays. Sin
e thenumber of 
onne
tions replayed in both types of the replay is the same, this di�eren
e is due tothe substantially shorter durations of the 
onne
tions replayed with their epo
hs 
ollapsed. The
ollapsing of epo
hs in
reases 
onne
tion durations, be
ause quiet times and epo
h stru
turedisappear. Epo
hs require at least one round-trip time to be replayed (see Se
tion 3.1.1). As aresult, the number of a
tive 
onne
tions is several times smaller in the 
ollapsed epo
hs replaysthan in the original tra
e. On the 
ontrary, the number of a
tive 
onne
tions observed in thefull replays is far 
loser to the original.The left plot of Figure 6.13 also provides a good illustration of the impa
t of replaying losseson the quality of the approximation. The number of a
tive 
onne
tions in
reases substantiallywhen loss rates are used in the generation, both in the 
ase of 
ollapsed-epo
hs replays and fullreplays. However, it is 
lear from this plot that 
ollapsing epo
hs has a far more substantialimpa
t on the number of a
tive 
onne
tions than in
orporating losses, at least for the Leipzig-IItra
e. Given how 
arefully our replay reprodu
ed the main network-level parameters that a�e
tTCP throughput (round-trip time, window size and loss rates), this result strongly suggest thattraÆ
 generated without any modeling of epo
h stru
ture and quiet time has an unrealisti
allylow number of a
tive 
onne
tions.While the lossless full replay a
hieves a reasonable approximation of the original time series,the lossy full replay is almost a perfe
t mat
h. The di�eren
e is always below 100 
onne
tions,216
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Lossy Replay with Collapsed EpochsFigure 6.14: Byte throughput time series for UNC 1 PM inbound and its four types ofsour
e-level tra
e replay.whi
h 
an be 
onsidered an outstanding result. It is 
lear that generating traÆ
 using a 
ombi-nation of detailed sour
e-level models and primary network-level parameters makes the numberof a
tive 
onne
tions very realisti
. Note also that this is not only true for the 
oarse s
ale (1minute) at whi
h the left plot of Figure 6.65 is displayed, but also at the �ner s
ale (5 se
onds)in the right plot. Noti
e for example how 
losely the replay tra
ks the signi�
ant variability inthe original time series.6.3 Sour
e-level Replay of UNC 1 PM6.3.1 Time Series of Byte ThroughputFigure 6.14 shows the time series of byte throughput for UNC 1 PM in the inbound dire
tion,revealing a good mat
h between original and replayed tra
es. Lossless replays with and without
ollapsed epo
hs are generally 
loser than lossy replays, whi
h are often 10 to 20 Mbps belowthe original. However, lossless replays show large spikes (minutes 14 and 21) that are notfound neither in the original tra
e nor in the lossy replays. The lossy replays are a
tually very
lose to the original in the neighborhood of these spikes (e.g., between minutes 20 and 28).Interestingly, the time series for Leipzig-II shown in Figure 6.14 did not reveal a signi�
antdi�eren
e between lossless and lossy replays. Finding an explanation for this phenomenon
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Lossy Replay with Collapsed EpochsFigure 6.15: Byte throughput time series for UNC 1 PM outbound and its four types ofsour
e-level tra
e replay.requires further analysis, but this plot 
ertainly justi�es our 
hoi
e of 
omparing the originaltra
e to lossless and lossy versions of its sour
e-level tra
e replay. Without a lossy replay, wewould be tempted to 
on
lude from the arti�
ial throughput spikes in lossless replay that oursour
e-level model is not properly reprodu
ing an end-point limitation that was present in theoriginal environment. However, the lossy replay, by showing that adding losses eliminates thisspikes, demonstrates that they are purely due a network-level parameter and not to a limitationof the a-b-t model. On
e again, we are not naively advo
ating for in
orporating open-loop lossesinto traÆ
 generation experiments, but addressing a diÆ
ulty that signi�
ant loss 
an 
reatewhen trying to understand how realisti
 our modeling of the traÆ
 sour
e is. Simply relyingon a lossless replay 
an be misleading, as this example demonstrates.As in the full replay 
ase, the lossless 
ollapsed-epo
hs replay shows two large spikes thatare not present in the lossy 
ollapsed-epo
hs replays. The general impression from the plot isthat 
ollapsing epo
hs moderately in
reases the burstiness of the replay. Note for example thelarger spike in the minute 5, the spikes in minutes 36 and 44, and the large dit
h in minute 29.The 
ollapsed-epo
hs lossy replay is quite similar to the full lossy replays, but we �nd a fewperiods where the approximation of the original throughput is slightly worse. For example, the
ollapsed-epo
hs replay shows a drop of byte throughput in minute 40 that is not present inthe full lossy replay.Figure 6.15 reveals somewhat di�erent lessons from the time series of byte throughput in218



the outbound dire
tion of UNC 1 PM. Regarding the full replays shown in the left plot, wesee that the lossless replay has only one signi�
ant spike above the original traÆ
. One reasonbehind this �nding is that the mu
h higher average byte throughput makes spikes due to a few
onne
tions far less signi�
ant in relative terms.Both full replays are generally slightly below the byte throughput of the original tra
e. Thereason is not 
ompletely 
lear, but it suggests that the replay has a somewhat lighter distributionof 
onne
tion throughputs, whi
h makes the aggregate throughput slightly lower. If the replayis 
ontinued beyond minute 60, we do observe 
onne
tions that remain a
tive for a few moreminutes and transfer enough data to a

ount for the di�eren
e between the time series. Weexamined the logs from the generator hosts and 
on�rmed that no overload o

urred during theexperiments, so the 
ause seems to be some arti�
ial limit on the throughputs of the 
onne
tionsin our replay. One 
ause 
ould be the overestimation of quiet times dis
ussed in Se
tion 5.2.1.Another possible 
ause is that the replays did not take into a

ount the spe
i�
 MSS of ea
h
onne
tion. Every 
onne
tion was given the FreeBSD default value (1,460 bytes), whi
h is themost 
ommon one on the Internet. However, it 
ould be the 
ase that a signi�
ant fra
tion ofthe segments were 
arried in TCP 
onne
tions with a smaller MSS. These 
onne
tions wouldthen have higher 
ontrol overhead, making their transferring of the same payload result in morebytes and therefore higher aggregate throughput. Given the small size of TCP headers, it isunlikely that the extra overhead would result in more than a few additional Mbps.The results from the replays with 
ollapsed epo
hs are similar, although we observe severaladditional spikes in the 
ase of the lossless replay. The lossy replay does not show these spikes,but it is still below the original for most of the time series. Interestingly, it provides a 
loserapproximation in some regions, su
h as between minutes 10 to 22. We 
an argue that thisis an a

idental improvement due to the arti�
ially larger throughputs that a fra
tion of the
onne
tions a
hieves after their epo
hs are 
ollapsed.
219
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Lossy Replay with Collapsed EpochsFigure 6.16: Pa
ket throughput time series for UNC 1 PM inbound and its four types ofsour
e-level tra
e replay.6.3.2 Time Series of Pa
ket ThroughputThe analysis of the pa
ket throughput in the inbound dire
tion shown in Figure 6.16 revealsa number of interesting 
hara
teristi
s. Both lossless replays show substantial spikes above theoriginal pa
ket throughput. This is 
onsistent with the similar �nding for byte throughput. Wealso observe that 
ollapsed-epo
hs replays generated a substantially smaller number of segmentsthan full replays. As in the 
ase of the analysis of the Leipzig-II replay shown in Figure 6.3,the la
k of detailed sour
e-level modeling in the 
ollapsed-epo
hs replays makes traÆ
 lessrealisti
 in terms of the aggregate pa
ket throughput. In 
ontrast, the lossy full replay showsan ex
ellent mat
h for most of the time series. This result is di�erent from the Leipzig-II one,where the full replays a
hieved a good approximation, but were still below the original pa
ketthroughput. Adding per-
onne
tion losses had a very minor impa
t on the Leipzig-II pa
ketthroughput, but the e�e
t is substantial in the UNC 1 PM replay, where we observe in
rementsof up to 2,000 pa
kets per se
ond. This result demonstrates the e�e
tiveness of our sour
e-levelmodeling method, and also justi�es our e�ort to in
orporate losses in the replay in order tostudy the realism of our modeling approa
h.Figure 6.17 examines pa
ket throughput in the outbound dire
tion. Unlike the inbounddire
tion, adding losses does not have a substantial impa
t here, and the aggregate pa
ketthroughput remains below the original tra
e even for the lossy full replay. As dis
ussed in
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Lossy Coll. EpochsFigure 6.18: Byte throughput marginals for UNC 1 PM inbound and its four types ofsour
e-level tra
e replay.Se
tion 6.2.2, this 
ould be due to some limitations of our data a
quisition algorithm in terms ofhow well it infers sour
e-level 
hara
teristi
s, or to the use of the default MSS for all 
onne
tions.As in previous 
ases, 
ollapsed-epo
hs replays generate a substantially lower number of pa
ketsthan full replays, whi
h are far 
loser to the original pa
ket throughput.6.3.3 Marginal DistributionsThe marginal distribution of byte throughput for the inbound dire
tion of UNC 1 PM andits replays are shown in the Figure 6.18. The bodies of the distributions show that lossy replaysprovide a better approximation, although they are slightly heavier than the original. Interest-ingly, the analysis of the time series in Se
tion 6.3.1 showed lower aggregate throughput from221
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Lossy Coll. EpochsFigure 6.19: Byte throughput marginals for UNC 1 PM outbound and its four types ofsour
e-level tra
e replay.lossy replays, whi
h seems in
onsistent with the heavier bodies in the marginal distribution.The explanation is given by the plot of the tails of the marginals, whi
h shows far lighter tailsfrom the lossy replays. The way in whi
h losses were in
orporated in the experiments lim-ited peak throughput substantially at the �ne s
ales 
onsidered in the marginal plots. Thisis be
ause the probability of arti�
ial losses in
reases linearly with throughput, whi
h is notgenerally true for real 
onditions. On the 
ontrary, the lossless full replay reprodu
ed the tailvery a

urately, demonstrating that the experimental environment and generation method areperfe
tly 
apable of reprodu
ing the observed peak throughputs. It seems likely that furtherre�nements in the implementation of per-
onne
tion losses, making them less open-loop, 
ouldmake the tails 
loser to the original.The marginal distributions in the outbound dire
tion, whi
h are shown in Figure 6.19, reveala somewhat worse approximation. We 
an distinguish three regions in the plot of the bodies.For values below 175 KB, lossless replays are lighter than the original, while lossy ones areheavier. Above 175 KB, all replays are lighter, whi
h shows that the �nding of lower aggregatebyte throughput in Se
tion 6.3.1 is due to overall lower throughputs at �ne s
ales (rather thanonly to lighter tails). In the region after 175 KB, we 
an also observe that lossy replays areheavier below 275 KB and lighter above that. The marginal distributions from the lossy replaysare less 
on
entrated around the mean value, and are therefore somewhat more bursty, whi
his 
onsistent with the similar �nding for Leipzig-II (see Se
tion 6.2.3).222



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

50 100 150 200 250 300 350

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Number of Packets (10-Millisecond Bins)

UNC 1 PM Inbound
Original

Lossless Replay
Lossy Replay

Lossless Coll. Epochs
Lossy Coll. Epochs

1e-05

0.0001

0.001

0.01

0.1

1

150 200 250 300 350 400 450 500

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Number of Packets (10-Millisecond Bins)

UNC 1 PM Inbound
Original

Lossless Replay
Lossy Replay

Lossless Coll. Epochs
Lossy Coll. EpochsFigure 6.20: Pa
ket throughput marginals for UNC 1 PM inbound and its four types ofsour
e-level tra
e replay.Regarding the tails, we observe that for probabilities below 0.00075, the tail of originalmarginal is substantially heavier than the tails of the replay marginals. For probabilities abovethat, the 
ollapsed-epo
hs replays show a major 
hange in the shape of the distributions, beingfar heavier than the original for the largest values. We did not en
ounter a similar phenomenonin the Leipzig-II replays, where lossy 
ollapsed-epo
hs replays always had a lighter tail thanthe lossless full replay. The number of 10-millise
ond bins with very high throughput is largerfor 
ollapsed-epo
hs replays than for the full replays. Note that this artifa
t is only visibleby looking at the tails of the marginals, and not at their bodies or at the time series of bytethroughput.The marginal distributions of pa
ket throughput for UNC 1 PM inbound are shown inFigure 6.20. As observed for Leipzig-II, and as we may expe
t from 6.16, 
ollapsed-epo
hsreplays result in bodies that are signi�
antly lighter than the body of the original marginal.Full replays are far 
loser, being the lossy full replay an ex
ellent approximation of the originaldistribution. Interestingly, the tails reveal a rather di�erent pi
ture. Below 350 Kpps, thelossy replays have lighter tails than the original, espe
ially in the 
ase of the lossy full replay.Lossless replays 
losely approximate the original tail. Above 350 Kpps, both full replays arelighter than the original, while the 
ollapsed-epo
hs replays reprodu
e the probability of veryhigh throughput bins a

urately.Figure 6.21 shows the marginal distributions of pa
ket throughput in the opposite dire
tion.223
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ket throughput marginals for UNC 1 PM outbound and its four types ofsour
e-level tra
e replay.All replays are lighter than the original, being the lossy full replay the 
losest one. The tailsfrom the replays are also signi�
antly lighter than the original tail. We also observe a similar
hange in the tail of the 
ollapsed-epo
hs replays, whi
h are very 
lose to the original for thelargest values.6.3.4 Long-Range Dependen
eThe left plot of Figure 6.22 shows that the wavelet spe
trum of the original byte throughputin the inbound dire
tion is well approximated by both full replays for lower and medium o
taves.The �nding of this good mat
h at the lower o
taves di�ers from the result for the replay ofthe Leipzig-II tra
e, where this part of the wavelet spe
trum was not so well approximated.The lossy replay shows less energy for o
taves 8 and above, while there is a signi�
ant jumpin the energy of the lossless replay for o
taves 12 and above. In the right plot, the lossless
ollapsed-epo
hs replays shows substantially more energy for o
taves above 4, while the lossyreplay provides a better approximation.For the outbound dire
tion, the left plot of Figure 6.23 reveals a better approximation ofthe �nest s
ales by the lossless full replay, while both full replays 
losely mat
h the originalspe
trum at 
oarser s
ales. The right plot shows that both 
ollapsed-epo
hs replays have lessenergy at the �nest s
ales, with a rather sharp dit
h for o
taves 5 and 6 that was not present224
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Figure 6.22: Wavelet spe
tra of the byte throughput time series for UNC 1 PM inboundand its four types of sour
e-level tra
e replay.
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Figure 6.23: Wavelet spe
tra of the byte throughput time series for UNC 1 PM outboundand its four types of sour
e-level tra
e replay.Tra
e Inbound OutboundUNC 1 PM H C. I. H C. I.Original 0.9557 [0.9113, 1.0002℄ 0.9717 [0.9272, 1.0161℄Lossless Replay 0.9632 [0.9188, 1.0077℄ 0.9585 [0.9141, 1.0030℄Lossy Replay 0.9118 [0.8674, 0.9563℄ 0.9306 [0.8861, 0.9750℄Lossless Coll. Epo
hs 0.9521 [0.9077, 0.9966℄ 1.0170 [0.9726, 1.0615℄Lossy Coll. Epo
hs 0.8441 [0.7996, 0.8885℄ 0.8657 [0.8212, 0.9101℄Table 6.3: Estimated Hurst parameters and their 
on�den
e intervals for the byte through-put time series of UNC 1 PM and its four types of sour
e-level tra
e replay.225



in the original. This dit
h was far less pronoun
ed in the full replays. Beyond the �nests
ales, the lossless 
ollapsed-epo
hs replay is a poor mat
h of the original, while the lossy oneprovides a 
lose approximation. This high impa
t of losses in the 
ollapsed-epo
hs replay, farlarger than in the full replay 
ase, suggests a signi�
ant intera
tion between loss and long-rangedependen
e when traÆ
 is not generated a

ording to a detailed sour
e-level model. In otherwords, endpoints that generate traÆ
 a

ording to less realisti
 models (without epo
hs) arearti�
ially more aggressive than Internet sour
es. This makes them more sensitive to lossyenvironments, sin
e losses 
an more sharply de
rease their higher throughput. This 
an resultin experiments that overestimate the impa
t of losses on performan
e.The estimated Hurst parameters and their 
on�den
e intervals shown in Table 6.3 are some-what surprising. In the inbound dire
tion, the estimated Hurst parameter of the original tra
eis most 
losely approximated by the lossless replays. The lossy full replay is slightly lower, andthe lossy 
ollapsed-epo
hs replay is far lower. The same is true in the opposite dire
tion, atleast for the lossless replays. It is diÆ
ult to interpret the meaning of these estimates in the
ontext of the previous results. On the one hand, we found large spikes in the time series of bytethroughput that suggest substantially higher burstiness in the lossless replays. Additionally,the wavelet spe
tra in Figure 6.22 did not �nd better approximations from the lossless replays.Noti
e for example that the lossless 
ollapsed-epo
hs replay is 
learly the farthest from theoriginal. On the other hand, the tails of the marginal distributions 
learly favored the losslessreplays, showing lighter tails for the lossy replays. We 
ould argue that the di�erent metri
srefer to di�erent measures of burstiness, and 
on
lude that adding arti�
ial losses (using ouropen-loop method) makes the lossy replays less realisti
 in terms of Hurst parameter estimates.However, this 
on
lusion seems too simplisti
, sin
e it is in 
ontradi
tion with the Leipzig-IIresults. Adding losses made the estimated Hurst parameters far 
loser in that 
ase. Assumingthat the observed di�eren
es between the estimated Hurst parameters are signi�
ant, the rea-son for these divergent 
on
lusions regarding the impa
t of losses must ne
essarily lie in somefundamental di�eren
e in the nature of the two network links. The estimated Hurst parameterssay little about the di�eren
e, sin
e all of the estimates are similarly high (above 0.92).
226



As dis
ussed in Chapter 4, the Leipzig-II tra
e is a good example of university traÆ
 dom-inated by downloading behavior (i.e., inbound traÆ
 is substantially higher than outboundtraÆ
). In 
ontrast, the UNC 1 PM tra
e is dominated by 
ontent downloaded from UNCservers (rather than downloads from UNC 
lients) due to the presen
e at UNC of a majorInternet repository of software and 
ontent, ibiblio.org. This made traÆ
 volume and num-ber of 
onne
tions far higher for UNC. Still, why would these di�eren
es make introdu
inglosses bene�
ial in the Leipzig 
ase and detrimental in the UNC 
ase for the approximationof the original Hurst parameters? We 
an spe
ulate that the rate-limiting me
hanisms usedby ibiblio.org 
reate unusual loss patterns that are poorly approximated by our open-looplosses, but we do not have any supporting eviden
e.The lessons from the analysis of the s
aling in the pa
ket throughput series is quite similar.The plots in Figure 6.24 show reasonably 
lose approximations of the original by all of thereplays in the inbound dire
tion, and somewhat worse ones in the outbound dire
tion. Thespe
trum of the lossless full replay provides the 
losest approximation to the spe
trum of theoriginal in both dire
tions. The spe
trum of the lossless 
ollapsed-epo
hs replay is 
learly notas 
lose, showing a higher slope for medium to 
oarse time s
ales. As in the 
ase of bytethroughput, lossy replays show less energy than the original tra
e, espe
ially for the �ne s
alesin the outbound dire
tion. Note also the systemati
 dit
h around o
tave 14 for all four spe
trafrom lossy replays. This suggests some unexpe
ted periodi
ities at the 1-minute s
ale. A similardit
h 
an be found in the outbound dire
tion of the original time series in o
tave 13, and thisdit
h is not reprodu
ed by the replays.Regarding the estimated Hurst parameters and their 
on�den
e intervals, Table 6.4 showsdi�erent results for the two dire
tions. The estimates for the inbound dire
tion 
on�rm thelossless full replay as an ex
ellent approximation, but here the lossless 
ollapsed-epo
hs replayis also very 
lose to the original. Both lossy replays are well below the estimated Hurst parameterof the original time series, and outside its 
on�den
e interval. The estimates for the outbounddire
tion show again an ex
ellent approximation by the lossless full replay, but here the lossless
ollapsed-epo
hs replay is far higher than the original and well within the non-stationarity227
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Figure 6.24: Wavelet spe
tra of the pa
ket throughput time series for UNC 1 PM inboundand its four types of sour
e-level tra
e replay.
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Figure 6.25: Wavelet spe
tra of the pa
ket throughput time series for UNC 1 PM outboundand its four types of sour
e-level tra
e replay.Tra
e Inbound OutboundUNC 1 PM H C. I. H C. I.Original 0.9564 [0.9158, 0.9970℄ 0.9339 [0.8933, 0.9746℄Lossless Replay 0.9776 [0.9370, 1.0182℄ 0.9512 [0.9106, 0.9918℄Lossy Replay 0.8719 [0.8313, 0.9125℄ 0.9512 [0.9106, 0.9919℄Lossless Coll. Epo
hs 0.9464 [0.9058, 0.9871℄ 1.0956 [1.0549, 1.1362℄Lossy Coll. Epo
hs 0.8509 [0.8103, 0.8916℄ 0.9200 [0.8793, 0.9606℄Table 6.4: Estimated Hurst parameters and their 
on�den
e intervals for the pa
ketthroughput time series of UNC 1 PM and its four types of sour
e-level tra
e replay.228
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tive 
onne
tion time series for UNC 1 PM and its four types of sour
e-leveltra
e replay.region. Lossy replays are substantially better in the outbound dire
tion, with the lossy fullreplay mat
hing the original estimate.6.3.5 Time Series of A
tive Conne
tionsAs in the 
ase of Leipzig-II, the lossy full replay of UNC 1 PM a
hieved a perfe
t mat
hof the original time series of a
tive 
onne
tions This is 
lear for both the entire range of thetime series shown in the left plot of Figure 6.26 using 1-minute bins, and for the 20-minuteregion shown in the right plot using 1-se
ond bins. This �ner s
ale view shows several sharpspikes (minutes 24, 28, 30, 35 and 39) that the lossy full replay tra
ked a

urately. The losslessreplay has only a slightly lower number of a
tive 
onne
tions per se
ond, showing similar spikes(but with a negative o�set in the y-axis). Collapsed-epo
hs replays had a far smaller numberof a
tive 
onne
tions. Also, they did not tra
k the features of the original time series so well.Noti
e for example the absen
e of the minute 24 spike in the 
ollapsed-epo
hs replays.6.4 Mid-Chapter ReviewThe present 
hapter is the longest one in this dissertation, and presents the results of 20sour
e-level tra
e replay experiments using 130 plots and 10 tables. The 
on
lusions are not229



always straight-forward or 
onsistent a
ross tra
es, so it is diÆ
ult to form a 
oherent pi
tureby simply going through the entire body of results. In this se
tion, we summarize our resultsso far in order to make the rest of the 
hapter easier to follow. Our summary is in the form ofa list of 18 observations, whi
h report both on �ndings that were 
onsistent for Leipzig-II andUNC 1 PM, and �ndings that were in
onsistent.6.4.1 Observations on Byte ThroughputFrom the analysis of the plots of the time series of byte throughput, their marginal distri-butions and wavelet spe
tra, we 
an make the following observations:B.1 Both full and 
ollapsed-epo
hs replays provide a reasonable approximation of the origi-nal 1-minute time series of byte throughput and the body of its 10-millise
ond marginal.Replays do not tra
k every spike in the original time series, but the similarity is remark-able. The replays a
hieve a very 
lose approximation of the Leipzig-II time series, butare slightly below the UNC 1 PM time series. For both tra
es, the approximation of thebodies of the original marginal are somewhat better for the inbound dire
tion than forthe outbound one. This observation is not explained by traÆ
 volume asymmetry, sin
ethe inbound dire
tion was the dominant dire
tion in terms of byte volume only in the
ase of Leipzig-II.B.2 Lossless replays sometimes show substantially more spikes of 1-minute byte throughputabove the original tra
e than lossy replays. This is 
lear for UNC 1 PM but not forLeipzig-II. At the �ner s
ales studied by the marginal distributions, we �nd that the tailsof the lossless replays are substantially heavier than those of the lossy replays. However,they are not 
onsistently above the tails of the original distributions. In 
ontrast, theresults for every tra
e show that the bodies of the lossless replays are wider than thebodies of the lossy replays. This reveals higher burstiness in the lossless replays in thesense that they have a higher probability of bins with byte throughput far from the mean(i.e., a larger number of 10-millise
ond intervals with have rather low or rather high byte230



throughput).B.3 Collapsed-epo
hs replays show somewhat more bursty 1-minute time series, and tra
kthe 
hanges in the shape of the original time series less 
losely. The extra burstinessmay not appear very substantial in the plots, but given the 
oarse s
ale, it may have alarge impa
t on experiments sensitive to prolonged byte throughput spikes. We do not�nd a 
orresponding phenomenon for the marginal distributions, where 
ollapsed-epo
hsreplays are generally 
lose to the full replays (ex
ept for the outbound dire
tion of UNC 1PM). Together with observation B.5, this shows that the extra burstiness of the 
ollapsed-epo
hs replays manifests itself in the auto-
orrelation stru
ture of the byte throughputpro
ess, rather than in the set of byte throughputs observed throughout the replays.B.4 Full replays provide a 
lose approximation of the s
aling region (o
taves 6 to 15) of thewavelet spe
tra of the original tra
es. This does not ne
essarily translate into similarlygood approximations of the estimated Hurst parameters. Only the lossy replays arewithin 
on�den
e intervals for Leipzig-II, while only the lossless ones are within 
on�den
eintervals for UNC 1 PM.B.5 Collapsed-epo
hs replays tend to show slightly more energy in the s
aling region. This istrue for the four spe
tra from lossless replays and for the two spe
tra from lossy replayof Leipzig-II. However, the energy of the original s
aling region is well approximated bythe lossy 
ollapsed-epo
hs replay for the outbound dire
tion of UNC 1 PM. This higherenergy in the wavelet spe
trum plot does not ne
essarily translate into higher estimatesof the Hurst parameters.B.6 Both full and 
ollapsed-epo
hs replays do not 
onsistently mat
h the spe
tra of the �ners
ales (o
taves 1 to 5). We �nd higher or slightly higher energy levels for the replays ofLeipzig-II, similar levels for the replays of the inbound dire
tion of UNC 1 PM and lowerlevels for the outbound dire
tion of UNC 1 PM.B.7 By 
onstru
tion, the most detailed replay is the lossy full replay, so we expe
t it toa
hieve the best approximation of the original tra
e. This was always true for 1-minutetime series, the body of the marginal distribution and the s
aling region of the wavelet231



spe
trum. However, it was not 
onsistently true for the tail of the marginal distribution,the energy of the wavelet spe
trum at �ne s
ales, and the estimated Hurst parameter.6.4.2 Observations on Pa
ket ThroughputWe 
an make the following observations regarding pa
ket throughput:P.1 Full replays a
hieve a 
lose approximation of the original 1-minute time series of pa
ketthroughput, remaining between 2% and 8% below the original for most of the time series.Collapsed-epo
hs replays result in a substantially worse approximation, being between20% to 30% below the original for most of the time series. This di�eren
e is also presentin the bodies of the 10-millise
ond marginal distributions. In the best 
ase for full replays,the median of the marginal distribution is equal to the original median for the inbounddire
tion of the UNC 1 PM lossy replay. In the worst 
ase, the median is 7% below theoriginal for the inbound dire
tion of the Leipzig-II lossy replay. Collapsed epo
hs replaysshow medians of the marginal distributions that are 20% (UNC 1 PM inbound) and 25%(Leipzig-II outbound) below the original median.P.2 In
orporating losses into the replays in
reases pa
ket throughput, redu
ing the distan
e tothe original time series. While this e�e
t is small for Leipzig-II, it is rather signi�
ant forUNC 1 PM inbound. In addition, lossless replays sometimes show more arti�
ial spikesin the 1-minute time series plot than the lossy ones (e.g., UNC 1 PM outbound). Thisphenomenon seems less prominent for pa
ket throughput than for byte throughput (seeobservation B.2).P.3 Unlike the byte throughput 
ase, the tails of the pa
ket throughput from the replaysmarginals are never signi�
antly heavier than the original tails. Lossless replays providethe best approximations of the original tails, being ex
ellent in some 
ases (Leipzig-IIinbound and UNC 1 PM inbound). Lossy replays show lighter tails than lossless replays,revealing signi�
antly worse approximations of the original tails. We 
an also observethat the tails of the 
ollapsed-epo
hs replays are 
onsistently lighter than those of the full232



replays. However, the impa
t of detailed modeling on the tails of the marginals is lessprominent than the impa
t of in
orporating losses.P.4 Full replays and lossy 
ollapsed-epo
hs replays provide good approximations of the originalwavelet spe
tra, while the lossless 
ollapsed-epo
hs replays show somewhat higher energy.In general, we 
an say that the best approximation is a
hieved by the lossless full replay.As in the 
ase of byte throughput, Hurst parameter estimates o�er a di�erent pi
ture.Only the estimates for the lossy full replay are within 
on�den
e intervals of the originalestimates for Leipzig-II, while the estimates for both lossless and lossy full replays arewithin 
on�den
e intervals for UNC 1 PM.P.5 Replays do not 
onsistently reprodu
e the energy levels at the �nest s
ales of the originaltime series of pa
ket arrivals. We �nd minor di�eren
es for Leipzig-II and UNC 1 PMinbound, and substantially larger ones for UNC 1 PM outbound. Collapsed-epo
hs replaysare signi�
antly worse than full replays only for UNC 1 PM.6.4.3 Observations on A
tive Conne
tionsRegarding a
tive 
onne
tions, we 
an make the following observations that hold true forboth Leipzig-II and UNC 1 PM:C.1 The number of a
tive 
onne
tions in the original tra
e and in the full replays is verysimilar.C.2 The lossy full replay provides the best approximation of the a
tive 
onne
tion time series,being within 1% of the original time series. There is no di�eren
e for UNC 1 PM.C.3 The number of a
tive 
onne
tions in 
ollapsed-epo
hs replays is several times smaller thanthe original (around 3 times smaller for Leipzig-II and UNC 1 PM).C.4 Adding losses to the replays substantially in
reases the average number of 
onne
tions.This in
rease is of the same magnitude for both full and 
ollapsed-epo
hs replays.C.5 Full replays tra
k the features of the original time series very 
losely. The only di�eren
e233
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Figure 6.27: Byte throughput time series for UNC 1 AM inbound and its four types ofsour
e-level tra
e replay.
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e-level tra
e replay.between lossless and lossy replays is a slowly varying o�set. This suggests a homoge-neous impa
t of losses, whi
h lengthens the lifetimes of a stable number of 
onne
tionsthroughout the tra
es.C.6 Unlike full replays, 
ollapsed-epo
hs replays do not tra
k the features of the original timeseries. However, the magnitude of this e�e
t pales in 
omparison to the mu
h smallernumber of a
tive 
onne
tions.
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6.5 Sour
e-level Replay of UNC 1 AM6.5.1 Time Series of Byte ThroughputThe plots of the 1-minute time series of byte throughput for the original UNC 1 AM and itsreplays are shown in Figure 6.27 (inbound dire
tion) and in Figure 6.28 (outbound dire
tion).For the inbound, we observe a moderately bursty time series with a large in
rease in bytethroughput between minutes 15 and 32. In good agreement with observation B.1, the replaystra
k the shape of the original time series well. They also approximate some smaller spikes,su
h as the one in minute 45, and miss others, su
h as the one in minute 17. The result issimilar for the outbound dire
tion, although we again �nd a slightly lower overall throughputin the replays. There is also an area of higher throughput in the original tra
e between minutes35 and 43 that is not properly reprodu
ed by any of the replays. The full lossy replay providethe 
losest approximation, but there is still a 
lear di�eren
e with respe
t to the original timeseries.The results also support the observation of higher burstiness from lossless replays, B.2, andfrom 
ollapsed-epo
hs replays, B.3; espe
ially for the inbound dire
tion. The results are also
onsistent with observation B.7, sin
e the full lossy replay appears 
losest to the original.6.5.2 Time Series of Pa
ket ThroughputThe time series of pa
ket throughput for UNC 1 AM inbound shown in Figure 6.29 are insharp 
ontrast to earlier results. As stated in observation P.1, the time series from the replaysof the previous tra
es were generally below the time series of the original tra
e. However, thefull replays of UNC 1 AM are often above the original pa
ket throughput, espe
ially in the 
aseof the lossy full replay. The same is not true for the outbound dire
tion, as shown in Figure6.30, where the replays are again below the original for a large fra
tion of the time series. Whilethe replays provide a reasonable approximation of the overall time series, the original pa
ketthroughput in the outbound dire
tion is substantially lower between minutes 35 and 43. The235
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ket throughput time series for UNC 1 AM inbound and its four types ofsour
e-level tra
e replay.
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ket throughput time series for UNC 1 AM outbound and its four types ofsour
e-level tra
e replay.di�eren
e is most apparent for the 
ollapsed-epo
hs replays.Regarding observation P.2, we 
an see that 
ollapsing epo
hs substantially redu
ed pa
ketthroughput. Paradoxi
ally, this makes the time series of the lossy 
ollapsed-epo
hs mat
h theoriginal quite well, although the same is not true for the lossless 
ollapsed-epo
hs replay. Notealso that it is diÆ
ult to argue for this tra
e that the lossy replays are signi�
antly more burstythan the lossy ones at the 1-minute s
ale. We only observe one arti�
ial spike in minute 27 forthe lossless 
ollapsed-epo
hs replay.
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Lossy Coll. EpochsFigure 6.32: Byte throughput marginals for UNC 1 AM outbound and its four types ofsour
e-level tra
e replay.6.5.3 Marginal DistributionsFigures 6.31 and 6.32 study the marginal distributions of the original 10-millise
ond timeseries UNC 1 AM and those from the sour
e-level tra
e replays. The bodies of the distributionsfrom the replays are almost identi
al to the original for the inbound dire
tion, and quite 
lose forthe outbound dire
tion, whi
h further supports observation B.1. Observation B.2 is 
onsistentwith these results, although the bodies of the lossless replays are very 
lose to those of thelossy ones in this 
ase. We do however observe 
onsistently heavier tails from lossless replays.Note the mu
h heavier tail from the lossless 
ollapsed-epo
hs replay, whi
h reveals an extraburstiness that was not visible in Figure 6.27. In agreement with observation B.3, we donot �nd 
onsistently wider bodies or heavier tails from the 
ollapsed-epo
hs replays. Finally,237
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ket throughput marginals for UNC 1 AM inbound and its four types ofsour
e-level tra
e replay.
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ket throughput marginals for UNC 1 AM outbound and its four types ofsour
e-level tra
e replay.observation B.7 remains valid, with the lossy full replay being best for the tail of the inbounddire
tion, but 
learly not for the opposite dire
tion.The lesson from the plots of the pa
ket throughput marginals shown in Figures 6.33 and 6.34is similar to the one dis
ussed for the time series in Se
tion 6.5.2. In the inbound dire
tion, themarginal from the lossy full replay is heavier than the original, while the lossless full replay andthe lossy 
ollapsed-epo
hs replays are rather 
lose to the original. In the outbound dire
tion,the results are 
onsistent with the somewhat lower pa
ket throughput for the replay stated inobservation P.1.The tails of the marginals are again surprising for UNC 1 AM, and do not follow observationP.3. The inbound plot shows lossless replays that are signi�
antly heavier than the original,238



whi
h exhibits the lightest tail. Lossy replays provide far better approximations. The outboundplot appears 
loser to the previous observation, with the lossless replays being the 
losest onesto the original. Note however that they are somewhat heavier, unlike in the Leipzig-II andUNC 1 PM 
ases.6.5.4 Long-Range Dependen
eWhile the wavelet spe
tra for the inbound dire
tion shown in Figure 6.35 are in goodagreement with observation B.4, we �nd substantially higher energy above the original in thespe
trum of the lossless full replay for outbound dire
tion. The estimated Hurst parametersshown in Table 6.5 are again diÆ
ult to assess, as mentioned in that observation. Losslessreplays are the only ones within the 
on�den
e interval of the estimate for the original inbounddire
tion, while only the lossless 
ollapsed-epo
hs replay is outside the 
on�den
e interval forthe outbound dire
tion. In
identally, the extremely high estimate for the lossless 
ollapsed-epo
hs replay is remarkable. It is 0.23 above the lossless full replay, illustrating the majordi�eren
e that detailed sour
e-level modeling 
an make on traÆ
 long-range dependen
e.In the s
aling region, 
ollapsed-epo
hs replays do show higher energy than full replays, asobserved in B.5. This higher energy does not translate into higher Hurst parameter estimates.Noti
e for example the lower estimates for the inbound dire
tion. For both dire
tions, thelossy 
ollapsed-epo
hs replay provides a good approximation of the original spe
trum, althoughnot as good as the lossy full replay. The results for UNC 1 AM are therefore 
onsistent withobservation B.7. At the �nest s
ales, we �nd that the lossy full replay approximates the energylevels of the inbound dire
tion most 
losely, while it is the lossy 
ollapsed-epo
hs replay thebest mat
h for the outbound dire
tion. This in
onsisten
y supports observation B.6.Figures 6.37 and 6.38 reveal that the wavelet spe
tra from lossless replays do not approxi-mate the original spe
tra well. For both dire
tions, the full lossless replay shows signi�
antlymore energy, while the full 
ollapsed-epo
hs replay shows higher slope in the s
aling region.This poor �t for the lossless full replay 
ontradi
ts observation P.4. Lossy replays appear 
loser239
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Figure 6.35: Wavelet spe
tra of the byte throughput time series for UNC 1 AM inboundand its four types of sour
e-level tra
e replay.
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Figure 6.36: Wavelet spe
tra of the byte throughput time series for UNC 1 AM outboundand its four types of sour
e-level tra
e replay.Tra
e Inbound OutboundUNC 1 AM H C. I. H C. I.Original 0.9885 [0.9479, 1.0292℄ 0.9990 [0.9584, 1.0397℄Lossless Replay 1.0275 [0.9868, 1.0681℄ 0.9705 [0.9299, 1.0111℄Lossy Replay 0.9465 [0.9058, 0.9871℄ 0.9546 [0.9140, 0.9953℄Lossless Coll. Epo
hs 1.0089 [0.9683, 1.0495℄ 1.2036 [1.1630, 1.2443℄Lossy Coll. Epo
hs 0.9136 [0.8730, 0.9542℄ 0.9720 [0.9313, 1.0126℄Table 6.5: Estimated Hurst parameters and their 
on�den
e intervals for the byte through-put time series of UNC 1 AM and its four types of sour
e-level tra
e replay.240
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Figure 6.37: Wavelet spe
tra of the pa
ket throughput time series for UNC 1 AM inboundand its four types of sour
e-level tra
e replay.
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Figure 6.38: Wavelet spe
tra of the pa
ket throughput time series for UNC 1 AM outboundand its four types of sour
e-level tra
e replay.Tra
e Inbound OutboundUNC 1 AM H C. I. H C. I.Original 0.9316 [0.8871, 0.9760℄ 0.9309 [0.8864, 0.9753℄Lossless Replay 0.9860 [0.9416, 1.0305℄ 0.9830 [0.9385, 1.0274℄Lossy Replay 0.9749 [0.9304, 1.0193℄ 0.9759 [0.9315, 1.0204℄Lossless Coll. Epo
hs 1.1478 [1.1034, 1.1923℄ 1.2128 [1.1683, 1.2572℄Lossy Coll. Epo
hs 0.9504 [0.9059, 0.9948℄ 0.9757 [0.9313, 1.0202℄Table 6.6: Estimated Hurst parameters and their 
on�den
e intervals for the pa
ketthroughput time series of UNC 1 AM and its four types of sour
e-level tra
e replay.241
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Lossy ReplayFigure 6.39: A
tive 
onne
tion time series for UNC 1 AM and its four types of sour
e-leveltra
e replay.to the original spe
tra in the s
aling region, espe
ially in the 
ase of the lossy full replay. Re-plays do not 
onsistently mat
h the energy in the �ne-s
ale region, as stated in observation P.5.Lossy replays are the 
losest ones in this region.The estimated Hurst parameters shown in Table 6.6 do not follow observation P.4 very
learly. The estimates from the lossless 
ollapsed-epo
hs replay are far larger than the originalestimates. The estimates from the lossless full replays are far lower, but they are still abovethe upper ends of the 
on�den
e intervals. Finally, both lossy replays are within 
on�den
eintervals, although the a
tual estimates are higher.6.5.5 Time Series of A
tive Conne
tionsThe time series of a
tive 
onne
tions shown in Figure 6.39 
on�rm the list of observationsin Se
tion 6.4. It is 
lear that observations C.1 and C.2 hold, being the lossy full replay aperfe
t mat
h of the original time series. Observation C.3 is also true, although the relative gapbetween the number of 
onne
tions in full and 
ollapsed-epo
hs replays is smaller for this tra
e.The impa
t of losses is somewhat more signi�
ant for the 
ollapsed-epo
hs replays, whi
h is not
ompletely in agreement with observation C.4. Observations C.5 and C.6 are 
onsistent withthe results for UNC 1 AM.
242
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Figure 6.40: Byte throughput time series for UNC 7:30 PM inbound and its four types ofsour
e-level tra
e replay.
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Lossy Replay with Collapsed EpochsFigure 6.41: Byte throughput time series for UNC 7:30 PM outbound and its four typesof sour
e-level tra
e replay.6.6 Sour
e-level Replay of UNC 7:30 PM6.6.1 Time Series of Byte ThroughputThe time series of byte throughput for the inbound and outbound dire
tions of UNC 7:30PM are shown in Figures 6.40 and 6.41 respe
tively. Observation B.1 is 
learly appli
able tothese results. For the inbound dire
tion, note the very good approximation of the time seriesfeatures between minutes 20 and 60, and the a

urately reprodu
ed spikes in minutes 46 and53. In 
ontrast, the replay seems out of phase for the initial spike in minute 1, and the largespike in minute 32. This 
ould be explained by one or a few fast 
onne
tions in the originaltra
e that 
ould not be replayed fast enough. In the outbound dire
tion, we �nd replays with243
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ket throughput time series for UNC 7:30 PM inbound and its four typesof sour
e-level tra
e replay.somewhat lower byte throughput, whi
h was also observed in the other two UNC tra
es.The possible extra burstiness in lossless replays mentioned in observation B.2 is not presentin the inbound dire
tion, and the last 40 minutes in the outbound dire
tion. We do howeverobserve substantially higher throughputs in the outbound dire
tion for the �rst 20 minutes,espe
ially in the 
ase of the lossless 
ollapsed-epo
hs replay. Regarding observation B.3, we doobserve slightly more bursty time series from the 
ollapsed-epo
hs replay in both dire
tions,although the di�eren
e seems minor in this 
ase. A few of the (smaller) features in the inbounddire
tion are more 
losely approximated by the full replays, su
h as the spike in minute 22 andthe dit
h in minute 43.6.6.2 Time Series of Pa
ket ThroughputThe analysis of the pa
ket throughput results shows again some interesting di�eren
es withrespe
t to earlier results and observations P.1 and P.2, but only in the outbound dire
tion.The results for the inbound dire
tion presented in Figure 6.42 are in good agreement withobservation B.1, sin
e we observe substantially lower pa
ket throughput for 
ollapsed-epo
hsreplays. The result is also 
onsistent with observation B.2, showing higher pa
ket throughputin the lossy replay. However, the result for the outbound dire
tion is more surprising. Unlikeprevious 
ases, losses have a minimal impa
t on the replays, as shown in Figure 6.43. We 
ould244
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ket throughput time series for UNC 7:30 PM outbound and its four typesof sour
e-level tra
e replay.
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Figure 6.44: Byte throughput marginals for UNC 7:30 PM inbound and its four types ofsour
e-level tra
e replay.argue that the lossy replay provides a better �t between minutes 30 and 35 and after minute52, but the rest of the time series for this replay is very similar to the one for the lossless replay.We 
an also say that the lossless replay makes a better attempt to mat
h the spike in minute14, although the replay spike seems shifted to minute 16.6.6.3 Marginal DistributionsThe marginal distributions of the 10-millise
ond time series of byte throughput for theinbound dire
tion are shown in Figure 6.44, while the ones for the outbound dire
tion areshown in Figure 6.45. In agreement with observation B.1, the body of the marginals are 
loselyapproximated by the replays, espe
ially in the 
ase of the inbound dire
tion. For the outbound,245
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Figure 6.45: Byte throughput marginals for UNC 7:30 PM outbound and its four types ofsour
e-level tra
e replay.
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Figure 6.46: Pa
ket throughput marginals for UNC 7:30 PM inbound and its four typesof sour
e-level tra
e replay.it is interesting to note a better approximation by the lossless replays for the upper part of thebody and the �rst half of the tail.As observation B.2 and B.3 pointed out, it is diÆ
ult to make general a statement aboutthe approximation of the tails. For UNC 7:30 PM inbound, 
ollapsed epo
h replays mat
hthe original as 
losely as the full replays that mat
h the original tail below 10�4, but they aresubstantially heavier above that probability. Note that this heaviness did not manifest itselfin the plots of 1-minute byte throughput. For UNC 7:30 PM outbound, we however have thatthe lossless replays are the ones showing an ex
ellent mat
h below 10�3, but a far heavier tailabove that probability. Overall, the only type of replay that did not show an overly heavy tailwas the lossy full replay, whi
h supports observation B.7.246
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Figure 6.47: Pa
ket throughput marginals for UNC 7:30 PM outbound and its four typesof sour
e-level tra
e replay.The body of the marginal distributions for the 10-millise
ond pa
ket throughputs shownin Figure 6.46 and 6.47 do not 
learly follow observation P.1. In the inbound dire
tion, thedistributions from the 
ollapsed-epo
hs replays are 
learly lighter than those from the fullreplays and the original tra
e for most of the distribution. However, they provide a betterapproximation above 100 pa
kets. Interestingly, the distributions from the lossless replaysexhibit similar shapes, but a 
lear o�set, and the same is true for the lossy replays. For thisdire
tion, we �nd that the impa
t of detailed sour
e-level modeling and per-
onne
tion losses isof the same order. The lesson is similar for the outbound dire
tion, although all of the replaydistributions are lighter than the original distribution in this 
ase.Regarding the tails of the marginal distributions, we observe similar 
onditions in bothdire
tions. Lossless replays exhibit substantially heavier tails than the original, while lossyreplays exhibit substantially lighter tails. This is in sharp 
ontrast to the results for the 1-minute time series studied in Se
tion 6.6.2, where losses had a very small impa
t. We 
an arguethat lossless replays are arti�
ially more bursty only at �ne-time s
ales for UNC 7:30 PM. Theresults 
learly support observation P.3, showing that the tails are far more sensitive to lossesthan to detailed sour
e-level modeling for this tra
e.
247
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Figure 6.48: Wavelet spe
tra of the byte throughput time series for UNC 7:30 PM inboundand its four types of sour
e-level tra
e replay.
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Figure 6.49: Wavelet spe
tra of the byte throughput time series for UNC 7:30 PM out-bound and its four types of sour
e-level tra
e replay.Tra
e Inbound OutboundUNC 7:30 PM H C. I. H C. I.Original 0.8927 [0.8520, 0.9333℄ 0.9424 [0.9018, 0.9830℄Lossless Replay 0.8490 [0.8083, 0.8896℄ 1.0191 [0.9784, 1.0597℄Lossy Replay 0.8449 [0.8043, 0.8856℄ 1.0044 [0.9637, 1.0450℄Lossless Coll. Epo
hs 0.8392 [0.7985, 0.8798℄ 0.9984 [0.9578, 1.0390℄Lossy Coll. Epo
hs 0.8655 [0.8249, 0.9062℄ 1.0971 [1.0564, 1.1377℄Table 6.7: Estimated Hurst parameters and their 
on�den
e intervals for the byte through-put time series of UNC 7:30 PM and its four types of sour
e-level tra
e replay.248



6.6.4 Long-Range Dependen
eThe spe
tra of the byte throughput in the full replays are 
lose to the original spe
trum,as shown in Figure 6.48. However, the spe
tra of the outbound byte throughput shown inFigure 6.49 reveals a lossless replay with substantially more energy in the s
aling region (whi
hstarts at o
tave 6). As in the 
ase of UNC 1 AM outbound, this �nding does not supportobservation B.4 regarding lossless full replays. The lossy full replay provides however a 
loserapproximation to the original spe
trum. Estimated Hurst parameters in Table 6.7 show similarresults. Estimates from the replays are within the 
on�den
e interval of the inbound estimate,but somewhat lower. However, they are above the upper end of the 
on�den
e interval of theoutbound estimate. The estimate from the lossy 
ollapsed-epo
hs replay is spe
ially high inthis 
ase, probably driven by the spike in o
tave 11. It is again diÆ
ult to draw any strong
on
lusion other than the general �nding of in
onsistent results already stated in observationB.4.Collapsed-epo
hs replays show substantially more energy in the lossless 
ase, but the dif-feren
e in not so substantial for the lossy replay, espe
ially in the inbound dire
tion. This is inagreement with observation B.5.The lossy full replay provides the best approximation again, as pointed out in observationB.7, However, some regions, su
h as the one between o
taves 9 to 12 in the inbound dire
tion,are more 
losely reprodu
ed by the lossy 
ollapsed-epo
hs replay. Interestingly, the four replaystra
k the �ne-s
ale energy pro�le of the original spe
trum for the inbound dire
tion, but onlythe lossless ones do so for the outbound dire
tion. Observation B.6 already re
e
ted this typeof in
onsisten
y in the results.The lessons from the wavelet spe
tra in Figures 6.50 and 6.51 are surprisingly similar tothose from the analysis of the pa
ket throughput spe
tra for UNC 1 AM, dis
ussed in Se
tion6.5.4. The full lossless replay shows higher energy, and the full 
ollapsed-epo
hs replay showssubstantially higher slope in the s
aling region. Lossy replays provide far better approximationsof the original spe
tra. As we observed for UNC 1 AM, these �ndings are in
onsistent with249
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Figure 6.50: Wavelet spe
tra of the pa
ket throughput time series for UNC 7:30 PMinbound and its four types of sour
e-level tra
e replay.
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Figure 6.51: Wavelet spe
tra of the pa
ket throughput time series for UNC 7:30 PMoutbound and its four types of sour
e-level tra
e replay.Tra
e Inbound OutboundUNC 7:30 PM H C. I. H C. I.Original 0.9560 [0.9116, 1.0005℄ 1.0061 [0.9617, 1.0506℄Lossless Replay 0.9655 [0.9210, 1.0099℄ 1.0043 [0.9599, 1.0488℄Lossy Replay 0.9186 [0.8742, 0.9631℄ 0.9524 [0.9080, 0.9969℄Lossless Coll. Epo
hs 0.9491 [0.9047, 0.9936℄ 0.9931 [0.9487, 1.0375℄Lossy Coll. Epo
hs 0.9967 [0.9523, 1.0411℄ 1.0508 [1.0064, 1.0953℄Table 6.8: Estimated Hurst parameters and their 
on�den
e intervals for the pa
ketthroughput time series of UNC 7:30 PM and its four types of sour
e-level tra
e replay.250
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Lossy ReplayFigure 6.52: A
tive 
onne
tion time series for UNC 7:30 PM and its four types of sour
e-level tra
e replay.observation P.4. Regarding �ne s
ale energy levels in the outbound dire
tion, lossless replaysshow higher energy than lossy ones, whi
h are still above the original. In the outbound dire
tion,lossless replays are very 
lose to the original, while lossy ones are below it. On
e again, thediÆ
ulties for mat
hing �ne s
ale energies mentioned in observation B.6 are present in thistra
e.The estimates of the Hurst parameters are not so 
onsistent with the results for UNC 1AM, and are in better agreement with observation P.4. Here lossless replays approximate theoriginal spe
tra 
losely, while lossy replays appear lower (full 
ase) or higher (
ollapsed-epo
hs
ase) than the original.6.6.5 Time Series of A
tive Conne
tionsThe time series of a
tive 
onne
tions shown in Figure 6.52 are in good agreement with earliertra
es. Every observation listed in Se
tion 6.4.3 is 
on�rmed by the UNC 7:30 PM results.Unlike the two previous UNC tra
es, the lossy full replay is not a perfe
t �t of the original timeseries, but it still provides a very 
lose approximation, well within the 1% bound mentionedin observation C.2. The large spike around minute 23 does not appear in the 
ollapsed-epo
hsreplay, providing another 
lear illustration of observation C.6. Note that whatever the 
auseof this spike, it is not due to a di�eren
e in the number of 
onne
tions started, sin
e they are251
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e-level tra
e replay.identi
al in the four replays. The spike is ne
essarily explained by a set of 
onne
tions withsubstantially longer lifespans in the full replays than in the 
ollapsed-epo
hs replays.6.7 Sour
e-level Replay of Abilene-I6.7.1 Time Series of Byte ThroughputThe two dire
tions of Abilene-I show the highest throughput of the �ve tra
es 
onsideredin this 
hapter. Combined byte throughput is often above 400 Mbps, 
reating the most 
hal-lenging traÆ
 generation s
enario in terms of traÆ
 volume. The ex
ellent agreement betweenoriginal and replay data shown in Figures 6.53 and 6.54 provide 
onvin
ing eviden
e in favor of252
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ket throughput time series for Abilene-I Clev/Ipls and its four types ofsour
e-level tra
e replay.observation B.1. The replays 
losely tra
k the general shape of the time series, even reprodu
ingmajor 
hanges su
h as the one between minutes 30 and 42. In general, we observe some spikesthat appear in both original and replay time series, while others do not.Lossless replays and 
ollapsed-epo
hs replays do not seem to add any signi�
ant burstinessfor this tra
e, whi
h agrees with the weak statements in observations B.2 and B.3. Note howeverthat the high aggregate throughput 
ould easily be hiding extra burstiness of the magnitudeobserved for previous tra
es. For example, 
areful examination un
overs higher throughputabove the original in 
ollapsed-epo
hs replay, for the spike in minute 7 and for the regionbetween minutes 15 and 30.6.7.2 Time Series of Pa
ket ThroughputThe time series of pa
ket throughput in Figures 6.55 and 6.56 are 
onsistent with observationP.1, showing an ex
ellent mat
h between original and full replays. Given that Abilene-I is thetra
e with the lowest loss level (see Se
tion 4.1.3), this 
ould suggest that the diÆ
ulties withthe last two UNC tra
es were probably due to the 
omplexity of their loss 
hara
teristi
s.Collapsed-epo
hs replays show a lower pa
ket throughput, generally 2,000 to 3,000 pa
ketsbelow the original. In relative terms, the di�eren
e is between 8% and 10%, whi
h is smallerthan for previous tra
es. This 
ould easily be explained by a larger per
entage of bulk transfers253
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e-level tra
e replay.in Abilene-I, where a single ADU 
arrying a single �le 
onstitutes the only payload of the TCP
onne
tion. This is for example the 
ase in FTP-DATA 
onne
tions.6.7.3 Marginal DistributionsThe marginal distributions from Abilene-I presented in Figure 6.57 and 6.58 show verysimilar bodies for original and replay tra
es. This further 
on�rms observation B.1. Unlikeprevious tra
es, we �nd remarkably similar tails for all four replay tra
es that are 
onsistentlylighter than the original tail. The di�eren
e is spe
ially striking in the outbound dire
tion. Onepossible explanation for this intriguing result for the Abilene-I tra
e 
omes from the type ofmonitored link. Abilene-I is the only tra
e in this 
hapter 
olle
ted in a link te
hnology (OC-254
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Figure 6.58: Byte throughput marginals for Abilene-I Ipls/Clev and its four types ofsour
e-level tra
e replay.
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ket throughput marginals for Abilene-I Clev/Ipls and its four types ofsour
e-level tra
e replay.48, 2.5 Gbps) di�erent from the one used in the replay (Gigabit Ethernet, 1 Gbps). While theplots in Figures 6.53 and 6.54 showed no single minute with more than 500 Mbps, it is perfe
tlypossible to have shorter (e.g., 10 millise
ond) intervals with far higher byte throughput. Analternative explanation is the presen
e of some possible limit in the forwarding 
apa
ity of oursoftware routers, whi
h is not far above 500 Mbps.The bodies of the marginal distributions for pa
ket throughput in Figures 6.59 and 6.60 are
onsistent with observation P.1. Collapsed-epo
hs replays show substantially lighter distribu-tions, while full replays are 
loser to the original. The approximation in the outbound dire
tionis remarkably good. As a 
onsequen
e of the low loss in this tra
e, observation P.3 does notapply to Abilene-I. The impa
t of losses is smaller than the impa
t of sour
e-level modeling.255
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ket throughput marginals for Abilene-I Ipls/Clev and its four types ofsour
e-level tra
e replay.This e�e
t is however dwarfed by the large di�eren
e between the tails of the replays and theoriginal one. As dis
ussed for byte throughput, di�eren
es in link te
hnology between Abilene-Iand the testbed 
ould explain the far lighter tails in the replays.6.7.4 Long-Range Dependen
eThe wavelet spe
tra for the inbound dire
tion, shown in Figure 6.61, support observationB.4. However, the di�eren
e between original and full replays is substantial in the outbounddire
tion, shown in Figure 6.62. Given the major 
hange in slope after o
tave 11, it is diÆ
ultto draw any 
on
lusions from this �nding. Regarding observation B.5, we do observe worseapproximations by the 
ollapsed-epo
hs replays, whi
h exhibit substantially deeper dit
hesaround o
tave 5 (noti
e the lower smallest value in the y-axis of the outbound plot). In any
ase, the replays do not 
losely tra
k the �ne s
ale shape of the spe
tra, whi
h is in agreementwith observation B.6.Hurst parameters, shown in Table 6.9, are remarkably high for this tra
e. All of them areabove 1, suggesting signi�
ant non-stationarity, whi
h is 
learly preserved in the replays. Theestimate for the lossy full replay is the 
losest one for both dire
tions. Together with the waveletspe
tra, this supports observation B.7.As for byte throughput, the wavelet spe
tra of the pa
ket throughput for Abilene-I shown in256
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Figure 6.61: Wavelet spe
tra of the byte throughput time series for Abilene-I Clev/Iplsand its four types of sour
e-level tra
e replay.
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Figure 6.62: Wavelet spe
tra of the byte throughput time series for Abilene-I Ipls/Clevand its four types of sour
e-level tra
e replay.Tra
e Inbound OutboundAbilene-I H C. I. H C. I.Original 1.0597 [1.0320, 1.0874℄ 1.0604 [1.0327, 1.0881℄Lossless Replay 1.1170 [1.0893, 1.1447℄ 1.1356 [1.1079, 1.1633℄Lossy Replay 1.0814 [1.0537, 1.1091℄ 1.1079 [1.0802, 1.1356℄Lossless Coll. Epo
hs 1.1824 [1.1573, 1.2075℄ 1.2111 [1.1860, 1.2362℄Lossy Coll. Epo
hs 1.1580 [1.1329, 1.1831℄ 1.1874 [1.1623, 1.2125℄Table 6.9: Estimated Hurst parameters and their 
on�den
e intervals for the byte through-put time series of Abilene-I and its four types of sour
e-level tra
e replay.257
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Figure 6.63: Wavelet spe
tra of the pa
ket throughput time series for Abilene-I Clev/Iplsand its four types of sour
e-level tra
e replay.
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Figure 6.64: Wavelet spe
tra of the pa
ket throughput time series for Abilene-I Ipls/Clevand its four types of sour
e-level tra
e replay.Tra
e Inbound OutboundAbilene-I H C. I. H C. I.Original 1.1326 [1.1075, 1.1577℄ 1.0996 [1.0745, 1.1247℄Lossless Replay 1.1191 [1.0941, 1.1442℄ 1.1443 [1.1192, 1.1694℄Lossy Replay 1.0849 [1.0598, 1.1100℄ 1.1232 [1.0981, 1.1483℄Lossless Coll. Epo
hs 1.1841 [1.1563, 1.2118℄ 1.1923 [1.1646, 1.2200℄Lossy Coll. Epo
hs 1.1757 [1.1480, 1.2034℄ 1.1850 [1.1573, 1.2127℄Table 6.10: Estimated Hurst parameters and their 
on�den
e intervals for the pa
ketthroughput time series of Abilene-I and its four types of sour
e-level tra
e replay.258
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tive 
onne
tion time series for Abilene-I and its four types of sour
e-leveltra
e replay.Figures 6.63 and 6.64 are not 
omparable to previous 
ases, and in
onsistent with observationP.4. The di�eren
e between the replays and the original follows the same pattern in all of the
ases, with a large dit
h in o
tave 5. This dit
h is mu
h more pronoun
ed for the 
ollapsed-epo
hs replays. In any 
ase, the result is a poor mat
h between the original spe
tra and thereplays, both at �ne s
ales and at the the s
aling region. Estimated Hurst parameters for thereplays are lower for the inbound replays and higher for the outbound ones, and mostly outside
on�den
e intervals. In
orporating losses had a minimal impa
t on the wavelet spe
tra of theAbilene-I replays, resulting only in a small de
rease of the slope in the s
aling region. Thisde
rease translated into a slightly smaller Hurst parameters estimates for the lossy replays.6.7.5 Time Series of A
tive Conne
tionsUnlike the results for previous tra
es, Figure 6.65 shows a substantial di�eren
e between thelossy full replay and the original time series. This weakens observations C.1 and C.2 from Se
tion6.4.3, being the replay around 15% below the original. The rest of the observations 
learly hold.The relative magnitude of the gap between the full replays and the 
ollapsed-epo
hs ones islargest for Abilene-I. The reason is un
lear, espe
ially given the ex
ellent approximations forthe other tra
es. It is hard to imagine a larger fra
tion of bandwidth-
onstrained 
onne
tionsin this tra
e, and round-trip time estimation should be as a

urate as for the other tra
es.We are more in
lined to think that the mix of appli
ations in Abilene-I in
ludes a substantial259



number of (probably long) 
onne
tions whose driving appli
ation is not well-des
ribed by oursour
e-level model.6.8 SummaryThe results in this 
hapter demonstrated that sour
e-level tra
e replay 
an 
losely approxi-mate the 
hara
teristi
s of real traÆ
 tra
es. We have also shown that full sour
e-level replaysare 
loser or far 
loser to original tra
es than 
ollapsed-epo
hs replays for several metri
s. Inparti
ular, the largest di�eren
e is observed for the time series of pa
ket throughput, the bodyof the pa
ket throughput marginal and the time series of a
tive 
onne
tions. Byte throughputis similar for full and 
ollapsed-epo
hs replays. The latter exhibits somewhat more bursty timeseries, but the bodies of the marginals do not 
hange signi�
antly.The rest of the metri
s 
annot be 
learly interpreted, sin
e losses have a mu
h more sig-ni�
ant impa
t on them than the use of full or 
ollapsed-epo
hs replays. Lossy full replaysare 
learly better than lossy 
ollapsed-epo
hs replays in terms of wavelet spe
tra, estimatedHurst parameters and tails of the marginals for some tra
es, but this is not 
onsistent for the�ve tra
es. Our analysis 
learly demonstrated the need to 
arefully 
onsider the impa
t oflosses on evaluating the quality of syntheti
 traÆ
. Without our dire
t 
omparison of losslessand lossy replays, the results for 
ertain metri
s 
ould have mislead our 
on
lusions regardingsour
e-level modeling. In 
ontrast, other metri
s are less a�e
ted by the loss model. This is the
ase for the time series of pa
ket throughput, the body of the pa
ket throughput marginal andthe time series of a
tive 
onne
tions, where full replays are 
learly better approximations than
ollapsed-epo
hs replays.
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CHAPTER 7Tra
e Resampling and Load S
alingThat whi
h is stati
 and repetitive is boring. That whi
h is dynami
 and randomis 
onfusing. In between lies art. | John A. Lo
ke (1632{1704)Everything that 
an be 
ounted does not ne
essarily 
ount; everything that 
ounts
annot ne
essarily be 
ounted. | Albert Einstein (1879{1955)The previous 
hapters presented a 
omplete methodology for reprodu
ing the traÆ
 ob-served on a network link in a 
losed-loop manner, and proposed a number of metri
s for study-ing the realism of the generated traÆ
. In this 
hapter, we study ways to introdu
e statisti
alvariability in syntheti
 traÆ
 in a meaningful and 
ontrolled manner. In addition, we addressthe need for 
hanging o�ered load in network experiments. The methods that we introdu
e inthis 
hapter add signi�
ant 
exibility to our traÆ
 generation approa
h, enabling resear
hersto perform a wider range of experiments.In the approa
h presented so far, traÆ
 is generated a

ording to a tra
e T
 = f(Ti; Ci)g.Ea
h augmented 
onne
tion ve
tor Ci is replayed starting at time Ti. This implies that twodi�erent replays of T
 using the same hardware and the same physi
al network result in verysimilar syntheti
 traÆ
. In both 
ases, the syntheti
 traÆ
 has the same number of TCP
onne
tions, replaying the same sour
e-level behaviors under the same network-level parameters,and starting exa
tly at the same times. Only tiny variations would be introdu
ed on theend-systems by 
hanges in 
lo
k syn
hronization, operating system s
heduling and interrupthandling, and at swit
hes and routers by the sto
hasti
 nature of pa
ket multiplexing. This



reprodu
ibility was exa
tly what was needed to evaluate how well syntheti
 traÆ
 approximatedthe real traÆ
 from whi
h it derived.However, in the pra
ti
e of experimental networking, experimenters often want to introdu
emore variability in their experiments. One way of a

omplishing this is to use more than onetra
e in a replay, exposing the studied network proto
ol or me
hanism to di�erent types ofworkloads. This is highly desirable, but it has its drawba
ks. First, the experimenter may wantto perform a number of experiments that is larger than the number of available tra
es. Se
ond,tra
es from di�erent sites, and even tra
es from the same site but 
olle
ted at di�erent timesof the day, may be so di�erent that it be
omes diÆ
ult to extrapolate from the results of theexperiments.A di�erent, and 
omplementary, approa
h is to 
ondu
t several experiments using traÆ
that \looks like" some spe
i�
 tra
e T
, without exa
tly replaying T
 over and over. The �rst
hallenge in devising a method for a

omplishing this task is to de�ne what \looks like" mean.This involves 
reating a model (either formal or informal) of the traÆ
 whi
h is general enoughto 
ontain T
 but spe
i�
 enough to always resemble the original tra
e. Running di�erentexperiments then requires to instantiate this model several times to 
reate new derived tra
esT 0
 , T 00
 ; : : : and to generate traÆ
 with these new tra
es using their sour
e-level tra
e replay.In this 
hapter, this instantiation 
onsists of resampling the set of 
onne
tion ve
tors in T
 andassigning them new start times. Statisti
al variability in the derived tra
es 
omes from theresampling of the original 
onne
tion ve
tors, and from the pro
ess of 
onne
tion start times.We preserve the statisti
al properties of the original set of 
onne
tion ve
tors by resamplingentire 
onne
tion ve
tors, i.e., we do not manipulate the sizes and order of the ADUs and inter-ADU quiet times inside 
onne
tion ve
tors. Our belief is that a tra
e 
reated by modifying thesour
e-level behavior of the 
onne
tion ve
tors or their network-level parameters \does not looklike" the original tra
e. For example, doubling the size of the ADUs in T
 is an easy way of
reating a new tra
e and in
reasing the o�ered load. However, the resulting 
onne
tion ve
torshave little to do with the 
onne
tions observed in the link from whi
h T
 was 
olle
ted. Our
hoi
e to maintain 
onne
tion ve
tors inta
t is reasonable, and 
onsistent with the spirit of262



our overall methodology, whi
h goes to great lengths to a

urately 
hara
terize the sour
e-level
hara
teristi
s of ea
h 
onne
tion. Other resear
hers may have a di�erent mental model of thelegitimate level of statisti
al variability whi
h 
ould be introdu
ed in T 0
 ;T 00
 ; : : : We propose aspe
i�
 solution and demonstrate that it is reasonable using quantitative data. A dis
ussion ofthe di�erent philosophies is outside the s
ope of this work.The two se
tions in this 
hapter des
ribe two te
hniques for introdu
ing variability in thesour
e-level replay of a tra
e. Se
tion 7.1 des
ribes Poisson Resampling . This te
hnique as-sumes that 
onne
tions are independent of ea
h other, whi
h is a reasonable 
hoi
e for highlyaggregated traÆ
. Poisson Resampling involves randomly resampling the 
onne
tion ve
tors inT
 in an independent manner to 
reate a new T 0
 . New start times are given to ea
h resampled
onne
tion ve
tor in a su
h a way that 
onne
tion inter-arrivals are exponentially distributed.As we will show, empiri
al data support the 
hoi
e of exponential inter-arrivals.Se
tion 7.2 des
ribes Blo
k Resampling . This te
hnique involves resampling blo
ks of 
on-ne
tion ve
tors, preserving arrival dependen
ies among the 
onne
tions inside the same blo
k.Ea
h blo
k is the set of 
onne
tions observed in an interval of �xed duration (e.g., 1 minute)in the original tra
e. We will demonstrate that this te
hnique, unlike Poisson Resampling, pre-serves the long-range dependen
e in the 
onne
tion arrival pro
ess found in real tra
es. This
annot be a
hieved by sampling independently from an exponential (or any other) distribution.Note that we will reserve the term resampling for randomly sele
ting 
onne
tion ve
tors, andthe term sampling for randomly drawing values from a parametri
 distribution, su
h as theexponential distribution.The se
ond topi
 of this 
hapter is how to manipulate a tra
e T
 to modify the traÆ
load (i.e., average byte throughput) that this tra
e o�ers during its sour
e-level replay. Thisis a 
ommon need in experimental networking resear
h, where the performan
e of a networkme
hanism or proto
ol is often a�e
ted by the amount of traÆ
 to whi
h it is exposed. Forexample, a
tive queue management me
hanisms have very di�erent performan
e depending onthe level of utilization of the input link, so resear
hers generally perform experiments witho�ered loads that range from 50% to 120% of the link bandwidth. Rather than trying to �nd263



or 
olle
t tra
es with the exa
t range of loads needed (whi
h is generally diÆ
ult), we proposeto produ
e a 
olle
tion of resampled tra
es with the intended range of o�ered loads.Average load l is de�ned as the total number of bytes inje
ted in the network s dividedby the total duration of the experiment d. Changing the average load in an experiment of
onstant duration therefore implies 
reating a s
aled tra
e T 0
 with a higher or a lower totalnumber of bytes. On
e again, the assumption is that it is possible to 
reate a s
aled tra
eT 0
 whi
h \looks like" the original T
 but with a larger or smaller number of bytes. Thisrequires a model of traÆ
 that is general enough to en
ompass T
 and tra
es derived fromT
 with di�erent o�ered loads. As should be obvious, the problems of introdu
ing statisti
alvariability and 
hanging average load are related, and 
an naturally be treated together, as wewill do in this 
hapter. The two te
hniques mentioned above, Poisson Resampling and Blo
kResampling, provide the foundation for deriving s
aled tra
es. In both 
ases, the resamplingof T
 to 
reate a s
aled T 0
 
an be modi�ed to a
hieve a target average load. This means thatour s
aling method is predi
table, whi
h is an advan
e over earlier traÆ
 generation methods,e.g., [CJOS00, LAJS03, SB04℄. These earlier methods required a separate experimental study,a 
alibration, to 
onstru
t a fun
tion 
oupling the parameters of the traÆ
 generator and thea
hieved load. For example, web traÆ
 generators usually require a 
alibration to dis
over therelationship between average load and the number of user equivalents. The s
aling methodspresented in this 
hapter eliminate the need for this extra study. Their starting point is theobservation that the average load o�ered by the sour
e-level replay of T
 is a deterministi
fun
tion of the total number of bytes in the ADUs of T
. We will show that these observationholds true using numeri
al simulations and testbed experiments. In 
ontrast, the same analysiswill demonstrate that the average load o�ered by the replay of T
 is not strongly 
orrelatedwith its number of 
onne
tions. In the 
ase of Poisson Resampling, our method to 
onstru
t anew tra
e T 0
 with a spe
i�
 target o�ered load involves resampling T
 until the desired totalnumber of bytes (
oming from ADUs) is rea
hed. In the 
ase of Blo
k Resampling, 
onstru
tinga new tra
e T 0
 with a spe
i�
 target o�ered load involves subsampling blo
ks (\thinning") tode
rease load, or 
ombining two or more blo
ks (\thi
kening") to in
rease load.
264



7.1 Poisson Resampling7.1.1 Basi
 Poisson ResamplingThe �rst te
hnique we 
onsider for introdu
ing variability in the traÆ
 generation pro
essis Poisson Resampling. The starting point of every method presented in this 
hapter is a
onne
tion ve
tor tra
e T
 = f(Ti; Ci) j i = 1; 2; : : : ; ng where Ci is an augmented 
onne
tionve
tor (an a-b-t 
onne
tion ve
tor plus some network-level parameters), and Ti is its relativestart time. The basi
 version of our Poisson Resampling te
hnique 
onsists of deriving a newtra
e T 0
 = f(T 0j ; C 0j) j i = 1; 2; : : : ; n0g by randomly 
hoosing 
onne
tion ve
tors from T
 withoutrepla
ement, and assigning them start times a

ording to an exponential distribution. We de�nethe duration d of T
 as Tn � T1, the length of the interval in whi
h 
onne
tions are started1.Given a target duration d0 for T 0
 , the Poisson Resampling algorithm iteratively adds a new(T 0j ; C 0j) to T 0
 until T 0j > d0. Ea
h C 0j is equal to some randomly sele
ted Ci, andT 0j = T 0j�1 + Æj ;where Æj is sampled independently from an exponential distribution. The mean �0 of thisexponential distribution provides a way to 
ontrol the density of 
onne
tions in the derivedtra
e. For example, if we intend to have the same density of 
onne
tions in T 0
 as in T
, we
an 
ompute the mean inter-arrival time � = d=n of the 
onne
tion ve
tors in T
, and use itas the mean �0 of the experimental distribution used to 
onstru
t T 0
 . Given the light tail ofthe exponential distribution, the resulting number n0 of 
onne
tion ve
tors in T 0
 is always very
lose to d0=�0. If d = d0, the number of 
onne
tion ve
tors in T 0
 is also very 
lose to n.The resampling te
hnique des
ribed above has the advantage of its simpli
ity. Furthermore,it is statisti
ally appealing, sin
e the exponential distribution naturally arises from the 
ombi-nation of independent events. The use of 
onne
tion inter-arrivals sampled independently froman exponential distribution is intuitively 
onsistent with the view of traÆ
 as a superposition1This duration is always slightly below the true duration of the original pa
ket header tra
e, sin
e at leastthe pa
kets of the last 
onne
tion started are observed after its start time.265
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Figure 7.2: Tails of the distributions of 
on-ne
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of a large number of independent 
onne
tions that transmit data through the same networklink. Our empiri
al data, presented in Figures 7.1 to 7.4, 
on�rm the appli
ability of this inter-arrival model. Figure 7.1 shows two pairs of CDFs 
omparing real 
onne
tion arrivals and theirexponential �ts. The �rst pair (white symbols) 
orresponds to the distribution of 
onne
tioninter-arrivals for UNC 1 PM (squares), and an exponential distribution2 with the same mean(triangles). The se
ond pair (bla
k symbols) shows the distribution of 
onne
tion inter-arrivalsfor UNC 1 AM and an exponential distribution with the same mean. Both �ts are ex
ellent,so exponentially distributed 
onne
tion inter-arrivals are 
learly a good starting point for atra
e resampling te
hnique. The tails of the empiri
al distributions, shown in Figure 7.2, arealso 
onsistent with the �tted exponentials. Their slope is slightly lower, whi
h 
ould motivatea �t with a more general distribution like Weibull. However, a small improvement in the �twould require an in
rease in the 
omplexity of the model, sin
e the one-parameter exponentialmodel would have to be repla
ed by the two-parameter Weibull model. This additional e�ortwould produ
e only a limited gain given that the exponential �t is ex
ellent for 99.9% of thedistribution.Figures 7.3 and 7.4 
onsider another two tra
es, Abilene-I and Leipzig-II. The bodies areagain very 
losely approximated, but the tails are heavier for the original data. Note that thise�e
t is more pronoun
ed as the tra
es get longer. The duration of the UNC tra
es is onehour, the duration of Abilene-I is 2 hours, and the duration of Leipzig-II is 2 hours and 45minutes. This 
ould suggest that the worse �t is due to non-stationarity in the 
onne
tionarrival pro
ess, whi
h be
omes more likely for longer tra
es. Further analysis is needed to
on�rm this hypothesis or �nd an alternative explanation. We must note that these results arein sharp 
ontrast with those in Feldmann [Fel00℄, where the empiri
al inter-arrival distributionswere signi�
antly di�erent from the bodies3 of �tted exponential distributions. The reason forthis di�eren
e is un
lear at this point4.2The shown exponential distribution 
omes from randomly sampling the theoreti
al distribution n� 1 times.3The tails were not studied in that paper.4Besides problems with the �tting or the data a
quisition in the paper, we 
onje
ture that this 
ould be due tothe slightly di�erent type of data we 
onsidered in our study. Our 
onne
tions were fully 
aptured and in
ludedonly those 
onne
tions that a
tually 
arried data. Those in [Fel00℄ in
luded degenerate 
ases in whi
h no datawas transferred. 267
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Figure 7.6: Histogram of the average of-fered loads in 1,000 Poisson resamplings ofUNC 1 PM.The main problem with the basi
 Poisson Resampling te
hnique is the la
k of 
ontrol overthe load o�ered by the replay of T 0
 . As we will demonstrate, the number of 
onne
tions in T 0
is only loosely 
orrelated to the o�ered load. As a 
onsequen
e, it be
omes diÆ
ult to predi
tthe load that a Poisson resampled tra
e generates, even for resamplings of the same durationand mean inter-arrival rate. This would for
e resear
hers to 
reate many resampled tra
es untilthey hit upon a resampling with the intended o�ered load. We studied the wide range of o�eredloads that result from basi
 Poisson Resampling by performing a large of number of resamplingsof the same 
onne
tion ve
tor tra
e T
.As dis
ussed in the introdu
tion of this 
hapter, average load l 
reated by Th is equal tothe total number of bytes s in Th divided by its duration d. Given that TCP headers andretransmitted segments usually represent only a small fra
tion of s, the total size of the ADUsin T
 divided by d is also a 
lose approximation of l. We use this approximation to examine theaverage loads o�ered by a large number of Poisson resamplings, 
onsidering the o�ered loadof a resampling T 0
 equal to the total size s0 of its ADUs divided by its duration d0. It is alsoimportant to note that the tra
es we 
onsider are bidire
tional, and they do not ne
essarily
reate the same average load in both dire
tions. The analysis in the rest of this se
tion willfo
us only on one dire
tion of the tra
e, the target dire
tion, whose average load is given thetotal size of the ADUs 
owing in that dire
tion divided by the duration of the tra
e. More
268



formally, the total size of the ADUs in the target dire
tion is equal tos0 = Xi2Cinit niaXj=1 aij + Xi2Ca

 nibXj=1 bij ; (7.1)where Cinit is the set of 
onne
tion ve
tors in T 0
 initiated in the target dire
tion, Ca

 isthe rest of the 
onne
tion in T 0
 (the 
onne
tions a

epted rather than initiated in the targetdire
tion), nia and nib are the numbers of a-type and b-type ADUs of i-th 
onne
tion ve
torrespe
tively, and aij and bij are the sizes of the j-th a-type and b-type ADU of the i-th 
onne
tionve
tor respe
tively. Computing o�ered load as s0=d0 is only a 
onvenient (and reasonable)approximation of the load generated by replaying T 0
 . First, s0 is an underestimation, sin
e itdoes not take into a

ount the total size of pa
ket headers (only ADUs), and the retransmissionsin the replay. Se
ond, the duration of the replay of the 
onne
tion ve
tors in T 0
 will be somewhatabove d0. d0 only 
onsiders the period in whi
h 
onne
tions are started, but some of them willterminated after the last 
onne
tion is started. An obvious example is the last 
onne
tion.As we will demonstrate using experiments, the ina

ura
y of s0=d0 is very small, so it providesa good foundation for understanding load s
aling. This 
al
ulation is obviously mu
h more
onvenient than replaying thousands of resamplings in the testbed network.Figure 7.5 shows a s
atterplot of the results of 1,000 resamplings of UNC 1 PM. The durationof the resamplings and their mean rate of 
onne
tion inter-arrival were equal to the ones in UNC1 PM. For ea
h resampling, the total number of 
onne
tions is shown on the x-axis, while theresulting o�ered load s0=d0 is shown on the y-axis. This plot demonstrates that basi
 PoissonResampling results in tra
es with very small variability in the number of 
onne
tion ve
tors,between 1,409,727 and 1,417,664 (the standard deviation � was equal to 1,191.71). On the
ontrary, the range of o�ered loads is very wide, between 143.55 and 183.44 Mbps (� = 6:01Mbps), 
entered around the o�ered load of T
, 161.89 Mbps. The distribution of o�ered loadsand its spread is further illustrated by the histogram in Figure 7.6.The wide range of o�ered loads that 
an result from Poisson Resampling is due to the heavy-tailed nature of the distribution of the total number of bytes 
ontributed by ea
h 
onne
tion269
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Figure 7.8: Analysis of the a

ura
yof 
onne
tion-driven Poisson Resamplingfrom 6,000 resamplings of UNC 1 PM(1,000 for ea
h target o�ered load).ve
tor. The tail of this distribution for the UNC 1 PM tra
e is shown in Figure 7.7. Thevalues in the plot 
orrespond to the target dire
tion, i.e., Pniaj=1 aj for ea
h 
onne
tion in Cinitand Pnibj=1 bj for ea
h 
onne
tion in Ca

. The tails show non-negligible probabilities for verylarge sizes, and a linear de
ay of the probability over six orders of magnitude in the log-logCCDF. As a 
onsequen
e, the 
ontribution to the o�ered load made by ea
h 
onne
tion ishighly variable and thus the number of 
onne
tions in a tra
e is a poor predi
tor of its o�eredload. This makes basi
 Poisson Resampling inadequate for 
ontrolling load. Its only parameteris the mean inter-arrival rate of 
onne
tions. This rate 
ontrols the same number of 
onne
tionsin the resampling, but not the total size of these 
onne
tions, whi
h varies greatly due to theheavy-tailed 
onne
tion sizes. Figure 7.8 further illustrates this point using six sets of 1,000tra
e resamplings, ea
h set with a di�erent target o�ered load. The plot shows a 
ross markingthe mean of the load a
hieved by ea
h of the sets of 1,000 experiments. The variability in theo�ered loads is illustrated using error bars for ea
h set of experiments. The lower and upperendpoints of the error bars 
orrespond to the 5th and 95th per
entiles of the loads o�ered byea
h set of tra
e resamplings. Ea
h set of tra
e resamplings had a �xed mean inter-arrivalrate �0. Under the assumption that the mean o�ered load l is proportional to the number of
onne
tions n, we would expe
t the load to be inversely proportional to the mean arrival rate�, sin
e � = d=n. Therefore, if the resamplings have the same duration d, we would expe
t to270
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Figure 7.10: Histogram of the average of-fered loads in 1,000 byte-driven Poisson re-samplings of UNC 1 PM.a
hieve an o�ered load of l0 = l�0� (7.2)in ea
h resampling. This expe
ted value is shown in the x-axis as \target o�ered load". Themean of the loads o�ered by ea
h set of resamplings is indeed equal to the expe
ted (target)value. However, the error bars show a wide range of o�ered loads for the same �0, whi
his undesirable for a load s
aling te
hnique. For example, the width of the range of loadso�ered by the resamplings with the highest target load was 20 Mbps. Di�eren
es of thismagnitude between resamplings 
an have a dramati
 e�e
t on the experiments, 
ompletelyobs
uring di�eren
es among 
ompeting me
hanisms. The diÆ
ulty of pre
isely 
ontrolling theload using only the number of 
onne
tions as a parameter motivated our re�nement of PoissonResampling to a
hieve far more predi
table o�ered loads.7.1.2 Byte-Driven Poisson ResamplingAs the previous se
tion demonstrated, the number of 
onne
tion ve
tors in a tra
e is apoor predi
tor of the mean o�ered load a
hieved during the replay of a resampled tra
e T 0
 .Therefore, 
ontrolling the number of 
onne
tions in a resampling does not provide a good wayof a
hieving a target o�ered load, and an alternative method is needed. In the idealized model271



of o�ered load in the previous se
tion, the o�ered load l was said to be exa
tly equal to s=d. Ifso, we need to 
ontrol the total number of bytes in the resampled tra
e T 0
 to pre
isely mat
h atarget o�ered load. In Byte-driven Poisson Resampling , the mean inter-arrival rate of T 0
 is not
omputed a priori using Equation 7.2. Instead, the target load l0 is used to 
ompute a targetsize s0 = l0d0 for the payloads in the s
aled dire
tion.Byte-driven Poisson Resampling has two steps:1. We 
onstru
t a set of 
onne
tion ve
tors (without arrival times) by iteratively resamplingthe 
onne
tion ve
tors in T
 until the total payload size of the 
hosen 
onne
tion ve
tors,
omputed using Equation 7.1, rea
hes s0.2. We assign start times to the 
onne
tion ve
tors in the resampling using the te
hniquedes
ribed in the previous se
tion. The mean of the exponential distribution from whi
hinter-arrival times are sampled is d0=n0, where d0 is the desired duration of T 0
 , and n0 isthe number of 
onne
tion ve
tors in the resampling.Using this te
hnique, and under the assumption that l = s=d, the load o�ered by the resultingT 0
 should be very 
lose to the target load5. Figure 7.9 demonstrates that this is the 
aseby 
omparing the o�ered loads of 1,000 simulated tra
e resamplings 
onstru
ted using thete
hnique in se
tion 7.1.1 and another 1,000 resamplings using the byte-driven te
hnique. Thetarget load of the byte-driven resamplings was 161.89 Mbps, whi
h was the average load in theoriginal UNC 1 PM tra
e. The range of a
hieved o�ered loads is far narrower for the se
ondte
hnique, thanks to the variable number of 
onne
tion ve
tors that are assigned to ea
h T 0
 .The histogram in Figure 7.10 shows that the vast majority of the resamplings are very 
lose tothe target load (� = 0:41 Mbps).Figure 7.11 summarizes the results of 4 sets of 1,000 byte-drive Poisson resamplings. Theplot uses the same type of visualization found in Figure 7.8. The error bars, barely visible in5Note that the duration of T 0
 
omes from random samples of an exponential distribution, so it 
an be slightlylower or higher that the intended d0. Given the light tail of the exponential distribution and the large numberof samples, this deviation is ne
essarily very small. 272
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Figure 7.11: Analysis of the a

ura
y of byte-driven Poisson Resampling from 4,000 re-samplings of UNC 1 PM (1,000 for ea
h target o�ered load).this 
ase, illustrate the a

urate load s
aling that 
an be a
hieved with Byte-driven PoissonResampling.The previous analysis demonstrated that a

urate load s
aling requires 
ontrol of the totalnumber of bytes in T 0
 rather than of the total number of 
onne
tions. This demonstration wasbased on the 
omputation of the o�ered load using equation 7.1. It is important to verify thatthe a
tual load generated during a testbed replay of T 0
 is similar to the 
omputed load. Toshow that this is indeed the 
ase, we replayed a number of resampled tra
es with four di�erenttarget loads. Ea
h resampled tra
e was then 
onstru
ted using byte-driven Poisson Resampling,with a duration of 1 hour. To eliminate startup and shutdown e�e
ts, we only 
onsidered themiddle 40 minutes for 
omputing the a
hieved load. Figure 7.12 summarizes the results of theexperiments for the resamplings of the UNC 1 PM tra
e. Ea
h point 
orresponds to a separatereplay experiment, showing the target load on the x-axis and the a
hieved load on the y-axis.We ran three experiments for ea
h target load, and the results show a good approximationof the intended s
aling line. Several experiments a
hieved loads a few Megabytes above thetarget. In general, we expe
ted the experiments to have slightly higher a
hieved loads, sin
ethe s
aling method fo
uses on the o�ered payload, ignoring pa
ketization overhead (i.e., extraload from bytes in the pa
ket headers). A more pre
ise tuning of the o�ered load would takepa
ketization into a

ount, perhaps using a �xed 
onstant to de
rease the target payload, or bystudying the total size (in
luding headers) of ea
h 
onne
tion, as replayed in the same testbed273
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Figure 7.12: Analysis of the a

ura
yof byte-driven Poisson Resampling usingsour
e-level tra
es replay: replays of threeseparate resamplings of UNC 1 PM for ea
htarget o�ered load, illustrating the s
alingdown of load from the original 177.36 Mbps.
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Figure 7.13: Analysis of the a

ura
yof byte-driven Poisson Resampling usingtestbed experiments: replay of one resam-pling of UNC 1 AM for ea
h target o�eredload, illustrating the s
aling up of load fromthe original 91.65 Mbps.environment. In any 
ase, and given the above good results, it seems reasonable to ignore thesefurther re�nements.The results in Figure 7.12 provide examples of s
aling down the load of a tra
e, sin
e theoriginal load of UNC 1 PM was 177.36 Mbps, and 9 of the 12 experiments had target o�eredloads below this value. S
aling down the load of a tra
e using byte-driven resampling simplyrequires to 
hoose a target load l0 below the original load l, whi
h in turns means that the s0of the resampling will be below the original s. These results 
on�rm the 
lose approximationof the target loads in the testbed experiments, where o�ered load is measured from real TCPsegments (rather than 
omputed using Equation 7.1). The plot shows for example that thethree resamplings with target load 177.36 Mbps a
hieved loads of 176.72, 178.23 and 182.45respe
tively. The impa
t of the TCP headers, retransmission and the slightly underestimatedduration mentioned in the previous se
tion is therefore very small. The results in Figure 7.13provide an example of s
aling up the load of a tra
e, sin
e they 
orrespond to byte-drivenPoisson resamplings of UNC 1 AM, whi
h had an original load of 91.65 Mbps. The resultingloads also approximate the intended targets very 
losely.
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tion arrival time seriesfor UNC 1 PM (dashed line) and a Poissonarrival pro
ess with the same mean (solidline).
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Exponential (Mean=6889 usecs.)Figure 7.15: Conne
tion arrival time seriesfor UNC 1 AM and a Poisson arrivals pro-
ess with the same mean.Tra
e Estimated ParametersUNC 1 PM Conn. Arrivals H=0.685041 C.I.=[0.646250, 0.723831℄Poisson � = 1; 698 �se
s. H=0.506069 C.I.=[0.467279, 0.544860℄UNC 1 AM Conn. Arrival H=0.756533 C.I.=[0.717743, 0.795324℄Poisson � = 6; 889 �se
s. H=0.502217 C.I.=[0.463427, 0.541008℄Table 7.1: Estimated Hurst parameters and their 
on�den
e intervals for the 
onne
tionarrival time series of UNC 1 PM and UNC 1 AM, and their Poisson arrival �ts.7.2 Blo
k ResamplingThe basi
 assumption of Poisson Resampling is that 
onne
tion inter-arrivals are indepen-dent and identi
ally distributed a

ording to an exponential distribution, whi
h results in aPoisson arrival pro
ess. While the 
hoi
e of exponential inter-arrivals is reasonable given themeasurement data presented in Figures 7.1 to 7.4, the arrival pro
ess may not ne
essarily beindependent. On the one hand, we 
an argue that 
ommon appli
ation proto
ols make use ofmore than one 
onne
tion, 
reating 
orrelations among some start times. For example, webbrowsers often open several 
onne
tions for downloading a web page. On the other hand, we fo-
us on tra
es of highly aggregated traÆ
, where a large number of hosts start hundreds or eventhousands of 
onne
tions every se
ond. The high aggregation 
ould diminish or even eliminate
ompletely any 
orrelation stru
ture in the 
onne
tion arrival pro
esses.
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Figure 7.16: Wavelet spe
tra of the 
onne
-tion arrival time series for UNC 1 PM and aPoisson arrival pro
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Figure 7.17: Wavelet spe
tra of the 
onne
-tion arrival time series for UNC 1 AM and aPoisson arrival pro
ess with the same mean.The analysis of our tra
es reveals non-negligible 
orrelations in the 
onne
tion arrival pro-
ess. Figures 7.14 and 7.16 examine the arrival pro
ess for the UNC 1 PM tra
e. Using a timeseries of 10-millise
ond bin 
ounts, Figure 7.14 
ompares the burstiness of the original arrivalpro
ess (dashed line) and that of a Poisson arrival pro
ess with the same mean inter-arrivaltime (solid line). The original arrival pro
ess was far more variable. Its standard deviationwas equal to 346.07, while the one for the Poisson pro
ess was equal to 79.21. In order tofurther study the 
onne
tion arrival pro
ess a
ross a range of time-s
ales, we rely on waveletanalysis. Figure 7.16 shows the wavelet spe
tra of the original 
onne
tion arrivals and a Poissonpro
ess with the same mean inter-arrival time. The Poisson pro
ess exhibits the expe
ted 
atspe
trum of short-range dependent pro
esses [HVA02℄. On the 
ontrary, the spe
trum for theoriginal 
onne
tion arrivals follows a line with a substantial positive slope, whi
h is 
hara
ter-isti
 of long-range dependent pro
esses. The results of the wavelet-based estimation [AV98℄of the Hurst parameters of these pro
esses are given in table 7.1. The Poisson pro
ess has aHurst parameter very 
lose to the expe
ted 0.5, while the original arrival pro
ess has a Hurstparameter of 0.685. This is 
onsistent with moderate long-range dependen
e. For 
omparison,typi
al estimates of the Hurst parameter for pa
ket and byte arrival pro
esses are between 0.75and 0.95, i.e., typi
al pa
ket and byte arrival pro
esses exhibit signi�
antly stronger long-rangedependen
e than this 
onne
tion arrival pro
ess.276



We performed a similar analysis for the UNC 1 AM tra
e, and the results are shown inFigures 7.15 and 7.17. As in the previous 
ase, the time series plot shows a 
onne
tion ar-rival pro
ess that is signi�
antly more bursty than that of a Poisson pro
ess with the samemean. Note however than in this 
ase there is some degree of non-stationarity. We observea signi�
antly larger number of 
onne
tions started in the �rst 5 minutes, and a signi�
antlylower number started in the last 10 minutes. In this 
ase we 
ompute the mean inter-arrivalrate required to 
onstru
t the Poisson arrivals using the middle 40 minutes of the tra
e. Wetherefore handle the e�e
t of tra
e boundaries by ignoring the �rst and the last few minutesof the arrival pro
ess. The wavelet spe
tra for these middle 40 minutes and a Poisson pro
esswith the same mean arrival rate are shown in Figure 7.17. As in the UNC 1 PM 
ase, theoriginal 
onne
tion arrival pro
ess exhibits 
lear long-range dependen
e. The estimated Hurstparameter in Table 7.1 reveals a somewhat stronger long-range dependen
e for the UNC 1 AMtra
e (0.757 vs. 0.685).In summary, the 
onne
tion arrival pro
esses we have examined are 
onsistent with sig-ni�
ant long-range dependen
e. Therefore, it is desirable to develop the resampling and loads
aling methods that 
an reprodu
e this stru
ture, to 
over experiments where the manner inwhi
h 
onne
tions arrive is relevant for the network phenomenon studied using syntheti
 traÆ
.One example of this type of s
enario is the evaluation of a router me
hanism where the arrivalof new 
onne
tions 
reates new state in the router. For su
h a me
hanism, a more bursty arrivalpro
ess 
reates a more stringent workload, just like burstier traÆ
 was shown by [BC98℄ to bemore demanding on web server performan
e.Poisson Resampling 
annot reprodu
e this observed long-range dependen
e in the 
onne
-tion arrival pro
ess sin
e its inter-arrivals times 
ome from independently sampling an exponen-tial distribution. For this reason, we propose a se
ond resampling te
hnique that 
an reprodu
ethe long range dependen
e in the 
onne
tion arrival pro
ess. The starting point is the intuitionthat dependen
ies between 
onne
tion start times are far more likely to o

ur within relativelysmall periods. For example, web browsing results in new 
onne
tions started a

ording to thesequen
e of web page downloads and the way the browser opens new 
onne
tions to the servers277



in whi
h these pages are found. This results in brief bursts of 
onne
tions whose start times are
orrelated. We use this intuition to develop a resampling method wherein the resampled ob-je
ts are not individual 
onne
tions, but groups of 
onne
tions started during the same period,whi
h we 
all blo
ks. The key idea of our Blo
k Resampling method is that sampling blo
ks of
onne
tions rather than individual 
onne
tions preserves the relative o�sets of 
onne
tion starttimes within blo
ks, and therefore the dependen
y stru
ture6 Our method is derived from theMoving Blo
k Bootstrap method [ET93℄.Blo
k Resampling pro
eeds in the following manner: Given a tra
e T
, we divide it in blo
ksof duration �, so that the �rst blo
k B1 groups together 
onne
tions started in the interval[0; �), the se
ond blo
k B2 groups together 
onne
tions started in the interval [�; 2�), and soon. The blo
k resampled tra
e T 0
 is obtained by 
on
atenating randomly sampled blo
ks, andadjusting the start time of 
onne
tions in ea
h blo
k by the time o�set of the new lo
ation ofthis blo
k. For example, if the random resampling puts blo
k B2 as the �rst blo
k of T 0
 , thestart times of the i-th 
onne
tion ve
tor in this blo
k is set to Ti��. Similarly, if B2 is pla
ed inthe fourth lo
ation of T 0
 , the start times of the i-th 
onne
tion in this blo
k are set to Ti+2�.More formally, when the j-th blo
k Bj in the original tra
e be
omes the k-th blo
k Bk in theblo
k resampling, the start time Ti of the i-th 
onne
tion ve
tor in Bj is set toT 0i = Ti + (k � j)�:Blo
k Resampling 
hooses blo
ks for T 0
 with repla
ement, making it possible to 
reate newtra
es that are longer than the original T
 from whi
h the blo
ks are obtained.As pointed out by Efron and Tibshirani [ET93℄, 
hoosing the blo
k duration � 
an be adiÆ
ult problem. In our 
ase, we found a 
lear trade-o� between blo
k duration and how welllong-range dependen
e was preserved in the resampled tra
e. The shorter the blo
k duration,the larger the number of distin
t tra
e resamplings that 
an be performed from the same tra
e6We thank Peter Hall for suggesting the use of blo
k bootstrapping in the 
ontext of the a-b-t model. Thetheoreti
al aspe
t of this idea are explored in [HNHC02℄, while this 
hapter fo
uses on its use to preserve thelong-range dependen
e in 
onne
tion arrivals and develops thinning and thi
kening methods to s
ale o�ered loadin blo
k-resampled tra
es. 278
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Figure 7.18: Blo
k resamplings of UNC 1 PM: impa
t of di�erent blo
k lengths on thewavelet spe
trum of the 
onne
tion arrival time series.
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Figure 7.19: Blo
k resamplings of UNC 1 AM: impa
t of di�erent blo
k lengths on thewavelet spe
trum of the 
onne
tion arrival time series.
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T
. This number is equal to (d=�)! for resampled tra
es with the same duration d of the originaltra
e. However, if the duration of the blo
ks is too small, the pro
ess of 
onne
tion arrivalsin the resampled tra
e exhibits a dependen
y stru
ture that does not resemble the one in theoriginal tra
e.Figure 7.18 explores the impa
t of blo
k duration on the long-range dependen
e of the
onne
tion arrival pro
ess in the resampled tra
e. The top left plot shows the wavelet spe
tra ofthe 
onne
tion arrivals for UNC 1 PM and for 5 blo
k resamplings where the blo
k duration was1 se
ond. There is a 
lear and 
onsistent 
at region after o
tave 8, whi
h shows that blo
ks of1 se
ond are too short to preserve the long-range dependen
e of the original 
onne
tion arrivalpro
ess. As the blo
k duration is in
reased in subsequent plots, we observe an in
reasinglybetter mat
h between the arrivals in the blo
k resamplings and the arrivals in the originaltra
e. Blo
ks with a duration of 30 se
onds or 1 minute provide the best trade o� betweenblo
ks that are large enough to ensure realisti
 long-range dependen
e in the 
onne
tion arrivalpro
ess, and blo
ks that are short enough to provide a large number of distin
t resamplings.The same sensitivity analysis was performed for the UNC 1 AM tra
e and the results are shownin Figure 7.19. Blo
k durations of 30 se
onds or 1 minute are also shown to perform well.As dis
ussed earlier in this 
hapter, an important goal of tra
e resampling is the ability topreserve the target load of the original tra
e and to s
ale it up and down a

ording to the needsof the experimenter. The analysis of a large set of Poisson resamplings revealed that o�ered loadand number of 
onne
tions are only loosely 
orrelated. This motivated the use of a byte-drivenversion of Poisson Resampling whi
h 
ould a
hieve a very pre
ise s
aling of the load o�ered bythe resampled tra
e. In the 
ase of Blo
k Resampling, the question is whether the averaginge�e
t of grouping 
onne
tions into blo
ks signi�
antly diminishes the variability observed forthe basi
 version of Poisson Resampling. We study this question by examining the o�ered loadfound in a large 
olle
tion of blo
k resampled tra
es. If the blo
ks had roughly uniform o�eredload, we would expe
t to generate similar o�ered load with ea
h resampled tra
e. The resultsin Figure 7.20 do not 
on�rm this expe
tation. The top row presents the analysis of 1,000tra
e resamplings 
onstru
ted by resampling UNC 1 PM using 30-se
ond blo
ks. The average281
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k resamplings of UNC 1 PM: average o�ered load vs. number of 
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Figure 7.21: Wavelet spe
tra of several random subsamplings of the 
onne
tion ve
tors inUNC 1 PM (left) and 1 AM (right)o�ered load was derived from the total payload 
omputed using Equation 7.1. As shown inthe s
atterplot, the number of 
onne
tions stayed within a narrow range, but the o�ered loadswere far more variable. The histogram on the right further 
hara
terizes the distribution ofo�ered loads in these tra
e resamplings. The use of blo
ks does not appear to have any bene�tin terms of a more predi
table load. This is not surprising given the known burstiness of thepa
ket and byte arrival pro
esses at many time-s
ales. If blo
ks were e�e
tive at smoothing outthese pro
esses, we would �nd little long-range dependen
e. This situation does not 
hange forlonger blo
k durations, as shown in the middle and lower rows of Figure 7.20 for blo
ks of 1and 5 minutes respe
tively. It is interesting to note the wider y-axis and range of the histogramfor the 5-minutes blo
ks, whi
h suggest even higher variability for this longer blo
k duration.The Blo
k Resampling method des
ribed so far makes it possible to 
onstru
t a resampledT 0
 of arbitrary duration but it 
annot be used to adjust its o�ered load. In order to performthis task, we 
an rely on thinning , when the o�ered load of T
 is above our intended o�eredload, and on thi
kening , when the o�ered load of T
 is below our intended o�ered load. Blo
kthinning involves randomly removing 
onne
tions from T 0
 . Theoreti
al work by Hohn andVeit
h [HV03℄has shown that the thinning of a long-range dependent pro
ess does not 
hangeits long-range dependen
e stru
ture. Our own experimentation 
on�rms this result. Figure7.21 shows the wavelet spe
tra of thinned versions of the 
onne
tion arrivals in the UNC 1283



Tra
e Estimated ParametersUNC 1 PM Conn. Arrivals H=0.727540 C.I.=[0.701687, 0.753393℄Subsample 90% Conn. H=0.724175 C.I.=[0.698322, 0.750028℄Subsample 80% Conn. H=0.724046 C.I.=[0.698193, 0.749899℄Subsample 70% Conn. H=0.718502 C.I.=[0.692649, 0.744354℄Subsample 60% Conn. H=0.701378 C.I.=[0.675525, 0.727230℄Subsample 50% Conn. H=0.701020 C.I.=[0.675167, 0.726872℄UNC 1 AM Conn. Arrivals H=0.746591 C.I.=[0.720738, 0.772444℄Subsample 90% Conn. H=0.738659 C.I.=[0.712806, 0.764512℄Subsample 80% Conn. H=0.725030 C.I.=[0.699177, 0.750882℄Subsample 70% Conn. H=0.715679 C.I.=[0.689827, 0.741532℄Subsample 60% Conn. H=0.696723 C.I.=[0.670870, 0.722576℄Subsample 50% Conn. H=0.691139 C.I.=[0.665287, 0.716992℄Table 7.2: Estimated Hurst parameters and their 
on�den
e intervals for �ve subsamplingsobtained from the 
onne
tion arrival time series of UNC 1 PM and UNC 1 AMPM tra
e (left) and the UNC 1 AM tra
e (right). The overall energy level de
reases as thefra
tion of 
onne
tions removed from ea
h blo
k in
reases. However, the spe
tra maintain theirshapes, whi
h demonstrates that the degree of the long-range dependen
e remains un
hanged.The estimated Hurst parameters for these two tra
es is presented in Table 7.2. The valuesreveal only a moderate de
rease in the Hurst parameter even when half of the 
onne
tions aredropped.Blo
k thi
kening 
onsists of 
ombining more than one blo
k in ea
h of the disjoint intervalsof T 0
 , i.e., to \fusion" one or more blo
ks from T
 to form a single blo
k in T 0
 . This makes theo�ered load a multiple of the original load. For example, to double the load, the 
onne
tionve
tors of two randomly 
hosen blo
ks will be pla
ed in the �rst interval, those from anotherpair of randomly 
hosen blo
ks will be pla
ed in the se
ond interval, and so on. The new starttimes of the 
onne
tion ve
tors in the resampled tra
e are 
omputed using Equation 7.2, butbeing 
areful to use the right j for ea
h 
onne
tion ve
tor.To a
hieve o�ered loads that are not a multiple of the original load, we 
an 
ombine basi
thi
kening and thinning using a two-step pro
ess. The �rst step is to 
reate a preliminaryversion of T 0
 by 
ombining as many blo
ks as possible without ex
eeding the target load. These
ond step is to \
omplete" this tra
e by 
ombining it with another blo
k-resampled tra
e
284
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Figure 7.22: Analysis of the a

ura
y ofbyte-driven Blo
k Resampling using sour
e-level tra
e replay: replays of two separateresamplings of UNC 1 PM for ea
h targeto�ered load, illustrating the s
aling down ofload from the original 177.36 Mbps.
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Figure 7.23: Analysis of the a

ura
y ofbyte-driven Blo
k Resampling using sour
e-level tra
e replay: replay of one resamplingof UNC 1 AM for ea
h target o�ered load,illustrating the s
aling up of load from theoriginal 91.65 Mbps.that has been thinned in su
h a manner that the 
ombined load of the two resampled tra
esmat
hes the intended load. For example, in order to 
reate a T 0
 with 2.5 times the load ofT
, a �rst thi
kened tra
e T tk
 is 
reated by 
ombining two blo
ks in ea
h position. This tra
eis then 
ombined with se
ond tra
e T tn
 that has been thinned to half of the o�ered load ofT
. From our analysis in Figure 7.20, we 
an see that T tk
 is not ne
essarily equal to twi
e theo�ered load of T
. For this reason T tn
 is a
tually thinned to exa
tly the o�ered load needed to
omplement T tk
 , and not just to half of the original o�ered load This 
areful thinning makesthe s
aling mat
h the intended load in a highly pre
ise manner. We 
an therefore a
hieve anyintended load with the Blo
k Resampling method, so it is as 
exible as Poisson Resampling. Ina

ordan
e with our earlier analysis, a

urate thinning 
annot rely on any 
orrelation betweenthe number of 
onne
tions and the o�ered load, so it must be driven by Equation 7.1, justlike byte-driven Poisson Resampling. Therefore, our �nal resampling te
hnique is Byte-drivenBlo
k Resampling.Figures 7.22 and 7.23 show the result of several testbed experiments where Byte-drivenBlo
k Resampling is used to 
reate new tra
es. The results demonstrate that tra
es resampledusing this method a
hieve a very good approximation of the target o�ered loads. As in the 
aseof Byte-driven Poisson Resampling, the a
hieved loads are slightly higher than target ones due285
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Figure 7.24: Wavelet spe
tra of the pa
ketarrival time series for UNC 1 PM and thesour
e-level tra
e replays of two blo
k re-samplings of this tra
e.
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Figure 7.25: Wavelet spe
tra of the pa
ketarrival time series for UNC 1 PM and thesour
e-level tra
e replays of three Poissonresamplings of this tra
e.to the pa
ketization overhead, whi
h is not taken into a

ount in the resampling.One interesting question is whether the e�ort to preserve the s
aling of the 
onne
tionarrival pro
ess has any e�e
t on the generated traÆ
 aggregate. To understand this question,we 
an 
ompare the pro
ess of pa
ket (or byte) arrivals from blo
k resamplings and from PoissonResampling, sin
e the former fully preserves 
onne
tion arrival long-range dependen
e and thelatter fully eliminates it. Figure 7.24 shows the wavelet spe
tra of the pa
ket arrivals in UNC 1PM and those in two testbed experiments where byte-driven blo
k resamplings of UNC 1 PMwere replayed. Figure 7.25 shows the same wavelet spe
trum of the pa
ket arrivals in UNC 1PM, and also the spe
tra from three testbed experiments where byte-driven Poisson resamplingsof UNC 1 PM were replayed. Both resampling methods a
hieve equally good approximationsof the pa
ket s
aling found in the original tra
e. In other words, a

ording to this type ofanalysis, the simpler Poisson Resampling method performs as well as the more elaborate Blo
kResampling method. This is a 
on�rmation, using a 
losed-loop traÆ
 generation approa
h, ofthe results by Hohn et al. in [HVA02℄, whi
h were obtained using (open-loop) semi-experiments.This is not to say that long-range dependen
e in the arrival of 
onne
tions (e.g., arrival of 
owstate or 
a
he misses to a router) 
an be safely ignored, sin
e other metri
s and experimentalresults may be more sensitive to this 
hara
teristi
 of the syntheti
 traÆ
.286



7.3 SummaryOur basi
 traÆ
 generation method, sour
e-level tra
e replay, results in highly realisti
syntheti
 traÆ
. This method is however in
exible, in the sense that the same 
onne
tionve
tors are started at the same relative times in every replay. In this 
hapter, we proposedtwo methods for resampling an original tra
e of 
onne
tion ve
tors, to 
reate a new tra
e withsimilar statisti
al 
hara
teristi
s. This similarity is de�ned in terms of sour
e-level behaviorand network-level parameters, so the resampling methods also modify 
onne
tion ve
tor starttimes. Our �rst resampling method is Poisson Resampling, whi
h 
hooses 
onne
tions ve
torsat random and assigns them exponentially distributed inter-arrival times. Our measurementresults demonstrated that this 
hoi
e of the inter-arrival distribution is appropriate, in thesense that the marginal distribution of the 
onne
tion inter-arrival in every tra
e we examinedis remarkably 
onsistent with the exponential distribution. Our se
ond resampling methodis Blo
k Resampling, whi
h 
hooses blo
ks of 
onne
tion ve
tors at random. Unlike PoissonResampling, Blo
k Resampling preserves the dependen
y stru
ture of the original 
onne
tionarrival pro
ess. This makes it possible to reprodu
e the moderate long-range dependen
e thatwe observe in the 
onne
tion arrivals of our tra
es.Besides presenting two resampling methods, we also studied how to 
ontrol the o�ered loadby a resampled tra
e. Firstly, we demonstrated that the number of 
onne
tions and the averageo�ered load are not strongly 
orrelated. This means that 
ontrolling the number of 
onne
tionsin the resamplings does not provide a good way of 
reating resampled tra
es with a spe
i�
target o�ered load. This is a 
ommon requirement when a set of experiments 
overs a range ofo�ered loads in an empiri
al study. In order to address this diÆ
ulty, we propose to drive theresampling by a target total size of the ADUs in the resampling rather than by a target numberof 
onne
tions. We used this approa
h to develop byte-driven versions of Poisson Resamplingand Blo
k Resampling, whi
h are shown to result in highly predi
table o�ered loads.
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CHAPTER 8Con
lusions and Future Workreal: (2b3) existing as a physi
al entity and having properties that deviate froman ideal, law, or standard.| Merrian{Webster English Di
tionaryThere are sadisti
 s
ientists who hurry to hunt down errors instead of establish-ing the truth. | Marie Curie (1867{1934)This dissertation proposed and evaluated a new approa
h for generating realisti
 traÆ
 innetworking experiments. Our 
onstru
tion relied on several 
omponents to form a 
oherentsolution to this problem:1. The a-b-t model of sour
e-level behavior, whi
h provides a generi
 but detailed way ofdes
ribing sour
e-level behavior that is appli
able to any Internet appli
ation.2. An eÆ
ient measurement method for a

urately translating the pa
ket header tra
e ofany arbitrary TCP 
onne
tion into its a-b-t 
onne
tion ve
tor, even in the presen
e ofpa
ket reordering and retransmission.3. The sour
e-level tra
e replay method for generating traÆ
 in a 
losed-loop manner, whi
hprovides a way of introdu
ing fully reprodu
ible syntheti
 traÆ
 in networking experi-ments.4. The ability to dire
tly 
ompare original traÆ
 and its sour
e-level replay, after in
orpo-rating network parameters also derived from pa
ket header analysis. Su
h a 
omparisonenables us to assess the realism of the syntheti
 traÆ
.



5. A method for resampling a-b-t 
onne
tion ve
tors that supports both the introdu
tionof 
ontrolled variability in the generated traÆ
 and the predi
table s
aling of the o�eredload.The rest of this 
hapter dis
usses these 
omponents1, highlighting some 
on
rete 
ontributionsand open questions, whi
h 
ould be the subje
t of future work. Our fo
us is on the larger s
hemeof things, so we refer the reader to the summaries of ea
h 
hapter for additional �ndings andpossible re�nement of our methodology.8.1 Empiri
al Modeling of TraÆ
 MixesThe main problem solved by our approa
h is generating 
losed-loop traÆ
 
onsistent withthe behavior of the entire set of appli
ations in modern traÆ
 mixes. Unlike earlier approa
hes,whi
h des
ribed individual appli
ations in terms of the spe
i�
 semanti
s of ea
h appli
ation,we proposed to des
ribe the sour
e behavior driving ea
h 
onne
tion in a generi
 manner usingthe a-b-t model. This is 
onsistent with the view of traÆ
 from TCP, whi
h does not 
on
ernitself with appli
ation semanti
s, but only with sending and re
eiving Appli
ation Data Units(ADUs) as demanded by the appli
ations. The a-b-t model provides an intuitive but detailedway of des
ribing sour
e behavior. It also satis�es a 
ru
ial property: given a pa
ket headertra
e 
olle
ted from an arbitrary Internet link, we 
an algorithmi
ally infer the sour
e-levelbehavior driving ea
h 
onne
tion, and 
ast it into the notation of the a-b-t model.Se
tion 3.3 des
ribed our inferen
e algorithm, whose asymptoti
 
ost is is O(sW ), where s isthe number of segments in a 
onne
tion andW is the maximum size of the TCP re
eiver window(in segments). The foundation of the analysis is the logi
al data order that 
an be establishedbetween segments of the same 
onne
tion. This order 
orresponds to the appli
ation-layerorder of the data 
arried in ea
h segment. From this order, we 
an a

urately identify individualADUs without any timing analysis. Furthermore, the handling of retransmission and reorderingbe
omes very generi
, eliminating the need to handle the many possible 
ases one by one. Our1Also known as the �ve pillars of Abtism. [si
℄ 289



validation using traÆ
 from syntheti
 appli
ations with known sour
e behavior demonstratedthe robustness of our analysis to segment loss and reordering, and to the way in whi
h endpointsuse so
kets (i.e., using di�erent sizes and timings of I/O operations).Overall, our algorithmi
 approa
h enables us to model traÆ
 in an automated manner in aquestion of hours. This addresses a major diÆ
ulty with earlier e�orts targeted at individualappli
ations, whi
h required months to be 
ompleted and were hardly ever updated. Onefuture dire
tion is develop an online implementation of the algorithm, whi
h would enable us tomodel traÆ
 mixes in real time. The O(sW ) 
ost of our analysis makes this online pro
essingfeasible. EÆ
ient memory management is the main 
hallenge, sin
e ea
h 
onne
tion wouldrequire separate state during its lifetime. It seems possible to restri
t this per-
onne
tion stateto the 
urrent ADU in ea
h dire
tion, whi
h is mu
h more eÆ
ient than keeping tra
k of entire
onne
tion ve
tors. Real-time modeling has several bene�ts. First, the set of a-b-t 
onne
tionve
tors is between tens and hundreds of times smaller than pa
ket header tra
es from whi
hit derives. This would enable resear
hers to study traÆ
 at the sour
e-level for mu
h longerperiods that it is possible nowadays. Se
ond, real-time modeling 
an remain a
tive inde�nitely,whi
h makes it possible to observe unusual but important phenomena, su
h as 
ash 
rowds,BGP failures, et
. To satisfy storage 
onstraints, uninteresting traÆ
 
an be periodi
ally thrownaway.In our study, we identi�ed a fundamental di
hotomy between appli
ations that ex
hangeADUs in a sequential manner and those that do it 
on
urrently. Sequential 
ommuni
ationfollows an alternating sequen
e of ADUs sent in opposite dire
tions, where ADUs from oneendpoint usually play the role of requests and ADUs from the opposite endpoint play the roleof responses. One important property of this pattern is that ea
h ADU ex
hange must ne
-essarily take one round-trip time. As a 
onsequen
e, the duration of sequential 
onne
tionsoften has little to do with the amount of transferred data, being dominated by the number ofrequest/response pairs. For this reason, sequential 
onne
tions usually show far lower through-puts than one would expe
t from their total number of bytes. SMTP provides a good exampleof this phenomenon, sin
e most SMTP 
onne
tions 
arry little data but take rather long to290




omplete. As illustrated in Figure 3.3, this is mostly due the substantial number of 
ontrolADUs required by this proto
ol.Con
urrent 
ommuni
ation supports the sending of ADUs from both endpoints at the sametime. This is the natural model both for appli
ations without requests and responses, andfor appli
ations that are able to pipeline their requests and responses. Pipelining eliminatesthe need to spend one full round-trip time to 
omplete ea
h request/response ex
hange, whi
h
an substantially in
rease throughput. The analysis of our 
olle
tion of tra
es revealed thatthe number of 
onne
tions that exhibit 
on
urrent data ex
hanges is small (0.9-3.6%), butthat they a

ount for a far larger fra
tion of the total bytes in the tra
es (12.1-31.9%). This is
onsistent with the observation that 
on
urren
y 
an in
rease overall throughput, so appli
ationproto
ol designers are more 
ompelled to use 
on
urren
y in appli
ations that ex
hange largeamounts of data. BitTorrent is a prominent example of data 
on
urren
y, where we 
an observesimultaneously natural 
on
urren
y (both endpoints send and re
eived requests and �le pie
es),and pipelining (multiple requests and �le pie
es 
an be outstanding at any point in time). Figure3.9 showed one example of this behavior.Our measurement algorithm 
an determine whether a 
onne
tion exhibits sequential or
on
urrent data ex
hanging by examining only the sequen
e and a
knowledgment numbers inthe segments of a 
onne
tion, without analyzing of segment arrival times. The basis of ourte
hnique is again the logi
al data order among TCP segments, whi
h is a total order forsequential 
onne
tions, and a partial order for 
on
urrent ones. The inequalities presented inSe
tion 3.3.2 formalized this idea, providing a method for identifying data ex
hange 
on
urren
ywithout false positives.8.2 Re�ning and Extending our ModelingOur methodology strongly relies on non-parametri
 modeling . Parametri
 models are farmore 
ompa
t and 
an often provide deeper insights than non-parametri
 ones. However, theiruse has little to do with the quality of syntheti
 traÆ
. A non-parametri
 model 
an result in291



traÆ
 as realisti
 or more than a parametri
 model, without the risk of oversimpli�
ation. Inany 
ase, our a-b-t 
onne
tion ve
tors o�er a good foundation for building a parametri
 modelof Internet traÆ
 mixes. Our analysis of the relationship between ADU sizes and numbersof epo
hs in Se
tion 3.5.1 un
overed substantial 
omplexity and a striking la
k of 
onsisten
yamong the di�erent links 
onsidered in our study. Te
hniques like Hidden Markov Modeling
ould perhaps provide the right approa
h.Our own related work explored the possibility of atta
king this 
omplex modeling problemby de
omposing traÆ
 mixes in to a set of fundamental pattern of 
ommuni
ation [HCNSJ05℄.The idea was to use statisti
al 
lustering to �nd appli
ations that behave in a similar manner,i.e., that follow the same \
ommuni
ation pattern", and to separately model ea
h of the iden-ti�ed traÆ
 
lusters. For example, intera
tive appli
ations su
h as telnet and SSH are verydi�erent from �le-sharing appli
ations su
h as Kazaa or Gnutella, so it seems mu
h easier todevelop separate models for \intera
tive appli
ations" and \�le-sharing appli
ations" than asingle model to en
ompass both of them. In our exploratory study, we followed a two steppro
ess to �nd traÆ
 
lusters. First, we 
omputed a ve
tor of features for ea
h 
onne
tion,whi
h in
luded statisti
s su
h as the median size of the ADUs in the 
onne
tion, a measure ofthe dire
tionality of the data ex
hanges, and the 
orrelation between the sizes of a-type andb-type ADUs. Feature ve
tors provide a way to 
ompare 
onne
tions, even if their a-b-t 
on-ne
tion ve
tors have very di�erent forms, and use a distan
e metri
 to quantify the similaritybetween the sour
e behaviors in two 
onne
tions. Se
ond, we used a hierar
hi
al 
lusteringalgorithm to 
onstru
t a taxonomy of traÆ
 
lasses based on the similarity among 
onne
tions.The results of our analysis demonstrated that some 
lear and intuitive traÆ
 
lusters emergedwhen this pro
edure was applied to sets of 
onne
tion ve
tors derived from real tra
es. Webelieve this type of approa
h 
an simplify the modeling of traÆ
 mixes. Furthermore, it 
analso provide a more 
exible way of resampling tra
es, where the fra
tion of 
onne
tion ve
torsfrom ea
h of the traÆ
 
lusters 
an be 
hanged at will (e.g., in
reasing of de
reasing the fra
tionof �le-sharing-like traÆ
).There are other open questions in the modeling of Internet traÆ
 mixes, and their solution292



is 
ompli
ated by the need to devise better measurement methods. We 
an 
ite the followingexamples:� Our modeling of 
on
urrent 
onne
tions employs two separate 
onne
tion ve
tors, one forea
h dire
tion, eliminating any dependen
ies among ADUs 
owing in opposite dire
tion.This dependen
ies are 
ertainly present in some 
ases, at least when 
on
urren
y is usedto implement pipelining. A re�ned version of the a-b-t model where the 
ausality betweenADUs is spe
i�ed using an a
y
li
 graph 
ould 
apture this type of stru
ture. The analysisof sequen
e and a
knowledgment numbers 
an provide a starting point for understandingADU dependen
ies. However, su
h an approa
h would result in a substantial number ofspurious dependen
ies that were not really part of the appli
ation behavior.� The a-b-t model has no me
hanism to spe
ify dependen
ies between ADUs in di�erent
onne
tions. While more 
omplex forms of the model are possible, there is again greatdiÆ
ulty in determining when these dependen
ies exists. By analyzing ADU arrival timesfor the same endpoint, we 
ould hypothesize a dependen
y. We 
ould further strengthensu
h an analysis by requiring several instan
es of the same dependen
y pattern, i.e., onlya

epting a timing dependen
y when several pairs of 
onne
tions with \similar" ADUsizes and number of epo
hs are observed.� A important problem that has re
eived very limited attention in the sour
e-level mod-eling literature is the possibility of 
hanges in user behavior as a fun
tion of network
onditions. Su
h possibility would break the assumption of network independen
e insour
e-level models. Our work in this area [PHCM+06℄ revealed phenomenal diÆ
ultiesin measuring su
h dependen
ies. Even a simple question su
h as whether users with highera

ess bandwidths tended to download larger obje
ts was statisti
ally problemati
. Ourresults showed that this trend does not appear to be present in the UNC tra
e. Whilesubstantial di�eren
es exists in the a

ess bandwidth of di�erent UNC endpoints (e.g.,between wireless and wired end hosts), the number of endpoints with severely limitedbandwidth is very small (e.g., few endpoints were behind a modem).293



These three problems are unlikely to have straightforward solutions. We also believe that theirimpa
t on the quality of syntheti
 traÆ
 is small, or even insigni�
ant, in empiri
al studiesfo
using on large traÆ
 aggregates.A �nal question is how to 
ombine sour
e-level modeling and unwanted traÆ
 modeling.Our analysis in Se
tion 4.2.1 showed the need to 
arefully separate 
onne
tions with regulardata ex
hanges, for whi
h the a-b-t model is appli
able, and other types of 
onne
tions (i.e.,failed 
onne
tion establishments attempts, port and network s
ans, et
.). While our �lteringfor regular 
onne
tions removed only a tiny fra
tion of the bytes in the tra
es, the numberof individual 
onne
tions was very large, whi
h may be detrimental for 
ertain studies. Inaddition, we did not 
onsider how to generate mali
ious traÆ
. Our literature review dis
ussedsome relevant e�orts on this topi
. However, they tend to be open-loop. Sin
e mali
ious traÆ

an have dramati
 e�e
t on the network 
onditions, understanding its impa
t on sour
e behaviorseems 
riti
al. We know of no study that 
onsidered this question.8.3 Assessing Realism in Syntheti
 TraÆ
The result of our pa
ket header pro
essing is a 
olle
tion of a-b-t 
onne
tion ve
tors, whi
h
an then be replayed in software simulators and testbed experiments to drive network sta
ks.Su
h a replay generates syntheti
 traÆ
 that fully preserves the feedba
k loop between theTCP endpoints and the state of the network, whi
h is essential in experiments where network
ongestion 
an o

ur. By 
onstru
tion, this type of traÆ
 generation is fully reprodu
ible,providing a solid foundation for networking experiments where two or more network me
hanismsmust be 
ompared under similar 
onditions.Our experimental work demonstrated the high quality of the generated traÆ
, by dire
tly
omparing tra
es from real Internet links and their sour
e-level tra
e replay. This 
omparisonis both a rigorous way of validating the a-b-t model and its measurement methods, and a
hallenging exer
ise where ea
h 
onne
tion ve
tor must be replayed in a TCP 
onne
tion whoseoriginal network 
onditions are preserved in the experiments. If these network 
onditions were294



not preserved, it would be very diÆ
ult to determine whether di�eren
es between an originaltra
e and its sour
e-level tra
e replay are due to short
omings of the a-b-t model or to a la
kof realisti
 network parameters. For this reason, we devote substantial e�ort to the a

uratemeasurement, purely from pa
ket header tra
es, of three important network parameters: round-trip times, maximum re
eiver window sizes, and loss rates. These three parameters have amajor impa
t on the throughput that a TCP 
onne
tion 
an a
hieve. In addition, the testbedexperiments in our evaluation of the approa
h 
arefully reprodu
e these parameters, using anextended version of dummynet to eÆ
iently simulate per-
onne
tion round-trip times and lossrates.It is important to note that the in
lusion of open-loop loss rates in some of our experimentsis only a means to a
hieve a more fair validation of the a-b-t model. A substantial loss ratehas a dramati
 e�e
t on the 
hara
teristi
s of a 
onne
tion, so 
omparing su
h a 
onne
tion inthe original tra
e and in a replay without a simulated loss rate tells us very little about thea

ura
y of the sour
e-level 
hara
terization. In general, we always 
ondu
t sour
e-level tra
ereplay experiments both with and without simulated loss rate, and 
ompare their results. Thistype of analysis allowed us to 
on
lude that sour
e-level behavior had a more substantial impa
ton our tra
es than losses, but that neither of them 
an be ignored when trying to understandthe 
hara
teristi
s of network traÆ
. One interesting �nding from our experimental work isthat simplisti
 sour
e-level models substantially exa
erbate the impa
t of losses, whi
h maysubstantially 
hange the 
on
lusions from 
ertain empiri
al studies.Our results demonstrated that sour
e-level tra
e replay 
an 
losely approximate the 
har-a
teristi
s of real traÆ
 tra
es. By 
omparing syntheti
 traÆ
 with and without detailedsour
e-level stru
ture, we showed that more 
omplete sour
e-level modeling makes syntheti
traÆ
 
loser or far 
loser to real Internet traÆ
. In parti
ular, the largest di�eren
e was ob-served for the time series of pa
ket throughput, the body of the pa
ket throughput marginaland the time series of a
tive 
onne
tions. Other metri
s did not show 
onsistent improvementwhen detailed sour
e-level modeling is used. However, in these 
ases, it is often diÆ
ult to de-termine whether the di�eren
e between real and syntheti
 traÆ
 
omes from the short
omings295



of the sour
e-level model or from the la
k of 
ertain network-level parameters. This is the maindiÆ
ulty with our approa
h: while providing the most stringent way of evaluating syntheti
traÆ
, it also requires to de
onstru
t the fa
tors that shape traÆ
 very 
arefully. While somefa
tors are well understood and 
an be measured a

urately, others are not. In this regard, ourwork 
omplements 
urrent e�orts to further understand traÆ
, provides a way to verifying newtheories using an elaborate experimental approa
h.One important future dire
tion for our work is to expand the set of metri
s used to evaluatethe quality of syntheti
 traÆ
. At a low level, the distribution of pa
ket sizes provides a goodavenue to understand the e�e
t of sour
e behavior on pa
ketization. At a higher level, thedistribution of 
onne
tion goodputs is a parti
ularly good (and demanding) metri
 to studyhow 
losely the modeling (of sour
es and network parameters) reprodu
es TCP performan
e.We 
ould study goodput either by looking at the distribution of 
onne
tion goodputs dire
tly, orby 
omparing ea
h replayed 
onne
tion with its original version and 
omputing relative errorsof some sort. Another important high-level metri
 is response time, whi
h 
an be easily de�nedas the duration of epo
h for sequential 
onne
tions. Many studies rely on response time toexamine the performan
e of network me
hanism, so it is desirable to validate its experimentalreprodu
tion. However, there are several diÆ
ulties with this metri
. It requires to identifyrequest and response pairs, whi
h are not ne
essarily the pair formed by ADUs ai and bi.The server side initiates the 
onne
tion in some proto
ols, while other proto
ols do not have
learly-de�ned roles as 
lient and server for their endpoint. It is very diÆ
ult to distinguishamong these situations purely from pa
ket header analysis. Also, there is no simple de�nitionof response time for 
on
urrent 
onne
tions. As an alternative, we 
an use 
onne
tion durationas a metri
, whi
h is always well-de�ned, but it has far lower resolution.8.4 In
orporating Additional Network-Level ParameterWhile our methods to measure and simulate network parameters appear suÆ
iently a

uratein our experimental evaluation, there are several dire
tions in whi
h this part of the work 
an296



be re�ned. Path round-trip times are not �xed for ea
h 
onne
tion, but follow a distributionof delays. It seems possible to re�ne our measurement to in
orporate this fa
t, at least tosome extent, into our approa
h, although the la
k of samples for most 
onne
tions greatly
ompli
ates this problem. It is also un
lear whether this re�nement would have any signi�
antimpa
t on the generated traÆ
. Improving the measurement and simulation of losses 
ouldhave a more substantial e�e
t. Figure 4.18 already revealed some level of ina

ura
y, and ourexperimentation revealed the need to take into a

ount pure a
knowledgment losses and notjust data segment losses. More importantly, the assumption of independent losses and theirsimulation using random dropping seems unrealisti
, whi
h explains some of the di�eren
esbetween original and syntheti
 traÆ
.There are other network parameters that 
ould be taken into a

ount. In general, we believethat only two of them would have a signi�
ant impa
t on the quality of syntheti
 traÆ
: maxi-mum segment sizes and path 
apa
ity. Maximum segment sizes are straightforward to measure,and their in
orporation into the experiments would improve the realism of pa
ketization in thegenerated traÆ
. Its implementation in a network testbed experiments requires some 
arefulhandling of resour
es, sin
e maximum segment sizes are often a ma
hine-wide 
onstant. Theimpa
t of this re�nement is not expe
ted to be dramati
, given that most 
onne
tions areknown to use the same maximum segments size (the one derived from Ethernet's MTU, whi
hwe employed in our experiments).Path 
apa
ity presents a mu
h more diÆ
ult measurement problem, both when de�ned asbottlene
k 
apa
ity and as available bandwidth. Re
ent work by Huang and Dovrolis [JD04℄provides a useful foundation. While it is only appli
able with 
on�den
e to 
onne
tions withlarge amounts of data, \bulk 
onne
tions", this is pre
isely the type of 
onne
tion whosethroughput 
ould be dominated by 
apa
ity limits. Throughput in 
onne
tions with smallamounts of data is mostly a fun
tion of round-trip time. As dis
ussed in Se
tion 3.3, most
onne
tions are in this 
ase. However, bulk 
onne
tions are responsible for a large fra
tionof the bytes, so their a

urate replay is important. We also believe that 
ombining our ADUanalysis with the Huang and Dovrolis approa
h 
an provide less noisy samples, improving the297



a

ura
y of the method. In the 
ase of 
apa
ity, the implementation in the experiment is notdiÆ
ult by making use of dummynet 's per-
onne
tion 
apa
ity.Besides these 
on
rete spe
i�
 network parameters, we believe that a better understandingof the impa
t of traÆ
 shapers and end host bandwidth quotas 
an help to explain some ofthe di�eren
es between sour
e-level tra
e replay experiments and original traÆ
. This seemsspe
ially relevant for UNC, where the impa
t of losses appeared rather di�erent from the ones inother sites. We hypothesized that the presen
e of a major data and software repository knownto use bandwidth 
onstraints was behind our �nding. Another important fa
tor in traÆ

hara
teristi
s is the growing impa
t of wireless networks. Our large-s
ale measurement e�ortin this area [HCP05℄, showed an insigni�
ant in
rease of end-to-end losses in this environment(thanks to link-layer retransmission) but substantial in
reases in the magnitude and variabilityof round-trip times.8.5 Flexible TraÆ
 GenerationThe �nal problem that we 
onsidered in this work was how to introdu
e 
ontrolled variabilityin network experiments, i.e., how to derive from a tra
e of 
onne
tion ve
tors a new tra
e thatstill \resembles" the original one. Our solution involves resampling entire 
onne
tion ve
tors,fully preserving observed sour
e-level behavior, and assigning them new start times. We gavetwo methods for this assignment: sampling from an exponential distributions, whi
h resultsin Poisson 
onne
tion arrivals, and sampling blo
ks of 
onne
tions, whi
h preserves the long-range dependen
e in the 
onne
tion arrival pro
ess that we en
ountered in our tra
es. The�rst method, Poisson Resampling, is analyti
ally appealing, and supported by empiri
al data,sin
e the marginal distribution of 
onne
tion inter-arrival is 
onsistent with an exponentialdistributions. Blo
k Resampling provides a non-parametri
 alternative, whi
h is more realisti
with regards to the dependen
y stru
ture of the 
onne
tion arrival pro
ess. This stru
ture didnot show any e�e
t on pa
ket and byte arrivals, but it seems important for me
hanisms thatrequire per-
onne
tion state. 298



We also showed that our resampling methods 
an be 
arefully dire
ted to produ
e a newtra
e of 
onne
tion ve
tors whose o�ered traÆ
 load mat
hes an arbitrary target very 
losely.Su
h tra
e s
aling is a 
ommon requirement in suites of experiments that must expose a networkme
hanism to a range of traÆ
 loads. The key to our solution is to 
ount the total amountof data in the resamplings, whi
h was shown to be strongly 
orrelated to o�ered load. On the
ontrary, our results 
learly showed that the number of 
onne
tions is only weakly 
orrelatedto o�ered load, and 
annot be used for a

urate s
aling of resamplings. While this result is anintuitive 
onsequen
e of the heavy-tailness in the amount of data 
arried by 
onne
tions, theissue has been poorly understood in earlier models, where the parameters that 
an be 
ontrolledto tune o�ered load were asso
iated with the number of 
onne
tions. This is for example the
ase for the number of user equivalents in web traÆ
 models. The traÆ
 load o�ered by thistype of \
onne
tion-driven" models 
an never mat
h a target o�ered load as a

urately as our\byte-driven" resamplings of 
onne
tion ve
tor tra
es.Our work on tra
e resampling 
an be extended in several dire
tions. First, there is some needto re�ne our handling of the pa
ketization overhead, whi
h would result in even more a

urateload s
aling. Se
ond, our methods only manipulate one tra
e at a time. Being able to 
ombinemultiple tra
es would provide an even more 
exible framework. While it seems straightforwardto extend our methods to support this operation, demonstrating the validity of the resultsappears diÆ
ult. It represents a departure from measured traÆ
 into a hypotheti
al traÆ
 thatmay or may not be realisti
, and it 
an introdu
e non-stationarities. Third, developing a broadermodel of network traÆ
, either parametri
 or non-parametri
, 
ould provide a better way toguide the resampling pro
ess. In this dire
tion, a better understanding of the main patterns ofsour
e-level behavior would provide more 
exible way of 
reating hypotheti
al s
enarios. Ourwork on traÆ
 
lusters des
ribed above is a step in this dire
tion, sin
e 
ombining 
lusterssupport the exploration of a wide range of traÆ
 generation s
enarios. The possibility ofsu

in
tly des
ribing the range of patterns in a 
luster, e.g., �le-sharing appli
ations withsymmetri
 bulk transfers and 
on
urren
y, is spe
ially useful for exploring future s
enarios whereappli
ations that only represent a small fra
tion of the traÆ
 be
ome in
reasingly important.
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