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ABSTRACTF�ELIX HERN�ANDEZ-CAMPOS: Generation and Validation ofEmpirially-Derived TCP Appliation Workloads.(Under the diretion of Kevin Je�ay)This dissertation proposes and evaluates a new approah for generating realisti traÆin networking experiments. The main problem solved by our approah is generating losed-loop traÆ onsistent with the behavior of the entire set of appliations in modern traÆmixes. Unlike earlier approahes, whih desribed individual appliations in terms of the spei�semantis of eah appliation, we desribe the soure behavior driving eah onnetion in ageneri manner using the a-b-t model. This model provides an intuitive but detailed way ofdesribing soure behavior in terms of onnetion vetors that apture the sizes and ordering ofappliation data units, the quiet times between them, and whether data exhange is sequentialor onurrent. This is onsistent with the view of traÆ from TCP, whih does not onernitself with appliation semantis.The a-b-t model also satis�es a ruial property: given a paket header trae olleted froman arbitrary Internet link, we an algorithmially infer the soure-level behavior driving eahonnetion, and ast it into the notation of the model. The result of paket header proessing isa olletion of a-b-t onnetion vetors, whih an then be replayed in software simulators andtestbed experiments to drive network staks. Suh a replay generates syntheti traÆ that fullypreserves the feedbak loop between the TCP endpoints and the state of the network, whihis essential in experiments where network ongestion an our. By onstrution, this type oftraÆ generation is fully reproduible, providing a solid foundation for omparative empirialstudies.Our experimental work demonstrates the high quality of the generated traÆ, by diretlyomparing traes from real Internet links and their soure-level trae replays for a rih set ofiii



metris. Suh omparison requires the areful measurement of network parameters for eahonnetion, and their reprodution together with the orresponding soure behavior. Our �nalontribution onsists of two resampling methods for introduing ontrolled variability in networkexperiments and for generating losed-loop traÆ that aurately mathes a target o�ered load.
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CHAPTER 1IntrodutionAs far as the laws of mathematis refer to reality, they are not ertain; and asfar as they are ertain, they do not refer to reality.| Albert Einstein (1879{1955)Humankind annot stand very muh reality.| T. S. Elliot (1888{1965)Researh in networking has to deal with the extreme omplexity of many layers of tehnol-ogy interating with eah other in frequently unexpeted ways. As a onsequene, there is abroad onsensus among researhers that purely theoretial analysis is not enough to demon-strate the e�etiveness of network tehnologies. More often than not, areful experimentationin simulators and network testbeds under ontrolled onditions is needed to validate new ideas.Every researher therefore faes, at some point or another, the need to design realisti net-working experiments, and syntheti network traÆ is a foremost element of these experiments.Syntheti network traÆ represents not only the workload of a omputer network, but also thediret or indiret target of any optimization. For instane, ongestion ontrol researh fouseson preserving as muh as possible the ability of a network to transfer data in the fae of over-load. Therefore, evaluating a new ongestion ontrol mehanism in a transport protool suhas the Transport Control Protool (TCP) [Pos81℄ usually requires onstruting experiments inwhih a number of network hosts exhange data using this protool in an environment with oneor more saturated links. The value of the new mehanism is then expressed as a funtion ofthe performane of these data exhanges. For example, the new mehanism may be optimizedfor ahieving a higher overall throughput or a more fair alloation of bandwidth.



A fundamental insight, whih provides the main motivation for this dissertation, is thatthe harateristis of syntheti traÆ have a dramati impat on the outome of networkingexperiments. For example, a new mehanism that improves the throughput of bulk, long-lasting�le transfers in a ongested environment may not improve and may even degrade the responsetime of the small data exhanges in web traÆ. This was preisely the ase of Random EarlyDetetion (RED), an Ative Queue Management (AQM) mehanism. The original analysis byFloyd and Jaobson [FJ93a℄ learly demonstrated the bene�ts of RED over the basi First-In First-Out (FIFO) queuing mehanism for bulk transfers. In this study, RED queues wereexposed to a small number (2{4) of large �le transfers. However, a later experimental study byChristiansen et al. [CJOS00℄ showed that this �rst AQM mehanism degraded the performaneof web traÆ in highly ongested environments. In ontrast to the original evaluation, webtraÆ mostly onsists of a very large number of small data transfers, whih reate a verydi�erent workload. The emergene of the web learly hanged the nature of Internet traÆ, andmade it neessary to revisit existing results obtained under di�erent workloads. The systematievaluation of network mehanisms must therefore inlude experiments overing the wide range oftraÆ harateristis observed on Internet links. It is ritial to provide the researh ommunitywith methods and tools for generating syntheti traÆ as representative as possible of this rangeof harateristis.The onept of soure-level modeling introdued by Paxson and Floyd [PF95℄ onstitutesa major inuene on this dissertation. These authors advoated for building models of thebehavior of Internet appliations (i.e., the soures of Internet traÆ), and generating traÆ innetworking experiments by driving network staks with these appliation models. The mainbene�t of this approah is that traÆ is generated in a losed-loop manner, whih fully preservesthe fundamental feedbak loop between network endpoints and network harateristis. Forexample, a model of web traÆ an be used to generate traÆ using TCP/IP network staks,and the generated traÆ will properly reat to di�erent levels of ongestion in networkingexperiments. In ontrast, open-loop traÆ generation is assoiated to models of the paketarrivals on network links, and these models are insensitive to hanges in network onditions, and
2



tied to the original onditions under whih they were developed. This makes them inappropriatefor experimental studies that hange these onditions.The main motivation of our work is to address one important diÆulty with soure-levelmodeling. In the past, soure-level modeling has been assoiated with haraterizing the be-havior of individual appliations. While this approah an result in high-quality models, it is adiÆult proess that requires a large amount of e�ort. As a onsequene, only a small numberof models is available, and they are often outdated. This is in sharp ontrast to the traÆobserved in most Internet links, whih is driven by rih traÆ mixes omposed of a large num-ber of appliations. Soure-level modeling of individual appliations does not sale to moderntraÆ mixes, making it very problemati for networking researhers to ondut representativeexperiments with losed-loop traÆ.This dissertation presents a new methodology for generating network traÆ in testbed ex-periments and software simulations. We make three main ontributions. First, we developa new soure-level model of network traÆ, the a-b-t model , for desribing in a generi andintuitive manner the behavior of the appliations driving TCP onnetions. Given a paketheader trae olleted at an arbitrary Internet link, we use this model to desribe eah TCPonnetion in the trae in terms of data exhanges and quiet times, without any knowledge ofthe atual semantis of the appliation. Our algorithms make it possible to eÆiently deriveempirial haraterizations of network traÆ, reduing modeling times from months to hours.The same analysis an be used to inorporate network-level parameters, suh as round-triptimes, to the desription of eah onnetion, providing a solid foundation for traÆ genera-tion. Seond, we propose a traÆ generation method, soure-level trae replay , where traÆis generated by replaying the observed behavior of the appliations as soures of traÆ. Thisis therefore a method for generating entire traÆ mixes in a losed-loop manner. One ruialbene�t of our method is that it an be evaluated by diretly omparing an original trae andits soure-level replay. This makes it possible to systematially study the realism of synthetitraÆ, in the terms of how well our desription of the onnetions in the original traÆ mixreets the nature of the original traÆ. In addition, this kind of omparison provides a means3
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Figure 1.1: Network traÆ seen from di�erent levels.to understand the impat that the di�erent harateristis of a traÆ mix have on spei� traesand on Internet traÆ in general. Third, we propose and study two approahes for introduingvariability in the generation proess and saling (up or down) the level of traÆ load in theexperiments. These operations greatly inrease the exibility of our approah, enabling a widerange of experimental investigations onduted using our traÆ generation method.1.1 Abstrat Soure-Level ModelingThis dissertation presents a methodology for generating syntheti network traÆ that ad-dresses some of the main shortomings of existing tehniques. Figure 1.1 illustrates the levelsof detail at whih Internet traÆ an be studied, providing a good starting point for framingour disussion. We fous on the traÆ on a single Internet link, suh as the one between theUniversity of North Carolina at Chapel Hill (UNC) and the Internet. We an study the traÆin this link at di�erent levels of detail. The top-most time-line represents traÆ observed inthe link between UNC and the Internet as a sequene of paket arrivals. This level of detail4



is known as the aggregate paket arrival level. Here pakets from many di�erent onnetionswere interleaved reating a omplex arrival proess in the network link. In general, TCP traÆaounts for the vast majority of the pakets on Internet links (usually between 90% and 95%),whih justi�es our fous on TCP in this work. The seond time-line depits the paket arrivalsthat belonged to a single TCP onnetion. These pakets were used to send data bak andforth between two network endpoints, one loated at UNC, and the other one somewhere onthe Internet. The soures of these data are appliations running on the endpoints, whih relyon the paket swithing servie provided by the Internet to ommuniate. Prominent examplesof these appliations are the World Wide Web, email, �le sharing, et. Hundreds of di�erentappliations are ommonly found on Internet links. The traÆ observed at an Internet link istherefore the result of multiplexing the ommuniation of a large number of endpoints drivenby a wide range of appliations. This dissertation onsiders the problem of generating traÆ innetworking experiments that preserves both the aggregate-level and the onnetion-level prop-erties of traÆ observed in a real network link. Note that we restrit ourselves to this most basiform of the problem where only a single link is onsidered both for observing traÆ and forreproduing it in networking experiments. Our �ndings an ertainly be applied to a broaderontext, e.g., multiple links along a path following the \parking lot topology" [PF95℄, links inan ISP, et., but we hoose to keep to this problem in its most essential form throughout thisdissertation.As mentioned before, every onnetion on the Internet is driven by an appliation exhangingdata between two endpoints. It is therefore possible to examine traÆ at a higher-level, wherethe ommuniation is desribed in terms of appliation data units (ADUs) rather than networkpakets. This appliation level is illustrated in the bottom time-line of Figure 1.1, whih revealsthat the soure of the pakets in the seond time-line was the exhange of data between a webbrowser and a web server using a TCP onnetion. The time-line shows a �rst ADU of 2,500bytes, whih arried a request for an HTML page. The way the data is organized within thisADU and its meaning is given by the spei�ation of the HyperText Transfer Protool (HTTP)[FGM+97℄, whih standardizes the exhange of data between web browsers and web servers.
5



The time-line shows a seond ADU, sent by the web server to the web browser in response tothe �rst ADU. It arried the atual HTML soure ode of the page requested by the browser.Its size was 4,800 bytes, whih inluded not only the HTML soure ode but also an appropriateHTTP header. The time-line shows another pair of ADUs that also orresponded to an HTTPrequest and an HTTP response, whih this time arried an image �le. Eah ADU is assoiatedto one or more pakets in the seond time-line. The amount of data in these ADUs and itsmeaning was deided by the appliation, while the atual number of pakets, their sizes, theneed for retransmissions, et., were deided by lower layers (transport and below).The appliation level provides the starting point for the traÆ modeling and generationmethodology developed in this dissertation. Our approah to traÆ generation relies on thenotion of soure-level modeling , advoated by Paxson and Floyd [FP01℄. Rather than diretlygenerating pakets aording to some trae or some paket arrival model, soure-level modelinginvolves simulating the behavior of the appliations running on the endpoints and allowinglower layers to ontrol the atual exhange of pakets. For example, generating traÆ with asoure-level model of web traÆ means to simulate web browsers and web servers aording tostatistial models of web page sizes, the durations of user think times and other soure-levelparameters [Mah97, BC98, SHCJO01℄.Modeling traÆ at the soure level produes desriptions of traÆ that are mostly indepen-dent of the underlying protools and network onditions, so they an be used to drive traÆgeneration in experiments that modify these same protools and onditions. For this reason,soure-level models are also known as network-independent model . For example, the size of anHTML page arried in a TCP onnetion does not hange with the degree of ongestion (italways has the same number of haraters). Therefore, its size is a network-independent prop-erty. Lower-level desriptions of traÆ, suh as haraterizations of paket arrivals, are networkdependent . For example, the rate at whih the pakets of a TCP onnetion arrive dereasesas the degree of ongestion inreases, sine TCP uses a ongestion ontrol algorithm that de-reases the sending rate as the loss rate inreases. Also, paket losses fore TCP endpoints toperform retransmissions. This means that the transmission of the same amount of data at the6



soure-level (e.g., an HTML page) at di�erent times may require di�erent numbers of paketsto be transferred, depending on the number of lost pakets. A soure-level model desribesthe sizes of ADUs, but not the times at whih a onnetion should lower its sending rate orretransmit a paket. For this reason, the same model an be used to generate traÆ underdi�erent network onditions, suh as low and high levels of ongestion. Endpoints generatingtraÆ using these models are able to adapt to eah spei� set of network onditions in theexperiments. This preserves the fundamental feedbak loop that exists between endpoints andnetwork onditions. For this reason, this type of traÆ generation is said to be losed-loop.On the ontrary, traÆ generated aording to lower level models is neessarily open-loop. Forexample, tpreplay [tpb℄ an be used to reenat the sending of every paket reorded in a trae,whih results in open-loop traÆ that is insensitive to the underlying network onditions. ThistraÆ is inappropriate for experiments where network onditions are important, suh as theevaluation of ongestion ontrol mehanisms.In the past, soure-level modeling has been onsidered a synonym of appliation modeling,so researhers have developed a number of appliation-spei� models inluding models forweb traÆ, �le transferring and other individual appliations. This approah is good if oneis interested in the traÆ generated by a single appliation (or by a handful of appliations).However, if one is interested in realisti traÆ mixes, appliation-spei� traÆ modeling hassome important shortomings. The �rst problem is that appliation spei� modeling does notsale well to the large number of appliations that form ontemporary traÆ mixes. For exam-ple, the weekly traÆ report from Internet2 [Con04℄ ollets separate statistis for more than80 di�erent appliations that make up Internet2 traÆ. Using existing tehnology, it is simplytoo time-onsuming to develop and populate individual models for eah appliation. Moreover,even if we had the resoures to examine the behavior of all appliations, many appliations useproprietary protools, so painstaking reverse engineering is needed to understand and modeltheir behavior. In addition, Internet traÆ evolves quikly, sine new appliations and improvedversions of the existing ones appear very frequently.This dissertation proposes a more general solution to the soure-level modeling and the7
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Figure 1.2: An a-b-t diagram illustrating a persistent HTTP onnetion.traÆ generation problems. We develop an abstrat model of network data exhange whereineah onnetion is desribed independently of the semantis of the appliation initiating theonnetion. This idea is illustrated in the third time-line of Figure 1.1. Here the ommunia-tion is desribed in generi terms, simply as a sequene of ADU exhanges between the twoendpoints of the TCP onnetion, without attahing any meaning to the ADUs. Other generiharateristis of traÆ inlude the diretion in whih the ADUs are sent, from the onne-tion initiator or from the onnetion aeptor, and the duration of quiet times between ADUs,whih are due to user behavior and proessing times. These harateristis an generally beused to desribe the behavior of any spei� appliation. For example, the ADUs of web traÆare HTTP requests and responses, while the inter-ADU times are user think times and serverproessing times. The ruial observation is that the sizes of ADUs and the times between theman be measured from the paket traes of two onnetions without knowledge of the behaviorof the appliation driving the onnetion. This makes it possible to onstrut a soure-leveldesription of the entire set of onnetions observed in a measured link, instead of only theonnetions driven by one or a few well-known appliations. Any trae of pakets traversinga network link an be transformed into an abstrat soure-level trae, without examining thepayload of the pakets and without instrumenting the endpoints.Our approah to soure-level modeling results in an abstrat representation of a TCP on-netion using a notation that we all an a-b-t onnetion vetor . We also refer to this idea asthe a-b-t model , in the sense that it provides a mental model for understanding network traÆ
8



at the soure level, rather than in the sense of a mathematial or statistial model1. The terma-b-t is desriptive of the basi building bloks of this model: a-type ADUs (a's), whih are sentfrom the onnetion initiator to the onnetion aeptor, b-type ADUs (b's), whih ow in theopposite diretion, and quiet times (t's), during whih no data segments are exhanged. We willmake use of these terms to desribe the soure-level behavior of TCP onnetions throughoutthis dissertation.Our a-b-t model has a sequential version and a onurrent version. The sequential versionapplies to onnetions where the endpoints follow a strit order in their exhange of ADUs. Inthis version, a TCP onnetion is desribed by a vetor of epohs (e1; e2; : : : ; en). Eah epohhas the form ej = (aj ; taj ; bj ; tbj), where aj is the size of an ADU sent from the onnetioninitiator to the onnetion aeptor, bj is the size of an ADU sent in the opposite diretion,and taj and tbj are inter-ADU quite times (during whih the endpoints are idle). We allthis representation of soure-level behavior a sequential onnetion vetor . For example, theonnetion illustrated in Figure 1.2 is represented as((329; 0; 403; 0:12); (403; 0; 25821; 3:12); (356; 0; 1198; 15:3))using the sequential a-b-t model. This onnetion has three epohs, eah arrying one HTTPrequest/response pair. The �rst epoh has an ADU a1 of size 329 bytes, whih was sent fromthe onnetion initiator (a web browser) to the onnetion aeptor (a web server), and an ADUb1 of size 803 bytes, whih was sent in the opposite diretion. We also observe some quiet timesbetween the ADUs, suh tb2, whih had a duration of 3.12 seonds. While Figure 1.2 inludeslabels for HTTP requests, responses and douments, our a-b-t notation is ompletely generi.We onsider this TCP onnetion sequential beause only one endpoint sent data to theother one at any point in the lifetime of the onnetion. It is important to iterate that an ADUis not a TCP segment (i.e., TCP paket), but an appliation message that is independent of its1Our a-b-t model provides however a good foundation for developing mathematial and statistial models oftraÆ at the soure-level. This dissertation onsistently follows a non-parametri approah to traÆ modeling.The only exeption is the Poisson Resampling method presented in Chapter 7, for whih we also o�er a morepowerful non-parametri alternative, blok resampling.9
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bytes seen in a trae, and hene modeling these onnetions is ritial if one wants to generaterealisti traÆ mixes.To represent onurrent ADU exhanges, the ations of eah endpoint are onsidered toour independently of eah other. Thus eah endpoint is a separate soure generating ADUsthat appear as a sequene of epohs following a unidiretional ow pattern. Formally, thismeans that we represent eah onnetion as a pair (�; �) of onnetion vetors of the form� = ((a1; ta1); (a2; ta2); : : : ; (ana ; tana))and � = ((b1; tb1); (b2; tb2); : : : ; (bnb ; tbnb));where ai and bi are sizes of ADUs sent from the initiator and from the aeptor of the TCPonnetion respetively, and tai and tbi are quiet times between the ADUs. We all this repre-sentation of soure-level behavior a onurrent onnetion vetor . Unlike the sequential versionof the a-b-t model, this representation does not apture any ausality between the two dire-tions of a TCP onnetion. As a onsequene, traÆ generated aording to this version of themodel usually exhibits a substantial number of onurrent data exhanges.The a-b-t model provides a simple yet expressive way of desribing soure-level behavior in ageneri manner that is not tied to the details of any appliation. In addition, this non-parametrimodel was designed to inorporate quantities (ADU sizes, ADU diretionality, and inter-ADUquiet time duration) that an be extrated from paket header traes in a eÆient, auratemanner. We an easily imagine more omplex and expressive models of TCP onnetions forwhih no eÆient data aquisition algorithm exists, or models that deal with harateristis ofsoure-level behavior that annot be extrated purely from paket headers. In the ase of the a-b-t model, we have developed a data aquisition algorithm that relies on TCP sequene numbersfor measuring ADU sizes, and on the paket arrival timestamps obtained during trae olletionto determine inter-ADU quite times. Our algorithm onstruts a data struture in whih TCPsegments are ordered aording to their logial data order , i.e., the order in whih data must11
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Trace AnalysisFigure 1.4: Overview of Soure-level Trae Replay.be delivered to the appliation layer of the reeiving endpoint. In reonstruting this logialorder for eah onnetion, we have developed methods for dealing with network pathologiessuh as arbitrary segment reordering, dupliation and retransmission. Furthermore, when thedata segments in a TCP onnetion annot be ordered aording to the logial data order, wean lassify the onnetion as onurrent with ertainty. Our data struture supports bothsequential (i.e., bidiretional) and onurrent (i.e., unidiretional) ordering, making it possibleto extrat ADU sizes and quiet times with a single pass over the segments of a TCP onnetionfound in a trae. The analysis an be performed in O(sW ) time, where s is the number of datasegments in the onnetion and W is the maximum size of the TCP window (whih bounds themaximum amount of reordering).1.2 Soure-Level Trae ReplayOur abstrat soure-level modeling of TCP onnetion provides a solid foundation for gen-eration traÆ mixes in simulators and network testbeds. We propose to generate traÆ usingsoure-level trae replay , as illustrated in Figure 1.4. Given a paket header trae Th olletedfrom some Internet link, we �rst use our data aquisition algorithm to analyze the trae anddesribe its ontent as a olletion of onnetion vetors T = f(Ti; Ci)g, where Ti is the relative12



start time of the i-th TCP onnetion, and Ci is the sequential or onurrent onnetion vetororresponding to this onnetion. The basi approah for generating traÆ aording to T isto replay every onnetion vetor Ci. Eah onnetion vetor Ci is replayed by starting a TCPonnetion preisely at Ci's relative start time Ti, and transmitting the measured sequene ofADUs (aj and bj) separated in time by the inter-ADU measured quiet times (tai and tbi). Inthis dissertation, we evaluate a spei� implementation of this approah for FreeBSD networktestbeds, where traÆ is generated using a tool we developed alled tmix .The goal of the diret soure-level trae replay of T is to reprodue the soure-level har-ateristis of the traÆ in the original link, generating the traÆ in a losed-loop fashion.Closed-loop traÆ generation implies the need to simulate the behavior of appliations, usingregular network staks to atually translate soure-level behavior into network traÆ. In par-tiular, our experiments use an implementation whih relies on the standard soket interfaeto reprodue the data exhanges in eah onnetion vetor. Generating traÆ in this manneris losed-loop in the sense that it preserves the feedbak mehanism in TCP, whih adaptsits behavior to hanges in network onditions, suh as loss and reeiver saturation. In on-trast, paket-level trae replay, the diret reprodution of Th, is an open-loop traÆ generationmethod in the sense that TCP ontrol algorithms are not used during the generation, and henethe traÆ does not adapt to network onditions.The evaluation of our methodology onsists of omparing the original trae Th and thesyntheti trae T 0h obtained from the soure-level trae replay. Validating our traÆ generationmethod onsists of transforming T 0h into a set of onnetion vetors T 0 , using the same methodused to transform Th into T. We then ompare the resulting set of onnetion vetors T 0 withthe original T. In priniple, they should be idential, sine T represents the invariant soure-level harateristis of Th. There are however some di�erenes that are explained by the natureof the model and our measurement methods.The diret omparison of Th and T 0h also provides a way to study the auray of ourapproah in terms of how well traÆ is desribed by the a-b-t model. This is however a subtleexerise. The atual replay of T, whih reates T 0h, neessarily requires the seletion of a13



a set of network-level parameters, suh as round-trip times and TCP reeiver window sizes,for eah TCP onnetion in the soure-level trae replay. The exat set of generated TCPsegments and their arrival times is a diret funtion of these parameters. As a onsequene, ifwe ondut a soure-level trae replay using arbitrary network-level parameters, we obtain a T 0hwith little resemblane to the original Th. The replayed a-b-t onnetion vetors may be a perfetdesription of the soure behavior driving the original onnetions, but the generated paket-level trae T 0h would still be very di�erent from the original Th. To address this diÆulty, ourreplay inorporates network-level parameters individually derived from eah onnetion in Th.We have also inorporated methods for measuring three important network-level parameters(round-trip time, TCP reeiver window size and loss rate) into our analysis and generationproedure. While this set of parameters is by no means omplete, it does inlude the mainparameters that a�et the average throughput of a TCP onnetion found in a trae. Thisenables us to generate traÆ in a losed-loop manner that approximates measured traes verylosely.Inorporating network-level properties is important, but it is ritial to understand themain shortoming of this approah. The goal of our work is not to make the generated traÆT 0h idential to the original traÆ Th, whih ould be aomplished with a simple paket-levelreplay. As mentioned before, paket-level replays generate traÆ that does not adapt to hangesin network onditions, resulting in open-loop traÆ. Our goal is to develop a losed-loop traÆgeneration method based on a detailed haraterization of soure behavior. TraÆ generatedin a losed-loop manner an adapt to di�erent network onditions, whih are intrinsi whenevaluating di�erent network mehanisms. Our omparison of Th and T 0h is only a means tounderstand the quality of traÆ generation method, where quality is onsidered to be higheras the original trae is more losely approximated. If enough parameters of the original traÆare aurately measured and inorporated into the traÆ generation experiment, we expet toobserve a great similarity between Th and T 0h. On the ontrary, if we are missing some importantparameters, we expet to observe substantial di�erenes between traes.By onstrution, traÆ generated using soure-level trae replay an never be idential to14



the original traÆ. The statistial properties of original paket header traes are the result ofmultiplexing a large number of onnetions onto a single link, and these onnetions traverse alarge number of di�erent paths with a variety of network onditions. It is simply not possible tofully haraterize this environment and reprodue it in a laboratory testbed or in a simulation.This is both beause of the limitations of passive inferene from paket headers, and beause ofthe stohasti nature of network traÆ. Soure-level trae replay an never inorporate everyfator that shaped Th, and therefore di�erenes between Th and T 0h are unavoidable. Still, �ndinga lose math between an original trae and its replay, even if they are not idential, onstitutesstrong evidene of the auray of the a-b-t model and the data aquisition and generationmethods we have developed. It also demonstrates the feasibility of generating realisti networktraÆ in a losed-loop manner that resembles a rih traÆ mix.1.3 Trae Resampling and Load SalingAs long as the network setup of a simulation or testbed experiment remains unhanged, thesoure-level trae replay of a onnetion vetor trae T = f(Ti; Ci)g always results in traÆthat is similar to the original trae. Every replay ontains the same number of TCP onnetionsbehaving aording to the same onnetion vetor spei�ation and starting at the same times.Only tiny variations are introdued on the end-systems by hanges in lok synhronization, op-erating system sheduling and interrupt handling, and at swithes and routers by the stohastinature of paket multiplexing. Soure-level trae replay has therefore two desirable properties:� The quality of the syntheti traÆ an be evaluated by diretly omparing syntheti andoriginal traÆ. This makes it possible to study the auray of the analysis methods andthe generation system with omplete freedom, using any metri that an be derived fromreal traÆ. In ontrast, more abstrat methods based on parametri models of traÆ areinherently stohasti and therefore more diÆult to evaluate. For suh methods, it is lessobvious whether the observed di�erene between the traÆ generated using the parametrimodel and the original traÆ from whih the model derives should be admitted.15



� The generation of the syntheti traÆ is fully reproduible. A researher an expose aolletion of network protools and mehanisms to exatly the same losed-loop traÆ,whih provides the right foundation for fair omparative studies. In ontrast, stohastivariation in the traÆ generated using parametri models is often diÆult to ontrol. Forexample, experiments with models that rely on heavy-tailed distributions onverge veryslowly to omparable onditions, as disussed by Crovella and Lipsky [CL97℄.While these properties are important, the pratie of experimental networking often requiresto introdue ontrolled variability in the generated traÆ for exploring a wider range of se-narios. This motivates the development of methods that manipulate T in order to generatedi�erent traÆ that still resembles the original one. Furthermore, developing a statistiallysound way of manipulating T is essential for generating traÆ with di�erent levels of o�eredload. This manipulation to math a target o�ered load is a very ommon need in experimentalnetworking researh. This is beause the performane of a network mehanism or protool isoften a�eted by the amount of traÆ to whih it is exposed. Therefore, rigorous experimentalstudies frequently require to generate a omplete range of target loads.In this dissertation, we propose two exible methods for introduing variability in traÆgeneration experiments. In both ases, the set of onnetion vetors in T is randomly resampled,resulting in a new set T 0 that preserves the aggregate soure-level harateristis of the originaltraÆ. In our �rst method, Poisson Resampling , we onstrut a new onnetion vetor traeT 0 by randomly resampling onnetions from T, and assigning them exponentially distributedinter-arrival times. As a result, onnetions in T 0 arrive aording to a Poisson proess. Inthe seond method, Blok Resampling , we resample bloks (groups) of onnetions rather thanindividual onnetions. This method results in a more realisti onnetion arrival proess, whihmathes the substantial burstiness observed in real traes. In more tehnial terms, BlokResampling preserves the moderate long-range dependene found in real onnetion arrivalproesses, while Poisson Resampling results in a short-range dependent onnetion arrivalsproess. This di�erene is demonstrated in our experimental evaluation of the two methods.In addition, the evaluation shows that the duration of the resampling blok reates a trade-16



o� between shorter bloks (whih inrease the number of distint resamplings) and long-rangedependene (whih disappears for short bloks). Our analysis demonstrates that blok durationsbetween 1 and 5 minutes o�er the best ompromise.Researhers often need to ondut a set of experiments with a range of di�erent traÆ loads.When using a traditional soure-level model, e.g., a model of web traÆ, researhers have to �rstondut a preliminary experimental study to determine how the parameters of the model, e.g.,the number of user equivalents, a�et the generated load [CJOS00, LAJS03, KLH+02℄. Thisis usually known as the alibration of traÆ generator. Our resampling methods eliminate thisommon need for alibrating traÆ generators, sine the resampling proess an be ontrolledto math a spei� target load (i.e., generated load is known a priori). In the ase of PoissonResampling, this is aomplished by hanging the mean arrival rate of onnetions. In thease of Blok Resampling, o�ered load is manipulated using blok thinning (i.e., subsampling)and blok thikening (i.e., ombining bloks). Our work reveals that load saling annot bebased simply on ontrolling the number of onnetions. Suh an approah frequently resultsin o�ered loads that are far from the target, beause the number of onnetions in a resampleis not strongly orrelated with the o�ered load represented by these onnetions. We addressthis diÆulty by developing byte-driven versions of Poisson Resampling and Blok Resampling,whih sale load using a running ount of the total data in the resampled trae T 0 . Unlikethe number of onnetions, the total amount of data in T 0 is strongly orrelated to traÆload o�ered by T 0 . Our experiments on�rm that byte-driven resampling is highly aurate,eliminating the ommon need for alibrating traÆ generators.1.4 Thesis StatementThis dissertation onsiders the following thesis:1. An abstrat soure-level model an desribe in detail the entire set of TCP appliationbehaviors observed in real networks. 17



2. Desriptions of abstrat soure-level behavior an be empirially derived from paketheader traes in an eÆient, aurate manner.3. TraÆ generation based on this abstrat soure-level modeling results in syntheti traÆthat is realisti and suitable for experimental networking researh.4. The abstrat soure-level model of a trae an be manipulated to introdue statistiallyvalid variability in the generated traÆ and also to aurately math a target o�ered loadwhile preserving appliation harateristis.1.5 ContributionsWe highlight the following ontributions from this dissertation:� We develop the onept of abstrat soure-level modeling and the a-b-t notation for de-sribing the soure-level behavior of entire traÆ mixes. We identify a fundamental di-hotomy in soure-level behavior between onnetions that exhange data sequentiallyand onnetions that exhange data onurrently. Our a-b-t notation inludes a sequen-tial version and a onurrent version that makes it possible to appropriately desribe thesetwo types of behaviors.� We formulate a formal test of onurreny that an be applied to the paket headers ofany TCP onnetion, and that does not su�er from false positives. This enables us toaurately lassify onnetions as sequential or onurrent. We show that only a smallfration of TCP onnetions (less than 4% in our traes) exhange data onurrently, butthat these TCP onnetions aount for a substantial fration (up to 32%) of the totaltraÆ.� We present an eÆient algorithm for transforming a paket header trae into a olletionof sequential and onurrent a-b-t onnetion vetors. Given a TCP onnetion for whihwe observe s segments and that has a maximum reeiver window size ofW , the asymptoti18



ost of our algorithm is O(sW ). We demonstrate that this algorithm is aurate usingtraÆ generated from syntheti appliations (i.e., with known harateristis).� We develop soure-level trae replay, a losed-loop traÆ generation method that uses a-b-t onnetion vetors as a non-parametri model of network traÆ. One key bene�t of thisapproah is the possibility of diretly omparing original and generated traÆ, whih weuse to evaluate the \realism" of our traÆ generation approah. This omparison requiresus to inorporate some network-level parameters (round-trip times, maximum reeiverwindow sizes, and possibly loss rates) into the traÆ generation. These parameters an bemeasured from paket header traes. We pay speial attention to passive round-trip timeestimation in our data aquisition, developing the onept of One-Side Transit Time andstudying the impat of delayed aknowledgments on passive round-trip time estimation.� We implement our traÆ generation method in a network testbed, developing a new dis-tributed traÆ generation tool, tmix . We use this implementation to study the results ofa large olletion of trae replay experiments, evaluating the need for detailed soure-levelmodeling and the impat of losses on measured network traÆ. Our results demonstratethat detailed soure-level modeling is often required for aurately approximating realtraÆ, whih demonstrates that soure-level behavior is a major fator shaping InternettraÆ. The most substantial di�erenes are observed for the number of ative onnetionsand the number of paket arrivals per unit of time. Byte arrivals per unit of time andlong-range dependene do not improve so onsistently with the use of detailed soure-levelmodeling. We also show that losses had only a seondary e�et in our traes, but theyare not negligible when omparing original and generated traÆ.� We present two trae resampling algorithms whih an be used to derive new traes froman existing one, preserving its statistial harateristis at the soure-level. Our ompar-ison of the two methods reveals that the observed long-range dependene in onnetionarrivals has no apparent impat on the long-range dependene of paket and byte arrivals.� We demonstrate the need for byte-driven rather than onnetion-driven resampling inorder to aurately sale o�ered loads, and develop byte-driven versions of our two re-19



sampling methods. This approah eliminates the need for the experimental alibration oftraÆ generators (whih study the relationship between the parameters of the generatorand the o�ered traÆ load).� Our entire methodology makes it possible to ondut networking experiments with losed-loop syntheti traÆ derived from real traes in an automated manner. This eliminatesthe need for painstaking parametri modeling.1.6 OverviewChapter 2 presents a review of the state-of-the-art in syntheti traÆ generation. We �rstexpand our disussion of paket-level traÆ generation and data aquisition, and then examinesoure-level traÆ generation more in depth. We review the literature on appliation-spei�modeling, disussing models of web traÆ and other appliations, and also onsider severalapproahes for generating traÆ driven by more than one appliation. We also disuss existingmethods for ontrolling the traÆ load reated in networking experiments. The hapter �nallyonsiders some researh e�orts addressing implementation issues.Chapter 3 disusses abstrat soure-level modeling, presenting several examples of real ap-pliations and how their behavior an be desribed using our a-b-t notation. We also presentour measurement algorithm for transforming a paket header trae into a olletion of sequen-tial and onurrent a-b-t onnetion vetors. The hapter also inludes a validation of themeasurement method using syntheti appliations, and a measurement study that examinesthe statistial properties of the a-b-t onnetion vetors extrated from �ve real traes.Chapter 4 fouses on network-level measurement. We �rst desribe our methods for mea-suring round-trip times, window sizes and loss rates, and an evaluation of their auray. Whilethis set of parameters is by no means omplete, it does inlude the main parameters that a�etthe average throughput of a TCP onnetion found in a trae. The seond part of Chapter 4desribes the network-level metris that we onsider in the evaluation of our traÆ generation20



method: paket and byte throughput time series, their marginal distributions, wavelet spetra,Hurst parameter estimates and time series of ative onnetions.Chapter 5 desribes soure-level trae replay and our implementation in a network testbed.We present a validation of this implementation using the soure-level trae replays of �vetraes. For eah trae, we study the a-b-t onnetion vetors extrated from the original traesand those found in replays with and without paket losses at the network links. The resultsdemonstrate the auray of our approah, and also unover some diÆulties, whih are in someases inherent to the a-b-t model and its passive method of data aquisition.Chapter 6 examines the results of several soure-level trae replay experiments. Our anal-ysis ompares original traes and their soure-level trae replays using the rih set of metrisintrodued in Chapter 4, revealing a remarkably lose approximation. This study also inludesa omparison of traÆ generated with the a-b-t model and with a simpli�ed version that \dis-ables" soure-level modeling, whih is shown to perform well for some metris and poorly forothers. As in the previous hapter, we also onsider experiments with and without arti�iallosses, showing that loss did not have a dominant impat on the harateristis of the originaltraÆ. In general, our results provide a strong justi�ation of our soure-level modeling ap-proah, demonstrating that the losed-loop replay of a-b-t onnetion vetors losely resemblesreal traÆ.Chapter 7 presents our two resampling methods, Poisson Resampling and Blok Resampling.These methods enable the researher to introdue ontrolled variability in soure-level traereplay experiments, without sari�ing reproduibility. In addition, we onsider the problemof load saling, i.e., how to ontrol the resampling proess to obtain a new trae with a targeto�ered load. Our work demonstrates that this task an be aomplished by keeping trak of thetotal number of data bytes in the resampled trae, but not by keeping trak of the number ofonnetions. Our saling methods eliminate the ommon need for running a preliminary studyto alibrate the traÆ generator.Chapter 8 presents our onlusions and disusses future work.21



CHAPTER 2Related WorkA sienti� theory should be as simple as possible, but no simpler.| Albert Einstein (1879{1955)The greatest hallenge to any thinker is stating the problem in a way that willallow a solution. | Bertrand Russell (1872{1970)This hapter presents an overview of the researh literature relevant for realisti traÆ gen-eration. We onsider two types of works. First, we disuss the body of literature that developedthe onepts and tehniques urrently in use for generating syntheti traÆ in simulations andtestbed experiments. Seond, we examine the Internet measurement literature that informsthe disussion of what is meant by \realisti" traÆ generation. Intuitively, syntheti traÆresembling Internet traÆ an only be realisti if derived from measurements onduted fromreal network links. We ould argue that any Internet measurement paper helps to gain a betterunderstanding of the nature of the Internet and its traÆ, being therefore relevant for realis-ti traÆ generation. However, the sheer size of the Internet measurement literature makes aomplete overview impratial, so we will restrit ourselves to the main works that had a diretimpat on Internet traÆ generation. It is also interesting to note that the most reent trendin the �eld of traÆ generation is preisely to ombine traÆ measurement and generation intoa single, oherent approah [HCJS+01, LH02, SB04, HCSJ04℄.TraÆ generation for experimental networking researh was identi�ed as one of the key hal-lenges in Internet modeling and simulation by Paxson and Floyd [PF95℄ in 1995. Interestingly,



Floyd and Kohler [FK03℄ made a similar point in 2003, and argued that it was still diÆult toondut experiments with representative, validated syntheti traÆ. While traÆ measurementand Internet measurement in general have beome inreasingly popular in reent years, moststudies are exploratory and provide little foundation to build traÆ generators. This hapterprovides an overview of the major works in the �eld of Internet traÆ generation, onsidering�rst paket-level traÆ generation and then soure-level traÆ generation. Other aspets oftraÆ generation, suh as load saling, inorporating network-dependenies and implementationissues are disussed at the end of the hapter.2.1 Paket-Level TraÆ GenerationIn this dissertation we restrit the question of generating realisti traÆ to a single link.This is the most essential form of the traÆ generation problem. It does not seem possibleto takle the problem of generating traÆ for multiple links, say the bakbone of an ISP, ifsingle-link traÆ generation is not fully understood.The simplest way of generating realisti traÆ on a single link is to injet pakets into thenetwork aording to the harateristis of the pakets observed traversing a real link. Wewill use the term paket-level traÆ generation to refer to this approah. Paket-level traÆgeneration an mean either performing a paket-level replay , i.e., reproduing the exat arrivalsand sizes of every observed paket, or injeting pakets in suh a manner as to preserve some setof statistial properties onsidered fundamental, or relevant for a spei� experiment. Paket-level replay, whih has been implemented in tools like tpreplay [tpb℄, is a straightforwardtehnique that is useful for ertain types of experiments where on�guration of the network isnot expeted to a�et the generated traÆ. In other words, whenever it is reasonable to generatetraÆ that is invariant of (i.e., unresponsive to) the experimental onditions, then paket-levelreplay is an e�etive means for generating syntheti traÆ. For example, paket-level replaysof traes olleted from the Internet have been used to evaluate ahe replaement poliies inrouting tables [Jai90, Fel88, GC02℄. In this type of experiments, di�erent ahe replaement23



poliies are ompared by feeding the lookup ahe of a routing engine with a paket trae andomputing the ahieved hit ratio. Also, studies that require maliious traÆ generation anoften make use of paket-level replay [SYB04, RDFS04℄. Maliious traÆ (e.g., a SYN ood)is frequently not responsive to network onditions (and their degradation).Before onduting an experiment in whih traÆ is generated using paket-level replay, re-searhers must obtain one or more traes of the arrivals of pakets to a network link. Thesetraes are olleted using a paket \sni�er" to monitor the traÆ traversing some given link.This paket apturing an be performed with and without hardware support. The most promi-nent example of software-only apture is the Berkeley Paket Filter (BPF) system [MJ93, tpa℄.BPF inludes a paket apturing library, libpap, and a ommand-line interfae and trae analy-sis tool, tpdump. BPF relies on the promisuous mode of network interfaes to observe paketstraversing a network link and to reate a trae of them in the \pap" format. Due to privay andsize onsiderations, most traes only inlude the protool headers (IP and TCP/UDP) of eahpaket and a timestamp of the paket's arrival. Monitoring high-speed links with a software-only system is problemati, given that traÆ has to be forwarded from the network interfae tothe monitoring software using the system bus. The system bus may not be fast enough for thistask depending on the load on the monitored link. High loads an result in \dropped" paketsthat are absent from the olleted trae. Furthermore, the extra forwarding from the wire tothe monitoring program, whih usually involves bu�ering in the network interfae and in op-erating system layers, makes timestamps rather inaurate. In the ase of BPF, timestampinginauraies of a few hundreds of miroseonds are quite ommon. In order to overome thesediÆulties, researhers often make use of speialized hardware that an extrat headers andprovide timestamps without the intervention of the operating system. This is of ourse farmore expensive, but it dramatially improves timestamp auray and inreases the volume oftraÆ that an be olleted without drops. The DAG platform [Pro, GMP97, MDG01℄ is agood example of this approah, and it is widely used in network measurement projets. Thetimestamping auray of DAG traes is on the order of nanoseonds. Multiple DAG ards,possibly at di�erent loations, an also be synhronized using an external lok signal, suh
24



as the one from the Global Positioning System (GPS). Besides olleting their own traes, re-searhers an also make use of publi repositories of pap and DAG traes, suh as the InternetTraÆ Arhive [Int℄ and the PMA projet at NLANR [nlab℄.While paket-level replay is oneptually simple, it involves a number of engineering hal-lenges. First, traÆ generators usually rely on operating systems layers and abstrations, suhas raw sokets, to perform the paket-level replay. Most operating systems provide no guaranteeon the exat delay between the time of paket injetion by the traÆ generator and the timeat whih the paket leaves the network interfae. Serviing interrupts, sheduling proesses,et., an introdue arbitrary delays, whih make the arrival proess of the paket replay di�erfrom the original and intended arrival proess. This inauray may or may not be signi�antfor a given experiment. Another hallenge is the replay of traes olleted in high-speed links.The rate of paket arrivals in a trae an be far higher than the rate at whih a single host angenerate pakets. For example, the speed at whih a ommodity PC an injet pakets into thenetwork is primarily limited by the speed of its bus and the bandwidth of its network interfae.As a onsequene, replying a high rate trae often requires an experimenter to partition thetrae into subtraes that have to be replayed using a olletion of hosts. In this ase, it isimportant to arefully synhronize the replay of these hosts. This is generally a diÆult task,sine the synhronization has to be done using the network itself, whih introdues variable I/Odelays. Clok drift is also a onern with ommon PC loks.Ye et al. [YVIB05℄ disussed paket-level replay of high rate traes, fousing on OC-48, andhow to evaluate the auray of the replay. They proposed ow-based splitting to onstrut apartition of the original trae that an be aurately replayed by an ensemble of traÆ genera-tors. This addresses the hallenge of replaying a trae using multiple traÆ generators withoutreordering the pakets within a ow. In ontrast, round-robin assignment of pakets to traÆgenerators, alled hoie of N in this work, results in pakets belonging to the same ow gener-ated by di�erent traÆ generators. As a onsequene, the generated traÆ exhibits substantialpaket reordering. This reordering is due to the diÆulty of maintaining the generators per-fetly synhronized with ommodity hardware, so one generator an easily get ahead of another25



and modify the order of pakets within a ow. Ye et al. also disussed the diÆulties reatedby bu�ering on the network ards, whih modi�es the properties of the paket arrival proess at�ne sales. An alternative to the approah in Ye et al. is to rely on speialized hardware. MostDAG ards support paket-level replay, bypassing the network stak. However, no informationis available on how aurately the generated traÆ preserves the properties of original paketarrival proess.Paket-level replay has two important shortomings: it is inexible and it is open-loop.Given that a paket-level replay is the exat reprodution of a olleted trae, both in termsof paket arrival times and paket ontent, there is no way to introdue variability in theexperiments other than aquiring a olletion of traes and using a di�erent trae in di�erentruns of the experiments. This makes paket replay inexible, sine the researher has to limithis experiments to the available traes and their harateristis. The \right" traes may not beavailable or may be diÆult to ollet. Even onduting experiments that study simple questionsan be umbersome. For example, a researher that intends to test a ahe replaement poliyunder heavy loads must �nd traes with high paket arrival rates, whih may or may notbe available. Similarly, evaluating a queuing mehanism under a range of (open-loop) loadsrequires one to �nd traes overing this range of loads, and may involve mixing traes fromdi�erent loations, whih ould ast doubt on the realism of the resulting traÆ and thus onthe onlusions of the evaluation.More exible traÆ generation an be ahieved by generating pakets aording to a setof statistial properties derived from real measurements. The hallenge then is to determinewhih properties of traÆ are most important to reprodue so that the syntheti generatedtraÆ makes the experiments \realisti enough." For example, Internet traÆ has been foundto be very bursty, showing very frequent hanges in throughput (both for pakets and bytes perunit of time). Therefore, most experiments should make use of syntheti traÆ that preservesthis observed burstiness. Leland et al. [LTWW93℄ observed that this burstiness an be studiedusing the framework provided by statistial self-similarity . At a high-level, self-similarity meansthat traÆ is equally bursty, i.e., equal variane in arrival times, aross a wide range of time26



sales. This is similar to the geometri self-similarity that fratals exhibit. Mathematially,statistial self-similarity manifests itself as long-range dependene, a sub-exponential deay ofthe autoorrelation of a time-series with sale. This is in sharp ontrast to Poisson modelingand its short-range dependene, whih implies an exponential deay of the autoorrelation withsale. Therefore, it is generally diÆult to aept experimental results where syntheti traÆdoes not exhibit some degree of self-similarity. Aordingly, some experiments may simplyrely on some method for generating a self-similar proess [Pax97℄ and injet pakets into theexperiments aording to this proess. Studies on queuing dynamis, e.g., [ENW96℄, made useof this traÆ generation approah.Other experiments with a more stringent need for realism may also attempt to reprodueother known properties of traÆ. For example, a realisti distribution of IP addresses is essentialfor experiments in whih route ahing performane is evaluated. To aomplish this, paket-level traÆ generation an be ombined with a statistial model of paket arrival and a model ofaddress struture. As one example, Aida and Abe [AA01℄ proposed a generative model based onthe �nding that the popularity of addresses follows a powerlaw (a heavy-tailed distribution witha hyperboli shape). In ontrast, Kohler et al. [KLPS02℄ foused on the hierarhial strutureof addresses and pre�xes, whih is shown to be well-desribed by a multi-fratal model. Bothstudies ould be used to enrih paket-level traÆ generation.2.2 Soure-Level TraÆ GenerationWhile paket-level traÆ generation based on a set of statistial properties is onvenientfor the experimenter, and attrative from a mathematial point of view, it fails to preserve anessential property of Internet traÆ. As Floyd and Paxson [PF95℄ point out, paket-level traÆgeneration is open-loop, in the sense that it does not preserve the feedbak loop that existsbetween the soures of the traÆ (the endpoints) and the network. This feedbak loop omesfrom the fat that endpoints reat to network onditions, and this reation itself an hangethese onditions, and therefore trigger further hanges in the behavior of the endpoints. For27



example, TCP traÆ reats to ongestion by lowering its sending rate, whih in turn dereasesongestion. A trae of paket arrivals olleted at some given link is therefore spei� to theharateristis of this link, the time of the traing paths of the onnetions that traversed it,et. Therefore, any hanges that the experimenter makes to the experimental onditions makethe paket-level traÆ invalid sine the traÆ generation proess is insensitive to these hanges(unlike real Internet traÆ). For example, paket-level replay of TCP traÆ does not reat toongestion in any manner.The solution is to model the soures of traÆ, i.e., to model the network behavior of theappliations running on the endpoints that ommuniate using network ows. Soure-levelmodels are then used to drive network staks whih do implement ow and ongestion ontrolmehanisms, and therefore reat to hanges in network onditions as real Internet endpointsdo. As a result, the generated traÆ is losed-loop, whih is far more realisti for a wide rangeof experiments.The simplest soure-level model is the in�nite soure model . The starting point of thein�nite soure model is the availability of an in�nite amount of data to be ommuniatedfrom one endpoint to another. Generating traÆ aording to this model means that a traÆgenerator opens one or more transport onnetions, and onstantly provides them with data tobe transferred. This means that, for eah onnetion, one of the endpoints is onstantly writing(sending data pakets) while the other endpoint is onstantly reading (reeiving data pakets).The soures are never the bottlenek in this model. The only proess that limits the rate atwhih the endpoints transmit data is the network, broadly de�ned to inlude any mehanismbelow the soures, suh as TCP's maximum reeiver window.The in�nite soure model is very attrative for several reasons, whih make it rather popularin both theoretial and experimental studies [FJ93b, KHR02, AKM04, SBDR05℄. First, thein�nite soure model has no parameters and hene it is easy to understand and amenable toformal analysis. It was, for example, the foundation for the work on the mathematial analysisof steady-state TCP throughput [PFTK98, BHCKS04℄. Seond, its underlying assumptionis that the largest ows on the network, whih aount for the majority of the pakets and28



the bytes, \look like" in�nite soures. For example, an in�nite soure provides a onvenientapproximation to a multi-gigabyte �le download using FTP. Third, in�nite soures are well-behaved, in the sense that, if driving TCP onnetions, they try to onsume as muh bandwidthas possible. They also result in the ideal ase for bandwidth sharing. This makes them useful forexperiments in the area of ongestion ontrol, sine in�nite soures an easily ongest networklinks.Despite their onveniene, in�nite soures are unrealisti and do not provide a solid founda-tion for networking experiments, or even for understanding the behavior and performane of theInternet. The pioneering work by C�aeres et al. [CDJM91℄, published as early as 1991, provideda �rst insight into the substantial di�erene between in�nite soures and real appliation traÆ.These authors examined paket header traes from three sites (the University of California atBerkeley, the University of Southern California, and Bellore in New Jersey) using the oneptof appliation-level onversations. An appliation-level onversation was de�ned as the set ofpakets exhanged between two network endpoints. These onversations ould inlude one ormore \assoiations" (TCP onnetions and UDP streams). A general problem when studyingtraÆ for extended periods is the need to separate traÆ into independent units of ativity,whih in this ase orrespond to onversations. Endpoints may exhange traÆ regularly, sayevery day, but that does not mean that they are engaged in the same onversation for days.Danzig et al. separated onversations between the same endpoints by identifying long periodswithout any traÆ exhange, whih are generally referred to as idle times or quiet times inthe literature. In their study, they used a threshold of 20 minutes to di�erentiate between twoonversations. The authors examined onversations from 13 di�erent appliations, harateriz-ing them with the help of empirial umulative distribution funtions (empirial CDFs). Theresults inlude empirial CDFs for the number of bytes in eah onversation, the diretionalityof the ow of data (i.e., whether the two endpoints sent a similar amount of data), the distri-bution of paket sizes, the popularity of di�erent networks, et. Danzig and Jamin [DJ91℄ usedthese distributions in their traÆ generation tool, tplib. The results from this work are furtherdisussed in Setion 2.2.2.
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C�aeres et al. pointed out a number of substantial di�erenes between their results and theassumptions of earlier works. First, the majority of onnetions arried very small amounts ofdata, less than 10 KB in 75-90% of the ases. This is true for both interative appliations (e.g.,telnet and rlogin) and bulk transfer appliations (e.g., FTP, SMTP). This is in sharp ontrastto the in�nite availability of data to be transferred assumed in the in�nite soure model. Thedynamis of suh short data transfers are ompletely di�erent from those of in�nite soures,whih for example have time to fully employ ongestion ontrol mehanisms. The seonddi�erene was that traÆ from most appliations was shown to be strongly bidiretional, and itinluded at least one request/response phase, i.e., an alteration in the role of the endpoints assenders of data. The in�nite soure model is inherently unidiretional, with one of the endpointsalways ating as the sender, and the other endpoint always ating as the reeiver. Third, theauthors observed a wide range of paket sizes, and a large fration of the data pakets weresmall, even for bulk appliations. Data pakets from an in�nite soure are neessarily full size,sine there is by de�nition enough data to ompletely �ll new pakets.These measurement results highlighted a substantial di�erene between in�nite soures andreal traÆ, and later experimental studies demonstrated the perils of using traÆ from in�nitesoures in the evaluating of network mehanisms. Joo et al. [JRF+99, JRF+01℄ demonstratedthat in�nite TCP soures tend to beome synhronized, so they inrease or derease theirtransmission rate at the same time. This pattern is ompletely absent from more realistiexperiments in whih the majority of the soures have small and diverse amounts of data tosend. As a result, loss patterns, queue lengths and other harateristis are strikingly di�erentwhen more realisti syntheti traÆ is used. Joo et al. also studied the di�erene betweenopen-loop and losed-loop traÆ generation.The area of ative queue management has provided several illustrations of the misleadingresults obtained with the unrealisti in�nite soures. The �rst AQM sheme, RED, was pre-sented by Floyd and Jaobson in [FJ93b℄, and evaluated using in�nite soures. Their resultsshowed that RED signi�antly outperformed FIFO, the usual router queuing mehanism. Laterwork by Christiansen et al. [CJOS00℄ demonstrated that RED o�ers very little bene�t, if any,30



when exposed to more realisti traÆ where soures are not in�nite. In partiular, they used amodel of web-like traÆ, whih is disussed later in this hapter.Paxson's analysis [Pax94℄ of paket header traes from seven di�erent network links pro-vided further support for the onlusions of C�aeres et al. In addition, Paxson onsidered theparsimonious modeling of traÆ from di�erent appliations. He haraterized four prominentappliations, telnet, NNTP, SMTP and FTP, using analyti models to �t the empirial distri-butions. Analyti models are more ommonly known as parametri models in the statistialliterature, and orrespond to lassial distributions, suh as the Pareto distribution, that an befully haraterized with a mathematial expression and only one or a few parameters. As Paxsonpointed out, the use of analyti models results in a onise desription of network appliationsthat an be easily ommuniated and ompared, and are often mathematially tratable. Hismethodology has had a lasting inuene in appliation-level modeling. He learly demonstratedthat analyti �ts (i.e., parametri models) of the observed distributions an losely approximatethe harateristis of real appliations. However, it is important to remember that traÆ is notneessarily more realisti when generated by analyti models as opposed to empirial models.Empirial CDFs, derived from network measurement of suÆient size, provide a perfetly validfoundation for traÆ generators. Furthermore, �nding analyti �ts of omplex random variablesthat do not math well-known statistial distributions is a daunting task.2.2.1 Web TraÆ ModelingModeling web traÆ has reeived substantial attention sine the sudden emergene ofthe World Wide Web in the mid-nineties. Arlitt and Williamson [AW95℄ proposed an earlymodel for generating web traÆ1, based on paket header traes olleted at the Universityof Saskathewan. The model was entered around the onept of a onversation, as proposedby C�aeres et al. [CDJM91℄. In this ase, a onversation was the set of onnetions observedbetween a web browser and a web server. These authors were the �rst to onsider questions1To be more spei�, Arlitt and Williamson proposed a model of \Mosai" traÆ. Mosai was the �rst webbrowser. 31



suh as the distribution of the number of bytes in requests and responses, the arrival rates ofonnetions, et. In general, the proposed model has parameters that are quite di�erent fromthose of later works. For example, an Erlang model of response sizes was used, whih is insharp ontrast to the heavy-tailness observed by other authors. While Arlitt and Williamsondid not provide any details on the statistial methods they employed, it is likely that the smallsample size (less than 10,000 TCP onnetions) made it diÆult to develop a more statistiallyrepresentative model.One of the major e�orts in the area of web traÆ modeling oriented toward traÆ generationtook plae at Boston University. Cunha et al. [CBC95℄ examined lient traes olleted byinstrumenting browsers at the Department of Computer Siene. Unlike the paket headertraes used in Arlitt and Williamson, lient traes inlude appliation information suh as theexat URL of eah web objet requested and downloaded in eah TCP onnetion. The authorsmade use of this information to study page and server popularity, whih are relevant for webahing studies. In addition, the authors proposed the use of powerlaws for onstruting aparametri model of web traÆ. They relied on the Pareto distribution for modeling the sizesof downloaded objets, and the parameterless Zipf's law for modeling the popularity of spei�pages. Crovella and Bestavros [CB96℄ used these �ndings to explain the long-range dependeneobserved in the paket arrivals of web traÆ. Their explanation was derived from earlier workby Willinger et al. [WTSW97℄, whih showed that the multiplexing of heavy-tailed ON/OFFsoures results in long-range dependent traÆ. Crovella and Bestavros demonstrated that theunderlying distributions of web objet sizes, the e�ets of ahing and user preferene in �letransferring, the e�et of user \think time", and the superimposition of many web transferspreisely reates the multiplexing proess hypothesized by Willinger et al.Crovella and Bestavros also showed that the explanation behind the suitability of powerlawsfor desribing the sizes of web objets is that the sizes of �les are well desribed by powerlaws.This re�ned previous studies of �le-system harateristis (e.g., [BHK+91℄), whih observedlong-tailed distributions of �le sizes (but did not propose powerlaw models).Powerlaw modeling has had a lasting impat on traÆ modeling, whih is natural given32



that the transfer of �les is one of the most ommon uses of many appliation protools. Count-less studies have on�rmed the usefulness of powerlaws for modeling appliation traÆ. Theeloquent term \mie and elephants" [GM01, MHCS02, EV03℄, often applied to Internet traÆ,preisely refers to the basi harateristi of powerlaws: a majority of values are small (mie)but the unommon large values (elephants) are so large that they aount for a large frationof the total value. For example, web traÆ usually shows around 90% of web objets below10 KB, but larger objets often aount for 90% of the total bytes. Researhers have usedthis general �nding of powerlaw sizes to develop a generi, and mostly ad ho, soure-levelmodel. TraÆ generated aording to this model onsists of a olletion of TCP onnetionsthat transfer a single �le, suh that the distribution of �le sizes follows a powerlaw. Researhersoften refer to this kind of syntheti traÆ as \mie-and-elephants-like" or \web-like" traÆ[MGT00, KHR02℄. This simple approah is rather onvenient for traÆ generation, but it ig-nores the more omplex patterns of onnetion usage (e.g., bidiretionality, quiet times, et.),and the di�erenes among appliations present in real Internet traÆ.It is important to note that reent work on the haraterization of web traÆ has improvedour understanding of powerlaw/heavy-tailed modeling. Downey revisited the modeling of �lesizes in [Dow01b℄ and of ow sizes in [Dow01a℄, suggesting that lognormal distributions aremore appropriate than powerlaws (or heavy-tailed distributions). The historial survey byMitzenmaher [Mit04℄ unovered similar ontroversies in other �elds, suh as eonomis andbiology. Hern�andez-Campos et al. demonstrated that lognormal distributions and powerlawso�er similar results in the regions of the distribution for whih enough samples are available,spei�ally in the body and in the \moderate" tail. Beyond these regions, in the \far" tail, thelak of samples makes it impossible to hoose between di�erent models. This is beause, for a�xed set of parameters and a �xed sample size equal to the original number of observations,some samplings of the lognormal and the powerlaw models math the original distribution, whileother samplings do not. Hern�andez-Campos et al. also proposed the use of a mixture model(i.e., a ombination of several lassial models), the double Pareto lognormal, whih enablesfar more aurate �ts than those ahieved with Pareto or lognormal models. The inherently
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more exible double Pareto lognormal model an apture the systemati deviations from simplermodels that are ommonly observed in the tails of the distributions of web objet sizes. Nuzmanet al. [NSSW02℄ modeled HTTP onnetion arrivals using the biPareto distribution, whihprovides a simpler but powerful alternative to mixture models. A Pareto distribution appearslinear in a log-log sale, while the biPareto distribution shows two linear regions and a smoothtransition between them. The biPareto distribution is therefore a generalization of the Paretodistribution.The modeling e�orts at Boston University ulminated with the development of the SURGEmodel of web traÆ [BC98℄. The SURGE model desribed the behavior of eah user as asequene of web page downloads and think times between them. Eah web page downloadonsisted of one or more web objets downloaded from the same server. Barford and Crovellaprovided parametri �ts for eah of the omponents of the SURGE model, heavily relying onpowerlaws and other long-tailed distributions. They also studied how SURGE traÆ stressedweb servers, and found SURGE's high burstiness far more demanding in terms of server CPUperformane than that of less elaborate web traÆ generators, suh as the ommerial Web-Stone.A model of web traÆ ontemporary to SURGE was also presented by Mah [Mah97℄. Itdesribed web traÆ using empirial CDFs, whih were derived from the analysis of paketheader traes. As in the ase of the SURGE model, the data ame from the population of usersin a omputer siene department. The two models were ompared by Hern�andez-Campos etal. [HCJS03℄, showing substantial onsisteny.The introdution of persistent onnetions in HTTP motivated further work on web traÆmodeling. Barford et al. studied the performane impliations of persistent onnetions [BC99℄,and modi�ed the SURGE model to inorporate persisteny [BBBC99℄. The analysis of persis-tent onnetions was also a major topi in Smith et al. [SHCJO01℄ and Hern�andez-Campos etal. [HCJS03℄. These studies were far larger in sope, fousing on the web traÆ of an entireuniversity rather than of a single department. These latter two works provided the startingpoint for the analysis method presented in this dissertation.34



Many experimental studies made use of syntheti traÆ generated aording to one of theaforementioned web traÆ models. For example, Christiansen et al. [CJOS00℄ made use of theMah model, while Le et al. [LAJS03℄ used the Smith et al. model. The popular NS-2 [BEF+00℄network simulator also supports web traÆ generation using models that are struturally similarto the SURGE model. This feature of NS was used in Joo et al. [JRF+99, JRF+01℄ to ompareweb traÆ and in�nite soures, and by Feldmann et al. [FGHW99℄ to study the impat ofdi�erent parameters of the web traÆ model on the burstiness of the generated traÆ. Anotherweb traÆ generator available in NS-2 was developed by Cao et al. [CCG+04℄. Unlike otherweb traÆ models, it was onnetion-oriented rather than user-oriented, and inluded non-soure-level harateristis, suh as paket sizes.An important e�ort in web traÆ analysis and generation was \Monkey See, Monkey Do"method, developed by Cheng et al. [CHC+04a℄. The method involved reording soure-leveland network-level harateristis for eah observed onnetion, and reproduing these hara-teristis using a syntheti workload generator. This idea is similar to the one developed in thisdissertation, although we takle the modeling and generation of entire traÆ mixes and notjust web traÆ. In addition, their measurement methods were optimized for monitoring traÆnear Google's web servers. The authors assumed independent short ows, data aquisition loseto well-provisioned web servers, and no ongestion in the lient-to-server diretion (whih wasplausible in the ontext of requests that were far smaller than responses).2.2.2 Non-Web TraÆ Soure-level ModelingTwo prominent soure-level modeling e�orts took plae before the invention of the WorldWide Web. Danzig and Jamin [DJ91℄ developed tplib, a olletion of soure-level desriptionsof traÆ. It inluded desriptions of the following appliations:� Telnet was desribed using three random variables: onnetion duration, paket inter-arrival time, and paket size. The initiator of the Telnet onnetion always sent one-bytepakets, while the aeptor responded with pakets mathing the paket size distribution.35



The authors laimed that rlogin onnetions were also well-desribed by this model.� File Transfer Protool (FTP) was desribed using three random variables: number ofitems transferred, item size (i.e., �le size), and paket size. The model only desribedFTP-DATA transations used to transfer a single �le or a diretory listing. It did notdesribe the FTP-Control onnetion that eah lient/server pair must use to manageeah FTP-DATA transation.� Simple Mail Transfer Protool (SMTP) was desribed using only one random variable:item size, whih inluded size of mail message and address veri�ation (i.e., ontrol)messages. Responses from the aeptor were onsidered negligible, and not modeled.� Network News Transfer Protool (NNTP) was desribed using two random variables:number of items transferred, and size of items (i.e., NNTP artiles). The bidiretionalnature of the protool and the use of ontrol messages was not part of the model.Tplib also inluded a model of phone onversations with two random variables, talk spurt du-ration and quiet time (i.e., pause) duration, borrowed from [Bra65℄. Eah random variable wasspei�ed using an empirial CDF. TraÆ generation involved using the inverse transformationmethod [Jai91℄ to sample eah empirial CDF independently.In general, the appliation models in tplib were rather simplisti, but they represented agiant step forward from the non-measurement-derived models of the early 90s. However, the useand apabilities of the modeled appliations has dramatially hanged sine the development oftplib. For example, the size of attahments in SMTP onnetions has dramatially inreaseddue to the widespread implementation of Multipurpose Internet Mail Extensions (MIME). Inaddition, newer appliations have beome prominent or replaed the ones in tplib. For example,the Telnet protool has been mostly replaed by the Seure Shell (SSH) protool. SSH is anenrypted protool, so it requires more bytes per message. It also supports port forwarding,wherein other appliations an ommuniate through SSH onnetions.
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Paxson [Pax94℄ studied the same four appliations as in tplib, developing parametri mod-els for eah of them. Paxson also disussed how appliation harateristis hange over timeand aross sites. This inherent variability motivated the use of parametri models, whih areneessarily approximations of the empirial data. This approximation is not worse than the vari-ability observed over time and aross sites, so the author argued that parametri models wereas aurate as empirial ones, but with the added bene�ts of being mathematially tratableand parsimonious. His analysis showed that bulk-transfer sizes were generally well-modeled bythe log-normal distribution. Another of his �ndings was that onnetion inter-arrivals (exeptthose of NNTP onnetions) were onsistent with non-homogeneous Poisson arrivals, with �xedhourly rates.The methodologial ontribution in Paxson's work is substantial. He demonstrated the dif-�ulty of providing statistially valid parametri models of the distributions assoiated withInternet traÆ. He onsistently observed parametri �ts that were learly adequate when ex-amined graphially, but that failed traditional goodness-of-�t tests. This was aused by themassive sample sizes, an endemi harateristis of traÆ measurement datasets. As an al-ternative to the statistial tests, Paxson proposed the use of a goodness-of-�t metri, whihprovides a quantitative assessment of the distane between the empirial data and the para-metri model. His proposed metri is however insensitive to deviations in the tails, astingdoubt on the approah due to the ubiquitous �nding of heavy-tailed phenomena in networktraÆ.Web traÆ quikly dominated most traÆ mixes after its emergene in 1995, and remainedthe most prominent traÆ type until �le-sharing appliations surpassed it in reent years. Thismotivated a large body of work on web traÆ haraterization, and little attention was paidto other traÆ. The models developed by Danzig, Jamin and Paxson, were not improved orupdated by other researhers.File-sharing appliations urrently rival or frequently surpass web traÆ in terms of traf-� volume. They also represent a harder modeling problem than web traÆ. The number of�le-sharing appliations is large and they use widely di�erent ommuniation strategies. Fur-37



thermore, the set of popular �le-sharing appliations is onstantly hanging. There is a growingbody of traÆ modeling literature fousing on �le-sharing appliations, but no traÆ gener-ator is yet available. Two prominent modeling studies were onduted at the University ofWashington. Sariou et al. [SGG02℄ studied Napster and Gnutella traÆ, and Gummadi etal. [GDS+03℄ studied Kazaa traÆ. Karagiannis et al. [KBBk03℄ examined a larger set of�le-sharing appliations in bakbone links.Modeling of multimedia traÆ has also reeived some attention. Variable bit-rate video wasstudied in Garret et al. and Knightly et al. [GW94, KZ97℄. Real Audio traÆ was studied byMena and Heidemann [MH00℄, providing a �rst soure-level view of streaming-media, mostlyon UDP ows.There are ommerial syntheti traÆ generation produts suh as Chariot [In℄ and IXIAbut these generators are typially based on a limited number of appliation soure types. More-over, it is not lear that any are based on empirial measurements of Internet traÆ.2.2.3 Beyond Single Appliation ModelingThe need for more representative traÆ generation has motivated researh on methods thatan takle the modeling of the entire suite of appliations using an Internet link. The workin this dissertation lies in this area. Our preliminary steps were an extension of the methodsused to model web traÆ in Smith et al. [SHCJO01℄ to model other appliations, as desribedin Hern�andez-Campos et al. [HCJS+01℄. The same kind of analysis of TCP header sequenenumbers, aknowledgment numbers and onnetion quiet times applied to web traÆ was usedto populate models of SMTP and NNTP traÆ. These models were derived from paket headertraes olleted at the University of North Carolina at Chapel Hill, and onsisted of empirialdistributions apturing di�erent soure-level harateristis of these protools, suh as objetsizes. Lan and Heidemann [LH02℄ onduted a related e�ort, reusing the same tehniques andsoftware tools for data aquisition. Their RAMP tool populated models of web and FTP traÆdiretly from paket header traes, and generate traÆ aordingly.38



Harpoon [SB04℄ also takled the same problem that is the fous of this dissertation. Theyonsidered the problem of analyzing entire traÆ mixes and generating traÆ aordingly. Theirmeasurement methods were far less elaborate. Rather than the detailed models of the ADUexhange in TCP onnetions used in our work, Harpoon foused on modeling ows. Flows arede�ned as sets of pakets with the same soure and the same destination. As a onsequene,Harpoon modeled eah TCP onnetion as two unidiretional ows. Another di�erene withour approah is that Harpoon did not inorporate the notion of bidiretional data exhange,neither sequential nor onurrent, essentially treating multiple ADUs (as de�ned in the a-b-tmodel) as a single ADU. Idle times within onnetions were not part of the Harpoon traÆmodel either. In addition, any measured ow (i.e., one side of a onnetion) with only a smallamount of data or with only aknowledgment pakets was not used for traÆ generation. Thissubstantially simpli�ed the modeling, but it eliminated the rih paket-level dynamis observedin TCP onnetions, and demonstrated in later hapters of this dissertation. In addition tothis, network-level parameters were not part of the data aquisition, so round-trip times andmaximum reeiver window sizes were arbitrarily hosen. Harpoon ould also generate UDPtraÆ. The underlying model was to send pakets at a onstant bit rate, with either �xed orexponentially distributed interval arrivals. These models were not populated frommeasurement.Another novel feature of Harpoon was the ability to generate traÆ that reprodued IP addressstruture aording to a measured distribution of address frequeny. Their study inluded aomparison between Harpoon's losed-loop traÆ and traÆ from a ommerial (open-loop)paket-level traÆ generator, demonstrating substantial di�erenes. For example, losed-loopsoures were shown to bak o� as ongestion inreases, while open-loop soure did not. Like thework in this dissertation and Lan and Heidemann, Harpoon provided an automated method toaquire data and use it to generate traÆ, whih Sommers and Barford eloquently alled \self-tuning" traÆ generation. We ould say that there is a growing onsensus in the �eld of traÆgeneration regarding the need to develop tools that ombine measurement and generation totakle the wide variability over time and aross links found in real Internet traÆ.
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2.3 Saling O�ered LoadOne of the key requirements of traÆ generation is the ability to sale the o�ered load ,i.e., to generate a wide range of link loads with the same model of appliation behavior. Thismakes it possible to evaluate the performane of a network mehanism under various loads,whih translates into di�erent degrees of ongestion, while preserving the same appliationmix. For example, the evaluation of AQM mehanism in [CJOS00, LAJS03℄ ompared theperformane of FIFO to RED and other AQM mehanisms for loads between 50% to 110%of a link's apaity where the queuing mehanism was used. In these studies, the authorspreeded their study by a set of alibration experiments. These experiments were used toderive an expression for the linear dependeny between the number of (web) user equivalentsand the average o�ered load, whih enabled the researhers to systematially sale o�ered loadsin their evaluation experiments. Calibration is generally appliable to any appliation-levelmodel. When alibrating, the researhers try to relate one or more parameters of the modeland the average o�ered load to obtain a alibration funtion. Deriving a alibration funtionis a time-onsuming proess, sine an entire olletion of experiments must be run to orrelateo�ered load and model parameters with on�dene.Kamath et al. [KLH+02℄ studied load saling methods, but they onentrated only onsaling up the o�ered load. Their intention was to ondut experiments with muh higher o�eredloads than those observed during measurement. In partiular, they onsidered the problem ofgenerating traÆ for loading a 1 Gbps link using only measurements from a 10 Mbps link, an11-hour paket header trae. The authors onsidered three di�erent tehniques. The �rst twotehniques involved a transformation of the original trae into a saled-up version, and then apaket-level replay. The �rst transformation tehnique was paket arrival saling, whih salesup the load by multiplying the arrival time of eah paket in the original trae by a onstantfator between 0 and 1 (i.e.,,shrinking paket inter-arrivals). In their study, they used a salingfator of 0.001. The seond transformation tehnique is trae merging, whih sales up load bymerging, i.e., superimposing, the paket arrivals from more than one trae. They divided the11-hour trae into 100 subtraes and then ombined them to form a shorter, higher-throughput40



trae. The third tehnique is strutural modeling whih meant to develop a web traÆ modelfrom the original trae using the methods in Smith et al. [SHCJO01℄. The authors did notdisuss how the load reated by this strutural model was inreased. Their analysis ompared anumber of distributions from the generated traes to those from the original trae. Paket arrivalsaling was shown to ompletely distort ow durations and destination address diversity. Traemerging reprodued ow and paket arrival properties aurately, but it distorted destinationaddress harateristis (studied using the number of unique addresses observed per unit of time).Web traÆ generation was aurate, but it showed far less omplex distributions of onnetionbytes, paket sizes, and onnetion durations. This is beause a strutural model based only onweb traÆ laks the diversity of appliation behavior, and therefore ommuniation patterns,in the original trae, whih inluded traÆ from many di�erent appliations and not just webtraÆ.2.4 Implementing TraÆ GenerationSoure-level traÆ generators for network testbeds (rather than for software simulators)are usually implemented using user-level programs that make use of the soket interfae togenerate traÆ. This is the ase for tplib [DJ91℄, httperf [MJ98℄, SURGE [BC98℄, and otherweb traÆ generators [BD99, CJOS00℄. In order to introdue network-level parameters in test-bed experiments, suh as a realisti distribution of round-trip times, it is neessary to rely on alayer of simulation either in the end hosts or somewhere in the path of the traÆ. For example,Rizzo's dummynet [Riz97℄ makes it possible to apply arbitrary delays, loss rates and bandwidthonstraints on the end systems to spei� network ows or olletions of network ows (thatshare a network pre�x). The implementation ombines event-driven simulation and paketqueuing, and sits between the IP and link layers. Dummynet is part of the standard distributionof the FreeBSD operating system. The experiments in this dissertation were performed usingan extended version of dummynet that an be ontrolled from the appliation layer2.2This is also possible in the original implementation, using one �rewall rule for eah ow, but it does not saleto the hundreds of simultaneous ows in our experiments.41



Kamath et al. [KLH+02℄ argue that soure-level traÆ generation is muh more demandingin terms of CPU and memory proessing than paket-level replay. While it is indeed truethat far more CPU time is needed to simulate endpoint behavior and use network staks,memory requirements are atually far more stringent for paket-level replay. This is beausepaket header traes are muh longer than their soure-level representations. For example, theapproah in this dissertation onsiders the replay of soure-level traes that are roughly 100times smaller than the paket header traes from whih they were derived.2.5 SummaryOur review of related work has foused on the existing literature in network traÆ gen-eration, inluding works relevant for data aquisition and traÆ modeling. Charaterizingnetwork traÆ at the paket level provides important insights, suh as the �nding of pervasiveself-similarity by Willinger et al. [WTSW97℄. However, this approah does not provide theproper foundation for generating traÆ for most experimental studies. As argued by Floyd andPaxson [PF95℄, paket-level traÆ generation breaks the end-to-end feedbak loop in adaptivenetwork protools, suh as TCP, resulting in traÆ that does not reat to the experimental on-ditions realistially. On the ontrary, soure-level models enable losed-loop traÆ generation,so they are appliable to a wider range of situations.In the past, soure-level traÆ generation has been assoiated with models of appliationbehavior. Our overview of the state-of-the-art disussed several highly inuential works devotedto appliation-level modeling. C�aeres et al. [CDJM91℄ introdued empirial appliation modelsto networking researh. Paxson [Pax94℄ proposed the use of more statistially rigorous methodsfor developing parametri soure-level models. Crovella et al. [CB96℄ developed a rih modelof web traÆ, and explained self-similarity in terms of soure-level harateristis.Appliation-level modeling has some important shortomings that provide the motivationfor this dissertation. Internet traÆ mixes are reated by a large number of distint appliations,so single appliation models are not representative of real traÆ. Furthermore, the omposition42



of traÆ mixes is onstantly hanging, and even individual appliations often evolve, modifyingthe way in whih they interat with the network. As a onsequene, the number of high-quality appliation-level models is small (and insuÆient), and these models are hardly everupdated. In this dissertation, we propose a more salable approah to soure-level modeling,where appliation behavior is desribed in a generi, but still detailed, manner. Furthermore,our data aquisition methods are eÆient and mostly automated, dramatially reduing thetime to go from measurement to traÆ generation.Our ombination of data aquisition and traÆ generation is most losely related to twoontemporary works. Sommers and Barford [SB04℄ developed the Harpoon approah for gen-erating traÆ mixes whose harateristis are derived from measurements in an algorithmimanner. Their approah did not inlude any detailed soure-level modeling of TCP onne-tions. They desribed a onnetion simply as a unidiretional �le transfer whose size is equalto the total amount of payload in its pakets. In ontrast, our primary emphasis is on detailedsoure-level modeling, where we introdue the a-b-t model and unover the dihotomy betweensequential and onurrent data exhange. Harpoon made use of simpli�ed network-level pa-rameters, whih are set to arbitrary onstants. In our approah, network-level parameters arearefully measured and inorporated into the traÆ generation. The work by Sommers andBarford onsidered two issues that are not addressed in our own work. First, they proposed amethod for generating UDP traÆ. The underlying soure-level model is however not derivedfrom measurement. Seond, they reprodued the IP address distribution in the replayed trae.This annot be performed with publily available traes, like ours, sine they are anonymized.Another work similar to ours is Cheng et al. [CHC+04a℄. The authors presented a methodfor haraterizing paket header traes of web traÆ and aurately replaying them. GeneratedtraÆ was evaluated by omparing the original trae with its syntheti version generated in atestbed. We takle the same soure-level trae replay problem but applied to every appliationrather than only to web traÆ. Our approah is more ambitious and neessarily more abstrat.Our work also onsiders the ommon problems of resampling and saling traÆ load innetworking experiments. In general, saling o�ered load has been performed by onduting43



a preliminary experimental study to relate the parameters of the soure-level model and theo�ered load. For example, Christiansen et al. [CJOS00℄ omputed a alibration funtionthat desribed o�ered load as a funtion of the number of user equivalents employed in webtraÆ generation. We propose an alternative approah that eliminates the need for preliminaryalibration studies.
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CHAPTER 3Abstrat Soure-level Modelingmodel: (11a) a desription or analogy used to help visualize something (as anatom) that annot be diretly observed.| Merrian{Webster English DitionaryAnything that has real and lasting value is always a gift from within.| Franz Kafka (1883{1924)Abstrat soure-level modeling provides a method to desribe the workload of a TCP on-netion at the soure level in a manner than is not tied to the spei�s of individual appliations.The starting point of this method is the observation that at the transport level, a TCP endpointis doing nothing more than sending and reeiving data. Eah appliation (i.e., web browsing,�le sharing, et.) employs its own set of data units for arrying appliation-level ontrol mes-sages, �les, and other information. The atual meaning of the data is irrelevant to TCP, whihis only responsible for delivering data in a reliable, ordered, and ongestion-responsive manner.As a onsequene, we an desribe the workload of TCP in terms of the demands by upperlayers of the protool stak for sending and reeiving Appliation Data Units (ADUs). Thisworkload haraterization aptures only the sizes of the units of data that TCP is responsiblefor delivering, and abstrats away the details of eah appliation (e.g., the meaning of its ADUs,the size of the soket reads and writes, et.). The approah makes it feasible to model the entirerange of TCP workloads, and not just those that derive from a few well-understood applia-tions as is the ase today. This provides a way to overome the inherent salability problem ofappliation-level modeling.



While the work of a TCP endpoint is to send and reeive data units, its lifetime is notonly ditated by the time these operations take, but also by quiet times in whih the TCPonnetion remains idle, waiting for upper layers to make new demands. TCP is only a�etedby the duration of these periods of inativity and not by the ause of these quiet times, whihdepends on the dynamis of eah appliation (e.g., waiting for user input, proessing a �le, et.).Longer lifetimes have an important impat, sine the endpoint resoures needed to handle TCPstate must remain reserved for a longer period of time1. Furthermore, the window mehanismin TCP tends to aggregate the data of those ADUs that are sent within a short period of time,reduing the number of segments that have to travel from soure to destination. This is onlypossible when TCP reeives a number of bak-to-bak requests to send data. If these requestsare separated by signi�ant quiet times, no aggregation ours and the data is sent using atleast as many segments as ADUs.We have formalized these ideas into the a-b-t model , whih desribes TCP onnetions assets of ADU exhanges and quiet times. The term a-b-t is desriptive of the basi buildingbloks of this model: a-type ADUs (a's), whih are sent from the onnetion initiator to theonnetion aeptor, b-type ADUs (b's), whih ow in the opposite diretion, and quiet times(t's), during whih no data segments are exhanged. We will make use of these terms to desribethe soure-level behavior of TCP onnetions throughout this dissertation. The a-b-t modelhas two di�erent avors depending on whether ADU interleaving is sequential or onurrent.The sequential a-b-t model is used for modeling onnetions in whih only one ADU is beingsent from one endpoint to the other at any given point in time. This means that the twoendpoints engage in an orderly onversation in whih one endpoint will not send a new ADUuntil it has ompletely reeived the previous ADU from the other endpoint. On the ontrary,the onurrent a-b-t model is used for modeling onnetions in whih both endpoints send andreeive ADUs simultaneously.The a-b-t model not only provides a reasonable desription of the workload of TCP at thesoure-level, but it is also simple enough to be populated from measurement. Control data1Similarly, if resoures are alloated along the onnetion's path, they must be ommitted for a longer period.46



ontained in TCP headers provide enough information to determine the number and sizes ofthe ADUs in a TCP onnetion and the durations of the quiet times between these ADUs. Thismakes it possible to onvert an arbitrary trae of segment headers into a set of a-b-t onnetionvetors, in whih eah vetor desribes one of the TCP onnetions in the trae. As long asthis proess is aurate, this approah provides realisti haraterizations of TCP workloads,in the sense that they an be empirially derived from measurements of real Internet links.In this hapter, we desribe the a-b-t model and its two avors in detail. For eah avor,we �rst disuss a number of sample onnetions that illustrate the power of the a-b-t modelto desribe TCP onnetions driven by di�erent appliations, and point out some limitationsof this approah. We then present a set of tehniques for analyzing segment headers in orderto onstrut a-b-t onnetion vetors and provide a validation of these tehniques using traesfrom syntheti appliations. We �nally examine the harateristis of a set of real traes fromthe point of view of the a-b-t model, providing a soure-level view of the workload of TCP.3.1 The Sequential a-b-t Model3.1.1 Client/Server AppliationsThe a-b-t onnetion vetor of a sequential TCP onnetion is a sequene of one or moreepohs. Eah epoh desribes the properties of a pair of ADUs exhanged between the twoendpoints. The onept of an epoh arises from the lient/server struture of many distributedsystems, in whih one endpoint ats as a lient and the other one as a server. The lient sendsa request for some servie (e.g., performing a omputation, retrieving some data, et.) that isfollowed by a response from the server (e.g., the results of the requested ation, a status ode,et.). An epoh represents our abstrat haraterization of a request/response exhange. Anepoh is haraterized by the size a of the request and the size b of the response.The HTTP that underlines the World-Wide Web provides a good example of the kinds ofTCP workloads reated by lient/server appliations. Figure 1 shows a simple a-b-t diagram47



that represents a TCP onnetion between a web browser and a web server, whih ommuniateusing the HTTP 1.0 appliation-layer protool [BLFF96℄. In this example, the web browser(lient side) initiates a TCP onnetion to a web server (server side) and sends a request for anobjet (e.g., HTML soure ode, an image, et.) spei�ed using a Universal Resoure Loator(URL). This request onstitutes an ADU of size 341 bytes. The server then responds by sendingthe requested objet in an ADU of size 2,555 bytes. The representation in the �gure aptures:� the sequential order of the ADUs within the TCP onnetion (�rst the HTTP requestthen the HTTP response { in this ase, order also implies \ausality"),� the diretion in whih the ADUs ow (above the time line for the ADU sent from theonnetion initiator to the onnetion aeptor; below the time line for the ADU sentfrom the onnetion aeptor to the onnetion initiator), and� the sizes of the ADUs (using annotations and the lengths of the retangles, whih areproportional to the number of bytes).The diagram provides a visualization in the spirit of abstrat soure-level modeling, sine it doesnot inorporate any spei� information about the atual ontents of the ADUs. The bytes inthe �rst ADU (HTTP request) represent an HTTP header that inludes a URL, and the bytesin the seond ADU (HTTP response) represent an HTTP header (with a suess ode of 200OK) followed by the requested objet (e.g., HTML soure ode). In this example, the purposeof this partiular onnetion was well-understood, and that allowed us to assign labels to theADUs (HTTP request and response) and to the TCP endpoints (web browser and server). Ingeneral, when we examine how the ADUs ow in an arbitrary TCP onnetion, we do not havethis appliation-spei� information (or we an only guess it). The same diagram (without the���������	
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Figure 3.1: An a-b-t diagram representing a typial ADU exhange in HTTP version 1.0.48
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Figure 3.2: An a-b-t diagram illustrating a persistent HTTP onnetion.HTTP-spei� labels) ould be used to represent di�erent onnetions with ompletely di�erentpayloads in ADUs of the same size. The diagram does not inlude any network-level informationeither, so this diagram ould also represent onnetions with very di�erent maximum segmentsizes, round-trip times, and other network properties below the appliation level. Note thatthis example, and the following ones, ame from real onnetions that were atually observed.In some ases, we had aess to the atual segment payloads and used them to add annotationsto the ADUs. In other ases, we used port numbers and our understanding of the protools toadd these annotations.Some lient/server appliations use a new onnetion for eah request/response exhange,while other appliations reuse a onnetion for more than one exhange, reating onnetionswith more than one epoh. As long as the appliation has enough data to send, multi-epohonnetions an improve performane substantially, by avoiding the onnetion establishmentdelay and TCP's slow start phase. For example, HTTP was revised to support more than onerequest/response exhange in the same \persistent" TCP onnetion [FGM+97℄. Figure 3.2illustrates this type of interation. This is a onnetion between a web browser and a webserver, in whih the browser �rst requests the soure ode of an HTML page, and reeives itfrom the web server, just like in Figure 3.1. However, the use of persistent HTTP makes itpossible for the browser to send another request using the same onnetion. Unlike the examplein Figure 3.1, this persistent onnetion remains open after the �rst objet is downloaded, sothe browser an send another request without �rst losing the onnetion and reopening a newone. In Figure 3.2 the web browser sends three ADUs that speify three di�erent URLs, and49



the server responds with three ADUs. Eah ADU ontains an HTTP header that preedes theatual requested objet. If the requested objet is not available, the ADU may only ontainthe HTTP header with an error ode. Note that the diagram has been annotated with extraappliation-level information showing that the �rst two epohs were the result of requestingobjets from the same doument (i.e., same web page), and the last epoh was the result ofrequesting a di�erent doument.The diagram in Figure 3.2 inludes two time gaps between epohs (represented with dashedlines). In both ases, these are quiet times in the interation between the two endpoints. Weall the time between the end of one epoh and the beginning of the next, the inter-epoh quiettime. The �rst quiet time in the a-b-t diagram represents proessing time in the web browser,whih parsed the web page it reeived, retrieved some objets from the loal ahe, and thenmade another request for an objet in the same doument (that was not in the loal ahe).Beause of its longer duration, the seond quiet time is most likely due to the time taken bythe user to read the web page, and lik on one of the links, starting another page downloadfrom the same web server.As will be disussed in Setion 3.3, it is diÆult to distinguish quiet times aused by ap-pliation dynamis, whih are relevant for a soure-level model, and those due to networkperformane and harateristis, whih should not be part of a soure-level model (beausethey are not aused by the behavior of the appliation). The basi heuristi employed to dis-tinguish between these two ases is the observation that the sale of network events is hardlyever above a few hundred milliseonds2. Going bak to the example in Figure 3.2, the onlyquiet time that ould be safely assumed to be due to the appliation (in this ase, due to theuser) is the one between the seond and third epohs. The 120 milliseonds quiet time betweenthe �rst and seond epohs ould easily be due to network e�ets (suh as having the sendingof the seond request delayed by Nagle's algorithm [Nag84℄), and therefore should not be partof the soure-level behavior. Similarly, the two a-b-t diagrams shown so far have not depited2Some infrequent events, suh as routing hanges due to link failures, an last several seonds. We generallymodel large numbers of TCP onnetions, so the few oasions in whih we onfuse appliation quiet times withlong network quiet times have no measurable statistial impat when generating network traÆ.50



any time between the request and the response inside the same epoh. In general, web serversproess requests so quikly that there is no need to inorporate intra-epoh quiet times in amodel of the workload of a TCP onnetion. While this is by far the most ommon ase, someappliations do have long intra-epoh quiet times, and the a-b-t model an inlude these.Formally, a sequential a-b-t onnetion vetor has the form Ci = (e1; e2; : : : ; en) with n � 1epoh tuples. An epoh tuple has the form ej = (aj ; taj; bj ; tbj) where� aj is the size of the jth ADU sent from the onnetion initiator to the onnetion aeptor.aj will also be used to name the jth ADU sent from the initiator to the aeptor.� bj is the size of the jth ADU sent in the opposite diretion (and generally in response tothe request made by aj).� taj is the duration of the quiet time between the arrival of the last segment of aj and thedeparture of the �rst segment of bj . taj is de�ned from the point of view of the aeptor(often the server), but ultimately our estimate of the duration is based on the arrivaltimes of segments at some monitoring point.� tbj is either the duration of the quiet time between bj and aj+1 (for onnetions with atleast j + 1 epohs), or the quiet time between the last data segment (i.e., last segmentwith a payload) in the onnetion and the �rst ontrol segment used to terminate theonnetion.Note that taj is a quiet time as seen from the aeptor side, while tbj is a quiet time as seenfrom the initiator side. The idea of these de�nitions is to apture the network-independentomponent of quiet times, without being onerned with the spei� measurement method. Ina persistent HTTP onnetion, a's would usually be assoiated to HTTP requests, b's to HTTPresponses, ta's to proessing times on the web server, and tb's to browser proessing times anduser think times. We an say that a quiet time taj is \aused" by an ADU aj , and that a quiettime tbj is aused by an ADU bj. Both time omponents are de�ned as quiet times observedat one of the endpoints, and not at some point in the middle of the network where the paket51



header traing takes plae.As mentioned in the introdution, the name of the model omes from the three variablenames used in this model, whih are used to apture the essential soure-level properties: datain the \a" diretion, data in the \b" diretion, and time \t" (non-diretional, but assoiatedwith the proessing of the preeding ADU, as disussed in Setion 3.1.1). Using the notation ofthe a-b-t model, we an suintly desribe the HTTP onnetion in Figure 3.1 as a single-epohonnetion vetor of the form ((341; 0; 2555; 0))where the �rst ADU, a1, has a size of 341 bytes, and the seond ADU, b1, has a size of 2,555bytes. In this example the time between the transmission of the two data units and the timebetween the end of b1 and onnetion termination are onsidered too small to be inluded inthe soure level representation, so they are set to 0. Similarly, we an represent the persistentHTTP onnetion shown in Figure 3.2 as((329; 0; 403; 0:12); (403; 0; 25821; 3:12); (356; 0; 1198; 15:3))where quiet times are given in seonds. Notie that tb3 is not zero for this onnetion, but alarge number of seonds (in fat, probably larger than the duration of the rest of the ativityin the onnetion!). Persistent onnetions are often left open in ase the lient deides to senda new HTTP request reusing the same TCP onnetion3. As we will show in Setion 3.5, thisseparation is frequent enough to justify inorporating it in the model. Gaps between onnetionestablishment and the sending of a1 are almost nonexistent.As another example, the Simple Mail Transfer Protool (SMTP) onnetion in Figure 3.3illustrates a sample sequene of data units exhanged by two SMTP servers. The �rst server(labeled \sender") previously reeived an email from an email lient, and uses the TCP on-netion in the diagram to ontat the destination SMTP server (i.e., the server for the domain3In general, persistent HTTP onnetions are losed by web servers after a maximum number of re-quest/response exhanges (epohs) is reahed or a maximum quiet time threshold is exeeded. By default,Apahe, the most popular web server, limits the number of epohs to 5 and the maximum quiet time to 15seonds. 52
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�&	����������! ''�''�����!Figure 3.3: An a-b-t diagram illustrating an SMTP onnetion.of the destination email address). In this example, most data units are small and orrespondto appliation-level (SMTP) ontrol messages (e.g., the host info message, the initial HELOmessage, et.) rather than appliation objets. The atual email message of 22,568 bytes wasarried in ADU a6. The a-b-t onnetion vetor for this onnetion is((0; 0; 93; 0); (32; 0; 191; 0); (77; 0; 59; 0); (75; 0; 38; 0); (6; 0; 50; 0); (22568; 0; 44; 0)):Note that this TCP onnetion illustrates a variation of the lient/server design in whih theserver sends a �rst ADU identifying itself without any prior request from the lient. Thispattern of exhange is spei�ed by the SMTP protool wherein servers identify themselves tolients right after onnetion establishment. Sine b1 is not preeded by any ADU sent fromthe onnetion initiator to the onnetion aeptor, the vetor has a1 = 0 (we sometimes referto this phenomenon as a \half-epoh").This last example illustrates an important harateristi of TCP workloads that is oftenignored in traÆ generation experiments. TCP onnetions do not simply arry �les (andrequests for �les), but are often driven by more ompliated interations that impat TCPperformane. An epoh where aj > 0 and bj > 0 requires at least one segment to arry ajfrom the onnetion initiator to the aeptor, and at least another segment to arry bj in theopposite diretion. The minimum duration of an epoh is therefore one round-trip time (whihis preisely de�ned as the time to send a segment from the initiator to the aeptor plus thetime to send a segment from the aeptor bak to the initiator). This means that the number ofepohs imposes a minimum duration and a minimum number of segments for a TCP onnetion.The onnetion in Figure 3.3 needs 4 round-trip times to omplete the \negotiation" that oursduring epohs 2 to 5, even if the ADUs involved are rather small. The atual email message in53



��������������	�
��	������	�	 ���������������
����	�
��	 
	������������ ����������������������� !"#$��%&'�����%���()*+, -./0�����������������	�������	���������	�$(� �1��1���2�3	�4����������������3�5�)�/67+89: !;0��2��2������� <=��1�����<=��1���������������)�/6*+, -./ !;0
	������ !"#�1��1� �������������������� !"#>?''?��)*+, -./0 �@
�� !A#1<�1<� �B��B���������?C�������)*+, -./0 ����D4������������E&&���
������ 1��1�������������%&�

3	�4�EF&��E55?���B��B� 1��1��EF&��E55?����$�E�
3	�4�EF&����������� ������EF&&��������$�E�

��������������	�
��	������	�	 ���������������
����	�
��	������ 1��1�������������%&��������� �������1�?G��� !"# )*+, -./0<�������<������� �������1�5?���(?GH��	������ ��������1($�$)I/*!/+�0JKLMNOPN

Figure 3.4: Three a-b-t diagrams representing three di�erent types of NNTP interations.ADU b6 is transferred in only 2 round-trip times. This is beause b6 �ts in 16 segments4, and itis sent during TCP's slow start. Thus the �rst round-trip time is used to send 6 segments, andthe seond round-trip time is used to send the remaining 10 segments. The duration of thisonnetion is therefore dominated by the ontrol messages, and not by the size of the email. Inpartiular, this is true despite the fat that the email message is muh larger than the ombinedsize of the ontrol messages. If the appliation protool (i.e., SMTP) were modi�ed to somehowarry ontrol messages and the email ontent in ADU a2, then the entire onnetion would lastonly 4 round-trip times instead of 6, and would require fewer segments. In our experiene, itis ommon to �nd onnetions in whih the number of ontrol messages is orders of magnitudelarger than the number of ADUs from �les or other dynamially-generated ontent. Clearly,epoh struture has an impat on the performane (more preisely, on the duration) of TCPonnetions and should therefore be modeled aurately.Appliation protools an be rather ompliated, supporting a wide range of interationsbetween the two endpoints. Most of them assume a lient/server model of interation and4This assumes the standard maximum segment size, 1,460 bytes, and a maximum reeiver window of at least10 full size segments. A large fration of TCP onnetions observed on real networks satisfy these assumptions.54



hene an be ast into the sequential a-b-t model. For example, Figure 3.4 shows three types ofinterations that are supported by the Network News Transfer Protool (NNTP) [KL86, Bar00℄.The �rst a-b-t diagram exhibits the straightforward behavior of an NNTP reader (i.e., a lientfor reading newsgroup postings) posting a new artile. The two endpoints exhange a fewontrol messages in the �rst three epohs, and then the lient uploads the ontent of the artilein ADU a4.The seond onnetion shows an NNTP reader using a TCP onnetion to �rst hek whetherthe server knows about any new artiles in two newsgroups (un.support and un.test). Afterthat, the reader requests an overview of those messages (using XOVER). The server replieswith the subjets of the new artiles and some other information. Finally, after a 5.02 seondsof inativity, the reader requests the ontent of one of the new artiles. This relatively longtime suggests that the user of the NNTP reader waited some time before atually requestingthe reader to display the ontent of a new artile.The way NNTP servers interat is illustrated in the third onnetion. One of the peerswill ask the other about new newsgroups and artiles. This typially involves hundreds or eventhousands of ADUs sent in eah diretion. The onnetion shown here has only a small subsetof the ADUs observed in one of these onnetions between NNTP peers. Here the initiator peerasked for new groups �rst, and then for new artiles. One artile was sent from the initiator tothe aeptor, and another one in the opposite diretion.These examples provide a good illustration of the omplexity of modeling appliations oneby one, and they provide further evidene supporting the laim that our abstrat soure-levelmodel is widely appliable. In general, the use of a multi-epoh model is essential to auratelydesribe how appliations drive TCP onnetions.Inorporating Quiet Times into Soure-Level ModelingUnlike ADUs, whih ow from the initiator to the aeptor or vie versa, quiet times arenot assoiated with any partiular diretion of a TCP onnetion. However, we have hosen55



to use two types of quiet times in our sequential a-b-t model. This hoie is motivated by theintended meaning of quiet time, and by the di�erene between the duration of the quiet timesobserved at di�erent points in the onnetion's path. When we were developing the model, weinitially onsidered quiet times independent of the endpoint ausing them. They were simply\onnetion quiet times". In pratie, quiet times in sequential onnetions are assoiated withsoure-level behavior in only one of the endpoints. For example, a \user think time" in anHTTP onnetion is assoiated with a quiet time on the initiator side (whih is waiting forthe user ation), while a server proessing delay in a Telnet onnetion is assoiated with theaeptor side (whih is waiting for a result). In every ase, one endpoint is quiet for some periodbefore sending new data, and the other endpoint remains quiet, waiting for these new data toarrive. Having two types of quiet times, ta and tb, makes it possible to annotate the side of theonnetion that is the soure of the quiet time.The seond reason for the use of two types of quiet times is that the duration of the quiettime depends on the point at whih the quiet time is measured. The endpoint that is not thesoure of the quiet time will observe a quiet time that depends on the network and not only onthe soure-level behavior of the other endpoint. This is beause the new ADU whih de�nesthe end of the quiet time needs some time to reah its destination. In the example in Figure3.2, the quiet time between a1 and b1 observed by the server endpoint is very small (only thetime needed to retrieve the requested URL). However, this quiet time is longer when observedby the lient, sine it is the time between the last soket write of a1 and the �rst soket readof b1. It inludes the server proessing time, and at least one full round-trip time. Ideally, wewould like to measure this quiet time ta1 on the server side, in order to haraterize soure-levelbehavior in a ompletely network-independent manner. Similarly, we would like to measuretb1 on the lient side. In summary, soure-level quiet times are non-diretional, in the sensethat they do not travel in one diretion or the other, but they are assoiated with one of theendpoints, whih is the soure of the quiet time.
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Figure 3.5: An a-b-t diagram illustrating a server push from a webam using a persistentHTTP onnetion.3.1.2 Beyond Client/Server AppliationsNot all appliations follow the strit pattern of requests and responses that harater-izes traditional lient/server appliations. For example, HTTP is ommonly used for serverpush operations5, in whih the server periodially refreshes the state of the lient withoutany prior request. Figure 3.5 illustrates this behavior using a TCP onnetion where a webbrowser �rst requests a webam URL (UNC's \Pitam" in this example), and the web serverresponds with a sequene of image frames separated by small quiet times. The browser ren-ders eah frame as soon as it is reeived, reating a ontinuous movie. Eah frame an beonsidered an individual ADU, so this onnetion does not follow the basi request/responsesequene of previous examples. The notation provided by the sequential a-b-t model an stillbe used to represent this soure-level behavior using the onnetion vetor (e1; e2; e3; e4; e5)where e1 = (392; 0:041; 97939; 0); e2 = (0; 0:057; 97942; 0); e3 = (0; 0:035; 97820; 0); e4 =(0; 0:054; 97820; 0); and e5 = (0; 0:037; 98019; 0): While this onnetion has no natural epohsin the request/response sense, we an desribe the onnetion by assigning eah frame to a sep-arate bj, and eah quiet time between frames to a taj (sine the onnetion vetor is intendedto apture a quiet time on the server side).The same type of server push behavior is found in streaming appliations. A TCP onne-tion arrying Ieast traÆ (from ibiblio.org) is shown in Figure 3.6. Ieast is a popular5HTTP server push is implemented using a speial ontent type, x-mixed-replae, whih makes the browserexpet a response objet that is omposed of other objets (separated by a on�gurable boundary string). Sineno limit is imposed on the number of objets in this omposite, webam movies are usually implemented asa simple sequene of JPEG images that the web browser reads and renders ontinuously until the user movesto another page. This type of web servie should not be onfused with HTML's automati page refresh tag,whih is ommonly used for slow rate webams (e.g., one image every 30 seonds). In this ase, the browserrefreshes the urrent page by downloading again the urrent page and hene the interation follows the regularrequest/response pattern. 57
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csttounvst*wxhy}~n~| csttounvst&wxhy}~n~|Figure 3.7: Three a-b-t diagrams of onnetions taking part in the interation between anFTP lient and an FTP server.audio streaming appliation that follows the same pattern of ADUs disussed in the previousparagraph, and an be desribed using the same type of onnetion vetor. Eah bj is assoiatedto an MPEG audio frame. Note that the sizes of the ADUs and the durations of the quiet timesbetween them are highly variable, unlike the example in Figure 3.5. Perhaps surprisingly, TCPis widely used for arrying streaming traÆ today, despite its inability to perform the typialtrade-o� between loss reovery and delay in multimedia appliations. Streaming over TCP hastwo signi�ant bene�ts:� Streaming traÆ an use TCP port numbers assoiated with web traÆ and thereforeoverome �rewalls that blok other port numbers. This is important for web sites thatdeliver web pages and multimedia streams, sine it guarantees that the user will be ableto download the multimedia ontent.� Most lients experiene suh low loss rates, that TCP's loss reovery mehanisms have aninsigni�ant impat on the timing of the stream. The ommon use of stream bu�eringprior to the beginning of the playbak further redues the impat of loss reovery.The interation between the two endpoints of a lient/server appliation does not generally58



require more than one TCP onnetion to be opened between the two endpoints. As we haveseen, some appliations use a new onnetion for eah request/response exhange, while othersmake use of multi-epoh onnetions (e.g., persistent onnetions in HTTP/1.1). Handlingmore than one TCP onnetion an have some performane bene�ts, but it does ompliatethe implementation of the appliations (e.g., it may require using onurrent programmingtehniques). However, some appliations do interat using several TCP onnetions and thisreates interdependenies between ADUs. For example, Figure 3.7 illustrates an FTP session6between an FTP lient program and FTP server in whih three onnetions are used. Theonnetion in the top row is the \FTP ontrol" onnetion used by the lient to �rst identifyitself (with username and password), then list the ontents of a diretory, and then retrievea large �le. The atual diretory listing and the �le are reeived using separate \FTP data"onnetions (established by the lient) with a single ADU b1. The �gure illustrates how thestart of the data onnetions depends on the use of some ADUs in the ontrol onnetion (i.e.,the diretory listing LIST does not our until after the RETR ADUs has been reeived), andhow the ontrol onnetion does not send the 226 Complete ADU until the data onnetionshave ompleted.While the sequential a-b-t model an aurately desribe the soure-level properties of thesethree onnetions, the model annot apture the interdependeny between the onnetions. TheFTP example in Figure 3.7 shows three onnetions with a strong dependeny. The two FTPdata onnetions neessarily followed a 150 Opening operation in the FTP ontrol onnetion.Our urrent model annot express this kind of dependenies between onnetions or between theADUs of more than one onnetion. It would be possible to develop a more sophistiated modelapable of desribing these types of dependenies, but it seems very diÆult to populate suha model from traes in an aurate manner without knowledge of appliation semantis. As analternative, the traÆ generation approah proposed in this dissertation arefully reproduesrelative di�erenes in onnetion start times, whih tend to preserve temporal dependeniesbetween onnetions. Our experimental results also suggest that the impat of interonnetion6This is an abbreviated version of the original session, in whih there was some diretory navigation and morediretory listings. The ontrol onnetion used port 21, while the data onnetions used dynamially seletedport numbers. Note also that signi�ant inter-ADU times due to user think time are not shown in the diagram.59
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previous �gures exhanged data units in a sequential fashion. A fundamental di�erene betweenthese two types of ommuniation patterns is that sequential request/response exhanges (i.e.,epohs) always take a minimum of one round-trip time. Data exhange onurreny makes itpossible to send and reeive more than one ADU per round-trip time, and this an inreasethroughput substantially. In the �gure, the initiator NNTP peer is able to send hek requeststo the other party quiker beause it an do so without waiting for the orresponding responses,eah of whih would take a minimum of one full round-trip time to arrive.Another example of onurrent data exhange is shown in Figure 3.9. Here two BitTorrentpeers [Coh03℄ exhange piees of a large �le that both peers are trying to download. TheBitTorrent protool supports the baklogging of requests (i.e., piees k and m of the �le arerequested before the download of the preeding piee is ompleted), and also the simultaneousexhange of �le piees (i.e., the transmission of piees k and l of the �le oexist with thetransmission of piee m). As disussed above, this type of behavior helps to avoid quiet timesin BitTorrent onnetions, thereby inreasing average throughput. Furthermore, this exampleillustrates a type of appliation in whih both endpoints at as lient and server (both requestand reeive �le piees).Appliation designers make use of data onurreny for two primary purposes:� Keeping the pipe full, by making use of requests that overlap with unompleted responses.Rather than waiting for the response of the last request to arrive, the lient keeps sendingnew requests to the server, building up a baklog of pending requests. The server antherefore send responses bak-to-bak, and maximize its use of the path from the serverto the lient. Without onurreny, the server remains idle between the end of a responseand the arrival of a new request, hene the path annot be fully utilized.� Supporting \natural" onurreny, in the sense that some appliations do not need to fol-low the traditional request/response paradigm. In some ases, the endpoints are genuinelyindependent, and there is no natural onept of request/response.
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Examples of protools that attempt to keep the pipe full are the pipelining mode in HTTP,the streaming mode in NNTP, the Rsyn protool for �le system synhronization, and theBitTorrent protool for �le-sharing. Examples of protools/appliations that support naturalonurreny are instant messaging and Gnutella (in whih the searh messages are simply for-warded to other peers without any response message). Sine BitTorrent supports lient/serverexhanges in both diretions, and these exhanges are independent of eah other, we an saythat BitTorrent also supports a form of natural onurreny.For data-onurrent onnetions, we use a di�erent version of our a-b-t model in whihthe two diretions of the onnetion are modeled independently by a pair (�; �) of onnetionvetors of the form � = ((a1; ta1); (a2; ta2); : : : ; (ana ; tana))and � = ((b1; tb1); (b2; tb2); : : : ; (bnb ; tbnb))Depending on the nature of the onurrent onnetion, this model may or may not be a simpli-�ation. If the sides of the onnetion are truly independent, the model is aurate. Otherwise,if some dependeny exists, it is not reeted in our haraterization (e.g., the fat that requestai neessarily preeded response bj is lost). Our urrent data aquisition tehniques annotdistinguish these two ases, and we doubt that a tehnique to aurately distinguish them ex-ists. In any ase, the two independent vetors in our onurrent a-b-t model provide enoughdetail to apture the two uses of onurrent data exhange in a manner relevant for traÆgeneration. In the ase of pipelined requests, one side of the onnetion mostly arries largeADUs with little or no quiet time between them (i.e., baklogged responses). The exat timingat whih the requests arrive in the opposite diretion is irrelevant as long as there is always anADU arrying a response to be sent. It is preisely the purpose of the onurreny to deouplethe two diretions to avoid the one round-trip time per request/response pair that sequentialonnetions must inur in. There is, therefore, substantial independene in onurrent onne-tions of this type, whih supports the use of a model like the one we propose. In the ase of
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onnetions that are \naturally" onurrent, the two sides are aurately desribed using twoseparate onnetion vetors.3.3 Abstrat Soure-Level MeasurementThe a-b-t model provides an intuitive way of desribing soure behavior in an appliation-neutral manner that is relevant for the performane of TCP. However, this would be of littleuse without a method for measuring real network traÆ and asting TCP onnetions into thea-b-t model. We have developed an eÆient algorithm that an onvert an arbitrary trae ofTCP/IP protool headers into a set of onnetion vetors. The algorithm makes use of thewealth of information that segment headers provide to extrat an aurate desription of theabstrat soure-level behavior of the appliations driving eah TCP onnetion in the trae. Itshould be noted that this algorithm is a �rst solution to a omplex inferene problem in whihwe are trying to understand appliation behavior from the segment headers of a measured TCPonnetion without examining payloads, and hene without any knowledge of the identity of theappliation driving the onnetion. This implies \reversing" the e�ets of TCP and the networkmehanisms that determine how ADUs are onverted into the observed segments that arry theADU. The presented algorithm is by no means the only one possible, or the most sophistiatedone. However, we believe it is suÆiently aurate for our purpose, and we provide substantialexperimental evidene in this and later hapters to support this laim.3.3.1 From TCP Sequene Numbers to Appliation Data UnitsThe starting point of the algorithm is a trae of TCP segment headers, Th, measured on somenetwork link. Our tehnique applies to TCP onnetions for whih both diretions are measured(known as a bidiretional trae), but we will also omment on the problem of extrating a-b-tonnetion vetors from a trae with only one measured diretion (a unidiretional trae). Whilemost publi traes are bidiretional (e.g., those in the NLANR repository [nlaa℄), unidiretionaltraes are sometimes olleted when resoures (e.g., disk spae) are limited. Furthermore,63
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of estimating the duration of quiet times between ADUs. The duration of ta1 is given by thedi�erene between the timestamp of the 4th segment (the last and only segment of a1), andthe timestamp of the 6th segment (the �rst segment of b1). The duration of tb1 is given by thedi�erene between the timestamp of the last data segment of b1 (7th segment in the onnetion)and the timestamp of the �rst FIN segment (8th segment in the onnetion).Note that the loation of the monitoring point between the two endpoints a�ets the mea-sured duration of ta1 and tb1 (but not the measured sizes of a1 and b1). Measuring the durationof ta1 from the monitoring point 1 shown in Figure 3.10 results in an estimated time t1 that islarger than the estimated time t2 measured at monitoring point 2. Inferring appliation-layerquiet time durations is always ompliated by this kind of measurement variability (amongother auses), so short quiet times (with durations up to a few hundred milliseonds) shouldnot be taken into aount. Fortunately, the larger the quiet time duration, the less signi�antthe measurement variability beomes, and the more important the e�et of the quiet time is onthe lifetime of the TCP onnetion. We an therefore hoose to assign a value of zero to anymeasured quiet time whose duration is below some threshold, e.g., 1 seond, or simply use themeasurement disregarding the minor impat of its inauray.If all onnetions were as \well-behaved" as the one illustrated in Figure 3.10, it would betrivial to reate an algorithm to extrat onnetion vetors from segment header traes. Thisould be done by simply examining the segments of eah onnetion and ounting the bytessent between data diretionality hanges. In pratie, segment reordering, loss, retransmission,dupliation, and onurreny make the analysis muh more ompliated. Figure 3.11 showsa seond set of segment exhanges that arry the same a-b-t onnetion vetor of Figure 3.1.The �rst data segment of the ADU sent from the onnetion aeptor, the 6th segment, is lostsomewhere in the network, foring this endpoint to retransmit this segment some time later asthe 9th segment. Depending on the loation of the monitor (before or after the point of loss),the olleted segment header trae may or may not inlude the 6th segment. If this segmentis present in the trae (like in the trae olleted at monitoring point 2), the analysis programmust detet that the 9th segment is a retransmission and ignore it. This ensures we ompute65
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Figure 3.11: A seond set of TCP segments for the onnetion vetor in Figure 3.1: lossyexample.the orret size of b1, i.e., 2,555 bytes rather than 4,015 bytes. If the lost segment is not presentin the trae (like in the trae olleted at monitoring point 1), the analysis must detet thereordering of segments using their sequene numbers and still output a size for b1 of 2,555 bytes.Measuring the duration of ta1 is more diÆult in this ase, sine the monitor never saw the6th segment. The best estimation is the time t1 between the segment with sequene number341 and the segment with sequene number 2555. Note that if the 6th segment is seen (as fora trae olleted at monitoring point 2), the best estimate is the time t2 between 5th and 6thsegments. A data aquisition algorithm apable of handling these two ases annot simply relyon ounts and data diretionality hanges, but must keep trak of the start of the urrent ADU,the highest sequene number seen so far, and the timestamp of the last data segment. In ouranalysis, rather than trying to handle every possible ase of loss and retransmission, we rely ona basi property of TCP to onveniently reorder segments and still obtain the same ADU sizesand inter-ADU quiet time durations. This makes our analysis simpler and more robust.
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3.3.2 Logial Order of Data SegmentsA fundamental invariant that underlies our previous ADU analyses is that every byte ofappliation data in a TCP onnetion reeives a sequene number, whih is unique for itsdiretion7. This property also means that data segments transmitted in the same diretion analways be logially ordered by sequene number, and this order is independent of both the timeat whih segments are observed and any reordering present in the trae. The logial order ofdata segments is a very intuitive notion. If segments 6 and 7 in Figure 3.10 arried an HTMLpage, segment 6 arried the �rst 1,460 haraters of this page, while segment 7 arried theremaining 1,095. Segment 6 logially preeded segment 7. When the same page is transmittedin Figure 3.11, the �rst half of the HTML is in segment 6 (whih was lost) and again in segment9. Both segments 6 and 9 (whih were idential) logially preede segment 7, whih arried theseond half of the HTML page.The notion of logial order of data segments an also be applied to segments owing inopposite diretions of a sequential TCP onnetion. Eah new data segment in a sequentialonnetion must aknowledge the �nal sequene number of the last in-order ADU reeivedin the opposite diretion. If this is not the ase, then the new data is not sent in responseto the previous ADU, and the onnetion is not sequential (i.e., two ADUs are being sentsimultaneously in opposite diretions). In the previous examples in Figures 3.10 and 3.11, wean see that both data segments omprising b1 aknowledge the �nal sequene number of a1.Intuitively, no data belonging to b1 an be sent by the server until a1 is ompletely reeived andproessed. The data in a1 logially preede the data in b1, and therefore the segment arrying a1logially preedes the segments arrying b1. Given the sequene and aknowledgment numbersof two data segments, owing in the same or in opposite diretions, we an always say whetherthe two segments arried the same data, or one of them logially preeded the other.Connetions that �t into the sequential a-b-t model are said to preserve a total order of data7This is true as long as the onnetion arries 4 GB or less. Otherwise, sequene numbers are repeated dueto the wraparound of their 32-bit representation. We disuss how to address this diÆulty at the end of Setion3.3.3. 67



segments with respet to the logial ow of data:For any pair of data segments p and q, suh that p is not a retransmission of qor vie versa, either the data in p logially preedes the data in q, or the data in qlogially preedes the data in p.In the example in Figure 3.11, the data in segment 9 logially preedes the data in segment 7(e.g., segment 9 arries the �rst 1460 bytes of a web page, and segment 7 arries the rest ofthe bytes). We know this beause the sequene numbers of the bytes in segment 9 are belowthe sequene numbers of the bytes in segment 7. The �rst monitoring point observes segment7 before segment 9, so temporal order of these two segments did not math their logial dataorder. A total order also exists between segments that ow in opposite diretions. In theexample in Figure 3.11, the data in segment 4 logially preede the data arried in the rest ofthe data segments in the onnetion. Timestamps and segment reordering play no role in thetotal order that exists in any sequential onnetion.Logial data order is not present in data-onurrent onnetions, suh as the one shownin Figure 3.8. For example, the segment that arried the last b-type ADU (the 438 don'tsend ADU) may have been sent roughly at the same time as another segment arrying someof the new data of the data unit sent in the opposite diretion (suh as a CHECK ADU). Eahsegment would use new sequene numbers for its new data, and it would aknowledge the datareeived so far by the endpoint. Sine the endpoints have not yet seen the segment sent fromthe opposite endpoint, the two segments annot aknowledge eah other. Therefore, there isno ausality between the segments, and no segment an be said to preede the other. Thisobservation provides a way of deteting data onurreny purely from the analysis of TCPsegment headers. The idea is that a TCP onnetion that violates the total order of datasegments desribed above an be said to be onurrent with ertainty. This happens whenevera pair of data segments, sent in opposite diretions, do not aknowledge eah other, and thereforeannot be ordered aording the logial data order.Formally, a onnetion is onsidered to be onurrent when there exists at least one pair of68



data segments p and q that either ow in opposite diretions and satisfyp:seqno > q:akno (3.1)and q:seqno > p:akno; (3.2)or that ow in the same diretion and satisfyp:seqno > q:seqno (3.3)and q:akno > p:akno: (3.4), Where p:seqno and q:seqno are the sequene numbers of p and q respetively, and p:akno andq:akno are the aknowledgment numbers of p and q respetively. Note that, for simpliity, our:akno refers to the umulative sequene number aepted by the endpoint (whih is one unitbelow the atual aknowledgment number stored in the TCP header [Pos81℄). The �rst pairof inequalities de�nes the bidiretional test of data onurreny, while the seond pair de�nesthe unidiretional test of data onurreny. We next disuss why a onnetion satisfying one ofthese tests must neessarily be assoiated with onurrent data exhanging.We onsider �rst the ase where p and q ow in opposite diretions, assuming without lossof generality that p is sent from initiator to aeptor and q from aeptor to initiator. If theyare part of a sequential onnetion, either p is sent after q reahes the initiator, in whih asep aknowledges q so q:seqno = p:akno, or q is sent after p reahes the aeptor in whih asep:seqno = q:akno. Otherwise, a pair of data segments that do not aknowledge eah otherexists, and the onnetion exhibits data onurreny.In the ase of segments p and q owing in the same diretion, we assume without loss ofgenerality that p:seqno < q:seqno. The only way in whih q:akno an be less than p:akno iswhen p is a retransmission sent after q, and at least one data segment k with new data sent69



from the opposite diretion arrives between the sending of p and the sending of q. The arrivalof k inreases the umulative aknowledgment number in p with respet to q, whih means thatq:akno < p:akno. In addition, k annot aknowledge p, or p would not be retransmitted.This implies that the onnetion is not sequential, sine the opposite side sent new data in kwithout waiting for the new data in p.Thus, only data-onurrent onnetions have a pair of segments that an simultaneouslysatisfy inequalities (3.1) and (3.2) or inequalities (3.3) and (3.4). These inequalities providea formal test of data onurreny, whih we will use to distinguish sequential and onurrentonnetions in our data aquisition algorithm. Data-onurrent onnetions exhibit a partialorder of data segments, sine segments owing in the same diretion an always be orderedaording to sequene numbers, but not all pairs of segments owing in opposite diretions anbe ordered in this manner.Situations in whih all of the segments in a onurrent data exhange are atually sentsequentially are not deteted by the previous test. This an happen purely by hane, whenappliations send very little data or send it so slowly that onurrent data sent in the reversediretion is always aknowledged by eah new data segment. Note also that the test detetsonurrent exhanges of data and not onurrent exhanges of segments in whih a data segmentand an aknowledgment segment are sent onurrently. In the latter ase, the logial order ofdata inside the onnetion is never broken beause there is no data onurreny. Similarly, thesimultaneous onnetion termination mehanism in TCP in whih two FIN segments are sentonurrently is usually not assoiated with data onurreny. In the most ommon ase, noneof the FIN segments or only one of them arries data, so the data onurreny de�nition is notappliable. It is however possible to observe a simultaneous onnetion termination where bothFIN segments arry data, whih is onsidered onurreny if these segments satisfy inequalities(3.1) and (3.2).
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3.3.3 Data Analysis AlgorithmWe have developed an eÆient data analysis algorithm that an determine whether a on-netion is sequential or onurrent, and an measure ADU sizes and quiet time durations inthe presene of arbitrary reordering, dupliation, and loss. Rather than trying to analyze everypossible ase of reordering, dupliation/retransmission, and loss, we rely on the logial dataorder property, whih does not depend on the original order and timestamps.Given the set of segment headers of a TCP onnetion sorted by timestamp, the algorithmperforms two passes:1. Insert eah data segment as a node into the data struture ordered segments. This is alist of nodes that orders data segments aording to the logial data order (bidiretionalorder for sequential onnetions, unidiretional order for onurrent onnetions). Theinsertion proess serves also to detet data exhange onurreny. This is beause on-netions are initially onsidered sequential, so their segments are ordered bidiretionally,until a segment that annot be inserted aording to this order is found. No baktrakingis needed after this �nding, sine bidiretional order implies unidiretional order for bothdiretions.2. Traverse ordered segments and output the a-b-t onnetion vetor (sequential or on-urrent) for the onnetion. This is straight-forward proess, sine segments in the datastruture are already ordered appropriately.The �rst step of the algorithm reates a doubly-linked list, ordered segments in whih eahlist node represents a data segment using the following four �elds:� seqnoA: the sequene number of the segment in the initiator to aeptor diretion (thatwe will all the A diretion). This sequene number is determined from the �nal sequenenumber of the segment (if the segment was measured in the \A" diretion), or from theumulative aknowledgment number (if measured in the \B" diretion).71



� seqnoB: the sequene number of the segment in the aeptor to initiator diretion.� dir: the diretion in whih the segment was sent (A or B).� ts: the monitoring timestamp of the segment.The list always preserves the following invariant that we all unidiretional logial data order :for any pair of segments p and q sent in the same diretion D, the ordered segments node ofp preedes the ordered segments node of q if and only if p:seqnoD < q:seqnoD. At the sametime, if the onnetion is sequential, the data struture will preserve a seond invariant that weall bidiretional logial data order , whih is the opposite of the data onurreny onditionsde�ned above: for any pair of segments p and q, the ordered segments node of p preedes theordered segments node of q if and only if(p:seqnoA < q:seqnoA) ^ (p:seqnoB = q:seqnoB)or (p:seqnoA = q:seqnoA) ^ (p:seqnoB < q:seqnoB):Insertion of a node into the list starts bakward from the tail of the ordered segmentslooking for an insertion point that would satisfy the �rst invariant. If the onnetion is stillbeing onsidered sequential, the insertion point must also satisfy the seond invariant. Thisimplies omparing the sequene numbers of the new segment with those of the last segment inthe ordered segments. The omparison an result in the following ases:� The last segment of ordered segments preedes the new one aording to the bidi-retional order above. If so, the new segment is inserted as the new last element ofordered segments.� The last segment of ordered segments and the new segment have the same sequenenumbers. In this ase, the new segment is a retransmission and it is disarded.
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� The new segment preedes the last segment of ordered segments aording to the bidi-retional order. This implies that network reordering of TCP segments ourred, andthat the new segment should be inserted before the last segment of ordered segments topreserve the bidiretional order of the data struture. The new segment is then omparedwith the predeessors of the last segment in ordered segments until its proper loationis found, or inserted as the �rst segment if no predeessors are found.� The last segment of ordered segments and the new segment have di�erent sequene num-bers and do not show bidiretional order. This means that the onnetion is onurrent.The segment is then inserted aording to its unidiretional order.Sine TCP segments an be reeived out of order by at most W bytes (the size of the maximumreeiver window), the searh pass (third bullet) never goes bakward more than W segments.Therefore, the insertion step takes O(s W ) time, where s is the number of TCP data segmentsin the onnetion.The seond step is to walk through the linked list and produe an a-b-t onnetion vetor.This an be aomplished in O(s) time using ordered segments. For onurrent onnetions,the analysis goes through the list keeping separate data for eah diretion of the onnetion.When a long enough quiet time is found (or the onnetion is losed), the algorithm outputsthe size of the ADU. For sequential onnetions, the analysis looks for hanges in diretionalityand outputs the amount of data in between the hange as the size of the ADU. SuÆiently longquiet times also mark ADU boundaries, indiating an epoh without one of the ADUs.Reordering makes the omputation of quiet times more omplex than it seems. As shownin Figure 3.11, if the monitor does not see the �rst instane of the retransmitted segment, thequiet times should be omputed based on the segments with sequene numbers 341 and 2555.This implies adding two more �elds to the list nodes:� min ts: the minimum timestamp of any segment whose position in the order is not lowerthan the one represented by this node. Due to reordering, one segment an preede73



another in the bidiretional order and at the same time have a greater timestamp. In thisase, we an use the minimum timestamp as a better estimate of the send time of thelower segment.� max ts: the maximum timestamp of any segment whose plae in the order is not greaterthan the one represented by this node. This is the opposite of the previous min ts �eld,providing a better estimate of the reeive time of the greater segment.These �elds an be omputed during the insertion step without any extra omparison of seg-ments. The best possible estimate of the quiet time between two ADU beomesq:min ts� p:max tsfor p being the last segment (in the logial data order) of the �rst ADU, and q being the �rstsegment (in the logial data order) of the seond ADU. For the example in Figure 3.11, atmonitoring point 1, the value of min ts for the node for the 9th segment (that marks a datadiretionality boundary when segment nodes are sorted aording to the logial data order) isthe timestamp of the 7th segment. Therefore, the quiet time ta1 is estimated as t1. Note thatthe use of more than one timestamp makes it possible to handle IP fragmentation elegantly.Fragments have di�erent timestamps, so a single timestamp would have to be arbitrarily setto the timestamp of one of the fragments. With our algorithm, the �rst fragment providessequene numbers and usually min ts, while the last fragment usually provides max ts.Other Issues in Trae ProessingOur trae proessing algorithm makes two assumptions. First, it assumes we an isolatethe segments of individual onnetions. Seond, it assumes that no wraparound of sequenenumbers ours (otherwise, logial data order would not be preserved). These two assumptionsan be satis�ed by preproessing the trae of segment headers. Isolating the segments ofindividual TCP onnetions was aomplished by sorting paket header traes on �ve keys:soure IP address, soure port number, destination IP address, destination port number, and74



timestamp. The �rst four keys an separate segments from di�erent TCP onnetions as longas no soure port number is reused. When a lient establishes more than one onnetion to thesame server (and servie), these onnetions share IP addresses and destination port numbers,but not soure port numbers. This is true unless the lient is using so many onnetions thatit reuses a previous soure port number at some point. Finding suh soure port numberreuses is relatively ommon in our long traes, whih are at least one hour long. Sine segmenttraes are sorted by timestamp, it is possible to look for pure SYN segments and use them toseparate TCP onnetions that reuse soure port numbers. However, SYN segments an su�erfrom retransmissions, just like any other segment, so the proessing must keep trak of thesequene number of the last SYN segment observed. Depending on the operating system of theonnetion initiator, this sequene number is either inremented or randomly set for eah newonnetion. In either ase, the probability of two onnetions sharing SYN sequene numbersis pratially zero.Segment sorting aording to the previous 5 keys requires O(s log s) time (we use the Unixsort utility for our work). It is also possible to proess the data without an initial sorting stepby keeping state in memory for eah ative onnetion. On the one hand, this an potentiallyeliminate the ostly O(s log s) step, making the entire proessing run in linear time. On theother hand, it ompliates the implementation, and inreases the memory requirements sub-stantially8. Deteting the existene of distint onnetions with idential soure and destinationIP addresses and port numbers requires O(s) time, simply by keeping trak of SYN sequenenumbers as disussed above. In our implementation, this detetion is done at the same time assegments are inserted into ordered segments data struture, saving one pass.TCP sequene numbers are 32-bit integers, and the initial sequene number of a TCPonnetion an take any value between 0 and 232�1. This means that wraparounds are possible,8The well-known tptrae tool [Ost℄, provides a good example of the diÆulty of eÆiently implementingthis tehnique. tptrae an analyze multiple onnetions at the same time, by keeping separate state for eahonnetion, and making use of hashing to quikly loate the state orresponding to the onnetion to whih anew segment belongs. When this tool is used with our traes, we quikly run out of memory on our proessingmahines (whih have 1.5 GB of RAM). This ours even when we use tptrae's real-time proessing mode,whih is supposed to be highly optimized. We believe it is possible to perform our analysis without the sortingstep, but it is ertainly muh more diÆult to develop a memory-eÆient implementation.75



and relatively frequent. One way to handle sequene number wraparound is by keeping trakof the initial sequene number and performing a modular subtration. However, if the SYNsegment of a onnetion is not observed (and therefore the initial sequene number is unknown),using modular arithmeti will fail whenever the onnetion su�ers from reordering of the �rstobserved segments. In this ase the subtration would start in the wrong plae, i.e., from thesequene number of the �rst segment seen, whih is not the lowest sequene number due to thereordering. One solution is to use baktraking, whih ompliates the proessing of traes.A related problem is that representing sequene numbers as 32-bit integers is not suÆientfor onnetions that arry more than 232 bytes of data (4 GB). The simplest way to addressthis measurement problem is to enode sequene numbers using more than 32 bits in theordered segments data struture. In our implementation we use 64 bits to represent sequenenumbers, and rely on the following algorithm9 to aurately onvert 32 bit sequene numbers to64-bit integers even in the presene of wraparounds. The algorithm makes use of a wraparoundounter and a pair of ags for eah diretion of the onnetion. The obvious idea is to inrementthe ounter eah time a transition from a high sequene number to a low sequene number isseen. However, due to reordering, the ounter ould be inorretly inremented more than one.For example, we ould observe four segments with sequene numbers 232�1000; 1000; 232�500,and 2000. Wraparound proessing should onvert them into 232 � 1000; 232 + 1000; 232 � 500,and 232+2000. However, if the wraparound ounter is inremented every time a transition froma high sequene number to a low sequene number is seen, the ounter would be inrementedone for the segment with the sequene number 1000 and again for the segment with sequenenumber 2000. In this ase, the wraparound proessing would result in four segments withsequene numbers 232� 1000; 232+1000; 232� 500, and 232+232+2000. The seond inrementof the ounter would be inorret.The solution is to use a ag that is set after a \low" sequene number is seen, so the ounter9We have not addressed the extra omplexity that TCP window saling for Long-Fat-Networks (RFC 1323[JBB92℄) introdues. It is often the ase that TCP options are not available in the traes, so the use of windowsaling and TCP timestamps has to be inferred from the standard TCP header. This is a daunting task. If theoptions are available, it is straightforward to ombine regular sequene numbers and timestamps to handle thisase. 76



is inremented only one after eah \rossing" of 232. This opens up the question of whento unset this ag so that the next true rossing inrements the ounter. This an be solvedby keeping trak of the rossing of the middle sequene number. In our implementation, weuse two ags, low seqno and high seqno, whih are set independently. If the next segmenthas a sequene number in the �rst quarter of 232 (i.e., in the range between 0 and 230 � 1),the ag low seqno is set to true. If the next segment has a sequene number in the fourthquarter of 232 (i.e., in the range between 231 and 232 � 1), the other aghigh seqno is set totrue. These ags are unset, and the ounter inremented, when both ags are true and thenext segment is not in the �rst or the fourth quarter of 232. Sequene numbers in the �rstquarter are inremented to 232 times the ounter plus 1. The rest are inremented by 232 plusthe ounter. This handles the pathologial reordering ase in whih the sequene number of the�rst segment in a onnetion is very lose to zero, and the next segment is very lose to 232. Inthis ase the low sequene number would be inremented by 232. This algorithm requires nobaktraking, and runs in O(s) time. In our implementation, the sequene number onversionalgorithm has been integrated into the same pass as the insertion step of the ADU analysis.Our data aquisition tehniques have been implemented in the analysis program tp2ve.The program also handles a number of other diÆulties that arise when proessing real traes,suh as TCP implementations that behave in non-standard ways. In addition, it also implementsthe analysis of network-level parameters desribed in the next hapter.3.4 Validation using Syntheti AppliationsThe data analysis tehniques desribed in the previous setion are based on a number ofproperties of TCP that are expeted to hold for the vast majority of onnetions reorded. Forexample, the logial data order property should always hold, sine TCP would fail to deliverdata to appliations otherwise. There are, however, a number of possible soures of unertaintyin the auray of the data aquisition method, and this setion studies them using testbedexperiments. 77



The onept of an ADU provides a useful abstration for desribing the demands of appli-ations for sending and reeiving data using a TCP onnetion. However, the ADU onept isnot really part of the interfae between appliations and TCP. In pratie, eah TCP onne-tion results from the use of a programming abstration, alled a soket, that reeives requestsfrom the appliations to send and reeive data. These requests are made using a pair of soketsystem alls, send() (appliation's write) and rev() (appliation's read). These alls pass apointer to a memory bu�er where the operating system an read the data to be sent or writethe data reeived. The size of the bu�er is not �xed, so appliations are free to deide howmuh data to send or reeive with eah all and an even use di�erent sizes for di�erent alls.As a result, appliations may use more than one send system all per ADU, and there may besigni�ant delays between suessive alls belonging to the same ADU. These operations anfurther interat with mehanisms in the lower layers (e.g., delayed aknowledgment, TCP win-dowing, IP bu�ering, et.) reating even longer delays between segments arrying ADUs. Suhdelays distort the relationship between appliation-layer quiet times and segment dynamis,ompliating the detetion of ADU boundaries due to quiet times.To test the auray of our data aquisition tehniques, we onstruted a suite of testappliations that exerise TCP in a systemati manner. The basi logi of eah test appliationis to establish a TCP onnetion and send a sequene of ADUs with a random size, and withrandom delays between eah pair of ADUs. In the a-b-t model notation, this means reatingonnetions with random ai, bi, tai and tbi. As the test appliation runs, it logs ADU sizes andvarious time intervals as measured by the appliation. In addition, the test appliation an setthe soket send and reeive alls to random I/O sizes, and an introdue random delays betweensuessive send or reeive alls within a single ADU. In our experiments, the test appliationwas run between two real hosts, and traes of the segment headers were olleted and analyzedusing our measurement tool. Our validation ompared the result of this analysis and the orretvalues logged by the appliations.We onduted an extensive suite of tests, but limit our report to only some of the results.Spei�ally we only show the results with the most signi�ant deviations from the orret values78
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the last read used to reeive the ADU ai (or bi) and the �rst write used to send the next ADUbi (ai+1). The quiet time observed at the segment level is the time between the arrival of thelast segment of ai (bi) and the departure of the �rst segment of bi (ai+1). If the appliationreads the �rst ADU slowly, using read alls with signi�ant delays between them, it will �nishreading ai (bi) well after the last segment has reahed the endpoint. In this ase, the quiet timeappears signi�antly shorter at the appliation level than at the segment level.For example, a data unit of 1,000 bytes may reah the reeiving endpoint in a single segmentand be stored in the orresponding TCP window bu�er. The reeiving appliation at thisendpoint ould read the ADU using 10 rev() system alls with a size of only 100 bytes, andwith delays between them of 100 milliseonds. The reading of this ADU would therefore take900 milliseonds, and hene the appliation would start measuring the subsequent quiet time900 milliseonds after the arrival of the data segment. Our measurement of quiet time fromsegment arrivals an never see this delay in appliation reads, and would therefore add 900milliseonds to the quiet time. For most appliations we laim there is no good reason to delayread operation more than a few milliseonds. Therefore, the inauray demonstrated hereshould be very infrequent. Nonetheless we have no diret means of assessing this type of errorin our traes.Figure 3.13 shows the relative error in the measurement of quiet time duration when thereare random delays between suessive read operations. The worst error is found when measuringquiet times between ai and bi (i.e., within an epoh) when random read delays our on theonnetion aeptor (reeiver of ai and bi). Even in this ase, 70% of values have less than20% error in an experiment with what we onsidered severe onditions of delays between readoperations for a single ADU (random delays between 10 and 100 milliseonds).We also studied the impat of segment losses on the auray of the measurements. Ingeneral, the algorithm performs well, but the analysis helped us to identify one troublesomease. If the last segment of an ADU is lost, the reeiver side does not aknowledge the lastsequene number of the ADU. After a few hundred milliseonds the sender side times out andresends the last segment. If the loss of the segment ours before the monitoring point, no80
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longer tail in the measured distributions. Reduing the quiet time threshold from 500 to 250milliseonds does little to redue the measurement inauray.The measured quiet times are also quite lose to those at the appliation level, as shown inFigure 3.15. The small inauray omes again from ADUs that are joined together when theirinter-ADU times are short. This inauray biases the measured distribution of quiet timesagainst small values (notie that the measured distributions start at a higher value). Reduingthe minimum quiet time threshold to 250 milliseonds makes the measured distribution loserto the atual distribution.3.5 Analysis ResultsThe a-b-t model provides a novel way of desribing the workload that appliations reateon TCP onnetions. Thanks to the eÆieny of the analysis method presented in Setion3.3, we are able to proess large paket header traes from several Internet links. This setionpresents our results. The analysis of the a-b-t onnetion vetors extrated from disparatetraes reveals that ertain distributional properties remain surprisingly homogeneous arosslinks and times-of-day, while others hange substantially. To the best of our knowledge, this isthe �rst haraterization of the behavior of soures driving TCP onnetions that onsiders theentire mix of appliation traÆ rather than just one or a few appliations.Our results ome from the �ve traes shown in Table 3.1. This table reports statististhat ompare the number of onnetions that are determined to be sequential and those thatSequential Connetions Conurrent ConnetionsTrae Count % GB % Count % GB %Abilene-I 2,335,428 98.4 400.36 68.1 39,260 1.7 187.95 31.9Leipzig-II 1,836,553 96.4 46.08 78.3 68,857 3.6 12.77 21.7UNC 1 AM 529,381 98.5 90.35 82.4 8,345 1.6 19.34 17.6UNC 1 PM 2,124,431 99.1 189.75 87.9 18,855 0.9 26.11 12.1UNC 7:30 PM 808,857 98.7 102.04 76.8 10,542 1.3 30.83 23.2Table 3.1: Breakdown of the TCP onnetions found in �ve traes.82



are determined to be onurrent aording to the analysis algorithm desribed in setion 3.3.The main lesson from Table 3.1 is the very di�erent view of aggregate soure-level behaviorthat ounting onnetions or ounting bytes provide. In terms of the number of onnetions,onurrent onnetions appear insigni�ant, aounting for a mere 3.6% of the onnetions inthe Leipzig-II trae. The piture is ompletely di�erent, however, when we onsider the totalnumber of bytes arried in those onurrent onnetions. In this ase, onurrent onnetionsaount for 21.7% of the Leipzig-II workload, learly suggesting that onurreny is frequentlyassoiated with TCP onnetions that arry large amounts of data. Abilene-I provides an evenmore striking illustration, where 31.9% of the bytes were arried by onurrent onnetions,whih only aounted for 1.7% of the total number of onnetions in the trae. This is not sur-prising given that one of the motivations for the use of data exhange onurreny is to inreasethroughput. Appliations with a substantial amount of data to send an greatly bene�t fromhigher throughput, and this justi�es the inrease in omplexity that implementing onurrenyrequires. On the ontrary, appliations whih generally transfer small amounts of data haveless inentive to ompliate their appliation protools in order to support onurreny. In thisfashion, interative traÆ (e.g., telnet, SSH, IRC), whih tends to be assoiated with largenumbers of small ADUs, does not usually pro�t from onurreny.It is important to note that two types of TCP onnetions are not inluded in the statistisin Table 3.1: unidiretional onnetions and onnetions that arried no appliation data (i.e.,no segment arried a payload). Unidiretional onnetions are those for whih the trae ontainsonly segments owing in one diretion (either data or ACK segments). There are two majorauses for these types of onnetions10. First, attempts to ontat a nonexistent or unavailablehost may not reeive any response segments. In this ase, the trae would show only one or afew SYN segments owing in one diretion, and no ommuniation of appliation data betweenthe two hosts. Attempts to onnet to �rewalled hosts also result in similar unidiretionalonnetions. Seond, routing asymmetries, that are known to be frequent in the Internetbakbone, may result in onnetions that traverse the measured link only in one diretion.10It is very unlikely that any of these onnetions was measured as unidiretional due to measurement losses.The traes studied in this setion were olleted using a high-performane monitoring devie, a DAG ard [Pro℄,that did not report any losses during data aquisition.83



Among our traes, routing asymmetries are only possible for the Abilene-I trae. The UNCand Leipzig-II traes were olleted from border links that arry all of the network traÆ toand from these two institutions. Two other possible auses of unidiretionality, that we believehave a muh smaller impat on the ount of unidiretional onnetions, are the e�ets of traeboundaries, whih an limit the traing to only a few segments owing in one diretion; andmison�gurations, where inorret or spoofed soure addresses are used.In the UNC and Leipzig-II traes, the number of unidiretional onnetions was relativelyhigh. We found between 249,923 (Leipzig-II) and 1,963,511 (UNC 1 AM) unidiretional on-netions. Sine these are traes without any routing asymmetry, it is lear that a substantialnumber of attempts to establish a TCP onnetion failed. For example, the UNC 1 AM traehas approximately one million more unidiretional onnetions than the other two UNC traes.These onnetions are likely related to some traÆ anomaly, suh as maliious network san-ning11 and port sanning12. We have not studied this phenomenon further, but it is learlyimportant to �lter out unidiretional onnetions to produe the results in Table 3.1. Other-wise, the perentages would be misleading, sine this table is about onnetions that exhangedone or more ADUs during TCP appliation ommuniation, and unidiretional onnetionsdid not engage in any kind of useful ommuniation. Furthermore, unidiretional onnetionsaounted for less than 0.15% of the bytes in the Leipzig-II and UNC traes.The number of unidiretional onnetions in the Abilene-I trae was even larger: 2.6 millionsin the Indianapolis to Cleveland diretion and 22.3 millions in the opposite diretion. Unlike theUNC and Leipzig-II traes, these onnetions aounted for a signi�ant fration of the bytesin eah diretion (1.63% and 14.42%). This fat, and a loser examination of the onnetions13,11Network sanning is a tehnique for disovering the hosts attahed to a network by probing eah possible IPaddress in a network domain. The basi tehnique is to send a paket whih generally requires a response fromthe host that reeived it (e.g., an ICMP eho request, a TCP SYN segment). Maliious users often san remotenetworks to �nd hosts before trying to break into them. Network sanning with TCP segments is available inmany popular tools, e.g., nmap.12Port sanning is similar to network sanning, but it involves probing a range of port numbers (for a singleIP address) rather than probing a range of IP addresses. The goal of port sanning is to disover ative servies,whih ould potentially have vulnerabilities. Port sanning is performed using any TCP segment (or UDPdatagram) that eliits a response from the vitim (e.g., a SYN segment requires a SYN-ACK in response, amalformed segment requires a RST segment in response).13We found numerous onnetions that had data segments with inreasing sequene numbers.84



on�rmed that routing asymmetry is present in the Abilene-I trae. Asymmetri onnetionsan arry appliation data, and therefore should be onsidered in soure-level studies. However,our onurreny test requires bidiretional measurements, so the type of breakdown shown inTable 3.1 annot be performed with the unidiretional onnetions in the Abilene-I trae.Our traes also inlude a signi�ant number of onnetions that did not arry any appliationdata (i.e., TCP onnetions that were established and terminated without transmitting a singledata segment14). The number of onnetions without any data units varied between 75,522in the UNC 1 AM trae and 400,853 in the Abilene-I trae. These \dataless" onnetionsan again be due to network and port sanning, and also to failed attempts to establish TCPonnetions. These failures an ome from attempts to ontat endpoint port numbers on whihno appliation is listening15. They an also ome from aborted onnetions whih are due tohigh loss rates, exessive round-trip times, or implementation problems. While the numberof onnetions without appliation data is relatively high when ompared with the number ofonnetions in Table 3.1, these onnetions aounted for less than 0.11% of the bytes.The rest of this setion examines the distributional properties of the onnetion vetorsderived from the traes. Connetion vetors onstitute a rih data set that an be explored alongdi�erent axes. We have hosen to �rst ompare traes olleted at di�erent sites. This helpsus study variability in soure-level behavior originating from di�erenes in the populations ofusers and servies. The seond part of the setion studies the three traes from UNC, analyzingthe hanges in soure-level behavior due to the strong time-of-day e�ets that most Internetlinks exhibit. At the same time, this setion illustrates the signi�ant di�erene between TCPonnetions initiated from one side of the link (by lients inside UNC) and those initiated fromthe other side (by lients outside UNC that ontated servers inside UNC).Note that the analysis below reports only on those onnetion vetors derived from TCPonnetions that were fully aptured , i.e., those for whih we believe that every segment was14In some ases, these onnetions showed some data segments with a sequene number above that of the FINsegments. These ases seemed to be aused by TCP implementation errors.15In this ase the destination endpoint responds with a TCP reset segment, and no appliation-level ommu-niation takes plae. 85
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Figure 3.17: Tails of the A and B distribu-tions for Abilene-I, Leipzig-II and UNC 1PM.observed. In pratie, we onsider that a onnetion was fully aptured when we observe boththe start of the onnetion, marked by SYN and SYN-ACK segments, and the end of theonnetion, marked by FIN or RST segments. This does not neessarily mean that we observedevery single segment of the onnetion16, but it does imply that the full soure-level behavior ofthe onnetion is observed. Another reason to work only with fully aptured onnetions is thatthe absene of onnetion establishment segments prevents us from identifying the onnetioninitiator. It is often the ase that the aeptor is listening on a reserved port number (< 1024),whih provides a way to address this diÆulty. However, there is still a large fration of theonnetions that use dynami port numbers, and for whih the initiator annot be identi�edwith ertainty.3.5.1 Variability Aross SitesSequential ConnetionsWe start our statistial analysis with the haraterization of sequential onnetions fromdi�erent sites. Figure 3.16 examines the distributions of the sizes of the ADUs for three traes:Abilene-I, Leipzig-II and UNC 1 PM. We use the letter \A" to refer to a distribution of a-type16In some (rare) ases, we may miss some segments before onnetion establishment (e.g., we miss the �rstSYN segment but observe its retransmission), or we may miss some segments after onnetion establishment(e.g., we miss the retransmission of the �nal FIN segment and its aknowledgment).86



ADU sizes, and the letter \B" to refer to a distribution of b-type ADU sizes. The distributionsin this �gure only inlude samples from sequential onnetion vetors. We an distinguish tworegions in this plot. For sizes of ADUs above 250 bytes, the shape of the A distributions isremarkably similar for all three traes, and quite di�erent from the shapes of the B distributions.The vast majority of the ADUs sent from the onnetion initiator (92%) had a size below 1,000bytes. This is onsistent with the idea that a-type ADUs mostly arry small requests and ontrolmessages. Most a-type ADUs an therefore be arried in a single standard-size segment of 1960bytes. The shape of the B distributions is also onsistent with our intuition, although theLeipzig-II distribution is signi�antly lighter than the others. The B distributions are heavierthan the A distributions. Between 38% and 27% of the b-type ADUs are larger than 1460 bytes,so they require two or more segments to be transported from the onnetion aeptor to theonnetion initiator. Only 8% to 12% of the b-type ADUs arried 10,000 bytes or more. Wealso note that for ADU sizes below 250 bytes, the plot shows less similarity among distributionsof the same type. However, the logarithmi sale on the x-axis an be misleading. The largeseparation between the urves orresponds to only a few tens of bytes, and this has little impaton TCP performane. ADUs as small as 250 bytes an always be transported in a single (small)segment.Figure 3.17 shows the tails of the A and B distributions using omplementary umulativedistribution funtions. It shows that even a-type ADUs an be quite large, and that thedistributions are onsistent with heavy-tailness (i.e., exhibits linear deay in the log-log CCDF).For this reason, Pareto or Lognormal models ould provide a good foundation for analytialmodeling of the distributions17. Interestingly, when we ompare A and B distributions for thesame trae, we �nd that B distributions are only slightly heavier than A distributions, espeiallyfor Abilene-I and Leipzig-II. This implies that there are protools in whih the initiator sendslarge ADUs to the aeptor. For example, web browsers are often used to upload �les andemail attahments for web-based email aounts. It is also interesting to note that Abilene-I's A distribution is heavier than UNC's and Leipzig-II's B distributions, and that UNC's B17The tail of a Pareto distribution is always linear in a CCDF, and the tail of a Lognormal distribution anbe linear for an arbitrary number of orders of magnitude.87
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somewhat lighter than the TB distributions.3.6 SummaryThis hapter presented our method for desribing soure-level behavior in an abstrat man-ner using the a-b-t model . The basi observation behind this model is that the job of a TCPonnetion is to transfer one or more appliation data units (ADUs) between two network end-points. TCP is sensitive to the sizes of these ADUs, whih determine the number of segmentsrequired to transfer them, but it is insensitive to the atual semantis of eah ADU. Conse-quently, we proposed to desribe the soure-level workload of TCP onnetions in terms ofADUs, haraterizing their number, order, and sizes. Additionally, we also observed that appli-ations may remain inative during long periods of time (e.g., during user think times), whihoften results in TCP onnetions that last far longer than required to transfer their ADUs.This motivated us to also inorporate quiet times into our generi desriptions of soure-levelbehavior. We formulated these ideas into the a-b-t model, whih desribes soure-level behaviorin abstrat terms ommon to all appliations. The model distinguishes a-type ADUs, sent fromthe onnetion initiator to the onnetion aeptor, and b-type ADUs, sent in the oppositediretion the onnetion. It also distinguishes between quiet times due to inativity on theinitiator endpoint and due to inativity on the aeptor endpoint.Our analysis of TCP onnetions observed on real Internet links revealed two types ofsoure-level behavior, whih motivated us to develop two di�erent versions of our a-b-t model.Most TCP onnetions exhange ADUs in a sequential, alternating manner, where a-type ADUsusually play the role of request from lient and b-type ADUs usually play the role of responsesfrom servers. We desribe this �rst type of soure-level behavior using the sequential versionof our a-b-t model, whih onsists of a sequene of epohs, where eah epoh aptures oneexhange of ADUs (i.e., one a-type ADU and one b-type ADU). The rest of the TCP onne-tions exhibit data exhange onurreny , where their endpoints send at least one pair of ADUssimultaneously. We desribe this seond type of soure-level behavior using the onurrent ver-99



sion of our a-b-t model, where the ADUs and the quiet times from eah endpoint are desribedindependently. The examples from real appliations examined in this hapter demonstratedthe ability of the a-b-t model to provide a detailed desription of soure-level behavior for bothsequential and onurrent data-exhanges. This means that our approah is able to haraterizethe soure-level behavior of entire traÆ mixes without any need to understand the spei�semantis of eah individual appliation present in the mix.A fundamental strength of abstrat soure-level modeling is the possibility of aquiring datafrom paket header traes in an eÆient manner. This is ritial to make the approah widelyappliable. Paket header traes do not ontain any appliation-level payload, so they are easyto anonymize simply by replaing IP addresses. As a onsequene, many organizations havemade paket header traes of their Internet links publi [nlab℄. We proposed a data analysisalgorithm that an transform the set of segment headers observed for eah onnetion in a traeinto an a-b-t onnetion vetor. The ost of this algorithm is O(sW ), where s is the numberof segments and W the maximum window size. The algorithm relies on the onept of logialdata order (i.e., the order of data as understood by the appliation layer) to robustly handlesegment reordering and retransmission. This approah enables us to measure the real size ofADUs at the appliation level, to distinguish between soure-level quiet times and quiet timesdue to losses, and to identify data exhange onurreny without false positives. We validatedthis algorithm using syntheti appliations, studying the impat of the sizes of soket reads andwrites, delays between soket operations and paket loss. The results demonstrated that ourdata aquisition algorithm is very aurate. Our validation also studied the auray of ourdata aquisition when our basi algorithm is extended with a quiet time threshold to separateonseutive ADUs owing in the same diretion. Even in this ase, we only unovered minorinauraies in the measured inter-ADU quiet times when arbitrary delays between soket readsare used and when onnetions su�ered from paket loss.We onluded the hapter with a statistial analysis of the a-b-t onnetion vetors in �vepaket header traes. Three of these traes ame from our own data olletion e�ort at theUniversity of North Carolina at Chapel Hill, and the other two traes, Leipzig-II and Abilene-I,100



ame from NLANR's publi repository of paket header trae. Before we presented the analysis,we pointed out the need to �lter out the following two types TCP onnetions:� Connetions for whih no observed segment arried appliation data, and therefore hadno ADUs. They orresponded to failed attempts to establish a TCP onnetion (e.g., dueto losed ports), denial-of-servie attaks (e.g., SYN attaks), and port sanning ativity.These onnetions were very numerous, but they arried an insigni�ant fration of thetotal traÆ in eah trae. Properly haraterizing these \ADU-less" onnetions is outsidethe sope of this dissertation.� Connetions for whih segments are observed in only one diretion. We found a signi�antnumber of unidiretional onnetions only in the ase of Abilene-I, sine this trae wasolleted traÆ in a bakbone network where asymmetri routing was ommon. Distin-guishing between sequential and onurrent onnetions require to observe both diretionsof a onnetion, so we ignored unidiretional onnetions in our later analysis and traÆgeneration.In addition, our statistial analysis of the traes onsidered only fully-aptured TCP onne-tions, those for whih we observed both the segment performing onnetion establishment andonnetion termination. We therefore ignored partially-aptured onnetions, whih ontainedonly partial information about soure-level behavior. Our results onsidered sequential andonurrent onnetions separately. We an highlight the following observations from theseresults:� Every trae showed a small fration of onurrent onnetions, at most 3.6%, but theyaount for a far more substantial fration of the total bytes, between 18% and 32%. Thisis onsistent with our observation that onurreny an inrease throughput, so it is oftenimplemented in bulk appliations that transfer large amounts of data.� Regarding the bodies of distributions of ADU sizes, sequential onnetions showed asubstantial di�erene between a-type and b-type ADUs. The sizes of 90% of the a-type101



ADUs were at most 1,000 bytes, while the sizes of 90% of the b-type ADUs were atmost 10,000 bytes. The observed di�erenes aross sites paled in omparison to thisphenomenon. On the ontrary, the tails of the distributions appeared similar for a-type and b-type ADUs, being onsistent with heavy-tailness in both ases. Conurrentonnetions did not show a systemati di�erene between a-type and b-type ADUs, buttheir size distributions varied widely for the three sites and also exhibited heavy-tailness.Another interesting observation is that between 80% and 90% of the bytes were arriedin ADUs whose size was above 10,000 bytes.� Regarding the distribution of the number of epohs, we found a large fration of onne-tions, between 57% and 65%, with only one epoh. However, these onnetions aountedfor a far smaller fration of the total bytes, between 22% and 38%. Most of the remainingonnetions had a moderate number of epohs, between 2 and 10. Connetions with tensor hundreds of epohs represented only 5% of the onnetions, but they arried 30% to50% of the bytes.� Our joint analysis of ADU size and number of epoh revealed a omplex inter-dependeny.The average amount of data in an epoh and the median size of ADUs showed substantialvariability for di�erent values of the number of epohs in a onnetion, without anyapparent pattern. In addition, the results of the joint analysis are very di�erent arosssites. It does not seem possible to develop a simple parametri model for these data.� Regarding the bodies of the distributions of quiet times, sequential onnetions showeda larger fration of durations above 1 seond for quiet times on the lient side, betweena b-type ADU and the a-type ADU that follows it. Quiet times on the server side, be-tween an a-type ADU and the following ADU, were less substantial but also signi�ant.This motivated us to inorporate server-side quiet times on our model. Both distribu-tions showed substantial tails. The di�erene between the two distributions of quiet timedurations appear less signi�ant for onurrent onnetions.� A signi�ant perentage of onnetions, between 65% and 83%, showed a quiet time be-tween the last ADU and TCP's onnetion termination with a duration above 1 seond.102



This quiet time often inreased the duration of the onnetion dramatially, sine on-netions with little data ompleted their data transfer very quikly, but remained idlewaiting to be losed. This �nding justi�ed the addition of a �nal quiet time duration toour a-b-t model.� Our omparison of the distributions from the three UNC traes, whih were olleted atthree di�erent times of the day, revealed lear di�erenes in the data. These di�erenesare however less dramati than those observed when traes from three di�erent sites areompared.
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CHAPTER 4Network-Level Parameters and MetrisIf you are distressed by anything external, the pain is not due to the thing itself,but to your estimate of it; and this you have the power to revoke at any moment.| Marus Aurelius (121{180)Reality ontinues to ruin my life.| Bill Watterson (1958{), Calvin and HobbesThe workload of TCP onnetions represents the demands of appliations for sending andreeiving data in a reliable, ordered, and ongestion-responsive manner. How well TCP ansatisfy these demands depends on the onditions of the network path between the two endpointsof eah TCP onnetion, and the way TCP reats to these onditions. An obvious exampleof a network ondition that a�ets TCP is ongestion that leads to segment loss. When adata segment is lost, TCP must retransmit it, and this implies some redution in performane(e.g., throughput) as the same data segment (rather than a new one) has to be sent again. Inaddition, TCP onsiders loss as an indiation of network ongestion, and reats by reduing itssending rate. Di�erent versions of TCP implement di�erent ways of adjusting this sending rate.This means that the harateristis of the set of segments in a TCP onnetion are not just afuntion of the soure-level behavior of the endpoints. This fat will have profound impliationsfor the validation of our approah to syntheti traÆ generation.Intuitively, demonstrating that syntheti traÆ is \realisti" must be based on a omparisonof the statistial properties of real and syntheti traÆ. If these properties are reasonably ap-proximated, we an argue with on�dene that the traÆ generation method and its underlying



statistial model provide an adequate foundation for experimental networking researh. Theomparison an be performed at two levels. First, we an ompare soure-level properties usingthe a-b-t modeling approah (see for example setion 3.5). Seond, we an ompare network-level properties, i.e., properties of the atual segments that make up individual onnetions inreal and generated traÆ. The material in this hapter is onerned with developing methodsfor making this latter omparison meaningful.Sine network onditions have an important impat on TCP onnetions, omparing realand syntheti traÆ at the network-level is diÆult if network onditions are not inorporatedto some extent into the traÆ generation system. For example, if we generate traÆ that isintended to resemble that of some real link, and onnetions on this link experiene substantialloss rates, the harateristis of the syntheti traÆ would be rather di�erent if the synthetitraÆ did not experiene omparable loss rates. Otherwise, the syntheti traÆ would expe-riene higher transfer rates, shorter durations, et. The �rst part of this hapter onsidersmethods for haraterizing three important, and perhaps the dominant, network-level proper-ties of TCP onnetions: round-trip times, reeiver window sizes, and loss rates. These threeproperties will be inorporated in our traÆ generation method as input parameters, and willmake syntheti traÆ more omparable to real traÆ. Additionally, we also examine the prop-erties of a number of real traes to illustrate the wide range of network onditions in whihTCP operates, and how this range hanges from one network link to another.The seond part of the hapter onsiders the atual problem of omparing traÆ at thenetwork-level. The researh literature has identi�ed a number of statistial properties of traÆthat an serve as metris for assessing the realism of syntheti traÆ. We desribe theseproperties and onsider their appliation in the ontext of omparing traÆ traes. We alsoexamine a number of real traes in light of these metris. Our analysis reveals importantdi�erenes between the traes, and unovers some dependenies between network-level metrisand types of soure-level behavior.
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4.1 Network-level Parameters4.1.1 Round-Trip TimeThe Round-Trip Time (RTT) between two network hosts is de�ned as the time required tosend a paket from one host to another plus the time required to send a paket in the reversediretion. These two times are often very similar, but may sometimes vary onsiderably (e.g.,in the presene of asymmetri routing). In general, round-trip times are not onstant, sinequeuing delays, swithing fabri ontention, route lookup times, et., vary over the lifetime ofa onnetion.Impat of Round-Trip TimeRound-trip times play a very important role in TCP onnetions. As indiated in Chapter3, the exhange of a request ADU and its response ADU (i.e., an epoh) in a TCP onnetionrequires at least one round-trip time. This is independent of the amount of data exhanged. Inaddition, the speed at whih data an be delivered (known as throughput1), is also a funtionof the round-trip time of the TCP onnetion.The minimum time between the sending of a data segment and the arrival of its orrespond-ing aknowledgment is exatly one round-trip time. Without TCP's window mehanism, TCPwould only be able to send one segment per round-trip time, sine it would have to wait forthe aknowledgment before sending the next data segment. Therefore, peak throughput wouldbe given by the maximum segment size S divided by the round-trip time R. This would implythat the longer the round-trip time, the lower the throughput S=R of the onnetion would be.In order to inrease performane, a TCP endpoint an send a limited number of segments, awindow , to the other endpoint before reeiving an aknowledgment for the �rst segment. Thenumber of segments W in the window gives the peak throughput of a TCP onnetion, W�SR .1More preisely, throughput is the rate of transfer taking into aount not only appliation data but alsoontrol headers added by TCP and lower network layers. A related onept, goodput, is the rate of transfer ofappliation data, i.e., TCP payload. This distintion is important, but in the disussion above, throughput andgoodput are a�eted similarly by round-trip times, so we simply talk about throughput.106



This peak throughput an be lower if the path between the two endpoints has a apaity Cthat is lower than W�SR , so the peak throughput of a TCP onnetion is given by min(W�SR ; C).This implies that if W is not large enough to �ll the available apaity C, R is the limitingfator in the peak throughput of a TCP onnetion.A new TCP onnetion is not allowed to reah its peak throughput until it ompletes a\ramp-up" period known as slow start [Pos81℄. The throughput of TCP during slow-start isalso highly dependent on round-trip time. At the start of eah onnetion, TCP does notmake use of the entire window to send data, but rather probes the apaity of the networkpath between the two endpoints by sending an exponentially inreasing number of segmentsduring eah round-trip time. This normally means that TCP sends only 1 segment in the �rstround-trip time, 2 in the seond one, 4 in the third one, and so on, doubling the number ofsegments after eah round-trip time until this number reahes a maximum of W segments. Thethroughput of the slow-start phase is therefore a funtion of round-trip time and maximumsegment size, but it depends little on reeiver window size and apaity. For example, an ADUthat �ts in 4 segments, requires 3 round-trip times to be transferred in the slow-start phase(one segment is sent in the �rst round-trip time, two in the seond one, and one more in the�nal one), so the throughput of the onnetion is 4S3R . For ommon values of R and S, S = 1460bytes and R = 100 milliseonds, the throughput would be 156 Kbps. This same ADU sent laterin the onnetion using a single window would ahieve a muh higher throughput (e.g., the foursegments ould be sent bak to bak, so they would reah the destination after only one halfthe round-trip time, R2 , ahieving a throughput of 8SR = 934 Kbps).Passive Estimation of Round-Trip TimesThe dependeny between TCP throughput and round-trip time implies that the distributionof round-trip times of the TCP onnetions found on a link has a substantial impat on theharateristis of a trae. If we intend to ompare the throughputs of onnetions in traesfrom real links with those in syntheti traes, traÆ generation must employ similar round-trip times. This requires us to be able to extrat RTTs from a trae by analyzing paket107



dynamis. Extrating round-trip times from paket traes has reeived only limited attentionin the literature [JD02, AKSJ03℄. Nonetheless we an re�ne some of the existing ideas to obtainthe distribution of round-trip times of onnetions in a trae in a manner that is useful for traÆgeneration.Before we desribe several methods for haraterizing round-trip times, it is important topoint out that the round-trip time of a TCP onnetion is not a �xed quantity. The timerequired for a segment to travel from one endpoint to another has several omponents. Trans-mission and propagation delays are more or less onstant for a given segment size, but queu-ing delays, medium aess ontention, and router and endpoint proessing, introdue variableamounts of extra delay. The TCP segments observed in our traes are exposed to these de-lays, whose variability is not always negligible, as our later measurement results illustrate. Insummary, the segments of a TCP onnetion are exposed to a distribution of round-trip times,rather than to a �xed round-trip time.We an think about the segments of a TCP onnetion as probes that sample the dynaminetwork onditions along their path, experiening variable delays. As shown in the previoushapter, most TCP onnetions arry a small amount of data, providing only a few samples ofthese underlying onditions. This makes it very diÆult to fully haraterize the distributionof round-trip times experiened by an individual onnetion using only passive measurementmethods (i.e., only by looking at paket headers). In addition to the low number of samplesper onnetion, TCP's delayed aknowledgment mehanism adds extra delays to some samples.This introdues even more variability, this time unrelated to the path of the onnetion. Aswe disuss below, the presene of delayed aknowledgments makes statistis (suh as the meanand standard deviation) omputed from RTT samples, grossly overestimate the true mean andstandard deviation of the underlying distribution of round-trip times. In our work, we favormore robust statistis, suh as the median, or the minimum, whih provide a good way ofharaterizing the non-variable omponent of a onnetion's round-trip time. For simpliity,our traÆ generation will simulate the minimum round-trip time observed for eah onnetion.
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The OSTT EstimatorA seond tehnique for estimating round-trip times is illustrated in Figure 4.3. The loationof the monitor divides the path of a onnetion into two sides, and we an estimate the One-Side Transit Time (OSTT) independently for eah side. The sum of the two OSTTs gives anestimate of the round-trip time of the onnetion. The idea is that the arrival times of a datasegment and its aknowledgment segment at the monitor provides an estimation of the OSTTfrom the measurement point to one of the endpoints. Round-trip time estimation using theOSTT method requires the olletion of one or more samples of the OSTT between the initiatorand the monitoring point, and one or more samples of the OSTT between the aeptor andthe monitoring point. In Figure 4.3, a sample R1 of the OSTT for the right side of the path(i.e., OSTT between the aeptor and the monitoring point) is given by the di�erene in thearrival times of segments 2 and 3. A sample R2 of the OSTT for the left side of the path (i.e.,between the initiator and the monitoring point) is given by the di�erene in the arrival times ofsegments 4 and 5. Thus, a sample of the full round-trip time R is given by R1 +R2. One wayof seeing this graphially is to do the mental exerise of shifting the monitoring point towardthe initiator. As we do this, the R1 inreases, while R2 dereases. When the monitoring pointreahes the initiator endpoint, R1 is exatly the round-trip time of the onnetion, and R2 iszero.The OSTT-based estimation of the RTT is independent of the loation of the monitoringpoint. For example, the arrival of segments at the seond monitoring point in Figure 4.3 providesa sample R01 + R02 whih is equal to R1 + R2. This is a substantial improvement over existingmethods, sine it implies that we an perform RTT estimation for onnetions observed at anypoint on their path. Previous work, suh as Aikat et al. [AKSJ03℄, onstrained itself to traesolleted very lose the edge of the path, so they ould assume that the delay between themonitoring point and loal networks was minimal. This results in an estimate in whih onlyR1 is omputed under the assumption that R2 is very small. The use of the sum of the OSTTsis more exible, sine it makes it possible to extrat RTTs from any trae, and not just edgetraes. This allowed us to analyze a bakbone trae like Abilene-I, making our traÆ analysis112
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Finally, we must note that the time between the arrival of a data segment and its �rstaknowledgment is not always a good estimator of the OSTT. This is mostly due to two auses:retransmission ambiguity and delayed aknowledgments. Retransmissions may reate ambigu-ous ases in whih we annot math the pair of data and ACK segments. This is the well-knownretransmission ambiguity problem, whih was �rst disussed by Karn and Partridge [KP88b℄in the ontext of estimation of TCP's retransmission timeout. Whenever a data segment isretransmitted, it is not possible to deide whether to ompute the OSTT using the �rst or theseond instane of the data segment. These data segments annot therefore be used to ob-tain a new OSTT sample. This retransmission ambiguity is similar to the SYN retransmissionproblem shown in Figure 4.2.Delayed aknowledgments an add up to 500 milliseonds4 [Bra89℄ of extra delay in theOSTT estimates, whenever a segment is not aknowledged immediately. Figure 4.4 illustratesthis problem. The right side OSTT is 200 milliseonds larger than it should be due to thedelayed sending of the aknowledgment in segment 2. The distortion of OSTT samples ausedby delayed aknowledgments is pervasive, sine the number of segments in a window is oftenan odd number, and TCP implementations are allowed to keep (at most) one unaknowledgedsegment. An odd number of segments in a window means that the last segment does nottrigger an immediate aknowledgment, whih adds an extra delay to its orresponding sample.Furthermore, performane enhanement heuristis implemented in modern TCP staks oftenadd PUSH ags to TCP segments arrying data in the middle of an ADU, and this ag foresthe other endpoint to immediately send an aknowledgment [Pos81℄. This reates even moreases in whih the last segment of the window has to be aknowledged separately using a delayedaknowledgment. The empirial results presented below illustrate the impat of this problem.Validation of Round-Trip Time EstimatorsWe evaluated the round-trip time estimation tehniques proposed above using synthetitraÆ in a testbed where RTTs ould be ontrolled preisely. Figure 4.5 shows the results of4Typial values are between 100-200 milliseonds. 114
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fR11; R12; : : : ; R1ng and the minimum value in fR21; R22; : : : ; R2mg. In the �gure, the sum-of-minima estimation of the distribution of round-trip times (marked with white irles) is exatlyon top of the input distribution, so this estimator is exat. The same is also true when the sumof medians is used. This shows that there is no signi�ant variability between the minimumand the median of eah set of OSTTs, whih is expeted in our unongested experimentalenvironment.Figure 4.5 shows another two distributions derived from OSTT samples that are less aurateharaterizations of the real RTT distribution in the testbed experiment. The distribution(marked with blak triangles) of round-trip times obtained using the sum of the mean of theOSTTs, i.e., Equation 4.1, is slightly heavier that the real distribution of round-trip times. Thisis due to the presene of a few OSTT samples that are above the real OSTT of the onnetion,whih skew the mean but not the median or the minimum. The magnitude of these largersamples is strikingly illustrated by the urve orresponding to the sum of the maximum OSTTs(marked with bak irles). This urve is far heavier than the previous one, and ertainly a poorrepresentative of the original distribution of round-trip times. The use of the maximum makesthis last estimator fous on the largest OSTTs, whih are shown to be quite far from the truevalues of the OSTT. The exat ause of this inauray is the use of delayed aknowledgmentsin TCP, whih was illustrated in Figure 4.4. Delayed aknowledgments make some OSTTsamples inlude extra delays due to the behavior of the TCP stak and not the path between theendpoints. In partiular, the distribution omputed using the sum-of-maxima is 200 milliseondsheavier than the input distribution for most of its values. This is onsistent with the defaultvalue of FreeBSD's delayed aknowledgment mehanism, whih is 100 milliseonds. Connetionswhere both the initiator-to-monitor and theR1 aeptor-to-monitor sets of OSTTs have valuesfrom delayed aknowledgments result in values of R̂ equal to R+ 100 + 100 milliseonds.To on�rm this hypothesis, we onduted a seond experiment, with exatly the samesetup, although this time TCP's delayed aknowledgment mehanism was ompletely disabled.The results of estimating the distribution of round-trip times in this seond experiment areshown in Figure 4.6. Every estimation method is aurate in this ase, whih proves our116
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Figure 4.9: A set of TCP segments illustrating an invalid OSTT sample due to the inter-ation between loss and umulative aknowledgments.omputed by the sum-of-maxima is several times larger than the real distribution.The ause of the additional inauray in the sum-of-means estimator is the interationbetween losses and TCP's umulative aknowledgment mehanism, whih prevent us from dis-ambiguating samples from retransmissions. This problem is illustrated in Figure 4.9. Segments1 and 2 with sequene numbers s1 and s2 respetively are sent from the initiator to the aep-tor, but segment 1 is lost before the monitor. Sine TCP's aknowledgments are umulative,this means that the aeptor endpoint annot aknowledge segment 2 alone5. Some time later,after the initiator times out, another segment with sequene number s1 is sent from initiatorto aeptor. Upon its arrival, the aeptor an send a umulative aknowledgment with se-quene number s2. Using the timestamps of segments 2 and 4, we ould ompute an OSTTRi. However, Ri is learly not a good representative of the OSTT between the monitor andthe aeptor, and therefore this sample is inorret. The true value of the OSTT would be thedi�erene between the timestamps of segments 3 and 4, whih is muh smaller than Ri. Inthis example, �ltering samples from retransmitted sequene numbers does not help, sine noretransmission was observed for s2. In general, it is important to either �lter out any sampleassoiated with reordering (e.g., segment 3 whih has a lower sequene number than segment2), or use an estimator, suh as the sum-of-medians, that is robust to the distortion reated bysamples like Ri. Otherwise, OSTTs an be substantially overestimated, as illustrated in Figure5Some implementations send an ACK whenever an out-of-order data segment is reeived, like Segment 2 inthis ase, but this behavior is not mandated by Internet standards. RFC 2581 [APS99℄ only reommends it.118
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this bu�er, TCP endpoints use a �eld in the TCP header to tell eah other about the amountof free spae in this bu�er, and they never send more data than an possibly �t in this bu�er.This mehanism, known as ow ontrol , imposes a limit on the maximum throughput of aTCP onnetion. A sender an never send more data than the amount of free bu�er spae atthe reeiver. We refer to this free spae as the reeiver window size. The TCP header of eahsegment inludes the size of the reeiver window on the sender endpoint at the time the segmentwas sent. This value is often alled the \advertised" window size, and de�ned as a \reeiver-sidelimit on the amount of outstanding (i.e., unaknowledged) data" by RFC 2581 [APS99℄. Thesize of the advertised window shrinks as new data reah the endpoint (sine data are plaed inthe TCP bu�er), and grows when the appliation using the TCP onnetion onsumes thesedata (whih are removed from the TCP bu�er).A TCP onnetion with a maximum reeiver window of W segments6, a maximum segmentsize of S bytes, and a round-trip time of R seonds, an at most send data at W�SR bytes perseond. This peak throughput an be further onstrained by the apaity of the path C, sopeak throughput ismin(W�SR ; C). As we will show, onnetions often use small reeiver windowsizes that signi�antly onstrain performane, i.e., W�SR << C, and this should be taken intoaount during traÆ generation.We an measure the distribution of reeiver window sizes by examining segment headers.As pointed out in [CHC+04b℄, some TCP implementations (e.g., Mirosoft Windows) do notreport their maximum reeiver window size in their �rst segment (i.e., the SYN or SYN-ACK)as one would expet, but do it in their �rst data segment. This is beause some implementationsalloate a small amount of bu�ering (e.g., 4 KB) to new TCP onnetions, but inrease thisamount after onnetion establishment is suessfully ompleted (e.g., inreasing it to 32 KB).In our work, we ompute the maximum reeiver window sizes as the maximum value of theadvertised window size observed in the segments of eah TCP onnetion. This gives us twomaximum reeiver window sizes per onnetion, one for eah endpoint. There is no reason whythe two endpoints must use reeiver windows of equal size.6The advertised reeiver window size is given in bytes in the TCP header. We desribe it here and in setion4.1.1 in terms of segments for onveniene when onsidering the impat of round-trip times.122
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Figure 4.17 shows an alternative view of the distributions of maximum reeiver windowsizes by omputing the probability that eah byte in the traes was arried in a onnetionwith ertain maximum reeiver window size. The plot shows that onnetions with the largestwindow sizes arry many more bytes than those with small sizes. This is likely to be explained bytuning of the TCP endpoint parameters by administrators and server vendors in environmentswith large data transfers.4.1.3 Loss RateTCP reats to loss by retransmitting segments, whih makes TCP a reliable transport pro-tool, and reduing its sending rate, a mehanism known as ongestion ontrol . The redutionin sending rate is implemented using a TCP variable known as the ongestion window sizeG, whih further limits the maximum number of pakets that an be sent by one endpoint.Throughout the lifetime of a TCP onnetion, TCP endpoints are only allowed to have a max-imum of min(G;W ) outstanding (unaknowledged) segments in the network. This limits peakthroughput to min(min(G;W )�SR ; C).The size of the ongestion window is redued every time TCP detets loss, so lossy on-netions have lower throughput than lossless ones. Numerous papers have developed analytialexpressions that onsider the impat of loss on average throughput. These papers make use ofdi�erent analysis tehniques and onsider di�erent models of TCP behavior and loss patterns.However, the simple relationship between loss and rate given in [MSM97℄ is enough to illustratethe basi impat of loss. In general, the average throughput of a TCP onnetion is S�KRpp , whereS is the maximum segment size, K is a onstant equal to q32 , R is the round-trip time and pis the loss rate. Therefore, average throughput is inversely proportional to the square root ofthe loss rate p, and it dereases very quikly as p inreases. Note that the maximum windowsize is not part of this equation, but peak throughput is still limited by W (and by round-triptime), as mentioned above.We de�ne the loss rate of a TCP onnetion as the number of lost segments divided by the124



total number of segments sent, l=s. Assuming segments have an equal probability of loss, theloss rate is equal to the probability of losing an individual segment. Measuring the exat lossrate experiened by a TCP onnetion depends on our ability to ount all segments, inludingthose that may be lost before the monitoring point, and deteting all losses, whih may ourbefore or after the monitoring point. The exat alulation of the loss rate of a onnetion isa very diÆult task. In our work, we make use of two heuristis that should provide a goodapproximation of a onnetion's loss rate. We make no attempt to address the most diÆultand ambiguous ases of loss detetion, whih our experiene leads us to believe are unommon.Our measurement of loss rate from traes of segment headers relies on deteting retransmis-sions and making use of the same indiations of loss that TCP employs. For eah onnetion,we ompute the total number of segments transmitted s as the total number of data segments inthe onnetion. In addition, we ompute the total number of lost segments l using the numberof retransmitted data segments r, and the number of triple dupliate aknowledgment eventsd. We need both numbers r and d, sine they provide omplementary information. Tripledupliates an tell us about losses that our before the monitoring point, whih do not re-ate observable retransmissions. Retransmissions an tell us about losses reovered using theretransmission timer, whih do not reate triple dupliates.Estimating the loss rate p of a TCP onnetion simply as (r + d)=s tends to overestimateloss rate when the monitoring point is loated after the point of loss. In the most ommonsituation, when the loss of a segment in one diretion happens before the monitoring point, thetrae olleted at the monitoring point inludes no retransmission and sends three dupliateaknowledgments in the opposite diretion. These aknowledgments share the same sequenenumber, whih orresponds to the sequene number of the segment that preeded (aordingto TCP's logial data order) the lost segment. However, when the loss happens after themonitoring point, the trae inludes both a retransmission, in the diretion in whih the lossourred, and a triple dupliate aknowledgment event, in the opposite diretion. We antherefore ompute a better estimate of loss rate by ignoring the triple dupliate events whenevera orresponding retransmission is observed. Doing so means that triple dupliates are used to125
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ompare the measured loss rates for two senarios: one where a segment loss probability of 0.01was applied by dummynet only to one diretion of the onnetions, and another one where itwas applied to both diretions. In Figure 4.18, the �rst senario is labeled \unidiretional lossexperiment" and the seond is labeled \bidiretional loss experiment". The mean value of thedata segment loss rate in the unidiretional loss experiment (marked with white triangles) was1%, exatly the intended value. We also observe that 90% of the onnetions experiened lossrates between 0.5% and 1.5%. The bidiretional loss experiment (results marked with whitesquares) illustrates the dependeny between the two diretions of a TCP onnetion. Themean of the CDF is substantially higher for this experiment, and the distribution shows a �xedpositive o�set of 20%. This is beause losses of aknowledgments in one diretion also triggeredretransmissions in the other, inreasing the measured (data segment) loss rate. In other words,loss of aknowledgments inated the estimated loss rates, sine data was not really lost.Our seond observation about Figure 4.18 is that the range of the two distributions is quitewide, showing substantial variability around the target loss rate of 1%. This is partly explainedby the random sampling in dummynet 's implementation of per-ow loss rates. Dummynetdrops segments in an independent manner, by generating a random number between 0 and 1for eah segment, and only dropping a segment if its orresponding random number is between0 and 0.01. This means that even with large ADUs, the drop probability rate experiened bythe onnetion in the testbed experiments was not exatly 0.01.In order to study the impat of this random sampling, we ondut a numerial simulation,and the result is illustrated using the third CDF in Figure 4.18. This distribution omes fromsimulating eah onnetion by sampling a uniform distribution (with a range between 0 and 1)6,850 times (the number of data segments in 10 MB). Eah sample is meant to simulate onesegment that may or may not be lost. If the value of the sample is equal to or greater than0.01, the segment is not ounted as a loss. If the sampled value is less than 0.01, the segmentis ounted as a loss. In this ase, we ontinue to sample the uniform distribution until thevalue obtained is equal to or greater than 0.01. These extra samples are used to simulate thepossibility of losing retransmissions, whih an also be dropped by dummynet with the same127



probability. The result of this sampling proess is two ounts:� the total number of segments s� in the simulated onnetion, whih is the number of timesthat the uniform distribution was sampled, and� the total number of loss events l�, whih is the number of times that the samples fromthe uniform distribution were less than 0.01.The ratio l�=s� is the simulated loss rate p� for one onnetion. We repeated this proess 4,200times, whih was the number of onnetions in the testbed experiments, and onstruted aCDF of the resulting loss rates whih is shown in Figure 4.18. The CDF exhibits substantialvariability around 1%. Therefore, sampling variability partially explains the variability observedin the loss rates that we measured from the testbed experiments. Note that the variability inour lab experiments and in the numerial simulation is tied to the size of the ADU (10 MB in aminimum of 6,850 segments). Inreasing this size would redue the variability of the measuredloss rates in proportion to the square root of the number of segments (a basi probability resultfor sample means). However, our illustration of the sampling variability using 10 MB ADUs isalready onservative, sine most TCP onnetions arry far less data and therefore need fewersegments.The CDF from the numerial simulation provides us with a gold standard for our measure-ments, sine our loss rate estimates should reet the atual drop rates that dummynet imposedto the onnetions in the testbed. Still, further work is need to explain the remaining di�erene,and possibly re�ne our measurement tehnique. In any ase, the experiments serve to on�rmthat our loss rate estimate is reasonably lose to the true loss.The distributions of loss rates in our olletion of real traes is shown in Figure 4.19. Be-tween 92.5% and 96.2% of the onnetions did not experiene any losses, while the remainingonnetions did experiene quite signi�ant loss rates. This is onsistent aross all measuredsites. The result is quite di�erent when the probability is omputed in terms of bytes ratherthan in terms of onnetions, as shown in Figure 4.20. Most bytes were arried in onnetions128
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an losely approximate real traÆ in terms of these network-level metris, as long as soure-level and network-level parameters are inorporated into the traÆ generation method. Thesuess of this approah on�rms that the parameters we have inorporated in our approahare signi�ant, and that the data aquisition methods we propose are suÆiently aurate toahieve high realism in traÆ generation.4.2.1 Aggregate Throughput Time SeriesA basi property of the performane of a network link is the number of bytes and pakets8that traverse the link per unit time. We will all this property aggregate throughput, sine itis the result of multiplexing the throughputs of the individual onnetions that form the traÆarried by a network link. Aurately reproduing aggregate throughput will be an importantpart of our evaluation.Aggregate throughput is generally very variable, so researhers (and pratitioners) usuallystudy the time series of aggregate throughputs in order to understand the dynamis of networktraÆ. Formally, an aggregate throughput time series at sale t is de�ned as a vetor Xt =(Xt1; Xt2; : : : ;Xtn) where Xti is the number of bytes (or pakets) observed at a measurement pointbetween time t(i� 1) and time ti for some onstant interval t. This onstant integral t is alledthe sale of the time series. Xi is often referred to as the i-th bin of the time series, whih issometimes alled a time series of bin ounts.We onsider three ways of studying aggregate throughput time series in this dissertation.First, we make use of plots of aggregate throughput against time, \throughput plots", whihprovide a simple yet informative visualization of the dynamis of the traÆ throughout theentire trae. Seond, we examine the marginal distribution of the time series using a CDF,whih enables us to study the �ne sale harateristis of the throughput proess. These twomethods are desribed in more detail below. While they are useful, they are sensitive to the8In this setion, we will often use the term paket rather than segment. In the ontext of TCP traÆ, a timeseries of pakets per unit time and a time series of segments per unit time are the same thing. However, thetraÆ measurement literature generally talks about paket throughput (not segment throughput), often usingthe unit Kilo paket per seond (Kpps). 130
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Figure 4.21: Breakdown of the bytethroughput time series for Leipzig-II in-bound.
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or no payload9), depending on whether the start and the end of the onnetion were observed(fully or partially aptured onnetions), and whether the onnetion was observed only in onediretion of the link (unidiretional onnetions) or in both. The analysis of abstrat soure-level behavior desribed in Setion 3.5 was used to lassify onnetions into these ategories,and then the original segment header traes were partitioned aording to this lassi�ation.This type of analysis omplements the one performed at the soure-level in Setion 3.5, givingus a sense of the relative importane of sequential and onurrent onnetions. Also, our traÆgeneration will only make use of onnetions that were fully aptured, i.e., fully haraterized,so it is important to understand the importane of the traÆ in the rest of the onnetions (sowe know what we are missing).Figure 4.21 shows that sequential onnetions that were fully aptured aount for the vastmajority of the bytes to Leipzig-II inbound. Sine onnetions observed near the boundariesof the trae are more likely to be observed only partially, the time series shows a muh smallernumber of bytes in the �rst and in the last ten minutes of the trae. On the ontrary, thetime series of partially-aptured sequential onnetions has a muh larger number of bytes inthe �rst and the last ten minutes. This is beause the probability of observing only part of aonnetion inreases as we get loser to the trae boundaries. For this reason, in the �rst tenminutes we see many more onnetions that started before the start of the trae, and in the lastten minutes we see many more onnetions that ended after the end of the trae. We will referto this inreased likelihood of �nding partially-aptured onnetions near trae boundaries asthe onnetion sampling bias.The solid line with white squares in Figure 4.21 shows the time series of fully-apturedsequential onnetion. When we examine the stable region of this time series (i.e., ignoring the�rst and last 10 minutes), we an see substantial variability between the minimum of 22 Mbpsand the maximum of 38 Mbps. The rest of the time series in this plot are far less \bursty".The average throughput of the time series for onurrent onnetions is muh smaller, andpartially-aptured onnetions only aount for a tiny fration of the bytes. The number of9A onnetion without any useful TCP payloads has an empty onnetion vetor sine no ADU is sent.132
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Figure 4.23: Breakdown of the bytethroughput time series for Leipzig-II out-bound.
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Figure 4.25: Breakdown of the bytethroughput time series for Leipzig-II out-bound.
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Figure 4.27: Breakdown of the bytethroughput time series for Abilene-IIpls/Clev.
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Conurrent onnetions in this diretion of the Abilene-I trae show a surprising struture.The number of bytes in onurrent onnetions that were partially-aptured was muh largerthan the number of bytes in onnetions that were fully-aptured. This suggests that onurrentonnetions in this trae tend to have extremely long durations. Both time series are muhsmoother than those for sequential onnetions, and trae boundaries have very little impaton them. Connetions with no payload arried an insigni�ant number of bytes, but, unlikethe Leipzig-II trae, unidiretional traÆ is non-negligible. Rather than some malfuntion ormaliious ativity, this is explained by asymmetri routing in the Abilene bakbone. Only onediretion of these onnetions goes through the measured link, and hene these onnetionsappear in our trae as unidiretional. We also observe two major throughput spikes at the 6thand the 38th minutes that ould also be explained by transient routing hanges, but maliioustraÆ annot be ruled out without further analysis. Both spikes reah throughputs as high as350 Mbps when the time series is examined at the 5-seond sale.The paket throughput time series for the Abilene-I trae shown in Figure 4.28 has a sim-ilar struture, in whih partially-aptured onnetions also aount for a large perentage ofthe trae. It is interesting to note that fully-aptured onurrent onnetions arry a largerperentage of pakets than bytes, so pakets in these onnetions are likely to be small. Wealso observe a third spike in the time series for unidiretional onnetions that did not show upin the byte throughput time series, and a smaller spike in the \no payload" time series.The reverse diretion, Cleveland to Indianapolis, of the Abilene-I trae o�ers a rather di�er-ent view in Figure 4.29. Partially-aptured sequential onnetions are muh less signi�ant inthis ase, although this time series still exhibits remarkable variability. Similarly, the numberof bytes in partially-aptured onurrent onnetions is muh lower in relative terms, and quitelose to the number of bytes in fully-aptured onurrent onnetions. The most striking fea-ture of this plot is the time series of unidiretional onnetions. The byte throughput of theseonnetions shows enormous variability, and even reahes the magnitude of fully-aptured se-quential onnetions. This is either a strong indiation of substantial instability in the routingof the Abilene bakbone, or the existene of ows with extremely high throughput that only136
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Figure 4.29: Breakdown of the bytethroughput time series for Abilene-IClev/Ipls.
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Figure 4.31: Breakdown of the bytethroughput time series for UNC 1 PM in-bound.
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Figure 4.32: Breakdown of the paketthroughput time series for UNC 1 PM in-bound.
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Figure 4.33: Breakdown of the bytethroughput time series for UNC 1 PM out-bound.
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Figure 4.34: Breakdown of the paketthroughput time series for UNC 1 PM out-bound.without any lear boundary e�ets. This is similar to the type of onurrent traÆ found inAbilene-I. Fully-aptured onurrent onnetions show an interesting jump between the 37thand the 39th minutes, and a ouple of spikes around the 45th minute. This ould be explainedby a single onnetion with signi�ant throughput (10 Mbps). Paket throughput time seriesare similar, but we observe a signi�antly higher perentage of pakets in partially-apturedsequential onnetions. As the analysis of the other diretion will suggest, this is due to thepresene of many pure aknowledgment segments.The byte throughput time series for the outbound diretion of UNC 1 PM are shown inFigure 4.33. They are remarkably di�erent from those of the Leipzig-II trae, where throughput138



on the inbound diretion (reated by loal users downloading ontent from the Internet) wasmuh higher than the throughput in the outbound diretion. We observe the opposite here.The mean overall utilization in the outbound diretion is muh higher than the inbound di-retion, 325 Mbps versus 100 Mbps. Also, partially-aptured sequential onnetions are muhmore signi�ant. The obvious explanation is the presene at UNC of ibiblio.org, a popularrepository of software and other ontent. Hosts outside UNC retrieve large amounts of datafrom the ibiblio.org servers, making the load in the outbound diretion of the UNC linkmuh higher than the load on the inbound link. Furthermore, ibiblio.org lients often down-load large objets, and this requires long onnetions that are more likely to be only partiallyaptured. This provides a good explanation for the extreme boundary e�ets in the �rst andlast 10 minutes of the throughput time series. The high throughput in the stable region of thistime series ould be due to long onnetions that arry large amounts of data, although furtheranalysis is needed to verify this laim.Conurrent traÆ in the outbound diretion appears similar to the inbound diretion, show-ing remarkable load symmetry for partially-aptured onurrent onnetions. We do not ob-serve muh variation in the time series for paket throughput (shown in Figure 4.34). Partially-aptured sequential onnetions arried a smaller number of pakets than bytes, and this agreeswith the idea that large numbers of bytes are downloaded from ibiblio.org. These downloadsshow up as large data pakets in the outbound diretion and small aknowledgment paketsin the inbound diretion. In the most ommon ase, a full TCP segment has a size of 1500bytes, while an empty one (no payload) is only 40 bytes. This means that the ratio of bytesin a onnetion arrying a large �le is 1500:40. Furthermore, sine most TCP implementationsaknowledge only every other data segment, we have a ratio of 3000:40 for bytes and a ratio of2:1 for pakets. A link that is dominated by large �le downloads should show similar byte andpaket ratios. If large �le downloads from ibiblio.org were the only ause of the large frationof bytes in partially aptured onnetion, then we would expet similar ratios between the twodiretions of the UNC link. However, this is not so lear in Figures 4.31 to 4.34, suggestingthat phenomena other than ibiblio.org also ontribute to making UNC a soure rather than
139
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Figure 4.39: Byte throughput marginals of UNC 1 PM outbound, its normal distribution�t, the marginal distribution of its Poisson arrival �t, and the normal distribution �t ofthis Poisson arrival �t.the marginals are partiularly useful for omparing multiple distributions, and we will use themextensively in Chapter 6.As stated before, our goal with the analysis of marginal distributions is to understand �ne-sale harateristis of throughput. We will use this type of analysis to determine whether ourproposed traÆ generation method results in syntheti traÆ whose distribution of �ne-salethroughputs is \realisti". By onstrution, and as explained in Chapter 5, the determinationof this realism is aomplished by diretly omparing the marginal distributions of an originaltrae and its syntheti version. This non-parametri analysis is onsistent with other methodsused in this dissertation.We have also onsidered doing some parametri analysis of the marginal distributions ofthroughput time series. When modeling an arrival proess, the �rst approah that omes tomind is the Poisson modeling framework. Poisson arrivals are very onvenient from an analytialperspetive, and onisely desribe an arrival proess using a single parameter. As pointed outby Floyd and Paxson [PF95℄, empirial studies do not support the use of this model, primarilybeause Poisson arrivals are far less \bursty" than Internet paket and byte arrivals. Thisimportant issue is disussed in the next setion. In addition, we show here that Poisson arrivalshave marginal distributions that are very far from the ones in our traes.Given a throughput time series, we an �t a Poisson arrival model simply by omputing the143
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Figure 4.40: Paket throughput marginals of UNC 1 PM outbound, its normal distribution�t, the marginal distribution of its Poisson arrival �t, and the normal distribution �t ofthis Poisson arrival �t.mean of the time series and using it as the rate of the Poisson model. From this �tted model, wean easily obtain a marginal distribution using Monte Carlo simulation. Figure 4.37 shows themarginal distribution of byte throughput in the inbound diretion of the Leipzig-II trae, andthe marginal distribution of the Poisson �t of this throughput proess (depited using a dashedline with white triangles). Both marginal distributions have the same mean, 39.24 Kilobytesper 10-milliseond interval. As shown in the �gure, the two marginals are very di�erent, withthe Poisson �t exhibiting a far narrower body. The standard deviation of the Poisson model isonly 6.25, while the one for the real marginal distribution is 15.13, more than twie as large. Inaddition, the tail of the marginal distribution from Poisson arrivals is far lighter than the onefrom the trae. Intuitively, this means that the real traÆ is far more aggressive on the network,onsistently reahing far higher throughput values. Poisson arrivals are equally inadequate formodeling paket arrivals, at least in terms of their marginal distributions, as shown in Figure4.38. Figures 4.39 and 4.40 repeat the same analysis for the outbound diretion of UNC 1PM. The plots on�rm the poor �t from the Poisson arrival model, even for a trae with athroughput that is eight times higher. The same is true for every other trae examined in thisdissertation.The empirial results in Fraleigh et al. [FTD03℄ and the analysis in Appenzeller et al.[AKM04℄ support the idea that throughput values are normally distributed in Internet traÆ,as long as suÆient traÆ aggregation exists. If this were true, studying (and omparing)144



marginal distributions of throughput ould easily be aomplished by looking at means andvarianes. Our analysis of the throughput marginals in our traes shows that they do resemblea normal distribution, but that this model is not ompletely satisfatory.We an easily �t a normal model to the marginal distributions from our traes by omput-ing their means and standard deviations. Figures 4.37, 4.38, 4.39 and 4.40 ompare the realmarginals and their �ts, onsistently showing the following two di�erenes:� The bodies of the marginal distributions from the real traes appear somewhat narrower.The di�erene is slightly larger for paket throughput in the Leipzig-II trae.� The tails of the marginal distributions from the real traes are substantially heavier. Thelargest values for the Leipzig-II traes are 75% larger, while those for the UNC 1 PMtrae are 20-25% larger.These deviations are present in every one of our traes, showing that throughput marginaldistributions deviate from the normal distribution systematially.The deviation from normality of the empirial marginal distributions is statistially signif-iant. First, every marginal distribution from the traes fails the Kolmogorov-Smirnov testof normality [NIS06℄. Seond, every Quantile-Quantile (Q-Q) plot [NIS06℄ shows a lear de-parture from normality. This is true not only for the 10-milliseond time-sale, but also forthe 100-milliseond, the 1-seond time series, and even for the 10-seond time series in someases. We illustrate this type of analysis again using the throughput marginals of Leipzig-IIinbound and UNC 1 PM outbound. The plots in Figures 4.41 and 4.42 show Q-Q plots fordi�erent time-sales, where the quantiles of the data and the theoretial normal distributionare ompared using a thik line with white dots. If the data were normally distributed, theQ-Q line would losely follow the the dashed 45 degree line. This is learly not the ase, butthe Q-Q plot does not provide any sense of statistial signi�ane. To address this de�ieny,the plots also show simulation envelopes, depited using thin, dark-gray lines, following themethodology in Hern�andez-Campos et al. [HCMSS04℄. They are easiest to see in the 10-seond145
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Figure 4.42: Quantile-quantile plots with simulation envelops for the marginal distributionof UNC 1 PM outbound. The top four plots show byte throughput, while the four bottomplots show paket throughput. 147



time series, the ones with the least over-plotting. Eah line in the envelope orresponds toa distribution onstruted by sampling the theoretial normal distribution as many times asvalues were present in the empirial marginal distribution. The envelope therefore aptures thenatural variability of the normal distribution for the given sample size. If the Q-Q line om-paring the empirial marginal and the theoretial normal distribution is outside this envelope,the deviation from normality is onsidered statistially signi�ant. This is learly the ase forevery marginal distribution in the plots, exept the ones at the 10-seond sale of Leipzig-IIinbound.The plots in Figures 4.41 and 4.42 also show the results of the Kolmogorov-Smirnov test(K-S), a formal test of normality. The third line in the inside legend, below the sample mean� and the standard deviation �, shows the result of the formal test. The null hypothesis (non-normality) an only be rejeted for the marginals of the Leipzig-II throughput at the 10-seondtime-sale. The plots show a H0 = 0 when the null hypothesis an be rejeted, and a H0 = 1when it annot be rejeted. Given these results, assuming normality to study the marginals ofour traes (and those of their syntheti versions) is of dubious value. We will restrit ourselvesto omparative plots of CDFs and CCDFs for omparing throughput marginals.Note that we are not arguing that our �nding of pervasive deviations from normality inval-idates earlier studies based on the assumption of normality in throughput marginals. From ouranalysis, the bodies of the marginals are lose enough to the normal distribution that assumingnormality an provide a useful simpli�ation. As long as signi�ant deviations from normalityin the tails have little or no e�et on the reasoning, assuming normality makes analytial studiesmore treatable and even more intuitive.Our �nding of non-normality in our traes is onsistent with the observation by Sarvothamet al. [SRB01℄. These authors demonstrated that deviations of the throughput marginal fromnormality an be explained by the presene of an alpha omponent in Internet traÆ. AlphatraÆ is omposed of onnetion with high throughputs that transfer large amounts of data.In ontrast, onnetions with moderate or low throughputs and onnetions with moderateor small amounts of data to transfer are onsidered beta traÆ, whose throughput marginal148



is normally distributed. Intuitively, a traÆ generation method should be able to reprodueboth the alpha and the beta omponents of Internet traÆ. Sarvotham et al. also proposedto onsider traÆ bursty when its throughput marginal deviates from normality. This is analternative (and omplementary) view of traÆ burstiness, whih is more ommonly assoiatedwith long-range dependene in the arrival proess, as we will disuss next.4.2.3 Throughput Self-Similarity and Long-Range DependeneA remarkable harateristi of Internet traÆ is its high variability in throughput arossa wide range of time sales, and how that variability hanges as sale inreases. If we plotthe number of pakets or bytes that arrive at a network link, say every 1 or 10 milliseonds,we observe a highly variable proess where the number of arrivals is onstantly hanging. Ifwe plot these arrivals at a oarser sale, say every 100 milliseonds or 1 seond, this highvariability does not derease signi�antly. In ontrast, Poisson arrivals exhibit a rapid dereasein variability as we inrease the sale of the time series. For this reason, it is often said thatInternet traÆ has a \very bursty" arrival proess, far more variable than that of all arrivalsin a phone network. Starting with the work of Leland et al. [LTWW93℄, traÆ burstiness hasusually been haraterized using the theoretial framework of statistially self-similar proesses.This framework provides some powerful methods to study traÆ burstiness and quantify itsstrength.The motivation behind the study of traÆ burstiness is the observation that an inrease inthe burstiness of traÆ results in a more demanding network workload. For example, Erramilliet al. [ENW96℄ demonstrated that router queues exhibit dramatially heavier distributionsof queue lengths as the burstiness of the input paket arrival proess inreases. Numerousmeasurement studies, e.g., [WTSW97, ZRMD03, PHCMS05, PHCL+℄, have examined InternettraÆ and onsistently observed highly bursty arrivals that appear self-similar for sales betweena few milliseonds and tens of seonds. It is therefore expeted that representative synthetitraÆ reprodues this high burstiness. In this dissertation, we employ well-known methodsto assess the self-similarity of real and syntheti traÆ, and verify that our traÆ generation149



methods an reprodue the level of burstiness in Internet traÆ.The term self-similarity omes from the study of fratal objets. Fratals are geometrialonstruts that appear similar a di�erent sales. The most famous example of fratal is theMandelbrot set, whose ardioid shape repeats itself as we zoom into the set. In this fashion,a seond-order self-similar time series shows a similar pattern of variation at di�erent time-sales. For this reason, self-similarity is also known as sale-invariane. Some authors talkabout \traÆ saling" or simply \saling" to refer to the observed self-similarity in networktraÆ.Quantitatively, the hange in the arrival variane for a self-similar time series of bin ountsXt is proportional to t2H�2, where t � 1 represents sale as the aggregation of arrival ounts,and H is known as the Hurst parameter. For example, the variane in bin ounts in a Poissonproess is proportional to 1H = t2( 12 )�2. That is, a Poisson arrival proess has H = 0:5. Astationary, long-range dependent proess has 0:5 < H < 1. The loser the value of the Hurstparameter is to 1, the slower the variane deays as sale (t) inreases, and the traÆ is said to beinreasingly more bursty (than Poisson arrivals). The slow deay of the arrival variane in self-similar traÆ, as sale inreases, is in sharp ontrast to the mathematial framework providedby Poisson modeling, in whih the variane of the arrivals proess deays as the square root ofthe sale (see [LTWW93, PF95℄). This quantitative haraterization of self-similarity providesus with the right framework to ompare real and syntheti traÆ, assessing the validity of thetraÆ generation proess in terms of the burstiness of the paket/byte arrival proess.Self-similarity also manifests itself as Long-Range Dependene13 (LRD) in the time seriesof arrivals. This means that there are non-negligible orrelations between the arrival ountsin bins that are far apart. A ommon way of studying these orrelations is to ompute theautoorrelation �(k) of a time series, where k is the autoorrelation lag. The autoorrelationat lag k, �(k) = Pn�ki=1 (Xti �X t)(Xti+k �Xt)Pni=1(Xti �Xt)2 ;13Long-range dependene is sometimes referred to as long memory.150



is the orrelation between a time series and a shifted version of itself, where the i-th value in theoriginal time series beomes the i + k-th value in the shifted time series. The autoorrelationfuntion �(k) of a long-range dependent time series deays in proportion to k�� as the lag ktends to in�nity, where 0 < � < 1. The Hurst parameter is related to � via H = 1��=2, so theloser the value of the Hurst parameter is to 1, the more slowly the autoorrelation funtiondeays. In ontrast, Poisson proesses are short-range dependent, i.e., their autoorrelationdeays exponentially as the lag inreases.The onepts and de�nitions of self-similarity and LRD assume that the time series ofarrivals is seond-order stationary (also alled weakly stationary). Loosely speaking, this meansthat the variane of the time series (and more generally, its ovariane struture) does not hangeover time, and that its mean is onstant (so the time series an always be transformed into azero-mean stohasti proess by simply subtrating the mean). The intuitive interpretationof this onept is that the time series should not experiene any major hange in variane,whih would be assoiated with a fundamental hange in the nature of the studied proess. Forexample, a link usually used by 1,000 hosts that suddenly beomes used by 10,000 hosts (e.g.,due to a \ash rowd") would show a massive throughput inrease, and muh higher variane,whih would make it non-stationary. These types of major hanges are outside the sope ofLRD analysis. They represent a oarse-sale feature of the time series whih should be studiedusing other methods (e.g., trend analysis using SiZer [CM99℄).TraÆ is ertainly not seond-order stationary at the sales at whih time-of-day e�ets areimportant. For example, a 24-hour trae is usually non-stationary due to the sharp dereasein network utilization at night. The number of soures at night is far smaller, whih dereasesvariane, violating the seond-order stationarity assumption. Trying to estimate the Hurstparameter of a 24-hour trae that exhibits a time-of-day e�et results in a meaningless number.In our traÆ generation work, we will estimate Hurst parameters (and other measures of self-similarity) for traes that are seond-order stationary. Our traes have moderate durations,between 1 and 4 hours, whih greatly diminishes the impat of time-of-day variations. We alsoarefully examined the paket and byte arrival time series of our traes and found no evidene151



of sharp hanges that ould be assoiated with seond-order non-stationary.Estimation of Hurst parameters is not a trivial exerise. Besides ensuring that no signi�antseond-order non-stationarity is present in the data, ommon estimation methods are verysensitive to outliers and trends in the data, as pointed out by Park et al. [PHCL+℄. ThesediÆulties motivate some preproessing of the studied time series (e.g., detrending) or to employrobust methods. In this dissertation, we will make use of wavelet analysis to study the salingproperties of real and syntheti traÆ. We will follow the analysis method of Abry and Veith[AV98℄ and make use of their Matlab implementation of the method. In general, we willompute what is alled the wavelet spetrum of the time series of paket and byte ounts in10 milliseond intervals. This is also referred to as the logsale diagram in some works14. Thewavelet spetrum provides a visualization of the sale-dependent variability in the data (seeFigure 4.43 for an example). Briey, a logsale diagram plots the logarithm of the (estimated)variane of the Daubehies wavelet oeÆients, the energy , as a funtion of the logarithm of thesale j = log2(t), where t is the time sale and j is known as the otave. The Daubehies waveletoeÆients ome from a deomposition of the time series in terms of the Daubehies waveletbasis, whih is a olletion of shifted and dilated versions of a mother Daubehies wavelet (afuntion) [Wal99℄. Intuitively, this deomposition is similar to the Fourier transform, whihdeomposes a time series in terms of sinusoidal funtions. The wavelet transform also performsa deomposition but it uses a ompat support, so it an represent loalized features (sinusoidalfuntions have in�nite support). Besides this property, the bene�t of the wavelet transform isits robustness to trends in the data, whih an easily onfuse other types of analysis, suh asthe variane-time plot [LTWW93℄. Wavelet analysis is robust to moderate non-stationarities.For proesses that are long-range dependent, the wavelet spetrum exhibits an approxi-mately linear relationship with a positive slope between energy and otave. For Internet traÆ,the region where this linear sale relationship begins is generally on the order of a few hundredmilliseonds (4th to 6th otave for 10-milliseonds time series). An estimate of the Hurst pa-14The rationale for hoosing the term \logsale diagram" an be onfusing, sine it is appliable to any kindof plot in whih one or more axes show a logarithmi transformation of the data. The term \wavelet spetrum"is more spei� and seems more appropriate and has beome the standard in the literature.152
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Figure 4.46: Wavelet spetra of the bytethroughput time series for Abilene-I.40-milliseond sale. The same dyadi aggregation is used for every suessive sale, so otave12 represents the energy at the 10 milliseonds times 212 sale, i.e., at the 40.96-seond bins.To make the plot more readable, we added labels on top of the plot with the sale given inseonds. Due to the nature of the wavelet basis, the exponential deay of the autoorrelationin a short-range dependent proess results in a wavelet spetrum with a slope of zero. On theontrary, the deay in a long-range dependent proess is slower than exponential, and resultsin a wavelet spetrum with a positive slope. The wavelet spetrum of Leipzig-II has a positiveslope that indiates long-range dependene, while the syntheti Poisson time series does notshow suh a trend (it is short-range dependent). Note also that the height of the urves is ratherdi�erent. This is beause the overall variane of the Poisson arrivals is smaller. The standarddeviation of the aggregate paket throughput time series was 12.96 while that of the synthetiPoisson arrivals was 6.23. The estimated Hurst parameters were 0.940 (with on�dene interval[0.931,0.949℄) for the Leipzig-II trae and 0.496 (with on�dene interval [0.487, 0.505℄) for thesyntheti Poisson arrivals.The same qualitative results hold for byte arrivals, as illustrated in Figure 4.44. Here themean number of bytes per 10-milliseond bin for Leipzig was 34,400, and the standard deviationof the trae was 14,000, while the standard deviation of the syntheti Poisson arrivals was only188. The estimated Hurst parameters were 0.941 (with on�dene interval [0.932,0.950℄) for154
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Figure 4.48: Wavelet spetra of the bytethroughput time series for UNC 1 PM.Leipzig-II and 0.496 (with on�dene interval [0.487, 0.505℄) for the syntheti Poisson arrivals.Figure 4.45 shows the wavelet spetrum of the paket throughput time series for Abilene-I (inthe two diretions: Indianapolis to Cleveland and Cleveland to Indianapolis). While the overallimpression is similar to that of the previous �gures, we �nd a hange in slope after the 11thotave. Note that both diretions exhibit similar long-range dependene. The estimated Hurstparameters were quite high: 1.016 (on�dene interval [1.005, 1.027℄) for the Indianapolis toCleveland trae, and 1.009 (on�dene interval [0.998, 1.019℄) for the opposite diretion. Bytethroughput for the same trae shown in Figure 4.46 is qualitatively similar. The estimatedHurst parameters were 1.169 (on�dene interval [1.158, 1.180℄) and 1.046 (on�dene interval[1.035, 1.057℄). Both are signi�antly above 1, so some non-stationarity is present in the trae.Another example of this type of analysis is given in Figures 4.47 and 4.48. For UNC 1PM, these diagrams show a large separation between the two diretions, that translates intosigni�antly di�erent Hurst parameters. The entire set of Hurst parameters for the traesonsidered in this dissertation is shown in Tables 4.1 and 4.2.
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Trae Estimated ParametersLeipzig-I Inbound H=0.940356 C.I.=[0.931459, 0.949254℄Leipzig-I Outbound H=0.968425 C.I.=[0.959527, 0.977322℄Abilene-I Ipls/Clev H=1.016014 C.I.=[1.005242, 1.026786℄Abilene-I Clev/Ipls H=1.008771 C.I.=[0.998000, 1.019543℄UNC 1 PM Outbound H=0.890024 C.I.=[0.872508, 0.907541℄UNC 1 PM Inbound H=0.926588 C.I.=[0.909072, 0.944105℄UNC 1 AM Outbound H=0.906053 C.I.=[0.888537, 0.923569℄UNC 1 AM Inbound H=0.932574 C.I.=[0.915058, 0.950091℄UNC 7:30 PM Outbound H=1.001424 C.I.=[0.983908, 1.018940℄UNC 7:30 PM Inbound H=0.981452 C.I.=[0.963935, 0.998968℄Table 4.1: Estimated Hurst parameters and their on�dene intervals for the paketthroughput time series of �ve traes.
Trae Estimated ParametersLeipzig-I Inbound H=0.941176 C.I.=[0.932278, 0.950073℄Leipzig-I Outbound H=1.019947 C.I.=[1.011049, 1.028844℄Abilene-I Ipls/Clev H=1.169007 C.I.=[1.158236, 1.179779℄Abilene-I Clev/Ipls H=1.045921 C.I.=[1.035149, 1.056692℄UNC 1 PM Outbound H=0.820944 C.I.=[0.803428, 0.838460℄UNC 1 PM Inbound H=0.925690 C.I.=[0.908174, 0.943206℄UNC 1 AM Outbound H=0.906226 C.I.=[0.888710, 0.923742℄UNC 1 AM Inbound H=0.957370 C.I.=[0.939854, 0.974887℄UNC 7:30 PM Outbound H=0.963306 C.I.=[0.945789, 0.980822℄UNC 7:30 PM Inbound H=0.970991 C.I.=[0.953474, 0.988507℄Table 4.2: Estimated Hurst parameters and their on�dene intervals for the byte through-put time series of �ve traes.

156



0

1000

2000

3000

4000

5000

6000

7000

0 20 40 60 80 100 120 140 160

N
u

m
b

er
 o

f 
A

ct
iv

e 
C

o
n

n
ec

ti
o

n
s

Time in Minutes

Seq (Full)
Seq (Partial)

Conc (Full)
Conc (Partial)Figure 4.49: Breakdown of the ative on-netions time series for Leipzig-II.

0

1000

2000

3000

4000

5000

6000

7000

0 20 40 60 80 100 120 140 160

N
u

m
b

er
 o

f 
A

ct
iv

e 
C

o
n

n
ec

ti
o

n
s

Time in Minutes

Seq (Full) -- Entire
Seq (Full) -- Data

Conc (Full) -- Entire
Conc (Full) -- DataFigure 4.50: Impat of the de�nition of a-tive onnetion on Leipzig-II.4.2.4 Time Series of Ative ConnetionsAnother important metri for desribing the workload of a network is the number of on-netions that are simultaneously ative. The feasibility of deploying mehanisms that mustmaintain some amount of state for eah onnetion is highly dependent on this metri. Forexample, stateful �rewalls an seletively admit pakets belonging to onnetions started froma proteted network, and not those pakets from onnetions that originated somewhere elseon the Internet. This kind of �ltering requires to maintain state for every onnetion observedin the reent past. Similarly, network monitoring equipment often reports on the number ofonnetions and their aggregate harateristis, and tries to identify heavy-hitters that onsumelarge amounts of bandwidth. This also requires per-onnetion state. A good example of thistype of monitoring is Ciso's NetFlow [Cor06℄. The performane of other mehanisms, suh asroute ahing, may also be a�eted by the number of ative onnetions. Evaluating these typesof mehanisms and their resoure onsumption requirements an only be aomplished usingsyntheti traÆ that is realisti in terms of the number of onnetions that are simultaneouslyative.One important diÆulty when analyzing the time series of ative onnetions is the wayonnetion start and end times are de�ned. The most obvious way to de�ne onnetion startand end times is to onsider the �rst and the last segment of a onnetion as the boundaries157



0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 20 40 60 80 100 120

N
u

m
b

er
 o

f 
A

ct
iv

e 
C

o
n

n
ec

ti
o

n
s

Time in Minutes

Seq (Full)
Seq (Partial)

Conc (Full)
Conc (Partial)Figure 4.51: Breakdown of the ative on-netions time series for Abilene-I.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 20 40 60 80 100 120

N
u

m
b

er
 o

f 
A

ct
iv

e 
C

o
n

n
ec

ti
o

n
s

Time in Minutes

Seq (Full) -- Entire
Seq (Full) -- Data

Seq (Partial) -- Entire
Seq (Partial) -- DataFigure 4.52: Impat of the de�nition of a-tive onnetion on Abilene-I.of the onnetion. Figure 4.49 shows the time series of ative onnetions in 1-seond intervalsusing this tehnique for the Leipzig-II trae. As in the throughput time series in Figures 4.21and 4.22, the number of ative onnetions from fully-aptured sequential onnetions is muhlarger than the number of ative onnetions for the other types of onnetions.As the fous of our work is on the e�et of soure-level behavior, we an also use analternative de�nition in whih a onnetion is onsidered ative as soon as it sends the �rstdata segment, and inative as soon as it sends the last data segment. Interestingly, thesetwo de�nitions result in quite di�erent time series. Figure 4.50 ompares the time series forfully-aptured sequential and onurrent onnetions (the time series for partially-apturedonnetions hanged very little). The average number of ative onnetions is muh smallerwhen only the data exhange portion of TCP onnetions is onsidered. The main ause ofthis di�erene is the presene of signi�ant quiet times between the last ADU and onnetiontermination. Figure 3.28 in the previous hapter showed the distribution of this quiet time. Insome ases, we also observe quiet time between onnetion establishment and the �rst ADU.The duration of onnetion establishment and onnetion termination is generally very short(around two round-trip times), but we have observed numerous ases in whih losses and TCPimplementation problems17 lengthened them substantially. We believe the seond de�nition,onsidering only duration between data segments, is more useful for studying the realism of17For example, some implementations send several reset segment after a lossy onnetion termination, andthese segments are often separated by long period of inativity.158



0

2000

4000

6000

8000

10000

12000

14000

0 10 20 30 40 50 60

N
u

m
b

er
 o

f 
A

ct
iv

e 
C

o
n

n
ec

ti
o

n
s

Time in Minutes

Seq (Full) -- Entire
Seq (Full) -- Data

Seq (Partial) -- Entire
Seq (Partial) -- Data

Conc (Full) -- Entire
Conc (Full) -- Data

Conc (Partial) -- Entire
Conc (Partial) -- DataFigure 4.53: Breakdown of ative onne-tions time series for UNC 1 PM using bothde�nitions of ative onnetion.

0

2000

4000

6000

8000

10000

12000

14000

0 10 20 30 40 50 60

N
u

m
b

er
 o

f 
A

ct
iv

e 
C

o
n

n
ec

ti
o

n
s

Time in Minutes

1 PM Seq Full
7:30 PM Seq Full

1 AM Seq Full

1 PM Seq Part
7:30 PM Seq Part

1 AM Seq PartFigure 4.54: Impat of the time-of-day onthe ative onnetions time series for thethree UNC traes.syntheti traÆ, sine onnetion establishment and termination reate very little network loadwhen ompared to the atual exhanges of data. Furthermore, ongestion ontrol plays littlerole when no data is being exhanged. We will use this seond de�nition of ative onnetionin the rest of this work.The breakdown of the ative onnetion time series for Abilene-I is shown in Figure 4.51.Partially-aptured sequential onnetions are far more signi�ant for this trae, reahing 2/3of the average number of fully aptured sequential onnetions. We also note that the timeseries exhibits surprisingly small variability exept for a few very small spikes in the middle.Finally, and in ontrast to the breakdown of byte throughput for Abilene-I, the number of ativeonnetions from partially-aptured onurrent onnetions is less than half of the number ofative onnetions from partially-aptured sequential onnetions.Figure 4.52 illustrates the impat of the de�nition of ative onnetion. The time seriesfrom both fully- and partially-aptured sequential onnetions derease onsiderably when onlythe data exhange part of the onnetion is onsidered. Note also that the spikes in the timeseries of partially-aptured onnetions are not a�eted by the hange in the de�nition. This isinteresting when we observe that the magnitude of the variability of the other time series didderease signi�antly.The largest number of ative onnetions was found in UNC 1 PM as shown in Figure 4.53.159



This is surprising given that Abilene-I arries more bytes and pakets, and should be explainedby the di�erenes in the mix of appliations that drives the traÆ in these two links. The plotsshows that fully- and partially-aptured sequential onnetions are a�eted in a very di�erentway by the de�nitions of ative onnetions. While the number of ative onnetions for fully-aptured sequential onnetions dereases very signi�antly, the number for partially-apturedones is almost the same. This an be explained by long onnetions that were ative throughoutthe entire duration of the trae.Finally, Figure 4.54 studies the impat of the time of the day on the time series of ativeonnetions for sequential onnetions. The number of fully-aptured sequential onnetionsis more sensitive to the de�nition of ative onnetion than the number of partially-apturedsequential onnetions.4.3 SummaryThe �rst part of this hapter presented our approah for introduing realisti network-level parameters in our traÆ generation methodology. In partiular, we onsidered how tomeasure three basi network parameters that have a major impat on the throughput of aTCP onnetion: round-trip time, reeiver window size, and loss rate. As in our analysis ofsoure-level behavior, we foused on the eÆient analysis of segment headers for extratingthese network parameters, and evaluated the auray of our hosen measurement methodsusing testbed experiments.Our disussion on measuring round-trip time onsidered the lassi SYN estimator, andproposed a novel tehnique based on omputing one-side transit times (OSTTs). Our tehniquehas two main advantages. First, it is appliable to onnetions observed both on the edges andon the ore of the network. In either ase, it provides us with a way to measure the distane,in terms of network delay, between the monitoring point and the end hosts taking part ineah onnetion. Seond, OSTT-based estimation provides a number of samples proportionalto the number of data segments on a TCP onnetion, unlike the single sample that an be160



obtained using the SYN estimator. This provides a better way to understand the inherentvariability in round-trip times. It also served us to study the impat of delayed aknowledgmentson path round-trip time estimation from segment headers. We learly showed that delayedaknowledgments substantially inate estimates of round-trip time that rely on non-robuststatistis like averages and maxima. For this reason, we favor the use of minima or mediansto estimate path round-trip time, whih were proved to be highly aurate in our testbedexperiments.We also studied the empirial distributions of round-trip times in our olletion of �vetraes. We an highlight several observations. The edge traes from UNC and Leipzig showedbetween 20% and 35% of onnetions with very short round-trip times below 20 milliseonds.In ontrast, the bakbone trae from Abilene showed less than 1% of onnetions with thesesmall round-trip times. Our analysis of the total number of bytes arried in onnetions with agiven round-trip time revealed that Leipzig-II had a far larger fration of bytes (10%) arriedin onnetions with round-trip times above 500 milliseonds. The distributions of round-triptimes did not only di�er substantially on their range, but also on their shapes, even among thoseolleted on the same site. For example, the UNC 1 PM trae showed only 15% of onnetionswith round-trip times above 100 milliseonds, while this perentage beame 25% and 38% forUNC 7:30 PM and 1 AM respetively.The seond parameter we onsidered is the maximum size of the reeiver window, whih, inombination with the round-trip time, puts a hard limit on the maximum throughput of a TCPonnetion. This parameter is straight-forward to measure, sine eah TCP segment ontainsa �eld with the size of the reeiver window at the time of its sending. Taking the maximumof the observed reeiver windows provides an aurate way of measuring the largest reeiverwindow supported by an endpoint, even for onnetions that grow their limit some time afterthe onnetion is opened. We used this tehnique to study the distribution of maximum reeiverwindow sizes in our traes, and found a large fration of onnetions with a small maximum.Between 45% and 65% of the onnetions had maximum reeiver window sizes below 20 KB,whih is well below the 64 KB limit. 161



The last network parameter that we studied was the segment loss rate. Loss has a substantialimpat on TCP onnetions. First, losses fore the endpoints to retransmit segments to maintaina reliable ommuniation. Seond, TCP endpoints use losses as the signal of ongestion, andreat to them by lowering their sending rate. For these two reasons, even a small numberof losses an have a dramati e�et on a TCP onnetion. Measuring loss rates purely fromsegment headers must neessarily be based on the same mehanisms used by TCP endpointto detet losses: retransmissions and dupliate aknowledgments. We proposed a tehnique tomeasure the loss rate of data segments using these signals, where di�erentiating between lossesbefore the monitoring point, deteted using dupliate aknowledgments, and losses after themonitoring point, deteted using retransmissions. Our evaluation using testbed experimentsshowed that our tehnique is reasonably aurate. The experiments also illustrate the impatof lost aknowledgments, whih inrease data segment loss rates, and variability introdued bysimulating losses using dummynet 's dropping mehanism. We also studied the loss rates in ourtraes, and found that between 92.5% and 96.2% of the TCP onnetions experiened no losses.However, onnetions with one or more losses aounted for 46% (Leipzig-II) to 78% (UNC 1AM) of the total bytes in traes, and onnetions with loss rates above 1% (i.e., moderatelyhigh) aounted for 8% (Abilene-I) to 34% (UNC 1 AM) of the total bytes.The seond part of this hapter desribed our approah for omparing real and synthetitraÆ using several network-level metris. The goal of suh a omparison is to evaluate howlosely syntheti traÆ generated on a losed-loop manner an reprodue the aggregate hara-teristis of real traÆ. This type of omparison onerns itself with the extrinsi harateristisof the generated traÆ, whih were not a diret input to the traÆ generators. On the on-trary, evaluating how well soure-level properties and network-level parameters are preservedby our traÆ generation method and its implementation fouses on intrinsi harateristi ofthe generated traÆ, whih are the input to the traÆ generation system. We �rst disussedhow to study the time series of paket and byte throughputs, using plots of time series at aoarse sale, tens of seonds. This broad view was speially useful to identify major trends andfeatures in the traÆ. We used this approah to study the omposition of our traes, �nding
162



that sequential onnetions are mostly responsible for the features of the time series, being theaggregate throughput for onurrent onnetions generally smooth. We further di�erentiatebetween traÆ from onnetions for whih we observed every paket between TCP onnetionestablishment and termination, unovering substantial boundary e�ets in the UNC traes andto some extent in the Abilene-I trae. We also showed that the fration of the total throughputfrom unidiretional onnetions is generally negligible. The only exeption is Abilene-I, whererouting asymmetries explain the �nding that 1/4 of total Cleveland-to-Indianapolis bytes werearried in onnetions whose pakets appear in only one diretion of the trae.The seond way in whih we proposed to examine throughput was to onstrut the marginaldistributions of the time series at a �ne-sale (10 milliseonds). While marginals ignore depen-deny struture, their interpretation in networking terms is intuitive. Plots of the body of themarginal distribution provide an overview of the range of �ne-sale throughputs in a trae,while plots of the tail of the marginal distribution make the highest (�ne-sale) throughputsstand out. The analysis of our traes showed that Poisson arrivals annot be used to modelneither paket or byte throughputs. The bodies of the marginal distributions from our traesare between 2 and 3 times more variable that the ones from Poisson arrivals with the samemean. We also showed that the marginal distributions from our traes have statistially signi�-ant departures from normality, whih are most prominent on the tails. This was demonstratedusing two methods, Q-Q plots with simulation envelopes and the Kolmogorov-Smirnov test ofnormality. Both methods were applied to sales of aggregation between 10 milliseonds and 10seonds. While the distributions beame loser to normality as sale inreased, only a few ofthem were statistially onsistent with the normal distribution at the 10 seond sale. For thisreason, our analysis of marginal distribution will rely on CDFs of the bodies and CCDFs of thetails, rather than making assumptions about the underlying statistial distribution.Our third type of analysis of throughput foused on the long-range dependene of traÆ. Weemploy the wavelet analysis for this purpose, whih has been shown to be robust and aurate inthe literature. This method provides both an overview of the way in whih variability hangeswith sale using wavelet spetra plots, and a state-of-the-art estimator of Hurst parameter163



with on�dene intervals. Our disussion illustrated how learly wavelet spetra and Hurstparameter estimates di�erentiate between the short-range dependene in Poisson arrivals andthe long-range dependene in our traes. Our traes show remarkably high Hurst parameterestimates, well above 0.9 for both paket and byte throughput.Finally, the hapter introdued the plot of the time series of ative onnetions. This typeof analysis is essential to validate the realism of traÆ generation for ertain experiments whereper-onnetion state is important. Our analysis onsidered two de�nitions of ative onnetions:a onnetion was onsidered ative between the arrivals of its �rst and last segments, or betweenthe arrivals of its �rst and last segments that arried appliation data, i.e., not ontrol segments.We demonstrated that these two de�nitions have a dramati impat on the number of ativeonnetions. We will favor the latter de�nition (data ative onnetions) for our evaluation inChapter 6, sine the fous of our modeling is the soure-level behavior in terms of useful dataexhanges. Our disussion of ative onnetions also onsidered the e�et of trae boundaries,revealing a large fration of ative onnetions from partially-aptured onnetions.
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CHAPTER 5Generating TraÆToday's sientists have substituted mathematis for experiments, and they wan-der o� through equation after equation, and eventually build a struture whihhas no relation to reality. | Nikola Tesla (1857{1943)Reality is merely an illusion, albeit a very persistent one.| Albert Einstein (1879{1955)This hapter disusses the use of the data aquisition and modeling methods presented inthe two previous hapters to generate traÆ in network experiments. In addition, it disussesthe overall methodology we have developed for validating our traÆ generation approah. Wewill distinguish between validating the method itself, and studying how losely the generatedtraÆ approximates real traÆ for properties not diretly inorporated in the method. Inthis hapter, we onsider the validation of the method itself, whih means to verify that thesoure-level properties and network-level parameters of the traÆ are preserved by the traÆgeneration method. The study of other properties is left for the next hapter.5.1 Replaying Traes at the Soure-LevelOur approah to traÆ generation is illustrated in Figure 5.1. Given a paket header traeTh olleted from some Internet link, we �rst use the methods desribed and evaluated inChapters 3 and 4 to analyze this trae and desribe its ontent. This desription is a olletionof onnetion vetors T. Eah vetor desribes the soure-level behavior of one of the TCP
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5.1.1 Trae PartitioningThe fous of our traÆ generation work is the generation of wide-area traÆ in a losed-loopmanner. This type of generation proess requires to drive a large number of onnetions bysimulating the behavior of the appliations on the endpoints. For example, the experimentspresented in the latter part of this hapter involve several millions of TCP onnetions, behavingin the manner spei�ed by as many onnetion vetors. At any given point in time during thegeneration, tens of thousands of onnetions are ative. Given CPU, memory and bus speedlimitations, a single pair of traÆ generators annot handle suh loads, so we generate traÆin our experiment in a distributed fashion. Experiments are onduted in the environmentillustrated in Figure 5.2. The goal of the experiment is to generate traÆ on the link betweenthe two routers. TraÆ is generated by 42 traÆ generators, 21 on eah side of the network.This type of topology is usually known as the \dumbbell" topology.Eah pair of traÆ generators (one on eah side) is responsible for replaying the soure-levelbehavior of a (disjoint) subset of the onnetion vetors in T. In our experiene, assigningonnetion vetors to subsets in a round-robin fashion works well. While the resulting subsetsare far from being ompletely balaned, this simple partitioning tehnique results in subsets thatan be easily handled by a pair of traÆ generators. We arefully olleted statistis on CPUand memory utilization from our soure-level trae replay experiments, and found that no pairof traÆ generators was ever overloaded. For the results in this dissertation, CPU utilizationswere never above 60%, and usually well below that. The use of network onnetions involvesalloating and dealloating piees of memory known as \mbufs" for bu�ering purposes. Norequest for this type of memory was ever denied for the experiments reported in this dissertation.While larger traes than the ones we use in this dissertation ould ertainly overload our spei�environment, our approah is fully salable, in the sense that T an be partition into anarbitrary number of subsets. This means that the number of traÆ generators an inrease asmuh as neessary to handle the replay of any trae without running into resoure onstraints.This is obviously true as long as no individual onnetion requires more resoures than thoseprovided by an entire traÆ generator end host.168
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Figure 5.3: End-host arhiteture of the traÆ generation system.5.1.2 Conduting ExperimentsWe have developed a traÆ generation tool, tmix , whih aurately replays the soure-levelbehavior of an input set of onnetion vetors using real TCP sokets in a FreeBSD environment.In addition, we make use of a modi�ed version of dummynet [Riz97℄ to apply arbitrary paketdelays and paket drop rates to the segments in eah onnetion1 Our version of dummynet ,that we will all usernet in the rest of this text, implements a user-level interfae that an beused by tmix instanes to assign per-onnetion delays and loss rates read from the input setof onnetion vetors. Finally, a single program, treplay , is used to ontrol the setup of theexperimental environment, on�gure and start tmix instanes (assigning them a subset of Tand a traÆ generation peer), and ollet the results.Tmix is a user-level program that reeives a olletion of onnetion vetors as input, andgenerates traÆ aording to their soure-level behavior. Figure 5.3 illustrates the relationshipbetween tmix and the network layers in the traÆ generation end host in whih a tmix instaneruns. Tmix instanes rely on the standard soket interfae to reate a onnetion, send andreeive ADUs, and to lose the onnetion. The soket interfae is an Appliation Programming1We thank the members of the FreeBSD projet in general, and in partiular the reator of dummynet , LuigiRizzo, for their outstanding work. Our empirial work would not have been possible without their generouse�orts. 169



Interfae (API) that enables user-level programs, suh as tmix , to ommuniate with other endhost using a programming abstration similar to a �le. Calls to the soket interfae are trans-lated by the kernel into requests to use the proess-to-proess ommuniation servie providedby the transport layer (TCP). The transport layer itself uses the host-to-host ommuniationservie provided by the network layer (IP), and the network layer uses the link layer (Ethernetin our ase) to handle the network interfae and reate physial pakets.UsernetOur experiments also require a speial simulation servie, usernet , whih is a modi�edversion of dummynet , that provides a highly salable way of imposing per-onnetion round-trip times and loss rates. These per-onnetion round-trip times and loss rates are diretlyontrolled from the user level by tmix instanes. This requires a diret ommuniation betweenthe tmix instane and the usernet layer that is not diretly supported by the network stak.In order to overome this diÆulty, we use a overt ommuniation hannel: the soure portnumber of eah replayed onnetion. By having tmix assigning spei� soure port numbersto eah onnetion, we an then use iotl alls to modify a table at the usernet layer thatmaps soure port numbers to round-trip times and loss rates. When a segment is reeivedby usernet (from the higher layer), usernet an appropriately use the soure port number todeide whih network parameters should be applied. Soure port numbers are unique for eahative onnetion in the same end host, and they are always present in TCP segments2. Theuser-level program, i.e., the tmix instane, has therefore to keep trak of the (dynami) soureport number that is used for eah new TCP onnetion it opens. Using this tehnique, usernetan determine the delay and loss rate that should be applied to eah segment simply by readingan entry in a table indexed by soure port number, so the lookup time is O(1). The numberof soure port numbers is small (216), so this table does not require too muh kernel memory(524 KB). No speial infrastruture was required to aurately replay the reeiver window sizesmeasured for eah onnetion. This is beause these parameters an be diretly modi�ed by tmix2Fragmentation takes plae below the usernet layer. Figure 5.3 an be onfusing in this regard, sine frag-mentation does take plae at the IP layer. Usernet is atually embedded in the IP layer.170



instanes using a FreeBSD system all. This approah has worked very well in our experiments.An alternative solution using traditional dummynet would be to use the programmable APIof ipfw, whih makes it possible to add new dummynet rules from a user-level program. Theidea would be to add a new rule for eah onnetion, again using the soure port number tomap delay/loss to individual onnetions. However, this will mean an O(n) lookup ost for eahsegment, where n is the number of rules, sine the urrent implementation of ipfw searhesthrough the rules in a sequential fashion. Given the large number of onnetions that eah endhost handles during the experiments, this per-segment lookup is unaeptable.Another way of introduing per-onnetion round-trip times was used by Le et al. [LAJS03℄.This study used random sampling from a uniform distribution whose parameters were be setat the start of the experiment. As seen in Setion 4.1.1, the uniform distribution is not a goodapproximation of real round-trip times. A later re�nement enabling sampling from an empirialdistribution was rather inexible, sine it required to modify the dummynet soure ode andreompile it for eah experiment. The use of usernet , whih is fully ontrollable from the userlevel, is far more onvenient.Replaying an a-b-t Connetion VetorTwo instanes of tmix an replay an arbitrary subset of T by establishing one TCP onne-tion for eah onnetion vetor in the trae, with one instane of the program playing the roleof the onnetion initiator and the other instane playing the role of the onnetion aeptor.To begin, the onnetion initiator opens the onnetion and performs one or more soket writesin order to send exatly the number of bytes spei�ed in the �rst ADU a1. The other endpointaepts the onnetion and reads as many bytes as spei�ed in the ADU a1. For eÆieny, thesize of these read and write operations was hosen to be a multiple of the MSS in our Ethernettestbed (1,460 bytes). We made no attempt to atually measure and reprodue the size of theI/O operations in the original onnetions. The impat of this simpli�ation is likely to besmall, given the results in Setion 3.4. 171



One important issue is how to synhronize the two endpoints (i.e., instanes of tmix ) ofthe onnetion to replay exatly the same onnetor vetor. This is aomplished by havingthe �rst ADU unit in eah generated onnetion inlude a 32-bit onnetion vetor id in theADU's �rst four bytes. Connetion vetor ids are assigned to eah onnetion vetor prior tothe traÆ generation, and they are unique. Sine this id is part of the ontent of the �rst dataunit, the aeptor an unambiguously identify the onnetion vetor that is to be replayed inthis new onnetion. If a1 is less than 4 bytes in length, the onnetion initiator will openthe onnetion using a speial port number designated for onnetions for whih the id isprovided by the onnetion aeptor. This approah guarantees that the two tmix instanesalways remain properly synhronized (i.e., they agree on the Ci they replay within eah TCPonnetion) even if onnetion establishment segments are lost or reordered. It also makes itpossible to generate traÆ without introduing any ontrol traÆ into the experiment, i.e.,traÆ omes only from the replay of onnetion vetors, and from any need to manage thebehavior of the tmix instanes.One important design onsideration in the implementation of our traÆ generation approahis the assumption of independene among ows. While this is not ompletely realisti, the levelof aggregation at whih we generate traÆ makes it a reasonable approah (see Hohn et al.[HVA02℄ for a related disussion). This assumption makes traÆ generation fully salable,sine T an be partitioned into an arbitrary number of subsets. As long as there are enoughtraÆ generation hosts, we an replay traÆ from arbitrarily large traes.5.1.3 Data ColletionWe obtain two types of data from eah experiment. First, we ollet a new paket headertrae T 0h, whih an be diretly ompared with the original paket header trae Th and analyzedwith our methods to extrat a new set of onnetion vetors T 0 . This new set an be diretlyompared to T. Seond, tmix instanes reate a number of logs. Some tmix logs an be usedto verify that the traÆ generation host did not run out of resoures during traÆ generation,and they suessfully replayed their subset of T. Other tmix logs report on the performane of172



the TCP onnetions in the experiments. This inludes onnetion and epoh response timesand the list of unompleted onnetions with a desription of their progress by the end of theexperiment.5.2 Validation of Soure-level Trae ReplayIn this setion, we onsider the soure-level trae replay of the three paket header traes:Leipzig-II, UNC 1 PM, and Abilene-I. The �rst goal is to study how well the replay experimentspreserve the soure-level input, whih is the olletion of onnetion vetors T extrated fromthe original trae Th. In priniple, the haraterization of soure-level behavior using the a-b-tmodel represents harateristis of eah onnetion that are invariant to network onditions, sothe analysis of the generated trae Th should result in a olletion of onnetions vetors T 0that is idential to T. In pratie, there are some pratial limitations that make the two setsof onnetion vetors di�erent. We will disuss the possible auses in this setion, and presenta statistial omparison of T and T 0 .The seond goal of this setion is to study the impat of introduing paket losses in thegenerated proess. For this purpose, we onduted two soure-level trae replays of eah originaltrae. The lossless replay reprodued the a-b-t onnetion vetor of eah original onnetion,and gave eah onnetion its measured round-trip time and TCP reeiver window sizes. Thelossy replay additionally applied its measured loss rate to eah replayed onnetion. Di�erenesbetween the lossless and lossy replays tell us about the robustness of both our soure-level har-aterization and traÆ generation tools in the presene of losses. These losses are ompletelyabsent from our experiments unless they are arti�ially introdued using usernet , as in thelossy replay.
173



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000 100000

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Size of ADU in Bytes

Original Leipzig-II Seq A
Lossless Replay Leipzig-II Seq A

Lossy Replay Leipzig-II Seq A
Original Leipzig-II Conc A

Lossless Replay Leipzig-II Conc A
Lossy Replay Leipzig-II Conc A

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

10000 100000 1e+06 1e+07

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Size of ADU in Bytes

Original Leipzig-II Seq A
Lossless Replay Leipzig-II Seq A

Lossy Replay Leipzig-II Seq A
Original Leipzig-II Conc A

Lossless Replay Leipzig-II Conc A
Lossy Replay Leipzig-II Conc AFigure 5.4: Bodies and tails of the A distributions for Leipzig-II and its soure-level traereplays.5.2.1 Leipzig-IIThe plots in Figure 5.4 ompare the distributions of a-type ADU sizes, A, for the originalset of onnetion vetors in Leipzig-II, and for the sets of onnetion vetors extrated fromits lossless and lossy replays. In eah plot, the three distributions marked with white symbolsorrespond to sequential onnetion vetors, and the ones marked with blak symbols to on-urrent onnetion vetors. The left plot shows the bodies of the distributions, using CDFs inlog-linear axes. The right plot shows the tails of the distributions, using CCDFs in log-log axes.In general, there is an exellent agreement between the original distributions and those fromthe soure-level replays.The bodies of the distributions from sequential onnetions lie on top of eah other, evenif per-onnetion loss rates are used during the experiments. As disussed in 3.4, our ADUmeasurement algorithm an sometimes be inaurate when one of the last segments of a TCPwindow is lost before the monitor. In this ase, the loss is reovered after a timeout, whihan reate a quiet time between the onseutive segment that is long enough to unneessarilysplit an ADU. This means that a sample ai from one of the a-type data units in T beomestwo samples a0i and a0i+1 in T 0 , suh that a0i + a0i+1 = ai. The validation of the data aquisitionmethods in Setion 3.4 demonstrated that ADU splitting due to TCP timeouts is possible,although its impat was small even when large data units and aggressive loss rates were used.

174



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000 100000

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Size of ADU in Bytes

Original Leipzig-II Seq B
Lossless Replay Leipzig-II Seq B

Lossy Replay Leipzig-II Seq B
Original Leipzig-II Conc B

Lossless Replay Leipzig-II Conc B
Lossy Replay Leipzig-II Conc B

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

10000 100000 1e+06 1e+07 1e+08

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Size of ADU in Bytes

Original Leipzig-II Seq B
Lossless Replay Leipzig-II Seq B

Lossy Replay Leipzig-II Seq B
Original Leipzig-II Conc B

Lossless Replay Leipzig-II Conc B
Lossy Replay Leipzig-II Conc BFigure 5.5: Bodies and tails of the B distributions for Leipzig-II and its soure-level traereplays.The omparison of the Leipzig-II lossless and lossy replays, whih represent muh more realistitraÆ, shows that ADU splitting due to TCP timeouts has very little impat in pratie, atleast for the relatively light distribution of loss rates in Leipzig-II. We an hardly observe anydi�erene between the bodies of the A distributions when losses are added to the replay. The twobodies from the replay are also very similar to the body of the original distribution. The sameis true for the tails, whih do not show any signi�ant di�erene. This analysis demonstratesthat tmix an aurately reprodue the sizes of a-type data units in sequential onnetions,even when ADUs are large and when experiments are lossy.There is also a very good math between the A distributions for onurrent onnetionvetors. In some regions, we notie somewhat thiker lines that ome from small o�sets ofthe urves. The tails of the A distribution for onurrent onnetions are also very similar,although the one from the lossy replay is slightly heavier for values below 5 MB, and slightlylighter for values above that. This ould be explained by the inauray disussed above, orby trae boundaries. In the latter ase, losses redue throughput, making the replay of lossyonnetions are slower than the replay of lossless ones. This means that some a-type ADUsmay not have time to omplete their transmission before the end of the experiment.Figure 5.5 ompares the distribution of b-type ADU sizes, B, for the onnetions vetorsextrated from the original Leipzig-II trae and their lossless and lossy soure-level replays.For sequential onnetion vetors, both the bodies and the tails are idential. For onurrent175



onnetion vetors, the distributions show slightly di�erent bodies, but idential tails. Thedi�erenes annot be explained by the ADU splitting due to TCP timeouts. If so, we wouldsee a di�erene between the distributions from the lossless replay and the ones from the lossyreplay, but this is not the ase. The soure of the di�erene is an inherent problem with thereplay of onurrent onnetions, the mislassi�ation of the replayed onurrent onnetions.While tmix always replays a onurrent onnetion vetor in the right way (i.e., deouplingthe two diretions), the atual set of segments observed at the monitor may simply not haveany pair of data segments that satisfy the onurreny test given in Setion 3.3.3. In otherwords, the segments of a replayed onurrent onnetion may exhibit a fortuitous sequentialordering. As a onsequene, the data analysis algorithm lassi�es as sequential some onnetionsfrom the replay that were onurrent in the original trae. The sizes of the b-type ADUs inthese mislassi�ed onnetions are then absent from the B distribution for replayed onurrentonnetions. The small di�erene in the plot between the original and replayed distributionsdemonstrates that the number of mislassi�ations is relatively small, so the majority of theonurrent onnetions still exhibit onurrent behavior in the replays.It is important to note that the probability of a mislassi�ation dereases as the sizes of theADUs inrease, sine the larger number of data segments makes �nding a onurrent pair morelikely. Therefore, mislassi�ations beome less signi�ant for the tails of the distributions,sine the onnetions whose samples are in the tail have neessarily at least one large ADU(the one we see in the tail), and are less likely to be mislassi�ed. There is no appreiabledi�erene between the tails of the B distributions from onurrent onnetions, in agreementwith our observation regarding the lower likelihood of mislassi�ation for onnetions withlarge ADUs. Mislassi�ed onnetions are desribed using the sequential a-b-t model, so theyresult in additional samples for the distributions that haraterize sequential onnetion vetors.These extra samples have a muh smaller e�et on the CDFs, sine the number of samples fromsequential onnetions is far larger anyway.Figure 5.6 onsiders the distribution of the number of epohs E extrated from the originaland from the generated paket header traes. The distributions from the replays are very similar176
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Figure 5.6: Bodies and tails of the E distributions for Leipzig-II and its soure-level traereplays.
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of sequential onnetions. The slightly heavier distributions from the replays is due to a smallsimpli�ation we made regarding the replay of quiet times. Tmix will replay the exat quiettimes spei�ed in eah onnetion vetor. However, as disussed in Setion 3.3.1, when thesequiet times are extrated from a paket header trae, the measured quiet time is the sum of twoomponents. The �rst omponent omes from the quiet time q at the end host, and the seondomponent omes from the delay d between the monitor and the endpoint. When tmix replaysa quiet time, it remains quiet for the exat duration of the sum of these omponents, q + d.Given that the replay in the testbed uses usernet to reprodue the measured round-trip timeof eah onnetion, there is also a delay between tmix end hosts and monitor, so the analysis ofthe generated paket header trae results in quiet times of the form q+2d. It would have beenpossible to eliminate this inauray by subtrating d from the originally measured quiet times.The value of d is equal to half of the one-side transit time, although delayed aknowledgmentsand queuing an a�et individual samples. We did not try to inorporate a orretion forthis quiet time overestimation problem in our experiments. Besides measurement diÆulties,the extra delay beomes less signi�ant in larger quiet times, for whih d is far smaller thanq. Larger quiet times are far more signi�ant, sine they are the ones that an inrease theduration of TCP onnetions substantially.There is also a good agreement in the tails of the TA distributions, although the distributionsfrom the replays are slightly heavier than the original distributions. This is not explainedby the previous overestimation of quiet times due the loation of the monitor, beause themagnitude of the quiet times in the tail is far larger than the magnitude of d. The soure ofthis small mismath is the mislassi�ation of some onurrent onnetions. This is true forboth the di�erenes between the tails from sequential onnetion vetors and between the tailsfrom onurrent onnetion vetors. It may seem ounter-intuitive that the mislassi�ationsmakes both types of tails heavier, instead of making one type of tail heavier and the other onelighter. The explanation is that mislassi�ations move samples from onurrent onnetionsto sequential onnetions. These moved samples satisfy at the same time the following twoproperties:
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replayed onurrent onnetions are slightly heavier than those from the original traes.In general, we always observe heavier loss rates in the replays than in the original data. Theexplanation is the dropping of pure aknowledgment pakets, whih was disussed in Setion4.1.3. The analysis of the original trae onsiders only the loss rate of data segments, and notthe ombined loss rate of data and aknowledgment segments. However, the arti�ial droppingmehanisms in usernet that is used to reate per-ow losses is applied to all of the pakets in theonnetions. This means that both data segments and aknowledgment segments are droppedaording to the original loss rates of data segments. The dropping of aknowledgment segmentsan inrease the loss rate of data segments in the replay, beause missing aknowledgmentsan trigger unneessary retransmissions. Every retransmission is onsidered a loss event, andtherefore we have an inrease of loss rate in the replays, whih makes the measured distributionsof (data segment) loss rates heavier for the replays than for the original. It is ertainly possibleto modify usernet to apply the dropping rate to data segments only, but our experiments didnot inorporate this re�nement. It is somewhat unrealisti to use a biased dropping mehanism,so it would be better to re�ne the data aquisition algorithm to onsider both data and pureaknowledgment losses. Measuring pure aknowledgment loss rates is far more diÆult thatmeasuring data segment loss rates. Endpoints may aknowledge every data segment, or everyother data segment, and they do so using umulative aknowledgment numbers, rather thanindividual sequene numbers as it is done for data segments. It is therefore more diÆult todetermine when an aknowledgment does not arrive as expeted.5.2.2 UNC 1 PMThe seond trae onsidered in our validation of the soure-level trae replay approahis the UNC 1 PM trae. This trae is shorter than Leipzig-II (1 hour vs. 2 hours and 45minutes) but it has muh higher throughput, whih results in a substantially larger number ofsamples in the distributions that we will examine in this setion. Figure 5.11 ompares the Adistributions extrated from the UNC 1 PM and its lossless and lossy replays. The bodies of theA distributions from sequential onnetions reveal no di�erene between original and generated182
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means a wider y-axis that redues the distane between the distributions in the plot. Seond,the heavier distribution of onnetion sizes in the Abilene-I trae means a larger number ofpakets, whih makes the use of independent drops approximate the intended loss rates moreaurately. The right plot shows a good math when the distributions of the per-byte loss ratesare onsidered.5.3 SummaryThis hapter presented our traÆ generation method, soure-level trae replay. The �rststep in soure-level trae replay is to transform a paket header trae into a set of onnetionvetors, whih desribe its soure-level behavior using the sequential or the onurrent versionof the a-b-t model. Connetion vetors also inlude three network-level parameters, round-triptime, TCP reeiver window size and loss rate. The atual traÆ generation onsists of replayingthe harateristis of eah onnetion vetor in an aurate manner. We demonstrated thepossibility of this approah using an implementation in a network testbed, whih inludes adistributed traÆ generator, tmix , that an replay soure-level behavior, and oordinate witha paket manipulation layer, usernet , to impose spei� round-trip times and loss rates toeah onnetion. The approah, and its implementation, was then validated by omparing thestatistial harateristis of three traes and those of their replays. This omparison fousedon how well the replay preserved the original parameters, i.e., the soure-level desription andthe network-level harateristis.The validation results showed a good math between original traes and their replays, whihon�rms the highly aurate reprodution of soure-level properties that an be ahieved withour approah. The di�erenes, whih are shown to be small or nonexistent in every ase, aredue to the following auses:� There is no guarantee that the replay of a onurrent onnetion exhibits measurableonurreny, i.e., that a pair of onurrent data segments an be observed in the gener-192



ated trae. This results in onnetions that are replayed as onurrent but lassi�ed assequential in T 0 , therefore adding spurious samples to the haraterization of sequentialonnetions, and removing samples from the haraterization of onurrent onnetions.In general, this a�ets the omparison of onurrent onnetions more substantially, sinethe number of samples from onurrent onnetions is usually far smaller. This problemis inherent to the form of the onurrent a-b-t model used in this dissertation.� Our measurement of quiet times tended to overestimate their durations, sine it did notompensate for the delay between the end host and the monitor. This di�erene is onlysigni�ant for the smallest quiet times, whose magnitude is similar to that of networkdelays. A possible re�nement of our measurement method that would eliminate theoverestimation of quiet times and make the replay of quiet times even more aurate, isto subtrat the orresponding one-side transit time from eah measured quiet time.� Usernet uses independent dropping to simulate losses, and this is not ompletely au-rate. Connetions often have too few pakets to onverge to the intended loss rate peronnetion. If loss rates per byte are onsidered, the replay is shown to be very lose tothe original distribution. Ahieving a lose approximation of the original loss rate wouldinvolve some form of dependent dropping.� Measured drop rates onsider only data segments, but the loss rate simulation also dropspure aknowledgments with the same probability. This makes the distributions of lossrates in the lossy replays slightly above the intended values. Addressing this inaurayrequires developing a measurement algorithm that an determine the loss rate of pureaknowledgments, whih seems rather diÆult, or modifying usernet to drop only datasegments, whih is a somewhat arti�ial solution.The analysis of the validation results also served us to verify the robustness of our dataaquisition and generation method to the introdution of losses with regard to the soure-levelharateristis. We found very little di�erene, if any, between the results from the lossless andlossy replays, whih on�rms the auray of the analysis even in the fae of paket losses and193



reordering. TCP timeouts, whih an sometimes onfuse the heuristi used to split ADUs inthe same diretion, do not appear to have any signi�ant e�et.
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CHAPTER 6Reproduing TraÆSometimes the appropriate response to reality is to go insane.| Philip K. Dik (1928{1982), ValisDissertations are not �nished; they are abandoned.| Frederik P. Brooks, Jr. (1931{)This hapter examines the statistial harateristis of soure-level trae replay experiments,omparing them to those of their orresponding original traes. As disussed in Chapter 5, andillustrated in Figure 5.1, a paket header trae Th and its soure-level trae replay an beompared at two levels. The �rst level is how well the set of onnetion vetors T extratedfrom Th are preserved by the trae replay experiments. This means to ollet a paket headertrae T 0h from the replay and extrat a new set of onnetion vetors T 0 . Setion 5.2 presented aomparison of T and T 0 for three traes. It demonstrated that the harateristis of Th apturedby T are aurately reprodued by the traÆ generation method and its implementation. Theseond level at whih traes and their replays an be ompared is to diretly extrat statistisfrom Th and T 0h. If these statistis are reasonably lose, we an say that the traÆ generationmethod reprodues the original traÆ using losed-loop traÆ generation. This is the typeof omparison disussed in this hapter. As we will show, soure-level trae replay generallyresults in a good approximation of the statistial harateristis of the original traÆ, whihsupports the use of the a-b-t model as a foundation for realisti traÆ generation.



6.1 Beyond Comparing Connetion VetorsThe main goal of this dissertation is to improve the state-of-the-art in losed-loop traÆgeneration by developing a better approah to soure-level modeling. In partiular, we presentedin Chapter 3 the sequential and onurrent versions of the a-b-t model, whih provide a �rstmethod for desribing soure-level behavior in an appliation-independent manner. We alsodisussed an eÆient data aquisition algorithm for extrating a-b-t onnetion vetors fromthe paket headers of TCP onnetions. The �rst way in whih we justi�ed our soure-levelmodel was by examining onnetions from di�erent appliations, and demonstrating that theirsoure-level desriptions in terms of a-b-t onnetion vetors properly aptured their soure-levelbehavior. The seond way in whih we an justify the model is to study the traÆ generatedusing this model. If generated traÆ is shown to losely approximate original traÆ, this wouldstrongly support the laim that the a-b-t model is a good desription of soure behavior. Inother words, given that the statistial harateristis of Th are obviously a funtion of sourebehavior, being able to generate a T 0h statistially similar to Th would on�rm the quality of Tas a desription of the original soure behavior.Comparing Th and T 0h is however a subtle exerise. The atual replay of T neessarilyrequires hoosing a set of network-level parameters, suh as round-trip times and TCP reeiverwindow sizes, for eah TCP onnetion in the soure-level trae replay experiment. The exatset of pakets and their arrival times is a diret funtion of these parameters, as explained inChapter 4. As a onsequene, if we were to ondut a soure-level trae replay using arbitrarynetwork-level parameters, we would obtain a T 0h with little resemblane to the original Th. Thereplayed a-b-t onnetion vetors may be a perfet desription of the soure behavior drivingthe original onnetions, but the generated T 0h would still be very di�erent from the original Th.To address this diÆulty, the replay should inorporate network-level parameters individuallyderived from Th for eah onnetion. In Chapter 4, we desribed and evaluated methods formeasuring three important network-level parameters: round-trip time, TCP reeiver windowsize and loss rate. While this set of parameters is by no means omplete, it does inlude themain parameters that a�et the average throughput of a TCP onnetion, [PFTK98℄. In this196



hapter, we examine the results of several soure-level trae replay experiments, showing thatthe generated traÆ is remarkably lose to the original traÆ. This is a strong justi�ation ofour soure-level modeling approah, sine it demonstrates that the losed-loop replay of a-b-tonnetion vetors provides a good approximation of the original traÆ.Inorporating network-level properties is important, but it is ritial to understand the mainshortoming of this approah. The goal of our work is not to make the generated traÆ T 0hidential to the original traÆ Th, whih ould be aomplished with a simple paket-level replay.The goal is to develop a losed-loop traÆ generation method based on a rih haraterizationof soure behavior. Comparing Th and T 0h is a means to understand the quality of traÆgeneration method, where quality is onsidered to be higher as the original trae is more loselyapproximated. By onstrution, traÆ generated using soure-level trae replay an never beidential to the original traÆ. The statistial properties of original paket header traes arethe result of multiplexing a large number of onnetions into a single link, and these onnetionstraverse a large number of di�erent paths with a variety of network onditions. It is simplynot possible to fully haraterize this environment and reprodue it in a laboratory testbedor in a simulation. This is both beause of the limitations of passive inferene from paketheaders, and beause of the stohasti nature of network traÆ. Soure-level trae replay annever inorporate every fator that shaped Th, and therefore di�erenes between Th and T 0hare unavoidable. Still, �nding a lose math between an original trae and its replay, even ifthey are not idential, onstitutes strong evidene in favor of our a-b-t model and our dataaquisition and generation methods. It also demonstrates the feasibility of generating realistinetwork traÆ in a losed-loop manner that resembles a rih traÆ mix.Besides evaluating soure-level trae replay by omparing original traes and their re-plays, this hapter also onsiders whether detailed soure-level modeling is neessary to ahievehigh-quality traÆ generation. This is aomplished by omparing traÆ generated using T(i.e., replaying onnetion vetors and network-level parameters) and traÆ generated usinga simpli�ed version of T with ollapsed epohs, whih we will name T oll . Formally, givena sequential onnetion vetor Ci = (e1; e2; : : : ; en); n � 1, with epoh tuples of the form197



ej = (aj ; taj ; bj ; tbj), we de�ne the version of Ci with ollapsed epohs asColli = (( nXi=1 ai; 0; nXi=1 bi; 0)):The only a-type ADU size in the resulting onnetion vetor is the total amount of data sentfrom the onnetion initiator to the onnetion aeptor, and the only b-type ADU size is thetotal amount of data sent from the onnetion aeptor to the onnetion initiator. No quiettime is part of a onnetion vetor after ollapsing its epohs. Similarly, given a onurrentonnetion vetor Ck = (�; �), where� = ((a1; ta1); (a2; ta2); : : : ; (ana ; tana))and � = ((b1; tb1); (b2; tb2); : : : ; (bnb ; tbnb));we de�ne the version of Ck with ollapsed epohs asCollk = (( naXi=1 ai; 0); ( nbXi=1 bi; 0)):TraÆ generated aording to T oll does not inorporate any internal soure-level struture ofonnetions, i.e., epohs and inter-ADU quiet times are ignored. For this reason, we say thatthe ollapsing of epohs \removes" detailed soure-level modeling. Note however that even ifepohs are ollapsed, the total amount of data transferred in eah diretion does not hange.The results in this hapter demonstrate that traÆ generated using T is substantially loser tothe original traÆ than traÆ generated using T oll .The evaluation of soure-level trae replay presented in this hapter examines the results ofreplaying �ve traes. These traes were �rst onsidered in Setion 3.5: Leipzig-II, UNC 1 PM,UNC 1 AM, UNC 7:30 PM and Abilene-I. Our analysis ompares the statistial harateristisof eah of these traes and their replays using the following metris:
198



� time series of byte throughput,� time series of paket throughput,� Body and tail of the marginal distribution of byte throughput,� Body and tail of the marginal distribution of paket throughput,� Wavelet spetrum (logsale diagram),� Estimated Hurst parameter and its on�dene interval, and� time series of the number of ative onnetions.These metris were introdued in Setion 4.2. For eah original trae, we ompare four di�erentreplays, onduted using tmix and usernet in the testbed shown in Figure 5.2. The �rst replayis the lossless replay , whih replayed the a-b-t onnetion vetors in T, giving eah TCPonnetion its measured round-trip time and TCP reeiver window sizes. The seond replayis the lossy replay, whih was idential to the �rst one, but it also applied random paketdropping to eah TCP onnetion aording to its measured loss rate. The third replay, is thelossless replay with ollapsed epohs, whih replayed the a-b-t onnetion vetors after they hadtheir epohs ollapsed, and it also gave eah onnetion its measured round-trip time and TCPreeived window sizes. The fourth replay is the lossy replay with ollapsed epohs, whih wasidential to the third one but inorporated loss rates. We will often refer to the �rst two replaysas full replays and to the seond two replays as ollapsed-epohs replays.It is important to note that our method for inorporating losses into the experiments,random dropping aording to the measured probability of loss per onnetion, is not onsistentwith losed-loop traÆ generation. We are by no means suggesting that loss rates should beinorporated in this manner into regular networking experiments that require losed-loop traÆgeneration. In suh experiments, losses should only be the result of ongestion on network linksand bu�ering limitations. If this is the ase, the endpoints generating syntheti traÆ an notonly reat to the network onditions (e.g., reduing sending rates when ongestion is deteted),but also modify them (e.g., reduing overall ongestion thanks to the lower sending rates). This199



is the right approah to reprodue the essential feedbak loop in TCP whih should be used inempirial studies of TCP performane.However, loss is an important fator in TCP behavior (see Setion 4.1.3), so our lossyexperiments should result in a T 0h that is loser to the original Th. By inorporating losses,we eliminate one possible ause of divergene between original and replayed traes whih ouldonfuse our assessment of our soure-level modeling approah. Comparing lossless and lossyreplays enables a more systemati evaluation of our traÆ modeling and generation methods,and it also helps to understand the impat of loss rates on the generated traÆ. Losses areshown to have only a minimal e�et on some traes and for some metris, but a muh moresubstantial e�et on others.The analysis in this setion on�rms the high-quality of the syntheti traÆ generated usingsoure-level trae replay. Our analysis reveals some (mostly minor) di�erenes between originaltraÆ and replay traÆ. While we put forward some hypotheses about the ause of thesedi�erenes, their on�rmation requires further analysis. This additional work, whih wouldinvolve both analysis and experimentation, would ertainly be enlightening. It would tell usmore about the limitations of our approah, and even about the inherent limitations of testbedexperimentation. However, we have hosen not to pursue this avenue here. As disussed above,our goal is not to generate a T 0h equal to Th, but to onviningly demonstrate the bene�ts ofour losed-loop traÆ generation method. We believe this hapter ahieves this goal, so we donot present any further analysis beyond the omparison of �ve traes and their four types ofsoure-level replays using a rih set of metris.6.2 Soure-level Replay of Leipzig-II6.2.1 Time Series of Byte ThroughputThe �rst trae we onsider in this hapter is Leipzig-II. It has a duration of 2 hours and45 minutes, and its average throughput is relatively low. We will �rst onsider the traÆ200
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number of segments per onnetion. Replaying an epoh with non-zero ADU sizes neessarilyinvolves sending two pakets, even if the sizes of the ADUs are very small. An epoh involves aneessary exhange of data, so at least one paket is used to arry the ADU ai from the initiatorto the aeptor, and another one to arry the ADU bi from the aeptor the initiator. Thismeans for example that a onnetion with 10 epohs, and ADUs with a size of 100 bytes inboth diretions requires 20 pakets to be fully replayed. On the ontrary, the ollapsed-epohsversion of this onnetion an be replayed with a single pair of pakets, sine the 10 ADUs ineah diretion an �t into a single TCP segment (it is only 1,000 bytes). Another reason for themore realisti time series of paket throughput when the full replay is used is the modeling ofquiet times. Quiet times between two ADUs sent in the same diretion (see Setion 3.1.2) analso result in a larger number of pakets per onnetion, sine they often prevent onseutivesmall ADUs from sharing pakets.While the results in Figure 6.3 onviningly demonstrate a substantially more realistitraÆ generation with the full model, there is still some room for improvement. We an thinkof several possible re�nements, whih should improve the approximation. First, we made noattempt to model the Maximum Segment Size (MSS) supported by the path of eah TCPonnetion. Instead of relying on the default size derived from Ethernet's MTU (1,500 bytes),as we do in our experiments, it seems possible to ollet MSS information for eah onnetionand extend tmix to make use of these measurements2. Connetions replayed using smallerMSS values would frequently require more pakets to be replayed. Seond, the measurementtehniques we used to determine ADU boundaries for data sent in the same diretion rely on aonstant inter-ADU quiet time threshold equal to 500 milliseonds. Some appliations may beusing smaller quiet times between their writes, whih ould result in a larger number of paketsper onnetion. Simply reduing the threshold is problemati, sine this would inrease thenumber of spurious splits of ADUs due to network delays (rather than appliation behavior).To avoid this, we ould make the inter-ADU quiet time threshold a multiple of the measured2MSS is a system-wide onstant in FreeBSD, so generating traÆ that preserves per-onnetion MSS is notdiretly possible with our urrent implementation. However, there is a relatively simple way to extend ourmethod to support per-onnetion MSS values. We ould use a �rst step to group onnetions with the sameMSS and then assign eah group to a host on�gured with that MSS. Fortunately, only a few MSS values areommon on the Internet, so it seems feasible to implement this extension without inreasing the number of hosts.204
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relatively unommon, e.g., half of the plot shows data from only 0.1% of the distribution. Onthe ontrary, the plot of the body provides information about the most ommon bins, showingthe entire distribution without fousing on any partiular region. These two visualizations areomplementary. The body plot shows the overall math, whih is relevant for experiments inwhih produing a realisti range of �ne-sale throughputs is important. The tail plots showsthe extremal math, whih is relevant for experiments in whih reproduing the magnitudeand frequeny of peak throughputs is important. None of these plots says anything about thedependeny struture of the time series, whih is important and that we study in a later setionusing wavelets. While wavelets are a powerful analysis tool, marginals are far easier to interpretin networking terms.The left plot shows the original data using a solid urve marked with white squares, and thereplay data using dashed urves. The full replay experiments are marked with white symbols,and the ollapsed-epohs replay experiments with blak symbols. We an make several obser-vations about this plot. The position of the original urve with respet to the replay urvesde�nes two di�erent regions in the plots. Below 40 KB, the distribution from the original datais slightly heavier than those from the replays. Above 40 KB, the distribution is slightly lighter.This means that the replays tended to be less onentrated around the entral value than theoriginal data, For example, the number of bins with 10 KB is negligible in the original data, butorresponds to between 2% and 5% of the bins in the replays. We ould therefore say that thereplays are somewhat more bursty, in the sense that we �nd more bins with small values andmore bins with large values in the CDFs from the replays than in the CDFs from the originaldata. The exat reason is unlear, but we an make a hypothesis. We know from the previoussetion that the total number of bytes is similar in original and replay time series. This meansthat the presene of a larger number of bins with more bytes in the replay must neessarily beaompanied by a larger number of bins with fewer bytes to ompensate. Connetions in thereplay are exposed to more homogeneous delays (primarily beause round-trip times are �xed),whih gives replayed onnetions a hane to ahieve higher throughput. In the aggregate, andwhen onsidering suh �ne sales, the presene of one or a few replay onnetions with higher
207



throughput than originally observed reates bins with more bytes, whih are part of the upperportion of the body of the marginal distribution. Faster onnetions run out of data sooner,in turn reating bins with fewer bytes than originally observed, whih show up in the lowerportion of the body of the marginal distribution. Therefore, the somewhat milder onditionsin the replay an explain the wider spread of marginal distributions from the soure-level traereplay experiments.Another observation from the plot of the bodies is that the ollapsing of the epohs of thereplayed onnetion vetors has no e�et on the marginal distribution of byte throughput. Thisis an interesting �nding, given that we did �nd a di�erene for the plots in Figure 6.1. Itmeans that the slightly more bursty replays with ollapsed epohs ome from a less realistiorrelation struture rather than from a �ne-grain di�erene in the values of the bins. Theplot also shows that the distributions from the lossy replays are slightly loser to the originalthan those from the lossless ones. This is evidene in support of the statement in the previousparagraph regarding the impat of more omplex network dynamis, whih make the highestthroughput of many onnetions lower in the original trae. Adding losses has preisely thise�et, making the marginal distributions from the replays loser to the marginal distributionfrom the original.The analysis of tails in the right plot on�rms the last observation. The plot of the bodyshows a lighter seond half of the distribution. The plot of the tails shows heavier tails fromthe lossless experiments, and slightly lighter tails from the lossy experiments. The tail fromthe lossy full replay is atually an exellent �t of the original data. Lossless replays gave someonnetions the opportunity to reah higher throughputs, whih in turn reated bins with alarger number of bytes than in the original. Adding losses avoided this problem. In general,the results in Figure 6.5 are very reassuring.The marginal distributions for the time series of byte throughput in the outbound diretionare shown in Figure 6.6. The bodies of distributions (left plot) exhibit a substantial tail, whihmakes them less Gaussian than distributions from the inbound data. As in the previous ase,the range of bin sizes with a signi�ant number of samples is wider for the replays than for208
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tion. In ontrast, the full replay ahieved a muh loser approximation, even overlapping theoriginal distribution for the largest values. Adding losses to the experiments made the replaysonly a bit loser to the original. This is a strong indiation that soure-level struture, andnot loss/retransmission, is behind the di�erenes between original and replay trae. We andistinguish two regions in the plot of the tails. Below 80 Kpps, the replays with fully harater-ized epohs provide an exellent math, while those with ollapsed epohs result in signi�antlylighter tails. Above 80 Kpps, the slope of the tail from the original trae is far higher than theslopes of the tails from the replays.6.2.4 Long-Range DependeneAnother way of looking at the time series of byte and paket arrivals is to study the har-ateristis of the time series for a wide range of time sales. This an be aomplished usingsaling analysis tools, suh as the wavelet transform, whih was introdued in Setion 4.2.3.In this setion, we use wavelet spetrum plots and Hurst parameters estimates to ompare thesaling of the arrival proesses found in original and replay traes. Figure 6.9 shows the waveletspetra of the time series of byte arrivals in the inbound diretion. The left plot reveals anexellent math between the original and the full replays. The linear region between otaves 6and 14 is very similar in the three spetra. This tells us that the kind of long-range dependenefound in the original and in the replay traes is very similar. If we equate burstiness to long-range dependene, we an say that the generated traÆ faithfully reprodued the burstiness ofthe original traÆ. The �nest time sales show a somewhat larger di�erene between otaves 1and 5. The spetrum of the original data starts at a lower energy level than the spetra of thereplay data. It also shows a linear trend with an upward slope, whih is far less lear in thereplay data.The exat ause of the small di�erene is not ompletely lear. Our additional experimentsstrongly suggest that it is due to more omplex network-level harateristis in the Internetthan in the network testbed. We onduted a large set of experiments (not reported here)whih betrayed that the energy levels at the �nest time sales are dominated by round-trip211
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Figure 6.9: Wavelet spetra of the byte throughput time series for Leipzig-II inbound andits four types of soure-level trae replay.
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Figure 6.10: Wavelet spetra of the byte throughput time series for Leipzig-II outboundand its four types of soure-level trae replay.Trae Inbound OutboundLeipzig-II H C. I. H C. I.Original 0.9201 [0.8990, 0.9412℄ 0.9973 [0.9762, 1.0184℄Lossless Replay 0.9863 [0.9652, 1.0074℄ 1.0475 [1.0264, 1.0686℄Lossy Replay 0.9583 [0.9372, 0.9794℄ 0.9832 [0.9621, 1.0043℄Lossless Coll. Epohs 0.9986 [0.9775, 1.0197℄ 1.0473 [1.0262, 1.0684℄Lossy Coll. Epohs 0.9668 [0.9457, 0.9879℄ 1.0083 [0.9872, 1.0294℄Table 6.1: Estimated Hurst parameters and their on�dene intervals for the byte through-put time series of Leipzig-II and its four types of soure-level trae replay.212



times and other network-level parameters3. The slightly better math ahieved with the lossyreplay is onsistent with this laim. Further work on network-level modeling may help improvethe math, but it is beyond the sope of this dissertation. The approximation seems aeptablefor most experimental studies.The wavelet spetra of the ollapsed-epohs replays is similar to the wavelet spetrum of theoriginal trae, as shown in the right plot of Figure 6.9. The spetra from the replays exhibitsa slightly higher slope in the linear region, and a slightly worse approximation of the �ne-saleregion. The bene�t of modeling soure-level behavior is relatively small, in terms of salingbehavior, for this trae, but present nonetheless.Figure 6.10 shows the analysis of the wavelet spetra of the time series of byte throughputin the outbound diretion. One interesting observation is that the wavelet spetrum of theoriginal is far from the expeted straight line. This is due to the low mean throughput on thisdiretion. A handful of onnetions an have a large impat in the aggregate throughput, whihmakes the aggregate less stable, showing a less lear saling. The full replays are very lose tothe original in the saling region, but show a larger gap at �ne sales. The ollapsed-epohsreplays result in a slightly worse approximation.Estimated Hurst parameters for the byte throughput time series are shown in Table 6.1. Theoriginal trae exhibits a smaller estimated Hurst parameter than the replays. The estimate forthe lossy replay is however within the on�dene interval of the original for the outbound andvery lose to the upper bound for the inbound. In general, lossless replays have higher Hurstparameters than lossy replays, and the replays with ollapsed epohs have somewhat higherHurst parameters than the full replays. Note also that several estimated Hurst parameters forthe outbound diretion are above 1, with the lossless replay even having the lower bound ofthe on�dene interval above 1. Non-stationarities, properly aptured by the soure-level traereplay, may be behind this extreme burstiness. It is important to note that non-stationarity,even if present, does not hange the fat that our omputation of wavelet energy and Hurst3More spei�ally, we learned that the range of the distribution of round-trip times determines the knee ofthe spetrum, while the distribution of window size determines the level of energy at the �nest sales. Relatedresults from web traÆ simulations an be found in [FGHW99℄.213



estimates is idential in all ases. This makes the omparative results meaningful, at least inrelative terms.Figure 6.11 shows the wavelet spetra for the time series of paket throughput in the inbounddiretion. As in the ase of byte throughput, the spetra of the replays are quite similar to thespetrum of the original, espeially in the linear region. The spetra of the ollapsed-epohsreplays are somewhat farther from the original spetrum than the ones from the full replays.The slope of the linear region is again higher for the ollapsed-epohs replays, and the di�ereneis also larger at the �nest sales.The analysis of the paket throughput in the output diretion shown in Figure 6.12 revealsa lose approximation of the original spetrum by the full replays. Collapsed-epohs replaysare slightly worse. Note also that the spetrum of the original trae is smoother here than inFigure 6.10. The phenomenon that distorted the linear saling in the original time series ofbyte throughput seems far less signi�ant for the time series of paket throughput.Table 6.2 presents the estimates of Hurst parameters and on�dene intervals for the originaland replay time series of paket throughput. The original and the lossy full replays have almostidential estimated Hurst parameters for the inbound diretion, while the other replays showhigher Hurst parameters. The estimated Hurst parameter of the lossy full replay is again thelosest one to the original estimate for the outbound diretion. It is somewhat lower thanthe original, but within the on�dene interval. The other replays show signi�antly higherestimated Hurst parameters. Note also that the estimated Hurst parameters for the outbounddiretion do not go above 1 in this ase.6.2.5 Time Series of Ative ConnetionsThe �nal metri we examine in this hapter to evaluate how losely original and generatedtraÆ math is the time series of ative onnetions. The left plot in Figure 6.13 shows thetime series from the original trae using a solid line, and the time series from the four replaysusing dashed lines. The �rst observation from this plot is that the ollapsed-epohs replays214
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Figure 6.11: Wavelet spetra of the paket throughput time series for Leipzig-II inboundand its four types of soure-level trae replay.
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Figure 6.12: Wavelet spetra of the paket throughput time series for Leipzig-II outboundand its four types of soure-level trae replay.Trae Inbound OutboundLeipzig-II H C. I. H C. I.Original 0.9208 [0.8975, 0.9442℄ 0.9399 [0.9165, 0.9633℄Lossless Replay 0.9716 [0.9482, 0.9950℄ 0.9701 [0.9468, 0.9935℄Lossy Replay 0.9271 [0.9038, 0.9505℄ 0.9194 [0.8961, 0.9428℄Lossless Coll. Epohs 0.9883 [0.9649, 1.0116℄ 0.9925 [0.9692, 1.0159℄Lossy Coll. Epohs 0.9587 [0.9353, 0.9820℄ 0.9635 [0.9402, 0.9869℄Table 6.2: Estimated Hurst parameters and their on�dene intervals for the paketthroughput time series of Leipzig-II and its four types of soure-level trae replay.215



0

500

1000

1500

2000

2500

3000

0 20 40 60 80 100 120 140 160

N
u

m
b

er
 o

f 
A

ct
iv

e 
C

o
n

n
ec

ti
o

n
s 

P
er

 S
ec

o
n

d

Time in Minutes

Leipzig-II
Lossless

Lossy
Coll. Lossless

Coll. Lossy

1600

1700

1800

1900

2000

2100

2200

2300

20 25 30 35 40

N
u

m
b

er
 o

f 
A

ct
iv

e 
C

o
n

n
ec

ti
o

n
s

Time in Minutes

Original Leipzig-II
Lossless Leipzig-II

Lossy Leipzig-IIFigure 6.13: Ative onnetion time series for Leipzig-II and its four types of soure-leveltrae replay.resulted in a strikingly lower number of ative onnetions that the full replays. Sine thenumber of onnetions replayed in both types of the replay is the same, this di�erene is due tothe substantially shorter durations of the onnetions replayed with their epohs ollapsed. Theollapsing of epohs inreases onnetion durations, beause quiet times and epoh struturedisappear. Epohs require at least one round-trip time to be replayed (see Setion 3.1.1). As aresult, the number of ative onnetions is several times smaller in the ollapsed epohs replaysthan in the original trae. On the ontrary, the number of ative onnetions observed in thefull replays is far loser to the original.The left plot of Figure 6.13 also provides a good illustration of the impat of replaying losseson the quality of the approximation. The number of ative onnetions inreases substantiallywhen loss rates are used in the generation, both in the ase of ollapsed-epohs replays and fullreplays. However, it is lear from this plot that ollapsing epohs has a far more substantialimpat on the number of ative onnetions than inorporating losses, at least for the Leipzig-IItrae. Given how arefully our replay reprodued the main network-level parameters that a�etTCP throughput (round-trip time, window size and loss rates), this result strongly suggest thattraÆ generated without any modeling of epoh struture and quiet time has an unrealistiallylow number of ative onnetions.While the lossless full replay ahieves a reasonable approximation of the original time series,the lossy full replay is almost a perfet math. The di�erene is always below 100 onnetions,216



20

40

60

80

100

120

140

0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t 
in

 M
b

p
s

Time in Minutes

UNC 1 PM Inbound
Original

Lossless Replay
Lossy Replay

20

40

60

80

100

120

140

0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t 
in

 M
b

p
s

Time in Minutes

UNC 1 PM Inbound
Original

Lossless Replay with Collapsed Epochs
Lossy Replay with Collapsed EpochsFigure 6.14: Byte throughput time series for UNC 1 PM inbound and its four types ofsoure-level trae replay.whih an be onsidered an outstanding result. It is lear that generating traÆ using a ombi-nation of detailed soure-level models and primary network-level parameters makes the numberof ative onnetions very realisti. Note also that this is not only true for the oarse sale (1minute) at whih the left plot of Figure 6.65 is displayed, but also at the �ner sale (5 seonds)in the right plot. Notie for example how losely the replay traks the signi�ant variability inthe original time series.6.3 Soure-level Replay of UNC 1 PM6.3.1 Time Series of Byte ThroughputFigure 6.14 shows the time series of byte throughput for UNC 1 PM in the inbound diretion,revealing a good math between original and replayed traes. Lossless replays with and withoutollapsed epohs are generally loser than lossy replays, whih are often 10 to 20 Mbps belowthe original. However, lossless replays show large spikes (minutes 14 and 21) that are notfound neither in the original trae nor in the lossy replays. The lossy replays are atually verylose to the original in the neighborhood of these spikes (e.g., between minutes 20 and 28).Interestingly, the time series for Leipzig-II shown in Figure 6.14 did not reveal a signi�antdi�erene between lossless and lossy replays. Finding an explanation for this phenomenon

217



40

60

80

100

120

140

160

180

200

220

0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t 
in

 M
b

p
s

Time in Minutes

UNC 1 PM Outbound
Original

Lossless Replay
Lossy Replay

40

60

80

100

120

140

160

180

200

220

0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t 
in

 M
b

p
s

Time in Minutes

UNC 1 PM Outbound
Original

Lossless Replay with Collapsed Epochs
Lossy Replay with Collapsed EpochsFigure 6.15: Byte throughput time series for UNC 1 PM outbound and its four types ofsoure-level trae replay.requires further analysis, but this plot ertainly justi�es our hoie of omparing the originaltrae to lossless and lossy versions of its soure-level trae replay. Without a lossy replay, wewould be tempted to onlude from the arti�ial throughput spikes in lossless replay that oursoure-level model is not properly reproduing an end-point limitation that was present in theoriginal environment. However, the lossy replay, by showing that adding losses eliminates thisspikes, demonstrates that they are purely due a network-level parameter and not to a limitationof the a-b-t model. One again, we are not naively advoating for inorporating open-loop lossesinto traÆ generation experiments, but addressing a diÆulty that signi�ant loss an reatewhen trying to understand how realisti our modeling of the traÆ soure is. Simply relyingon a lossless replay an be misleading, as this example demonstrates.As in the full replay ase, the lossless ollapsed-epohs replay shows two large spikes thatare not present in the lossy ollapsed-epohs replays. The general impression from the plot isthat ollapsing epohs moderately inreases the burstiness of the replay. Note for example thelarger spike in the minute 5, the spikes in minutes 36 and 44, and the large dith in minute 29.The ollapsed-epohs lossy replay is quite similar to the full lossy replays, but we �nd a fewperiods where the approximation of the original throughput is slightly worse. For example, theollapsed-epohs replay shows a drop of byte throughput in minute 40 that is not present inthe full lossy replay.Figure 6.15 reveals somewhat di�erent lessons from the time series of byte throughput in218



the outbound diretion of UNC 1 PM. Regarding the full replays shown in the left plot, wesee that the lossless replay has only one signi�ant spike above the original traÆ. One reasonbehind this �nding is that the muh higher average byte throughput makes spikes due to a fewonnetions far less signi�ant in relative terms.Both full replays are generally slightly below the byte throughput of the original trae. Thereason is not ompletely lear, but it suggests that the replay has a somewhat lighter distributionof onnetion throughputs, whih makes the aggregate throughput slightly lower. If the replayis ontinued beyond minute 60, we do observe onnetions that remain ative for a few moreminutes and transfer enough data to aount for the di�erene between the time series. Weexamined the logs from the generator hosts and on�rmed that no overload ourred during theexperiments, so the ause seems to be some arti�ial limit on the throughputs of the onnetionsin our replay. One ause ould be the overestimation of quiet times disussed in Setion 5.2.1.Another possible ause is that the replays did not take into aount the spei� MSS of eahonnetion. Every onnetion was given the FreeBSD default value (1,460 bytes), whih is themost ommon one on the Internet. However, it ould be the ase that a signi�ant fration ofthe segments were arried in TCP onnetions with a smaller MSS. These onnetions wouldthen have higher ontrol overhead, making their transferring of the same payload result in morebytes and therefore higher aggregate throughput. Given the small size of TCP headers, it isunlikely that the extra overhead would result in more than a few additional Mbps.The results from the replays with ollapsed epohs are similar, although we observe severaladditional spikes in the ase of the lossless replay. The lossy replay does not show these spikes,but it is still below the original for most of the time series. Interestingly, it provides a loserapproximation in some regions, suh as between minutes 10 to 22. We an argue that thisis an aidental improvement due to the arti�ially larger throughputs that a fration of theonnetions ahieves after their epohs are ollapsed.
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Figure 6.22: Wavelet spetra of the byte throughput time series for UNC 1 PM inboundand its four types of soure-level trae replay.
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Figure 6.23: Wavelet spetra of the byte throughput time series for UNC 1 PM outboundand its four types of soure-level trae replay.Trae Inbound OutboundUNC 1 PM H C. I. H C. I.Original 0.9557 [0.9113, 1.0002℄ 0.9717 [0.9272, 1.0161℄Lossless Replay 0.9632 [0.9188, 1.0077℄ 0.9585 [0.9141, 1.0030℄Lossy Replay 0.9118 [0.8674, 0.9563℄ 0.9306 [0.8861, 0.9750℄Lossless Coll. Epohs 0.9521 [0.9077, 0.9966℄ 1.0170 [0.9726, 1.0615℄Lossy Coll. Epohs 0.8441 [0.7996, 0.8885℄ 0.8657 [0.8212, 0.9101℄Table 6.3: Estimated Hurst parameters and their on�dene intervals for the byte through-put time series of UNC 1 PM and its four types of soure-level trae replay.225



in the original. This dith was far less pronouned in the full replays. Beyond the �nestsales, the lossless ollapsed-epohs replay is a poor math of the original, while the lossy oneprovides a lose approximation. This high impat of losses in the ollapsed-epohs replay, farlarger than in the full replay ase, suggests a signi�ant interation between loss and long-rangedependene when traÆ is not generated aording to a detailed soure-level model. In otherwords, endpoints that generate traÆ aording to less realisti models (without epohs) arearti�ially more aggressive than Internet soures. This makes them more sensitive to lossyenvironments, sine losses an more sharply derease their higher throughput. This an resultin experiments that overestimate the impat of losses on performane.The estimated Hurst parameters and their on�dene intervals shown in Table 6.3 are some-what surprising. In the inbound diretion, the estimated Hurst parameter of the original traeis most losely approximated by the lossless replays. The lossy full replay is slightly lower, andthe lossy ollapsed-epohs replay is far lower. The same is true in the opposite diretion, atleast for the lossless replays. It is diÆult to interpret the meaning of these estimates in theontext of the previous results. On the one hand, we found large spikes in the time series of bytethroughput that suggest substantially higher burstiness in the lossless replays. Additionally,the wavelet spetra in Figure 6.22 did not �nd better approximations from the lossless replays.Notie for example that the lossless ollapsed-epohs replay is learly the farthest from theoriginal. On the other hand, the tails of the marginal distributions learly favored the losslessreplays, showing lighter tails for the lossy replays. We ould argue that the di�erent metrisrefer to di�erent measures of burstiness, and onlude that adding arti�ial losses (using ouropen-loop method) makes the lossy replays less realisti in terms of Hurst parameter estimates.However, this onlusion seems too simplisti, sine it is in ontradition with the Leipzig-IIresults. Adding losses made the estimated Hurst parameters far loser in that ase. Assumingthat the observed di�erenes between the estimated Hurst parameters are signi�ant, the rea-son for these divergent onlusions regarding the impat of losses must neessarily lie in somefundamental di�erene in the nature of the two network links. The estimated Hurst parameterssay little about the di�erene, sine all of the estimates are similarly high (above 0.92).
226



As disussed in Chapter 4, the Leipzig-II trae is a good example of university traÆ dom-inated by downloading behavior (i.e., inbound traÆ is substantially higher than outboundtraÆ). In ontrast, the UNC 1 PM trae is dominated by ontent downloaded from UNCservers (rather than downloads from UNC lients) due to the presene at UNC of a majorInternet repository of software and ontent, ibiblio.org. This made traÆ volume and num-ber of onnetions far higher for UNC. Still, why would these di�erenes make introduinglosses bene�ial in the Leipzig ase and detrimental in the UNC ase for the approximationof the original Hurst parameters? We an speulate that the rate-limiting mehanisms usedby ibiblio.org reate unusual loss patterns that are poorly approximated by our open-looplosses, but we do not have any supporting evidene.The lessons from the analysis of the saling in the paket throughput series is quite similar.The plots in Figure 6.24 show reasonably lose approximations of the original by all of thereplays in the inbound diretion, and somewhat worse ones in the outbound diretion. Thespetrum of the lossless full replay provides the losest approximation to the spetrum of theoriginal in both diretions. The spetrum of the lossless ollapsed-epohs replay is learly notas lose, showing a higher slope for medium to oarse time sales. As in the ase of bytethroughput, lossy replays show less energy than the original trae, espeially for the �ne salesin the outbound diretion. Note also the systemati dith around otave 14 for all four spetrafrom lossy replays. This suggests some unexpeted periodiities at the 1-minute sale. A similardith an be found in the outbound diretion of the original time series in otave 13, and thisdith is not reprodued by the replays.Regarding the estimated Hurst parameters and their on�dene intervals, Table 6.4 showsdi�erent results for the two diretions. The estimates for the inbound diretion on�rm thelossless full replay as an exellent approximation, but here the lossless ollapsed-epohs replayis also very lose to the original. Both lossy replays are well below the estimated Hurst parameterof the original time series, and outside its on�dene interval. The estimates for the outbounddiretion show again an exellent approximation by the lossless full replay, but here the losslessollapsed-epohs replay is far higher than the original and well within the non-stationarity227
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Figure 6.24: Wavelet spetra of the paket throughput time series for UNC 1 PM inboundand its four types of soure-level trae replay.
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Figure 6.25: Wavelet spetra of the paket throughput time series for UNC 1 PM outboundand its four types of soure-level trae replay.Trae Inbound OutboundUNC 1 PM H C. I. H C. I.Original 0.9564 [0.9158, 0.9970℄ 0.9339 [0.8933, 0.9746℄Lossless Replay 0.9776 [0.9370, 1.0182℄ 0.9512 [0.9106, 0.9918℄Lossy Replay 0.8719 [0.8313, 0.9125℄ 0.9512 [0.9106, 0.9919℄Lossless Coll. Epohs 0.9464 [0.9058, 0.9871℄ 1.0956 [1.0549, 1.1362℄Lossy Coll. Epohs 0.8509 [0.8103, 0.8916℄ 0.9200 [0.8793, 0.9606℄Table 6.4: Estimated Hurst parameters and their on�dene intervals for the paketthroughput time series of UNC 1 PM and its four types of soure-level trae replay.228
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always straight-forward or onsistent aross traes, so it is diÆult to form a oherent pitureby simply going through the entire body of results. In this setion, we summarize our resultsso far in order to make the rest of the hapter easier to follow. Our summary is in the form ofa list of 18 observations, whih report both on �ndings that were onsistent for Leipzig-II andUNC 1 PM, and �ndings that were inonsistent.6.4.1 Observations on Byte ThroughputFrom the analysis of the plots of the time series of byte throughput, their marginal distri-butions and wavelet spetra, we an make the following observations:B.1 Both full and ollapsed-epohs replays provide a reasonable approximation of the origi-nal 1-minute time series of byte throughput and the body of its 10-milliseond marginal.Replays do not trak every spike in the original time series, but the similarity is remark-able. The replays ahieve a very lose approximation of the Leipzig-II time series, butare slightly below the UNC 1 PM time series. For both traes, the approximation of thebodies of the original marginal are somewhat better for the inbound diretion than forthe outbound one. This observation is not explained by traÆ volume asymmetry, sinethe inbound diretion was the dominant diretion in terms of byte volume only in thease of Leipzig-II.B.2 Lossless replays sometimes show substantially more spikes of 1-minute byte throughputabove the original trae than lossy replays. This is lear for UNC 1 PM but not forLeipzig-II. At the �ner sales studied by the marginal distributions, we �nd that the tailsof the lossless replays are substantially heavier than those of the lossy replays. However,they are not onsistently above the tails of the original distributions. In ontrast, theresults for every trae show that the bodies of the lossless replays are wider than thebodies of the lossy replays. This reveals higher burstiness in the lossless replays in thesense that they have a higher probability of bins with byte throughput far from the mean(i.e., a larger number of 10-milliseond intervals with have rather low or rather high byte230



throughput).B.3 Collapsed-epohs replays show somewhat more bursty 1-minute time series, and trakthe hanges in the shape of the original time series less losely. The extra burstinessmay not appear very substantial in the plots, but given the oarse sale, it may have alarge impat on experiments sensitive to prolonged byte throughput spikes. We do not�nd a orresponding phenomenon for the marginal distributions, where ollapsed-epohsreplays are generally lose to the full replays (exept for the outbound diretion of UNC 1PM). Together with observation B.5, this shows that the extra burstiness of the ollapsed-epohs replays manifests itself in the auto-orrelation struture of the byte throughputproess, rather than in the set of byte throughputs observed throughout the replays.B.4 Full replays provide a lose approximation of the saling region (otaves 6 to 15) of thewavelet spetra of the original traes. This does not neessarily translate into similarlygood approximations of the estimated Hurst parameters. Only the lossy replays arewithin on�dene intervals for Leipzig-II, while only the lossless ones are within on�deneintervals for UNC 1 PM.B.5 Collapsed-epohs replays tend to show slightly more energy in the saling region. This istrue for the four spetra from lossless replays and for the two spetra from lossy replayof Leipzig-II. However, the energy of the original saling region is well approximated bythe lossy ollapsed-epohs replay for the outbound diretion of UNC 1 PM. This higherenergy in the wavelet spetrum plot does not neessarily translate into higher estimatesof the Hurst parameters.B.6 Both full and ollapsed-epohs replays do not onsistently math the spetra of the �nersales (otaves 1 to 5). We �nd higher or slightly higher energy levels for the replays ofLeipzig-II, similar levels for the replays of the inbound diretion of UNC 1 PM and lowerlevels for the outbound diretion of UNC 1 PM.B.7 By onstrution, the most detailed replay is the lossy full replay, so we expet it toahieve the best approximation of the original trae. This was always true for 1-minutetime series, the body of the marginal distribution and the saling region of the wavelet231



spetrum. However, it was not onsistently true for the tail of the marginal distribution,the energy of the wavelet spetrum at �ne sales, and the estimated Hurst parameter.6.4.2 Observations on Paket ThroughputWe an make the following observations regarding paket throughput:P.1 Full replays ahieve a lose approximation of the original 1-minute time series of paketthroughput, remaining between 2% and 8% below the original for most of the time series.Collapsed-epohs replays result in a substantially worse approximation, being between20% to 30% below the original for most of the time series. This di�erene is also presentin the bodies of the 10-milliseond marginal distributions. In the best ase for full replays,the median of the marginal distribution is equal to the original median for the inbounddiretion of the UNC 1 PM lossy replay. In the worst ase, the median is 7% below theoriginal for the inbound diretion of the Leipzig-II lossy replay. Collapsed epohs replaysshow medians of the marginal distributions that are 20% (UNC 1 PM inbound) and 25%(Leipzig-II outbound) below the original median.P.2 Inorporating losses into the replays inreases paket throughput, reduing the distane tothe original time series. While this e�et is small for Leipzig-II, it is rather signi�ant forUNC 1 PM inbound. In addition, lossless replays sometimes show more arti�ial spikesin the 1-minute time series plot than the lossy ones (e.g., UNC 1 PM outbound). Thisphenomenon seems less prominent for paket throughput than for byte throughput (seeobservation B.2).P.3 Unlike the byte throughput ase, the tails of the paket throughput from the replaysmarginals are never signi�antly heavier than the original tails. Lossless replays providethe best approximations of the original tails, being exellent in some ases (Leipzig-IIinbound and UNC 1 PM inbound). Lossy replays show lighter tails than lossless replays,revealing signi�antly worse approximations of the original tails. We an also observethat the tails of the ollapsed-epohs replays are onsistently lighter than those of the full232



replays. However, the impat of detailed modeling on the tails of the marginals is lessprominent than the impat of inorporating losses.P.4 Full replays and lossy ollapsed-epohs replays provide good approximations of the originalwavelet spetra, while the lossless ollapsed-epohs replays show somewhat higher energy.In general, we an say that the best approximation is ahieved by the lossless full replay.As in the ase of byte throughput, Hurst parameter estimates o�er a di�erent piture.Only the estimates for the lossy full replay are within on�dene intervals of the originalestimates for Leipzig-II, while the estimates for both lossless and lossy full replays arewithin on�dene intervals for UNC 1 PM.P.5 Replays do not onsistently reprodue the energy levels at the �nest sales of the originaltime series of paket arrivals. We �nd minor di�erenes for Leipzig-II and UNC 1 PMinbound, and substantially larger ones for UNC 1 PM outbound. Collapsed-epohs replaysare signi�antly worse than full replays only for UNC 1 PM.6.4.3 Observations on Ative ConnetionsRegarding ative onnetions, we an make the following observations that hold true forboth Leipzig-II and UNC 1 PM:C.1 The number of ative onnetions in the original trae and in the full replays is verysimilar.C.2 The lossy full replay provides the best approximation of the ative onnetion time series,being within 1% of the original time series. There is no di�erene for UNC 1 PM.C.3 The number of ative onnetions in ollapsed-epohs replays is several times smaller thanthe original (around 3 times smaller for Leipzig-II and UNC 1 PM).C.4 Adding losses to the replays substantially inreases the average number of onnetions.This inrease is of the same magnitude for both full and ollapsed-epohs replays.C.5 Full replays trak the features of the original time series very losely. The only di�erene233



5

10

15

20

25

30

35

40

0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t 
in

 M
b

p
s

Time in Minutes

UNC 1 AM Inbound
Original

Lossless Replay
Lossy Replay

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t 
in

 M
b

p
s

Time in Minutes

UNC 1 AM Inbound
Original

Lossless with Coll. Epochs
Lossy with Coll. Epochs

Figure 6.27: Byte throughput time series for UNC 1 AM inbound and its four types ofsoure-level trae replay.
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6.5 Soure-level Replay of UNC 1 AM6.5.1 Time Series of Byte ThroughputThe plots of the 1-minute time series of byte throughput for the original UNC 1 AM and itsreplays are shown in Figure 6.27 (inbound diretion) and in Figure 6.28 (outbound diretion).For the inbound, we observe a moderately bursty time series with a large inrease in bytethroughput between minutes 15 and 32. In good agreement with observation B.1, the replaystrak the shape of the original time series well. They also approximate some smaller spikes,suh as the one in minute 45, and miss others, suh as the one in minute 17. The result issimilar for the outbound diretion, although we again �nd a slightly lower overall throughputin the replays. There is also an area of higher throughput in the original trae between minutes35 and 43 that is not properly reprodued by any of the replays. The full lossy replay providethe losest approximation, but there is still a lear di�erene with respet to the original timeseries.The results also support the observation of higher burstiness from lossless replays, B.2, andfrom ollapsed-epohs replays, B.3; espeially for the inbound diretion. The results are alsoonsistent with observation B.7, sine the full lossy replay appears losest to the original.6.5.2 Time Series of Paket ThroughputThe time series of paket throughput for UNC 1 AM inbound shown in Figure 6.29 are insharp ontrast to earlier results. As stated in observation P.1, the time series from the replaysof the previous traes were generally below the time series of the original trae. However, thefull replays of UNC 1 AM are often above the original paket throughput, espeially in the aseof the lossy full replay. The same is not true for the outbound diretion, as shown in Figure6.30, where the replays are again below the original for a large fration of the time series. Whilethe replays provide a reasonable approximation of the overall time series, the original paketthroughput in the outbound diretion is substantially lower between minutes 35 and 43. The235
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whih exhibits the lightest tail. Lossy replays provide far better approximations. The outboundplot appears loser to the previous observation, with the lossless replays being the losest onesto the original. Note however that they are somewhat heavier, unlike in the Leipzig-II andUNC 1 PM ases.6.5.4 Long-Range DependeneWhile the wavelet spetra for the inbound diretion shown in Figure 6.35 are in goodagreement with observation B.4, we �nd substantially higher energy above the original in thespetrum of the lossless full replay for outbound diretion. The estimated Hurst parametersshown in Table 6.5 are again diÆult to assess, as mentioned in that observation. Losslessreplays are the only ones within the on�dene interval of the estimate for the original inbounddiretion, while only the lossless ollapsed-epohs replay is outside the on�dene interval forthe outbound diretion. Inidentally, the extremely high estimate for the lossless ollapsed-epohs replay is remarkable. It is 0.23 above the lossless full replay, illustrating the majordi�erene that detailed soure-level modeling an make on traÆ long-range dependene.In the saling region, ollapsed-epohs replays do show higher energy than full replays, asobserved in B.5. This higher energy does not translate into higher Hurst parameter estimates.Notie for example the lower estimates for the inbound diretion. For both diretions, thelossy ollapsed-epohs replay provides a good approximation of the original spetrum, althoughnot as good as the lossy full replay. The results for UNC 1 AM are therefore onsistent withobservation B.7. At the �nest sales, we �nd that the lossy full replay approximates the energylevels of the inbound diretion most losely, while it is the lossy ollapsed-epohs replay thebest math for the outbound diretion. This inonsisteny supports observation B.6.Figures 6.37 and 6.38 reveal that the wavelet spetra from lossless replays do not approxi-mate the original spetra well. For both diretions, the full lossless replay shows signi�antlymore energy, while the full ollapsed-epohs replay shows higher slope in the saling region.This poor �t for the lossless full replay ontradits observation P.4. Lossy replays appear loser239
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Figure 6.35: Wavelet spetra of the byte throughput time series for UNC 1 AM inboundand its four types of soure-level trae replay.
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Figure 6.36: Wavelet spetra of the byte throughput time series for UNC 1 AM outboundand its four types of soure-level trae replay.Trae Inbound OutboundUNC 1 AM H C. I. H C. I.Original 0.9885 [0.9479, 1.0292℄ 0.9990 [0.9584, 1.0397℄Lossless Replay 1.0275 [0.9868, 1.0681℄ 0.9705 [0.9299, 1.0111℄Lossy Replay 0.9465 [0.9058, 0.9871℄ 0.9546 [0.9140, 0.9953℄Lossless Coll. Epohs 1.0089 [0.9683, 1.0495℄ 1.2036 [1.1630, 1.2443℄Lossy Coll. Epohs 0.9136 [0.8730, 0.9542℄ 0.9720 [0.9313, 1.0126℄Table 6.5: Estimated Hurst parameters and their on�dene intervals for the byte through-put time series of UNC 1 AM and its four types of soure-level trae replay.240
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Figure 6.37: Wavelet spetra of the paket throughput time series for UNC 1 AM inboundand its four types of soure-level trae replay.
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Figure 6.38: Wavelet spetra of the paket throughput time series for UNC 1 AM outboundand its four types of soure-level trae replay.Trae Inbound OutboundUNC 1 AM H C. I. H C. I.Original 0.9316 [0.8871, 0.9760℄ 0.9309 [0.8864, 0.9753℄Lossless Replay 0.9860 [0.9416, 1.0305℄ 0.9830 [0.9385, 1.0274℄Lossy Replay 0.9749 [0.9304, 1.0193℄ 0.9759 [0.9315, 1.0204℄Lossless Coll. Epohs 1.1478 [1.1034, 1.1923℄ 1.2128 [1.1683, 1.2572℄Lossy Coll. Epohs 0.9504 [0.9059, 0.9948℄ 0.9757 [0.9313, 1.0202℄Table 6.6: Estimated Hurst parameters and their on�dene intervals for the paketthroughput time series of UNC 1 AM and its four types of soure-level trae replay.241
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Figure 6.40: Byte throughput time series for UNC 7:30 PM inbound and its four types ofsoure-level trae replay.
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Figure 6.44: Byte throughput marginals for UNC 7:30 PM inbound and its four types ofsoure-level trae replay.argue that the lossy replay provides a better �t between minutes 30 and 35 and after minute52, but the rest of the time series for this replay is very similar to the one for the lossless replay.We an also say that the lossless replay makes a better attempt to math the spike in minute14, although the replay spike seems shifted to minute 16.6.6.3 Marginal DistributionsThe marginal distributions of the 10-milliseond time series of byte throughput for theinbound diretion are shown in Figure 6.44, while the ones for the outbound diretion areshown in Figure 6.45. In agreement with observation B.1, the body of the marginals are loselyapproximated by the replays, espeially in the ase of the inbound diretion. For the outbound,245
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Figure 6.45: Byte throughput marginals for UNC 7:30 PM outbound and its four types ofsoure-level trae replay.
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Figure 6.46: Paket throughput marginals for UNC 7:30 PM inbound and its four typesof soure-level trae replay.it is interesting to note a better approximation by the lossless replays for the upper part of thebody and the �rst half of the tail.As observation B.2 and B.3 pointed out, it is diÆult to make general a statement aboutthe approximation of the tails. For UNC 7:30 PM inbound, ollapsed epoh replays maththe original as losely as the full replays that math the original tail below 10�4, but they aresubstantially heavier above that probability. Note that this heaviness did not manifest itselfin the plots of 1-minute byte throughput. For UNC 7:30 PM outbound, we however have thatthe lossless replays are the ones showing an exellent math below 10�3, but a far heavier tailabove that probability. Overall, the only type of replay that did not show an overly heavy tailwas the lossy full replay, whih supports observation B.7.246
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247



2 4 6 8 10 12 14
26

28

30

32

34

36

38

j = log
2
(scale) −− Bytes Arrivals

lo
g

2 V
ar

ia
nc

e(
j)

UNC 7:30 PM Inbound
Lossless Replay    
Lossy Replay       

0.04 0.16 0.64 2.56 10.24 40.96 secs.

2 4 6 8 10 12 14
26

28

30

32

34

36

38

j = log
2
(scale) −− Bytes Arrivals

lo
g

2 V
ar

ia
nc

e(
j)

UNC 7:30 PM Inbound  
Lossless Coll. Epochs
Lossy Coll. Epochs   

0.04 0.16 0.64 2.56 10.24 40.96 secs.

Figure 6.48: Wavelet spetra of the byte throughput time series for UNC 7:30 PM inboundand its four types of soure-level trae replay.
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Figure 6.49: Wavelet spetra of the byte throughput time series for UNC 7:30 PM out-bound and its four types of soure-level trae replay.Trae Inbound OutboundUNC 7:30 PM H C. I. H C. I.Original 0.8927 [0.8520, 0.9333℄ 0.9424 [0.9018, 0.9830℄Lossless Replay 0.8490 [0.8083, 0.8896℄ 1.0191 [0.9784, 1.0597℄Lossy Replay 0.8449 [0.8043, 0.8856℄ 1.0044 [0.9637, 1.0450℄Lossless Coll. Epohs 0.8392 [0.7985, 0.8798℄ 0.9984 [0.9578, 1.0390℄Lossy Coll. Epohs 0.8655 [0.8249, 0.9062℄ 1.0971 [1.0564, 1.1377℄Table 6.7: Estimated Hurst parameters and their on�dene intervals for the byte through-put time series of UNC 7:30 PM and its four types of soure-level trae replay.248



6.6.4 Long-Range DependeneThe spetra of the byte throughput in the full replays are lose to the original spetrum,as shown in Figure 6.48. However, the spetra of the outbound byte throughput shown inFigure 6.49 reveals a lossless replay with substantially more energy in the saling region (whihstarts at otave 6). As in the ase of UNC 1 AM outbound, this �nding does not supportobservation B.4 regarding lossless full replays. The lossy full replay provides however a loserapproximation to the original spetrum. Estimated Hurst parameters in Table 6.7 show similarresults. Estimates from the replays are within the on�dene interval of the inbound estimate,but somewhat lower. However, they are above the upper end of the on�dene interval of theoutbound estimate. The estimate from the lossy ollapsed-epohs replay is speially high inthis ase, probably driven by the spike in otave 11. It is again diÆult to draw any strongonlusion other than the general �nding of inonsistent results already stated in observationB.4.Collapsed-epohs replays show substantially more energy in the lossless ase, but the dif-ferene in not so substantial for the lossy replay, espeially in the inbound diretion. This is inagreement with observation B.5.The lossy full replay provides the best approximation again, as pointed out in observationB.7, However, some regions, suh as the one between otaves 9 to 12 in the inbound diretion,are more losely reprodued by the lossy ollapsed-epohs replay. Interestingly, the four replaystrak the �ne-sale energy pro�le of the original spetrum for the inbound diretion, but onlythe lossless ones do so for the outbound diretion. Observation B.6 already reeted this typeof inonsisteny in the results.The lessons from the wavelet spetra in Figures 6.50 and 6.51 are surprisingly similar tothose from the analysis of the paket throughput spetra for UNC 1 AM, disussed in Setion6.5.4. The full lossless replay shows higher energy, and the full ollapsed-epohs replay showssubstantially higher slope in the saling region. Lossy replays provide far better approximationsof the original spetra. As we observed for UNC 1 AM, these �ndings are inonsistent with249
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Figure 6.50: Wavelet spetra of the paket throughput time series for UNC 7:30 PMinbound and its four types of soure-level trae replay.
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Figure 6.51: Wavelet spetra of the paket throughput time series for UNC 7:30 PMoutbound and its four types of soure-level trae replay.Trae Inbound OutboundUNC 7:30 PM H C. I. H C. I.Original 0.9560 [0.9116, 1.0005℄ 1.0061 [0.9617, 1.0506℄Lossless Replay 0.9655 [0.9210, 1.0099℄ 1.0043 [0.9599, 1.0488℄Lossy Replay 0.9186 [0.8742, 0.9631℄ 0.9524 [0.9080, 0.9969℄Lossless Coll. Epohs 0.9491 [0.9047, 0.9936℄ 0.9931 [0.9487, 1.0375℄Lossy Coll. Epohs 0.9967 [0.9523, 1.0411℄ 1.0508 [1.0064, 1.0953℄Table 6.8: Estimated Hurst parameters and their on�dene intervals for the paketthroughput time series of UNC 7:30 PM and its four types of soure-level trae replay.250
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Figure 6.61: Wavelet spetra of the byte throughput time series for Abilene-I Clev/Iplsand its four types of soure-level trae replay.
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Figure 6.63: Wavelet spetra of the paket throughput time series for Abilene-I Clev/Iplsand its four types of soure-level trae replay.
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number of (probably long) onnetions whose driving appliation is not well-desribed by oursoure-level model.6.8 SummaryThe results in this hapter demonstrated that soure-level trae replay an losely approxi-mate the harateristis of real traÆ traes. We have also shown that full soure-level replaysare loser or far loser to original traes than ollapsed-epohs replays for several metris. Inpartiular, the largest di�erene is observed for the time series of paket throughput, the bodyof the paket throughput marginal and the time series of ative onnetions. Byte throughputis similar for full and ollapsed-epohs replays. The latter exhibits somewhat more bursty timeseries, but the bodies of the marginals do not hange signi�antly.The rest of the metris annot be learly interpreted, sine losses have a muh more sig-ni�ant impat on them than the use of full or ollapsed-epohs replays. Lossy full replaysare learly better than lossy ollapsed-epohs replays in terms of wavelet spetra, estimatedHurst parameters and tails of the marginals for some traes, but this is not onsistent for the�ve traes. Our analysis learly demonstrated the need to arefully onsider the impat oflosses on evaluating the quality of syntheti traÆ. Without our diret omparison of losslessand lossy replays, the results for ertain metris ould have mislead our onlusions regardingsoure-level modeling. In ontrast, other metris are less a�eted by the loss model. This is thease for the time series of paket throughput, the body of the paket throughput marginal andthe time series of ative onnetions, where full replays are learly better approximations thanollapsed-epohs replays.
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CHAPTER 7Trae Resampling and Load SalingThat whih is stati and repetitive is boring. That whih is dynami and randomis onfusing. In between lies art. | John A. Loke (1632{1704)Everything that an be ounted does not neessarily ount; everything that ountsannot neessarily be ounted. | Albert Einstein (1879{1955)The previous hapters presented a omplete methodology for reproduing the traÆ ob-served on a network link in a losed-loop manner, and proposed a number of metris for study-ing the realism of the generated traÆ. In this hapter, we study ways to introdue statistialvariability in syntheti traÆ in a meaningful and ontrolled manner. In addition, we addressthe need for hanging o�ered load in network experiments. The methods that we introdue inthis hapter add signi�ant exibility to our traÆ generation approah, enabling researhersto perform a wider range of experiments.In the approah presented so far, traÆ is generated aording to a trae T = f(Ti; Ci)g.Eah augmented onnetion vetor Ci is replayed starting at time Ti. This implies that twodi�erent replays of T using the same hardware and the same physial network result in verysimilar syntheti traÆ. In both ases, the syntheti traÆ has the same number of TCPonnetions, replaying the same soure-level behaviors under the same network-level parameters,and starting exatly at the same times. Only tiny variations would be introdued on theend-systems by hanges in lok synhronization, operating system sheduling and interrupthandling, and at swithes and routers by the stohasti nature of paket multiplexing. This



reproduibility was exatly what was needed to evaluate how well syntheti traÆ approximatedthe real traÆ from whih it derived.However, in the pratie of experimental networking, experimenters often want to introduemore variability in their experiments. One way of aomplishing this is to use more than onetrae in a replay, exposing the studied network protool or mehanism to di�erent types ofworkloads. This is highly desirable, but it has its drawbaks. First, the experimenter may wantto perform a number of experiments that is larger than the number of available traes. Seond,traes from di�erent sites, and even traes from the same site but olleted at di�erent timesof the day, may be so di�erent that it beomes diÆult to extrapolate from the results of theexperiments.A di�erent, and omplementary, approah is to ondut several experiments using traÆthat \looks like" some spei� trae T, without exatly replaying T over and over. The �rsthallenge in devising a method for aomplishing this task is to de�ne what \looks like" mean.This involves reating a model (either formal or informal) of the traÆ whih is general enoughto ontain T but spei� enough to always resemble the original trae. Running di�erentexperiments then requires to instantiate this model several times to reate new derived traesT 0 , T 00 ; : : : and to generate traÆ with these new traes using their soure-level trae replay.In this hapter, this instantiation onsists of resampling the set of onnetion vetors in T andassigning them new start times. Statistial variability in the derived traes omes from theresampling of the original onnetion vetors, and from the proess of onnetion start times.We preserve the statistial properties of the original set of onnetion vetors by resamplingentire onnetion vetors, i.e., we do not manipulate the sizes and order of the ADUs and inter-ADU quiet times inside onnetion vetors. Our belief is that a trae reated by modifying thesoure-level behavior of the onnetion vetors or their network-level parameters \does not looklike" the original trae. For example, doubling the size of the ADUs in T is an easy way ofreating a new trae and inreasing the o�ered load. However, the resulting onnetion vetorshave little to do with the onnetions observed in the link from whih T was olleted. Ourhoie to maintain onnetion vetors intat is reasonable, and onsistent with the spirit of262



our overall methodology, whih goes to great lengths to aurately haraterize the soure-levelharateristis of eah onnetion. Other researhers may have a di�erent mental model of thelegitimate level of statistial variability whih ould be introdued in T 0 ;T 00 ; : : : We propose aspei� solution and demonstrate that it is reasonable using quantitative data. A disussion ofthe di�erent philosophies is outside the sope of this work.The two setions in this hapter desribe two tehniques for introduing variability in thesoure-level replay of a trae. Setion 7.1 desribes Poisson Resampling . This tehnique as-sumes that onnetions are independent of eah other, whih is a reasonable hoie for highlyaggregated traÆ. Poisson Resampling involves randomly resampling the onnetion vetors inT in an independent manner to reate a new T 0 . New start times are given to eah resampledonnetion vetor in a suh a way that onnetion inter-arrivals are exponentially distributed.As we will show, empirial data support the hoie of exponential inter-arrivals.Setion 7.2 desribes Blok Resampling . This tehnique involves resampling bloks of on-netion vetors, preserving arrival dependenies among the onnetions inside the same blok.Eah blok is the set of onnetions observed in an interval of �xed duration (e.g., 1 minute)in the original trae. We will demonstrate that this tehnique, unlike Poisson Resampling, pre-serves the long-range dependene in the onnetion arrival proess found in real traes. Thisannot be ahieved by sampling independently from an exponential (or any other) distribution.Note that we will reserve the term resampling for randomly seleting onnetion vetors, andthe term sampling for randomly drawing values from a parametri distribution, suh as theexponential distribution.The seond topi of this hapter is how to manipulate a trae T to modify the traÆload (i.e., average byte throughput) that this trae o�ers during its soure-level replay. Thisis a ommon need in experimental networking researh, where the performane of a networkmehanism or protool is often a�eted by the amount of traÆ to whih it is exposed. Forexample, ative queue management mehanisms have very di�erent performane depending onthe level of utilization of the input link, so researhers generally perform experiments witho�ered loads that range from 50% to 120% of the link bandwidth. Rather than trying to �nd263



or ollet traes with the exat range of loads needed (whih is generally diÆult), we proposeto produe a olletion of resampled traes with the intended range of o�ered loads.Average load l is de�ned as the total number of bytes injeted in the network s dividedby the total duration of the experiment d. Changing the average load in an experiment ofonstant duration therefore implies reating a saled trae T 0 with a higher or a lower totalnumber of bytes. One again, the assumption is that it is possible to reate a saled traeT 0 whih \looks like" the original T but with a larger or smaller number of bytes. Thisrequires a model of traÆ that is general enough to enompass T and traes derived fromT with di�erent o�ered loads. As should be obvious, the problems of introduing statistialvariability and hanging average load are related, and an naturally be treated together, as wewill do in this hapter. The two tehniques mentioned above, Poisson Resampling and BlokResampling, provide the foundation for deriving saled traes. In both ases, the resamplingof T to reate a saled T 0 an be modi�ed to ahieve a target average load. This means thatour saling method is preditable, whih is an advane over earlier traÆ generation methods,e.g., [CJOS00, LAJS03, SB04℄. These earlier methods required a separate experimental study,a alibration, to onstrut a funtion oupling the parameters of the traÆ generator and theahieved load. For example, web traÆ generators usually require a alibration to disover therelationship between average load and the number of user equivalents. The saling methodspresented in this hapter eliminate the need for this extra study. Their starting point is theobservation that the average load o�ered by the soure-level replay of T is a deterministifuntion of the total number of bytes in the ADUs of T. We will show that these observationholds true using numerial simulations and testbed experiments. In ontrast, the same analysiswill demonstrate that the average load o�ered by the replay of T is not strongly orrelatedwith its number of onnetions. In the ase of Poisson Resampling, our method to onstrut anew trae T 0 with a spei� target o�ered load involves resampling T until the desired totalnumber of bytes (oming from ADUs) is reahed. In the ase of Blok Resampling, onstrutinga new trae T 0 with a spei� target o�ered load involves subsampling bloks (\thinning") toderease load, or ombining two or more bloks (\thikening") to inrease load.
264



7.1 Poisson Resampling7.1.1 Basi Poisson ResamplingThe �rst tehnique we onsider for introduing variability in the traÆ generation proessis Poisson Resampling. The starting point of every method presented in this hapter is aonnetion vetor trae T = f(Ti; Ci) j i = 1; 2; : : : ; ng where Ci is an augmented onnetionvetor (an a-b-t onnetion vetor plus some network-level parameters), and Ti is its relativestart time. The basi version of our Poisson Resampling tehnique onsists of deriving a newtrae T 0 = f(T 0j ; C 0j) j i = 1; 2; : : : ; n0g by randomly hoosing onnetion vetors from T withoutreplaement, and assigning them start times aording to an exponential distribution. We de�nethe duration d of T as Tn � T1, the length of the interval in whih onnetions are started1.Given a target duration d0 for T 0 , the Poisson Resampling algorithm iteratively adds a new(T 0j ; C 0j) to T 0 until T 0j > d0. Eah C 0j is equal to some randomly seleted Ci, andT 0j = T 0j�1 + Æj ;where Æj is sampled independently from an exponential distribution. The mean �0 of thisexponential distribution provides a way to ontrol the density of onnetions in the derivedtrae. For example, if we intend to have the same density of onnetions in T 0 as in T, wean ompute the mean inter-arrival time � = d=n of the onnetion vetors in T, and use itas the mean �0 of the experimental distribution used to onstrut T 0 . Given the light tail ofthe exponential distribution, the resulting number n0 of onnetion vetors in T 0 is always verylose to d0=�0. If d = d0, the number of onnetion vetors in T 0 is also very lose to n.The resampling tehnique desribed above has the advantage of its simpliity. Furthermore,it is statistially appealing, sine the exponential distribution naturally arises from the ombi-nation of independent events. The use of onnetion inter-arrivals sampled independently froman exponential distribution is intuitively onsistent with the view of traÆ as a superposition1This duration is always slightly below the true duration of the original paket header trae, sine at leastthe pakets of the last onnetion started are observed after its start time.265
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of a large number of independent onnetions that transmit data through the same networklink. Our empirial data, presented in Figures 7.1 to 7.4, on�rm the appliability of this inter-arrival model. Figure 7.1 shows two pairs of CDFs omparing real onnetion arrivals and theirexponential �ts. The �rst pair (white symbols) orresponds to the distribution of onnetioninter-arrivals for UNC 1 PM (squares), and an exponential distribution2 with the same mean(triangles). The seond pair (blak symbols) shows the distribution of onnetion inter-arrivalsfor UNC 1 AM and an exponential distribution with the same mean. Both �ts are exellent,so exponentially distributed onnetion inter-arrivals are learly a good starting point for atrae resampling tehnique. The tails of the empirial distributions, shown in Figure 7.2, arealso onsistent with the �tted exponentials. Their slope is slightly lower, whih ould motivatea �t with a more general distribution like Weibull. However, a small improvement in the �twould require an inrease in the omplexity of the model, sine the one-parameter exponentialmodel would have to be replaed by the two-parameter Weibull model. This additional e�ortwould produe only a limited gain given that the exponential �t is exellent for 99.9% of thedistribution.Figures 7.3 and 7.4 onsider another two traes, Abilene-I and Leipzig-II. The bodies areagain very losely approximated, but the tails are heavier for the original data. Note that thise�et is more pronouned as the traes get longer. The duration of the UNC traes is onehour, the duration of Abilene-I is 2 hours, and the duration of Leipzig-II is 2 hours and 45minutes. This ould suggest that the worse �t is due to non-stationarity in the onnetionarrival proess, whih beomes more likely for longer traes. Further analysis is needed toon�rm this hypothesis or �nd an alternative explanation. We must note that these results arein sharp ontrast with those in Feldmann [Fel00℄, where the empirial inter-arrival distributionswere signi�antly di�erent from the bodies3 of �tted exponential distributions. The reason forthis di�erene is unlear at this point4.2The shown exponential distribution omes from randomly sampling the theoretial distribution n� 1 times.3The tails were not studied in that paper.4Besides problems with the �tting or the data aquisition in the paper, we onjeture that this ould be due tothe slightly di�erent type of data we onsidered in our study. Our onnetions were fully aptured and inludedonly those onnetions that atually arried data. Those in [Fel00℄ inluded degenerate ases in whih no datawas transferred. 267
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formally, the total size of the ADUs in the target diretion is equal tos0 = Xi2Cinit niaXj=1 aij + Xi2Ca nibXj=1 bij ; (7.1)where Cinit is the set of onnetion vetors in T 0 initiated in the target diretion, Ca isthe rest of the onnetion in T 0 (the onnetions aepted rather than initiated in the targetdiretion), nia and nib are the numbers of a-type and b-type ADUs of i-th onnetion vetorrespetively, and aij and bij are the sizes of the j-th a-type and b-type ADU of the i-th onnetionvetor respetively. Computing o�ered load as s0=d0 is only a onvenient (and reasonable)approximation of the load generated by replaying T 0 . First, s0 is an underestimation, sine itdoes not take into aount the total size of paket headers (only ADUs), and the retransmissionsin the replay. Seond, the duration of the replay of the onnetion vetors in T 0 will be somewhatabove d0. d0 only onsiders the period in whih onnetions are started, but some of them willterminated after the last onnetion is started. An obvious example is the last onnetion.As we will demonstrate using experiments, the inauray of s0=d0 is very small, so it providesa good foundation for understanding load saling. This alulation is obviously muh moreonvenient than replaying thousands of resamplings in the testbed network.Figure 7.5 shows a satterplot of the results of 1,000 resamplings of UNC 1 PM. The durationof the resamplings and their mean rate of onnetion inter-arrival were equal to the ones in UNC1 PM. For eah resampling, the total number of onnetions is shown on the x-axis, while theresulting o�ered load s0=d0 is shown on the y-axis. This plot demonstrates that basi PoissonResampling results in traes with very small variability in the number of onnetion vetors,between 1,409,727 and 1,417,664 (the standard deviation � was equal to 1,191.71). On theontrary, the range of o�ered loads is very wide, between 143.55 and 183.44 Mbps (� = 6:01Mbps), entered around the o�ered load of T, 161.89 Mbps. The distribution of o�ered loadsand its spread is further illustrated by the histogram in Figure 7.6.The wide range of o�ered loads that an result from Poisson Resampling is due to the heavy-tailed nature of the distribution of the total number of bytes ontributed by eah onnetion269
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of o�ered load in the previous setion, the o�ered load l was said to be exatly equal to s=d. Ifso, we need to ontrol the total number of bytes in the resampled trae T 0 to preisely math atarget o�ered load. In Byte-driven Poisson Resampling , the mean inter-arrival rate of T 0 is notomputed a priori using Equation 7.2. Instead, the target load l0 is used to ompute a targetsize s0 = l0d0 for the payloads in the saled diretion.Byte-driven Poisson Resampling has two steps:1. We onstrut a set of onnetion vetors (without arrival times) by iteratively resamplingthe onnetion vetors in T until the total payload size of the hosen onnetion vetors,omputed using Equation 7.1, reahes s0.2. We assign start times to the onnetion vetors in the resampling using the tehniquedesribed in the previous setion. The mean of the exponential distribution from whihinter-arrival times are sampled is d0=n0, where d0 is the desired duration of T 0 , and n0 isthe number of onnetion vetors in the resampling.Using this tehnique, and under the assumption that l = s=d, the load o�ered by the resultingT 0 should be very lose to the target load5. Figure 7.9 demonstrates that this is the aseby omparing the o�ered loads of 1,000 simulated trae resamplings onstruted using thetehnique in setion 7.1.1 and another 1,000 resamplings using the byte-driven tehnique. Thetarget load of the byte-driven resamplings was 161.89 Mbps, whih was the average load in theoriginal UNC 1 PM trae. The range of ahieved o�ered loads is far narrower for the seondtehnique, thanks to the variable number of onnetion vetors that are assigned to eah T 0 .The histogram in Figure 7.10 shows that the vast majority of the resamplings are very lose tothe target load (� = 0:41 Mbps).Figure 7.11 summarizes the results of 4 sets of 1,000 byte-drive Poisson resamplings. Theplot uses the same type of visualization found in Figure 7.8. The error bars, barely visible in5Note that the duration of T 0 omes from random samples of an exponential distribution, so it an be slightlylower or higher that the intended d0. Given the light tail of the exponential distribution and the large numberof samples, this deviation is neessarily very small. 272
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Figure 7.17: Wavelet spetra of the onne-tion arrival time series for UNC 1 AM and aPoisson arrival proess with the same mean.The analysis of our traes reveals non-negligible orrelations in the onnetion arrival pro-ess. Figures 7.14 and 7.16 examine the arrival proess for the UNC 1 PM trae. Using a timeseries of 10-milliseond bin ounts, Figure 7.14 ompares the burstiness of the original arrivalproess (dashed line) and that of a Poisson arrival proess with the same mean inter-arrivaltime (solid line). The original arrival proess was far more variable. Its standard deviationwas equal to 346.07, while the one for the Poisson proess was equal to 79.21. In order tofurther study the onnetion arrival proess aross a range of time-sales, we rely on waveletanalysis. Figure 7.16 shows the wavelet spetra of the original onnetion arrivals and a Poissonproess with the same mean inter-arrival time. The Poisson proess exhibits the expeted atspetrum of short-range dependent proesses [HVA02℄. On the ontrary, the spetrum for theoriginal onnetion arrivals follows a line with a substantial positive slope, whih is harater-isti of long-range dependent proesses. The results of the wavelet-based estimation [AV98℄of the Hurst parameters of these proesses are given in table 7.1. The Poisson proess has aHurst parameter very lose to the expeted 0.5, while the original arrival proess has a Hurstparameter of 0.685. This is onsistent with moderate long-range dependene. For omparison,typial estimates of the Hurst parameter for paket and byte arrival proesses are between 0.75and 0.95, i.e., typial paket and byte arrival proesses exhibit signi�antly stronger long-rangedependene than this onnetion arrival proess.276



We performed a similar analysis for the UNC 1 AM trae, and the results are shown inFigures 7.15 and 7.17. As in the previous ase, the time series plot shows a onnetion ar-rival proess that is signi�antly more bursty than that of a Poisson proess with the samemean. Note however than in this ase there is some degree of non-stationarity. We observea signi�antly larger number of onnetions started in the �rst 5 minutes, and a signi�antlylower number started in the last 10 minutes. In this ase we ompute the mean inter-arrivalrate required to onstrut the Poisson arrivals using the middle 40 minutes of the trae. Wetherefore handle the e�et of trae boundaries by ignoring the �rst and the last few minutesof the arrival proess. The wavelet spetra for these middle 40 minutes and a Poisson proesswith the same mean arrival rate are shown in Figure 7.17. As in the UNC 1 PM ase, theoriginal onnetion arrival proess exhibits lear long-range dependene. The estimated Hurstparameter in Table 7.1 reveals a somewhat stronger long-range dependene for the UNC 1 AMtrae (0.757 vs. 0.685).In summary, the onnetion arrival proesses we have examined are onsistent with sig-ni�ant long-range dependene. Therefore, it is desirable to develop the resampling and loadsaling methods that an reprodue this struture, to over experiments where the manner inwhih onnetions arrive is relevant for the network phenomenon studied using syntheti traÆ.One example of this type of senario is the evaluation of a router mehanism where the arrivalof new onnetions reates new state in the router. For suh a mehanism, a more bursty arrivalproess reates a more stringent workload, just like burstier traÆ was shown by [BC98℄ to bemore demanding on web server performane.Poisson Resampling annot reprodue this observed long-range dependene in the onne-tion arrival proess sine its inter-arrivals times ome from independently sampling an exponen-tial distribution. For this reason, we propose a seond resampling tehnique that an reproduethe long range dependene in the onnetion arrival proess. The starting point is the intuitionthat dependenies between onnetion start times are far more likely to our within relativelysmall periods. For example, web browsing results in new onnetions started aording to thesequene of web page downloads and the way the browser opens new onnetions to the servers277



in whih these pages are found. This results in brief bursts of onnetions whose start times areorrelated. We use this intuition to develop a resampling method wherein the resampled ob-jets are not individual onnetions, but groups of onnetions started during the same period,whih we all bloks. The key idea of our Blok Resampling method is that sampling bloks ofonnetions rather than individual onnetions preserves the relative o�sets of onnetion starttimes within bloks, and therefore the dependeny struture6 Our method is derived from theMoving Blok Bootstrap method [ET93℄.Blok Resampling proeeds in the following manner: Given a trae T, we divide it in bloksof duration �, so that the �rst blok B1 groups together onnetions started in the interval[0; �), the seond blok B2 groups together onnetions started in the interval [�; 2�), and soon. The blok resampled trae T 0 is obtained by onatenating randomly sampled bloks, andadjusting the start time of onnetions in eah blok by the time o�set of the new loation ofthis blok. For example, if the random resampling puts blok B2 as the �rst blok of T 0 , thestart times of the i-th onnetion vetor in this blok is set to Ti��. Similarly, if B2 is plaed inthe fourth loation of T 0 , the start times of the i-th onnetion in this blok are set to Ti+2�.More formally, when the j-th blok Bj in the original trae beomes the k-th blok Bk in theblok resampling, the start time Ti of the i-th onnetion vetor in Bj is set toT 0i = Ti + (k � j)�:Blok Resampling hooses bloks for T 0 with replaement, making it possible to reate newtraes that are longer than the original T from whih the bloks are obtained.As pointed out by Efron and Tibshirani [ET93℄, hoosing the blok duration � an be adiÆult problem. In our ase, we found a lear trade-o� between blok duration and how welllong-range dependene was preserved in the resampled trae. The shorter the blok duration,the larger the number of distint trae resamplings that an be performed from the same trae6We thank Peter Hall for suggesting the use of blok bootstrapping in the ontext of the a-b-t model. Thetheoretial aspet of this idea are explored in [HNHC02℄, while this hapter fouses on its use to preserve thelong-range dependene in onnetion arrivals and develops thinning and thikening methods to sale o�ered loadin blok-resampled traes. 278
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Figure 7.18: Blok resamplings of UNC 1 PM: impat of di�erent blok lengths on thewavelet spetrum of the onnetion arrival time series.
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Figure 7.19: Blok resamplings of UNC 1 AM: impat of di�erent blok lengths on thewavelet spetrum of the onnetion arrival time series.
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T. This number is equal to (d=�)! for resampled traes with the same duration d of the originaltrae. However, if the duration of the bloks is too small, the proess of onnetion arrivalsin the resampled trae exhibits a dependeny struture that does not resemble the one in theoriginal trae.Figure 7.18 explores the impat of blok duration on the long-range dependene of theonnetion arrival proess in the resampled trae. The top left plot shows the wavelet spetra ofthe onnetion arrivals for UNC 1 PM and for 5 blok resamplings where the blok duration was1 seond. There is a lear and onsistent at region after otave 8, whih shows that bloks of1 seond are too short to preserve the long-range dependene of the original onnetion arrivalproess. As the blok duration is inreased in subsequent plots, we observe an inreasinglybetter math between the arrivals in the blok resamplings and the arrivals in the originaltrae. Bloks with a duration of 30 seonds or 1 minute provide the best trade o� betweenbloks that are large enough to ensure realisti long-range dependene in the onnetion arrivalproess, and bloks that are short enough to provide a large number of distint resamplings.The same sensitivity analysis was performed for the UNC 1 AM trae and the results are shownin Figure 7.19. Blok durations of 30 seonds or 1 minute are also shown to perform well.As disussed earlier in this hapter, an important goal of trae resampling is the ability topreserve the target load of the original trae and to sale it up and down aording to the needsof the experimenter. The analysis of a large set of Poisson resamplings revealed that o�ered loadand number of onnetions are only loosely orrelated. This motivated the use of a byte-drivenversion of Poisson Resampling whih ould ahieve a very preise saling of the load o�ered bythe resampled trae. In the ase of Blok Resampling, the question is whether the averaginge�et of grouping onnetions into bloks signi�antly diminishes the variability observed forthe basi version of Poisson Resampling. We study this question by examining the o�ered loadfound in a large olletion of blok resampled traes. If the bloks had roughly uniform o�eredload, we would expet to generate similar o�ered load with eah resampled trae. The resultsin Figure 7.20 do not on�rm this expetation. The top row presents the analysis of 1,000trae resamplings onstruted by resampling UNC 1 PM using 30-seond bloks. The average281
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Figure 7.21: Wavelet spetra of several random subsamplings of the onnetion vetors inUNC 1 PM (left) and 1 AM (right)o�ered load was derived from the total payload omputed using Equation 7.1. As shown inthe satterplot, the number of onnetions stayed within a narrow range, but the o�ered loadswere far more variable. The histogram on the right further haraterizes the distribution ofo�ered loads in these trae resamplings. The use of bloks does not appear to have any bene�tin terms of a more preditable load. This is not surprising given the known burstiness of thepaket and byte arrival proesses at many time-sales. If bloks were e�etive at smoothing outthese proesses, we would �nd little long-range dependene. This situation does not hange forlonger blok durations, as shown in the middle and lower rows of Figure 7.20 for bloks of 1and 5 minutes respetively. It is interesting to note the wider y-axis and range of the histogramfor the 5-minutes bloks, whih suggest even higher variability for this longer blok duration.The Blok Resampling method desribed so far makes it possible to onstrut a resampledT 0 of arbitrary duration but it annot be used to adjust its o�ered load. In order to performthis task, we an rely on thinning , when the o�ered load of T is above our intended o�eredload, and on thikening , when the o�ered load of T is below our intended o�ered load. Blokthinning involves randomly removing onnetions from T 0 . Theoretial work by Hohn andVeith [HV03℄has shown that the thinning of a long-range dependent proess does not hangeits long-range dependene struture. Our own experimentation on�rms this result. Figure7.21 shows the wavelet spetra of thinned versions of the onnetion arrivals in the UNC 1283



Trae Estimated ParametersUNC 1 PM Conn. Arrivals H=0.727540 C.I.=[0.701687, 0.753393℄Subsample 90% Conn. H=0.724175 C.I.=[0.698322, 0.750028℄Subsample 80% Conn. H=0.724046 C.I.=[0.698193, 0.749899℄Subsample 70% Conn. H=0.718502 C.I.=[0.692649, 0.744354℄Subsample 60% Conn. H=0.701378 C.I.=[0.675525, 0.727230℄Subsample 50% Conn. H=0.701020 C.I.=[0.675167, 0.726872℄UNC 1 AM Conn. Arrivals H=0.746591 C.I.=[0.720738, 0.772444℄Subsample 90% Conn. H=0.738659 C.I.=[0.712806, 0.764512℄Subsample 80% Conn. H=0.725030 C.I.=[0.699177, 0.750882℄Subsample 70% Conn. H=0.715679 C.I.=[0.689827, 0.741532℄Subsample 60% Conn. H=0.696723 C.I.=[0.670870, 0.722576℄Subsample 50% Conn. H=0.691139 C.I.=[0.665287, 0.716992℄Table 7.2: Estimated Hurst parameters and their on�dene intervals for �ve subsamplingsobtained from the onnetion arrival time series of UNC 1 PM and UNC 1 AMPM trae (left) and the UNC 1 AM trae (right). The overall energy level dereases as thefration of onnetions removed from eah blok inreases. However, the spetra maintain theirshapes, whih demonstrates that the degree of the long-range dependene remains unhanged.The estimated Hurst parameters for these two traes is presented in Table 7.2. The valuesreveal only a moderate derease in the Hurst parameter even when half of the onnetions aredropped.Blok thikening onsists of ombining more than one blok in eah of the disjoint intervalsof T 0 , i.e., to \fusion" one or more bloks from T to form a single blok in T 0 . This makes theo�ered load a multiple of the original load. For example, to double the load, the onnetionvetors of two randomly hosen bloks will be plaed in the �rst interval, those from anotherpair of randomly hosen bloks will be plaed in the seond interval, and so on. The new starttimes of the onnetion vetors in the resampled trae are omputed using Equation 7.2, butbeing areful to use the right j for eah onnetion vetor.To ahieve o�ered loads that are not a multiple of the original load, we an ombine basithikening and thinning using a two-step proess. The �rst step is to reate a preliminaryversion of T 0 by ombining as many bloks as possible without exeeding the target load. Theseond step is to \omplete" this trae by ombining it with another blok-resampled trae
284
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Figure 7.22: Analysis of the auray ofbyte-driven Blok Resampling using soure-level trae replay: replays of two separateresamplings of UNC 1 PM for eah targeto�ered load, illustrating the saling down ofload from the original 177.36 Mbps.
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Figure 7.23: Analysis of the auray ofbyte-driven Blok Resampling using soure-level trae replay: replay of one resamplingof UNC 1 AM for eah target o�ered load,illustrating the saling up of load from theoriginal 91.65 Mbps.that has been thinned in suh a manner that the ombined load of the two resampled traesmathes the intended load. For example, in order to reate a T 0 with 2.5 times the load ofT, a �rst thikened trae T tk is reated by ombining two bloks in eah position. This traeis then ombined with seond trae T tn that has been thinned to half of the o�ered load ofT. From our analysis in Figure 7.20, we an see that T tk is not neessarily equal to twie theo�ered load of T. For this reason T tn is atually thinned to exatly the o�ered load needed toomplement T tk , and not just to half of the original o�ered load This areful thinning makesthe saling math the intended load in a highly preise manner. We an therefore ahieve anyintended load with the Blok Resampling method, so it is as exible as Poisson Resampling. Inaordane with our earlier analysis, aurate thinning annot rely on any orrelation betweenthe number of onnetions and the o�ered load, so it must be driven by Equation 7.1, justlike byte-driven Poisson Resampling. Therefore, our �nal resampling tehnique is Byte-drivenBlok Resampling.Figures 7.22 and 7.23 show the result of several testbed experiments where Byte-drivenBlok Resampling is used to reate new traes. The results demonstrate that traes resampledusing this method ahieve a very good approximation of the target o�ered loads. As in the aseof Byte-driven Poisson Resampling, the ahieved loads are slightly higher than target ones due285
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Figure 7.24: Wavelet spetra of the paketarrival time series for UNC 1 PM and thesoure-level trae replays of two blok re-samplings of this trae.
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Figure 7.25: Wavelet spetra of the paketarrival time series for UNC 1 PM and thesoure-level trae replays of three Poissonresamplings of this trae.to the paketization overhead, whih is not taken into aount in the resampling.One interesting question is whether the e�ort to preserve the saling of the onnetionarrival proess has any e�et on the generated traÆ aggregate. To understand this question,we an ompare the proess of paket (or byte) arrivals from blok resamplings and from PoissonResampling, sine the former fully preserves onnetion arrival long-range dependene and thelatter fully eliminates it. Figure 7.24 shows the wavelet spetra of the paket arrivals in UNC 1PM and those in two testbed experiments where byte-driven blok resamplings of UNC 1 PMwere replayed. Figure 7.25 shows the same wavelet spetrum of the paket arrivals in UNC 1PM, and also the spetra from three testbed experiments where byte-driven Poisson resamplingsof UNC 1 PM were replayed. Both resampling methods ahieve equally good approximationsof the paket saling found in the original trae. In other words, aording to this type ofanalysis, the simpler Poisson Resampling method performs as well as the more elaborate BlokResampling method. This is a on�rmation, using a losed-loop traÆ generation approah, ofthe results by Hohn et al. in [HVA02℄, whih were obtained using (open-loop) semi-experiments.This is not to say that long-range dependene in the arrival of onnetions (e.g., arrival of owstate or ahe misses to a router) an be safely ignored, sine other metris and experimentalresults may be more sensitive to this harateristi of the syntheti traÆ.286



7.3 SummaryOur basi traÆ generation method, soure-level trae replay, results in highly realistisyntheti traÆ. This method is however inexible, in the sense that the same onnetionvetors are started at the same relative times in every replay. In this hapter, we proposedtwo methods for resampling an original trae of onnetion vetors, to reate a new trae withsimilar statistial harateristis. This similarity is de�ned in terms of soure-level behaviorand network-level parameters, so the resampling methods also modify onnetion vetor starttimes. Our �rst resampling method is Poisson Resampling, whih hooses onnetions vetorsat random and assigns them exponentially distributed inter-arrival times. Our measurementresults demonstrated that this hoie of the inter-arrival distribution is appropriate, in thesense that the marginal distribution of the onnetion inter-arrival in every trae we examinedis remarkably onsistent with the exponential distribution. Our seond resampling methodis Blok Resampling, whih hooses bloks of onnetion vetors at random. Unlike PoissonResampling, Blok Resampling preserves the dependeny struture of the original onnetionarrival proess. This makes it possible to reprodue the moderate long-range dependene thatwe observe in the onnetion arrivals of our traes.Besides presenting two resampling methods, we also studied how to ontrol the o�ered loadby a resampled trae. Firstly, we demonstrated that the number of onnetions and the averageo�ered load are not strongly orrelated. This means that ontrolling the number of onnetionsin the resamplings does not provide a good way of reating resampled traes with a spei�target o�ered load. This is a ommon requirement when a set of experiments overs a range ofo�ered loads in an empirial study. In order to address this diÆulty, we propose to drive theresampling by a target total size of the ADUs in the resampling rather than by a target numberof onnetions. We used this approah to develop byte-driven versions of Poisson Resamplingand Blok Resampling, whih are shown to result in highly preditable o�ered loads.
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CHAPTER 8Conlusions and Future Workreal: (2b3) existing as a physial entity and having properties that deviate froman ideal, law, or standard.| Merrian{Webster English DitionaryThere are sadisti sientists who hurry to hunt down errors instead of establish-ing the truth. | Marie Curie (1867{1934)This dissertation proposed and evaluated a new approah for generating realisti traÆ innetworking experiments. Our onstrution relied on several omponents to form a oherentsolution to this problem:1. The a-b-t model of soure-level behavior, whih provides a generi but detailed way ofdesribing soure-level behavior that is appliable to any Internet appliation.2. An eÆient measurement method for aurately translating the paket header trae ofany arbitrary TCP onnetion into its a-b-t onnetion vetor, even in the presene ofpaket reordering and retransmission.3. The soure-level trae replay method for generating traÆ in a losed-loop manner, whihprovides a way of introduing fully reproduible syntheti traÆ in networking experi-ments.4. The ability to diretly ompare original traÆ and its soure-level replay, after inorpo-rating network parameters also derived from paket header analysis. Suh a omparisonenables us to assess the realism of the syntheti traÆ.



5. A method for resampling a-b-t onnetion vetors that supports both the introdutionof ontrolled variability in the generated traÆ and the preditable saling of the o�eredload.The rest of this hapter disusses these omponents1, highlighting some onrete ontributionsand open questions, whih ould be the subjet of future work. Our fous is on the larger shemeof things, so we refer the reader to the summaries of eah hapter for additional �ndings andpossible re�nement of our methodology.8.1 Empirial Modeling of TraÆ MixesThe main problem solved by our approah is generating losed-loop traÆ onsistent withthe behavior of the entire set of appliations in modern traÆ mixes. Unlike earlier approahes,whih desribed individual appliations in terms of the spei� semantis of eah appliation,we proposed to desribe the soure behavior driving eah onnetion in a generi manner usingthe a-b-t model. This is onsistent with the view of traÆ from TCP, whih does not onernitself with appliation semantis, but only with sending and reeiving Appliation Data Units(ADUs) as demanded by the appliations. The a-b-t model provides an intuitive but detailedway of desribing soure behavior. It also satis�es a ruial property: given a paket headertrae olleted from an arbitrary Internet link, we an algorithmially infer the soure-levelbehavior driving eah onnetion, and ast it into the notation of the a-b-t model.Setion 3.3 desribed our inferene algorithm, whose asymptoti ost is is O(sW ), where s isthe number of segments in a onnetion andW is the maximum size of the TCP reeiver window(in segments). The foundation of the analysis is the logial data order that an be establishedbetween segments of the same onnetion. This order orresponds to the appliation-layerorder of the data arried in eah segment. From this order, we an aurately identify individualADUs without any timing analysis. Furthermore, the handling of retransmission and reorderingbeomes very generi, eliminating the need to handle the many possible ases one by one. Our1Also known as the �ve pillars of Abtism. [si℄ 289



validation using traÆ from syntheti appliations with known soure behavior demonstratedthe robustness of our analysis to segment loss and reordering, and to the way in whih endpointsuse sokets (i.e., using di�erent sizes and timings of I/O operations).Overall, our algorithmi approah enables us to model traÆ in an automated manner in aquestion of hours. This addresses a major diÆulty with earlier e�orts targeted at individualappliations, whih required months to be ompleted and were hardly ever updated. Onefuture diretion is develop an online implementation of the algorithm, whih would enable us tomodel traÆ mixes in real time. The O(sW ) ost of our analysis makes this online proessingfeasible. EÆient memory management is the main hallenge, sine eah onnetion wouldrequire separate state during its lifetime. It seems possible to restrit this per-onnetion stateto the urrent ADU in eah diretion, whih is muh more eÆient than keeping trak of entireonnetion vetors. Real-time modeling has several bene�ts. First, the set of a-b-t onnetionvetors is between tens and hundreds of times smaller than paket header traes from whihit derives. This would enable researhers to study traÆ at the soure-level for muh longerperiods that it is possible nowadays. Seond, real-time modeling an remain ative inde�nitely,whih makes it possible to observe unusual but important phenomena, suh as ash rowds,BGP failures, et. To satisfy storage onstraints, uninteresting traÆ an be periodially thrownaway.In our study, we identi�ed a fundamental dihotomy between appliations that exhangeADUs in a sequential manner and those that do it onurrently. Sequential ommuniationfollows an alternating sequene of ADUs sent in opposite diretions, where ADUs from oneendpoint usually play the role of requests and ADUs from the opposite endpoint play the roleof responses. One important property of this pattern is that eah ADU exhange must ne-essarily take one round-trip time. As a onsequene, the duration of sequential onnetionsoften has little to do with the amount of transferred data, being dominated by the number ofrequest/response pairs. For this reason, sequential onnetions usually show far lower through-puts than one would expet from their total number of bytes. SMTP provides a good exampleof this phenomenon, sine most SMTP onnetions arry little data but take rather long to290



omplete. As illustrated in Figure 3.3, this is mostly due the substantial number of ontrolADUs required by this protool.Conurrent ommuniation supports the sending of ADUs from both endpoints at the sametime. This is the natural model both for appliations without requests and responses, andfor appliations that are able to pipeline their requests and responses. Pipelining eliminatesthe need to spend one full round-trip time to omplete eah request/response exhange, whihan substantially inrease throughput. The analysis of our olletion of traes revealed thatthe number of onnetions that exhibit onurrent data exhanges is small (0.9-3.6%), butthat they aount for a far larger fration of the total bytes in the traes (12.1-31.9%). This isonsistent with the observation that onurreny an inrease overall throughput, so appliationprotool designers are more ompelled to use onurreny in appliations that exhange largeamounts of data. BitTorrent is a prominent example of data onurreny, where we an observesimultaneously natural onurreny (both endpoints send and reeived requests and �le piees),and pipelining (multiple requests and �le piees an be outstanding at any point in time). Figure3.9 showed one example of this behavior.Our measurement algorithm an determine whether a onnetion exhibits sequential oronurrent data exhanging by examining only the sequene and aknowledgment numbers inthe segments of a onnetion, without analyzing of segment arrival times. The basis of ourtehnique is again the logial data order among TCP segments, whih is a total order forsequential onnetions, and a partial order for onurrent ones. The inequalities presented inSetion 3.3.2 formalized this idea, providing a method for identifying data exhange onurrenywithout false positives.8.2 Re�ning and Extending our ModelingOur methodology strongly relies on non-parametri modeling . Parametri models are farmore ompat and an often provide deeper insights than non-parametri ones. However, theiruse has little to do with the quality of syntheti traÆ. A non-parametri model an result in291



traÆ as realisti or more than a parametri model, without the risk of oversimpli�ation. Inany ase, our a-b-t onnetion vetors o�er a good foundation for building a parametri modelof Internet traÆ mixes. Our analysis of the relationship between ADU sizes and numbersof epohs in Setion 3.5.1 unovered substantial omplexity and a striking lak of onsistenyamong the di�erent links onsidered in our study. Tehniques like Hidden Markov Modelingould perhaps provide the right approah.Our own related work explored the possibility of attaking this omplex modeling problemby deomposing traÆ mixes in to a set of fundamental pattern of ommuniation [HCNSJ05℄.The idea was to use statistial lustering to �nd appliations that behave in a similar manner,i.e., that follow the same \ommuniation pattern", and to separately model eah of the iden-ti�ed traÆ lusters. For example, interative appliations suh as telnet and SSH are verydi�erent from �le-sharing appliations suh as Kazaa or Gnutella, so it seems muh easier todevelop separate models for \interative appliations" and \�le-sharing appliations" than asingle model to enompass both of them. In our exploratory study, we followed a two stepproess to �nd traÆ lusters. First, we omputed a vetor of features for eah onnetion,whih inluded statistis suh as the median size of the ADUs in the onnetion, a measure ofthe diretionality of the data exhanges, and the orrelation between the sizes of a-type andb-type ADUs. Feature vetors provide a way to ompare onnetions, even if their a-b-t on-netion vetors have very di�erent forms, and use a distane metri to quantify the similaritybetween the soure behaviors in two onnetions. Seond, we used a hierarhial lusteringalgorithm to onstrut a taxonomy of traÆ lasses based on the similarity among onnetions.The results of our analysis demonstrated that some lear and intuitive traÆ lusters emergedwhen this proedure was applied to sets of onnetion vetors derived from real traes. Webelieve this type of approah an simplify the modeling of traÆ mixes. Furthermore, it analso provide a more exible way of resampling traes, where the fration of onnetion vetorsfrom eah of the traÆ lusters an be hanged at will (e.g., inreasing of dereasing the frationof �le-sharing-like traÆ).There are other open questions in the modeling of Internet traÆ mixes, and their solution292



is ompliated by the need to devise better measurement methods. We an ite the followingexamples:� Our modeling of onurrent onnetions employs two separate onnetion vetors, one foreah diretion, eliminating any dependenies among ADUs owing in opposite diretion.This dependenies are ertainly present in some ases, at least when onurreny is usedto implement pipelining. A re�ned version of the a-b-t model where the ausality betweenADUs is spei�ed using an ayli graph ould apture this type of struture. The analysisof sequene and aknowledgment numbers an provide a starting point for understandingADU dependenies. However, suh an approah would result in a substantial number ofspurious dependenies that were not really part of the appliation behavior.� The a-b-t model has no mehanism to speify dependenies between ADUs in di�erentonnetions. While more omplex forms of the model are possible, there is again greatdiÆulty in determining when these dependenies exists. By analyzing ADU arrival timesfor the same endpoint, we ould hypothesize a dependeny. We ould further strengthensuh an analysis by requiring several instanes of the same dependeny pattern, i.e., onlyaepting a timing dependeny when several pairs of onnetions with \similar" ADUsizes and number of epohs are observed.� A important problem that has reeived very limited attention in the soure-level mod-eling literature is the possibility of hanges in user behavior as a funtion of networkonditions. Suh possibility would break the assumption of network independene insoure-level models. Our work in this area [PHCM+06℄ revealed phenomenal diÆultiesin measuring suh dependenies. Even a simple question suh as whether users with higheraess bandwidths tended to download larger objets was statistially problemati. Ourresults showed that this trend does not appear to be present in the UNC trae. Whilesubstantial di�erenes exists in the aess bandwidth of di�erent UNC endpoints (e.g.,between wireless and wired end hosts), the number of endpoints with severely limitedbandwidth is very small (e.g., few endpoints were behind a modem).293



These three problems are unlikely to have straightforward solutions. We also believe that theirimpat on the quality of syntheti traÆ is small, or even insigni�ant, in empirial studiesfousing on large traÆ aggregates.A �nal question is how to ombine soure-level modeling and unwanted traÆ modeling.Our analysis in Setion 4.2.1 showed the need to arefully separate onnetions with regulardata exhanges, for whih the a-b-t model is appliable, and other types of onnetions (i.e.,failed onnetion establishments attempts, port and network sans, et.). While our �lteringfor regular onnetions removed only a tiny fration of the bytes in the traes, the numberof individual onnetions was very large, whih may be detrimental for ertain studies. Inaddition, we did not onsider how to generate maliious traÆ. Our literature review disussedsome relevant e�orts on this topi. However, they tend to be open-loop. Sine maliious traÆan have dramati e�et on the network onditions, understanding its impat on soure behaviorseems ritial. We know of no study that onsidered this question.8.3 Assessing Realism in Syntheti TraÆThe result of our paket header proessing is a olletion of a-b-t onnetion vetors, whihan then be replayed in software simulators and testbed experiments to drive network staks.Suh a replay generates syntheti traÆ that fully preserves the feedbak loop between theTCP endpoints and the state of the network, whih is essential in experiments where networkongestion an our. By onstrution, this type of traÆ generation is fully reproduible,providing a solid foundation for networking experiments where two or more network mehanismsmust be ompared under similar onditions.Our experimental work demonstrated the high quality of the generated traÆ, by diretlyomparing traes from real Internet links and their soure-level trae replay. This omparisonis both a rigorous way of validating the a-b-t model and its measurement methods, and ahallenging exerise where eah onnetion vetor must be replayed in a TCP onnetion whoseoriginal network onditions are preserved in the experiments. If these network onditions were294



not preserved, it would be very diÆult to determine whether di�erenes between an originaltrae and its soure-level trae replay are due to shortomings of the a-b-t model or to a lakof realisti network parameters. For this reason, we devote substantial e�ort to the auratemeasurement, purely from paket header traes, of three important network parameters: round-trip times, maximum reeiver window sizes, and loss rates. These three parameters have amajor impat on the throughput that a TCP onnetion an ahieve. In addition, the testbedexperiments in our evaluation of the approah arefully reprodue these parameters, using anextended version of dummynet to eÆiently simulate per-onnetion round-trip times and lossrates.It is important to note that the inlusion of open-loop loss rates in some of our experimentsis only a means to ahieve a more fair validation of the a-b-t model. A substantial loss ratehas a dramati e�et on the harateristis of a onnetion, so omparing suh a onnetion inthe original trae and in a replay without a simulated loss rate tells us very little about theauray of the soure-level haraterization. In general, we always ondut soure-level traereplay experiments both with and without simulated loss rate, and ompare their results. Thistype of analysis allowed us to onlude that soure-level behavior had a more substantial impaton our traes than losses, but that neither of them an be ignored when trying to understandthe harateristis of network traÆ. One interesting �nding from our experimental work isthat simplisti soure-level models substantially exaerbate the impat of losses, whih maysubstantially hange the onlusions from ertain empirial studies.Our results demonstrated that soure-level trae replay an losely approximate the har-ateristis of real traÆ traes. By omparing syntheti traÆ with and without detailedsoure-level struture, we showed that more omplete soure-level modeling makes synthetitraÆ loser or far loser to real Internet traÆ. In partiular, the largest di�erene was ob-served for the time series of paket throughput, the body of the paket throughput marginaland the time series of ative onnetions. Other metris did not show onsistent improvementwhen detailed soure-level modeling is used. However, in these ases, it is often diÆult to de-termine whether the di�erene between real and syntheti traÆ omes from the shortomings295



of the soure-level model or from the lak of ertain network-level parameters. This is the maindiÆulty with our approah: while providing the most stringent way of evaluating synthetitraÆ, it also requires to deonstrut the fators that shape traÆ very arefully. While somefators are well understood and an be measured aurately, others are not. In this regard, ourwork omplements urrent e�orts to further understand traÆ, provides a way to verifying newtheories using an elaborate experimental approah.One important future diretion for our work is to expand the set of metris used to evaluatethe quality of syntheti traÆ. At a low level, the distribution of paket sizes provides a goodavenue to understand the e�et of soure behavior on paketization. At a higher level, thedistribution of onnetion goodputs is a partiularly good (and demanding) metri to studyhow losely the modeling (of soures and network parameters) reprodues TCP performane.We ould study goodput either by looking at the distribution of onnetion goodputs diretly, orby omparing eah replayed onnetion with its original version and omputing relative errorsof some sort. Another important high-level metri is response time, whih an be easily de�nedas the duration of epoh for sequential onnetions. Many studies rely on response time toexamine the performane of network mehanism, so it is desirable to validate its experimentalreprodution. However, there are several diÆulties with this metri. It requires to identifyrequest and response pairs, whih are not neessarily the pair formed by ADUs ai and bi.The server side initiates the onnetion in some protools, while other protools do not havelearly-de�ned roles as lient and server for their endpoint. It is very diÆult to distinguishamong these situations purely from paket header analysis. Also, there is no simple de�nitionof response time for onurrent onnetions. As an alternative, we an use onnetion durationas a metri, whih is always well-de�ned, but it has far lower resolution.8.4 Inorporating Additional Network-Level ParameterWhile our methods to measure and simulate network parameters appear suÆiently auratein our experimental evaluation, there are several diretions in whih this part of the work an296



be re�ned. Path round-trip times are not �xed for eah onnetion, but follow a distributionof delays. It seems possible to re�ne our measurement to inorporate this fat, at least tosome extent, into our approah, although the lak of samples for most onnetions greatlyompliates this problem. It is also unlear whether this re�nement would have any signi�antimpat on the generated traÆ. Improving the measurement and simulation of losses ouldhave a more substantial e�et. Figure 4.18 already revealed some level of inauray, and ourexperimentation revealed the need to take into aount pure aknowledgment losses and notjust data segment losses. More importantly, the assumption of independent losses and theirsimulation using random dropping seems unrealisti, whih explains some of the di�erenesbetween original and syntheti traÆ.There are other network parameters that ould be taken into aount. In general, we believethat only two of them would have a signi�ant impat on the quality of syntheti traÆ: maxi-mum segment sizes and path apaity. Maximum segment sizes are straightforward to measure,and their inorporation into the experiments would improve the realism of paketization in thegenerated traÆ. Its implementation in a network testbed experiments requires some arefulhandling of resoures, sine maximum segment sizes are often a mahine-wide onstant. Theimpat of this re�nement is not expeted to be dramati, given that most onnetions areknown to use the same maximum segments size (the one derived from Ethernet's MTU, whihwe employed in our experiments).Path apaity presents a muh more diÆult measurement problem, both when de�ned asbottlenek apaity and as available bandwidth. Reent work by Huang and Dovrolis [JD04℄provides a useful foundation. While it is only appliable with on�dene to onnetions withlarge amounts of data, \bulk onnetions", this is preisely the type of onnetion whosethroughput ould be dominated by apaity limits. Throughput in onnetions with smallamounts of data is mostly a funtion of round-trip time. As disussed in Setion 3.3, mostonnetions are in this ase. However, bulk onnetions are responsible for a large frationof the bytes, so their aurate replay is important. We also believe that ombining our ADUanalysis with the Huang and Dovrolis approah an provide less noisy samples, improving the297



auray of the method. In the ase of apaity, the implementation in the experiment is notdiÆult by making use of dummynet 's per-onnetion apaity.Besides these onrete spei� network parameters, we believe that a better understandingof the impat of traÆ shapers and end host bandwidth quotas an help to explain some ofthe di�erenes between soure-level trae replay experiments and original traÆ. This seemsspeially relevant for UNC, where the impat of losses appeared rather di�erent from the ones inother sites. We hypothesized that the presene of a major data and software repository knownto use bandwidth onstraints was behind our �nding. Another important fator in traÆharateristis is the growing impat of wireless networks. Our large-sale measurement e�ortin this area [HCP05℄, showed an insigni�ant inrease of end-to-end losses in this environment(thanks to link-layer retransmission) but substantial inreases in the magnitude and variabilityof round-trip times.8.5 Flexible TraÆ GenerationThe �nal problem that we onsidered in this work was how to introdue ontrolled variabilityin network experiments, i.e., how to derive from a trae of onnetion vetors a new trae thatstill \resembles" the original one. Our solution involves resampling entire onnetion vetors,fully preserving observed soure-level behavior, and assigning them new start times. We gavetwo methods for this assignment: sampling from an exponential distributions, whih resultsin Poisson onnetion arrivals, and sampling bloks of onnetions, whih preserves the long-range dependene in the onnetion arrival proess that we enountered in our traes. The�rst method, Poisson Resampling, is analytially appealing, and supported by empirial data,sine the marginal distribution of onnetion inter-arrival is onsistent with an exponentialdistributions. Blok Resampling provides a non-parametri alternative, whih is more realistiwith regards to the dependeny struture of the onnetion arrival proess. This struture didnot show any e�et on paket and byte arrivals, but it seems important for mehanisms thatrequire per-onnetion state. 298



We also showed that our resampling methods an be arefully direted to produe a newtrae of onnetion vetors whose o�ered traÆ load mathes an arbitrary target very losely.Suh trae saling is a ommon requirement in suites of experiments that must expose a networkmehanism to a range of traÆ loads. The key to our solution is to ount the total amountof data in the resamplings, whih was shown to be strongly orrelated to o�ered load. On theontrary, our results learly showed that the number of onnetions is only weakly orrelatedto o�ered load, and annot be used for aurate saling of resamplings. While this result is anintuitive onsequene of the heavy-tailness in the amount of data arried by onnetions, theissue has been poorly understood in earlier models, where the parameters that an be ontrolledto tune o�ered load were assoiated with the number of onnetions. This is for example thease for the number of user equivalents in web traÆ models. The traÆ load o�ered by thistype of \onnetion-driven" models an never math a target o�ered load as aurately as our\byte-driven" resamplings of onnetion vetor traes.Our work on trae resampling an be extended in several diretions. First, there is some needto re�ne our handling of the paketization overhead, whih would result in even more aurateload saling. Seond, our methods only manipulate one trae at a time. Being able to ombinemultiple traes would provide an even more exible framework. While it seems straightforwardto extend our methods to support this operation, demonstrating the validity of the resultsappears diÆult. It represents a departure from measured traÆ into a hypothetial traÆ thatmay or may not be realisti, and it an introdue non-stationarities. Third, developing a broadermodel of network traÆ, either parametri or non-parametri, ould provide a better way toguide the resampling proess. In this diretion, a better understanding of the main patterns ofsoure-level behavior would provide more exible way of reating hypothetial senarios. Ourwork on traÆ lusters desribed above is a step in this diretion, sine ombining lusterssupport the exploration of a wide range of traÆ generation senarios. The possibility ofsuintly desribing the range of patterns in a luster, e.g., �le-sharing appliations withsymmetri bulk transfers and onurreny, is speially useful for exploring future senarios whereappliations that only represent a small fration of the traÆ beome inreasingly important.
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