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Abstract 

 

Emma Susick: Relationship of total Vibrio spp. and Vibrio vulnificus to phytoplankton 

and water quality parameters in the Neuse River Estuary, North Carolina 

(Under the direction of Dr. Rachel Noble and Dr. Gregory Characklis) 

 

 

Vibrio bacteria are widely distributed in estuarine and coastal aquatic systems 

across the globe and not only play vital roles in nutrient cycling but are also important 

human pathogens.  V. vulnificus is especially important in the United States as it is 

responsible for a majority of deaths seafood-related deaths.  This study examined 

dynamics among total Vibrio, V. vulnificus, plankton populations and environment 

parameters in the Neuse River Estuary.  Size fractionation was used to crudely partition 

zooplankton from phytoplankton.  While there was substantial variation in total Vibrio 

concentrations, the ≥180µm fraction, containing primarily large phytoplankton and 

zooplankton, exhibited more rapid growth over the course of the experiment compared 

to fractions containing smaller organisms and control treatments.  Responses of V. 

vulnificus were also tested, but results showed that dynamics are complex and highly 

variable.  Further exploration of the species-specific nature of these relationships is 

necessary to improve understanding of Vibrio ecology. 
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Introduction: 

 

Bacteria in the genus Vibrio are widely distributed in estuarine and coastal 

aquatic systems across the globe, and play vital roles in these ecosystems by processing 

and recycling nutrients through the degradation of chitin and other organic materials 

(Hunt et al., 2008, Li and Roseman, 2004).  In addition to their role in the global nutrient 

cycle, certain Vibrio species also cause disease in aquatic organisms and humans 

making them important from an economic and public health perspective (Oliver et al., 

2005, Todd, 1989).   

There are three pathogenic Vibrio species of public health importance: V. 

cholerae, the causative agent of the disease cholera; V. vulnificus, which causes wound 

infections and primary septicemia; and V. parahaemolyticus, which causes 

gastroenteritis (West et al., 1989).  Other Vibrio species, while posing less threat to 

human health, can cause illnesses in marine life as well (Austin and Zhang, 2006, Ben-

Haim and Rosenberg, 2002).   

In 2005, there were 131,943 reported cases of cholera worldwide resulting in 

2,272 deaths, which may only represent 5-10% of actual disease incidence (WHO, 

2006).  In 2006, the CDC reported 730 confirmed cases of illness in the U.S. resulting in 

36 deaths due to Vibrio bacteria (including V. vulnificus, V. parahaemolyticus, and V. 

cholerae) through the Other Vibrio Illness Surveillance System (CDC, 2006).  

Understanding how Vibrio interact with their environment and associate with other 

marine organisms is important in understanding their ecology.  This information could  
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lead to better understanding and prediction of the timing and location of increased 

threats to public health and efforts to establish preventative measures.   

Previous work has examined how environmental parameters and water quality 

in aquatic systems impacts Vibrio growth, as variability in Vibrio concentrations has 

been associated with temperature, salinity, nutrient concentrations, sediments and the 

presence of other aquatic organisms such as plankton.  Temperature and salinity have 

been recognized as the major predictive factors in Vibrio abundance (Wetz et al., 2008, 

Hsieh et al., 2007, Randa et al., 2004).  The highest concentrations of Vibrio are 

generally reported in the summer months when water temperature is warmer 

(Blackwell and Oliver, 2008, Hsieh et al 2007, Paz et al., 2007).  The observed reduction 

in Vibrio isolated in winter months is likely due to their ability to enter a viable but non-

culturable (VBNC) state during times of duress, a state from which they can still react 

and become infectious if ingested (Pruzzo et al., 2003).  It has also been observed that 

Vibrio can reside in the sediment, which may provide a reservoir of Vibrio that can be 

resuspended into the water column during a storm event (Fries et al., 2007).  In 

addition to warm water temperatures, Vibrio concentrations have been positively 

correlated with salinity measurements in the Neuse River Estuary (Fries et al., 2008, 

Hsieh et al., 2007, Lipp et al., 2001).   However, the optimal salinity range may change 

depending on temperature, nutrient availability and the specific Vibrio species 

(Blackwell and Oliver, 2008, Kaspar and Tamplin, 1993). 

In addition to water quality parameters, previous work has examined how 

plankton populations can impact Vibrio concentrations.  It has been shown that Vibrio 

can gain protection and nutrients from associations with plankton (Eiler et al., 2006, 
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Islam et al., 1994).  Vibrio are through to benefit from their ability to degrade the 

chitinous exterior of zooplankton, as evidenced by studies that found Vibrio attached to 

zooplankton and benefiting from these associations (Hunt et al., 2008, Huq et al., 1983).  

With phytoplankton, Vibrio populations often increase after phytoplankton blooms, 

suggesting that they feed off the subsequent release of dissolved organic matter and 

decaying cells (Rehmstam-Holm et al., 2010, Mourino-Perez et al., 2003).   

Previous studies have indicated that Vibrio can survive longer and grow faster in 

association with zooplankton, particularly copepods (Tamplin et al., 1990, Huq et al., 

1983, Kogure et al., 1980).  Turner et al. (2009) examined concentrations of free-

floating Vibrio and Vibrio attached to various plankton classified by size (63-200μm, 

≥200μm plankton).  They found that for free-living Vibrio, temperature and salinity are 

the primary factors in predicting population levels.  For attached Vibrio, it was 

determined that plankton species composition, especially the abundance and the life 

stage of copepods, was also important.  Eiler et al. (2007) looked at Vibrio growth in 

response to increases in the concentration of cyanobacteria-derived organic matter and 

found it resulted in increased growth of V. cholera and V. vulnificus.  One study by de 

Mageny et al. (2008) compared cholera cases to chlorophyll a measurements, an 

indirect measure of phytoplankton concentration, in coastal areas and found strong 

associations between increases in chlorophyll a measurements and subsequent 

increases in cholera cases inland.  This study tied relationships between phytoplankton 

and Vibrio populations to reported cholera cases and public health risk.  Thus, changes 

in plankton populations and composition will likely have an impact on Vibrio 

concentrations and provide a useful indicator of human health threats.   
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Climate change may be another important factor in evaluating public health risk 

associated with Vibrio.  Current climate change models predict warming of waters and 

increased rainfall in coastal areas, potentially impacting the concentration and range of 

Vibrio populations (Houghton et al., 2001).  As the water gets warmer and stays warmer 

longer, there may be an increase in Vibrio levels and changes in the composition of 

plankton populations, which has also been shown to influence Vibrio concentrations 

(Paerl et al., 2007, Lipp et al., 2002).  Climate change could also impact associations 

between Vibrio and plankton or larger macrobiota, such as oysters.  Clinical strains of V. 

vulnificus were found at higher concentrations in oysters during warmer months (Han 

et al. 2009, Warner and Oliver, 2008).  This is particularly alarming as V. vulnificus have 

been found at higher concentrations in oysters than surrounding water (Wright et al., 

1996).  In addition to temperature, Fernandez-Delgado et al. (2009) found that 

increased rainfall corresponded to increased isolation of V. cholera, a trend likely linked 

to decreases in salinity.   

While previous work has identified relationships between zooplankton and 

Vibrio, potential relationships between phytoplankton and Vibrio concentrations are 

not nearly as well characterized.  The goal of this research is to examine how 

associations with zoo- and phytoplankton influence the survival of Vibrio and to 

compare total Vibrio concentrations to those of V. vulnificus.  These results provide 

insights useful in assessing human health risks and could act as inputs for predictive 

models of water quality.  In addition to determining total Vibrio concentrations through 

culture methods, V. vulnificus was identified using quantitative polymerase chain 

reaction (QPCR).  These results are important for understanding how V. vulnificus 
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concentrations, measured using molecular methods, change relative to total Vibrio 

concentrations, measured through culture-based methods.  It is important to note that 

culture-based methods for Vibrio are not as selective and specific as DNA-based 

methods, as culture-based methods could lead to overestimation due to false-positives 

and/or underestimation due to competition with other organisms, particulate matter or 

inhibitory compounds in the media  (Harwood et al., 2004, Wright et al., 1993, Lotz et 

al., 1983).   The use of a time series method to examine how Vibrio populations, 

especially V. vulnificus, change with the concentration of various plankton groups was 

designed to add to our current understanding of Vibrio ecology.   

 

 

Methods: 

Sampling.  The Neuse River Estuary (NRE) is an important resource for fishing and 

recreation in eastern North Carolina and hosts a natural population of Vibrio bacteria.  

It is typically a partially-mixed, shallow, drowned river valley estuary.  Six large volume 

NRE samples were collected from June to August of 2009.  Water was obtained from 

station 120, which is approximately 17 miles downstream from New Bern (Figure 1).  

Station 120 is located at an elbow-shaped bend in the estuary, which regularly has a 

salinity gradient and chlorophyll a concentration that is favorable for Vibrio 

populations (Wetz et al., 2009).  During the sampling period, station 120 temperatures 

ranged from 26-30°C, salinity from 12-27ppt, and chlorophyll a from 3-19μg/L.  

Samples were collected from 0.2 to 0.5 meters below the surface in acid-rinsed 5 or 10 

L Nalgene containers, placed in coolers and transported within four hours to the 
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laboratory for immediate analysis.  In situ salinity, temperature, chlorophyll a, 

dissolved oxygen, turbidity and pH were measured using a YSI multiprobe Sonde 

(Yellow Springs Instruments). 

 

Laboratory Analysis. 

Experimental Design.  Particulate matter from NRE water was separated into different 

size fractions of ≥180μm, and <180μm using a Nitex mesh.  A raw, unmanipulated 

control was also included for each sample.  Samples were stored at room temperature, 

and not in direct sunlight.  The containers were mixed at each time point, and 

subsamples were taken every 4-12 hours.  At each time point aliquots were taken to 

analyze total Vibrio concentrations using Thiosulfate Citrate Bile Salts Sucrose Agar 

(TCBS) and V. vulnificus concentrations using quantitative polymerase chain reaction 

(QPCR).  Chlorophyll a analysis and phytoplankton microscopy was also performed 

(Table 1).   All analyses were conducted in duplicate.   

 

Size Fractionation. To examine the different effects zooplankton and phytoplankton 

have on Vibrio populations size fractions representing each group were created.  The 

method of using size fractionation to examine relationships between Vibrio and 

plankton has been used previously by Turner et al. (2009) and Montanari et al. (1999).  

Size fractionation was accomplished using 47mm 180μm Nitex filters (Millipore), and 

included a ≥180μm size fraction representing zooplankton (typically larger than 

200μm) and larger estuarine plankton, as well as a <180μm size fraction representing 
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phytoplankton and smaller estuarine plankton.  There were two different methods used 

during the summer, discussed below (Figure 2).   

In June and July, 1 L sample volumes were used to create the size fractions and 

control.   The ≥180μm size fraction was filtered through an 180μm nylon net filter and 

the material left on the filter was rinsed into an equal volume of NRE water that had 

been filtered through a 0.4μm filter.  An equal volume of NRE water was also passed 

through a 5µm filter and the filtrate was added into the ≥180µm size fraction.  This 

water represents an additional inoculation of bacteria from the original water samples, 

and was added with the intention of increasing the speed and magnitude of Vibrio 

response to plankton.  The <180μm size fraction was created by combining equal 

volumes of filtrate that passed through the 180μm nylon filter (the <180µm fraction) 

and a 5µm nylon filter (the bacterial inoculation).  A control was also established with 

raw, unmanipulated NRE water.  Additional size fractions of <100µm and <20µm were 

created in June and July but were not continued in August and not included in analyses 

as they yielded similar results to the <180µm (See Appendix A).     

In August, the volumes studied were increased to 5 L to run additional assays, 

reduce the likelihood of “bottle effects” and maintain potential ecological relationships.  

The NRE water was filtered through an 180µm filter and the material on top of the filter 

was rinsed into an equal volume of water that was filtered through a 20µm filter.  This 

change was made due to time limitations and with the intention of looking at 

zooplankton, which would likely not be found in the 20µm filtrate.  The <180μm size 

fraction was created from the filtrate that passed through the 180μm nylon filter.  No 

5µm filtrate was added to these size fractions.  This was due in part to time limitations, 
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but also to determine how Vibrio concentrations would react in a more natural setting 

without supplementation.  A control was also established with raw, unmanipulated NRE 

water.   

 

Membrane Filtration.  At each time point aliquots were taken out of each size fraction 

and filtered through a 47mm 0.45μm grid GN-6 Merticel MCE membrane filters (Pall) in 

duplicate.  Aliquot volume was determined by using the framework described by Hsieh 

et al. (2007) to guide dilutions for Vibrio analyses using initial measures of NRE 

temperature and salinity.  The filter was then placed onto TCBS agar and placed in a 

37°C incubator for 24 hours.  TCBS media has been shown to be selective for Vibrio 

(West et al., 1982).  All yellow and green colonies were counted as Vibrio. 

 

QPCR.  Aliquots of 100ml or 50ml, depending on the time point, were subsampled from 

each bottle, filtered through 47mm 0.40μm polycarbonate filters (Millipore) and stored 

at -80°C for later analysis.  DNA extraction and analysis was completed following a 

protocol established by Wetz et al. (2008).  DNA was extracted using 0.1mm 

silica/zirconium beads (BioSpec Products), 490μl extraction buffer AE (Qiagen), 10μl of 

10μg/mL salmon sperm DNA (Sigma), and a mini bead beater for each sample.  Salmon 

sperm DNA (from Oncorhynchus keta [sketa]), was added into the extraction buffer as a 

control to measure extraction effectiveness and inhibition (Haugland et al., 2005).  The 

beads, extraction mixture and polycarbonate filters were placed in the bead beater for 1 

minute and then centrifuged for 1 minute at 12,000 x g.  The supernatant was extracted, 

leaving the pellet intact and added into a clean 1.7μm microcentrifuge tube and 
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centrifuged for 5 minutes at 12,000 x g.  The supernatant was removed and added into a 

clean 1.7μm microcentrifuge tube, leaving the pellet in place.  This final supernatant 

was the extracted DNA.   

Inhibition was measured using QPCR to quantify the remaining portion of the 

known amount of salmon sperm DNA that was originally spiked onto the filter.  QPCR 

reactions were run in duplicate using the Cepheid SmartCyclerII with the primers, Sketa 

probe and Omnimix.  For each reaction, 14.75μl of nuclease-free water, 2.5μl of 10μm 

reverse sketa primer, 2.5μl of 10μm forward sketa primer, 0.25μl of 10μm sketa probe, 

0.5 Omnimix beads and 5µl of sample were used (nuclease free water: OmniPu from 

VWR EM-9610; reverse sketa primer: MWG Biotech Inc. 5’ CCG AGC CGT CCT GGT CTA 

3’; forward sketa primer: MWG Biotech Inc. 5’GGT TTC CGC AGC TGG G 3’; sketa probe: 

MWG Biotech Inc., 5'-6FAM-AGTCGCAGGCGGCCACCGT-TAMRA; Omnimix, TaKaRa Bio 

Inc., Omnimix HS lyophilized PCR master mix containing 3U TaKaRa hot start Taq 

Polymerase, 200μM dNTP, 4mM MgCl2 in 25μM HEPES buffer, pH 8.0 +- 0.1) (Haugland 

et al., 2005).  The QPCR assay started at 94°C for 120 seconds, then 45 cycles at 94°C for 

15 seconds followed by 60°C for 30 seconds.  Samples were considered inhibited if 

samples were measured at 1.5 cycle time (Ct) values away from the standard.  If 

samples were inhibited the sample was diluted accordingly until no inhibition was 

observed.  If inhibition could not be removed through dilution, the DNA was further 

purified using an additional DNA extraction method, DNA-EZ RW02 Extraction 

(GeneRite) following the K102-02C Extraction Protocol.     

The V. vulnicifus QPCR primers and probe were designed to target the hemolysin 

gene vvh, unique to V. vulnificus (Wetz et al., 2008, Harwood et al., 2004).  QPCR 
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reactions were run in duplicate using the Cepheid SmartCyclerII with the vvh primers, 

probes and Omnimix HS.  For each reaction, 14.75μl of nuclease-free water, 2.5μl of 

10μm reverse primer, 2.5μl of 10μm forward primer, 0.25μl of 10μm probe, 0.5 

Omnimix HS beads, and 5μl of sample were used (nuclease free water: OmniPur from 

VWR EM-9610; reverse vvh 1973 primer: MWG Biotech Inc. 5’ TCG ACT GTG AGC GTT 

TTG TC 3’; forward vvh 1795 primer: MWG Biotech Inc. 5’ TGC CTR GAT GTT TAT GGT 

GAG ACC 3’; vvh 1914 FAM probe: MWG Biotech Inc., 5’ TAG CCG AGT RGC ATC CGA 

TCG TTG TT 3’; Omnimix, TaKaRa Bio Inc., Omnimix HS lyophilized PCR master mix 

containing 3U TaKaRa hot start Taq Polymerase, 200μM dNTP, 4mM MgCl2 in 25μM 

HEPES buffer, pH 8.0 +- 0.1).   

In addition to the samples, negative extraction controls, negative controls and 

positive standards were run to confirm technique and create a standard curve.   The 

standard curve was constructed of four serial dilutions of a known about of V. vulnificus.  

Standards were created by growing up a Vibrio vulnificus culture (ATCC 27562) and 

making serial dilutions in 1X Phosphate Buffered Saline (PBS) according to Wetz et al. 

(2008).  Concentrations were determined under fluorescent microscopy using SYBR 

Green I following Noble and Fuhrman (1998).  The culture was then diluted to a final 

concentration of 100,000 cells per 100ml.  The 100ml of the V. vulnificus dilution was 

then filtered through 47mm 0.4μm PC filters and stored at -80°C for later analysis.   

Four serial dilutions of the V. vulnificus standard were made to create the 

standard curve.  The SmartCyclerII Software uses a linear regression of known samples 

to create the standard curve to compare known amounts of DNA to the unknown 
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samples.  Negative extraction controls included an unused PC filter.  Negative controls 

used nuclease free water instead of sample.   

 

Chlorophyll a.  50ml of sample water was filtered through a 25mm Glass Fiber Filter 

(GFF), wrapped in aluminum foil to prevent exposure to light and stored at -20°C for 

later analysis.  Chlorophyll a was analyzed following the Modified Fluorometric 

Technique in EPA Method 445. The chlorophyll a extraction was completed by placing 

the filters into 15ml tubes with 10ml of 90% acetone.  The tubes were then placed in a 

sonication bath with water and ice, covered with aluminum foil and sonicated for 10 

minutes.  Tubes were then placed in a -20°C freezer for 20 hours.  Samples were 

removed and the liquid was filtered through a 25mm GFF filter to remove any 

particulates and debris.  The filtrate was placed in a fluorometer (Turner, TD-700) and 

the fluorescence was translated into chlorophyll a concentrations.   

In addition to measuring chlorophyll a concentrations, 50ml of sample was 

transferred to brown bottles and Lugol’s solution (5g iodine, 10g potassium iodide, 

85ml distilled water) was added at a 1% total concentration to preserve and stain the 

phytoplankton.  Aliquots of 18ml were then added to settling chambers, and left for 24 

hours.  Phylogenic groups of phytoplankton (diatoms, cyanobacteria, dinoflagellates, 

chlorophytes/cryptophytes) were enumerated using microscopy. 

 

Statistical Analysis.  Total Vibrio and V. vulnificus concentrations were log transformed 

for analysis.  For additional analyses, log growth was also calculated for total Vibrio by 

dividing the concentration at time X by the initial concentration and taking the log of 
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that value.  Next, data was tested for normality by plotting data points against their 

modified z-distribution and looking for a linear relationship.  All data, except for the log 

transformed total Vibrio concentrations for June/July, were normally distributed.  For 

normally distributed data, parametric tests were used, including independent, two-

tailed, two sample t-tests, and correlation analysis with Pearson correlation coefficients.  

Non-parametric analyses were used for data that was not normally distributed, 

including two-tailed Wilcoxon-Mann-Whitney tests and correlation analysis with 

Spearman correlation coefficients.  The t-test and Wilcoxon-Mann-Whitney test 

compare the means of two populations and the correlation coefficients examine 

variation shared by two populations. Statistical analyses were run separately for the 

June/July samples and the August samples due to the difference in methodology.  

Analyses were conducted using Excel (Microsoft, 2008) and SAS Statistical Software 

(Cary, NC, USA).  Relationships were deemed significant at p≤0.05. 

 

 

 

Results 

 

Environmental Parameters.  Over the sampling period, water temperatures ranged from 

26-30°C, salinity from 12-27ppt, and chlorophyll a from 3-19μg/L.   There were also 

several storm events, defined as greater than or equal to 0.5 inches of daily rainfall 

(Figure 3).   A storm event occurred within two days before both the August 4th and 17th 

sample dates.   

 

Plankton and Chlorophyll a.  The phytoplankton population was estimated using two 

methods, chlorophyll a detection and direct microscopic enumeration.  Previous work 
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has examined zooplankton in the NRE and similar estuarine waters and found summer 

concentrations to range from 10-200 zooplankton/L (Mallin, 1991).  For this study’s 

sample dates, NRE zooplankton concentrations ranged from 5.3 to 36.4 organisms/L, 

with copepods comprising 34-67% of the total zooplankton population (J. Leonard, 

unpublished data). Volumes used in these experiments were 1 and 5 L.  While 

zooplankton were not directly counted due to time and sample limitations, it was 

assumed based on previous work that zooplankton were present in the ≥180µm 

fraction.   

For June/July samples, the ≥180µm fraction had significantly lower chlorophyll a 

concentrations than <180µm (p=0.028) (Table. 2, Figure 4a).  It also appears that the 

≥180µm fraction has lower chlorophyll a concentrations than the control, however, this 

could not be confirmed through statistics due to low sample size.  The control and the 

<180µm size fractions do not appear to differ significantly from one another (Figure 

4a).  This suggests that the ≥180µm fraction contained fewer phytoplankton than the 

<180µm fraction and control, which is expected as phytoplankton should be filtered out 

of the ≥180µm fraction but remain in the <180µm and control.  For August samples, 

none of the size fractions differed significantly in chlorophyll a concentration (Table 2, 

Figure 4b).  This is not unexpected as the August ≥180µm fraction combined material 

on top of the 180μm filter with the filtrate from a <20μm filter, which contains 

significant concentrations of phytoplankton (confirmed by microscopy).   

 Over all size fractions, chlorophyll a concentration was not found to vary 

significantly over time for either the June/July or August samples (p=0.415, p=0.119, 

respectively) (Table 6).  However, it does appear that chlorophyll a did increase over 
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the course of the experiment when looking at individual sample dates.  The control 

from July 15th and the <180µm fraction from July 20th do increase over time (Appendix 

C).   This variation could be the result of a particular group of plankton that found the 

experimental conditions favorable for growth, or a lack of zooplankton grazers (Paerl et 

al., 2007).  This may explain why the <180µm fraction, containing more phytoplankton 

than the ≥180µm fraction, exhibited slow, but significant, growth over 48 hours 

(p=0.05) (Table 6).   

Microscopic phytoplankton counts were also conducted to estimate 

phytoplankton populations and percent composition of specific phytoplankton groups 

(cyanobacteria, diatoms, dinoflagellates, chlorophytes/cryptophytes).  These counts 

further confirmed the chlorophyll a observations in June/July samples, which showed 

that the ≥180μm fraction contained, on average, half the phytoplankton in the <100µm 

and control fraction (Table 3).  The <100µm fraction served as an estimate of the 

<180µm fraction for phytoplankton for this assay, as the microscopic counts only 

identified organisms under 100µm.  These results suggest that the 180μm filter was 

successful in removing a significant portion of the phytoplankton.  However, for August 

samples, phytoplankton counts were similar across both size fractions and the control 

(Table 3).  Again, this agrees with the chlorophyll a observations, that phytoplankton 

concentrations were similar across size fractions in August.   

 

Analysis of total Vibrio.  Total Vibrio concentrations were quantified through 

membrane filtration and plating on TCBS agar to count colonies.  The two sets of 

experiments reveal different trends that are likely due to the bacterial inoculation and 
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community composition differences in zoo- and phytoplankton in the June/July samples 

from those in August.  One established difference between the two sets of experiments 

is the increased number of phytoplankton in the ≥180µm fraction in the August samples 

compared to those in June/July (Figure 4). 

While there is substantial variability among the experiments conducted, some 

trends did emerge.  In the June/July samples, initial total Vibrio concentrations for 

≥180µm fraction was significantly lower than the <180µm and control (p=0.0001, 

p=0.037 respectively) (Table 4, Figure 5).  Examining log growth, each size fraction 

differed significantly from one another for the June/July samples after 48 hours, with 

the ≥180µm fraction significantly higher than the <180µm and control (p<0.0001, 

p=0.004 respectively) (Table 5, Figure 6).   This agrees with previous work that found 

Vibrio growth positively correlated with zooplankton concentrations, especially 

copepods, which are likely contained in the ≥180µm fraction (Huq et al., 1983, Turner 

et al., 2009).  Another possibility is that grazers are being filtered out of the ≥180µm 

and therefore there is less negative selective pressure.  Longnecker et al. (2010) found 

Gammaproteobacteria, of which Vibrio are a member, exhibited higher bacterial 

production after reduction of grazers and were less affected by virus reduction than 

other bacteria groups.  This underscores the importance of examining specific 

relationships between Vibrio and its surrounding environment, as Vibrio may react 

differently than other well studied bacteria.  Vibrio may even react differently 

depending on their specific environment, as seen with their association with salinity 

(Kasper and Tamplin, 1993).  Additionally, a small, but significant correlation was found 

with total Vibrio concentrations and time (r = 0.524, p<0.0001) (Table 6). 
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In general, size fractions in August did not vary significantly from one other in 

total Vibrio concentration, both initially and over time.  This may be due in part to 

significantly higher phytoplankton concentrations in the ≥180µm fraction for August 

compared to June/July, a difference that can be seen in the plankton analysis (Figure 4, 

Table C-5).   This implies that the first method used in June/July represents a more 

meaningful separation, which may have led to increased differentiation of Vibrio 

concentrations between the treatments.   Also, there was a small but significant 

correlation between time and total Vibrio concentration (r=0.477, p<0.0001), indicating 

there was some growth over the course of the experiment (Table 6).   

 Comparing total Vibrio concentrations across the two sets of experiments, the 

June/July <180µm fraction were initially larger than the ≥180µm fraction.  This trend 

was not seen in the August samples (Figure 7).   This is likely due to differences in 

methodology.  The June/July ≥180µm fractions showed increased growth compared to 

those in August (Figure 8).  This trend was not as pronounced in the <180µm fractions.  

This is not surprising as the <180µm fraction had similar phytoplankton populations 

across all sample dates, whereas the ≥180µm fraction differed between the June/July 

and August samples.  The increased growth seen in the ≥180µm fraction compared to 

the <180µm fraction could potentially suggest that the plankton smaller than 180µm, 

including phytoplankton, are less beneficial in aiding Vibrio growth than zooplankton, 

which are typically larger than 180µm.   

The bacterial inoculant added in the June/July samples could also have increased 

the likelihood for bacterial-plankton interactions.  While Vibrio concentrations have 

been found to increase during phytoplankton blooms, there are also negative selective 
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pressures, such as grazers and viruses that could limit growth (Worden et al., 2006).   

These interactions with other bacteria, protozoan grazers and viruses, as well as their 

surrounding environment, are complex and not yet well understood.  While this study 

did not closely examine the plankton community composition, this could potentially 

play a large role in Vibrio population dynamics.   

In addition to comparing Vibrio concentrations among size fractions and sample 

dates, Vibrio concentrations were also compared to corresponding chlorophyll a 

concentrations.  While previous studies have found a positive correlation between 

bacterial production (µgC L-1h-1) and chlorophyll a (Apple et al., 2008), this research did 

not find total Vibrio concentrations to be significantly correlated with chlorophyll a.  

However, log Vibrio growth in August exhibited a small, but significant, correlation with 

chlorophyll a (r=0.363, p=0.002) (Table 6).  After 36 hours, there is some trend 

between Vibrio concentration and initial salinity measurements.  This could suggest 

that salinity influences the growth rate of Vibrio (Figure 9).  Salinity has previously been 

associated with Vibrio concentration in estuarine and coastal environments, but its 

relationship to growth has not been directly examined in a time scale experiment 

(Blackwell and Oliver, 2008, Hsieh et al.  2008).  These results provide additional 

information that further demonstrates the relationship between salinity and Vibrio 

concentrations.   

 

Analysis of Vibrio vulnificus.  QPCR was used to quantify V. vulnificus in samples from 

July 15th, July 20th, August 4th and August 17th.  Each sample was extracted, tested for 

inhibition and then QPCR was conducted to determine the V. vulnificus concentration.  
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The August 17th samples were the only samples that showed substantial inhibition of 

PCR.  It is possible that there were V. vulnificus concentrations above the detection limit 

of the assay (approximately 100 cells/100 mL), but that they could not be quantified.  V. 

vulnificus was quantified on July 15th and August 4th, with some concentrations 10-100 

times higher than corresponding total Vibrio concentrations as determined by 

membrane filtration with TCBS.  On July 15th V. vulnificus was quantified at time 0, then 

again at 24 hours and remained relatively stable until 48 hours.  On August 4th V. 

vulnificus was detected at 48 hours (Figure 10).  Statistical differences in V. vulnificus 

across treatments could not be tested due to small sample size.  

V. vulnificus is a species in the Vibrio genus and therefore concentrations of V. 

vulnificus should not exceed total Vibrio concentrations (Figure 10).  However, 

quantification of V. vulnificus was based on the assumption of a single copy of the vvh 

gene, whereas total Vibrio was quantified based on colony formation using a membrane 

filtration approach.  While TCBS is a popular and widely accepted media for culturing 

Vibrio, it lacks sensitivity and specificity (Harwood et al., 2004, Choopun et al., 2002, 

Massad and Oliver, 1987).  Additionally, it has been documented that not all Vibrio 

species grow well on TCBS (such as V. vulnificus), leading to underestimations, and that 

non-Vibrio species can grow on TCBS (such as Aeromonas and Pseudomonas), leading to 

overestimation (Lotz et al., 1983, Wright et al., 1993, Pfeffer and Oliver, 2003).  This 

difference in quantification using molecular versus culture methods underscores the 

need for standardized methods to quickly and easily identify and compare total Vibrio 

and species-specific forms of Vibrio in estuarine and coastal waters.  With V. vulnificus 

concentrations often higher in oysters than in the surrounding waters, underestimating 
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concentrations could be dangerous to current public health risk models (Wright et al., 

1996).  Additional explanations for higher V. vulnificus concentrations compared to total 

Vibrio include possible viral infection, which could lyse cells and release genomic 

material.  This DNA would be quantified during QPCR but not with membrane filtration.   

 A weak, but positive, correlation between total Vibrio and V. vulnificus was found 

in the July 15th sample (r=0.777, p=0.020).   No correlation was found for the August 4th 

(r=-0.200, p=0.747); however, this could be due to the very small number of V. 

vulnificus observations (Table 6).   

 

Conclusion 

 The aim of this study was to assess the dynamics of Vibrio, and specifically the 

potentially pathogenic V. vulnificus, in experiments that manipulated zoo- and 

phytoplankton communities.  Previous work has shown positive relationships between 

Vibrio and copepods (zooplankton), but relationships are still unclear with respect to 

phytoplankton.  As phytoplankton are vital and plentiful components of aquatic 

ecosystems, exploring possible relationships could provide important information 

about Vibrio ecology and potential public health impacts.   

 In this work, there was significant variability among experiments and size 

fractions within experiments.  However, some trends emerged that seem significant and 

worth further exploration.  In the June/July samples, which likely had better separation 

of zooplankton and phytoplankton due to methodology, total Vibrio concentrations in 

the ≥180µm fraction were lower initially but grew faster over time compared to the 

<180µm fraction and control.  This agrees with previous work that found copepods 
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beneficial for Vibrio growth.  However, the control should have the same zooplankton 

populations as the ≥180µm, yet exhibited less growth.  This suggests that something 

smaller than 180µm, and present in the <180µm fraction and control group, is not as 

beneficial for Vibrio growth.  Possible explanations include bacterial grazers that were 

mostly filtered out using 180µm Nitex filters or out-competition by other bacteria and 

phytoplankton for nutrients.   Obtaining a more detailed picture of Vibrio ecology is 

important in understanding how these bacteria influence nutrient cycles and impact 

public health.   

 In addition to ecological relationships, this study also highlights the differences 

in quantification of potentially pathogenic Vibrio using molecular methods compared to 

the “gold standard” approach of quantifying total Vibrio concentrations using 

membrane filtration with TCBS.   There are currently no QPCR assays known by the 

author to quantify the entire Vibrio genus due to taxonomic diversity.  Clearly there are 

drawbacks to using current culture-based techniques, as found in this study and others, 

and underestimation of Vibrio bacteria using current culture methods may not allow for 

proper public health risk assessments.  Future studies on ecological relationships of 

specific species of Vibrio, like V. vulnificus, with specific species of phytoplankton may 

allow for the development of more relevant predictive models to protect public health.  

Undoubtedly, the ecological dynamics of Vibrio and V. vulnificus are complex and 

warrant further study.   
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Tables 

Table 1. Experimental summary. 

Date Location Treatments 

Time Points 

(hours) Assays 
June 22nd 

 

Station 70/120 ≥180µm (filter and 0.4µm) + 5µm  

    filtrate 

<180µm + 5µm filtrate 

0 

14 

36 

 

TCBS (total Vibrio) 

Phytoplankton  

      Microscopy 

     

July 7th  Station 70/120 ≥180µm (filter and 0.4µm) + 5µm  

    filtrate 

<180µm + 5µm filtrate 

Control = Raw NRE 

0 

4 

8 

12 

30 

TCBS (total Vibrio) 

Phytoplankton    

      Microscopy 

 

     

July 15th  Station 120 ≥180µm (filter and 0.4µm) + 5µm  

    filtrate 

<180µm + 5µm filtrate 

Control = Raw NRE 

0 

8 

24 

36 

48 

TCBS(total Vibrio) 

Phytoplankton  

      Microscopy 

Chl a 

qPCR (V. vulnificus) 

     

July 20th  Station 120 ≥180µm (filter and 0.4µm) + 5µm  

    filtrate 

<180µm + 5µm filtrate 

0 

12 

24 

36 

 

TCBS(total Vibrio) 

Phytoplankton  

      Microscopy 

Chl a 

qPCR (V. vulnificus) 

     

August 4th  Station 120 ≥180µm (filter and 20µm) 

<180µm  

Control = raw NRE 

0 

6 

16 

24 

36 

48 

TCBS(total Vibrio) 

Phytoplankton  

      Microscopy 

Chl a 

qPCR (V. vulnificus) 

     

  August 17th  Station 120 ≥180µm (filter and 20µm) 

<180µm  

Control = raw NRE 

0 

6 

16 

24 

36 

48 

TCBS(total Vibrio) 

Phytoplankton  

      Microscopy 

Chl a 

qPCR (V. vulnificus) 

 

 

 

 

 

 

 

 

 

 



 22

Table 2. Independent t-test results for chlorophyll a concentrations. 

Time (hr) 

July 

(n = 8) 

 August 

(n = 8) 
≥180µm to 

<180 µm 

≥180µm to 

Control 

<180 to 

Control 

 ≥180µm to 

<180 µm 

≥180µm to 

Control 

<180µm to 

Control 

t 

(p) 

t 

(p) 

t 

(p) 

 t 

(p) 

t 

(p) 

t 

(p) 

T = 0 -3.96 

(0.028) 

-- --  0.06 

(0.569) 

-0.78 

(0.464) 

-2.18 

(0.072) 

        

T=24 -3.74 

(0.010) 

-- --  -1.04 

(0.339) 

-0.78 

(0.467) 

0.11 

(0.916) 

        

T = 48 -2.43a 

(0.093) 

-- --  0.37 

(0.721) 

-0.37 

(0.725) 

-1.07 

(0.324) 
an=6 
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Table 3. Microscopic phytoplankton counts (cells/L). 

Size Fraction July 7th July 15th July 20th  August 4th  August 17th 

≥180µm 4.06e5 5.68e5 3.65e5 7.54e5 8.27e5 

      

<180µma 8.27e5 1.34e6 6.49e5 6.85e5 6.76e5 

      

Control -- -- -- 6.57e5 7.10e5 

a<100µm for July samples. 
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Table 4.  Wilcoxon-Mann-Whitney and independent t-test results for total Vibrio using 

log (CFU/100mL). 
 July  August 

≥180µm to 

<180 µm 

≥180µm to 

Control 

<180µm to 

Control 

 ≥180µm to 

<180 µm 

≥180µm to 

Control 

<180µm to 

Control 

Time (hr) 

Z 

(p) 

Z 

(p) 

Z 

(p) 

 t 

(p) 

t 

(p) 

t 

(p) 

T = 0 -4.348a 

(0.0001) 

2.084b 

(0.037) 

-0.266c 

(0.790) 

 -0.65 

(0.522) 

-1.65 

(0.117) 

-0.82 

(0.422) 

        

T = 12 (July) 

T = 16 (Aug) 

2.178d 

(0.029) 

-1.088e 

(0.277) 

N/A  -1.12 

(0.270) 

-1.43 

(0.162) 

-0.13 

(0.901) 

        

T = 24 -0.053g 

(0.958) 

-1.958h 

(0.050) 

-1.436h 

(0.151) 

 0.48 

(0.633) 

0.07 

(0.947) 

-0.35j 

(0.732) 

        

T = 36 0.734h 

(0.4629) 

-1.718h 

(0.086) 

-1.754i 

(0.080) 

 -1.47j 

(0.151) 

-3.61j 

(0.002) 

-1.63 

(0.123) 

        

T = 48 2.178d 

(0.029) 

-1.620f 

(0.105) 

1.644f 

(0.100) 

 -1.28k 

(0.216) 

-3.27l 

(0.007) 

-3.42k 

(0.004) 
a n= 30 
b n= 20 
c n= 18 
d n= 8 

e n= 5 
f n= 6 
g n= 16 
h n= 10 

i  n= 14 
j  n= 31 
k  n= 26 
l n= 24 
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Table 5. Independent t-test results for total Vibrio using log growth ratio (log (Ct/C0)).

a n= 30 
b n= 20 
c n= 18 
d n= 8 
 

e n= 5 
f n= 6 
g n= 16 
h n= 10 
 

i  n= 14 
j  n= 31 
k  n= 26 
l n= 24 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 July  August 

(N = 32) 
≥180µm to 

<180 µm 

≥180µm to 

Control 

<180µm to 

Control 

 ≥180µm to 

<180 µm 

≥180µm to 

Control 

<180µm to 

Control 

Time (hr) 

t 

(p) 

t 

(p) 

t 

(p) 

 t 

(p) 

t 

(p) 

t 

(p) 

T = 0 -1.53a 

(0.1363) 

-1.13b 

(0.272) 

-0.21c 

(0.836) 

 -0.65 

(0.521) 

-1.33 

(0.200) 

-1.40 

(0.180) 

        

T = 12 (July) 

T = 16 (Aug) 

21.49d 

(0.0001) 

48.95e 

(<0.0001) 

0.29f 

(0.789) 

 -0.99 

(0.33) 

-0.92 

(0.369) 

0.22 

(0.824) 

        

T = 24 4.26g 

(0.001) 

6.24h 

(0.0002) 

1.86h 

(0.100) 

 0.53 

(0.601) 

0.46 

(0.649) 

-0.09j 

(0.932) 

        

T = 36 1.91b 

(0.072) 

4.16h 

(0.003) 

2.62i 

(0.023) 

 -1.36j 

(0.185) 

-2.41j 

(0.029) 

-1.12 

(0.273) 

        

T = 48 11.98d 

(<0.0001) 

6.05f 

(0.004) 

-4.77f 

(0.009) 

 0.15k 

(0.884) 

-2.33l 

(0.038) 

-2.02k 

(0.063) 
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Table 6. Correlations. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

a n= 32 
b n= 72 
c n= 15 
d n= 14 
e n= 24 

 

 

 

 

 

 

 

 

 

 

Parameters 

July  August 
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g
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(N
 =
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2

) 

T
im

e
 

(N
 =

 1
3

8
) 
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h
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-

p
h
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 a
 

(N
 =

 3
2

) 

 L
o

g
 V

. 

vu
ln

if
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u
s 

(N
 =

 6
) 

T
im

e
 

(N
 =

 2
7

7
) 

C
h

lo
ro

-

p
h

y
ll

 a
  

(N
 =

 7
2

) 

Spearman Correlation 

Coefficient, r 

(P-value) 

 Pearson Correlation 

Coefficient, r 

(P-value) 

Log Total 

Vibrio 

0.777 

(0.003) 

0.524 

(<0.0001) 
0.253 

  (0.021) 

 -0.200 

(0.747) 

0.477 

(<0.0001) 

0.045 

(0.712) 

        

Log Total 

Vibrio growth 

-- 0.456 

(<0.0001) 
-0.096 

(0.639) 

 -- 0.433 

(<0.0001) 

0.363 

(0.002) 

        

Chlorophyll a -- 0.149a 

(0.415) 
--  -- -0.185b 

(0.119) 

-- 

≥180µm  0.387c 

(p=0.154) 
   -0.137e 

(0.397) 

 

<180µm  0.532d 

(p=0.500) 
   -0.125e 

(0.353) 
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Figures 

 

Figure 1. Neuse River Estuary sample sites (from ModMon website, 2009 

http://www.unc.edu/ims/neuse/modmon/water_quality.htm) 
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a.  

b.  

Figure 2. Experimental procedure for June/July (a) and August (b) samples. 
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Figure 3.  Daily precipitation at New Bern, NC with temperature, salinity and 

chlorophyll a from station 120 of the NRE.  
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a.  
 

                   

b.  
 

Figure 4. Chlorophyll a concentrations over time for June/July (a) and August (b) (error 

bar = SE). 
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Figure 5.  Initial total Vibrio concentrations for all sample dates (error bar = SE). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

                 

a.

 

 

b. 

 

Figure 6. Change in total 

August (b) samples (error bar = SE)
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otal Vibrio concentrations over time for June and July (a) and 

(error bar = SE).  

                       

over time for June and July (a) and 



 

                    

a. 

 

b.   

 

 

Figure 7. Total Vibrio concentrations over time for 

samples (b) (error bar = SE)
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concentrations over time for June/July samples (a) and August 

(error bar = SE). 

June/July samples (a) and August 
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a.    

 

 

b.  

Figure 8. Total Vibrio concentrations over time for ≥180µm (a) and <180µm (b) (error 

bar = SE). 
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Figure 9.  Initial salinity and total Vibrio concentration after 36 hours (error bar =SE). 
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a.  

 

b.  

Figure 10. V. vulnificus and total Vibrio concentrations over time for July 15th (a) and 

August  4th (b) (error bars= SE). 
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Appendix A.  Total Vibrio Concentrations 
 

 Samples in June and July were separated into multiple size fractions.  For the 

June 22nd date, samples were divided into ≥180µm, ≥100µm, ≥20µm, <180µm, <100µm 

and <20µm size fractions.  Creation of the ≥100µm, <100µm, ≥20µm and <20µm 

followed the sample procedure as the ≥180µm and <180µm described in the methods 

section and Figure 2, except for the change in filter pore size.  The same method was 

used for July samples, except size fractions included ≥180µm, <180µm, <100µm, <20µm 

and raw water controls.   

 Samples in August were also separated into size fractions, but with a slight 

variation on the method used in June and July, and less size fractions were used.  The 

<180µm, <100µm and <20µm did not show significant differences in Vibrio or 

chlorophyll a concentration, and a decision was made to focus on fewer size fractions 

with more replicates.  In August, the samples were separated into ≥180µm, <180µm 

and raw water control with no 5µm inoculant.  Also, ‘greater than’ samples were 

created by rinsing the material on top of the filter into 20µm filtered water, serving as 

the base water with nutrients.  This change was made from 0.4µm to 20µm due to 

feasibility as larger volumes were used in August and it would have taken too long to 

filter through the 0.4µm filter.   

 

 

Table A-1. Total Vibrio concentrations for June 22nd.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                          

 

 

 

                                 

 

Time 

(hours) 

Size 

Fraction 

Total Vibrio 

(CFU/100mL) 

Average 

n=4 St. Dev. 

0 ≥180µm 131.3 12.50 

 ≥100µm 140.0 20.41 

 ≥20µm 163.8 17.50 

 <180µm 363.8 33.26 

 <100µm 361.3 14.93 

 <20µm 385.0 40.62 

14 ≥180µm TNTC -- 

 ≥100µm 422.5 201.53 

 ≥20µm TNTC -- 

 <180µm 412.5 129.39 

 <100µm 450.0 171.10 

 <20µm 242.5 23.27 

36 ≥180µm TNTC -- 

 ≥100µm 715.0 14.14 

 ≥20µm TNTC -- 

 <180µm 361.3 115.35 

 <100µm 330.0 7.07 

 <20µm 306.3 119.12 
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Figure A-1. Total Vibrio concentrations over time for June 22nd (error bar = SE). 
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Table A-2.  Total Vibrio concentrations for July 7th. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

 
Figure A-2. Total Vibrio concentrations over time for July 7th (error bar = SE). 

 

Time 

(hours) 

Size 

Fraction 

Total Vibrio 

(CFU/100mL) 

Average 

n=4 St. Dev. 

0 ≥180µm 91.3 75.6 

 <180µm 316.3 131.4 

 <100µm 127.5 56.6 

 <20µm 200.0 146.7 

 Control 142.5 64.0 

4 ≥180µm 200.0 108.0 

 <180µm 481.3 284.8 

 <100µm 397.5 99.5 

 <20µm 483.8 65.1 

 Control 737.5 259.4 

8 ≥180µm 125.0 64.5 

 <180µm 331.3 61.6 

 <100µm 485.0 47.1 

 <20µm 440.0 56.7 

 Control 287.5 272.0 

12 ≥180µm 5375.0 368.6 

 <180µm 511.3 173.2 

 <100µm 426.3 152.3 

 <20µm 727.5 257.0 

 Control 625.0 405.2 

30 ≥180µm 15700.0 4413.6 

 <180µm 750.0 637.7 

 <100µm 2512.5 580.8 

 <20µm 637.5 616.9 

 Control 2425.0 907.8 
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Table A-3. Total Vibrio concentrations for July 15th. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 
Figure A-3. Total Vibrio concentrations over time for July 15th (error bar = SE). 

 

Time 

(hours) 

Size 

Fraction 

Total Vibrio 

(CFU/100mL) 

Average 

n=4 St. Dev. 

0 ≥180µm 226.3 25.9 

 <180µm 650.0 184.8 

 <100µm 556.3 117.4 

 <20µm 665.0 31.4 

 Control 596.3 242.5 

8 ≥180µm 2395.0 1103.6 

 <180µm 1250.0 488.7 

 <100µm 1387.5 401.7 

 <20µm 912.5 334.5 

 Control 1000.0 529.6 

24 ≥180µm 31250.0 10523.8 

 <180µm 5025.0 4098.1 

 <100µm 3775.0 963.1 

 <20µm 3000.0 1445.1 

 Control 18125.0 20282.9 

36 ≥180µm 19500.0 9037.0 

 <180µm 2000.0 1414.2 

 <100µm 27000.0 25459.1 

 <20µm 250.0 500.0 

 Control 5250.0 6116.9 

48 ≥180µm 23500.0 9609.0 

 <180µm 875.0 478.7 

 <100µm 17125.0 18957.7 

 <20µm 1250.0 1658.3 

 Control 34000.0 30843.7 
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Table A-4. Total Vibrio concentrations for July 20th. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

 

 
Figure A-4. Total Vibrio concentrations over time for July 20th (error bar = SE). 

 

Time 

(hours) 

Size 

Fraction 

Total Vibrio 

(CFU/100mL) 

Average 

n=4 St. Dev. 

0 ≥180µm 90.0 127.8 

 <180µm 1440.0 961.7 

 <100µm 1962.5 138.2 

 <20µm 2520.0 320.0 

 Control TNTC -- 

12 ≥180µm TNTC -- 

 <180µm TNTC -- 

 <100µm TNTC -- 

 <20µm TNTC -- 

 Control TNTC -- 

24 ≥180µm 27500.0 24839.5 

 <180µm 67000.0 16370.7 

 <100µm 36250.0 8995.4 

 <20µm 78500.0 2121.3 

 Control 204750.0 39651.6 

36 ≥180µm 14687.5 17511.2 

 <180µm 95937.5 50222.2 

 <100µm 35312.5 20851.0 

 <20µm 254666.7 299067.4 

 Control 176500.0 88925.1 

48 ≥180µm 90.0 127.8 

 <180µm 1440.0 961.7 

 <100µm 1962.5 138.2 

 <20µm 2520.0 320.0 

 Control 0 0 
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Table A-5. Total Vibrio concentrations for August 4th. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                      

           

 

 

              
Figure A-5. Total Vibrio concentrations over time for August 4th (error bar = SE). 

 

Time 

(hours) 

Size 

Fraction 

Total Vibrio 

(CFU/100mL) 

Average 

n=8 St. Dev. 

0 ≥180µm 417.5 167.1 

 <180µm 287.5 113.1 

 C 350.0 143.7 

6 ≥180µm 280.0 58.9 

 <180µm 386.7 142.9 

 C 417.5 228.6 

16 ≥180µm 120.0 36.5 

 <180µm 707.5 522.8 

 C 252.5 144.2 

24 ≥180µm 213.3 104.1 

 <180µm 543.3 377.0 

 C 360.0 329.1 

36 ≥180µm 206.7 53.2 

 <180µm 912.5 647.3 

 C 620.0 160.0 

48 ≥180µm 377.5 90.0 

 <180µm 2510.0 1044.0 

 C 1515.0 237.3 
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Table A-6. Total Vibrio concentrations for August 17th. 

 

 

 

 

 

 

 

 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

                     

 
Figure A-6. Total Vibrio concentrations over time for August 17th (error bar = SE). 

 

Time 

(hours) 

Size 

Fraction 

Total Vibrio 

(CFU/100mL) 

Average 

n=8 St. Dev. 

0 ≥180µm 422.5 170.6 

 <180µm 396.7 235.3 

 C 357.5 228.3 

6 ≥180µm 272.5 134.0 

 <180µm 441.7 202.2 

 C 697.5 678.2 

16 ≥180µm 391.7 252.2 

 <180µm 245.0 143.6 

 C 705.0 586.3 

24 ≥180µm 400.0 199.1 

 <180µm 760.0 683.2 

 C 647.5 716.9 

36 ≥180µm 737.5 646.6 

 <180µm 295.0 397.8 

 C 227.5 396.1 

48 ≥180µm 597.5 737.5 

 <180µm 491.3 179.3 

 C 562.5 741.8 



 

Appendix B. QPCR and V. vulnificus Concentrations 
 

V. vulnificus concentrations were quantified using QPCR.  V. vulnificus concentrations are quantified by creating a standard curve 

with known amounts of V. vulnificus and using the standard equation to calculate the amount of target cells/sample from cycle time values 

(CT values).   When V. vulnificus could not be quantified, non detect (ND) was entered.  See the following equation: 

 

Target cells / 100mL= (10^[(standard equation slope*sample CT value)+standard equation y-intercept])*dilution factor 

 

Table B-1. QPCR results for July 15th. 

 

Time 

(hour) 

Size 

Fractio

n 

Standard 

Equation 

R-

squared Efficiency 

CT value 

rep 1 

Ct value 

rep 2 

Average 

CT 

Target cells 

per 100mL 

0 ≥180a y = -0.294x + 13.711 0.991 0.97 35.67 37.41 36.54 9294.80 

 ≥180b y = -0.294x + 13.711 0.991 0.97 35.58 34.37 34.975 26813.28 

 <100b y = -0.315x + 14.05 0.993 1.07 ND 41.67 41.67 83.94 

8 <100a y = -0.315x + 14.05 0.993 1.07 38.96 ND 38.96 599.24 

24 ≥180a y = -0.294x + 13.711 0.991 0.97 29.56 29.52 29.54 2124564.87 

 ≥180b y = -0.294x + 13.711 0.991 0.97 30.87 31.15 31.01 785398.37 

 <180b y = -0.294x + 13.711 0.991 0.97 30.53 30.45 30.49 1145750.34 

 <100a y = -0.315x + 14.05 0.993 1.07 ND 37.34 37.34 3880.88 

 <100b y = -0.315x + 14.05 0.993 1.07 41.85 ND 41.85 147.33 

36 ≥180a y = -0.294x + 13.711 0.991 0.97 32.78 32.6 32.69 251866.26 

 ≥180b y = -0.294x + 13.711 0.991 0.97 30.35 30.63 30.49 1116786.09 

 <180a y = -0.294x + 13.711 0.991 0.97 34.29 34.78 34.535 72233.72 

 <100b y = -0.315x + 14.05 0.993 1.07 ND 35.59 35.59 13809.56 

 Controlb y = -0.294x + 13.711 0.991 0.97 31.46 31.23 31.345 626036.99 

48 ≥180a y = -0.294x + 13.711 0.991 0.97 32.46 32.69 32.575 626036.99 

 ≥180b y = -0.294x + 13.711 0.991 0.97 31.63 31.13 31.38 626036.99 

 <180a y = -0.294x + 13.711 0.991 0.97 33.98 33.38 33.68 626036.99 

 <180b y = -0.294x + 13.711 0.991 0.97 36.88 34.41 35.645 626036.99 

 <100a y = -0.315x + 14.05 0.993 1.07 36.74 38.73 37.735 2914.10 

 Controlb y = -0.294x + 13.711 0.991 0.97 31.3 31.48 31.39 607253.46 

ND = None Detect 
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Figure B-1. Total Vibrio and V. vulnificus concentrations over time for July 15th (error 

bar = SE). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table B-2. QPCR results for August 4th. 

Time 

(hour) 

Size 

Fraction Standard Equation 

R-

squared Efficiency 

CT value 

rep 1 

CT value 

rep 2 

Average 

CT 

Target cells 

per 100mL 

36 <180a y = -0.306x + 14.088 0.99 1.02 37.54 ND 37.54 7976.09 
 Controla y = -0.306x + 14.088 0.99 1.02 ND 38.81 38.81 3259.64 

48 ≥180b y = -0.306x + 14.088 0.99 1.02 32.07 32.72 32.395 299336.72 
 <180a y = -0.306x + 14.088 0.99 1.02 ND 35.93 35.93 24799.90 
 <180b y = -0.306x + 14.088 0.99 1.02 30.97 30.6 30.785 930722.03 
 Controla y = -0.306x + 14.088 0.99 1.02 31.78 32.14 31.96 406696.09 
 Controlb y = -0.306x + 14.088 0.99 1.02 35.02 34.42 34.72 58171.46 

ND = None Detect 

 

 
Figure B-2. Total Vibrio and V. vulnificus concentrations over time for August 4th (error bar = SE).
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Appendix C. Chlorophyll a Concentrations and Phytoplankton 

 

Chlorophyll a concentrations were measure using a fluorometer.  Output from 

the fluorometer was then converted into µg of chlorophyll a / 1L of sample using the 

following equation: 

 

Chlorophyll a (µg/L) = output * [volume extracted (L)/volume filtered (L)] 

 

See Tables C-1, C-2, C-3 and C-4 for chlorophyll a data for July 15th, July 20th, August 4th 

and August 17th respectively. 

 

Table C-1. Chlorophyll a concentrations for July 15th. 

Time Sample   
Volume (L) 

Fluorometer  
Value Chlorophyll a 

Filtered Extracted (µg/L) (µg/L) 
0 ≥180a 0.050 0.01 23.25 4.65 
 ≥180b 0.050 0.01 27.79 5.56 
 <180a  0.050 0.01 70.5 14.10 
 <180b 0.050 0.01 65.93 13.19 
 Ca  0.050 0.01 -- -- 
 Cb 0.050 0.01 38.59 7.72 
24 ≥180a 0.050 0.01 27.61 5.52 
 ≥180b 0.050 0.01 26.45 5.29 
 <180a  0.050 0.01 79.19 15.84 
 <180b 0.050 0.01 85.34 17.07 
 Ca  0.050 0.01 105.4 21.08 
 Cb 0.050 0.01 22.3 4.46 
36 ≥180a 0.050 0.01 20.19 4.04 
 ≥180b 0.050 0.01 17.3 3.46 
 <180a  0.050 0.01 71.89 14.38 
 <180b 0.050 0.01 72.2 14.44 
 Ca  0.050 0.01 126.4 25.28 
 Cb 0.050 0.01 31.8 6.36 
48 Ca 0.050 0.01 16.71 3.34 
 ≥180a 0.050 0.01 125.3 25.06 
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Figure C-1. Chlorophyll a concentrations over time for July 15th (error bar = SE). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 49

 

 

Table C-2. Chlorophyll a concentrations for July 20th. 

 

Time Sample  
Volume (L) 

Fluorometer 
Value Chlorophyll a 

Filtered Extracted  (µg/L) (µg/L) 
0 ≥180a 0.050 0.01 30.89 6.18 
 ≥180b 0.050 0.01 26.27 5.25 
 <180a  0.050 0.01 129.6 25.92 
 <180b 0.050 0.01 77.29 15.46 
24 ≥180a 0.050 0.01 41.34 8.27 
 ≥180b 0.050 0.01 59.09 11.82 
 <180a  0.050 0.01 147.1 29.42 
 <180b 0.050 0.01 148.8 29.76 
36 ≥180a 0.050 0.01 31.15 6.23 
 ≥180b 0.050 0.01 46.27 9.25 
 <180a  0.050 0.01 167.4 33.48 
 <180b 0.050 0.01 162.3 32.46 
48 ≥180a 0.050 0.01 30.2 6.04 
 ≥180b 0.050 0.01 41.19 8.24 
 <180a  0.050 0.01 168.6 33.72 
 <180b 0.050 0.01 153 30.60 

 

 

 

 

                   

 
Figure C-2.  Chlorophyll a concentration over time for July 20th (error bar = SE). 
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Table C-3. Chlorophyll a concentrations for August 4th. 

Time Sample  
Volume (L) 

Fluorometer 
Value Chlorophyll a 

Filtered Extracted (µg/L) (µg/L) 
0 ≥180a 0.050 0.01 57.53 11.51 
 ≥180b 0.050 0.01 57.81 11.56 
 <180a  0.050 0.01 63.24 12.65 
 <180b 0.050 0.01 62.49 12.50 
 Ca  0.050 0.01 72.52 14.50 
 Cb 0.050 0.01 72.8 14.56 
6 ≥180a 0.050 0.01 65.47 13.09 
 ≥180b 0.050 0.01 64.31 12.86 
 <180a  0.050 0.01 67.96 13.59 
 <180b 0.050 0.01 65.43 13.09 
 Ca  0.050 0.01 74.24 14.85 
 Cb 0.050 0.01 75.31 15.06 
16 ≥180a 0.050 0.01 63.25 12.65 
 ≥180b 0.050 0.01 57.67 11.53 
 <180a  0.050 0.01 67.05 13.41 
 <180b 0.050 0.01 61.55 12.31 
 Ca  0.050 0.01 35.65 7.13 
 Cb 0.050 0.01 70.69 14.14 
24 ≥180a 0.050 0.01 35.76 7.15 
 ≥180b 0.050 0.01 28.8 5.76 
 <180a  0.050 0.01 64.01 12.80 
 <180b 0.050 0.01 33.39 6.68 
 Ca  0.050 0.01 20.85 4.17 
 Cb 0.050 0.01 64.75 12.95 
36 ≥180a 0.050 0.01 54.46 10.89 
 ≥180b 0.050 0.01 56.38 11.28 
 <180a  0.050 0.01 58.88 11.78 
 <180b 0.050 0.01 56.04 11.21 
 Ca  0.050 0.01 62.02 12.40 
 Cb 0.050 0.01 64.3 12.86 
48 ≥180a 0.050 0.01 57.82 11.56 
 ≥180b 0.050 0.01 53.09 10.62 
 <180a  0.050 0.01 59.89 11.98 
 <180b 0.050 0.01 60.35 12.07 
 Ca  0.050 0.01 61.93 12.39 
 Cb 0.050 0.01 66.81 13.36 
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Figure C-3. Chlorophyll a concentrations over time for August 4th (error bar = SE). 
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Table C-4. Chlorophyll a concentrations for August 17th. 

 

Time Sample  
Volume (L) 

Fluorometer  
Value Chlorophyll a 

Filtered Extracted (µg/L) (µg/L) 
0 ≥180a 0.050 0.01 91.57 18.31 
 ≥180b 0.050 0.01 89.75 17.95 
 <180a  0.050 0.01 75.37 15.07 
 <180b 0.050 0.01 71.38 14.28 
 Ca  0.050 0.01 91.06 18.21 
 Cb 0.050 0.01 95.61 19.12 
6 ≥180a 0.050 0.01 80 16.00 
 ≥180b 0.050 0.01 86.87 17.37 
 <180a  0.050 0.01 75.34 15.07 
 <180b 0.050 0.01 69.5 13.90 
 Ca  0.050 0.01 84.28 16.86 
 Cb 0.050 0.01 86.41 17.28 
16 ≥180a 0.050 0.01 80.91 16.18 
 ≥180b 0.050 0.01 78.13 15.63 
 <180a  0.050 0.01 72.41 14.48 
 <180b 0.050 0.01 71.34 14.27 
 Ca  0.050 0.01 76.8 15.36 
 Cb 0.050 0.01 81.52 16.30 
24 ≥180a 0.050 0.01 66.25 13.25 
 ≥180b 0.050 0.01 70.25 14.05 
 <180a  0.050 0.01 85.03 17.01 
 <180b 0.050 0.01 85.89 17.18 
 Ca  0.050 0.01 89.94 17.99 
 Cb 0.050 0.01 83.98 16.80 
36 ≥180a 0.050 0.01 81.12 16.22 
 ≥180b 0.050 0.01 81.94 16.39 
 <180a  0.050 0.01 71.04 14.21 
 <180b 0.050 0.01 69.44 13.89 
 Ca  0.050 0.01 82.59 16.52 
 Cb 0.050 0.01 82.79 16.56 
48 ≥180a 0.050 0.01 84.52 16.90 
 ≥180b 0.050 0.01 84.77 16.95 
 <180a  0.050 0.01 71.47 14.29 
 <180b 0.050 0.01 74.54 14.91 
 Ca  0.050 0.01 84.84 16.97 
 Cb 0.050 0.01 81.5 16.30 
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Figure C-4. Chlorophyll a concentrations over time August 17th (error bar = SE). 

 

 

 

 

 

 

 

 



 

In addition to chlorophyll a concentrations, phytoplankton populations were also estimated by microscopic 

enumeration.  50mL of sample was added into brown bottles with an overall 1% lugols solution to preserve and stain the 

phytoplankton.  18mL subsamples were then added into settling chambers for 24 hours.  Phytoplankton groups were then 

counted for 10 microscopic fields.  Groups enumerated include diatoms, dinoflagellates, cyanobacteria and 

chlorophytes/cryptophytes/other.   

 

Table C-5.  Microscopic Phytoplankton Counts 

* <100µm instead of <180µm for July samples. 
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Count 

n=10 Percent  

Count 

n=10 Percent  

Count 

n=10 Percent 

7.7* 4.06e5 7.2 2 84.8 6  8.27e5 17.8 1.1 76.5 4.6       

7.15* 5.58e5      1.34e6           

7.20* 3.65e5      6.49e5           

8.4 7.54e5 2.2 3.5 78.2 16.1  6.85e5 6.4 3.4 72.8 17.4  6.57e5 7.8 4.1 74.3 14.0 

8.17 8.27e5 50.3 7.1 9.1 33.5  6.76e5 60.7 7.9 4.6 26.8  7.10e5 53.5 9.6 4.6 32.3 
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Figure C-5.  Percent Phytoplankton Composition 
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Appendix D – Statistical Analysis 

 

Statistical analyses were conducted in Excel and SAS.  Total Vibrio and V. 

vulnificus concentrations were log transformed for data analysis.  Total Vibrio 

concentrations were also converted into log growth measures using the following 

formula: 

log growth =  log (concentration at time X / concentrations at time 0).   

 

Data was then examined for normality.  All data was found to be normally distributed 

except for the log transformed total Vibrio concentrations for June/July.  Parametric 

analyses, including independent two-tailed, two sample t-tests and Pearson correlation 

coefficient, were used for normally distributed data.   Samples not normally distributed 

were analyzed using nonparametric methods, including wilcoxon-mann-whitney two-

sample test and Spearman correlation coefficient.  The t-test and wilcoxon-mann-

whitney test compare the means of two populations.  The Pearson and Spearman 

correlation coefficient compares the variation of the linear relationship between two 

populations.   

 

Table D-1. Statistical analyses. 

Question Statistical Method Result 

Are total Vibrio 

concentrations initially 

different between the 

≥180µm, <180µm and 

control? 

June/July: wilcoxon-

mann-whitney two-

sample Z statistic 

August: independent 

t-test statistic 

June/July: 

≥180 & <180: Yes (p=0.0001) 

≥180 & Control: Yes (p=0.037) 

<180 & Control: No 

August: 

≥180 & <180: No 

≥180 & Control: No 

<180 & Control: No 

Do total Vibrio 

concentrations grow 

differently over time 

between the ≥180µm, 

<180µm and control?  

June/July: 

independent t-test 

statistic 

August: independent 

t-test statistic 

June/July: 

≥180 & <180: Yes (p<0.0001) 

≥180 & Control: Yes (p=0.004) 

<180 & Control: Yes (p=0.009) 

August: 

≥180 & <180: No  

≥180 & Control: Yes (p=0.038) 

<180 & Control: Potentially 

(p=0.063) 

Do V. vulnificus 

concentrations correlate 

with total Vibrio 

concentrations? 

June/July: Spearman 

correlation coefficient 

August: Pearson 

correlation coefficient 

June/July: Yes (0.003) 

August: No 

 

Are initial chlorophyll a 

concentrations different 

between the ≥180µm, 

<180µm and control? 

June/July: 

independent t-test 

statistic 

August: independent 

June/July: 

≥180 & <180: Yes (p=0.028) 

≥180 & Control: N/A 

<180 & Control: N/A 
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t-test statistic August: 

≥180 & <180: No 

≥180 & Control: No 

<180 & Control: No 

Do total Vibrio 

concentrations correlate 

with chlorophyll a 

concentrations? 

June/July: Spearman 

correlation coefficient 

August: Pearson 

correlation coefficient 

June/July: Yes (p=0.021) 

August: No 

 

Is total Vibrio growth 

correlated with 

chlorophyll a 

concentrations? 

June/July: Spearman 

correlation coefficient 

August: Pearson 

correlation coefficient 

June/July: No 

August: Yes (0.002) 

 

Is total Vibrio growth 

correlated with time? 

June/July: Spearman 

correlation coefficient 

August: Pearson 

correlation coefficient 

June: Yes (p<0.0001) 

August: Yes (p<0.0001) 

 

 

 

 

 



 58

Works Cited 

 

Apple, J. K., Smith, E. M., & Boyd, T. J. (2008}). Temperature, salinity, nutrients, and the 

covariation of bacterial production and chlorophyll-a in estuarine ecosystems. 

Journal of Coastal Research, Sp. Iss. 55, 59-75 

Austin, B., Zhang, X. (2006). Vibrio harveyi: a significant pathogen of marine 

invertebrates and invertebrates. Letters in Applied Microbiology. 43, 119-124. 

Ben-Haim, Y., and Rosenberg, E. (2002). A novel Vibrio sp. Pathogen of the coral 

Pocillopra damicornis. Marine Biology. 141, 47-55. 

Blackwell, K., & Oliver, J. (2008). The ecology of vibrio vulnificus, vibrio cholerae , and 

vibrio parahaemolyticus in North Carolina estuaries. The Journal of Microbiology, 

46(2), 146-153.  

CDC, 2006. Sμmmary of hμman Vibrio isolates reported to CDC, 2006. Accessed online at 

http://www.cdc.gov/nationalsurveillance/PDFs/CSTEVibrio2006website.pdf. 

Accessed on 12/1/2008.   

Choopun, N., Louis, V., Huq, A., & Colwell, R. (2002). Simple procedure for rapid 

identification of vibrio cholerae from the aquatic environment.  Applied & 

Environmental Microbiology, , 68(2), 995-998.  

de Magny, G. C., Murtugudde, R., Sapiano, M. R. P., Nizam, A., Brown, C. W., Busalacchi, A. 

J., et al. (2008). Environmental signatures associated with cholera epidemics. 

Proceedings of the National Academy of Sciences of the United States of America, 

105(46), 17676-17681.  

Eiler, A., Gonzalez-Rey, C., Allen, S., & Bertilsson, S. (2007). Growth response of vibrio 

cholerae and other vibrio spp. to cyanobacterial dissolved organic matter and 

temperature in brackish water. FEMS Microbiology Ecology, 60(3), 411-418.  

Eiler, A., Johansson, M., Bertilsson, S., (2006). Environmental influences on Vibrio 

populations in northern temperate and boreal coastal waters (Baltic and Skagerrak 

Seas). Applied and Environmental Microbiology. 72(9), 6004-6011.  

Fernández-Delgado, M., García-Amado, M. A., Contreras, M., Edgcomb, V., Vitelli, J., 

Gueneau, P., et al. (2009). Vibrio cholerae non-O1, non-O139 associated with 

seawater and plankton from coastal marine areas of the caribbean sea. 

International Journal of Environmental Health Research, 19(4), 279-289.  

Fries, J., Characklis, G., Noble, R. (2008). Sediment-water exchange of Vibrio sp. And 

fecal indicator bacterial: Implications for persistence and transport in the Neuse 

River Estuary, North Carolina, USA. Water Research. 42, 941-950.  



 59

Fries, J., Noble, R., Kelly, G., Hsieh, J. (2007). Storm impacts on potential pathogens in 

estuaries. EOS 88(8)., 93-95. 

Han, F., Pu, S., Hou, A., & Ge, B. (2009). Characterization of clinical and environmental 

types of vibrio vulnificus isolates from louisiana oysters. Foodborne Pathogens and 

Disease 6(10), 1251-1258 

Harwood, V., Gandhi, J., & Wright, A. (2004). Methods for isolation and confirmation of 

vibrio vulnificus from oysters and environmental sources: A review.  Journal of 

Microbiological Methods, 59(3), 301-316 

Haugland, R., Siefring, S., Wymer, L., Brenner, K., Dufour, A. (2005). Comparison of 

Enterococcus measurements in freshwater at two recreational beaches by 

quantitative polymerase chain reaction and membrane filter culture analysis. 

Water Research. 39(4), 559-568. 

Houghton, J., Ding, Y., Griggs, D., Noguer, M., van der Linden, P., Xiaosu, D. (2001). 

Climate change 2001: the scientific basis. Contribution of working group I to the 

third assessment report of the Intergovernmental Panel on Climate Change. 

Cambridge University Press, Cambridge, UK.  

Hsieh, J. L., Fries, J. S., & Noble, R. T. (2008). Dynamics and predictive modelling of vibrio 

spp. in the neuse river estuary, north carolina, USA. Environmental Microbiology, 

10(1), 57-64.  

Hsieh, J. L., Fries, J. S., & Noble, R. T. (2007). Vibrio and phytoplankton dynamics during 

the summer of 2004 in a eutrophying estuary. Ecological Applications, 17(5, Suppl. 

S), S102-S109 

Hunt, D. E., Gevers, D., Vahora, N. M., & Polz, M. F. (2008). Conservation of the chitin 

utilization pathway in the vibrionaceae. Applied & Environmental Microbiology, 

74(1), 44-51. doi:10.1128/AEM.01412-07  

Huq, A., Small, E., West, P., Huq, M., Rahman, R., & Colwell, R. (1983). Ecological 

relationships between Vibrio cholera and planktonic crustacean copepods. 

Applied and Environmental Microbiology, 45(1), 275-283. 

Islam, M., Drasar, B., Sack, R., (1994). The aquatic flora and fauna as reservoirs of Vibrio 

cholera – a review. Journal of Diarrhoeal Diseases Research. 12(2), 87-96.  

Kaspar, C., & Tamplin, M. (1993). Effects of temperature and salinity on the survival of 

Vibrio vulnificus in seawater and shellfish.  Applied and Environmental 

Microbiology, 59(8), 2425-2429. 



 60

Kogure, K., Simidu, U., Taga, N. (1980). Effect of phyto- and zooplankton on the growth 

of marine bacteria in filtered seawater. Bulletin of the Japanese Society of 

Scientific Fisheries. 46(3), 323-326.  

Li, X., & Roseman, S. (2004).  The chitinolytic cascade in Vibrios is regulated by chitin 

oligosaccharides and a two-component chitin catabolic sensor/kinase. PNAS, 

101(2), 627-631 

Lipp, E., Huq, A., & Colwell, R. (2002). Effects of global climate on infectious disease: The 

cholera model. Clinical Microbiology Reviews, 15(4), 757.  

Lipp, E., Rodriguez-Palacios, C., & Rose, J. (2001}). Occurrence and distribution of the 

human pathogen vibrio vulnificus in a subtropical gulf of mexico estuary. 

Hydrobiologia, 460}, 165-173. 

Longnecker, K., Wilson, M. J., Sherr, E. B., & Sherr, B. F. (2010}). Effect of top-down 

control on cell-specific activity and diversity of active marine bacterioplankton. 

Aquatic Microbial Ecology, 58(2), 153-165. 

Lotz, M., Tamplin, M., Rodrick, G., (1983). Thiosulfate-citrate-bile-salts-sucrose agar and 

its selectivity for clinical and marine vibrios. Annals of Clinical Laboratory Science. 

13 (1), 45-48. 

Mallin, M. (1991) Zooplankton abundance and community structure in a mesohaline 

North Carolina estuary. Estuaries, 14(4), 481-488. 

Massad, G., & Oliver, J. (1987). New selective and differential medium for Vibrio cholera 

and Vibrio vulnificus. Applied and Environmental Microbiology, 53(9), 2262-2264.  

Maugeri, T. L., Carbone, M., Fera, M. T., & Gugliandolo, C. (2006). Detection and 

differentiation of vibrio vulnificus in seawater and plankton of a coastal zone of the 

mediterranean sea. Research in Microbiology, 157(2), 194-200.  

Montanari, M. P., Pruzzo, C., Pane, L., & Colwell, R. R. (1999). Vibrios associated with 

plankton in a coastal zone of the adriatic sea (italy). FEMS Microbiology Ecology, 

29(3), 241-247.  

Mourino-Perez, R., Worden, A., Azam, F., (2003). Growth of Vibrio cholera 01 in red tide 

waters of California. Applied and Environmental Microbiology. 69 (11), 6923-6931.  

Noble, R., & Fuhrman, J. (1998). Use of SYBR green I for rapid epifluorescence counts of 

marine viruses and bacteria. Aquatic Microbial Ecology, 14(2), 113-118.  

Oliver, J. (2005). Vibrio vulnificus. In Belkin, S., and Colwell, R., Oceans and Health: 

Pathogens in the Marine Environment. New York, NY: Springer Science. 



 61

Oliver, J. D., Warner, R. A., & Cleland, D. R. (1982). Distribution and ecology of vibrio 

vulnificus and other lactose-fermenting marine vibrios in coastal waters of the 

southeastern united states. Applied and Environmental Microbiology, 44(6), 1404-

1414.  

Paerl, H., Valdes-Weaver, L, Joyner, A., Winklemann, V. (2007). Phytoplankton indicators 

of ecological change in eutrophying Pamlico Sound system, North Carolina.  

Ecological Applications, 17(S), S88-S101.   

Paz, S., Bisharat, N., Paz, E., Kidar, O., & Cohen, D. (2007). Climate change and the 

emergence of vibrio vulnificus disease in israel. Environmental Research, 103(3), 

390-396.  

Pfeffer, C. S., Hite, M. F., & Oliver, J. D. (2003). Ecology of vibrio vulnificus in estuarine 

waters of eastern North Carolina. Applied & Environmental Microbiology, 69(6), 

3526.  

Pruzzo, C., Tarsi, R., Lleo, M., Signoretto, C., Zampini, M., Pane, L., et al. (2003). 

Persistence of adhesive properties in vibrio cholerae after long-term exposure to 

sea water. Environmental Microbiology, 5(10), 850-858.  

Pruzzo, C., Vezzulli, L., & Colwell, R. R. (2008). Global impact of vibrio cholerae 

interactions with chitin. Environmental Microbiology, 10(6), 1400-1410.  

Randa, M. A., Polz, M. F., & Lim, E. (2004). Effects of temperature and salinity on vibrio 

vulnificus population dynamics as assessed by quantitative PCR. Applied and 

Environmental Microbiology, 70(9), 5469-5476.  

Rehnstam-Holm, A., Godhe, A., Harnstrom, K., Raghunath, P., Saravana, V., Collin, B., 

Karunasagar, I., Karunasagar, I., (2010). Association between phytoplankton and 

Vibrio spp. along the southwest coast of India: a mesocosm experiment. Aquatic 

Microbial Ecology. 58, 127-139.  

Tamplin, M., Rodrick, G. E., Blake, N. J., & Cuba, T. (1982). Isolation and characterization 

of vibrio vulnificus from two florida estuaries. Applied and Environmental 

Microbiology, 44(6), 1466-1470.  

Tamplin, M. L. (1990). Attachment of vibrio cholerae serogroup O1 to zooplankton and 

phytoplankton of bangladesh waters. Applied and Environmental Microbiology, 

56(6), 1977.  

Todd, E., (1989). Cost of acute bacterial foodborne disease in Canada and the United 

States. International Journal of Food Microbiology. 9, 313-326. 



 62

Turner, J. W., Good, B., Cole, D., & Lipp, E. K. (2009). Plankton composition and 

environmental factors contribute to vibrio seasonality.  ISME Journal, 3(9), 1082-

1092. 

Warner, E., & Oliver, J. D. (2008). Population structures of two genotypes of vibrio 

vulnificus in oysters (crassostrea virginica) and seawater. Applied & Environmental 

Microbiology, 74(1), 80-85. doi:10.1128/AEM.01434-07  

West, P. (1989). The human pathogenic Vibrios – A public health update with 

environmental perspectives.  Epidemiology and Infection, 103(1), 1-34.   

West, P., Russek, E., Brayton, P., & Colwell, R. (1982).  Statistical evaluation of a quality-

control method for isolation of pathogenic Vibrio species on selected thiosulfate-

citrate-bile-salts sucrose agars.  Journal of Clinical Microbiology, 16(6), 1110-1116.   

Wetz, J. J., Blackwood, A. D., Fries, J. S., Williams, Z. F., & Noble, R. T. (2008). Trends in 

total vibrio spp. and vibrio vulnificus concentrations in the eutrophic neuse river 

estuary, north carolina, during storm events. Aquatic Microbial Ecology, 53(1) 141-

149. 

WHO, 2006.  Weekly epidemiological record. (2006) 81, 297-308. Assessed online at 

http://www.who.int/wer/2006/wer8131.pdf.  Assessed on 11/30/2009. 

Worden, A., Seidel, M., Smriga, S., Wick, A., Malfatti, F., Bartlett, D., & Azam, F. (2006). 

Trophic regulation of Vibrio cholera in coastal marine waters. Environmental 

Microbiology, 8(1), 21-29. 

Wright, A., Hill, R., Johnson, J., Roghman, M., Colwell, R., & Morris, J. (1996). Distribution 

of vibrio vulnificus in the Chesapeake Bay. Applied and Environmental Microbiology, 

62(2), 717-724.  

Wright, A., Miceli, G., Landry, W., Christy, J., Watkins, W., Morris, J., (1993). Rapid 

identification of Vibiro vulnificus on nonselective media with an alkaline 

phosphate-labeled oligonucleotide probe. Applied and Environmental Microbiology. 

59 (2), 541-546.  


