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ABSTRACT 

Cheryl D. Hill: Two Models for Longitudinal Item Response Data 

(Under the direction of Dr. David Thissen) 

 

Questionnaires are sometimes administered to the same sample of examinees on more than 

one occasion. Even when longitudinal data are available, researchers employing item 

response theory (IRT) often use data only from the first administration for item calibration 

because there is likely a lack of conditional independence between responses to the same 

item from the same individual. However, in many longitudinal study designs, the sample size 

at one occasion is too small for reliable item calibration. Thus, a longitudinal IRT model for 

use with repeated measures study designs is desirable. 

 This research develops two distinct approaches to longitudinal IRT. One of these models 

is based on latent class analysis, while the other is based on full-information bi-factor 

analysis. Both account for the local dependence among items that are administered twice by 

introducing parameters that describe how the repeated nature of each item affects the 

response (separately from the effect of the latent trait). The models include parameters that 

describe the latent trait distribution at the second administration relative to the standardized 

distribution at time one and the correlation between the latent traits at two time points. The 

addition of these model components allows item parameters to be calibrated using available 

data from two occasions. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation for This Research 

 Questionnaires are sometimes administered to the same sample of examinees on more than 

one occasion. This is often the case in psychological studies or clinical trials in which the 

effect of a treatment is modeled longitudinally. Traditionally, even when longitudinal data 

are available, researchers using item response theory (IRT) to develop or score a measure use 

the data from the first test administration for item calibration. This inefficient use of the data 

is due to the likely lack of conditional independence between responses by the same 

individual, and the fact that implementations of IRT in software require conditional 

independence.  

 In many longitudinal study designs, the sample size is too small for reliable item 

calibration using data from one occasion. Thus, it is desirable that a longitudinal IRT model 

be developed for use with repeated measures study designs. Using data from more than one 

occasion may provide additional information, effectively transforming a sample that is too 

small into one that is adequate for item calibration. 

1.2 Literature Review 

 Several methods exist that could be applied to longitudinal item response data, but none 

are ideal for the purposes of calibrating items with a longitudinal sample. One long-standing 

approach is multitrait-multimethod (MTMM) confirmatory factor analysis (CFA). The 

MTMM technique was developed by Campbell and Fiske (1959) as an approach to assessing 



2

the validity of psychological measures. This technique uses different methods to measure 

different traits and hypothesizes the strength of association between the methods and traits. 

An example is a measure with multiple subscales measuring multiple outcomes, on which it 

is expected that the subscale intended to measure a particular outcome is more associated 

with that outcome than it is with other outcomes, and this outcome should be measured better 

by its corresponding subscale than by any other subscale. Another example might involve 

three people responding to a measure for themselves and for each other, in which case the 

MTMM approach would hypothesize that a person’s self-report responses would be more 

related to their trait than would be a friend’s responses about that person, and an 

acquaintance’s responses regarding that person would be even less related to that person’s 

trait. 

 Kenny and Kashy (1992) suggested that MTMM methods could be evaluated using CFA, 

where the size of the factor loadings should vary in a predictable pattern. The model they 

propose that would apply to longitudinal response data is the correlated uniqueness model. In 

this model, there are multiple traits (i.e., trait factors), but the methods are represented with 

correlated unique factors across similar methods. For longitudinal item responses, the trait 

factors would be the latent trait of the measure over time. The unique factors for an item 

would be correlated over time, but disturbances for the other items would not correlate with 

that for the first over time. CFA parameter estimates can be converted into IRT parameters, 

so the results of an MTMM CFA approach to longitudinal data could be translated into item 

parameters and used in place of an IRT model. 

 While this approach is appropriate for longitudinal response data, the categorical nature of 

item response data can be problematic in the context of CFA. Categorical confirmatory factor 
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analysis (CCFA) techniques exist and have improved considerably over the past two decades, 

but these techniques work best with large samples and simple models. Although this 

approach is reasonable, it would not be ideal for many longitudinal study designs involving 

small sample sizes. 

 Hierarchical linear modeling (HLM) has also been applied in some form to longitudinal 

item response data. HLM is appropriate for data in which responses are nested within a 

higher level, for example, children nested within schools. Researchers have proposed 

combining IRT models with HLM techniques so that the standard errors for the individual 

latent traits from the IRT model can be used as information available in the higher order 

model. Often these higher levels involve the variables of interest to researchers, and 

accounting for measurement error from the first level of the model can improve the accuracy 

of estimation in higher levels of the model. For the type of data considered here, individuals’ 

responses are nested within time. 

 Some researchers have used longitudinal Rasch modeling with HLM techniques using 

penalized quasi-likelihood estimation (e.g., Pastor & Beretvas, 2006; Raudenbush & 

Sampson, 1999). In such models, the log odds is calculated for one fewer than the number of 

response categories for each item. Log odds models involve only a location parameter for 

each item, and assume a slope (or discrimination) parameter that is constant across items, so 

such models may not suit the needs of researchers who have longitudinal data from scales 

with varying levels of discrimination among the items. 

 Fox and Glas (2003) proposed a multilevel IRT model that uses the two-parameter logistic 

(2PL) model with slope and threshold parameters estimated separately for each item. This 

model is appropriate for many scales with dichotomous outcomes, and it can also be 
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extended to polytomous responses. These researchers were able to include this more 

complicated IRT model in the HLM framework by replacing maximum likelihood estimation 

with Markov Chain Monte Carlo (MCMC) estimation. MCMC is a powerful estimation 

technique that can work for problems previously unsolvable with maximum likelihood 

estimation, but many applied researchers are not experienced with this complicated approach 

and may hesitate to use it. 

 Other researchers have applied traditional IRT techniques to repeated measures data by 

making relatively restrictive assumptions about the data. Ferrando, Lorenzo, and Molina 

(2001) considered the application of IRT to repeated measures, specifically to assess the 

stability of items over time. However, in the development of their model, they reason that the 

assumption of local independence is not violated because the latent trait is believed to be 

stable and the time between test administrations long enough for responses to be assumed 

independent of each other. Further, their model was designed to assess item stability over 

time when the items have already been calibrated. As a result, this model, while applicable to 

longitudinal data under certain conditions, is not relevant to researchers who hope to borrow 

information gained by multiple administrations for the purposes of item calibration. 

 Andrade and Tavares (2005) developed an IRT model for longitudinal data intended to 

estimate parameters of the population distribution, specifically the mean vector and the 

covariance matrix for multiple latent variables. Their model, however, worked under the 

assumption that the item parameters were already known (presumably, from some prior 

calibration). Thus, they did not consider item calibration with repeated measures. 

 Douglas (1999) developed an item response model that could handle the longitudinal 

nature of clinical trial data while simultaneously calibrating item parameters. In this model, 
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the likelihood of a response pattern across time points is the product of the probability of the 

response to each item at each time; thus, independence between the items across the time 

points is assumed conditional on the entire vector of latent variable values across all times. 

This model is not an ideal approach because it ignores the possibility that local dependence 

(LD) appears between responses to the same item at different times. The dependence 

between the same items at different times may reflect an additional latent trait that is not 

accounted for in the one-trait-per-time design. 

1.3 The Unique Contribution of This Research 

 The current literature on longitudinal item response data modeling covers some aspects of 

the problem of building an IRT model for repeated measures data; however, no complete 

solution has been offered. The existing models require the researcher to make assumptions 

(e.g., the item parameters are known or the latent trait is stable) that are unlikely to be true 

for many research designs. Alternative approaches are available, but the associated 

estimation procedures may not be appropriate for small longitudinal datasets. Areas such as 

personality measurement, educational testing, and clinical trials can benefit from a 

longitudinal IRT model that calibrates items while modeling change over time without 

requiring restrictive assumptions. 

1.4 Specific Aims of This Research 

 The purpose of this research is to develop longitudinal IRT models for use in studies in 

which the participants are administered the same set of binary test items on two occasions. 

These models account for the local dependence among items that are administered multiple 

times by introducing parameters that describe how the repeated nature of each item affects 

the response (separately from the effect of the latent trait). Additionally, the models include 
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parameters that describe the distribution of the latent trait at the second administration 

relative to the standardized distribution at time 1, and the correlation between the latent traits 

at two time points. The addition of these model components allows item parameters to be 

calibrated using available data from two occasions rather than limiting calibration to data 

from one time point. 

1.4.1 Aim 1 

 The first set of research goals is to develop two approaches to longitudinal IRT, and to 

implement estimation algorithms for them. These models will be based on latent class 

analysis (LCA) and full-information bi-factor analysis, respectively. Maximum marginal 

likelihood parameter estimation will use the EM algorithm (Bock & Aitkin, 1981). The R 

statistical system (Ihaka & Gentleman, 1996) and C++ will be used to implement these 

estimation methods. 

1.4.2 Aim 2 

 The second set of research goals is to check the parameter recovery of the algorithms 

using simulated data, and to evaluate the models using an empirical dataset. Parameter 

recovery will be assessed using simulated data of 100, 250, or 500 simulees with 5 or 10 

dichotomous items administered twice. Results of this simulation will be compared to 

parameter estimates from the 2PL model for the LCA approach, and to parameter estimates 

from a CCFA model for the bi-factor analysis approach. If longitudinal IRT parameter 

recovery is successful, differences between the results of these models and the existing 

models will further be investigated using data from a psychological distress scale included on 

a longitudinal survey of adolescent substance abuse.  



CHAPTER 2 

PROPOSED MODELS 

2.1 A Local Dependence Approach to Longitudinal IRT 

 Consider the probability of a particular response pattern for a set of items administered 

twice (without accounting for LD between administrations) as 

 ∫ ∫∏ ∏
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∂∂Φ
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where u is a vector of responses, θ is a vector of latent trait values at time 1 and time 2, t is 

administration occasion, and i is item number within an administration (I items per 

administration). For the 2PL model, useful for binary items that are not affected by guessing, 

the probability of endorsing an item is 
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where ai is the slope, or the strength of relationship between the response and the latent trait, 

and bi is the threshold, or the location on θt where the examinee has a 50% probability of 

endorsing the item. Alternatively, the probability of not endorsing an item is 
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Here, µt is the mean of θt, σt is the standard deviation of θt, and ρ is the correlation between 

θ1 and θ2.

The model in (1) does not account for the LD among responses to the same item across 

time. To account for such likely LD, some sort of LD parameter must be added for each item 

pair. In developing an LD index for use in IRT, Chen and Thissen (1997) introduce πLD, the 

probability that the response to the second item is identical to the response to the first item 

without consideration of the latent trait. Alternatively, 1– πLD is the probability that the 

response to the second item is based solely upon the process implied by the IRT model 

without consideration of the response to the first item. When πLD is 1, the second item 

provides no information about the latent trait that is not available through the response to the 

first item. When πLD is 0, the two items each provide unique information about the latent 

trait. When πLD is somewhere between 0 and 1, the second item provides some new 

information, but some of the information has already been captured through the response to 

the first item. 

 The same πLD parameterization may be used to represent the LD between two 

administrations of the same item. In this context, each item will have an LD parameter, called 

κi. These LD parameters describe the probability that the item administered at time 2 

contributes redundant information to what is available at time 1. Alternatively, 1–κi is the 

probability that the response at time 2 was determined by the IRT model, and this response 

contributes unique information. The κis balance the proportion of information that comes 

from the model representing items that contribute unique information at both administrations 

(i.e., the full IRT model) and information that comes from the model representing items that 

contribute unique information only at time 1 (i.e., the LD model). 
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Consider a simple 2-item test that is administered twice. For dichotomous items in which 1 

represents a correct or endorsed response and 0 represents an incorrect or non-endorsed 

response, u is a vector that refers the responses to item 1 at time 1, item 2 at time 1, item 1 at 

time 2, and item 2 at time 2. There are 16, or I⋅22 , possible response patterns: 

• Neither item is repeated (u = 0011, 0110, 1001, or 1100); 

• Item 1 is repeated but item 2 is not (u = 0001, 0100, 1011, or 1110); 

• Item 2 is repeated but item 1 is not (u = 0010, 0111, 1000, or 1101); and  

• Both items are repeated (u = 0000, 0101, 1010, or 1111). 

 When neither item is repeated, the examinee must have used the full IRT model when 

responding to each item at each time point (i.e., the LD model is not considered because 

neither item response was repeated).1 Thus, the probability of each item response must be 

weighed by the probability of using the IRT model for both item 1 and item 2. This 

probability is written as 

 ( ) ( )( ) uuuuPuuuuP 2122122111 11,,, κκ −−= . (5) 

In equation (5), the first subscript on u refers to the item number, the second subscript refers 

to the time, κi is the probability that item i was repeated because of LD and not by chance, 

given the IRT model, and 

 ∫ ∫ ∂∂Φ⋅⋅⋅⋅=
2 1

21222212121111 )()|()|()|()|(
θ θ

θθθθuTθuTθuTθuTPuuuu . (6) 

The calculation of this probability involves all four item responses because they are 

(conditionally) independent of one another. 
 
1In this model, only positive LD is included, where the response at time 2 is identical to response at time 1 
because respondent chooses to repeat. An alternative model could incorporate negative LD, where the response 
at time 2 is different from response at time 1 because respondent chooses not to repeat, but such a model is not 
considered here. 
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 When item 1 is repeated but item 2 is not repeated, the examinee must have used the full 

IRT model when responding to item 2 at each time point, but either the IRT model or the LD 

model may have been used when responding to item 1 at time 2. In other words, the response 

to item 1 may have been repeated because θ2 led to the response, or because the response at 

time 1 was duplicated as the response at time 2. The probability equation for this response 

pattern must incorporate both the probability of using the IRT model for both item 1 and item 

2 (first part of the sum), as well as the probability that the IRT model was used for item 2 and 

the LD model was used for item 1 (second part of the sum). This equation is 

 ( ) ( )( ) ( ) uxuuuuuu PPuuuuP 212122122111 111,,, κκκκ −+−−= , (7) 

where 

 ∫ ∫ ∂∂Φ⋅⋅⋅⋅=
2 1

21222121111 )()|(1)|()|(
θ θ

θθθθuTθuTθuTP uxuu . (8) 

Here, x represents the fact that the response to item 1 at time 2 does not factor in to the 

probability calculation. Thus, when a portion of the model represents the possibility that an 

item was repeated due to LD (e.g., uxuuP ), the probability of the response to that item at time 

1 is included in the model but the probability of the response to that item at time 2 becomes 1 

(i.e., the response at time 2 provides no information about θ2). 

 A similar model is seen when the response to item 1 is not repeated but the response to 

item 2 is repeated, as in 

 ( ) ( )( ) ( ) xuuuuuuu PPuuuuP 212122122111 111,,, κκκκ −+−−= (9) 

Here, the response pattern probability is a weighted combination of the probability that all 

four item responses were based on the IRT model (first part of the sum) and the probability 

that the responses at time 1 and the response to item 1 at time 2 were based on the IRT model 
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while the response to item 2 at time 2 was based on the LD model (second part of the sum). 

Again, this second probability portion excludes the probability of item 2 at time 2 because, if 

the response was based on the LD model, then it contributes no additional information about 

the latent trait, which is seen in 

 ∫ ∫ ∂∂Φ⋅⋅⋅⋅=
2 1

21212121111 )(1)|()|()|(
θ θ

θθθθuTθuTθuTP xuuu . (10) 

 Finally, if both items were repeated at time 2, then the probability of the response pattern 

is 

 
( ) ( )( ) ( )

( ) xxuuxuuu

uxuuuuuu

PP
PPuuuuP

2121

212122122111

1
111,,,

κκκκ
κκκκ

+−+
−+−−=

, (11) 

which is a weighted combination of the probability that the responses at time 2 were based on 

the IRT model (first part of the sum), the probability that the response to item 1 at time 2 was 

based on the LD model while the response to item 2 at time 2 was based on the IRT model 

(second part of the sum), the probability that the response to item 2 at time 2 was based on 

the LD model while the response to item 1 at time 2 was based on the IRT model (third part 

of the sum), and the probability that both responses at time 2 were based on the LD model 

(fourth part of the sum). Here, the fourth probability only includes the responses at time 1 in 

the model, as in 

 ∫ ∫ ∂∂Φ⋅⋅⋅⋅=
2 1

21121111 )(11)|()|(
θ θ

θθθθuTθuTP xxuu . (12) 

 Because κi are probabilities, they cannot be smaller than 0 or larger than 1. It is a useful 

reasonableness test to consider this model as the κi parameters go to extremes. If κ1 and κ2 are 

both 0, then regardless of whether an item response is repeated or not, the response cannot be 

due to LD. The only term that remains in the four variations of the response probability 
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equation is uuuuP , which indicates that the probability of a response pattern is derived solely 

from the IRT model. 

 When either of the κi parameters are 1, the response to that item at time 2 is fully 

dependent on the response at time 1. The response at time 2 cannot be different from the 

response at time 1, so the eight possible response patterns in which that item is not repeated 

are not observed. For the eight remaining response patterns, the terms that account for the 

possibility that the repeated item response is due to the IRT model drop out of the equation 

(because 1–κi is 0). 

 When both κi parameters are 1, both responses at time 2 are fully dependent on the 

responses at time 1. The responses at time 2 cannot be different from the responses at time 1, 

so only the last four possible response patterns in which both items are repeated are observed. 

In this case, the response pattern probability equation is simply xxuuP , which is the IRT model 

that includes only the responses at time 1. 

 To extend this approach to scales with I items (more than two), the probability of a 

response pattern, which involves comparing the response pattern, u, to each p of the 2I

possible combinations of repeat patterns, is 

 ( ) { } { } ( ) ( ) { } ( )∑ 
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and 

 { }

= otherwise1

and inrepeated isif0 upiCI ip . (16) 

In this generalized equation, indicator function A controls which of the possible probability 

portions are included in the total probability sum for that response pattern, indicator function 

B controls the LD weights for that probability portion, and indicator function C controls the 

inclusion of the item response probabilities in the time 2 product. 

2.2 A Description of the Model as Latent Class Analysis 

 An alternative description of the model is as LCA. In the two items twice example, there 

are four latent classes of persons: 

• The class that responds at time 2 by using the IRT model for both items 

(u = 0011, 0110, 1001, or 1100); 

• The class that responds at time 2 by repeating the response to item 1 because of 

LD and using the IRT model for item 2 (u = 0001, 0100, 1011, or 1110); 

• The class that responds at time 2 by repeating the response to item 2 because of 

LD and using the IRT model for item 1 (u = 0010, 0111, 1000, or 1101); and 

• The class that responds at time 2 by repeating the responses to both items because 

of LD (u = 0000, 0101, 1010, or 1111). 

The corresponding class probabilities can be represented as π0, π1, π2, and π3, respectively, 

and they must sum to 1. Because the parts of the models that are associated with these class 

probabilities are uuuuP , uxuuP , xuuuP , and xxuuP , respectively, the relation between the LD 

parameters and the LCA parameters is 
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( )( )
( )

( )
213
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1
1

11

κκπ
κκπ
κκπ

κκπ

=
−=
−=

−−=
, (17) 

which imply that 131 κππ =+ and 232 κππ =+ . The LCA parameters, πp, can be estimated 

using traditional LCA methods, and the κi parameters can be obtained from the values of πp.

A general translation from κi to πp is 

 { }∑ ⋅=
p

pipi DI πκ , (18) 

where 

 { } 

=

otherwise0
in repeated isif1 pi

DI ip . (19) 

2.3 An Alternative Model: A Bi-factor Analysis Approach to Longitudinal IRT 

 While the LCA approach to longitudinal IRT contains all of the components necessary for 

accounting for the LD among repeated items, it has the potential to create estimation 

problems. Each item has an additional parameter for LD, and three more parameters are 

included for the θ distribution, so the number of parameters increases by over 50% as 

compared to a traditional 2PL model. More importantly, the E-step becomes computationally 

demanding because the probability that corresponds to each latent class must be calculated 

for each response pattern. Thus, the size of the problem grows exponentially when a test 

becomes long, and sparseness in the latent classes may make κ estimation difficult. 

 Because of these potential problems, a second approach to longitudinal IRT is considered. 

This approach borrows from full-information item bi-factor analysis (Gibbons & Hedeker, 

1992). A bi-factor model is an approach to simplifying an s-dimensional model into a model 

with one primary dimension and s–1 secondary dimensions. Each item loads on the primary 
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dimension and has a non-zero loading on no more than one secondary dimension. This bi-

factor structure allows for simplified likelihood equations by reducing the integrations to two 

dimensions. Gibbons and Hedeker (1992) recognize that the bi-factor solution is an 

alternative model for tests with locally dependent items. 

 In the bi-factor analysis approach to longitudinal IRT, instead of one primary factor and a 

collection of secondary factors, the model includes two primary factors (one for each θt) and 

I secondary factors (one for each item). This bi-factor analysis approach permits the item 

parameters to be estimated using data from both time points (by constraining the item 

parameters to be equal within items across primary factors). Additionally, the LD is 

accounted for by the secondary factors that capture the relationship between the responses for 

each item pair at time 1 and time 2. 

 In this approach, the probability of response pattern u is 
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Here, t is time, j is the secondary factor, F is the total number of factors (F = 2 + I), 
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where µ is a vector of means for θ and Σ is the covariance matrix for θ. In (21), 

( )ijijititi babad +−= , combining the threshold parameters, that are not separately identified, 
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into a single intercept parameter. Thus, in this alternative approach, there is one intercept 

parameter for each item and two slope parameters, one that corresponds to the construct of 

interest (e.g., ability or proficiency) and one that corresponds to the LD of that item. 

Indicator function E is used to ensure that the probability of item response uit is only 

calculated for the secondary factor that corresponds to i, (i.e., θj or θi+2), which ensures 

simple structure on the secondary dimensions. 



CHAPTER 3 

ESTIMATION METHODS 

 The parameters of either of these models for longitudinal IRT can be estimated using 

direct maximum likelihood, which maximizes the function 

 ( )( )∑=
u

Plog url u , (24) 

where ru is the observed number of examinees with response pattern u. However, direct 

maximum likelihood is not a practical estimation method for most data problems because 

computing time becomes excessive as parameters are added to the model (i.e., as test length 

increases). An alternative approach uses Dempster, Laird, and Rubin’s (1977) EM algorithm, 

as refined by Bock and Aitkin (1981) for IRT, by Mooijaart and van der Heijden (1992) for 

LCA, and by Gibbons and Hedeker (1992) for item bi-factor analysis.  

 The EM algorithm consists of two iterative steps: the expectation step (E-step) and the 

maximization step (M-step). In the E-step, the current values for the model parameters are 

used to estimate the number of people expected to be at each quadrature point, q, along θ, the 

proportion of these people expected to endorse each item, and, in the LCA approach, the 

proportion of people expected to be in a particular latent class. In the M-step, these estimates 

are used as if they were observed data to obtain updated parameters. These two steps 

alternate until some convergence criterion is reached. This process is described in detail 

below for each of the proposed approaches. 
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3.1 Latent Class Analysis Estimation 

3.1.1 The E-step 

 For the IRT portion of the estimation procedure, the goal of the E-step is to estimate the 

number of people at each quadrature point who endorse each item given the current values of 

the model parameters. This information is stored in a series of R* tables. *
1iR contains the 

expected number of examinees at each quadrature point that would endorse item i, while *
0iR

contains the expected number of examinees at each quadrature point that would not endorse 

item i. For dichotomous items, there are two R* tables for each item. 

 One of the goals in creating a longitudinal IRT model is to be able to combine data from 

two time points to calibrate one set of item parameters. Thus, the expected number of 

examinees at quadrature point q who respond correctly to item i is a combination of the 

examinees at quadrature point q at time 1 and the examinees at quadrature point q at time 2, 

as in 
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where 
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Summation over quadrature points replaces integration over θ in (13). uP~ is used to normalize 

the sum so that when it is multiplied by ru, the resulting value represents a number of 

persons. 

 For the time 1 responses, the values at each quadrature point of time 1 are summed across 

the quadrature points of time 2 and are included in the *
1iR calculation when item i was 

endorsed. For the time 2 responses, the values at each quadrature point of time 2 are summed 

across the quadrature points of time 1, but they are only included in the *
1iR calculation when 

that item at time 2 was endorsed and used in the calculation of the probability for a particular 

part of the model (as controlled by indicator function C). 

 Conversely, the *
0iR calculation includes the response probability for item i when it is not 

endorsed at time 1, as well as when it is not endorsed but is used in the probability 

calculation at time 2, which is written as 

 
( ) ( ) ( )
{ } ( ) ( ) ( )∑














∑















∑ Φ⋅⋅−⋅
+∑ Φ⋅⋅−

⋅=
u p

Q

q
qqqqpuiip

Q

q
qqqqpui

u

u
qi

LuCI
Lu

P
rr 1

1
11

2

2
22

,,1
,,1

~
2

1
*

0 θθθθ
θθθθ

(28) 

 For the LCA portion of the estimation procedure, the goal of the E-step is to calculate the 

expected number of people with each response pattern in each latent class. This is calculated 

by 

 ( ) ( )21
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where the latent class parameters are in the form of πp rather than { }∏
=

I

i ipBI
1

and are 

represented in (26) as 
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 For the distributional parameters of the population, the goal of the E-step is to create a 

matrix with the expected number of examinees at each quadrature point on 2-dimensional θ.

This is calculated as the sum of each of the latent class probabilities times the observed 

number of examinees with that response pattern summed across response patterns, which is 

written as 

 ( ) ( )[ ]∑ ∑ 
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3.1.2 The M-step 

 In the M-step, the item parameters, the population parameters, and latent class parameters 

are calculated using the estimated data created in the E-step. The calculation of the item 

parameters takes the same form as it does for traditional unidimensional 2PL EM estimation. 

The log of the M-step likelihood function is maximized to obtain estimates for the item 

parameters, which is written as 

 ( ) ( )∑∑ −⋅+⋅=
Q

q
iqi

Q

q
iqii TrTrl 1loglog *

0
*

1 , (32) 

where Ti is from (2) and the r*s are from (25) and (28). For each item, estimates of the item 

parameters are obtained where the first derivative of (32) is equal to zero, and change is 

monitored through the values of the second derivatives (Bock & Aitkin, 1981). These 

computations are better-conditioned when the trace line function is parameterized in slope-

intercept form, rather than the typical slope-threshold form presented in (2). Thus, Ti is 

written as 
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i dθaT +−+= exp1

1 , (33) 

where di is –aibi. Using this slope-intercept form, the first derivative for the slope parameter 

is 
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and the first derivative for the intercept parameter is 
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The second derivative for the slope parameter is 

 ( )[ ]∑ −⋅⋅⋅−=∂
∂ Q

q
iiqiq

i
TTNa

l 1*2
2

2
θ , (37) 

the second derivative for the intercept parameter is 
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and second cross derivative for the slope parameter and intercept parameter is 
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 The M-step calculation of the latent class parameter uses an approach suggested by 

Mooijaart and van der Heijden (1992), which is 

 ∑=
u
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p N
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π̂ , (40) 
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where *
pun is from (29) and N is the total number of examinees. The latent class parameter 

estimates, pπ̂ ,are then transformed into local dependence parameters, iκ̂ , by (18), which are 

used in the subsequent E step. 

 The M-step calculation of the population parameters uses the expected number of 

examinees at each quadrature point, *
21qqN from (31). The mean for the population at time t is 
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the standard deviation for the population at time t is 
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and the population covariance is 
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as formulated by Bock (1985). The values for µ2, σ2, and ρ are then used as estimates in the 

next E-step, while the values for µ1 and σ1 are replaced with fixed values, usually 0 and 1, 

respectively, to identify the scale of the latent variables.  

3.2 Bi-factor Analysis Estimation 

3.2.1 The E-step 

 In the E-step, again, the number of people at each quadrature point who endorse each item 

given the current values of the model parameters is estimated and stored in R* tables. 
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However, the resulting R* tables are 2-dimensional (θt x θj), where the time 1 and time 2 

responses are collapsed into one primary factor, θt. Repeated responses do not affect the 

inclusion or exclusion of data entered into the R* tables in the bi-factor approach.  

 The expected number of examinees at quadrature point qt x qj who respond correctly to 

item i is a combination of the examinees at quadrature point q1 x qj (at time 1) and the 

examinees at quadrature point q2 x qj (at time 2), which is written as 
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 Thus, for each response pattern, a 3-dimensional array of probabilities, representing a grid 

of points in the θ1 x θ2 x θj space, is calculated. The array of probabilities is multiplied by the 

response at time 1 (i.e., the probabilities are included when the response is correct) and 

summed across the quadrature points of time 2. Added to those values is the same 3-

dimensional array of probabilities multiplied by the response at time 2 and summed across 

the quadrature points of time 1. The resulting 2-dimensional array is then multiplied by the 

observed number of examinees with that response pattern, and these arrays are summed 

across response patterns. 
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 A similar calculation is used for the expected number of examinees at quadrature point qt

x qj who respond incorrectly to item i, where probabilities are included for incorrect 

responses, which is written as 
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 Additionally in the E-step, information about the θ distribution is obtained for use in the 

M-step. The 3-dimensional array of probabilities is multiplied by the observed number of 

examinees with that response pattern and summed across the quadrature points of the 

secondary factor, θj. The resulting 2-dimensional array is summed across response patterns, 

creating an array of expected counts at each quadrature point of θ1,2, as in 

 ( ) ( )∑ ∑ 
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3.2.2 The M-step 

 The M-step in the bi-factor approach is similar to the M-step in the LCA approach. For the 

item parameters, maximum likelihood multiple logit analysis is employed with the R* tables 

from the E-step. Again, the log of the likelihood function is maximized to obtain estimates 

for the item parameters, which is written as 
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where Ti is from (21) and the r*s are from (44) and (47). For each item, estimates of the item 

parameters are obtained where the first derivative of (49) is equal to zero, and change is 

monitored through the values of the second derivatives (Bock & Aitkin, 1981). 

 The first derivative for either of the slope parameters is 
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and the first derivative for the intercept parameter is 
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where 
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The second derivative for either of the slope parameters is 
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the second derivative for the intercept parameter is 
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the second cross derivative for both slope parameters is 
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and the second cross derivative for either of the slope parameters and the intercept parameter 

is 
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 For the population parameters, the same equations that were used for obtaining µ2, σ2, and 

ρ in the LCA approach are also used in the bi-factor analysis approach. 
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3.3 Bi-factor Analysis in Limited-Information Item Factor Analysis 

 Because the item bi-factor analysis model is a full-information approach to Holzinger and 

Swineford’s (1937) bi-factor method, it is sensible to consider this approach in a CCFA 

framework as mentioned in the introduction in the context of MTMM techniques. This model 

is depicted as a structural equation model in Figure 1 for the simple case of two items 

administered twice. This model includes two factors for the two administrations, θ1 and θ2,

and the items load only on the factor that corresponds to the time at which they were 

administered. Factor loadings for the same item at different time points are constrained to be 

equal so that each item has one loading on the outcome of interest. The first factor is 

standardized with a mean of 0 and a variance of 1, while the second factor has a mean of α2

and a variance of φ22. The two factors have a covariance of φ21.

The LD between the same item at different time points is captured in an error covariance 

(or correlation when the measured variables are standardized) between the two items. This 

error covariance could also be described as the square of the factor loading if each item pair 

loaded on its own LD factor with the two factor loadings constrained to be equal. Both 

parameterizations highlight the fact that the LD describes variance that the item pairs have in 

common above and beyond what is explained by the primary construct of interest. 

 Not depicted in Figure 1 is the threshold parameter, τi, for each item. This parameter is 

similar to the threshold parameter of the IRT model in that it specifies the location on the 

latent construct above which the item is endorsed and below which the item is not endorsed. 

 For the relationship between the IRT parameters in (21) and CCFA parameters, the factor 

loading, λi, can be translated into a slope for the primary factor, ait, by the equation 
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The covariance between the responses to the same item at time 1 and time 2, δi, can be 

translated into a slope for the secondary factor, aij, by the equation 

 ( )ii
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7.1 . (58) 

The threshold, τi, can be translated into an intercept, di, by the equation 
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In these equations, the value 1.7 converts the estimates from the normal metric to the logistic 

metric which is specified in (21) (McLeod, Swygert, & Thissen, 2001). 

 This CCFA model can be estimated using the latent variable software Mplus (Muthén & 

Muthén, 2003) using weighted least squares (WLS) estimation when the sample is large or 

using diagonally weighted least squares with a mean- (and variance-) adjusted chi-square test 

statistic (WLSM/V) when the sample is small (Oranje, 2003). The CCFA converted 

parameters should be similar to the IRT parameters when samples are large, but some 

differences may be observed because IRT is a full-information estimation method and CCFA 

is a limited-information estimation method. 



CHAPTER 4 

METHODS FOR EVALUATING THESE APPROACHES 

 When a new model is introduced, it is important to ask two questions: (1) can the 

parameters be estimated, and (2) are the estimates interpretable? These questions were 

considered for each of the two proposed approaches to modeling longitudinal IRT data. The 

first question was answered by using simulated data to evaluate the parameter recovery of 

each model. By using simulated data in which the true parameter values are known, the 

estimates can be compared to the true values to determine how well the algorithms estimate 

the parameters. The second question was answered using empirical data. The content of the 

items can indicate how stable the responses and the latent trait should be over time, and 

parameter estimates can be examined to determine if the hypothesized properties are revealed 

in the magnitude and sign of the estimates. 

4.1 Parameter Recovery with Simulated Data 

4.1.1 Simulation Parameters and Methods 

 First, data were simulated in the R statistical system for a large number of simulees (N =

5000) and a small number of dichotomous items (I = 4) at two time points. These data were 

used to evaluate the estimation procedures to ensure that they had been implemented 

correctly in C++. Because the sample was very large, the parameter estimates are expected to 

be very close to the true values. An additional use of these data was to explore if the two 

models produce comparable results. Data generated with one model were fit with the 
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alternative model as an attempt to identify a link between the two approaches by comparing 

the parameter estimates. 

 Once the estimation methods were verified, data were simulated with smaller numbers of 

simulees (N = 100, 250, or 500) and larger numbers of items (I = 5 or 10). These conditions 

were chosen because they are comparable to the characteristics of data collected in 

longitudinal study designs. The parameter estimates were compared to the true values to 

evaluate if the model can capture the parameters under these realistic conditions. It is 

important to demonstrate that the longitudinal IRT approach can recover the true parameter 

values for the data problems for which it is intended (i.e., many items with limited 

examinees). 

 Further, it is desirable that the proposed models outperform existing methods in terms of 

parameter recovery. The parameter estimates of the LCA model were compared to those of 

the unidimensional 2PL model using data from one time point, and the parameter estimates 

of the bi-factor model were compared to that of the limited-information CCFA model using 

data from both time points. 

 For the LCA approach, true theta values were drawn from a 2-dimensional normal 

distribution with a mean of 0 and a variance of 1 at time 1, a mean of 0.2 and a variance of 1 

at time 2, and a correlation of 0.5 between the two times. True a values varied between 1 and 

2, true b values varied between -1 and 1, and true κ values varied between 0.1 and 0.4. 

 To simulate the response at time 1, the probability of endorsement is calculated using (2) 

with the person’s true θ1 value and the slope and threshold for that item. A random number is 

drawn from a rectangular distribution between 0 and 1, and if this random number is less 

than the calculated probability, then the response is scored as positive. If the random number 
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is greater than or equal to the calculated probability, then the response is scored as negative. 

A provisional response at time 2 is simulated in the same manner using a new random 

number and a probability calculated with the person’s true θ2 value. Because the κ parameters 

can be considered as probabilities of repeating the response from time 1 at time 2, another 

random number is drawn from a rectangular distribution between 0 and 1. If the random 

number is less than the κ value for that item, then the provisional response at time 2 is 

replaced with the person’s response at time 1. If the random number is greater than the κ

value, then the provisional response is retained as the response at time 2. 

 For the bi-factor analysis approach, true theta values were drawn from a 3-dimensional 

normal distribution with a mean of 0 and a variance of 1 at time 1 and for the specific factor, 

and a mean of 0.2 and a variance of 1 at time 2. The correlation between θ1 and θ2 was .5, 

while θ1 and θ2 did not covary with the specific factor. True a values on the dimension of 

interest varied between 1 and 2, true a values on the LD dimension varied between 0.5 and 

1.5, and true b values varied between -1 and 1 (thresholds were translated into intercepts 

given the slope values). 

 To simulate the response at time 1, the probability of a correct response is calculated using 

(21) with the person’s true θ1 and true θj, and the slopes and intercept for that item. A random 

number is drawn from a rectangular distribution between 0 and 1, and if this random number 

is less than the calculated probability, then the response is scored as correct. If the random 

number is greater than or equal to the calculated probability, then the response is scored as 

incorrect. The response at time 2 is simulated using the same process by calculating the 

probability with θ2 instead of θ1 and using a new random number draw. 
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 Within the estimation software, conservative starting values were chosen for the 

parameters. The starting values for the distributional parameters were 0 for the mean at time 

2, 1 for the variance at time 2, and 0.75 for the correlation between the two time points. For 

the LCA approach, a values started at 1, b values started at 0, and κ values started at 0.1. For 

the bi-factor approach, a1 values started at 1, a2 values started at 0.5, and d values started at 

0. Because little was known about the properties of the likelihood surface for these models, 

strict convergence criteria were chosen to provide the routine ample opportunity to “climb” 

to the maximum value. Ten-thousand cycles were allowed, with estimation ending if the 

maximum change in estimated values from one cycle to the next dropped below 1.0e–07.  

4.1.2 2PL Method 

 Parameter estimates from the LCA model were compared to those obtained using the 2PL 

model in Multilog (Thissen, Chen, & Bock, 2003). Data from the first administration alone 

were used for parameter calibration. Distributional statistics were calculated in SAS 9.1 (SAS 

Institute, Inc., 2005) using the sum of the item responses within administration and 

standardizing the sample statistics at time 2 using the statistics from time 1. 

4.1.3 CCFA Method 

 Parameter estimates from the bi-factor model were compared to those obtained using a 

longitudinal CCFA model in Mplus 3.13 (Muthén & Muthén, 2003). Although WLS 

estimation is the gold-standard approach to CCFA model estimation, it is known to perform 

poorly with small samples or complex models (Oranje, 2003). Anticipating these conditions, 

WLSM/V estimation was used when the sample size was 500 or less. When data conditions 

are appropriate for WLS, the WLS parameter estimates should be similar to those obtained 
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with WLSM/V. Thus, even if WLSM/V estimation was used for data with which WLS would 

be suitable, no error should be induced in the parameter estimates. 

 The model depicted in Figure 1 was specified in Mplus by letting each item load on the 

latent factor particular to its administration time, while constraining the factor loadings to be 

consistent across time within item. Means and thresholds were included in the model by 

specifying a mean structure analysis, and thresholds were also constrained equal across time 

within item. Error correlations were introduced between each item pair. Theta 

parameterization, which allows the residual variances to be estimated in the model, was used. 

Each analysis was conducted on an inter-item tetrachoric correlation matrix by indicating that 

the data were categorical. Standardized estimates for factor loadings, error correlations, and 

thresholds were used in comparing CCFA results to bi-factor method results because IRT 

assumes that the underlying response variable is standard normal. CCFA estimates were 

translated into the IRT metric, and standard errors were translated using the delta method. 

4.2 Model Evaluation with Empirical Data 

 Empirical data from the Understanding Adolescent Health Risk Behaviors survey from the 

study The Context of Adolescent Substance Use (the Context Study) were used for evaluating 

the interpretability of these proposed models, as well as to compare the results obtained 

through the proposed methods to results available through existing methods (NIDA Grant 

No. R01 DA13459).2 The Context Study collects data longitudinally on adolescents in grades 

6 through 12 in the fall and spring of each year. Items on the survey assess tobacco, alcohol, 

and drug use, aggression, and family relationships. For the purpose of this research, a set of 

items measuring behaviors indicative of psychological distress were chosen. These 10 items 

 
2Great appreciation goes to Dr. Susan Ennett for making this substantial dataset available for these analyses. 



33

were measured on a 5-point Likert response scale ranging from “Strongly agree” to “Strongly 

disagree”, and the item text is presented in Figure 2. 

 Data from adolescents at the first fall administration and the second spring administration 

(waves 2 and 3 of data collection) were chosen for the present analyses. Only participants 

who had no missing data on these 10 items across the two time points were included, which 

resulted in a sample of 3,788. This sample was 53% female and 57% white, with an average 

age of 13.5 (sd = 0.97) for the fall administration and 14.0 (sd = 0.97) at the spring 

administration. 

 Prior to using these data to assess the proposed models, the dimensionality of this 10-item 

scale was assessed through a 1-factor CCFA model in Mplus. Local item dependencies were 

examined using modification indices for the error correlations between the measured 

variables. It was established that several of the items were locally dependent, and the model 

was trimmed until one set of unidimensional, locally independent items was identified. After 

this item reduction, items 1, 2, 7 and 9 remained, and all subsequent analyses were conducted 

using this set of 4 items. 

 Because the proposed models have been parameterized for binary data, it was necessary to 

dichotomize the Likert response scale. “Strongly agree”, “Agree somewhat”, and “Neither” 

were grouped together to indicate endorsement, and “Disagree somewhat” and “Strongly 

disagree” were group together to indicate non-endorsement. While these items would be best 

analyzed using their original response categories, this categorization is appropriate for these 

demonstrative analyses. 



CHAPTER 5 

RESULTS 

5.1 Simulated Data 

5.1.1 Latent Class Analysis 

 The programming of the LCA approach was evaluated using a simulated dataset of 5000 

simulees and 4 items. The generating values, the parameter estimates, and the difference 

between the estimated and true values are presented in Table 1. The estimation procedure 

appears to work well for the LCA model, with differences between the estimated value and 

the true value being no more than 0.1 for the slope parameter, no more than 0.04 for the 

threshold parameter, and no more than 0.03 for the LD parameter. The difference between 

the estimated and true values was 0.01 for the correlation between θ1 and θ2, 0.03 for the 

mean of θ2, and 0.02 for the standard deviation of θ2. These differences are very small and 

indicate good parameter recovery. 

 With the LCA algorithm implementation evaluated as correct, the analyses proceeded to 

evaluating parameter recovery under realistic data conditions. It is important to stress that 

parameter recovery was evaluated using one simulated dataset per data condition. Large 

parameter recovery simulation studies often use 1000 or more simulated datasets per 

condition and summarize results across those datasets using statistics like bias and root mean 

square error. Such large simulations aim to reduce the effect of sampling error using these 

summary statistics. Some of the simulated data may be drawn from extreme parts of the 

underlying distribution, creating datasets with sample statistics different from the population 
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values. Aggregating over the whole set of data for one condition allows the true recovery to 

stand out while minimizing the effect of the odd samples. However, the present parameter 

recovery examination is intended to evaluate the potential of the proposed approaches, not to 

declare one method superior to another under specific conditions. If one or both approaches 

show value, then a larger simulation study to determine the conditions under which these 

methods are appropriate would be a logical next research step. 

 Responses to 5 items for samples of 100, 250, and 500 simulees were generated using the 

properties of the LCA model, and the results are presented in tables that include the true 

generating values, the estimates from the LCA model and the 2PL model, and the difference 

between the estimated values and the true values. For the sample of 100 simulees in Table 2, 

the LCA model had a smaller range for the difference between the estimates and true values 

as compared to the 2PL model. For the slope parameter, differences for the LCA model 

ranged from –0.1 to +1.4, while differences for the 2PL model ranged from –0.3 to +2.3. 

Both models overestimated a4, so this large range ceiling is probably due to an oddity in the 

sampling for that parameter rather than being a true error. For the threshold parameter, 

differences for both models ranged from –0.2 to +0.3. For the LD parameter, estimated and 

true values differed from –0.1 to +0.01. Considering the small sample size, the errors for 

each of the parameter estimates are reasonable for both models. Each model also captured the 

mean and standard deviation of the latent trait at time 2, but the 2PL model showed more 

error in the correlation between latent traits than did the LCA model (+0.3 versus +0.2). 

 The estimates for the 250 simulees in Table 3 had less error than did those for the sample 

of 100, while the 2PL model showed slightly narrower error ranges. For the slope parameter, 

the differences ranged from –0.2 to +0.6 for the LCA model and –0.1 to +0.6 for the 2PL 
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model, and for the threshold parameter, the differences ranged from –0.1 to +0.2 for the LCA 

model and 0 to +0.2 for the 2PL model. Again, both models captured the true parameter 

values suitably, and the more extreme difference in slope estimates was consistent between 

models, indicating randomness in sampling. The LD parameter estimates differed by –0.1 to 

+0.2 as compared to the true values. As in the 100 simulee dataset, both models captured the 

mean and standard deviation of the time 2 latent trait, but the 2PL model showed much more 

error in the correlation as compared to the LCA model (+0.4 versus +0.1). 

 In Table 4, the estimates for the sample of 500 simulees were similar to those for 250 

simulees. Slope parameter errors ranged from –0.1 to +0.4 for the LCA model and from –0.2 

to +0.6 for the 2PL model. Threshold parameter errors ranged from –0.2 to +0.2 for both 

models. The errors in the LD estimates ranged from –0.1 to +0.02. Again, both models 

provided good estimates for the mean and standard deviation of the latent trait at time 2, but 

the 2PL model produced a poorer estimate for the correlation between the latent traits (+0.3 

versus –0.1). The consistency between the sample with 250 simulees and 500 simulees 

suggests that for 5 items, sample size greater than 250 has little impact on parameter 

recovery. Even with a small sample of 100 simulees, both models recovered the true 

parameters acceptably, with the LCA model producing more accurate estimates than the 2PL 

model. 

 To examine the effect of test length on parameter recovery, samples of the same size were 

simulated for tests with 10 items. For these 10-item results, error in the parameter estimates 

was summarized with mean square error (MSE), where the difference between the estimated 

value and the true value is squared and averaged across the 10 items for that model. In Table 

5, results are presented for the 100 simulee sample. Slope parameter error ranged from –0.7 
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to +0.8 (MSE = 0.17) for the LCA model and from –0.2 to +0.8 (MSE = 0.14) for the 2PL 

model. Threshold parameter error ranged from –0.4 to +0.3 (MSE = 0.04) for the LCA model 

and from –0.3 to +0.5 (MSE = 0.05) for the 2PL model. Neither model recovered any 

parameter perfectly, but the MSE was relatively small for the slope parameter and very small 

for the threshold parameter. Surprisingly, there was little difference between the two models 

in terms of parameter recovery of 2PL parameters. For the LD parameter, error ranged from 

–0.1 to +0.2 (MSE = 0.01), which is no worse than the 5-item samples. The two models 

showed little error in the θ2 mean (no error for the LCA model, –0.05 for the 2PL model), but 

they showed more error in the θ2 standard deviation (–0.21 for the LCA model, –0.17 for the 

2PL model). As with the 5-item samples, the 2PL model poorly recovered the correlation 

parameter (error of +0.25) as compared to the LCA model (error of –0.05). 

 The results for the sample of 250 simulees in Table 6 showed better parameter recovery 

for both models. The slope parameter error for the LCA model ranged from –0.3 to +0.3 

(MSE = 0.04) and ranged from –0.5 to +0.6 (MSE = 0.12) for the 2PL model. The threshold 

parameter error ranged from –0.1 to +0.2 (MSE = 0.01) for the LCA model and from –0.2 to 

+0.2 (MSE = 0.01) for the 2PL model. These ranges and MSE values show that both models 

recovered the 2PL parameters well with a sample of 250, with the LCA model providing 

more accuracy in the slope parameters than the 2PL model. The error in the LD parameters 

ranged from –0.04 to +0.1 (MSE = 0.003). This sample exhibited the same trend of good 

estimation for the mean and standard deviation of θ2, with the 2PL model failing to recover 

the correlation as well as the LCA model (+0.3 versus +0.1). 

 The results obtained with a sample of 500 simulees in Table 7 continued to show reduced 

error with increased sample size. The slope parameter error ranged from –0.4 to +0.1 
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(MSE = 0.04) for the LCA model and from –0.4 to +0.3 (MSE = 0.07) for the 2PL model. 

The threshold parameter error ranged from –0.3 to +0.02 (MSE = 0.04) for the LCA model 

and from –0.3 to 0 (MSE = 0.03) for the 2PL model. With a sample of 500, the 2PL 

parameters are recovered well using either model. The error for the LD parameters ranged 

from –0.04 to +0.06 (MSE = 0.001). The distributional parameters were recovered in the 

same manner as before, with the main difference being in the correlation for the 2PL model 

(+0.3) and the LCA model (–0.02). 

 Overall for the LCA model, parameter recovery is quite good. The approach shows 

promise for small samples and longer tests. Although there were no drastic differences in 

slope and threshold recovery between the LCA model and the 2PL model, the LCA model 

outperformed the 2PL model in distributional parameter recovery with its ability to include 

the distributional parameters as part of the full-information model. The LCA model also had 

success in recovering the LD parameters across all data conditions. 

5.1.2 Bi-factor Analysis 

 As with the LCA model, prior to examining parameter recovery of the bi-factor model, the 

implementation of the EM algorithm was verified with a sample of 5000 simulees and 4 

items. Results are presented in Table 8. Error in the a1 estimates ranged from –0.1 to –0.01, 

in the a2 estimates ranged from +0.03 to +0.2, and in the d estimates ranged from –0.1 to 

–0.02. These differences between the estimated values and true values are small and imply 

correct programming. Errors of estimation were also small for the distributional parameters, 

–0.02 for the θ2 mean, –0.04 for the θ2 standard deviation, and –0.07 for the correlation 

between θ1 and θ2.
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 With the programming verified, analyses switched to parameter recovery evaluation using 

samples generated with the bi-factor model with the same characteristics as those generated 

using the LCA model. Responses to a 5-item test were simulated for samples of 100, 250, 

and 500. Results for the 100 simulee sample are presented in Table 9. Estimation errors in the 

slopes on the primary dimension ranged from –0.4 to +3.0 for the bi-factor model and from 

+0.02 to +2.9 for the CCFA model. The items for which the largest difference between the 

estimates and the true values were observed were not consistent between models, suggesting 

that the error is not a result of an odd sample. The errors for the LD slopes ranged from –0.4 

to +0.6 for the bi-factor model and from –0.3 to +0.6 for the CCFA model. The difference 

between the estimated intercept values and their true values ranged from –0.7 to +0.7 for the 

bi-factor model and from –2.0 to –0.03 for the CCFA model. The CCFA estimation 

algorithm did not capture the threshold parameters as well as the bi-factor model, while both 

models exhibited similar levels of error in their slope estimates. In comparing distributional 

parameters, the bi-factor model showed slightly less error in the θ2 mean and in the 

correlation between θ1 and θ2 (–0.1 versus –0.2 for both parameters), while the bi-factor 

model showed slightly more error in the θ2 standard deviation (–0.1 versus –0.03). 

 Parameter recovery does not change dramatically when the sample size increases to 250, 

the results for which are presented in Table 10. Errors of estimation in the slopes on the 

primary dimension ranged from –0.6 to +1.8 for the bi-factor model and from –0.02 to +1.3 

for the CCFA model. Errors in the slopes on the LD dimension ranged from –0.6 to +0.6 for 

the bi-factor model and from –0.6 to +0.8 for the CCFA model. Errors in the intercept 

parameters ranged from –0.4 to +0.2 for the bi-factor model and from –0.2 to +0.8 for the 

CCFA model. Again, the CCFA model produced poorer threshold parameter estimates, while 
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slope parameter recovery for the primary dimension was somewhat better for the CCFA 

model than the bi-factor model in this sample. The bi-factor model had larger estimation 

errors than the CCFA model for the θ2 mean (error of +0.2 versus +0.01 for CCFA) and the 

correlation between θ1 and θ2 (error of –0.3 versus +0.1 for CCFA). Error was similar for the 

θ2 standard deviation for both models. 

 The results for the sample of 500 are presented in Table 11. Error of estimation in the 

slope parameters on the primary dimension ranged from +0.1 to +1.7 for the bi-factor model 

and from +0.3 to +0.8 for the CCFA model. Error in the slope parameters on the LD 

dimension ranged from –1.3 to –0.1 for the bi-factor model and from –0.7 to –0.1 for the 

CCFA model. Error in the intercept parameters ranged from 0 to +0.1 for the bi-factor model 

and from –0.3 to +0.5 for the CCFA model. Although the error decreases for this sample with 

500 simulees as compared to the samples with 100 and 250 simulees, the CCFA model did 

not show improvement in capturing the intercept parameters, while the bi-factor model (more 

so than the CCFA model) did not show improvement in slope parameter estimation. The 

distributional parameters continue to have relatively large errors for this sample with both 

methods. For both models error was –0.1 for the mean and standard deviation of θ2 and +0.1 

for the correlation between θ1 and θ2.

Again, the simulated test was extended to 10 items with the same sample sizes as the 5-

item tests, and parameter recovery was evaluated for this longer test condition with MSE 

providing a summary for each parameter. The results with 100 simulees are presented in 

Table 12. Errors of estimation in the slope parameter on the primary dimension ranged from 

–0.4 to +1.0 (MSE = 0.24) for the bi-factor model and from +0.01 to +3.6 (MSE = 2.35) for 

the CCFA model. Errors for the slope parameter on the LD dimension were between –0.3 
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and +1.1 (MSE = 0.23) for the bi-factor model and between –1.0 and +2.0 (MSE = 0.72) for 

the CCFA model. As with the 5-item examples, neither model precisely captures the slope 

parameters with 100 simulees, but the MSE values show that the bi-factor model provided 

more accurate estimates. Error in the intercept parameters ranged from –0.8 to +0.9 

(MSE = 0.25) for the bi-factor model and from –4.3 and +0.6 (MSE = 2.26) for the CCFA 

model. Again, the CCFA model produces poor intercept parameter estimates with a small 

sample. Estimates for the distributional parameters did not worsen for this longer test with 

the mean and standard deviation error being –0.1 for both models, while the correlation 

estimation error was –0.02 for the bi-factor model and +0.2 for the CCFA model. 

 Results for 250 simulees and 10 items are presented in Table 13. Parameter estimation 

improved considerably with this increase in sample size. Primary slope estimation error was 

between –0.6 and +0.3 (MSE = 0.09) for the bi-factor model and between –0.2 and +1.0 

(MSE = 0.30) for the CCFA model. LD slope error ranged from –0.03 to +0.8 (MSE = 0.10) 

for the bi-factor model and from –1.0 and +1.4 (MSE = 0.54) for the CCFA model. Intercept 

error of estimation varied from 0 to +0.4 (MSE = 0.04) for the bi-factor model and from –0.1 

to +1.2 (MSE = 0.18) for the CCFA model. These MSE values were acceptable for the bi-

factor model, while they remained inflated for the CCFA model. The distributional parameter 

estimation error was similar between the models and accuracy did not improve using this 

sample. Mean error was –0.2 for both items, standard deviation error was –0.04 for the bi-

factor model and +0.1 for the CCFA model, and correlation error was –0.1 for the bi-factor 

model and +0.2 for the CCFA model. 

 Table 14 contains the results for the simulation involving a sample of 500 with 10 items. 

Again, the increased sample size improved parameter recovery. Error of estimation in the 
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primary slope was between –0.2 and +1.0 (MSE = 0.16) for the bi-factor model and between 

+0.1 and +0.6 (MSE = 0.22) for the CCFA model. Estimation error in the LD slope varied 

from –0.4 to –0.1 (MSE = 0.07) for the bi-factor model and from –1.2 to +0.4 (MSE = 0.40) 

for the CCFA model. Error in the intercept ranged from –0.2 to +0.4 (MSE = 0.03) for the bi-

factor model and from –0.3 to +0.2 (MSE = 0.04) for the CCFA model. The bi-factor model 

recovered the parameters better than the CCFA model, though there was little difference in 

the intercept errors between the models. Results for the distributional parameters are 

consistent with what was seen in other examples. The mean, standard deviation, and 

correlation errors were +0.01, –0.2, and +0.1, respectively, for the bi-factor model and were 

–0.01, –0.04, and +0.2, respectively, for the CCFA model. 

 Overall, the bi-factor model estimation algorithm did not capture the true parameters as 

well as the LCA model. Both the bi-factor model and the CCFA model performed well in 

estimating distributional parameters, but both models were sensitive to sample size and test 

length in estimating slopes and intercepts. Although it is difficult to outline data conditions 

necessary for accurate estimation using these few examples, the bi-factor model showed 

improvement in parameter recovery for the test with 10 items and 250 simulees. 

5.1.3 Comparison Between Latent Class Analysis and Bi-factor Analysis 

 In addition to evaluating the parameter recovery of the LCA and bi-factor models, 

simulated data were used to investigate the relation between the two models. In Table 1 

parameter estimates from the bi-factor model are presented for the example with 5000 

simulees and 4 items simulated using the properties of the LCA model. It was anticipated that 

the slope on the primary dimension for the bi-factor model would correspond to the LCA 

slope and that the threshold for the bi-factor model (i.e., the intercept translated into a 
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threshold using the formula bi = –di/(ai1 + ai2)) would correspond to the LCA threshold. The 

connection between the LD parameter in the LCA model and the LD slope in the bi-factor 

model was unknown; the first is a probability of repeating the response from time 1 at time 2 

and the second is a correlation between the responses at time 1 and time 2. The slopes and 

thresholds appear to correspond as expected, but some are estimated more precisely than 

others in the bi-factor model. The differences between the estimated bi-factor primary slope 

and the true LCA slope are –0.3, +2.6, –0.4, and –0.01, respectively, for each of the four 

items. The bi-factor intercept estimates are –0.88, 0.53, 0.41, and –0.32, respectively, for 

each of the four items, in terms of threshold reparameterization. These values differ from the 

true LCA threshold values by +0.1, –0.5, –0.1, and +0.2. Thus, for these known parameters 

of the bi-factor model, the estimates do not correspond to the true values as closely as would 

be expected with a sample of 5000. It is possible that generating data according to the LCA 

model and fitting it with the bi-factor model induces error in the parameter estimates that 

does not appear when the same models are used for simulation and estimation. Additionally, 

the distributional parameters for the bi-factor model did not correspond exactly to the true 

values. The mean differed by –0.06, the standard deviation by –0.15, and the correlation by 

+0.32. 

 In terms of the connection between the LD parameters in the two models, the order of 

increasing LD slopes for the bi-factor model is similar to the order of increasing LD 

parameters for the LCA model. The LCA LD parameters increase from item 1, to item 3, to 

item 4, to item 2, while the bi-factor LD slopes increase from item 1 to item 3, to item 2, to 

item 4. However, the primary slope estimate for item 2 had a large amount of error, so the 

LD slope estimate is probably also affected, which might affect this ordering. Still, any 
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connection between these two conceptualizations of LD is unclear because the LCA model is 

accounting only for repeated responses, while the bi-factor model accounts for a correlation 

between underlying response processes.  

 A similar comparison was made for data generated using the bi-factor model and 

estimated using the LCA model. Results for this evaluation are presented in Table 8 for 5000 

simulees and 4 items. Again, the LCA slope was expected to correspond to the bi-factor 

slope on the primary dimension, and the LCA threshold was expected to correspond to the bi-

factor threshold (translated from the intercept using the slope values). There was some error 

in estimating the slopes, with LCA slope estimation error of +0.15, +0.46, +0.72, and –0.03 

for the four items, respectively. Error also occurred in threshold estimation, with LCA 

thresholds being different from the bi-factor thresholds (–1.0, 1.0, 0.5, and –0.5) by +0.34, 

+0.35, +0.22, and –0.17, respectively. As in the previous example, this error suggests that 

generating data with one model and fitting it with the other induces inaccuracy in the 

parameter estimates. Some error was also present in the distributional parameters, which 

differed from the true parameters by –0.02 for the mean, –0.04 for the standard deviation, 

and +0.15 for the correlation. 

 The LD parameters for the LCA model increase in the same order as the true bi-factor LD 

slope values. The LCA LD parameters increase from item 1 and item 4, to item 2, to item 3, 

while the bi-factor LD slopes increase from item 1, to item 4, to item 2, to item 3. However, 

the magnitude of the LCA LD parameters is surprisingly small. When data were generated 

with the LCA model and fit with the bi-factor model, LD parameters of 0.1, 0.2, 0.3, and 0.4 

were estimated as LD slopes3 of –0.4,–0.6,–1.5, and 1.1, respectively. Here, when data were 

 
3The sign of these slopes is arbitrary and should not be interpreted. 
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generated with the bi-factor model and fit with the LCA model, LD slopes of 0.6, 0.7, 1.0, 

and 1.5 were estimated as LD parameters of 0.01, 0.01, 0.02, and 0.05, respectively. 

 To explore the possibility of the generating LD slope values for the bi-factor model 

indicating weak LD, an additional dataset was simulated with the LD slope values doubled to 

range from 1.2 to 3.0. These increased true values had little effect on the LD parameter 

estimates for the LCA model. The estimated values ranged from 0 to 0.08, and although they 

increased in the same order as the estimated LD slopes, their magnitude did not reflect the 

additional LD that was assumed to be added to the data by increasing the slope values. 

 The LCA model and the bi-factor model are not two different parameterizations of the 

same IRT model. The LCA model includes LD parameters, which measure the probability 

that the response to an item at time 1 is repeated as the response to that item at time 2. The 

bi-factor model includes LD slopes, which parameterize the correlation between an item’s 

responses at time 1 and time 2. While these parameters are intended to model LD, they do 

not correspond to identical conceptualizations of LD. LD parameters in the LCA model 

answer the question, “What is the probability that examinees will provide the same response 

to an item at time 2 that was given at time 1 beyond what is implied by the latent trait simply 

because the item had already been considered by the examinees at an earlier time?” This type 

of LD corresponds to what Chen and Thissen (1997) term “surface local dependence.” LD 

slopes in the bi-factor model answer the question, “How related to each other are the 

responses to this item at two time points beyond their relation to the latent trait?” This type of 

LD is similar to what Chen and Thissen (1997) label “underlying local dependence.” The 

identification of these two types of LD by these researchers highlights the fact that there may 

exist different forces behind observed LD between item responses. It is logical that when one 
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type of LD is induced in simulated data, the model that was used to simulate the data 

demonstrates better parameter recovery than does the alternative model. This result was seen 

here, and it indicates that a model should be chosen that corresponds to the assumed 

underlying LD mechanism. This point will be revisited after examination of the empirical 

data. 

5.2 Empirical Data 

 Empirical data from the Context Study were used to examine the performance of the 

proposed models with real data. The four unidimensional psychological distress items (1, 2, 

7, and 9 in Figure 2) were modeled with the proposed LCA and bi-factor models, as well as 

with the existing 2PL and CCFA models. Although the sample was substantial and excess 

model error was not anticipated, the opportunity was taken to compare the standard errors 

from each of the four models using one dataset. Standard errors for the proposed model are 

not available through the EM algorithm implementation4, so R’s non-linear minimizing 

function was used instead. This function calculates standard errors from the square root of 

the inverse of the Hessian matrix. The point estimates produced by this function in R are 

identical to those from the EM algorithm estimation approach in C++. 

5.2.1 Latent Class Analysis 

 Results for the LCA model and the 2PL model are presented in Table 15. The slope 

parameters range from 2.0 to 3.3 for the LCA model and from 2.0 to 3.2 for the 2PL model, 

indicating that these four items are good measures of psychological distress. The slope 

estimates are very similar between models, with the largest difference being 0.13. The 

standard errors for the slope parameter estimates are similar between the approaches. The 
 
4Recent work borrowing on Meng and Rubin’s (1991) supplemented EM algorithm has improved standard error 
calculation in IRT, and this method may be incorporated into future versions of this software. 
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threshold parameters are also consistent across models, and the largest difference is 0.03. 

These threshold values range from –0.44 to 0.71 for the LCA model and from –0.42 to 0.71 

for the 2PL model, indicating that these items provide information about psychological 

distress around the center of the θ distribution. The standard errors for these threshold 

estimates are identical across models, likely because they are so small that there is no 

precision to be gained with the LCA model. The LCA model estimated a smaller mean, a 

greater standard deviation, and a smaller correlation for the distributional parameters than did 

the 2PL model, but any discrepancy is due to the 2PL model using summed scores to 

calculate these values. The distributional parameters suggest that the center of the 

psychological distress distribution is stable over time, but the variability increases. Although 

there is no standard error to associate with the 2PL distribution values, the standard errors for 

the distribution parameters for the LCA model are small. 

 The LD parameters as estimated by the LCA model range from 0.11 to 0.21, and each had 

a small standard error of 0.02. The smallest LD values are associated with item 1 (“I had 

trouble getting my breath”) and item 9 (“I was a bad person”), while the largest value was for 

item 2 (“I got mad easily”). Item 7 (“I often worried about bad things happening to me”) had 

an LD value equidistant from the largest and smallest values. This is to say that the 

probability of examinees repeating their time 1 response to items 1 and 9 at time 2 is lower 

than the probability of repeating item 7, and item 2 has a higher probability of repeating than 

items 1, 7, and 9. This pattern does make intuitive sense. Having trouble getting one’s breath 

is a condition which may vary for reasons other than psychological distress (e.g., weather 

conditions or activity level of the child). Variability in getting one’s breath within a half a 

year could be expected, and this appears in the small LD parameter value. Believing that one 
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is a bad person is more difficult to explain, but a response to this item may be based upon 

recent actions and could also vary over time. Worrying about bad things happening can be 

seen as more of a trait condition, where some people have a tendency to worry about things 

more than others. The larger LD parameter for this item is consistent with this more stable 

condition. Getting mad easily is the most trait-like condition of the four items. Some people 

have a propensity to get mad easily, which may not be related to psychological distress, and 

it makes sense that this item would have a higher LD parameter estimate than the other items. 

5.2.2 Bi-factor Analysis 

 Results for the bi-factor model and the CCFA model in fitting the four psychological 

distress scale items are presented in Table 16. The primary slope parameters range from 2.13 

to 3.76 for the bi-factor model, and from 2.84 to 4.22 for the CCFA model. These slope 

estimates do not correspond closely for the two models and are not in the same order of 

increasing magnitude. This is likely an extension of the error seen estimates using the CCFA 

model observed in the simulated data examples. The difference between the standard errors 

for the two models is striking. The bi-factor model has primary slope standard errors ranging 

from 0.09 to 0.38, while the CCFA model has primary slope standard errors ranging from 

0.47 to 1.72. Because the sample size was so large, WLS estimation was used for this CCFA 

model, so the full weight matrix is used in calculating standard errors. These standard error 

differences show the value that is to be gained by using the full-information approach of the 

bi-factor model. 

 The threshold values for the bi-factor model ranged from –1.92 to 1.09 and from –3.41 to 

1.13 for the CCFA model. These differences are consistent with what was observed with the 

simulated data, that the CCFA model tends to poorly estimate large thresholds. The standard 
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errors are closer between the models, with those of the bi-factor model between 0.06 and 

0.10 and those of the CCFA model between 0.07 and 0.17. The largest CCFA standard error 

corresponds to the most extreme threshold estimate, which highlights difficulty associated 

with estimating that parameter. 

 The distributional parameters were more consistent between the bi-factor model and the 

CCFA model than were those between the LCA model and the 2PL model, likely because the 

bi-factor model and the CCFA model both estimate these values by incorporating latent traits 

for the local dependence. The models provided identical mean estimates, standard deviations 

that differed by 0.01, and correlations that varied by 0.06. The standard errors for these 

estimates were also similar between models. 

 Large differences were also observed between the LD slopes for the bi-factor model and 

those for the CCFA model. The bi-factor model produced LD slopes between 0.39 and 1.47 

(absolute values), while the CCFA model produced LD slopes between 1.28 and 1.96. The 

standard errors of these estimates were not so discrepant, with the bi-factor model having 

larger standard errors than the CCFA model for 3 of the 4 items, and the largest standard 

error difference was 0.05. 

 It is also interesting to compare the estimates and standard errors between the two 

proposed models. The slope for item 1 is similar between the two models, but the slopes are 

more discrepant for the remaining three items. The slope estimates were not in the same 

order of increasing magnitude between the two models. The standard error for item 1 was 

identical between models (0.09), and the LCA model had much smaller standard errors for 

items 2 and 7 (0.09 and 0.11 versus 0.22 and 0.38), while the bi-factor model had a slightly 

smaller standard error for item 9 (0.13 versus 0.18). The intercepts of the bi-factor model 
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translate to 0.59, –0.27, 0.15, and 0.59 for the four items, respectively. These estimates are 

close to those of the LCA model, with the biggest difference being 0.17, and the standard 

errors for the threshold parameters for each of these models are near 0.02. The LCA model 

estimates the mean of θ2 as slightly smaller than that of the bi-factor model (0.04 versus 

0.07), the standard deviation as larger (1.39 versus 1.17), and the correlation as smaller (0.50 

versus 0.61). The standard errors for these estimates are similar. 

 The LD parameters are in the same order of increasing magnitude as the LD slopes. The 

magnitude of the standard errors for these estimates is much smaller for the LCA model than 

for the bi-factor model (near 0.02 versus near 0.20). Again, any connection between the two 

models is difficult to identify, but the models do appear to agree with each other in terms of 

magnitude and direction. 

 It is worth revisiting the purpose of this research: to model the LD between the same items 

at different time points so that parameter calibration can be conducted using longitudinal 

item response data. The LD in this model is a nuisance parameter that must be included so 

that the other parameters can be estimated accurately. We would want the parameter 

estimates for the longitudinal data modeled with an IRT model accounting for LD to be 

similar to the parameter estimates for the data at one time point modeled with a traditional 

IRT model (here, the 2PL model), given that the sample size at one time point is adequate for 

accurate estimation. This correspondence between the two models was seen using the 

empirical data with the LCA model and the 2PL model. This suggests that the LCA model 

adequately accounts for LD between item responses at two time points to be able to combine 

data across administrations and perform item calibration. The estimates from the bi-factor 

model did not correspond to those of the 2PL model, suggesting that the bi-factor model may 
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not be so appropriate for this purpose. From this empirical example, we might infer that the 

nuisance LD that exists between item responses over time is more like surface local 

dependence, which is accounted for in the LCA model. The bi-factor model does not account 

for this nuisance LD as well as the LCA model, but the bi-factor model may be useful for 

other purposes not considered as a motivation for this research. 

 Throughout these simulated and empirical data examples, the amount of time required for 

each model to converge varied. The LCA model took between 15 seconds and 1 hour, 39 

minutes. The bi-factor model took between 2 minutes and 1 hour, 24 minutes. In general, 

larger samples and longer tests required more time until convergence. These proposed 

models do require increased computing time as compared to those of the existing models, 

which converge within seconds regardless of sample size or test length. 



CHAPTER 6 

DISCUSSION 

 The purpose of this research was to propose, implement, and evaluate two approaches to 

modeling longitudinal data with IRT. Models based on latent class analysis and bi-factor 

analysis were introduced, and parameter estimation using the EM algorithm was 

implemented in C++. Simulated data and empirical data were employed to assess parameter 

recovery and the potential value of these models. 

6.1 Evaluation of the Proposed Approaches 

 A number of simulated datasets were created using each of the proposed models to 

compare estimated parameters to true parameters. The LCA model achieved better parameter 

recovery than did the bi-factor model in these sets of simulated data. The LCA model 

recovered the parameters well across the various conditions and its performance did not 

appear to be limited by sample size or test length. While it was desired that the LCA model 

demonstrate better slope and threshold recovery than the 2PL model, the similarity in the 

results for these models is encouraging because the LCA model has more than twice as many 

additional parameters to estimate than does the 2PL model. Thus, even if the LCA model 

does not improve parameter estimation above and beyond what is currently available, it does 

enhance value because of information provided by the additional parameters it includes. 

 The LD parameters of the LCA model were well-estimated across the various sample sizes 

and test lengths. This was an encouraging result because it was feared that sparseness in 

latent classes (resulting from small samples) or excessive numbers of potential latent classes 
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(resulting from increased test length) would render the model computationally difficult. 

Although computing time did increase as test length increased (i.e., as more latent classes 

were considered in the model), parameter recovery did not suffer. 

 There was also good parameter recovery of the distributional parameters for the LCA 

model. Parameter recovery was reasonable across the data conditions, but increased sample 

size improved distributional parameter estimation more than it did for estimation of the item-

level parameters. By including the distributional parameters as part of the model, thus 

modeling the 2-dimensional latent distribution, the distributional parameter estimation was 

better for the LCA model than for the 2PL model, which does not have a mechanism for 

including these parameters with longitudinal designs. 

 The results for the bi-factor model, while encouraging, were not as positive as those for 

the LCA model. The bi-factor model, with its inclusion of an additional dimension, required 

larger sample sizes and longer tests to achieve satisfactory parameter recovery than did the 

LCA model. The primary motivation for this research was to develop a model that could 

accurately estimate IRT parameters with a small sample, and the bi-factor model does not 

appear to satisfy this goal. However, it is difficult to generalize using these simulated 

examples; it appears that the bi-factor model may be appropriate for longitudinal data 

designs, and it should be considered in future LD research. 

 While the LCA model and the bi-factor model were proposed with the sample size issue in 

mind, they do offer several benefits that have not been available through existing IRT data 

models. That is, even when sample size is adequate for use with existing IRT models, these 

new models have properties that may make them a preferred choice. 



54

 First, these models allow item parameters to be calibrated using data from more than one 

time point. An assumption of IRT is that item parameters are invariant across samples, but 

there may be concern that a particular sample is not representative of the population. For 

example, in a clinical drug trial, the time point chosen for parameter calibration may be 

sensitive to treatment, as in the presence or absence of treatment may dictate the region on θ

in which the examinees are located at that particular time. By including multiple time points, 

the effective sample may be located on a wider θ region, thus improving the generalizability 

of the results to the whole population. 

 Second, these models permit the latent distribution parameters to be estimated over two 

time points while properly accounting for item local dependence between time points. 

Previous research has introduced the latent distribution parameters under the assumption that 

the item responses are independent between time points, but with these models this restrictive 

assumption is unnecessary. With item parameter calibration conducted simultaneously with 

distributional parameter estimation, these models can obtain this information with one dataset 

rather than collecting two datasets, one for item parameter calibration and one for 

distributional parameter estimation. 

 Third, these models introduce two unique methods for evaluating the local dependence 

between item responses at two time points. The LCA model includes LD parameters, which 

measure the probability that the response to an item at time 1 is repeated as the response to 

that item at time 2. The bi-factor model includes LD slopes, which measure the correlation 

between an item’s responses at time 1 and time 2. While these parameters are intended to 

model LD, they do not correspond to identical conceptualizations of LD. The LCA model 

accounts for LD observed in repeated responses. Alternatively, the bi-factor model accounts 
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for LD as a correlation between underlying response process factors. These two 

conceptualizations of LD indicate that the source of the LD must be known before a model 

can be chosen. In the case of longitudinal item response data analyzed here, it appears that 

the better fitting model is the LCA model, where LD is treated as a nuisance and accounted 

for in parameter calibration. 

6.2 Future Directions 

 This research proposed and evaluated two new approaches to longitudinal IRT data 

modeling, and as with any novel method, there is much to be considered in future research. 

An obvious next step is a large simulation study design, where many samples in each cell of 

the design are generated and results are aggregated across these samples using statistics such 

as bias and root mean square error. The examples used here varied the sample size between 

100 and 500 simulees and the test length between 5 and 10 items. These conditions could be 

further varied to determine how small a dataset can be to achieve accurate estimation, how 

large a dataset can be before additional data adds little accuracy, and how these two 

conditions interact with each other. Other properties of the simulated datasets in this research 

were stable, with one set of item parameters, LD magnitudes, and distributional parameters. 

Item parameters could be varied to see how parameter recovery is affected by items that are 

weakly or strongly related to the latent trait or by items that are of varying degrees of 

difficulty. The amount of LD between items administered at two different times should be 

examined across the spectrum from no LD (response at time 2 is completely unique) to total 

LD (response at time 2 is completely redundant). The distributional parameters should also 

be varied to examine how large shifts in the latent trait, increased variability, or small or 
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large correlation between the latent traits at the two administrations may affect the parameter 

recovery. 

 Another clear future goal is to implement these approaches to modeling LD with IRT 

models that account for polytomous data. The present models only allow for dichotomous 

data without guessing. It was necessary to establish that these models work with dichotomous 

data before extending them to polytomous data, but this extension would be very useful for 

the type of data for which the models are intended (e.g., psychological questionnaires that 

often employ Likert response scales). 

 A subsequent extension of the proposed models would be to account for more than 2 time 

points within the model. Including data from additional administrations may further ease the 

sample size burden for parameter calibration, or it may require larger samples because of the 

increased dimensionality. Even if a model that includes data from more than 2 

administrations requires larger datasets, modeling the latent trait over multiple time points 

may be of interest to many researchers. 

 For more complicated data problems, the parameters of these models may be better 

estimated with MCMC techniques. Many data problems can be solved with maximum 

likelihood estimation, but as dimensionality increases, maximum likelihood solutions are 

more difficult to obtain. MCMC estimation is an alternative that has been gaining popularity, 

especially for multidimensional IRT models. As additional time points are added to the 

model, MCMC may be a better alternative for parameter estimation. 

 An interesting use of these models would be to use them with multiple-reporter data. For 

example, data may be collected on couples where the latent trait pertains to a quality of the 

couple. We might assume that the item parameters should be invariant across the reporter, 
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and it might be reasonable to calibrate the parameters using a sample that includes both 

members of each couple. The responses within a dyad should not be independent, but these 

models could be employed to account for this LD. This would facilitate parameter 

calibration, as well as measure the difference between the members (e.g., men and women) 

on the latent trait and measure if there is any propensity to respond to each item in a certain 

manner that is not accounted for by the latent trait. 

 The models as parameterized here assume that the items function identically across time, 

which is an appropriate assumption when the goal is item parameter calibration for use in 

subsequent studies. In other words, it would be difficult to determine the set of item 

parameters to use when scoring a scale in future applications when the items on the scale 

function differently across time. However, researchers might want to use these models to 

examine if items function differently across time. It would be interesting for these models to 

be reparameterized so that measurement invariance can be examined. 

 Finally, it will be useful to apply the proposed models to data with different sources of LD 

beyond LD between responses to the same item across time. The bi-factor model may be an 

appropriate approach to measuring the amount of LD between two unique items on a scale. If 

LD between such items is considered a form of a second factor that explains variance 

between these items beyond what is explained by the first factor, then modeling this second 

factor using the bi-factor model may be a useful solution. Researchers may find that they can 

develop scales that have LD items and still reliably measure the outcome of interest if the LD 

is isolated using an LD factor. 

 The goal of this research was to develop a model that could calibrate item parameters 

using data from two time points by accounting for the LD between responses to the same 
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items across time, and this goal was met with the LCA model. In addition to facilitating item 

parameter calibration with fewer examinees, this model includes estimates for the change in 

the latent trait over time, as well as including a metric for the dependence between item 

responses across time. The bi-factor model, while not ideal for the longitudinal item response 

data considered here, shows promise for modeling LD between items in other contexts. 

Together, the models introduced here open the door to future research on both longitudinal 

IRT and measuring LD within scales. 
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Table 1. Parameter recovery of data generated with the LCA model (N = 5000, I = 4). 

LCA True Values  Estimates  Estimate – True  Bi–factor Estimates 

a1 1.1  1.10  0.00  a11 0.81 

b1 –1.0  –1.02  –0.02  a12 –0.41 

κ1 0.1  0.07  –0.03  d1 1.07 

a2 1.3  1.28  –0.02  a21 3.93 

b2 1.0  0.98  –0.02  a22 1.10 

κ2 0.4  0.41  +0.01  d2 –2.67 

a3 1.5  1.54  +0.04  a31 1.15 

b3 0.5  0.51  +0.01  a32 –0.55 

κ3 0.2  0.19  –0.01  d3 –0.69 

a4 1.7  1.60  –0.10  a41 1.69 

b4 –0.5  –0.54  –0.04  a42 –1.49 

κ4 0.3  0.30  0.00  d4 1.02 

ρ 0.5 0.51  +0.01  ρ 0.82 

µ2 0.2  0.17  –0.03  µ2 0.14 

σ2 1.0  0.98  –0.02  σ2 0.85 

–ll 22675.03    –ll 22832.44 
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Table 2. Parameter recovery of data generated with the LCA model (N = 100, I = 5). 

LCA
True 

Values 
 Estimates

Estimate – 

True 
2PL Estimates

Estimate – 

True 

a1 1.1 1.00 –0.10 a1 0.90 –0.20 

b1 –1.0 –1.17 –0.17 b1 –1.22 –0.22 

κ1 0.1 0.06 –0.04 

a2 1.3 1.29 –0.01 a2 1.00 –0.30 

b2 1.0 1.00 0.00 b2 1.02 +0.02 

κ2 0.4 0.29 –0.11 

a3 1.5 1.46 –0.04 a3 1.41 –0.09 

b3 0.5 0.68 +0.18 b3 0.72 +0.22 

κ3 0.2 0.06 –0.14 

a4 1.7 3.14 +1.44 a4 4.02 +2.32 

b4 –0.5 –0.23 +0.27 b4 –0.18 +0.32 

κ4 0.3 0.00 –0.03 

a5 1.9 2.19 +0.29 a5 2.18 +0.28 

b5 0.0 0.03 +0.03 b5 0.09 +0.09 

κ5 0.25 0.26 +0.01 

ρ 0.5 0.67 +0.17 ρ 0.81 +0.31 

µ2 0.2 0.27 +0.07 µ2 0.19 –0.01 

σ2 1.0 0.99 –0.01 σ2 0.98 –0.02 

–ll 552.68 
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Table 3. Parameter recovery of data generated with the LCA model (N = 250, I = 5). 

LCA
True 

Values 
 Estimates 

Estimate – 

True 
2PL Estimates 

Estimate – 

True 

a1 1.1 1.20 +0.10 a1 1.19 +0.09 

b1 –1.0 –0.80 +0.20 b1 –0.81 +0.19 

κ1 0.1 0.04 –0.06 

a2 1.3 1.45 +0.15 a2 1.33 +0.03 

b2 1.0 0.89 –0.11 b2 1.00 +0.00 

κ2 0.4 0.55 +0.15 

a3 1.5 1.33 –0.17 a3 1.47 –0.03 

b3 0.5 0.63 +0.13 b3 0.64 +0.14 

κ3 0.2 0.21 +0.01 

a4 1.7 1.62 –0.08 a4 1.62 –0.08 

b4 –0.5 –0.32 +0.18 b4 –0.32 +0.18 

κ4 0.3 0.21 –0.09 

a5 1.9 2.54 +0.64 a5 2.49 +0.59 

b5 0.0 0.11 +0.11 b5 0.08 +0.08 

κ5 0.25 0.29 +0.04 

ρ 0.5 0.55 +0.05 ρ 0.89 +0.39 

µ2 0.2 0.25 +0.05 µ2 0.16 –0.04 

σ2 1.0 0.96 –0.04 σ2 0.93 –0.07 

–ll 1410.33 
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Table 4. Parameter recovery of data generated with the LCA model (N = 500, I = 5). 

LCA
True 

Values 
 Estimates 

Estimate – 

True 
2PL Estimates 

Estimate – 

True 

a1 1.1 1.24 +0.14 a1 1.25 +0.15 

b1 –1.0 –0.79 +0.21 b1 –0.85 +0.15 

κ1 0.1 0.03 –0.07 

a2 1.3 1.73 +0.43 a2 1.87 +0.57 

b2 1.0 0.84 –0.16 b2 0.82 –0.18 

κ2 0.4 0.37 –0.03 

a3 1.5 1.52 +0.02 a3 1.41 –0.09 

b3 0.5 0.51 +0.01 b3 0.50 +0.00 

κ3 0.2 0.22 +0.02 

a4 1.7 1.62 –0.08 a4 1.53 –0.17 

b4 –0.5 –0.43 +0.07 b4 –0.43 +0.07 

κ4 0.3 0.20 –0.10 

a5 1.9 1.86 –0.04 a5 1.94 +0.04 

b5 0.0 –0.01 –0.01 b5 0.03 +0.03 

κ5 0.25 0.24 –0.01 

ρ 0.5 0.55 +0.05 ρ 0.82 +0.32 

µ2 0.2 0.25 +0.05 µ2 0.15 –0.05 

σ2 1.0 1.05 +0.05 σ2 0.97 –0.03 

–ll 2839.44 
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Table 5. Parameter recovery of data generated with the LCA model (N = 100, I = 10). 

LCA
True 

Values 
 Estimates 

Estimate – 

True 
2PL Estimates 

Estimate – 

True 

a1 1.1 1.36 +0.26 a1 1.69 +0.59 

b1 –1.0 –0.71 +0.29 b1 –0.51 +0.49 

κ1 0.1 0.12 +0.02 

a2 1.3 1.59 +0.29 a2 1.70 +0.40 

b2 1.0 0.65 –0.35 b2 0.74 –0.26 

κ2 0.4 0.38 –0.02 

a3 1.5 1.42 –0.08 a3 1.36 –0.14 

b3 0.5 0.39 –0.11 b3 0.44 –0.06 

κ3 0.2 0.08 –0.12 

a4 1.7 2.45 +0.75 a4 2.46 +0.76 

b4 –0.5 –0.27 +0.23 b4 –0.22 +0.28 

κ4 0.3 0.32 +0.02 

a5 1.9 1.90 0.00 a5 1.67 –0.23 

b5 0.0 0.03 +0.03 b5 0.00 0.00 

κ5 0.25 0.43 +0.18 

a6 1.2 1.41 +0.21 a6 1.39 +0.19 

b6 0.0 –0.01 –0.01 b6 0.08 +0.08 

κ6 0.2 0.16 –0.04 

a7 1.4 1.55 +0.15 a7 1.47 +0.07 

b7 –0.5 –0.31 +0.19 b7 –0.59 –0.09 
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LCA
True 

Values 
 Estimates 

Estimate – 

True 
2PL Estimates 

Estimate – 

True 

κ7 0.1 0.02 –0.08 

a8 1.6 2.26 +0.66 a8 1.85 +0.25 

b8 0.5 0.27 –0.23 b8 0.34 –0.16 

κ8 0.25 0.33 +0.08 

a9 1.8 2.04 +0.24 a9 2.11 +0.31 

b9 1.0 0.83 –0.17 b9 0.79 –0.21 

κ9 0.3 0.37 +0.07 

a10 2.0 1.33 –0.67 a10 1.99 –0.01 

b10 –1.0 –1.15 –0.15 b10 –1.06 –0.06 

κ10 0.4 0.35 –0.05 

ρ 0.5 0.45 –0.05 ρ 0.75 +0.25 

µ2 0.2 0.20 0.00 µ2 0.15 –0.05 

σ2 1.0 0.79 –0.21 σ2 0.83 –0.17 

–ll 1095.76 
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Table 6. Parameter recovery of data generated with the LCA model (N = 250, I = 10). 

LCA
True 

Values 
 Estimates 

Estimate – 

True 
2PL Estimates 

Estimate – 

True 

a1 1.1 1.37 +0.27 a1 1.40 +0.30 

b1 –1.0 –0.77 +0.23 b1 –0.88 +0.12 

κ1 0.1 0.18 +0.08 

a2 1.3 1.29 –0.01 a2 1.36 +0.06 

b2 1.0 1.15 +0.15 b2 1.07 +0.07 

κ2 0.4 0.41 +0.01 

a3 1.5 1.76 +0.26 a3 1.82 +0.32 

b3 0.5 0.54 +0.04 b3 0.54 +0.04 

κ3 0.2 0.22 +0.02 

a4 1.7 1.44 –0.26 a4 1.28 –0.42 

b4 –0.5 –0.47 +0.03 b4 –0.46 +0.04 

κ4 0.3 0.29 –0.01 

a5 1.9 2.24 +0.34 a5 2.46 +0.56 

b5 0.0 0.13 +0.03 b5 0.16 +0.16 

κ5 0.25 0.21 –0.04 

a6 1.2 1.45 +0.25 a6 1.43 +0.23 

b6 0.0 –0.01 –0.01 b6 0.05 +0.05 

κ6 0.2 0.34 +0.14 

a7 1.4 1.31 –0.09 a7 1.42 +0.02 

b7 –0.5 –0.48 +0.02 b7 –0.53 –0.03 
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LCA
True 

Values 
 Estimates 

Estimate – 

True 
2PL Estimates 

Estimate – 

True 

κ7 0.1 0.08 –0.02 

a8 1.6 1.53 –0.07 a8 1.51 –0.09 

b8 0.5 0.62 +0.12 b8 0.67 +0.17 

κ8 0.25 0.24 –0.01 

a9 1.8 1.90 +0.10 a9 2.22 +0.42 

b9 1.0 1.06 +0.06 b9 1.03 +0.03 

κ9 0.3 0.28 –0.02 

a10 2.0 1.83 –0.17 a10 1.46 –0.54 

b10 –1.0 –1.05 –0.05 b10 –1.15 –0.15 

κ10 0.4 0.41 +0.01 

ρ 0.5 0.56 +0.06 ρ 0.82 +0.32 

µ2 0.2 0.18 –0.02 µ2 0.11 –0.09 

σ2 1.0 0.93 –0.07 σ2 0.91 –0.09 

–ll 2631.79 
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Table 7. Parameter recovery of data generated with the LCA model (N = 500, I = 10). 

LCA
True 

Values 
 Estimates

Estimate – 

True 
2PL Estimates

Estimate – 

True 

a1 1.1 1.05 –0.05 a1 1.08 –0.02 

b1 –1.0 –1.20 –0.20 b1 –1.15 –0.15 

κ1 0.1 0.13 +0.03 

a2 1.3 1.14 –0.16 a2 1.05 –0.25 

b2 1.0 0.84 –0.16 b2 0.95 –0.05 

κ2 0.4 0.36 –0.04 

a3 1.5 1.14 –0.36 a3 1.20 –0.30 

b3 0.5 0.52 +0.02 b3 0.42 –0.08 

κ3 0.2 0.21 +0.01 

a4 1.7 1.40 –0.30 a4 1.26 –0.44 

b4 –0.5 –0.76 –0.26 b4 –0.76 –0.26 

κ4 0.3 0.27 –0.03 

a5 1.9 1.81 –0.09 a5 2.06 +0.16 

b5 0.0 –0.25 –0.25 b5 –0.31 –0.31 

κ5 0.25 0.26 +0.01 

a6 1.2 1.14 –0.06 a6 1.06 –0.14 

b6 0.0 –0.09 –0.09 b6 –0.18 –0.18 

κ6 0.2 0.26 +0.06 

a7 1.4 1.30 –0.10 a7 1.45 +0.05 

b7 –0.5 –0.62 –0.12 b7 –0.50 +0.00 
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LCA
True 

Values 
 Estimates

Estimate – 

True 
2PL Estimates

Estimate – 

True 

κ7 0.1 0.10 0.00 

a8 1.6 1.28 –0.32 a8 1.22 –0.38 

b8 0.5 0.26 –0.24 b8 0.25 –0.25 

κ8 0.25 0.28 +0.03 

a9 1.8 1.72 –0.08 a9 1.58 –0.22 

b9 1.0 0.77 –0.23 b9 0.86 –0.14 

κ9 0.3 0.29 –0.01 

a10 2.0 2.09 +0.09 a10 2.31 +0.31 

b10 –1.0 –1.27 –0.27 b10 –1.19 –0.19 

κ10 0.4 0.36 –0.04 

ρ 0.5 0.48 –0.02 ρ 0.76 +0.26 

µ2 0.2 0.16 –0.04 µ2 0.10 –0.10 

σ2 1.0 1.10 +0.10 σ2 0.96 –0.04 

–ll 5440.36 
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Table 8. Parameter recovery of data generated with bi–factor model (N = 5000, I = 4). 

Bi–factor True Values  Estimates  Estimate – True  LCA Estimates 

a11 1.1  1.09  –0.01  a1 1.25 

a12 0.6  0.65  +0.05  b1 –1.34 

d1 1.7  1.67  –0.03  κ1 0.01 

a21 1.3  1.19  –0.11  a2 1.76 

a22 1.0  1.21  +0.21  b2 1.35 

d2 –2.3  –2.32  –0.02  κ2 0.02 

a31 1.5  1.44  –0.06  a3 2.22 

a32 1.5  1.67  +0.17  b3 0.72 

d3 –1.5  –1.58  –0.08  κ3 0.05 

a41 1.7  1.60  –0.10  a4 1.67 

a42 0.7  0.89  +0.19  b4 –0.67 

d4 1.2  1.14  –0.06  κ4 0.01 

ρ 0.5 0.43  –0.07  ρ 0.65 

µ2 0.2  0.23  +0.03  µ2 0.18 

σ2 1.0  0.95  –0.05  σ2 0.96 

–ll 19977.01    –ll 19988.41 
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Table 9. Parameter recovery of data generated with the bi–factor model (N = 100, I = 5). 

Bi–

factor 

True 

Values 
Estimates

Estimate 

– True 
CCFA Estimates Translation

Translation 

– True 

a11 1.1 1.12 +0.02 λ1 0.66 1.53 +0.43 

a12 0.6 0.33 –0.27 δ1 –0.03 0.40 –0.20 

d1 1.7 1.86 +0.16 τ1 –1.22 1.67 –0.03 

a21 1.3 1.84 +0.54 λ2 0.83 3.52 +2.22 

a22 1.0 1.64 +0.64 δ2 –0.15 1.64 +0.64 

d2 –2.3 –2.98 –0.68 τ2 1.73 –4.31 –2.01 

a31 1.5 1.62 +0.12 λ3 0.85 4.41 +2.91 

a32 1.5 1.45 –0.05 δ3 –0.17 2.14 +0.64 

d3 –1.5 –1.39 +0.11 τ3 0.93 –2.84 –1.34 

a41 1.7 4.69 +2.99 λ4 0.70 1.72 +0.02 

a42 0.7 0.27 –0.43 δ4 –0.03 0.43 –0.28 

d4 1.2 1.94 +0.74 τ4 –0.60 0.87 –0.33 

a51 1.9 1.52 –0.38 λ5 0.72 2.23 +0.33 

a52 1.1 1.58 +0.48 δ5 0.18 1.31 +0.21 

d5 0.0 –0.24 –0.24 τ5 0.11 –0.20 –0.20 

ρ 0.5 0.39 –0.11 Σ12 0.67 0.69 +0.19 

µ2 0.2 0.08 –0.12 µ2 0.04 0.04 –0.16 

σ2 1.0 0.92 –0.08 Σ22 0.94 0.97 –0.03 

–ll 498.35  



71

Table 10. Parameter recovery of data generated with the bi–factor model (N = 250, I = 5). 

Bi–

factor 

True 

Values 
Estimates

Estimate 

– True 
CCFA Estimates Translation

Translation 

– True 

a11 1.1 0.59 –0.51 λ1 0.73 2.36 +1.26 

a12 0.6 1.21 +0.61 δ1 –0.19 1.41 +0.81 

d1 1.7 1.75 +0.05 τ1 –1.12 2.13 +0.43 

a21 1.3 1.21 –0.09 λ2 0.59 1.28 –0.02 

a22 1.0 0.41 –0.59 δ2 –0.04 0.43 –0.57 

d2 –2.3 –2.14 +0.16 τ2 1.16 –1.48 +0.82 

a31 1.5 0.98 –0.52 λ3 0.78 2.50 +1.00 

a32 1.5 1.58 +0.08 δ3 0.11 1.06 –0.44 

d3 –1.5 –1.47 +0.03 τ3 0.81 –1.53 –0.03 

a41 1.7 1.12 –0.58 λ4 0.70 1.72 +0.02 

a42 0.7 1.26 +0.56 δ4 0.03 0.43 –0.28 

d4 1.2 1.24 +0.04 τ4 –0.72 1.04 –0.16 

a51 1.9 3.69 +1.79 λ5 0.77 2.32 +0.42 

a52 1.1 1.74 +0.64 δ5 0.09 0.91 –0.19 

d5 0.0 –0.43 –0.43 τ5 0.08 –0.14 –0.14 

ρ 0.5 0.24 –0.26 Σ12 0.56 0.57 +0.07 

µ2 0.2 0.40 +0.20 µ2 0.21 0.21 +0.01 

σ2 1.0 1.03 +0.03 Σ22 0.96 0.98 –0.02 

–ll 367.16  
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Table 11. Parameter recovery of data generated with the bi–factor model (N = 500, I = 5). 

Bi–

factor 

True 

Values 
Estimates

Estimate 

– True 
CCFA Estimates Translation

Translation 

– True 

a11 1.1 1.31 +0.21 λ1 0.61 1.36 +0.26 

a12 0.6 0.22 –0.38 δ1 –0.05 0.50 –0.10 

d1 1.7 1.79 +0.09 τ1 –1.04 1.37 –0.33 

a21 1.3 1.43 +0.13 λ2 0.67 1.58 +0.28 

a22 1.0 0.73 –0.27 δ2 –0.03 0.41 –0.59 

d2 –2.3 –2.20 +0.10 τ2 1.27 –1.76 +0.54 

a31 1.5 1.93 +0.43 λ3 0.78 2.34 +0.84 

a32 1.5 0.96 –0.54 δ3 0.07 0.79 –0.71 

d3 –1.5 –1.50 0.00 τ3 0.89 –1.57 –0.07 

a41 1.7 2.16 +0.46 λ4 0.78 2.18 +0.48 

a42 0.7 0.58 –0.12 δ4 0.02 0.39 –0.31 

d4 1.2 1.21 +0.01 τ4 –0.67 1.10 –0.10 

a51 1.9 3.58 +1.68 λ5 0.81 2.68 +0.78 

a52 1.1 –0.24 –1.34 δ5 0.08 0.94 –0.16 

d5 0.0 0.06 +0.06 τ5 –0.01 0.02 +0.02 

ρ 0.5 0.61 +0.11 Σ12 0.55 0.64 +0.14 

µ2 0.2 0.09 –0.11 µ2 0.12 0.12 –0.08 

σ2 1.0 0.85 –0.15 Σ22 0.74 0.86 –0.14 

–ll 2518.22  
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Table 12. Parameter recovery of data generated with the bi–factor model (N = 100, I = 10). 

Bi–

factor 

True 

Values 
Estimates

Estimate 

– True 
CCFA Estimates Translation

Translation 

– True 

a11 1.1 1.12 +0.02 λ1 0.58 1.35 +0.25 

a12 0.6 0.48 –0.12 δ1 –0.13 0.84 +0.24 

d1 1.7 1.69 –0.01 τ1 –1.00 1.37 –0.33 

a21 1.3 0.97 –0.33 λ2 0.68 1.64 +0.34 

a22 1.0 1.22 +0.22 δ2 0.04 0.48 –0.52 

d2 –2.3 –2.07 +0.23 τ2 1.19 -1.69 +0.61 

a31 1.5 1.46 –0.04 λ3 0.86 4.21 +2.71 

a32 1.5 2.64 +1.14 δ3 0.14 1.83 +0.33 

d3 –1.5 –1.99 –0.49 τ3 1.10 –3.17 –1.67 

a41 1.7 2.56 +0.86 λ4 0.79 2.83 +1.13 

a42 0.7 0.60 –0.10 δ4 –0.15 1.39 +0.69 

d4 1.2 1.53 +0.33 τ4 –0.77 1.62 +0.42 

a51 1.9 1.55 –0.35 λ5 0.83 2.66 +0.76 

a52 1.1 1.21 +0.11 δ5 –0.03 0.56 –0.54 

d5 0.0 0.01 +0.01 τ5 –0.02 0.04 +0.04 

a61 1.2 1.08 –0.12 λ6 0.73 1.88 +0.68 

a62 1.4 1.59 +0.19 δ6 0.03 0.45 –0.95 

d6 0.0 0.32 +0.32 τ6 –0.18 0.27 +0.27 

a71 1.4 2.35 +0.95 λ7 0.75 2.02 +0.62 

a72 0.8 0.53 –0.27 δ7 –0.04 0.54 –0.26 
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Bi–

factor 

True 

Values 
Estimates

Estimate 

– True 
CCFA Estimates Translation

Translation 

– True 

d7 1.1 2.00 +0.90 τ7 –0.99 1.57 +0.47 

a81 1.6 1.27 –0.33 λ8 0.80 2.37 +0.77 

a82 1.2 1.93 +0.73 δ8 0.03 0.51 –0.69 

d8 –1.4 –1.78 –0.38 τ8 1.00 –1.74 –0.34 

a91 1.8 2.40 +0.60 λ9 0.82 5.36 +3.56 

a92 1.3 1.52 +0.22 δ9 –0.26 3.33 +2.03 

d9 –3.1 –3.94 –0.84 τ9 1.93 –7.42 –4.32 

a10,1 2.0 1.70 –0.30 λ10 0.76 2.01 +0.01 

a10,2 0.9 1.40 +0.50 δ10 0.01 0.26 –0.64 

d10 2.9 3.44 +0.54 τ10 –1.78 2.77 –0.13 

ρ 0.5 0.48 –0.02 Σ12 0.67 0.70 +0.20 

µ2 0.2 0.12 –0.08 µ2 0.07 0.07 –0.13 

σ2 1.0 1.12 +0.12 Σ22 0.91 0.95 –0.05 

–ll 881.96  
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Table 13. Parameter recovery of data generated with the bi–factor model (N = 250, I = 10). 

Bi–

factor 

True 

Values 
Estimates

Estimate 

– True 
CCFA Estimates Translation

Translation 

– True 

a11 1.1 0.93 –0.17 λ1 0.54 1.30 +0.20 

a12 0.6 0.57 –0.03 δ1 –0.21 1.10 +0.50 

d1 1.7 1.83 +0.13 τ1 –1.10 1.56 –0.14 

a21 1.3 1.50 +0.20 λ2 0.68 1.71 +0.41 

a22 1.0 1.08 +0.08 δ2 –0.08 0.71 –0.29 

d2 –2.3 –2.25 +0.05 τ2 1.25 –1.85 +0.45 

a31 1.5 1.20 –0.30 λ3 0.76 2.09 +0.59 

a32 1.5 1.84 +0.34 δ3 –0.04 0.55 –0.95 

d3 –1.5 –1.34 +0.16 τ3 0.76 –1.23 +0.27 

a41 1.7 1.46 –0.24 λ4 0.65 1.48 –0.22 

a42 0.7 0.82 +0.12 δ4 0.02 0.32 –0.38 

d4 1.2 1.51 +0.31 τ4 –0.85 1.14 –0.06 

a51 1.9 2.12 +0.22 λ5 0.78 2.21 +0.31 

a52 1.1 1.40 +0.30 δ5 –0.03 0.49 –0.61 

d5 0.0 0.11 +0.11 τ5 –0.07 0.12 +0.12 

a61 1.2 0.82 –0.38 λ6 0.68 1.71 +0.51 

a62 1.4 1.65 +0.25 δ6 0.08 0.71 –0.69 

d6 0.0 0.22 +0.22 τ6 –0.12 0.18 +0.18 

a71 1.4 1.65 +0.25 λ7 0.69 1.89 +0.49 

a72 0.8 1.03 +0.23 δ7 –0.14 1.03 +0.23 
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Bi–

factor 

True 

Values 
Estimates

Estimate 

– True 
CCFA Estimates Translation

Translation 

– True 

d7 1.1 1.26 +0.16 τ7 –0.70 1.13 +0.03 

a81 1.6 1.94 +0.34 λ8 0.81 2.38 +0.78 

a82 1.2 1.95 +0.75 δ8 0.01 0.29 –0.91 

d8 –1.4 –1.40 0.00 τ8 0.76 –1.32 +0.08 

a91 1.8 1.22 –0.58 λ9 0.75 2.08 +0.28 

a92 1.3 1.46 +0.16 δ9 0.06 0.68 –0.62 

d9 –3.1 –2.74 +0.36 τ9 1.68 –2.73 +0.37 

a10,1 2.0 1.95 –0.05 λ10 0.73 3.04 +1.04 

a10,2 0.9 1.13 +0.23 δ10 –0.30 2.28 +1.38 

d10 2.9 3.18 +0.28 τ10 –1.66 4.06 +1.16 

ρ 0.5 0.37 –0.13 Σ12 0.77 0.71 +0.21 

µ2 0.2 0.04 –0.16 µ2 0.04 0.04 –0.16 

σ2 1.0 0.96 –0.04 Σ22 1.19 1.09 +0.09 

–ll 2299.08  
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 Table 14. Parameter recovery of data generated with the bi–factor model (N = 500, I = 10). 

Bi–

factor 

True 

Values 
Estimates

Estimate 

– True 
CCFA Estimates Translation

Translation 

– True 

a11 1.1 1.27 +0.17 λ1 0.62 1.56 +0.46 

a12 0.6 0.55 –0.05 δ1 –0.16 1.01 +0.41 

d1 1.7 1.61 –0.09 τ1 –0.95 1.41 –0.29 

a21 1.3 1.79 +0.49 λ2 0.72 1.86 +0.56 

a22 1.0 0.69 –0.31 δ2 0.05 0.58 –0.42 

d2 –2.3 –2.50 –0.20 τ2 1.40 –2.13 +0.17 

a31 1.5 1.59 +0.09 λ3 0.75 2.10 +0.60 

a32 1.5 1.27 –0.23 δ3 –0.07 0.74 –0.76 

d3 –1.5 –1.44 +0.06 τ3 0.83 –1.37 +0.13 

a41 1.7 1.91 +0.21 λ4 0.69 1.76 +0.06 

a42 0.7 0.32 –0.38 δ4 –0.08 0.72 +0.02 

d4 1.2 1.11 –0.09 τ4 –0.62 0.93 –0.27 

a51 1.9 1.74 –0.16 λ5 0.74 2.01 +0.11 

a52 1.1 0.77 –0.33 δ5 –0.06 0.66 –0.44 

d5 0.0 –0.23 –0.23 τ5 0.13 –0.21 –0.21 

a61 1.2 1.44 +0.24 λ6 0.72 1.78 +0.58 

a62 1.4 1.21 –0.19 δ6 0.01 0.25 –1.15 

d6 0.0 –0.08 –0.08 τ6 0.06 –0.09 –0.09 

a71 1.4 1.34 –0.06 λ7 0.66 1.60 +0.20 

a72 0.8 0.67 –0.13 δ7 –0.07 0.64 –0.16 
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Bi–

factor 

True 

Values 
Estimates

Estimate 

– True 
CCFA Estimates Translation

Translation 

– True 

d7 1.1 0.95 –0.15 τ7 –0.56 0.80 –0.30 

a81 1.6 1.72 +0.12 λ8 0.77 2.08 +0.48 

a82 1.2 1.08 –0.12 δ8 0.01 0.27 –0.93 

d8 –1.4 –1.43 –0.03 τ8 0.85 –1.35 +0.05 

a91 1.8 2.28 +0.48 λ9 0.80 2.37 +0.57 

a92 1.3 1.01 –0.29 δ9 –0.03 0.51 –0.79 

d9 –3.1 –3.15 –0.05 τ9 1.76 –3.06 +0.04 

a10,1 2.0 2.96 +0.96 λ10 0.79 2.60 +0.60 

a10,2 0.9 0.46 –0.44 δ10 0.11 1.09 +0.19 

d10 2.9 3.28 +0.38 τ10 –1.60 3.10 +0.20 

ρ 0.5 0.64 +0.14 Σ12 0.69 0.72 +0.22 

µ2 0.2 0.21 +0.01 µ2 0.19 0.19 –0.01 

σ2 1.0 0.90 –0.10 Σ22 0.93 0.96 –0.04 

–ll 4726.68  
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Table 15. Parameter estimates for the LCA model and the 2PL model for items from a 

psychological distress scale in the Context Study (N = 3788, I = 4). 

LCA Estimates (SE) 2PL Wave 2 Estimates (SE) Sum Score Statistics
a1 2.19 (0.09) a1 2.14 (0.10)  
b1 0.71 (0.03) b1 0.71 (0.03)  
κ1 0.11 (0.02) 
a2 2.00 (0.09) a2 2.00 (0.08)  
b2 –0.44 (0.03) b2 –0.42 (0.03)  
κ2 0.21 (0.02) 
a7 2.46 (0.11) a7 2.39 (0.09)  
b7 0.19 (0.02) b7 0.16 (0.02)  
κ7 0.16 (0.02) 
a9 3.28 (0.18) a9 3.22 (0.15)  
b9 0.67 (0.03) b9 0.67 (0.03)  
κ9 0.11 (0.02) 
ρ 0.50 (0.02) ρ 0.60 
µ2 0.04 (0.03) µ2 0.08 
σ2 1.39 (0.05) σ2 1.06 
–ll 15703.43 
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Table 16. Parameter estimates for the bi–factor model and the CCFA model for items from a 

psychological distress scale in the Context Study (N = 3788, I = 4). 

Bi–factor Estimates (SE) CCFA Estimates (SE) Translation (SE)
a11 2.13 (0.09) λ1 0.80 (0.03) 2.84 (0.62) 
a21 0.47 (0.18) δ1 0.13 (0.02) 1.28 (0.15) 
d1 –1.53 (0.06) τ1 0.91 (0.04) –1.90 (0.08) 

a12 2.52 (0.22) λ2 0.75 (0.03) 2.94 (0.47) 
a22 1.47 (0.20) δ2 0.25 (0.02) 1.96 (0.18) 
d2 1.09 (0.08) τ2 –0.49 (0.03) 1.13 (0.07) 
a17 3.76 (0.38) λ7 0.81 (0.03) 3.40 (0.63) 
a27 –0.82 (0.26) δ7 0.18 (0.02) 1.78 (0.21) 
d7 –0.67 (0.10) τ7 0.26 (0.03) –0.64 (0.07) 
a19 2.85 (0.13) λ9 0.88 (0.05) 4.22 (1.72) 
a29 0.39 (0.25) δ9 0.10 (0.02) 1.52 (0.27) 
d9 –1.92 (0.09) τ9 1.21 (0.06) –3.41 (0.17) 
ρ 0.61 (0.02) Σ12 0.65 (0.03) 0.55 (0.03) 
µ2 0.07 (0.02) µ2 0.07 (0.02) 0.07 (0.02) 
σ2 1.17 (0.04) Σ22 1.40 (0.08) 1.18 (0.03) 
–ll 15725.64 
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Figure 1. Longitudinal IRT model using a bi-factor analysis approach (two items 

administered twice). 

 
Note. Factor loadings with the same superscript are constrained to be equal. 
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Figure 2. Psychological distress items from the Understanding Adolescent Health Risk 

Behaviors survey. 

How strongly do you agree or disagree with the following statements in describing 

how you have felt in the past 3 months?

Strongly 

agree 

Agree 

somewhat Neither

Disagree 

somewhat

Strongly 

disagree

1. I had trouble getting my 

breath. 

� � � � �

2. I got mad easily. � � � � �

3. I felt sick in my stomach. � � � � �

4. I was tired a lot. � � � � �

5. I worried about what was 

going to happen. 

� � � � �

6. I worried when I went to 

bed at night. 

� � � � �

7. I often worried about bad 

things happening to me. 

� � � � �

8. I hated myself. � � � � �

9. I was a bad person. � � � � �

10. I did everything wrong. � � � � �
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