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Abstract 
 

KAREN REIDY LANE: Changes in Protein Abundance are Essential for Proper 
Cell Cycle Regulation 

(Under the direction of Jeanette Gowen Cook) 
 

 
 In order for a cell to successfully complete the cell cycle, the cell must 

accurately duplicate its DNA in a timely and precise manner. One way the cell 

controls this process is by regulating the formation of the pre-replication complex 

(pre-RC) and S phase entry through fluctuations in protein abundance. Two 

proteins essential for pre-RC formation, Cdc6 and Cdt1, peak at different phases 

of the cell cycle; this results in two small windows when pre-RC formation can 

occur. While this regulation of the cell cycle has been very well studied, how 

other processes are regulated during the cell cycle are not well known. We used 

SILAC mass spectrometry to identify biological processes whose regulation may 

have a cell cycle component. We showed that RNA processing, in particular 

alternative splicing, is regulated during S phase. Additionally, we looked for 

genes whose transcription is altered when cells undergo re-replication, as 

regulation of these proteins may play a role in transformation, genome stability, 

or tumorigenesis. By identifying a re-replication gene expression signature, we 

can identify tumor types that are undergoing re-replication. Identification of this 

signature in human tumors may enhance diagnostics and prognosis, as these 

tumor types may benefit from a particular type of chemotherapeutic. Because a 
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successful division involves the cooperation of many biological processes, the 

identification of proteins that are regulated in a cell cycle manner or in response 

to a particular form of DNA damage, re-replication, could result in novel targets 

for chemotherapeutics and biomarkers. 
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Chapter 1 

 

Introduction1 

 

Introduction 

 {DNA replication is a fundamental biological process that serves to create 

two copies of the genetic material during each cell division. Complete and 

precise replication enables identical sets of genes to be faithfully delivered to 

daughter cells during each cell division. To achieve rapid duplication of the entire 

genome, eukaryotic cells initiate DNA replication at multiple locations on each 

chromosome termed origins of DNA replication. Origin DNA is unwound and 

complementary DNA is then synthesized from bi-directionally moving replication 

forks. The replication forks eventually merge to form two identical chromosomes. 

 The cell expends tremendous energy ensuring that a single origin of 

replication does not initiate replication twice within the same cell cycle. One of 

the most highly regulated steps in DNA replication is assembly of pre-replication 

complexes (pre-RCs). Pre-RC assembly begins as cells exit mitosis and 

continues through G1 phase, culminating in chromosomes poised for replication 

by the end of G1. At the onset of S phase, origins fire and replication begins. 

                                                
1{Portions of the following appear in: Regulation of DNA Replication Origin Licensing 
Chandrasekaran, S., Reidy, K.T., and Cook, J.G. (2011) in Fundamental Aspects of DNA 
Replication, J. Kusic-Tisma, ed. (Rijeka, Croatia; Intech Open Access Publisher).} 
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During this time, several overlapping mechanisms prevent pre-RC assembly on 

origins that have already fired to avoid utilizing any origins twice. 

An abnormal situation in which replication is triggered multiple times from the 

same origin during a single cell cycle is termed re-replication (Figure 1.1). Re-

replication is detrimental to genome stability in part, because it generates 

multiple replication forks on the same DNA strand. Ultimately such structures 

result in double strand breaks, genome instability, and in some cases, 

tumorigenesis [2-5].} 

 

Pre-RC formation is limited to G1 phase of the cell cycle 

 {To faithfully replicate its genomic information in a timely manner, a 

cell must initiate replication at thousands of sites across the genome. These 

origins of replication are prepared for replication through assembly of pre-RCs 

beginning in late mitosis and continuing through G1 phase of the cell cycle. 

Origins with a fully assembled pre-RC are said to be “licensed” for replication. It 

is essential that origins assemble pre-RCs only in G1 because assembly of pre-

RCs in S or G2 can lead to re-replication. 

 Pre-RC assembly begins when the six-subunit origin recognition complex 

(ORC) binds to an origin of replication (Figure 1.2). ORC is composed of the 

constitutively expressed subunits Orc2-6, as well as the cell cycle-regulated Orc1 

protein, and acts as an ATPase [6-9]. Once bound to origins, ORC recruits the 

remaining licensing factors Cdc6 and Cdt1 to origins [10,11]. 

 Cdc6 was discovered in Saccharomyces cerevisiae and is essential for  
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Figure 1.1. Re-replication leads to double strand breaks. In a normal 
replicating cell (left), origins are licensed only in G1 phase (indicated by the 
green diamonds). Replication begins in S phase, and origins are inhibited from 
firing again (indicated by the red diamonds); replication is completed by G2 
phase. In re-replicating cells [1], origins are licensed again in either S or G2 
phase, leading to origin re-firing and re-replicated stretches of DNA. The 
consequences of re-replication include DNA damage, genome instability, and 
tumorigenesis. 
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DNA replication; if Cdc6 is absent, yeast cells not only fail to replicate but also 

undergo reductional anaphase in which mitosis initiates without genome 

replication [12-14]. Cdc6 is a member of the AAA+ ATPase family, and is closely 

related to Orc1 [15,16]. ATP hydrolysis by Cdc6 and ORC is needed to load the 

helicase complex onto DNA [8,17-21]. Due to its tight association with ORC and 

its partially conserved DNA binding domain, it has been suggested that Cdc6 

may also play a role in defining ORC binding sites [22]. 

 Cdt1 was first discovered in Schizosaccharomyces pombe and, while 

possessing no enzymatic activity, is essential for the licensing reaction [11,23]. 

Cdt1 binds the core replicative helicase Mini-Chromosome Maintenance (MCM) 

complex and recruits MCM to origins through direct interactions with ORC and 

Cdc6 [24-27]. While both Cdc6 and Cdt1 are needed to load the MCM complex, 

they bind in a sequential manner; Cdt1 can only bind to chromatin-bound Cdc6 

and ORC [28]. Both Cdc6 and ORC hydrolyze ATP to load MCM complexes onto 

DNA [17]. ATP hydrolysis by Cdc6 also releases Cdt1 to recruit additional MCM 

complexes [17]. Once MCM complexes are loaded, the origin is licensed and can 

initiate replication once the MCM helicase is activated in S phase. After MCM 

complexes have been loaded, ORC, Cdc6, and Cdt1 are no longer needed, and 

replication can continue in their absence [20,29,30]. This property of the loaded 

MCM complex is key to preventing re-replication because, as will be discussed 

below, ORC, Cdc6, and Cdt1 are inactivated beginning in S phase.  

 At each origin, at least two MCM hexamer complexes are loaded at a time, 

with multiple rounds of loading at each origin [31-34]. The exact mechanism of 
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Figure 1.2. Pre-RC assembly in G1 phase. Pre-RC assembly begins when the 
Origin Recognition Complex (ORC) binds to origin DNA. ORC recruits Cdc6, 
which in turn recruits Cdt1 bound to the Mini-chromosome Maintenance (MCM) 
core helicase complex. Through the ATPase activity of ORC and Cdc6, the MCM 
complex is loaded onto DNA and the origin is licensed for replication. 
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MCM loading is not currently understood, but electron microscopy images 

suggest ORC and Cdc6 form a structure similar to known clamp loaders such as 

RFC [35,36]. While multiple MCM complexes can be loaded at each origin, 

perhaps as many ten copies per origin, the majority of the MCM complexes that 

associate with chromatin do not travel with the replication fork suggesting that 

they are not normally activated [33,37,38]. These additional MCM complexes 

may be loaded as a backup mechanism to ensure that a sufficient number of 

origins fire in S phase [39]. 

 MCM loading is highly regulated by multiple overlapping mechanisms. Cdc6 

and Cdt1 protein levels peak at different stages of the cell cycle; Cdt1 levels peak 

in G1 phase whereas Cdc6 peaks in S/G2 phase in mammalian cells [11,40]. 

Additionally, a member of the ORC complex, Orc1, is degraded or inactivated at 

the onset of S phase [9,41,42]. 

Due in part to these alternating protein levels, there are only two short 

windows in the cell cycle when pre-RC formation can occur. Pre-RC assembly 

begins at the end of mitosis, before the Anaphase Promoting 

Complex/Cyclosome (APC/C) becomes active in G1, and targets Cdc6 for 

degradation. The second round of pre-RC assembly occurs in late G1 phase 

when activated Cdk2 stabilizes Cdc6 but before Cdt1 is degraded at the onset of 

S phase [43]. Furthermore, the MCM subunits undergo post-translational 

modifications that facilitate MCM complex formation as well as their ability to be 

loaded onto DNA [44,45]. These mechanisms will be discussed in depth in the 
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subsequent sections with specific emphasis on the regulation of metazoan pre-

RC assembly.} 

 

Pre-RC assembly is regulated by the Cyclin dependent kinases 

 {Cyclin-dependent kinases (Cdks) are a family of serine-threonine protein 

kinases essential for timely and appropriate progression through different stages 

of the cell cycle. Cdks are activated by association with cyclins whose expression 

and stability are cell cycle-regulated. In budding and fission yeast, a single Cdk 

controls the G1/S and G2/M transitions, while in metazoans different Cdks are 

active in different phases of the cell cycle (Figure 1.3, reviewed in [46]). In 

metazoans, passage through G1 phase is governed by cyclin D/Cdk4 (or cyclin 

D/Cdk6) and cyclin E/Cdk2 [47,48]. S phase, and therefore DNA replication, is 

regulated by cyclin A/Cdk2 complexes [49]. Finally, mitotic entry is triggered by 

Cdk1 first binding to cyclin A and then cyclin B. 

DNA replication is both positively and negatively governed by Cdk activity. 

High Cdk2 and Cdk1 activities, which are found from early S phase through mid-

mitosis, block pre-RC assembly; thus pre-RC assembly begins as cells exit from 

mitosis when these kinases are not active. Cyclin E protein peaks in early S 

phase, triggering Cdk2 activity and replication initiation from licensed origins; 

replication begins also with the help of a dedicated replication kinase, Cdc7/Dbf4 

[32,50]. Simultaneously, S phase Cdk activity inhibits pre-RC formation at origins 

that have already fired. Premature expression of cyclins E or A during G1 phase 

blocks normal pre-RC assembly [49,51]. Thus S phase Cdks promote replication 



 8 

initiation but block pre-RC assembly after G1 resulting in one genome duplication 

per cell cycle.} 

 As previously mentioned, the control of pre-RC formation is tightly 

regulated by the abundance of the licensing factors Cdc6 and Cdt1, as well as 

the activity of cyclin/Cdk complexes. While this is only a single step in the long 

process of cell division, it is crucial to maintain the genomic stability of the cell. In 

order for this process to happen at the appropriate time, the correct proteins must 

be available and active at precisely the correct time and in the correct quantity. 

To ensure that this happens, these proteins are regulated at every stage of 

expression, from gene transcription to protein modification and degradation.  

 

Regulation of Cell Cycle Genes by Transcription 

 Many of the gene products involved in cell cycle control and pre-RC 

formation are themselves transcribed in a cell cycle manner. The transcription of 

these genes are regulated by two major families of transcription factors, the E2F 

family and the myc family. E2F transcriptional targets are crucial for S phase 

entry and mitosis, whereas myc transcriptional targets are essential for general 

cell proliferation. Because pre-RC formation must be tightly regulated, this 

section focuses primarily on how these transcription factor families promote the 

G1/S transition. 

 

The Rb/E2F pathway controls the expression of cell cycle genes 

 As one of the major regulators of the cell cycle, the Rb/E2F pathway is 
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Figure 1.3. Cyclin levels fluctuate throughout the cell cycle. Cell cycle 
progression is regulated through the action of cyclin/Cdk complexes. In G1 phase, 
the cyclin D/Cdk4 and cyclin D/Cdk6 complexes are nuclear and active and 
regulate the transcription of genes for pre-RC components. Cyclin E/Cdk2 activity 
stimulates replication in S phase while simultaneously inhibiting relicensing of 
origins. Cyclin A/Cdk controls S phase progression and also inhibits relicensing. 
Entry into mitosis is triggered by cyclin B/Cdk1 complexes. Darker shading 
indicates peak protein expression or activity. 
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responsible for the transcription of genes needed to complete a successful S 

phase. There are 8 members of the E2F family of transcription factors (reviewed 

in [52] and [53]). This family contains both transcriptional activators (E2Fs 1, 2, 

and 3a) and transcriptional repressors (E2Fs 3b, 4, 5, 6, 7, and 8). In order to 

bind DNA, E2F family members bind to a dimerization partner (DP) protein [54]. 

E2F1 was first characterized through its association with its inhibitor protein, the 

Retinoblastoma (Rb) protein [55,56]. Three different proteins belong to the Rb 

family: pRb/p105 (hereafter referred to as pRb), which is primarily bound to the 

activator E2Fs, and pRb2/p130 and p107, which are primarily bound to the 

repressor E2Fs [53,57-59]. 

To keep E2F1 inactive, pRb binds the transactivation domain of the 

transcription factor; this interaction can occur at the target gene promoter [60-65]. 

The pRb/E2F complex can then recruit several additional complexes to either 

repress or activate transcription of its target genes (discussed below). The 

release of E2F constitutes a “restriction point”; once the cell has released E2F 

and transcription of S phase genes has begun, the cell has committed to 

completing the cell cycle [66,67].  

During the cell cycle, pRb is expressed at steady levels, however its ability 

to bind E2F is regulated by the actions of the cyclin-dependent kinases [68-72]. 

pRb2/p130, on the other hand, is highly expressed in quiescent cells, but these 

levels decrease as cells are restimulated into the cell cycle; this decrease 

corresponds with an increase in activator E2F transcription [73]. Early in G1 

phase, both pRb and pRb2/p130 are phosphorylated when cyclin D/Cdk4/6 
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complexes become active (Figure 1.4) [74,75]. At this time, the repressor E2F 

complexes, pRb2/E2F4, are found at the promoters of E2F target genes, 

resulting in the silencing of these genes [76,77]. As cells progress into late G1, 

cyclin/Cdk2 complexes further phosphorylate the Rb proteins, resulting in the 

release of the E2F transcription factors [78]. Due to a positive feedback loop 

(discussed later), E2F mRNA levels begin to rise, and pRb2/p130 levels begin 

decrease; at this point, the third Rb protein, p107, replaces pRb2/p130 at the 

promoters of genes that need to be silenced, typically at the promoters of genes 

needed for apoptosis [77,79]. As cells transition into S phase, cyclin E/Cdk2 

complexes become fully active, resulting in the dissociation of E2F activators 

from the pRb, thereby allowing the transcription of genes needed for S phase 

[54,80-82]. Following S phase entry, E2F proteins are downregulated; this is 

essential for cell survival as prolonged expression of E2F proteins can result in 

apoptosis [83-87].  

The Rb proteins can become highly phosphorylated; pRb alone contains 

16 consensus Cdk phosphorylation sites [88-90]. However, no single 

phosphorylation event can disrupt the interaction between pRb and E2F [89,90]. 

Instead, multiple sections of the Rb proteins, particularly the spacer and the C-

terminal domains, must be phosphorylated in order to release the E2F proteins 

[89]. The activity of cyclin D/Cdk4/6 or cyclin/Cdk2 alone cannot result in hyper-

phoshphorylated Rb. For complete activation of the E2F proteins, Rb must be 

phosphorylated by cyclin D/Cdk4/6 complexes and cyclin/Cdk2 complexes; 
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indeed, cyclin/Cdk2 complexes can only phosphorylate Rb proteins that have 

previously been acted on by the cyclin D/Cdk4/6 complexes [91]. 

 As SCFSkp2 levels rise, hyper-phosphorylated pRb2/p130 proteins can be 

ubiquitinated and targeted for proteasomal degradation [92-94]. Additionally, high 

levels of Cdk activity can result in the phosphorylation of serine 567 on pRb; this 

modification can target the protein for cleavage by a protease [95]. In addition to 

destruction, the Rb proteins can be dephosphorylated at the end of mitosis; this 

process is performed by protein phosphatases 1 and 2 [96-99]. 

The control of the Rb/E2F pathway is essential for proper replication. The 

misregulated expression of E2F is sufficient to stimulate quiescent cells to 

reenter the cell cycle [83]. Additionally, overexpression of any of the three Rb 

proteins can result in a G1 arrest [54,80-82,100-102]. Taken together, this 

indicates that these proteins must be tightly regulated in order for a cell to 

properly divide.  

 

Rb/E2F represses target genes during G1 and S phase 

In the E2F family of transcription factors, there are two types of repressors, 

the canonical E2F proteins 3b, 4, and 5, and the atypical repressors, E2Fs 7 and 

8. The canonical E2F family members are bound by pRb2/p130 and p107. 

During quiescence and G1, pRb2/p130 binds to E2F4 and E2F5 to help repress 

target genes; during G1, p107 has also been found bound to E2F4 [61-64,103-

105]. Interestingly, E2F4 and E2F5 do not have a nuclear localization signal and 

cannot be imported into the nucleus unless they are bound to either pRB2/p130 
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Figure 1.4. The Rb/E2F pathway regulates the transcription of genes 
needed for S phase progression. During G1 phase of the cell cycle, Rb is 
hypo-phosphorylated and can bind to E2F. The binding of these repressive E2F 
complexes recruits histone deacetylases (HDAC), DNA methyltransferases 
(DNMT), and chromatin modifying enzymes to change the chromatin 
environment surrounding the promoter of target genes. Once cyclin D/Cdk 
complexes and cyclin E/Cdk2 complexes become active, Rb is phosphorylated 
and releases E2F proteins, which then recruit histone acetyltransferases (HAT) 
to promoters to open the chromatin environment, facilitating transcription.
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or p107 [106-110]. 

In order to repress transcription of target genes, the pRb2/E2F4 

complexes recruit chromatin remodeling factors, histone deacetylases, Polycomb 

proteins, or DNA methyltransferases to physically change the chromatin 

environment surrounding the promoter [78,111-117]. In some instances, 

inhibiting the activity of histone acetyltransferases can modulate the repression of 

E2F target genes, suggesting that the modification of the surrounding chromatin 

is essential for proper silencing [118]. Important targets of E2F repression include 

the Cdt1 inhibitor, geminin, whose expression blocks pre-RC assembly, and 

ribonucleoside-diphosphate reductase subunit M2 (RRM2), which is needed for 

nucleotide synthesis during S phase [119,120]. 

The atypical E2Fs are highly conserved, with homologous proteins found 

in Arabidopsis thaliana [121-129]. These E2F proteins cannot be regulated in an 

Rb-dependent fashion, and do not need to bind to DP in order to bind to DNA 

[126]. This heterodimerization with DP is not necessary due to the duplication of 

the DNA binding domain found in canonical E2F family members [122-

124,126,127]. Instead, E2F7 and E2F8 can homodimerize or heterodimerize with 

each other [122,126,130]. These E2F proteins are induced at the G1/S transition, 

and their protein levels peak in late S/G2 phase [121-124,126]. The regulation of 

these atypical E2Fs is controlled, both positively and negatively, by other E2F 

proteins; E2Fs 1, 3, 4 and 7 have been found at the promoters of both E2F7 and 

E2F8 [122,125]. Additionally, E2F7 and E2F8 are unstable proteins that are 

regulated by ubiquitin-mediated degradation [125,131-133].  
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Importantly, when these proteins were overexpressed, there was a 

marked effect on cell proliferation [121-124,126]. On the other hand, when these 

genes were deleted in mice, the mice exhibited widespread apoptosis [130]. 

These phenotypes can be explained by examining the targets of E2F7/8 

repression. Perhaps the most important target of E2F7/8 repression is E2F1 

itself; deletion of both of these proteins leads to a drastic change in the E2F1 

transcription profile [130,134]. E2F7/8 repression is necessary for the normal 

downregulation of E2F1, even when the ubiquitin-mediated degradation pathway, 

dependent on SCFSkp2, is still intact [135]. 

 

Rb/E2F activates transcription of cell cycle genes at the G1/S transition  

Once the cell has passed the restriction point and committed to 

completing the cell cycle, E2F proteins are released from their Rb binding 

partners and are able to activate transcription of their downstream target genes; 

this activation is partially due to the recruitment of histone acetyltransferases, 

such as p300, which leads to a more favorable chromatin environment [136]. 

These targets include genes that are essential for cell cycle progression, such as 

cyclins E and A, PCNA, DNA Polymerase !, and genes needed for nucleotide 

biosynthesis [76,77,137]. In the case of the cyclin E promoter, the activator E2Fs 

(1, 2, and 3a), in conjunction with pRb, act as repressors and work to recruit 

histone deacetylase complexes to silence transcription [138-140]. While these 

E2F family members are typically thought of in an activating role, the role that 
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they play at the cyclin E promoter shows that activity of these complexes is most 

likely context dependent [141-144]. 

Importantly, E2F activators also control the levels of the E2F and Rb 

proteins in a positive feedback loop [76,77,137]. The promoter of the E2F1 gene 

has been shown to be regulated by all activator E2Fs [77,137,145]. E2F1 also 

controls the transcription of the atypical E2Fs, E2F7 and E2F8; because these 

repressor proteins can target the promoter of E2F1, this is one way that the cell 

limits the amount of E2F present [130]. Additionally, E2F can induce the 

transcription of the F-box protein Skp2, which is a subunit of the SCFSkp2 ubiquitin 

ligase; the activity of this ubiquitin ligase leads to the proteasomal degradation of 

E2F [146].  

While E2F has many well-known targets, the list of genes affected by E2F 

activation is ever expanding. Recent evidence has shown that some E2F target 

genes may affect mRNA stability or even the splicing of certain transcripts by 

altering the levels of alternative splicing factors present [147-150]. These 

alternative splicing factors have been shown to be important for the proper 

transcription of certain apoptotic genes, which are also E2F targets [150]. E2F1 

plays a unique role with respect to pro-apoptotic genes. An alternative pRb/E2F1 

complex has been found bound to the promoters of pro-apoptotic genes, 

resulting in the silencing of these transcripts and continued cell proliferation [151]. 

These pRb/E2F1 complexes are Cdk resistant; even though pRb is hyper-

phosphorylated, E2F1 remains bound, albeit with an altered DNA binding [151-

155]. 
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The Rb/E2F pathway is essential for a successful mitosis 

While the Rb/E2F pathway plays a crucial role in the G1/S transition, E2F 

proteins target a wide range of genes. When cells are depleted of all three 

activator E2Fs, the cells arrest in all phases of the cell cycle, suggesting that E2F 

target genes are needed for more than just the transition from G1 to S phase 

[139]. While most E2F target genes are necessary to successfully complete S 

phase, there are several E2F target genes that are needed for a successful 

division. When E2F activity is misregulated, or when Rb is depleted from cells, 

both Mad2, a protein involved in the spindle checkpoint, and Emi1, an inhibitor of 

a critical ubiquitin ligase, are overexpressed; alterations in the levels of these 

proteins leads to mitotic defects and aneuploidy [156,157]. These defects are 

partially due to the inability of condensin II to load onto the chromatin, resulting in 

chromatin condensation defects [158-160].  

 

Mutations in the Rb/E2f pathway are prevalent in cancer 

Mutations in the Rb/E2F pathway are prevalent in a variety of tumor types, 

including small cell lung cancer, non-small cell lung cancer, retinoblastomas, and 

prostate cancer (reviewed in [161] and [162]) [163,164]. The Rb portion of the 

pathway is inactivated or deleted in retinoblastomas [165,166]. The mutations in 

Rb that occur in human tumors result in an inability of Rb to bind and regulate the 

E2F transcription factors [167]. Rb has also been shown to be inactivated by the 

E7 oncoprotein in cervical cancers [168]. Additionally, changes in E2F proteins 

have also been linked to cancer development. For example, E2F3 is amplified 

and overexpressed in bladder cancers [169,170]. Also, while E2F7 is an atypical 
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member and not subject to Rb-mediated regulation, low levels of E2F7 have 

been found in ovarian tumors and gliomas; low expression levels also correlate 

with a poor prognosis and decreased survival rates [171]. Misregulation of this 

pathway can result in double strand breaks and genome instability [172]. 

 
The Myc Family of Transcription Factors 

The c-Myc protein was first identified through its homology to the viral 

oncogene encoded by the avian myelocytomatosis retrovirus, v-Myc [173]. The c-

Myc protein contains an N-terminal transactivation domain but cannot bind DNA 

by itself; in order to regulate its downstream target genes, Myc has to be bound 

to the basic helix-loop-helix (bHLH) protein, Max (reviewed in [174] and [175]). 

When bound together, Myc/Max heterodimers bind to a specific DNA sequence 

(CACGTG) known as an E-box [176]. Myc’s ability to bind DNA and affect 

transcription is necessary for the oncogenic activity that has been associated 

with Myc deregulation; mutations in either the transactivation domain or the DNA 

binding domain can abolish cell proliferation and affect the cell’s ability to 

undergo apoptosis [177,178]. 

It has been estimated that more than 15% of human genes can be 

controlled by the c-Myc protein [179,180]. However, a small fraction of the 

identified target genes are consistently regulated; most of the identified target 

genes appear to be regulated in a cell type or species-specific manner [181]. Myc 

protein levels are low in quiescent cells, but are rapidly induced following a 

mitogenic stimulus, such as serum addition [182-185]. Once induced, Myc can 
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affect the transcription of proteins involved in many biological processes, such as 

glucose and iron metabolism, cell adhesion, and protein synthesis [186-196].  

Myc can act as both a transcriptional activator by associating with histone 

acetyltransferases and chromatin modifiers, as well as a transcriptional repressor 

through its interactions with DNA methyltransferases [197-202]. When bound to 

target E-box sequences, the Myc/Max heterodimer can recruit TRRAP, a 

member of a histone acetylase complex, that can lead to acetylation of the local 

nucleosomes and activation of target genes [203,204]. In addition to the 

recruitment of TRRAP, Myc/Max heterodimers have also been shown to recruit 

the acetyltransferase Gcn5 [205]. 

While Myc can induce the transcription of a multitude of genes, it plays an 

important role in the induction of genes needed for cell proliferation and cell cycle 

progression. C-Myc has been found at the promoters of cyclins D1, D2, and B1 in 

humans and cyclins A and B in Drosophila melanogaster [186,203,206]. Myc has 

also been found at the promoter of Cdk4 [207]. Therefore, mitogenic stimuli can 

lead to the induction of cyclin D2/Cdk4 activity, which is turn sequesters the CKI 

p27; this allows cyclin E/Cdk2 complexes to be free of CKIs and become active, 

leading to S phase entry [208-210]. While Myc can influence cyclin and Cdk 

levels, perhaps the most important Myc target gene is E2F1 [211]. As described 

previously, this family of transcription factors controls the transcription of a variety 

of cell cycle genes. 

Perhaps even more important than its role as a transcriptional activator is 

its role as a transcriptional repressor. The repression of some Myc target genes, 
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particularly following terminal differentiation, is through its competition with the 

protein Mad [212]. Mad binds to Max, and these Mad/Max heterodimers compete 

with Myc/Max heterodimers for E-box binding. Once bound, Mad/Max can recruit 

chromatin-modifying complexes that include histone deacetylases, thereby 

shutting down transcription of some Myc target genes [213,214]. However, this 

mode of repression is not responsible for the downregulation of all Myc target 

genes. Myc/Max heterodimers have been found at the promoters of both active 

and repressed genes, suggesting that the Myc/Max interaction is needed to 

repress a certain subset of target genes [193]. Additionally, it has also been 

shown that the portion of Myc needed to bind TRRAP and other histone 

acetylase complexes is needed for the repression of certain target genes 

[215,216].  

Myc can also repress transcription by antagonizing the transcriptional 

activator Miz1. Myc can bind to Miz1 and disrupt the interaction between Miz1 

and the histone acetyltransferase p300; this method of transcriptional repression 

has been found at the promoters of the Cyclin dependent kinase inhibitor (CKI) 

genes p16, p15, and p21 [217-222]. At the p21 promoter, Myc binds to Miz1 and 

recruits the DNA methyltransferase DNMT3a, resulting in downregulation of p21 

transcription [202]. 

 

Myc and cancer 

The importance of the Myc family of transcription factors in cell 

proliferation is evident by the fact that deletion of the Myc genes results in 
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embryonic lethality in mice at days e9.5-e10.5 [223]. Interestingly, 

overexpression of the protein does not induce DNA replication or division, 

suggesting that the oncogenic effects of Myc are due, at least in part, to its 

effects on other pathways [194,224]. Indeed, the c-Myc transcription factor is one 

of the most frequently mutated oncogenes; it is estimated to be mutated and/or 

deregulated in about 20% of all cancers (reviewed in [225] and [185]). Changes 

in its expression patterns correlate with aggressive, poorly differentiated tumors 

and a poor patient prognosis. Currently, evidence of c-Myc deregulation can be 

found in many tumor types, including colon, breast, glioblastomas, melanomas, 

and lung cancers [185,225-227]. C-Myc has also been implicated in Burkitt’s 

lymphoma; in this case, a chromosomal translocation leads to the fusion of c-Myc 

with one of three antibody loci, IGH@, IGK@, and IGL@ [228].  

Interestingly, the entire Myc family of transcription factors (c-Myc, n-Myc, 

and l-Myc) has been implicated in lung cancer progression; these factors have 

been shown to be amplified and/or overexpressed in both small cell and non-

small cell lung cancers [229-231]. This overexpression leads to increased 

activation of the E2F family of transcription factors [224,232,233]. It is important 

to note that E2F1 levels will only increase when Myc is expressed at levels 

similar to the level of Myc present after mitogenic stimuli; therefore, 

overexpression of Myc does not directly lead to overexpression of E2F1 [234]. 

However, recent evidence has shown that cells expressing c-Myc at high levels 

contain two or three times more total RNA than cells expressing low levels of c-
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Myc; this suggests that previous gene expression studies may actually be 

misleading [235-237]. 

 

Regulation of Translation by miRNAs 

 After genes are transcribed, the rate at which the mRNA is transcribed can 

be controlled by the action of microRNAs (miRNAs), which were first described in 

Caenorhabditis elegans [238,239]. miRNAs are short, non-coding RNAs, typically 

between 18 and 25 nucleotides, that can affect the stability and translation of 

mRNAs (reviewed in [240]). These RNAs are transcribed by RNA polymerases II 

or III, processed into small hairpins, and exported to the cytoplasm; there, these 

hairpins are processed further and loaded into an RNA induce silencing complex 

(RISC) [241-243]. These complexes can bind to the 3’ untranslated region of an 

mRNA, resulting in either cleavage and destruction of the message or blockage 

of translation [244].  

 

miRNAs control cyclin/Cdk complexes directly and indirectly 

The importance of miRNAs in controlling translation is becoming more 

apparent. Mice depleted of Dicer, the enzyme responsible for the final processing 

step of the miRNA synthesis, are embryonically lethal, suggesting that this 

process is essential for cell proliferation [245]. According to the miRBase 

Sequence Database (release 19), there have been over 2,000 mature miRNA 

sequences identified in humans [246,247]. It is estimated that between 30 and 

60% of the human genome is regulated through miRNAs [248-250]. 
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Because the cyclin/Cdk complexes are the master regulators of the cell 

cycle, it is not surprising that these proteins are heavily regulated at the post-

transcriptional level as well (Figure 1.5). The translation of these proteins can be 

directly affected by the transcription of certain miRNAs or the activity of these 

proteins can be indirectly affected through downregulation of a secondary target. 

Cyclin D can be targeted by a multitude of miRNAs, including members of the let-

7 and the miR-15 families, as well as miR-17, miR-19a, miR-20a, and miR-34 

[251-258]. Several of these miRNAs target additional cyclins or Cdks. For 

example, miR-34a also targets cyclin E and Cdk4/6; overexpression of this 

miRNA results in the downregulation of cyclin D/Cdk4/6 complexes and a G1 

arrest [252,259,260]. Members of the let-7 family can also downregulate cyclins 

E, A, and B [254]. Cyclins A and B can also be regulated by miR125b and miR-

24, whereas cyclin E can be regulated by miR-16 [261-263]. 

Both Cdk4 and Cdk6 are heavily regulated by miRNAs. The translation of 

these proteins can be altered by miR-24, miR-34a, miR-124, miR-125b, miR-129, 

miR-137, miR-195, miR-449, and let-7 family members [252-254,259,264-269]. 

Interestingly, both miR-124 and miR-137 are silenced by hypermethylation in 

certain tumor types, resulting in Cdk6 activation and subsequent E2F activation 

[264,265,270]. Additionally, miR-372, which is frequently downregulated in 

cervical cancer, can target Cdk2 [271]. 

 In addition to the direct downregulation of cyclin/Cdk complexes, the 

activity of these complexes can be modulated by the downregulation of 

associated proteins. The activity of cyclin/Cdk complexes is directly tied to the 
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Figure 1.5. miRNAs regulate translation of proteins needed for S phase 
entry. Overall, the Myc/Max transcription factors repress miRNA transcription, 
whereas E2F transcription factors promote miRNA transcription. The cyclin/Cdk 
complexes are also heavily regulated by miRNAs. 
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amount of CKIs present. These inhibitor proteins are also highly regulated. A 

member of the CIP/KIP family, p21, is downregulated by the miR-17-92 miRNA 

cluster and by miR-106b [272,273]. Of note, miR-106b is overexpressed in many 

cancers [272]. Another family member, p27, is targeted by miR-221 and miR-222, 

leading to the activation of cyclin/Cdk complexes in a multitude of cancers [273] 

[274-282]. A second class of CKI, the INK4A family, can target only cyclin D 

containing complexes; one of the members of this family, p16, is targeted for 

downregulation by both miR-24 and miR-31 [266,283]. Additionally, Wee1, a 

negative regulator of cyclin B/Cdk1 is downregulated by several miRNAs 

[284,285]. Similarly, Plk1, which functions to activate cyclin B/Cdk1 through 

Cdc25c, is targeted by miR-100 [286].  

 

miRNAs target the Rb/E2F pathway 

Both E2F and Rb family members are targets of miRNAs. Of note, E2F1 

can be targeted by several miRNAs of the miR-17-92 cluster, as well several 

other miRNAs, including miR-330 and miR34a [287-292]. Other members of the 

E2F family are also targeted. E2F3, another activator E2F, is targeted my miR-

125b, miR-210, and miR-195 [253,261,293]. Additionally, the repressor E2F6 can 

be downregulated by miR-193a [265]. 

Two distinct clusters of miRNAs, miR-290 and miR-17-92, target the Rb 

proteins themselves, particularly pRb2/p130 and p107 [273,294-299]. 

Interestingly, downregulation of the miR-290 cluster results in more pRb2/p130, 
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which in turn represses the DNMT genes, leading to decreased methylation 

throughout the genome [294].  

In addition to being targeted by many miRNAs, the Rb/E2F pathways can 

induce the transcription of some miRNA clusters [299,300]. E2F activators can 

bind directly to the promoter of the miR-17-92 cluster, inducing its transcription; 

miRNAs in this cluster are then able to downregulate E2F expression 

[287,300,301]. This autoregulatory loop also occurs through the induction of the 

miR-160b-25 cluster [299,302]. E2F1 and E2F3 can induce the transcription of 

the miR-449c-b-a, the let-7a-d, the let-7i, and the miR-15b-16-2 clusters as well 

[303,304]. The miR-449c-b-a cluster can in turn inhibit Cdk6 and Cdc25a 

expression, leading to a decrease in Rb phosphorylation [303]. 

 

Myc downregulates the expression of several miRNA clusters 

While myc expression has been shown to induce the miR-17-92 cluster, 

myc has been shown to globally repress the transcription of miRNAs 

[262,287,304,305]. Several miRNA, including the miR-15a-16 cluster, miR-22, 

miR-23a/b, miR-26, miR-29, and members of the let-7 family, are direct targets of 

c-myc repression [305]. To repress the let-7 family, c-myc induces the RNA 

binding proteins Lin 28 and Lin28b, which are negative regulators of let-7 

maturation [306,307]. The let-7 miRNAs, in turn, can downregulate myc 

expression [308]. It was observed that miRNA expression is reduced in tumor 

samples, and it has been suggested that the oncogenic properties of myc 
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overexpression is due, in part, to its repression of the let-7 miRNA family 

[305,309]. 

 

miRNA expression is frequently altered in cancer 

In recent years, it has been found that the expression patterns of miRNAs 

are frequently altered in cancer [310,311]. These alterations range from deletion 

of specific miRNA clusters to amplification of certain miRNAs [312,313]. In 

particular, chronic lymphocyte leukemia (CLL) was the first cancer type to be 

linked with changes in miRNA expression [312]. Chromosomal aberrations lead 

to the deletion or downregulation of the miR-15a-16-1 cluster in ~70% of the CLL 

cases; recently, this cluster has also been linked to other forms of cancer, including 

pituitary adenomas, prostate cancer, and gastric cancer [251,312,314-316]. 

Amplification of the miR-17-92 cluster has been found in B-cell 

lymphomas, and has been implicated in the angiogenesis of some solid tumors 

[310,317-319]. The let-7 family is downregulated in many cancer types, including 

breast, colon, and lung cancers [320-323]. Levels of let-7 miRNAs have also 

been used as a prognostic tool for lung cancer [311,324]. Additional miRNAs 

have been implicated in neuroblastomas, pancreatic, colon and gastric cancers 

[299,310,325-329]. 

 

Post-Translational Control of Cell Cycle Proteins 

 While protein abundance can be controlled at both the transcriptional and 

the translational stage, by far the most regulation occurs post-translationally. This 



 28 

can be due to post-translational modifications (PTMs) of the protein itself that 

affect the stability or localization of the protein, the binding of an inhibitor or 

enhancer protein, and most importantly in the case of cell cycle control, the timed 

degradation of the protein. Because nearly every protein in the cell undergoes 

some form of post-translational control, this section focuses on the proteins that 

are essential for proper origin licensing. 

 

PTMs affect the stability and activity of pre-RC components 

 {Re-licensing of origins during S phase is prevented, in part, by Cdk2 in 

association with cyclin A [49]. Cdt1 interacts with the S phase cyclin A/Cdk2 

complex, which results in Cdt1 phosphorylation at threonine 29 [42,330]. 

Phosphorylated Cdt1 binds to the F-box protein, Skp2, the substrate receptor for 

the ubiquitin ligase SCFSkp2. Cdt1 is polyubiquitinated by SCFSkp2 and targeted 

for degradation by the 26S proteasome, thus reducing the pool of Cdt1 protein 

available to participate in origin licensing [331-333].} 

 {Cdc6 protein levels are very low in both quiescent cells and in early/mid-G1 

phase cells due to ubiquitin-mediated proteolysis, but Cdc6 protein accumulates 

in late G1 just prior to a burst of MCM loading. In late G1, cyclin E/Cdk2 

phosphorylates human Cdc6 on serine 54, which protects Cdc6 from the 

ubiquitin E3 ligase, APC/CCdh1 [334].} Additionally, {Cdc6 is acetylated by Gcn5 

on lysines 92, 105, and 109 which promotes cyclin A/Cdk2 phosphorylation on 

Cdc6 at serine 106 [334,335]. Serine 106 phosphorylation results in exclusion of 

Cdc6 protein from the nucleus, preventing re-replication [335-341]. The small 
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amount of Cdc6 that remains nuclear throughout S phase is chromatin-bound 

and likely participates in the ATR-dependent intra-S phase checkpoint by 

mechanisms that are not yet understood [342,343].} 

 {Additionally, the Orc1 subunit of ORC is phosphorylated by cyclin A/Cdk1 

during S phase, and this phosphorylation promotes Orc1 degradation in HeLa 

cells [9]. The same phosphorylation on Orc1 in Chinese Hamster Ovary cells 

(CHO) does not affect Orc1 stability, but lowers the affinity of Orc1 for chromatin 

[42]. In both HeLa and CHO cells, Orc1 phosphorylation allows the export of 

Orc1 to the cytoplasm [344]. Over-expression of cyclin A from Kaposi’s Sarcoma-

associated herpes virus also facilitates re-localization of Orc1 to the cytoplasm. 

These results show that Orc1 is subject to phosphorylation by cyclin A/Cdk1, and 

this event modulates the stability and/or localization of Orc1, thereby contributing 

to the prevention of re-replication. 

 Recent evidence from S. cerevisiae suggests that Orc2 and Orc6 may also 

be targets of cyclin/Cdk inhibition. Phosphorylation of these subunits leads to a 

marked decrease in MCM loading [345-347]. Interaction between Orc6 and the S 

phase Cdk, Clb5, is needed to prevent MCM loading outside of G1 phase; this 

interaction occludes the Cdt1 binding site on the ORC complex [27,346,348]. In 

addition to steric hindrance, Clb5 phosphorylates Orc6; this modification also 

partially blocks the Cdt1 binding site and prevents MCM loading [27]. It remains 

to be determined if similar mechanisms also apply to Cdk regulation of 

mammalian ORC [349].} 
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{In addition to regulating Cdc6, Cdk complexes also facilitate the formation 

and loading of the MCM helicase complex. Mcm3 is phosphorylated on serine 

112 by Cdk1, which triggers MCM complex assembly [44]. Cdk activity affects 

MCM loading in an indirect fashion as well. The activity of cyclin E/Cdk2 is 

required for the accumulation of Cdc7 mRNA, which in turn functions in origin 

firing [45,340,350-352]. In quiescent cells, phosphorylation of Mcm2 at serine 5 is 

necessary to promote MCM loading [45,353].} 

 

Cdt1 is regulated by the accumulation of geminin 

{As another layer of regulation, metazoan S phase cells accumulate the 

protein geminin, which binds to Cdt1 and blocks the Cdt1-MCM interaction [354-

356]. Geminin is expressed throughout the S, G2 and M phases of the cell cycle 

when origin licensing is inhibited [355,357]. Geminin is targeted for degradation 

in G1, but begins to accumulate at the end of G1 when the ubiquitin ligase 

responsible for its degradation (APC/CCdh1) is inactivated [357,358]. In S phase, 

geminin binds to the residual Cdt1 that escaped degradation and renders it 

unavailable to relicense origins. 

Recent biochemical evidence has suggested that geminin-Cdt1 complexes 

exist in several forms [359]. These forms include a licensing-inhibitory 

heterohexamer that consists of two Cdt1 molecules and four geminin molecules, 

and a licensing-permissive heterotrimer, comprised of one Cdt1 molecule and 

two geminin molecules [360]. Binding of geminin to Cdt1 in a heterohexamer can 

tether several Cdt1 molecules together, creating chromatin-bound foci that may 
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cooperatively inhibit licensing [361]. Depending on the amount of geminin in the 

cell, geminin may switch from being an inhibitor of origin licensing to a 

heterotrimeric activator when levels of geminin are low.} 

 

APC/C regulates pre-RC components as well as mitosis  

{The cell spends a significant amount of energy to ensure that the correct 

proteins are expressed at the appropriate time. Before one cell cycle phase 

begins, cells ensure that the previous step has been properly completed and in 

many cases inactivated by controlling protein activity abundance. One 

mechanism for enforcing the proper order of events is through regulated protein 

degradation. The Anaphase Promoting Complex/Cyclosome (APC/C) is uniquely 

tied to cell cycle progression and control of DNA replication as evidenced by the 

fact its regulation and activity are modulated in every phase of the cell cycle. 

APC/C is a RING-type E3 ubiquitin ligase originally discovered though its 

association with its substrates, the mitotic cyclins [362,363]. Two activator 

subunits, Cdc20 and Cdh1, interact dynamically with the APC/C holoenzyme to 

influence substrate recognition} (Figure 1.6).  

APC/CCdh1 targets in G1 include Skp2, a member of the SCF ubiquitin 

ligase complex, the licensing factor Cdc6, and the inhibitor protein geminin 

[40,357,364]. Degradation of Skp2 results in accumulation of the Cdk2 inhibitors 

p21 and p27, and delay prior to S phase entry due to low Cdk2 activity [364]. 

APC/CCdh1 also acts to limit the amount of Cdc6 that is available in the cell. 
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As cells progress through S phase, Cdh1 is phosphorylated by cyclin A/Cdk2 

complexes; since hyper-phosphorylated Cdh1 cannot interact with APC/C, the 

ubiquitin ligase complex is inactive [365]. This inactivation allows geminin to 

accumulate and bind any remaining Cdt1 [357]. During S phase, APC/CCdh1 is 

also bound by its inhibitor protein, Emi1 [366]. Interestingly, Emi1 accumulation is 

not needed to begin S phase but is needed to signal the stop of replication and 

mitotic entry, even though APC/CCdc20 can still ubiquitinate its targets if Emi1 is 

present in mitosis [367]. Emi1 remains bound until prophase, when it is 

phosphorylated by Plk1 [368]. While Emi1 accumulation is not needed for S 

phase entry, it is essential to inhibit re-replication. Depletion of Emi1 leads to re-

replication in human cells, due to the untimely activation of APC/CCdh1 

[369,370]. This stabilization allows geminin levels to drop when Cdt1 levels are 

high; at the same time, increased activity of cyclin A/Cdk2 allows Cdc6 to 

become stabilized. With both licensing factors present, origins are licensed 

outside of G1 and re-replication occurs.} 

 

CRL4Cdt2 controls the degradation of many cell cycle proteins 

 {Cdk-independent mechanisms also prevent re-replication by 

targeting Cdt1. Non-phosphorylatable (Cdk-resistant) Cdt1 mutants are degraded 

during S phase despite being unable to bind to Skp2 [331,371,372]. An alternate, 

DNA-dependent, mechanism for Cdt1 degradation was subsequently uncovered 

[371-377]. Proliferating Cell Nuclear Antigen (PCNA) is a cofactor required to 

increase the processivity of DNA pol! during leading strand synthesis [378]. Thus,  
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Figure 1.6. APC/C is cell cycle regulated and controls several important 
pre-RC proteins. In G1 phase, APC/C is bound to the adaptor protein Cdh1 and 
APC/CCdh1 ubiquitinates the licensing factor Cdc6 and the Cdt1 inhibitor geminin. 
During this time, it also targets another APC/C adaptor protein, Cdc20, for 
degradation. As cells progress into S phase, APC/CCdh1 is bound by its inhibitor 
protein, Emi1. At the beginning of mitosis, APC/C and Cdh1 become hyper-
phosphorylated leading to dissociation of Cdh1 from APC/C. Phosphorylated 
APC/C can then bind the adaptor protein, Cdc20. The APC/CCdc20 complex is 
responsible for degrading cyclin B and securin, thereby promoting sister 
chromatid separation and mitotic exit. 
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PCNA travels with active replication forks. Cdt1 interacts with PCNA through a 

highly conserved region called the PIP box during S phase (Figure 1.7). Cdt1 

binding to DNA-loaded PCNA is essential for Cdt1 recognition by the CRL4Cdt2 

ubiquitin E3 ligase. CRL4 associates with Cdt1 via direct binding to the Cdt2 

substrate adapter which links to the Cul4 scaffold. Since Cdt1 only binds PCNA 

on chromatin, it is only ubiquitinated by chromatin-associated CRL4Cdt2. In 

this manner, Cdt1 degradation is directly coupled to DNA synthesis. A Cdt1 

mutant that cannot bind either PCNA or cyclin/Cdk is stable during S phase and 

causes re-replication [371]. Likewise, Cdt2 depletion stabilizes Cdt1 in S phase, 

causing re-licensing of fired origins, and extensive re-replication [373,375,377].} 

 In addition to ubiquitinating Cdt1 at the onset of S phase, CRL4Cdt2 also 

targets the histone methyltransferase Set8/PR-Set7 for degradation during S 

phase [379-382]. Set8/PR-Set7 monomethylates histone H4 on lysine 20, a 

chromatin mark that promotes origin licensing [383]. Stabilization of Set8/PR-

Set7 during S phase results in re-replication and a lack of chromatin 

condensation during mitosis [379,383,384]. 

 

Pre-RC components are frequently overexpressed in cancer 

 {Each of the genes encoding pre-RC components is transcriptionally 

regulated by the Rb/E2F pathway. Given that tumor cells frequently exhibit high-

level expression of E2F target genes, (Rb or p16 loss, cyclin overproduction, 

etc.) it is not surprising that Cdt1 and Cdc6 are overproduced in many cancers 

[3,385-387].} {Many cancer cells have both high cyclin E/Cdk2 activity and high  
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Figure 1.7. Cdt1 and Set8 are degraded during S phase. During replication, 
PCNA is loaded onto the chromatin. Cdt1 and Set8 are recruited to chromatin 
bound PCNA through their PIP motifs. Once bound, the CRL4Cdt2 ubiquitin 
ligase can then polyubiquitinate the substrate, leading to degradation by the 26S 
proteasome. 
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Cdc6 protein levels which may reflect not only the transcriptional up-regulation of 

cyclin E and Cdc6 genes in tumors but also the stabilizing effect of cyclin E/Cdk2 

on Cdc6 protein [388].} 

{Overproduction of Cdt1 or Cdc6 in cultured human cells induces re-

replication, raising the possibility that tumor cells also re-replicate in vivo. 

Recently it has been suggested that cancer cells “hyper-replicate” and that this 

form of replication stress is a driving force in oncogenesis. It has also been 

suggested that excessive pre-RC assembly may even downregulate expression 

of the INK4/ARF tumor suppressor locus due to interference between a nearby 

origin and the INK4 promoter [389]. Recently, mutations in genes for several 

components of the pre-RC, including Orc1, Orc4, Orc6, Cdt1, and Cdc6 have 

been linked to the autosomal recessive primordial dwarfism syndrome, Meier 

Gorlin syndrome [1,390]. This report is the first implicating impaired licensing in a 

developmental disorder. Taken together there are now clear links between pre-

RC formation, normal human development, and tumorigenesis.} 

 

Conclusions 

As shown above, the cell is able to transition from G1 to S phase of the 

cell cycle by modulating the abundance of certain key proteins. This regulation 

occurs transcriptionally, translationally, and most importantly, post-translationally. 

As shown, every stage of regulation is crucial because mutation in any number of 

proteins involved in this process can lead to re-replication, genome instability, or 
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tumorigenesis. This chapter has focused primarily on the control needed to 

properly regulate one step during the process of cell division, origin licensing.  

Recent high-throughout analyses have shown that many proteins are in 

fact cell cycle regulated, either at the mRNA level or the protein level [391,392]. 

Many of these proteins are not involved in canonical cell cycle regulated 

processes, such as DNA replication and mitosis (Chapter 2) [392]. With the 

advent of mass spectrometry analysis, we are able to take a more global view of 

how proteins are regulated, and how this regulation is affected as the cell moves 

through the cell cycle. 

  



 
 
 
 
 

Chapter 2 

 

Global Proteomics Reveal Unexpected Cell Cycle Regulated Processes2 

 

Introduction 

 The cell cycle is highly regulated to ensure accurate duplication and 

segregation of chromosomes.  Perturbations in cell cycle control can result in 

genome instability, cell death, and oncogenesis [2-5]. Critical transition points in 

the cell cycle reflect “points of no return” that are difficult or impossible to reverse.  

For example, the G1 to S phase transition, marked by the onset of DNA 

replication, is an essentially irreversible step, as is mitosis.  For this reason, the 

major cell cycle transitions into and out of S phase and mitosis are under 

particularly complex and robust control.  The mechanisms that govern such cell 

cycle transitions include changes in protein abundance that are driven by 

combinations of regulated gene expression and protein stability control (reviewed 

in ref. [393]). Though decades of genetic and biochemical studies have given 

great insight into such mechanisms, much remains to be learned about the 

overall impact of cell cycle transitions on intracellular physiology. 

 To date, cell cycle studies have focused primarily on the regulation of DNA 
                                                
2 Modified from: Cell cycle-regulated protein abundance changes in synchronously 
proliferating HeLa cells include regulation of pre-mRNA splicing proteins 
Lane, K.R., Yu, Y., Lackey, P.E., Chen, X., Marzluff, W.M., and Cook, J.G. Submitted to PLoS 
One. Accepted February 4, 2013. 
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replication (S phase), chromosome segregation (M phase), and cytokinesis.  A 

few recent unbiased analyses of cell cycle-associated changes in human mRNA 

abundance suggest that other biological processes are also cell cycle-regulated 

[391,394].  Nevertheless, the full spectrum of cellular changes at the major cell 

cycle transitions is still unknown.  In particular, the mRNA changes during the cell 

cycle in continuously growing cells are unlikely to reflect the rapid changes in 

concentrations of critical proteins.  A 2010 study by Olsen et al. analyzed both 

changes in protein abundance and phosphorylation events in the human cell 

cycle, focusing primarily on changes in mitosis [392].  In this current study, we 

investigated protein abundance changes associated with S phase relative to both 

G1 and G2 in highly synchronous HeLa cells (human cervical epithelial 

carcinoma).  In parallel, we have catalogued changes in the proteome in 

response to inhibition of ubiquitin-mediated degradation in synchronous cells. In 

addition to finding some of the previously-described changes related to DNA 

metabolism and mitosis, we also uncovered changes in many proteins involved 

in alternative pre-mRNA splicing. 

 

Materials and Methods 

Cell Culture and Synchronization 

 HeLa cells were originally obtained from ATCC and were cultured in three 

different media.  “Light” cells were grown in depleted Dulbecco’s Modified Eagle 

Medium (DMEM; UCSF Cell Culture Facility) reconstituted with 145 mg/L L-lysine 

(UCSF Cell Culture Facility) and 84 mg/L L-arginine (UCSF Cell Culture Facility).  
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“Medium” cells were grown in depleted DMEM reconstituted with 798 mM L-

lysine (4,4,5,5D4) and 398 mM L-arginine (13C6).  “Heavy” cells were grown in 

depleted DMEM reconstituted with 798 mM L-lysine (13C6; 15N2) and 398 mM L-

arginine (13C6; 15N4).  All three media were supplemented to 10% dialyzed fetal 

bovine serum (dFBS; Gibco) and 2 mM L-glutamine (UCSF Cell Culture Facility).  

All modified isotopes were purchased from Cambridge Isotope Laboratories, Inc. 

(Andover, MA).  All HeLa cell cultures were grown in the SILAC media for a 

minimum of 5 passages to ensure that the amino acids had been fully 

incorporated.  Labeling efficiency was checked by examination of the tubulin and 

actin proteins using LC-MS/MS (details of sample preparation and analysis 

follow). T98G cells were originally obtained from ATCC and were cultured in 

DMEM (Sigma Aldrich) supplemented with 10% FBS (Sigma Aldrich) and 2mM 

L-glutamine (Gibco). Cells were synchronized by serum starvation for 72 hr and 

stimulated with a final concentration of 10% FBS [77].  

 To determine the protein changes between G1 and S phase, 

simultaneously cultured biological replicates of HeLa cells were subjected to 

double-thymidine synchronization as previously described in ref. [391] with minor 

modifications.  Ten hours after release from the second thymidine block, the 

medium was removed, and a mitotic shake-off was performed.  Mitotic cells were 

replated and collected at 3 hr (G1 sample) and 10 hr (S sample).  To capture 

proteins degraded after S phase onset, one separately-labeled culture was 

treated with 20 µM MG132 (Sigma Aldrich) for 2 hr prior to harvest (8 hrs after 

shakeoff).  To determine the protein changes between S and G2 phase, 
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simultaneously cultured biological replicates were harvested 3 hr following 

release from the second thymidine treatment (S sample) and 8 hr after release 

(G2 sample); one separately-labeled culture received 20 µM MG132 2 hr prior to 

harvesting in G2.  Cells were harvested by trypsinization, collected by 

centrifugation, and cell pellets were stored at -80°C prior to the preparation of cell 

lysates.  A small fraction of cells was fixed with ethanol, stained with propidium 

iodide, and analyzed by flow cytometry to confirm cell cycle phase. 

 

Cell Lysis and Sample Processing 

 Frozen cell pellets were lysed in 50 µL high salt lysis buffer (10 mM 

HEPES-KOH, pH 7.5, 350 mM KCl, 3 mM MgCl2, 1% Triton-X100, 1 mM EDTA 

(Fisher Scientific), pH 8.0) and incubated on ice for 10 min.  Lysis buffers were 

supplemented with 1 mM DTT, 0.1 mM AEBSF (Roche), 0.5 mM NaOV4, 2 mM 

!-glycerolphosphate, 2 mM NaF, 200 nM trichostatin A, 2.5 mM sodium butyrate, 

and 1 µg/mL each of aprotinin, leupeptin, and pepstatin A. Unless otherwise 

indicated, all chemicals were purchased from Sigma Aldrich.  Lysates were 

cleared by centrifugation for 2 min at 4°C; the supernatant was transferred to a 

new tube and cleared by centrifugation at full speed for 15 min at 4°C.   Protein 

concentrations were determined according to Bradford assay instructions 

(Biorad).  Samples were mixed 1:1:1 (70 µg each) and subjected to SDS-PAGE 

on a 15% polyacrylamide gel.  The gel was stained with Coomassie blue 

(Amresco), and sample lanes were continuously excised into 25 slices.   

 The following steps, including destaining, dehydration, reduction and 



 42 

alkylation, and overnight in-gel trypsin digestion, were performed following a 

standard protocol [395].  Briefly, gel slices were dissected into ~1 mM cubes and 

transferred to Axygen tubes (Axygen).  HPLC-grade water [206] was added to 

each slice and shaken at room temperature for 5 min.  The water was removed, 

and the slices incubated overnight at 4°C with Destain Solution (1:1 acetonitrile/ 

100 mM ammonium bicarbonate (ABC)) (Sigma Aldrich).  Once the gel slices 

were completely destained, the pieces were covered with acetonitrile and shaken 

at room temperature until they were white and hard; the pieces were then 

incubated at 50°C until all the acetonitrile had evaporated.  The slices were 

rehydrated in 10 mM DTT and incubated at 37°C for 30 min in an Eppendorf 

Thermomixer R.  The DTT was removed and replaced with 55 mM 

iodoacetamide (Sigma Aldrich) and shaken at room temperature for 45 min.  

Following this incubation, the gel slices were washed with 100 mM ABC for 10 

min.  After washing, the slices were again dehydrated with acetonitrile and chilled 

on ice for 10 min. Porcine trypsin (Promega) was diluted to 10 ng/µL in 50 mM 

ABC and added to the dehydrated gel slices; the slices were incubated at 37°C 

until the slices were completely rehydrated.  Any excess trypsin solution was 

removed, and the slices were covered with Peptide Extraction Buffer (50% 

acetonitrile, 50% HPLC-grade water, 0.1% formic acid) [206] and incubated 

overnight in the thermomixer at 37°C.  Acetonitrile was added and incubated at 

37°C for 10 min to inactivate the enzyme.  Peptides were extracted with 4 

treatments of Peptide Extraction buffer at 37°C for 10 min. and lyophilized in a 

Savant Speed-Vac Plus at medium heat. 
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Desalting and LC-MS/MS 

 After digestion, the peptides were extracted using C18 ziptips (Millipore), 

lyophilized, and resuspended in buffer A (0.1% formic acid in H2O) prior to LC 

separation. MS analyses were performed on an LTQ Orbitrap Velos (Thermo 

Scientific, Bremen, Germany) coupled with a nanoLC-Ultra system (Eksigent, 

Dublin, CA). Samples (5 mL) were loaded onto an IntegraFrit column (C18, 75 

mm " 15 cm, 300Å, 5 µm, New Objective, MA). The peptides were eluted at a 

flow rate of 200 nl/min with a linear gradient from 2% to 40% buffer B (0.1% 

formic acid in acetonitrile) over the course of 110 min, followed by 80% buffer B 

for another 10 min. At the end of the gradient, the column was equilibrated for 10 

min with 2% buffer B before starting another LC/MS run.  The mass spectrometer 

was programmed to acquire spectra in a data-dependent and positive ion mode 

at a spray voltage of 2.1 kV using the XCalibur software (version 2.1, Thermo 

Scientific). Survey scans were performed in the Orbitrap analyzer at a resolution 

of 15,000 over a mass range between m/z 300-2,000. For each cycle, the top five 

most intense ions were subjected to CID fragmentation in the LTQ with 

normalized collision energy at 35% and activation Q 0.25; dynamic exclusion was 

enabled. Selected ions were repeated once and then excluded from further 

analysis for 45 sec. Unassigned ions or those with a charge of 1+ were rejected. 

Maximum ion accumulation times were 200 ms for each full MS scan and 100 ms 

for MS/MS scans. One microscan was acquired for each MS and MS/MS scan.  

The mass spectrometry data from this publication have been submitted to the 

Proteome Commons Tranche (www.proteomecommons.org).  The data from the 
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G1 to S dataset can be found using the following hash code: 

ytUg3dJ7npt665b/ZRSADaIKbwhAbVLfVjOiV1qw0zUjr1f7rr+cJk6txiV+2CDE3cQ

EnKErNJ/mV6edECVH1yf4r70AAAAAAAAM5Q==. The data from the S to G2 

dataset can be found using the following hash code: 

Pfr5X84wSDM2MuckUXaXkFAqfoq2r94aKYgVm7NCTmz4L/pd5OpHEfoz3CxrM

JfnZe86hl8j2lJMDVZjSUkc1Du8hcQAAAAAAAAOuQ==. 

 

Database Search 

 The raw files were processed using the MaxQuant software suite (version 

1.2.0.34) [396]. The MS/MS spectra were used to interrogate the UniProt human 

database (release date of November 30, 2010. 20248 entries) using the 

Andromeda search engine [397] with the precursor and fragment mass 

tolerances set to 6 ppm and 0.5 Da, respectively. Up to two missed cleavage 

sites were allowed per peptide. Methionine oxidation and protein N-terminal 

acetylation were chosen as variable modifications, and cysteine 

carabamidomethlyation was set as a fixed modification for database searching. 

Only peptides with a minimum length of 6 amino acids were considered for 

identification.  Both peptide and protein identifications were filtered to a maximum 

1% false discovery rate.  Proteins identified from only a single peptide were 

manually checked by direct visualization of the spectra and quantified using the 

XCalibur software. Finally, the lists of identified proteins were filtered to eliminate 

reverse hits and known contaminants. 

 As a complement to MaxQuant the Proteome Discoverer software (version 
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1.3, Thermo Scientific), configured with an in-house Mascot server (v2.3, Matrix 

Science), was also used to search the same set of MS/MS data. A built-in 

workflow and a “Quantification” module were used for protein identification and 

quantitation. All the search parameters were the same as the MaxQuant search, 

but were filtered at a false discovery rate of 5% to quantify a similar number of 

proteins as had been identified with MaxQuant.  Both search strategies 

generated overlapping protein lists (77%). Once results were gathered from both 

programs, the results were combined.  When proteins were identified by both 

programs, the quantification calculated by the MaxQuant software was reported.  

If the ratios were such that one program defined a protein as changed whereas 

the second program did not, the ratios were manually calculated through 

integration of the peak areas using the XCalibur software. 

 Proteins were divided into subsets based on their SILAC ratios using a 1.5-

fold change as the cutoff threshold.  That is, a ratio of 1.5 or higher was scored 

as an increase whereas a ratio of 0.666 or less was scored as a decrease; ratios 

that fell between these values were reported as no change.  These ratios, as well 

as the log2 transformations, are reported in Supplementary Tables 1 and 2. 

 

Dataset Comparison and GO Term Analysis 

 The log2 transformed data from Whitfield et al. (2002) was downloaded from 

www.cyclebase.org. Based on the calculated p-value of periodicity, mRNA data 

were separated according to mRNA peak time [398,399].  These lists were 

compared to our lists of increased and decreased proteins, and p-values were 
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calculated using Fisher’s exact test; a p-value less than 0.01 was considered 

significant. The same strategy was applied to comparisons to the ubiquitome 

[400], a published ATM/ATR substrate list [401], a published phosphoproteome 

[392], a Cyclin A/Cdk2 substrate list [402], and a dataset that determined the 

subcellular localization of proteins [403].  GO term analysis was performed using 

the DAVID search engine [404,405].  Analysis was performed on the individual 

lists, and the reported p-value was calculated using a modified Fisher’s exact test.  

When GO terms overlapped, terms were collapsed to the highest level (i.e., RNA 

splicing was collapsed into RNA processing). 

 

Immunoblot Validation 

 Samples were subjected to SDS-PAGE on a 12% polyacrylamide gel and 

transferred to PVDF (Thermo Scientific).  Blots were probed with the following 

antibodies: anti-Cyclin B1 (V152, Thermo Scientific), anti-Cyclin A (C-19, Santa 

Cruz Biotechnology), anti-Cdc6 (D-1, Santa Cruz Biotechnology), anti-Cdt1 [25], 

anti-Geminin (FL-209, Santa Cruz Biotechnology), anti-SLBP [406], anti-"-tubulin 

(DM1A, Sigma Aldrich), anti-RRM2 (Aviva Systems Biology), anti-MARCKSL1 

(Aviva Systems Biology), anti-Palmdephin (Aviva Systems Biology), anti-

Prelamin A/C (N-18, Santa Cruz Biotechnology), anti-Tropomodulin-3 [407], anti-

MCM2 (46/BM28, BD Pharmingen), anti-Rbmx/hnRNPG (Aviva Systems Biology), 

anti-hnRNPA1 (K350, Cell Signaling), anti-hnRNPA3 (Y25, Santa Cruz 

Biotechnology), anti-hnRNPD0 (T10, Santa Cruz Biotechnology), anti-hnRNPL 

(Sigma Aldrich), and anti-!-actin (N-21, Santa Cruz Biotechnology).  All HRP-
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conjugated secondary antibodies were purchased from Jackson 

Immunoresearch.  Proteins were visualized following incubation with ECL prime 

reagent (Amersham). 

 

Results 

Synchronous HeLa cells progress through the G1/S and S/G2 transitions. 

 We sought to investigate the proteome changes between G1 and S phase 

and between S and G2 phase.  Our goal was to achieve very tight cell cycle 

synchrony while simultaneously avoiding strong checkpoint effects that could be 

induced in chemically-arrested cells.  To facilitate accurate quantification of 

peptides by mass spectrometry, we labeled cultures for more than 5 cell divisions 

with three different stable isotope mixtures of lysine and arginine (i.e. amino acid-

coded mass tagging/AACT or stable isotope labeling with amino acids in 

culture/SILAC) prior to synchronization [408-410]. 

 To obtain populations of isotope-labeled tightly-synchronous cells 

progressing from G1 to S phase, we modified the Whitfield et al. (2002) double-

thymidine block and release protocol (Materials and Methods) [391]. We released 

HeLa cells from the second thymidine block (“DT Block” = early S phase) to allow 

checkpoint recovery and normal passage through the subsequent transitions and 

allowed them to progress into mitosis without further chemical perturbation.  We 

collected mitotic cells using a “shake-off” method, a procedure that takes 

advantage of the tenuous attachment of HeLa cells as they round up during 

mitosis.  We replated mitotic cells in fresh dishes, and 3 hrs after mitosis, the 
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cells were a relatively pure population of G1 cells; by 10 hrs after mitosis they 

were in early-S phase (Figure 2.1A and 2.1B show a full time course from cells 

grown in normal isotope medium). Note that these cell cycle times reflect a 

moderate delay compared to cells grown under standard conditions due to the 

requirement for dialyzed fetal bovine serum for efficient metabolic labeling. 

 To facilitate the detection of proteins that may be rapidly degraded in S 

phase we treated another culture of cells with the proteasome inhibitor MG132 8 

hrs after the mitotic shake-off (just prior to the G1/S transition) and harvested the 

cells 2 hrs later in early S phase.  To quantify proteins that change between S 

phase and G2 phase, we released cells into S phase from the double-thymidine 

block rather than from a mitotic shake-off.  These cells progressed through S 

phase and entered G2 phase synchronously; we harvested 3 hrs (S phase) and 

8 hrs (G2 phase) after release from the second thymidine block (Figure 2.1D and 

2.1E show a full time course from cells grown in normal isotope medium). We 

also treated cells with MG132 6 hrs after release (just prior to the S/G2 transition) 

and harvested them 2 hrs later (G2 phase). 

 For the G1/S comparison, the G1 culture contained normal isotopes (light), 

the early-S phase culture was metabolically labeled with intermediate isotopes 

(medium), and the early-S phase culture treated with MG132 at the G1/S 

transition had been cultured in the heaviest isotopes (heavy).  For the S/G2 

comparison, mid-S phase cells were cultured in the normal isotope medium 

(light), the G2 cells were cultured in the intermediate isotope medium, and the G2 

cells that had been treated with MG132 at the S/G2 transition were labeled in 
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heavy isotope medium. In this manner, we generated synchronous metabolically- 

labeled cell populations naturally passing from one phase to the next without the 

potentially confounding issue of harvesting cells from a strong checkpoint arrest. 

 We confirmed cell cycle position by immunoblotting whole cell lysates for 

established cell cycle-regulated proteins.  For example, we confirmed that both 

the Cdc6 and geminin proteins, two targets of the Anaphase Promoting Complex/ 

Cyclosome (APC/C) E3 ubiquitin ligase which is active from anaphase through 

late G1, were substantially more abundant in the S phase lysates than in the G1 

lysates (Figure 2.1C, compare lanes 2 and 3 to lane 1) [40,357,362,363,371]. In 

contrast to Cdc6 and geminin, the Cdt1 protein is targeted for degradation at the 

onset of S phase by the CRL4Cdt2 E3 ubiquitin ligase [373,374]. As expected, we 

detected very little Cdt1 in the early-S phase cells compared to the G1 cells 

(Figure 2.1C, compare lanes 1 and 2), but Cdt1 protein levels were high in the S 

phase cells treated with MG132 (Figure 2.1C, compare lanes 2 and 3).  Moreover, 

we observed higher levels of Cdt1 in the G2 samples compared to the mid-S 

phase samples as expected because CRL4Cdt2 can only target Cdt1 during active 

DNA replication (Figure 2.1F, compare lanes 1 and 2) [372,374,376]. 

 Previously, we identified two proteins (SLBP and E2F1) that are degraded 

at the end of S phase as a result of Cyclin A/Cdk1 activation. Their degradation is 

blocked by MG132 treatment [411-413]. We detected not only the down-

regulation of SLBP in G2 phase but also its stabilization in cells treated with 

MG132 (Figure 2.1F). Finally we confirmed that MG132 did not prevent S phase 

entry or exit as determined by flow cytometry and immunoblot analysis of marker  
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Figure 2.1.  HeLa cell synchronization.  A) Cells were synchronized by a 
modified double-thymidine block then released by re-plating and harvested at the 
indicated time points. Synchrony was determined by flow cytometric analysis of 
DNA content. B) Immunoblot analysis of endogenous Cyclin A, Cdt1, SLBP, and 
tubulin proteins in whole cell lysates from portions of the same cells used in A.  
C) Cells were metabolically labeled with stable isotopes and then synchronized 
as in A and B. Immunoblot analysis of endogenous Cdc6, Cdt1, and geminin in 
whole cell lysates used for subsequent mass spectrometric tests.  A non-specific 
band (NSB) serves as a loading control. D) Cells were synchronized by double-
thymidine block, released into S phase, and harvested at the indicated timepoints. 
Synchrony was determined by flow cytometric analysis of DNA content. E) 
Immunoblot analysis of endogenous Cyclin B, SLBP and Cdt1 in whole cell 
lysates from portions of the same cells used in D. F) Cells were metabolically 
labeled and as in D and E. Immunoblot analysis of endogenous Cdt1 and SLBP 
in whole cell lysates used for subsequent mass spectrometric analysis; !-actin 
serves as a loading control. 
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proteins Figures 2.1A and 2.1D). We conclude therefore that these protocols 

generated synchronous populations that display the expected differences in 

protein abundance of known cell-cycle regulated proteins at the G1/S and S/G2 

transitions. 

 

Protein abundance changes at the G1/S and S/G2 transitions. 

 Using these validated samples from synchronous cells, we prepared whole 

cell lysates, combined the three lysates representing the G1/S comparison and 

the three lysates representing the S/G2 comparison, and subjected them to SDS-

PAGE.  We divided the gel into slices from which we generated tryptic peptides 

for liquid chromatography separation and tandem mass spectrometry (LC-

MS/MS), as described in Materials and Methods.  Using both MaxQuant and 

Proteome Discoverer software, we analyzed peptide spectra from a total of 50 

gel slices. We identified 28,684 unique peptides corresponding to 2,842 unique 

proteins (allowable false discovery rate of 5%).  Spectra were of sufficient quality 

to accurately quantify 2,410 of these proteins.  A recent very comprehensive 

analysis of the HeLa proteome detected a total 10,237 proteins from lysates of 

asynchronous cells indicating that our analysis covers approximately 28% of the 

currently detectable HeLa proteome [414]. Note that quantitation requires 

detection of at least two isotopically labeled forms of the peptide, so any protein 

that was clearly detectable in only one of the three cultures was excluded from 

our analysis. Our dataset is also approximately 43% as extensive as another 

recent proteome analysis of HeLa cells that focused on changes during mitosis 
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[392]. Interestingly, we detected 324 proteins not found in either previous report; 

these could reflect proteins that are only abundant enough for detection at 

specific cell cycle stages or could reflect random sampling differences among the 

three studies (Figure 2.2A).  Therefore, our proteome analysis of the G1/S and 

S/G2 transitions complements and extends other investigations of the HeLa cell 

proteome. 

  To focus specifically on proteins that change in abundance from G1 to S 

phase, we compared the 1,611 quantifiable proteins (of 1,843 identified) from 

cells harvested in G1 to those from the subsequent early-S phase time point.  We 

chose a 1.5-fold change in protein abundance as the threshold to score a protein 

as increased or decreased; these changes were calculated using the mean of all 

peptides from the same protein.  Between these two cell cycle phases, two-thirds 

(67.3%) of the proteins neither increased nor decreased in abundance, whereas 

32.7% either accumulated or decreased between G1 and S phase (Figure 2.2B 

and C).  We quantified 1,640 proteins from the S/G2 comparison (of 1,913 

identified).  In contrast to the G1/S comparison, a higher proportion (84.7%) of 

these proteins did not change by more than 1.5-fold from S to G2 phase. Of the 

total quantifiable proteins, 15.3% either increased or decreased in their 

abundance (Figure 2.2B and 2.2D).  These protein lists are provided in 

Supplementary Tables 1 and 2, and the individual peptide lists are provided in 

Supplementary Table 6 (found online at http://www.plosone.org). 

 The pharmacological inhibitor MG132 blocks the activity of the 26S 

proteasome, leading to the accumulation of proteins targeted for 
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polyubiquitination [415,416]. Since many cell cycle transitions are driven by 

ubiquitin-mediated protein degradation, we reasoned that we could identify some 

of these proteins based on altered abundance in the presence of MG132.  It is 

important to note that MG132 was added close to the cell cycle transition under 

investigation.  Overall, ~1% of S phase proteins and 8% of G2 proteins were 

induced by MG132 treatment for 2 hrs compared to untreated early-S phase and 

G2 cells, respectively (Figure 2.2B, 2.2E and 2.2F, and Supplementary Tables 

3.1 and 4.1). We also detected proteins that were induced by treatment with 

MG132 that had not shown changes between cell cycle phases.  These proteins 

could have short half-lives and be subject to continuous ubiquitin-mediated 

degradation at many or all cell cycle phases. Interestingly, more proteins were 

down-regulated after MG132 treatment than were induced - 13% of S phase and 

10% of G2 proteins (Figure 2.2B, and Supplementary Tables 3.2 and 4.2).  A 

similar phenomenon has been reported previously; one study reported that 15% 

of proteins were down-regulated at least 2-fold after treating asynchronous cells 

with MG132 for 4 hrs [417].  The complete list of protein changes in response to 

MG132 treatment for both datasets is provided as Supplementary Tables 3 and 4. 

 Some of the protein changes observed from one cell cycle phase to the 

next, such as cyclin B induction in G2, are well known.  All the known cell cycle-

regulated proteins that we detected changed as expected, although several 

relatively low abundance proteins were not detected. For example, the average 

abundance of peptides derived from ribonucleoside-diphosphate reductase 

subunit M2 (RRM2) increased 4.8-fold in S phase. This protein is regulated both  



 54 

 

 

Figure 2.2.  Cell cycle-regulated proteins from G1 to S and S to G2 detected 
by mass spectrometry.  A) Comparison of the total number of proteins detected 
in this study (2,842 proteins) to two other studies of the HeLa cell proteome: 
Nagaraj et al., 2011 (10,237 proteins) [414] and Olsen et al., 2010 (6,695 
proteins) [392]. B) Quantified proteins from this study were divided into lists 
based on their fold and direction of change; the total protein count for each list is 
plotted. “NC” denotes proteins that did not change. “NC MG,” “Inc MG,” and “Dec 
MG” denote proteins that either did not change, increased, or decreased in 
response to MG132 treatment, respectively. C) All quantifiable proteins in the G1 
to S dataset plotted by their log2 transformed isotope ratios (medium S 
phase/light G1 phase).  Dotted lines denote the 1.5-fold change threshold.  D) All 
quantifiable proteins identified in the S to G2 dataset plotted by their log2 
transformed isotope ratios (medium G2 phase/light S phase); dotted lines denote 
the 1.5-fold change threshold. E) Proteins identified in early-S phase cells 
compared to early-S phase cells treated with MG132 plotted by their log2 
transformed isotope ratios (heavy S phase plus MG132/medium S phase minus 
MG132).  Dotted lines denote the 1.5-fold change threshold.  F) Proteins 
identified in G2 phase cells compared to G2 phase cells treated with MG132  
plotted by their log2 transformed isotope ratios (heavy G2 plus MG132/medium 
G2 phase minus MG132).  Dotted lines denote the 1.5-fold change threshold. 
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at the transcriptional level, as a target of E2F4 repression, and at the protein 

level, as a target of the APC/C ubiquitin ligase [120,418,419]. 

  Our data also predicted changes in protein abundance that have not been 

previously identified. We selected several of these proteins for immunoblot 

validation on the original lysates of synchronized HeLa cells. Most of the proteins 

(17 out of 28) we selected for this validation showed changes in abundance that 

were consistent with the mass spectrometry quantification. For example, 

MARCKS-related protein (MARCKSL1) and palmdelphin (Palmd) increased in S 

phase compared to G1 phase by 2.9-fold and 2.0-fold, respectively, and we 

observed increases in band intensities for these proteins by immunoblotting 

(Figure 2.3A, compare lanes 1 and 2).  Furthermore, mass spectrometry 

indicated that prelamin A/C protein levels decreased 4.7-fold in S phase 

compared to G1, and immunoblot analysis supported this finding (Figure 2.3A).  

As an example of a protein that does not change between G1 and S phase, we 

found that tropomodulin-3 (Tmod3) protein levels did not change significantly, in 

agreement with the mass spectrometry analysis. The total number of proteins 

that changed (increased or decreased) between S and G2 was smaller than the 

number of proteins that changed between G1 and S phase.  We selected several 

proteins for validation by immunoblot analysis as above.  For example, the 

average peptide abundance derived from prelamin A/C and cyclin B1 increased 

in G2 phase compared to mid-S phase by 1.7-fold and 2.1-fold, respectively; we 

observed changes in band intensities consistent with these mass spectrometry 

results (Figure 2.3B, compare lanes 1 and 2). 
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Frequent discordance of mRNA and protein abundance. 

 Changes in protein abundance can often be explained by corresponding 

fluctuations in mRNA abundance.  A landmark study by Whitfield et al. (2002) 

catalogued changes in mRNA expression through multiple synchronous cell 

cycles in HeLa cells [391].  The primary data from this extensive analysis is 

readily available for interrogation (cyclebase.org), and we sought to determine 

the relationship between mRNA expression in the Whitfield study with the protein 

changes we detected in this study.  We divided the mRNA data into groups 

based on peak cell cycle phase of abundance [398,399].  We then determined 

which of the proteins that changed from one cell cycle phase to the next in our 

study were also the products mRNAs whose abundance changed in the same 

way.  Somewhat surprisingly, there was no significant overlap between the 

mRNAs that peak in S phase and the detected proteins that increased in S 

phase; likewise, proteins that decreased in S phase were unlikely to be the 

products of mRNAs that decreased in S phase (Figure 2.4A, first two bars).  This 

poor correlation also existed when we compared proteins that increased in S 

phase to mRNAs that peaked in G1. As pointed out by Whitfield et al., there were 

fewer changes in mRNA levels between G1 and S phase than there were 

between S and M phase; only 19.5% of transcripts peak in S phase whereas 

45% peak in G2/M [391].  

 In contrast, proteins that increased in G2 were somewhat more likely to be 

the products of mRNAs that also increased in G2 (Figure 2.4A, third bar). For 

example, the prelamin A/C mRNA peaks in G2/M, and the protein also modestly 
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Figure 3.  Validation of selected cell cycle-regulated protein predicted by 
mass spectrometry.  The same cell lysates analyzed by mass spectrometry 
were subjected to immunoblot analysis for the indicated endogenous proteins in 
the A) G1 to S lysates or B) S to G2 lysates.  Reported fold change ratios from 
mass spectrometry are listed to the right. 
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increased in our G2 samples compared to S phase (Figure 2.3B, compare lanes 

1 and 2). In contrast, proteins that decreased in G2 were not well-predicted by 

mRNAs that also decreased in G2 (Figure 2.4A, fourth bar).  Furthermore, when 

we compared the proteins that did not change in either of our datasets to the 

mRNAs that are constitutively expressed throughout the cell cycle, more than 

60% of the genes/proteins were in agreement (Figure 2.4B, first two bars).  When 

some of the proteins whose abundance did not change by mass spectrometry 

are the products of mRNAs that do change; these proteins may be long-lived and 

thus not fully reflective of corresponding mRNA changes. 

 Since mRNA abundance could not fully account for the protein changes we 

observed, we considered the possibility that the changes in protein abundance 

were correlated with ubiquitination and thus, regulated protein degradation.  We 

compared our lists of proteins that change from G1 to S or from S to G2 to a 

recently-published list of ubiquitinated proteins identified in asynchronously 

growing HCT116 (human colon carcinoma) cells [400]. Strikingly, a high 

proportion of the proteins that either increased (56.7%) or decreased (62.6%) 

between G1 and S also appeared in the list of 4,462 ubiquitinated proteins 

(Figure 2.5A, first two bars).  Moreover, proteins whose abundance was affected 

by MG132 treatment in S phase (either increased or decreased) were also highly 

represented in the reported list of total ubiquitinated proteins.  In contrast, 

proteins that changed from S to G2 were not as enriched in the “ubiquitome,” 

regardless of MG132 treatment with the exception of proteins that increased 

from S phase to G2 (Figure 2.5A).  Both nuclear and cytoplasmic proteins were  
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Figure 2.4. Discordance between mRNA and protein abundance. A) 
Individual lists of proteins that changed by at least 1.5-fold were compared to the 
mRNA data for those same proteins in synchronized HeLa cells from Whitfield et 
al. 2002 [391]. The percentage of proteins whose corresponding mRNA also 
changed is graphed for both S phase and G2 phase. ** p <0.001. B) Proteins that 
did not change in either the G1 to S or the S to G2 dataset were compared to 
mRNAs that were ubiquitously expressed or peaked at the indicated cell cycle 
phases [391]. * p<0.01; ** p <0.001. 
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present in all of our datasets, and we detected no differences in nuclear-

cytoplasmic localization among proteins that changed from one cell cycle phase 

to the next (Figure 2.5B and 2.5C).   

 A strikingly large proportion of proteins whose abundance changed from G1 

to S or from S to G2 have been detected as phosphoproteins, consistent with the 

notion that many protein abundance changes are controlled by phosphorylation  

(Figure 2.6A). This enrichment was true both for proteins that changed from G1 

to S and for those that changed from S to G2. 

 Since the cyclin-dependent kinases (Cdks) govern many cell cycle 

transitions, we compared our sets of regulated proteins with a list of candidate 

Cdk substrates [402].  Many proteins that increased (6 of 31) or decreased (28 of 

496) in S phase appear on this list of Cdk substrates (Figure 2.6B, first two bars).  

Moreover, a statistically significant number of proteins that increased in G2 

phase are also putative Cdk substrates (Figure 2.6B, fifth bar). A significant 

number of proteins that changed with MG132 treatment at the S/G2 transition are 

also putative Cdk substrates (Figure 2.6B, last two bars). In contrast, proteins 

that changed in response to MG132 treatment at the G1/S transition were not 

enriched for putative Cdk substrates (Figure 2.6B, third and fourth bars). 

 Like Cdks, the ATR kinase is active during S phase [420].  ATR activity is 

also stimulated by DNA damage, and this property was used to identify candidate 

ATR substrates. Putative ATR kinase substrate lists were developed by Stokes 

et al. (2007) from phosphopeptides detected following UV irradiation, an activator 

of ATR [401].  A subset of our regulated proteins also appeared in these lists of  
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Figure 2.5. Proteins at both the G1/S and S/G2 transitions are ubiquitinated. 
A) Individual lists of proteins that changed by at least 1.5-fold were compared to 
proteins predicted to be ubiquitinated in asynchronous HCT116 cells [400]. * p 
<0.01; ** p <0.001. Individual list of proteins that changed by at least 1.5-fold in 
either the B) G1/S dataset or the C) S/G2 dataset were compared to proteins 
with established subcellular localizations [403]. “Ubiquitous” denotes proteins that 
were found in both the nuclear and cytoplasmic fractions, whereas “Nuclear” or 
“Cytoplasmic” proteins were found only in that compartment. Data are 
represented as the percentage of the individual list that overlaps with the 
published dataset. * p <0.01; ** p <0.001. 
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potential ATR substrates (Figure 2.6C).  The majority of proteins that change with 

MG132 treatment, (both lists), were not ATR substrates, but proteins that 

decreased with MG132 treatment at the S/G2 transition were significantly 

enriched in ATR substrates (Figure 2.6C). Taken together, these comparisons 

are consistent with the prevailing model that many changes in protein abundance 

between G1 and S phase and between S and G2 phase are associated with both 

protein ubiquitination and protein phosphorylation, but this analysis also 

underscores the idea that only some changes, particularly as cells progress from 

G1 to S phase in continuously growing cells, are due solely to mRNA fluctuations. 

 

Unanticipated cell cycle-regulated proteins include alternative splicing factors.  

 To determine which biological processes might be cell cycle-regulated, we 

analyzed the Gene Ontology (GO) enrichment of each of our lists.  As expected, 

“cell cycle” was enriched in our sets of cell cycle-regulated proteins (increase in 

G2). The three most highly-enriched terms for each list are shown in Table 1, and 

the full list is provided in Supplementary Table 5. Proteins involved in cell 

morphogenesis increased from G1 to S phase, whereas proteins assigned to the 

GO term “protein folding” decreased (Table 1) from S to G2 phase. Surprisingly, 

proteins involved in RNA processing and ribonucleoprotein complex biogenesis 

were significantly represented in the set of proteins that decreased from G1 to S 

phase and the set that increased from S to G2 phase. (The proteins that 

decreased from G1 to S phase are not necessarily the same proteins that were 

increased in the S to G2 dataset.) Both sets of MG132-sensitive proteins were  
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Figure 2.6. Proteins at transitions are phosphorylated. Individual lists of 
proteins that changed by at least 1.5-fold were compared to proteins predicted to 
be proteins A) phosphorylated in HeLa cells [392], B) substrates of Cyclin A/Cdk2 
[402], and C) substrates of the ATR kinase [401]. The percentage of each list that 
overlaps with the published dataset is plotted. .* p <0.01; ** p <0.001. 
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also enriched for RNA processing and ribonucleoprotein complex biogenesis 

proteins (Table 2). 

 The striking enrichment of pre-mRNA processing proteins in the collection 

of proteins that were down-regulated in S phase prompted us to analyze those 

proteins more directly. In particular, the enriched GO terms included nuclear pre-

mRNA splicing, and more specifically, alternative splicing (Figure 2.7A).  Of the 

244 known splicing factors, we detected 72 core proteins and 65 non-core 

proteins (Supplementary Table 7) [421]. Overall, we detected 31.9% of the core 

spliceosome proteins, of which 46.7% decreased in S phase (Figure 2.7B, first 

bar). Of note, proteins in the U2 complex decreased, suggesting that a specific 

part of the core machinery may be regulated during S phase.  Additionally, we 

detected 58.7% of the non-core spliceosome machinery, and 62.3% of these 

subunits decreased in S phase (Figure 2.7B, second bar). Strikingly, we 

quantified almost all (95.7%) of the known heterogeneous nuclear 

ribonucleoproteins (hnRNPs), and 72.7% of these proteins decrease in S phase 

(Figure 2.7B, third bar).  These proteins are important in determining exon 

inclusion, suggesting that alternative splicing is particularly affected during S 

phase [422-425]. 

 We probed several of the alternative splicing factors by immunoblotting to 

determine if the changes observed by mass spectrometry were valid.  As shown 

in Figure 2.7C, several hnRNPs decreased between G1 and S phase, such as 

hnRNPG, hnRNPA1, and hnRNPL (compare lanes 1 and 2).  For two other 

proteins, hnRNPA3 and hnRNPD0, we detected multiple isoforms that clearly  
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Figure 2.7. pre-mRNA alternative splicing factors are enriched among 
proteins that decrease from G1 to S phase.  A) The GO term analysis tree of a 
branch of RNA metabolism is shaded to indicate decreasing p-values for the 
enrichment in the protein datasets of this study.  B) Spliceosome proteins were 
designated as either core or non-core proteins; hnRNPs represent a subset of 
the non-core spliceosome proteins [421]. The total percentage of the category of 
splicing proteins is plotted. The portion of the bars shaded blue represents the 
percentage that decreased between G1 phase and S phase, and the portion 
shaded green represents the fraction that did not change between G1 and S 
phase.  The full list of splicing proteins quantified is provided in Supplementary 
Table 7. C) Whole cell lysates from synchronized cultures (Figure 1C) were 
analyzed for the indicated endogenous hnRNP proteins; the fold change ratios 
from mass spectrometry are listed to the right.  !-actin serves as a loading 
control.  D) mRNA abundance for the hnRNPG gene was extracted from the 
Whitfield et al. (2002) dataset [391]; expression data from 3 double-thymidine 
block and release experiments are shown as a function of cell cycle phase. 
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changed between G1 and S phase. Some isoforms decreased in abundance but 

new isoforms accumulated in the S phase samples (Figure 2.7C, compare lane 1 

with lanes 2 and 3).  Of note, the hnRNPA3 protein has been reported to be 

heavily phosphorylated, raising the possibility that the decrease observed by 

mass spectrometry was due to cell cycle regulated post-translational 

modifications [426-433]. Indeed, a number of hnRNPs, including hnRNPD0, were 

identified as Cyclin A/Cdk2 substrates [402]. Moreover, we confirmed S phase 

downregulation of hnRNPG in biological replicates of synchronized HeLa cells 

(Figure 2.8A) and S phase downregulation of hnRNPA3 in another line, T98G 

(Figure 2.8B). Additionally, none of the splicing proteins that decreased in S 

phase were the products of mRNAs that also decreased in S phase (for example, 

hnRNPG is shown in Figure 2.7D), suggesting that their regulation must be 

posttranscriptional. 

 

Discussion 

 Previous unbiased analyses of the human transcriptome and proteome 

have generated an appreciation for the interconnectedness of different 

biochemical pathways. Inspired by such findings, we considered it likely that the 

human cell cycle includes changes not only in the well-studied processes of 

chromosome replication, mitosis, and cell division, but also changes in other 

cellular processes. This hypothesis was supported by our discovery that proteins 

involved in alternative pre-mRNA splicing are down-regulated in S phase. The 

reason for this apparent systemic regulation of pre-mRNA splicing has yet to be  
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Figure 2.8. Cell cycle changes in pre-mRNA splicing factors are found in 
different cell lines. A) HeLa cells were synchronized as in Figure 1A and the 
endogenous levels of hnRNPG were examined. B) T98G cells were 
synchronized in quiescence by serum starvation and stimulated to re-enter the 
cell cycle with 10% FBS; S phase entry begins at 20 hr. post-serum addition [77]. 
Lysates were analyzed for levels of endogenous hnRNPA3. 
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elucidated, but could reflect a need to rapidly alter the isoforms of a cohort of 

proteins from one cell cycle phase to the next. The depth of our proteome 

coverage likely reflects changes in the most abundant and readily detectable 

proteins; thus these fluctuations indicate novel biological pathways and 

processes that are cell cycle-regulated even when the rarest proteins were not 

quantified. 

 Alternative splicing, particularly the production of different isoforms of 

specific mRNAs at different times in the same cell, is determined by cis elements 

(splicing enhancers and splicing silencers) and the relative concentrations of the 

trans factors, splicing activators and repressors (reviewed in ref. [434]). Changes 

in the relative concentrations of these regulatory proteins are responsible for 

most of the changes observed in alternative splicing.  Thus, relatively small 

changes in the concentrations of these common splicing regulatory proteins, 

particularly the hnRNPs and SRSF proteins, can result in changes in a number of 

coordinately regulated alternative splicing events [435-438]. 

 This study extends and complements the cell cycle proteome analysis by 

Olsen et al. [392].  Our cells were not only very tightly synchronized in early S 

phase by the double-thymidine and mitotic shakeoff protocol, but importantly, we 

collected cells as they progressed synchronously through the cell cycle after 

release from the block.  This protocol is distinct from other popular 

synchronization methods in which cells were harvested while chemically arrested 

with replication or mitotic inhibitors or were harvested very shortly after release 

from such inhibitors. Likely due to these differences, a comparison of proteins 
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that change from G1 to S or from S to G2 in our dataset to those reported by 

Olsen et al. (using a single block and release or nocodazole block and release) 

showed little overlap.  Nevertheless, the alternative splicing factors we detected 

were also reported in the Olsen dataset, although the amplitudes of those 

changes were less than those we measured.  These differences may be due to 

technical variations in culture conditions (for example, adherent vs. suspension 

cultures) or to differences in the degree of cell cycle synchrony.  One area of 

close agreement between the two studies, however, is the conclusion that only a 

subset of cell cycle-regulated changes in protein abundance can be accounted 

for by changes in mRNA abundance. 

 Although many protein changes detected in this study did not match 

corresponding changes in mRNA levels, we noted a clear difference between the 

degree of concordance of the mRNA changes and protein changes between the 

two G1-to-S and S-to-G2 datasets.  Proteins that increased from S to G2 were 

more likely to be the products of mRNAs that showed similar cell cycle-

dependent changes, though these mRNA changes were only able to predict 

~10% of these G2-inducible proteins (Figure 2.4A). This relationship is consistent 

with the finding that 45% of the cell cycle regulated mRNAs peak in G2/M [391]. 

Strikingly, more than half of the proteins that changed – either increased or 

decreased – from G1 to S phase are among those reported to be 

polyubiquitinated, but this enrichment was much less or non-significant for 

proteins that changed from S to G2 (Figure 2.5A).  Taken together, our analysis 

is consistent with the notion that protein changes from S to G2 are somewhat 
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reflective of changes in mRNA levels, but proteins that change from G1 to S are 

reflective of ubiquitin-mediated protein degradation and phosphorylation. 

 Given the importance of ubiquitin-mediated protein degradation in cell cycle 

transitions, and that a number of cell cycle regulators change concentrations 

rapidly without concomitant changes in mRNA concentrations, we included 

analysis of cells treated with the proteasome inhibitor MG132.  A relatively small 

number of proteins that increase after MG132 treatment at the G1/S transition 

were detected, whereas a larger number of MG132-inducible proteins were 

detected in cells treated at the S/G2 transition (Figure 2.2B and Supplementary 

Tables 3.1 and 4.1). Interestingly, at least as many proteins were MG132-

repressible as were MG132-inducible in both experiments (Figure 2.2B and 

Supplementary Tables 3.2 and 4.2).  Given the mechanism of action of MG132 

as a competitive inhibitor of the 26S proteasome, we interpret these changes as 

a reflection of indirect cellular responses to the accumulation of polyubiquitinated 

proteins or the prevention of degradation of specific proteins.  Some of the 

MG132-repressible proteins may themselves be targets for negative regulation 

by MG132-inducible repressors.  Those targets of negative regulation would 

therefore be indirectly repressed by MG132.  In addition, the loss of proteasome 

function may trigger a cellular stress response that is reflected in the proteome 

as down-regulation of a cohort of proteins.  Of note, proteasome inhibitors are a 

chemotherapeutic strategy for anti-cancer treatment [439,440], and prolonged 

treatment of HeLa cells with MG132 (e.g. 24 hrs) results in apoptosis [441].  Our 

report here of proteins whose levels change in response to MG132 at two 
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specific cell cycle phases sheds additional light on the biological responses to 

such strategies. 

 A major challenge in this type of study is the detection of relatively low 

abundance proteins, many of which are critical regulators of cellular processes.  

Many of the previously defined cell cycle regulated proteins, often regulated by 

proteolysis, were not detected.  These include SLBP, a critical regulator of 

histone mRNA metabolism, the E2F1-3 transcription factors, which are essential 

for the transcription of S phase genes, and many proteins needed for the 

formation of the pre-replication complex (Orc subunits, Cdc6, Cdt1, etc.).  

Detection of these low abundance proteins will require further advances in 

proteomics technology, perhaps through some method that removes the most 

abundant proteins, similar to how “ribo-minus” technology removes the most 

abundant RNAs to allow the detection of very low abundance RNAs by high-

throughput sequencing. 

 Studies such as the one presented here add to our general knowledge of 

the global changes that can occur during the cell cycle.  We expect that the 

combination of this analysis with other studies focused on mitosis, the 

phosphoproteome, the transcriptome, the ubiquitome, cell cycle changes in 

model organisms, etc. will facilitate a complete systems-level understanding of 

the cell cycle.  
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Table 1.  Top three significant GO terms enriched in individual lists of cell cycle-
regulated proteins. 
 
Increase in S phase 

GO Term p-value Protein Count 
Regulation of cell morphogenesis 0.001 4 
Negative regulation of cellular component organization 0.024 3 
Negative regulation of cell projection organization 0.047 2 
 
Decrease in S phase 

GO Term p-value Protein Count 
RNA processing 3.96e-34 83 
Ribonucleoprotein complex biogenesis 1.98e-20 38 
Translational elongation 2.46e-18 28 
 
Increase in G2 phase 

GO Term p-value Protein Count 
RNA processing 2.25e-05 16 
Cell cycle 0.001 16 
Cellular protein localization 0.002 11 
 
Decrease in G2 phase 

GO Term p-value Protein Count 
Protein folding 0.007 6 
Macromolecular complex assembly 0.015 11 
Positive regulation of anti-apoptosis 0.018 3 
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Table 2. Top three significant GO terms enriched in the individual lists of MG132-
sensitive proteins. 
 
Increase in S phase following MG132 treatment 

GO Term p-value Protein Count 
Signal complex assembly 0.009 2 
Cell migration 0.011 3 
Cellular macromolecular complex assembly 0.014 3 
 
Decrease in S phase following MG132 treatment 

GO Term p-value Protein Count 
Ribonucleoprotein complex biogenesis 2.59e-10 17 
Ribosome biogenesis 1.57e-07 12 
RNA processing 3.09e-07 23 
 
Increase in G2 phase following MG132 treatment 

GO Term p-value Protein Count 
Translational elongation 5.44e-130 68 
Ribosome biogenesis 1.01e-14 16 
Ribonucleoprotein complex biogenesis 2.13e-13 17 
 
Decrease in G2 phase following MG132 treatment 

GO Term p-value Protein Count 
Protein transport 1.45e-05 20 
Protein localization 3.30e-05 21 
mRNA processing 7.03e-05 12 
 

 



 
 
 
 
 

Chapter 3 

 

Identification of a Re-replication Induced Gene Expression Signature 

 

Introduction 

 For a cell to successfully complete a division, it must replicate its genomic 

material in a timely and accurate manner. In order for this to happen, replication 

must initiate at thousands of sites across the genome known as origins of 

replication. To exactly duplicate the genome, it is essential that replication 

initiates only once at every origin; if re-replication, or replication of a previously 

replicated region of the genome, occurs, this can lead to DNA damage and 

subsequent genome instability (reviewed in [43]). One mechanism by which the 

cell prevents re-replication is through coordinating the inhibition of the replication 

protein Cdt1 with the onset of S phase, thereby ensuring that origins cannot 

become re-licensed. Once S phase begins, Cdt1 binds to the PCNA that has 

been loaded onto the DNA, allowing Cdt1 to associate with the CRL4Cdt2 ubiquitin 

ligase; this association results in the polyubiquitination and subsequent 

degradation of the bulk of Cdt1 protein [371-376,442]. The remaining Cdt1 

protein is bound by the inhibitor protein geminin, thereby preventing Cdt1 from 

performing its origin licensing function [354-356].  
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 Deregulation of origin licensing has been shown to promote genome 

instability; in fact, many studies have shown that aberrant Cdt1 expression alone 

can result in re-replication [2,5,443-445]. Re-replication can lead to replication 

fork collision and collapse, resulting in DNA double strand breaks [443,446-448]. 

In yeast, re-replication has been shown to induce gene amplification, suggesting 

that prevention of re-replication contributes to overall genomic stability [449]. 

DNA damage has long been linked to tumor formation and genomic instability. 

Therefore, DNA damage, and perhaps re-replication specifically, may contribute 

to the process of tumorigenesis. Indeed, it has been shown that HeLa cells 

constitutively undergo re-replication, whereas normal fibroblasts do not 

experience this stress [450]. Tumors that are driven by oncogenic stressors, such 

as Ras activation, are prone to both DNA damage and genomic instability 

[387,451,452]. Furthermore, proteins involved in origin licensing are controlled by 

pathways, such as the Rb/E2F pathway, that are frequently deregulated in a 

multitude of cancers [163-166,168-170,172]. 

 These observations led us to hypothesize that re-replication contributes to 

the genomic instability observed in multiple tumor types and may thereby 

contribute to cancer development. On a molecular level, we hypothesize that the 

presence of re-replication results in altered patterns of gene expression. To 

determine if re-replication results in a gene expression signature, we set out to 

induce re-replication in normal mammary epithelial cells by modulating Cdt1 

activity. 
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Materials and Methods 

Cell Culture and siRNA transfection 

 Normal human fibroblasts immortalized with human telomerase (NHF-

hTERT) were obtained from the Kaufmann lab (University of North Carolina) and 

were cultured in DMEM (Sigma Aldrich) supplemented with 10% fetal bovine 

serum (FBS; Sigma Aldrich). Human mammary epithelial cells immortalized with 

human telomerase (HMEC-hTERT) were acquired from the Perou lab (University 

of North Carolina) and the MCF10 series of breast cancer cell lines (MCF10a, 

MCF10AT1, and MCF10DCIS) was acquired from the Troester lab (University of 

North Carolina); all four cell lines were grown in supplemented HuMEC media 

(Gibco). As a positive control, the colorectal carcinoma HCT116 cell line was 

obtained from ATCC and was grown in McCoy’s media (Sigma Aldrich) 

supplemented with 10% FBS (Sigma Aldrich). 

 Cells were seeded in 6-cm dishes and allowed to attach overnight. siRNA 

oligonucleotides were synthesized by Invitrogen. The following oligonucleotides 

were used: GFP control, 5’-GGC UAC GUC CAG GAG CGC AC CTT; geminin 

siRNA, 5’-CUU CCA GCC CUG GGG UUA UTT; Cdt2 siRNA, 5’-GAA UUA UAC 

UGC UUA UCG ATT; and p53 siRNA, AAG GAA GAC UCC AGU GGU AAU TT. 

Unless otherwise noted, transfections were performed with a total of 100 nM 

siRNA using the Dharmafect 1 reagent (Dharmacon), according to the 

manufacturer’s guidelines. In the case of dual knockdowns, 50 nM of each siRNA 

was used. Twenty-four hours after transfection, cells were washed with PBS and 

trypsinized. Cell were then divided and replated either in a 6-cm dish or on glass 
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slides for immunofluorescence (IF) analysis (see below). For longer experiments 

(72 hr and 96 hr), cells were redosed with siRNA after 48 hr.  

 

Immunoblot Analysis 

 Cells were washed with phosphate buffered saline (PBS) and harvested 

by trypsinization. Cells were collected by centrifugation, and a portion was 

removed for flow cytometric analysis (see below). The remaining cells were 

resuspended in CSK buffer (10 mM PIPES, pH 7.0, 300 mM sucrose, 100 mM 

NaCl, 3 mM MgCl2) supplemented with 0.5% Triton X-100, 0.1 mM 4-(2-

aminoethyl) benzenesulfonyl fluoride hydrochloride (AEBSF), 1 µg/mL pepstatin 

A, 1 µg/mL aprotinin, 1 µg/mL leupeptin, 5 µg/mL phosvitin, 1 mM !-glycerol 

phosphate, and 1 mM orthovanadate, and were incubated on ice for 30 min. 

Protein concentration was determined using the Bradford assay (Biorad). 

Samples were subjected to SDS-PAGE and transferred to PVDF (Thermo 

Scientific). Blots were probed with the following antibodies: anti-Cdt2 [453], anti-

phospho p53 (serine 15, Cell Signaling), anti-phospho #-H2Ax (serine 139, 

Millipore), anti-"-tubulin (T9026, Sigma Aldrich), anti-Geminin (FL-209, Santa 

Cruz Biotechnology), and anti-phospho Chk2 (threonine 68, Cell Signaling). All 

HRP-conjugated secondary antibodies were purchased from Jackson 

Immunoresearch. Proteins were visualized following incubation with ECL Prime 

reagent (Amersham). 
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Flow Cytometry Analysis and Immunofluorescence 

 Cells were fixed in ethanol and stained with propidium iodide. Cells were 

analyzed using either a Dako CyAn flow cytometer (Beckman-Coulter) or an 

Accuri C6 flow cytometer (BD Biosciences). Cell cycle distribution was 

determined using Summit v4.3 software (DakoCytomation) or FCS Express v4 

software (De Novo Software), respectively.  

 Slides were removed from the dish, washed twice with PBS, and treated 

with CSK buffer supplemented with 0.5% Triton X-100 for 2 min at room 

temperature. Slides were then washed three times with PBS and fixed in 3% 

paraformaldehyde [454] at room temperature for 10 min. Slides were washed 

three times with PBS and then blocked with 10% FBS at room temperature for 1 

hr. Slides were washed three times, for 5 min each, at room temperature with 

PBS. Slides were then incubated with anti-phospho #-H2Ax (serine 139, 

Millipore) in a 1% bovine serum albumin (BSA) solution at room temperature for 

3 hr. After three washes, for 5 min each, with PBS, slides were incubated with an 

anti-mouse secondary antibody conjugated to the DyLight-594 fluorophore 

(Jackson Immunoresearch) at 37°C for 1 hr. Slides were washed twice with PBS 

for 5 min each, and counterstained with 4’,6-diamidino-2-phenylindole (DAPI). To 

quantify #-H2Ax staining, at least 200 cells were counted per slide.  

 

RNA preparation and microarray analysis 

 Total RNA was prepped using the RNeasy kit (QIAgen), according to the 

manufacturer’s instructions. RNA quality was checked by the UNC Genomics 
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and Bioinformatics Core Facility prior to labeling and hybridization to the 

microarray. Two experimental samples (one 5 nM set and one 10 nM set) were 

submitted to the Genomics and Bioinformatics Core Facility. The siCdt2 sample 

was labeled with Cy3 and compared to its matching siGFP sample labeled with 

Cy5. Samples were also dye swapped to control for labeling errors. Samples 

were hybridized to a Human GE 4x44K V2 Microarray with SurePrint Technology 

(Agilent Technologies), and data were analyzed using SAM 4.0 software 

(Stanford University). 

 

cDNA preparation and qPCR analysis 

 Total RNA was prepped using the RNeasy kit (QIAgen), according to the 

manufacturer’s instructions. One microgram total RNA was converted to cDNA 

using an Oligo dT primer and the SuperScript III Reverse Transcriptase 

(Invitrogen) according to manufacturer’s instructions. Quantitative PCR was 

performed using the following primers: Cdt2 F, 5’-TGG TCT TCA CAA TAC CCT 

CTT CA; Cdt2 R, 5’-CTT CAT TGG CAA CTG CTA GTA CA; p21 F, 5’-GCA 

GAC CAG CAT GAC AGA TTT; p21 R, 5’-GGA TTA GGG CTT CCT CTT GGA; 

MDM2 F, 5’-CAG TAG CAG TGA ATC TAC AGG GA; MDM2 R, 5’-CTG ATC 

CAA CCA ATC ACC TGA AT; Geminin F, 5’-GAG ATC CAG ATG CAG AAG 

GC; Geminin R, 5’-TGA ATC CCA GTA TGA AGC AGA A; p53 F, 5’-GCT CGA 

CGC TAG GAT CTG AC; p53 R, 5’-GCT TTC CAC GAC GGT GAC; GAPDH F, 

5’-AAG GTG AAG GTC GGA GTC AAC; GAPDH R, 5’-GGG GTC ATT GAT 

GGC AAC AAT A. Reactions were performed with 150 nM each primer, 20 ng 
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template, and the Maxima SYBR Green/Rox qPCR Master Mix (Fermentas), 

according to the manufacturer’s instructions. 

 

Results 

Depletion of Cdt2 results in a G2/M arrest 

 Cdt1 is targeted for degradation at the onset of S phase through the action 

of the CRL4Cdt2 ubiquitin ligase [371-376]. In order to induce re-replication, we 

depleted cells of the adapter protein Cdt2, which confers substrate specificity to 

the CRL4 ligase [373,375,455]. In addition to regulating Cdt1 degradation, 

CRL4Cdt2 is also responsible for the S phase degradation of the Cdk inhibitor p21 

and the histone methyltransferase Set8 (PR-Set7) [380,382,383,453,456,457]. 

Set8/PR-Set7 is also essential for proper origin function; monomethylation of 

lysine 20 on histone H4 promotes the loading of the pre-RC components, and 

degradation of Set8/PR-Set7 during S phase helps prevent re-replication 

[380,383]. Therefore, by depleting cells of Cdt2, both Cdt1 and Set8/PR-Set7 are 

stabilized and robust re-replication should occur. 

 We sought to induce re-replication in two normal immortalized cell lines: 

human mammary epithelial (HMEC-hTERT) cells and normal human fibroblast 

(NHF-hTERT) cells. HMEC cells were chosen for this project because of the wide 

breadth of microarray data that is available for different breast cancer subtypes 

[458-462]. NHF cells were chosen because they have been used extensively to 

study the DNA damage checkpoint [463-466]. The HCT116 colorectal carcinoma 

cell line was used as a positive control for induced re-replication; previous work  
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Figure 3.1. Depletion of Cdt2 results in DNA damage and a G2/M arrest. A) 
HCT116 and NHF-hTERT cells were transfected with 100 nM siGFP or siCdt2 
and incubated for either 48 hr or 72 hr. A) Whole cell extracts were analyzed for 
the presence of Cdt2 and activated p53 (phosphorylated serine 15). !-tubulin 
was used as a loading control. B) HCT116 and C) NHF-hTERT cells treated with 
100nM siRNA were stained for phoshphorylated "-H2Ax (serine 139). Results 
from multiple experiments are quantified below. * p<0.05. D) The DNA content of 
HCT116 (top) and NHF-hTERT cells (bottom) treated with 100 nM siRNA were 
analyzed by flow cytometry. 
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had shown that Cdt1 misregulation, either through overexpression or due to 

geminin depletion, can induce re-replication in these cells [467]. As shown in 

Figure 3.1A, Cdt2 could successfully be depleted in HCT116 and NHF-hTERT 

cells. When depleted, the DNA damage response was activated as evident by 

the activating phosphorylation on p53 (serine 15). Since p53 could become 

activated for a number of reasons, cells were stained for the presence of the 

DNA damage marker, phosphorylated #-H2Ax (serine 139, Figure 3.1B and 3.1C). 

Upon DNA damage, #-H2Ax is rapidly phosphorylated and deposited at the sites 

of double strand breaks and is therefore an early marker for the DNA damage 

response [468]. Interestingly, cells depleted of Cdt2 result in a G2/M arrest with 

no apparent accumulation of greater than 4C DNA content (Figure 3.1D). 

 Because the goal of the project was determine a gene expression 

signature that was specific to cells undergoing re-replication and not a general 

DNA damage response, we focused on inducing re-replication in the NHF cell 

line so we could compare directly to the DNA damage gene signatures. Initial 

experiments were performed using 100 nM siRNA. As seen in Figure 3.2A, both 

5 nM and 10 nM siRNA was sufficient to partially deplete cells of Cdt2. This 

partial depletion was enough to stabilize the CRL4Cdt2 target p21, as well as 

activate p53 (Figure 3.2A) and form #-H2Ax foci (Figure 3.2B). Importantly, when 

treated with either 5 nM or 10 nM siRNA, the cells did not arrest at the G2/M 

border (Figure 3.2C). 

 Total RNA was extracted from NHF cells treated with either 5 nM or 10 nM 

siRNA for 72 hr and hybridized to a 4x44K V2 Microarray to examine the 
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changes in gene expression when Cdt2 was depleted. Unfortunately, the 

microarray results were inconclusive. Even though Cdt2 depletion was confirmed 

by immunoblot analysis, microarray analysis showed no changes in Cdt2 mRNA 

levels. We therefore concluded that the level of re-replication that was being 

induced was not sufficient enough to lead to changes in gene expression. 

 When treated with the full dose (100 nM) siCdt2, cells arrested at the 

G2/M border (Figure 3.1D). This arrest could be the result of a full activation of 

the DNA damage checkpoint due to extensive re-replication. In order to bypass 

the checkpoint, cells were depleted with both Cdt2 and p53. Co-depletion of p53 

was able to alleviate the G2/M arrest in both HCT116 (Figure 3.3A and HMEC-

hTERT cells (Figure 3.3B), however cells did not accumulate greater than 4C 

DNA content. Additionally, arresting depleted cells with nocodazole did not lead 

to accumulation of re-replicated DNA (data not shown). These experiments were 

also performed in the pre-cancerous MCF10a series of breast cancer cell lines; 

we hypothesized that these cells may be predisposed to accumulating DNA 

damage. However, siRNA knockdown could not be achieved in these cell lines 

(data not shown). 

These observations suggest that cells depleted of Cdt2 undergo enough stress to 

activate p53 but are not, in fact, re-replicating. This could be due to the combined 

stabilization and induction of the Cdk inhibitor p21. As mentioned previously, p21 

is targeted for degradation at the onset of S phase by the CRL4Cdt2 ubiquitin 

ligase [453,456,457]. p21 has also been shown to be induced by p53 during a 

cell cycle arrest [469-472]. Additionally, p21 has been shown to inhibit DNA  
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Figure 3.2. Treatment with 10 nM siCdt2 causes DNA damage but does not 
induce a G2/M arrest. NHF-hTERT cells were treated with 5 nM or 10 nM siGFP 
or siCdt2 and were incubated for 48 hr or 72 hr. A) Whole cell extracts were 
analyzed for the presence of Cdt2, activated p53 (phosphorylated serine 15), and 
p21. A non-specific band (NSB) was used as a loading control. B) Cells treated 
with 5 nM or 10 nM siRNA were stained for phoshphorylated !-H2Ax (serine 139). 
C) The DNA content of NHF-hTERT cells treated with 5 nM (top) or 10 nM 
(bottom) siRNA were analyzed by flow cytometry. 
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replication through its binding to PCNA; this inhibition is achieved through by 

blocking the loading of PCNA onto DNA or by disrupting the loading of 

polymerase $ onto PCNA in vitro [473-475]. We examined the levels of p21 

mRNA and found them to be induced in the Cdt2 depleted cells (data not shown), 

perhaps contributing to the G2/M arrest in these cells. 

 
Depletion of geminin leads to re-replication in HMEC cells 

 To bypass the arrest, we attempted to induce re-replication by targeting 

Cdt1 function specifically by depleting cells of the inhibitor protein geminin. 

Depleting HCT116 cells of geminin induces significant amounts of re-replication 

[467]. We confirmed that geminin could be depleted through RNAi in HMEC cells 

(Figure 3.4A). This depletion also leads to an increase in the activation of the 

checkpoint kinase Chk2, suggesting that these cells are undergoing DNA 

damage. Indeed, DNA damage was confirmed through the formation of #-H2Ax 

foci (Figure 3.4B). It has also been shown in S. pombe that DNA damage can 

induce the levels of Cdt2 [476,477]. Indeed, when we deplete HMEC cells of 

geminin, we see a 3-fold induction of Cdt2 mRNA, suggesting that the DNA 

damage checkpoint has been activated (data not shown). Most importantly, 

however, HMEC cells that are depleted of geminin do not arrest, but instead 

accumulate greater than 4C DNA content (Figure 3.4C).  

 

Discussion 

 Cells depleted of Cdt2 accumulated multiple markers of DNA damage, but 
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Figure 3.3. Co-depletion of Cdt2 and p53 abrogates the G2/M arrest. A) 
HCT116 or B) HMEC-hTERT cells were transfected with a total 100 nM of the 
indicated siRNA. The DNA content of the cells was analyzed 72 hr later by flow 
cytometry. 
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evidence of re-replication was not observed by flow cytometry; instead, cells 

arrested in G2/M phase (Figure 3.1). We hypothesized that depletion of Cdt2 was 

actually causing re-replication during S phase, leading to what appeared to be 

4C content. To exclude this possibility, we treated Cdt2 depleted cells with 

nocodazole to arrest cells in mitosis, thereby allowing the extra re-replicated DNA 

to appear as greater than 4C content by flow cytometry. However, treatment with 

nocodazole did not result in accumulation of re-replicated DNA, suggesting that 

while these cells are damaged, the G2/M checkpoint prevents re-replication from 

occurring. This checkpoint could be overcome by concurrently depleting cells of 

Cdt2 and p53, but re-replication was still not observed (Figure 3.3). Recent 

studies have stabilized CRL4Cdt2 substrates by treating cells with MLN4924, a 

neddylation inhibitor that blocks the activation of the cullin ubiquitin ligases 

through the inhibition of NEDD8 [478,479]. When HCT116 cells were treated with 

MLN4924, re-replication was observed, as well as an increase in apoptosis [478]. 

Interestingly, when HCT116p21-/- cells were treated with this inhibitor, they saw an 

increased sensitivity to MLN4924, suggesting that co-depletion of p21 and Cdt2 

may increase the chances of inducing re-replication in normal cells. 

 Because Cdt2 depletion leads to large perturbations of the cell by affecting 

multiple CRL4Cdt2 substrates, we decided to make a targeted approach and affect 

Cdt1 function only. We therefore depleted HCT116 and HMEC cells of the Cdt1 

inhibitor, geminin. Previously, depletion of geminin in NHF-hTERT cells resulted 

in a normal flow cytometry profile; however, by using DNA fiber spreading, re- 

replication was evident at low levels [450]. When HMEC cells were depleted of 
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Figure 3.4. Depletion of geminin results in re-replication. HMEC-hTERT cells 
were treated with either 25 nM, 50 nM, or 100 nM siGFP or siGem for 72 hr. A) 
Whole cell extracts were analyzed for geminin and activated Chk2 
(phosphorylated threonine 68) levels. B) DNA content was analyzed by flow 
cytometry. 
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geminin, markers of DNA damage accumulated, as well enough re-replication to 

be observed by flow cytometry (Figure 3.4). However, these results varied from 

experiment to experiment. Phosphorylation of Chk2 was consistently observed, 

suggesting that even though re-replication could not be observed by flow 

cytometry, it may still be occurring. In order to see changes in gene expression, 

however, the phenotype may have to be robust enough to be observed by flow 

cytometry. This could be achieved by combining geminin depletion with transient 

overexpression of Cdt1, either through adenoviral infection or lentiviral 

transduction. 

 Once re-replication is confirmed, a re-replication gene expression 

signature can be generated. This signature can then be compared to the gene 

expression profiles of various cancer types, particularly the established subtypes 

of breast cancer and oncogene driven tumors. This comparison will allow us to 

correlate cancer subtype, degrees of genomic instability, or potentially patient 

prognosis with re-replication.  

 



 
 
 
 
 

Chapter 4 

 

Conclusions and Future Directions 

 

Conclusions 

 The work in this dissertation provides evidence that a successful cell cycle 

is driven by changes in protein abundance. Prior to the work presented here, the 

majority of the known cell cycle abundance changes were detected through 

mutagenic, single gene studies. These studies have led to the discovery of many 

proteins essential for cell cycle progression, such as Cdc6, Cdt1, etc. However, 

single gene studies limit the scope of what can be observed. By taking a mass 

spectrometry approach, we have shown that other biological processes, such as 

mRNA alternative splicing, are regulated in a cell cycle dependent manner.  

 

Future Directions 

Repeat mass spectrometry to detect low abundance proteins 

 While we were able to detect about a third of the known proteome, 

surprisingly, we could not detect many of the known cell cycle regulated proteins. 

These proteins included origin licensing proteins, such as Cdc6 and Cdt1, and 

the E2F transcription factors. Since our screen only identified the most abundant 

proteins in the cell, it is possible that we were unable to detect critical mediators 
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of other signaling pathways are indeed cell cycle regulated but are expressed at 

a low level. This could be circumvented by performing mass spectrometric 

analysis on a larger amount of protein. Also, the cells could first be fractionated 

into nuclear and cytoplasmic lysates in order to decrease the complexity of the 

mixture. Alternatively, the whole cell extract could be separated further, either 

through SDS-PAGE or a longer elution from the LC separation procedure. 

 Due to our experimental approach, it is possible that post-translational 

modifications may have been mistaken as a decrease in protein abundance. In 

order to elucidate these proteins, we could perform a phosphopeptide enrichment 

to enhance our detection of phosphorylation events that may occur in a cell cycle 

dependent manner. However, detection of other modifications, such as 

acetylation or methylation, typically involved immunoprecipitating proteins from a 

complex mixture with a modification specific antibody. While this would be 

possible, we may also be able to detect these modifications through modified 

database searches. The protocols mentioned previously (i.e., fractionation, 

longer elution times, etc.) would also boost the possibility of identifying these 

modifications. 

 

Determine the effects of hnRNP protein changes on alternative splicing  

Several alternative splicing factors, both hnRNPs and SR proteins, were 

found to be differentially regulated during S phase. This suggests that splicing of 

certain mRNA targets changes during S phase. This has major implications for 

how protein abundance and function can be regulated throughout the cell cycle. 
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Recently, changes in alternative splicing have been confirmed for some cell cycle 

proteins, such as Chk2 (Z. Wang, personal communication), though the cell cycle 

regulation of alternative splicing has not yet been examined on a large scale. 

This question can be answered using high-throughput RNA-seq. By sequencing 

the mRNAs that are present during different stages of the cell cycle, we can 

determine whether certain isoforms are more abundant during particular cell 

cycle phases. 

Splicing factors are notoriously promiscuous; for example, some target 

mRNAs, particularly the hnRNP mRNAs themselves, can be regulated by several 

different splicing factors [438]. In our datasets, we see the majority of the hnRNP 

proteins decrease during S phase and recover during G2. With such a large 

scale change in splicing factor abundance and the promiscuity of these factors, 

overall splicing efficiency may be affected during S phase. In this scenario, the 

splicing sites that are closest to the consensus site will be bound, and splicing 

will occur as normal. However, binding to these consensus sites will sequester 

the limited amount of protein away from the weaker binding sites. To test this, the 

Garcia-Blanco lab (Duke University) has developed a series of reporter plasmids 

that vary in their splice site efficiencies. As controls, the 5’ consensus site is 

constitutively spliced, whereas the 15d site is rarely spliced (~10%). Another 

construct, designated as C, is spliced about ~50% and is therefore contingent on 

the availability of splicing factors [480]. These constructs could provide insight 

into whether overall splicing efficiency is affected by cell cycle position. 
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Determine the gene expression profile of re-replicating HMEC cells 

 In order to induce re-replication, HMEC cells may need to be depleted of 

geminin and overexpress Cdt1. This overexpression can be achieved through 

either adenoviral expression or lentiviral transduction. Due to the possible off-

target consequences of adenoviral infection, we are currently testing if transient 

lentiviral transduction can result in re-replication. Additionally, because normal 

cells are efficient at repairing re-replication, this damage should be confirmed 

through both flow cytometry and DNA fiber spreading, as well as the appearance 

of DNA damage markers, such as #-H2Ax staining and Chk2 phosphorylation. 

Gene expression profiling of these cells will reveal an expression pattern that is 

induced by re-replication, but is, at least partially, different from a DNA damage 

signature. This re-replication signature can then be compared to the multitude of 

tumor gene expression profiles that are available.  

 Because genome instability is a hallmark of cancer, re-replication may be 

more prevalent in the most aggressive tumors. Therefore, there may be a 

correlation between re-replication and poor patient prognosis. Cancers that are 

prone to re-replication may also benefit from treatment with certain types of 

chemotherapeutics that target DNA replication. 
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Appendix A: Protocols optimized for Cdc6 isolation 

 

Project Rationale 

To further understand the mechanisms by which pre-RC assembly is 

controlled, we sought to further elucidate the mechanisms by which Cdc6 is 

regulated. As mentioned in Chapter 1, Cdc6 is phosphorylated in late G1 phase 

by cyclin/Cdk2 complexes; this phosphorylation blocks the association of Cdc6 

with APC/C, resulting in increased protein levels [334]. Recently, it was 

discovered that Cdc6 is also acetylated on three lysine residues [335]. 

Acetylation of these residues promotes the phosphorylation of serine 106, which 

in turn promotes the export of Cdc6 from the nucleus during S phase 

[335,336,338-341]. While the bulk of Cdc6 is exported, a small fraction of the 

protein remains chromatin-bound throughout S phase; it is thought that this 

population of Cdc6 protein participates in the intra-S phase checkpoint 

[337,342,343]. In addition to this regulation, upon DNA damage, Cdc6 is released 

from chromatin and targeted for degradation by the ubiquitin ligase Huwe1 [481]. 

However, under conditions of cellular stress, Cdc6 is not degraded, but pre-RC 

formation is still blocked [482].  

The mechanism by which some Cdc6 is exported while a fraction remains 

chromatin-bound is still unknown. Additionally, it is unknown why Cdc6 is 

degraded following DNA damage but is stabilized when cells are stressed. We 

hypothesized that additional post-translational modifications of Cdc6 may 

modulate its activity during these conditions. This hypothesis was supported by 
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the finding that the acetyltransferase Hbo1 associates with many members of the 

pre-RC complex and is essential for MCM loading [483]. Mass spectrometric data 

also suggested that Cdc6 was acetylated on lysines 57 and 531 (Y. Xiong, 

personal communication). Given the proximity of one of these sites, lysine 57, to 

a known Cdk phosphorylation site, we hypothesized that this modification may 

regulate the accessibility of Cdc6 to the cyclin/Cdk complexes.  

In order to confirm these acetylation sites, as well as identify other 

modifications that may be present on Cdc6, we sought to immunoprecipitate (IP) 

endogenous Cdc6 from asynchronously growing HeLa cells to analyze by mass 

spectrometry.  

 

Cdc6 Isolation Protocols 

Isolation of Endogenous Cdc6 with UNC274 or UNC275 sera 

HeLa cells were grown asynchronously in DMEM supplemented with 10% 

FBS. Cells were washed with PBS and harvested by trypsinization. Cells were 

collected by centrifugation and snap frozen. Pellets were resuspended in Co-IP3 

buffer (50 mM HEPES, pH 7.2, 33 mM KAc, 1 mM MgCl2, 0.5 mM EDTA, 0.5 mM 

EGTA, 0.1% NP-40, 10% glycerol) supplemented with 0.1 mM 4-(2-aminoethyl) 

benzenesulfonyl fluoride hydrochloride (AEBSF), 1 µg/mL pepstatin A, 1 µg/mL 

aprotinin, 1 µg/mL leupeptin, 5 µg/mL phosvitin, 1 mM !-glycerol phosphate, 1 

mM orthovanadate, 200 nM trichostatin A, and 2.5 mM sodium butyrate. Lysates 

were sonicated for 10 pulses on the lowest setting, at 20% duty cycle. Following 

sonication, 5 mM CaCl2 and S7 nuclease was added to release chromatin bound 
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proteins, and the lysates were incubated on ice for 20 min. Lysates were cleared 

by centrifugation, and protein concentration was determined using the Bradford 

assay (Biorad). Samples were divided and incubated with either normal rabbit 

serum (NRS) or the anti-Cdc6 sera, UNC274 or UNC275 overnight at 4°C. 

Protein A beads were washed with Co-IP3 buffer, added to the IPs, and rotated 

at 4°C for 1 hr. Following incubation, the protein A beads were washed three 

times with Co-IP3 buffer and resuspended in SDS loading buffer supplemented 

with DTT. Samples were subjected to SDS-PAGE on an 8% polyacrylamide gel 

and transferred to PVDF (Thermo Scientific). Blots were probed with anti-Cdc6 

(180.2, Santa Cruz Biotechnology). As shown in Figure A.1A and A.1B, both 

UNC274 and UNC275 sera were able to immunoprecipitate Cdc6, whereas NRS 

was not. 

 

Isolation of Endogenous Cdc6 with H304 antibody 

 In addition to the rabbit serum raised against Cdc6, we were able to 

immunoprecipitate Cdc6 using a commercial antibody, H304 (Santa Cruz 

Biotechnology). Asynchronous HeLa cells were washed with PBS and harvested 

by trypsinization. Cells were pelleted and resuspended in HNNG buffer (15 mM 

HEPES, pH 7.5, 250 mM NaCl, 1% NP-40, 5% glycerol) supplemented with 0.1 

mM AEBSF, 1 µg/mL pepstatin A, 1 µg/mL aprotinin, 1 µg/mL leupeptin, 5 µg/mL 

phosvitin, 1 mM !-glycerol phosphate, 1 mM orthovanadate, 200 nM trichostatin 

A, and 2.5 mM sodium butyrate. Lysates were incubated on ice for 20 min and 

were cleared by centrifugation. Protein concentration was determined using the   
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Figure A.1. Cdc6 isolation from HeLa cell extracts. Asynchronous HeLa cell 
extracts were subjected to immunoprecipitation with either A) UNC 274 serum 
and UNC275 serum, B) normal rabbit serum (NRS) and UNC275 serum, or C) 
the commercial H304 antibody. D) Asynchronous HeLa cells were treated with 
adenovirus encoding SBP-CBP-Cdc6 and were harvested 48 hr after infection. 
SBP-CBP-Cdc6 was precipitated (PD) using streptavidin beads.  
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Bradford assay (Biorad). Samples were divided and incubated with either no 

antibody or H304 overnight at 4°C. Protein A beads were washed with HNNG, 

added to the IPs, and rotated at 4°C for 1 hr. Following incubation, the beads 

were washed three times with HNNG buffer and resuspended in SDS loading 

buffer supplemented with DTT. Samples were subjected to SDS-PAGE on an 8% 

polyacrylamide gel and transferred to PVDF (Thermo Scientific). Blots were 

probed with anti-Cdc6 (180.2, Santa Cruz Biotechnology). As shown in Figure 

A.1C, H304 was able to efficiently pull down endogenous Cdc6, whereas Cdc6 

was not detected in the control reaction.  

 

Isolation of SBP-CBP-Cdc6 

 Asynchronous HeLa cells were infected with an adenovirus expressing 

GFP or SBP-CBP-Cdc6 at an MOI of 500. Twenty-four hours later, cells were 

washed with PBS and harvested by trypsinization. Cells were collected by 

centrifugation and resuspended in SBB-L buffer (40 mM Tris HCl, pH 7.4, 100 

mM KCl, 5 mM !-mercaptoethanol, 2 mM EDTA, 0.1% Triton X-100). All buffers 

were supplemented with 0.1 mM AEBSF, 1 µg/mL pepstatin A, 1 µg/mL aprotinin, 

1 µg/mL leupeptin, 5 µg/mL phosvitin, 1 mM !-glycerol phosphate, 1 mM 

orthovanadate, 200 nM trichostatin A, and 2.5 mM sodium butyrate. Cells were 

sonicated for 10 pulses at the lowest setting, at 20% duty cycle. Lysates were 

supplemented with 5 mM CaCl2 and S7 nuclease to release the chromatin-bound 

proteins and were incubated on ice for 30 min. An equal volume of SBB-H buffer 

(40 mM Tris HCl, pH 7.4, 500 mM KCl, 5 mM !-mercaptoethanol, 2 mM EDTA 
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0.1% Triton X-100) was added, and the lysates were incubated for an additional 

10 min on ice. Lysates were cleared by centrifugation, and protein concentration 

was determined using the Bradford assay (Biorad). Streptavidin resin 

(Stratagene) was washed in SBB buffer (40 mM Tris HCl, pH 7.4, 250 mM KCl, 5 

mM !-mercaptoethanol, 2 mM EDTA, 0.1% Triton X-100) and added to the cell 

lysates. The beads were incubated with the lysates at 4°C for 2 hr and then 

washed three times with SBB buffer. The beads were resuspended in SDS 

loading buffer and subjected to SDS-PAGE on an 8% polyacrylamide gel. 

Proteins were transferred to PVDF (Thermo Scientific) and probed with anti-Cdc6 

(180.2, Santa Cruz Biotechnology). As shown in Figure A.1D, SBP-CBP tagged 

Cdc6 can be efficiently pulled down used streptavidin resin. 

 

Project Status and Future Directions 

 Unfortunately, even though endogenous or tagged Cdc6 was successfully 

immunoprecipitated from asynchronous HeLa cell extracts, we were unable to 

isolate enough Cdc6 to perform mass spectrometry analysis. Endogenous Cdc6 

was immunoprecipitated using the UNC274 sera, the UNC275 sera, or the H304 

commercial antibody; unfortunately, given the size of Cdc6 (~63kD), it was nearly 

impossible to isolate Cdc6 from IgG heavy chain peptides following SDS-PAGE 

separation. To circumvent this problem, we treated extracts with N-

ethylmaleimide [484] to prevent the breakdown of the IgG complex or attempted 

to conjugate the antibody to a resin column. In both cases, however, separation 

of the antibody and Cdc6 was not successful. Following NEM treatment and 



 100 

SDS-PAGE, both Cdc6 and the antibody shifted in the gel. To completely 

eliminate IgG from the SDS-PAGE separation entirely, we attempted to 

conjugate all three antibodies to agarose resin using the CarboLink 

Immobilization kit [206]. While the antibodies were successfully cross-linked to 

the resin, Cdc6 could not be eluted from the column in quantities sufficient for 

mass spectrometry analysis. 

 Because endogenous immunoprecipitations would not work, we attempted 

to tag Cdc6 with several different epitopes (see Appendix B for a full list). The 

best results were achieved using an N-terminal combination streptavidin binding 

peptide (SBP)-calmodulin binding peptide (CBP) epitope tag. The addition of this 

epitope allowed us to pull down Cdc6 under a variety of salt and detergent 

conditions (Figure A1.D). Unfortunately, while we could express this tagged 

protein using an adenovirus expression system, we were unable to stably 

express this protein in a variety of cell types. While we would be able to purify 

sufficient Cdc6 to perform mass spectrometry analysis using this system, it is 

possible that overexpression of a tagged protein could result in skewed results.  

 These issues could perhaps be overcome by the use of a smaller epitope 

tag or tagging the protein on its C-terminus. Our lab has observed that at least 

one epitope tag, the 5x myc tag, partially stabilizes Cdc6 when the protein is 

tagged on the N-terminus. The SBP-CBP tag is of a similar size and could result 

in a more stable protein, thereby adding additional replication stress to cells that 

are constantly expressing this protein. Use of a smaller epitope, such as an in 

vivo biotinylation system, may alleviate that stress, allowing for stable expression 
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of the tagged protein. The stabilization effect of the 5x myc tag may also be due 

to its placement at the N-terminus, close to where the Cdk phosphorylation site 

and APC/C binding site are located; relocating the SBP-CBP tag to the C-

terminus may help promote stable expression of the protein.  
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Appendix B: List of plasmids generated 

 
Cdc6 mutants: 

pENTR vectors: 

1.  pENTR1A HsCdc6-stopless 

Description: Entry vector encoding an untagged human Cdc6 gene with a 

mutated stop codon. 

Strategy: Stopless codon was amplified from pENTR1A (primers: 

cdc6.stopless, K531R 5’). PCR was digested (BglII) and ligated into 

pENTR1A HsCdc6 (BglII & EcoRV). 

Note: A consensus kozak sequence was added to this plasmid. 

2.  pENTR1A HsCdc6-GST 

Description: Entry vector encoding a C-terminal Glutathione-S-transferase 

(GST) tagged human Cdc6 gene. 

Strategy: HsCdc6-GST was cut from pDEST24 HsCdc6-GST (SalI & 

EcoRV) and ligated into pENTR1A (SalI & EcoRV). 

3.  pENTR1A HsCdc6-strep 

Description: Entry vector encoding a C-terminal StrepTagII tagged human 

Cdc6 gene. 

Strategy: The StrepTagII tag was added to HsCdc6 via PCR (primers: 

cdc6.strep, K531R 5’) using pENTR1A HsCdc6 as a template. Tagged 

Cdc6 PCR was cut (BglII) and ligated into pENTR1A HsCdc6 (BglII & 

EcoRV). 

Note: A consensus kozak sequence was added to this plasmid. 
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4.  pENTR2B sbp-HsCdc6# 

Description: Entry vector encoding an N-terminal streptavidin binding protein 

(SBP)-calmodulin binding protein (CBP) tagged human Cdc6 gene, 

resistant to the D5 hairpin. 

Strategy: SBP-CBP tagged Cdc6 was cut from pNTAP3C HsCdc6# (NotI & 

PvuI, blunted) and ligated between EcoRI sites (blunted) in pENTR2B.  

Note: In order to successfully create adenovirus, this plasmid was digested 

with PacI and blunted with T4 polymerase to destroy the site. 

5.  pENTR3C myc-cdc6 K57R 

Description: Entry vector encoding an N-terminal 5x myc tagged human 

Cdc6 gene containing the K57R mutation. 

Strategy: Mutation was created by megaprimer PCR (primers: K57R muta, 

K57R 5’ #2, K57R 3’ Rev). PCR was cut (KpnI & NdeI) and ligated into 

pENTR3C myc-cdc6 (KpnI & NdeI). 

6.  pENTR3C myc-cdc6 K57Q 

Description: Entry vector encoding an N-terminal 5x myc tagged human 

Cdc6 gene containing the K57Q mutation. 

Strategy: Mutation was created by megaprimer PCR (primers: K57Q muta, 

K57R 5’ #2, K57R 3’ Rev). PCR was cut (KpnI & NdeI) and ligated into 

pENTR3C myc-cdc6 (KpnI & NdeI). 

7.  pENTR3C myc-cdc6 K531R 

Description: Entry vector encoding an N-terminal 5x myc tagged human 

Cdc6 gene containing the K531R mutation. 
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Strategy: Mutation was created by megaprimer PCR (primers: K531R muta, 

K531 3’ Rev, K531R 5’). PCR was cut (BglII & NotI) and ligated into 

pENTR3C myc-cdc6 (BglII & NotI). 

8.  pENTR3C myc-cdc6 K531Q 

Description: Entry vector encoding an N-terminal 5x myc tagged human 

Cdc6 gene containing the K531Q mutation. 

Strategy: Mutation was created by megaprimer PCR (primers: K531Q muta 

#2, K531 3’ Rev, K531R 5’). PCR was cut (BglII & NotI) and ligated into 

pENTR3C myc-cdc6 (BglII & NotI). 

pDEST/expression vectors: 

9.  pcDNA3 HsCdc6-strep 

Description: Expression vector encoding a C-terminal StrepTagII tagged 

human Cdc6 gene. 

Strategy: HsCdc6-strep was cut from pDEST40 HsCdc6-strep (SmaI & 

EagI) and ligated into pcDNA3 (KpnI-blunted & NotI). 

10.  pcDNA3 myc-cdc6-strep 

Description: Expression vector encoding an N-terminal 5x myc tagged and a 

C-terminal StrepTagII tagged human Cdc6 gene. 

Strategy: C-terminal tag was cut from pDEST40 HsCdc6-strep (EagI & 

EcoRI) and ligated into pcDNA3 myc-cdc6 (NotI & EcoRI). 

11.  pDEST24 HsCdc6-GST^ 

Description: Bacterial expression vector encoding a C-terminal GST tagged 

human Cdc6 gene. 
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Strategy: Tagged Cdc6 was moved into pDEST24 from pENTR1A HsCdc6-

stopless via LR Gateway reaction. 

Note: This plasmid contains a frame shift. The pENTR1A HsCdc6-stopless 

plasmid has been corrected, however this plasmid was not remade. 

12.  pDEST40 HsCdc6-GST 

Description: Expression vector encoding a C-terminal GST tagged human 

Cdc6 gene. 

Strategy: Tagged Cdc6 was moved into pDEST40 from pENTR1A HsCdc6-

GST via LR Gateway reaction. 

13.  pDEST40 HsCdc6-His 

Description: Expression vector encoding a C-terminal 6x His tagged human 

Cdc6 gene. 

Strategy: Tagged Cdc6 was moved into pDEST40 from pENTR1A HsCdc6-

GST via LR Gateway reaction. 

Note: A consensus kozak sequence was added to this plasmid. A frame 

shift mutation was corrected by digesting with XhoI and blunted with T4 

polymerase. 

14.  pDEST40 HsCdc6-strep 

Description: Expression vector encoding a C-terminal StrepTagII tagged 

human Cdc6 gene. 

Strategy: Tagged Cdc6 was moved into pDEST40 from pENTR1A HsCdc6-

strep via LR Gateway reaction. 

15.  pDEST40 myc-cdc6 
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Description: Expression vector encoding an N-terminal 5x myc tagged 

human Cdc6 gene. 

Strategy: Tagged Cdc6 was moved into pDEST40 from pENTR3C myc-

cdc6 via LR Gateway reaction. 

16.  pDEST40 myc-cdc6 K57R 

Description: Expression vector encoding an N-terminal 5x myc tagged 

human Cdc6 gene containing the K57R mutation. 

Strategy: Tagged Cdc6 was moved into pDEST40 from pENTR3C myc-

cdc6 K57R via LR Gateway reaction. 

17.  pDEST40 myc-cdc6 K57Q 

Description: Expression vector encoding an N-terminal 5x myc tagged 

human Cdc6 gene containing the K57Q mutation. 

Strategy: Tagged Cdc6 was moved into pDEST40 from pENTR3C myc-

cdc6 K57Q via LR Gateway reaction. 

18.  pDEST40 myc-cdc6 K531R 

Description: Expression vector encoding an N-terminal 5x myc tagged 

human Cdc6 gene containing the K531R mutation. 

Strategy: Tagged Cdc6 was moved into pDEST40 from pENTR3C myc-

cdc6 K531R via LR Gateway reaction. 

19.  pDEST40 myc-cdc6 K531Q 

Description: Expression vector encoding an N-terminal 5x myc tagged 

human Cdc6 gene containing the K531Q mutation. 
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Strategy: Tagged Cdc6 was moved into pDEST40 from pENTR3C myc-

cdc6 K531Q via LR Gateway reaction. 

20.  pNTAP3C HsCdc6 

Description: Expression vector encoding an N-terminal SBP-CBP tagged 

human Cdc6 gene. 

Strategy: HsCdc6 was cut from pENTR1A HsCdc6 (BamHI & XhoI) and 

ligated into pNTAP3C (BamHI & XhoI). 

21.  pNTAP3C HsCdc6# 

Description: Expression vector encoding an N-terminal SBP-CBP tagged 

human Cdc6 gene, resistant to the D5 hairpin. 

Strategy: Resistant Cdc6 was created using the QuikChange mutagenesis 

kit (primers: D5 muta #2, D5 muta 3’). 

22.  pNTAP3C cdc6 K57R 

Description: Expression vector encoding an N-terminal SBP-CBP tagged 

human Cdc6 gene containing the K57R mutation. 

Strategy: Cdc6 K57R was cut from pDEST40 myc-cdc6 K57R (BamHI & 

EcoRI) and ligated into pNTAP3C (BamHI & EcoRI). 

23.  pNTAP3C cdc6 K57R# 

Description: Expression vector encoding an N-terminal SBP-CBP tagged 

human Cdc6 gene, resistant to the D5 hairpin, containing the K57R 

mutation. 

Strategy: Resistant Cdc6 was created using the QuikChange mutagenesis 

kit (primers: D5 muta #2, D5 muta 3’). 
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24.  pNTAP3C cdc6 K57Q 

Description: Expression vector encoding an N-terminal SBP-CBP tagged 

human Cdc6 gene containing the K57Q mutation. 

Strategy: Cdc6 K57Q was cut from pDEST40 myc-cdc6 K57Q (BamHI & 

EcoRI) and ligated into pNTAP3C (BamHI & EcoRI). 

25.  pNTAP3C cdc6 K57Q# 

Description: Expression vector encoding an N-terminal SBP-CBP tagged 

human Cdc6 gene, resistant to the D5 hairpin, containing the K57Q 

mutation. 

Strategy: Resistant Cdc6 was created using the QuikChange mutagenesis 

kit (primers: D5 muta #2, D5 muta 3’). 

26.  pNTAP3C cdc6 K531R 

Description: Expression vector encoding an N-terminal SBP-CBP tagged 

human Cdc6 gene containing the K531R mutation. 

Strategy: Cdc6 K531R was cut from pDEST40 myc-cdc6 K531R (EcoRI & 

HindIII) and ligated into pNTAP3C (EcoRI & HindIII). 

27.  pNTAP3C cdc6 K531R# 

Description: Expression vector encoding an N-terminal SBP-CBP tagged 

human Cdc6 gene, resistant to the D5 hairpin, containing the K531R 

mutation. 

Strategy: Resistant portion of Cdc6 was cut from pNTAP3C HsCdc6# 

(BamHI & EcoRI) and ligated into pNTAP3C cdc6 K531R (BamHI & 

EcoRI). 
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28.  pNTAP3C cdc6 K531Q 

Description: Expression vector encoding an N-terminal SBP-CBP tagged 

human Cdc6 gene containing the K531Q mutation. 

Strategy: Cdc6 K531Q was cut from pDEST40 myc-cdc6 K531Q (EcoRI & 

HindIII) and ligated into pNTAP3C (EcoRI & HindIII). 

29.  pNTAP3C cdc6 K531Q# 

Description: Expression vector encoding an N-terminal SBP-CBP tagged 

human Cdc6 gene, resistant to the D5 hairpin containing the K531Q 

mutation. 

Strategy: Resistant portion of Cdc6 was cut from pNTAP3C HsCdc6# 

(BamHI & EcoRI) and ligated into pNTAP3C cdc6 K531Q (BamHI & 

EcoRI). 

Viral vectors: 

30.  pAD-DEST sbp-cdc6# 

Description: Adenoviral expression vector encoding an N-terminal SBP-CBP 

tagged human Cdc6 gene, resistant to the D5 hairpin. 

Strategy: Tagged Cdc6# was moved into pAD-DEST/CMV/V5 from 

pENTR2B sbp-cdc6# via LR Gateway reaction. 

31.  pBABEhy MmCdc6-GFP 

Description: Retroviral expression vector encoding a C-terminal Green 

Fluorescence Protein (GFP) tagged mouse Cdc6 gene. 

Strategy: MmCdc6 was cut from pLL5.0x MmCdc6 (ClaI) and ligated into 

pBABEhy [452]. 
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32.  pBABEhy MmCdc6 GFP IRES 

Description: Retroviral expression vector encoding a mouse Cdc6 gene and 

GFP, separated by an internal ribosomal entry site [117]. 

Strategy: MmCdc6 GFP IRES was cut from pLL5.0x MmCdc6 GFP IRES 

(ClaI) and ligated into pBABEhy [452]. 

33.  pBABEpu myc-cdc6-strep 

Description: Retroviral expression vector encoding an N-terminal 5x myc 

and a C-terminal StrepTagII tagged human Cdc6 gene. 

Strategy: Tagged Cdc6 was cut from pcDNA3 myc-cdc6-strep (KpnI & XhoI, 

blunted) and ligated into pBABEpu (EcoRI, blunted). 

34.  pBABEpu sbp-cdc6# 

Description: Retroviral expression vector encoding an N-terminal SBP-CBP 

tagged human Cdc6 gene, resistant to the D5 hairpin. 

Strategy: Tagged Cdc6# was cut from pNTAP3C sbp-cdc6# (NotI & PvuI, 

blunted) and ligated into pBABEpu (EcoRI, blunted). 

35.  pCLXSN myc-cdc6 K57R 

Description: Retroviral expression vector encoding an N-terminal 5x myc 

tagged human Cdc6 gene containing the K57R mutation. 

Strategy: Tagged Cdc6 K57R was cut from pDEST40 myc-cdc6 K57R (KpnI 

& NotI, blunted) and ligated into pCLXSN (XhoI, blunted). 

36.  pCLXSN myc-cdc6 K57Q 

Description: Retroviral expression vector encoding an N-terminal 5x myc 

tagged human Cdc6 gene containing the K57Q mutation. 
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Strategy: Tagged Cdc6 K57Q was cut from pDEST40 myc-cdc6 K57Q (KpnI 

& NotI, blunted) and ligated into pCLXSN (XhoI, blunted). 

37.  pCLXSN myc-cdc6 K531R 

Description: Retroviral expression vector encoding an N-terminal 5x myc 

tagged human Cdc6 gene containing the K531R mutation. 

Strategy: Tagged Cdc6 K531R was cut from pDEST40 myc-cdc6 K531R 

(KpnI & NotI, blunted) and ligated into pCLXSN (XhoI, blunted). 

38.  pCLXSN myc-cdc6 K531Q 

Description: Retroviral expression vector encoding an N-terminal 5x myc 

tagged human Cdc6 gene containing the K531Q mutation. 

Strategy: Tagged Cdc6 K531Q was cut from pDEST40 myc-cdc6 K531Q 

(KpnI & NotI, blunted) and ligated into pCLXSN (XhoI, blunted). 

39.  pCLXSN sbp-cdc6 

Description: Retroviral expression vector encoding an N-terminal SBP-CBP 

tagged human Cdc6 gene. 

Strategy: Tagged Cdc6 was cut from pNTAP3C HsCdc6 (SacII & XhoI, 

blunted) and ligated into pCLXSN (XhoI, blunted). 

40.  pCLXSN sbp-cdc6# 

Description: Retroviral expression vector encoding an N-terminal SBP-CBP 

tagged human Cdc6 gene, resistant to the D5 hairpin. 

Strategy: Tagged Cdc6# was cut from pNTAP3C HsCdc6# (PmlI & AleI) 

and ligated into pCLXSN sbp-cdc6 K57Q# (PmlI & AleI). 

41.  pCLXSN sbp-cdc6 S45A# 
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Description: Retroviral expression vector encoding an N-terminal SBP-CBP 

tagged human Cdc6 gene, resistant to the D5 hairpin, containing the 

S45A mutation. 

Strategy: Mutation was created by megaprimer PCR (primers: cdc6 S45 F, 

S45A muta R, S45 3’R #2). PCR was cut (DraIII) and ligated into 

pCLXSN sbp-cdc6# (DraIII). 

42.  pCLXSN sbp-cdc6 S45D# 

Description: Retroviral expression vector encoding an N-terminal SBP-CBP 

tagged human Cdc6 gene, resistant to the D5 hairpin, containing the 

S45D mutation. 

Strategy: Mutation was created by megaprimer PCR (primers: cdc6 S45 F, 

S45D muta R, S45 3’R #2). PCR was cut (DraIII) and ligated into 

pCLXSN sbp-cdc6# (DraIII). 

43.  pCLXSN sbp-cdc6 S54A# 

Description: Retroviral expression vector encoding an N-terminal SBP-CBP 

tagged human Cdc6 gene, resistant to the D5 hairpin, containing the 

S54A mutation. 

Strategy: Mutation was created by megaprimer PCR (primers: cdc6 S45 F, 

S54A muta R, S45 3’R #2). PCR was cut (EcoRI) and ligated into 

pCLXSN sbp-cdc6# (EcoRI). 

44.  pCLXSN sbp-cdc6 S54D# 
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Description: Retroviral expression vector encoding an N-terminal SBP-CBP 

tagged human Cdc6 gene, resistant to the D5 hairpin, containing the 

S54D mutation. 

Strategy: Mutation was created by megaprimer PCR (primers: cdc6 S45 F, 

S54D muta R, S45 3’R #2). PCR was cut (EcoRI) and ligated into 

pCLXSN sbp-cdc6# (EcoRI). 

45.  pCLXSN sbp-cdc6 K57R# 

Description: Retroviral expression vector encoding an N-terminal SBP-CBP 

tagged human Cdc6 gene, resistant to the D5 hairpin, containing the 

K57R mutation. 

Strategy: Cdc6 K57R# was cut from pNTAP3C cdc6 K57R# (PmlI & AleI) 

and ligated into pCLXSN sbp-cdc6 K57Q# (PmlI & AleI). 

46.  pCLXSN sbp-cdc6 K57Q# 

Description: Retroviral expression vector encoding an N-terminal SBP-CBP 

tagged human Cdc6 gene, resistant to the D5 hairpin, containing the 

K57Q mutation. 

Strategy: Cdc6 K57Q# was cut from pNTAP3C cdc6 K57Q# (NotI & PvuI, 

blunted) and ligated into pCLXSN (XhoI, blunted). 

47.  pCLXSN sbp-cdc6 S74A# 

Description: Retroviral expression vector encoding an N-terminal SBP-CBP 

tagged human Cdc6 gene, resistant to the D5 hairpin, containing the 

S74A mutation. 
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Strategy: Mutation was created by megaprimer PCR (primers: cdc6 S45 F, 

S74A muta R, S45 3’R #2). PCR was cut (EcoRI) and ligated into 

pCLXSN sbp-cdc6# (EcoRI). 

48.  pCLXSN sbp-cdc6 S74D# 

Description: Retroviral expression vector encoding an N-terminal SBP-CBP 

tagged human Cdc6 gene, resistant to the D5 hairpin, containing the 

S74D mutation. 

Strategy: Mutation was created by megaprimer PCR (primers: cdc6 S45 F, 

S74D muta R, S45 3’R #2). PCR was cut (EcoRI) and ligated into 

pCLXSN sbp-cdc6# (EcoRI). 

49.  pCLXSN sbp-cdc6 S106A# 

Description: Retroviral expression vector encoding an N-terminal SBP-CBP 

tagged human Cdc6 gene, resistant to the D5 hairpin, containing the 

S106A mutation. 

Strategy: Mutation was created by megaprimer PCR (primers: cdc6 S45 F, 

S106A muta R, S45 3’R #2). PCR was cut (EcoRI) and ligated into 

pCLXSN sbp-cdc6# (EcoRI). 

50.  pCLXSN sbp-cdc6 S106D# 

Description: Retroviral expression vector encoding an N-terminal SBP-CBP 

tagged human Cdc6 gene, resistant to the D5 hairpin, containing the 

S106D mutation. 
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Strategy: Mutation was created by megaprimer PCR (primers: cdc6 S45 F, 

S106D muta R, S45 3’R #2). PCR was cut (EcoRI) and ligated into 

pCLXSN sbp-cdc6# (EcoRI). 

51.  pCLXSN sbp-cdc6 K531R# 

Description: Retroviral expression vector encoding an N-terminal SBP-CBP 

tagged human Cdc6 gene, resistant to the D5 hairpin, containing the 

K531R mutation. 

Strategy: Cdc6 K531R# was cut from pNTAP3C cdc6 K531R# (NotI & PvuI, 

blunted) and ligated into pCLXSN (XhoI, blunted). 

52.  pCLXSN sbp-cdc6 K531Q# 

Description: Retroviral expression vector encoding an N-terminal SBP-CBP 

tagged human Cdc6 gene, resistant to the D5 hairpin, containing the 

K531Q mutation. 

Strategy: Cdc6 K531Q# was cut from pNTAP3C cdc6 K531Q# (NotI & PvuI, 

blunted) and ligated into pCLXSN (XhoI, blunted). 

53.  pCLXSN PIP-sbp-cdc6# 

Description: Retroviral expression vector encoding an N-terminal PIP motif 

(from Cdt1), SBP-CBP tagged human Cdc6 gene, resistant to the D5 

hairpin. 

Strategy: HsCdc6# was cut from pNTAP3C HsCdc6# (PvuI-blunted & SacII) 

and ligated into pCLXSN PIP (XhoI-blunted & SacII). 

54.  pCLXSN PIPm-sbp-cdc6# 
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Description: Retroviral expression vector encoding an N-terminal mutated 

PIP motif, SBP-CBP tagged human Cdc6 gene, resistant to the D5 

hairpin. 

Strategy: HsCdc6# was cut from pNTAP3C HsCdc6# (PvuI-blunted & SacII) 

and ligated into pCLXSN PIPm (XhoI-blunted & SacII). 

Note: Sequencing confirmed that the PIP motif is not actually mutated. 

55.  pLL5.0x MmCdc6-GFP 

Description: Lentiviral expression vector encoding a C-terminal GFP tagged 

mouse Cdc6 gene. 

Strategy: MmCdc6 was amplified from pcDNA3 MmCdc6 (primers: SacII 

MmCdc6, BamHI MmCdc6). PCR was cut (BamHI & SacII) and ligated 

into pLL5.0x (BamHI & SacII). 

56.  pLL5.0x MmCdc6 IRES 

Description: Lentiviral expression vector encoding the mouse Cdc6 gene 

and GFP, separated by an IRES. 

Strategy: IRES was amplified from pLL5.5x (primers: BamHI IRES R, SphI 

stop IRES F). PCR was cut (SphI & BamHI) and ligated into pLL5.0x 

MmCdc6-GFP (SphI & BamHI). 

57.  pLXIN sbp-cdc6# 

Description: Retroviral expression vector encoding an N-terminal SBP-CBP 

tagged human Cdc6 gene, resistant to the D5 hairpin and the neomycin 

gene separated by an IRES. 
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Strategy: Sbp-cdc6# was cut from pNTAP3C HsCdc6# (NotI & PvuI, 

blunted) and ligated into pLXIN (XhoI, blunted). 

Cdt1 Plasmids: 

58.  pLL5.0x HA-Cdt1* 

Description: Lentiviral expression vector encoding an N-terminal 2x HA 

tagged human Cdt1 gene, resistant to siCdt1. 

Strategy: HA-Cdt1* was amplified from pENTR3C HA2 HsCdt1* (primers: 5’ 

HA Cdt1, 3’ HA Cdt1). PCR was cut (EcoRV) and ligated into pLL5.0x 

(SacII, blunted). 

59.  pLL5.0x PIPm-Cdt1*-V5 

Description: Lentiviral expression vector encoding the human Cdt1 gene 

with a mutated PIP motif, resistant to siCdt1. 

Strategy: PIPm-Cdt1*-V5 was amplified from pDEST40 PIPm-Cdt1*-V5 

(primers: 5’ PIPm-Cdt1, 3’ PIPm-Cdt1). PCR was cut (HpaI) and ligated 

into pLL5.0x (SacII, blunted). 

Note: Sequencing confirmed that the PIP motif is not actually mutated. 

Splicing Reporter Plasmids: 

60.  pENTR2B C 

Description: Entry vector encoding the splicing reporter construct C (50% 

inclusion). 

Strategy: C construct was amplified from pI-12 C (primers: SalI C5’F, SalI 

C3’R).  

61.  pENTR2B 15d 
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Description: Entry vector encoding the splicing reporter construct 15d (10% 

inclusion). 

Strategy: 15d construct was amplified from pI-12 15d (primers: SalI C5’F, 

SalI C3’R). 

62.  pENTR2B 5’ consensus 

Description: Entry vector encoding the splicing reporter 5’ consensus (100% 

inclusion). 

Strategy: 5’ consensus was amplified from pI-12 5’ consensus (primers: SalI 

C5’F, SalI C3’R). 

63.  pENTR2B ISS-KK5 

Description: Entry vector encoding the GFP splicing reporter sensitive to 

SF2. 

Strategy: ISS-KK5 was cut from pZW2C KK5 (BamHi-blunted & NheI) and 

ligated into pENTR2B (XbaI & EcoRV). 

64.  pENTR2B ISS-KK6 

Description: Entry vector encoding the GFP splicing reporter sensitive to 

hnRNPA3. 

Strategy: ISS-KK6 was cut from pZW2C KK6 (BamHI-blunted & NheI) and 

ligated into pENTR2B (XbaI & EcoRV). 

65.  pLX302 C 

Description: Lentiviral expression vector encoding the splicing reporter 

construct C (50% inclusion). 
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Strategy: C was moved into pLX302 from pENTR2B C via LR Gateway 

reaction. 

66.  pLX302 15d 

Description: Lentiviral expression vector encoding the splicing reporter 

construct 15d (10% inclusion). 

Strategy: 15d was moved into pLX302 from pENTR2B 15d via LR Gateway 

reaction. 

67.  pLX302 5’ consensus 

Description: Lentiviral expression vector encoding the splicing reporter 

construct 5’ consensus (100% inclusion). 

Strategy: 5’ consensus was moved into pLX302 from pENTR2B 5’ 

consensus via LR Gateway reaction. 

68.  pLX302 ISS-KK5 

Description: Lentiviral expression vector encoding the GFP splicing reporter 

sensitive to SF2. 

Strategy: ISS-KK5 was moved into pLX302 from pENTR2B ISS-KK5 via LR 

Gateway reaction. 

69.  pLX302 ISS-KK6 

Description: Lentiviral expression vector encoding the GFP splicing reporter 

sensitive to hnRNPA3. 

Strategy: ISS-KK6 was moved into pLX302 from pENTR2B ISS-KK6 via LR 

Gateway reaction. 
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Other plasmids: 

70.  pCLXSN PIP 

Description: Retroviral expression vector encoding the PIP motif from the 

human Cdt1 gene. 

Strategy: PIP motif was amplified from pENTR3C Cdt1 5SA (primers: Cdt1 

PIP 5’, Cdt1 PIP linker 3’). PCR was cut (EcoRI & XhoI) and ligated into 

pCLXSN (EcoRI & XhoI). 

71.  pCLXSN PIPm 

Description: Retroviral expression vector encoding a mutated PIP motif from 

the human Cdt1 gene. 

Strategy: PIPm was amplified from pENTR3C Cdt1 PIPm (primers: Cdt1 

PIP 5’, Cdt1 PIP linker 3’). PCR was cut (EcoRI & XhoI) and ligated into 

pCLXSN (EcoRI & XhoI). 

Note: Sequencing confirmed that the PIP motif is not actually mutated. 
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