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ABSTRACT 

AURELIAN BIDULESCU: Usual Dietary Intake of Choline and Betaine: Descriptive 
Epidemiology, Repeatability and Association With Incident Coronary Events. The 

Atherosclerosis Risk In Communities (ARIC) Study 
(Under the direction of Gerardo Heiss) 

 

    A relative deficiency of choline and betaine has been studied for its potential atherogenic 

properties, which appears to be secondary to the aberrant methylation process that it induces. 

It is now possible to conduct studies of choline and betaine because the concentrations of 

choline in common foods have been relatively well characterized. 

    The relative risk of a low dietary intake of choline and betaine in relation with incident 

coronary heart disease (CHD) was investigated by gender, race and menopausal status in a 

middle-aged biracial cohort of 14,430 men and women sampled from four U.S. locales by the 

Atherosclerosis Risk in Communities (ARIC) study. During the 14 years of follow-up of this 

large prospective cohort, there was not a significant association between dietary intake of 

choline (or choline plus betaine) and the risk of incident CHD. Compared with the lowest 

quartile of intake, incident CHD risk was 22% higher [HR = 1.22 (0.91, 1.64)] and 14% 

higher [HR = 1.14 (0.85, 1.53)] in the highest quartile of choline and choline plus betaine, 

respectively, controlling for age, gender, education, total energy intake, and dietary intakes of 

folate, methionine and vitamin B6. Correction for measurement error in the dietary intake of 

choline and related nutrients provided similar results. The hazard ratio for an interquartile 

difference of choline and betaine intake was 1.24 (0.92, 1.66), when the covariates 
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considered to be measured without error were age and gender. 

    The reliability of the dietary assessment for choline and betaine as assessed with a brief 

semi-quantitative food frequency questionnaire was ascertained and the ARIC population 

intakes of dietary choline and betaine were estimated. The reliability coefficients were in the 

same range as those reported for other micronutrients (0.50 for choline). The median and the 

25th percentile of dietary choline intake in the ARIC population were 284 mg/day and 215 

mg/day, respectively. The intake of choline was below that proposed as the Adequate Intake 

for 94% of men and 89% of women. 
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PREFACE 

 

    This dissertation project was motivated by my interest in complex cellular mechanisms 

applied to population sciences. Therefore, when I was presented with the opportunity to 

study the micronutrient choline and the methyl-donor compounds I did not hesitate to pursue 

this investigation. I hope that this dissertation and the associated manuscripts will contribute 

in some way to clarify the complex physiological mechanisms of methyl-donor compounds 

in relationship with atherogenesis. 
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CHAPTER I.  

INTRODUCTION 

 

    Nutrition has a significant role in the prevention of many chronic diseases such as 

cardiovascular disease (CVD) (Reddy, 2004; Willett, 1998 – Chapter 17). The major risk and 

protective factors in the diet are now known but new candidates in both categories are still 

revealed, and the list is far from being exhaustive. A 1998 report from the National Academy 

of Sciences / Institute of Medicine of dietary reference intakes for a group of vitamins and 

micronutrients (thiamine, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic 

acid, biotin, and choline), established choline as an essential nutrient for humans when 

sufficient methionine and folate are not available in the diet (Institute of Medicine and 

National Academy of Sciences, 1998). At present the U.S. Institute of Medicine’s Food and 

Nutrition Board established choline as a required nutrient for humans (ibidem). It is now 

accepted that, especially under metabolic stress conditions such as a diet high in animal 

proteins (which is characteristic of western societies), a diet deficient in choline -and/or 

betaine- has detrimental health effects on several body systems and organs, such as the 

cardiovascular system, the nervous system, and the liver. Nevertheless, because there is no 

information from the national surveys on choline intakes or on supplement usage, the risk of 

adverse effects of a diet deficient in choline compounds, within the United States or Canada, 

can not be characterized. As a consequence, the Institute of Medicine and National Academy

 



of Sciences recommends as a high priority that in the future investigators should “examine 

the effect of the use of graded levels of dietary intake of choline on parameters of health” and 

to conduct “human studies on interrelationships among requirements for choline, methionine, 

folate, vitamin B6, and vitamin B12 to compare the homocysteine-lowering effects of 

combinations of these nutrients” (ibidem). 

    Almost half of the US women are deficient in folate intake (Selhub, 1993; Stampfer, 

1993), a nutrient that reduces (by metabolic methylation) the blood levels of homocysteine, a 

putative cardiovascular disease (CVD) risk factor. New studies show that, in a population 

deficient in serum choline and betaine, supplementation with folate or B vitamins may not be 

efficient in reducing blood homocysteine levels (Kim, 1995; Bostom, 1997; Nelen, 1998). 

Because folate and choline methyl donation metabolic pathways can be interchangeable both 

folate and choline should be considered in epidemiological studies assessing the relationship 

between dietary intake of these compounds and cardiovascular diseases. The advent of the 

concentrations for the choline-containing compounds and betaine in common foods (Zeisel, 

2003; USDA, 2004) provides an opportunity to assess the interrelationships between dietary 

choline and betaine, dietary methionine, dietary folate, and dietary B vitamins in their 

potential to lower the high blood homocysteine ostensibly detrimental effect on occlusive 

vascular outcomes. 

    There is need for prospective epidemiologic research taking in consideration the effect on 

coronary vessels of total choline compounds, since these compounds may be associated with 

coronary heart disease (CHD) due both to an effect through blood homocysteine as well as a 

direct effect on vasculature. There is also an innovative interpretation based on an awareness 

of the contrast between the findings in the metabolic ward / the laboratory and the lack of 
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robust associations between the plasma homocysteine and cardiovascular endpoints in 

population data, the lack of replication, as well as the absence of experimental verification in 

clinical trials.  This contrast may indicate that the models we applied in the population 

studies may be incomplete or erroneous. A better understanding of the role of each of the 

micronutrients involved in the cascade of metabolic pathways with the CVD impact is 

desirable to establish the dietary references mentioned above, particularly in subgroups at 

risk within the general population. This would refine public health decision-making and 

hopefully influence public policy in considering the impact of nutritional programs. Should 

dietary intake of choline and/or betaine become unequivocally identified as risk factor(s), 

such a risk factor would be modifiable. 
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CHAPTER II.  

BACKGROUND AND SIGNIFICANCE 

 

Conceptual Framework 

 

    Despite a reduction in mortality, CVD remains the main cause of death and morbidity in 

the U.S., as well as in westernized countries (American Heart Association, 2003). The total 

expenditures in terms of treatment and prevention are enormous (American Heart 

Association, 2003; Health Care Financing Review, 2003). Whereas traditional risk factors 

such as age, gender, smoking, LDL cholesterol, high blood pressure, diabetes, obesity, lack 

of physical activity, and “poor” diet have been well characterized, there is a gap in 

knowledge, and even controversy, regarding so-called “new or emerging” coronary heart 

disease (CHD) risk factors. 

    Myocardial infarction occurs, in 10-15% of cases, among persons without traditional risk 

factors (Ridker, 1999). A series of recent meta-analyses suggest that elevated blood level of 

homocysteine is an independent risk factor for occlusive vascular events (Ueland, 2000; 

Clarke, 2002). The 1996 Bethesda Conference acknowledged elevated blood levels of 

homocysteine as a possible new cardiac risk factor (Harjai, 1999). This putative novel risk 

factor presents interest for future research due to its modifiable nature. It is estimated that 

almost half of US women are deficient in folate intake, a nutrient that reduces, by

 



metabolic methylation, the blood levels of homocysteine (Selhub, 1993; Stampfer, 1993; 

Mortality and Morbidity Weekly Report – CDC, 2004). The nutrient choline can also be used 

to remethylate homocysteine to form methionine. New studies show that, in a population 

deficient in dietary intakes of choline and betaine, supplementation with folate and B 

vitamins may not be sufficient in reducing blood homocysteine levels (Kim, 1995; Bostom, 

1997; Nelen, 1998; Jacob, 1999; Dusitanond, 2005; daCosta, 2005). Because the methyl 

donation metabolic pathways of folate and choline are interchangeable (Niculescu, 2002; 

Zeisel, 2003; da Costa, 2005) both folate and choline should be considered in 

epidemiological studies assessing the relationship between dietary intake of these compounds 

and cardiovascular diseases. This research topic is important because dietary choline play 

also a role in epigenetic events. Methyl donors, such as betaine, affect DNA methylation 

which regulates tissue-specific expression of certain genes (Zaina, 2005). 

    It has been shown that ingesting a diet high in methionine (e.g., high intake of animal 

meat), or a diet deficient in choline and/or betaine are associated with increased blood 

homocysteine concentration (Holm, 2004; da Costa, 2005), which could have harmful health 

effects on several body systems and organs, including the cardiovascular system (Zeisel, 

2006). Choline and betaine deficiency could exert a detrimental influence on cardiovascular 

health through both a high produced plasma homocysteine level as well as through an 

aberrant methylation process secondary to a low methyl-groups reservoir (Zaina, 2005). 

    At present it is possible to conduct studies of choline dietary intake in relation with CHD 

endpoints because the concentrations of choline, betaine and choline-containing compounds 

in common foods have been characterized to a high degree (Zeisel, 2003; USDA, 2004). 

Because the choline content of foods had not been included until recently in major nutrient 
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databases, there are currently no nationally representative estimates of the intake of choline 

from food or food supplements (Institute of Medicine/National Academy of Sciences, 1998). 

Moreover, until quite recently extensive data on food choline values was either lacking or 

unreliable due to older, imprecise assay procedures. Only one case-control study of the 

dietary intake of choline has been reported (Shaw, 2004) investigating whether maternal 

periconceptional dietary intake of choline and its metabolite betaine influenced neural tube 

defects (NTD) risk. A relatively higher dietary intake of choline was associated with reduced 

NTD risks. Controlling for intake of supplemental folic acid, dietary folate, dietary 

methionine, and other covariates did not substantially influence the risk of NTD estimated for 

choline. 

    Several of the epidemiological cohort studies generally used to assess the relationship 

between nutrient exposure and chronic diseases outcomes have limitations. Studies were 

carried out in a single US location, with one gender or single race-ethnicity of participants, or 

with absence of the plasma samples to measure biological markers (Willett, 1998 – chapter 

19). Appendix 1 gives a synoptic presentation of the main studies that were conducted. 

    Whereas folate levels in foods have been available since mid-1970s (Dong, 1975; Carerra, 

1976), there is no similar information regarding dietary choline. Also, there is no estimation 

of intraindividual variability and correction for measurement error as it pertains to choline 

and betaine. Because humans have a requirement for choline intake, the U.S. Institute of 

Medicine made recommendations for dietary choline intake in the habitual diet (Institute of 

Medicine and National Academy of Sciences, 1998). Due to insufficient data with which to 

assess choline and betaine intake and to derive an estimated average requirement for choline, 

only an Adequate Intake of 550 mg/day for men and 425 mg/day for women could be 
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estimated. The Estimated Average Requirement (EAR), which calculation requires a higher 

amount of evidence, remains to be established in populations (ibidem; Zeisel, 2006). 

 

A. Dietary choline and betaine, methionine, folate and B vitamins, and other blood 

homocysteine-influencing compounds in relation to cardiovascular disease 

 

Overview 

 

    The interest in abnormal values of methionine-homocysteine metabolic axis compounds in 

CVD risk estimation has increased as a main topic of research during the last three decades, 

since McCully first proposed that homocysteine causes atherosclerosis (McCully, 1969). 

Although debatable, the population attributable risk for blood homocysteine could account 

for up to 10% of the total CHD composite risk (Boushey, 1995; Labarthe, 1998 – chapter 

18), where the total includes “classical” risk factors such as smoking, gender, high blood 

pressure, and HDL cholesterol. Epidemiologic studies have indicated an inverse association 

between dietary folate intake and the risk of developing heart disease (Rimm, 1998; 

Voutilainen, 2001). Healthy men fed a choline-deficient diet, with normal folate and vitamin 

B12 dietary intake, became choline depleted and developed liver steatosis and damage 

(Zeisel, 1991). It is presumed that, in a similar fashion, prolonged dietary choline deficiency 

could produce CVD effects (Institute of Medicine / National Academy of Sciences, 1998; 

Zeisel, 2006). 

    Transmethylation metabolic pathways closely interconnect choline, methionine, and folate. 

When the metabolism of one of these pathways is perturbed, compensatory changes occurs in 
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the others (Niculescu, 2002; da Costa, 2005; Zeisel, 2006). The availability of transgenic and 

knockout mice has made possible additional studies that demonstrate the interrelationship of 

these methyl sources. When animals and humans are deprived of choline, they use more 

methyl-tetrahydrofolate to remethylate homocysteine in the liver, and thus increase dietary 

folate requirements (Zeisel, 2006). The nutrient choline can also be used to remethylate 

homocysteine to form methionine. As presented, new studies show that, in a population 

deficient in dietary intakes of choline and/or betaine, supplementation with folate and/or B 

vitamins may not be sufficient in reducing blood homocysteine levels (Kim, 1995; Bostom, 

1997; Nelen, 1998; Jacob, 1999; Dusitanond, 2005; daCosta, 2005). It has been demonstrated 

that ingesting a diet high in methionine (e.g., high intake of animal meat) or a diet deficient 

in choline and/or betaine is associated with increased blood homocysteine concentration 

(Holm, 2004; da Costa, 2005). 

 

Historical Background 

 

    More than half a century ago, it was established (Rinehart, 1951; Willett, 1998 – chapter 

17) that low vitamin B6 intake produced arterial intimal layer damage in monkeys. Following 

that it was observed that the clinical syndrome of homocysteinuria, characterized by the 

homozygous deficiency of cystationine synthase, the enzyme that metabolizes homocysteine, 

produces a fulminate atherosclerosis by age 20 (ibidem). Not only high levels of blood 

homocysteine, as appear in the clinical syndrome of homocysteinuria, increase CHD risks but 

also less extreme values (Malinow, 1996; Rosenberg, 1996; Giusti, 2004). These 

observations are linked by the roles of vitamin B6, as a cofactor for cystationine synthase, 
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and of folate and vitamin B12, which are cofactors in another metabolic pathway that 

converts homocysteine back to methionine (Zeisel, 2006; Willett, 1998 – chapter 17). 

Inadequate levels of any of these vitamins can increase blood homocysteine levels 

(Rosenberg, 1996; Eichinger, 2004). Diet can also influence levels of homocysteine through 

higher intakes of its precursor methionine, which is particularly abundant in meat and high-

protein dairy products (Zeisel, 2006). Folate intake reduces homocysteine levels and lowers 

the incidence of coronary events (SoRelle, 2001). An estimated 10% of CHD deaths might be 

avoided by adequate folic acid intake (Boushey, 1995). Intakes of both folic acid and vitamin 

B6 were associated with reduced risk of CHD in the Nurses’ Health Study cohort (Rimm, 

1998). Supplementation with these vitamins appears to normalize levels of homocysteine in 

most persons (Malinow, 1990; Naurath, 1996; Lee, 2003). 

Dietary Protein 
 
 
 

Methionine 
 

Methionine Synthase 
(Folic Acid, B12) 
 

Homocysteine 
 

Homocysteine 

Methionine 

Choline 
(Betaine) 

Cystathionine Synthase 
(B6) 

 
Cystathionine 

 
 
 

Cysteine 
 
Figure II.1. Current knowledge of the biochemical pathways describing the relationship 
between diet and blood homocysteine levels 
Legend: the left plain arrow represents a direct catalitic reaction, whereas the plain right 
arrow shows a catalitic reaction after the transformation of choline into betaine 
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Micro- and Macromolecular Mechanisms by which Choline and Betaine Intake exert their 

Coronary Pathological Effects 

 

    There are several possible mechanisms regarding the relationship between choline, as 

methyl-donor precursor, and betaine, its derivative, and incident coronary occlusive (CHD) 

events. First, due to the direct action on DNA of the methyl-donor betaine, the atherogenic 

process is modified (Dong, 2002; Zaina, 2005). The hypothesis that aberrant DNA 

methylation patterns drive atherogenesis was first formulated by P.E. Newman in the late 

1990’s (Newman, 1999). Among a series of other functions, choline directly affects the 

transport and the metabolism of lipid such as the lipoproteins (Zeisel, 2006). The aberrant 

methylation process that results as a consequence of a relative deficiency in choline and 

betaine is supposed to be proatherogenic (Lund, 2004). It is now widely assumed that altered 

DNA methylation patterns in atherosclerosis are mainly due to a modification in factors 

essential for the synthesis of S-adenosylmethionine (SAM), the main methyl group donor in 

DNA methylation reactions (Dong, 2002; Lund, 2004). By way of the above, a relative 

deficiency of choline and betaine is postulated to increase risk of CHD. 

    The increase in blood homocysteine, after a choline and betaine relative insufficiency, 

represents another mechanism by which choline could be related to CHD. The experimental 

studies that took into consideration the mechanisms by which homocysteine exerts its 

toxicity showed that this compound acts in several ways (Medina, 2001). At high 

concentrations homocysteine has a direct cytotoxicity on vascular endothelium. High levels 

of homocysteine induced sustained injury of arterial endothelial cells, proliferation of arterial 
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smooth muscle cells and enhanced expression/activity of key participants in vascular 

inflammation, atherogenesis, and vulnerability of the atherosclerotic plaque (Guilland, 2003). 

These effects are believed to be mediated through homocysteine oxidation and the 

concomitant production of reactive oxygen species (ROS) (Zaina, 2005). Other effects of 

homocysteine include: impaired generation and decreased bioavailability of endothelium-

derived relaxing factor/nitric oxide; interference with many transcription factors and signal 

transduction; oxidation of low-density lipoproteins; lowering of endothelium-dependent 

vasodilatation (van Guldener, 2003; Lund, 2004; Faraci, 2004). Overall, there is abundant 

evidence (in vitro and in vivo) that plasma homocysteine is an atherogenic determinant that 

promotes oxidative stress, inflammation, thrombosis, endothelial dysfunction and cell 

proliferation (Loscalzo, 2006). The molecular mechanisms underlying the significance of 

hyperhomocysteinemia as an independent risk factor for CVD are probably not explained by 

a direct effect on DNA methylation but rather are to be ascribed to at least some of the many 

known cellular functions of homocysteine (Hayden, 2004). 

    The relationship between the choline compounds and CHD is, as presented, complex and 

multidimensional. Choline and betaine could impact CHD incident events not only by 

reducing levels of blood homocysteine but also due to the direct effect of the methyl-groups 

on coronary and/or myocardial tissue. The fact that, in the Finish Kuopio Ischemic Heart 

Disease Risk Factor Study, blood homocysteine was not associated with incident CHD 

(Voutilainen, 2000), whereas low dietary folate intake was associated with an increase in the 

incidence of acute coronary events (Voutilainen, 2001), suggests that either the relationship 

between dietary folate and blood homocysteine is dependent on other metabolic compounds 

such as choline or betaine, or the cardiovascular detrimental mechanism is related to the 
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direct effect of methyl donors such as betaine (Doshi, 2002). At least part of the mentioned 

contradictory results could be explained by the recent findings that during early 

atherosclerosis, nutritional factors affect DNA methylation patterns by mechanisms that are 

likely to be independent of B vitamins or homocysteine levels (Zaina, 2005). Therefore, 

studies that ascertain the relationship between methyl-donor compounds, such as betaine, and 

incident CHD should provide answers to the complex mechanism described above. 

 

Epidemiological Evidence for Blood Homocysteine as a CVD Risk Factor 

 

    There are studies that support the role of plasma total homocysteine level as an 

independent risk factor for CHD (Malinow, 1996; Rosenberg, 1996; Taylor, 2003). Some 

authors (Guilland, 2003) argue that the relationship between blood total homocysteine and 

occlusive CVD is difficult to put in evidence because several traditional risk factors for CVD 

are associated with blood homocysteine. The last mentioned group of authors makes a 

comprehensive review of studies that assessed this relationship. Their findings are presented 

in appendix 2. The majority of studies show an association, although in only half it reached 

statistical significance. A meta-analysis (Ueland, 2000) that contains 14 prospective studies, 

including the ARIC study, yielded a pooled odds ratio (OR) for the association between an 

increased plasma homocysteine and incident CHD of 1.20 (95% C.I. of 1.14-1.25) (Appendix 

3). In the ARIC study, the OR was 1.15 and the 95% C.I., 0.68-1.92 (Folsom, 1998). The 

results of the ARIC study are consistent with those of other studies that failed to document an 

association between mutations in homocysteine-metabolizing enzymes (folate and B 

vitamins) and risk of vascular disease. These odds ratio estimates are lower compared with 
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the pooled OR of another meta-analysis (Boushey, 1995), using mainly case-control studies. 

In this later study the odds ratio for coronary artery disease of a 5 µmol/L homocysteine 

increment was 1.6 (95% CI, 1.4 to 1.7) for men and 1.8 (95% CI, 1.3 to 1.9) for women. In 

another meta-analysis (Clarke, 2002) a 25% lower homocysteine level was associated with 

an 11% (OR, 0.89; 95% CI, 0.89-0.96) lower ischemic heart disease risk. 

    There has been a debate, in recent years, regarding the role of moderate elevated blood 

homocysteine as a risk factor for occlusive vascular events, both coronary and cerebral 

(Ueland, 2000; Brattström, 2000). In populations with an elevated risk of cardiovascular 

events there seems to be an association between elevated blood level of homocysteine and 

cardiovascular occlusive outcomes (ibidem). On the other hand, in populations without 

baseline pathology or other cardiovascular risk factors the same association seems to be 

much more diluted even absent (Alfthan, 1994; Evans, 1997; Voutilainen, 2000). Some have 

proposed that clinical or even subclinical arteriosclerosis may play an important etiologic 

role in the development of hyperhomocysteinemia, so-called “reverse causality” (Evans, 

1997), as an explanation of an association between this metabolite and CHD. 

    In observational studies, elevated plasma homocysteine levels have been positively 

associated with CVD risk. However, the utility of homocysteine-lowering therapy to reduce 

that risk has not been confirmed by randomized trials for secondary prevention, such as 

NORVIT and HOPE 2, for CHD (Bonaa, 2005; HOPE 2 Investigators, 2006) or VISP and 

HOPE, for ischemic stroke (Toole, 2004). Therefore, assessing the relationship of 

homocysteine-pathway compounds other then folate or B vitamins would allow for 

innovative progress. 
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Homocysteine-pathway Compounds and Homocysteine-lowering Interventions 

 

    Homocysteine is a sulfur amino-acid whose metabolism stands at the intersection of two 

pathways. One of them is remethylation to methionine, which requires folate and vitamin 

B12. In an alternative reaction, betaine, the choline derivative, serves as a donor of methyl 

groups to homocysteine to form methionine (Finkelstein, 1972; Finkelstein, 2000; Steenge, 

2003; Zeisel, 2006). Folate and choline are metabolically interrelated (Zeisel, 1991; Jacob, 

1999). Choline is utilized as a methyl donor when folate intake is low. Therefore, when folate 

availability diminishes there is an increased demand for choline as a methyl donor (Jacob, 

1999). When choline availability is decreased the demand is increased for folate methyl 

groups (Kim, 1995). This stresses the importance of taking both dietary folate and dietary 

choline into consideration when assessing the effect of each nutrient on health. The 

metabolism of homocysteine and the remethylation to methionine by the folate and betaine 

alternative pathways are shown in the following figure. 
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FIGURE II.2. Detailed representation of the metabolism of homocysteine with the 
remethylation to methionine by the folate and betaine alternative pathways 
 

    The most frequent causes of increased blood homocysteine (hyperhomocysteinemia) are 

genetic defects, such as cystathionine-beta-synthase (CBS) deficiency, deficiencies of folic 

acid and/or vitamin B12, renal failure and interference in homocysteine metabolism by drugs 

or metabolic alterations (van Guldener, 2001). Nevertheless, in most cases, no underlying 

cause can be established. Subjects with CBS deficiency are treated with vitamin B6 and with 

additional folic acid and betaine, if necessary. Blood concentrations of folate, vitamin B6 and 

vitamin B12 are determinants of homocysteinemia, even in the normal range of plasma 

homocysteine concentrations (Selhub, 1993; Verhoef, 1996; Homocysteine Lowering 

Trialists’ Collaboration, 1998; Brouwer, 1999). Folic acid and vitamin B12 deficiencies 

could be corrected by supplementation. Increases in folate intake by dietary changes or 
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fortification can also lower plasma homocysteine in vitamin-replete subjects with normal 

plasma homocysteine levels (Naurath, 1996). Nevertheless, the steady state plasma 

homocysteine concentration is only partly determined by the rate of homocysteine 

remethylation (Stam, 2005). It is still unknown exactly how the homocysteine-lowering 

effect of folic acid is quantitatively related to folate-induced changes in whole body 

remethylation. An abnormal methionine-loading test can identify additional patients at risk 

via postmethionine-loading hyperhomocysteinemia (da Costa, 2005). Interest has also been 

related to genetic variation in the enzyme, methylenetetrahydrofolate (MTHFR), which 

facilitates the transfer of a methyl group from the folate derivative to homocysteine, 

converting it to methionine (Labarthe, 1998 – chapter 18). A common mutation in this 

enzyme renders it unstable and may require even greater folate supplementation to lower the 

elevated blood homocysteine concentration. 

    The estimation of adequate folic acid intake is complicated by the decision in the U.S. and 

some other countries (during the 1990’s) to fortify flour with folic acid. In 1996, the Food 

and Drug Administration (FDA) published regulations requiring the addition of folic acid to 

enriched breads, cereals, flours, corn meals, pastas, rice, and other grain products. Since 

cereals and grains are widely consumed in the U.S., these products have become a very 

important contributor of folic acid to the American diet (Crandall, 1998). Since January 

1998, the US Food and Drug Administration have required that all enriched grain products 

contain 140 micrograms of folic acid per 100 g, a level considered to decrease homocysteine 

levels (http://dietary-supplements.info.nih.gov). From here derives the importance of having 

dietary data from the 1980’s and early 1990’s. 
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    In a review by Haynes (2002), the author stresses the fact that it would seem appropriate to 

screen for and treat hyperhomocysteinemia in individuals with progressive or unexplained 

atherosclerosis. Nevertheless, the author concludes that treatment of moderately elevated 

plasma homocysteine in patients without atherosclerosis should be deferred until the 

completion of randomized outcome trials. Large clinical trials are currently underway to 

establish the role of homocysteine-lowering therapy in the secondary prevention of 

atherothrombotic disease. In view of the effective, cheap and safe character of therapy with 

folic acid and pyridoxine, a policy can be accepted to screen and treat high-risk patients until 

these trials have been concluded (Haynes, 2002). 

    The Vitamin Intervention for Stroke Prevention study (VISP) was the first large-scale 

randomized interventional study that investigated the lowering of homocysteine 

concentrations with B vitamins in patients with ischemic stroke (Toole, 2004). Plasma 

concentrations of homocysteine were only modestly reduced by high-dose versus low-dose 

formulation, and there was no treatment effect on recurrent stroke, coronary events, or 

deaths. Among the limitations of VISP were that only patients with mild increases in baseline 

homocysteine concentrations were studied, only modest reductions of homocysteine 

concentrations were achieved, and follow up was short. In addition, fortification of food with 

folate (in the 1990’s) and treatment of low vitamin B12 concentrations may have masked the 

effect of treatment on stroke risk. The more recent studies, the NORVIT trial (Boona, 2005) 

and the HOPE 2 trial (Hope 2 Investigators, 2006), have shown similar results. Vitamin 

treatment was associated with a substantial reduction in plasma homocysteine concentration 

but not with a significant decrease in the risk of the composite end points of myocardial 

infarction, stroke or death from cardiovascular causes. 
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    Circulating homocysteine is rapidly oxidized, and very little homocysteine remains in the 

reduced form. Increases of about 10% of the non-oxidized form have been reported in the 

postprandial stage (Guetormsen, 1994). Homocysteine levels also increase with age and are 

higher in men than in women. A difficult aspect of homocysteine metabolism in relation to 

cardiovascular studies is that homocysteine concentrations may increase after myocardial 

infarction or stroke, thus temporality can not be established (Egerton, 1996). 

    When plasma homocysteine level is high, the folate dependent pathway for methylation of 

homocysteine to form methionine is limiting and the choline-betaine dependent pathway 

becomes important (daCosta, 2005, Holm, 2004). The results of the afore mentioned studies 

suggest that choline and betaine, like folate, play an important role in the metabolism of 

homocysteine in humans, and that assessing the response to a methionine load may be useful 

when assessing choline nutriture. In the daCosta study, four hours after the methionine load, 

clinically choline depleted men had plasma homocysteine concentrations that were 35% 

greater than those in men not choline depleted (daCosta, 2005). This finding underscores the 

significance of quantifying, in epidemiological studies, the dietary intake of methionine and 

assessing this metabolic compound for its confounding potential. 

 

Choline 

 

    Choline is a quaternary amine that is widely distributed in foods (Institute of Medicine and 

National Academy of Sciences, 1998; Zeisel, 2006). It is a dietary component essential for 

normal function of all cells. Phosphatidylcholine (lecithin) is the predominant phospholipids 

in most mammalian membranes. Though representing a smaller proportion of the total 
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choline pool, important metabolites of choline include, among others, betaine. Choline is 

required to make essential membrane phospholipids. It is a precursor for the biosynthesis of 

the neurotransmitter acetylcholine, and it is an important source of labile methyl groups 

(ibidem). Choline is needed also for trans-membrane signaling, and lipid-cholesterol 

transport and metabolism (Zeisel, 1994). Total metabolic choline refers to the sum of free 

choline, glycerophosphocholine, phosphocholine, phosphatidylcholine and sphingomyelin. 

The methyl groups of choline can be made available from one-carbon metabolism, upon 

conversion to betaine (Institute of Medicine and National Academy of Sciences, 1998; 

Niculescu, 2002). Liver and kidney are the major sites for choline oxidation. Betaine cannot 

be reduced back to choline. The demand for choline as a methyl-group donor seems to be the 

major factor which determines how rapidly a diet deficient in choline will induce pathology. 

As shown in laboratory animals, chronic ingestion of a diet deficient in choline has major 

consequences. These include effects on the hepatic, renal and pancreatic tissues, memory, 

and growth disorders. 

    Plasma choline concentration varies in response to diet (Zeisel, 1980). It decreases 

approximately 30% in subjects fed a choline-deficient diet for 3 weeks (Zeisel, 1991). 

Plasma choline concentration can increase twofold after a meal high in choline content and 

three- or fourfold after a supplemental choline dose (Zeisel, 1980). Many foods eaten by 

humans contain significant amount of choline and esters of choline (Zeisel, 2003). Some of 

this choline is added during food processing, especially when preparing infant formula 

(Holmes-McNary, 1996, Zeisel, 2006). Foods also contain the choline metabolite betaine, 

which cannot be converted to choline, but can be used as a methyl donor, thereby sparing 

choline requirements. In an experimental choline depletion/repletion study (Zeisel, 1991) it 
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was found that feeding healthy men a choline deficient diet with adequate methionine and 

folate for 3 weeks resulted in low plasma choline and phosphatidylcholine and liver 

dysfunction, all of which were reversed upon choline repletion. The authors concluded that 

choline is an essential nutrient for humans when sufficient methionine and folate are not 

available in the diet. Consequently, the U.S. Institute of Medicine’s Food and Nutrition 

Board established choline as an essential nutrient for humans (Institute of Medicine and 

National Academy of Sciences, 1998). Foods that are especially rich in choline compounds 

are milk, liver, eggs and peanuts. 

    The amount of choline necessary in the daily diet may be influenced by gender (due to 

female’s capacity to form the choline moiety de novo), menopausal status, pregnancy, 

lactation, exercise and stage of development (Zeisel, 2006). Studies in rats have suggested 

that males may have a higher choline requirement than do females, perhaps because of 

females’ enhanced capacity to form the choline moiety de novo (Tessitore, 1995). Therefore, 

from an epidemiological point of view, gender and menopausal status should be assessed as 

an effect measure modifier for the same studied association dietary choline – incident CHD. 

Nevertheless, the need for choline is likely to be increased during lactation because so much 

is secreted into milk (Zeisel, 2006). Whereas the adequate dietary intake (AI) is set to 550 

mg/day in males, and 425 mg/day in females, the tolerable upper limit (UL), the maximum 

level of daily nutrient intake that is likely to pose no risk of adverse effects, is 3.5 grams/day 

(Institute of Medicine and National Academy of Sciences, 1998). Human studies to establish 

the EAR of choline in men and women are currently underway while studies for children or 

infants have not yet been conducted (Zeisel, 2006). 
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    Fasting plasma choline concentrations vary from 7 to 20 µmol/L, with the average 

concentration of 10 µmol/L. These concentrations do not appear to decline below 

approximately 30% of normal, even when subjects fast for more than 1 week (Zeisel, 1991; 

Savendahl, 1997). It is known that once choline is incorporated into tissues (in the form of 

choline derivatives), it will not be “excreted” back into the circulation. One exception is 

during special physiological conditions such as pregnancy or surgery (Ozarda, 2002). 

Another exception is the phosphatidylcholine from cell membranes, which is in an 

equilibrium with the plasma free choline, but the passage from the previous substance to the 

second takes place only in extreme situations, like starvation, due to the fact that cell 

membranes are protected (Zeisel, 2006). Therefore the dietary intake of choline over a long 

retrospective period seems appropriate to consider when assessing the relationship between 

blood homocysteine and incident CHD. 

 

Betaine 

 

    Betaine is a significant component of many foods (Craig, 2004). It is a methyl derivative 

of the amino-acid glycine and it has been characterized as a methylamine because of its 3 

chemically reactive methyl groups. Because betaine cannot be reconverted to choline it is not 

generally considered as a source of choline and does not add its contribution to those from 

the other choline metabolites (ibidem). Nevertheless it is the main methyl source implicated 

in one-carbon metabolic reactions. The relationship between choline (and betaine) and CHD 

became a main topic of research in recent years. The content of betaine in wine and the high 

average consumption of wine in France (estimated at about 3 mg/day) has been proposed as 
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one possible explanation of the “French paradox”, namely the lower than predicted coronary 

heart disease mortality in that country (Mar, 1999). In the U.S., dietary intake of betaine is 

estimated at 0.5-2 g/day. The main food sources of betaine are spinach, beets, liver, eggs, fish 

and wheat products (Zeisel, 2003). 

    A betaine supplementation trial with doses in the range of habitual dietary intake on 

fasting and post-methionine loading plasma homocysteine concentrations in healthy adults 

(Olthof, 2003) showed that supplementation with betaine, at doses as low as 1.5 g/day, 

lowers statistically significant, between 12% and 20%, the plasma homocysteine 

concentration in healthy adults. It has been shown that not only does betaine supplementation 

lowers mildly elevated plasma homocysteine (Steenge, 2003) but there seems to be an 

apparent dose-response relationship between betaine supplementation, at doses in the range 

of dietary intake, and plasma homocysteine concentrations (Olthof, 2003; Alfthan, 2004). 

The last mentioned study showed that a relatively large dose of folic acid (1 mg, together 

with a 6 g betaine dose) contributed only slightly more to the lowering of plasma total 

homocysteine than betaine by itself. Studies in healthy volunteers with plasma homocysteine 

concentrations in the normal range show that betaine supplementation lowers plasma fasting 

homocysteine dose-dependently up to 20% for a dose of 6 g/d of betaine, which is above the 

level of habitual ingestion. Moreover, betaine acutely reduces the increase in homocysteine 

after methionine loading by up to 50%, whereas folic acid has no effect (Olthof, 2005). 

    Clinical trials show that betaine tends to reduce homocysteine during methionine excess 

and emphasize the complementary relationship between betaine and folate metabolism 

(Holm, 2004; Olthof, 2005). Plasma betaine is a strong determinant of increase in 

homocysteine after methionine loading, particularly in subjects with low folate status (Holm, 
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2004). The increase in homocysteine after a methionine loading test showed a strong inverse 

association with plasma betaine and a weaker inverse association with folate and vitamin B6. 

Fasting homocysteine showed a strong inverse relation to folate, a weak relation to plasma 

betaine, and no relation to vitamin B6. The epidemiologic assessment of habitual ingested 

dietary choline presents interest. Choline or betaine treatment has been used to lower high 

plasma homocysteine concentrations (Wendel, 1984; Dudman, 1987). In children with 

homocystinuria, a metabolic disease leading to high blood concentrations of homocysteine 

and subsequent increased urinary excretion of homocysteine, treatment with betaine is more 

effective than treatment with folate in normalizing plasma homocysteine and methionine 

concentrations (Wendel, 1984). 

 

B. Food and nutrient databases, dietary assessment, intraindividual variability and 

measurement of random error in nutritional epidemiology as pertains to choline and 

betaine 

 

Introduction 

 

    It has been argued that, despite the enormous progress made in the last century, our 

understanding of biologic mechanisms remains too incomplete to predict the definitive 

consequences of eating a certain food or nutrient (Willett, 1998 – chapter 1). Therefore 

epidemiologic studies relating intake of dietary components to risk of death or disease among 

humans play a critical role complementing laboratory investigations. Initiated in the 1980’s 

and 1990’s to assess the relationship between dietary nutrients and risk of cardiovascular 
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events, several prospective cohort investigations remain to be more valorized with the 

inclusion of some more recent dietary nutrients (ibidem). 

    Probably the most important accomplishment in nutritional epidemiology during the 

1980’s and 1990’s was the development and validation of methods for measuring dietary 

intake that are sufficiently inexpensive to be used in large populations and yet accurate 

enough to provide informative answers to numerous existing hypotheses (Willett, 1998 – 

chapter 19). The ARIC Study belongs to the generation of large prospective studies that are 

expected to provide data on the relation of diet and coronary heart disease. These data are far 

less subject to the methodological biases that can affect other study designs such as case-

control studies. 

 

Dietary Databases 

 

    The U.S. food supply is enormously diverse. Preliminary data indicate that about 670 

foods account for approximately 85% of the intake of most nutrients important to public 

health (Dwyer, 2003, Willett, 1998 – chapters 2 and 3). Nevertheless, for any individual 

nutritional component, 5-200 foods may account for 80% of the population’s intake. Food 

composition databases are required for the analysis of data on intake and therefore are vital in 

making intake estimates (Dwyer, 2003). A specific nutrient database is needed in order to 

calculate the total intake of a nutrient for each research study participant. Existing databases 

and computer software are typically used to obtain standard summaries from dietary recalls 

and food records. Specially designed databases are needed when a structured questionnaire 

has been designed. Such a database was made available recently by the USDA with the 
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analysis provided by the UNC Department of Nutrition (Zeisel, 2003; USDA, 2004). 

Nutrient databases are used to convert food-level data into nutrient-level data (Willett, 1998 – 

chapter 2). An open-ended dietary assessment requires an extensive and comprehensive 

database that reflects all possible foods that participants may report. For a structured 

questionnaire, a more streamlined database is required to provide nutrient information for 

each food on the questionnaire. These data are usually created by investigators using an 

available comprehensive database supplemented with other sources of information. 

    There are challenges in maintaining a food composition database. This is due to a constant 

change in the food supply, the advent of new compounds of health interest (such as choline 

and betaine), limited resources and some methodological constraints. The U.S. Department 

of Agriculture (USDA) has held responsibility for the characterization and provision of 

information on the nutrient content of the U.S. national food supply for over 100 years 

(Dwyer, 2003). The Nutrient Data Laboratory of the USDA’s Agricultural Research Service 

currently develops and maintains the Nutrient Databank System (NDBS) in addition to many 

other nutrient- and population-specific databases. NDBS contains data for approximately 

8000 foods and 115 components. Separate USDA databases exist for many nutrients of 

scientific interest, such as carotenoids, isoflavones, trans-fatty acids, etc (Willett, 1998 – 

chapter 2). Nutrient database entries typically include a food item, a food code or food ID, a 

description of the food, and a nutrient composition (usually per 100 grams of the food). The 

latter is usually determined from laboratory analyses or estimated based on conversion 

factors or other knowledge about the food. 

    There are a series of considerations in choosing a nutrient database (Willett, 1998 – 

chapter 2). They should be current (regularly updated), comprehensive (wide scope of foods, 
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recipes, and nutrient), versatile (various food measurement units, including volume and 

weight), extensive (nutrient data in various formats), adaptable (can accommodate new 

foods, recipes), complete (few missing nutrient values), and standardized (good quality 

control). The previous elements in turn represent the sources of error in a nutrient database 

(ibidem). One such source is the dietary assessment instrument particularly used, specifically 

its accuracy in reporting of food intake, appropriateness of its foods categories (less details 

about preparation methods, portion size, brand name, etc.), consideration of specific brand 

names, choice of frequency categories, number of missing or imputed nutrient composition 

values and variability in the nutrient content of foods within a food category in closed-ended 

instruments. The USDA choline and betaine database has the characteristics needed for a 

valid and reliable dietary assessment source, as presented in its quality control measures 

(USDA, 2004). 

 

Dietary Assessment Methods 

 

    A dietary assessment is needed to examine the relationship between diet (a dietary pattern, 

a food item or a macro- or micronutrient) and a health outcome. The goal is a valid and 

precise method for assessing usual (habitual) intake, in order to place individuals within 

distributions of energy and nutrient intake. In nutritional epidemiology, as in epidemiology in 

general, the desirable features of exposure assessment tools are as follows. They must be 

valid (measures what they are intended to measure), reliable (consistently gives the same 

results), practical (reasonable costs to study and participants), non-reactive (does not alter the 
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population or behavior it seeks to measure), and sensitive (discriminates differences between 

individuals). 

    There are several commonly used dietary intake assessment tools: food record, 24-hour 

recall, food frequency questionnaire, diet history, and biomarkers (van Staveren, 1986). 

Much debate surrounds the accuracy of current methods to assess dietary intake. Seven-day 

weighed food records were historically considered to be the best for estimating dietary 

exposure; however, 3 or 4-day records are commonly used in research studies (Johnson, 

2002). There is no ideal food assessment method in place when estimating dietary intake of a 

nutrient. Even prospective methods such as several-day food records can underestimate it.  

For example, validation studies of various dietary assessment instruments have revealed that 

self-report intake instruments consistently underestimate energy intake (Trabulsi, 2001).  It 

was also found that self-report in 3-day food records significantly underestimated daily 

choline and betaine, folate, vitamin B12, and methionine plus cysteine dietary intakes 

(Fischer, 2005). Several other major problems in assessing diets are recognized. Among 

them, within-person variation exceeds between person variation (Willett, 1998 – chapter 3). 

The exposure period can vary (past year for a food frequency questionnaire), raising concerns 

about how representative present dietary habits are. There is increasing diversity of food over 

time as well as reformulation of certain foods. For a micronutrient such as choline, assessed 

in a large observational investigation, a dietary assessment method with a high ability to 

assess habitual diet and a low price/time consumed per respondent is preferred, although such 

an assessment tool provides less information (e.g., original-meal preparation). 

    It has been argued that ranking is the primary objective of most epidemiologic studies 

(Willett, 1998 – chapters 4 and 5). Furthermore, it has been said that the requirements that 
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dietary survey methods for epidemiologic studies have the ability to estimate absolute levels 

of total intake may be unrealistic and unnecessary (Block, 1982). Epidemiologists are 

interested in observing the relation between intakes of specific foods and health outcome. 

Day-to-day variation in consumption of specific foods is substantially greater than for 

nutrient intake (Salvani, 1989). Thus, except for a very few frequently used items, dietary 

instruments such as 24-hour recalls are not suited for measuring usual intake of specific 

foods unless multiple weeks of intake are assessed (Willett, 1998 – chapter 5). Moreover, 

instruments such as 24-hour recalls are not appropriate for measuring dietary intake in the 

distant past. Therefore, they are limited to cross-sectional investigations. In some situations, 

such as the comparison of nutrient intakes with specific dietary recommendations, estimates 

of the absolute energy and macronutrient intakes may be required. In such cases, records or 

recalls are generally the methods of choice. Nevertheless, for most epidemiologic 

investigations of dietary intake and health, relative rankings of food and nutrient intakes 

seem adequate for determination of relative risks (Willett, 1998 – chapters 4 and 5). Due to 

the large amount of effort required to collect and process multiple days of food records or 

recalls, these methods are seldom used as the primary method for estimating usual intake in 

large-scale epidemiological research.  

 

Food frequency questionnaire as primary dietary assessment method in nutritional 

epidemiology 

 

    The food frequency questionnaire (FFQ), a food propensity questionnaire, is a 

retrospective method of dietary assessment. It has become the dietary assessment method of 
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choice for ranking usual nutrient intake (Willett, 1998 – chapter 5). It is a pre-coded 

questionnaire that attempts to measure usual long-term dietary intake using a list of foods and 

beverages, the frequency response options and/or portion sizes. Food frequency 

questionnaires are a popular method for diet assessment in epidemiologic studies because 

they are relatively easy to use and have been shown to be at least moderately valid and 

reliable. Among the most commonly used questionnaire today are those developed by Willett 

(Willett, 1985; Willett, 1987) and Block (Block, 1986). Although these questionnaires have 

been used widely, their reliability has been tested in groups that were exclusively or 

predominately white (Willett, 1985; Willett, 1988; Wu, 1986; Colditz, 1987; Munger, 1992; 

Rimm, 1992; Longnecker, 1993). With few exceptions (Stevens, 1996) sparse data exists on 

their validity or repeatability in diverse cultural groups. 

    Several features are characteristic of an FFQ. It has a limited number of questions or line 

items, usually, between 60-150 foods. It combines foods within single questions. It 

aggregates foods across meals, and truncates frequency response categories (e.g., never, less 

than 1 per month, 2-4 per week, etc.). It is not fully quantitative (it has no or few portion size 

questions). Moreover, it limits food response options to a predetermined set of “important 

foods”. This is the consequence of the design of a FFQ – it starts with full knowledge of the 

diet of the population under study, based for example, on multiple 24-hour dietary recalls or 

large population surveys. The intake data are then analyzed to determine either the percent 

contributions of individual foods to a specific nutrient (Block approach) or the foods 

contributing to the largest variance in intake (Willett approach). These similar nutrient 

combination foods are then combined with multiple foods in the same question. They will 

end in analyses with common nutrient groups which unfortunately are not always very 
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similar (despite the a priori intention in this regard). Adjustment questions permit more 

refined analysis of fat intake by asking about food preparation practices and types of added 

fat. Summary questions ask about usual intake of fruit, vegetables, and added fats to foods 

and in cooking to adjust for misreporting of individual foods. An important aspect in the 

design of a FFQ is the fact that, because the major sources of nutrients within a population 

change over time (e.g., new foods, new dietary trends, food fortifications, etc.), a particular 

FFQ may need to be redesigned. Any particular FFQ needs specially designed databases. 

FFQs with implausible energy intakes are sometimes excluded from analyses (e.g., men 

below 700 kcal and above 4500 kcal, women below 500 kcal and above 3500 kcal) with the 

rationale that these reported intakes suggest that either respondents did not complete the form 

in a reliable manner or the respondents may be losing or increasing weight (Willett, 1998 – 

chapter 13). 

    Among the advantages of the FFQ compared with other dietary assessment methods are: 

they attempt to capture the usual (habitual) dietary intake, are good for large epidemiologic 

studies (due to their relative low cost and minimal data entry with pre-coding needed), and 

are useful for ranking individuals based on nutrient intake. Other advantages are the facts that 

the completion does not affect eating behavior. It is less burdensome to the respondent than 

are food records. Thus, the main advantages represent their usefulness for ranking individuals 

to ascertain diet-disease association, their cost and representativeness (Barrett-Connor, 1991). 

There are several limitations of the FFQ. It does not capture total diet and does not 

adequately measure total energy intake. A long-term and complex recall is required. 

Respondents must think in terms of lists of foods instead of meals. The food preparation 

methods are not taken into account, and some of the foods eaten by respondents may not be 
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on list. The FFQs are often population specific. They can be long and tedious and, therefore, 

subject to recall bias. 

    Both the validity as well as the repeatability of dietary instruments are of particular 

importance in studies that compare a diet-disease relationship among different groups. It is 

possible that the repeatability of a food frequency questionnaire may be affected by 

educational or cultural factors that influence recall. There are no data on the repeatability of 

any FFQ as it pertains to dietary choline and betaine intake in minority groups or subjects 

with different levels of educational attainment. If a given instrument measures a particular 

nutrient with high reproducibility in one group and low reproducibility in another, 

relationships between that nutrient and disease in the two groups of subjects might 

erroneously appear to be different. Prior knowledge of differences in repeatability can 

prevent this type of misinterpretation. The reliability of the FFQ used in ARIC was tested 

using the first two visits of this prospective study (Stevens et al., 1996). The reliability 

coefficients were calculated for nutrient intakes reported over a mean elapsed period of three 

years. The coefficients tended to be higher in men than in women, in white Americans than 

in African Americans, in subjects with more than 12 years of education, and in participants 

who were 45-49 years of age, compared with older participants. 

 

Willett FFQ 

 

    The Willett FFQ is a dietitian prepared list of foods containing appreciable amounts of 

nutrients of interest (Willett, 1998 – chapter 5). It is constructed with the reported frequency 

of consuming a given portion size. Foods used very infrequently are eliminated in pilot 
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testing, using stepwise regression analysis to identify the most discriminating food items. The 

Willett FFQ is a semi-quantitative 126 (or 138)-item for the long version, and 61-item 

questionnaire, respectively, for the short version. It assesses 18 nutrients. It specifies portion 

size as part of the question on frequency. For comparison, the foods included in the Block 

FFQ (identified from NHANES II survey) are grouped into 147 conceptually similar food 

items. The Block FFQ ensured that the food list had adequate assessment of nutrients and 

foods of particular interest. The food list was modified in response to pre-testing. In terms of 

the accuracy of short-term estimations, Block and Willett FFQ were modified to reflect 

intake over the past 7 days and compared to intake information gathered from diet records 

and 24-hours recalls covering the same 7-days period (Eck, 1996). Significant differences 

between mean levels of nutrients were present only in the estimates of carbohydrate and 

vitamin A. 

    Several studies show that the Willett FFQ is not worse than Block FFQ, diet records or 

recalls. Researchers at the National Cancer Institute developed a new cognitively based 

food frequency questionnaire (the Diet History Questionnaire) and compared it with the 

Block and the Willett FFQ. The Diet History Questionnaire and the Block FFQ are better 

at estimating absolute intakes than is the Willet FFQ but, after energy adjustment, all 

three are more comparable for purposes of assessing diet-disease risk (Subar, 2001). The 

performance of the Block and the Willett FFQ were compared with a longer, interviewer-

administered diet history (Caan, 1998). The Block and the Willett questionnaires 

generally yielded lower absolute intake estimates than did the original diet history. The 

Block questionnaire underestimated more than did that by Willett. 
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    The short version of the Willet FFQ was also assessed to evaluate its reproducibility 

and validity (Willett, 1985). This 61-item FFQ form was administered twice to 173 

participants at an interval of approximately one year, and four one-week diet records for 

each subject were collected during that period. Intraclass correlation coefficients for 

nutrient intakes estimated by one-week diet records (a maximum of 0.79 for B6 vitamin 

with supplements) were similar to those computed from the questionnaire (a maximum of 

0.71 for sucrose), indicating that these methods were generally comparable with respect 

to reproducibility. With the exception of sucrose and total carbohydrate nutrient intakes 

from the diet records tended to correlate more strongly with those computed from the 

questionnaire after adjustment for total caloric intake. The study indicated that this simple 

dietary questionnaire can provide useful information about individual nutrient intakes 

over a one- year period. The correlation coefficients between the diet records and FFQ 

were between 0.5 and 0.7, whereas the validity (accuracy) had a correlation coefficient 

between 0.3 and 0.5. 

 

Biochemical Markers 

 

    Nutrient intake is just one determinant of nutrient status because the levels of a nutrient in 

blood or tissues can be affected by genetic influences, lifestyle factors such as smoking or 

physical activity, or the intake of other nutrients – with or without interactions (Jacques, 

1993; Willett, 1998 – chapter 9). A related use of biochemical indicators is to predict disease 

risk, irrespective of whether the level of the biochemical measure is determined by dietary 

intake or other factors. Nutritional epidemiologists have a primary interest in the intake of 
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dietary factors as quantifiable determinants of disease, and thus the use of a biochemical 

indicator is principally as a measure of nutrient intake (Willett, 1998 – chapter 9). 

Nevertheless, homeostatic mechanisms control the concentration of many nutrients in body 

tissues and fluids. These mechanisms mean that the relation between nutrient intake and 

levels in biological specimens is rarely linear and may not even be monotonic. If the plateau 

phase of a marker is wide its concentration may be almost uniform over the range of normal 

consumption and thus the indicator is almost useless as a marker of nutrient intake. This 

situation represents, partially, the case for plasma choline (Fischer, 2006). For several 

important nutrients, no feasible biochemical indicator of intake is available (ibidem). For 

others, within-person variation in level of the indicator or the existence of other determinants 

makes correlations with long-term intake weak. For choline or betaine, as opposed to folate 

for which serum and erythrocyte biological tissues represent valuable biochemical indicators, 

there are no feasible biomarkers available, due mainly to the physiological feedback 

mentioned. 

    Validation of biochemical markers as indicators of dietary intake of nutrients is at an early 

and rather unsatisfactory stage (Margetts, 1997). There are very few instances of very close 

agreement between intake and biomarkers for the vitamins, for example. Moreover each 

vitamin must be considered separately. Very few generalizations can be made for the whole 

category. For those vitamins for which urinary excretion is the major route of excess-

disposal, such as certain B-group vitamins, the level of intake in the short term can be 

assessed moderately well in the moderate to high intake range. At the other end of the time 

and intake scale, red cell enzyme activation coefficients generally reflect long-term intakes in 

the low to medium, but not the high, intake range (ibidem). A less common use for 
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biochemical markers is to validate other forms of diet assessment (Willett, 1998 – chapter 9). 

The main advantage of having a biomarker in general is the fact that one can account for the 

relative importance of food and supplement intake separately. 

    Despite the fact that the biomarkers are regarded as a gold standard in dietary intake 

assessment, they are subject to several limitations. Among them is the fact that they do not 

necessarily reflect dietary intake; other factors besides intake can alter the levels. As 

mentioned, in the case of plasma choline, due to a high pool of total choline in cell 

membranes and tissues the blood choline does not reflect well the body yield of these 

compounds. The relationship between the timing of the biomarker measurement and the 

natural history of the disease process is fundamental to interpreting epidemiologic data 

(Wild, 2001). Biomarkers of diet reflect, in general, recent intakes and therefore assumptions 

need to be made as to how current measurements reflect past diet. This has led to a search for 

measures of long-term exposure. For example, erythrocyte folate levels are about 20 times 

the concentration of plasma (serum) folate and appear to be a better biomarker since they 

reflect body stores and are considered to be a long-term folate status (ibidem). It appears that 

the biomarker approach will not provide a solution to all the methodological problems 

reviewed. A combination of methods will probably prove to be the most valuable. 

 

Measurement Error in Nutritional Epidemiology 

 

    All biologic and physical observations are measured with error. To a large extent, 

increments in knowledge depend on reducing this inexactness. It is therefore critical to 

improve the technical aspect of exposure measurement, whether based on questionnaires, 
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biochemical assays or anthropometry (Willett, 1998 – chapter 12). At some level, however, 

reduction of error becomes difficult or impractical. It is then important to measure the 

magnitude of the error and evaluate its effect on relationships under investigation (Espeland, 

1987; Byar, 1989; Chen, 1989). 

    Apart from respondent-related sources of inaccuracy that will not be addressed here, there 

are several measurement instrument-specific sources of error (Fuller, 1987; Carroll, 1995; 

Willett, 1998 – chapter 12). They can be thought of as two general types: random and 

systematic. For random error, the average value of many repeated measures approaches the 

true value (the law of large numbers). For systematic errors, the mean of repeated 

measurements does not approach the true value. In epidemiologic studies random or/and 

systematic errors can occur at two different levels: within a person and between persons. 

Thus at least four types of error can exist: random within-person, systematic within-person, 

random between-person, and systematic between-person (Fuller, 1987). Specifically, when 

measuring dietary exposure among a group of persons, errors can also be either random or 

systematic. Random between-person error can be either the result of using only one or few 

replicate measurements per subject in the presence of random within-person error or the 

consequence of systematic within-person errors that are randomly distributed among 

subjects. Random between-person error means that an overestimation for some individuals is 

counterbalanced by an underestimation for others so that the mean for a large group of 

subjects is the true mean for the group, although the standard deviation for the group is 

increased (Carroll, 1995). 

    Random within-person error is typified by the day-to-day fluctuation in dietary intake 

(including but not limited to the week-weekend and seasonal variation) and to errors in the 
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measurement of intake on any one day.  The true variation over time may be considered 

random error if the long-term average intake for an individual represents, conceptually, the 

true intake for that subject. Therefore, the distinction between random measurement error and 

true random day-to-day change in diet is usually not important when considering their effects 

on epidemiologic association (Willett, 1998 – chapter 12). Using a FFQ dietary assessment 

will take into account and therefore reduce the true variation (variance) over time. The 

variation in measurement, i.e. the variance, is in direct relationship with measurement error. 

Most literature addressing the issue of measurement error in nutritional epidemiology, as in 

other epidemiologic fields, is based on the assumption that within-person error is strictly 

random. One reason for this is the fact that much of statistical theory is based on the 

assumption of random error. Another is the result of the difficulty in the systematic error 

measurement (ibidem). Random within-person error can be measured easily with a single 

replicate measure for a sample of subjects, such as by a reproducibility study. Systematic 

within-person error is particularly likely to occur when standardized questionnaires are used: 

an important food item for a subject, but not necessarily for all subjects, may have been 

omitted from a questionnaire or misinterpreted by a subject. The measurement of systematic 

error requires a second, superior measure of exposure and a validation or a “classic” 

calibration study. Unfortunately, no perfect measure of true long-term dietary intake exists. 

The best measurements (e.g., diet records or several dietary recalls) are laborious and 

expensive, and improper for large observational cohorts such as ARIC. Although for a 

calibration, the plasma homocysteine measurements made in a subgroup of ARIC 

participants could be used to confirm the relationship of choline to homocysteine levels, 
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because the blood homocysteine relationship with dietary choline and betaine is not a direct 

one, the “calibration” aim is not achievable. 

    Systematic between-person error results from systematic within-person error that affects 

subjects nonrandomly (Fuller, 1987; Carroll, 1995; Willett, 1998 – chapter 12). The mean 

value for a group of persons is thus incorrect. If the systematic error applies equally to all 

subjects and is simply additive, the observed standard deviation for the group is correct. If 

individuals are affected to various degree or the error is multiplicative (e.g., proportional to 

an individual’s true level), the observed standard deviation will also not represent the true 

standard deviation. Systematic between-person errors are likely to be frequent and could 

have many causes. The omission of a food with a high content in choline and betaine from 

the Willett FFQ used in ARIC, or the use of an incorrect choline or betaine composition 

value for a common food will affect all individuals in the same direction, but not to the same 

degree because the use of these foods will differ among subjects. It is probably uncommon 

that systematic between-person error affects all individuals equally. More commonly, 

random and systematic between-person errors are likely to exist in combination. Due to the 

high accuracy of choline content measurements in common foods (Zeisel, 2003), the error 

would appears to be predominantly a systematic between-person error due to the ARIC FFQ 

as it pertains to choline and betaine estimations. Because the ultimate focus of epidemiology 

is on associations with health outcomes, the impact of exposure measurement error on 

measures of association (such as hazard ratio) is of greatest importance. In general, random 

within-person error tends to bias toward the null. It is assumed that this effect applies to 

random between-person errors in general, even if it is the consequence of systematic within-

person error that is randomly distributed among subjects, although exceptions have been 
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documented. Systematic errors that affect all persons equally do not affect the measures of 

association with health outcomes. Systematic differences in measurement error between 

outcomes (cases and non-cases), meaning biased with respect to disease, are usually not 

amenable to correction. 

 

Intraindividual variability, reliability and measurement error correction as it pertains to 

choline and betaine 

 

    Intraindividual variation is a common concept in any branch of science. Repeat 

measurement permits the estimation of the reliability. In turn, estimates of reliability permit 

adjustment for measurement error such as through a regression calibration (Rosner, 1989; 

Spiegelman, 1997; Chambless, 2003). Mixed models can also be used to estimate the various 

components of total variation in the dietary data. One can write the total variance as σ2
Total(T) 

= σBP
2 + σe

2 where σBP
2 is the between-person component of variation and σe

2 is the 

intraindividual component, sometimes called measurement error. The ratio R = σBP
2 / σT

2 is 

called the reliability coefficient, the proportion of total variance attributed to the between-

person component. It expresses the degree to which an instrument and the number of 

measurements yield a favorable ratio of between versus total variability. The total and the 

between-person variance for choline and betaine will give a measure of error variance for the 

ARIC dietary assessment of these micronutrients and provide researchers with estimates to 

conduct sensitivity analyses of usual choline (betaine) intake distributions when multiple 

days of data collection are not feasible. When one wants to consider the joint intraindividual 

variation in several variables, one writes the total variance-covariance matrix of that set 
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(vector) of variables as a sum of the between-person variance-covariance matrix (ΣTotal = ΣBP 

+ Σe). 

    For most epidemiologic applications, long-term diet, rather than intake on any specific day 

or small number of days, is the conceptually relevant exposure parameter (Willett, 1998 – 

chapter 3). A central feature of the dietary intake of free-living individuals is variation from 

day to day superimposed on an underlying consistent pattern. In industrialized societies, 

seasons make a relatively small contribution to variation in nutrient intake (van Staveren, 

1986; Willett, 1998 – chapter 3). Most of the variation in an individual’s diet is without an 

obvious pattern. This apparently random variation is largely due to true variation in the food 

that is eaten but also has a component of measurement error, error in the measurement of 

food intake on a given day. Whereas the diets of poor people in non-industrialized areas are 

homogeneous (the within-person variation may not be a serious consideration), in 

industrialized countries such as the U.S. the intraindividual variation is larger then the 

interindividual variation (Willett, 1998 – chapter 3). If only one or a few days are measured, 

a subject’s true long-term intake is likely to be misrepresented. The within-person variation 

can substantially distort relative risks. The general effect is to reduce the strength of 

association. 

    There is novelty and value in estimating intraindividual variability and correcting for 

measurement error bias as it pertains to choline and betaine. There is no information about 

the repeatability of dietary choline and betaine intake in population samples. One study that 

assessed, using food records, the variability of choline dietary intake in human subjects 

(Fischer, 2005) suggests that the actual intake for choline is very close to the recommended 

intake of this nutrient. The study investigated, in a hospital-like setting, healthy male and 
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female volunteers, recruited by advertisement, who were asked to select ad libitum a variety 

of foods. The standard deviations of choline in the total measured diet were 157 mg/day for 

males and 88 mg/day for females, and the mean dietary intakes were 631 mg/day for men, 

respectively 443 mg/day for women. 

    The degree of random variation differs according to nutrient. For micronutrients, such as 

choline and betaine, because they tend to be concentrated in certain foods, intake can be very 

low or very high, depending on food choices for that day. Ideally, to estimate the individual’s 

“true” intake, records on a large number of days should be used. In practice, it is rarely 

possible to measure a large number of days of dietary intake for an individual subject, so that 

intakes during a sample of one or several days are usually measured. The effect of this 

sampling on the apparent distribution of intakes for individual subjects will be to artificially 

increase the standard deviation while the actual mean would be difficult to predict. 

Distribution for micronutrients tends to be even more distorted due to their greater day-to-

day variation. To calculate the number of days needed to estimate a person’s true dietary 

intake, one needs the within-person coefficient of variation (Beaton, 1979). The within-

person coefficient of variation can be obtained from the analysis of variance on repeated days 

of dietary intake. The square root of the within-person variance is the within-person standard 

deviation, and this value divided by the mean is the within-person coefficient of variation. 

    In general, it has been shown that a single measurement underestimates the risk of 

coronary heart disease in relationship with certain plasma metabolite risk factors, such as 

cholesterol or similar blood lipids (Fuller, 1987; Davis, 1990; Carroll, 1995). As mentioned, 

statistical theory states that if the single measurement used in the assessment exposure-

outcome is subject to within-individual variability the strength of that relationship will be 
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underestimated. Both short term variations (within one day, or one week) as well as long 

term variations (e.g., during a six months period) have been investigated in groups of 

individuals, with the purpose of estimating the improvement of laboratory data in clinical 

diagnosis (Costongs, 1987). It was concluded that diagnostic accuracy is considerably 

improved when intraindividual variations and critical differences are considered. Also very 

long-term (such as two years apart) reliability estimations have been studied (Cauley, 1991) 

in an effort to obtain information about the need for more measurements. As an illustrative 

example, for two measurements separated by one year, the intraindividual variation of 53 

healthy subjects ranged from 4 to 11% for cholesterol, from 13 to 41% for triglycerides, and 

from 4 to 12% for HDL-cholesterol (Demacker, 1982). More than 60% of the average total 

intraindividual variation was attributed to biological fluctuations and the remainder to 

analytical variations. The authors concluded that a single measurement of these serum 

constituents in an individual can be misleading or meaningless, unless the value is 

considerably outside the normal range. 

    Short-term intraindividual variability in lipoprotein measurements has been assessed in the 

ARIC study (Chambless, 1992). Since the repeatability of a risk factor measurement 

determines (in part) the ability to ascertain associations in the population, the ARIC 

Intraindividual Variability Study was conducted to estimate the repeatability of these 

measurements and the components of variation in analyte data. Fasting blood was collected 

three times from 40 subjects, with a one to two-week interval between each visit. The 

contributions of between-person variability, within-person variability, and processing 

variability were estimated. From these components, the reliability coefficient, R, the 

correlation between measures made at repeat visits, was estimated. R was above 0.85 for 
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total cholesterol, HDL cholesterol, LDL cholesterol, triglycerides, and lipoprotein(a). Low 

repeatability was obtained for apoliproprotein A-1 (R=0.60), suggesting a need to adjust for 

measurement variability. The authors conclude that the reliability coefficients from the ARIC 

Intraindividual Variability Study are generally higher than those found in other studies, and 

this is related to relative variability in populations studied, to the time between 

measurements, and to the difference in laboratory variability. A short-term (2-week apart), 

within-person variability study in clinical chemistry analytes for participants in the ARIC 

cohort has been also conducted (Eckfeldt, 1994). The authors have reported the within-

person, between-person, and methodological variances of 12 chemical analytes that were 

measured in serum from fasting individuals. The reliability coefficient (the fraction that 

between-person variance represents of the total observed population variance) ranged from 

0.59 for sodium to 0.91 for uric acid. The authors argued that the reliability coefficient is a 

strong predictor of the possibility of finding associations between measured analyte 

concentrations and disease occurrence in an epidemiologic study such as ARIC. 

    Not only short-term but also long-term repeatability (reliability) of fatty acid composition, 

plasma phospholipids and cholesterol esters has been investigated in the ARIC study (Ma, 

1995). For long-term reliability, two fasting blood samples were collected in 50 subjects 

approximately three years apart. In both phospholipids and cholesterol esters, short-term and 

long-term reliability coefficients were above 0.65 for the major plasma fatty acids. Reliability 

tended to be better for cholesterol esters than for phospholipids. Method variability was small 

(less than 5% for most fatty acids), indicating that biological and dietary variability 

contribute most to total variability. The authors concluded that plasma fatty acid 

measurement warrants consideration as a biochemical marker of diet in epidemiologic 
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studies. Reliability coefficients for inter-technician measurements have been also assessed in 

the ARIC study (Ferrario, 1995), in regard to body fat distribution measurements. 

    Calibration studies are used to collect additional information for the purpose of 

measurement error bias correction (Schroeder, UNC epidemiology doctoral dissertation - 

2003). In the presence of measurement error, we can denote the true value of a variable as X 

and the observed value as W. A calibration study may be a validation study, in which both X 

and W are collected on a subset of participants. Alternatively, a calibration study may take 

the form of a reproducibility study, which collects multiple measures of W on a subset of 

participants. For systematic error, either information must be collected on X itself, or an 

instrumental variable must be used. For random error only, multiple measurements of W are 

sufficient (Wilkens, 2000). By partitioning dietary intake variability, insights are provided to 

assess whether or not statistical methods to adjust for measurement error (Carroll, 1995; 

Fuller, 1987; Chambless, 2003) are necessary. To correctly classify an individual on the basis 

of dietary assessment measurement of any disease-related risk factor or to monitor therapy by 

measurement of that risk factor, knowledge of within-person and reader variability is 

extremely important (Garg, 1997). Putative risk factors with large within-person and 

interviewer (processing) variability almost always show weak associations with any given 

disease. 

    In conclusion, the range and subgroup characteristics of usual dietary intake of choline and 

betaine in population probability samples have not been assessed yet. There is no information 

about the repeatability of ARIC FFQ as it pertains to dietary choline and betaine intake. 

Repeated measures mixed modeling permits the estimation of measurement reliability, which 

in turn permits adjustment for measurement error such as through a regression calibration 
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(Rosner, 1989; Spiegelman, 1997; Chambless, 2003). One approach for the latter is to 

replace the observed values of the variables measured with error with multivariate Stein 

estimates of the true values, conditional on the values of the variables measured with error 

and the observed values of the variables measured with error (Whittemore, 1989). 
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CHAPTER III.  

SPECIFIC AIMS / RESEARCH QUESTIONS 

 

    Access to a cohort such as the Atherosclerosis Risk in Communities (ARIC) study allowed 

the assessment of the relationships between choline, and betaine, and cardiovascular disease 

(CVD) endpoints in both genders and in two races, with a population sampled from four U.S. 

communities. The advent of the concentrations for the choline-containing compounds and 

betaine in common foods provided an opportunity to assess the interrelationships between 

dietary choline and betaine, dietary methionine, dietary folate, and dietary B vitamins in their 

potential to lower the high blood homocysteine detrimental effect on vascular outcomes. 

    This dissertation assessed the association between low dietary intake of choline and 

betaine and incident occlusive coronary events, and measured the degree of repeatability of 

dietary choline and betaine intake assessment providing additional insights into the statistical 

methods used to correct for dietary measurement errors. Specifically, the first study aim was 

to assess whether a usual diet with a relative deficiency in choline plus betaine is associated 

with an increased risk of incident coronary heart disease (CHD) events. Related to this, the 

first study aim was also to analyze the potential interaction on CHD between choline plus 

betaine and folate, gender, menopausal status as assessed by reported cessation of menses 

and alcohol intake, respectively. The second study aim was to estimate the degree of

 



measurement error in the assessment of the usual dietary intake of choline and related 

nutrients: folate, methionine and total energy intake. Related to this, the second study aim 

was also to calculate the reliability coefficients between two dietary assessments (three years 

apart) for choline and the mentioned related nutrients. As a corollary, the third study aim was 

to estimate the dietary intake of choline and betaine by gender and race. 

 

    Two primary study questions were examined in the analysis. 

 

A. Is a usual diet relatively deficient in choline and betaine associated with incident coronary 

events, in men and women?  

 This study question was further examined in the context of two potentially modifying 

circumstances: 

• Do habitual diets with low levels of folate affect the association between a relative 

deficiency of choline and betaine and incident coronary events? 

• Do gender and menopausal status affect the association between a relative deficiency 

of choline and betaine and incident coronary events? 

 

These questions were examined using Cox proportional hazards regression models to 

calculate a multivariate adjusted hazard ratio of incident CHD in relation to quartiles 

of dietary choline and choline plus betaine. Several models for adjustment were 

created. 
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B. What is the measurement error in the estimation of choline and betaine using the food 

frequency questionnaire (FFQ) used in ARIC study? What are the sources of error in the 

estimation of dietary intake of choline and betaine as measured with the ARIC FFQ? 

 As a corollary, estimation of the associations addressed in the previous study question 

may be corrected for error in the assessment of dietary intake of choline and betaine, if 

required. 

 

These questions were examined using a mixed effects model. 

 

    To answer those questions the following data resources were used: 

 

a) The dietary data from Visit 1, on the ~ 15,800 subjects enrolled in the ARIC cohort 

study, along with validated incident coronary heart disease events through December 

31, 2002; 

b) The above mentioned dataset along with the data on the ~ 1,000 participants in ARIC 

who had a dietary assessment in Visit 2, to conduct a (long term) intraindividual 

variability study 
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CHAPTER IV.  

STUDY DESIGN AND RESEARCH METHODS 

 

Overview 

 

    This study has two parts. The cohort component ascertains the relationship between 

dietary intake of choline (and choline plus betaine) and coronary occlusive outcomes. The 

reliability study serves to quantify the measurement error, and uses mixed effect models to 

study the repeatability of the choline and betaine dietary intake as assessed with a brief food 

frequency questionnaire (FFQ). The design of the cohort study is a longitudinal prospective 

investigation with data from the cohort component of the Atherosclerosis Risk in 

Communities (ARIC) Study. For exposure, the ingested total choline and betaine was 

estimated, quantified and ranked with a database created using the information collected with 

a modified version of the FFQ developed by W. Willet and colleagues. During first study 

visit (V1), 1987-1989, dietary information was collected from all participants. V1 dietary 

data were used, avoiding thereby the folate vitamin fortification that was legally 

implemented in the 1990’s. Incident coronary heart disease, both incident MI and fatal 

coronary heart disease (CHD), were used as endpoints, outcome ascertained by abstraction of 

death certificates and hospital records. In the measurement error assessment part, the 

reliability of the dietary instrument was calculated in a random sample of 1,004 study

 



participants whose dietary intake was measured during the second visit of ARIC, 1990-1992, 

when dietary information was collected using a sub-sample of the main cohort. Mixed effects 

models were used to partition the variance into components, namely the between-persons 

variance and the within-person variance. With these estimates a reliability coefficient was 

calculated as the proportion of total variance attributable to the between-person component. 

 

A. Dietary choline and betaine – incident coronary heart disease prospective study 

 

Parent Study Population 

 

    The ARIC Study (ARIC Investigators, 1989) is a multicenter prospective cohort 

investigation of the etiology and natural history of subclinical and clinically manifest 

atherosclerosis funded by the National Heart, Lung, and Blood Institute (NHLBI).  It 

includes a cohort of 15,792 middle-aged, biracial, men and women, ages 45 to 64 years old at 

recruitment, which was selected as a probability sample from four U.S. communities. The 

cohort was re-examined every three years through January 1999. The ARIC study also 

conducts an on-going epidemiologic surveillance of cardiovascular and cerebrovascular 

disease hospital admissions and mortality of all residents 35 to 74 years of age in the study 

communities from which the cohort was recruited.  

    Probability samples of households were drawn from community lists or census block 

statistics. An attempt was made to enumerate all eligible individuals by visiting each selected 

household. Individuals were deemed eligible to take part if they were permanent residents, 

had no definite plans to leave the area, were mentally and physically capable of participating 
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in the clinical examination, and spoke English. Recruitment of the cohort occurred in the 

time interval 1987-1989, and was conducted in four U.S. locations: Forsyth County, NC; 

Jackson, MS (African-American only); seven northwestern suburbs of Minneapolis, MN; and 

Washington County, MD.  Approximately 4,000 participants were recruited from each 

community. Approximately 46% of those eligible in Jackson and 65% in the other three 

communities completed a home interview and clinic examination, as detailed below, yielding 

a total of 15792 participants. The overall recruitment response rate at baseline (Jackson et al., 

1996; Diez-Roux et al., 2003) was 60%: African American men (42%) and women (49%); 

European American men (67%) and women (68%). Women constitute slightly over 50% of 

the ARIC cohort, permitting analyses by gender. There are 5436 female participants in ARIC 

without a history of symptomatic cardiovascular disease. The majority of them (4958) are 

postmenopausal, permiting stratified analyses on menopausal status. The ethnic composition 

of the cohort reflected the local populations in Minneapolis and Washington County.  

African-Americans constitute 27% of the cohort, and were over-sampled in Forsyth County 

and were exclusively sampled in Jackson (probability sampling with consequent exclusions) 

to provide sufficient power to investigate findings by ethnicity in the aggregate, and as often 

as possible, in the two different geographic locations. 

    The baseline home interviews assessed participants’ health behaviors, socio-demographic 

characteristics, and medical histories. After this home interview, which established a baseline 

socio-demographic and cardiovascular disease profile of all enumerated residents in each 

study community who were willing to have an interview, age-eligible residents were invited, 

as mentioned, to participate in a baseline and three subsequent clinical examinations, 

scheduled at three year intervals. The clinic examination included measurements of 
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cardiovascular disease risk factors, a 12-lead-electrocardiogram and a B-mode ultrasound 

examination of selected arterial sites. The baseline examination (Visit 1) was conducted 

between 1987 and 1989; Visit 2 was held between 1990 and 1992; Visit 3 between 1993 and 

1995; and the last clinic visit (Visit 4) between 1996 and 1998. All study participants 

completed a home interview and a clinic examination, in 1987 through 1989, during Visit 1. 

ARIC reexamined participants in 1990-1992 (93% return rate), in 1993-1995 (86% return 

rate), and in 1996-1998 (80.5% return rate). The numbers of study subjects with the retention 

rates are shown in the appendix 4. 

    After the baseline exam, the ARIC study has contacted cohort members annually by 

telephone (even during the years in which they also had a clinical exam) to establish vital 

status and assess indices of cardiovascular disease, including hospitalizations.  Annual 

follow-up interviews have continued after the last clinic exam (Visit 4), and those data will 

be available to the investigators in this study on a continuing basis. Individuals excluded 

from annual follow-up were only those enumerated residents who did not sign the informed 

consent form at the first field center examination. The follow-up of the ARIC cohort has been 

quite successful, with completeness of follow-up at high levels through 2000-2001.  For 

example, the responses to cohort contact year 09 - based on 14,881 eligible individuals 

contacted during 1995-1997 – were: 96% contacted and alive; 1% deceased (during the 

contact year); 1% refused; 1% could not be reached, but were reported alive by next of 

kin/contact persons; and 1% were not contacted during this cycle.  By follow-up contact year 

13 (calendar years 1998-2000), as tracked by the ARIC Coordinating Center, there were 

12,716 participants who were successfully contacted; approximately 16% of the original 

cohort were deceased, and 5% were lost to follow up. 
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Main Variables 

 

Exposure 

 

    The main aim of this project was to assess the relationship of dietary intake of choline and 

betaine with coronary occlusive outcomes. In order to address this, the intake of choline and 

betaine was estimated from a standardized, semiquantitative FFQ. During first, 1987-89, and 

third, 1993-95, study visits, dietary information was collected from all participants. During 

the second visit (1990-92) dietary information was collected using a sub-sample of the main 

cohort. In ARIC, dietary information over the preceding year was collected using the Willett 

FFQ (Willett, 1985), adapted for interviewer administration and otherwise modified only 

slightly to include some ethnic foods. Visit 1 (V1) data were used to estimate the reported 

choline intake. A choline and betaine nutrient database was created. The database contained, 

for each of the ARIC FFQ items, the total choline and betaine content (per 100 g/food). 

Taking into account the serving sizes used in the ARIC FFQ, for each of the nine possible 

answers (from almost never to more than 6 per day), the choline and betaine content of each 

food item was calculated. The choline and betaine content for each study participant was 

obtained by multiplying the content of each food item by its daily consumption and summing 

over all items. Choline plus betaine (defined in this project as total choline) as well as 

choline, separately, were considered as exposures of interest. The reason for this approach is 

that, although betaine is the actual and main methyl donor, choline is metabolically 

transformed into several other compounds with potential CHD effects. 
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    Regarding quality control, to ensure consistency and accuracy in data collection and to 

minimize inter- and intra-interviewer differences, clinic supervisors monitored 5% of the 

interviews done by each interviewer (dietary technician). In addition, a brief written 

worksheet/quiz on portion size/frequency or interviewing problems was completed by each 

interviewer every three months. The quiz was produced by the Coordinating Center (ARIC 

Protocol – Baseline Assessment and Interviews Component Procedures, 1988). 

 

Outcome 

 

    Coronary events were assessed through the ongoing ARIC cohort and follow-up, and 

through the Community Surveillance procedures. The events considered were fatal 

coronary heart disease (CHD), hospitalizations for myocardial infarction (MI) and silent 

MI events (recorded as modified electrocardiography (ECG) or coronary interventional 

procedures). These events were ascertained using standard ARIC protocols (White, 

1996). There are over 1,000 incident CHD events (definite and probable MI, and definite 

fatal CHD) classified by the Morbidity and Mortality Classification Committee (MMCC). 

MMCC, comprised of physicians from the Coordinating Center and each field center, 

was responsible for the process of assigning all medical events of interest in the ARIC 

Study into diagnosis classes defined by the study. The MMCC reviewed the hospitalized 

events, classified into MI categories by computer algorithms, by diagnosis of all cohort 

events and a sample of surveillance events. Also the MMCC classified the cause of death 

wherever classification could not be done by computer and independently reviews the 

computer classification for most cohort deaths (ARIC Protocol – Cohort Component 
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Procedures, 1988). Deaths and hospitalization events were ascertained by annual follow-

up calls to the cohort members, review of vital records, and community surveillance of 

hospitalized and fatal events. CHD death was defined as death lacking a probable non-

CHD cause and occurring in the context of a recent myocardial infarction, chest pain 

within 72 hours of death, or a history of CHD. Events were classified independently by 

two members of the MMCC, and discrepancies were adjudicated by a third member. 

Descriptions of event ascertainment and classification have been published (White, 1996; 

The ARIC Investigators, 1989). Next of kin interviews or physician questionnaires were 

completed for cohort members whose death occurred out of hospital. In this investigation, 

incident CHD was defined as (1) a definite or probable MI and (2) a definite CHD death. 

The CHD events considered were those between the ARIC baseline examination and 

December 31, 2002. The mean follow-up time is 14 years. 

 

ARIC Dietary Assessment 

 

Available ARIC Nutrients and Dietary Variables 

 

    In the ARIC study, participants’ usual dietary intakes during the preceding year were 

assessed, as mentioned, using a semi-quantitative food frequency questionnaire (FFQ), 

containing 66 items (ARIC FFQ). Very infrequently used foods were eliminated in pilot 

testing, using stepwise regression to identify the least discriminating food items. The 

questionnaire assesses 18 nutrient-groups in a semi-quantitative manner. The modifications 

to the short version of the Willet FFQ were: 1) items were added including donuts; biscuits 
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and cornbread; Danish pastry, sweet roll, coffee cake, croissant; cooked cereals such as 

oatmeal, grits and cream of wheat, 2) fish consumption was obtained with four items, rather 

than combined into one, 3) brownies were added to the cake item, 4) spaghetti, noodles or 

other pasta was placed in a separate item rather than combined with rice, 5) colas and other 

types of sugar-containing soft drinks were combined in one item, and 6) questions regarding 

wine, beer and hard liquor were asked in another format. In order to facilitate its use in 

participants with a wide range of educational backgrounds, the questionnaire was 

administered by an interviewer, although the Willett FFQ was developed, originally, to be 

self-administered. In ARIC, interviewers were centrally trained to use a standardized 

procedure for administering the dietary questionnaire (NHLBI – ARIC Manual of Procedures 

2). Training includes instructions in research interviewing techniques and in completing the 

form. Interviewing skill training includes adherence to the standardized protocol, use of a 

portion size frequency conversion screen and seasonal intake, handling participants’ 

comments and recording relevant information on the note log, post-interview responsibility 

for the data, etc. A detailed survey of vitamins and dietary supplements was conducted only 

during the ARIC Visit 3 examination. 

    Participants were asked how often, on average, they had consumed a specific portion size 

of each food during the preceding year. Responses were coded into one of the nine categories 

ranging from “almost never” to “more than 6 times per day”. These nine categories were 

transformed into servings per day. Daily frequencies of certain food items were summed to 

obtain frequencies of meat and meat products, fried food, fish, fruits, soft drinks, and 

cheeses. Each participant’s daily intake of nutrients other than choline and betaine was 

computed at the Channing Laboratory, Harvard Medical School, by multiplying the daily 

 69



servings of each food item and each alcoholic beverage by their nutrient content in the 

Harvard database. As a consequence the values for some of the nutrients (e.g., folate and 

vitamins B6 and B12) were available. Some basic statistical measures that were used in the 

analysis are presented in the following tables: 

TABLE IV.1. Summary measures for dietary variables of interest in ARIC Visit 1. 
Variable N Mean Standard 

Deviation 
Range 

Folate 
(µg) 
 

15428 228.97 103.79 1696 

Vitamin B6 
(mg) 
 

15428 1.71 0.68 6.93 

Vitamin B12 
(µg) 
 

15428 7.65 4.42 34.62 

Cholesterol  
(mg) 

15428 251.89 131.25 1696 

Methionine 
(g) 

15428 1.69 0.69 6.67 

Total Energy 
Intake 
(kcal) 

15428 1625.03 609.24 3690 

 

ARIC FFQ as it pertains to choline and betaine 

 

    The food groups available in the ARIC FFQ that were used for exposure assessment are: 

dairy foods, fruits, vegetables, meats, sweets, baked goods and cereals, a group of 

miscellaneous foods, beverages, and a series of other dietary items (Appendix 5). The array 

covers the spectrum of food analyzed in the USDA database for the choline content of 

common foods (USDA, 2004). The foods with the highest choline content - eggs, milk, liver, 

red meat, poultry and fish, as well as the foods with the highest betaine content - spinach, 

white bread and breakfast cereals, were measured in separate ARIC FFQ items. 
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Choline Content of Common Foods 

 

    Zeisel and colleagues (UNC Department of Nutrition), at the US Department of 

Agriculture (USDA) request, collected representative food samples and analyzed the choline 

concentration of 145 common foods using liquid chromatography-mass spectrometry (Zeisel 

et al., 2003). Until then there was no valid information available concerning the esterified 

forms of choline in foods with the exception of phosphatidylcholine (also called lecithin), for 

which only limited information was available. Foods with the highest total choline 

concentration (mg/100 g) were: beef liver (418), chicken liver (290), eggs (251), wheat germ 

(152), bacon (125), dried soybeans (116) and pork (103). The foods with the highest betaine 

concentration (mg/ 100 g) were: wheat bran (1506), wheat germ (1395), spinach (725), 

pretzels (266), shrimp (246) and wheat bread (227). In collaboration with the UNC 

Department of Nutrition, the Nutrient Data Laboratory (Agricultural Research Service, US 

Department of Agriculture, Beltsville, MD) has developed a database for choline content in 

common foods (USDA, 2004). This table contains choline and betaine values for 434 foods 

across 22 food categories (Appendix 6). 

    Regarding the accuracy of the choline content of common foods, the recently published 

USDA database (USDA, 2004) has a high validity. The methods that assured high quality 

control are as follows. The samples for the UNC project were obtained nationally from 12-24 

retail outlets in accordance with the nationwide sampling plan developed for the National 

Food and Nutrient Analysis Program (Pehrsson, 2000). Approximately 15% of the analyses 

were based on samples obtained locally (Chapel Hill, NC). Food items were analyzed as 
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purchased (raw/fresh) or were cooked according to package directions. To estimate choline 

levels in retail ground beef, a nationwide (24 outlets) sampling of ground beef products at 

each of the three fat levels (<12% fat, 12-22% fat, or >22% fat) was conducted. Raw and 

cooked (broiled patties) samples from each region and fat level were analyzed for choline. 

Choline compounds were extracted and partitioned into organic and aqueous phases using 

methanol and chloroform and analyzed directly by liquid chromatography isotope dilution 

mass spectrometry (Koc, 2002). Quality assurance was monitored through the use of 

duplicate sampling, in-house control materials, and a standard reference value for choline 

(National Institute of Standard and Technology, Standard Reference Material 1546, Meat 

Homogenate). Samples were analyzed for betaine and the following choline-contributing 

compounds: free choline (Cho), glycerophosphocholine (GPC), phosphocholine (Pcho), 

phosphatidylcholine (Ptdcho), and sphingomyelin (SM). 

    A new procedure was used to facilitate the evaluation of analytical data. These were based 

on methods described (Holden, 2002). Five categories of information were evaluated for 

quality and reliability: the sampling plan, sample handling, number of samples analyzed, 

analytical method, and analytical quality control. Criteria were established within each 

category, with an assignation of points to each criterion; points were totaled within each 

category (20 points per category). The ratings for each category were summed to yield a 

Quality Index (QI) – the maximum score was 100 points. The confidence code (CC), an 

indicator of the relative quality of the data and the reliability of a given mean, is derived from 

the QI. A four level (A to D) code was used. For all categories the CC was in levels A or B, 

indicating high quality and reliability of data. The precision for chromatography detection of 

choline derivatives is very high (Holm, 2003; Laryea, 1998). 
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Exposure estimation using a newly created choline and betaine database 

 

    Average daily nutrient intakes were calculated with the USDA choline and betaine nutrient 

database described above. The quantities of choline and betaine for each of the ARIC FFQ 

items were calculated (Table IV.2): 

Table IV.2. USDA-based estimates of choline and betaine content for each ARIC FFQ 
food item. 
ARIC FFQ Food Item Total Choline  

(or average of total choline) 
in mg/100g of food 

Betaine  
(or average of betaine) 
 in mg/100g of food 

Dairy Foods   
Skim/low fat milk 16.60 1.25 
Whole milk 14.20 0.61 
Yogurt 15.20 0.85 
Ice cream 17.40 0.80 
Cottage/ricotta cheese 16.26 0.62 
Other cheeses 16.50 0.67 
Margarine or margarine/butter blend 5.9 0.1 
Butter 18.78 0.27 
Fruits   
Fresh apples/pears 3.44 0.10 
Oranges 8.38 0.12 
Orange/grapefruit juice 6.92 0.15 
Peaches/apricots/plums, fresh/canned/dried 3.84 0.26 
Bananas 9.76 0.07 
Other fruits, fresh/canned, including fruit 
cocktail 

7.81 0.3 

Vegetables   
String/green beans 13.46 0.09 
Broccoli 27.66 0.10 
Cabbage/cauliflower/brussels sprouts 25.56 0.21 
Carrots, whole/cooked 8.30 0.20 
Corn 21.90 0.17 
Spinach/collards/other greens (excluding 
lettuce) 

18.11 486.32 

Peas/lima beans, fresh/frozen/canned 27.60 0.15 
Dark yellow, winter squash such as acorn, 
butternut 

3.54 0.07 

Sweet potatoes 13.20 34.62 
Beans/lentils, dried/cooked/canned, such as 
pinto/blackeye/baked 

28.62 0.12 

Tomatoes 7.40 0.09 
Meats   
Chicken/turkey, without skin 78.72 5.73 
Chicken/turkey, with skin 65.8 5.6 
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Hamburgers 34.30 32.10 
Hot dogs 43.00 4.59 
Processed meats: sausage/salami/bologna 53.89 5.01 
Bacon 124.94 3.54 
Beef/pork/lamb as a sandwich or part of a 
mixed dish 

91.83 5.20 

Beef/pork/lamb as a main 
dish/steak/roast/ham 

91.83 5.20 

Canned tuna fish 14.7 1.4 
Dark meat fish, such as 
salmon/mackerel/sardines/bluefish 

29.3 2.10 

Other fish such as cod/perch/catfish/etc 83.6 9.64 
Shrimp/lobster/scallops as a main dish 57.19 22.76 
Eggs 251.00 0.59 
Sweets/Baked Goods/Cereals   
Chocolate bars/pieces such as 
Hershey’s/Plain M&M’s/Snickers/Reeses 

39.70 2.74 

Candy without chocolate 18.60 1.41 
Pie, homemade from scratch 5.00 2.12 
Pie, ready-made/from a mix 7.19 16.40 
Donut 33.20 53.83 
Biscuits/cornbread 14.01 29.60 
Danish pastry/sweet roll/coffee 
cake/croissant 

19.27 11.20 

Cake/brownie 82.34 33.17 
Cookies 19.70 118.52 
Cold breakfast cereal 25.50 143.95 
Cooked cereals such as oatmeal/grits/cream 
of wheat 

5.45 3.32 

White bread 14.70 101.94 
Dark/whole grain bread 21.26 132.371 
Miscellaneous   
Peanut butter 63.15 0.682 
Potato chips/corn chips 15.79 0.265 
French fried potatoes 22.31 0.67 
Nuts 47.11 1.56 
Potatoes mashed/baked 15.68 0.26 
Rice 5.65 0.39 
Spaghetti, noodles/other pasta 16.02 43.59 
Home-fried foods, such as any 
meats/poultry/fish/shrimp/vegetables 

22.58 9.43 

Food fried away from home, such as any 
fish/chicken/chicken nuggets/etc. 

42.19 16.09 

Beverages   
Coffee, not decaffeinated 2.62 0.80 
Tea, iced/hot, not including decaf/herbal tea 0.40 1.00 
Low calorie soft drinks, such as any diet 
Coke/diet Pepsi/diet 7-up 

0.00 0.10 

Regular soft drinks, such as Coke/Pepsi/7-
up/ginger ale 

0.3 0.1 

Fruit-flavored punch/non-carbonated 
beverages, such as lemonade/Kool-
Aid/Hawaiian Punch, not diet 

0.3 0.0 

Other Dietary Items   
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Liver 247.04 11.68 
Avocados/tortillas/prunes 14.10 0.66 
Vegetable oil 0.00 0.0 
Vegetable shortening 5.9 0.1 
Lard 18.78 0.27 
Bacon grease 64.30 2.60 
Sugar 0.00 0.00 
Salt/salt-containing seasoning such as garlic 
salt/onion salt/soy sauce/Accent 

0.7 0.8 

Catsup/hot sauce/soy or steak sauce 6.63 0.49 
Low salt foods such as low salt 
chips/nuts/cheese/salad dressing 

16.20 0.43 

 

    In general, food items in the ARIC FFQ corresponded well with food items in the 

published food list (Zeisel, 2003; USDA, 2004). If there were more than one food that 

composed the FFQ item or more than one food that were close matches, their values for 

choline and betaine were averaged. If the FFQ item was composed of more than one basic 

food from the USDA database, a recipe for the item was composed. A weighted average to 

the values of choline and betaine according to amount the food contributed to the total weight 

of the recipe was applied. 

    For each of the ARIC FFQ items, the FFQ nutrient database that was created initially 

contains, therefore, the choline and betaine micronutrient content per 100 g/food. Thus, 

the total micronutrient content of each food item and for every nine possible ARIC FFQ 

frequency consumption answers (from “almost never” to “more than 6 per day”) could be 

calculated. The micronutrient average daily intake for each study participant was 

obtained as the nutrient content for each FFQ food item times its frequency, summed 

over all FFQ items. The nutrient content of each food item was calculated as the product 

of the food micronutrient content (expressed in mg per 100 grams of food - Table IV.2) 

and the food quantity, expressed in grams (Table IV.4), in each FFQ food item. For 

frequency weights, a weight of 1.0 was assigned to once a day and proportional weights 
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to the other responses, that is, “2-3 times a day” = 2.5. The following table (Table IV.3) 

gives the frequency weights for each of the possible nine questionnaire answers. 

Table IV.3. Frequency weights that were used in the calculation of daily choline and 
betaine intake. 
ARIC dietary intake response category Frequency weight 
More than 6 per day (A) 6.00 
4-6 per day (B) 5.00 
2-3 per day (C) 2.50 
1 per day (D) 1.00 
5-6 per week (E) 0.79 
2-4 per week (F) 0.43 
1 per week (G) 0.14 
1-3 per month (H) 0.07 
Almost never (I) 0.00 
 

    The quantities of food, expressed in grams, in each of the ARIC FFQ items were 

estimated using the Nutrition Data System for Research (NDS-R), version v5.0/35, 

developed by the University of Minnesota. Each ARIC FFQ food item was entered as an 

individual food. From the menu bar ‘Project’ and ‘New option’ were chosen. The Header 

prompts a series of ‘Record Information’. It queries participant ID, date of intake, date of 

birth, gender and life stage group. The values filled in do not contribute to the final 

estimates. From the’Quick List’ window, ‘Food option’ was chosen, followed by ‘Insert 

Food’. Using the ‘Food Detail’ window, the closest food (or recipe) from the sequential 

list was chosen. The ‘Type’, ‘Unit’, and ‘Quantity’ for each food item were specified 

using the options from the drop-down menu. For some food items, NDS-R prompted for 

additional details on ingredients and preparations. For these, we used guidelines similar 

with those that were used to estimate the foods in composite ARIC FFQ items. At the end 

of the process, NDS-R gives the ‘Nutrient Total Report’. Lastly, within the “Other” 

section, the quantity in grams of each FFQ item provided (Table IV.4). 
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Table IV.4. Estimated quantities for each of the ARIC FFQ food items obtained 
with the Revised Minnesota Database. 
ARIC FFQ Food Item Food quantity in FFQ units Food quantity in grams 
Dairy Foods   
Skim/low fat milk 8 oz. glass 245 
Whole milk 8 oz. glass 244 
Yogurt 1 cup 245 
Ice cream ½ cup 67 
Cottage/ricotta cheese ½ cup 105 
Other cheeses 1 slice or serving 21.3 
Margarine or margarine/butter blend 1 pat 14.2 
Butter 1 pat 14.2 
Fruits   
Fresh apples/pears 1 138 
Oranges 1 131 
Orange/grapefruit juice Small glass 155.6 
Peaches/apricots/plums, fresh/canned/dried 1 or ½ cup 98 
Bananas 1 118 
Other fruits, fresh/canned, including fruit 
cocktail 

1 or ½ cup 72.5 

Vegetables   
String/green beans ½ cup 55 
Broccoli ½ cup 44 
Cabbage/cauliflower/brussels sprouts ½ cup 44.5 
Carrots, whole/cooked 1 or ½ cup 55 
Corn 1 or ½ cup 46.2 
Spinach/collards/other greens (excluding 
lettuce) 

½ cup 15 

Peas/lima beans, fresh/frozen/canned ½ cup 72.5 
Dark yellow, winter squash such as acorn, 
butternut 

½ cup 122.5 

Sweet potatoes ½ cup 127.7 
Beans/lentils, dried/cooked/canned, such as 
pinto/blackeye/baked 

½ cup 85.5 

Tomatoes 1 or 4 oz. 103.2 
Meats   
Chicken/turkey, without skin 5 oz. 141.8 
Chicken/turkey, with skin 5 oz. 141 
Hamburgers 1 patty 43 
Hot dogs 1 43 
Processed meats: sausage/salami/bologna 1 slice or piece 26.1 
Bacon 2 slices 16 
Beef/pork/lamb as a sandwich or part of a 
mixed dish 

 178.1 

Beef/pork/lamb as a main 
dish/steak/roast/ham 

 141.7 

Canned tuna fish 3.5 oz. 99.2 
Dark meat fish, such as 
salmon/mackerel/sardines/bluefish 

4 oz. 113.4 

Other fish such as cod/perch/catfish/etc 4 oz. 113.4 
Shrimp/lobster/scallops as a main dish  113.4 
Eggs 1 44 
Sweets/Baked Goods/Cereals   
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Chocolate bars/pieces such as 
Hershey’s/Plain M&M’s/Snickers/Reeses 

1 oz. 28.4 

Candy without chocolate 1 oz. 28.4 
Pie, homemade from scratch 1 slice 20 
Pie, ready-made/from a mix 1 slice 27.4 
Donut 1 47 
Biscuits/cornbread 1 37 
Danish pastry/sweet roll/coffee 
cake/croissant 

1 57 

Cake/brownie 1 piece 43 
Cookies 1 10 
Cold breakfast cereal ½ cup 15 
Cooked cereals such as oatmeal/grits/cream 
of wheat 

½ cup 117 

White bread 1 slice 25 
Dark/whole grain bread 1 slice 26 
Miscellaneous   
Peanut butter 1 tbsp 16.1 
Potato chips/corn chips 1 oz 28.4 
French fried potatoes 4 oz. 113.4 
Nuts 1 oz. 28.4 
Potatoes mashed/baked 1 cup/1 210 
Rice ½ cup 79 
Spaghetti, noodles/other pasta ½ cup 80 
Home-fried foods, such as any 
meats/poultry/fish/shrimp/vegetables 

1 serving 72.5 

Food fried away from home, such as any 
fish/chicken/chicken nuggets/etc. 

1 dish 151.6 

Beverages   
Coffee, not decaffeinated 1 cup 236.8 
Tea, iced/hot, not including decaf/herbal tea 1 cup 236.8 
Low calorie soft drinks, such as any diet 
Coke/diet Pepsi/diet 7-up 

1 glass 103.6 

Regular soft drinks, such as Coke/Pepsi/7-
up/ginger ale 

1 glass 108.5 

Fruit-flavored punch/non-carbonated 
beverages, such as lemonade/Kool-
Aid/Hawaiian Punch, not diet 

1 glass 109.5 

Other Dietary Items   
Liver 3.5 oz. 99.2 
Avocados/tortillas/prunes ½ cup 75 
Vegetable oil 1 tbsp 4.5 
Vegetable shortening 1 pat/1 tbsp 12.8 
Lard 1 pat 12.8 
Bacon grease 1 tbsp 12.8 
Sugar 1 tbsp 12.5 
Salt/salt-containing seasoning such as garlic 
salt/onion salt/soy sauce/Accent 

1 shake 1 

Catsup/hot sauce/soy or steak sauce 1 teaspoon 5.3 
Low salt foods such as low salt 
chips/nuts/cheese/salad dressing 

1 tbsp 14.7 
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    For quality control /quality assessment purposes, we interacted with the Willett group at 

Harvard University. Because we used, to construct our nutrient database, the Minnesota 

database while they used the Harvard database, the Harvard group compared the intake of 

choline between the ARIC FFQ and the Nurses Health Study (NHS) 1980 FFQ (also a short 

version of the Willett FFQ). They calculated the daily intake of choline if each participant ate 

each FFQ item once per day. The values were similar between study populations. 

Specifically, the daily intake of choline if each participant ate every FFQ item was 1,493 mg 

in ARIC and 1,443 mg in the NHS 1980. 

 

Available Covariates (potential confounders and/or effect measure modifiers) 

 

    A directed acyclic graphic (DAG) outlining the main potential confounding factors is 

presented below: 

Age 
 

Dietary Methionine 
 
 
 
 

Dietary Choline (Betaine)                                                                Incident CHD 
 
 
 
 

Gender 
 
 
Figure IV.1. Directed acyclic graphic (DAG) representation with the main variables 
(gender, dietary methionine and age) that are indicative of confounding. 
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    The ARIC baseline examination consisted of a home interview of all potential cohort 

members including items on cardiovascular risk factors, socioeconomic factors and family 

medical history. After obtaining informed consent, the clinic examination consisted of 

medical history interview, blood pressure and anthropometric measurements, venipuncture 

for blood samples and a 12-lead standard electrocardiogram. Anthropometrics were 

measured with participants wearing scrub suits and no shoes. Height, measured to the nearest 

centimeter, and weight, measured to the nearest pound, was used to calculate body mass 

index. Smoking status was defined as "current smoker" if the person answered "yes" to both 

of the following questions: "Have you ever smoked cigarettes? and "Do you now smoke 

cigarettes?". Alcohol intake, family income, and educational levels were assessed by means 

of standardized questionnaires. Hypertension was defined as having systolic blood pressure 

values equal or higher than 140 mmHg, or diastolic blood pressure values equal or higher 

than 90 mmHg or use of blood pressure lowering medication use in the past two weeks. 

Diabetes was defined as fasting glucose levels higher than or equal to 126 mg/dl, nonfasting 

glucose levels higher than or equal to 200 mg/dl, self-reported current use of medications for 

diabetes, or a self-reported physician diagnosis. 

 

Exclusion Criteria 

 

    The analyses excluded cohort members who had CHD at baseline (n=766), reported race 

other than white and African-American (n=48), were missing dietary information for either 

folate or methionine (n=8), or who reported extreme caloric intake values (below 500 kcal 

for women and 700 kcal for men, and above 3,500 for women and 4,500 for men; n=540). At 
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ARIC study inception, there were 1631 African American men, 2639 African American 

women, 5429 European American men, and 6049 European American women. The two other 

ethnic groups recorded at baseline (Asian, n=34; American Indian, n=14) had no CHD 

events, and were therefore not included in the study of incident CHD events in relation to 

dietary intake of choline to facilitate model fitting. 

 

Data Analysis 

 

    A prospective investigation was conducted examining the relation between usual intake of 

choline and betaine with the risk of non-fatal myocardial infarction and fatal CHD in 14,430 

middle-aged men and women of the bi-ethnic Atherosclerosis Risk in Communities study. A 

66-item version of the Willett food frequency questionnaire (FFQ) and the USDA choline 

database were used to assess nutrient intake. Proportional hazard regression models were 

used to calculate the risk of incident CHD by quartile of nutrient intake. A regression 

calibration method was used to adjust for measurement error. 

 

Model specification 

 

    The overall framework for the model specification was divided into three steps: variable 

specification, interaction assessment (including significance testing for heterogeneity), and 

confounding assessment. This approach is guided by the adherence to a hierarchically 

defined initial (full) model and a backward elimination strategy. 
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1) VARIABLE SPECIFICATION – variables were selected based on biochemical and public 

health information (presented above), for practical reasons, and on knowledge of different 

“classical” cardiovascular risk factors. 

    Two main exposures were defined: dietary choline intake and dietary total choline intake 

(choline plus betaine). 

    Incident coronary heart disease (CHD) event was used as the outcome in a time to event 

analysis. The Cox proportional hazard regression used accounts for censored information. 

    Potential Effect Measure Modifier 1: dietary intake of folate (continuous, in one analysis 

and dichotomized, in another); 

    Potential Effect Measure Modifier 2: reported cessation of menses (variable derived and 

defined as presence of menses and categorized, in two categories; premenopausal women in 

one category, and men and postmenopausal women in another); 

    Potential Confounders, 1 to 14, are presented in the following table. 

Table IV.5. Potential confounders considered in the analysis of dietary intake of choline 

and betaine in relation to incident coronary heart disease 

Variable Variable Type 

Age continuous 

Race categorized in two categories 

ARIC field center categorized in four categories 

Total energy intake continuous 

Hypertension dichotomous – yes/no 

Smoking categorized in two categories – current 

smoker versus never smoker plus former 

smoker 

Dietary cholesterol continuous 

Body mass index (indicative of obesity) dichotomous – yes/no 
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Diabetes dichotomous – yes/no 

Education (in term of high-school 

completion) 

dichotomous – yes/no 

Family risk score of CHD continuous 

Leisure activity score continuous 

Dietary intake of methionine continuous 

Dietary intake of vitamin B6 continuous 

 

    The family risk score is a derived ARIC variable created specifically for a previous ARIC 

project (Bensen, 1999). The leisure activity score was obtained using the Baecke 

computation (Baecke, 1982). 

    The univariate distributions for the outcome, the main exposure and all the covariates were 

produced. For binary and other categorical variables proportions were calculated. For 

continuous variables histograms, means and standard deviations were produced. Decisions 

regarding the coding of the categorical and continuous variables were made based on the 

initial descriptive analyses. 

 

2) INTERACTION ASSESSMENT – For the potential effect measure modifiers (EMM) 

stratum specific estimates were compared. A Breslow-Day test for homogeneity was used for 

this purpose. 

 

3) CONFOUNDING ASSESSMENT was done by comparison of crude (exposure-outcome) 

and adjusted (by the potential confounder) risk ratios. This approach was accomplished in the 

modeling step, step detailed in the next paragraph.  
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Modeling 

 

    Hazard ratios and 95% confidence intervals were calculated with SAS version 8.2 

statistical software (SAS Institute, 2001). Verification of the proportional hazards assumption 

was accomplished using plots of the log(-log) survival curves. A hierarchical backward 

elimination approach was used. A likelihood ratio test was used to statistically evaluate 

comparisons between models with and without the interaction terms for the potential EMM 

and the exposure. If higher order terms proved significant, the lower order terms were 

retained in the model. 

 

Model1 1 (3-way interaction): 

 

CHD = α + ß1 CHOL + ß2 AGE + ß3 VitB6 + ß4 RACE + ß5 CENTER + ß6 CAL + ß7 HT + 

ß8 SMOKE + ß9 CHOLEST + ß10 BMI + ß11 DIAB + ß12 EDUC + ß13 FRS + ß14 ACTIV + 

ß15 MET + ß16 FOLA + ß17 MENOP + ß18 CHOLxFOLA +  

+ ß19 CHOLxMENOP + ß20 CHOLxFOLAxMENOP 

 

Model 2 (2-way interaction): 

 

                                                 
1 Models’ legend: CHOL = dietary intake of choline, AGE = age, RACE = race, CENTER = ARIC field center, 
CAL = total energy intake, HT = hypertension, SMOKE = smoking, CHOLEST = dietary cholesterol, BMI = 
body mass index, DIAB = diabetes, EDUC = education, FRS = family risk score of CHD, ACTIV = leisure 
activity score, MET = dietary intake of methionine and VITB6 = dietary intake of B6 vitamin, FOLA = dietary 
intake of folate, MENOP = menopausal status. 
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CHD = α + ß1 CHOL + ß2 AGE + ß3 VitB6 + ß4 RACE + ß5 CENTER + ß6 CAL + ß7 HT + 

ß8 SMOKE + ß9 CHOLEST + ß10 BMI + ß11 DIAB + ß12 EDUC + ß13 FRS + ß14 ACTIV + 

ß15 MET + ß16 FOLA + ß17 MENOP + ß18 CHOLxFOLA +  

+ ß19 CHOLxMENOP 

 

The likelihood ratio test statistics between the full model (1) and the model 2 was then 

examined: 

if (-2 log L[model 2]) – (-2 log L[model 1]) = 1.30 = χ2 [df=1], p=0.55, then Model 2 was 

considered to be essentially as adequate as the full model (Model 1). 

 

    To test the 2-way interactions, the greatest pr > chisq of the interaction terms was used to 

establish which interaction term was tested first. For example, if pr > chisq for 

CHOLxMENOP is the highest then the model 3 was as follows. 

 

Model 3: 

 

CHD = α + ß1 CHOL + ß2 AGE + ß3 VitB6 + ß4 RACE + ß5 CENTER + ß6 CAL + ß7 HT + 

ß8 SMOKE + ß9 CHOLEST + ß10 BMI + ß11 DIAB + ß12 EDUC + ß13 FRS + ß14 ACTIV + 

ß15 MET + ß16 FOLA + ß17 MENOP + ß18 CHOLxFOLA 

 

    A p value of 0.10 was used for the likelihood ratio testing (between the models). 

    Following the elimination of interaction terms, potential confounders were tested (and 

eliminated) using a 10% change-in estimate rule. When the hazard rate ratio for the 
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exposure-outcome in the model with the confounder (adjusted) and that without the 

confounder (unadjusted) were not more than 10% different, that confounder was eliminated 

from the model. Each potential confounder was analyzed starting from the “full model” (the 

model with all terms that remained after the elimination of interaction terms that were not 

significant after the likelihood ratio testing for EMM). These variables were kept in the 

multivariate models if removal of the variable changed the estimate of interest by more than 

10%. The regression coefficient from the most parsimonious model was used in the 

calculation of the hazard ratios. 

    The statistical model that was used to assess the effect of calorie-providing nutrient intake 

is that recommended by Willett and Stampfer (Willett, 1986). In this model, calculated 

nutrient intakes were adjusted by taking the residual from a linear, least-squares regression 

model in which total energy intake was the independent variable and the nutrient was the 

dependent variable. Energy adjustment is based on the a priori biologic considerations that a 

larger, more active person will require a higher caloric intake, which will also be associated 

with a higher absolute intake of all nutrients. Therefore, by adjusting for energy intake one 

will examine the composition of a diet accounting for differences in energy requirements 

among individuals (Hu, 1999). The study analysis of the analyzed micronutrients was also 

adjusted for total energy intake using the general multivariable regression model. 

Human subjects and ethics 

    All ARIC study participants provided informed consent annually and before each study 

examination. This study was approved by the Institutional Review Board of the University of 

North Carolina at Chapel Hill. 
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B. Dietary choline and betaine intraindividual variability study 

 

    The ARIC study took numerous steps to minimize the error in the measurement of dietary 

intake, including the use of a standardized protocol, training of dietary technicians, 

revalidation of the ARIC FFQ, and periodic quality control analyses (NHLBI, 1989). Despite 

these efforts, measurement error due to the ARIC FFQ dietary assessment can be expected to 

be present. To quantify the measurement error and the repeatability of dietary choline and 

betaine ARIC assessment a dietary repeatability study was conducted, based on repeat 

dietary assessments three years apart. The corresponding examination visits were visit 1 

(centered on year 1988) and visit 2 (centered on year 1991). Thus, both visits occurred before 

the folate supplementation of diet (mandated in 1996-1998). 

    Dietary repeatability analyses reflect both errors in measurement (reporting) and true 

dietary change. The FFQ measured choline intake may be regarded as the sum of the “true” 

choline intake for an individual over a given period and an error term. The error component 

can be partitioned into measurement error and within-person variation in the “true” intake, 

since it is likely that real changes in diet occurred over the three years that elapsed between 

visits one and two. These changes are reflected in the repeatability measurements. Reliability 

coefficients from repeated assessments indicate the proportion of total variation in measured 

intake that can be attributed to between-person differences in the stable intake in the 

population examined. Stable nutrient intake is the relevant exposure in epidemiologic studies 

in which the goal is to assess the impact of long-term dietary habits on chronic disease 
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(Willett, 1998 – chapter 12). In this study, the measurement error included dietary biological 

“true” variation, interviewer/technician variability and instrument between-person error. 

    Reliability of the dietary instrument was assessed in a random sample of 1,004 subjects 

whose dietary intake was measured during the second visit of ARIC (in 1990-1992), within 

each geographic center. This assessment was compared with the dietary information 

collected in visit 1 for the same participants (in 1987-1989). Mixed effects models were used 

to partition the measurement error into components. With these estimates a reliability 

coefficient, R, was calculated as the proportion of total variance attributable to the between-

person component. The reliability coefficient can also be interpreted as the correlation 

between different measures on the same individual, where the measures are made at different 

visits, in different centers, by different dietary interviewers/technicians. The assumptions 

used were that the usual diet between the first two ARIC visits was relatively stable and that 

the systematic dietary assessment error was mainly non-differential. 

    The following general mixed effects model of the dietary intake choline measurements 

was considered: 

 

Yijkl = α + Personi + Visitj(Personi)  + Centerk(Technicianl) + Errorijkl

 

where Yijkl = dietary choline intake estimated using the FFQ, α is the intercept, i = person, j = 

visit, k = center and l = technician. The terms in the model are assumed to be independent. 

Because at each visit only one dietary assessment was conducted the visit term was not 

estimable. Also, for a particular study subject at a particular visit, only one 

nutritionist/interviewer/technician conducted the dietary assessment, and the same 
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distribution of technicians was in place at a particular center during a certain visit. 

Nevertheless, a particular study subject could encounter different technicians at different 

visits. Therefore the following model was used in the analysis: 

 

Yijk = α + Personi + Centerj(Techniciank) + Errorijk

 

    A convenient equation of the multivariate statistical model that was employed to estimate 

the intra-individual variability of the dietary intake measures of interest was: 

 

Cholineijk = µ + αi + ß Visitij + ∑γk Centerik + εijk ,                                                         (1) 

 

where Cholineij is the dietary intake of choline, i = person, j = visit and k = center. 

 

    The equation for the technician effect, nested within center is: 

 

Cholineijkl = µ + αi + ßj Visitij + ∑γk Centerik + ∑γkl Technicianikl * Centerik + εijkl ,           (1’)                  

with the same i = person, j = visit, k = center and l = technician. 

 

    The person random effect was calculated using a population with a normal distribution 

with mean zero and variance σB
2, and the visit effect was calculated assuming a population 

normally distributed with mean zero and variance σe
2. 

    From the covariance matrix of equation 1 (without center), the variance and the 

covariances (σB
2, the between-person and σe

2, the within-person) are: 
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Var (Cholineij) = Var (αi + ε) = Var (αi) + Var (ε) = σB
2 + σe

2 = σ2 , 

Cov (Cholinei1, Cholinei2) = Cov (αi + εi1, αi + εi2) = Cov (αi, αi) + Cov (αi, εi1) + Cov (αi, εi2) 

+ Cov (εi1, εi2) = Var (αi) = σB
2, 

assuming αi and ε independent, as well as εi1 and εi2 independent. 

    From equation 1’, with similar assumptions, 

Cov (Cholinei1, Cholinei2) = Cov (αi + δik1 +  εi1, αi + δik1 + εi2) = Cov (αi, αi) = Var (αi) = σB
2                          

    The reliability coefficient, ρ, is: 

 

Corr (Cholinei1, Cholinei2) = Cov (Cholinei1, Cholinei2) / Var (Cholineij) = σB
2 / (σB

2 + σe
2) 

from the mixed model, with σB
2 labeled CS (ID) in the Proc Mixed output and the σe

2 labeled 

RESIDUAL. 

    Similarly, from equation 1’, where σT
2 is the between-technician variance, 

 

Corr (Cholinei1, Cholinei2) = σB
2 / (σB

2 + σT
2 + σe

2), and, with the same labels, CS / [CS + 

Tech(Center) + Residual] , 

that also represents the ratio between person variance and the total variance. 

    A general variance-covariance matrix that contains all related nutrients (dietary choline, 

dietary folate and dietary methionine) was produced. The between-person (σB
2) and the error 

variances (σe
2) and error covariances between the nutrients, and the ratios of the between to 

the total (σT
2) were produced. In a first step the mixed model had an unstructured 

composition. The output estimates (as an average of them) were used as parameters in a new 

mixed model with the same variables and a general linear structure. From this last mixed 
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model were obtained the between-person and error variances and covariances as well as the 

ratios of between to total (σB
2/ σT

2) and error to total (σe
2/ σT

2). Both the correlation 

coefficient for choline and other nutrients, ρchol = covvisit / varchol = σB
2/ σT

2, as well as total 

variance - from which the error term, (σe
2 / σT

2) * varchol = (1 - σB
2 / σT

2)* varchol, could be 

obtained, were calculated to provide information about the correlation for these nutrients as 

well as the magnitude of error detected. Following the model to assess the joint 

intraindividual variability of the interrelated nutrients, a model with choline as the only 

dependent variable, and technician nested within center added to the random effect variables, 

was contructed. 

    All models were implemented using the SAS MIXED procedure in SAS Version 8.2 (SAS 

Institute, Cary, NC), with the restricted maximum likelihood method. The reason for using 

mixed modeling is the fact that the experimental units on which the data are measured can be 

grouped into clusters, and the data from a common cluster are correlated. The general model 

that was used had center and visit as fixed effect variables. Two main models (with and 

without technician nested within center as random effect) were run. 

    To incorporate the measurement error estimates in nutrient intake in the estimation of their 

association with the risk of coronary heart disease events, the algorithm that was used is that 

described by Chambless and Davis (Chambless, 2003) to correct for bias caused by 

measurement error in independent variables. The concept of the multivariate reliability 

matrix is fundamental here, both as used for weights in the Stein estimator and as a measure 

of repeatability, as estimated from the choline ancillary study. When one wants to consider 

the joint intraindividual variation in several variables, he or she writes the total variance-

covariance matrix of that set (vector) of variables as a sum of the between-person variance-
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covariance matrix (ΣTotal = ΣBP + Σe). The following algorithm was applied for the correction 

of the measurement error (the same notations are in place, i = person, j = visit). The 

assumption was that either ∑e or the ratios 1 – r ij of the ij component of ∑e to the ij 

component of ∑T = var(w) are known from the ancillary study (as estimated by the sample 

variance-covariance matrix for observed w). The regression ß = ∑z
-1 ∑wz of w on z (from the 

SAS proc mixed output) was used as well as the predicted values ŵ(z) from this regression. 

Ř = (∑T – ß’ ∑z ß)-1(∑T – ∑e – ß’ ∑z ß) = 1 – var(w|z)-1∑e was defined. This Ř, the 

multivariate conditional “reliability matrix”, was computed from the sample variance, ∑T of 

w and ∑z of z , the regression coefficient ß, and the measurement error matrix ∑e. The 

transformation of w to w* = ŵ(z)(I - Ř) + w Ř was made. w* in place of x  was used in order 

to fit the model y = A + zBz + xBx + ε, with the standard hazard regression software, and the 

estimated coefficients and variances from that software was used. w*, a Stein estimator of 

true x conditional on z, is a weighted average of the observed w and the conditional mean of 

w (Chambless, 2003). 

    A bootstrapping procedure was used to estimate the confidence intervals of the regression 

coefficients obtained in the regression models. A suite of macros, including the macro for the 

measurement error correction, was used for this purpose. To run the procedure, the original 

dataset was resampled 1,000 times. The nutrients of interest were considered as continuous 

variables. 
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Paper I: Usual choline and betaine dietary intake and occlusive coronary events: the 

Atherosclerosis Risk in Communities (ARIC) study 

 

Abstract 

Introduction and Background: Low dietary intake of the essential nutrient choline and its 

metabolite betaine may increase atherogenesis through effects on homocysteine methylation 

pathways. Prospective observational studies of choline and betaine intakes are not available 

because a food composition database was lacking until recently. 

Objective: To assess the association of dietary intake of choline and betaine with incident 

coronary heart disease (CHD), adjusting for dietary intake measurement errors. 

Methods: We conducted a prospective investigation of the relation between usual intake of 

choline and betaine with the risk of non-fatal myocardial infarction and fatal CHD in 14,430 

middle-aged men and women of the bi-ethnic Atherosclerosis Risk in Communities study. A 

66-item version of the Willett food frequency questionnaire (FFQ) and the USDA choline 

database were used to assess nutrient intake. Proportional hazard regression models were 

used to calculate the risk of incident CHD by quartile of nutrient intake. A regression 

calibration method was used to adjust for measurement error. 

Results: During 14 years of follow-up, we documented 1072 incident CHD events. Neither 

dietary choline nor betaine intakes were significantly associated with incident CHD. 

Compared with the lowest quartile of intake, incident CHD risk was 22% higher [HR = 1.22 

(0.91, 1.64)] and 14% higher [HR = 1.14 (0.85, 1.53)] in the highest quartile of choline and 

choline plus betaine, respectively, controlling for age, sex, education, total energy intake, and 
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dietary intakes of folate, methionine and vitamin B6. No association was found between the 

dietary intake of choline and incident CHD when correcting for measurement error. 

Conclusion: Higher intakes of choline and choline plus betaine were not protective for 

incident CHD. Similar investigations using other populations and other atherosclerotic events 

are of interest. 

 

    The essential nutrient choline, its metabolite betaine, as well as folate and methionine are 

all metabolically interrelated by transmethylation pathways (Zeisel, 1991; Niculescu, 2002; 

daCosta, 2005; Zeisel, 2006). By under-methylation of DNA, a low dietary intake of choline 

and betaine alters the epigenetic regulation for a series of genes by which the atherogenic 

process may be accelerated (Dong, 2002; Zaina, 2005). Like folate, choline is involved in the 

methylation of homocysteine (a putative cardiovascular risk factor) to methionine through a 

betaine-dependent pathway. When folate availability diminishes there is an increased 

demand for betaine as a methyl donor (Jacob, 1999). Conversely, when choline availability is 

decreased the demand for folate is increased (Kim, 1995). Because of the interrelationship of 

folate and choline pathways, both nutrients should be considered in epidemiological studies 

assessing the relationship between dietary intake of these compounds and cardiovascular 

disease. 

    Analysis of choline intake was previously not possible because the choline content of most 

foods was not accurately measured until recently (Zeisel, 2003; USDA, 2004). Only one 

observational study (a case-control) has been conducted using dietary intake of choline and 

betaine as the exposure (Shaw, 2004). We investigated the relative risk of a low dietary 

intake of choline and betaine in relation with incident coronary heart disease (CHD) in a 
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large middle-aged biracial cohort of men and women sampled from four U.S. locales. We 

investigated whether these risk estimates vary by intake of folate or methionine, by 

menopausal status, sex or race. We compared the results with those obtained using a 

calibration method to adjust for a series of covariates assumed measured without error (such 

as age and sex) and for known measurement error in the assessment of four interrelated 

nutrients: choline, folate, methionine and total energy intake. 

 

Methods 

    The study was conducted in the cohort component of the Atherosclerosis Risk in 

Communities (ARIC) Study, a prospective observational bi-racial follow-up of 15,792 men 

and women between the ages of 45 and 64, recruited from Forsyth County, NC, Jackson, MS, 

suburbs of Minneapolis, MN, and Washington County, MD (ARIC Investigators, 1989). The 

analyses excluded cohort members who had CHD at baseline (n=766), race other than white 

and African-American (n=48), missing dietary information for either folate or methionine 

(n=8), and extreme reported caloric intake values (below 500 kcal for women and 700 kcal 

for men, and above 3,500 for women and 4,500 for men, corresponding to the 3rd percentile 

of the data distribution; n=540). Prevalent CHD was defined as evidence of a prior 

myocardial infarction (MI) by electrocardiogram readings taken during the baseline clinic 

visit, self-reported physician diagnosis of MI, or self-reported cardiovascular 

surgery/coronary angioplasty. After applying these exclusions, 14,430 individuals remained 

for analysis. 

    The ingested choline and betaine was quantified with a 66-item version of the Willett 

semi-quantitative food frequency questionnaire, FFQ (Willett, 1985). The participants were 
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asked how often, on average, they had consumed listed items during the previous year. Nine 

frequency responses were listed ranging from more than six per day to almost never. We 

calculated daily servings by converting the consumption frequency to servings per day. 

Dietary choline and betaine were estimated as the sum of daily intakes, using a choline and 

betaine database composed with the USDA choline and betaine content in common foods 

database, database that contains 207 food items (USDA, 2004), and with the University of 

Minnesota Nutrition Data System database (for the ingested food portion sizes). 

    Incident non-fatal MI and fatal CHD were ascertained, validated and classified following 

the standardized ARIC cohort and community surveillance protocol (White, 1996). We 

considered the intakes of choline, and choline plus betaine, in continuous multivariable 

models. We adjusted for total energy intake as a continuous variable. Adjustment for total 

energy intake as the residual from a linear least-square regression model, in which total 

energy intake was the independent variable, produced similar results. The following 

confounding variables were also included in the models: age, sex, education, dietary folate, 

dietary methionine and dietary B6 vitamin, race, diabetes, ARIC center, dietary cholesterol, 

menopausal status (expressed by the reported cessation of menses), and a series of CHD risk 

factors such as smoking, hypertension, body mass index (BMI) and family history of CHD. 

Using a likelihood ratio testing we assessed the effect measure modification (EMM) of 

dietary folate intake, sex, menopausal status, race, education, ARIC center and alcohol 

intake. Due to women’s capacity to form the choline moiety de novo the amount of choline 

necessary in the daily diet is influenced by sex and menopausal status. Alcohol intake, a 

known folate antagonist, may plausibly increase the requirement for folate intake. Folate and 

alcohol were categorized with a cutoff point at the lowest and the highest quartile, 
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respectively. We calculated hazard ratios (HRs) using Cox proportional hazard regression. 

Verification of the proportional hazard assumptions was assessed using plots of the log(-log) 

survival curves. We compared the results with those obtained using the procedure described 

below to correct for measurement error. Statistical analyses were conducted using SAS 

software (SAS Institute, 2001). All p-values were two-tailed. 

    We applied regression calibration (Rosner, 1989; Spiegelman, 1997; Chambless, 2003) to 

correct for measurement error in the following independent variables: choline (choline plus 

betaine), folate, methionine and total energy intake. To enable this adjustment we assessed 

the reliability of the dietary instrument in a random sample of 1,004 subjects whose dietary 

intake was measured three years after the ARIC baseline. From each field center an equal 

number of participants have been selected. The dietary form was administered in the identical 

manner as was done during the ARIC baseline examination. The reliability coefficients for 

the nutrients of interest used for the adjustment procedure were 0.50 for choline (0.50 for 

choline plus betaine), 0.53 for folate, 0.48 for methionine and 0.43 for caloric intake (table 

V.5, Paper II). We transformed a weighted average of the observed value of the nutrient 

vector measured with error and the predicted mean vector conditional on model covariates 

(age and sex, first, and those plus a series of established CHD risk factors, secondly) 

considered measured without error. The weights for the linear combination were those from a 

conditional reliability matrix, a matrix that was derived from the measurement error 

estimates from the ancillary study described above. This general estimator for the 

measurement error model was then applied to the longitudinal analysis of dietary choline in 

relation with incident CHD. We used a bootstrapping technique to estimate the variance of 

 101



beta coefficients obtained in the final longitudinal analysis corrected for measurement error. 

We repeated the bootstrap sampling one thousand times. 

 

Results 

Among the 14,430 participants in this study, the median intake for choline was 302 mg/day 

in men, 271 mg/day in women, 286 mg/day in whites and 274 mg/day in blacks. For betaine 

the median intakes were 101 mg/day in men, 89 mg/day in women, 95 mg/day in whites and 

91 mg/day in blacks (data not shown). Similar intakes of choline and betaine were observed 

among participants for both incident CHD statuses (Table V.1). 

    Over an average of 14 years of follow-up, 1072 incident CHD events occurred. Neither 

higher intakes of dietary choline nor betaine were significantly associated with incident 

CHD. Compared with the lowest quartile of intake, incident CHD risk was 22% higher [HR 

= 1.22 (0.91, 1.64)] and 14% higher [HR = 1.14 (0.85, 1.53)] in the highest quartile of 

choline and choline plus betaine, respectively, controlling for age, sex, education, total 

energy intake, and dietary intakes of folate, methionine and vitamin B6 (Table V.2). Further 

adjustment for race, diabetes status, ARIC field center and dietary cholesterol, dietary 

vitamins B12 and B2, as well as for other CHD risk factors, such as obesity (defined as a body 

mass index, BMI, higher than 30), hypertension, smoking status and estimated family history 

of CHD, produced similar risk estimates. 

    No effect measure modification (EMM) was detected for sex, menopausal status, race, 

ARIC center, education or folate intake analyzed as a continuous variable.  However, when 

dietary folate was categorized in two categories with the lowest quartile as a cutoff (157 

µg/d), this intake modified the association dietary choline – incident CHD (p-interaction = 
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0.08). Among those with folate intake lower than 157 µg/day, incident CHD risk was non-

significantly higher for those in the highest quartile of choline intake compared with the 

lowest [HR = 1.56 (0.87, 2.78)] (Table V.3). When we further restricted our analyses to men, 

the risk of incident CHD was higher among those in the highest quartile, compared with 

those in the lowest, for both choline [HR = 1.41 (0.92, 2.14)] and choline plus betaine [HR = 

0.83 (0.62, 1.18)] (data not shown). 

    Correction for measurement error in the dietary intake of choline and related nutrients, 

using models containing continuous nutrient variables, provided similar results. The hazard 

ratio for an interquartile difference of choline was 1.24 (0.92, 1.66), when the covariates 

considered measured without error were age and gender. An error correction model with B6 

vitamin instead of caloric intake yielded the same non-significant risk estimates. When using 

the bootstrapping procedure and the 2.5th and the 97.5th percentile that were used to obtain 

the 95% confidence interval for the corrected choline regression coefficient, the last 

mentioned interval included the value 0, which sugests that the risk estimate remains non-

significant. 

 

Discussion 

    With or without correction for measurement error, during the 14 years of follow-up of this 

large prospective biracial men and women cohort we did not find a significant association 

between dietary intake of choline (or choline plus betaine) and the risk of incident CHD. 

Controlling for the potential effect of dietary folate, dietary methionine and other covariates 

did not substantially influence the risk estimates for either choline nor choline and betaine. 

 103



Further, we found no evidence of a monotonic relation with incident CHD across quartiles of 

dietary intakes of choline. 

    Choline, an essential nutrient for humans (Institute of Medicine and National Academy of 

Sciences, 1998), is found in several compounds that are methyl-donors. Supplementation in 

the dietary intake range of betaine, a methyl-donor continuously produced from choline 

(Craig, 2004), leads to immediate and long term lowering of plasma homocysteine, a putative 

CHD risk factor (Olthof, 2005; Clarke, 2002). Homocysteine, with a direct cytotoxicity effect 

on vascular endothelium (Medina, 2001), is a sulfur aminoacid whose metabolism stands at 

the intersection of two pathways (Finkelstein, 1972). One catalyzes the synthesis of the 

amino acid cysteine and the other remethylation to form methionine, a process that requires 

folate and vitamin B12. In an alternative reaction, betaine, the oxidative by-product of 

choline, serves as a donor of methyl groups to homocysteine to form methionine (Steenge, 

2003). Thus, the two metabolic pathways provide alternate mechanisms for removal of 

homocysteine as shown in Figure V.1. The increase in blood homocysteine after a 

methionine load (da Costa, 2005) and consequent vascular cytotoxicity, or the aberrant 

methylation produced by a low plasma choline and plasma betaine with possible increased 

atherogenesis (Dong, 2002; Zaina, 2005), provide the putative mechanisms that could explain 

an increase in CHD risk. 

    Whereas there is research suggestive of an association between dietary folate and incident 

CHD (Rimm, 1998), the extant literature on dietary choline is small (Shaw, 2004) with the 

current study the first to explore choline as well as betaine in a prospective cohort setting. 

Until recently it was not possible to calculate dietary choline intake in humans and there are 

no nationally representative estimates of this intake from food (Institute of Medicine and 
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National Academy of Sciences, 1998) because the choline content of foods had not been 

included in major nutrient databases. Food choline data were unreliable due to older, 

imprecise assay procedures. As a consequence the estimated Average Requirement (EAR) 

for choline remains to be established. The proposed adequate intake (AI) for choline was set 

at 550 mg/day for men and 425 mg/day for women (Yates, 1998). It is unknown whether 

intakes of choline in the U.S. meet the AI. In the ARIC cohort, the median and 25th 

percentiles of choline intake were 284 and 215 mg/day, respectively (unpublished results). 

Only 6% of men and 11% of women had an intake of choline above that proposed as the AI. 

Choline intake was associated with sex, race and menopausal status. 

    Repeat measurement mixed modeling permits the estimation of measurement reliability, 

which in turn permits adjustment for measurement error such as through a regression 

calibration (Rosner, 1989; Spiegelman, 1997; Chambless, 2003). One approach is to replace 

the observed values of the variables measured with error (in our case, the nutrients of 

interest) with multivariate Stein estimates of the true values, conditional on the values of the 

variables measured without error and the observed values of the variables measured with 

error (Whittemore, 1989). The method we used to adjust for known measurement error, using 

covariates considered measured without error, is of general interest for future simultaneous 

assessment of different nutrients. Because the risk estimates relating nutrient intake to CHD 

were very close to the null, little change in the hazard ratio was observed when measurement 

error correction was applied. 

    An explanation for the observed association of choline intake with the risk of incident 

CHD could be that choline is required for normal secretion of very low density lipoprotein 

from liver; perhaps provision of choline mobilizes cholesterol from hepatic stores into the 
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vascular pool permitting deposition in atheromas (Yao, 1988). Alternatively, a higher intake 

of choline and betaine, which increases the methylation potential of methionine, may result 

in a change of the cell phenotype that promotes the development of atherogenic plaque 

(Lascalzo, 2006). 

    There are several limitations of the present study. First, there was no reliable blood 

biomarker for dietary status of choline. Plasma concentrations of choline and betaine 

decreased when subjects were fed a low choline diet, but the amount of decrease was not 

highly correlated with susceptibility to develop organ dysfunction while on this diet (Fischer, 

2006). A second potential limitation of our investigation is that the food frequency 

questionnaire used in ARIC tends to underestimate the absolute dietary intake for a particular 

nutrient, as is commonly the case for semi-quantitative dietary assessment tools. 

Nevertheless, the FFQ used in this study was designed to rank participants and it is likely that 

we properly discriminated individuals in the highest and lowest categories of intake which 

were the focus of our analyses. The foods with the highest content in choline - eggs, milk, 

liver, red meat, poultry and fish, as well as the foods with the highest content in betaine - 

spinach, white bread and breakfast cereals, were items included in the ARIC FFQ. Another 

limitation of our investigation is the absence of supplemental B vitamin information 

including folate, which was queried only during subsequent examinations of the ARIC 

cohort. 

    There are a series of advantages for our study. Our analyses are based on an extended 

follow-up of one of the largest biracial populations of U.S. adults, with the added strengths of 

validated CHD outcomes and a standardized collection of covariate information. These are 

elements that support the internal validity of the findings. Because in ARIC the dietary 
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assessment was conducted before the national-wide mandatory supplementation of some 

foods (such as flour) with folate in the late 1990s, the study was able to avoid the interference 

with those compounds in its ascertainment of the exposure. 

    In conclusion, we found that choline, and choline plus betaine intake, were not predictors 

of incident CHD in the ARIC cohort. Contrary to our expectation and regardless of the 

method or the covariates used, a higher intake of choline was not beneficial for an 

individual’s risk incident CHD. Our findings offer additional information for understanding 

of the complex etiology of coronary occlusive events in relation to methyl-donor compounds. 

This study invites similar investigations using other populations and other atherosclerotic 

events. 
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Table V.1. Age, sex and race-adjusted means of selected nutrients and variables by 
incident coronary heart disease (CHD) status, ARIC Study, 1987-1989. 

Variables Incident CHD 
 Yes (N = 1,072) No (N = 13,358) 
Choline (mg/d) 
 

304.4 298.6 

Betaine (mg/d) 
 

102.8 104.3 

Methionine (mg/d) 
 

1693 1678 

Folate (µg/d) 
 

220.6 227.5 

Vitamin B6 (mg/d) 
 

1.66 1.70 

Dietary cholesterol 
(mg/d) 
 

260 250 

Total energy intake 
(kcal/d) 

1598.4 1597.8 

Choline, betaine, methionine, folate and vitamin B6 represent dietary intakes of these nutrients 
 
 



 

Table V.2. Hazard rate ratios (and 95% CIs) for incident CHD, over the period 1987-2002, across quartiles of dietary 
intake of choline and dietary intake of total choline (choline plus betaine) at baseline, among 14,430 participants in the 
ARIC study. 

 Quartile (Q) of dietary intake (with confidence intervals) 

   Q 1
(N = 3607) 

Q 2 
(N = 3608) 

Q 3 
(N = 3608) 

Q 4 
(N = 3607) 

Choline 
 

< 217 mg/d 217-283 mg/d 283-363  mg/d > 363 mg/d 

   Model #1* 
 

Referent 0.89 (0.73, 1.08) 1.11 (0.90, 1.38) 1.22 (0.91, 1.64) 

   Model #2§

 
Referent 0.84 (0.69, 1.03) 1.03 (0.82, 1.29) 1.05 (0.76, 1.45) 

     
Total choline 
 

< 298 mg/d 298-384 mg/d 384-486  mg/d > 486 mg/d 

   Model #1 
 

Referent 0.91 (0.75, 1.10) 1.07 (0.86, 1.33) 1.14 (0.85, 1.53) 

   Model #2 Referent 0.87 (0.72, 1.05) 1.01 (0.81, 1.26) 0.99 (0.73, 1.35) 
*In models #1, adjustment was made for age, sex, education, total energy intake, dietary folate, dietary methionine and dietary vitamin B6
 §In models #2, adjustment was made for all of the above plus race, diabetes status, ARIC field center, menopausal status and dietary 
cholesterol 
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Table V.3. Hazard rate ratios (and 95% CIs) for incident CHD over the period 1987-
2002 by quartile (Q) of dietary intake of choline and levels of folate and alcohol intake 
among 14,430 participants in the ARIC study. 
 Hazard Ratio 95% Confidence Interval 
By folate intake   
   Low folate, <157 µg/day 
   (N = 3637) 

  

      Q1 (<163 mg/d) Referent ------ 
      Q2 (163-209 mg/d) 0.70 (0.47, 1.05) 
      Q3 (209-260 mg/d) 0.80 (0.51, 1.24) 
      Q4 (>260 mg/d) 1.31 (0.74, 2.33) 
   High folate, >157 µg/day 
   (N=10,793) 

  

      Q1 (<163 mg/d) Referent ------ 
      Q2 (163-209 mg/d) 1.21 (0.77, 1.91) 
      Q3 (209-260 mg/d) 0.83 (0.53, 1.29) 
      Q4 (>260 mg/d) 0.95 (0.61, 1.49) 
By alcohol intake   
   High alcohol, >6.2 g/day 
   (N = 3606) 

  

      Q1 (<225 mg/d) Referent ------ 
      Q2 (225-292 mg/d) 0.82 (0.55, 1.22) 
      Q3 (292-371 mg/d) 1.00 (0.62, 1.62) 
      Q4 (>371 mg/d) 1.07 (0.53, 2.16) 
By folate and alcohol intake   
   Low folate and high alcohol 
   (N = 850) 

  

      Q1 (<170 mg/d) Referent ------ 
      Q2 (170-214 mg/d) 0.66 (0.26, 1.65) 
      Q3 (214-270 mg/d) 0.70 (0.26, 1.86) 
      Q4 (>270 mg/d) 1.50 (0.43, 5.21) 
In all models, adjustment was made for age, sex, education, total energy intake, dietary folate, dietary 
methionine, race, diabetes status, ARIC field center, menopausal status, dietary cholesterol, dietary 
vitamin B6, plus dietary intakes of folate and alcohol (when required) 
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Figure V.1. The metabolism of homocysteine and the remethylation to methionine by 
the folate and betaine alternative pathways 
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Paper II: Repeatability and measurement error in the assessment of choline and betaine 

dietary intake: the Atherosclerosis Risk in Communities (ARIC) study 

 

Abstract 

Introduction and Background: The repeatability of a risk factor measurement determines the 

ability to ascertain its association with a specific outcome. Like folate, choline is involved in 

one-carbon metabolism for methylation of homocysteine, a putative risk factor for 

cardiovascular disease, to methionine through a betaine-dependent pathway. It is unknown 

whether dietary intake of choline meets the recommended Adequate Intake (AI) proposed for 

choline (550 mg/day for men and 425 mg/day for women). The Estimated Average 

Requirement (EAR) for choline remains to be established in population settings. 

Objective: To ascertain the reliability of choline and related nutrients (folate and methionine) 

intakes assessed with a brief food frequency questionnaire (FFQ) and to estimate a 

population’s dietary intake of choline and betaine. 

Methods: The studied population was a bi-ethnic sample of 15,706 men and women aged 45-

64 years at the baseline visit of the Atherosclerosis Risk in Communities (ARIC) study 

(1987-89) at four locales in the U.S. A stratified random sample of ARIC participants at the 

second visit, 1990-92 (N=1,004), was used to estimate the reliability components and the 

measurement error. The ARIC dietary data was obtained with a version of the Willett 61-

item FFQ, expanded to include some ethnic foods (ARIC FFQ). We estimated intraindividual 

variability for choline, folate and methionine using mixed models regression. 

Results: The reliability coefficients for the nutrients of interest were 0.50 for choline (0.50 

for choline plus betaine), 0.53 for folate, 0.48 for methionine and 0.43 for total energy intake. 
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The measurement error was substantial for all considered nutrients. In the ARIC population, 

the median and the 25th percentile of dietary choline intake were 284 mg/day and 215 

mg/day, respectively. 94% of men and 89% of women had an intake of choline below that 

proposed as AI. African-Americans had a lower intake in both genders. 

Conclusion: The three-year period ARIC FFQ reliability was similar for choline and for 

related nutrients, and in the same range as that published in the literature for other 

micronutrients. Using a brief FFQ to estimate intake, in the ARIC cohort the majority of 

participants had an intake of choline below the values proposed as AI. 

 

    Population-level measurements of dietary intake of the essential nutrient choline and its 

metabolite, betaine, are of interest since a food composition database has recently become 

available (USDA, 2004; Zeisel, 2003). Low dietary intake of choline and betaine ostensibly 

results in aberrant DNA methylation and possible increased atherogenesis. Independently of 

folate, dietary intake of choline and betaine are inversely associated with plasma 

homocysteine (Steenge, 2003; Olthof, 2005; daCosta, 2005), a putative cardiovascular 

disease risk factor (Harjai, 1999; Clarke, 2002). It is unknown whether dietary intake of 

choline in the U.S. meets the recommended Adequate Intake (AI) proposed for this nutrient, 

550 mg/day for men and 425 mg/day for women (Yates, 1998). The Estimated Average 

Requirement (EAR), which calculation requires a higher amount of evidence, remains to be 

established in populations (IOM, 1998). 

    The reliability (reproducibility) of micronutrients, as assessed with a food frequency 

questionnaire, is lower compared with that of macronutrients (Willett, 1998; Patterson, 1999; 

Satia-Abouta, 2003). Because the random effect (the error prone covariate – variance 
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structure) of dietary assessment has been shown to have an important impact on risk 

estimates (Carroll, 1996; Carroll, 1998), several studies have estimated and have adjusted for 

measurement error in the assessment of dietary intake. The objective of our study was to 

ascertain the reliability of the dietary assessment for choline as assessed with a brief food 

frequency questionnaire (FFQ) and to estimate a population dietary choline and betaine 

intakes. We also aimed to assess the FFQ measurement error and study the intraindividual 

variability when several related nutrients are considered simultaneously. 

 

Methods 

    Our study used data from the cohort component of the Atherosclerosis Risk in 

Communities (ARIC) Study. The ARIC study is an observational bi-racial cohort of 15,792 

men and women between the ages of 45 and 64, recruited from four U.S. communities. The 

communities sampled – Forsyth County, NC, Jackson, MS, suburbs of Minneapolis, MN, and 

Washington County, MD – have a very diverse ethnic and social composition (ARIC 

Investigators, 1989). Enrollment reflected the demographics of the communities from which 

they were selected with the exception of Jackson site in which enrollment was limited to 

black individuals. Baseline clinical examinations and home interviews occurred during 1987-

1989 and response rates were 46% of all eligible subjects in Jackson and approximately 66% 

in the remaining sites. The population for this study was a bi-ethnic sample of 15,706 men 

and women aged 45-64 years with dietary data at the baseline visit. 

    The habitual dietary intake of choline and betaine was estimated and quantified with a 66-

item food-frequency-questionnaire (FFQ), based on the Willett 61-item FFQ and expanded to 

include some ethnic foods (ARIC FFQ). This dietary assessment instrument was applied at 
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baseline and three years later (1990-1992). The participants were asked how often, on 

average, they had consumed listed items during the previous year. Nine frequency responses 

were listed ranging from more than six per day to almost never. We calculated daily servings 

by converting the consumption frequency to servings per day. Dietary choline and betaine 

were estimated as the sum of daily intakes using a choline and betaine database composed 

with the USDA choline and betaine content in common foods database (207 food items) and, 

for the portion sizes, with the University of Minnesota Nutrition Data System database. 

    As part of the ARIC Dietary Assessment Repeatability Study, a random sample composed 

of 1,004 subjects, 522 males and 482 females, was selected, in equal number of participants 

from each ARIC locale, and studied three years after the baseline examination. The dietary 

form was administered in an identical manner as done during the ARIC baseline 

examination. The intraindividual variability (between-person and dietary instrument 

variability) was calculated and the reliability coefficient, the correlation between measures 

made at repeat visits, was estimated using mixed models regression (Littell, 1999). In our 

mixed model (Appendix 1) all four interrelated nutrients, choline, total energy intake, folate 

and methionine, were the dependent variable, subject as a random effect variable and center 

and visit, as fixed effect variables.  The following algorithm (Appendices 2 and 3) was used 

to produce the general variance-covariance matrix for the dietary compounds. From this 

algorithm, the between-person (σB
2) and the error variances (σe

2) and error covariances 

between the nutrients, as well as the ratios of the between to the total (σT
2) were produced. In 

a first step the mixed model had an unstructured composition. We used the output estimates 

(as an average of them) as parameters in a new mixed model with the same variables and a 

general linear structure. From this last mixed model we obtained the between-person and 
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error variances and covariances as well as the ratios of between to total (σB
2/ σT

2) and error to 

total (σe
2/ σT

2). Both the correlation coefficient between visits for choline and other nutrients, 

ρchol = covvisit / varchol = σB
2/ σT

2, as well as the total variance were calculated. Lastly, the 

error term, (σe
2 / σT

2) * varchol = (1 - σB
2 / σT

2)* varchol was obtained. Following the modeling 

to assess the joint intraindividual variability of the interrelated nutrients, a model was 

contructed with choline as the only dependent variable and technician nested within center 

added to the random effect variables. 

 

Results 

    Of the 1,004 participants, 482 (48%) were female and 294 (29%) were African-American. 

The mean age was 55 years. With the exception of folate and vitamin B6, the mean and 

standard deviation of nutrient intakes between visits were different (Table V.4). 

    In mixed models used to assess the joint intraindividual variability for all interrelated 

nutrients (Tables V.5) we found a reliability coefficient of 0.50 for choline, 0.43 for caloric 

intake and 0.53 for folate (0.50 for total choline; choline plus betaine). These coefficients 

were similar with calculated Pearson correlation coefficients between the two visits (0.48 for 

choline and 0.49 for folate). The reliability coefficients for all studied nutrients showed 

similar values with those typically seen in the nutritional epidemiologic literature for 

micronutrients. The correlations between the three micronutrients were 0.55, 0.91 and 0.53 

for choline-folate, choline-methionine and folate-methionine, respectively. The measurement 

error variances had high values for all considered nutrients; 6,228 for choline, 145,397 for 

total energy intake, 5,504 for folate and 221,628 for methionine (Table V.5). Using the 

vitamin B6 in the reliability matrix, replacing the total energy intake, same values were 
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obtained for the measurement error components of choline and total choline (results not 

shown). Similar reliability coefficients were calculated from models with choline as the 

independent variable. Specifically, the reliability coefficient was 0.50 for choline and 0.50 

for total choline. The technician nested within center measurement error component was 

negligible, representing less than 0.01% of the total variance (results not shown). 

    In the whole ARIC cohort the median and the 25th percentile of dietary choline intake were 

284 mg/day and 215 mg/day, respectively. In regression models, choline intake was 

associated with gender, race, study site, BMI, total energy intake, physical activity and, 

among women, with menopausal status (results not shown). Table V.6 presents a series of 

statistics of interest for both choline and betaine. As expected, men had a higher intake 

compared to women. For men, African-Americans had a lower intake for both choline and 

betaine. The percentages of participants below the AI were 94% of white men, 90% of white 

women, 93% of African-American men, and 89% of African-American women (results not 

shown). 

 

Discussion 

    In this investigation we assessed the reliability of a brief food frequency questionnaire and 

estimated the dietary intake of choline and betaine in a biracial middle aged cohort of men 

and women from four US locales. In this population-based cohort the majority of participants 

had an intake above the value proposed as the adequate intake (AI). The reliability 

coefficients between visits were in the same range with those for other micronutrients but 

lower compared with those found, for example, for laboratory analytes. The measurement 

error variance values were substantial for all considered nutrients. The variances of the mean 
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dietary intakes of choline were relatively high in all race-gender groups, a finding that was 

expected due to the relatively modest reliability coefficients. 

    Choline, an essential nutrient for humans (IOM, 1998), is included in several compounds 

that belong to methyl-donors group. Betaine, a methyl-donor that is continuously produced 

from choline (Craig, 2004), has been shown to lead to immediate and long term lowering of 

plasma homocysteine after supplementation in the dietary intake range of betaine (Olthof, 

2005). By an aberrant methylation of DNA, a low dietary intake of methyl-donors alters 

epigenetic regulation of a series of genes by which the atherogenic mechanism may be 

accelerated (Dong, 2002; Zaina, 2005). Folate and choline are metabolically interrelated 

(Zeisel, 1991). When folate availability diminishes, there is an increased demand for choline 

as a methyl donor (Jacob, 1999). When choline availability is decreased, the demand for 

folate methyl-groups is increased (Kim, 1995). Because folate and choline methyl donation 

can be interchangeable, both folate and choline should be considered in epidemiological 

studies assessing the relationship between dietary intake of these compounds and 

cardiovascular disease (CVD). Accurate analysis of choline intake was previously not 

possible because the choline content of most foods was not known until recently (Zeisel, 

2003; USDA, 2004). As a consequence epidemiologic studies of dietary intake of choline 

and betaine have been sparse (Shaw, 2004). In a study that assessed the variability of dietary 

intake of choline in human subjects (Fischer, 2005), in a clinical research setting, healthy 

male and female volunteers asked to select ad libitum a variety of foods, the standard 

deviations of choline in the total measured diet were 157 mg/day for males and 88 mg/day 

for females corresponding to a mean dietary intake of 631 mg/day for men, respectively 443 

mg/day for women These values were in the same range as the AI for choline that has been 
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set, tentatively, at 425 mg/day for women and 550 mg/day for men (IOM, 1998). With a 

calculation that requires a higher amount of evidence, the other Dietary Reference Intake 

(DRI) for choline, the EAR, remains to be established in population settings. 

    Much epidemiologic research is based on estimation of an association between a putative 

risk factor and a health outcome – for example, dietary intake of a certain nutrient and 

coronary heart disease. Regression statistical techniques, including Cox regression, produce 

biased estimates of exposure-disease relationships when the exposure variable has a high 

variability, which is equivalent with a low repeatability (Gleser, 1992). In our study, the 

reliability coefficients were relatively low, in the range 0.43-0.53. As a consequence 

regression calibration procedures, using these coefficients, should be used to adjust for the 

measurement error (Rosner, 1989; Spiegelman, 1997; Chambless, 2003). 

    For regressions models with several nutrients considered at one time, the accounting for 

measurement error is more complex. One needs to know not only the reliability for each 

independent variable in the model but also the measurement variation of the covariance 

between them, which is necessary in the measurement error estimation (Glesser, 1992). The 

total variance could be written as σ2
Total(T) = σBP

2 + σe
2 where σBP

2 is the between-person 

component of variation and σe
2 is the intraindividual component, sometimes called the 

measurement error. Using our repeatability study, a conditional reliability matrix was 

constructed; this matrix was derived from the measurement error estimates. When one wants 

to consider the joint intraindividual variation in several variables, one writes the total 

variance-covariance matrix of that set (vector) of variables as a sum of the between-person 

variance-covariance matrix (ΣTotal = ΣBP + Σe). The algorithm that we used permitted the 

partition of the total variance into the between-person component and the error component. 
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For each of the assessed nutrients, these two components had relatively equal values, which 

imply a relatively high measurement error. 

    As expected, the dietary choline intake was associated with factors such as gender, 

menopausal status, total energy intake and BMI. The first two associations are explained by 

the capacity of premenopausal women to internally synthesize choline moieties, whereas the 

last two associations are the consequence of a direct proportionality between the total 

quantity of ingested foods and the amount of choline within it. 

    Several limitations of our study should be acknowledged. There was a long time interval 

between dietary assessments in the ARIC study which may have resulted in changes in 

dietary intake over time. This may partially explain the moderate level of repeatability. 

Another limitation is the use of a food frequency questionnaire to estimate intakes of choline 

and betaine in general. Not all foods containing choline and betaine are assessed with the 

ARIC FFQ. However, foods that were high in choline such as liver or eggs and would 

contribute significantly to the population intake were included. The validity of this 

questionnaire to assess intake of choline and betaine is unknown and remains of interest for 

future studies. 

    There are several strengths of our investigation. Prior to this study, information about the 

repeatability of the short version of the Willett FFQ as it pertains to dietary choline and 

betaine intake was lacking. There is also novelty in estimating intraindividual variability and 

correcting for measurement error bias as it pertains to choline and betaine. We report both the 

correlations between the two visits as well as the magnitude of error (variance components) 

in the dietary assessment which have an application for future studies. We presented an 
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algorithm with several related nutrients considered from which estimations for measurement 

error covariance between them were made. 

    In conclusion, for choline and for choline plus betaine the relative low reliability was 

similar with those of folate and methionine, and in the same range as those found for other 

micronutrients. In the estimation of these nutrients, adjustment for measurement variability 

(using, for example, a calibration method) should be used whenever possible. The majority of 

the ARIC participants were below the AI: 93% of white men, 88% of white women, 92% of 

African-American men, and 87% of African-American women. 
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Appendix 1: 

When one variable is considered, the measurement error model is: 

 

Yij = yi + εij = µ + αi + εij , Observed = True + Error, 

 

   N(µ, σ2
BP)   N(0, σ2

e) 

 

Where variance Yij ( = σ2
Total) = σ2

BP + σ2
e , i = person, j = measurement on person. 

 

The multivariate measurement error model could be written as: 

 
Y1ij                  y1i                  ε1ij
  .                       .                    . 
  .          =           .          +        .     
  .                       .                    . 
Ykij                   yki                 εkij
 
 
 
                       N(µ, ΣBP)   N(0, Σe) 
 
ΣTotal = ΣBP + Σe

 

Appendix 2: 

When one variable is considered the measurement error model for choline could be slightly 

expanded, with a a center effect and also systematic visit differences: 

Cholineijl = µ + αi + ß Visitij + γl Centeril + εij ,                                                         (1) 

where Cholineijl is the dietary intake of choline, i = person, j = visit and l = center (from the 

repeatability matrix). The person random effect was calculated using a population with a 
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normal distribution with mean zero and variance σB
2, and the visit effect will be calculated 

assuming a population normally distributed with mean zero and within person variance σe
2. 

The variance and the covariances are obtained from the covariance matrix of equation 1: 

Var (Cholineij) = Var (αi + ε) = Var (αi) + Var (ε) = σB
2 + σe

2 = σT
2, 

Cov (Cholinei1, Cholinei2) = Cov (αi + εi1, αi + εi2) = Cov (αi, αi) + Cov (αi, εi1) + Cov (αi, εi2) 

+ Cov (εi1, εi2) = Var (αi) = σB
2 = between person variance, 

assuming αi and ε independent, as well as εi1 and εi2 independent. The reliability coefficient, 

ρ, is: Corr (Cholinei1, Cholinei2) = Cov (Cholinei1, Cholinei2) / Var (Cholineij) = σB
2 / (σB

2 + 

σe
2). This could be obtained with SAS Proc Mixed, where σB

2 is CS (ID) and the σe
2 

represents RESIDUAL. 

 

Appendix 3: 

We considered our sample from two visits from ARIC as a normally distributed population 

with the following mean and variance: 

 
 cholinei1                                         σ1

2 σ12  
                           ~   N   mean,  
 cholinei2                                         σ12 σ2

2  
 
where ith subject, and 1 = visit 1, 2 = visit 2. The term σ12 represents the between visits 

covariance and σ2 the total variance (between-person plus error). 

 

When another nutrient or nutrient-related variable (for example, calories) is considered in the 

vector, and the visit and center term included: 
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Cholij               µch+αch+ßchVisit+ΣγchCenterch+εchij
                 = 
Calij                  µcal + αcal + ßcalVisit + ΣγcalCentercal + εcalij
 
where chol = choline, cal = calories. 

Therefore: 

 αch,i                             0                 σB,ch
2 σB,ch,cal  

                ~   N               ,  
 αcal,i                             0                σB,ch,cal σB,cal

2  
εch,i                           0                 σe,ch

2 σe,ch,cal  
              ~     N            ,  
εcal,i                           0                σe,ch,cal σe,cal

2 

 
With two nutrients and two measurements, we have: 

 
        choli1             σch

2       ρchσch
2  

Var  choli2   =      ρchσch
2     σch

2

        cali1               σchcal   σchcalB           σcal
2  

        cali2               σchcalB  σchcal           ρcalσcal
2    σcal

2

 
where σch

2 = σB,ch
2 + σe,ch

2 and σcal
2 = σB,cal

2 + σe,cal
2; 

where Cov (Choli1, Choli2) = ρch σch
2 and Cov (Cholij, Calij) = σchcal = σchcalB + σchcale; 

and where Cov (Choli1, Cali2) = σchcalB . 
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Table V.4. Comparison (mean and standard deviation) between the reliability 
subsample and its complement in the whole ARIC cohort 
Variables 
 

Baseline Visit Second Visit p-values#

Total energy intake (kcal/d) 
 

1,651 (593) 1,547 (576) <0.0001 

Choline intake (mg/d) 
 

336 (121) 307 (113) <0.0001 

Betaine intake (mg/d) 
 

116 (54) 107 (51) 0.01 

Folate intake* (µg/d) 
 

230 (102) 223 (103) 0.13 

Methionine intake* (mg/d) 
 

1,706 (659) 1,591 (645) <0.0001 

Vitamin B6 intake (mg/d) 1.71 (0.67) 1.69 (0.69) 0.50 
#p-values were calculated using a t-test 
Some variables (marked with *) have fewer observations 
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Table V.5. Components of reliability and measurement error expressed as ratios of 
between-person variance or covariance to total (co)variance for related dietary 
nutrients 

 Choline Total Energy 
Intake 

Folate Methionine 

Choline 
 

6,228 
0.50 

21,749 2,904 
 
 

32,956 
 
 

Total Energy 
Intake 

 
0.44 

145,397 
0.43 

15,079 
 
 

131,704 
 

Folate 
 

 
0.48 

 
0.47 

5,504 
0.53 

15,587 
 
 

Methionine 
 

 
0.50 

 
0.47 

 
0.45 

221,628 
0.48 

Note 1: The ratios of variance to total variance are the reliability coefficients (presented in 
bold italic) 
Note 2: The value presented in the upper-right half of the table are the values for the error 
variance (italic) and covariance error terms 
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Table V.6. Distribution in the ARIC cohort, at baseline visit, of dietary choline and 
betaine by gender and race 
 Dietary Choline (mg/day) Dietary Betaine (mg/day) 
 median 

(IQR) 
mean  
(SD) 

25th 
percentile 

median 
(IQR) 

mean  
(SD) 

25th 
percentile 

All ARIC 
participants 
(N=15,706) 
 

284  
(152) 

304  
(136) 

215 94  
(64) 

106  
(54) 

68 

White Men 
(N=5419) 
 

304  
(158) 

325  
(140) 

233 102  
(70) 

115  
(59) 

74 

White 
Women  
(N=6043) 
 

273  
(141) 

288  
(115) 

208 90  
(60) 

99  
(48) 

65 

African-
American 
Men 
 (N=1618) 
 

295  
(164) 

320 
(154) 

217 99  
(67) 

109  
(58) 

68 

African-
American 
Women  
(N=2626) 

263  
(149) 

287  
(151) 

195 88 
(56) 

99  
(53) 

64 

Note 1: the proposed A.I. for choline is 425 mg/day for women and 550 mg/day for men 
Note 2: IQR represent the interquartile range and SD the standard deviation 
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CHAPTER VI 

DISCUSSION 

 

    The aim of this dissertation was to assess the association between a relatively low usual 

dietary intake of choline (and choline plus betaine) and incident occlusive coronary events, 

and to measure the degree of measurement repeatability of these micronutrient intakes as 

assessed with a brief food frequency questionnaire (FFQ). As reported in the Results and 

Discussion section of the first dissertation manuscript, during the 14 years of follow-up of the 

large prospective biracial men and women ARIC cohort, no significant association was found 

between the dietary usual intake of choline (and choline plus betaine) and the risk of incident 

coronary heart disease (CHD). Compared with the lowest quartile of intake, incident CHD 

risk was 22% higher [HR = 1.22 (0.91, 1.64)] and 14% higher [HR = 1.14 (0.85, 1.53)] in the 

highest quartile of choline and choline plus betaine, respectively, controlling for age, gender, 

education, total energy intake, and dietary intakes of folate, methionine and vitamin B6. As 

reported in the Results and Discussion section of the second dissertation manuscript, the 

reliability coefficients between visits three years apart were in the same range with those for 

other micronutrients (0.43 – 0.53) but lower compared with those found, for example, for 

laboratory analytes. The measurement error variances had high values for all considered 

nutrients (6,228 for choline, 145,397 for total energy intake, 5,504 for folate and 221,628

 



for methionine). In the ARIC population, the median and the 25th percentile of dietary 

choline intake were 284 mg/day and 215 mg/day, respectively. African-Americans had a 

lower intake. The baseline characteristics of the ARIC participants, by quartiles of dietary 

choline and betaine, are presented in the Appendix 7. 

    As presented in the background section, the biologic model underlying the hypothesized 

associations, that were set out to explore, is very complex. Whereas the analysis used have 

tried to incorporate, in ensemble, the intricacies of the interrelated pathways, it is very 

difficult, if not impossible, to catch in the adjustment and in the effect measure modification 

assessment all the compounds that are entering or are generated from these metabolic 

reaction loops. While we tried to adjust for the main metabolic compounds implicated, 

residual confounding remains a possibility, confounding by other components (mainly those 

on the axis methionine, S-adenosylmethionine, S-adenosyl-homocysteine, homocysteine). 

Moreover, because the food frequency questionnaire used in the ARIC study (as any semi-

quantitative dietary assessment) underestimates in different degrees the main nutrients 

analyzed a differential misclassification of the exposure as well as of the covariates remain a 

possibility. 

    A possible explanation for the observed association of choline intake with the risk of 

incident CHD among those with a low folate intake could be that a different genetic profile 

for the folate-metabolizing enzymes is present among participants with a low folate intake. It 

is known that the methylenetetrahydrofolate reductase (MTHFR) gene decreases the activity 

of an enzyme, leading to hyperhomocysteinemia, particularly in folate-deficient states 

(Ogino, 2003). The putative modification of the association between dietary choline intake 

and CHD risk by lower levels of folate or B vitamins intakes represents another area that 
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could point to the possible explanation for the null effect found. Genetic polymorphism 

studies of the fraction of the dietary intake of folate that get transformed to plasma folate are 

only in an incipient stage. Several allelic variants have been studied recently, gene variants 

that modify the complex presented metabolic cycle of folate-homocysteine. Recently, it has 

been shown that premenopausal women who were carriers of the 5,10-

methylenetetrahydrofolate dehydrogenase-1958A (MTHFD1) gene allele were more than 

fifteen times as likely as non-carriers to develop signs of choline deficiency while on a low-

choline diet, unless they were treated with a folate supplementation (Kohlmeier, 2005). As 

94.5% of the ARIC participants had a dietary intake of folate below that proposed by the 

National Academy of Sciences/ Institute of Medicine in their Dietary Reference Intakes value 

(400 µg/day; the former DRI known as the Recommended Dietary Allowance), the 

importance of having gene polymorphism assessment became evident. 

    A possible basic explanation for the no association found between a low dietary intake of 

choline and incident CHD is that the underlying hypothesis is false, namely that the "null" 

results are indeed correct. An explanation for the observed association of choline intake with 

the risk of incident CHD could be that choline is required for normal secretion of very low 

density lipoprotein from liver (Yao, 1988); perhaps provision of choline mobilizes 

cholesterol from hepatic stores into the vascular pool permitting deposition in atheromas. 

Alternatively, a higher intake of choline and betaine, which increases the methylation 

potential of methionine, may result in a change of the cell phenotype that promotes the 

development of atherogenic plaque (Lascalzo, 2006). A relative high plasma level of betaine 

results in a shift toward the S-adenosylmethionine (SAM) of the equilibrium reaction SAM – 

S-adenosylhomocysteine (SAH). As the atherosclerosis has been shown recently to involve a 
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balance between hypermethylation and hypomethylation of certain genes (Lund, 2004), it is 

possible that the hypermethylation that could results from an increased SAM secondary to a 

higher betaine to increase, overall, the risk of CHD events. Or, a higher intake of choline plus 

betaine could have (similar with folate) thrombotic properties because methyl-donor 

compounds (such as betaine) promote cell proliferation, which is the basis for 

chemotherapies that disrupt the methylation cycle (Loscalzo, 2006). 

 

Additional analyses 

 

    Since menopausal status (as assessed by the reported cessation of menses) and gender are 

variables that might be associated with each other, collinearity diagnostics were performed. 

The condition index for the addition of menopausal status to the model already containing 

gender was 5.83 (eigenvalue = 0.06). This indicates that there is not significant collinearity 

between these two variables and therefore both can be included in the model. 

    Due to the fact that the ARIC Jackson, MS center has only black participants and that 

within the ARIC centers Washington, MD and Minneapolis, MN the majority of participants 

are whites, an analysis was conducted creating a center by race variable (two indicator 

variables for NC center and one for each MS, MD and MN centers). Using these variables 

the hazard ratios across the quartiles of choline intake (considering the the same lowest 

quartile as referent, and adjusting for all confounders considered in models #2 (Paper I), 

namely age, gender, education, total energy intake, dietary intakes of folate, methionine, 

vitamin B6, race, diabetes status, ARIC field center, menopausal status and dietary 

cholesterol) were: 0.86 (0.60, 1.24) for the second lowest quartile, 1.10 (0.71, 1.71) for the 
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second highest quartile and 0.87 (0.45, 1.70) for the highest quartile. For total choline, these 

hazard ratios were: 0.84 (0.59, 1.20), 0.92 (0.59, 1.43), and 0.73 (0.38, 1.40) for the second 

lowest quartile, for the second highest quartile and for the highest quartile, respectively. 

    Since the exclusion of subjects with extreme caloric values is performed using 

conventional cutpoints for the daily energy intake (in our case, less than 500 or 700 kcal/day, 

and more than 3,500 and 4,500 kcal/day for women and men, respectively, we performed 

sensitivity-type analyses using data from all ARIC participants (n = 14,632) with dietary 

intake assessment. The hazard ratios across the quartiles of choline intake (considering the 

the same lowest quartile as referent, and adjusting for all confounders considered in models 

#2 (Paper I), namely age, gender, education, total energy intake, dietary intakes of folate, 

methionine, vitamin B6, race, diabetes status, ARIC field center, menopausal status and 

dietary cholesterol) were: 0.85 (0.70, 1.03) for the second lowest quartile, 1.00 (0.81, 1.24) 

for the second highest quartile and 0.99 (0.73, 1.34) for the highest quartile. For total choline, 

these hazard ratios were: 0.87 (0.72, 1.06), 1.00 (0.81, 1.24), and 0.96 (0.72, 1.29) for the 

second lowest quartile, for the second highest quartile and for the highest quartile, 

respectively. This indicates that the risk estimates remain practically unchanged when the 

exclusion criterias do not include participants with extreme caloric values. 

 

Limitations 

 

    As considered in the results chapters above, several limitations of the study must be noted. 

A potential weakness of this project is the accuracy of the short-version of the Willet FFQ as 

it pertains to the choline and betaine intake assessment. Not all high-content choline and 
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betaine food items are represented on the short version of the ARIC FFQ. Nevertheless, 

whereas it is true that current dietary habits may not necessarily represent historical dietary 

intake of choline, betaine and other micronutrients, an FFQ is the only feasible instrument to 

assess the habitual diet in large prospective studies (compared with other dietary assessment 

tools). 

    At present there is no reliable blood biomarker for the assessment of dietary intake of 

choline (Fischer, 2006). Although the biomarkers are preferable in estimating dietary 

intakes compared to dietary assessment instruments, the absence of such marker is less 

critical in this case since blood choline concentrations are slow to change in response to 

variation in dietary intake. Plasma methionine or plasma S-adenosyl-homocysteine could 

be more useful for future investigations of low dietary methyl-donor group compounds 

and clinical endpoints (Zeisel, 2006). 

    A potential limitation of this investigation is that the food frequency questionnaire used 

in ARIC tends to underestimate the absolute dietary intake for a particular nutrient, as is 

commonly the case for semi-quantitative dietary assessment tools. Nevertheless, the FFQ 

used in this study was designed to rank participants and it is likely that has properly 

discriminated individuals in the highest and lowest categories of intake which were the 

focus of these analyses. Another limitation of this investigation is the absence of 

supplemental B vitamin information including folate, which was queried only during 

subsequent examinations of the ARIC cohort. 

    A limitation for the second part of this project is the long time interval between dietary 

assessments in the ARIC study. The within-person variability, part of the “true” choline 
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intake error term, could be substantial. Nevertheless, the participants were middle aged 

individuals whose dietary habits are supposed to have a tendency toward constancy.  

 

Strengths 

 

    There are several advantages for our study. The highly standardized data collection 

procedure and dietary protocol increase the internal validity of the findings. Due to the 

nation-wide supplementation (in the late 1990’s) of some dietary items with folate, the 

study was able to avoid the interferences with folate compounds in dietary products such 

as flour, which by law are required to be enriched with folate. 

    This study is the first to determine the repeatability of dietary intake of choline and to 

assess the reliability of the dietary instrument as it pertains to choline compounds. Both 

the correlations between the two visits as well as the magnitude of error (variance 

components) in the dietary assessment were reported, which have an application for 

future studies. An algorithm was presented, in which several related nutrients were 

considered together and from which estimations for measurement error covariance 

between them were made. 

    In summary, this is the first study to assess the association between choline plus 

betaine intake and incident coronary occlusive events in a large prospective cohort with 

participants from two races and both genders with inclusion of post-menopausal women. 

As there are not nationally representative estimates of the intake of choline, this 

investigation of dietary intakes from four U.S. locales represents an innovative work. 
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Conclusions 

 

    In this study, choline (and choline plus betaine) intakes were not predictive of incident 

CHD in the ARIC cohort. Contrary to the expectation and regardless of the method or the 

covariates used, a higher intake of choline was not beneficial for an individual’s risk of 

incident CHD. A higher choline intake did not prove protective for incident CHD among 

those with a low folate intake. Folate, gender and menopausal status were not modifying 

the relationship between dietary intake of choline and incident CHD. For choline, and 

choline plus betaine, the relative low reliability was similar to those of folate and 

methionine, and in the same range as those reported for other micronutrients. In the 

estimation of these nutrients, adjustment for measurement variability (using, for example, 

a calibration method) should be used whenever possible. 

    Our findings offer additional information toward an understanding of the complex 

etiology of coronary occlusive events in relation to methyl-donor compounds. It appears 

that a high betaine’s methylation potential to alter the vascular cells (which could result 

in a change of the cell phenotype that promotes the development of atherogenesis) 

prevails over the benefic potential of lowering plasma homocysteine. Stated differently, it 

seems that a higher choline plus betaine intake has potentially adverse effects that offset 

its potential plasma homocysteine-lowering benefits. 

    Future investigations should account for the genotype differences in the folate 

metabolizing enzymes as well as for the homocysteine intermediate compounds present 

in plasma. From a public health perspective, as gender and menopausal status did not 

emerged as contributing elements in the assessment of the studied association, the new 
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population studies should concentrate on the association choline – incident CHD among 

population groups at higher risk such as children, pregnant women, etc. Because choline 

and betaine did not prove significant in reducing the risk of incident CHD, alternative 

approaches to reduce plasma homocysteine, such as increasing the conversion of 

homocysteine to cysteine in the liver, could be an option. 

    Our results should also provide information for the Estimated Average Requirement 

(EAR) calculation and the AI validation for choline. The majority of the ARIC 

participants were, in this investigation, below the AI. Nevertheless, the dietary 

assessment instrument used was a food frequency questionnaire, that it is known to 

underestimate the dietary intake for a specific nutrient. A salient aspect of this 

dissertation is the development of the ARIC choline and betaine database, an inovative 

work that could be used for future investigations. This study invites similar investigations 

using other populations and other atherosclerotic events, using genetic polymorphism 

profiling. Without doubt, future research in this area should depart from our findings. We 

addressed the hypothesized association in a large prospective cohort that includes both 

genders and two races, with a population sampled from four U.S. communities and an 

analysis that accounted for the potential confounding effect of a series of covariates. 
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APPENDIX 1. Large prospective studies of diet and disease using comprehensive food-
frequency questionnaires (adapted from Willett, 1998) 
 
Study Population Started Biologic specimens 
Israel IHD Study 
(Goldbourt et al., 1993) 

10,000 M٭ 
Israel 

1963 No 

Norwegian Health Study 
(Bjelke, 1974) 

17,000 M+F 
Norway 

1967 No 

Adventist Health Study 
(Fraser et al., 1991) 

40,000 M+F 
U.S. 

1976 No 

Nurses’ Health Study 
(Willett et al., 1992) 

90,000 F 
U.S. 

1980 33,000 blood 
68,000 nail 

Canadian Breast 
Screening Study (Howe 
et al., 1991) 

57,000 F 
Canada 

1982 No 

New York University 
Women’s Health Study 
(Toniolo et al., 1994) 

14,000 F 
U.S. 

1985 14,000 blood, repeated 
samples 

Health Professionals 
Follow-up Study (Rimm 
et al., 1993) 

52,000 M 
U.S. 

1986 18,000 

Iowa Women’s Health 
Study (Kushi et al., 1992) 

42,000 F 
U.S. 

1986 No 

Netherlands Cohort Study 
(Van den Brandt et al., 
1993) 

121,000 M+F 
Holland 

1986 No 

ARIC (ARIC 
Investigators, 1989) 

16,000 M+F, W+B 
U.S. 

1987 16,000 blood 

Honolulu Heart Program 
(Kagan, 1996) 

8,000 M 
U.S. (Japanese) 

1988 Blood 

Cardiovascular Health 
Study (Fried et al., 1991) 

5,880 M+F 
U.S. 

1989 5,800 blood 

Nurses’ Health Study II 
(Rich-Edwards et al., 
1994) 

95,000 F 
U.S., young nurses 

1991 ~30,000 blood + urine 

Women’s health Study 
(Buring and the  
Women’s Health Study 
Research Group, 1992) 

40,000 F 
U.S. 

1992 27,000 blood 

EPIC (Riboli and Kaaks, 
1997) 

440,000 M+F 
9 European countries 

1993 350,000 blood 

Women’s Health 
Initiative (Rossouw et al., 
1994) 

165,000 F 
U.S. 

1993 164,500 blood 
~10,000 urine 

Women’s Antioxidant 
Cardiovascular Study 
(Manson et al., 1995) 

8,000 F 1994 5,800 blood 

.M = Male; F = Female; W = Whites; B = African-Americans٭



APPENDIX 2. Prospective studies assessing the relationship between blood homocysteine and risk of incident coronary 
events with subjects without cardiovascular pathology at baseline (adapted from Guilland et al., 2003) 
 

Study 
year of publication 

Follow-up time Number of participants 
Cases / Controls 

Gender    Age Relative Risk
95% Confidence Interval 

Physician’s Health Study 
1992 

5     14,916
271/271 

M 40-84 3.4
(1.3-8.8) 

Tromso Study 
1995 

4  

     

  

     

  

  

     

  

     

  

     

     

21,826
123/492 

M + F 12-26 1.32 
(1.05-1.65) 

BUPA 
1998 

8.7 21,520
229/1,126 

M 35-64 2.9
(1.8-4.7) 

Framingham Study 
1999 

10 1,533
244 

M + F 70.7 1.52 
(1.16-1.98) 

The Women’s Health 
Study 
1999 

3 28,263
122/244 

F menopausal 2.2
(1.2-4.0) 

Jerusalem Study 
1999 

9-11 1,788
405 

M + F >50 1.81 
(1.19-2.76) 

Finnish Study 
1994 

9 7,424
149/149 

M + F 40-64 1.06 
(0.64-1.77) 

MRFIT Study 
1997 

>11 12,866
93/186 

M 35-57 0.8
(0.55-1.54) 

ARIC Study 
1998 

3.3 15,792
232/395 

M + F adults 1.28 
(0.5-3.2) 

Caerphilly Study 
1998 

5 2,290
154 

M 50-64 1.4
(0.8-2.3) 

Rotterdam Study 
1999 

2.7 7,983
120/533 

M + F >60 2.1 
(0.88-5.03) 

British Regional Heart 
Study 
1999 

12.8 5,661
386/454 

M 40-59 1.45
(0.88-2.38) 

Kuopio Ischemic Heart 
Disease Study 
2000 

>8 2,005
163/163 

M 42-60 0.88
(0.44-1.76) 
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Legend: M = Males; F = Females

 



 

APPENDIX 3. Meta-analysis using case-control (nested in observational prospective studies) to assess the relationship 
blood homocysteine – incident CHD (adapted from Ueland et al., 2000) 
 

Reference 
year of publication 

Study Cases / Controls Gender Age Relative Risk 
95% Confidence Interval 

Alfthan et al. 
1992 

Finnish 191/269 M + F 40-64 1.03 
(0.66-1.53) 

Arnesen et al. 
1995 

Tromso 122/478 M + F 34-61 1.41 
(1.06-1.88) 

A’Brook et al. 
1998 

Scottish 335/335 M + F 35-64 1.50 
(1.28-1.78) 

Bostom et al. 
1999 

Framingham 244/1933 M + F 59-91 1.42 
(1.13-1.77) 

Bots et al. 
1999 

Rotterdam 104/533 M + F >55 1.28 
(1.05-1.76) 

Evans et al. 
1997 

MRFIT 227/414 M + F 35-57 0.98 
(0.83-1.15) 

Folsom et al. 
1998 

ARIC 232/537 M + F 45-64 1.15 
(0.68-1.92) 

Kark et al. 
1999 

Jerusalem     

     

     

     

    

    

135/1788 F >50 1.34
(1.05-1.62) 

Ridker et al. 
1999 

Women’s Health Study 85/170 M postmenopausal 1.74 
(1.13-2.64) 

Stampfer et al. 
1992 

Physician’s Health Study 271/271 M 40-84 1.29 
(1.01-1.64) 

Stehouwer et al. 
1998 

Zutphen 98/780 M 64-84 1.05
(0.97-1.15) 

Ubbink et al. 
1998 

Caerphilly 154/2136 M 50-64 1.22
(0.88-1.64) 

Wald et al. 
1998 

BUPA 229/1126 M 35-64 1.41
(1.20-1.65) 

Whincup et al. 
1999 

British Regional Hearth 
Study 

359/414 M 40-59 1.13
(0.99-1.29) 

pooled OR 1.20 
(1.14-1.25) 

Legend: M = Males; F = Females 
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APPENDIX 4. ARIC retention rates, by race, gender and site, for the two visits where 
dietary data were collected in all participants. 
 
 Visit 1 Visit 3 Re-examination rate 

(%) 
All 15,792 12,887 81.6 
Race    
African-Americans 4,266 2,997 70.2 
Whites 11,478 9,852 85.8 
Gender    
Females 8,710 7,170 82.3 
Males 7,082 5,717 80.7 
ARIC Site    
Forsyth County 4,035 3,340 86.9 
Jackson 3,728 2,662 76.6 
Minnesota 4,009 3,497 90.7 
Washington County 4,020 3,694 93.9 
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APPENDIX 5. Food items assessed in the ARIC cohort. 
 
Food Group Food Item 
Dairy Skim milk, whole milk, yogurt, ice cream, cottage 

cheese, other cheeses, margarine and butter; 
Fruits Apples, pears, oranges, apricots, plums, peaches, 

orange or grapefruit juice, bananas, canned fruits; 
Vegetables Beans (string or green), broccoli, cabbage, 

cauliflower, Brussels sprouts, carrots, corn, spinach, 
collards, peas or lima beans, dark yellow, winter 
squash, sweet potatoes, beans or lentils, dried, 
cooked or canned beans, tomatoes or tomato juice; 

Meats Chicken or turkey (with and without skin), 
hamburgers, hot dogs, processed meats (sausage, 
salami, bologna), bacon, beef, pork or lamb, canned 
tuna fish, dark meat fish (salmon, mackerel, 
swordfish, sardines, bluefish), other fish (cod, 
perch, catfish) shrimp, lobster, scallops, eggs: 

Sweets, baked goods and cereals Chocolate bars or pieces, candy without chocolate, 
pie (homemade or ready-made), donut, biscuits or 
cornbread, Danish pastry, sweet roll, coffee cake, 
croissant, cake or brownie, cookies, cold breakfast 
cereal, cooked cereals such as oatmeal, grits, cream 
of wheat, white bread, dark or whole grain bread; 

Miscellaneous Peanut butter, potato chips or corn chips, French 
fried potatoes, nuts, potatoes (mashed or baked), 
rice, spaghetti, noodles or other pasta, home-fried 
food (such as any meats, poultry, fish, shrimps, 
eggs, vegetables), food fried away from home, such 
as any fish, chicken, chicken nuggets 

Beverages Coffee, tea, low calorie soft drinks, regular soft 
drinks, fruit-flavored punch or non-carbonated 
beverages 

Other dietary items Liver, tortillas, prunes, avocado, fat used for frying 
and sautéing foods at home, fat used for baking, 
cold breakfast cereal, sugar, salt, catsup, hot sauce, 
soy or steak sauces 
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APPENDIX 6. Choline and betaine contents of selected common foods. 
 
Food Item Total Choline 

concentration 
(mg /100 g food) 

Betaine 
(mg/100 g food) 

Dairy and eggs   
2% Milk 16.4 0.9 
Eggs 251 0.6 
Sour creem 19.1 0.6 
Butter with salt 18.8 0.3 
Cream cheese 27.3 0.7 
Chicken   
Roasted w/ skin 65.9 5.6 
Roasted, no skin 78.7 5.7 
Chicken liver 290.1 12.8 
Soups, sauces and gravies   
Chicken noodle soup 11.3 11.9 
Sausages   
Chicken hot dogs 51.3 5.1 
Pork sausage, fresh, 
cooked 

66.8 3.6 

Breakfast cereals   
Wheat germ, toasted 152.1 1396.1 
Plain oats 7.3 3.1 
Fruits and fruit products   
Apples 3.4 0.1 
Bananas 9.7 0.1 
Grapefruit 7.6 0.1 
Grapes 5.6 0.1 
Oranges 8.4 0.1 
Peaches, raw 6.1 0.3 
Peaches, canned 3.8 0.3 
Orange juice 6.1 0.2 
Apple juice 1.8 0.1 
Caned pears 
Raspberry, raw 

1.9 
12.3 

0.3 
0.8 

Pork products   
Bacon, cooked 
Fresh, cooked 

119.3 
64.3 

3.4 
2.6 

Vegetables and vegetable 
products 
Beets, canned 
Beets, raw 

 
 
9.0 
6.0 

 
 
177.1 
128.7 

Broccoli, cooked 40.1 0.1 
Carrots 8.7 0.4 
Onions 
Spinach, frozen 
Nut and seed products 
Nuts w/ salt 
Beef products 
Beef, 70% lean 

6.2 
27.5 
 
 
61 
 
77.3 

0.1 
808.6 
 
 
11.2 
 
12.8 

Beverages   
White wine 4.8 0.2 
Coffee 2.6 0.1 
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Coca Cola 0.3 0.1 
Finfish and shellfish 
Fish sticks, raw 

 
37.8 

 
62.1 

Salmon 65.4 2.1 
Legumes and legume 
products 

  

Peanuts 52.5 0.6 
Peanut butter 
Soy sauce 
Lamb, veal and game 
Veal 

60.7 
33.0 
 
 
411.0 

0.9 
39.6 
 
 
8.1 

Baked products   
Wheat bread 18.6 85.2 
White bread 
Crackers, cheese 
English muffins 

14.7 
27.5 
19.9 

101.9 
244.1 
118.0 

Sugar and sweets   
Ice cream, vanilla 26.0 1.1 
Cereal grains, pastas and 
snacks 
Spaghetti, dry 
Wheat bran 

 
 
15.1 
74.5 

 
 
460.0 
1506.8 

Fast food   
Cheese pizza 14.0 25.9 
Snacks   
Pretzels, hard, salted 36.7 295.1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



APPENDIX 7. Baseline characteristics of ARIC participants by quartiles of dietary choline and betaine 
 
 Dietary choline Dietary betaine 
 1st quartile 2nd quartile 3rd quartile 4th quartile 1st quartile 2nd quartile 3rd quartile 4th quartile 
 < 215 mg/d 215-284 284-367 > 367 < 68 68-94 94-132 > 132 
N         3970 3968 3906 3948 3940 3912 3984 3956
Age 
 

54.0        54.3 54.2 54.1 54 54.3 54.1 54.3

Male gender 
(%) 

37        42 46 55 38 42 46 55

African-
American (%) 

31        26 26 25 30 27 27 24.4

Current 
smoker (%) 

26        26 25 30 28 26 26 27

Syst. BP (mm 
Hg) 

121        121 121 123 121 121 122 122

BMI (kg/m2) 
 

27.2        27.6 27.8 28.0 27.8 27.5 27.8 27.9

Diabetes (%) 
 

9        9 10 12 10 10 10 10

Sport index 
score 

2.4        2.4 2.4 2.5 2.4 2.4 2.4 2.5

Less than high-
school 
education (%) 

26        23 22 24 25 22 24 24

Premenopausal 
status (%) 

18        19 21 17 19 18 20 19

LDL 
cholesterol 

138        138 138 137 139 138 137 137

Prevalent CHD 
(%) 

4.8        5.0 4.5 5.6 3.9 4.9 4.9 5.6

Nutrient intake         
Total calories 
(kcal/d) 

1049        1401 1716 2366 1133 1455 1726 2213

Alcohol (g/d) 
 

5.3        5.9 6.1 7.03 6.5 5.8 5.95 6.1

Cholesterol 
(mg/d) 

135        226 252 358 188 233 268 317

Folate         158 205 244 308 161 207 247 299
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Vit. B6 (mg/d) 
 

1.1        1.5 1.8 2.4 1.3 1.6 1.8 2.2

Vit. B12 
(microg/d) 

4.7        6.5 8.2 11.2 5.9 7.3 8.2 9.2

Methionine 
(g/d) 

1.0        1.4 1.8 2.5 1.2 1.6 1.8 2.2

Choline (mg/d) 
 

167        250 323 476 216 279 322 397

Betaine (mg/d) 
 

72        95 112 144 51 81 111 179

         
Waist to hip 
ratio 

0.9        0.9 0.9 0.9 0.9 0.9 0.9 0.9

Current 
drinkers (%) 

54        57 60 52 56.5 56 55 55.5

vWF 
 

118        118 118 119 119 118 119 119

Vit. B2 (mg/d) 
 

1.1        1.4 1.5 2.1 1.0 1.4 1.6 2.1

Hormone use 
(%) 

13        14 14 13 13 14 13 13

Cigarette years 
of smoking 

290        315 312 360 307 308 323 352
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	The ARIC Study (ARIC Investigators, 1989) is a multicenter p

