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ABSTRACT

MICHAEL R. JABLONSKI: Real Geometric Invariant Theory and Ricci Soliton Metrics

on Two-step Nilmanifolds

(Under the direction of Patrick B. Eberlein)

In this work we study Real Geometric Invariant Theory and its applications to left-

invariant geometry of nilpotent Lie groups. We develop some new results in the real category

that distinguish GIT over the reals from GIT over the complexes. Moreover, we explore some

of the basic relationships between real and complex GIT over projective space to obtain

analogues of the well-known relationships that previously existed in the affine setting.

This work is applied to the problem of finding left-invariant Ricci soliton metrics on

two-step nilpotent Lie groups. Using our work on Real GIT, we show that most two-step

nilpotent Lie groups admit left-invariant Ricci soliton metrics. Moreover, we build many

new families of nilpotent Lie groups which cannot admit such metrics.
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Introduction

The goal of this work is to explore real Geometric Invariant Theory and some of its

practical applications.

Our main interests involve the orbit structure of algebraic groups acting on varieties. In

the affine setting we are particularly interested in closed orbits. In the projective setting

we are interested in the so-called distinguished orbits (cf. Definition 5.4.2). Specifically, we

study actions of real and complex reductive groups on vector spaces, projective spaces, and

homogeneous spaces. We apply our results to the geometry of two-step nilpotent Lie groups

with left-invariant metrics.

In Chapter 2 we introduce the reader to the subject of Geometric Invariant Theory, over

both R and C. Let G be a (real or complex) reductive group acting linearly on V . Some

main problems of interest are the following. When is a particular orbit G · v is closed in V ?

Does there exist a purely local criterion to determine closedness of an orbit? When does

there exist a Zariski open set of closed orbits?

In Chapter 3 we give a real version of Mumford’s Numerical criterion. This is a local

criterion to determine closedness of an orbit. Let G be a complex reductive group acting

linearly on a complex vector space V . A point v ∈ V is called stable if Gv is finite and G ·v is

closed in V ; more generally, we say that a point v ∈ V is semi-stable if 0 6∈ G · v. In contrast,



the null-cone consists of all points v ∈ V such that 0 ∈ G · v. The Hilbert-Mumford criterion

compares the action of an algebraic group G with the actions of all algebraic 1-parameter

subgroups. This criterion can be summarized neatly using Mumford’s Numerical function

M : V → R as follows.

Theorem 3.1.11. Let G act on V and take v ∈ V . Then

(a) M(v) > 0 if and only if v is in the null cone

(b) M(v) = 0 if and only if v is semi-stable, but not stable

(c) M(v) < 0 if and only if v is stable

Over C this is Theorem 2.1.7 in the text. If instead we consider the action of a real

reductive group G on a real vector space V , then we can define a point v ∈ V to be real

stable if Gv is compact and G · v is closed (cf. Definition 3.0.2). In the real setting one

can define a numerical function M analogously. With these natural adjustments to the real

setting, we have obtained the above theorem in the real category, see Theorem 3.1.11. This

real version of the Hilbert-Mumford criterion obtains many more semi-stable representations

that the traditional criterion misses, see Sections 3.2 and 3.3.

One application of the theorem above is the following.

Corollary 3.1.6. Let v ∈ V be such that M(v) < 0. Then there is an open neighborhood

O such that M(w) < 0 for w ∈ O.

If M < 0 for some v 6= 0, it follows that there is a nonempty Zariski open set of points

whose G-orbits are all closed (cf. Proposition 2.1.3). We point out that this open set where

M < 0 is in general only Hausdorff open (cf. Example 3.2.1).
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Chapter 4 is concerned with complex linear reductive groups G and the homogeneous

spaces G/F which are affine. It is well-known that G/F is affine precisely when F is reductive

(this is Matsushima’s Criterion). Let H be a reductive subgroup of G. We ask the following

question: When is the orbit H · (gF ) closed in G/F? We have obtained the following.

Theorem 4.0.1. Consider the induced action of H on G/F . Then generic H-orbits are

closed in G/F ; that is, there is a nonempty Zariski open set of G/F such that the H-orbit

of any point in this open set is closed.

Our proof uses Weyl’s Unitary Trick and exploits the beautiful interplay between real

and complex Geometric Invariant Theory. We do not know of this result in the literature

and would be interested in a proof that holds more generally for reductive groups over

algebraically closed fields.

From this theorem we obtain some interesting corollaries in regards to intersections of

reductive algebras, linear actions of reductive subgroups, and stratifications of closed orbits

by closed orbits of reductive subgroups:

Corollary 4.0.3. Let G be a reductive algebraic group. If H,F are generic reductive

subgroups, then H ∩ F is also reductive. More precisely, take any two reductive subgroups

H, F of G. Then H ∩ gFg−1 is reductive for generic g ∈ G.

Corollary 4.0.4. Let G be a reductive group acting linearly on V . Let H be a reductive

subgroup of G. If G has generically closed orbits then H does also. Moreover, each closed

G-orbit is stratified by H-orbits which are generically closed.

We say that a representation V of G is good if generic G-orbits are closed in V .

3



Corollary 4.0.5. Let G be a reductive group, and let V and W be good G-representations,

that is, generic G-orbits are closed. Then V ⊕W is also a good G-representation.

In Chapter 5 we move to the projective setting and study orbits à la Kirwan and Ness.

Let G be a (real or complex) reductive group acting linearly on a (real or complex) vector

space V . This gives rise to a well-defined action of G on PV .

A G-orbit in V is closed if and only if it contains a zero of the so-called moment map

m̃ : V → g. Let G be a real reductive group acting on a real space V , then the Zariski closure

GC of G acts on V C = V ⊗ C. Consider v ∈ V ⊂ V C. Borel-Harish Chandra/Richardson-

Slodowy have shown that G · v is closed if and only if GC · v is closed (see Chapter 2). We

produce an analogue of this result for projective space; the analogue of closed orbits for

projective space are the so-called distinguished orbits.

To study projective space and the G-orbits therein, Kirwan and Ness study the norm

squared of the moment map ||m||2 : PV → R. A point [v] ∈ PV is called distinguished if it is

a critical point of ||m||2; an orbit G · [v] is called distinguished if it contains a distinguished

point. We prove an analogue of the theorem by Borel-Harish Chandra/Richardson-Slodowy

for distinguished orbits (this theorem is a necessary tool for the results in Chapter 7). Ad-

ditionally, we prove a theorem on the behavior of the negative gradient flow of ||m||2 (these

theorems provide tools that are used in Chapter 8). We state these results here. In the

following theorems m : PV → g denotes the real moment map and CR denotes the critical

points of ||m||2 while µ∗ : CP(V C) → gC denotes the complex moment map and C denotes

the critical points of ||µ∗||2.

4



Theorem 5.4.7 Given G � V , GC � V C, and [v] ∈ PV we have

G · [v] is a distinguished orbit in PV if and only if GC ·π[v] is a distinguished

orbit in CP(V C).

Here π : PV ⊆ RPV C → CP(V C) is the usual projection.

Theorem 5.5.1 For x ∈ CP(V C), suppose GC · x ⊆ CP(V C) contains a critical point

of ||µ∗||2. If z ∈ C ⊆ CP(V C) is such a critical point, then C ∩ GC · x = U · z. Moreover,

U · z =
⋃
g∈GC

ω(gx).

Theorem 5.5.2 For x ∈ PV , suppose G · x ⊆ PV contains a critical point of ||m||2. If

z ∈ CR ⊆ PV is such a critical point, then CR ∩G · x = K · z. Moreover, K · z =
⋃
g∈G

ω(gx).

In Chapter 6 we introduce the reader to the basic results pertaining to left-invariant

Ricci soliton metrics on nilpotent Lie groups N . Consider the normalized Ricci flow ∂
∂t
g =

−2ric + 2 sc(g)
n

g, where ric is the (2,0) Ricci tensor of g and sc(g) is the scalar curvature of

g. Let g0 be a metric and consider a solution to the normalized Ricci flow which is of the

form g(t) = σ(t)ψ∗t g0, where σ(t) is a scalar function of time, ψt are diffeomorphisms. When

such a solution exists, we call the metric g0 a (homothetic) Ricci soliton.

Let g be a left-invariant metric on N . J. Lauret has given the following algebraic char-

acterization of left-invariant Ricci soliton metrics on nilmanifolds. A nilpotent Lie group N

with a left-invariant Ricci soliton metric is called a nilsoliton.

5



Proposition 6.3.1. Let (N, g) be a nilpotent group N with left invariant metric g. Then

g is a soliton metric if and only if

ricg = cI +D

for some c ∈ R and some symmetric D ∈ Der(N).

In Chapter 7 we develop the basic theory to study two-step nilpotent Lie groups in the

search for left-invariant Ricci soliton metrics. Let N denote a nilpotent Lie group, N its Lie

algebra, and [·, ·] the Lie algebra structure on N. The group N and the algebra N are said

to be two-step nilpotent if [N, [N,N]] = {0}. A two-step nilpotent Lie algebra N is said to

be of type (p, q) if dim[N,N] = p and codim[N,N] = q.

Here we study the action of GL(q,R) × GL(p,R) on so(q,R) ⊗ Rp à la Lauret. This

action is defined as follows. The group GL(q,R) acts on so(q,R) via g · M = gMgt for

g ∈ GL(q,R) and M ∈ so(q,R); the group GL(p,R) acts on Rp in the usual way. Hence

(g, h) · (M ⊗v) = (gMgt)⊗h(v) for (g, h) ∈ GL(q,R)×GL(p,R) and M ⊗v ∈ so(q,R)⊗Rp.

In this setting an isomorphism class of algebras corresponds to a GL(q,R)×GL(p,R)-orbit

in so(q,R) ⊗ Rp. Our main result is the following. We point out that optimal metrics

are metrics which are nilsolitons with additional strong geometric properties (cf. Definition

7.2.1).

Theorem 7.4.5. A generic two-step nilmanifold admits a nilsoliton metric. Moreover,

the types (p, q) other than (1, 2k + 1), (2, 2k + 1), (D − 1, 2k + 1), (D − 2, 2k + 1) generically

6



admit optimal metrics.

In Chapter 8 we produce two procedures for building new two-step nilsolitons from

‘smaller’ ones. The first is called concatenation (see Section 8.2) and the second is di-

rect sum (see Section 8.4).

Theorem 8.2.4. Consider q1 ≤ q2, D = 1
2
q2(q2−1), and 1 ≤ p ≤ D with p 6= D−1, D−2.

Let N1 and N2 be generic nilsolitons of types (q1, p) and (q2, p), respectively. Then the con-

catenation N = V1 ⊕ V2 ⊕ Z is also a nilsoliton.

Moreover, we produce a construction that generates many new examples of two-step ni-

lalgebras which cannot admit left-invariant Ricci soliton metrics. Our construction produces

such algebras in most types (p, q). This is the content of Proposition 8.3.4 and Section 8.4.

7



CHAPTER 1

Preliminaries

1.1. Algebraic Geometry

We present some of the tools from algebraic geometry that will be useful in our study of

semi-simple group actions and particularly the structure of their orbits. Our main references

for algebraic geometry will be [Bor91, Sha88, PV94] and [Whi57] for real algebraic

geometry.

Consider affine space Cn. A set X in Cn is called an affine variety if X is the vanishing

set of a collection of polynomials {fα : Cn → C}. Varieties can be defined more generally;

however, we will not need the more abstract notion of variety and we restrict our attention

to the affine setting. Associated to X we have the ring of regular functions C[X]. These

are all the functions from X to C that can be described by polynomials (given a coordinate

system on X).

Let X ⊂ Cn and Y ⊂ Cm be two (affine) varieties. A morphism f : X → Y is called

regular if f = (f1, . . . , fm) and each fi is a regular function on X. A regular function

f : X → Y is equivalent to having a comorphism f ∗ : C[Y ] → C[X] between their rings of

regular functions. This comorphism is defined via precomposition. It can be shown that two

affine varieties are isomorphic if and only if their rings of regular functions are isomorphic.



Our variety X is said to be defined over R if X can be described as the zero set of a

collection of polynomials with real coefficients. Here we have a fixed coordinate system for

Cn; that is, we have a basis {e1, . . . , en} and the space Rn ⊂ Cn is well-defined. The ring of

regular functions of X being defined over R means precisely that C[X] = R[X]⊗R C, where

R[X] is the ring of polynomials with real coefficients. Likewise, we say that a morphism

f : X → Y is defined over R if f ∗ : R[Y ]→ R[X].

Let X be defined over R. We define the set of real points of X ⊂ Cn as X(R) := X ∩Rn.

This set is a real algebraic variety in the following sense.

Real Algebraic Geometry.

We say that a set X ⊂ Rn is a real algebraic variety if it is the zero set of a collection

of polynomials with real coefficients. Note that the ideal of polynomials that vanish on X

has many different sets of generators. We present some of the well-known and very useful

results relating the real and complex settings, see [Whi57] for proofs and more detail.

As X ⊂ Rn ⊂ Cn, we can consider the smallest (complex) algebraic variety containing

X. This is the Zariski closure of X in Cn which we denote by X. This variety X is defined

over R by construction.

Theorem 1.1.1. Let X be a real algebraic variety. We can write X as a finite union

of irreducible components. As in the complex setting this union is unique if the irreducible

components are maximal. Moreover, X has finitely many topological components. At the

manifold or smooth points we have dimRX = dimCX.

9



This is quite distinct from the complex setting. If X is a smooth, irreducible complex

variety then viewed as a manifold X is connected, see [Sha88, II.2.1 Theorem 6, VII.2

Theorem 1]

We will call a set a (real) semi-algebraic set if it is a union of some of the topological

components of a real algebraic variety. Some of these components might be real varieties

themselves. Consider the following example [Whi57, section 12]

Example 1.1.2. Consider the real variety cut out by f = x2 + y2 − y3 in R2. This zero

set consists of a curve and a point (the origin). Here the real variety has two topological

components, one of which is a variety (the point) and the other is not as f is irreducible over

R.

We will demonstrate many more examples exhibiting this kind of behavior. In fact, we

will be interested in trying to detect/classify all the topological components that arise when

our variety is the orbit of a semi-simple group.

1.2. Lie Groups, Algebraic Groups, and Representations

Our main references for Lie groups will be [Hoc65, BtD95, Hel01]; for algebraic groups

we use [Hum81, PV94, Ser87, Bor91, Che55].

Let G be a group which is also an analytic manifold. Let µ : G×G→ G and inv : G→ G

be the multiplication and inverse maps, respectively. We call G a Lie group if these are

analytic maps between manifolds. The space of left-invariant vector fields on G is called

the Lie algebra of G and is denoted by L(G) or the gothic letter g. This vector space is

10



isomorphic to TeG. The bracket structure (the algebra structure) on g is the usual one when

g ⊂ gln, that is, for X, Y ∈ g the bracket is [X, Y ] = XY − Y X.

Definition 1.2.1. Let G be a group which is also a variety over C. We say that G is a

complex algebraic group if µ and inv are regular maps between varieties. If G is a (Zariski)

closed subgroup of some GLn(C) then G is said to be a linear algebraic group.

Definition 1.2.2. Let G be a subgroup of GLn(R) which is also a real algebraic variety.

We call G a real algebraic group. Similarly, if G is a subgroup of GLn(R) and is just a

semi-algebraic set, then we call G a semi-algebraic group.

Our primary interest will be in linear algebraic groups over R and their real points

(which are then real algebraic groups). For a detailed exposition of algebraic groups over

algebraically closed fields see [Bor91]. We will exploit much of the work that has been done

over C to obtain information about algebraic groups over R. The real algebraic groups of

interest to us will all be linear groups, so we restrict our attention to these.

Sometimes we will abuse terminology and refer to semi-algebraic groups as algebraic

groups. It should be clear from context which we mean. However, from the view point of

our results there is no need to distinguish between them.

Proposition 1.2.3. Let G be a real semi-algebraic group in GLn(R). Let GC denote the

Zariski closure over C of the set G in GLn(C). Then GC is a complex (linear) algebraic

group defined over R such that the set of real points GC(R) satisfies GC(R)0 ⊂ G ⊂ GC(R),

where GC(R)0 denotes the Hausdorff identity component. Moreover, the Lie algebras of these

groups satisfy L(GC) = L(G)⊗ C and dimRG = dimCG
C.

11



Proof. As G is a semi-algebraic group, there is some real algebraic group H such that

H0 ⊂ G ⊂ H, where H0 is the Hausdorff identity component of H. The fact that the

set GC is an algebraic group is the content of [Bor91, Proposition 1.3]. Now the results

stated above follow directly from Theorem 1.1.1 and the observations that L(H) = L(G)

and dimRH = dimRG. �

For such a group G as above, we call GC the (algebraic) complexification. This depends on

the embedding of G as an algebraic subgroup of GLn(R) and is not necessarily the universal

complexification of G as described by Hochschild [Hoc65, XVII.5]. For an example of

different algebraic complexifications see Example 1.2.11 and the remark thereafter.

Definition 1.2.4. Let GC denote a complex algebraic group. An algebraic one-parameter

subgroup, or 1-PS, is a morphism of algebraic groups χ : C∗ → GC. Let G denote a real

algebraic group. A real algebraic 1-PS is a (real) morphism of (real) algebraic groups χ :

R∗ → G. (By a morphism of algebraic groups we mean a homomorphism of groups which is

a morphism of varieties.)

Special kinds of Lie algebras.

Let g be a Lie algebra. We define the following basic notions; see [Ser87] for more informa-

tion. The lower central series of g is a descending series of ideals defined by

C1g = g

Cng = [g, Cn−1g]

12



for n ≥ 2. A Lie algebra g is called nilpotent if there exists k such that Ckg = 0; moreover,

we call g k-step nilpotent if k is the smallest integer such that Ckg = 0. The derived series

of g is defined as the following descending series

D1g = g

Dng = [Dn−1g, Dn−1g]

for n ≥ 2. The algebra g is said to be solvable if there is some k such that Dkg = 0. Similarly,

we say that g is k-step solvable if k is the smallest integer such that Dkg = 0. We say that

G is nilpotent or solvable if its Lie algebra is so.

Given a Lie algebra g we can consider the bilinear form B(X, Y ) = tr(ad X ◦ad Y ) called

the Killing form. The algebra g is said to be semi-simple if B is non-degenerate. We say G

is semi-simple if g is so. Next we define the notion of a reductive algebra/group. We give the

definition in terms of being a subgroup, resp. subalgebra, of GLn, resp. gln, as this is the

setting of primary interest to us. For a more intrinsic definition of reductive see [Bor91].

Consider a closed subgroup G ⊆ GL(E) with finitely many connected components and

its Lie algebra g ⊆ gln. Let z denote the center of g. We say that G, or g = L(G), is reductive

if g = [g, g] ⊕ z, [g, g] is semi-simple, and z ⊆ gln consists of semi-simple endomorphisms.

Reductive groups in this sense are precisely the groups that are completely reducible, see

[BHC62, section 1.2].

Representations of real groups.

Let G be a Lie group. A (real linear) representation of G is a continuous homomorphism

of Lie groups ϕ : G → GLn(R). Similarly one can define a complex linear representation.
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Our primary interest is in the representations of real semi-simple and reductive groups. For

complex semi-simple groups we have the following fundamental result.

Theorem 1.2.5. Let G be a connected complex semi-simple Lie group. Then

(a) There is a complex algebraic group structure on G, and one only, which is compatible

with its analytic group structure.

(b) If H is a complex algebraic group, every analytic homomorphism from G to H is

algebraic.

See [Ser87] for more details.

This is in contrast to the real setting. Consider S̃L2R the simply connected cover of

SL2R. Since this group has infinite center it cannot be the real points of a complex linear

algebraic group. However we have the following result.

Proposition 1.2.6. Let G be a connected real semi-simple subgroup of GLnR for some

n. Then G is a real semi-algebraic group.

See [Che55, corollary of §§14]. An immediate consequence of this is the following.

Corollary 1.2.7. Let φ : G → GLnR be a real representation of a connected semi-

simple group G. Then φ(G) is a real semi-algebraic group.

Proof. Since G is semi-simple, so is it’s image φ(G). Now the result follows from the

proposition. �

Definition 1.2.8. Consider a complex algebraic group GC and a complex linear repre-

sentation φ : GC → GLn(C). The representation is called a rational representation if it is
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a morphism of algebraic groups; that is, a homomorphism of groups which is also a variety

morphism.

Definition 1.2.9. Consider G a real (semi) algebraic group and GC its complexification.

We say that a representation φ : G → GLn(R) is a rational representation if it is the

restriction of a rational representation φ : GC → GLn(C) which is defined over R.

In light of these propositions and corollaries it makes sense to have, at a minimum, a

basic understanding of algebraic groups, their representations, and algebraic geometry in

general so that we can use all the tools from this very rich geometric setting. We give some

examples of Lie groups which are not algebraic groups and how they can be very poorly

behaved.

Example 1.2.10. Let T 2 = S1 × S1 be the compact 2-torus. Let G be the Lie subgroup

of T 2 which is a dense winding line. This subgroup is clearly not closed, but abstractly can

be viewed as the algebraic group R. We will present a (non-algebraic) representation of G

whose orbits are not submanifolds.

Consider the representation φ : T 2 → GL4(R) where T 2 = S1×S1 acts on R4 = R2⊕R2

by the usual S1 action on R2 in each slot. This representation is linear and the orbits here

will be 2-tori. Now restrict this representation to one on G = winding line. The orbits here

will be winding lines contained in compact tori, thus they do not inherit the subspace topology

from R4.

We will see that this is in sharp contrast to the algebraic setting. Moreover, for later

reference we point out that this group G is also self-adjoint with respect to a certain inner
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product on R4. The next example demonstrates that not all representations of real algebraic

groups are forced to be algebraic. Again, this is in contrast to the complex setting.

Example 1.2.11. Consider SL3(R) ⊂ SL3(C) and the adjoint representations Ad :

SL3(k) → Ad(SL3)(k) ⊂ GL(sl(3, k)), where k = R or C. Observe that Ad restricted

to SL3(R) is one-to-one and so defines an analytic isomorphism of Lie groups; that is, the

center of SL3(R) is trivial. In contrast, SL3(C) does have non-trivial center (of order 3)

and so Ad : SL3(C)→ PSL3(C) has nontrivial kernel. Note Im(Ad(G)) ' G/Z(G), where

Z(G) is the center of G.

Thus Ad−1 : Ad(SL3(R)) → SL3(R) is a well-defined homomorphism of Lie groups, but

it cannot be the restriction of a homomorphism between PSL3(C) and SL3(C).

Remark. This example also produces multiple ‘complexifications’ of SL3(R); namely,

SL3(C) and PSL3(C) both arise as the Zariski closure of SL3(R) depending on the algebraic

structure, or imbedding, placed on SL3(R). One can show that PSL3(R) = PSL3(C)(R),

and it is obvious that SL3(R) = SL3(C)(R).

1.3. Real vs. Complex Algebraic Groups and Their Actions

Since every semi-simple subgroup of GLnR can be realized as a semi-algebraic group,

we will state the known results for complex algebraic groups over C and show how to go

between the real and complex categories. Unless otherwise said, we will assume that G is a

semi-algebraic group and we denote its complexification by GC.

Complex group orbits on a variety or vector space have some nice properties that we don’t

enjoy over the reals. For example, the Hausdorff and Zariski closures of a group orbit are the
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same for a complex linear algebraic group. One property that does translate to the reals is

that the boundary of an orbit consists of orbits of strictly lower dimension. See section 8.3

of [Hum81] for the complex setting and see below for the real setting. For some interesting

examples of semi-simple real algebraic groups whose orbit closure is not the Zariski closure

see [EJ].

Proposition 1.3.1. Let GC be a complex algebraic group acting on a complex vector

space V C; that is, we have a linear representation φ : GC → GL(V C). Let v ∈ V C. The

following are true.

(a) The Hausdorff and Zariski closures of GC · v coincide.

(b) The boundary ∂(GC · v) = GC · v − GC · v consists of GC orbits of strictly smaller

dimension.

(c) The orbit GC · v is a locally closed, embedded submanifold. That is, GC · v is an open

set of a closed set. Moreover, this closed set is actually the variety GC · v.

Given a real vector space V we denote the complexification by V C = V ⊗ C.

Proposition 1.3.2. Let G be a semi-algebraic group and φ : G → GL(V ) a rational

representation. Let φ also denote the representation GC → GL(V C) which restricts to G.

Then for v ∈ V ⊂ V C the following are true.

(a) The stabilizer subalgebras satisfy (gC)v = (gv)
C

(b) dimRG · v = dimCG
C · v

(c) GC · v ∩ V =
m⋃
i=1

Xi where each Xi is a G-orbit.

(d) GC · v is closed in V C if and only if G · v is closed in V
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(e) ∂(G · v) consists of G-orbits of strictly smaller dimension.

(f) GC · v ∩G · v = G · v.

(g) The orbit G · v is a locally closed, embedded submanifold.

Proof of a. The first claim is clear as gC = LGC = g⊗ C acts C-linearly on V C.

Proof of b. Notice that for a real Lie group H, H · v ' H/Hv. Let h be the Lie algebra

of H. At the Lie algebra level part (a) shows that (hv)
C = (hC)v, for v ∈ V ⊆ V C. As

dimRG = dimCG
C, we are done.

Proof of c & d. This can be found in [BHC62, Propsition 2.3] and [RS90].

Proof of e. The previous proposition states that the boundary GC · v − GC · v of the

complex group orbit GC · v consists of GC-orbits of strictly smaller dimension, see [Hum81,

section 8.3]. Additionally, GC · v
⋂
V =

m⋃
1

Xi, where each Xi is a G-orbit. Each Xi is closed

in GC · v
⋂
V as it is a finite union of connected components of GC · v ∩ V , see [BHC62,

Proposition 2.3]. If v ∈ Xi for 1 ≤ i ≤ m, then G · v = Xi and G · v ∩ GC · v = Xi. If

w ∈ G · v−G·v, then w ∈ GC · v−GC ·v, and it follows from (b) and the previous proposition

above that G · w has smaller dimension than G · v.

Proof of f. This follows immediately from (e) and its proof.

Proof of g. This follows from part (c) of the previous proposition and part (c) above. �

Definition 1.3.3. We say that two distinct orbits G · v1 and G · v2 are GC-conjugate or

complex conjugate if GC · v1 = GC · v2.

Stabilizer in General Position.
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Consider a complex algebraic group G acting linearly on V . A subgroup G′ is called a

stabilizer in general position, or s.g.p., if there exists an open set O of V with the following

property. Given v ∈ O there exists g ∈ G such that Gv = gG′g−1. The following theorem is

due to Richardson and Luna, cf. [PV94].

Theorem 1.3.4. Let G be a complex reductive (algebraic) group acting linearly and ra-

tionally on V . Then the s.g.p. exists.

Over R there may not exist such a subgroup G′. In general, a real Zariski open set

has many Hausdorff components. In this way, there is usually not a single ‘generic’ item.

However, we can make the following simple observation.

Proposition 1.3.5. Let G be a real reductive group acting linearly and rationally on a

real vector space V . There exist a finite collection of Lie algebras {g1, . . . , gk} and a Zariski

open set O of V such that for v ∈ O the stabilizer gv is isomorphic to one of the algebras in

{gi}. Here all the algebras {gi} have isomorphic complexifications.

Remark. At the moment there is not a real analogue of Theorem 1.3.4 that we know of

in the literature. It would be interesting to prove the existence of a finite collection of real

s.g.p’s. We intend to work on this problem in the future.

1.4. Riemannian Geometry

We use as our main references for Riemannian geometry Helgason [Hel01] and do Carmo

[dC92].
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A manifoldM is called a Riemannian manifold if there is a smooth metric g : TM → R on

M , where TM is the tangent bundle of M . We usually denote this pair by (M, g); sometimes

we will interchangeably use g or <,>. Every Riemannian manifold comes equipped with a

compatible connection ∇ called the Levi-Civita connection. Denote the set of smooth vector

fields on M by V (M).

Given such a manifold, there exist basic geometric invariants. Of particular interest are

the different notions of curvature. The curvature tensor R of a Riemannian manifold is a

correspondence that associates to every pair X, Y ∈ V (M) a mapping R(X, Y ) : V (M) →

V (M) given by R(X, Y )Z = ∇Y∇XZ − ∇X∇YZ + ∇[X,Y ]Z for Z ∈ V (M). This is a

tensor of type (3, 1). Equivalently we can consider the tensor of type (4, 0) defined as

(X, Y, Z, T ) =< R(X, Y )Z, T >.

Given a 2-plane σ ⊂ TpM , and a pair of orthonormal vectors x, y ∈ σ, we can define the

sectional curvature of σ as K(σ) = (x, y, x, y). A manifold is called a manifold of constant

curvature if K(σ) is constant for all choices of σ ⊂ TpM and p ∈ M . More generally, we

can consider the Ricci curvature defined as follows. Let x = zn ∈ TpM be a unit vector.

We extend this to an orthonormal basis {z1, . . . , zn} of TpM . The Ricci curvature at p is

Ricp(x) = 1
n−1

∑
(x, zi, x, zi). This is an average of scalar curvatures of all 2-planes containing

x. A Riemannian manifold M is called an Einstein manifold if Ricp(x) is constant for all

choices of unit x ∈ TpM and p ∈M .

Example 1.4.1. Let G be a Lie group. A metric <,> is called left-invariant if <

X, Y >g=< Lg−1∗X,Lg−1∗Y >e for g ∈ G and X, Y ∈ TgG, where Lg−1 denotes left transla-

tion by g−1.
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The set of left-invariant metrics is equivalent to the set of inner products on the Lie

algebra L(G). A problem of great interest is to find all solvable Lie groups with left-invariant

Einstein metrics. See Chapter 6 for more information.
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CHAPTER 2

Closed Orbits of Semi-Simple and Reductive Groups

Let G denote a real linear semi-simple group with finitely many connected components;

that is, G ⊂ GLn(R) for some n. Recall that G is semi-algebraic and we can consider

the complexification of G, as defined in Section 1.1.2, which we denote GC. Recall that

GC ⊂ GLn(C) is a linear algebraic group and is the Zariski closure of G in GLn(C).

More generally we can consider real linear reductive groups. We always assume that

our linear groups are closed subgroups and semi-algebraic or algebraic. The real reductive

groups are products of semi-simple groups having finitely many components and (algebraic)

tori. Again, if G is a real reductive group then G is a finite index subgroup of the real points

GC(R) of a complex algebraic reductive group GC.

The following problems are of great interest to us. Let G be a real reductive group which

acts on a real vector space V , linearly and rationally, and let GC act on the complexification

V C = V ⊗ C. Given v ∈ V ⊂ V C we know that GC · v is a finite union of G-orbits, see

Section 1.1.3.

Question 2.0.1. Consider GC · v∩V for v ∈ V . This is a finite union of G-orbits which

are said to be conjugate to each other. What are the G-orbits that appear in this intersection?

Can they be classified using semi-algebraic invariants?



A simpler question would be

Question 2.0.2. How many different G-orbits appear in GC · v ∩ V ?

Question 2.0.3. Which different diffeomorphism classes of orbits appear in GC · v ∩ V ?

Question 2.0.4. Which real stabilizers in general position appear? Or what are the

different ‘generic’ diffeomorphism classes of orbits?

Recall that real stabilizers ‘in general position’ are only general in the Hausdorff sense

and not in the Zariski sense like the s.g.p of a complex reductive group, see Section 1.1.3.

Question 2.0.5. When is a G-orbit closed? Are there good criteria to determine this?

Are there any local criteria for determining closedness of an orbit?

Recall that any orbit of an algebraic group is a locally closed submanifold. Thus the

problem of an orbit being closed is a global problem; that is, we are asking about the

embedding of the orbit as a submanifold. In this light, a local criteria to determine closedness

of an orbit would be a welcome achievement. See Theorem 3.1.7 for a partial result which is

the real analogue of Mumford’s Numerical Criteria.

2.1. Geometric Invariant Theory over C

Our main reference for Geometric Invariant Theory (GIT) will be Newstead [New78].

We aim to give a brief introduction to some of the results of GIT and how they can be useful

towards our study of closed orbits. In this section, G will refer to a linear algebraic group

over C and X will be an affine variety on which G acts.
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Definition 2.1.1. A categorical quotient of X by G is a pair (Y, φ) where Y is a variety

and φ : X → Y is a morphism such that

(a) φ is constant on the orbits of the action

(b) for any variety Z and any morphism ψ : X → Z which is constant on orbits, there

is a unique morphism χ : Y → Z such that χ ◦ φ = ψ

If in addition φ−1(y) consists of a single orbit for all y ∈ Y , then (Y, φ) is called an orbit

space. We point out that categorical quotients are uniquely determined up to isomorphism.

This follows from the universal property in the definition.

Given a variety X, recall that the ring of regular functions on X is denoted by C[X]. We

will denote the G-invariant functions by C[X]G. The following is [New78, Theorem 3.5].

Theorem 2.1.2. There exists an affine variety Y and a morphism φ : X → Y such that

(a) φ is G-invariant

(b) φ is surjective

(c) if U is open in Y , then φ∗ : C[U ] → C[φ−1(U)] is an isomorphism of C[U ] onto

C[φ−1(U)]G

(d) if W is a closed invariant subset of X, then φ(W ) is closed

(e) if W1,W2 are disjoint closed invariant subsets of X, then φ(W1) ∩ φ(W2) = ∅.

The variety Y above is often denoted by X//G. Moreover, the ring of regular functions is

C[X//G] = C[X]G. Conversely, X//G can be defined to be the isomorphism class of varieties

whose ring of regular functions is isomorphic to C[X]G. This quotient X//G from GIT is a

categorical quotient, see [New78] for details. The following is [New78, Proposition 3.8].
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Proposition 2.1.3. Suppose G · v is a closed orbit of maximal dimension in a variety

X. Then there exists a Zariski open set O ⊂ X such that G · w is closed for w ∈ O.

Remark. Really, this result could have been stated in both directions. That is, if there

exists such an open set, then we can pick out a closed orbit of maximal dimension. The

proposition gives a crude criterion for determining whether or not we generically have closed

orbits. We say crude because in practice it is not always easy to pick out a closed orbit of

maximal dimension. Additionally, we show that this result holds for real algebraic groups

acting on real varieties.

Proof of 2.1.3 for real algebraic groups. Let X ⊂ V be a real variety con-

tained in a real vector space V ; that is, X is the zero set of a collection of real polynomials

on V . Let G be a real algebraic group acting on X; that is, G ⊂ GL(V ) is an algebraic

subgroup of GL(V ) that acts on the space X.

Consider the complex vector space V C = V ⊗ C and the Zariski closure XC of X in V C

(cf. Section 1.1.1). Let GC denote the Zariski closure of G in GL(V C); recall that GC is an

algebraic group (cf. Section 1.1.2).

We claim that GC acts on XC. To see this, we denote the action of the groups G,GC by

µ; that is, µ : GC × XC → V C. This map is a regular map; that is, the map is continuous

in the Zariski topology. By hypothesis µ : G × X → X ⊂ V ⊂ V C. The following is an

easy exercise from point-set topology. Let F : M → N be a continuous map and U ⊂ M ,

then F (U) ⊂ F (U), where U denotes the closure of U . Applying this to µ we see that

µ(GC ×XC) = µ(G×X) ⊂ µ(G×X) ⊂ X = XC. This shows that GC acts on XC.
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By hypothesis there exists some x ∈ X such that G·x is closed in X and has maximal real

dimension. Recall from Proposition 1.3.2 that dimRG · y = dimCG
C · y for all y ∈ X ⊂ XC;

moreover, G · x is closed in X if and only if GC · x is closed in XC. Consider the Zariski

open set O ⊂ XC which consists of points whose GC-orbit has maximal dimension. Since X

is Zariski dense in XC, the set X ∩ O is nonempty and Zariski dense in X. Moreover, the

point x ∈ X ∩ O by the arguments stated in this paragraph.

We now have a point x ∈ X ⊂ XC whose GC-orbit is closed in XC and has maximal

complex dimension. The proposition being true over C implies there exists a Zariski open set

O′ of XC consisting of points whose GC-orbit is closed and of maximal complex dimension.

Again using the arguments of the previous paragraph X ∩O′ is a nonempty Zariski open set

consisting of points whose G-orbit is closed and of maximal real dimension. �

Definition 2.1.4. Let G be a reductive algebraic group which acts on V . We say that

v ∈ V is a G-stable point, or just stable point, if G · v is closed and Gv is discrete. We say

that v ∈ V is a semi-stable point if 0 6∈ G · v. We say that v ∈ V is good semi-stable if G · v

is closed. We say that v ∈ V is unstable if 0 ∈ G · v.

The set of unstable points is called the null cone.

There exists a general criterion for finding stable points. It is called the Hilbert-Mumford

Criterion. Let λ be an algebraic one parameter subgroup of G, or 1-PS for short. We

know that λ is diagonalizable, see [Bor91, 4.6]. Consider the eigenspace decomposition

V = ⊕iVi. On each Vi, λ acts by λ(c) = cri for c ∈ C∗, where ri ∈ Z. Now we define

µ(v, λ) = min{ri|vi 6= 0}, where v =
∑

i vi, vi ∈ Vi, cf. [New78, pg. 104].
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Definition 2.1.5. We call a point v ∈ V λ-stable if it is stable under the action of the

group λ(C∗) ⊂ G.

One can show that if µ(v, λ) ≥ 0 then λ(C∗) · v is not closed. However, if µ(v, λ) < 0

and µ(v, λ−1) < 0 then λ(C∗) · v will be closed. These two inequalities are equivalent to the

point v being λ-stable. This result can be seen easily from the geometric approach to GIT,

see below. Next we state the criterion for stability.

Theorem 2.1.6 (Hilbert-Mumford Criterion). Let G be a reductive algebraic group acting

linearly on a complex vector space V . Then a point v ∈ V is G-stable if and only if it is

λ-stable for all 1-PS λ of G. The theorem remains true if we replace stable with semi-stable

and relax our strict inequalities to just inequalities.

We can rephrase this theorem using a numerical criterion that encodes the information

from all the 1-PS simultaneously. Define M(v) = maxλ∈1−PS{µ(v, λ)}.

Theorem 2.1.7 (Hilbert-Mumford Numerical Criterion). Let G be a reductive algebraic

group acting linearly on V . Then

(a) M(v) < 0 if and only if v is stable

(b) M(v) = 0 if and only if v is semi-stable

(c) M(v) > 0 if and only if v is in the nullcone

This theorem gives a local criterion for determining when an orbit might be closed. That

is, if M < 0 then the orbit is closed, if M = 0 then maybe, and if M > 0 then the orbit is

not closed. In practice this numerical criterion is very powerful and useful for finding stable
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points. However, we are interested in the more general setting of finding generic closed

orbits, or good semi-stable points.

In contrast to the stable situation, we have the following result from GIT.

Theorem 2.1.8. Let G be a complex reductive linear algebraic group acting linearly on

V and take v ∈ V . If G · v is not a closed orbit, then there exists an algebraic 1-PS λ such

that λ · v is not closed. Moreover, there exists v0 ∈ λ · v such that G · v0 is closed.

This theorem is also true for real algebraic reductive groups with λ being a real algebraic

1-PS. The result over both R and C was proven by Birkes [Bir71].

2.2. GIT over R and the Geometric Approach

The geometric (metric) approach to GIT was first done in the complex setting by Kempf

and Ness. Here Hermitian inner products are put on a vector space in such a way that the

group remains closed under the metric adjoint operation. If an orbit is closed, then one can

move along the orbit and come to the point closest to the origin, such a point is called a

minimal vector. The same ideas were introduced by Richardson-Slodowy in the real setting

to talk about closed orbits of real reductive groups. This seems to be the more natural

setting and we present their ideas below.

Let G ⊂ GLn(R) be a real semi-simple semi-algebraic group. Much of the geometry of G

and its orbits can be studied via the complexification of our real objects. Let GC ⊂ GLn(C)

denote the complexification of G. Consider a rational representation ρ : G → GL(V ). By

definition we know that ρ is the restriction to G of some rational representation ρC : GC →
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GL(V C), where V C = V ⊗C is the complexification of V . Note: We will denote the induced

Lie algebra representation by the same letter.

*.

Cartan Involutions

Let E be a finite dimensional real vector space. A Cartan involution of GL(E) is an

involution of the form θ(g) = (gt)−1, where gt denotes the metric adjoint with respect to

some inner product on E. At the Lie algebra level this involution is θ(X) = −X t.

Proposition 2.2.1 (Mostow [Mos55]). There exists a Cartan involution θ of GL(E)

such that GC(R) is θ-stable.

Proposition 2.2.2 (Borel, Proposition 13.5 [BHC62]). Let ρ : GC(R) → GL(V ) be a

rational representation. Let θ be a Cartan involution of GL(E) such that GC(R) is θ-stable.

Then there exists a Cartan involution θ1 of GL(V ) such that ρ ◦ θ = θ1 ◦ ρ.

This proposition is extended in the next proposition which follows from sections 1 and 2

of [RS90].

Proposition 2.2.3. Let G be defined as above and ρ : G→ GL(V ) a rational represen-

tation, then

(a) There exists a K-invariant inner product on V such that G is self-adjoint; hence, the

Lie algebra L(G) = g is also self-adjoint. Moreover, there exist Cartan involutions

θ, θ1 on G, ρ(G), respectively, such that ρ ◦ θ = θ1 ◦ ρ.
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(b) There exist decompositions of G and g, called Cartan decompositions, so that G =

KP as a product of manifolds and g = k ⊕ p. Here K = {g ∈ G | θ(g) = g} is

a maximal compact subgroup of G, k = L(K) = {X ∈ g | θ(X) = X}, p = {X ∈

g | θ(X) = −X}, and P = exp(p). Moreover, there exists an AdK-invariant inner

product 〈〈·, ·〉〉 on g so that g = k⊕ p is orthogonal.

(c) Relative to the K-invariant inner product 〈·, ·〉 on V , ρ(X) is a symmetric trans-

formation on V for X ∈ p, and ρ(X) is a skew-symmetric transformation on V for

X ∈ k.

The subspaces k and p that arise in the Cartan decomposition above have the following

set of relations

[k, k] ⊆ k, [k, p] ⊆ p, [p, p] ⊆ k

This is easy to see since k and p are the +1,−1 eigenspaces, respectively, of the Cartan

involution θ. We point out that our Ad K-invariant inner product on g restricts to such on

p as the relations above show that p is Ad K-invariant. Additionally, if the group G were

semi-simple, then up to scaling the only choice for 〈〈·, ·〉〉 would be −B(θ(·), ·) on each simple

factor of g, where B is the Killing form of G.

Our Cartan involution θ on G is the restriction of a Cartan involution on GC, see [RS90,

2.8 and section 8] and [Mos55]. This gives Cartan decompositions gC = u⊕q and GC = U ·Q,

where U is a maximal compact subgroup of GC, Q = exp(q), and U ∩Q = {1}.
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We observe that the maximal compact groups U and K are related by U = KU0. To

see this, it suffices to prove KU0Q = UQ = GC since KU0 ⊆ U and U ∩ Q = {1}. Since

U0Q = H0 and P ⊆ Q, we obtain KU0Q = KP ·H0 = G ·H0 = H0 ·G = GC.

The subspaces u, q ⊆ gC are related to k, p ⊆ g as follows

u = k⊕ ip

q = ik⊕ p

These two subspaces of LGC = gC have a nice interpretation relative to a particular inner

product on V C. Our construction of this inner product on V C is similar to that done in

sections 2 and 8 of [RS90]. We will be consistent with their notation.

Proposition 2.2.4. The K-invariant inner product <,> on V , described in Proposition

2.2.3, extends to a U-invariant inner product S on V C with a similar list of properties for

GC. Additionally, the inner product �,� on g extends to an Ad U-invariant inner product

S on gC.

Proof. The proof of this fact follows the construction of S in the appendix A2 (proof

of 2.9) in [RS90]. Define the inner product S on V C as

S(v1 + i v2, w1 + i w2) =< v1, w1 > + < v2, w2 >

In this way, V and iV are orthogonal under S and multiplication by i acts as a skew-

symmetric transformation on V C relative to S. S is positive definite on V C.
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Recall that U = KU0 (see the remark above), and observe that S is K-invariant as K

preserves V , iV and <,> is K-invariant. Thus to show U -invariance, once just needs to

show U0-invariance. This follows since ρ(u) acts skew-symmetrically and U0 = exp(u).

From the definitions of u, q and S it follows that ρ(u) acts skew-symmetrically and ρ(q)

acts symmetrically relative to S. Lastly, the extension of <<,>> on g to S on gC is a special

case of the above work.

�

We say that the inner products S, S on our complex spaces V C, gC are compatible with

the inner products <,>, <<,>> on the underlying real spaces V , g, respectively. The

inner product S constructed here gives rise to a U -invariant Hermitian form H = S + iA

on V C where we define A(x, y) = S(x, iy). This Hermitian form is compatible with the real

structure V in the sense of Richardson and Slodowy, that is, A = 0 when restricted to V ×V ;

see sections 2 and 8 of [RS90].

Given the above decomposition of our real group G, one would like to understand how

orbits tend not to be closed, in a more refined way. Let G = KP be our Cartan decompo-

sition. Clearly the K orbit of a point will always be closed, as it is compact. This suggests

then that the way in which an orbit tends to not be closed is very much related to P . The

following is a refinement of Birkes’s Theorem, cf. Theorem 2.1.8; see [RS90, Lemma 3.3] for

the establishment of the following.

Lemma 2.2.5. Let v ∈ V and assume that G · v is not closed. Then there exists X ∈ p

such that limt→∞ exp(tX) · v = v0 exists and the orbit G · v0 is closed. Moreover, X is the

tangent vector of an algebraic one-parameter multiplicative R-subgroup of G.
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Definition 2.2.6. A vector v ∈ V is a minimal vector for G if ||v|| ≤ ||g · v|| for all

g ∈ G. Let M denote the set of minimal vectors in V .

If G · v is a closed orbit, then clearly it contains a minimal vector. However, the converse

is also true. The following are Theorems 4.3 and 4.4 from [RS90].

Theorem 2.2.7. Let v ∈ V . The the following are equivalent:

(a) v ∈M

(b) the function Fv : G→ R, defined by Fv(g) = ||g · v||2, has a critical point at e ∈ G

(c) 〈X · v, v〉 = 0 for all X ∈ p

If v satisfies any of the conditions above, then Gv is self-adjoint (i.e., θ-stable).

Theorem 2.2.8. Let v ∈ V . Then the following are equivalent:

(a) the orbit G · v is closed

(b) G · v intersects M

If v satisfies any of the conditions above, then G · v ∩M is a single K-orbit.

These theorems demonstrate the value of an inner product on V under which G is closed

under the metric adjoint. Moreover, it gives a way of determining whether or not a particular

G-orbit is closed, i.e., we can try to check to see if G · v contains a minimal vector. In light

of the theorem above, we are looking for vectors that satisfy 〈X · v, v〉 = 0, for X ∈ p.

Equivalently, we could define the following function and look for its zeros.

Definition 2.2.9. The moment map m̃ : V → p is defined by 〈m̃(v), X〉 = 〈X · v, v〉.
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Rephrasing the above results in terms of this function we have:

Corollary 2.2.10. The set of minimal vectors is M = m̃−1(0).

Determining whether or not an orbit is closed is a global property of the orbit. Trying

to determine closedness at a point on an orbit is hard if we are not at a minimal vector.

In Section 3.3.1 we obtain a criteria which is local in nature, that is, uses only information

about the point we are at, to determine closedness of the orbit.

2.3. Moment Maps

We recall the definition of the real moment map for the action of G on V . The motivation

for these definitions comes from symplectic geometry and the actions of compact groups on

compact symplectic manifolds. In the complex setting, this moment map coincides with

the one from the symplectic structure on CP(V C). For more information see [NM84] and

[GS82].

Real moment maps. Given G � V we define m̃ : V → p implicitly by

� m̃(v), X � = < Xv, v >

for all X ∈ p. Notice that m̃(v) is a real homogeneous polynomial of degree 2. Equivalently,

we really could define m̃ : V → g; then using K-invariance and k ⊥ p we obtain m̃(V ) ⊆ p.

We can just as well do this for GC � V C where we regard GC as a real Lie group. We use

the inner products S on V C and S on gC. The (real) moment map for GC � V C, denoted by
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ñ : V C → q, is defined by

S(ñ(v), Y ) = S(Y v, v)

for Y ∈ q and v ∈ V C.

Since the polynomials m̃, ñ are homogeneous of degree 2, they give rise to well defined

maps on (real) projective space. Define

m : PV → p n : RPV C → q

m[v] = m̃( v
|v|) = m̃(v)

|v|2 n[w] = ñ( w
|w|) = ñ(w)

|w|2

where |w|2 = S(w,w) and S =<,> on V . Since V ⊆ V C we have PV ⊆ RPV C; this is our

main reason for studying the real moment map on GC. The next lemma compares these two

real moment maps.

Lemma 2.3.1. n restricted to PV equals m.

Proof. Recall that n takes values in q = ik⊕p and m takes values in p ⊆ q. Take v ∈ V

and X ∈ k then

S(ñ(v), iX) = S(iX · v, v) = 0

as V ⊥ iV (see Proposition 2.2.4 ), and we are using (iX)·v = i(X ·v), i.e., gC acts C-linearly

on V C. Since g ⊥ ig under S, we have ik ⊥ p. Thus ñ(v) ∈ p ⊆ q. Now take X ∈ p.

S(ñ(v), X) = � ñ(v), X � by compatibility of g ⊆ gC

||

S(Xv, v) = < Xv, v > by compatibility of V ⊆ V C

= � m̃(v), X � by definition/construction of m̃
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Therefore, ñ(v) = m̃(v) for v ∈ V ⊆ V C, which implies n[v] = m[v] for [v] ∈ PV ⊆ RPV C.

�

Complex moment maps. We choose a notation that is similar to Ness [NM84] as

we are following her definitions; the only difference is that we use µ where she uses m. For

v ∈ V C, consider ρv : GC → R defined by ρv(g) = |g · v|2, where |w|2 = H(w,w) = S(w,w).

Define a map µ : CP(V C) → q∗ = Hom(q,R) by µ(x) = dρv(e)
|v|2 , where v ∈ V C sits over

x ∈ CP(V C), cf. [NM84, section 1]. We define the complex moment map µ∗ : CP(V C)→ q

by µ = S(µ∗, ·). Note, taking the norm square of our complex moment map will give us the

norm square of the moment map in Kirwan’s setting; in Kirwan’s language iµ would be the

moment map [NM84, section 1].

Let π denote the projection π : RPV C → CP(V C).

Lemma 2.3.2. The complex and real moment maps for GC are related by µ∗ ◦ π = 2n

Proof. Many of our computations have the same flavor as those of Ness. We employ

her ideas for the reals. Take an orthonormal basis {αi} of iu = q under S. Also let x =
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π[v] ∈ CP(V C) for v ∈ V C. Then

µ∗(x) =
∑
i

S(µ∗(x), αi)αi

=
∑
i

[µ(x)αi]αi

=
∑
i

1

||v||2
dρv(e)(αi)αi

=
∑
i

1

||v||2
d

dt

∣∣∣∣
t=0

||exp tαi · v||2αi

Here the norm on V C is from H = S + iA. But S is the inner product being used on V C,

and so H(w,w) = S(w,w) tells us that µ∗(x)

=
∑
i

1

||v||2
2S(αiv, v)αi

=
∑
i

2 S(ñ[v], αi)αi

= 2ñ[v]

�

Remark. Since PV is not a subspace of CP(V C), we use RPV C and the real moment map

of GC to work between the known results of Kirwan and Ness to get information about our

real group G � PV .

*.

Examples of Moment Maps
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Let G1, G2 be real reductive groups with the Cartan decompositions Gi = KiPi and

gi = ki ⊕ pi, for i = 1, 2. Then the group G = G1 ×G2 has Cartan decompositions G = KP

and g = k⊕ p, where K = K1 ×K2 and p = p1 ⊕ p2.

Proposition 2.3.3. Let G = G1×G2 act on V , and let m,m1,m2 be the moment maps

for G,G1, G2, respectively. Then m = m1 +m2.

This is follows from the definitions and the fact that p = p1 ⊕ p2.

Let V = so(q,R)p := so(q,R) ⊕ · · · ⊕ so(q,R), p times. Let G = GL(q,R) act on V

diagonally by g · (C1, . . . , Cp) = (gC1gt, . . . , gCpgt). The Lie algebra g acts diagonally by

X · Ci = XCi + CiX t.

On V we define the inner product < (C1, . . . , Cp), (D1, . . . , Dp) >= −
∑
traceCiDi.

This is the canonical extension of the canonical inner product on so(q,R). Under this inner

product, G is self-adjoint and the metric adjoint corresponds to the usual transpose. Hence

k = so(q,R) and p = {X ∈ g : X = X t}.

Example 2.3.4. Consider the action of G = GL(q,R) on V . For C = (C1, . . . , Cp) ∈ V ,

mG(C) = −2
∑p

i=1(Ci)2.

For the action of H = SL(q,R) on V and C ∈ V , we have mH(C) = mG(C)− λ(C)Iq =

−2
∑p

i=1(Ci)2 − λ(C)Iq, where λ(C) = 2|C|2
q

.

We show this for the action of GL(q,R) first. Let X ∈ p and C ∈ V be given. For

ξ, η ∈ g, we use the inner product < ξ, η >= trace(ξηt) on g ⊂ M(q,R) and hence on p.

Then for X ∈ p we have < m(C), X >=< X(C), C >= −
∑
trace(XCi + CiX)(Ci) =

−2
∑
traceX(Ci)2 =< X,−2

∑
(Ci)2 >.
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To obtain the result for SL(q,R), observe that the set p consists of traceless symmetric

q×q matrices. As −2
∑p

i=1(Ci)2−λ(C)Iq is traceless, the result follows from the work above.

Now consider V = so(q,R)p and observe that V is isomorphic to so(q,R) ⊗ Rp via the

map C = (C1, . . . , Cp) 7→
∑
Ci⊗ei, where {ei} is the standard basis of Rp. Let G = G1×G2

where G1 = GL(q,R) and G2 = GLp(R), then G acts on V in the usual way; that is, for

g = (g1, g2) ∈ G and C =
∑p

1 C
i ⊗ ei we have

g · C = (g1, g2) ·
p∑
1

Ci ⊗ ei =

p∑
1

(g1C
igt1)⊗ g2(ei)

Here G2 acts on Rp in the standard fashion. Note, this action gives an action of SL(q,R)×

SL(p,R) on V . The previously used inner product on V now becomes the unique inner

product on V = s(q)⊗Rp such that < C⊗v,D⊗w >=< C,D >< v,w > for C,D ∈ so(q,R)

and v, w ∈ Rp, where < C,D >= −trace(CD) and <,> is the standard inner product on

Rp for which the standard basis {ei} is orthonormal.

Observe that p = p1⊕p2 and the moment mapm : V → p becomesm(C) = (m1(C),m2(C)),

where mi : V → pi is the moment map for the action of Gi.

Example 2.3.5. Consider the action of G = GL(q,R) × GL(p,R) acting on V =

so(q,R) ⊗ Rp defined above. Then the moment map is given by mG(C) = (m1(C),m2(C))

where m1(C) = −2
∑

(Ci)2 as above and m2(C) is defined component wise as m2(C)ij =<

Ci, Cj >. We show that m2 is the moment map for the action of GL(p,R) on so⊗ Rp.

For the action of H = SL(q,R)×SL(p,R) we have mH(C) = (m1(C)−λ(C)Iq,m2(C)−

µ(C)Ip) where m1,m2 are defined as above, λ(C) = 2|C|2
q

and µ(C) = |C|2
p

.
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To see that the moment map is as described, by Proposition 2.3.3 we just need to check

the action ofG2 = GL(p,R). If Y ∈ p2 and C =
∑
Ci⊗ei ∈ V are given, then< Y (C), C >=

<
∑
Ci⊗Y (ei),

∑
Cj⊗ej >=

∑
< Ci, Cj >< Y (ei), ej >= trace m2(C)Y =< m2(C), Y >.

Hence m2 is the moment map for the action of GL(p,R).

The result for H holds for the same reasons as in the previous example; that is, m1(C)−

λ(C) and m2(C)− µ(C) are traceless.

Example 2.3.6. Let V = Mn(R) denote the n × n matrices and let SLn(R) act by

conjugation. This is the adjoint action of GLn(R) acting on its Lie algebra. Given the usual

inner products, from the trace form, for C ∈ V the moment map is m(C) = CCt − CtC.

Observe that the Lie algebra g acts on V by X(C) = XC − CX for X ∈ p and C ∈ V .

We compute < m(C), X >=< X(C), C >= trace(XC−CX)Ct = traceX(CCt−CtC) =<

X,CCt − CtC >. The assertion follows as CCt − CtC is symmetric, traceless and hence

belongs to p.

2.4. Comparison of Real and Complex Cases

Most of algebraic geometry and Geometric Invariant Theory has been worked out exclu-

sively for fields which are algebraically closed. We are interested in the real category and

will exploit all the work that has already been done over C. We use and refer the reader to

[Whi57] as our main reference for real algebraic varieties.

Recall that our representation ρ : G→ GL(V ) is the restriction of a representation of GC.

The following is proposition 2.3 of [BHC62] and section 8 of [RS90]. Originally this was

stated as a comparison between GC(R)0-orbits and GC-orbits, however, it can be restated as
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a comparison between G and GC orbits, for any G satisfying GC(R)0 ⊆ G ⊆ GC(R). This is

true as GC(R)0 has finite index in G. For more details see Proposition 1.3.2. (Even though

the contents of the following theorem are contained in the aforementioned proposition, the

theorem, as stated, is referenced later in the text.)

Theorem 2.4.1. Let v ∈ V , then GC·v∩V =
m⋃
i=1

Xi where each Xi is a G-orbit. Moreover,

GC · v is closed in V C if and only if G · v is closed in V .

Example 2.4.2. Consider the adjoint action of SL2(R) on sl2(R). The points

 0 1

−1 0


and

0 −1

1 0

 lie on different SL2(R)-orbits but lie on the same SL2(C)-orbit.

Remark. We thank Dima Arynkin for pointing out this example to us. Additionally,

we observe that there are two Hausdorff open sets det > 0 and det < 0 which are SL2(R)

invariant and which are not connected via SL2(C)-orbits. This is a very interesting phe-

nomenon as it is well-known that generic points from these two open sets have diffeomorphic

SL2(C)-orbits, cf. Section 1.1.3 and the stabilizer in general position.

Proof. First we show that

 0 1

−1 0

 and

0 −1

1 0

 lie on different SL2(R)-orbits but

lie on the same SL2(C)-orbit. Observe that these vectors are both minimal for the action

of G = SL2(R), cf. Example 2.3.6. If they were to lie on the same SL2(R) orbit, then they

would hence lie on the same K = SO(2) orbit by Theorem 2.2.8. However, the elements of

K commute with both vectors. Thus K fixes both vectors and they cannot lie on the same

K orbit. Hence they cannot lie on the same G orbit.
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To see that these vectors lie on the same SL2(C) one uses the element

0 i

i 0

 to

conjugate between them. Lastly, we observe that SL2(C) preserves the determinant function,

and hence this group does not connect the disjoint open sets det > 0 and det < 0 of sl2(R).

�

Example 2.4.3 (Sylvester’s Theorem). Let G = GLk(R) act on V = Symmk(R), the

symmetric k × k matrices, via g ·M = gMgt.

It is well-known (Sylvester’s Theorem) that for M ∈ V there exists g ∈ G such that

gMgt is a diagonal matrix consisting of 1’s, 0’s, and -1’s along the diagonal. This form is

unique up to reordering. If p, n, z are the number of positive, negative, and zero eigenvalues

of M ∈ V , then p, n, z are constant along G-orbits and equal the number of 1′s, −1′s, and

0′s in the diagonal, respectively. However, over the complex numbers given M ∈ V C there

exists g ∈ GLk(C) such that gMgt is diagonal with 1′s and 0′s along the diagonal; here the

number of 1′s is p+ n and the number of 0′s is z. Hence all M ∈ V C with the same number

of nonzero eigenvalues lie on the same GLk(C) orbit.

If we choose a generic matrix M , which is nonsingular, then there are exactly k real

orbits that comprise GLk(C) ·M ∩ V . These are the real matrices with p positive and k− p

negative eigenvalues for 1 ≤ p ≤ k.

*.
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Orbits in Projective space Since our groups act linearly on vectors spaces we can consider

the induced actions on projective space G � PV and GC � RPV C. The next result extends

Proposition 1.3.2 (f).

Lemma 2.4.4. For v ∈ V , GC · [v] ∩G · [v] = G · [v] in RPV C.

Proof. The actions of R∗×G and G on PV are the same; moreover, (R∗×G)C = C∗×GC.

Given v ∈ V take gn ∈ G and g ∈ GC such that [gnv] → [gv] in PV . Then we want

to show [gv] ∈ G · [v]. Now take rn, r ∈ R such that rngnv, rgv have unit length in V C.

We can assume rngnv → rgv by passing to −r and a subsequence if necessary. Then

rngnv → rgv ∈ C∗ × GC · v ∩ R∗ ×G · v. Therefore, rgv ∈ R∗ × G · v using Proposition

1.3.2(f) and our result follows. �

43



CHAPTER 3

M-function and Stability of Representations

We begin this chapter by recalling the classical and well-known theorems for determining

when one has generically closed orbits. Then we present the real M -function, show how this

is a generalization of the Hilbert-Mumford criteria to real groups, and we show consistency

for complex groups. That is, our new criteria when applied to complex semi-simple groups

gives precisely the Hilbert-Mumford criteria. Much of the work in this section is joint with

P. Eberlein [EJ].

Definition 3.0.1. Let G be a real, resp. complex, semi-simple algebraic group and

ρ : G → GL(V ) a linear rational representation where V is a real, resp. complex, vector

space. We say that ρ is a stable, semi-stable, or good semi-stable representation if it contains

such a point, see Definitions 2.1.4 and 3.0.2.

Often we will simply say that a representation is ‘good’ if it is either stable or good

semi-stable; that is, if it contains a Zariski open set of closed orbits.

Remark. For complex groups, if there is one point which is stable, semi-stable, or good

semi-stable, then there exists a Zariski open set of such of points (see [New78, page 74]).

For real groups this is true for semi-stable and good semi-stable (cf. Proposition 1.3.2 and



[New78, page 74]). We observe that if there exist stable points in the complex representa-

tion, then there exist real points which are (complex) stable, in fact there exists a Zariski

open set of such points in V . However, for real stable points we can only guarantee the

existence of a Hausdorff open set of such points; in general this Hausdorff open set is not

Zariski open, cf. Example 3.2.1.

Definition 3.0.2. We say that a vector v ∈ V or its orbit G · v is (real) stable if G · v

is closed and the isotropy subgroup Gv is compact.

In the sequel stable will always denote real stable unless explicitly stated otherwise.

Remark. From this definition if a representation ρ : G→ GL(V ) is real stable, then the

complex representation ρ : GC → GL(V C) won’t necessarily be complex stable. However,

the complex representation will be good semi-stable. Moreover, we choose this terminology

as it is consistent with the original definition of stable if we regard a complex group GC as a

real Lie group. For if G is a complex semi-simple group acting on a complex vector space V ,

v ∈ V is said to be stable if G · v is closed and Gv is discrete. Since Gv is an affine algebraic

group, compact is equivalent to discrete (for complex algebraic groups).

We have two goals. The first is to determine when an orbit G · v is closed. We would

especially like to do this locally, that is, with just information about v. The second goal is to

determine when we generically have closed orbits. We have already seen that G · v is closed

if and only if GC · v is closed. In this way, we can study complex groups to help work on the

first goal. Additionally, since V is Zariski dense in V C, any generic results obtained for GC
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acting on V C immediately translate back to results for G acting on V . So again we can use

complex groups to help work on the second goal.

Theorem 3.0.3. Let G be a real semi-simple group acting almost effectively on V ; that

is, ρ : G→ GL(V ) has discrete kernel. If all the orbits are closed, then G is compact.

Proof. Let G be noncompact. If suffices to show that 0 ∈ Gv for some v 6= 0. The

condition that G act almost effectively is equivalent to the condition that the Lie algebra

act effectively; that is, if X · v = 0 for X ∈ g and all v 6= 0, then X = 0. Consider the

Cartan decomposition G = KP . Since G acts almost effectively, given X ∈ p\{0} there

exists v ∈ V such that Xv 6= 0. Since X is symmetric, v =
∑

λ∈Λ(X) vλ, where Λ(X) is the

set of eigenvalues of X and vλ is the component of v in the λ-eigenspace of X. Pick λ 6= 0

such that vλ 6= 0. Then exp(tX) · vλ = etλvλ and letting t → ±∞ we see that vλ is in the

null cone. �

Remark. The condition that G act almost effectively is very natural. For if G did not

act effectively, then we could consider the normal subgroup N which acts trivially. Then G

and G/N (with the induced action) have the same orbit structure. Note that this theorem

is very special to semi-simple groups as it is well-known that for any representation of a

unipotent group all orbits are closed, see [PV94].

Let G be a reductive group. It is well-known that if G · v is closed, then the stabilizer

Gv is reductive (see [BHC62, Theorem 3.4]). For example, if w ∈ G · v is minimal, then Gw

is self-adjoint by Theorem 2.2.7 and hence reductive. If w′ ∈ G · v, then Gw′ is conjugate

to Gw. The converse is almost true and is a theorem of V.L. Popov [Pop70]. This gives a
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good criterion in both the real and complex cases. Next we state this general criterion for

determining when a generic orbit is closed. Although Popov stated the theorem over C, it

is obviously true for real groups by complexifying all of our objects.

Theorem 3.0.4 (Popov). Let G be a semi-simple algebraic group acting (algebraically)

on V . Then generic orbits are closed if and only if the stabilizer in general position is

reductive.

Remark. Popov’s proof uses algebraic geometry to obtain his results. We are interested

in finding more analytic proofs of these known results. At the moment we do not have a

full proof of his result that avoids algebraic geometry. However, our work on the real M -

function obtains a criterion for generically closed orbits without using high powered algebraic

geometry (see Theorem 3.1.7).

3.1. M-function

Until otherwise stated we let G be a real semi-simple algebraic group acting on a real

vector space V . Let 〈·, ·〉 be an inner product for which G is self-adjoint and let g = k ⊕ p

be a Cartan decomposition compatible with 〈·, ·〉. Let V0 and p0 denote the non-zero vectors

in V and p, respectively. Take X ∈ p0 and let ΛX denote the set of eigenvalues of X; for

µ ∈ ΛX let Vµ,X denote the µ-eigenspace in V . For v ∈ V0 and X ∈ p0 let µ(X, v) denote

the smallest eigenvalue µ such that the component of v in Vµ,X is non-zero.

The function µ : p0 × V0 → R captures some of the action of G on V and we record two

basic properties. The first result is on non-negativity of the µ-function and the second is on

semi-continuity.
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Proposition 3.1.1. Let (X, v) ∈ p0 × V0.

(a) µ(X, v) = 0 if and only if the following hold

(i) The component v0 of v in Ker X is nonzero

(ii) exp(tX)v → v0 as t→ −∞

(b) µ(X, v) > 0 if and only if exp(tX)v → 0 as t→ −∞. That is, v is in the null cone.

Proof. We prove both results simultaneously. Let Λ′X denote the set of nonzero eigen-

values of X. For v ∈ V we have v = v0 +
∑

λ∈Λ′X
vλ. By inspection µ(X, v) ≥ 0 if and only if

λ > 0 for vλ 6= 0 and µ(X, v) > 0 if and only if v0 = 0 and λ > 0 for vλ 6= 0. The assertions

of the proposition follow immediately since exp(tX)v = v0 +
∑

λ∈Λ′X
etλvλ. �

Proposition 3.1.2. Let (X, v) ∈ p0 × V0. Given ε > 0 there exist neighborhoods U ⊂ V

and O ⊂ p such that µ(X ′, v′) < µ(X, v) + ε, for (X ′, v′) ∈ U ×O.

Proof. Suppose the proposition is false. Then there would exist an ε > 0 and a sequence

(Xn, vn)→ (X, v) such that µ(Xn, vn) ≥ µ(X, v) + ε for all n. By passing to a subsequence

we can assume there exists an integer N with the following properties:

(a) For every n, Xn has N distinct eigenvalues {λ(n)
1 , . . . , λ

(n)
N } and there exist orthogonal

subspaces {V (n)
k } such that V = V

(n)
1 ⊕ · · · ⊕ V (n)

N with Xn = λ
(n)
i Id on V

(n)
i .

(b) There exist subspaces V1, . . . , VN of V and real numbers λ1, . . . , λN such that λ
(n)
i →

λi and V
(n)
i → Vi. Since Xn → X we see that V = V1 ⊕ · · · ⊕ VN and X = λiId on

Vi. Note, these λi are eigenvalues of X and might not be distinct.

Choose k so that µ(X, v) = λk. Then v has a nonzero component in Vk. Thus there is

some N0 such that vn has a nonzero component in V
(n)
k for all n ≥ N0. Now we have
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λ
(n)
k ≥ µ(Xn, vn) ≥ µ(X, v) + ε and since λ

(n)
k → λk we obtain the contradiction µ(X, v) =

λk ≥ µ(X, v) + ε. �

Definition 3.1.3. The function M : V → R is defined by M(v) = max{µ(X, v) : X ∈

p & |X| = 1}

This function has been considered by A. Marian [Mar01] in this context. A priori one

can only define the M function as a supremum, however, Marian has shown that it is a

maximum over the unit sphere in p. We present some of her results on the basic nature of

M .

Proposition 3.1.4. The M-function has the following properties:

(a) M is constant on G-orbits

(b) M takes finitely many values

(c) Let K be a maximal compact subgroup of G with Lie algebra k. Let A be a maximal

abelian subalgebra of p. Define MA : V → R by MA(v) = sup{µ(X, v) : X ∈

A & |X| = 1}. Then M(v) = max{MA(kv) : k ∈ K}.

In [EJ] we have refined the study of the M -function and obtained many more useful

results concerning the orbit structure of representations of real semi-simple groups. Most

importantly, we have derived a new and useful criterion for determining closedness of an

orbit using local information.

Proposition 3.1.5. Let v ∈ V . There exists an open neighborhood O of v such that

M(w) ≤M(v) for w ∈ O.
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Proof. Suppose the proposition is false for some non-zero v ∈ V . Then there exists a

sequence {vn} ⊂ V such that vn → v as n→∞ and M(vn) > M(v) for all n. Since M has

only finitely many values we may assume, by passing to a subsequence, that M(vn) = c >

M(v) for some real number c and all n. Choose unit vectors Xn ∈ p such that c = M(vn) =

µ(Xn, vn) for all n. By passing to a subsequence we may assume that Xn → X, a unit vector

in p, as n→∞.

Choose ε > 0 such that c > M(v) + ε. By Proposition 3.1.2 there exists N such that

µ(Xn, vn) < µ(X, V ) + ε for n ≥ N . Hence c = M(vn) = µ(Xn, vn) < µ(X, v) + ε ≤

M(v) + ε < c, which is a contradiction. �

Corollary 3.1.6. Let v ∈ V be such that M(v) < 0. Then there is an open neighborhood

O such that M(w) < 0 for w ∈ O.

*.

The Geometric Significance of M < 0

Theorem 3.1.7. The following conditions are equivalent for a nonzero vector v ∈ V :

(a) M(v) < 0

(b) v is stable; that is, the orbit G · v is closed and Gv is compact

(c) The map Fv : G→ [0,∞) is proper, where Fv(g) = |g(v)|2.

Remark. We observe that M(v) < 0 if and only if µ(X, v) < 0 for all nonzero X ∈ p.

This is useful in practice when working with M .
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Before proving the theorem, we state a very useful proposition that is interesting in its

own right.

Proposition 3.1.8. Consider the map fv : G → V defined by fv(g) = gv. The map fv

is proper if and only if G(v) is closed and Gv is compact.

Proof. Recall that G is a closed subgroup of GL(V ). One direction is clear and we

omit the proof. For, if fv is proper, then clearly G(v) is closed and Gv is compact.

Suppose G(v) is closed, but that fv is not proper. We will show that Gv cannot be

compact. Hence, if G(v) is closed with Gv compact, then fv is proper.

By assumption, there exists an unbounded sequence {gn} in G such that {gn(v)} is

bounded. As G is self-adjoint, we may write gn = kn exp(Xn), where kn ∈ K and Xn ∈ p

and |Xn| → ∞ as n → ∞. Since K is compact, it follows that exp(Xn)v → w ∈ V by

passing to a subsequence if necessary.

Let Yn = Xn/|Xn|, tn = |Xn|, and let Yn → Y ∈ p, by passing to a subsequence if

necessary. If fn(t) = |exp(tYn)(v)|2 and f(t) = |exp(tY )(v)|2, then fn(t) → f(t) for each t

as n → ∞. It is proved in Lemma 3.1 of [RS90] that the functions fn(t), f(t) are convex;

that is, f ′′n ≥ 0 and f ′′ ≥ 0. By hypothesis fn(tn) → |w|2 as n → ∞. By the convexity of

fn(t), we conclude that fn(t) ≤ max{fn(0), fn(tn)} ≤ |v|2 + |w|2 + 1 if 0 ≤ t ≤ tn and n is

sufficiently large. Hence f(t) ≤ |v|2 + |w|2 + 1 for t ≥ 0. It follows by convexity that f(t) is

nonincreasing on R.

Let Λ denote the set of nonzero eigenvalues of Y and let V = V0⊕
∑

λ∈Λ Vλ be the direct

sum decomposition of V into orthogonal eigenspaces of Y ∈ p, where Y = 0 on V0 and

51



Y = λId on Vλ for all λ ∈ Λ. Write v = v0 +
∑
vλ where vo ∈ V0 and vλ ∈ Vλ for λ ∈ Λ.

Then exp(tY )(v) = v0 +
∑
etλvλ and f(t) = |exp(tY )(v)|2 = |v0|2 +

∑
e2tλ|vλ|2. By the

previous paragraph limt→∞ f(t) exists, and it follows that λ ∈ Λ is negative if vλ 6= 0. Thus

exp(tY )(v)→ v0 as t→∞. Moreover, Y (v0) = 0 as v0 ∈ V0.

We have shown that v0 ∈ Gv = Gv. Hence there exists g ∈ G such that v0 = gv. Since

exp(tY ) ⊂ Gv0 we see that Gv0 and hence Gv is not compact.

�

Proof of the theorem. We prove (a) implies (b). If G(v) is not closed, then the map

fv : G → V is not proper by the proposition above. By the proof of this proposition we

know that there exists Y ∈ p such that exp(tY )(v) → v0 as t → ∞, where v0 ∈ Ker Y .

Thus µ(Y, v) ≥ 0 by Proposition 3.1.1; for the definition of µ see the remarks preceding

Proposition 3.1.1. Hence M(v) ≥ µ(Y, v) ≥ 0 which contradicts our hypothesis. Thus G(v)

is closed. Moreover, if Gv were not compact, then fv would not be proper and we would

arrive at the same contradiction.

We prove (b) implies (c). If Fv : G→ R is not proper, then fv : G→ V is also not proper.

By the proof of the proposition above, Gv would then not be compact which contradicts our

hypothesis.

We prove (c) implies (a). Suppose that M(v) ≥ 0 and choose a unit vector Y ∈ p

such that µ(Y, v) = M(v) ≥ 0. Then by Proposition 3.1.1 exp(−tY )(v) → v0 as t → ∞,

where v0 is the component of v in Ker Y . Hence Fv : G → [0,R) is not proper since

Fv(exp(−tY ))→ |v0|2 as t→∞. This violates our hypothesis. �

An immediate and useful observation is that stability produces generically closed orbits.
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Corollary 3.1.9. Suppose there exists a stable vector v ∈ V . Then there exists a

nonempty Hausdorff open set of stable points, and moreover there exists a nonempty Zariski

open set of vectors whose orbits are closed.

Proof. Let v be stable, that is M(v) < 0. From Proposition 3.1.5 we see that there

exists a Hausdorff open set O so that M < 0 on O. We know that the set of orbits of maximal

dimension is a nonempty Zariski open set in V , and hence it intersects O. Thus we have

the existence of a closed orbit of maximal dimension by Theorem 3.1.7, and by Proposition

2.1.3 we know that there exists a Zariski open set of points whose orbit is closed. �

Corollary 3.1.10. Let v ∈M ⊂ V be a minimal vector. The following are equivalent:

(a) M(v) < 0

(b) G · v is closed with Gv compact

(c) The moment map m : V → p has maximal rank at v

(d) If X(v)=0 for some X ∈ p, then X = 0

This corollary is useful in that if we find a minimal vector with one the properties listed

above, then we can guarantee the existence of generic closed orbits. For an application of

this idea see Section 3.4 of this Chapter. Moreover, one can actually calculate the dimension

of the moduli space X//G using the above information.

Proof. Assertions (a) and (b) are equivalent by Theorem 3.1.7 above. For v, η ∈ V and

X ∈ p a routine calculation shows that << m∗(ηv), Xm(v) >>= 2 < X(v), η >. Hence (c)

and (d) are equivalent. We show that (b) and (d) are equivalent. Since v is minimal, G · v is

closed by Theorem 2.2.8. Now minimality implies gv is self-adjoint by Theorem 2.2.7, and
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hence gv = kv ⊕ pv. Thus Gv is compact if and only if pv = {0}, which proves that (b) and

(d) are equivalent. �

Now we can state our work above and see how it is the analogue of the Hilbert-Mumford

criterion, cf. Theorem 2.1.7.

Theorem 3.1.11. Let G act on V and take v ∈ V . Then

(a) M(v) > 0 if and only if v is in the null cone

(b) M(v) = 0 if and only if v is semi-stable, but not stable

(c) M(v) < 0 if and only if v is stable

Proof. The third part of the theorem was proven above. To prove the first we note that

M(v) = µ(Y, v) for some Y ∈ p0, |Y | = 1. Now if M(v) > 0, Proposition 3.1.1 shows that

exp(tY )v → 0 as t → −∞. That is, v is in the null cone. If v is contained in the null cone

then we know there exists Y ∈ p such that exp(tY )v → 0 as t → −∞ (see Lemma 2.2.5).

Now, Proposition 3.1.1 implies M(v) ≥ µ(Y, v) > 0. This proves (a); assertion (b) follows

immediately from (a) and (c). �

Proposition 3.1.12. Let G act on V and suppose there is a point v ∈ V such that Gv

is compact. Then generic orbits are closed and there is an open set such that M(v) < 0.

Warning! Even though Gv is compact, G · v might not be closed. See Example 4.0.6.

Proof. First we show that there is an open set such that Gw is compact. Recall that

since G is an algebraic group, the stabilizer Gw is an algebraic group and hence a group with
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finitely many connected components. Thus, Gw is compact if and only if (Gw)0 is compact,

where (Gw)0 is the Hausdorff identity component.

Suppose such an open set did not exist. Then we would have a sequence of vn → v

in V such that the groups Gvn are not compact. Let d be a complete Riemannian metric

on End(V ). Then Gv being compact it has a diameter, say D. Since each (Gvn)0 is arc

connected but not compact we can pick gn ∈ (Gvn)0 such that dist(e, gn) = 2D. Now

End(V ) being a complete metric space, and gn being a bounded sequence in G, there exists

a convergent subsequence converging to some g ∈ G. Passing to this subsequence we have

v = lim vn = lim(gnvn) = gv, which shows that g ∈ Gv. We have a contradiction as

dist(e, g) = 2 diam(Gv). Thus, there exists some open set O 3 v such that (Gw)0, and hence

Gw, is compact for w ∈ O.

Let GC denote the complexification of G. Recall that GC acts on V C and has a stabilizer

in general position G′, s.g.p. That is, there is an open set U ⊂ V C such that GC
w is isomorphic

to G′ for w ∈ U . Since U ∩ V is a Zariski open set of V it intersects O.

Recall for v ∈ V ⊂ V C we have gC
v = (gv)

C and gv is reductive if and only if gC
v is reductive.

Hence, the s.g.p is reductive since gv is compact and hence reductive for v ∈ U ∩ O. Now

by a theorem of Popov [Pop70] we have that generic orbits are closed.

Let A be a nonempty Zariski open subset of V such that G · v is closed for all v ∈ A. If

v ∈ A ∩ O, then M(v) < 0 by Theorem 3.1.7 (b). �

Remark. At the moment we do not have a proof of this result without using Popov’s

theorem which relates reductive s.g.p. and generically closed orbits. It would be very in-

teresting to us and worthwhile to find an analytic proof of the above result that avoids the
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algebraic geometry in Popov’s proof.

*.

Closed subgroups in stable representations If G acts stably on V , then one can say a lot

about the induced representations of closed subgroups.

Proposition 3.1.13. Let H be a closed subgroup of G and v a G-stable point, cf. Defi-

nition 3.0.2. Then v is H-stable; that is, H · v is closed and Hv is compact.

Proof. Let w ∈ H(v) and let hn ∈ H ⊂ G be a sequence such that hn(v) → w as

n → ∞. By (c) of Theorem 3.1.7 we know that the hn converge to an element h ∈ G and

since H is closed in G we have h ∈ H. Thus w = h(v) ∈ H · v. That is, H · v is closed.

Now Hv = H ∩Gv is a closed subgroup of a compact group. Thus it is compact. �

Corollary 3.1.14. Let H be a semi-simple subgroup of G and v be a G-stable vector.

Then v is H-stable.

Proof. Recall the well-known result of Mostow that says semi-simple subgroups of semi-

simple groups are closed subgroups, see the main theorem in section 6 of [Mos50]. Hence

H is closed in G, and we apply the previous result. �

Remark. The above two results are special to the setting of stable vectors. There do

exist representations such that G(v) is closed but H(v) is not closed, where H is an algebraic

reductive subgroup, see Example 4.0.6. However, for ‘generic’ v the above results hold true

for reductive subgroups, see Chapter 4.
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Suppose we have a representation of G which is stable. We know that the set of generic

closed orbits does not have to equal the set of stable points, see Example 3.2.1. In this

example there exists a Hausdorff open set of stable points but there also exists a Hausdorff

open set of non-stable, good semi-stable points. The set of generically closed orbits is a

Zariski open set with, usually, many Hausdorff components.

Question 3.1.15. Suppose G acts on V and v is a stable point. Let w ∈ V be a GC

conjugate of v, not necessarily one of G. That is, there exists g ∈ GC so that w = gv. Let

H be a closed subgroup of G. We know, from the above, that H · v is closed. Is H · w also

closed?

If H is semi-simple and w a minimal vector then the answer is yes, but in general we do

not know. To see this special case, one observes from [RS90, Lemma 8.1] that w will be a

minimal vector for HC and hence HCw will be closed. But then Proposition 1.3.2 tells us

that Hw is closed.

3.2. Examples of Stability

Our first example will demonstrate two important aspects of real stability. First, there

exist Hausdorff open sets of stable points which are not Zariski open. Second, there are

more, in fact many more, real stable representations than complex stable representations.

Thus our work truly generalizes the Hilbert-Mumford Criterion.

Example 3.2.1. Adjoint Representation of SL2(R).
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Let G = SL2(R) and V = g = {A ∈ M2(R) | traceA = 0}. The group G acts on V

via conjugation. Let <,> denote the inner product on V given by < A,B >= trace(ABt),

where Bt denotes the transpose operation in M2(R). For g ∈ G, the metric adjoint g∗

relative to <,> corresponds to the usual transpose gt. Hence G is self-adjoint relative to

<,>. Moreover, the Cartan involution is the standard one and g = k⊕ p where k is the set

of skew-symmetric matrices and p is the set of traceless symmetric matrices.

Proposition 3.2.2. Let O1 = det−1(−∞, 0), O2 = det−1(0,∞), and Σ = det−1(0),

where det : M2(R)→ R is the determinant function. Then

(a) The sets O1,O2,Σ are all G-invariant, V is their disjoint union, and the sets Oi are

open in the Hausdorff topology but not Zariski open.

(b) If M denotes the minimal set for the action of G on V , then M = k ∪ p.

(c) G(A) is closed in V if A ∈ O1 ∪O2. The null cone, or set of unstable points, is the

set Σ.

(d) M(A) = 0 for all A ∈ O1, M(A) = −
√

2 for all A ∈ O2, and M(A) =
√

2 for all

A ∈ Σ.

Proof. We omit the proof for (a) as it is clear.

Proof of (b). By Example 2.3.6 we know that A ∈ M if and only if AAt = AtA. Since

A ∈M2(R) it is easy to show by hand that A ∈M if and only if A is either skew-symmetric

or symmetric.

Proof of (c). Recall that G(A) is closed if and only if G(A) ∩M is nonempty. Part (c)

now follows from part (b) and the next result.
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Lemma 3.2.3. Standard forms

(a) If A ∈ O1, then there exists g ∈ G such that g(A) = gAg−1 =

λ 0

0 −λ

 ∈ p, where

λ =
√
| detA|.

(b) If A ∈ O2, then there exists g ∈ G such that g(A) = gAg−1 = ±

0 −λ

λ 0

 ∈ k,

where λ =
√

detA.

(c) If A ∈ Σ, then there exists a sequence {gn} in G such that gn(A) =

0 λn

0 0

, where

λn → 0 as n→∞.

Proof of Lemma. For A ∈ V = g we recall that the characteristic polynomial of A acting

in the usual way on R2 is given by cA(x) = x2 + detA.

(a) If A ∈ O1, then A has eigenvalues ±λ, where λ =
√
| detA|. Let {v1, v2} be a

positively oriented basis of R2 such that A(v1) = λv1 and A(v2) = −λv2. Let g ∈ GL2(R)

be an element with det g > 0 such that g(vi) = ei, where {e1, e2} is the standard basis of R2.

Write g = ch, where deth = 1 and c > 0. Then h(A) = hAh−1 = gAg−1 =

λ 0

0 −λ

 ∈ p.

(b) If A ∈ O2, then A has eigenvalues ±iλ, where λ =
√

detA. Let v1, v2 ∈ R2 be

vectors such that A(v1 + iv2) = iλ(v1 + iv2). Then the vi are linearly independent and

A(v1) = −λv2 and A(v2) = λv1. Hence A has matrix

 0 λ

−λ 0

 relative to the basis

{v1, v2} of R2. Depending on the orientation, choose g ∈ GL+
2 (R) such that g(v1) = e1 and
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g(v2) = ±e2. In either case, choose c > 0 and h ∈ G such that g = ch. Then we obtain

hAh−1 = gAg−1 = ±

 0 λ

−λ 0

.

(c) If A ∈ Σ, then A2 = 0. As above, we can arrange for A to have the matrix hAh−1 =0 ±1

0 0

, for some h ∈ G, relative to the correct choice of basis. Now consider hn =

1/n 0

0 n

 ∈ G. Then conjugation by hnh yields

0 ±n−2

0 0

. This produces the claimed

result and the lemma is proven.

We finish the proof of the proposition by showing part (d). Let H0 =

1 0

0 −1

,

X =

0 1

0 0

, and Y =

0 0

1 0

. Then {H0, X, Y } is a basis of g such that [H0, X] =

2X, [H0, Y ] = −2Y, [X, Y ] = H0. The space p is 2-dimensional and the 1-dimensional

maximal compact subgroup K ≈ S1 acts transitively on the spheres (circles) of fixed

length vectors in p. If H ∈ p, then H has eigenvalues ±λ for some real number λ, and

|H|2 = trace(H2) = 2λ2. It follows that H is a unit vector in p if and only if H has eigen-

values ±
√

2/2. In particular, if H is any unit vector in p, then there exists k ∈ K such that

kHk−1 = H0/
√

2.

We show that M(A) =
√

2 if A ∈ Σ. The argument in the proof of c) of the lemma above

shows that for any A ∈ Σ there exists g ∈ G and λ ∈ R such that gAg−1 = λX. Hence

M(A) = M(λX) = M(X) and it suffices to prove that M(X) =
√

2.
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Note that µ(H0, X) = 2 since [H0, X] = 2X. Hence µ(H0/
√

2, X) =
√

2. Now let H be

an arbitrary unit vector in p and let k ∈ K be an element such that kHk−1 = H0/
√

2. Choose

a real number θ such that k =

cos θ − sin θ

sin θ cos θ

. Then kXk−1 = − sin θ cos θH0 +cos2 θX−

sin2 θY . If sin θ 6= 0, then µ(H,X) = µ(kHk−1, kXk−1) = µ(H0/
√

2, kXk−1) = −
√

2. If

sin θ = 0 then k = ±Id and in this case µ(H,X) = µ(H0/
√

2, X) =
√

2. Thus, M(X) =
√

2.

Next we show that M(A) = −
√

2 for all A ∈ O2. For A ∈ O2 we write A =

a b

c −a

 =

aH0 + bX + cY for suitable real numbers a, b, c. By hypothesis a2 + bc = − detA < 0,

and hence b, c are always nonzero. It follows by inspection that µ(H0, A) = −2 and hence

µ(H0/
√

2, A) = −
√

2. If H is a unit vector in p, then kHk−1 = H0/
√

2 for some k ∈ K and

µ(H,A) = µ(H0/
√

2, kAk−1) = −
√

2. Hence M(A) = −
√

2.

Lastly we show M(A) = 0 for A ∈ O1. Since A has eigenvalues ±λ there exists g ∈ G

with gAg−1 = λH0. Hence M(A) = M(gAg−1) = M(λH0) = M(H0). It suffices to prove

that M(H0) = 0. Note that µ(H0/
√

2, H0) = 0 as H0 ∈ Ker H0. If H is any unit vector

in p then choose k =

cos θ − sin θ

sin θ cos θ

 ∈ K such that kHk−1 = H0/
√

2. Then µ(H,H0) =

µ(kHk−1, kH0k
−1) = µ(H0/

√
2, cos(2θ)H0 + sin(2θ)X + sin(2θ)Y ). If sin(2θ) 6= 0, then

µ(H,H0) = −
√

2. If sin(2θ) = 0, then kH0k
−1 = ±H0, and µ(H,H0) = ±µ(H0/

√
2, H0) = 0.

Hence M(H0) = max{µ(H,H0) : H ∈ p, |H| = 1} = 0.

Example 3.2.4. Let V be a representation of SL2(R). If V contains no trivial factors

and dimV ≥ 3 then the representation is stable.
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This result follows from a much more general construction called the Index Method. See

Propositions 3.3.3 and 3.3.4 and also Section 4 of [EJ].

Example 3.2.5. Adjoint representations.

All stable adjoint representations have been classified in [EJ]. There it is shown that

“most” adjoint representations are stable. We do not present the details, rather we refer the

reader there.

Example 3.2.6. The action of SL(q,R)×SL3R on so(q,R)3 for q 6= 3, 6 is stable. This

follows from Section 3.3.4. Here the geometry of nilmanifolds is employed to obtain new

examples of minimal vectors and stability.

Remark. For the stability of case q = 6, see Example 2 of [EJ, Appendix 2]. It is known

that the case q = 3 is not stable for more general reasons, see Theorem 3.4.10.

*.

Inheritance of StabilityWe finish this section with some methods to build stable representa-

tions via summing and tensoring representations.

Proposition 3.2.7. Let V = ⊕Vi be a direct sum a G-representations. If one summand

is G-stable (cf. Definition 3.0.2), then the whole sum is G-stable.

Proof. It suffices to prove this for the sum of two representations V,W . Take v ∈ V

which is stable. Then (v, 0) ∈ V ⊕W has a closed G-orbit and compact stabilizer. Hence,

(v, 0) is a stable point in V ⊕W . �
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Proposition 3.2.8. Consider two G-stable representations V,W . Then V ⊗W is also

stable.

Proof. Let v ∈ V and w ∈ W be stable points. We show that the vector v ⊗ w is a

stable point in V ⊗W .

Since v, w are stable points we have M(v) < 0 and M(w) < 0. Choose X ∈ p with

|X| = 1 so that M(v ⊗ w) = µ(X, v ⊗ w). The X-eigenspace decomposition for v ⊗ w is∑
vλ ⊗ wµ, where v =

∑
vλ and w =

∑
wµ are the X-eigenspace decompositions of these

vectors. Since X(vλ ⊗ wµ) = (Xvλ)⊗ wµ + vλ ⊗ (Xwµ), we see that vλ ⊗ wµ has eigenvalue

λ+µ. Now µ(X, v) ≤M(v) < 0 and µ(X,w) ≤M(w) < 0, and hence there exists λ < 0 and

µ < 0 with vλ and wµ both nonzero. It follows that M(v ⊗ w) = µ(X, v ⊗ w) ≤ λ + µ < 0.

Thus v ⊗ w is a stable point. �

The next proposition follows the tradition in representation theory of semi-simple groups

to understand representations of G by understanding the representations of its simple factors.

If G = G1 × · · · × Gk is a semi-simple group, then an irreducible representation of G is

V1 ⊗ · · · ⊗ Vk, where Vi is an irreducible representation of Gi.

Proposition 3.2.9. Let V1 and V2 be stable representations of G1 and G2, respectively.

Then V1 ⊗ V2 is a stable representation of G1 ×G2.

Remark. Notice this does not follow from the proposition above. However, the proof is

analogous so we omit the details.
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3.3. The Index Method

In this section we are interested in the following question.

Question 3.3.1. Given two representations V,W of G, when is V ⊗W a ‘good’ repre-

sentation? (cf. Definition 3.0.1)

The Index Method gives a partial answer to this question. As Proposition 3.2.8 shows, if

V and W are G-stable, then so is V ⊗W . However, there are many representations V ⊗W

which are G-stable with V,W ill-behaved; e.g., cf. the tables of [KL87].

For a nonzero element X ∈ p let IG(X) denote the largest dimension of a subspace W of

V on which X is negative definite. Let IG(V ) = min{IG(X) : 0 6= X ∈ p}. We call IG(V )

the index of G acting on V . Observe that since G is semi-simple, every element of p has

trace zero. Hence, for nontrivial representations V , each X ∈ p has a negative eigenvalue

which implies IG(V ) ≥ 1.

At the moment, the definition of the index seems to depend on our choice of inner product

under which G is self-adjoint. The following proposition shows that this is not so.

Proposition 3.3.2. The index of G acting on V does not depend on the choice of G-

compatible inner product <,>.

Proof. Let <,>1 and <,>2 be two G-compatible inner products on V , and g = k1⊕ p1

and g = k2⊕p2 denote the corresponding Cartan decompositions. It is well-known that there

exists g ∈ G such that k2 = Ad(g)k1 and p2 = Ad(g)p1; see, e.g., Theorem 7.2 of Chapter

64



III in [Hel01]. Since X and Ad(g)X acting on V have the same eigenvalues, it follows that

I1
G(X) = I2

G(Ad(g)X). Hence I1
G(V ) = I2

G(V ). �

Proposition 3.3.3. Let K denote a maximal compact subgroup of G. If IG(V ) > dimK,

then {v ∈ V : M(v) < 0} is an open set of V with full measure in V .

Proof. We carry out the proof in several steps.

(1) Weight space decomposition of V .

Let <,> be an inner product relative to which G is self-adjoint. Let g = k ⊕ p be the

Cartan decomposition of g defined by the Cartan involution θ : g → (gt)−1. Fix a maximal

abelian subspace A of p. It is well-known tha every maximal abelian subspace of p has the

form Ad(k)A for some k ∈ K, and every element of p lies in some maximal abelian subspace

of p. The elements of p are symmetric with respect to <,>, and hence A is a commuting

family of symmetric linear maps on V .

For λ ∈ A∗ let Vλ = {v ∈ V : X(v) = λ(X)v for all X ∈ A}. If Λ = {λ ∈ A∗ : Vλ 6= 0},

then Λ is a finite set, called the weights of the representation, and we obtain the weight space

decomposition

V = V0 +
∑
λ∈Λ

Vλ

where V0 =
⋂
X∈A

Ker X.

(2) The subspaces V +
X and V −X
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For a nonzero element X ∈ A, we let Λ+
X = {λ ∈ Λ : λ(X) > 0} and Λ−X = {λ ∈ Λ :

λ(X) < 0}. We define V +
X = V0 ⊕

∑
λ∈Λ+

X
Vλ and V −X =

∑
λ∈Λ−X

Vλ. The following assertions

follow routinely from the definitions:

(a) µ(X, v) ≥ 0 for some nonzero X ∈ A if and only if v ∈ V +
X .

(b) IG(X) = dimV −X .

(c) V = V +
X ⊕ V

−
X .

(3) There exists a finite set of nonzero vectors {X1, . . . , Xn} ⊂ A such that for every nonzero

X ∈ A there exists 1 ≤ i ≤ N such that V +
X = V +

Xi
.

Since Λ is a finite set, the number of distinct subsets {Λ+
X : 0 6= X ∈ A} is also finite.

Choose nonzero elements {X1, . . . , XN} ⊂ A such that for every nonzero X ∈ p there exists

1 ≤ i ≤ N such that Λ+
X = Λ+

Xi
. This is the desired set.

(4) {v ∈ V : M(v) ≥ 0} =
N⋃
i=1

K(V +
Xi

), where {X1, . . . , XN} are chosen as in (3).

By (2) it follows that M(v) ≥ 0 for all v ∈ V +
Xi

, 1 ≤ i ≤ N . From the G-invariance of

M we conclude that M(v) ≥ 0 for all v ∈
N⋃
i=1

K(V +
Xi

). Conversely, let v be a nonzero vector

in V such that M(v) ≥ 0. Let X be a unit vector in p such that µ(X, v) = M(v) ≥ 0.

Choose k ∈ K such that Y = Ad(k)X ∈ A. Then µ(Y, kv) = µ(X, v) ≥ 0. By (2) and (3) it

follows that kv ∈ V +
Y = V +

Xi
for some i. Hence, v ∈ K(V +

Xi
), which completes the proof of (4).

We now complete the proof of the proposition. By hypothesis and (2), we obtain dimK <

IG(V ) ≤ IG(X) = dimV −X = dimV −dimV +
X for all nonzero elements X of A. For 1 ≤ i ≤ N

we define ϕi : K×V +
Xi
→ V by ϕi(k, v) = kv. Note that dim(K×V +

Xi
) = dimK+ dimV +

Xi
<
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dimV for every i, and hence KV +
Xi

= ϕi(K × V +
Xi

) has measure zero in V . Hence {v ∈ V :

M(v) ≥ 0} has measure zero in V by (4).

�

Proposition 3.3.4 (Additivity of the Index). Let {V1, . . . , VN} be G-modules, and con-

sider the G-module V = ⊕Vi. Then IG(V ) ≥
∑N

1 IG(Vi).

Proof. Let X ∈ A be a nonzero element. Using the notation and discussion of (2) above,

it is easy to see that V −X =
∑N

i=1(Vi)
−
X and IVG (X) =

∑
IVi
G (X) ≥

∑
IG(Vi). If X ∈ p is any

nonzero element, then Y = Ad(k)X ∈ A for some k ∈ K. It follows that IVG (X) = IVG (Y )

since X and Y have the same eigenvalues on V . Hence IG(V ) = min{IVG (X) : 0 6= X ∈

p} = min{IVG (X) : 0 6= X ∈ A} ≥
∑
IG(Vi). �

Corollary 3.3.5. Let V be a G-module that is the direct sum of p > dimK nontrivial

submodules. Then {v ∈ V : M(v) < 0} is an open set of full measure

Proof. The proof follows from the simple observation that the index of each summand

Vi is at least 1. Now applying the additivity of the index we are finished. �

Proposition 3.3.6 (Multiplicativity of the Index). Let V,W be G-modules. Then IG(V⊗

W ) ≥ IG(V ) · IG(W ).

Proof. If 0 6= X ∈ A, then X is negative definite on V −X ⊗W
−
X . Hence IV⊗WG (X) ≥

(dimV −X )·(dimW−
X ) = IVG (X)·IWG (X) ≥ IG(V )·IG(W ). If 0 6= X ∈ p and Y = Ad(k)(X) ∈ A

for k ∈ K, then IV⊗WG (X) = IV⊗WG (Y ) ≥ IG(V ) · IG(W ). �
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3.4. Stable Points with Geometric Significance and the Nilalgebras Attached to

SU(2) Representations

In later chapters we will be concerned with a very particular class of representations

and determining when such representations have generically closed orbits. In that particular

setting, stable points in the representation space correspond to certain metric nilmanifolds

with interesting geometric structures, see Chapter 7.

Consider the action of SL(q,R) on so(q,R) where g(A) = gAgt, and the standard action

of SL(p,R) on Rp. Then SL(q,R)×SL(p,R) acts on so(q,R)p ' so(q,R)⊗Rp, cf. Example

2.3.5. There is a Zariski open set of Vpq = so(q,R)p that corresponds to two-step metric nil-

manifolds. In this setting, moving along the SL(q,R) × SL(p,R)-orbit amounts to varying

the metric on the underlying nilalgebra. The minimal vectors of this representation corre-

spond to the so-called optimal metrics. See Chapter 7 for more details on the relationship

between real GIT and the geometry of two-step nilmanifolds.

Once at a minimal vector, one would like to determine how generic it is; e.g., is the orbit

of this point maximal dimensional. We can try to compute whether or not M is negative

at the minimal vector. To determine this, one just needs to compute pv and show that it

equals 0, cf. Corollary 3.1.10. For the representation above, the stabilizer corresponds to

derivations that preserve V and Z, where Z is the center of our two-step nilalgebra N and V

is the metric complement of Z. In light of this, to show pv equals zero, one needs to show

that the metric nilalgebra, corresponding to the point v, admits no symmetric derivations

other than (r Id|V , 2r Id|Z).
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Given a compact semi-simple group, one can construct a metric two-step nilmanifold

which is optimal, see [EH96]. The main result of this section is that all two-step nilmanifolds

arising from irreducible representations of su(2) have no non-trivial symmetric derivations,

except the adjoint representation; that is, for the cases of interest the set of symmetric

derivations is a 1 dimensional vector space. Let v ∈ V3,q, with q = 2k + 1 or 4k, denote

such an algebra. We show that pv = {0} and conclude that M(v) < 0. Corollary 3.1.9

together with Proposition 7.2.3 now imply that for each q = 2k + 1, 4k ≥ 4 there exists

an open, dense set of algebras in V3,q that admit optimal metrics. Moreover, we provide

another construction to show that the above result holds for all types (3,q), q 6= 3, 6. Note,

the two types missed by our construction coincide with the same two types (for p=3) in the

exceptional list constructed by Eberlein [Ebe03]. However, this does not necessarily keep

us from getting a dense set of optimal metrics (which in fact happens).

*.

Metric two-step nilalgebras We begin by constructing two-step nilpotent Lie algebras at-

tached to representations of compact Lie groups. In [EH96] it is shown that these special

nilpotent Lie algebras admit a canonical metric called an optimal metric, cf. Chapter 7.

Let G be a compact Lie group and j : G → GL(V) be a representation of G. Let g

denote the Lie algebra of G. We have an induced representation of g on V ; we denote both

representations by j. The group G acts on g via the adjoint action. Endow V with a G-

invariant inner product <,> and endow g with an Ad G-invariant inner product <<,>>;

this is possible by the compactness of G. Note, the Ad G-invariant inner product on g is

unique up to scaling if g is simple. We construct a two-step metric nilpotent Lie algebra N
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so that [N,N] = g is contained in the center of N and V is a complement of [N,N]. As a

vector space we endow N = V ⊕ g with the metric 〈·, ·〉 which corresponds to <,> on V and

<<,>> on g. The bracket relations on N are defined implicitly as follows.

g ⊂ center of N

〈[X, Y ], Z〉 = 〈j(Z)X, Y 〉 for X, Y ∈ V and Z ∈ g.

Observe that j(Z) is skew-symmetric as our inner product <,> on V is G-invariant;

hence, the bracket [·, ·] is skew-symmetric. By construction [N,N] ⊂ Z(N), the center of

N, and the bracket satisfies the Jacobi condition trivially; thus [·, ·] defines a Lie algebra

structure on N. Moreover, this automatically makes the Lie algebra N into a two-step

nilpotent Lie algebra. There is a more general construction of two-step nilpotent Lie algebras

that includes this one, cf. Chapter 7.

We denote a metric algebra by a pair {N, 〈, 〉}, where 〈, 〉 is an inner product on N. Let

V denote the orthogonal complement of [N,N] in N. Consider the following linear map

j : [N,N]→ so(V) defined by

(3.1) 〈[X, Y ], Z〉 = 〈j(Z)X, Y 〉 for X, Y ∈ V and Z ∈ [N,N].

In the case that our two-step nilalgebra is constructed from a representation of a compact

semi-simple group, this j map would be a Lie algebra homomorphism.

*.
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Facts about compact semisimple Lie algebras This information comes from [Ebe05] where

complete descriptions of real weight space decompositions have been given for real repre-

sentations of real Lie algebras. Our notation is consistent with Eberlein’s and we refer

the reader to that paper for definitions; this paper may be found on Eberlein’s website at

www.math.unc.edu.

Definition 3.4.1. Let G be a compact Lie group. A nonzero element X of the Lie

algebra g is regular if dimZ(X) ≤ dimZ(Y ) for all nonzero Y ∈ g, where Z(X) denotes the

centralizer of X in g.

If X ∈ g is regular, then Z(X) is a maximal abelian subalgebra of g.

*.

Root Space Decomposition of Compact Semisimple Lie Algebras We say that a finite dimen-

sional real Lie algebra g0 is compact and semisimple if the Killing form B0 of g0 is negative

definite. It is known that any connected Lie group G0 with Lie algebra g0 must be compact.

Let g0 be a compact, semisimple Lie algebra. Let g = gC
0 and let J0 : g → g denote the

conjugation determined by g0. If h0 is a maximal abelian subspace of g0, then h = hC
0 is a

Cartan subalgebra of g, and we have the root space decomposition g = h⊕
∑

β∈Φ gβ, where

each gβ is 1-dimensional over C and Φ ⊂ Hom(h,C) is a finite set of roots determined by h.

We obtain the real root space decomposition g0 = h0⊕
∑

β∈Φ+ g0,β, where g0,β = (gβ⊕g−β)∩g0

is 2-dimensional over R. If Xβ spans gβ, then g0,β has a natural basis {Aβ, Bβ}, where

Aβ = Xβ + J0(Xβ) and Bβ = i(Xβ − Jo(Xβ)).
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If Hβ ∈ h0 is chosen appropriately, then

[Hβ, Aβ] = 2Bβ

[Hβ, Bβ] = −2Aβ(3.2)

[Aβ, Bβ] = −2B(Xβ, J0(Xβ))Hβ

where B denotes the Killing form of g.

*.

Weight Space Decompositions Let g0, g = gC
0 , h0, and h = hC

0 ⊆ g be as above.

If U is a finite dimensional g0-module, then V = UC is a finite dimensional g-module and

we have the weight space decomposition V = V0 ⊕
∑

λ∈Λ Vλ, where for H ∈ h, H ≡ 0 on V0

and H = λ(H)Id on Vλ. Here Λ ⊆ Hom(h,C) is a finite set of weights determined by h. If

U = g0 is the adjoint representation of g0, then Λ = Φ and the weight space decomposition is

the root space decomposition. In general −λ ∈ Λ if λ ∈ Λ since (V, g) is the complexification

of (U, g0). If Λ+ is a subset of Λ that contains exactly one of {λ,−λ} for each λ ∈ Λ, then

we obtain the real weight space decomposition U = U0 ⊕
∑

λ∈Λ+ Uλ, where U0 = V0 ∩ U and

Uλ = (Vλ ⊕ V−λ) ∩ U for λ ∈ Λ. (Note that Uλ = U−λ). Moreover, we obtain

Hβ : Uλ → Uλ

Aβ, Bβ : Uλ → Uλ+β ⊕ Uλ−β(3.3)

The following facts from Eberlein [Ebe05], Propositions 6.3 and 7.2, are useful.
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Fact 3.4.2. a) Uλ = {u ∈ U | H2
0u = −(iλ)2(H0)u,∀H0 ∈

h0}

b) dim Uλ = 2 if λ 6= 0

c) Aβ and Bβ are non-singular on Uλ, when

λ(Hβ) 6= 0. Moreover, Aβ(v) and Bβ(v) are

linearly independent for v ∈ Uλ.

*.

Derivations of N Recall the definition of a derivation of a Lie algebra. An endomorphism

D ∈ End(N) is said to be a derivation of the Lie algebra N if D[X, Y ] = [DX, Y ]+ [X,DY ].

We let Symmder(N) denote the vector space of symmetric derivations of N. Let D ∈

Symmder(N); then D preserves the commutator [N,N] and hence it also preserves the

orthogonal complement V . Thus for a symmetric derivation, we can write D : N→ N as

D1 = D |V : V → V

D2 = D |[N,N]: [N,N]→ [N,N]

*.

Facts about su(2) If g0 = su(2), a 3-dimensional real simple Lie algebra, then g = gC
0 =

sl(2,C) has only one positive root β ∈ Φ+ relative to a 1-dimensional Cartan subalgebra

h = hC
0 , where h0 is any 1-dimensional subspace of g0. If G0 = SU(2), then the adjoint

action of G0 on g0 is transitive on the 1-dimensional subspaces h0 of g0. Given h0 we obtain

a basis {Hβ, Aβ, Bβ} of g0 = h0 ⊕ g0,β that satisfies the bracket relations in Equation (3.2)

above. We fix this basis for the remainder of this discussion.
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If H0 is any nonzero element of su(2) then h = C− span{H0} is a Cartan subalgebra for

sl(2,C). If U is an su(2) module and V = UC, then by the representation theory of sl(2,C)

the weight spaces Vλ, λ ∈ Λ, are 1-dimensional and V0 = {0} or 1-dimensional depending on

whether dimC V = dimR U is even or odd, respectively.

All weights are of the form λ = kβ, k ∈ Z− {0}. See [Hum81, § 13.1, Table 1].

In the sequel we let V denote the representation space for g0, so that V0 = V0 ∩ V and

Vλ = (Vλ ⊕ V−λ) ∩ V , where V = VC.

Fact 3.4.3. Every element of su(2) is regular.

*.

Main Theorem

Theorem. Let N = V ⊕ su(2) be constructed as above where V is any irreducible rep-

resentation space other than the adjoint representation space su(2). Then the symmet-

ric derivations of N are 1 dimensional; that is, if D = (D1, D2) ∈ Symmder(N) then

(D1, D2) = (rId, 2rId) for some r ∈ R.

This theorem is stated as Theorem 3.4.9. At the end of the section we demonstrate the

value of such a theorem. In short, any other metric two-step nilalgebra ‘sufficiently close’ to

N = V ⊕ su(2) will admit a so-called optimal metric. Before proving this theorem we need

some technical preliminaries.
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Rewriting the derivation condition for a symmetric derivation D on N = V ⊕ [N,N] we

obtain

j(D2Z) = j(Z)D1 +D1j(Z) for all Z ∈ [N,N]

Next pick an orthogonal basis {Xi} of [N,N] such that D2 is diagonal. Suppressing the

j map, we have

(3.4) D1Xi +XiD1 = aiXi

where D2 = diag{ai} relative to {Xi}.

Lemma 3.4.4. In the case that N is built from an irreducible su(2) representation, other

than the adjoint representation, we have a1 = a2 = a3.

As every element X ∈ su(2) is regular(cf. Fact above), we can take any h0 = R−span〈Xi〉

to be a maximal abelian subalgebra whose complexification is a Cartan subalgebra of sl(2,C).

Sublemma 3.4.5. The following elements of su(2) are mutually orthogonal Hβ ⊥ Aβ ⊥

Bβ.

As the Ad SU(2)-invariant inner product on su(2) is unique up to scaling, we may assume

that we are working with (a multiple of)−B0, whereB0 denotes the (negative definite) Killing

form on su(2); that is, < Z1, Z2 >= −tr(ad Z1 ◦ ad Z2).

From Equation (3.2) we compute |Hβ|2 = 8 and |Aβ|2 = |Bβ|2 = −8B(Xβ, J0(Xβ)) where

B denotes the Killing form of g = sl(2,C).
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Proof. We will only show that Hβ ⊥ Aβ as Hβ ⊥ Bβ is similar. Consider the inner

product < Hβ, Aβ >=−B0(Hβ, Aβ) = −trace(ad Hβ ◦ ad Aβ). By Equation (3.2) the matrix

of ad Hβ ◦ ad Aβ relative to {Hβ, Aβ, Bβ} has all diagonal entries zero; hence the matrix is

traceless.

Next we showAβ ⊥ Bβ. Consider the inner product< Aβ, Bβ >= −B0(Aβ, Bβ) = −trace(ad Aβ ◦ ad Bβ).

As above, using Equation (3.2), the matrix of ad Aβ ◦ ad Bβ relative to {Hβ, Aβ, Bβ} has all

diagonal entries zero; hence the matrix is traceless. �

Focusing on h0 = R − span〈X1〉 we see that X1 ⊥ X2, X3 as these are eigenvectors

of the symmetric derivation D, cf. Equation (3.4). This in turn tells us that X2, X3 ∈

R− span〈Aβ, Bβ〉.

Sublemma 3.4.6. In Lemma 3.4.4 we may assume that X2 = Aβ and X3 = Bβ (up to

scaling).

Proof. Consider the action of SU(2) on N. Here we have k.(v, Z) = (kv, kZk−1); that

is, SU(2) is acting on V in the usual way (according to the irreducible representation at

hand) and on Z = su(2) by the Adjoint action. Since the j-map here is a representation,

this action of SU(2) is by automorphisms of N; moreover, this action is by isometries of

〈·, ·〉. Thus we have an induced action of SU(2) on Der(N) given by (k ·D) = kDk−1 where

k ∈ SU(2), D ∈ Der(N), and v ∈ N.

Recall that Symmder(N) denotes the symmetric derivations of {N, 〈·, ·〉}. Since SU(2)

acts by isometries, k ·D = kDk−1 is symmetric if D ∈ Symmder(N).
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Observe that k ·D has the same eigenvalues as D. Thus, to prove the Lemma, we just

need show that there exists k ∈ SU(2) such that

k.X1 = X1

k.X2 = Aβ

k.X3 = Bβ

We use k = exp(tX1) for some t. Notice thatX2, X3 are orthogonal, contained in span〈Aβ, Bβ〉

and k = exp(tX1) is just rotation in this plane. Multiply X2, X3 by suitable constants so

that |X2| = |X3| = |Aβ| = |Bβ|. Thus we can find such a t so that the equations above hold.

Since the derivation k.D has the same eigenvalues as D, the eigenvectors contained in [N,N]

have the same eigenvalue for k ·D if and only if they do so for D. This proves the Lemma.

�

Sublemma 3.4.7. The following is a list of useful properties:

a) D1 preserves Vλ for all λ ∈ Λ

b) Let µi be an eigenvalue of D1 with eigenvector vi ∈ Vλi
, λi 6= 0.

i) Then X1vi is also an eigenvector of D1 in Vλi
with eigenvalue a1−µi

ii) If j = 2, 3 and Xjvi 6= 0, then Xjvi is an eigenvector of D1 in

Vλi−β ⊕ Vλi+β with eigenvalue aj − µi

Proof. (a) It follows immediately from Equation (3.4) thatX2
iD1 = D1X

2
i for i = 1, 2, 3.

The characterization of Vλ for h0 = R − span{X1} from Fact 3.4.2(a) now implies part (a)

of Proposition 3.4.7.
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Remark. Assertion (a) holds for any maximal abelian subspace h0 = R− span{X} such

that X ∈ su(2) is an eigenvector of D2. We record this observation now as it will be useful

later.

We will prove parts (b)(i) and (b)(ii) at the same time. However, even though these have

the same proof, it is worth while for us to list them separately in the Proposition. Applying

both sides of Equation (3.4) to vi, we have D1Xjvi = (aj − µi)Xjvi. �

Proof of Lemma 3.4.4. From now on λ will denote the highest weight of our repre-

sentation of sl(2,C) on V = VC. Also, recall that we are considering all irreducible represen-

tations except the adjoint representation; that is, λ− β 6= 0. Since λ is the highest weight,

Vλ+β = {0} and hence Vλ+β = (Vλ+β ⊕ V−(λ+β)) ∩ V ={0}. This implies X2, X3 : Vλ → Vλ−β

by Sublemma 3.4.6 and Equation (3.3).

Let v ∈ Vλ be an eigenvector of D1 with eigenvalue µ. By Fact 3.4.2(c) and Sublemma

3.4.7 (b)(ii) we see that the following are also eigenvalues of D1 whose nonzero eigenvectors

live in Vλ−β:

a2 − µ ↔ X2v

a3 − µ ↔ X3v

a1 − (a2 − µ) ↔ X1X2v

a1 − (a3 − µ) ↔ X1X3v

Using the fact that the dimension of Vλ−β is 2 since λ−β 6= 0 (cf. Fact 3.4.2(b)), we will

show that only two possibilities happen.
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Lemma 3.4.8. Either a2 = a3 or a1 = 1
2
(a2 + a3).

Proof. In the above list of eigenvalues, there can only be 2 distinct numbers in the list

of 4 given, as the dimension of Vλ−β is 2. Suppose a2 6= a3. Manipulating the small number

of choices in pairing these numbers reveals

(3.5) 2µ = a2 + a3 − a1

As the ai are fixed and µ is any eigenvalue of D1 on Vλ, we see that

(3.6) D1 ≡ µId on Vλ

Since µ and a1−µ are eigenvalues for D1 on Vλ by Sublemma 3.4.7 (b)(i) we have a1−µ = µ,

or a1 = 2µ. This and the equation above now imply the lemma. Namely, a1 = 1
2
(a2 +a3). �

To complete the proof of Lemma 3.4.4 we recall that any of the Xi can generate a real

Cartan subalgebra h0 = R − span{Xi}. Using this observation and the lemma above, we

have the following list of possibilities:

either a2 = a3 or a1 = 1
2
(a2 + a3)

and either a1 = a2 or a3 = 1
2
(a1 + a2)

Any four of the above combinations tells us that a1 = a2 = a3, as desired. �

This proves Lemma 3.4.4 and we have achieved half of our goal, i.e. D2 = aId.

*.

Symmetric Derivations of nilmanifolds arising from representations of compact semi-simple

groups
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Theorem 3.4.9. Let N = V ⊕ su(2) be constructed as above where V is any irreducible

representation other than the adjoint representation. Then the symmetric derivations of N

are 1 dimensional. That is, if D = (D1, D2) ∈ Symmder(N) then (D1, D2) = (rId, 2rId)

for some r ∈ R.

Theorem 3.4.10. Let N = V ⊕ so(n) be the two-step nilmanifold constructed from usual

representation of SO(n) acting on V = Rn. Then Symmder(N) ' Symm(n), the symmetric

n× n matrices.

Remark. The correspondence ' in the statement of Theorem 3.4.10 is explained in the

proof. Theorem 3.4.10 is why Theorem 3.4.9 fails in the case that we have the adjoint

representation for su(2); that is, the case when q = 3.

Proof of theorem 3.4.9. Lemma 3.4.4 reduces to the case that D2 is a multiple of

the identity. Moreover, in this case every X ∈ su(2) is an eigenvector of D2 and hence

D1 preserves the weight space decomposition with respect to any maximal abelian subspace

h0 = R − span{X} ⊂ g0 = su(2) (cf. the remark following Sublemma 3.4.7). If Vλ is the

highest weight space with respect to h0, then k · Vλ is the highest weight space with respect

to k · h0 for every k ∈ SU(2).

Fix our choice of h0 for the moment. By Lemma 3.4.4 and Equation (3.6) we may let

D2 = 2r Id and let D1 = µId on Vλ, where λ is the highest weight space with respect

to the maximal abelian subalgebra h0. Then Equations (3.5) and (3.6) imply µ = r since

a1 = a2 = a3 = 2r. Observe that since r is independent of our choice of h0 we see that

(3.7) D1 = rId on k · Vλ for all k ∈ SU(2)
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This follows as k · Vλ is the highest weight space corresponding to the maximal abelian

subalgebra Ad(k)h0.

Fix h0 and hence a highest weight space Vλ. Pick some nonzero v ∈ Vλ. As the represen-

tation V is an irreducible SU(2)-module, the set {k · v|k ∈ SU(2)} spans the vector space

V . Thus D1 = rId by Equation (3.7) and we have shown

(D1, D2) = (rId, 2rId)

�

Remark. The proof for g0 = su(2) used the facts that every element X of g0 is regular

and every nonzero weight space is 2-dimensional for every irreducible g0-module. There are

no analogues of these facts for an arbitrary compact semisimple Lie algebra g0, and the

extension of Theorem 3.4.9 to g0 6= su(2) becomes quite a challenge.

Proof of Theorem 3.4.10. First we explain the correspondence. Let X ∈ Symm(n),

the symmetric n× n matrices. We associate to X an endomorphism of N and show this to

be a derivation. Define D = (D1, D2) by D1(v) = Xv for v ∈ V = Rn and D2(Z) = X · Z =

XZ +ZX for Z ∈ Z = so(n). We endow N with the inner product that makes the standard

basis of V = Rn orthonormal and is the negative trace form on Z = so(n). Observe that D

is symmetric with respect to this inner product on N.

Recall from the discussion preceding Equation (3.4) that D is a symmetric derivation

if it satisfies j(D2Z) = D1j(Z) + j(Z)D1; here the representation j is the inclusion map

j : so(n) ↪→ gl(n). By definition j(D2Z) = j(X · Z) = j(XZ + ZX) = XZ + ZX =

Xj(Z)+j(Z)X = D1j(Z)+j(Z)D1 and hence D is a symmetric derivation. To see that every
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symmetric derivation is of this form, let D = (D1, D2) be a symmetric derivation; here D1 ∈

Symm(V) = Symm(n) and D2 ∈ Symm(Z). As D satisfies j(D2Z) = D1j(Z)+j(Z)D1 and

the inclusion map j has no kernel, we see that D2(Z) = D1Z +ZD1 = D1 ·Z as claimed. �

The relationship between metric two-step nilpotent Lie algebras and points in the rep-

resentation space SL(p,R) × SL(q,R) � so(q,R)p is explained in Chapter 7. We state the

following theorem here for the reader familiar with that relationship.

Theorem 3.4.11. Consider the action of SL(p,R)× SL(q,R) on so(q,R)p. Given C =

(C1, . . . , Cp) ∈ so(q,R)p with {Ci} linearly independent, we can associate to C a metric

two-step nilpotent Lie algebra with structure matrices C. This metric two-step nilalgebra is

denoted by Rp+q(C) (cf. Chapter 7). The set pC = {X ∈ p|X · C = 0} corresponds to

the traceless symmetric derivations of Rp+q(C) (cf. Proposition 7.1.6). Thus, in the event

that Rp+q(C) is optimal and there are no traceless symmetric derivations of Rp+q(C), we

have that M(C) < 0 (cf. Corollary 3.1.10). Hence there exists a dense open set of algebras

admitting optimal metrics (cf. Corollary 3.1.9 and Proposition 7.2.3).

Remark. This statement can be improved upon using Popov’s results, cf. Theorem 3.0.4,

and the works of Knop-Littelman, cf. [KL87].

Additionally, one can extend the arguments of Theorem 3.4.9 to a wider class of rep-

resentations of su(2) which are reducible. For example the results of Theorem 3.4.9 hold

for a representation V λ1 ⊕ V λ2 when |λ1 − λ2| ≥ 2β. In this way we can show that for

all types (3, q), with q 6= 3, 6, 8, there exists a dense open set of points in so(q,R)3 whose
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corresponding metric nilalgebras admit optimal metrics. We leave the proof of this extension

of Theorem 3.4.9 to the reader.
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CHAPTER 4

Good Representations and Homogeneous Spaces

This chapter is written to stand alone. However, it contains useful examples that are

referenced else where in the thesis.

Recall that if F is a complex reductive affine algebraic group acting on a complex affine

variety X, there exists a “good quotient” X//F from Geometric Invariant Theory (GIT).

Here X//F is an affine variety together with a quotient morphism π : X → X//F which

is a regular map between varieties. The variety X//F has as its ring of regular functions

C[X//F ] = C[X]F , the F -invariant polynomials on X. Moreover, the quotient map is

the morphism corresponding to the injection C[X]F ↪→ C[X]. See [New78] for a detailed

introduction to Geometric Invariant Theory and quotients.

Good quotients are categorical quotients (see [New78, Chapter 3]). As a consequence

they possess the following universal property which will be needed later. Let φ : X → Z be a

morphism which is constant on F -orbits. Then there exists a unique morphism ϕ : X//F →

Z such that ϕ ◦ π = φ.

Let G be a complex reductive affine algebraic group. Let F,H be algebraic reductive

subgroups. The homogeneous space G/F has a natural, transitive left action of G on it. We

will consider the induced action of H on G/F .



The group F acts on G via f · g = gf−1. This gives a left action of F on G such that

every orbit is closed. In this way the GIT quotient G//F is a parameter space; that is, every

G-orbit is closed. If one considers the analytic topologies on G and G//F one readily sees

that G//F and G/F (with the usual Hausdorff quotient topology) are homeomorphic. In

this way we endow G/F with a Zariski topology. Here and in later discussion we identify

the coset space G/F with the variety G//F . Moreover, it will be shown that the natural

G-action on G/F is algebraic.

Hereafter a property of a space will be called generic if it occurs on a nonempty Zariski

open set. Our main result is the following.

The following theorem and its corollaries are true for both real and complex algebraic

groups.

Theorem 4.0.1. Consider the induced action of H on G/F , then generic H-orbits are

closed in G/F ; that is, there is a nonempty Zariski open set of G/F such that the H-orbit

of any point in this open set is closed.

Corollary 4.0.2. Let G,H, F be as above. If H is normal in G, then all orbits of H

are closed in G/F . Consequently, if G acts on V and the orbit Gv is closed, then Hv is also

closed.

Corollary 4.0.3. Let G be a reductive algebraic group. If H,F are generic reductive

subgroups, then H ∩ F is also reductive. More precisely, take any two reductive subgroups

H, F of G. Then H ∩ gFg−1 is reductive for generic g ∈ G.
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Remark. The word generic cannot be replaced by all. We show this in Example 4.0.7.

Theorem 4.0.1 is proven first for complex groups then deduced for real groups. It is not

known at this time, to the author, whether or not these results hold true for more general

algebraic groups. Our proof exploits Weyl’s Unitarian Trick.

Before proving this theorem, we present some corollaries to demonstrate its value. Proofs

of these results have been placed at the end.

Corollary 4.0.4. Let G be a reductive group acting linearly on V . Let H be a reductive

subgroup of G. If G has generically closed orbits then H does also. Moreover, each closed

G-orbit is stratified by H-orbits which are generically closed.

We say that a representation V of G is good if generic G-orbits in V are closed.

Corollary 4.0.5. Let G be a reductive group, and let V and W be good G-representations,

that is, generic G-orbits are closed. Then V ⊕W is also a good G-representation.

This corollary is of particular interest as it allows us to build good representations from

smaller ones. The idea of building good representations from subrepresentations was also

carried out in [EJ, Section 3]. In that setting, the representations of interest are those that

have points whose real Mumford numerical function is negative. The results of the current

paper generalize some of those results.

Example 4.0.6 (non-closed orbits of smaller groups). Consider the 3 − dim irreducible

representation V3 of SL2R acting on the homogeneous degree 2 forms of 2 variables.
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Here g ∈ SL2 acts on f ∈ V3 by (g · f)(x, y) = f(g−1(x, y)). Letting {xy, x2, y2}

be an orthonormal basis, one can easily show that v = xy is a minimal vector. Thus

SL2 · v is closed in V3. So for any g ∈ SL2, gv also has a closed SL2 orbit and thus

(v, gv) has a closed SL2 × SL2 orbit in V3 ⊕ V3. Consider g =

 1 −1

0 1

 and the point

w = (v, gv) = (xy, xy + y2) ∈ V3 × V3. Let H = SL2 with the diagonal embedding in

SL2 × SL2. We claim that H · w is not closed. To see this, observe that by means of the

diagonal group diag{λ, λ−1} ⊂ H the point (v, v) ∈ Hw. Hence Hw is not closed.

Example 4.0.7 (non-reductive intersection and non-closed orbit). There exist semi-

simple G and reductive subgroups H,F such that H ∩ F is not reductive. Additionally,

we demonstrate a representation V of G so that G · x is closed but H · x is not closed, for

some x ∈ V .

Recall the following well-known fact. Let G be an reductive affine algebraic group acting

on an affine variety. If the orbit G · x is closed then Gx is reductive, see [BHC62, Theorem

3.5] or [RS90, Theorem 4.3]. We will choose F = Gx for a particular x ∈ V . Then

H ∩F = H ∩Gx = Hx. Once it is shown that Hx is not reductive, the orbit H · x cannot be

closed by the fact stated above.

Consider G = SL6(C) acting on V =
∧2 C6 ' so(6,C). This is the usual action and is

described as follows. ForM ∈ so(6,C) and g ∈ SL6(C), the action is defined as g·M = gMgt.

The subgroup H = SL2(C) is imbedded as the upper left 2× 2 block.
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Let v ∈ V be the block diagonal matrix consisting of the blocks J =

 0 1

−1 0

 along the

diagonal. That is, v =


J

J

J

. Given the standard inner product (from the trace form)

on V , the vector v is a so-called minimal vector as v2 = −Id, thus G · v is closed. See [EJ,

Example 1] for details and more information on minimal vectors; see also [RS90]. Consider

x = g · v where

g =



1 0 1

1 0

1

Id3×3


Since Gv is reductive, Gx = gGvG

−1 is also reductive. One can compute Hx to show that

Hx ' Ca =

1 a

0 1

. This group is clearly not reductive and we have the desired example.

4.1. Technical Lemmas

We recall the definition of varieties and morphisms which are defined over R. This is the

setting that we will primarily work in. See [Bor91, §§11− 14] or [Mar91, Chapter 1, 0.10]

for more information on varieties and k-structures on varieties.
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Definition 4.1.1 (Real points of affine subvarieties). An affine subvariety M of Cn is

the zero set of a collection of polynomials on Cn. The variety M is said to be defined over

R if M is the zero set of polynomials whose coefficients are real. Thus C[M ] = R[M ]⊗R C.

The real points of M are defined as the set M(R) = M ∩Rn; we call such a set a real variety.

Definition 4.1.2 (R-structures). Given an abstract affine variety X, one defines a R-

structure on X by means of an isomorphism α : X → M . A morphism f : X → Y

of R-varieties is said to be defined over R if the comorphism f ∗ : C[Y ] → C[X] satisfies

f ∗(R[Y ]) ⊂ R[X]. Additionally, we define the real points of X to be X(R) = α−1(M(R)).

Remark. Let M ⊂ Cm and N ⊂ Cn be subvarieties defined over R. Then f : M → N

being defined over R implies f(M(R)) ⊂ N(R). To obtain the converse one needs M to

have an additional property that we call the (RC) property, see Definition 4.1.3. We state

the converse after defining this property.

We observe that a variety can be endowed with many different real structures.

Definition 4.1.3. [RC - property] Let X be a complex variety defined over R. We say

that X has the (RC) property (real-complexified) if the real points X(R) are Zariski dense

in X.

This scenario arises precisely if one begins with a real variety Z ⊂ Rn and considers the

Zariski closure Z̄ ⊂ Cn. Here Z̄ has the (RC) property; see [Whi57] for an introduction to

real varieties and their complexifications.
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Proposition 4.1.4. Let M ⊂ Cm and N ⊂ Cn be subvarieties defined over R. Assume

that M has the (RC) property. Then f : M → N being defined over R is equivalent to

f(M(R)) ⊂ N(R).

This result is useful but not needed in our proofs; we postpone the proof of this propo-

sition till the end. One immediately sees that the same holds more generally for abstract

affine varieties with R-structures. That is, let X, Y be complex affine varieties defined over

R and f : X → Y a morphism. Assume that X has the (RC) property. Then f is defined

over R if and only if f(X(R)) ⊂ Y (R). Often we will simply say that f : X → Y is defined

over R, or f is an R-morphism, when both varieties and the morphism are defined over R.

Lemma 4.1.5. Let X be an (abstract) complex affine variety and G a complex algebraic

reductive group acting on X, with all defined over R. Then G(R) acts on X(R) and for

x ∈ X(R) the orbit G(R) ·x is Hausdorff closed in X(R) if and only if G ·x is Zariski closed

in X.

Remark. It is well-known that G · x is Hausdorff closed if and only if it is Zariski closed,

see [Bor91]. Notice that the above situation arises when we have a real algebraic group

acting on a real algebraic variety. This lemma has been proven for linear G actions, see

[BHC62, Proposition 2.3] and [RS90]; we reduce to this case.

Proof. Let G and X be as above. It is well-known that there exists a complex vector

space V (defined over R), a closed R-imbedding i : X ↪→ V , and a representation T : G →

GL(V ) defined over R such that i(gx) = T (g)i(x) for all g ∈ G, x ∈ X. See [Bor91, I.1.12]

for the construction of such an imbedding.
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As all of our objects are defined over R we see that G(R) acts on X(R), i(X(R)) ⊂ V (R),

and T : G(R) → GL(V (R) is a real linear representation of G(R), cf. the remark before

Definition 4.1.3.

Now take x ∈ X(R). We have the following set of equivalences

G(R)x is closed in X(R)

i(G(R)x) is closed in V (R), as i is a closed R-imbedding

T (G(R))i(x) is closed in V (R)

T (G)i(x) is closed in V by [BHC62, RS90]

i(Gx) is closed in V

Gx is closed in X

�

Richardson and Slodowy [RS90] have shown the following

Proposition 4.1.6. Let G be a reductive algebraic group acting on X so that G, X, and

the action are defined over R and consider the quotient morphism π : X → X//G. Then π

is defined over R and π(X(R)) ⊂ (X//G)(R) is Hausdorff closed.

In general one cannot expect π(X(R)) to be all the real points (X//G)(R). However, we

make the following simple observation.

Lemma 4.1.7. If X has the (RC) property, then so does X//G. In fact π(X(R)) is

Zariski dense in X//G.

91



The first statement is proven in [RS90] and the second statement is a special case of a

more general statement: Let f : X → Y be a regular map and Z a Zariski dense set of X,

then f(Z) is Zariski dense in f(X).

Proposition 4.1.8. Let G be a reductive algebraic group defined over R and H,F al-

gebraic reductive subgroups defined over R. Then the action of H on G/F is defined over

R.

Before presenting the proof of this proposition we state the following useful lemma.

Lemma 4.1.9. Let H×F act on a variety X, where H, F , X, and the actions are defined

over R. Then there is a unique H action on X//F defined over R which makes Diagram A

(below) commute.

Proof of lemma. Since H × F acts on X we can consider the F action on H × X.

We claim that the map π1 = id × π2 : H × X → H × (X//F ) is a good quotient; where

π2 : X → X//F is a good quotient. Here X//F is the variety whose ring of regular functions

is C[X]F , the F -invariant polynomials of C[X]. For a detailed introduction to quotients, see

[New78, Chapter 3].

To show that H × (X//F ) is the desired quotient, we will show that C[H × (X//F )] =

C[H × X]F and that the comorphism (id × π2)∗ is the inclusion map. Recall that π∗2 :

C[X//F ] = C[X]F ↪→ C[X] is the inclusion map.

There is a natural identification between C[H×X] and C[H]⊗C[X] defined by
∑
pi(h)qi(x) 7→

(
∑
pi ⊗ qi)(h, x). Under this identification, C[H × X]F ' C[H] ⊗ C[X]F where C[H ×

X]F ,C[X]F denote the F -invariant polynomials in C[H ×X],C[X], respectively. The map
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id×π2 : H×X → H× (X//F ) corresponds to a comorphism (id×π2)∗ : C[H× (X//F )]→

C[H × X] and under the natural identification described above, the map (id × π2)∗ corre-

sponds to id∗ ⊗ π∗2 : C[H] ⊗ C[X//F ] → C[H] ⊗ C[X]. This map id∗ ⊗ π∗2 is the inclusion

map and is an isomorphism onto C[H] ⊗ π∗2(C[X//F ]) = C[H] ⊗ C[X]F . Thus, (id × π2)∗

is the inclusion map and maps C[H × (X//F )] isomorphically onto C[H × X]F . We have

shown the following.

H × (X//F ) ' (H ×X)//F

Consider the following diagram. Let m1 denote the morphism corresponding to H-action

on X. Since π2 ◦ m1 is constant on F -orbits, by the discussion in the introduction there

exists a unique map m2 which factors and makes the diagram commute.

(A)

H ×X m1−−−→ X

π1

y yπ2

H × (X//F )
m2−−−→ X//F

where π1 = id×π2 is the quotient of the F action on H×X, f ·(h, x) = (h, f ·x). Equivalently,

for h ∈ H and a closed orbit F · x ⊂ X, h(Fx) = F (hx) is a closed F -orbit.

We know that m1, π1, π2 are defined over R and that m2 ◦π1 = π2 ◦m1 is defined over R.

From this we wish to show m2 is also defined over R. Since π∗2(R[X//F ] = R[X]F we have

π∗1 ◦m∗2 = m∗1 ◦ π∗2 : R[X//F ]→ R[H ×X]F

Since π∗1 : C[H × (X//F )] → C[H × X]F and π∗1 : R[H × (X//F )] → R[H × X]F are

isomorphisms, we have

m∗2(R[X//F ]) ⊂ π∗ −1
1 (R[H ×X]F ) = R[H ×X//F ]
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Thus, m2 : H × (X//F ) → X//F is defined over R, or equivalently, the H action on

X//F defined by m2 is defined over R. The uniqueness of the H-action on X//F is equivalent

to the uniqueness of the map m2 in Diagram A. �

Proof of the proposition. Once it is shown that the G-action on G/F is defined

over R, it will be clear that the H-action is also defined over R. We apply Lemma 4.1.9 in

the setting that G is a reductive group, H = G, X = G, and F is a reductive subgroup of

G.

Since G is an algebraic group defined over R, the action G×F on G defined by (h, f) ·g =

hgf−1 is defined over R, where h, g ∈ G, f ∈ F . Recall that G/F is the GIT quotient G//F

under the F action listed above (notice all the orbits are closed, hence the usual topological

quotient coincides with the algebraic quotient). The unique H-action described in Lemma

4.1.9 is precisely the standard action of G on G/F . Thus we have shown that the usual

action of G on G/F is algebraic and defined over R. �

4.2. Transitioning between the Real and Complex Settings: Proof of Theorem

4.0.1

First we remark on how one obtains Theorem 4.0.1 for real algebraic groups once it is

known for complex groups. Let G,H, F be the same as in Theorem 4.0.1 but with real

groups instead of complex groups. Let GC denote the Zariski closure of G in GL(n,C). It

follows that G is the set of real points of GC, and we call GC the algebraic complexification

of G. Likewise, H,F are the real points of their complexifications HC, FC. Here all of our

objects have the (RC)-property.

94



Consider the G-equivariant imbedding i : G/F → GC/FC, defined by i : gF 7→ gFC, and

the quotient π : GC → GC/FC. Note that i is injective since G ∩ FC = F . We view G/F as

a subset of GC/FC via i and we note that i(G/F ) = π(G).

As G/F ' π(G) and G = GC(R), we see that G/F ⊂ (GC/FC)(R) and is Zariski dense

in GC/FC (see Proposition 4.1.6 and Lemma 4.1.7). Moreover, assuming the theorem is true

in the complex setting, there exists a Zariski open set O ⊂ GC/FC such every point in O

has a closed HC orbit. G/F being Zariski dense intersects O and so, by Lemma 4.1.5, we

see that all points of G/F ∩ O have closed H-orbits in G/F . This proves Theorem 4.0.1 in

the real case.

To prove the theorem for complex groups, we take advantage of certain real group actions.

Let G be a complex reductive group and U a maximal compact subgroup. We can realize U

as the fixed points of a Cartan involution θ. Moreover, there exists a real structure on G so

that U is the set of real points of G (see [BHC62, Remark 3.4]). Observe that G has the

(RC) property as G is the complexification of its compact real form U .

Lemma 4.2.1. We may assume that H,F from our main theorem are θ-stable.

Proof. It is well-known that there exist conjugations g1Hg
−1
1 and g2Fg

−1
2 so that these

conjugates are θ-stable, see [BHC62] or [Mos55]. So to prove the lemma, we just need to

show that the theorem holds for H,F if and only if it holds for conjugates of these groups.

Observe that G/F and G/(g2Fg
−1
2 ) are isomorphic as varieties via conjugation by g2 :

gF 7→ (g2gg
−1
2 )(g2Fg

−1
2 ). We denote this map by C(g2). Also observe that G acts via left
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translation on G/F by variety isomorphisms. Thus the left translate of a closed set in G/F is

again a closed set G/F . For k ∈ G we have (g1Hg
−1
1 )k(g2Fg

−1
2 ) is closed in G/(g2Fg

−1
2 ) if and

only if C(g2)−1 ·((g1Hg
−1
1 )k(g2Fg

−1
2 )) is closed in G/F . But C(g2)−1 ·((g1Hg

−1
1 )k(g2Fg

−1
2 )) =

g−1
2 g1Hg

−1
1 kg2F and this is closed if and only if Hg−1

1 kg2F is closed in G/F .

Thus the g1Hg
−1
1 -orbit of k(g2Fg

−1
2 ) is closed in G/(g2Fg

−1
2 ) if and only if the H-orbit

of g−1
1 kg2F is closed in G/F .

�

Lemma 4.2.2 (Weyl’s Unitarian Trick). Let G be a complex reductive group and U a

maximal compact subgroup. Then U is Zariski dense in G.

Proof. This statement and its proof are well-known; we include the proof for complete-

ness.

As U is a maximal compact subgroup, U intersects each topological component of G, see

[Mos55, Section 3]. Denote by G0 and U0 the Hausdorff identity components of G and U ,

respectively. Writing G =
⋃n
i=1 uiG0, where ui ∈ U for all i, we have U =

⋃n
i=1 uiU

′, where

U ′ = U ∩ G0. To show that U is Zariski dense in G it suffices to show that U0 is Zariski

dense in G0 since U0 ⊂ U ′.

Denote by U0 the Zariski closure of U0. This is a complex algebraic group as U0 is a

group, cf. [Bor91]. Since G0 is an algebraic group we have U0 ⊂ G0 and we have the

following inclusions of Lie algebras LU0 ⊂ LU0 ⊂ LG0. Lastly, since LU0 is a compact form

for LG0 we see that LU0⊗R C ⊂ LG0 = LU0⊗R C. Hence the connected subgroup U0 of G0

has the same Lie algebra as G0 and they are equal as G0 is also connected.
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�

We continue the proof of Theorem 4.0.1. Now that H,F are θ-stable, and U = Fix(θ),

we know that their maximal compact subgroups UH = U ∩ H,UF = U ∩ F are contained

in U . Moreover, since U = G(R), the compact subgroups UH , UF are the real points of the

algebraic groups H,F . Observe that H,F have the (RC) property as their maximal compact

subgroups are the real points. For a proof of the following useful fact in the complex setting

see [New78]. For an extension to the real setting see Section 2.1.

Proposition 4.2.3. Let G be a real or complex linear reductive algebraic group acting

on an affine variety X. If there exists a closed orbit of maximal dimension, then there is a

Zariski open set of such orbits.

Proof of Theorem 4.0.1. We apply the above proposition to the action of H on the

affine variety G/F . Note that G/F is affine as G is reductive and F is reductive (see

[BHC62, Theorem 3.5]).

As the F -action on G is defined over R, the quotient G/F is defined over R. Since our

objects have property (RC) the image of the real points of G is dense in G/F by Lemma

4.1.7; that is, U/UF ⊂ G/F is dense. Here, as before, we are identifying U/UF with the

image of U under the quotient G→ G/F .

Moreover, Proposition 4.1.8 shows that the H-action on G/F is defined over R. If we let

O denote the set of maximal dimension H-orbits in G/F , then O ∩ (U/UF ) is non-empty.

However, UH is the set of real points for H and every UH orbit in U/UF is closed (since they
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are all compact). Therefore, every point in O∩(U/UF ) has a closed H-orbit by Lemma 4.1.5

and we have found a closed H-orbit of maximal dimension.

Applying Proposition 4.2.3 we see that generic H-orbits are closed. �

4.3. Proofs of the Corollaries

We note that the proofs of all results below, except for Proposition 4.1.4, are valid in the

real and complex cases simultaneously.

Proof Corollary 4.0.2. The theorem above provides some point kF ∈ G/F which

has a closed H-orbit. Take g ∈ G and consider the point gkF ∈ G/F . The H-orbit of this

point is (H · gk)F = (g g−1Hgk)F = (g Hk)F which is closed as the G action on G/F is by

variety isomorphisms. Hence every H-orbit in G/F is closed as G acts transitively on G/F .

We prove the second statement of the corollary using Corollary 4.0.4 (which is proven

below). In the proof of this corollary it is shown that if G · v is closed in V , then there exists

g ∈ G such that Hgv is closed in V . But now Hgv = gHv by the normality of H. Moreover,

gHv is closed in V if and only if Hv is closed in V as G acts by isomorphisms of the vector

space. This proves the second part of the proposition. �

Proof of Corollary 4.0.4. We prove the second statement first. Take v ∈ V such

that G · v is closed. It is well-known that Gv is reductive, see, e.g., [RS90, Theorem 4.3] or

[BHC62, Theorem 3.5]. The orbit G · v is G-equivariantly isomorphic to the affine variety

G/Gv. Thus the H-orbit H · gv ⊂ G · v ⊂ V corresponds to H · gGv ⊂ G/Gv and for generic

g these H-orbits are closed by Theorem 4.0.1. This proves the second statement.
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For the first statement, let O = { v ∈ V | dim H · v is maximal} and let U = { v ∈

V | G ·v is closed }. The set O is a nonempty Zariski open set and by hypothesis U contains

a nonempty Zariski open set. Pick w ∈ O ∩ U . For generic g ∈ G, the orbit H · gw is closed

by the argument of the previous paragraph. Moreover, gw ∈ O ∩U for generic g ∈ G. Thus

there exists some point gw which has a closed H-orbit of maximal dimension. Therefore by

Proposition 4.2.3 generic H-orbits in V are closed. �

Proof of Corollary 4.0.5. Take v ∈ V and w ∈ W which both have closed G-orbits.

Then the G × G orbit of (v, w) is closed in V ⊕W . Now consider the diagonal imbedding

of G in G×G. In this way, G acts on V ⊕W and since generic G×G-orbits in V ⊕W are

closed, we see that generic G-orbits in V ⊕W are also closed by Corollary 4.0.4. �

Proof of Corollary 4.0.3. Let G be a reductive group and let H, F be reductive

subgroups. There exists a representation V of G such that the reductive subgroup F can

be realized as the stabilizer of a point v ∈ V and such that the orbit G · v is closed, see

[BHC62, Proposition 2.4].

By Corollary 4.0.4, we know that H ·gv is closed for generic g ∈ G. Thus Hgv is reductive

for generic g ∈ G. But Hgv = H ∩Ggv = H ∩ gGvg
−1 = H ∩ gFg−1 and we have the desired

result. �

Proof of Proposition 4.1.4. First we remark on the direction that does not require

M to have the (RC) property; that is, if f : M → N is defined over R then f(M(R)) ⊂ N(R).

To see this direction write f = (f1, . . . , fn), where fi : Cm → C. These component functions

are precisely fi = f ∗(πi) where πi is projection from Cn to the i-th coordinate. Since this
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projection is defined over R we see that the fi take real values when evaluated at real points.

That is, f(M ∩ Rm) ⊂ N ∩ Rn.

Now assume M has the (RC) property and let f : M → N be a morphism of varieties

such that f(M(R)) ⊂ N(R). We will show f ∗(R[N ]) ⊂ R[M ]; that is, f is defined over R.

We can describe the polynomial f by its coordinate functions, f = (f1, . . . , fn) where

fi : Cm → C and fi|M∩Rm → R. Let f i denote the polynomial whose coefficients are the

complex conjugates of those of fi, then we have 1
2
(fi+f i) = fi on the set M ∩Rm. M having

the (RC) property means precisely that M ∩Rm is Zariski dense in M , thus 1
2
(fi + f i) = fi

on M . If we define P = 1
2
(f + f) then P has real coefficients and restricted to M equals f .

Take g ∈ R[N ], then f ∗(g) ∈ C[M ] and f ∗(g) = g ◦ f = g ◦P on M . Since g and P have

real coefficients, so does their composition. That is, f ∗(g) ∈ R[M ]. �
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CHAPTER 5

Distinguished Orbits of Reductive Groups

We prove a generalization and give a new proof of a theorem of Borel-Harish-Chandra

on closed orbits of linear actions of reductive groups. Consider a real reductive algebraic

group G acting linearly and rationally on V . G can be viewed as the real points of a complex

reductive group GC which acts on V C := V ⊗C. In [BHC62] it was shown that GC · v ∩ V

is a finite union of G-orbits; moreover, GC · v is closed if and only if G · v is closed, see

[RS90]. We show that the same result holds not just for closed orbits but for the so-called

distinguished orbits. An orbit is called distinguished if it contains a critical point of the norm

squared of the moment map on projective space. Our main result compares the complex

and real settings to show G · v is distinguished if and only if GC · v is distinguished.

In addition, we show that if an orbit is distinguished, then under the negative gradient

flow of the norm squared of the moment map the entire G-orbit collapses to a single K-orbit.

This result holds in both the complex and real settings.

5.1. Introduction

An analytical approach to finding closed orbits in the complex setting was developed

by Kempf-Ness [KN78] and extended to the real setting by Richardson-Slodowy [RS90].

From their perspective, the closed orbits are those that contain the zeros of the so-called



moment map. However, one can consider more generally critical points of this moment map

on projective space. Work on the moment map in the complex setting has been done by Ness

[NM84] and Kirwan [Kir84]. Following those works, the real moment map was explored in

[Mar01] and [EJ].

Consider a real linear reductive group G acting linearly on V . There is a complex linear

reductive group GC such that G is a finite index subgroup of the real points of GC; moreover,

GC acts on the complexifcation V C of V . The linear action of G, respectively GC, extends to

an action on real projective space PV , respectively complex projective space CP(V C). For

v ∈ V , we call an orbit G · v, or G · [v], distinguished if the orbit G · [v] in real projective

space contains a critical point of ||m||2, the norm square of the real moment map. Similarly,

for v ∈ V C, we call an orbit GC · v, or G · π[v], distinguished if the orbit GC · π[v] in complex

projective space contains a critical point of ||µ∗||2, the norm square of the complex moment

map. Here π : RPV C → CP(V C) is the natural projection. Our main theorems are

Theorem 5.4.7 Given G � V , GC � V C, and [v] ∈ PV we have

G · [v] is a distinguished orbit in PV if and only if GC ·π[v] is a distinguished

orbit in CP(V C).

Here π : PV ⊆ RPV C → CP(V C) is the usual projection.

Theorem 5.5.1 For x ∈ CP(V C), suppose GC · x ⊆ CP(V C) contains a critical point

of ||µ∗||2. If z ∈ C ⊆ CP(V C) is such a critical point, then C ∩ GC · x = U · z. Moreover,
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U · z =
⋃
g∈GC

ω(gx).

Theorem 5.5.2 For x ∈ PV , suppose G · x ⊆ PV contains a critical point of ||m||2. If

z ∈ CR ⊆ PV is such a critical point, then CR ∩G · x = K · z. Moreover, K · z =
⋃
g∈G

ω(gx).

Here µ∗ is the moment map for the action of GC on CP(V C) and C is the set of critical

points of ||µ∗||2 in CP(V C), while m is the moment map for the action of G on PV and CR

is the set of critical points of ||m||2 in PV . The fact that C ∩ GC · x = U · z was proven in

[NM84] in the complex setting; the fact that CR ∩G · x = K · z was proven in [Mar01] in

the real setting. The fact that the orbit collapses under the negative gradient flow of ||µ∗||2,

respectively ||m||2, to a single U -orbit, respectively K-orbit, is our new contribution.

The value of Theorem 5.4.7 is as follows. Since GC · v ∩ V is a finite union of G-orbits, if

we can show that one of these G-orbits is distinguished then all of them are. This has been

applied to the problem of finding generic 2-step nilpotent Lie groups which admit soliton

metrics. See Chapters 6 and 7 for more information on the soliton problem.

5.2. Notation and Technical Preliminaries

Our goal is to study closed reductive subgroups G of GL(E) which are more or less

algebraic. Here E is a real vector space and we denote its complexification by EC = E ⊗C.

We call a subgroup H of GL(E) a real algebraic group if H is the zero set of polynomials

on GL(E) with real coefficients; that is, polynomials in R[GL(E)]. For basic definitions and

results on real algebraic groups see Section 1.1.2.
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We say that a group G ⊂ GL(E) is a real linear reductive group if G is a finite index

subgroup of a real algebraic reductive group H; that is, G satisfies H0 ⊆ G ⊆ H, where

H0 is the Hausdorff identity component of H. It is well-known that there exists a complex

(algebraic) reductive groupGC defined over R such thatG is Zariski dense inGC and is a finite

index subgroup of the real pointsGC(R) := GC∩GL(E) ofGC; that is, GC(R)0 ⊆ G ⊆ GC(R).

See Proposition 1.2.3 for the construction of such a complex group.

It is an important observation that each component of GC intersects G. The importance

of this observation is made clear in the following proposition where certain inner products

on real vector spaces are extended to their complexifications.

Let V be a real vector space and denote its complexification by V C = V ⊗ C. We will

consider representations ρ : G → GL(V ) that are the restrictions of morphisms ρC : GC →

GL(V C) of algebraic groups. We will call such a representation a rational representation of

G (cf. Section 1.1.3). Note: We will denote the induced Lie algebra representation by the

same letter.

We recall the following results from Propositions 2.2.3 and 2.2.4.

Proposition. Let G be defined as above and ρ : G→ GL(V ) a rational representation,

then

(a) There exists a K-invariant inner product on V such that G is self-adjoint; hence,

the Lie algebra L(G) = g is also self-adjoint. That is, there exist Cartan involutions

θ, θ1 on G, ρ(G), respectively, such that ρ ◦ θ = θ1 ◦ ρ.

(b) There exist decompositions of G and g, called Cartan decompositions, so that G =

KP as a product of manifolds and g = k ⊕ p. Here K = {g ∈ G | θ(g) = g} is
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a maximal compact subgroup of G, k = L(K) = {X ∈ g | θ(X) = X}, p = {X ∈

g | θ(X) = −X}, and P = exp(p). Moreover, there exists an AdK-invariant inner

product 〈〈·, ·〉〉 on g so that g = k⊕ p is orthogonal.

(c) The inner product 〈·, ·〉 on V is K-invariant, ρ(X) are symmetric transformations

for X ∈ p, and ρ(X) are skew-symmetric transformations for X ∈ k.

Proposition. The K-invariant inner product <,> on V , described above, extends to

a U-invariant inner product S on V C with a similar list of properties for GC. Here U is

a compatible maximal compact subgroup of GC (cf. Section 2.2.2). Additionally, the inner

product �,� on g extends to an Ad U-invariant inner product S on gC.

Recall that the inner products on our complex spaces are said to be compatible with the

inner products on the underlying real spaces.

*.

Moment maps We recall the definitions and basic results concerning moment maps. See

Chapter 2 for more information.

Real moment maps. Given G � V we define m̃ : V → p implicitly by

� m̃(v), X � = < Xv, v >

for all X ∈ p. Notice that m̃(v) is a real homogeneous polynomial of degree 2. Equivalently,

we really could define m̃ : V → g; then using K-invariance and k ⊥ p we obtain m̃(V ) ⊆ p.
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We can just as well do this for GC � V C where we regard GC as a real Lie group. We use

the inner product S on V C. The (real) moment map for GC � V C, denoted by ñ : V C → q,

is defined by

S(ñ(v), Y ) = S(Y v, v)

for Y ∈ q and v ∈ V C.

Since these polynomials are homogeneous, they give rise to well defined maps on (real)

projective space. Define

m : PV → p n : RPV C → q

m[v] = m̃( v
|v|) = m̃(v)

|v|2 n[w] = ñ( w
|w|) = ñ(w)

|w|2

where |w|2 = S(w,w) and S =<,> on V . Since V ⊆ V C we have PV ⊆ RPV C; this is our

main reason for studying the real moment map on GC. The following is Lemma 2.3.1; this

lemma compares these two real moment maps.

Lemma. n restricted to PV equals m.

Complex moment maps. We choose a notation that is similar to Ness [NM84] as

we are following her definitions; the only difference is that we use µ where she uses m. For

v ∈ V C, consider ρv : GC → R defined by ρv(g) = |g · v|2, where |w|2 = H(w,w) = S(w,w).

Define a map µ : CP(V C) → q∗ = Hom(q,R) by µ(x) = dρv(e)
|v|2 , where v ∈ V C sits over

x ∈ CP(V C), cf. [NM84, section 1]. We define the complex moment map µ∗ : CP(V C)→ q

by µ = S(µ∗, ·). Note, taking the norm square of our complex moment map will give us the

norm square of the moment map in Kirwan’s setting; in Kirwan’s language iµ would be the

moment map [NM84, section 1].
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Let π denote the projection π : RPV C → CP(V C). The following is proven in Lemma

2.3.2.

Lemma. The complex and real moment maps for GC are related by µ∗ ◦ π = 2n

Remark. Since PV is not a subspace of CP(V C), we use RPV C and the real moment map

of GC to work between the known results of Kirwan and Ness to get information about our

real group G � PV .

5.3. Comparison of Real and Complex Cases

Most of algebraic geometry and Geometric Invariant Theory has been worked out exclu-

sively for fields which are algebraically closed. We are interested in the real category and

will exploit all the work that has already been done over C. We use and refer the reader to

Chapters 1 and 2 as our main reference for real algebraic varieties.

Recall that our representation ρ : G→ GL(V ) is the restriction of a representation of GC.

The following is proposition 2.3 of [BHC62] and section 8 of [RS90]. Originally this was

stated as a comparison between GC(R)0-orbits and GC-orbits, however, it can be restated as

a comparison between G and GC orbits, for any G satisfying GC(R)0 ⊆ G ⊆ GC(R). This is

true as GC(R)0 has finite index in G. (This theorem has already been stated in the text; see

Theorem 2.4.1.)

Theorem. Let v ∈ V , then GC · v ∩ V =
m⋃
i=1

Xi where each Xi is a G-orbit. Moreover,

GC · v is closed in V C if and only if G · v is closed in V .

*.
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Orbits in Projective space Since our groups act linearly on vectors spaces we can consider

the induced actions on projective space G � PV and GC � RPV C.

We recall Lemma 2.4.4 for later use.

Lemma. For v ∈ V , GC · [v] ∩G · [v] = G · [v] in RPV C.

5.4. Closed and Distinguished Orbits

We use the known results for closed orbits and the moment map to motivate our treatment

of the nullcone and distinguished orbits. Below we recall some of the work from Chapter 2.

We begin with a theorem of Richardson and Slodowy. To find which orbits are closed, one

looks for the infimum of |g · v|2 along the orbit. Such a vector is called a minimal vector and

it occurs on the orbit precisely when our orbit is closed. Let M denote the set of minimal

vectors in V . The following is a combination of Theorem 2.2.8 and Corollary 2.2.10.

Theorem 5.4.1. G · v is closed if and only if there exists w ∈ G · v such that m̃(w) = 0.

Such a vector w is minimal. Moreover, M = m̃−1(0) and G · v ∩M is a single K-orbit.

Equivalently we could find the zero’s of ||m̃||2 to find the minimal vectors. Minimal

vectors are used to understand the semi-stable points, that is, all the vectors whose orbit

closure does not contain zero. In contrast, the null cone is the set of vectors whose orbit

closure does contain zero. To study the null cone, we move to projective space. Clearly we

cannot use minimal vectors to study the geometry of the null cone, so instead of looking for

zeros of ||m||2 on PV we look for critical points of ||m||2.
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Definition 5.4.2. We say that v ∈ V or [v] ∈ PV is distinguished if ||m||2 : PV → R

has a critical point at [v]. We say that an orbit G · v or G · [v] is distinguished if it contains

a distinguished point. Analogously, we define distinguished points and GC-orbits in V C and

CP(V C) using ||µ∗||2.

Minimal vectors are distinguished as zero is an absolute minimum of the function ||m||2.

Our goal is to find an analogue of Theorem 2.4.1 for distinguished orbits. To understand

critical points of ||m||2, we will find a way to relate this function to ||µ∗||2 by means of ||n||2.

Recall that ||µ∗||2 has been studied extensively in [NM84, Kir84].

Our first observation is that the only closed orbits G·[v] ⊆ PV occur when G·[v] = K ·[v].

This is well known, but an elegant and geometric proof is easily obtained using properties of

the moment map; see, e.g., [Mar01, Theorem 1]. So our main interest is in the remaining

distinguished orbits.

Proposition 5.4.3. If [v] ∈ PV , then grad ||n||2[v] = grad ||m||2[v] ∈ T[v]G · [v]. Hence,

||n||2 has a critical point at [v] ∈ PV ⊆ RPV C if and only if ||m||2 does so. Moreover, if

[v] ∈ PV , and ϕt[v] is the integral curve of −grad ||n||2 starting at [v], then ϕt[v] ∈ G · [v] ⊆

PV for all t.

Before proving the proposition, we study the gradients of these functions. Let φ : GC ×

V C → V C denote the action of GC on V C, and let φv : GC → V C denote the induced map

for every v ∈ V C. We define vector fields on V C and RPV C as follows. On V C we define

X̃α(v) := dφv(α) =
d

dt

∣∣∣∣
t=0

exp tα · v
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for α ∈ gC. And on RPV C

Xα[v] := π∗X̃α(v)

where π : V C → RPV C is projection. Note, this is well defined as our action GC � V C is

linear.

Lemma 5.4.4. For x ∈ PV , grad ||m||2(x) = 4Xm(x)(x). For x ∈ RPV C, grad ||n||2(x) =

4Xn(x)(x).

Marian proves the first statement for ||m||2 on PV , see [Mar01, Lemma 2]. Her proof

carries over to obtain the statement for ||n||2 on RPV C.

Proof of proposition 5.4.3. The first assertion follows from Lemma 5.4.4, Lemma

2.3.1, and the fact that m[v] ∈ p ⊆ g for [v] ∈ PV . The second and third assertions follow

immediately from the first. �

Next we relate the actions of our complex group GC on RPV C and CP(V C). By Lemma

2.3.2 we know ||µ∗◦π[v]||2 = 4||n[v]||2 for v ∈ V ⊆ V C and π : RPV C → CP(V C). This shows

that ||n||2 is not just U -invariant, it is also U × C∗-invariant. We wish to relate the actions

of GC on RPV C and CP(V C) by comparing their gradients from the natural Riemannian

structures on these projective spaces.

*.

The Riemannian structures and gradients on projective space

Recall that projective space can be endowed with a natural Riemannian metric so that

projection from the vector space is a Riemannian submersion. This natural Riemannian
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metric is called the Fubini-Study metric and is defined as follows. Take ζi ∈ T[w]KP(V C),

where K = R or C. Let ΠK : V C → KP(V C) be the usual projection and take ξi ∈ TwV C

such that ΠK
∗ (ξi) = ζi. The Fubini-Study metric on KP(V C) is defined by

(ζ1, ζ2) =
(ξ1, ξ2)(w,w)− (ξ1, w)(ξ2, w)

(w,w)

One can naturally identify the tangent space TΠK(w)KP(V C) with the orthogonal compli-

ment of K − span < w > in TwV
C. In our setting, we are using S, the extension of <,>

on V , as our inner product on V C. Using these natural choices of Riemannian structures on

RPV C and CP(V C) we see that π : RPV C → CP(V C) is also a Riemannian submersion.

We are interested in the negative gradient flow of the moment map. Let ϕt denote the

negative gradient flow of ||n||2 on RPV C and ||µ∗||2 on CP(V C).

Definition 5.4.5. The ω-limit set of ϕt(p) ⊆ RPV C is the set {q ∈ RPV C | ϕtn(p) →

q for some sequence tn →∞ in R}. We denote this set by ω(p).

Analogously, we can define the ω-limit set of ϕt(p) ⊆ CP(V C) and we denote this set by

ω(p) also. It is easy to see that ω(p) is invariant under ϕt for all t.

Remark. We observe that points in the ω-limit set of a negative gradient flow are fixed

points of the flow, that is, critical points of the given function. In general this is not true for

ω-limit points associated to non-gradient flows. We include a brief argument for the reader.

Consider F : M → R and let ϕt(p) denote the integral curve of −grad F starting at

p ∈ M . Observe that F is decreasing along ϕt(p). Suppose ω(p) is non-empty. Then we
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can define c = lim
t→∞

F (ϕt(p)) to obtain ω(p) ⊆ F−1(c). Thus for q ∈ ω(p) we see that

ϕt(q) ⊆ F−1(c). Hence, grad F (q) = 0. That is, points in the ω-limit set of −grad F are

critical points for F .

Proposition 5.4.6. Endow RPV C and CP(V C) with the Riemannian metrics so that

the projections from V C are Riemannian submersions. Then the following are true for [v] ∈

RPV C

(a) 4π∗ grad ||n||2[v] = grad ||µ∗||2(π[v])

(b) [v] ∈ RPV C is a critical point of ||n||2 if and only if π[v] ∈ CP(V C) is a critical point

of ||µ∗||2.

(c) ϕt ◦ π = π ◦ ϕ4t, where ϕt denotes the negative gradient flow of ||n||2 on RPV C or

||µ∗||2 on CP(V C).

(d) π(ω([v])) = ω(π[v]), where ω(p) denotes the ω-limit set of the negative gradient flow

starting from p.

Proof. Applying Lemma 2.3.2 we have

4 < grad||n||2[v], w[v] > = 4
d

dt

∣∣∣∣
t=0

||n[v + tw]||2

=
d

dt

∣∣∣∣
t=0

||µ∗π[v + tw]||2

= < grad||µ∗||2(π[v]), π∗w[v] >

Since π∗ is a submersion we have that π∗ maps the horizontal subspace of T[v]RPV C

isometrically onto Tπ[v]CP(V C) and part a. is proven. Thus if [v] is a critical point for ||n||2,
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then π[v] is one for ||µ∗||2. To obtain the reverse direction use the C∗-invariance of ||n||2.

This proves part b.

Proof of part c. Let [v] ∈ RPV C. Consider the curve π ◦ ϕ4t[v] in CP(V C). This curve

satisfies the following differential equation

d

dt
π ◦ ϕ4t[v] = π∗ 4(−grad ||n||2)(ϕ4t[v]) = −grad ||µ∗||2(π ◦ ϕ4t[v])

That is, the curve π ◦ ϕ4t[v] is the integral curve of the negative gradient flow of ||µ∗||2

starting at π[v]. Thus, π ◦ ϕ4t = ϕt ◦ π.

Proof of part d. We will show containment in both directions. Take p ∈ ω[v], then

there exists a sequence of tn → ∞ such that ϕtn [v] → p in RPV C. Using part c, we have

ϕtn/4(π[v]) = π ◦ϕtn [v]→ π(p). That is, π(p) ∈ ω(π[v]), or π(ω[v]) ⊆ ω(π[v]). To obtain the

other direction, take q ∈ ω(π[v]) and tn → ∞ so that ϕtn(π[v]) → q in CP(V C). Consider

the set ϕ4tn [v] in RPV C. Since RPV C is compact, we can find a limit point of this set and

passing to a subsequence we may assume ϕ4tn [v] → p. Then p ∈ ω[v], π(p) = q by (c) and

we have shown q ∈ π(ω[v]). That is, ω(π[v]) ⊆ π(ω[v]). �

We finish the section by stating our main theorem and some corollaries.

Theorem 5.4.7. Given G � V , GC � V C, and [v] ∈ PV we have

G · [v] is a distinguished orbit in PV if and only if GC ·π[v] is a distinguished

orbit in CP(V C).

Here π : PV ⊆ RPV C → CP(V C) is the usual projection.
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Remark. Analysis of the proof of Theorem 5.4.7 shows the following. Given v ∈ V ⊆

V C, the orbits G · [v] ⊆ PV and GC · π[v] ⊆ CP(V C) being distinguished is equivalent to

GC · [v] ⊆ RPV C being distinguished using ||n||2 on RPV C.

Corollary 5.4.8. Suppose we have v1, v2 ∈ V with distinct G-orbits but whose GC-orbits

are the same. Then G · [v1] is distinguished if and only if G · [v2] is distinguished.

Remark. The phenomenon of two vectors having different real orbits but the same com-

plex orbit happens often. This corollary was a necessary ingredient in the solution to the

problem of showing that generic 2-step nilmanifolds admit soliton metrics. See Chapter 7.

5.5. Proofs of Main Theorems

Here we prove Theorem 5.4.7 on distinguished orbits. To do this, we first prove a state-

ment for complex moment maps in the complex setting. Then we will relate the complex

moment map information to the real moment map for the GC action.

Remark. For x ∈ CP(V C), the critical points of ||µ∗||2 restricted to GC ·x are precisely the

critical points of ||µ∗||2 as a function on CP(V C). This is because grad ||µ∗||2(x) is always

tangent to GC · x. We denote the set of critical points of ||µ∗||2 in CP(V C) by C.

Theorem 5.5.1. For x ∈ CP(V C), suppose GC · x ⊆ CP(V C) contains a critical point

of ||µ∗||2. If z ∈ C ⊆ CP(V C) is such a critical point, then C ∩ GC · x = U · z. Moreover,

U · z =
⋃
g∈GC

ω(gx).
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Let CR denote the set of critical points of ||m||2 on PV . We have a real analogue of the

theorem above.

Theorem 5.5.2. For x ∈ PV , suppose G · x ⊆ PV contains a critical point of ||m||2. If

z ∈ CR ⊆ PV is such a critical point, then CR ∩G · x = K · z. Moreover, K · z =
⋃
g∈G

ω(gx).

Before proving Theorems 5.5.1 and 5.5.2, we apply Theorem 5.5.1 to prove Theorem 5.4.7.

Proof of Theorem 5.4.7. Suppose first that G·[v] is distinguished. Then G·[v] = G·[w]

where [w] is a critical point of ||m||2. But now Proposition 5.4.3 implies that [w] is a critical

point of ||n||2 and Proposition 5.4.6 implies that π[w] is a critical point of ||µ∗||2; that is,

GC · π[v] is distinguished.

Now suppose GC · π[v] is distinguished. Our goal is to show that the orbit G · [v] in PV

contains a critical point of ||m||2. We will use the GC action on RPV C and the real moment

map of this action. As GC · π[v] is distinguished, and π : GC · [v] → GC · π[v] is surjective,

there exists w ∈ GC · [v] such that π[w] ∈ GC · π[v] is a critical point of ||µ∗||2.

Apply the negative gradient flow of ||n||2 in RPV C starting at [v] ∈ PV . By Proposition

5.4.3 this is the negative gradient flow of ||m||2 and the ω-limit set ω[v] ⊆ G · [v] consists of

critical points of ||n||2 and ||m||2 (see the remark following Definition 5.4.5). By Proposition

5.4.6 d and Theorem 5.5.1, we have π(ω[v]) = ω(π[v]) ⊆ U · π[w]; hence, ω[v] ⊆ π−1(U ·

π[w]) = C∗ × U · [w] ⊆ C∗ ×GC · [v]. This implies

ω[v] ⊆ C∗ ×GC · [v] ∩G · [v] ⊆ C∗ ×GC · [v] ∩ R∗ ×G · [v] = R∗ ×G · [v] = G · [v]
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by Lemma 2.4.4 and the fact that (R∗ × G)C = C∗ × GC. Hence ω[v] consists of critical

points of ||m||2 that lie in G · [v]. This proves Theorem 5.4.7.

Before proving Theorem 5.5.1, we prove Theorem 5.5.2. The proof of this theorem is

actually embedded in the proof of Theorem 5.4.7. We present it here.

Proof of 5.5.2 The fact that CR ∩ G · x constitutes a single K-orbit is the content of

[Mar01, Theorem 1]. In [Mar01] G is taken to be semi-simple; however, all the results hold

for G real reductive with the same proofs, mutatis mutandis. Our original contribution is

the second statement of the theorem. We prove it here.

Suppose G · x ⊆ PV contains a critical point z of ||m||2. Then the orbit GC · π(x) is

distinguished in CP(V C) by Theorem 5.4.7. The proof of Theorem 5.4.7 shows, for g ∈ G,

ω(gx) consists of critical points of ||m||2 in G · x. By Theorem 1 of [Mar01], we have

ω(gx) ⊆ K · z. Hence,
⋃
g∈G

ω(gx) = K · z, since ω(y) = {y} for all y ∈ K · z.

Lastly we have to prove Theorem 5.5.1. The first statement is proven in [NM84, Theorem

6.2]. That is, the critical points of ||µ∗||2 on a GC-orbit comprise a single U -orbit. As in

Theorem 5.5.2, our original contribution is the second statement.

The statement that the whole orbit GC · x flows to one U -orbit U · z is plausible, but is

not contained in Kirwan’s work [Kir84]. It is a finer statement than the GC-invariance of

Kirwan’s stratification of CP(V C). There are two problems to be aware of: first, for g ∈ GC,

ω(gx) might be a set with more than one point and, second, there is no reason to expect
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that ω(gx) lies entirely in the orbit GC · x. This proof is just for the complex setting of our

complex group GC � CP(V C). This is the setting of Kirwan and Ness.

Proof of 5.5.1 Consider an orbit GC · y which is distinguished and let z ∈ GC · y be a

critical point. Let x be any point in GC · y. To show that ω(x) ⊆ U · z, we will first show

that the limit set ω(x) intersects U · z and then show containment. First we need to recall

some results from Kirwan’s work [Kir84].

We have a smooth stratification of CP(V C) into strata Sβ which are GC-invariant. The

strata are determined by a certain decomposition of the critical set C of ||µ∗||2 in CP(V C).

This critical set is a finite union C =
⋃
β∈B Cβ where ||µ∗||2 takes a constant value on Cβ and

each Cβ is U -invariant. We will denote this constant value of ||µ∗||2 on Cβ by Mβ = ||β||2;

here B is actually a finite set in gC and the norm || · || comes from the prescribed inner

product on gC.

For β ∈ B, the stratum Sβ is defined to be the set of points which flow via the negative

gradient flow to the critical set Cβ, that is, Sβ = {x ∈ CP(V C)| ω(x) ⊆ Cβ}. In particular,

Cβ ⊆ Sβ. See section 2 of [Kir84] for a detailed discussion of this Morse Theory approach

to Geometric Invariant Theory. If GC · y ∩ Cβ 6= ∅ then

GC · y ∩ Cβ = U · z

for z ∈ Cβ, that is, the critical points in a GC-orbit comprise a single U -orbit, see [NM84,

Theorem 6.2]. We show two things. First, if x ∈ GC · z is in a neighborhood of U · z, then

ω(x) ⊆ U · z. Second, this neighborhood of U · z in GC · z should be the entire orbit; that is,
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ω(x) ⊆ U ·z for all x ∈ GC ·z. The first is a little more obvious but does rely on the fact that

our moment map is a minimally degenerate Morse function, see definition 10.1 of [Kir84].

That fact that ||µ∗||2 is a minimally degenerate Morse function can be found in section 4 of

[Kir84].

Fix β. We will be interested in z ∈ Cβ and the orbit GC · z. We define Oε = {x ∈

CP(V C) | ||µ∗||2(x) ∈ [ Mβ,Mβ + ε)} ∩ Sβ. This is an open subset of Sβ that contains

Cβ = {x ∈ Sβ | ||µ∗(x)||2 = Mβ}. We observe that Oε is invariant under the forward flow

ϕt of −grad ||µ∗||2 as ||µ∗||2 decreases along the trajectories t → ϕt(x). Since GC · z is a

submanifold of CP(V C), hence also of Sβ, Oε ∩GC · z is open in GC · z and contains U · z as

Cβ is U -invariant.

Definition 5.5.3. We define {Vε,i} to be the collection of connected components of Oε∩

GC · z that intersect U · z. We define Vε :=
⋃
i

Vε,i.

Remark. Vε is an open set of GC·z that contains U ·z. As U has finitely many components,

U =
m⋃
i=1

φiU0 and we can write Vε =
m⋃
i=1

Vε,i where φiU0(z) ⊆ Vε,i. The Vε,i are connected and

open in GC · z as Oε ∩GC · z is open in GC · z and GC · z is locally connected, see [Mun00,

Theorem 25.3]. Moreover, since Oε and GC · z are invariant under ϕt, t > 0, we see that the

components Vε,i are invariant under forward flow, as well.

Proposition 5.5.4. There exists ε > 0 such that V ε ⊆ GC · z. Moreover, ω(Vε) = U · z

for small ε > 0.
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Proof. Before proving this statement, we will show that there exists some open set A

containing U · z in GC · z such that A is a compact subset of GC · z. Then we will show that

Vε ⊆ A for small ε. This would then prove the first assertion of the proposition.

Recall that GC = U exp(iLU). If we let B = the open unit ball in iLU then A =

U exp(B) · z has the said property, that is, A is a compact subset of GC · z.

Lemma 5.5.5. Either Vε ⊆ A or Vε ∩ ∂A 6= ∅. For small ε > 0, Vε ⊆ A.

This will follow from

Lemma 5.5.6. Either Vε,i ⊆ A or Vε,i ∩ ∂A 6= ∅.

To prove this lemma, suppose Vε,i 6⊆ A and Vε,i ∩ ∂A = ∅. Since Vε,i ∩A intersects U · z,

we see that Vε,i = (Vε,i ∩ A) ∪ (Vε,i\A); that is, Vε,i is separated by these disjoint open sets.

This contradicts the connectedness of Vε,i and the lemma is proven.

We continue with the proof of the first lemma. Suppose Vε 6⊆ A for every ε > 0.

Then for each ε there exists some point pε ∈ Vε ∩ ∂A. By definition ||µ∗||2(pε) ≤ Mβ + ε.

Letting epsilon go to zero we can find a limit point p∞ ∈ ∂A as ∂A is compact. Hence,

p∞ ∈ GC · z − A ⊆ GC · z − U · z. Moreover, ||µ∗||2(p∞) = Mβ and we have found a point

in GC · z which is not on U · z but minimizes ||µ∗|| on GC · z. This is a contradiction since

GC · z ∩ Cβ = U · z by [NM84, Theorem 6.2]. Therefore, Vε ⊆ A for small ε. This proves

the first lemma and the first claim in the proposition.

To finish the proof of the proposition, we observe that U · z = ω(U · z) ⊆ ω(Vε) since

U · z ⊆ Cβ and ϕt fixes the points of Cβ for all t. Thus we just need to show containment in
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the other direction. Since the set Vε is invariant under forward flow and Vε ⊆ GC · z ⊆ Sβ,

we see that ω(Vε) ⊆ Vε ∩ Cβ ⊆ GC · z ∩ Cβ = U · z. �

Definition 5.5.7. Let O = {x ∈ GC · z | ω(x) ⊆ U · z}.

Lemma 5.5.8. Consider the set O defined above. Then O = GC · z.

To prove the lemma it suffices to show that O is open and closed in GC · z and intersects

each component of GC · z. To see that O intersects each component of GC · z, we observe

that O contains U · z and that each component of GC intersects U since GC = UQ and

Q = exp(q) is contractible, see the remarks before Proposition 2.2.4. Choose ε > 0 as in

Proposition 5.5.4.

O is open:

We know for small ε > 0, Vε is open in GC · z, contains U · z, and Vε is contained in O

by Proposition 5.5.4. It suffices to consider x ∈ O\U · z. Then there exists t∗ > 0 such that

ϕt∗(x) intersects Vε, from the definition of O. But ϕ−t∗ : Vε → ϕ−t∗(Vε) is a diffeomorphism

of GC · z (and also of Sβ). Thus, ϕ−t∗(Vε) is an open set in GC · z containing x, which is

contained in O. Therefore O is open.

O is closed:

We will show ∂O = ∅; here we mean the boundary of O in the topological space GC · z.

Take yn ∈ O such that yn → y ∈ GC · z. Since z ∈ Cβ ⊆ Sβ and Sβ is GC-invariant, it

follows that y ∈ GC · z ⊆ Sβ and hence ω(y) ⊆ Cβ. Thus, there exists M > 0 such that
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ϕM(y) ∈ Oε. We will denote the component of Oε ∩GC · z containing ϕM(y) by Oyε ; again,

this component is open in GC · z as GC · z is locally connected. Observe that for t ≥ M ,

ϕt(y) ∈ Oyε and ϕs(Oyε ) ⊆ Oyε for s ≥ 0 as ϕs leaves Oε ∩GC · z invariant for s ≥ 0. Since ϕt

is a diffeomorphism on Sβ which preserves GC ·z, ϕ−1
M (Oyε ) is an open set of GC ·z containing

y.

We assert that Oyε ∩ Vε 6= ∅. Since yn ∈ O, we know there exists Tn > 0 such that

ϕTn(yn) ∈ Vε, by definition of O. Additionally, for t ≥ Tn, ϕt(yn) ∈ Vε by the flow invariance

of Vε.

Pick N such that yN ∈ ϕ−1
M (Oyε ), which we can do as ϕ−1

M (Oyε ) is open and yn → y. Then

we have ϕM(yN) ∈ Oyε , a single component of Oε ∩GC · z, and ϕTN
(yN) ∈ Vε.

If M ≥ TN , then ϕM(yN) = ϕM−TN
(ϕTN

(yN)) ∈ ϕM−TN
(Vε) ⊆ Vε.

That is, ϕM(yN) ∈ Oyε ∩ Vε 6= ∅.

If TN ≥M , then ϕTN
(yN) = ϕTN−M(ϕM(yN)) ∈ ϕTN−M(Oyε ) ⊆ Oyε .

That is, ϕTN
(yN) ∈ Oyε ∩ Vε 6= ∅.

Thus, Oyε being a connected component of Oε ∩ GC · z which intersects Vε, a union of

connected components of Oε ∩GC · z, we have Oyε ⊆ Vε. That is, y ∈ O since ϕt(y) ∈ Vε for

t ≥M and ω(Vε) ⊆ U · z by Proposition 5.5.4. This proves the lemma.

This completes the proof of Theorem 5.5.1.

121



CHAPTER 6

Soliton metrics on nilmanifolds

6.1. Introduction

The aim of this chapter is to introduce the reader to the general results in regards to

existence and non-existence of soliton metrics on nilmanifolds.

Soliton metrics arise in the study of Einstein metrics. Originally they were discovered

as special solutions of a particular geometric evolution equation on the space of Riemannian

metrics on a fixed differentiable manifold. However, they also arise in the search for Einstein

metrics on negatively curved homogeneous manifolds.

It is well known that a homogeneous space of negative curvature is isometric to a solvable

Lie group with a left-invariant metric, see [Hei74]. In [Heb98], Heber classifies the (stan-

dard) Einstein solvmanifolds. We note that this classification was originally done for the

so-called ‘standard’ Einstein solvmanifolds, standard being a technical requirement. While

the standard Einstein metrics were shown to be an open set within the set of Einstein met-

rics on solvable Lie groups, it was not known whether or not an Einstein metric had to be

‘standard’. This question was resolved in the affirmative by Lauret in [Lau07].

Let S be a solvable Lie group with left invariant metric and N its nilradical. The Lie

group N is given the geometry of a submanifold and this is a left-invariant metric on N . If

the codimension of N in S is 1, we say that S is a rank 1 solvable extension of N . It is known



that S admits an Einstein metric if and only if S ′ admits an Einstein metric where S ′ is a

solvable subgroup of S which is a rank one extension of N . This reduction is Proposition 6.11

of [Heb98]. It has been shown that a rank 1 extension S ′ of N admits an Einstein metric

if and only if N admits a so called soliton metric, [Lau01]. See Chapters 1 and Section 3

(below) for the definitions of Einstein and Ricci soliton metrics, respectively.

While searching for soliton metrics on nilmanifolds is interesting in its own right, by

finding which nilmanifolds admit soliton metrics we gain insight into which solvmanifolds

admit Einstein metrics. Our contribution to this problem is the following.

Theorem 7.4.5 A generic two-step nilmanifold admits a soliton metric.

6.2. Nilmanifolds and Left-invariant Geometry

Recall the following definition from Section 1.1.2.

Definition. The lower central series of N is a descending series of ideals defined by

C1N = N

CnN = [N, Cn−1N]

for n ≥ 2. A Lie algebra N is called nilpotent if there exists k such that CkN = 0; moreover,

we call N k-step nilpotent if k is the smallest integer such that CkN = 0.

Observe that abelian groups are nilpotent and equal their center. The closest group to

being abelian, without actually being abelian, is a two-step nilpotent group. In this case

[N,N] ⊂ Z, where Z is the center of our two-step nilpotent algebra N.
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Definition 6.2.1. A nilmanifold is a homogeneous space such that a nilpotent group of

isometries acts transitively on it.

It has been shown that such a manifold is actually a nilpotent Lie group N ′ which is

the quotient of a simply connected nilpotent group N by a discrete central subgroup ZΓ

[Wil82]. By considering the covering N → N/ZΓ as a local isometry, studying the left-

invariant geometry of N is the same as studying the left-invariant geometry of N ′. Therefore

we reduce to the case that N ′ = N is simply connected.

Let N be a simply connected nilpotent Lie group with a left-invariant metric. Let N

denote the lie algebra of N . Then a left-invariant metric on N is equivalent to an inner

product on N denoted by 〈·, ·〉. This is the viewpoint that we will take.

Question 6.2.2. What are the nilpotent Lie groups that admit left-invariant Einstein

metrics?

The answer is none. The following theorem of Milnor [Mil76] demonstrates why these

groups do not admit such nice metrics.

Theorem 6.2.3. Let (N, g) be a nilpotent Lie group with left-invariant metric. Then

there exist directions v, w ∈ N such that Ric(v) > 0 and Ric(w) < 0. Hence, N cannot

admit an Einstein metric.

This leaves one asking the following philosophical question.
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Question 6.2.4. Is there a different notion of preferred or distinguished metric that a

nilpotent group can admit? If so, what are the nilmanifolds that admit these distinguished

metrics?

We argue that the correct notion of distinguished metric for nilmanifolds is the notion of

a soliton metric.

6.3. Soliton Metrics

Soliton metrics arise naturally in the study of normalized Ricci flow on a compact mani-

fold (M, g). Ricci flow, respectively normalized Ricci flow, is a geometric evolution equation

which evolves a given metric g0 according to the differential equation ∂
∂t
g = −2ric, respec-

tively ∂
∂t
g = −2ric+ 2 sc(g)

n
g, where ric is the Ricci (2, 0) tensor of (M, g) and sc is the scalar

curvature function. The fixed points of normalized Ricci flow are the Einstein metrics on M .

However, one can consider special solutions to these equations which evolve via diffeomor-

phisms and rescaling; that is, the solution looks like g(t) = σ(t)ψ∗t g0, where σ(t) is a scalar

function of time, ψt are diffeomorphisms, and g0 is the initial metric that we started with.

The idea is that one is just rescaling space and time.

The initial metric g0 is called a (homothetic) Ricci soliton of the Ricci flow, resp. normal-

ized Ricci flow, if g(t) = σ(t)ψ∗t g0 is a solution to the Ricci flow, resp. normalized Ricci flow.

It is a simple exercise to show that a metric g0 is a homothetic Ricci soliton for Ricci flow if

and only if it is a homothetic Ricci soliton for normalized Ricci flow. For a comprehensive

introduction to Ricci flow and Ricci solitons see [CK04].
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Consider a nilpotent Lie group N with left-invariant metric g0. As g0 is left invariant,

any solution g(t) = σ(t)ψ∗t g0 to Ricci flow will also be left invariant. We call a left-invariant

Ricci soliton a nilsoliton. For nilmanifolds the following algebraic characterization was given

in [Lau01, Proposition 1.1].

Proposition 6.3.1. Let (N, g) be a nilpotent group N with left invariant metric g. Then

g is a soliton metric if and only if

ricg = cI +D

for some c ∈ R and some symmetric D ∈ Der(N).

Remark. Note that when the metric g is a soliton metric, the derivation D is symmetric

with respect to g since Id and Ricg are symmetric. Moreover, it can be shown that the

eigenvalues of D (up to scaling) lie in N.

We will take the characterization of nilsolitons in the proposition to be our working

definition of a metric being a soliton metric. On two-step nilmanifolds there is a special kind

of soliton metric called optimal metric, see Definition 7.2.1. These special metrics were first

discovered in [EH96] and have many strong geometric properties.

We are interested in when our Lie algebra will admit a soliton metric. More precisely,

we want to know when our Lie algebra admits an inner product so that the associated left-

invariant metric on our Lie group is a soliton metric. To do this, we can think of varying the

inner products on our Lie algebra or we can vary the bases of our Lie algebra and declare

them to be orthonormal, see the following Section. These yield the same outcome and are

only different in perspective. We will adopt the latter view. That is, we will vary our bases
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and assign the inner product so that the bases are orthonormal. If we can find a basis so that

the associated metric algebra is soliton, we say that our algebra admits a soliton metric.

Recall from [Lau01] that a simply connected nilpotent Lie group N admits a soliton

metric if and only if N is the nilradical of a rank 1 solvable extension S that admits an

Einstein metric. See Proposition 6.3.9.

Definition 6.3.2. A nilpotent Lie algebra N is called an Einstein nilradical if N admits

a soliton metric.

With Lauret’s algebraic characterization of soliton metrics many existence and non-

existence results have been obtained for the general case of k-step nilpotent groups. We

briefly record some of the known facts concerning which nilpotent Lie groups do and do not

admit soliton metrics; for proofs and more detailed exposition on the soliton problem for nil-

manifolds see [LW] and references therein. Not much attention has been placed exclusively

on two-step nilmanifolds.

Proposition 6.3.3. (Necessary condition for existence) Let N be a nilpotent Lie group

with a left invariant metric. If N admits a soliton metric, then N necessarily admits an

N-grading. That is, there exists a decomposition N = ⊕Ni such that [Ni,Nj] ⊂ Ni+j.

Remark. The existence of an N-grading on N is equivalent to the existence of a symmetric

derivation whose eigenvalues are integral. When the algebra admits a soliton metric, one

can choose the symmetric derivation that is given in the previous proposition.
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Proposition 6.3.4. (Non-existence result) Let N be a nilpotent algebra. We say that N

is characteristically nilpotent if Der(N) consists only of nilpotent elements. Such an algebra

cannot admit a soliton metric as there do not exist any symmetric derivations.

All metric two-step nilalgebras have a natural N-grading. Consider N = V ⊕ Z the

orthogonal decomposition relative to our metric, where Z is the center and V its orthogonal

compliment. Then define D : N→ N

D =


Id on V

2Id on Z

This is a derivation which is symmetric and has integer eigenvalues. Naturally the question

was asked: Do all two-steps admit nilsolitons? The answer to this question turns about

to be no, see the Theorem 6.3.6 below. However, as our main result shows, most two-step

nilmanifolds admit a soliton metric, see Theorem 7.4.5.

Proposition 6.3.5. (Existence result) Every nilpotent Lie group of dimension ≤ 6 ad-

mits a soliton metric.

See [Wil03] for a proof of this fact.

Theorem 6.3.6. (Non-existence result) There exist two-step nilmanifolds which do not

admit an Einstein metric.

In [LW], Lauret and Will constructed two-step nilalgebras that cannot possibly admit a

soliton metric. They achieved their results by a finer analysis of the so called “eigenvalue
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type” of an algebra. In our context, that work can be summarized as follows. See Section

7.7.1 for the definition of algebras of type (p, q).

Corollary 6.3.7. Consider (p, q) = (m + 2t,m + t + 1) for m ≥ 1 and t ≥ 0. All but

finitely many of these types have nilalgebras that will not admit a soliton metric.

In contrast, it is easy to see that all algebras of type (1,q) admit soliton metrics. We

suspect that this rigidity happens for some other (p, q) types as well.

*.

Nilgeometry and Negative Curvature

The geometry of nilmanifolds is intimately related to that of solvmanifolds. Recall that

negatively curved homogeneous spaces are isometric to solvable Lie groups endowed with left

invariant metrics, see [Hei74]. The following tight relationship to negative curvature was

obtained in [Lau01, Theorem 3.7].

Definition 6.3.8. Let S be a solvable Lie group and let s denote the Lie algebra of S.

If we denote the nilradical of s by N, then as a vector space we can decompose s = a ⊕ N

where a is a complementary vector space to N. The Lie group S and the Lie algebra s are

said to be of rank k if dim a = k.

Proposition 6.3.9. Let (N, g) be a nilsoliton. Then there exists a solvmanifold (S, g̃)

such that

(i) dimS = dimN + 1
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(ii) N is the nilradical of S

(iii) g̃|N = g and (S, g̃) is Einstein

Such a solvmanifold S is called a rank 1 extension of N . Conversely, if S is a rank 1 Einstein

manifold, then the nilradical N is a soliton.

It was known that any standard Einstein solvmanifold could be reduced to a rank 1

Einstein solvmanifold. This was developed in [Heb98, Section 4.5] where the standard

Einstein solvmanifolds were classified. We know that a rank 1 solvmanifold S is a standard

Einstein solvmanifold if and only if its nilradical is soliton, by the theorem above. However,

it was only recently shown that an Einstein solvmanifold had to be standard. See [Lau07].

In this way, by classifying which nilalgebras admit soliton metrics we are able to classify

which solvmanifolds admit Einstein metrics.

6.4. Algebraic Group actions, Moment Maps, and Einstein Nilradicals

Let N be a vector space. We are interested in studying the nilpotent Lie algebra brackets

and inner products that can be put on N. To do this, we consider the following space∧2
N∗⊗N. This is the space of skew-symmetric bilinear forms on N. We can further reduce

to the set N ⊂
∧2

N∗ ⊗ N which is the real algebraic variety which consists of nilpotent

Lie algebra structures. To see that this is a variety, observe that the Jacobi condition and

Cartan’s criterion for nilpotency are described by polynomials.

Consider an inner product <,> on N. For µ ∈ N ⊂
∧2

N∗⊗N, we denote by (Nµ, <,>)

the nilpotent Lie algebra with bracket structure µ and metric <,>; similarly, we denote
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by (Nµ, <,>) the simply connected Lie group over Nµ with the corresponding left-invariant

metric.

The group GL(N) acts on the variety N ⊂
∧2

N∗ ⊗N. For µ ∈ N and g ∈ GL(N) we

have

g · µ(X, Y ) = gµ(g−1X, g−1Y )

for X, Y ∈ N. Lauret [Lau01] has shown that the orbit GL(N) · µ corresponds to the set of

metric Lie algebras with underlying bracket structure µ. In this way, one sees that fixing the

inner product on N while varying the bracket structure is equivalent to fixing the bracket

structure while varying the inner product. This perspective has been very fruitful. We use

the same philosophy to study the two-step nilpotent Lie algebras, see Chapter 7.

Moreover, Lauret’s work shows the following. The fixed inner product on N extends

naturally to an inner product on
∧2

N∗ ⊗N. In addition, the group GL(N) is self-adjoint

with respect to this inner product. Although not phrased using the language of distinguished

orbits, the following is Theorem 4.2 of [Lau01].

Theorem 6.4.1 (Lauret). Let µ ∈ N ⊂
∧2

N∗ ⊗N. Then Nµ is an Einstein nilradical

if and only if the orbit GL(N) · µ is a distinguished orbit.

Recall that distinguished orbits are those that attain critical points of the norm squared

of the moment map on projective space, cf. Chapter 5.
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CHAPTER 7

Two-step Einstein Nilradicals

The goal of this chapter is to show that a generic two-step nilmanifold admits a soliton

metric; that is, generic two-step nilmanifolds are Einstein nilradicals. In fact, we show that

except for a small class, most two-step nilmanifolds admit so-called optimal metrics. Optimal

metrics are soliton metrics with the additional strong property of geodesic flow invariance.

Moreover, we use this approach to calculate the dimension of the moduli of soliton metrics

up to scaling and isometry around certain generic points. In [Heb98] Heber calculates the

dimension of the moduli space around the rank 1 symmetric spaces, until now this was all

that was known in regards to the size of the moduli space.

It has been shown that there do exist two-step nilmanifolds that do not admit soliton

metrics, see [LW]. Below we motivate why the set of two-step nilmanifolds is a natural

setting for our question.

Our proof of the main theorem follows the works of Lauret and Eberlein. The relationship

between left-invariant soliton metrics on nilmanifolds and Geometric Invariant Theory was

first worked out by Lauret in [Lau05]. Eberlein used the methods and results of Lauret to

study the Ricci tensor of a metric two-step nilpotent Lie group in [Ebe07]. We use theorems

of Littlemann-Knopf, Elashvili, and Popov to obtain our result.



7.1. Two-step Nilmanifolds and Their Stratification

Remark. Our use of the term stratification is in the loose sense; that is, we simply mean

a decomposition of the space.

In this chapter, N will denote a simply connected, two-step nilpotent Lie group, see

Section 1.1.2 for the definition of nilpotent. We denote the Lie algebra of N by the gothic

letter N. Two-step nilpotent groups are the closest groups to being abelian without actually

being such. In this case we have [N,N] ⊂ Z, where Z is the center of our two-step nilpotent

algebra N.

As stated before, a left-invariant metric on N is equivalent to an inner product on N.

We denote such an inner product by <,>. Let Z denote the center of N. Then [N,N] ⊂ Z

and we have an orthogonal decomposition N = V ⊕ [N,N]. Since [V ,V ] ⊂ Z, we can recover

all of the algebra information from the j-map defined by

〈j(Z)v, w〉 = 〈[v, w], Z〉

For each Z ∈ [N,N] the map j(Z) : V → V is skew-symmetric. Equivalently, one could

define j(Z)v = (ad v)∗Z, where (ad v)∗ is the metric adjoint of ad v relative to the fixed

inner product <,> on N. We have a linear map j : [N,N] → so(V). In the event that

j has more structure, e.g. is the representation of a compact algebra, much more can be

said about the geometry of N. For example, this is how the naturally reductive nilmanifolds

arise. See [Lau98, Gor85].
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Aroldo Kaplan first used the j-map to study the geometry of nilpotent groups of Heisen-

berg type in [Kap83]. Eberlein then used the j-map to study all two-step nilgroups. The

next two results are propositions 2.5 and 2.7 from [Ebe94].

Proposition 7.1.1. Let ric denote the (2,0)-ricci tensor and Ric denote the (1,1)-ricci

tensor. These tensors are related by ric(X, Y ) = 〈Ric(X), Y 〉 for X, Y ∈ N. The following

are true

(i) ric(X,Z) = 0 for X ∈ V and Z ∈ Z. So Ric leaves V and Z invariant.

(ii) If {Z1, . . . , Zm} is an orthonormal basis of Z, then Ric|V = 1
2

∑m
k=1 j(Zk)

2. From this

one sees that Ric|V is negative definite as the j(Zk)
2 have non-positive eigenvalues.

(iii) ric(Z,Z∗) = −1
4
trace{j(Z) ◦ j(Z∗)}. Thus, Ric|Z is positive semi-definite. The

kernel of Ric in N = {Z ∈ Z : j(Z) = 0} = {Z ∈ Z : Z is orthogonal to [N,N]}.

Remark. If we write N as an orthogonal direct sum V⊕[N,N], then the proposition above

is modified as follows. Assertion (i) remains true with Z replaced by [N,N]. In (ii) Ric|V is

negative semidefinite if {Z1, . . . , Zk} is an orthonormal basis of [N,N] and Ker Ric|V is the

common kernel of {j(Z) : Z ∈ [N,N]}. In (iii) Ric|[N,N] is positive definite.

Proposition 7.1.2. Let N be a simply connected 2-step nilpotent Lie group with left-

invariant metric 〈·, ·〉. Let E = {Z ∈ Z : j(Z) = 0} and let N∗ denote its orthogonal

compliment in N relative to our inner product 〈·, ·〉. Then

(i) E and N∗ are commuting ideals in N and N is the direct product of the subgroups

N∗ = exp(N∗) and E = exp(E).
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(ii) N is isometric to the Riemannian product of the totally geodesic submanifolds N∗, E,

and E is the Euclidean de Rham factor.

To study the geometry of N and classify our two-step nilalgebras it is simpler to strip off

this Euclidean de Rham factor. In regards to our goal of studying which nilalgebras admit a

soliton metric we will see that this Euclidean de Rham factor is irrelevant (see Proposition

7.2.7).

*.

Nilalgebras of type (p,q)

Definition 7.1.3. Let N = V ⊕ [N,N] be a two-step nilalgebra. We say that N is of

type (p, q) if dim[N,N] = p and dimV = q.

Remark. No inner product has been assigned to N at this point and the decomposition

above is merely a direct sum. Additionally, for any choice of metric <,>, N has no Euclidean

de Rham factor precisely when Z = [N,N].

Given a metric algebra N = V ⊕ [N,N], take a basis B = {v1, . . . , vq, Z1, . . . , Zp} which

respects our decomposition. Such a basis is called an adapted basis, see [Ebe03] for more

details. Consider the structure coefficients defined by

[vi, vj] =
∑
k

Ck
ijZk

If our basis were orthonormal, then we could equivalently say Ck
ij = 〈[vi, vj], Zk〉. Note the

skew-symmetry in i, j. The structure coefficients completely determine the bracket structure

of our algebra. We can organize these as a p-tuple of matrices C = (C1, . . . Cp) ∈ so(q,R)p.
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These matrices are called the structure matrices of N determined by the above adapted

basis. It is easy to see that the {Ci} are linearly independent, and in particular p ≤ D =

dim so(q,R) = 1
2
q(q − 1).

*.

The example Rp+q(C)

Conversely, if we were given a p-tuple C = (C1, . . . Cp) ∈ so(q,R)p where the Ci are

linearly independent, then we could associate a metric two-step nilpotent algebra of type

(p, q) to it. To do this, just use the standard orthonormal basis {e1, . . . , eq} as our orthonor-

mal basis of V = Rq and take {eq+1, . . . , eq+p} to be an orthonormal basis of [N,N] = Rp.

Then define the bracket relations on this vector space with inner product as above using our

p-tuple C. That is, [ei, ej] =
∑

k C
k
ijeq+k. The metric nilalgebra constructed in this way will

be denoted by Rp+q(C). It is easy to check that the structure matrices of the adapted basis

{e1, . . . , ep+q} are {C1, . . . , Cp}.

Note that Z = [N,N] ⊕ E , where E ⊂ V ' Rq is the common kernel of all the structure

matrices. Having no Euclidean de Rham factor is equivalent to Z = [N,N], which is a very

natural condition. The algebras of type (p, q) with no Euclidean de Rham factor form a

Zariski open set in so(q,R)p; the relationship between nilalgebras of type (p, q) and points

in the space so(q,R)p is described in Proposition 7.1.4. This open set is always non-empty

except in the case (p, q) = (1, 2k + 1). In regards to finding those algebras which admit

soliton metrics, having a Euclidean de Rham factor is not an obstruction (see Proposition
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7.2.7) and we will usually assume Z = [N,N]. The following characterization of two-step

nilalgebras was communicated to us by P. Eberlein and is very useful. See also [Ebe07].

Proposition 7.1.4. The tuples C = (C1, . . . , Cp) ∈ so(q,R)p which correspond to two-

step nilalgebras of type (p, q) form a Zariski open set in Vpq := so(q,R)p. This Zariski open

set consists of p-tuples whose {Ci} are linearly independent and is denoted by V 0
pq.

*.

Action of GL(q,R)×GL(p,R) on so(q,R)p

Let GL(q,R) act on so(q,R)p by g · (C1, . . . , Cp) = (gC1gt, . . . , gCpgt). Let GL(p,R) act on

so(q,R)p by h · (C1, . . . , Cp) = (D1, . . . , Dp), where Dj =

p∑
i=1

hjiC
i. We identify so(q,R)p

with so(q,R)⊗Rp via the isomorphism (C1, . . . , Cp) 7→
p∑
i=1

Ci⊗ei, where {ei} is the standard

basis of Rp.

Consider the following group actions. Let GL(q,R) act on so(q,R)⊗Rp by g(M ⊗ v) =

(gMgt⊗v) and letGL(p,R) act on so(q,R)⊗Rp by h(M⊗v) = M⊗(hv), where g ∈ GL(q,R),

h ∈ GL(p,R), M ∈ so(q,R), v ∈ Rp and GL(p,R) acts on Rp in the usual way. One

immediately see that the above isomorphism so(q,R)p ' so(q,R) ⊗ Rp is equivariant with

respect to the actions of GL(q,R) and GL(p,R). In particular, since the actions of GL(q,R)

and GL(p,R) commute on so(q,R)⊗Rp, the actions of GL(q,R) and GL(p,R) commute on

so(q,R)p and we obtain an action of GL(q,R)×GL(p,R) on both spaces that respects the

isomorphism.

*.
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Compatible inner product on so(q,R)p

Let <,> denote the canonical inner product on so(q,R) given by < A,B >= −tr(AB),

and extend <,> to so(q,R)p by defining < (C1, . . . , Cp), (D1, . . . , Dp) >=

p∑
i=1

< Ci, Di >.

The group GL(q,R)×GL(p,R) is self-adjoint with respect to <,> and K = O(q,R)×O(p,R)

is the fixed group of the corresponding Cartan involution of GL(q,R)×GL(p,R).

*.

Change of basis formulas

Varying the inner products on V and [N,N] is equivalent to changing the bases for V

and [N,N]; see Proposition 7.2.6 for justification of varying the inner products on only these

pieces as opposed to all of N. Let {v′1, . . . , v′q, Z ′1, . . . , Z ′p} be another basis of V ⊕ [N,N].

Then there exists g ∈ GL(V) and h ∈ GL([N,N]) such that

v′i =
∑
j

gijvj Zk =
∑
l

hklZl

How do the structure matrices for these different bases compare? Let C ′ be the structure

matrix with respect to the basis {v′1, . . . , v′q, Z ′1, . . . , Z ′p}. That is, [v′i, v
′
j] =

∑
k C
′k
ijZ
′
k. Sub-

stituting in the old basis written in terms of the new basis we can relate C and C ′ by

∑
ts

gitgjsC
l
ts =

∑
k

hklC
′k
ij for 1 ≤ l ≤ p, 1 ≤ i, j ≤ q

The left hand side of the equation above is (gC lgt)ij. If ht(C ′) = (D1, . . . , Dp) relative to

the action of GL(p,R) on so(q,R)p, then the right hand side of the equation is (Dl)ij. Hence

the equation may be written as g · C = ht · C ′ or C ′ = (g, (ht)−1) · C relative to the action

of GL(q,R) × GL(p,R)) on so(q,R)p. This is our motivation for studying the action of
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GL(q,R) × GL(p,R) on so(q,R)p. The following is a neat interpretation of the change of

basis formula above.

Proposition 7.1.5. Isomorphism classes of two-step nilalgebras correspond to GL(q,R)×

GLp(R) orbits in V 0
pq ⊂ so(q,R)p.

The group action listed above immediately gives rise to an action of the Lie algebra

gl(q,R)×gl(p,R). Let (X, Y ) ∈ gl(q,R)×gl(p,R) and C = (C1, . . . , Cp) =
∑

k C
k⊗ ek then

(X, Y ) · C =
∑
k

X(Ck)⊗ ek + Ck ⊗ Y (ek) =
∑
k

(XCk + CkX t)⊗ ek + Ck ⊗ Y ek

We will be interested later in symmetric derivations. Since such a derivation preserves [N,N]

and hence V , we record some information about automorphisms and derivations that respect

the decomposition V ⊕ [N,N].

Proposition 7.1.6. Let M = (M1,M2) ∈ M(q,R) × M(p,R) act on Rp+q(C) in the

usual way: for 1 ≤ i ≤ q, M(ei) = M1(ei) =
∑

j(M1)jiej and for 1 ≤ k ≤ p M(eq+k) =

M2(eq+k) =
∑

l(M2)lkeq+l. Then

(i) If M = (M1,M2) ∈ GL(q,R)×GL(p,R) then M is an automorphism of Rp+q(C) if

and only if M t
1 · C = M2 · C, with the action of GL(q,R) × GL(p,R) on so(q,R)p

defined above.

(ii) If M = (M1,M2) ∈ M(q,R) ×M(p,R) then M is a derivation of Rp+q(C) if and

only if M t
1 · C = M2 · C, with the action of gl(q,R) × gl(p,R) on so(q,R)p defined

above.
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The proof is immediate upon writing out the bracket conditions to be a derivation or an

automorphism in terms of the natural basis {ei} of Rp+q(C).

7.2. Soliton Metrics on Nilmanifolds

In Chapter 6 we gave the definition of soliton metrics on nilmanifolds. Recall the follow-

ing proposition which gives an algebraic characterization of soliton metrics on nilmanifolds.

Theorem 6.3.1 Let (N, g) be a nilpotent group N with left invariant metric g. Then g

is a soliton metric if and only if

ricg = cI +D

for some c ∈ R and some symmetric D ∈ Der(N).

Recall that this is our working definition of a metric being a soliton metric. A special

kind of soliton metric is the so called optimal metric, defined below. These special metrics

were first discovered in [EH96] and have many strong geometric properties.

Definition 7.2.1. Let N be a two-step nilmanifold with inner product 〈·, ·〉 on N. Then

we say 〈·, ·〉 is an optimal metric if there exist λ, µ > 0 such that Ric = −λId on V and

Ric = µId on [N,N].

Definition 7.2.2. We will say that C ∈ so(q,R)p has a property if and only if Rp+q(C)

has the said property. For example, we say C is optimal or soliton if Rp+q(C) is, respectively,

optimal or soliton. We say that C admits a property if g · C has that property for some

g ∈ GL(q,R)×GL(p,R).

140



*.

Criterion for optimal metrics Recall that if N is a two-step nilpotent Lie algebra of type

(p, q), then a basis B of N is adapted if it contains a basis of [N,N]. If we write B =

{v1, . . . , vq, Z1, . . . , Zp}, where {Z1, . . . , Zp} is a basis of [N,N], then B determines structure

matrices {C1, . . . , Cp} ⊂ so(q,R) by the bracket relations [vi, vj] =

p∑
i=1

Ck
ijZk for 1 ≤ i, j ≤ q.

The next result is Proposition 7.4 of [Ebe07].

Proposition 7.2.3. Let N be a two-step nilpotent Lie algebra of type (p, q) and let

{C1, . . . , Cp} be the structure matrices of some adapted basis B. Then N admits a metric

<,> with optimal Ricci tensor if and only if the SL(q,R)×SL(p,R) orbit of C = (C1, . . . , Cp)

is closed in Vpq = so(q,R)p.

Claim 7.2.4. Optimal metrics are soliton.

Proof. We need to show that there exists a symmetric derivation D ∈ Der(N) and

c ∈ R such that Ric = cId + D. Consider the map D = d Id on V and D = 2d Id on Z.

This is a derivation of any 2-step nilalgebra. Then using c = −2λ − µ and d = µ + λ we

have the desired result. �

Recall that fixing the bracket structure on N and varying the inner product is equivalent

to fixing the inner product on N and varying the bracket structure. We vary the bracket

structure via the change of basis action, cf. Chapter 6. Recall that N is an Einstein nilradical

if N admits a soliton metric. We can specialize our change of basis action as follows.
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Let s be the Lie algebra of a solvable Lie group S. In Heber’s development of the the

classification of (standard) Einstein solvmanifolds, he showed that if s admits an Einstein

metric then one can change the basis in a very special way to achieve an Einstein metric on

s, see Proposition 6.8 of [Heb98] for a proof of the following.

Theorem 7.2.5. Suppose that N admits a soliton metric. That is, given an inner product

<,> on N, there exists g ∈ GL(N) such that g· <,> is a soliton metric on N. Then we

have a decomposition N = ⊕Ni, where the Ni are the eigenspaces of a symmetric derivation

of N. Moreover, we can actually choose g ∈ GL1 ×GL(N1)× · · · ×GL(Nk) so that g· <,>

is a soliton metric.

Now we have a strong motivation to exploit our stratification of two-step nilalgebras. In

the two-step case, Heber’s theorem translates to the following

Proposition 7.2.6. Suppose a two-step nilalgebra N admits a soliton metric. That is,

there exists A ∈ GL(N) such that A · 〈·, ·〉 = 〈A−1·, A−1·〉 is a soliton metric. Then there

exists B ∈ GL(V)×GL([N,N]) such that B · 〈·, ·〉 = 〈B−1·, B−1·〉 is a soliton metric.

This proposition is the motivation for studying the change of basis action on just the V

and [N,N] parts. In what follows we retranslate the soliton condition to the standpoint of

the GL(q,R)×GL(p,R) action on Vpq. Before continuing we make note of the following

Proposition 7.2.7. Let N be a two-step nilgroup and let N∗ be defined as above, that

is, N = N∗ × E where E is the Euclidean de Rham factor of N . Then N admits a soliton

metric if and only if N∗ does so.
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Proof. Recall from theorem 6.3.1 that g is a soliton metric if and only if Ricg = cId+D

for some c ∈ R and some D ∈ Der(N). Let g be our metric on N and g∗ be the restriction

onto N∗. We denote the Ricci tensor for (N, g) by Ric and the Ricci tensor for (N∗, g∗) by

Ric∗. Using Propositions 7.1.1 & 7.1.2 observe that

Ric|N∗ = Ric∗

and

Ric|E = 0

Since Ric = cId+D we have D|E = −cId. That is D preserves E and since it is symmetric

it also preserves N∗. Moreover, since D is a derivation of N we see that D∗ = D|N∗ is a

derivation of N∗. Hence we have obtained

Ric∗ = Ric|N∗ = cId+D|N∗ = cId+D∗

where D∗ is a derivation of N∗.

�

We would like to work out the criteria for a metric two-step nilalgebra to be a soliton

from the perspective of the GL(q,R)×GL(p,R) action on Vpq. Since every metric two-step

nilalgebra takes the form Rp+q(C) for some C, it is reasonable to state the requirements

from this point of view. This will be worked out in Section 7.7.4 but first recall some basic

information about algebraic group actions (cf. Chapters 1 and 2).
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7.3. Algebraic Group Actions and Certain Special Representations

We briefly recall some theorems from real Geometric Invariant Theory (GIT). We use

GIT as a tool to study the action of GL(q,R)×GL(p,R) on Vpq to obtain some very general

results. See Chapter 2 for a more thorough introduction to GIT.

For the above representation we are interested in finding the orbits which are either

closed or distinguished (cf. Definition 5.4.2); moreover, we wish to show that generic orbits

are either closed or distinguished. The following theorems motivate our treatment of two-

step nilsolitons.

Proposition 2.1.3 Consider an algebraic group G which acts linearly on V . Let G ·v be

a closed orbit of maximal dimension, then the set of closed orbits is dense in V . Alternatively

we could say, if there exists a closed generic orbit, then generic orbits are closed, that is, the

set of closed orbits contains a nonempty Zariski open set.

Proposition 2.4.1 Consider v ∈ V ⊂ V C. Then G · v is closed if and only if GC · v is

closed. Moreover, since V is Zariski dense in V C, V has a Zariski open set of closed orbits

if and only if V C does so.

Theorem 2.2.8 An orbit G · v is closed if and only if it contains a minimal vector.

Moreover, M ∩G · v = a single K-orbit.
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Remark. We show in Section 7.7.4 that minimal vectors in a particular setting correspond

to metrics on two-step nilmanifolds with nice geometric properties.

Theorem 3.0.4 Let G be a semi-simple group. If the generic stabilizer is a reductive

subgroup, then generic orbits are closed.

We point out that if we have an open set of points whose stabilizers are reductive not

all of these points necessarily have closed orbits. For more detailed information see [PV94]

and Chapters 2-4. A lot of work was poured into the problem of groups acting linearly

on vector spaces, i.e., representations. Since most representations of complex semi-simple

groups have trivial generic stabilizers, lists were developed to understand the remaining

cases. The following is a subset of the tables listed in [KL87, Ela72].

Proposition 7.3.1. Let 1 ≤ p ≤ 1
2
q(q − 1) = D. For all pairs (p, q) other than (1, 2k +

1), (2, 2k + 1), (D − 1, 2k + 1), (D − 2, 2k + 1), the generic stabilizer of SL(q,C)× SL(p,C)

acting on
(∧2 Cq

)
⊗ Cp is reductive. Here generic orbits are closed.

Proof. To verify this fact, one just consults the lists generated in [KL87] and [Ela72].

In fact, for most of these representations the stabilizer is finite. Knop and Littleman record

the groups with representation, up to outer automorphism and castling transformation (de-

fined below in Lemma 7.3.2), whose generic stabilizer is not finite. We also note that the list

in [KL87] picks up some cases that were originally missed in [Ela72].
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Our goal is to apply Theorem 3.0.4 by showing that in the cases listed above the generic

stabilizer is reductive. In referencing Tables 2a & 2b of [KL87], we first look for our group

type An × Am. Recall SLn+1 = An. If the group doesn’t show up in the table, then we

know that for our representation the generic stabilizer is finite, which is reductive, and hence

generic orbits are closed.

Before continuing with the groups whose generic stabilizer is not finite we need two

lemmas.

Lemma 7.3.2. Let G× SL(p,C) act on V ⊗ Cp where each group acts on the respective

factor. Let n = dimV , assume p < n, and let p′ = n − p. If the generic stabilizer of

G×SL(q,C) acting on V ⊗Cp is reductive, then the generic stabilizer of G×SL(p′,C) acting

on V ∗ ⊗ Cp′ is also reductive. Here V ∗ is the dual representation. In fact the stabilizers are

isomorphic. This transformation is called the castle transform of G × SL(q,C) acting on

V ⊗ Cp.

Proof of lemma. See Corollary 1 of [Ela72].

Lemma 7.3.3. Let ρ : G → GL(V ) be a representation of G and let σ ∈ Aut(G). Then

the generic stabilizer of ρ(G) is reductive if and only if the generic stabilizer of ρ ◦ σ(G) is

reductive. Moreover, these stabilizers are isomorphic.

Proof of lemma. The proof is trivial, but this lemma allows us to find groups and

representations in Tables 2a & 2b of [KL87] up to automorphism of the group. We can then

apply Theorem 3.0.4.
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Claim 7.3.4. For the representations given in the proposition above, type (p, q) is equiv-

alent to type (D − p, q) via automorphisms of the group and castling transformation, where

D = 1
2
p(p− 1) = dim so(q,R).

Proof of claim. To see this we first construct an outer automorphism σ of G = SL(q,C)

so that G acting on V ∗ is equivalent to σ(G) acting on V . Once we have this automorphism

of SL(q,C), we consider the automorphism σ× id of SL(q,C)× SLD−pC. Now we have the

desired composition:

V ⊗ Cp castle transform−→ V ∗ ⊗ CD−p σ×id−→ V ⊗ CD−p

We finish the proof of the claim. For f ∈ V ∗, g · f(∗) = f(g−1∗). Next we construct

the automorphism σ of SLqC. Recall that we have a symmetric, non-degenerate bilinear

form B on V =
∧2 Cq = so(q,C). B(v, w) = tr(v wt) for v, w ∈ so(q,C). For g ∈

SL(q,C), the adjoint with respect to B corresponds with the usual transpose of g. Define

σ ∈ Aut(SL(q,C)) by σ(g) = (gt)−1. Now consider F : V → V ∗ defined by F (v) = B(v, ·).

This is an isomorphism as B is non-degenerate. It is also easy to check the equivariance of

the G-actions, i.e., F (g · v) = σ(g) · F (v).

Now Lemmas 7.3.2 and 7.3.3 show that if the generic stabilizer is reductive in the (p, q)

case, then it is so for the (D − p, q) case. This completes the proof of the claim.

To finish the proof of our proposition, we note that Knop-Littelman only record one of

(p, q) or (D − p, q). The groups SL(q,C) × SL(p,C) whose generic stabilizer is not finite

correspond to (p, q) = {(2,m) with m even, (3,4), (3,5), (3,6) }. Elashvili calculated the
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generic stabilizer for all of these except (3, 6) in [Ela72]. He found these to be reductive.

The case (3, 6) is taken care of in [EJ] and has generically reductive stabilizers. �

The above proposition is of importance because the complexification of so(q,R) is
∧2 Cq

and our action of SL(q,R) complexifies to the representation of SL(q,C) with highest weight

ω2.

The remaining exceptional cases also need to be analyzed to understand the metrics that

a two-step nilmanifold can admit. In these cases the only minimal vector is the origin. So

we move to projective space and study the critical points of the moment map instead of just

zeros of the moment map. These points have geometric significance which will be explained

below.

*.

The Moment Map on Projective Space We recall the definition of the moment map on

projective space and the definition of distinguished points. See Chapter 5 for more details.

Since the moment map m : V → p is homogeneous of degree 2 we can consider the map

m : PV → p defined by

m([v]) =
m(v)

|v|2

. This map is also called the moment map.

Definition 5.4.2 The points v ∈ V and [v] ∈ PV are called distinguished points if

[v] ∈ PV is a critical point of |m|2. If G · [v] contains a distinguished point then we say G · [v]
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and G · v are distinguished orbits.

Lemma 7.3.5. A point v ∈ V is distinguished if and only if m(v) ·v = rv for some r ∈ R.

Remark. Note that r ≥ 0 since r|v|2 =< m(v) · v, v >= |m(v)|2.

The proof of the lemma is a simple exercise which we leave to the reader. To understand

and find distinguished vectors, we will resort to using complex groups. Consider G � V and

it’s complexification GC � V C. Let v ∈ V ⊂ V C. It is known that (GC · v) ∩ V is a finite

union of G-orbits (see Proposition 1.3.2). The following theorem and corollary give a way of

finding distinguished vectors in the real setting.

Theorem 5.4.7 Let G be a reductive real algebraic group and GC its complexification.

Then G · v is distinguished if and only if GC · v is distinguished. Consequently, if G · v is

distinguished, then each of the other finite orbits that comprise GC ·v∩V is also distinguished.

Corollary 7.3.6. If an orbit is Hausdorff open in PV and is distinguished, then generic

points in V lie on distinguished orbits.

Proof. Our group G will have an open orbit in PV if and only if R × G has an open

orbit in V . The property of being a distinguished point is scale invariant, so G · v being a

distinguished orbit is equivalent to R×G · v being a distinguished orbit.

We recall that R × G · v being an open orbit in V is equivalent to C × GC · v being a

Zariski open orbit in V C. To see this, note that the real dimension of the first equals the

complex dimension of the second. Finally, a complex orbit is open in its Zariski closure,
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which in this case is V C since the complex orbit contains a Hausdorff open set (cf. [Bor91,

Proposition 1.8]). Since the real orbit is distinguished, we have that the complex orbit is

also distinguished by the theorem above. But then C×GC · v∩V is a union of finitely many

R × G-orbits and is a Zariski open set of V all of whose points lie on R × G-distinguished

orbits, again by Theorem 5.4.7 and Proposition 1.3.2. Hence we have found a Zariski open

set in V of points whose G-orbits are distinguished. �

This corollary is exceptionally useful for finding distinguished orbits. Recall that a Zariski

open set in V C is Hausdorff connected whereas a Zariski open set in V will often have many

disconnected Hausdorff components. Using the theorem above on our real space V , if we

can show that all the orbits in just one Hausdorff component are distinguished, then we

are guaranteed that this happens for all the Hausdorff components. Hence it happens on a

Hausdorff dense set. Our application is

Proposition 7.3.7. In the exceptional cases of (1, 2k + 1), (2, 2k + 1), (D − 1, 2k +

1), (D − 2, 2k + 1) the action SL(2k + 1,R) × SL(p,R) � Vp,2k+1 has generic orbits which

are distinguished.

See Section 7.5 for details.

7.4. Soliton Metrics on the Two-step Metric Algebra Rp+q(C)

In this section we write out the conditions that the metric two-step nilalgebra Rp+q(C)

admits a soliton metric. The following description of solitons may be found in [Ebe07].

*.
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The Ric map

We can define a function Ric : Vpq = so(q,R)p → Symm(q,R) × Symm(p,R) that

captures all of the information of the Ricci tensor for Rp+q(C). Here Symm(q,R) is the set

of symmetric q × q matrices. Given C = (C1, . . . , Cp) ∈ Vpq = so(q,R)p we define

Ric(C) = (Ric1(C), Ric2(C))(7.1)

where

Ric1(C) = −2

p∑
k=1

(Ck)2

Ric2(C)ij = −trace(CiCj) = 〈Ci, Cj〉

Remark. The map Ric : Vpq → Symm(q,R)×Symm(p,R) is also the moment map for the

action of GL(q,R)×GL(p,R) on Vpq (see Example 2.3.5). The following proposition justifies

the statement above that our map Ric : Vpq = so(q,R)p → Symm(q,R) × Symm(p,R)

captures the information of the Ricci tensor for Rp+q(C).

Proposition 7.4.1. Let (N, 〈, 〉) be a metric two-step nilalgebra of type (p, q). Let B =

{v1, . . . , vq, Z1, . . . , Zp} be an orthonormal adapted basis for N with structure element C. Let

Ric denote the ricci (1,1)-tensor of N , that is, ric(X, Y ) = 〈Ric(X), Y 〉. Then

(i) Ric leaves [N,N] = span{Z1, . . . , Zp} and [N,N]⊥ = span{v1, . . . , vq} invariant

(ii) Ric restricted to [N,N]⊥ has matrix −1
4
Ric1(C) relative to {v1, . . . , vq}

(iii) Ric restricted to [N,N] has matrix 1
4
Ric2(C) relative to {Z1, . . . , Zp}

We want to relate the map Ric to a group action. Writing out the conditions to be a

soliton metric algebra we have
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Proposition 7.4.2. Rp+q(C) is a Ricci soliton if and only if Ric(C) ·C = αC for some

α ∈ R. Here Ric(C) ∈ Symm(q,R) × Symm(p,R) ⊂ M(q,R) ×M(p,R) acts via the Lie

algebra action induced by the group action of GL(q,R)×GL(p,R) on Vpq

Corollary 7.4.3. Rp+q(C) admits a soliton if and only if SL(q,R)× SL(q,R) · C is a

distinguished orbit if and only if GL(q,R)×GL(p,R) · C is a distinguished orbit.

Proof of the proposition. Suppose first that Ric(C) · C = αC. Then we have

Ric1(C) · C +Ric2(C) · C = αC which gives

−1

4
Ric1(C) · C + 2

α

4
C =

1

4
Ric2(C) · C +

α

4
C

Define D = (D1, D2) ∈ Symm(q) × Symm(p) by D1 = −1
4
Ric1(C) + α

4
Iq and D2 =

1
4
Ric2(C) + αIp. Then D = RicN + α

4
Id by proposition 7.4.1, where RicN is the Ricci (1,1)-

tensor. Since D1(C) = D2(C), D is a derivation by Proposition 7.1.6, and thus Rp+q(C) is

a soliton.

Conversely, suppose Rp+q(C) is a Ricci soliton and consider the symmetric derivation

D = RicN +λId = (−1
4
Ric1(C)+λId, 1

4
Ric2(C)+λId) for some λ; we see that Ric(C) ·C =

4λC. �

Proof of the corollary. It was shown above, Example 2.3.5, that the moment map

of G = GL(q,R) × GL(p,R) is mG = (m1,m2) = (Ric1, Ric2) = Ric and the moment map

for H = SL(q,R) × SL(q,R) is mH = (Ric1 − λId,Ric2 − µId) where λ(C) = 2|C|2
q

and

µ(C) = |C|2
p

. Also, notice that (r1Id, r2Id) · C = (2r1 + r2)C. So one has

mH(C) · C = mG(C) · C + (−2λ(C)− µ(C))C
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Clearly, C is an eigenvector of mH(C) if and only if it is so for mG(C). Now apply Lemma

7.3.5. �

Observe that the optimal metrics happen exactly when mH(C) = 0. This is a special

case of having a critical point and our orbit is more than just distinguished, it is actually

closed. From this discussion we obtain the following.

Corollary 7.4.4. Rp+q(C) has an optimal metric if and only if mH(C) = 0.

More generally we have the following (cf. Proposition 7.4 of [Ebe07]).

Proposition 7.2.3 Consider a metric two-step nilalgebra N and its associated tuple of

structure matrices CB ∈ Vpq for an adapted basis B of N. Then N admits an optimal metric

if and only if the orbit SL(q,R)× SL(q,R) · CB is closed in Vpq = so(q,R)p.

Recall that for a two-step nilpotent Lie algebra of type (p, q) we defineD = dim so(q,R) =

1
2
q(q − 1). Using Proposition 7.3.1, and the fact that a real group has a closed orbit if and

only if its complexification does so, cf. Proposition 2.4.1, we see that for types (p, q) other

than (1, 2k+ 1), (2, 2k + 1),(D − 1, 2k + 1),(D − 2, 2k + 1) a generic orbit is closed. That is,

a generic tuple of structure matrices corresponds to a two-step Einstein nilradical.

In the four exceptional cases we will show in Section 7.5 below that a generic orbit is

distinguished but not closed. We use the main result of Section 7.5. Putting these together

we have our main result.

153



Theorem 7.4.5. A generic two-step nilmanifold is an Einstein nilradical. Moreover, the

types (p, q) other than (1, 2k+1), (2, 2k+1), (D−1, 2k+1), (D−2, 2k+1) generically admit

optimal metrics.

Remark. It is very important to note that when we say generic we mean it in the

Hausdorff sense. That is, every two-step nilalgebra is the limit of algebras which admit a

soliton metric.

*.

Dimension of the moduli spaces We use the results that are known for the representations

of interest to us to calculate the dimension of moduli of Einstein metrics on rank 1 solv-

manifolds whose nilradical is two-step. This question was raised in [Heb98]. Here he gave

computations that calculated the dimension of the moduli space near the rank 1 symmetric

spaces.

Computing the moduli of Einstein metrics on rank 1 solvmanifolds is equivalent to com-

puting the moduli of nilsolitons. In the two-step case, we can give a complete answer

near the generic algebras. The dimension of the moduli is the dimension of the open

set of smooth points. Since M/K ' V//G, cf. [RS90], the dimension of this open set

= dimVpq− dim generic orbit = dimVpq− dimH + dimHv, where H = SL(q,R)×SL(p,R)

and Hv is the generic stabilizer. This finds the dimension of the moduli space up to isometry,

but then one needs to subtract 1 more to know the dimension up to isometry and scaling.

Since hC
v = (hv)

C the dimension of our real moduli space equals the complex dimension

of the complex moduli space V C
pq//SL(q,C) × SL(p,C). All of the information needed to
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compute this is contained in the lists of Elashvili. Additionally this information was com-

puted by Knop-Littlemann in [KL87]. The following table lists the dimension of the moduli

of nilsolitons up to scaling and isometry. Note, the dimension of moduli will be the same for

(p, q) and the dual (D − p, q). The information listed below appears also in Propositions A

and B of [Ebe03] since these are also the dimensions of the spaces X(p, q) of isomorphism

classes of two-step nilpotent Lie algebras of type (p, q).

Dimension of Moduli about generic points

(p, q) and (D − p, q) dimension

(1, q) 0

(2, 4) 0

(2, 2k), k ≥ 3 k-3

(2, 2k + 1) 0

(3, 4) 0

(3, 5) 0

(3, 6) 2

(D, q) 0

all other (p, q) p 1
2
q(q − 1)− (q2 + p2 − 2)− 1

7.5. The Exceptional Cases

We derive the results for the four exceptional cases here. In each of these cases the group

SL(q,R)× SL(p,R) will have an open orbit in PVpq which says that we have an open set in

Vpq of points whose orbits are distinguished, cf. Corollary 7.3.6.
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Proposition 7.5.1. If SL(q,R) × SL(p,R) has an open orbit in PVpq then SL(q,R) ×

SL(D − p,R) has an open orbit in PVD−p,q.

Before beginning the the proof we need the following lemma.

Lemma 7.5.2. The action of SL(q,R) on Vpq induces a natural action on the Grassmann

Gr(p,D). The group SL(q,R) has an open orbit in Gr(p,D) if and only if SL(q,R) ×

GL(p,R) has an open orbit in Vpq.

Proof of the lemma. Consider W ∈ Gr(p,D) whose SL(q,R) orbit is open and take

a basis {Ci} of W . Now define v =
∑
Ci ⊗ ei ∈ Vpq = so(q,R) ⊗ Rp, where {ei} is the

usual basis of Rp. We will show that the SL(q,R)-orbit of W corresponds to the SL(q,R)×

GL(p,R) orbit of v.

Consider the neighborhood of v ∈ Vpq which consists of u =
∑
Di ⊗ ei such that the Di

span a subspace which is in the SL(q,R) orbit of W . (Note: any vector w ∈ Vpq can be

written in the form
∑
Ei ⊗ ei where Ei is a skew-symmetric matrix and ei is the standard

basis of Rp .) This neighborhood is open as SL(q,R) ·W is open in Gr(p,D). Now take

g ∈ SL(q,R) so that {g · Ci} and {Di} have the same span. As these are two bases of

the same vector space there exists h ∈ GL(p,R) such that h(g · Ci) = Di. But this says

(g, h) ·
∑
Ci⊗ ei =

∑
Di⊗ ei. Hence SL(q,R)×GL(p,R) · v is open if SL(q,R) ·W is open.

The other direction is trivial. �

Proof of the proposition. It is easy to check that if g(W ) = W ∗ ∈ Gr(p,D), then

σ(g)(W⊥) = (W ∗)⊥ ∈ Gr(D − p,D) where σ(g) = (gt)−1. Hence if SL(q,R) ·W is open in

Gr(p,D) then SL(q,R) ·W⊥ is open in Gr(D − p,D). The orbits of GL(p,R) in PVpq are
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the same as the orbits of G′ = {g ∈ GL(p,R) : det g = 1 or −1}. Since SL(q,R)×SL(p,R)

has index two in SL(q,R)×G′ the proposition follows from the Lemma. �

We now work on each of the exceptional cases. Our goal is to construct a generic soliton,

aka distinguished point, and argue why we must have an open set of distinguished orbits.

*.

Case (1, 2k + 1): Consider the matrix A =



0 1

−1 0

. . .

0 1

−1 0

0



. This clearly has an

open orbit in so(2k + 1,R) = so(2k + 1,R)⊗ R1 as any generic skew-symmetric matrix can

be conjugated to this one. Moreover, it is easy to see that this matrix satisfies the soliton

condition Ric(C) · C = rC for some r ∈ R.

*.

Case (D − 1, 2k + 1): In this case we construct C ∈ so(2k + 1,R)D−1 whose span will be

orthogonal to the soliton A from the (1, 2k + 1) case. First we tackle the issue of genericity.

Since SL(2k + 1,R) × SL(1,R) · [A] is an open orbit in PV1,2k+1 we have that SL(2k +

1,R) × SLD−1R · [C] is an open orbit in PVD−1,2k+1, see Proposition 7.5.1 and its proof.

Thus by Corollary 7.3.6 we see that there exists an open set of VD−1,2k+1 whose points lie on
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distinguished orbits, i.e., we have an open set of algebras which admit soliton metrics. Next

we construct the desired C ∈ VD−1,2k+1.

Some notation. We denote the usual basis vectors of so(2k + 1,R) by vij = Eij − Eji,

for i < j, where Eij is the matrix with a 1 in the ij-th position and zeros elsewhere. The

space so(2k,R) sits naturally in so(2k + 1,R) as so(2k,R) = span− < vij > such that

j 6= 2k + 1; i.e., the upper left 2k × 2k block as in the matrix A above. It is easier to

describe C = (C1, . . . , CD−1) by splitting the Ci into two sets. The first set of 2k2 − k − 1

elements will consist of an orthogonal basis of so(2k,R) ∩ A⊥, all of whose elements are of

length |A| =
√

2k, where A is defined in the case above. At first this may seem mysterious;

however, we will show that the properties given for Set 1 are enough to compute Ric(C)

with the second set defined below.

The second set of Ci (with 2k-many elements) will consist of {
√
a vi,2k+1}, 1 ≤ i ≤ 2k.

In matrix form

vi,2k+1 =

(
ei

−eti 0

)

where ei is the column vector with 1 in the i-th position and zeros elsewhere.

We claim that a = 2k2−1
2k

yields a soliton. That is Ric(C) · C = rC for some r ∈ R with

this choice of a. We compute Ric2(C) first. Recall that Ric2(C) is defined by (Ric2(C))ij =

−tr(CiCj). Fortunately we constructed Set 1 and Set 2 to be orthogonal to each other. Also

observe that the Ci in Set 1 are all orthogonal and of length |A| =
√

2k and the Ci in Set 2

are all orthogonal and of length
√

2a. Thus Ric2(C) has the convenient form

Ric2(C) = diag{2k, . . . , 2k︸ ︷︷ ︸
set1

, 2a, . . . , 2a︸ ︷︷ ︸
set2

}(7.2)
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Next we compute Ric1(C) = −2
∑
C2
i by computing the sum of squares first over Set 1,

then over Set 2, and then adding. Before we compute −
∑
set1

C2
i , we make the following very

useful observation.

Lemma 7.5.3. Let {D1, . . . , Dp} ⊂ so(q,R) be an orthogonal set of vectors, each with

length |Di| = d and let W = span < Di >. If {E1, . . . , Ep} ⊂ so(q,R) is any other

orthogonal basis of W whose elements have length d, then
∑
D2
i =

∑
E2
i .

Proof. This follows immediately from the fact that kRic1(C)k−1 = Ric1(C) for k ∈

SO(p,R) and C ∈ Vpq. �

We apply this lemma to W = so(2k,R) ⊂ so(2k + 1,R). The Ci in Set 1 together with

A span so(2k,R); additionally, these vectors have |Ci|2 = |A|2 = 2k. Note that so(2k,R)

has {vij : 1 ≤ i < j ≤ 2k} as a basis and |vij|2 = 2 for all i, j. Applying the lemma we have

−
∑
set1

C2
i − A2 = −

∑
1≤i<j≤2k

k vij
2 = k


(2k − 1)Id2k

0


Adding A2 we have

−
∑
set1

C2
i = diag{2k2 − k, . . . , 2k2 − k, 0} − diag{1, . . . , 1, 0}

= (2k2 − k − 1)diag{1, . . . , 1, 0}
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Computing the sum of squares over Set 2 is straight forward and we obtain

−
∑
set2

C2
i = a diag{1, . . . , 1, 2k}

which gives

Ric1(C) = −2
∑

C2
i = 2


(2k2 − k − 1 + a)Id2k

2ka


Putting all of our computations together we can easily compute the i-th component of

Ric(C) · C = Ric1(C) · C + Ric2(C) · C. Using Equation (7.2) we see that Ric2(C) is a

diagonal matrix and we have (Ric(C) ·C)i = Ric1(C) ·Ci + |Ci|2Ci, where Ric1(C) acts via

Ric1(C) · Ci = Ric1(C)Ci + CiRic1(C). For Ci in Set 1 and Cj in Set 2 we have

(Ric(C) · C)i = {2 · 2(2k2 − k − 1 + a) + 2k} Ci

(Ric(C) · C)j = {(2(2k2 − k − 1 + a) + 4ak) + 2a} Cj

We have a soliton when Ric(C) · C = rC, for some r ∈ R. This happens when the above

two coefficients are equal and that is precisely when a = 2k2−1
2k

.

*.

Case (2, 2k+1): We construct C ∈ so(2k+1,R)2 which has an open SL(2k+1,R)×SL(2,R)

orbit and which makes R2+(2k+1)(C) a soliton. Then by Corollary 7.3.6 we know that we
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have a Zariski open set of the vector space which consists of distinguished orbits. Consider

the vector C = (C1, C2) defined by

C1 =



0 a1

−a1 0

0 a2

−a2 0

. . .

0 ak

−ak 0

0



, C2 =



0

0 ak

−ak 0

. . .

0 a2

−a2 0

0 a1

−a1 0


with ai =

√
k + 1− i. This gives a vector which is distinguished and whose orbit is open in

the vector space. We omit the details that the group orbit is open. In fact, for any pair of

matrices of the above form, if ai 6= 0 for all i, then the orbit is open.

These matrices are orthogonal with the same length a = (2
∑
a2
i )

1/2 = (k(k + 1))1/2.

Hence Ric2(C) = a2I2. To show that C defines a soliton one just needs to verify that

Ric1(C) = −2(C2
1 + C2

2) acts like a multiple of the identity. From the choice of the {ai} we

obtain −C2
1−C2

2 = diag{k, k+1, k, k+1, k . . . , k+1, k}. Notice the terms along this diagonal

alternate between k and k+ 1. As before we define vij = Eij −Eji ∈ so(2k+ 1,R) for i < j.

Thus for any vi,i+1 we have Ric1(C) · vi,i+1 = 2(2k + 1)vi,i+1. Since our chosen Ci have such

a special form, i.e., they lie in the span of {vi,i+1}, we have Ric1(C) · C = 2(2k + 1)C.

*.
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Case (D − 2, 2k + 1): Let A1, A2 denote the Ci given above in the previous case (2, 2k + 1).

We will construct C ∈ so(2k + 1,R)D−2 which makes R(D−2)+2k+1(C) a soliton and so that

span < C >⊥ A1, A2. In this way we can guarantee that generic orbits are distinguished by

applying Corollary 7.3.6 and Proposition 7.5.1. The components of C will be broken up into

4 sets. In what follows we denote the usual basis for so(2k + 1,R) by vij = Eij −Eji, i < j.

Set 1 consists of an orthogonal basis of {span < vi,i+1 >} ∩ {span < A1, A2 >}⊥ which

have length = |Ai| =
√
k(k + 1).

Set 2 consists of the vectors
√
a vij, where both i, j are odd.

Set 3 consists of the vectors
√
b vij, where both i, j are even.

Set 4 consists of the vectors
√
c vij, where i, j have different parity and j 6= i+ 1.

These four sets constitute a basis of span < A1, A2 >
⊥ and so there are precisely D − 2

of these Ci.

We claim that the above yields a soliton precisely when a = k3+k2−1
2k

, b = k3+k2+1
2k

, c =

k(k+1)
2

= |Ai|2
2

. Note, a, b, c > 0 as needed. To see this, first observe that Ric2(C) is again

a diagonal matrix by construction since the vectors {vij} are orthogonal of length
√

2. We

show how to compute Ric1(C) and leave the remaining details to the reader.

In order to compute Ric1(C) we calculate −
∑
C2
i . We will do this for Ci in the different

sets, then finish by describing what Ric1(C) should look like. To calculate −
∑
set1

C2
i we

observe that Set 1 along with A1, A2 span the same space as {vi,i+1}. Using Lemma 7.5.3
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we have

−
∑
set1

C2
i =

k(k + 1)

2
(−
∑

v2
i,i+1)− (−A2

1 − A2
2)

=
k(k + 1)

2



1

2

2

. . .

2

1



−



k

k + 1

k

. . .

k + 1

k


= diag{k(k − 1)

2
, k2 − 1, k2, . . . , k2 − 1,

k(k − 1)

2
}

−
∑
set2

C2
i = ak diag{1, 0, 1, . . . , 0, 1}

−
∑
set3

C2
i = b(k − 1) diag{0, 1, 0, . . . , 1, 0}

−
∑
set4

C2
i = c(k − 1) diag{1, 1, 0, 1, . . . , 0, 1, 0, 1, 1}

+c(k − 2) diag{0, 0, 1, 0, . . . , 1, 0, 1, 0, 0}

where, in the equation for Set 4, we have a) the first diagonal matrix begins and ends with

a pair of 1’s and alternates in between, and b) the second diagonal matrix begins and ends

with a pair of zeros and alternates in between.
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Once all the computations are made Ric1(C) = diag{r1, r2, r1, . . . , r2, r1}. Because

Ric1(C) and the Ci have such special forms, the calculations are manageable and we readily

see that we have constructed a soliton which is also generic. �

In showing that generic orbits are distinguished for these four exception cases, we really

found solitons in the cases (1, 2k + 1) and (2, 2k + 1) then showed that they had “dual”

algebras which also admitted soliton metrics. Recall that two algebras N1,N2 are dual if

their structure matrices CNi
satisfy

span < CN1 >⊥ span < CN2 >

It is a fact that the dual of an optimal matrix is optimal. This fact is easy to deduce

knowing that so(q,R) has an orthonormal basis {Ci}, under the negative Killing form, such

that
∑
C2
i = −rId for some r > 0. We would be very interested in an answer to the following

question.

Question 7.5.4. Is the dual of an Einstein nilradical an Einstein nilradical?
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CHAPTER 8

Constructing new Einstein and Non-Einstein Nilradicals

As the previous chapter demonstrates, finding nilpotent Lie groups that do not admit

soliton metrics is a very subtle problem. There it is shown that generic two-step nilalgebras

are Einstein nilradicals. In this chapter we construct a new family of examples of non-

Einstein nilradicals (see Proposition 8.3.4) that was not previously known; moreover, we give

a general technique for building new Einstein nilradicals from ‘smaller’ ones (see Proposition

8.2.3 and Theorem 8.2.4). This new family of non-Einstein nilradicals which is constructed

also answers some questions that were posed to me by J. Lauret. I would like to thank him

for some very useful conversations.

In this chapter we will construct tuples C ∈ so(q,R) such that Ci = j(Zi) where {Zi} is an

adapted basis of Z ⊂ N = V⊕Z instead of being an adapted basis of [N,N] ⊂ N = V ′⊕[N,N].

All the previous results from Chapter 7 hold when changing to this perspective. Although

this technical change is not necessary, it is preferred in this chapter.

8.1. An Amalgamated Lie Algebra

Consider two metric two-step nilpotent Lie algebras N1 = V1 ⊕ Z and N2 = V2 ⊕ Z

whose centers are the same dimension. One can construct a new nilpotent Lie algebra

N = V1 ⊕ V2 ⊕ Z so that the Vi commute. To do this, one must identify the two different



centers via a vector space isomorphism; this choice might change the isomorphism type of

the resulting amalgamated Lie algebra.

In addition to constructing a bracket on N, we simultaneously endow N with a choice

of metric. This construction is dependent on the identification (isometry) of the centers of

N1 and N2; equivalently, the construction is dependent on a choice of orthonormal basis of

Z. By hypothesis, the inner product on the center of N1 is the same as the inner product

on the center of N2. Endow N = V1 ⊕ V2 ⊕ Z with the inner product such that this is an

orthogonal direct sum and when restricted to each piece corresponds to the original inner

products. We define [·, ·] on N using the following set of relations

[V1,V2] = 0

〈[vi, wi], Z〉 = 〈ji(Z)vi, wi〉 for Z ∈ Z and vi, wi ∈ Vi, i = 1, 2

where ji is the j-map for the metric Lie algebra Ni, i = 1, 2. Equivalently, the bracket above

could be defined via the j-map by

j(Z) =

j1(Z)

j2(Z)


Here j(Z) is a block matrix relative to a basis which respects the orthogonal direct sum

V1 ⊕ V2. This construction is very natural and from the perspective of the j-map says that

j(Z) preserves the subspaces Vi for all Z ∈ Z.

Remark. If the adapted basis contains a basis of Z (rather than [N,N]), then the structure

matrices C1, . . . , Cp may not be linearly independent. For example, this will happen when

we have a nontrivial Euclidean de Rham factor.
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Question 8.1.1. Consider N = V1 ⊕ V2 ⊕ Z. Is N an Einstein nilalgebra if and only if

both N1 and N2 are so?

We give a full negative answer to this question. There do exist Ni which are Einstein

nilradicals but N is not (see Proposition 8.3.4). Conversely, there exist an N1 which is a

non-Einstein nilradical and an N2 which is an Einstein nilradical such that the constructed

N is an Einstein nilradical (see Example 8.3.6).

8.2. Concatenation of Structure Matrices

Let A = (A1, . . . , Aq1) ∈ so(q1,R)p and B = (B1, . . . , Bq2) ∈ so(q2,R)p be structure

matrices associated to N1 and N2, where qi = dimVi. The N constructed above corresponds

to the structure matrix C ∈ so(q,R)p where q = q1 + q2 and

Ci =

Ai
Bi


We call this process concatenation. Denote this process of concatenation by C = A +c B.

This definition depends on more than the isomorphism classes of N1 and N2, it depends on

the choice of adapted bases to produce the structure matrices.

Definition 8.2.1. Let C ∈ so(q,R)p be a distinguished point of the SL(q,R)×SL(p,R)

action (cf. Definition 5.4.2). We will say that C is SL(p,R)-minimal if m2(C) = 0 where

m2 is the moment map for the SL(p,R) action (cf. Example 2.3.5).

Remark. Equivalently, C = (C1, . . . , Cp) is SL(p,R)-minimal if the Ci are mutually

orthogonal and all of the same length. There do exist distinguished points which are not
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SL(p,R)-minimal. See Proposition 8.3.4 with k = 3. Moreover, this example shows the

stark difference between distinguished and minimal points. That is, if a point is minimal for

G1×G2 then it is so for each Gi on its own. However, an analogous result for distinguished

points is not true.

Lemma 8.2.2. Let A be a distinguished SL(q,R) × SL(p,R) point which is SL(p,R)-

minimal. Then A is SL(q,R)-distinguished.

Remark. The proof actually only requires A to be SL(p,R) distinguished; however, we

only need the result for the case of SL(p,R)-minimal.

Proof. Recall that the moment map for the SL(q,R)×SL(p,R) action is m = m1 +m2

where m1 is the moment map for SL(q,R) and m2 is the moment map for SL(p,R) (see

Proposition 2.3.3). Then A being distinguished is equivalent to m(A) · A = aA for some

a ∈ R. But if m2(A) · A = a2A, then m1(A) · A = (a − a2)A. That is, A is SL(q,R)-

distinguished. �

Proposition 8.2.3. Let A ∈ so(q1,R)p, B ∈ so(q2,R)p, and C = A+cB ∈ so(q1+q2,R)p

be the concatenation of A and B. If A, B are distinguished and SL(p,R)-minimal then so

is C, after rescaling B.

Remark. This gives a natural way of constructing new soliton algebras from smaller

pieces.
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Proof. We first observe that A being SL(p,R)-minimal is equivalent to |Ai| = |Aj|

and Ai ⊥ Aj for all i, j. Thus, if A and B are SL(p,R)-minimal then the concatenation C

automatically is so, since |Ci|2 = |Ai|2 + |Bi|2 and < Ci, Cj >=< Ai, Aj > + < Bi, Bj >.

By the lemma above, since A and B are SL(p,R)-minimal, we see that m1(A) ·A = λaA

and m1(B) = λbB. Note that λa, λb ≥ 0 by Lemma 7.3.5. By rescaling B, we may assume

that λa = λb = λ ∈ R since m1 is a degree 2 homogeneous polynomial and λa, λb ≥ 0. Let

C =

A
B

 be the concatenation of A and B. Then

m1(C) = −2
∑

C2
i =

−2
∑
A2
i

−2
∑
B2
i

 =

m1(A)

m1(B)


and since we rescaled our initial pair, we see that

m1(C) · C = m1(C)C + Cm1(C) =

m1(A) · A

m1(B) ·B

 = λC

Since the components of C are orthogonal and of the same length, we see that m2(C) = 0.

Thus, m(C) · C = λC. �

Theorem 8.2.4. Consider q1 ≤ q2, D = 1
2
q2(q2−1), and 1 ≤ p ≤ D with p 6= D−1, D−2.

Let N1 and N2 be generic nilsolitons of types (q1, p) and (q2, p), respectively. Then the

concatenation N = V1 ⊕ V2 ⊕ Z is also a nilsoliton.

Proof. See Chapter 7 for details on nilsolitons of type (p, q). By generic soliton we mean

a soliton in the isomorphism class of a generic algebra. Observe for the ‘non-exceptional’

types (p, q) that generic algebras admit optimal metrics by Theorem 7.4.5, and optimal
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metrics are necessarily SL(p,R)-minimal. For the exceptional types (p, q) that satisfy the

given constraints on p, generic algebras admit solitons which are SL(p,R)-minimal; see the

constructions in Chapter 7 of the exceptional cases (1,2k+1) and (2,2k+1). Now apply the

proposition above. �

Remark. See Corollary 8.3.1 for a worthwhile application. Moreover, this theorem speaks

only to the generic setting. We show by construction that not all concatenations of solitons

can admit a soliton metric. The following theorem will be very useful in the study of algebras

of type (2, 2k + 1) but is very valuable in its own right.

We are interested in tuples C which are the concatenation of n-many tuples A1, . . . , An;

that is, each Ci =


A1
i

. . .

Ani

. Equivalently, all the Ci ∈ so(q,R) simultaneously

preserve the same subspaces of Rq. Let V = so(q,R)p and W be the subspace of block

diagonal tuples of matrices


so(q1,R)

. . .

so(qn,R)



p

, where q = q1 + · · ·+ qn.

Theorem 8.2.5. Suppose C ∈ W admits a soliton metric, that is, there exists g ∈ G =

GL(q,R)×GL(p,R) such that g ·C is a soliton. Then there exists h ∈ G such that h ·C ∈ W

is a soliton.

Recall that if C ∈ so(q,R)p is a point which is distinguished and defines a type(p, q)

algebra then C is a soliton; that is, Rp+q(C) is a soliton metric nilalgebra.
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Proof. This proof relies on the main result of Chapter 5 as follows. Let C be a tuple

which admits a soliton metric. Let ϕt(C) denote the negative gradient flow of the norm

squared of the moment map for G = GL(q,R) × GL(p,R) starting at C, and let ω(C)

denote the ω-limit set of φt(C). It is known that ω(C) consists of soliton metrics as this

set consists of fixed points of the negative gradient flow; see the remark following Definition

5.4.5, Lemma 7.3.5, and Proposition 7.4.2. However, since C admits a soliton by hypothesis,

it follows from Theorem 5.5.2 that ω(C) ⊂ G · C.

We assert that−grad |m|2 is tangent toW at all points ofW . Note that−grad |m|2(C) =

−4m(C) ·C by Lemma 5.4.4 and m(C) ∈ gl(q1,R)× · · · × gl(qn,R)× gl(p,R) for all C ∈ W

by inspection. Since GL(q1,R)×· · ·×GL(qn,R)×GL(p,R) leaves W invariant the assertion

follows.

Consider [C] ∈ PW ⊂ PV . We have shown that ϕt[C] ⊂ GL(q1,R)× · · · ×GL(qn,R)×

GL(p,R) · [C] ⊂ PW for all t as the flow is always tangent to the submanifold GL(q1,R)×

· · · ×GL(qn,R)×GL(p,R) · [C] ⊂ PW ⊂ PV . Therefore, ω[C] ⊂ PW ∩G · [C] as was to be

shown. �

Remark. It is not clear whether or not the algebra h · C above must actually be in the

GL(q1,R)× · · · ×GL(qn,R)×GL(p,R) orbit of C. I have some partial results towards this

question and plan to work on it more in the future.

8.3. Algebras of Type (2, q)

When q = 2k + 1 the orbits of GL(q,R) × GL(2,R) are open in V = so(q,R)2. Hence

generically there are only finitely many isomorphism classes of type (2, q) algebras, possibly
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just one. We have shown that such algebras are Einstein nilradical(s), see Section 7.7.5.

From this, we can build more Einstein nilradicals from the work in the previous section.

Recall that a two-step nilpotent Lie algebra N is called an Einstein nilradical if N admits a

soliton metric (see Definition 6.3.2).

Corollary 8.3.1. Most algebras of type (2, 2k + 1) are Einstein nilradicals. More pre-

cisely, write 2k + 1 = (2l + 1) + q for positive integers l, q with q ≥ 4. Consider a block

decomposition of structure matrices C = A+cB, where A ∈ so(2l+1,R)2 and B ∈ so(q,R)2.

For generic choices of A,B the constructed C = A+cB ∈ so(2k+1)2 admits a soliton metric.

Remark. Warning! This does not necessarily hold for the other (p, q) types. For the other

types, one would have to show that the Zariski open set O of ‘generic’ algebras in so(q,R)p

constructed in Chapter 7 actually intersects this vector subspace W of block matrices. How-

ever, a priori it could happen that W ⊂ so(q,R)p −O.

Here we show that W ∩ O is nonempty by showing that for a generic element A of

so(2l + 1,R)2 the orbits GL(2l + 1,R)×GL(2,R) ·A and GL(2l + 1,R) ·A are equal. This

statement is false for p ≥ 3.

Additionally, this corollary shows that the word most carries much more weight than just

the existence of a Zariski open set in so(2k+ 1,R)2. From this one can construct/guarantee

the existence of moduli of Einstein nilradicals of type (2, 2k+ 1), as opposed to the finite set

of ‘generic’ algebras of type (2, 2k+ 1). See Example 8.3.3. Before proving the corollary, we

state the following lemma.
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Lemma 8.3.2. Consider the groups G = GL(2l+1,R)×GL(2,R) and H = GL(2l+1,R)

acting on so(2l + 1,R)2. For generic A ∈ so(2l + 1,R)2 we have H · A = G · A

Proof of the Lemma. It is a fact, which we omit the proof of, that generic H-orbits

in so(2l+1,R)2 are open. The proof of this fact amounts to calculating the dimension of the

stabilizer at a specific point A ∈ so(2l+1,R)2 to see that dimHA = dimH−dim so(2l+1,R)2.

The A that I used is

A =




0 1
−1 0

. . .
0 1
−1 0

0

 ,


0
0 1
−1 0

. . .
0 1
−1 0




If O = {A ∈ so(2l + 1,R)2 : H(A) is open in so(2l + 1,R)2}, then O is invariant under

G since H is normal in G. If A ∈ O, then G(A) is a union of open H orbits, and hence

G(A) = H(A) since G is connected.

�

Proof of the Corollary. Consider C = A+cB ∈ so(2k+ 1,R)2 where A ∈ so(2l+

1,R)2 and B ∈ so(q,R)2 are generic. As A is generic the lemma above states that GL(2l +

1,R) × GL(2,R) · A = GL(2l + 1,R) · A. Moreover, the example constructed in Section

7.5 shows there exists g ∈ GL(2l + 1,R)×GL(2,R) such that g · A is soliton and SL(2,R)

minimal. Thus there exists g ∈ GL(2l+1,R) such that g ·A is soliton and SL(2,R) minimal.

Now consider B ∈ so(q,R)2, where q + 2l + 1 = 2k + 1 and q ≥ 4. As B is generic,

by Theorem 7.4.5 there exists h ∈ GL(q,R) × GL(2,R) such that h · B is optimal and in

particular SL(2,R)-minimal. Hence we have (g, h) ∈ GL(2l + 1,R)×GL(q,R)×GL(2,R) ⊂
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GL(2k+ 1,R)×GL(2,R) such that (g, h) ·C = (g ·A) +c (h ·B) is a soliton by Proposition

8.2.3, after rescaling h ·B. �

Example 8.3.3. Let A ∈ so(2l + 1,R)2 be a generic Einstein nilradical and consider all

B ∈ so(2k,R)2 which are Einstein nilradicals. For fixed A the dimension of this moduli space

of such B is k − 3 (see Section 7.4). As A and B vary the set of C = A +c B consists of

Einstein nilradicals and the moduli of such C has dimension k − 3.

Remark. We omit the proof of the claimed results above. To prove the Example, one

can reduce to the case of A being a fixed soliton and then show that A +c B and A +c B
′

are isomorphic if and only if B and B′ are isomorphic when B,B′ are generic. Genericity of

B,B′ might not be required, however we do not know of a simple proof without using such

a fact.

In addition to constructing moduli of Einstein nilradicals of type (2, 2k+ 1), we can also

construct some nilalgebras which are non-Einstein (in fact, we can construct moduli of such

nilalgebras); that is, they cannot possibly admit an invariant Ricci soliton metric. To do

this we will consider structure matrices based on Z instead of based on [N,N]. That is, our

structure matrices are {j(Z)|Z ∈ Z}. We note that if e = dim Z − dim [N,N], then e is

the dimension of the Euclidean de Rham factor of N for any choice of metric <,>. See

Proposition 2.7 of [Ebe94] and Proposition 1.3 of [Ebe03].

Take B to be (generic) of type (2,3) with no Euclidean de Rham factor (i.e., Z = [N,N],

which is equivalent to the linear independence of {B1, B2}) and A = (A1, A2) ∈ so(2k,R)2

such that A1 and A2 are linearly dependent and one of them is nonsingular. That is, A
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is a set of structure matrices, based on Z instead of [N,N], corresponding to an algebra

whose center has dimension 2 and commutator has dimension 1; i.e., the algebra has a 1-

dimensional Euclidean de Rham factor. We will classify which of these A+c B are Einstein

nilradicals. Note that A +c B will have no Euclidean de Rham factor since {C1, C2} are

linearly independent, which follows from the fact that {B1, B2} are linearly independent.

Proposition 8.3.4. Let C = A +c B be the concatenation of A, B given above. Then

the two-step nilalgebra associated to C is an Einstein nilradical only for k ≤ 3.

Remark. The proof will show that for k ≤ 3 if D = g · C is a soliton for some g ∈ G =

GL(2k + 3,R)×GL(2,R), then D = (D1, D2) may be chosen to have the following form:

D1 =

0

F1

, F1 =


0 a

−a 0

0



D2 =

E2

F2

, E2 = diag{λ Id2, . . . , λ Id2} (k-many blocks), and F2 =


0

0 d

−d 0


The constants a, d, λ are all positive and related as follows:

k = 1 a = d
√

2 λ = a

k = 2 a = 2d λ = a
√

3
2

k = 3 a = d
√

10 λ = d
√

6

Conversely, a routine computation shows that the elements above are solitons. This clas-

sification also shows that all concatenated C that admit a soliton lie on a single G orbit, up

to scaling by constants.
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Before proving the proposition, we need a lemma that makes the above theorem slightly

stronger for the particular C chosen.

Lemma 8.3.5. Let C be the concatenation of A,B as above. Let W ⊂ so(2k + 3,R)2 be

the subspace of block matrices of the type of C. If C admits a soliton D ∈ GL(2k + 3,R)×

GL(2,R)·C∩W then D can be chosen with the following additional property: D =

E
F

,

where E satisfies E1 = 0.

Proof of the lemma. To construct the desired soliton D with said properties, we will

analyze the negative gradient flow of the norm squared of the moment map corresponding

to the group GL(2k + 3,R)×GL(2,R) acting on so(2k + 3,R)2.

It will be useful to recall some properties of the action of GL(2,R) = {Id}×GL(2,R) ⊂

GL(2k + 3,R) × GL(2,R) on so(2k + 3,R)2. If R = (R1, R2) ∈ so(2k + 3,R)2 and g ∈

GL(2,R), then g(R) = S = (S1, S2), where span{R1, R2} = span{S1, S2} ⊂ so(2k + 3,R).

In particular, GL(2,R) leaves W invariant.

As in Theorem 8.2.5 above, the negative gradient flow starting at [C] ∈ PW lies in the

orbit GL(2k,R) × GL(3,R) × GL(2,R) · [C] ⊂ PW . Pick a sequence gn ∈ GL(2k,R) ×

GL(3,R) × GL(2,R) such that gn · [C] = ϕtn [C] for some tn → ∞, where ϕt denotes the

negative gradient flow. Take D = lim gn · C. As in Theorem 8.2.5 above, D is a soliton.

Write gn · C =

En

F n

. We claim that there exists a sequence kn ∈ SO(2,R) such

that kngn · C =

Gn

Hn

 with G1 = 0. That is, we can change via the compact group
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SO(2,R) so that the ‘E1-slot’ = 0. Before showing the existence of such kn we will use it to

finish the proof of the lemma.

As SO(2,R) is compact, we may assume kn → k ∈ SO(2,R), by passing to a subsequence

if necessary. We see that kngn · [C]→ k[D] ∈ PW and since for each n the ‘E1-slot’ = 0, this

holds in the limit as well. Moreover, kD ∈ W is soliton as the set of solitons is K-invariant

where K = O(2k + 3,R) × O(2,R) (cf. Section 7.1). Thus we have constructed a soliton

with the desired properties.

To finish the proof of the lemma, we must show the existence of such a kn ∈ SO(2,R).

Observe that En = (En
1 , E

n
2 ) is in the GL(2k,R)×GL(2,R)-orbit of A = (A1, A2). Since A1

and A2 are linearly dependent they must be multiples of each other. Thus En
1 and En

2 are

multiples of each other. To find the desired kn =

 cos θn sin θn

− sin θn cos θn

, one needs to find θn

such that cos θn E
n
1 + sin θn E

n
2 = 0. Clearly such θn exists and the lemma is proven. �

Proof of the proposition. Suppose that D = g · C is a soliton, we show k ≤ 3.

The lemma above tells us that our soliton D ∈ GL(2k+ 3,R)×GL(2,R) ·C ∩W can be

chosen with a very special form; that is, we may assume that D =

E
F

 is our soliton

where E ∈ so(2k,R)2 with E1 = 0 and E2 has no kernel (explained below). We will make

heavy use of this special form D =


 0

F1

 ,

E2

F2


 to show k ≤ 3.

To see that E2 has no kernel, recall that D is a set of structure matrices for an algebra

with a 2-dimensional center. If E2 were to have kernel, then D1, D2 would have a common

kernel and hence the dimension of the center would be greater than or equal to 3.
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Next we show that E2
2 must be a multiple of the identity and that F1 and F2 are or-

thogonal. Recall that the moment map of GL(q,R)×GL(p,R) is m = m1 +m2. As D is a

soliton, m(D) ·D = dD for some d ∈ R. Since the upper left corner of m1(D) ·D1 is zero,

one can compute that m2(D) must be a diagonal matrix since E2 is nonzero.

Now that m2(D) is diagonal, m(D) · D = dD implies m1(D) · D2 = d2D2. That is,

m1(0, E2) · E2 ∈ R − span < E2 >. From this we see that mH(E2) · E2 = eE2, where

mH is the moment map for the action of H = GL(2k,R) on so(2k,R). The action of

GL(2k,R) on so(2k,R) has open orbits at all the nonsingular points; moreover, the point

J =



0 1

−1 0

. . .

0 1

−1 0


is optimal and hence a distinguished point. Hence, any other

distinguished point lies in the orbit R × K · J by Theorem 5.5.2. That is, E2 is (up to

conjugation by SO(2k,R)) block diagonal of the form λJ .

Next we refine the lower right block. Consider the group SO(3,R) = {Id2k}×SO(3,R)×

{Id2} ⊂ O(2k,R)×O(3,R)×O(2,R) = K. Hence SO(3,R) leaves W invariant and carries

solitons to solitons. By means of SO(3,R) we can put F1 in the form


0 a

−a 0

0

. As C,

and hence D = g · C, corresponds to an algebra which has no Euclidean de Rham factor,
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a 6= 0. Now write F2 =


0 b c

−b 0 d

−c −d 0

. Since m2(D) is diagonal and m2(D)ij =< Di, Dj >,

it follows that D1 and D2 are orthogonal, or equivalently, F1 and F2 are orthogonal. Thus

b = 0.

The stabilizer in SO(3,R) of F1 is


cos θ sin θ

− sin θ cos θ

1

. Under this group we can further

change F2 so that c = 0. Now we have F2 =


0

0 d

−d 0

. Again, since C corresponds to

an algebra which has no Euclidean de Rham factor we know that d 6= 0. Now that we have

simplified the presentation of our soliton, we can compute m(D)

m1(D) = 2



λ2

. . .

λ2

a2

a2 + d2

d2



, m2(D) =

2a2 0

0 2kλ2 + 2d2



The condition m(D) ·D = rD produces three numbers which must be equal
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6a2 + 2d2

(4 + 2k)λ2 + 2d2

2a2 + 6d2 + 2kλ2

and this produces two equalities


4λ2 = 2a2 + 4d2

4a2 − 4d2 = 2kλ2

From this we obtain the relation (4 − k)a2 = (4 + 2k)d2. If k ≥ 4 then d2 ≤ 0, which is

a contradiction. We have shown for k ≥ 4 the two-step nilpotent Lie algebra C = A +c B

cannot admit a soliton metric.

�

Next we construct a new example of a soliton N = U1⊕U2⊕Z where U1 does not admit

a soliton and U2 does admit a soliton.

Example 8.3.6. Let U1 ⊕ Z be the algebra with structure matrices A +c B (from above)

with k = 5. Here dim U1 = 13 and dim Z = 2. Let U2 ⊕ Z have the usual (2, 3) structure

matrices


0 b

−b 0

0

 ,


0

0 d

−d 0

. Then construct an algebra N with structure matrices

concatenated from the above as follows

180





0

0

. . .

0

0

0 a

−a 0

0

0 b

−b 0

0



,



0 λ

−λ 0

. . .

0 λ

−λ 0

0

0 c

−c 0

0

0 d

−d 0


This is a soliton for λ = 1, a2 = b2 = 16/9, c2 = d2 = 1/9.

Remark. Here the algebra U1 ⊕ Z does not admit a soliton (see Proposition 8.3.4 with

k = 5), whereas, the algebra U2 ⊕ Z does admit a soliton. Similarly, one obtains a soliton

above with k = 4. I have not checked the cases k ≥ 6 but these probably do not admit

soliton metrics.

This completely answers Question 8.1.1 in regards to algebras of the type N = V1⊕V2⊕Z.

8.4. Non-Einstein Nilradicals

In this section we describe a procedure for constructing non-Einstein nilradicals for many

different (p, q) types; that is, algebras which do not admit a soliton metric. Many of the

details have the same flavor as those through out the previous sections and we omit some of

the technical work.
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Consider two metric two-step nilpotent Lie algebras N1 and N2. Then one can trivially

create the metric two-step nilalgebra N = N1 ⊕N2 where the direct sum is orthogonal and

the two subspaces N1,N2 commute. Even if the orthogonal direct sum of two algebras is

not soliton, in principal it could be possible to endow N with a nilsoliton metric such that

N1 and N2 are not orthogonal.

Let A1, A2 be structure matrices corresponding to the algebras N1,N2, respectively.

Let Ni = Vi ⊕ Zi and pi = dim Zi for i = 1, 2. Then N has structure matrix C =

(C1, . . . , Cp1+p2) ∈ so(q1 + q2)p1+p2 where

Ci =

A1
i

0

 for 1 ≤ i ≤ p1

Cj+p1 =

0

A2
j

 for 1 ≤ j ≤ p2

Denote the construction by C = A1 ⊕ A2.

Proposition 8.4.1. Consider C = A1 ⊕A2 constructed from A1, A2 as above. If C is a

soliton algebra then so are A1, A2.

The proof amounts to block matrix multiplication upon writing out m(C) = m1(C) +

m2(C) and so we leave the details to the reader.

We do not know if the converse is true since admitting a soliton metric corresponds to

moving along the group orbit GL(q1 + q2,R)×GL(p1 + p2,R) · C. However, we are able to

sidestep this point for a particular case of interest.
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Constructing new non-Einstein nilradicals via direct summing

Let N1, with structure matrix A1, be any algebra of type (2, 3 + 2k) as in Proposition

8.3.4 with k ≥ 4; note that N1 has no Euclidean de Rham factor. Let N2, with structure

matrix A2, be a nilsoliton algebra of type (p, q). To prove the lack of existence of a soliton

metric on the algebra N = N1 ⊕N2 we will study the negative gradient flow corresponding

to the group GL(q1 + q2,R) × GL(p1 + p2,R) starting at the point C = A1 ⊕ A2. We will

prove that any algebra in the limit cannot be isomorphic to N and hence that N cannot

admit a soliton metric.

Consider the subspace so(q1,R)p1+p2 ⊕ so(q2,R)p1+p2 of so(q1 + q2,R)p1+p2 . The vector

space so(q1,R)p1 embeds into the aforementioned space via the first p1 coordinates and

similarly the vector space so(q2,R)p2 embeds via the second p2 coordinates. We are interested

in the case q1 = 3 + 2k and p1 = 2. Now consider the vector space W1 ⊂ so(3 + 2k,R)2

spanned by (M, 0) and (0,M ′) where M,M ′ are of the form



0 λ

−λ 0

. . .

0 λ

−λ 0

0 a b

−a 0 c

−b −c 0



where λ, a, b, c ∈ R. Embed W1 into so(q1 + q2,R)p1+p2 above.

183



Now considerA ∈ W1 and a soliton B ∈ so(q2,R)p2 ⊂ so(q1 + q2,R)p1+p2 . If we consider

C = A⊕B then writing out the definitions one obtains

m(C) · C =

m(A) · A

m(B) ·B


Moreover, the negative gradient flow starting at C remains tangent to W1 ⊕ {R− span B}

as B is a soliton.

We give a proof by contradiction. Assume that C admits a soliton and let D ∈ ω[C]

be a limit point of the negative gradient flow starting at [C]. By Theorem 5.5.2, D ∈

GL(q1 + q2,R)×GL(p1 + p2,R) · C and D has block decomposition in W1 ⊕ {R− span B}

by the remarks above and the argument of Theorem 8.2.5. By Proposition 8.4.1 the ‘A-slot’

of D (component in W1) must be soliton. But this contradicts Proposition 8.3.4 since k ≥ 4.

This provides us with many new examples of non-Einstein nilalgebras in most types (p, q).
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