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Abstract

JAEUN CHOI: Statistical Methods for Joint Analysis of Survival Time
and Longitudinal Data.

(Under the direction of Dr. Jianwen Cai and Dr. Donglin Zeng.)

In biomedical studies, researchers are often interested in the relationship between

patients’ characteristics or risk factors and both longitudinal outcomes such as quality

of life measured over time and survival time. However, despite the progress in the joint

analysis for longitudinal data and survival time, investigation on modeling approach

to find which factor or treatment can simultaneously improve the patient’s quality of

life and reduce the risk of death has been limited. In this dissertation, we investigate

joint modeling of longitudinal outcomes and survival time. We consider the generalized

linear mixed models for the longitudinal outcomes to incorporate both continuous and

categorical data and the stratified multiplicative proportional hazards model for the

survival data. We study both Gaussian process and distribution free approaches for

the random effect characterizing the joint process of longitudinal data and survival

time.

We consider three estimation approaches in this dissertation. First, we consider the

maximum likelihood approach with Gaussian process for random effects. The random

effects, which are introduced into the simultaneous models to account for dependence

between longitudinal outcomes and survival time due to unobserved factors, are as-

sumed to follow a multivariate Gaussian process. The full likelihood, obtained by

integrating the complete data likelihood over the random effects, is used for estima-

tion. The Expectation-Maximization (EM) algorithm is used to compute the point

iii



estimates for the model parameters, and the observed information matrix is adopted

to estimate their asymptotic variances. Second, the normality assumption of random

effects in the likelihood approach is relaxed. Assuming the underlying distribution of

random effects to be unknown, we propose using a mixture of Gaussian distributions

as an approximation in estimation. Weights of the mixture components are estimated

with model parameters using the EM algorithm, and the observed information matrix

is used for estimation of the asymptotic variances of the proposed estimators. For

the two maximum likelihood approaches with and without normality assumption of

random effects, asymptotic properties of the proposed estimators are investigated and

their finite sample properties are assessed via simulation studies. Third, we consider

a penalized likelihood approach. This approach is expected to be computationally less

intensive than the maximum likelihood approach. It gives a penalty for regarding the

random effect as a fixed effect in the likelihood and avoids the need to integrate the

likelihood over random effects. The penalized likelihood is obtained through Laplace

approximation. We compare the numerical performances of the penalized likelihood

method and the EM algorithm used in maximum likelihood estimation for the simul-

taneous models with Gaussian process for random effects via simulation studies. All

the proposed methods in this dissertation are illustrated with the real data from the

Carolina Head and Neck Cancer Study (CHANCE).
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Chapter 1

INTRODUCTION

The models for jointly analyzing the longitudinal data and survival time have been

intensively developed in recent literature. Most models in such analysis would answer

the questions regarding how one’s quality of life affects time to death or given one’s

death time how quality of life changes over time. In many biomedical studies, it is of

interest to assess the simultaneous effect of treatment or other factors on both patients’

quality of life and risk of death taking into account the dependence between quality of

life and survival time within a patient. To answer such questions, we consider the simul-

taneous modeling of longitudinal outcomes and survival time. In this dissertation, we

propose two different maximum likelihood approaches with Gaussian process and with-

out distributional assumption for the random effect. In addition, we consider penalized

likelihood approach and compare its numerical performance with EM algorithm used

in maximum likelihood estimation for the simultaneous models with Gaussian process

for the random effect.



1.1 Joint Analysis for Survival Time and Longitudinal Cate-

gorical Measurements of Quality of Life in Head and Neck

Cancer Patients

Patient survival and Quality of Life (QoL) are often recognized as two major outcome

variables in the evaluation of head and neck cancer treatment in oncology community.

QoL is important because it reflects the patients’ critical physical, psycho–social, and

emotional functions and it impacts communication with their caregivers. For the Car-

olina Head and Neck Cancer Study (CHANCE), we consider a joint analysis of survival

time and longitudinal categorical QoL outcomes to find important variables for pre-

dicting both patients’ QoL and risk of death. We first propose the maximum likelihood

approach to simultaneously model the survival time with a stratified Cox proportional

hazards model and longitudinal categorical outcomes with a generalized linear mixed

model through random effects with normality assumption. Random effects, which are

introduced into the simultaneous models to account for dependence between longitu-

dinal outcomes and survival time due to unobserved factors, are assumed to follow a

multivariate Gaussian process so that we can use the full likelihood for estimation by

integrating the complete data likelihood over the random effects. EM algorithm is used

to derive the point estimates for the model parameters, and the observed information

matrix is adopted to estimate their asymptotic variances. The asymptotic properties

of the proposed estimators are investigated and their finite sample properties are as-

sessed via simulation studies. We illustrate the proposed approach with the real data

of longitudinal Head and Neck Cancer Specific symptoms (HNCS) QoL and survival

time from the CHANCE study.
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1.2 Joint Modeling of Survival Time and Longitudinal Out-

comes with Flexible Random Effects

In addition to the maximum likelihood approach with Gaussian process for random

effects, we investigate a different method without any distributional assumption for

random effects. Gaussian distribution is a convenient distribution often used for the

random effects characterizing the joint process of longitudinal outcomes and survival

time, and the likelihood approach relies heavily on the such normality assumption.

However, this assumption may not be satisfied and the results could be misleading if

the assumption is violated. These concerns motivate us to seek more robust estimation

method which is not sensitive to the distributional assumption of random effects. There-

fore, we relax the normality assumption of random effects by assuming the underlying

distribution to be unknown. We propose to use a mixture of Gaussian distributions as

an approximation in the estimation. Weights of the mixture components are estimated

with model parameters using the EM algorithm, and the observed information matrix

is used for the estimation of the asymptotic variances of the proposed estimators. The

asymptotic properties of the proposed estimators are investigated and the method is

demonstrated to perform well in finite samples via simulation studies. We also con-

duct simulation studies to examine the robustness of the mixture distribution. AIC

and BIC criteria are adopted for selecting the number of mixtures, and the selection

procedures are assessed through simulation studies. The proposed method is applied

to the CHANCE study aforementioned.
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1.3 Penalized Likelihood Approach for Joint Analysis of Sur-

vival Time and Longitudinal Outcomes

We compare the numerical performances of the EM algorithm used in the maximum

likelihood estimation with Gaussian process for random effect and another estimation

method using the penalized likelihood. The penalized likelihood is expected to have

less burden on computation because it treats the random effect as the fixed effect in

the likelihood and penalized it. Consequently, no calculation is needed to integrate

the likelihood over random effects. In SAS GLIMMIX procedure, penalized quasi-

likelihood imposing the penalty in quasi-likelihood is already built and used for the

analysis of the generalized linear mixed model. Accordingly, it is worthwhile to com-

pare the numerical performances of the EM algorithm and the penalized likelihood

method in maximum likelihood estimation. If the EM algorithm performs similarly to

the penalized likelihood method on computational time, it will be better to maximize

the full likelihood rather than the penalized likelihood. In the meantime, if the penal-

ized likelihood method takes less time and provides unbiased and consistent estimates

similar to those from EM algorithm, the penalized likelihood method will be preferred.

We present the penalized likelihood obtained through Laplace approximation for our

joint models and conduct simulation studies for performance comparison of penalized

likelihood and EM algorithm. We also illustrate this comparison through the data

analysis of the CHANCE study.
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Chapter 2

LITERATURE REVIEW

In this section, we review the statistical literature for : 1) failure time models, 2)

longitudinal data models and methods, 3) joint models of failure time and longitudinal

data, and 4) penalized quasi-likelihood approach. The organization of the rest of this

section is as following. We review literature on statistical methods for Cox proportional

hazard models of univariate failure time and frailty models of correlated failure times

in section 2.1, and, for generalized linear models with random effects and parameter

estimation of longitudinal data in section 2.2. In section 2.3, we review the literature

on statistical methods for joint models of failure time and longitudinal data. Lastly,

we review penalized quasi-likelihood approach for generalized linear mixed model and

bias correction for the estimator in section 2.4.

2.1 Failure Time Models

Failure time analysis or survival analysis addresses data of the form ‘time until an event

occurs.’ The approaches were primarily developed in the medical and biological sci-

ences, but are also broadly used in the social and economic sciences and engineering. A

research question arising frequently in these areas is to determine whether or not certain

variables are associated with the failure or survival times. There are two major reasons



why this problem cannot be handled via straightforward regression approaches: First,

the dependent variable of interest (failure/survival time) is most likely not normally

distributed, which is a serious violation of an assumption for ordinary least squares

multiple regression. Survival times usually follow a skewed distribution. Second, there

is the problem of censoring, that is, some observations will be incomplete.

We summarize the Cox proportional hazard model for the univariate failure time,

which is not based on any assumptions concerning the nature or shape of the underlying

survival distribution, in section 2.1.1, and the frailty model for the correlated failure

time, which formulates the nature of dependence explicitly, as an extension of the Cox

model in section 2.1.2.

2.1.1 Univariate failure time model

The Cox proportional hazards model (Cox, 1972) has been the most widely used pro-

cedure to study the effects of covariates on a failure time. The Cox model assumes that

the hazard function for the failure time T associated with a covariate vector Z is given

by

λ(t∣Z) = λ0(t) exp{βT0Z(t)}, t ≥ 0 (2.1)

where λ0(t) is an unspecified baseline hazard function and β0 is a p×1 vector of unknown

regression parameters. The model (2.1) is semi-parametric in that the effect of the

covariates on the hazard is explicitly specified while the form of the baseline hazard

function is unspecified. The model (2.1) assumes that hazard ratios are proportional

across groups or subpopulations over time, and the regression coefficient β0 represents

the log hazard ratio for one unit increase in the corresponding covariate given that the

other covariates in the model are held at the same value.

Let C denote the potential censoring time and X = min(T,C) denote the observed

time. Let N(t) denote the counting process, Y (t) = I(X ≤ t) be an ‘at-risk’ indicator

6



process and ∆ = I(T ≤ C) be an indicator for failure, where I(.) is an indicator

function. The failure time is assumed to be subject to independent right censorship.

Let (Ti,Ci,Zi)(i = 1, . . . , n) be n independent replicates of (T,C,Z) and τ denote the

study end time.

The regression parameter β0 in (2.1) can be estimated by applying standard asymp-

totic likelihood procedure to the ‘partial’ likelihood function, introduced by Cox (1975),

L(β) =
n

∏
i=1

[ exp{βTZi(Ti)}
∑n
l=1 Yl(Ti) exp{βTZ l(Ti)}

]
∆i

,

where Zi(Ti) is the covariate vector for the subject failing at Ti, and Z l(Ti) is the

corresponding covariate vector for the l-th member who is at risk at Ti. The estimator

for β0, denoted by β̂, is obtained by the partial likelihood score function

U(β) =
n

∑
i=1

∆i {Zi(Xi) −
S(1)(β,Xi)
S(0)(β,Xi)

} ,

where S(0)(β, t) = n−1∑n
i=1 Yi(t) exp{β′Zi(t)}, S(1)(β, t) = n−1∑n

i=1 Yi(t) exp{β′Zi(t)}

Zi(t). The maximum partial likelihood estimator β̂, defined as the solution to the

unbiased score equation U(β) = 0, has been shown to be approximately normal in large

samples with mean β0 and with a covariance matrix that can be consistently estimated

by −{∂U (β)

∂β
∣
β=

ˆβ
}
−1

(Andersen & Gill, 1982; Tsiatis, 1981). Iterative procedures, such

as Newton-Raphson method and EM algorithm, are commonly used to solve the score

equation.

Cox proportional hazards model has been extended from analyzing univariate failure

time data to multivariate failure time data. Andersen & Gill (1982) and Fleming &

Harrington (1991) extended Cox model in the expression of counting process which is

more general and includes recurrent failures. Wei, Lin & Weissfeld (1989) and Hougaard

(2000) extended Cox model to model multivariate failure times. As another extension

7



from Cox model, Clayton & Cuzick (1985) and Hougaard (2000) proposed frailty model

for clustered failure data in which subjects may or may not experience the same type

of event but they may be correlated because subjects are from the same cluster. In

the frailty model, Cox proportional hazards model is used to model each individual’s

hazard function, and then an unobserved cluster-specific frailty is introduced into each

model to account for within-cluster correlation. This frailty model is reviewed in the

next section 2.1.2.

2.1.2 Correlated failure time model

The Cox model (2.1) in the previous section 2.1.1 assumes the independent failure times.

In many biomedical studies, however, the independence between failure times might be

violated, which may arise because study subjects may be grouped in a manner that leads

to dependencies within groups, or because individuals may experience multiple events.

For such data, there are two main approaches: the marginal model approach which

leaves the nature of dependence among related failure times completely unspecified

and the frailty model approach which formulate the nature of dependence explicitly.

When the interest resides in estimating the effect of risk factors and the correlation

among the failure times are considered as a nuisance, the marginal model approach

suits this purpose very well. However, in some settings, one might be interested in the

strength and nature of dependencies among the failure time components, for which the

frailty models have been proposed and studied by many authors. We focus on frailty

model in this section.

The frailty model explicitly formulates the nature of the underlying dependence

structure through an unobservable random variable. This unknown factor is usually

called individual heterogeneity or frailty. The key assumption is that the failure times

are conditionally independent given the value of the frailty. To illustrate this idea,

8



consider a Cox proportional hazards model for subject i with respect to the kth event :

λik(t∣wi) = wiλ0(t) exp{βT0 zik(t)} (2.2)

where the frailty terms {wi}, i = 1, . . . , n are assumed to be independent and to arise

from a common parametric density. The commonly used one is the gamma distribution,

mostly for mathematical convenience. Various choices are possible for this density,

which include the positive stable distributions, the inverse Gaussian distributions and

the log-normal distributions. Note that β0 in (2.2) generally needs to be interpreted

conditionally on the unobserved frailty. The frailty model approach is particularly

sensible, when the strength of the dependence of failure times is of interest.

The parameter estimates are obtained through the EM algorithm, making use of

the partial likelihood expression in the maximization step as shown in Klein (1992).

An alternative approach is to use a penalized partial likelihood for the estimation of

the shared frailty (Therneau & Grambsch, 2001).

Troxel & Esserman (2004) proposed a novel application of frailty models to assess

the correlation between survival and quality of life in oncology. A frailty parameter is

a random effect that allows the variability among clusters of measurements to be incor-

porated into survival models. The collected quality of life outcomes are dichotomized

in order to apply the multivariate survival methods. In spite of the necessity of the

conversion, the discretization of the quality of life scores from a continuous to a failure-

time structure leads to the loss of information available from continuous quality of life

data.

Ratcliffe, Guo, & TenHave (2004) proposed a joint model for the analysis of lon-

gitudinal and survival data in the presence of data clustering via a common frailty.

While the existing models include subject-level random effects as the only random ef-

fects, two levels of nested random effects (subject-level random effects and cluster-level
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frailty, with subjects nested within clusters) are used in the model with the responses

linked at the higher cluster level. This additional level of random effects makes the

model more flexible. They used a mixed effects model for the repeated measures that

incorporates both subject- and cluster-level random effects, with subjects nested within

clusters. A Cox frailty model is used for the survival model as it allows for between-

cluster heterogeneity. Then they link the two responses via the common cluster-level

random effects, or frailties, using a multivariate normal assumption for computation

ease (Li & Lin, 2000). More joint models of survival and longitudinal data are reviewed

using different models in section 2.3.

2.2 Longitudinal Data Models and Methods

The defining feature of a longitudinal study is that individuals are measured repeatedly

through time. Longitudinal data require special statistical methods because the set of

observations on one subject tends to be intercorrelated. This correlation must be taken

into account to draw valid scientific inferences.

There are a variety of qualitatively different sources of random variation that might

actually occur in practice and be included to construct the model for longitudinal data.

The linear random effects model described in section 2.2.1 is one of three extensions of

generalized linear models for longitudinal data: marginal, random effects, and transition

models. The random effects model is most useful when the objective is to make inference

about individuals rather than the population average. The parameter estimation in

the generalized linear model with random effects can be carried out by both maximum

likelihood and conditional likelihood approaches summarized in section 2.2.2.
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2.2.1 Generalized linear model with random effects

The linear random effects model is applied where the response is assumed to be a

linear function of explanatory variables with regression coefficients that vary from one

individual to the next. This variability reflects natural heterogeneity due to unmeasured

factors, which can be represented by a probability distribution. Correlation among

observations for one person arises from their sharing unobservable variables, Ui.

The random effects GLM has the following general specifications:

1. Given the random effects U i, the responses Yi1, . . . , Yini are mutually independent

and follows a distribution from the exponential family with density

f(yij ∣U i;β) = exp[{(yijθij − ψ(θij))}/φ + c(yij, φ)]. (2.3)

The conditional moments, µij = E(Yij ∣U i) = ψ′(θij) and vij = Var(Yij ∣U i) = ψ′′(θij)φ,

satisfy h(µij) = xTβ + dTijU i and vij = v(µij)φ where h and v are known link and

variance functions, respectively, and xij and dij are covariate vectors of length p and

q, respectively. dij is a subset of xij.

2. The random effects, U i, i = 1, . . . ,m, are mutually independent and identically

distributed with density function f(U i;G).

Another fundamental assumption of the random effects model is that the U i are

independent of the explanatory variables. A model of this type is sometimes referred

to as a “latent variable” model (Bartholomew, 1987).

2.2.2 Maximum likelihood and conditional likelihood methods

Let U = (U1, ..., Um). In maximum likelihood approach, U is treated as a set of unob-

served variables which is integrated out of the likelihood, adopting the assumption that

the random effects follow a distribution such as Gaussian model with mean zero and
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variance matrix G. In conditional likelihood approach, the random effects is treated

as if they were fixed parameters to be removed from the problem, so that we need not

rely on the second assumption in the previous section 2.2.1.

Maximum likelihood approach treats U i as a sample of independent unobservable

variables from a random effects distribution. Then, the likelihood function for the

unknown parameter δ, which is defined to include both β and the elements of G, is

L(δ;y) =
m

∏
i=1
∫

ni

∏
j=1

f(yij ∣U i;β)f(U i;G)dU i, (2.4)

which is the marginal distribution of Y obtained by integrating the joint distribution

of Y and U with respect to U . In some special case such as the Gaussian linear model,

the integral in (2.4) has a closed form, but for most non-Gaussian models, numerical

methods are required for its evaluation.

To find the maximum likelihood estimate, we solve the score equations obtained

by setting to zero the derivative with respect to δ of the log likelihood. Considering

the ‘complete’ data for an individual to comprise (yi,U i) and restricting attention to

canonical link functions (McCullagh & Nelder, 1989) for which θij = h(µij) = xTijβ +

dTijU i, then the ‘complete data’ score function for β has a particularly simple form

Sβ(δ∣y,U) =
m

∑
i=1

ni

∑
j=1

xij{yij − µij(U i)} = 0, (2.5)

where µij(U i) = E(yij ∣U i) = h−1(xTijβ + dTijU i). The observed data score functions

Sβ(δ∣y) are defined as the expectations of the complete data score functions Sβ(δ∣y,U)

in (2.5) with respect to the conditional distribution of U given y. This gives,

Sβ(δ∣y) =
m

∑
i=1

ni

∑
j=1

xij[yij −E{µij(U i)∣yi}] = 0. (2.6)
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The score equations for G can similarly be obtained as

SG(δ∣y) =
1

2
G−1{

m

∑
i=1

E(U iU
T
i ∣yi)}G−1 − m

2
G−1 = 0. (2.7)

A common strategy to solve for the maximum likelihood estimate of δ is to use the

EM algorithm (Dempster et al., 1977). This algorithm iterates between an E-step,

which involves evaluating the expectations in the above score equations (2.6) and (2.7)

using the current values of the parameters, and an M-step, in which we solve the

score equations to give updated parameter estimates. The dimension of the integration

involved in the conditional expectation is q, the dimension of U i. When q is one or two,

numerical integration techniques can be implemented reasonably easily. (e.g. Crouch &

Spiegelman, 1990) For higher dimensional problems, Monte Carlo integration methods

can be used. (e.g. the application of Gibbs sampling in Zeger & Karim, 1991)

Gaussian distribution is a convenient model used most for the random effects. When

the regression coefficients are of primary interest, the specific form of the random effects

distribution is less important. However, when the random effects are themselves the fo-

cus, inferences are more dependent on the assumptions about their distribution. Lange

& Ryan (1989) suggested a graphical way to test the Gaussian assumption when the

response variables are continuous. When the response variables are discrete, the same

task becomes more difficult. Davidian & Gallant (1992) developed a non-parametric

approach to estimate the random effects distribution with non-linear models.

In conditional likelihood approach for the generalized linear models with random

effects (Diggle et al., 1994; McCullagh & Nelder, 1989), the main idea is to treat the

random effects U i as a set of nuisance parameters to be removed, and to estimate β

using the conditional likelihood of the data given the sufficient statistics for the U i.
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Treating U as fixed, the likelihood function for β and U is

L(β,U ;y) =
m

∏
i=1

ni

∏
j=1

f(yij ∣β,U i) ∝
m

∏
i=1

ni

∏
j=1

exp{θijyij − ψ(θij)}, (2.8)

where θij = θij(β,U). Restrict attention to canonical link functions (McCullagh &

Nelder, 1989) for which θij = xTijβ + d
T
ijU i, the likelihood in (2.8) can be written as

L(β,U ;y) = exp{βT∑
i,j

xijyij +∑
i

UT
i ∑

j

dijyij −∑
i,j

ψ(θij)}.

Hence, the sufficient statistics for β and U i are ∑i,j xijyij and ∑i,j dijyij respectively,

and ∑i,j dijyij is sufficient for U i for fixed β.

The conditional likelihood is proportional to the conditional distribution of the data

given the sufficient statistics for the U i, and the contribution from subject i has the

form

f(yi∣∑
j

dijyij = bi;β) = f(yi;β,U i)
f(∑j dijyij = bi;β,U i)

=
f(∑j xijyij = ai,∑j dijyij = bi;β,U i)

f(∑j dijyij = bi;β,U i)
. (2.9)

For a discrete generalized linear model, this expression (2.9) can be written as

P(yi∣∑
j

dijyij = bi;β) = ∑Ri1 exp(βTai +UT
i bi)

∑Ri2 exp(βT ∑j xijyij +UT
i bi)

,

where Ri1 is the set of possible values for yi such that ∑j xijyij = ai and ∑j dijyij = bi,

and Ri2 is the set of values for yi such that ∑j dijyij = bi. The conditional likelihood

for β given the data for all m individuals simplifies to

L(β∣y,∑
j

dijyij = bi) =
m

∏
i=1

∑Ri1 exp(βTai)
∑Ri2 exp(βT ∑ni

j=1xijyij)
. (2.10)
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For simple cases such as the random intercept model, the conditional likelihood is

reasonably easy to maximize (Breslow and Day, 1980). By the analogy with the usual

score equations derived from the full likelihood, the score equations obtained from

the conditional likelihood (2.10) can be used to get maximum conditional likelihood

estimator for β.

The random effects generalized linear models in biostatistics have been studied

enormously including the following literatures providing useful additional references:

Laird & Ware (1982); Stiratelli et al.(1984); Gilmour et al.(1985); Schall (1990); Zeger

& Karim (1991); Waclawiw & Liang (1993); Solomon & Cox (1992); Breslow & Clayton

(1993); Drum & McCullagh (1993); Breslow & Lin (1995) and Lin & Breslow (1996).

2.3 Joint Models of Failure Time and Longitudinal Data

Joint analysis of survival time and repeated measurements has been intensively studied

in recent literature. The most models which have been used in such analysis can be

categorized into a selection model or a pattern mixture model. The selection model

would answer the question regarding how one’s quality of life affects death and the

pattern-mixtrure model would describe the pattern of quality of life given one’s death

time. However, research interest is also often in finding which factor or treatment can

simultaneously improve the patients’ quality of life and reduce the risk of death, which

can be studied by the simultaneous analysis of quality of life and survival.

Let Y denote the longitudinal outcomes, for example, quality of life, then Y are

realizations of a latent process Ỹ measured with errors. Let T denote survival time.

A selection model focuses on estimating the distribution of T given Ỹ . Such a

selection model has been studied by many authors: Tsiatis et al.(1995), Wulfsohn and

Tsiatis (1997), Hu et al.(1998), Huang et al.(2001), and Xu and Zeger (2001a, b).

Usually, Ỹ is modeled as a function of observed covariates and subject-specific random
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effects; then it is fed into the model of T given Ỹ as a linear predictor. Selection model

is reviewed in section 2.3.1.

In the pattern mixture model, a model is assumed for longitudinal outcome Y

conditional on survival time T (Wu and Carroll, 1988; Wu and Bailey, 1989; Hogan and

Laird, 1997) and interest focuses on estimating parameters in the model for longitudinal

outcome.

Simultaneous modeling serves the purpose to model both the process for quality

of life, Y , and survival time, T , given observed covariates X. Zeng & Cai (2005)

proposed such a model of quality of life Y following normal distribution and survival

time T by the observed covariates X and by unobserved factors with normal density.

This approach is reviewed in section 2.3.2. It is noted that this approach is different

from either selection model or pattern-mixture model, although mathematically, all

three models can be regarded as different ways of writing the distribution of (T , Y )

given covariates.

2.3.1 Failure time model with longitudinal covariates

Many longitudinal studies collect information on each participant both on a time-to-

event and covariates which may vary with time. Recent interest has focused on joint

models for longitudinal covariate data and a survival endpoint. A popular approach

assumes that the longitudinal data follow a linear mixed effects model (Laird & Ware,

1982) and that survival depends on the covariate through a proportional hazards re-

lationship with the underlying random effects. To implement the Cox model with

time-dependent covariates, complete knowledge of the true covariate history for each

subject is required; however, time-dependent covariates are generally measured inter-

mittently, often at different times for each subject and with error. A naive approach is

to substitute for each subject at each failure time in the Cox partial likelihood (Cox,
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1975) the closest observed covariate value prior to that time, often termed ‘last value

carried forward’. It is well known (Prentice, 1982) that substituting mis-measured val-

ues for true covaiates in the Cox model leads to biased estimation. Another strategy

for estimation of the proportional hazard regression parameters is a two-stage approach

(Pawitan & Self, 1993; Tsiatis et al., 1995) : First, the mixed effects model is fitted

to data at each risk set assuming normality for both random effects and intra-subject

error from which empirical Bayes estimates of the individual random effects are ob-

tained as described by Laird and Ware (1982). Then, predictors for the covariate for

each subject at each failure time based on the relevant fit are substituted for the true

covariate values in the Cox partial likelihood. This approximate method uses regression

calibration (Carroll et al., 1995) to reduce bias of the naive approach but still yields

biased estimators for large measurement error. Alternatively, the joint likelihood of the

survival and longtidinal data may form the basis for inference. DeGruttola & Tu (1994)

assumed the covariate process and survival times to be multivariate normal and fitted

the model via parametric maximum likelihood. Wulfsohn & Tsiatis (1997) adopted the

less rigid proportional hazards relationship and used nonparametric maximum likeli-

hood, but continued to assumed normal random effects. Henderson et al.(2000) used

normal random effects in Gaussian covariate stochastic processes. Faucett & Thomas

(1996) assumed normality and took a Bayesian approach.

These strategies rely heavily on the assumption of normality of random effects char-

acterizing the true covariate process; however, this assumption may be over-restrictive

and the consequences if it is violated are unknown. Tsiatis & Davidian (2001) proposed

a conditional score estimation for the proportional hazards model with longitudinal

covariates with measurement-errors, which does not put any restrictions on the distri-

bution of the random effects in covariate process by exploiting the conditional score

approach of Stefanski & Carroll (1987).
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In this section, we focus on the conditional score estimation approach by Tsiatis

& Davidian (2001) since the fundamental idea of the maximum likelihood approach,

which has been mostly studied with distributional assumption of random effects by

many authors, is same as that reviewed in section 2.3.2.

For each subject i (i = 1, ..., n), let Ti and Ci denote time to failure and censoring,

respectively, where time on study Vi = min(Ti,Ci) and failure indicator ∆i = I(Ti ≤ Ci)

are observed; all variables are independent across i. Let Zi denote time-independent

covariates and Xi(u) denote time-dependent covariates at time u for subject i; for sim-

plicity, assume Xi(u) is scalar, but generalization to vector-valued Xi(u) is straight-

forward. Assume that Xi(u) follows a subject-specific linear model Xi(u) = α0i + α1iu,

where αi = (α0i, α1i)T are the intercept and slope for i. The covariate process Xi(u)

is not directly observed; rather, longitudinal measurements Wi(tij) are obtained at

ordered times ti = (ti1, ..., timi)T , for timi ≤ Vi, where Wi(tij) = Xi(tij) + eij, with

ei = (ei1, ..., eimi)T . The errors eij reflect uncertainty in measuring Xi(u) at tij and

are assumed identically normally distributed and independent with mean zero and

variance σ2, independent of (Ti,Ci, αi, Zi, ti,mi). More precisely,

(ei∣Ti,Ci, αi, Zi, ti,mi) ∼ Nmi(0, σ2Imi),

where Imithe mi-dimensional identity matrix.

The survival model assumes that the hazard of failure is related to Xi(u) and Zi

through a proportional hazards regression model; that is,

λi(u) = lim
du→0

du−1pr{u ≤ Ti < u + du∣Ti ≥ u,αi, Zi,Ci, ei(u), ti(u)}

= lim
du→0

du−1pr{u ≤ Ti < u + du∣Ti ≥ u,αi, Zi}

= λ0(u) exp{γXi(u) + ηTZi}, (2.11)
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where λ0(u) denotes an unspecified baseline hazard function, the collection of times

of longitudinal measurements up to and including u is denoted by ti(u) = (tij ≤ u),

ei(u) = (eij ∶ tij ≤ u), and η is (q × 1). The model (2.11) shows explicitly the nature of

the assumption that timing of measurements and censoring are noninformative. Interest

focuses on estimation of the parameters γ and η.

Let X̂i(u) be the ordinary least squares estimator of Xi(u) using all the longitudinal

data up to and including time u, that is based on ti(u). This requires at least two

longitudinal measurements on i up to and including u, for ti2 ≤ u. Define the counting

process increment

dNi(u) = I(u ≤ Vi < u + du,∆i = 1, ti2 ≤ u)

and the ’at risk’ process Yi(u) = I(Vi ≥ u, ti2 ≤ u); that is, dNi(u) puts point mass

at time u corresponding to the observed death time for the i-th subject as long as

this occurs after the second longitudinal measurement, and Yi(u) is the indicator that

subject i is at risk with at least two longitudinal measurement at time u. Then the

estimator X̂i(u), conditional on {αi, ti(u), Yi(u) = 1, Zi}, is normally distributed with

mean Xi(u) = α0i+α1iu and variance σ2θi(u), the usual variance of the estimated mean

X̂i(u) at u using data up to and including u, which depends on timing of measurements

for i up to and including u. For Xi(u) = α0i + α1iu, θi(u) = 1/mi,u + (u − t̄i,u)2/SSi,u,

where ti(u) contains mi,u time-points tij with mean t̄i,u, SSi,u = ∑
mi,u
j=1 (tij − t̄i,u)2.

At any time u, given that i is at risk at time u so that Yi(u) = 1, random effects

αi, longitudinal measurements taken up to and including time u at times ti(u), and

time-independent covariates Zi, the conditional density for {dNi(u) = r, X̂i(u) = x} is

pr{dNi(u) = r∣Yi(u) = 1, X̂i(u) = x,αi, Zi, ti(u)} × pr{X̂i(u) = x∣Yi(u) = 1, αi, Zi, ti(u)},
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which equals

[λ0(u)du exp{γXi(u)+ηTZi}]r[1−λ0(u)du exp{γXi(u)+ηTZi}]1−r

{2πσ2θi(u)}
1
2

exp[−{x−Xi(u)}2

2σ2θi(u)
];

thus, the conditional likelihood of {dNi(u), X̂i(u)} given {Yi(u) = 1, αi, Zi, ti(u)}, up

to order du, is

[λ0(u)du exp{γXi(u) + ηTZi}]dNi(u)
exp[−{X̂i(u) −Xi(u)}2/{2σ2θi(u)}]

{2πσ2θi(u)}
1
2

= exp[Xi(u){γdNi(u) +
X̂i(u)
σ2θi(u)

}]{λ0(u) exp(ηTZi)du}dNi(u)

{2πσ2θi(u)}
1
2

exp{−
X̂2
i (u) +X2

i (u)
2σ2θi(u)

}.

This representation implies that, conditional on Yi(u) = 1,

Si(u, γ, σ2) = γσ2θi(u)dNi(u) + X̂i(u)

is a complete sufficient statistic for αi, suggesting that, at each time u, conditioning on

Si(u, γ, σ2) would remove the dependence of the conditional distribution on the random

effects αi. Then, the conditional intensity process defined as

lim
du→0

du−1pr{dNi(u) = 1∣Si(u, γ, σ2), Zi, ti(u), Yi(u)}

is equal to λ0(u) exp{γSi(u, γ, σ2) − γ2σ2θi(u)/2 + ηTZi}Yi(u). Reasoning underlying

the conditional score estimator follows by analogy with that for estimators for the

proportional hazards model with no measurement error.

The conditional intensity of dN(u) = Σn
j=1dNj(u), given {Si(u, γ, σ2), Zi, ti(u), Yi(u),

i = 1, ..., n}, is λ0(u)E0(u, γ, η, σ2), where E0(u, γ, η, σ2) = ∑n
j=1E0j(u, γ, η, σ2),

E0j(u, γ, η, σ2) = exp{γSj(u, γ, σ2) − γ2σ2θj(u)/2 + ηTZj}Yj(u).
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This suggests that a reasonable estimator for dΛ0(u)=λ0(u)du is given by

dΛ̂0(u) = dN(u)/E0(u, γ, η, σ2).

By analogy with the usual score equations derived from the partial likelihood in a

proportional hazard model, (γ, η) can be obtained by solving the (q + 1) × 1 set of

estimating equations

n

∑
i=1
∫ {Si(u, γ, σ2), ZT

i }T{dNi(u) −E0i(u, γ, η, σ2)dΛ̂0(u)} = 0,

which upon substitution of dΛ̂0(u) for dΛ0(u), may be written as

n

∑
i=1
∫ {Si(u, γ, σ2), ZT

i }T{dNi(u) −
dN(u)E0i(u, γ, η, σ2)

E0(u, γ, η, σ2)
} = 0 (2.12)

Defining E1j(u,γ, η, σ2)={Sj(u,γ, σ2),ZT
j }T exp{γSj(u,γ, σ2)−γ2σ2θj(u)/2+ηTZj}Yj(u),

E1(u, γ, η, σ2) =
n

∑
j=1

E1j(u, γ, η, σ2),

and interchanging the sums in (2.12), the estimating equations are expressed as

n

∑
i=1
∫ [{Si(u, γ, σ2), ZT

i }T −
E1(u, γ, η, σ2)
E0(u, γ, η, σ2)

]dNi(u) = 0. (2.13)

With no measurement error, σ2 = 0, (2.13) is identical to the score equations for the

maximum partial likelihood estimator of Cox (1975). With Xi(u) time-independent

and σ2 known, the equations are asymptotically equivalent to those proposed by Naka-

mura (1992). There is an alternative semiparametric estimator with time-independent

covariates studied by Buzas (1998).

There are more recent literatures on the selection model. Ribaudo, Thompson &
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Allen-Mersh (2000) proposed the application of a random effect selection model in the

form of a trivariate Normal model for the joint analysis of QoL response and log survival

time. The trivariate Normal model presented by Schluchter is a model that has been

discussed in the context of drop-out. This model is a random effect selection model that

assumes that the random parameters of a subject’s underlying response profile such as

intercept and slope of QoL response over time, and the logarithm of the survival time

follow a trivariate Normal distribution.

Xu & Zeger (2001) developed latent variable models for joint analysis of longitu-

dinal data comprising repeated measures and times to events, starting with the latent

variable formulation of Fawcett and Thomas(1996), and extending and adapting it to

the problem of identifying whether a longitudinal variable Y is a useful auxiliary or

surrogate variable for event time T given other covariates. The linking linear predictor

of Y and T was assumed to follow a Gaussian stochastic process suggested by Diggle

(1988).

Song, Davidian, & Tsiatis (2002) assumed that the random effects have distribu-

tion in a plausible class with smooth densities, in mixed effects model for longitudinal

covariates process belonging to proportional hazards model of event time. They used a

class of smooth densities studied by Gallant & Nychka (1987). One speculation of Song

et al.(2002) is that it is possible that the likelihood based approach using normality

yields consistent estimator even when normality is a mis-specification under certain

‘nice’ conditions through their simulations.

Zeng & Cai (2005) provided the rigorous proof of the consistency of the maximum

likelihood estimators and derivation of their asymptotic distributions because there was

a lack of theoretical justification of the asymptotic properties for the MLEs even if the

ML estimation has been extensively used in the joint analysis of repeated measurements

and survival time and has been shown to perform well in numerical studies (Hu, Tsi-
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atis & Davidian 1998). Their theoretical results further confirmed that nonparametric

maximum likelihood estimation, which was proposed in the literature (Wu & Carroll,

1988; Tsiatis, DeGruttola and Wulfsohn, 1995; Wulfsohn & Tsiatis, 1997), provided

efficient estimation. Additionally, it was also shown that the profile likelihood function

can be used to give a consistent estimator for the asymptotic variance of the regression

coefficients.

Tseng, Hsieh, & Wang (2005) proposed the joint modeling of longitudinal covariates

and survival time using accelerated failure time since the accelerated failure time model

is an attractive alternative to the Cox model when the proportionality assumption is

not appropriate to describe the relationship between the survival time and longitu-

dinal covariates. Hsieh, Tseng, & Wang (2006) recently studied maximum likelihood

approach for the joint modelling of survival time and longitudinal covariates in details

more.

Song & Wang (2007) proposed semiparametric approaches for joint modeling of

longitudinal covariates and survival data with time-varying coefficients. To deal with

covariate measurement error, they proposed a local corrected score estimator and a local

conditional score estimator which are semiparametric methods in the sense that there

is no distributional assumption needed for the underlying true covariates. Li, Wang,

& Wang (2007) proposed score functions, named generalized sufficient and conditional

scores, for the joint models of a primary endpoint and multiple longitudinal covariate

processes by adjusting the bias resulted from the approaches by Li, Zhang & Davidian

(2004).

2.3.2 Simultaneous model of failure time and longitudinal data

In many biomedical studies, it is often of interest to investigate the simultaneous effect of

treatment or other factors on both patients’ quality of life and risk of death. Xu & Zeger
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(2001b) and Zeng & Cai (2005) proposed similar simultaneous models of continuous

longitudinal outcome Y and survival time T . However, while in the model by Xu &

Zeger a common latent process is shared by both Y and T , Zeng & Cai allow individual

random effects to affect quality of life and survival time very differently.

In the approach by Zeng & Cai (2005), quality of life and survival time are modeled

through parametric and semiparametric models, respectively, assuming a linear mixed

effect model for the longitudinal outcomes of quality of life and a multiplicative haz-

ard model for survival time. In both models, observed covariates, which are included

as predictors, are assumed to be either time-independent or external time-dependent

variables. Unobserved factors enter the models as subject-specific random effects so as

to account for unobserved heterogeneity.

For subject i given T > t and the observed history till time t, the longitudinal

outcome of quality of life Yi(t) at time t follows the linear mixed effect model,

Yi(t) =X i(t)β + X̃ i(t)ai + εi(t),

where X i(t) and X̃ i(t) are the row vectors of the observed covariates and can be com-

pletely different or share some components, εi(t) is a white noise process with mean zero

and variance σ2
y, and ai denotes a vector of subject-specific random effect of dimension

k0 following a multivariate normal distribution with mean zero and covariance matrix

Σa, and β is a column vector of coefficients for X i(t). The random effect ai reflects

the unobserved heterogeneity and is allowed to differ for different levels of covariates

X̃ i(t).

For the survival time Ti given the observed covariates, the observed history till time

t, and random effect ai, the conditional hazard rate function is assumed to follow a
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multiplicative hazards model,

λ(t) exp{W̃ i(t)(φ ○ ai) +W i(t)γ},

where W i(t) and W̃ i(t) are the row vectors of the observed covariates and may share

the same components, φ is a vector of parameters, and λ(t) is the baseline hazard

rate function, and γ is a column vector of coefficients for W i(t). For the dependence

parameter φ between quality of life and survival time, φ = 0 means the dependence can

be fully attributed to the observed covariates, and φ ≠ 0 implies that such dependence

may also be due to some latent variables.

Supposing the survival time is possibly right censored with completely random

right-censored time Ci, and assuming Ni, the number of the observed quality of life

measurements for subject i, to be non-informative about parameters of interest, the

observed data from n subjects are

(Ni, Y
j
i ,X

j
i , X̃

j

i), j = 1, . . . ,Ni, i = 1, . . . , n,

(Zi,∆i,{(W i(t),W̃ i(t)) ∶ t ≤ Zi}), i = 1, . . . , n,

where for subject i, (Y j
i,X

j
i , X̃

j

i) is the j-th observation of (Yi,Xi, X̃i),Zi=min(Ti,Ci),

and ∆i = I(Ti ≤ Ci). Interests are estimating and making inference on the parameters

θ = (σy,Σa,β,φ,γ) and the baseline cumulative hazard function Λ(t) = ∫
t

0 λ(s)ds.

Their estimation approach is likelihood-based. In the maximum likelihood method,

given the random effects for the i-th subject, the observed quality of life with a mul-

tivariate Gaussian distribution is independent of the observed survival time with pro-

portional hazard assumption, and the likelihood contribution of the i-th subject is

integrated over the random effects in the joint models. Then, the observed likelihood
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function for (θ,Λ) is expressed as

L =
n

∏
i=1
∫a

[(2πσ2
y)−Ni/2 exp{−(Y i −X iβ − X̃ ia)T (Y i −X iβ − X̃ ia)/2σ2

y}

λ(Zi)∆i exp{∆i(W̃i(Zi)(φ ○ a) +Wi(Zi)γ)−∫
Zi

0
e

˜W i(s)(φ○a)+W i(s)γdΛ(s)}

(2π)−k0/2∣Σa∣−1/2 exp{−aTΣ−1
a a/2}]da,

where Y i denotes the vector of (Y 1
i , ..., Y

Ni
i )T , X i denotes the matrix of ((X1

i )T , ...,

(XNi
i )T )T , X̃ i denotes ((X̃1

i )T , ..., (X̃
Ni
i )T )T , and k0 is the dimension of a.

EM algorithms are employed for the maximum likelihood estimates for (θ,Λ) over

a set in which θ is in a bounded set and Λ belongs to a space consisting of all the

increasing functions with Λ(0) = 0. It is clear that the maximum likelihood estimate

for Λ can be chosen as a step function with jumps only at the observed failure times. In

the EM algorithm, ai is considered as the missing statistics for i = 1, . . . , n. Therefore,

the M-step solves the conditional score equation from the complete data given the

observations, where the conditional expectation can be evaluated in the E-step. The

iteration between E-step and M-step is conducted until the estimates converge. The

final maximum likelihood estimate for (θ,Λ) is denoted by (θ̂, Λ̂).

The variance estimator for θ̂ is obtained by using the profile likelihood function

whose logarithm is defined as pln(θ) = maxΛ n−1∑n
i=1 qi(θ,Λ) where qi(θ,Λ), i = 1, . . . , n,

is the logarithm of the observed likelihood function for the i-th subject. Particularly,

an efficient algorithm, which is based on the EM-algorithm to calculate the profile like-

lihood function, is proposed and called as the PEME algorithm (partial expectation,

maximization and evaluation).

26



2.4 Penalized Quasi-Likelihood Approach

In the view of the cumbersome and often intractable numerical integrations required

for a full likelihood analysis, several suggestions were made for approximate inference

in generalized linear mixed models and other nonlinear variance component models.

One approach was proposed by Breslow & Clayton (1993) with some modifications

to a Laplace expansion in order to motivate standard estimating equations that may

be solved by iterative application of normal theory variance components procedures.

In this section, we mainly review the penalized quasi-likelihood for generalized linear

mixed model proposed by Breslow & Clayton (1993), and the bias correction in the

penalized quasi-likelihood estimators proposed by Breslow & Lin (1995).

2.4.1 Penalized quasi-likelihood in generalized linear mixed

model

The penalized quasi-likelihood (PQL) method exploited by Green (1987) for semipara-

metric regression analysis is available for inference in hierarchical models where the

focus is on shrinkage estimation of the random effects (Robinson 1991). The PQL was

proposed as an approximate Bayes procedure for some commonly occurring GLMM’s

by Laird (1978). Breslow & Clayton (1993) considered two closely related approximate

methods (Penalized Quasi-Likelihood and Marginal Quasi-Likelihood) of inference in

GLMM’s and investigated their suitability for practical work by means of Monte Carlo

studies and illustrative applications. Here we review only the PQL in their paper. They

provided the PQL criterion motivated by approximating the integrated quasi-likelihood,

and developed an approximate GLM for the marginal distribution of the data. The

approximate GLM is related to the generalized estimating equation approach of Zeger

et al. (1988). They note that PQL tends to underestimate somewhat the variance com-
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ponents and (in absolute value) fixed effects when applied to clustered binary data, but

the situation improves rapidly for binomial observations having denominators greater

than one.

Within the framework of the generalized linear mixed model(GLMM), given an

unobserved vector of random effects, observations are assumed to be conditionally in-

dependent with means that depend on the linear predictor through a specified link func-

tion and conditional variances that are specified by a variance function, known prior

weights and a scale factor. The random effects are assumed to be normally distributed

with mean zero and dispersion matrix depending on unknown variance components.

Consider hierarchical model and denote yi, i = 1, . . . , n, as the i-th observation

of a univariate response variable with two vectors xi and zi of explanatory variables

associated with the fixed and random effects respectively. The n responses may be

blocked in some way, for example when they involve repeated measures on the same

subject. Suppose that, given a q-dimensional vector b of random effects, the yi are

conditionally independent with means E(yi∣b) = µbi and variances Var(yi∣b) = φaiv(µbi),

where v(⋅) is a specified variance function, ai is a known constant (e.g., the reciprocal

of a binomial denominator) and φ is a dispersion parameter that may or may not be

known. The conditional mean is related to the linear predictor ηbi = xTi α + zTi b by the

link function g(µbi) = ηbi , with inverse h = g−1, where α is a p vector of fixed effects.

Denoting the observation vector by y = (y1, . . . , yn)T and the design matrices with rows

xTi and zTi by X and Z, the conditional mean satisfies

E(y∣b) = h(Xα +Zb).

Assume that b has a multivariate normal distribution with mean 0 and covariance

matrix D = D(θ) depending on an unknown vector θ of variance components. In

binomial, Poisson, and hypergeometric specifications for the conditional distribution
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of yi, the dispersion parameter φ is fixed at unity. In other cases, however, it may

be estimated together with θ as a parameter in the covariance matrix of the marginal

distribution of y.

The integrated quasi-likelihood function used to estimate (α,θ) is defined by

eql(α,θ) ∝ ∣D∣−1/2∫ exp [ − 1

2φ

n

∑
i=1

di(yi;µbi) −
1

2
bTD−1b]db, (2.14)

where di(y, µ) = −2 ∫
µ

y
y−µ
aiv(u)

du denotes the deviance measure of fit. If, conditionally on

b, the observations are drawn from a linear exponential family with variance function

v(⋅), then the deviance is well known to equal to the scaled difference 2φ{l(y; y, φ) −

l(y;µ,φ)}, where l(y;µ,φ) denotes the conditional likelihood of y given its mean µ

(McCullagh & Nelder 1989). In this case ql(α,θ) represents the true log-likelihood of

the data. The primary difficulty in implementing full likelihood inference lies in the

integrations needed to evaluate ql and its partial derivatives.

The equation (2.14) can be written as c∣D∣−1/2 ∫ e−κ(b)db, and then applied with

Laplace’s method for integral approximation (Barndorff-Nielsen & Cox 1989; Tierney &

Kadane 1986). Let κ′ and κ′′ denote the q vector and q× q dimensional matrix of first-

and second-order partial derivatives of κ with respect to b. Ignoring the multiplicative

constant c, the approximation yields

ql(α,θ) ≈ −1

2
log ∣D∣ − 1

2
log ∣κ′′(b̃)∣ −κ(b̃), (2.15)

where b̃ = b̃(α,θ) denotes the solution to

κ′ = −
n

∑
i=1

(yi − µbi)zi
φaiv(µbi)g′(µbi)

+D−1b = 0
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that minimizes κ(b). Differentiating again with respect to b, we have

κ′′ = −
n

∑
i=1

zizTi
φaiv(µbi)[g′(µbi)]2

+D−1 +R

≈ ZTWZ +D−1, (2.16)

where W is the n × n diagonal matrix with diagonal terms wi = {φaiv(µbi)[g′(µbi)]2}−1

that are recognizable as the GLM iterated weights (Firth 1991, McCullagh & Nelder

1989). The remainder termR = −∑n
i=1(yi−µbi)zi ∂∂b[

1
φaiv(µbi)g

′(µbi)
] has expectation 0 and

is thus, in probability as a function of n, of lower order than the two leading terms in

the equation of κ′′. R equals 0 for the canonical link functions, for which g′(µ) = v−1(µ)

(McCullagh & Nelder 1989). Combining (2.14)–(2.16) and ignoring R leads to

ql(α,θ) ≈ −1

2
log ∣I +ZTWZD∣ − 1

2φ

n

∑
i=1

di(yi, µb̃i) −
1

2
b̃
T
D−1b̃, (2.17)

where b̃ is chosen to maximize the sum of the last two terms.

Assuming that the GLM iterative weights vary slowly (or not at all) as a function of

the mean, the first term in this expression is ignored, and α is chosen to maximize the

second. Thus (α̂, b̂) = (α̂(θ), b̂(θ)), where b̂(θ) = b̃(α̂(θ)), jointly maximize Green’s

(1987) PQL

− 1

2φ

n

∑
i=1

di(yi, µbi) −
1

2
bTD−1b. (2.18)

Differentiation with respect to α and b leads to the score equations for the mean

parameters:

n

∑
i=1

(yi − µbi)xi
φaiv(µbi)g′(µbi)

= 0

n

∑
i=1

(yi − µbi)zi
φaiv(µbi)g′(µbi)

= D−1b.
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For the estimation of variance component θ, we substitute the maximized value

of (2.18) into (2.17) and evaluate W at (α̂(θ), b̂(θ)), which generate an approximate

profile quasi-likelihood function ql(α̂(θ),θ) for inference on θ. To make degrees-of-

freedom adjustments that account for the fact that α̂ rather than α appears in the

approximate profile quasi-likelihood function ql(α̂(θ),θ), we modify ql(α̂(θ),θ) to

the REML version (Patterson & Thompson 1971) in practice. By differentiating the

modified profile quasi-likelihood with respect to the components of θ, we obtain the

estimating equations for the variance parameters.

2.4.2 Bias correction in penalized quasi-likelihood

The approach proposed by Breslow & Clayton (1993) have been applied to a wide

variety of generalized linear mixed models. Although the approximate procedure have

been demonstrated to work reasonably well for discrete data problems with moderate

to large cell frequencies, their performance is less satisfactory when the data are sparse.

Breslow & Lin (1995) derived the general expressions for the asymptotic biases in

approximate estimators of regression coefficients and variance component, for small

values of the variance component, in generalized linear mixed models with canonical

link function and a single source of extraneous variation. Their numerical studies of

a series of matched pairs of binary outcomes showed that the first order estimators of

the variance component are seriously biased, and they provided the easily computed

correction factors which produce satisfactory estimators of small variance components.

Their variance correction factors for a series of matched pairs of binomial observations

rapidly approach one as the binomial denominators increase.

Let the data be in a series of m clusters of observations (yij, xij), where i identifies

the cluster, j = 1, . . . , ni identifies subjects within clusters and xij are p-vectors of

explanatory variables associated with the univariate outcome yij. Given an unobserved
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random effect bi, the observations in the i-th cluster are assumed to have log conditional

density

li(α; bi) =
ni

∑
j=1

aij
φ

{yijηij − h(ηij)} + c(yij;φ), (2.19)

where ηij = xTijα + bi denotes a linear predictor, the aij are prior weights, and φ is

a known scale parameter. This restriction to canonical link functions (McCullagh &

Nelder, 1989) implies that the the conditional means µbiij = E(yij ∣bi) = g−1(ηij) and

variances Var(yij ∣bi) = φa−1
ij v(µ

bi
ij) are related via g′ = 1/h′′ = 1/v for link and variance

functions g and v, respectively. The bi are assumed to be a random sample from a

normal population with mean 0 and variance θ. Thus the likelihood for the observed

data is

L(α, θ) =
m

∏
i=1

Li(α, θ) =
m

∏
i=1

(2πθ)− 1
2 ∫ eli(α,b)−b

2/2θdb. (2.20)

Denote (α̂, θ̂) as the true maximum likelihood estimator. For approximations, we con-

sider the derivatives l
(k)
i = ∂kli/∂bk. Using Laplace method (e.g. Barndorff-Nielson &

Cox 1989), the likelihood function in (2.20) may be approximated by expanding the

integrand in a Taylor series about its maximizing value b̃i, where b̃i = b̃i(α, θ) solves

b̃i = θl(1)i (α, b̃i). Setting l̃
(k)
i = l(k)i (α, b̃i), a quartic expansion gives

Li(α, θ) ≏ (2πθ)− 1
2 exp(l̃i −

b̃2
i

2θ
)∫ exp{1

2
(l̃(2)i − 1

θ
)(b − b̃i)2}

×{1 + 1

6
l̃
(3)
i (b − b̃i)3 + 1

24
l̃
(4)
i (b − b̃i)4}db

= (1 − θl̃(2)i )− 1
2 exp(l̃i −

b̃2
i

2θ
){1 +

θ2l̃
(4)
i

8(1 − θl̃(2)i )2
}

≏ (1 − θl̃(2)i )− 1
2 exp{l̃i −

b̃2
i

2θ
+

θ2l̃
(4)
i

8(1 − θl̃(2)i )2
},

where we evaluated the integral by taking expectations with respect to a normal variate

having mean b̃i and variance θ/(1 − θl̃(2)i ). We define the first order Laplace approxi-
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mation to the log likelihood using only the leading terms of this expansion,

lL1(α, θ) =
m

∑
i=1

{ − 1

2
log(1 − θl̃(2)i ) + l̃i −

b̃2
i

2θ
}. (2.21)

The Laplace approximation estimator (α̂L1, θ̂L1) are defined to be those that maximize

lL1.

Breslow & Clayton (1993), following Green (1987), termed the log conditional like-

lihoods (2.19) minus the penalty term ∑i b
2
i /(2θ) a log penalized quasi-likelihood in

recognition of the fact that li requires specification only of the mean-variance relation-

ship for the conditional distribution. Maximizing the penalized quasi-likelihood as a

function of b = (b1, . . . , bm)T for fixed (α, θ) leads to an objective function

lp(α, θ) =
m

∑
i=1

(l̃i −
b̃2
i

2θ
)

that equals the sum of the last two terms in the first order Laplace approximation

(2.21). The penalized quasi-likelihood estimator of the regression coefficients is defined

to be the value α̂P (θ) that maximizes li(α, θ) for fixed θ. The optimization may be

programmed as a problem in iterated weighted least squares. Specifically, let Y denote

the N = ∑i ni dimensional ‘working vector’ whose components in lexicographic order

are Yij = xTijα + b̃i + (yij − µb̃iij)/v
b̃i
ij ; let V denote the N ×N block diagonal covariance

matrix whose ni × ni dimensional diagonal submatrices Vi have terms φ(aijvb̃iij)−1 + θ

along their diagonals and off-diagonal elements θ; and let X denote the N × p design

matrix with rows xTij. Then, the Fisher scoring algorithm for solving the penalized

quasi-likelihood equations

∂lp(α, θ)
∂α

=
m

∑
i=1

ni

∑
j=1

aij
φ

(yij − µb̃iij)xij = 0 (2.22)
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for α reduces to iterative solution of (XTV −1X)α =XTV −1Y (Green, 1987).

Estimation of θ under penalized quasi-likelihood treats the working vector Y as

normally distributed with covariance matrix V depending on θ, except that the depen-

dence of the terms vb̃iij on θ through b̃i is ignored when calculating derivatives (Breslow &

Clayton, 1993). The principal advantage of this approach over the Laplace approxima-

tions is that it may be implemented using standard software for mixed model analysis.

In this paper by Breslow & Lin (1995) the simpler maximum likelihood is used since

they focused on asymptotic results rather than small sample properties while Breslow

& Clayton (1993) used the restricted maximum likelihood normal theory approach.

Thus, the penalized quasi-likelihood variance estimating equation is

Ũ(θ) = 1

2
{(Y −Xα)TV −1∂V

∂θ
V −1(Y −Xα) − tr(V −1∂V

∂θ
)}∣
α=α̂P (θ)

= 1

2

m

∑
i=1

(l̃(1)2i +
l̃
(2)
i

1 − θl̃(2)i

)∣
α=α̂P (θ)

= 0. (2.23)

The penalized quasi-likelihood estimators (α̂P , θ̂P ) simultaneously solve equations (2.22)

and (2.23). While α̂P (θ) maximizes lP (α, θ), however, θ̂P does not maxmize lP{α̂P (θ),

θ}.

Depending upon the distribution of the data and thus the link function in canonical

generalized linear mixed models, the estimates of regression coefficients may be heavily

influenced by the value assumed for the dispersion parameter. Accordingly, since some

of the bias in an estimator of α may arise from bias in the corresponding estimator of

θ, Breslow & Lin (1995) studied the bias in the estimator of α for small fixed θ, and

then the bias in the estimator of θ.

First, we expand the true log-likelihood and the approximation in Taylor series
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about θ = 0. Then, we have

l =
m

∑
i=1

li0 + θ
m

∑
i=1

(
l
(2)
i0

2
+
l
(1)2
i0

2
) + θ

2

2
θ
m

∑
i=1

(
l
(2)2
i0

2
+ l(1)2i0 l

(2)
i0 + l(1)i0 l

(3)
i0 +

l
(4)
i0

4
) + o(θ2)

lP = l − θ
2

m

∑
i=1

l
(2)
i0 − θ

2

4

m

∑
i=1

l
(2)2
i0 − θ

2

2

m

∑
i=1

l
(1)
i0 l

(3)
i0 − θ

2

8

m

∑
i=1

l
(4)
i0 + o(θ2),

where we use the fact that

∂b̃i
∂θ

∣
θ=0

= l(1)i0 ,
∂b̃i
∂θ2

∣
θ=0

= 2l
(1)
i0 l

(2)
i0 .

Then, the difference between α̂P and α̂ are studied by expanding

0 = ∂l

∂α
∣
α=α̂

= ∂l

∂α
∣
α=α̂P

+ ∂2l

∂ααT
∣
α=α∗

(α̂ − α̂P ).

Consequently, we have

α̂P = α̂ + θ
2
(XTW 0X)−1XTu + o(θ), (2.24)

where W 0 denotes the diagonal matrix with weight aijv0
ij/φ on the diagonal u is an

N ×1 vector with components aijv(µ0
ij)v′(µ0

ij)/φ and both ∂l/∂α and ∂lP /∂α are eval-

uated at α = α̂P (θ). The corrected penalized quasi-likelihood estimate is obtained by

subtracting the linear term in (2.24) from α̂P .

The asymptotic biases in the estimator of θ derived from the penalized quasi-

likelihood were evaluated by equating expansions of the log profile likelihood l♯(θ) =

logL{α̂(θ), θ} to expansion of the penalized quasi-likelihood approximations. Then,

we have

θ̂P

θ̂
= (

∂2l♯P
∂θ2

)
−1
∂2l♯

∂θ2
∣
θ=0

∼ B −C
C

,
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where

B = ∑
i

l
(2)2
i0 /2 −uTX(XTW 0X)−1XTu/4,

C = ∑
i

l
(4)
i0 /4,

D = ∑
i

l
(2)2
i0 /2.

Lin & Brelsow (1996) also derived the biases correction in generalized linear mixed

models with multiple components of dispersion.
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Chapter 3

JOINT ANALYSIS FOR SURVIVAL

TIME AND LONGITUDINAL

CATEGORICAL MEASUREMENTS OF

QUALITY OF LIFE IN HEAD AND

NECK CANCER PATIENTS

3.1 Introduction

When choosing a treatment, it is well known that decision–making on treatment is fre-

quently based on probability of survival. However, when there are multiple treatment

modalities with similar survival rates, Quality of Life (QoL) factors are raised as im-

portant considerations for patients. In particular, oncology community has recognized

that QoL and functional status are the major outcome variables in the evaluation of

head and neck cancer treatment because of the potential impact on critical functions

such as speech, swallowing, and breathing, as well as cosmesis and communication.

Many studies have been conducted for QoL without considering the survival time.

For example, Terrell et al. (2004) investigated clinical predictors of QoL in a large

intervention study of patients with head and neck cancer. Ringash, Bezjak, O’Sullivan



and Redelmeier (2004) studied QoL of particulary laryngeal cancer patients among

those with head and neck cancer. Holloway et al. (2005) studied psychosocial effects in

long-term head and neck cancer survivors. Fang et al. (2004) studied changes in QoL

of head and neck cancer patients following postoperative radiotherapy. Most recently,

Nibu et al. (2010) collected QoL data at scheduled clinic appointments of head and

neck cancer patients and conducted a longitudinal QoL analysis. All these studies did

not take the survival time into consideration. In order to completely understand the

factors influencing both QoL and survival, it is important to study the QoL and survival

simultaneously.

The Carolina Head and Neck Cancer Study (CHANCE) is a population based epi-

demiologic study conducted at 60 hospitals in 46 counties in North Carolina from 2002

through 2006 (Divaris et al. 2010). Patients were diagnosed with head and neck cancer

(oral, pharynx, and larynx cancer) from 2002–2006. Their survival status was collected

up to 2007 and QoL was evaluated over time for three years after diagnosis. QoL

information was collected through questionnaires. Based on summary scores of the

five domains of self-perceived quality of life including Physical Well-Being (PWB), So-

cial/Family Well-Being (SWB), Emotional Well-Being (EWB), Functional Well-Being

(FWB) and Head and Neck Cancer Specific symptoms (HNCS), patient’s QoL informa-

tion was classified into satisfaction or dissatisfaction with life. Survival time is defined

as the time to death from diagnosis. Demographic and life style characteristics, medical

histories and clinical factors are also collected. It is of interest to elucidate the vari-

ables which are associated with both QoL satisfaction and survival time for patients

with head and neck cancer. Additionally, the longitudinal QoL satisfaction outcomes

and survival time are correlated within a patient, and this dependency should be taken

into account in the analysis.

Among the existing approaches for longitudinal data and survival time, the selec-
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tion model and the pattern mixture model have been widely used. The selection model

estimates the distribution of survival time given longitudinal data. The selection model

with continuous longitudinal data was studied by Tsiatis, Degruttola, and Wulfsohn

(1995), Wulfsohn and Tsiatis (1997), Henderson, Diggle and Dobson (2000), Tsiatis

and Davidian (2001), Song, Davidian and Tsiatis (2002), Tseng, Hsieh and Wang

(2005) and Song and Wang (2007). The selection model with categorical longitudi-

nal data was considered by Faucett, Schenker and Elashoff (1998), Huang et al. (2001),

Xu and Zeger (2001a,b) and Larsen (2004). The pattern mixture model focuses on

the trend of longitudinal outcomes conditional on survival time. The pattern mixture

model with continuous longitudinal outcomes was studied by Wu and Carroll (1988),

Wu and Bailey (1989), Hogan and Laird (1997), Ribaudo, Thompson and Allen-Mersh

(2000) and more recently Ding and Wang (2008). Albert and Follmann (2000) proposed

to model repeated count data subject to informative dropout and Albert, Follmann,

Wang and Suh (2002) and Albert and Follmann (2007) studied binary longitudinal

data with informative missingness. These methods cannot be applied directly to assess

covariate effects on both outcomes. Simultaneous modeling of the longitudinal and

survival data are needed for such purpose. Xu and Zeger (2001b) and Zeng and Cai

(2005a) proposed simultaneous models of continuous longitudinal outcome and survival

time. In their articles, heterogeneity caused by unobserved factors is represented using

subject-specific random effects. Given random effects, survival time and the repeated

measurements of longitudinal outcomes are assumed to follow a Cox proportional haz-

ards model and a Gaussian distribution, respectively. Recently, Elashfoff, Li and Ni

(2007, 2008) proposed a more general joint model which incorporates a competing risks

model for survival endpoint. Rizopoulos, Verbeke and Molenberghs (2008) assumed an

accelerated failure time model and proposed to consider two separate sets of random

effects for the continuous longitudinal process and survival time process, linking them
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using a copula function. As an extension of this study, Rizopoulos, Verbeke, Lesaffre

and Vanrenterghem (2008) considered longitudinal binary data with excess zeros and

proposed a two-part shared parameter model framework. In the Bayesian perspec-

tive, Wang and Taylor (2001) and Brown and Ibrahim (2003) studied the simultaneous

analysis of continuous longitudinal outcomes and survival time. Hu, Li and Li (2009)

extended the existing Bayesian approach by considering the more general joint model

of Elashfoff et al. (2008) with multiple types of failures in the failure time data.

Compared to the studies for continuous longitudinal data and survival time, rel-

atively little work has been done in the joint modeling frame work for categorical

longitudinal data and survival time. However, the outcomes may not be continuous

in some biomedical studies, for example, where the outcomes are disease symptom

with categories of mild/moderate/severe, quality of life measurements with dissatis-

fied/satisfied, or dichotomized test results with categories of positive/negative. With

these categorical longitudinal outcomes, the existing theory cannot be applied directly

and the numerical algorithm needs to be modified. Therefore, in this paper, we investi-

gate the simultaneous modeling of survival time and longitudinal categorical outcomes.

Furthermore, hazards model for survival time is extended to allow multiple strata in

our approach. Random effects are introduced into the proposed models to account for

the dependence between survival time and longitudinal outcomes due to unobserved

factors.

The outline of this paper is as follows. We begin by describing the details of the

CHANCE study in Section 3.2. In Section 3.3, we then present a simultaneous modeling

for longitudinal categorical outcomes and survival time, and describe the inference

procedure. Asymptotic properties of the proposed estimators and the technical details

of their proofs are given in Section 3.4 and Section 3.5, respectively. Numerical results

from simulation studies are given in Section 3.6. The analysis of the CHANCE study
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is provided in Section 3.7. In Section 3.8, we discuss some further consideration and

generalization.

3.2 The CHANCE Study

The Carolina Head and Neck Cancer Study (CHANCE) is the largest epidemiologic

study of squamous cell carcinoma of the head and neck in the United States and the

first to include a significant number of black patients. Patients who were diagnosed

with head and neck cancer (oral, pharynx, and larynx cancer) from 2002 to 2006 were

evaluated for Quality of Life (QoL) at maximum three times over follow-up at one to

six months, one year and three years after diagnosis. At each evaluation, they were

given questionnaires asking about their QoL satisfaction. Ending in December 2009,

information on QoL has been obtained from 587 head and neck cancer patients. Based

on the death information through 2007 available from the National Death Index (NDI),

91 patients died. It is of interest to study the effects of demographic and life style char-

acteristics, medical histories, and clinical factors on patients’ QoL and survival time. In

particular, it is of interest to compare between African-Americans and Whites since it

is known that African-Americans have a higher incidence of head and neck cancer and

worse survival than Whites. Furthermore, because QoL outcomes are especially critical

for physicians, head and neck cancer patients, and their caregivers, more research was

needed on the experiences of survivors, especially among black patients. Given the

paucity of data and studies on QoL among African-American head and neck cancer

survivors, this study yields valuable new data.

To collect QoL information, the Functional Assessment of Cancer Therapy–Head

and Neck Version 4 (FACT–H&N) series of questionnaires was used (Cella et al. 1993;

Cella 1994; D’Antionio, Zimmerman, Cella and Long 1996; List et al. 1996). This

QoL instrument was specifically designed for use of head and neck cancer patients and
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consists of five primary QoL domains: Physical Well-Being (PWB), Social/Family Well-

Being (SWB), Emotional Well-Being (EWB), Functional Well-Being (FWB) and Head

and Neck Cancer Specific symptoms (HNCS). FACT-HN is the overall measurement of

QoL incorporating all these domains. Each question has 5 scales of QoL measurement.

Among them, the 3 high levels of “very much”, “quite a bit” and “somewhat” are

categorized to “satisfied” and the other 2 low levels of “a little bit” and “not at all”

belong to “dissatisfied”. We are interested in identifying the factors associated with

both QoL and survival time. Longitudinal QoL outcomes are binary measurements with

1 (“satisfied”) and 0 (“dissatisfied”) on the five QoL domains, and survival time is the

time to death from diagnosis. In this study, 33 among 587 patients were excluded due to

missing data on household income, beer and QoL information resulting in 554 patients

in the analysis. Eighty-five patients deceased by the end of 2007 and the censoring rate

is 85%. Table 3.1 shows the descriptive statistics of predictors: demographics factors

– race, household income, age at diagnosis, number of persons supported by household

income; alcohol factor – the number of 12 oz. beers consumed per week; medical history

factors – BMI and total number of medical conditions reported; treatment history

factors – surgery, radiation therapy and chemotherapy; primary tumor data factors –

primary tumor site and stage; time from diagnosis to each QOL survey. We analyze

a QoL domain of the Head and Neck Cancer Specific symptoms (HNCS) and survival

time, and Table 3.2 shows the descriptive statistics of outcome variables: longitudinal

HNCS binary outcomes at three surveys, survival time from diagnosis and censorship

indicator. The number of observations per patient ranges 1 to 3 with average of 1.93.

We are interested in investigating factors which are associated with QoL and survival.

In the next section, we formulate a general model and propose an inference procedure.
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Table 3.1: Descriptive statistics of predictors in the CHANCE study

Categorical variables Freq. %

Total 554 100.00
Race
– White 444 80.14
– African-American 110 19.86
Household income
– level1: 0–10K 157 28.86
– level2: 20–30K 129 23.71
– level3: 40–50K 107 19.67
– level4: ≥ 60K 151 27.76
# of 12 oz. beers consumed per week
– None 103 18.59
– less than 1 50 9.03
– 1 to 4 94 16.97
– 5 to 14 129 23.29
– 15 to 29 69 12.45
– 30 or more 109 19.68
Surgery
– No 237 42.78
– Yes 317 57.22
Radiation therapy
– No 131 23.65
– Yes 423 76.35
Chemotherapy
– No 324 58.48
– Yes 230 41.52
Tumor site
– Oral & Pharyngeal 346 62.45
– Laryngeal 208 37.55
Tumor stage
– I 144 25.99
– II 93 16.79
– III 99 17.87
– IV 218 39.35

Continuous variables n mean std.dev min median max

Age at diagnosis 554 59.11 10.19 24.00 59.00 80.00
# of persons supported by household income 554 2.23 1.06 1.00 2.00 5.00
BMI 554 27.47 5.98 15.66 26.48 56.28
Total # of medical conditions reported 554 .92 1.10 .00 1.00 6.00
Time at 1st survey measurement (years) 209 .41 .45 .09 .28 3.55
Time at 2nd survey measurement (years) 500 1.85 .86 .44 1.81 3.91
Time at 3rd survey measurement (years) 353 3.49 .54 1.88 3.54 4.88

– Time at survey measurement is from diagnosis.
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Table 3.2: Descriptive statistics of outcome variables in the CHANCE study

1st survey 2nd survey 3rd survey
Longitudinal QoL binary outcomes Freq. % Freq. % Freq. %

HNCS 209 100.00 500 100.00 352 100.00
– Dissatisfied (=0) 81 38.76 120 24.00 72 20.45
– Satisfied (=1) 128 61.24 380 76.00 280 79.55

Survival outcomes n mean std.dev min median max

min(Survival time, Censored time) (years) 554 3.07 1.04 .44 2.91 5.98

Freq. %
Censorship 554 100.00
– Alive 469 84.66
– Death 85 15.34

3.3 Models and Inference Procedure

3.3.1 Model formulation and notation

Longitudinal measurements are considered as the realizations of a certain marker pro-

cess at finite time points, and we use Y (t) to denote the value of such a marker process

at time t. We let T be survival time, and suppose that the survival time T is possibly

right censored and the right-censoring time is missing at random. Suppose a set of n

subjects are followed over an interval [0, τ], where τ is the study end time. Denote

bi, i = 1, . . . , n, as a vector of subject-specific random effects of dimension db and bi’s

are mutually independent and identically distributed from a multivariate normal with

mean zero and covariance matrix Σb.

Given the random effects bi, the observed covariates, and the observed outcome

history till time t, we assume that the longitudinal outcome Yi(t) at time t for subject
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i follows a distribution from the exponential family with density

exp{yiηi(t) −B(ηi(t))
A(Di(t;φ))

+C(yi,Di(t;φ))} (3.1)

with µi(t) = E(Yi(t)∣bi) = B′(ηi(t)) and vi(t) = Var(Yi(t)∣bi) = B′′(ηi(t))A(Di(t;φ)),

satisfying

ηi(t) = g(µi(t)) =X i(t)β + X̃ i(t)bi

and vi(t) = v(µi(t))A(Di(t;φ)), where g(⋅) and v(⋅) are known link and variance func-

tions respectively, and X i(t) and X̃ i(t) are the row vectors of the observed covariates

for subject i, and β is a column vector of coefficients for X i(t). The random effect

bi is allowed to differ for different individuals. Additionally, X i(t) and X̃ i(t) can be

completely different or share some components, and may include dummy variables for

different strata.

Given the random effects bi, the observed covariates, and the observed survival

history before time t, the conditional hazard rate function for the survival time Ti of

subject i is assumed to follow a stratified multiplicative hazards model

λs(t) exp{Z̃i(t)(ψ ○ bi) +Zi(t)γ}, (3.2)

where Zi(t) and Z̃i(t) are the row vectors of the observed covariates and may share

some components, ψ is a vector of parameters of the coefficients for random effects,

λs(t) is the s-th stratum baseline hazard rate function, and γ is a column vector of

coefficients for Zi(t). Note that Zi(t) and Z̃i(t) do not include dummy variables for

strata since baseline hazard rate is stratum-specific. Here, for any vectors a1 and a2 of

the same dimension, a1 ○ a2 denotes the component-wise product. In addition, X̃ i(t)

and Z̃i(t) have the same dimensions as bi’s.
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Under models (3.1) and (3.2), the two outcomes Y (t) and T are independent con-

ditional on the covariates and random effect. The parameter ψ in model (3.2) charac-

terizes the dependence between the longitudinal outcomes and the survival time due to

latent random effect: ψ = 0 means that the dependence between the survival time and

longitudinal responses are not due to these latent variables; ψ ≠ 0 means that such de-

pendence may be due to these latent variables. In other words, ψ > 0 implies that there

may be some latent factors increasing both the longitudinal outcomes and the risk of

survival endpoint simultaneously while ψ < 0 implies that some latent factors causing

the increment of longitudinal outcomes may decrease the risk of survival endpoint.

We let ni be the number of the observed longitudinal measurements for subject

i, and assume that ni and the observation times for longitudinal measurements are

not informative about parameters of interest. That is, the distributions of ni and the

observation times for longitudinal measurements are independent of the parameters of

interest in this joint model. The observed data from n subjects are (ni, Yij,X ij, X̃ ij),

j=1, . . . , ni, i=1, . . . , n, and (Vi,∆i, Si,{(Zi(t), Z̃i(t)) ∶ t≤Vi}), i=1, . . . , n, where for

subject i, (Yij,X ij, X̃ ij) is the j-th observation of (Yi(t),X i(t), X̃ i(t)), Ci is the right-

censoring time, Vi = min(Ti,Ci), Si denotes the stratum, and ∆i = I(Ti ≤ Ci).

Our goal is to estimate and make inferences on the parameters θ=(βT,φT,Vec(Σb)T,

ψT,γT )T and the baseline cumulative hazard functions with S strata, Λ(t)=(Λ1(t), . . . ,

ΛS(t))T , where Λs(t) = ∫
t

0 λs(u)du, s = 1, . . . , S. Vec(⋅) operator creates a column vector

from a matrix by stacking the diagonal and upper-triangle elements of the matrix.

3.3.2 Inference procedure

For all n subjects, we write Y =(Y T
1 , . . . ,Y

T
n)T, Y i =(Yi1, . . . , Yini)T, V =(V1, . . . , Vn)T,

and b=(bT1 , . . . ,bTn)T. Then, the likelihood function of the complete data (Y ,V ,b) for
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(θ,Λ) has the form,

Lc(θ,Λ;Y ,V ,b)

=
S

∏
s=1

n

∏
i=1

[f(Y i, Vi∣bi)f(bi)]
I(Si=s) =

n

∏
i=1

f(Y i∣bi)(
S

∏
s=1

[f(Vi∣bi)]
I(Si=s))f(bi)

=
n

∏
i=1

exp{
ni

∑
j=1

[
Yij(X ijβ + X̃ ijbi) −B(β;bi)

A(Di(tj;φ))
+C(Yij;Di(tj;φ))]}

× (
S

∏
s=1

[λs(Vi)∆i exp{∆i[Z̃i(Vi)(ψ ○ bi) +Zi(Vi)γ]

−∫
Vi

0
exp{Z̃i(u)(ψ ○ bi) +Zi(u)γ}dΛs(u)}]

I(Si=s)

)

× (2π)−db/2∣Σb∣−1/2 exp{ − 1

2
bTi Σ−1

b bi},

and the full likelihood function of the observed data (Y ,V ) for the parameter (θ,Λ)

is expressed as

Lf(θ,Λ;Y ,V ) = ∫b
Lc(θ,Λ;Y ,V ,b)db. (3.3)

The proposed estimation method is to calculate the maximum likelihood estimates for

(θ,Λ(t)) over a set in which θ is in a bounded set and Λs(t) of Λ(t) belongs to a space

consisting of all the increasing functions with Λs(0) = 0, s = 1, . . . , S. We let each Λs(t)

of Λ(t), s = 1, . . . , S, be an increasing and right-continuous step function with jumps

only at the observed failure times belonging to stratum s.

Denote (θ̂, Λ̂) as the maximum likelihood estimator for (θ,Λ). We let lc(θ,Λ;Y ,V ,

b) = log{Lc(θ, Λ;Y ,V ,b)} and lf(θ,Λ;Y ,V ) = log{Lf(θ,Λ;Y ,V )}, and denote

Uc(θ,Λ;Y ,V ,b) and Uf(θ,Λ;Y ,V ) as the gradient vectors of the corresponding log-

likelihood functions respectively. The EM-algorithm is used for calculating the maxi-

mum likelihood estimates. In the EM-algorithm, bi is considered as missing data for

i = 1, . . . , n. Therefore, the M-step solves the conditional score equations from complete
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data given observations, where the conditional expectation can be evaluated in E-step.

The procedure involves iterating between the following two steps until convergence is

achieved: at the k-th iteration,

(1) E-step Calculate the conditional expectations of some known functions of bi,

needed in the next M-step, for subject i with Si=s given observations and the current

estimate (θ(k),Λ
(k)
s ). To do this, denote q(bi) and E[q(bi)∣θ(k),Λ

(k)
s ] as a known func-

tion and its conditional expectation, respectively. By some algebra, E[q(bi)∣θ(k),Λ
(k)
s ]

can be expressed in terms of a vector of new variables zG following a multivariate

Gaussian distribution with mean zero. The conditional expection is calculated using

the Gauss-Hermite Quadrature numerical approximation with 20 quadrature points.

(2) M-step After differentiating the conditional expectation of complete data log-

likelihood function given observations and the current estimate (θ(k),Λ(k)), the up-

dated estimator (θ(k+1), Λ(k+1)) can be obtained as follows: (β(k+1),φ(k+1)) solves the

conditional expectation of complete data log-likelihood score equation using one-step

Newton-Raphson iteration,

E [Uc(β(k+1),φ(k+1)∣θ(k),Λ(k))] = 0,

where Uc(β,φ;Y ,V ,b) is the first partial derivative of the complete data log-likelihood

lc(θ,Λ;Y ,V ,b) with respect to (β,φ);

Σ
(k+1)
b = 1

n

n

∑
i=1

S

∑
s=1

E [bibTi ∣θ(k),Λ
(k)
s ]I(Si = s);

(ψ(k+1),γ(k+1)) solves the partial likelihood score equation from the full data using one-

step Newton-Raphson iteration,
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n

∑
i=1

S

∑
s=1

∆i

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛
⎜⎜
⎝

E[(Z̃T

i (Vi) ○ bi)∣θ(k),Λ
(k)
s ]

Zi

⎞
⎟⎟
⎠

−

∑l∶Vl≥Vi

⎛
⎜⎜
⎝

E[(Z̃T

l (Vi) ○ bl) exp{Z̃ l(Vi)(ψ○bl)+Z l(Vi)γ∣θ(k),Λ
(k)
s ]

E[Z l(Vi) exp{Z̃ l(Vi)(ψ ○ bl)+Z l(Vi)γ}∣θ(k),Λ
(k)
s ]

⎞
⎟⎟
⎠
I(Sl=s)

∑l∶Vl≥Vi
E[exp{Z̃ l(Vi)(ψ ○ bl)+Z l(Vi)γ}∣θ(k),Λ

(k)
s ]I(Sl=s)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

I(Si=s)

= 0;

Λ
(k+1)
s is obtained as an empirical function which has jumps only at the observed failure

time,

Λ
(k+1)
s (t) = ∑

i∶Vi≤t

∆iI(Si = s)
∑l∶Vl≥Vi E [ exp{Z̃ l(Vi)(ψ(k+1) ○ bl) +Z l(Vi)γ(k+1)}∣θ(k),Λ

(k)
s ]I(Sl = s)

.

The expressions of the conditional expectation and the conditional score equations

calculated in the E- and M-steps for binary and Poisson longitudinal outcomes with

survival time are given respectively in Sections 3.3.3.1 and 3.3.3.2.

The observed information matrix is adopted to obtain the variance estimate for

(θ̂, Λ̂(t)). For the numerical calculation of the observed information matrix, we con-

sider Λs{Vi}, the jump size of Λs(t) at Vi belonging to stratum s for which ∆i = 1, in-

stead of λs(Vi). That is, Λ{⋅}=(ΛT
1{⋅}, . . . ,ΛT

S{⋅})T with Λs{⋅}=(Λ{Ts1}, . . . ,Λ{Tsms})T

for ms failure times among ns subjects (0 ≤ ms ≤ ns) of the s-th stratum, s = 1, . . . , S.

Then, by the Louis (1982) formula,
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I(θ,Λ{⋅};Y ,V ) = Eb∣Y,V [Bc(θ,Λ{⋅};Y ,V ,b)∣Y ,V ]

− Eb∣Y,V [Uc(θ,Λ{⋅};Y ,V ,b)UT
c (θ,Λ{⋅};Y ,V ,b)∣Y ,V ]

+ Eb∣Y,V [Uc(θ,Λ{⋅};Y ,V )]Eb∣Y,V [UT
c (θ,Λ{⋅};Y ,V )],

where Bc(θ,Λ{⋅};Y ,V ,b) is the negative of the second derivative matrix for the com-

plete data log-likelihood lc(θ,Λ{⋅};Y ,V ,b). The variance of
√
n θ̂ is asymptotically

equal to the corresponding sub-matrix of the inverse of the calculated observed infor-

mation matrix. The variance of Λ̂(t) is obtained using the estimated variances and

covariances corresponding to Λ{⋅} from the inverse of the observed information matrix

where T ≤ t at the observed failures. In the EM-algorithm for variance estimation, we

evaluate these conditional expectations only at the last iteration of the EM procedure

for point estimation, where Uf is zero.

3.3.3 EM algorithm – examples

3.3.3.1 Binary longitudinal data and survival time

(1) E-step : For binary longitudinal outcomes and survival time, we calculate the

conditional expectation of q(bi) for subject i with Si=s given the observations and the

current estimate (θ(k),Λ
(k)
s ) for some known function q(⋅). The conditional expectation

denoted by E[q(bi)∣θ(k),Λ
(k)
s ] can be expressed as the following:

Given the current estimate (θ(k),Λ
(k)
s ),

E[q(bi)∣θ(k),Λ
(k)
s ] = ∫zG q(R(zG))K(zG) exp{−zTGzG}dzG

∫zGK(zG) exp{−zTGzG}dzG
, (3.4)
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where

R(zG) = (Σ(k)
b )

1
2 [

√
2zG + (Σ(k)

b )
1
2(

ni

∑
j=1

yijX̃
T

ij +∆i(Z̃
T

i (Vi) ○ψ(k)))],

(3.5)

K(zG) = exp{−
ni

∑
j=1

log(1+eXijβ
(k)
+
̃XijR(zG))−∫

Vi

0
e
̃Z i(u)(ψ(k)○R(zG))+Z i(u)γ(k)dΛ

(k)
s (u)},

(Σ(k)
b )

1
2 is an unique non-negative square root of Σ

(k)
b (i.e. (Σ(k)

b )
1
2 × (Σ(k)

b )
1
2 = Σ

(k)
b ),

and zG follows a multivariate Gaussian distribution with mean zero.

(2) M-step : Since the parameter φ is set to 1 for logistic distribution, we estimate only

β in the longitudinal process. β(k+1) solves the conditional expectation of complete data

log-likelihood score equation, using one-step Newton-Raphson iteration,

E [Uc(β(k+1)∣θ(k),Λ(k))]

=
n

∑
i=1

ni

∑
j=1

(yij−
S

∑
s=1

E[
exp{X ijβ

(k+1)+X̃ ijbi}
1+exp{X ijβ

(k+1)+X̃ ijbi}
∣θ(k),Λ

(k)
s ]I(Si=s))XT

ij = 0,

where Uc(β;Y ,V ,b) is the first partial derivative of the complete data log-likelihood

lc(θ,Λ;Y ,V ,b) with respect to β. Σ
(k+1)
b , (ψ(k+1),γ(k+1)), and Λ

(k+1)
s have the same

expressions as in Section 3.3.2.

3.3.3.2 Poisson longitudinal data and survival time

(1) E-step : For Poisson longitudinal outcomes and survival time, given the current

estimate (θ(k),Λ
(k)
s ), the conditional expectation denoted by E[q(bi)∣θ(k),Λ

(k)
s ] can be

expressed as in (3.4) with R(zG) defined as in (3.5),

K(zG) = exp{ −
ni

∑
j=1

eX ijβ
(k)

+
̃X ijR(zG) − ∫

Vi

0
e
̃Z i(u)(ψ(k)○R(zG))+Z i(u)γ(k)dΛ

(k)
s (u)},
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and zG follows a multivariate Gaussian distribution with mean zero.

(2) M-step : Since the parameter φ is set to 1 for Poisson distribution, we estimate

only β in the longitudinal process. β(k+1) solves the conditional expectation of complete

data log-likelihood score equation, using one-step Newton-Raphson iteration,

E [Uc(β(k+1)∣θ(k),Λ(k))]

=
n

∑
i=1

ni

∑
j=1

(yij−
S

∑
s=1

E [ exp{Xijβ
(k+1)+X̃ijbi}∣θ(k),Λ

(k)
s ]I(Si=s))XT

ij = 0,

where Uc(β;Y ,V ,b) is the first partial derivative of the complete data log-likelihood

lc(θ,Λ;Y ,V ,b) with respect to β. Σ
(k+1)
b , (ψ(k+1),γ(k+1)), and Λ

(k+1)
s have the same

expressions as in Section 3.3.2.

3.4 Asymptotic Properties

To study the asymptotic properties of the proposed estimator (θ̂, Λ̂(t)) with θ̂ =

(β̂
T
, φ̂

T
,Vec(Σ̂b)T , ψ̂

T
, γ̂T )T and Λ̂(t) = (Λ̂1(t), . . . , Λ̂S(t))T , we assume the follow-

ing conditions below.

(A1) The true parameter θ0 = (βT0 ,φT0 ,Vec(Σb0)T ,ψT
0 ,γ

T
0 )T belongs to a known com-

pact set Θ which lies in the interior of the domain for θ.

(A2) The true baseline hazard rate function λ0(t) = (λ10(t), . . . , λS0(t)) is bounded

and positive in [0, τ], where τ is the time of study end.

(A3) For the censoring time C, P (C ≥ τ ∣Z, Z̃,X, X̃) = P (C = τ ∣Z, Z̃,X, X̃) > 0.

(A4) For the number of observed longitudinal measurements per subject nN , P (nN >

db∣X, X̃) > 0 with probability one, and P (nN ≤ n0) = 1 for some integer n0.

(A5) Both XTX and X̃
T
X̃ are full rank with positive probability. Moreover, if there
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exist constant vectors c1 and c2 such that, with positive probability, for any t,

Z(t)c1 = α0(t) and Z̃(t) ○ c2 = 0 for a deterministic function α0(t), then c1 = 0,

c2 = 0, and α0(t) = 0.

Assumption (A3) means that, by the end of the study, some proportion of the sub-

jects will still be alive and censored at the study end time τ , and thus the maximum

right censoring time is equal to τ . Assumption (A4) implies that some proportion of

the subjects have at least db longitudinal observations, and there exists an integer n0

such that P (nN ≤ n0) = 1. Consistency and asymptotic distribution of the proposed

estimator are summarized in the following two theorems. We will present outlines of

the proofs here. The detailed technical proofs are given in Section 3.5.

Theorem 3.1. Under the assumptions (A1)∼(A5), as n→∞, the maximum likelihood

estimator (θ̂, Λ̂(t)) is consistent under the product norm of the Euclidean distance and

the supreme norm on [0, τ]. That is, ∣∣θ̂ − θ0∣∣ + supt∈[0,τ] ∣∣Λ̂(t) − Λ0(t)∣∣ Ð→ 0, a.s.,

where ∣∣Λ̂(t) −Λ0(t)∣∣ = ∑S
s=1 ∣Λ̂s(t) −Λs0(t)∣.

Consistency of Theorem 3.1 can be proved by verifying the following three steps:

First, we show that the maximum likelihood estimate (θ̂, Λ̂) exists. This can be

achieved by showing that the jump size Λs{Vi}, with ∆i = 1, is finite. Second, we

show that, with probability one, Λ̂s(τ), s = 1, . . . , S, are bounded as n → ∞. This can

be proved by showing log Λ̂s(τ) is bounded. Third, given that the second step is true,

by Helly’s selection theorem (van der Vaart, 1998), we can choose a subsequence of

Λ̂s(t) such that Λ̂s(t) weakly converges to some right-continuous monotone function

Λ∗
s(t) with probability one. For any sub-sequence, we can find a further sub-sequence,

still denoted as θ̂, such that θ̂ → θ∗. Using empirical process formulation and rele-

vant Donsker properties with parameter identifiability, we can show that θ∗ = θ0 and

Λ∗
s =Λs0, s = 1,. . . ,S. Based on these results, we can conclude that, with probability
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one, θ̂ converges to θ0 and Λ̂s(t) converges to Λs0(t) in [0, τ], s= 1,. . . ,S. Moreover,

since Λs0(t) is right-continuous in [0,τ], the latter can be strengthened to uniform

convergence; that is, supt∈[0,τ] ∣∣Λ̂(t) −Λ0(t)∣∣ → 0 almost surely.

Theorem 3.2. Under the assumptions (A1)∼(A5), as n → ∞,
√
n((θ̂ − θ0)T , (Λ̂(t) −

Λ0(t))T )
T

weakly converges to a Gaussian random element in Rdθ × `∞[0, τ] × ⋯ ×

`∞[0, τ], and the estimator θ̂ is asymptotically efficient, where dθ is the dimension of

θ and `∞[0, τ] is the normed space containing all the bounded functions in [0, τ].

Once consistency is held, the conditions of Theorem 3.3.1 in van der Vaart and

Wellner (1996), which implies the asymptotic normality of Theorem 3.2, are verified

via the tools of empirical processes. These conditions are restated in Theorem 4 of

Parner (1998). The smooth conditions in Theorem 4 of Parner (1998) can be verified

using the regularity of the log-likelihood function in terms of model parameters and the

Donsker properties of the score operators. In particular, in the invertibility condition

of the information operator in Theorem 4 of Parner (1998), the verification of the one-

to-one property of the information operator is specific to our proposed models and

requires non-trivial work. Therefore, by Theorem 3.3.1 of van der Vaart and Wellner

(1996),
√
n(θ̂−θ0, Λ̂s−Λs0) weakly converges to a Gaussian process, and by Proposition

3.3.1 in Bickel et al. (1993), θ̂ is an efficient estimator for θ0.

3.5 Technical Details – Proofs for Asymptotic Properties

In this section, we present the detailed technical proofs for the asymptotic proper-

ties of the proposed estimator (θ̂, Λ̂(t)) with θ̂ = (β̂
T
, φ̂

T
,Vec(Σ̂b)T , ψ̂

T
, γ̂T )T and

Λ̂(t) = (Λ̂1(t), . . . , Λ̂S(t))T . Meanwhile, the supplementary proofs needed to prove the

asymptotic properties are provided in Section 3.5.3. From the full likelihood function
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of observed data (Y ,V ) for (θ,Λ),

Lf(θ,Λ;Y ,V ) = ∫b
Lc(θ,Λ;Y ,V ,b)db

=
n

∏
i=1
∫b

exp{
ni

∑
j=1

[
Yij(X ijβ + X̃ ijbi) −B(β;bi)

A(Di(tj;φ))
+C(Yij;Di(tj;φ))]}

× (
S

∏
s=1

[λs(Vi)∆i exp{∆i[Z̃i(Vi)(ψ ○ bi) +Zi(Vi)γ]

−∫
Vi

0
exp{Z̃i(u)(ψ ○ bi) +Zi(u)γ}dΛs(u)}]

I(Si=s)

)

× (2π)−db/2∣Σb∣−1/2 exp{ − 1

2
bTi Σ−1

b bi}db,

we have the observed log-likelihood function

n

∑
i=1

log [∫b
exp{

ni

∑
j=1

[
Yij(X ijβ + X̃ ijbi) −B(β;bi)

A(Di(tj;φ))
+C(Yij;Di(tj;φ))]}

× (
S

∏
s=1

[λs(Vi)∆i exp{∆i[Z̃i(Vi)(ψ ○ bi) +Zi(Vi)γ]

−∫
Vi

0
exp{Z̃i(u)(ψ ○ bi) +Zi(u)γ}dΛs(u)}]

I(Si=s)

)

× (2π)−db/2∣Σb∣−1/2 exp{ − 1

2
bTi Σ−1

b bi}db].

Then, we obtain the following modified object function by replacing λs(Vi) with Λs{Vi}

in the above expression where Λs{Vi} is the jump size of Λs(t) at the observed time Vi

with ∆i = 1,

ln(θ,Λ) =
n

∑
i=1

log [∫b
exp{

ni

∑
j=1

[
Yij(X ijβ + X̃ ijbi) −B(β;bi)

A(Di(tj;φ))
+C(Yij;Di(tj;φ))]}

× (
S

∏
s=1

[Λs{Vi}∆i exp{∆i[Z̃i(Vi)(ψ ○ bi) +Zi(Vi)γ]

−∫
Vi

0
exp{Z̃i(u)(ψ ○ bi) +Zi(u)γ}dΛs(u)}]

I(Si=s)

)
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× (2π)−db/2∣Σb∣−1/2 exp{ − 1

2
bTi Σ−1

b bi}db], (3.6)

and (θ̂, Λ̂) maximizes ln(θ,Λ) over the space {(θ,Λ) ∶ θ ∈ Θ,Λ ∈ Wn × Wn⋯ ×

Wn}, where Wn consists of all the right-continuous step functions only; that is, Λ =

(Λ1, . . . ,ΛS)T , s = 1, . . . , S,Λs ∈ Wn. For the proofs of both Theorem 3.1 and Theorem

3.2, the modified object function is used in the place of the observed log-likelihood

function.

3.5.1 Proof of consistency

Consistency can be proved by verifying the following three steps: First, we show the

maximum likelihood estimate (θ̂, Λ̂) exists. Second, we show that, with probability

one, Λ̂s(τ), s = 1, . . . , S, are bounded as n → ∞. Third, if the second step is true, by

Helly’s selection theorem (p9 of van der Vaart, 1998), we can choose a subsequence of

Λ̂s such that Λ̂s weakly converges to some right-continuous monotone function Λ∗
s with

probability one; that is, the measure given by µs([0, t]) = Λ̂s(t) for t ∈ [0, τ] weakly

converges to the measure given by µ∗s([0, t]) = Λ∗
s(t). By choosing a sub-sequence, we

can further assume θ̂ → θ∗. Thus, in this third step, we show θ∗ = θ0 and Λ∗
s = θs0,

s = 1, . . . , S.

Once the three steps are completed, we can conclude that, with probability one,

θ̂ converges to θ0 and Λ̂s converges to Λs0 in [0, τ], s = 1, . . . , S. However, since Λs0

is continuous in [0, τ], the latter can be strengthened to uniform convergence; that is,

supt∈[0,τ] ∣∣Λ̂(t)−Λ0(t)∣∣ → 0 almost surely. Then, the proof of Theorem 3.1 will be done.

In the first step, we will show the existence of the maximum likelihood estimate

(θ̂, Λ̂). Since θ belongs to a compact set Θ by the assumption (A1), it is sufficient to

show that Λs{Vi}, the jump size of Λs at Vi for which ∆i = 1, is finite. Since, for each
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subject i with ∆i = 1,

Λs{Vi} exp{∫
Vi

0
exp{Z̃i(t)(ψ ○ b) +Zi(t)γ}dΛs(t)}

≤ exp{ − 2(Z̃i(Vi)(ψ ○ b) +Zi(Vi)γ)}(Λs{Vi})
−1
,

we have that, from (3.6),

ln(θ,Λ) ≤
n

∑
i=1

log∫b
[ exp{

ni

∑
j=1

[
Yij(X ijβ + X̃ ijb)
A(Di(tj;φ))

+C(Yij;Di(tj;φ))]}

× (
S

∏
s=1

[(Λs{Vi})
−∆i

exp{ −∆i[Z̃i(Vi)(ψ ○ b) +Zi(Vi)γ]}]
I(Si=s)

)

× (2π)−db/2∣Σb∣−1/2 exp{ − 1

2
bTΣ−1

b b}]db.

Thus, if Λs{Vi} → ∞ for some i with ∆i = 1, then ln(θ,Λ) → −∞, which is contradictory

to that ln(θ,Λ) is bounded. Therefore, we conclude that Λs{⋅}, the jump size of Λs for

stratum s, must be finite. By the conclusion and the assumption (A1), the maximum

likelihood estimate (θ̂, Λ̂) exists.

In the second step, we will show that Λ̂s(τ) is bounded as n goes to infinity with

probability one. We define ζ̂s = log Λ̂s(τ) and rescale Λ̂s by the factor eζ̂s . Then, we

let Λ̃s denote the rescaled function; that is, Λ̃s(t) = Λ̂s(t)/Λ̂s(τ) = Λ̂s(t)e−ζ̂s . thus,

Λ̃s(τ) = 1. To prove this second step, it is sufficient to show ζ̂s is bounded. After some

algebra in (3.6), we obtain that, for any Λ ∈W ×W⋯×W,

n−1ln(θ̂,Λ) = 1

2

n

∑
i=1

[
ni

∑
j=1

(
YijX ijβ̂

A(Di(tj; φ̂))
+C(Yij;Di(tj; φ̂))) +

S

∑
s=1

∆i(Zi(Vi)γ̂)I(Si=s)

− 1

2
log {(2π)db ∣Σ̂b∣} +

1

2
MT

iM i −
1

2
log ∣Σ̂b∣ +

S

∑
s=1

∆iI(Si=s) log Λs{Vi}

+ log∫b0

[ exp{ − 1

2
bT0 b0 −

ni

∑
j=1

B(β̂;b0)
A(Di(tj; φ̂))
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−
S

∑
s=1

I(Si = s)∫
Vi

0
eQ1i(t,b0,

̂θ)dΛs(t)}]db0],

where M i = Σ̂
1/2

b (
ni

∑
j=1

YijX̃ ij

A(Di(tj; φ̂))
+

S

∑
s=1

I(Si = s)∆i(Z̃i(Vi) ○ ψ̂
T ))

T

,

b0 = Σ
−1/2
b b −M i,

and Q1i(t,b0, θ̂) = (Z̃i(t) ○ ψ̂T )Σ̂
1/2

b b0 +Zi(t)γ̂ + (Z̃i(t) ○ ψ̂T )Σ̂
1/2

b M i.

Thus, since 0 ≤ n−1ln(θ̂, Λ̂) − n−1ln(θ̂, Λ̃) where Λ̂ = e
̂ξ ○ Λ̃, it follows that

0 ≤ 1

n

n

∑
i=1

S

∑
s=1

∆iI(Si = s)( log eζ̂sΛ̃s − log Λ̃s)

+ 1

n

n

∑
i=1

log∫b0

[ exp{ − 1

2
bT0 b0 −

ni

∑
j=1

B(β̂;b0)
A(Di(tj; φ̂))

−
S

∑
s=1

I(Si = s)eζ̂s ∫
Vi

0
eQ1i(t,b0,

̂θ)dΛ̃s(t)}]db0

− 1

n

n

∑
i=1

log∫b0

[ exp{ − 1

2
bT0 b0 −

ni

∑
j=1

B(β̂;b0)
A(Di(tj; φ̂))

−
S

∑
s=1

I(Si = s)∫
Vi

0
eQ1i(t,b0,

̂θ)dΛ̃s(t)}]db0. (3.7)

According to the assumption (A2), there exist some positive constants C1, C2 and C3

such that ∣Q1i(t,b0, θ̂)∣ ≤ C1∣∣b0∣∣ +C2∣∣Y i∣∣ +C3. By denoting b0 as a vector of variables

following a standard multivariate normal distribution, from concavity of the logarithm

function, in the third term of (3.7),

log∫b0

[ exp{ − 1

2
bT0 b0 −

ni

∑
j=1

B(β̂;b0)
A(Di(tj; φ̂))

−
S

∑
s=1

I(Si=s)∫
Vi

0
eQ1i(t,b0,

̂θ)dΛ̃s(t)}]db0

= (2π)db/2 log Eb0
[ exp{ −

ni

∑
j=1

B(β̂;b0)
A(Di(tj; φ̂))

−
S

∑
s=1

I(Si=s)∫
Vi

0
eQ1i(t,b0,

̂θ)dΛ̃s(t)}]

≥ (2π)db/2 log Eb0
[ exp{ −

ni

∑
j=1

B(β̂;b0)
A(Di(tj; φ̂))

− eC1∣∣b0∣∣+C2∣∣Y i∣∣+C3}]
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≥ (2π)db/2 Eb0
[ −

ni

∑
j=1

B(β̂;b0)
A(Di(tj; φ̂))

− eC1∣∣b0∣∣+C2∣∣Y i∣∣+C3]

= − eC2∣∣Y i∣∣+C4 −C5,

where C4 and C5 are positive constants. Then, since it is easily verified that Eb0
[∑ni

j=1

B(
̂β;b0)

A(Di(tj ;φ̂))
+eC1∣∣b0∣∣+C2∣∣Y i∣∣+C3] < ∞, by the strong law of large numbers and the assump-

tion (A4), the third term of (3.7)

− 1

n

n

∑
i=1

log∫b0

[ exp{ − 1

2
bT0 b0 −

ni

∑
j=1

B(β̂;b0)
A(Di(tj; φ̂))

−
S

∑
s=1

I(Si=s)∫
Vi

0
eQ1i(t,b0,

̂θ)dΛ̃s(t)}]db0

≤ 1

n

n

∑
i=1

(eC2∣∣Y i∣∣+C4 +C5) ≜ C6

can be bounded by some constant C6 from above. Then (3.7) becomes

0 ≤ 1

n

n

∑
i=1

S

∑
s=1

∆iI(Si = s)ζ̂s

+ 1

n

n

∑
i=1

log∫b0

[ exp{ − 1

2
bT0 b0 −

ni

∑
j=1

B(β̂;b0)
A(Di(tj; φ̂))

−
S

∑
s=1

eζ̂s ∫
Vi

0
eQ1i(t,b0,

̂θ)dΛ̃s(t)}]db0 +C6

≤ 1

n

n

∑
i=1

S

∑
s=1

∆iI(Si = s)ζ̂s

+ 1

n

n

∑
i=1

I(Vi = τ) log∫b0

[ exp{ − 1

2
bT0 b0 −

ni

∑
j=1

B(β̂;b0)
A(Di(tj; φ̂))

−
S

∑
s=1

eζ̂s ∫
τ

0
eQ1i(t,b0,

̂θ)dΛ̃s(t)}]db0

+ 1

n

n

∑
i=1

I(Vi ≠ τ) log∫b0

[ exp{ − 1

2
bT0 b0 −

ni

∑
j=1

B(β̂;b0)
A(Di(tj; φ̂))

}]db0 +C6

≤ 1

n

n

∑
i=1

S

∑
s=1

∆iI(Si = s)ζ̂s

+ 1

n

n

∑
i=1

I(Vi = τ) log∫b0

[ exp{ − 1

2
bT0 b0 −

ni

∑
j=1

B(β̂;b0)
A(Di(tj; φ̂))
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−
S

∑
s=1

eζ̂s ∫
τ

0
eQ1i(t,b0,

̂θ)dΛ̃s(t)}]db0 +C7, (3.8)

where C7 is a constant. On the other hand, since, for any Γ ≥ 0 and x > 0, Γ log (1 +

x/Γ) ≤ Γx/Γ = x, we have that e−x ≤ (1+x/Γ)−Γ
. Therefore, in the second term of (3.8),

exp{ − 1

2
bT0 b0 −

ni

∑
j=1

B(β̂;b0)
A(Di(tj; φ̂))

−
S

∑
s=1

eζ̂s ∫
τ

0
eQ1i(t,b0,

̂θ)dΛ̃s(t)}

≤ exp{ − 1

2
bT0 b0 −

ni

∑
j=1

B(β̂;b0)
A(Di(tj; φ̂))

} × {1 + ∑
S
s=1 I(Si = s)eζ̂s ∫

τ

0 e
Q1i(t,b0,

̂θ)dΛ̃s(t)
Γ

}
−Γ

≤ ΓΓ × exp{ − 1

2
bT0 b0 −

ni

∑
j=1

B(β̂;b0)
A(Di(tj; φ̂))

} × {
S

∑
s=1

I(Si = s)eζ̂s ∫
τ

0
eQ1i(t,b0,

̂θ)dΛ̃s(t)}
−Γ

= ΓΓ × exp{ − 1

2
bT0 b0 −

ni

∑
j=1

B(β̂;b0)
A(Di(tj; φ̂))

− Γ
S

∑
s=1

I(Si = s)eζ̂s}

× {∫
τ

0
eQ1i(t,b0,

̂θ)dΛ̃s(t)}
−Γ

. (3.9)

Since Q1i(t,b0, θ̂) ≥ −C1∣∣b0∣∣ −C2∣∣Y i∣∣ −C3,

∫
τ

0
eQ1i(t,b0,

̂θ)dΛ̃s(t) ≥ ∫
τ

0
e−C1∣∣b0∣∣−C2∣∣Y i∣∣−C3dΛ̃s(t)

= e−C1∣∣b0∣∣−C2∣∣Y i∣∣−C3 × {Λ̃s(τ) − Λ̃s(0)}

= e−C1∣∣b0∣∣−C2∣∣Y i∣∣−C3 .

Thus, in (3.9), {∫
τ

0
eQ1i(t,b0,

̂θ)dΛ̃s(t)}
−Γ

≤ eC1Γ∣∣b0∣∣+C2Γ∣∣Y i∣∣+C3Γ,

and (3.9) ≤ ∫b0

[ΓΓ × exp{ − 1

2
bT0 b0 −

ni

∑
j=1

B(β̂;b0)
A(Di(tj; φ̂))

− Γ
S

∑
s=1

I(Si = s)eζ̂s

+C1Γ∣∣b0∣∣ +C2Γ∣∣Y i∣∣ +C3Γ}]db0.
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Therefore, (3.8) gives that

0 ≤ C7 +
1

n

n

∑
i=1

∆i(
S

∑
s=1

ζ̂s) +
1

n

n

∑
i=1

I(Vi = τ) log{ΓΓ × exp{ − Γ
S

∑
s=1

I(Si = s)ζ̂s}

× ∫b0

[ exp{ − 1

2
bT0 b0 −

ni

∑
j=1

B(β̂;b0)
A(Di(tj; φ̂))

+C1Γ∣∣b0∣∣ +C2Γ∣∣Y i∣∣ +C3Γ}]db0}

= C7 +
1

n

n

∑
i=1

∆i(
S

∑
s=1

ζ̂s) −
Γ

n

n

∑
i=1

I(Vi = τ)(
S

∑
s=1

ζ̂s) +C8(Γ), (3.10)

where C8(Γ) is a deterministic function of Γ. For the s-th stratum, (3.10) is that

0 ≤ C7 +
n

∑
i=1

∆iI(Si = s)ζ̂s −
Γ

n

n

∑
i=1

I(Vi = τ)I(Si = s)ζ̂s +C8(Γ).

By the strong law of large numbers, ∑n
i=1 I(Vi = τ)I(Si = s)/n Ð→ P (Vi = τ, Si = s) > 0.

Then, we can choose Γ large enough such that ∑n
i=1 ∆iI(Si = s)/n ≤ (Γ/2n)∑n

i=1 I(Vi =

τ)I(Si = s). Thus, we obtain that

0 ≤ C7 +C8(Γ) − Γ

2n

n

∑
i=1

I(Vi = τ)I(Si = s)ζ̂s.

In other words,

ζ̂s ≤ (C7 +C8(Γ))2n
Γ∑n

i=1 I(Vi = τ)I(Si = s)
Ð→ (C7 +C8(Γ))2

ΓP (Vi = τ, Si = s)
.

If we denote Bs0 = exp{2(C7 +C8(Γ))/(ΓP (Vi = τ, Si = s))}, we conclude that Λ̂s(τ) ≤

Bs0, s = 1, . . . , S. Note that the above arguments hold for every sample in the proba-

bility space except a set with zero probability. Therefore, we have shown that, with

probability one, Λ̂s(τ) is bounded for any sample size n.

In the third step, the goal of this step is to show that, if θ̂ → θ∗ and Λ̂s weakly

converges to Λ∗ with probability one, then θ∗ = θ0 and Λ∗
s = θs0, s = 1, . . . , S. We

set some preliminaries as the followings: For convenience, we omit the index i for
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subject and use O to abbreviate the observed statistics (Y ,X, X̃, V,∆, nN , s) and

{Z(t), Z̃(t),0 ≤ t ≤ V } for a subject. By dropping (λs(V ))∆ from the complete data

likelihood function, we define that

G(b,O;θ,Λs) = exp{
nN

∑
j=1

[
Yj(Xjβ + X̃ ib) −B(β;b)

A(D(tj;φ))
+C(Yj;D(tj;φ))]}

× exp{∆i[Z̃(V )(ψ ○ b) +Z(V )γ]

−∫
V

0
exp{Z̃(t)(ψ ○ b) +Z(t)γ}dΛs(t)}

×(2π)−db/2∣Σb∣−1/2 exp{ − 1

2
bTΣ−1

b b},

and Q(v,O;θ,Λs) = ∫bG(b,O;θ,Λs) exp{Z̃(v)(ψ ○ b) +Z(v)γdb}

∫bG(b,O;θ,Λs)db
.

Furthermore, for any measurable function f(O), we use operator notation to define

Pn f = n−1∑n
i=1 f(Oi) and P f = ∫ fdP = E[f(O)]. Thus, Pn f is the empirical measure

from n i.i.d observations and
√
n(Pn −P) is the empirical process based on these ob-

servations. We also define a class F = {Q(v,O;θ,Λs) ∶ v ∈ [0, τ],θ ∈ Θ,Λs ∈W,Λs(0) =

0,Λs(τ) ≤ Bs0}, where Bs0 is the constant given in the second step and W contains all

nondecreasing functions in [0, τ]. According to the result proved in Section 3.5.3.1, F

is P-Donsker.

Let ms denote the number of subjects in stratum s; i.e. n = ∑S
s=1ms. Vs and ∆s

denote the observed time and censoring indicator for a subject belonging to stratum

s, respectively. Thus, Vsk and ∆sk are the k-th subject observed time and censoring

indicator in stratum s.

Now we start the proof of the third step. Since (θ̂, Λ̂) maximizes the function

ln(θ,Λ), where Λ = (Λ1, . . . ,ΛS)T and Λs, s = 1, . . . , S, are any step functions with
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jumps only at Vi belonging to stratum s for which ∆i = 1, we differentiate ln(θ,Λ) with

respect to Λs{Vsk} and obtain the following equation, satisfied by Λ̂s,

Λ̂s{Vsk} =
∆sk

msPms {I(Vs ≥ v)Q(v,O; θ̂, Λ̂s)}∣v=Vsk

Imitating the above equation, we also can construct another function, denoted by Λ̄ =

(Λ̄1, . . . , Λ̄S)T such that Λ̄s, s = 1, . . . , S, are also step functions with jumps only at the

the observed Vsk and the jump size Λ̄s{Vsk} is given by

Λ̄s{Vsk} =
∆sk

msPms {I(Vs ≥ v)Q(v,O;θ0,Λs0)}∣v=Vsk
.

Equivalently,

Λ̄s(t) =
1

ms

ms

∑
k=1

I(Vsk ≤ t)∆sk

Pms {I(Vs ≥ v)Q(v,O;θ0,Λs0)}∣v=Vsk
.

Then, we claim Λ̄s(t) uniformly converges to Λs0(t) in [0, τ]. To prove the claim, note

sup
t∈[0,τ]

∣Λ̄s(t) −E [ I(Vs ≤ t)∆s

P{I(Vs ≥ v)Q(v,O;θ0,Λs0)}∣v=Vs
]∣

= sup
t∈[0,τ]

∣ 1

ms

ms

∑
k=1

I(Vsk ≤ t)∆sk

Pms {I(Vs ≥ v)Q(v,O;θ0,Λs0)}∣v=Vsk

−Pms [
I(Vs ≤ t)∆s

P{I(Vs ≥ v)Q(v,O;θ0,Λs0)}∣v=Vs
]

+ Pms [
I(Vs ≤ t)∆s

P{I(Vs ≥ v)Q(v,O;θ0,Λs0)}∣v=Vs
]

−P [ I(Vs ≤ t)∆s

P{I(Vs ≥ v)Q(v,O;θ0,Λs0)}∣v=Vs
]∣
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≤ sup
t∈[0,τ]

∣ 1

ms

ms

∑
k=1

I(Vsk ≤ t)∆sk[
1

Pms{I(Vs ≥ v)Q(v,O;θ0,Λs0)}

− 1

P{I(Vs ≥ v)Q(v,O;θ0,Λs0)}
]∣
v=Vsk

∣

+ sup
t∈[0,τ]

∣(Pms −P )[ I(Vs ≤ t)∆s

P{I(Vs ≥ v)Q(v,O;θ0,Λs0)}∣v=Vs
]∣

≤ sup
t∈[0,τ]

∣ 1

Pms {I(Vs ≥ v)Q(v,O;θ0,Λs0)}
− 1

P{I(Vs ≥ v)Q(v,O;θ0,Λs0)}
∣

+ sup
t∈[0,τ]

∣(Pms −P )[ I(Vs ≤ t)∆s

P{I(Vs ≥ v)Q(v,O;θ0,Λs0)}∣v=Vs
]∣. (3.11)

In (3.11), the right hand side converges to 0 because the first and second terms on the

right hand side converges to 0 in the following: First, according to Section 3.5.3.1,

{Q(v,O;θ0,Λs0) ∶ v ∈ [0, τ]} is a bounded and Glivenko-Cantelli class. {I(Vs ≥

v)Q(v,O;θ0,Λs0) ∶ v ∈ [0, τ]} is also a Glivenko-Cantelli class because {I(Vs ≥ v) ∶

v ∈ [0, τ]} is a Glivenko-Cantelli class and the functional (f, g) → fg for any bounded

two functions f and g is Lipschitz continuous. Then, we obtain that

supt∈[0,τ] ∣Pms{I(Vs≥v)Q(v,O;θ0,Λs0)}−P{I(Vs≥v)Q(v,O;θ0,Λs0)}∣ converges to 0.

Besides, from Section 3.5.3.1, P{I(Vs ≥ v)Q(v,O;θ0,Λs0)} > P{I(Vs ≥ v) exp{−C9 −

C10∣∣Y ∣∣}} for the two constants C9 and C10, which means P{I(Vs ≥ v)Q(v,O;θ0,Λs0)}

is bounded from below. Thus, the first term tends to 0. Second, since the class

{I(Vs ≤ t)∆s/P{I(Vs ≥ v)Q(v,O;θ0,Λs0)}∣v=Vs ∶ t ∈ [0, τ]} is also a Glivenko-Cantelli

class, the second term vanishes as ms goes to infinity.

Therefore, we conclude that Λ̄s(t) uniformly converges to

E [ I(Vs ≤ t)∆s

P{I(Vs ≥ v)Q(v,O;θ0,Λs0)}∣v=Vs
]. (3.12)

We can easily verify that (3.12) is equal to Λs0(t). Thus, the claim that Λ̄s(t) uniformly

converges to Λs0(t) in [0, τ] has been proved.
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From the construction of Λ̄s(t), we obtain that

Λ̂s(t) = ∫
t

0

dΛ̂s(v)
dΛ̄s(v)

dΛ̄s(v) = ∫
t

0

Pms {I(Vs ≥ v)Q(v,O;θ0,Λs0)}

Pms {I(Vs ≥ v)Q(v,O; θ̂, Λ̂s)}
dΛ̄s(v). (3.13)

Λ̂s(t) is absolutely continuous with respect to Λ̄s(t). On the other hand, since both

{I(Vs ≥ v) ∶ v ∈ [0, τ]} and F are Glivenko-Cantelli classes, {I(Vs ≥ v)Q(v,O;θ,Λs) ∶

v ∈ [0, τ]} is also a Glivenko-Cantelli class. Thus, we have

sup
v∈[0,τ]

∣(Pms−P){I(Vs≥v)Q(v,O; θ̂, Λ̂s)}∣+ sup
v∈[0,τ]

∣(Pms−P){I(Vs≥v)Q(v,O;θ0,Λs0)}∣

Ð→ 0 a.s.

By the bounded convergence theorem and the fact that θ̂ converges to θ∗ and Λ̂s con-

verges to Λ∗
s , for each v, P{I(Vs ≥ v)Q(v,O; θ̂, Λ̂s)} Ð→ P{I(Vs ≥ v)Q(v,O;θ∗,Λ∗

s)};

moreover, it is straightforward to check the derivative of P{I(Vs ≥ v)Q(v,O; θ̂, Λ̂s)}

with respect to v. Thus, by the Arzela-Ascoli theorem, uniformly in [0, τ],

P{I(Vs ≥ v)Q(v,O; θ̂, Λ̂s)} Ð→ P{I(Vs ≥ v)Q(v,O;θ∗,Λ∗
s)}.

Then, combining the above result and (3.13), it holds that, uniformly in [0, τ],

Λ̂s{v}
Λ̄s{v}

=
Pms {I(Vs ≥ v)Q(v,O;θ0,Λs0)}

Pms {I(Vs ≥ v)Q(v,O; θ̂, Λ̂s)}
Ð→

P{I(Vs ≥ v)Q(v,O;θ0,Λs0)}
P{I(Vs ≥ v)Q(v,O;θ∗,Λ∗

s)}
. (3.14)

After taking limits on both sides of (3.13), we obtain that

Λ∗
s(t) = ∫

t

0

P{I(Vs ≥ v)Q(v,O;θ0,Λs0)}
P{I(Vs ≥ v)Q(v,O;θ∗,Λ∗

s)}
dΛs0(v), (3.15)

Therefore, since Λs0(t) is differentiable with respect to the Lebesque measure, so is
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Λ∗
s(t); that is, (3.15) is equal to

∫
t

0

dΛ∗
s(v)

dΛs0(v)
dΛs0(v). (3.16)

And we denote λ∗s(t) as the derivative of Λ∗
s(t). Additionally, from (3.14) ∼ (3.16),

note that Λ̂s{Vs}/Λ̄s{Vs} uniformaly converges to dΛ∗
s(Vs)/dΛs0(Vs) = λ∗s(Vs)/λs0(Vs).

Therefore, a second conclusion is that Λ̂s uniformly converges to Λ∗
s since Λ∗

s is contin-

uous.

On the other hand,

n−1ln(θ̂, Λ̂) − n−1ln(θ0, Λ̄)

=
S

∑
s=1

(Pms [∆s log
Λ̂s{Vs}

¯Λs{Vs}
] +Pms [ log

∫bG(b,O, θ̂, Λ̂s)db
∫bG(b,O,θ0, Λ̄s)db

])

≥ 0. (3.17)

Using the result of Section 3.5.3.1 and similar arguments as above, we can verify that

log
∫bG(b,O, θ̂, Λ̂s)db
∫bG(b,O,θ0, Λ̄s)db

belongs to a Glivenko-Cantelli class and

P [ log
∫bG(b,O, θ̂, Λ̂s)db
∫bG(b,O,θ0, Λ̄s)db

] Ð→ P [ log
∫bG(b,O,θ∗,Λ∗

s)db
∫bG(b,O,θ0,Λs0)db

].

Since Λ̂s{Vs}/Λ̄s{Vs} uniformaly converges to λ∗s{Vs}/λs0{Vs}, we obtain that, from

(3.17),

P [ log{
(λ∗s(Vs))

∆s

∫bG(b,O,θ∗,Λ∗
s)db

(λs0(Vs))
∆s

∫bG(b,O,θ0,Λs0)db
}] ≥ 0.

Note that the left-hand side of the inequality is the negative Kullback-Leibler informa-
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tion. Then, the equality holds with probability one, and it immediately follows

(λ∗s(Vs))
∆s

∫b
G(b,O,θ∗,Λ∗

s)db = (λs0(Vs))
∆s

∫b
G(b,O,θ0,Λs0)db. (3.18)

Our proof will be completed if we can show θ∗ = θ0 and Λ∗
s = Λs0 from (3.18). Since

(3.18) holds with probability one, (3.18) holds for any (Vs,∆s = 1) and the case (Vs =

τ,∆s = 0), but may not hold for (Vs,∆s = 0) when V ∈ (0, τ). However, we can show

that (3.18) is also true for (Vs,∆s = 0) when Vs ∈ (0, τ). To do this, treating both sides

of (3.18) as functions of Vs, we integrate these functions over an interval (Vs, τ) for

∆s = 0 as the following;

∫
τ

Vs
∫b

G(b,O,θ∗,Λ∗
s)db = ∫

τ

Vs
∫b

G(b,O,θ0,Λs0)db

to obtain that

∫b
G(b,O,θ∗,Λ∗

s)db∣
∆s=0,Vs=τ

− ∫b
G(b,O,θ∗,Λ∗

s)db∣
∆s=0,Vs=Vs

= ∫b
G(b,O,θ0,Λs0)db∣

∆s=0,Vs=τ

− ∫b
G(b,O,θ0,Λs0)db∣

∆s=0,Vs=Vs

.

After comparing this above equality with another following equality, which is given by

(3.18) at ∆s = 0 and Vs = τ ,

∫b
G(b,O,θ∗,Λ∗

s)db∣
∆s=0,Vs=τ

= ∫b
G(b,O,θ0,Λs0)db∣

∆s=0,Vs=τ

,

we obtain

∫b
G(b,O,θ∗,Λ∗

s)db∣
∆s=0,Vs=Vs

= ∫b
G(b,O,θ0,Λs0)db∣

∆s=0,Vs=Vs

,
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and therefore

∫b
G(b,O,θ∗,Λ∗

s)db∣
∆s=0

= ∫b
G(b,O,θ0,Λs0)db∣

∆s=0

;

that is, (3.18) also holds for any Vs and ∆s = 0.

Thus, first to show that β∗ = β0, φ∗ = φ0 and Σ∗
b = Σb0, we let ∆s = 0 and Vs = 0 in

(3.18). After integrating over b, we have that, with probability one,

∫b
G(b,O,θ∗,Λ∗

s)db∣
∆s=0,Vs=0

= ∫b
G(b,O,θ0,Λs0)db∣

∆s=0,Vs=0

⇒ ∫b
exp{

nN

∑
j=1

[
Yj(Xjβ

∗ + X̃jb)−B(β∗,b)
A(D(tj;φ∗))

+C(Yj;D(tj;φ∗))]}

× (2π)−db/2∣Σ∗
b ∣−1/2 exp{− 1

2
bTΣ∗−1

b b}db

= ∫b
exp{

nN

∑
j=1

[
Yj(Xjβ0 + X̃jb)−B(β0,b)

A(D(tj;φ0))
+C(Yj;D(tj;φ0))]}

× (2π)−db/2∣Σb0∣−1/2 exp{− 1

2
bTΣ−1

b0 b}db

⇒ exp{
nN

∑
j=1

[
YjXjβ

∗

A(D(tj;φ∗))
+C(Yj;D(tj;φ∗))]} × ∣Σ∗

b ∣−1/2

×∫b
exp{

nN

∑
j=1

YjX̃jb

A(D(tj;φ∗))
−
nN

∑
j=1

B(β∗;b)
A(D(tj;φ∗))

− 1

2
bTΣ∗−1

b b}db

= exp{
nN

∑
j=1

[
YjXjβ0

A(D(tj;φ0))
+C(Yj;D(tj;φ0))]} × ∣Σb0∣−1/2

×∫b
exp{

nN

∑
j=1

YjX̃jb

A(D(tj;φ0))
−
nN

∑
j=1

B(β0;b)
A(D(tj;φ0))

− 1

2
bTΣ−1

b0 b}db.

The left hand side becomes

exp{
nN

∑
j=1

[
YjXjβ

∗

A(D(tj;φ∗))
+C(Yj;D(tj;φ∗))]} × ∣Σ∗

b ∣−1/2
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×∫b
exp{ − 1

2
[(Σ

∗−1/2
b b)T (Σ

∗−1/2
b b) − 2

nN

∑
j=1

YjX̃j

A(D(tj;φ∗))
b

+(
nN

∑
j=1

YjX̃j

A(D(tj;φ∗))
)(

nN

∑
j=1

YjX̃j

A(D(tj;φ∗))
)
T

]

+1

2
(
nN

∑
j=1

YjX̃j

A(D(tj;φ∗))
)(

nN

∑
j=1

YjX̃j

A(D(tj;φ∗))
)
T

−
nN

∑
j=1

B(β∗;b)
A(D(tj;φ∗))

}db

= exp{
nN

∑
j=1

[
YjXjβ

∗

A(D(tj;φ∗))
+C(Yj;D(tj;φ∗))]

+1

2
(
nN

∑
j=1

YjX̃j

A(D(tj;φ∗))
)(

nN

∑
j=1

YjX̃j

A(D(tj;φ∗))
)
T

} × ∣Σ∗
b ∣−1/2

×∫b
exp{− 1

2
[Σ

∗−1/2
b b−(

nN

∑
j=1

YjX̃j

A(D(tj;φ∗))
)
T

]
T

[Σ
∗−1/2
b b−(

nN

∑
j=1

YjX̃j

A(D(tj;φ∗))
)
T

]}

× exp{−
nN

∑
j=1

B(β∗;b)
A(D(tj;φ∗))

}db

= exp{
nN

∑
j=1

[
YjXjβ

∗

A(D(tj;φ∗))
+C(Yj;D(tj;φ∗))]

+1

2
(
nN

∑
j=1

YjX̃j

A(D(tj;φ∗))
)(

nN

∑
j=1

YjX̃j

A(D(tj;φ∗))
)
T

} ×E [ exp{−
nN

∑
j=1

B(β∗;b)
A(D(tj;φ∗))

}].

(3.19)

Likewise, the right-hand side becomes

exp{
nN

∑
j=1

[
YjXjβ0

A(D(tj;φ0))
+C(Yj;D(tj;φ0))] +

1

2
(
nN

∑
j=1

YjX̃j

A(D(tj;φ0))
)(

nN

∑
j=1

YjX̃j

A(D(tj;φ0))
)
T

}

×E [ exp{−
nN

∑
j=1

B(β0;b)
A(D(tj;φ0))

}]. (3.20)

Then, to compare the coefficients of Y TY and Y in the exponential part and the

constant term out of the exponential part from (3.19) and (3.20), we have

(
nN

∑
j=1

YjX̃j

A(D(tj;φ∗))
)(

nN

∑
j=1

YjX̃j

A(D(tj;φ∗))
)
T

= (
nN

∑
j=1

YjX̃j

A(D(tj;φ0))
)(

nN

∑
j=1

YjX̃j

A(D(tj;φ0))
)
T

,

(3.21)
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nN

∑
j=1

YjXjβ
∗

A(D(tj;φ∗))
=
nN

∑
j=1

YjXjβ0

A(D(tj;φ0))
, (3.22)

and

E [ exp{ −
nN

∑
j=1

B(β∗;b)
A(D(tj;φ∗))

}] = E [ exp{ −
nN

∑
j=1

B(β0;b)
A(D(tj;φ0))

}] (3.23)

Define X̃
∗

j = X̃j/A(D(tj;φ∗)) and X̃j0 = X̃j/A(D(tj;φ0)) and X̃
∗ = (X̃∗T

1 , . . . , X̃
∗T

nN
)T

and X̃0 = (X̃∗T

10 , . . . , X̃
T

nN0)T . Then, (3.21) can be expressed as

Y TX̃
∗
X̃

∗T
Y = Y TX̃0X̃

T

0Y ,

and we obtain X̃
∗
X̃

∗T = X̃0X̃
T

0 for the coefficients of Y TY . For the j-th diagonal

element, we have

X̃
∗

j X̃
∗T

j = X̃j0X̃
T

j0 ⇒
X̃j

A(D(tj;φ∗))
X̃

∗T

j

A(D(tj;φ∗))
=

X̃j0

A(D(tj;φ0))
X̃

T

j0

A(D(tj;φ0))
.

By assumption (A5), (A(D(tj;φ∗)))
2 = (A(D(tj;φ0)))

2
. Then, we obtain A(D(tj;φ∗))

= A(D(tj;φ0)) since both A(D(tj;φ∗)) and A(D(tj;φ0)) are positive by the assumption

for dispersion parameter of the generalized linear mixed model. By the continuous

mapping theorem, we obtain D(tj;φ∗) = D(tj;φ0). By the similar argument, for the

comparison of the coefficients of Y , (3.22) can be written as

Y TX∗β∗ = Y TX0β0 ⇒ X∗β∗ =X0β0,

where the j-the elements (Xj/A(D(tj;φ∗)))β∗ = (Xj/A(D(tj;φ0)))β0. By the result

A(D(tj;φ∗)) = A(D(tj;φ0)) and assumption (A5), we obtain β∗ = β0. In (3.23) for the

constant term, note that the random effect b on the left-hand side follows a multivari-

ate normal distribution with mean Σ
∗1/2
b (∑nN

j=1 YjX̃j/A(D(tj;φ∗)))
T

and covariance Σ∗
b

while the random effect b on the right-hand side follows a multivariate normal distri-
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bution with mean Σ
1/2
b0 (∑nN

j=1 YjX̃j/A(D(tj;φ0)))
T

and covariance Σb0. Since β∗ = β0

and φ∗ = φ0, ∑nN
j=1B(β∗;b)/A(D(tj;φ∗)) = ∑nN

j=1B(β0;b)/A(D(tj;φ0)). Thus, to hold

the equality of the expected values in (3.23), the random effects b on both sides follow

the same distribution; that is, Σ∗
b = Σb0.

Next, to show that ψ∗ = ψ0, γ∗ = γ0 and Λ∗
s = Λs0, we let ∆s = 0 in (3.18). Through

the similar arguments done for the proof of β∗ = β0, φ∗ = φ0 and Σ∗
b = Σb0, we obtain

E [ exp{ −
nN

∑
j=1

B(β∗;b)
A(D(tj;φ∗))

− ∫
Vs

0
exp{Z̃(t)(ψ∗ ○ b) +Z(t)γ∗}dΛ∗

s(t)}]

= E [ exp{ −
nN

∑
j=1

B(β0;b)
A(D(tj;φ0))

− ∫
Vs

0
exp{Z̃(t)(ψ0 ○ b) +Z(t)γ0}dΛs0(t)}], (3.24)

where the random effects b follow a multivariate normal distribution with mean Σ
1/2
b0 (

∑nN
j=1 YjX̃j/A(D(tj;φ0)))

T
and covariance Σb0. For any fixed X̃, treating X̃

T
Y as a

parameter in this normal family, b is the complete statistic for X̃
T
Y . Therefore,

exp{ −
nN

∑
j=1

B(β∗;b)
A(D(tj;φ∗))

− ∫
Vs

0
exp{Z̃(t)(ψ∗ ○ b) +Z(t)γ∗}dΛ∗

s(t)}

= exp{ −
nN

∑
j=1

B(β0;b)
A(D(tj;φ0))

− ∫
Vs

0
exp{Z̃(t)(ψ0 ○ b) +Z(t)γ0}dΛs0(t)}.

Since β∗ = β0 and φ∗ = φ0, equivalently, we have

exp{Z̃(t)(ψ∗ ○ b) +Z(t)γ∗}λ∗s(t) = exp{Z̃(t)(ψ0 ○ b) +Z(t)γ0}λs0(t).

By assumptions (A2) and (A5), ψ∗ = ψ0, γ∗ = γ0 and Λ∗
s = Λs0.

Since all the three steps are completed, we can conclude that, with probability one,

θ̂ converges to θ0 and Λ̂ converges to Λ0 in [0, τ]. Moreover, as mentioned in the

beginning of this proof for consistency, since Λ0 is continuous in [0, τ], the latter can

be strengthened to uniform convergence; that is, supt∈[0,τ] ∣∣Λ̂(t) − Λ0(t)∣∣ → 0 almost
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surely. Therefore, Theorem 3.1 is proved.

3.5.2 Proof of asymptotic normality

Asymptotic distribution for the proposed estimator can be shown if we can verify the

conditions of Theorem 3.3.1 (p310) in van der Vaart and Wellner (1996). Then, we will

show that the distribution is normal. For completeness, we state this theorem below

following Theorem 4 in Appendix A of Parner (1998).

Theorem 3.3. (Theorem 3.3.1 in van der Vaart and Wellner, 1996) Let Un and U be

random maps and a fixed map, respectively, from ξ to a Banach space such that:

(a)
√
n(Un −U)(ξ̂n) −

√
n(Un −U)(ξ0) = o∗P (1 +

√
n∣∣ξ̂n − ξ0∣∣).

(b) The sequence
√
n(Un−U)(ξ0) converges in distribution to a tight random element

W .

(c) the function ξ → U(ξ) is Fréchet differentiable at ξ0 with a continuously invertible

derivative ∇Uξ0 (on its range).

(d) Uξ0 and ξ̂n satisfies Un(ξ̂n) = o∗P (n−1/2) and converges in outer probability to ξ0.

Then
√
n(ξ̂n − ξ0) ⇒ ∇U−1

ξ0
W .

We will prove the conditions (a)∼(d). In our situation, the parameter ξs = (θ,Λs) ∈

Ξ = {(θ,Λs) ∶ ∣∣θ − θ0∣∣ + supt∈[0,τ] ∣Λs(t) − Λs0(t)∣ ≤ δ, s = 1, . . . , S} for a fixed small

constant δ. We note that Ξ is a convex set. Define a set H = {(h1, h2) ∶ ∣∣h1∣∣ ≤

1, ∣∣h2∣∣V ≤ 1}, where ∣∣h2∣∣V is the total variation of h2 in [0, τ] defined as

sup
0=t0≤t2≤⋯≤tk=τ

k

∑
j=1

∣h2(tj) − h2(tj−1)∣.
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Furthermore, we define that, for stratum s,

Ums(ξs)(h1, h2) = Pms{lθ(θ,Λs)Th1 + lΛs(θ,Λs)[h2]}

and Us(ξs)(h1, h2) = P{lθ(θ,Λs)Th1 + lΛs(θ,Λs)[h2]},

where lθ(θ,Λs) is the first derivative of the log-likelihood function from one single sub-

ject belonging to stratum s, denoted by l(O;θ,Λs), with respect to θ, and lΛs(θ,Λs) is

the derivative of l(O;θ,Λsε) at ε = 0, where Λsε(t) = ∫
t

0 (1+εh2(u))dΛs0(u). Therefore,

we can see that both Ums and Us map from Ξ to `∞(H ) and
√
ms{Ums(ξs) − Us(ξs)}

is an empirical process in the space `∞(H ).

Denote (hβ1 ,h
φ
1 ,h

b
1,h

ψ
1 ,h

γ
1) as the corresponding components of h1 for the param-

eters (β,φ,Vec(Σb), ψ,γ), respectively. From Section 3.5.3.2, for any (h1, h2) ∈ H ,

the class

G = {lθ(θ,Λs)Th1 + lΛs(θ,Λs)[h2] − lθ(θ0,Λs0)Th1 + lΛs(θ0,Λs0)[h2],

∣∣θ − θ0∣∣ + sup
t∈[0,τ]

∣Λs(t) −Λs0(t)∣ ≤ δ, (h1, h2) ∈ H }

is shown as P-Donsker (Section 2.1 of van der Vaart and Wellner (1996), and it is also

implied that

sup
(h1,h2)∈H

P [lθ(θ,Λs)Th1 + lΛs(θ,Λs)[h2] − lθ(θ0,Λs0)Th1 + lΛs(θ0,Λs0)[h2]]
2 Ð→ 0

as ∣∣θ − θ0∣∣ + supt∈[0,τ] ∣Λs(t) −Λs0(t)∣ → 0. Then, we conclude the followings:

(a) follows from Lemma 3.3.5 (p311) of van der Vaart and Wellner (1996).

(b) holds as a result of Section 3.5.3.2 and the convergence is defined in the metric

space `∞(H ) by the Donsker theorem (Section 2.5 of van der Vaart and Wellner
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(1996).

(d) is true because (θ̂, Λ̂s) maximizes Pms l(O;θ,Λs), (θ0,Λs0) maximizes P l(O;

θ,Λs), and (θ̂, Λ̂s) converges to (θ0,Λs0) from Theorem 3.1.

Now, we need to verify the conditions in (c). Since the proof of the first half in (c), that

the function ξ → U(ξ) is Fréchet differentiable at ξ0, is given in Section 3.5.3.3, we

will only prove that the derivative ∇Uξ0 is continuously invertible on its range `∞(H ).

According to Section 3.5.3.3, ∇Uξ0 can be expressed as follows: for any (θ1,Λs1) and

(θ1,Λs1) in Ξ,

∇Uξ0(θ1 − θ2,Λs1 −Λs2)[h1, h2] = (θ1 − θ2)TΩ1[h1, h2] + ∫
τ

0
Ω2[h1, h2]d(Λs1 −Λs2)(t),

(3.25)

where both Ω1 and Ω2 are linear operators on H , and Ω = (Ω1,Ω2) maps H ⊂ Rd ×

BV[0, τ] to Rd × BV[0, τ], where BV[0, τ] contains all the functions with finite total

variation in [0, τ]. The explicit expressions of Ω1 and Ω2 are given in Section 3.5.3.3.

From (3.25), we can treat (θ1−θ2,Λs1−Λs2) as an element in `∞(H ) via the following

definition:

(θ1−θ2,Λs1−Λs2)[h1, h2]=(θ1−θ2)Th1+∫
τ

0
h2(t)d(Λs1−Λs2)(t), ∀(h1, h2)∈Rd×BV[0, τ].

Then ∇Uξ0 can be expanded as a linear operator from `∞(H ) to itself. Therefore, if

we can show that there exists some positive constant ε such that εH ⊂ Ω(H ), then

we will have that for any (δθ, δΛs) ∈ `∞(H ),

∣∣∇Uξ0(δθ, δΛs)∣∣`∞(H )
= sup

(h1,h2)∈H
∣δθTΩ1[h1, h2] + ∫

τ

0
Ω2[h1, h2]dδΛs(t)∣

= ∣∣(δθ, δΛs)∣∣`∞(Ω(H ))
≥ ε∣∣(δθ, δΛs)∣∣`∞(H )

,
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and ∇Uξ0 will be continuously invertible.

Note that to prove εH ⊂ Ω(H ) for some ε is equivalent to showing that Ω is

invertible. We also note from Section 3.5.3.3, that Ω is the summation of an invertible

operator and a compact operator. By Theorem 4.25 of Rudin (1973), for the proof of

the invertibility of Ω, it is sufficient to verify that Ω is one to one: if Ω[h1, h2] = 0, then,

by choosing θ1 −θ2 = ε∗h1 and Λs1 −Λs2 = ε∗ ∫ h2dΛs0 in (3.25) for a small constant ε∗,

we obtain

∇Uξ0(h1,∫ h2dΛs0)[h1, h2] = ε∗(hT1 , h2)
⎛
⎜⎜
⎝

Ω1[h1, h2]

Ω2[h1, h2]

⎞
⎟⎟
⎠
= ε∗(hT1 , h2)Ω[h1, h2] = 0.

By the definition of ∇Uξ0 , we note that ∇Uξ0(h1, ∫ h2dΛs0)[h1, h2] is the negative in-

formation matrix in the submodel (θ0 + εh1,Λs0 + ε ∫ h2dΛs0). Thus, the score func-

tion along this submodel should be zero with probability one; that is, lθ(θ0,Λs0)Th1 +

lΛs(θ0,Λs0)[h2] = 0; that is, with probability one, for the numerator of the score func-

tion

0 =∫b
G(b,O;θ0,Λs0) × [b

TΣ−1
b0DbΣ

−1
b0 b

2
− 1

2
Tr (Σ−1

b0Db)

+
nN

∑
j=1

{− (
Yj(Xjβ0 + X̃jb) −B(β0;b)

A(D(tj;φ0))2
)(A′(D(tj;φ0))) hφ1 +C ′(Yj;D(tj;φ0)) hφ1}

+
nN

∑
j=1

{
YjXj

A(D(tj;φ0))
hβ1 −B′(β0;b)hβ1} +∆s{(Z̃(Vs) ○ hψ1 )

T
b +Z(Vs)hγ1}

− ∫
Vs

0
exp{Z̃(t)(ψ0 ○ b) +Z(t)γ0} × {(Z̃(t) ○ hψ1 )Tb +Z(t)hγ1}dΛs0(t)]db

+∫b
G(b,O;θ0,Λs0) × [∆sh2(Vs)−∫

Vs

0
h2(t) exp{Z̃(t)(ψ ○ b) +Z(t)γ0}dΛs0(t)]db,

(3.26)

where A′(D(tj;φ0))and C ′(Yj;D(tj;φ0)) are the derivatives of A(φj)and C(Yj;φj) with
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respect to φj evaluated at D(tj;φ0) and B′(β0;b) is the derivative of B(β;b) with

respect to β evaluated at β0. Note that (3.26) holds with probability one, so it may

not hold for any Vs ∈ [0, τ] when ∆s = 0. However, by the similar arguments done

in Section 3.5.1, if we integrate both sides from Vs to τ and substract the obtained

equation from (3.26) at ∆s = 0 and Vs = τ , it is easily shown that (3.26) also holds for

any Vs ∈ [0, τ] when ∆s = 0. Hence, the proof of the invertibility of Ω will be completed

if we can show h1 = 0 and h2(t) = 0 from (3.26).

To show h1 = 0, particularly we let ∆s = 0 and Vs = 0 in (3.26) and obtain

0 = ∫b
G(b,O;θ0,Λs0) × [b

TΣ−1
b0DbΣ

−1
b0 b

2
− 1

2
Tr (Σ−1

b0Db)

+
nN

∑
j=1

{−(
Yj(Xjβ0+X̃jb)−B(β0;b)

A(D(tj;φ0))2
)(A′(D(tj;φ0))) hφ1+C ′(Yj;D(tj;φ0)) hφ1}

+
nN

∑
j=1

{
YjXj

A(D(tj;φ0))
hβ1 −B′(β0;b)hβ1}]db

= E [ exp{ −
nN

∑
j=1

B(β0;b)
A(D(tj;φ0))

} × b
TΣ−1

b0DbΣ
−1
b0 b

2
]

+E [ exp{ −
nN

∑
j=1

B(β0;b)
A(D(tj;φ0))

}] × { − 1

2
Tr(Σ−1

b0Db)

+
nN

∑
j=1

( − (
YjXjβ0

(A(D(tj;φ0)))2
)(A′(D(tj;φ0))) hφ1 +C ′(Yj;D(tj;φ0)) hφ1)

+
nN

∑
j=1

( − (
YjXj

A(D(tj;φ0))
)hβ1}

+E [ exp{ −
nN

∑
j=1

B(β0;b)
A(D(tj;φ0))

} ×
nN

∑
j=1

{ − (
YjX̃jb −B(β0;b)
A(D(tj;φ0))2

)(A′(D(tj;φ0))) hφ1

−B′(β0;b)hβ1}]. (3.27)

We first examine the coefficient for Y in (3.27).
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E [ exp{ −
nN

∑
j=1

B(β0;b)
A(D(tj;φ0))

}]

×
nN

∑
j=1

{ −
YjXj

A(D(tj;φ0))
( β0

A(D(tj;φ0))
A′(D(tj;φ0)) hφ1 − hβ1)}

+
nN

∑
j=1

{ −
YjX̃j

A(D(tj;φ0))2
(A′(D(tj;φ0)))} hφ1 E [b exp{ −

nN

∑
j=1

B(β0;b)
A(D(tj;φ0))

}]

=
nN

∑
j=1

{ −
Yj

A(D(tj;φ0))
[Xj(

β0

A(D(tj;φ0))
(A′(D(tj;φ0))) hφ1 − hβ1)

×E [ exp{ −
nN

∑
j=1

B(β0;b)
A(D(tj;φ0))

}]

+
X̃j

A(D(tj;φ0))
(A′(D(tj;φ0))) hφ1 E [b exp{ −

nN

∑
j=1

B(β0;b)
A(D(tj;φ0))

}]]}

=
nN

∑
j=1

{−
Yj

A(D(tj;φ0))
[[Xj(

β0

A(D(tj;φ0))
(A′(D(tj;φ0))))E[exp{−

nN

∑
j=1

B(β0;b)
A(D(tj;φ0))

}]

+
X̃j

A(D(tj;φ0))
(A′(D(tj;φ0)))E [b exp{ −

nN

∑
j=1

B(β0;b)
A(D(tj;φ0))

}]] hφ1

−[Xj E [ exp{ −
nN

∑
j=1

B(β0;b)
A(D(tj;φ0))

}]]hβ1]}

= 0

Based on assumption (A5), hφ1 = 0 and hβ1 = 0.

Then, we examine the constant terms without Y in (3.27). Since hφ1 = 0 and hβ1 = 0,

(3.27) becomes

E [ exp{ −
nN

∑
j=1

B(β0;b)
A(D(tj;φ0))

} × b
TΣ−1

b0DbΣ
−1
b0 b

2
]

+E [ exp{ −
nN

∑
j=1

B(β0;b)
A(D(tj;φ0))

} × { − 1

2
Tr(Σ−1

b0Db)}]

= E [ exp{ −
nN

∑
j=1

B(β0;b)
A(D(tj;φ0))

} × {b
TΣ−1

b0DbΣ
−1
b0 b

2
− 1

2
Tr(Σ−1

b0Db)}] = 0,

where b follows a multivariate normal distribution with mean Σ
1/2
b0 [∑nN

j=1 (YjZ̃j/A(D(tj;
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φ0)))]
T

and covariance Σb0. For any fixed X̃, treating XTY as a parameter in this

normal family, b is the complete statistic for XTY , therefore,

exp{ −
nN

∑
j=1

B(β0;b)
A(D(tj;φ0))

} × {b
TΣ−1

b0DbΣ
−1
b0 b

2
− 1

2
Tr(Σ−1

b0Db)} = 0.

Since exp{−∑nN
j=1 (B(β0;b)/A(D(tj;φ0)))} ≠ 0, [bTΣ−1

b0DbΣ
−1
b0 b−Tr(Σ−1

b0Db)]/2 = 0 by

(A5). Then, since Σ−1
b0 ≠ 0, then Db = 0.

Next, we let ∆s = 0 in (3.26) and obtain

0 = ∫b
G(b,O;θ0,Λs0) × [b

TΣ−1
b0DbΣ

−1
b0 b

2
− 1

2
Tr (Σ−1

b0Db)

+
nN

∑
j=1

{−(
Yj(Xjβ0+X̃jb)−B(β0;b)

A(D(tj;φ0))2
)(A′(D(tj;φ0))) hφ1+C ′(Yj;D(tj;φ0)) hφ1}

+
nN

∑
j=1

{
YjXj

A(D(tj;φ0))
hβ1 −B′(β0;b)hβ1}

− ∫
Vs

0
exp{Z̃(t)(ψ0 ○ b) +Z(t)γ0} × {(Z̃(t) ○ hψ1 )Tb +Z(t)hγ1}dΛs0(t)]db

+∫b
G(b,O;θ0,Λs0) × [ − ∫

Vs

0
h2(t) exp{Z̃(t)(ψ0 ○ b) +Z(t)γ0}dΛs0(t)]db

= E [ exp{ −
nN

∑
j=1

B(β0;b)
A(D(tj;φ0))

− ∫
Vs

0
exp{Z̃(t)(ψ0 ○ b) +Z(t)γ0}dΛs0(t)}

×∫
Vs

0
exp{Z̃(t)(ψ0 ○ b) +Z(t)γ0} × {(Z̃(t) ○ hψ1 )Tb +Z(t)hγ1 + h2(t)}dΛs0(t)],

(3.28)

where b follows a multivariate normal distribution with mean Σ
1/2
b0 [∑nN

j=1 (YjZ̃j/A(D(tj;

φ0)))]
T

and covariance Σb0. Likewise, for any fixed X̃, treating XTY as a parameter

in this normal family, b is the complete statistic for XTY and therefore
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exp{ −
nN

∑
j=1

B(β0;b)
A(D(tj;φ0))

− ∫
Vs

0
exp{Z̃(t)(ψ0 ○ b) +Z(t)γ0}dΛs0(t)}

×∫
Vs

0
exp{Z̃(t)(ψ0 ○ b) +Z(t)γ0} × {(Z̃(t) ○ hψ1 )Tb +Z(t)hγ1 + h2(t)}dΛs0(t) = 0.

Since exp{−∑nN
j=1 (B(β0;b)/A(D(tj;φ0)))−∫

Vs
0 exp{Z̃(t)(ψ0○b)+Z(t)γ0}dΛs0(t)}≠0,

equivalently

∫
Vs

0
exp{Z̃(t)(ψ0 ○ b) +Z(t)γ0} × {(Z̃(t) ○ hψ1 )Tb +Z(t)hγ1 + h2(t)}dΛs0(t) = 0

by assumption (A5). From assumption (A5), this immediately gives hψ1 = 0, hγ1 = 0 and

h2(t) = 0. Hence, the proof of condition (c) is completed.

Since the conditions (a)–(d) have been proved, Theorem 3.3.1 of van der Vaart and

Wellner (1996) concludes that
√
ms(θ̂−θ0, Λ̂s−Λs0) weakly converges to a tight random

element in `∞(H ). Furthermore, we obtain

√
ms∇Uψ0(θ̂ − θ0, Λ̂s −Λs0)[h1, h2]

=
√
ms(Pms −P){lθ(θ0,Λs0)Th1 + lΛs(θ0,Λs0)[h2]} + oP (1), (3.29)

where oP (1) is a random variable which converges to zero in probability in `∞(H ).

On the other hand, from (3.25), we have

√
ms∇Uψ0(θ̂ − θ0, Λ̂s −Λs0)[h1, h2]

=
√
ms{(θ̂ − θ0)TΩ1[h1, h2] + ∫

τ

0
Ω2[h1, h2]d(Λ̂s −Λs0)(t)}. (3.30)

By denoting (h∗
1, h

∗
2) = Ω−1(h1, h2), we have (h1, h2) = Ω(h∗

1, h
∗
2), and replacing (h1, h2)
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with (h∗
1, h

∗
2) in (3.29) and (3.30) leads to the followings, respectively.

√
ms∇Uψ0(θ̂ − θ0, Λ̂s −Λs0)[h∗

1, h
∗
2]

=
√
ms(Pms −P){lθ(θ0,Λs0)Th∗

1 + lΛs(θ0,Λs0)[h∗2]} + oP (1),

and

√
ms∇Uψ0(θ̂ − θ0, Λ̂s −Λs0)[h∗

1, h
∗
2]

=
√
ms{(θ̂ − θ0)TΩ1[h∗

1, h
∗
2] + ∫

τ

0
Ω2[h∗

1, h
∗
2]d(Λ̂s −Λs0)(t)}

=
√
ms{(θ̂ − θ0)Th1 + ∫

τ

0
h2(t)d(Λ̂s −Λs0)(t)}.

Thus, we obtain

√
ms{(θ̂ − θ0)Th1 + ∫

τ

0
h2(t)d(Λ̂s −Λs0)(t)}

=
√
ms(Pms −P){lθ(θ0,Λs0)Th∗

1 + lΛs(θ0,Λs0)[h∗2]} + oP (1). (3.31)

Note that the first term on the right-hand side in (3.31) is
√
ms{Ums(θ0,Λs0) −Us(θ0,

Λs0)}, which is an empirical process in the space `∞(H ), and it is shown that G is

P-Donsker in Section 3.5.3.2. Therefore,
√
ms(θ̂ − θ0, Λ̂s − Λs0) weakly converges to a

Gaussian process in `∞(H ).

In particular, if we choose h2 = 0 in (3.31), then θ̂
T
h1 is a asymptotic linear estimator

for θT0 h1 with influence function being lθ(θ0,Λs0)Th∗
1 + lΛs(θ0,Λs0)[h∗2]. Since this

influence function is in the linear space spanned by the score functions for θ0 and Λs0,

Proposition 3.3.1 (p65) in Bickel, Klaassen, Ritov and Wellner (1993) concludes that

the influence function is the same as the efficient influence function for θT0 h1; that is θ̂

is an efficient estimator for θ0 and Theorem 3.2 is proved.
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3.5.3 Supplementary proofs

The proofs for P-Donsker property of the classes F and G needed in Sections 3.5.1 and

3.5.2 are presented in Sections 3.5.3.1∼3.5.3.2 respectively. In Section 3.5.3.3, we prove

Fréchet differentiability of U(ξ) at ξ0 and derive the derivative operator ∇Uξ0 use in

Section 3.5.2.

3.5.3.1 Proof of P-Donsker property of F

We defined that a class F = {Q(v,O;θ,Λs) ∶ v ∈ [0, τ],θ ∈ Θ,Λs ∈ A , s = 1, . . . , S},

where A = {Λs ∈ W,Λs(0) = 0,Λs(τ) ≤ Bs0, s = 1, . . . , S}, Bs0 is the constant given in

the second step and W contains all nondecreasing functions in [0, τ]. We can rewrite

Q(v,O;θ,Λs) as

Q(v,O;θ,Λs) = Q1(v,O;θ)Q2(v,O;θ,Λs)
Q3(v,O;θ,Λs)

,

where

Q1(v,O;θ) = exp{Z(v)γ + (
nN

∑
j=1

YjX̃j

A(D(tj;φ))
+∆(Z̃(v) ○ψT ))(Z̃(v) ○ψT )T

+1

2
(Z̃(v) ○ψT )(Z̃(v) ○ψT )T},

Q2(v,O;θ,Λs) = ∫b
exp{− 1

2
bTb −

nN

∑
j=1

B1(β;b)
A(D(tj;φ))

−∫
Vs

0
exp{(Z̃(t)○ψT )Σ1/2

b b+Z(t)γ

+(Z̃(t)○ψT)Σ1/2
b (

nN

∑
j=1

YjX̃j

A(D(tj;φ))
+∆(Z̃(t)○ψT))

T

+R(t)}dΛs(t)}db,

Q3(v,O;θ,Λs) = ∫b
exp{− 1

2
bTb −

nN

∑
j=1

B2(β;b)
A(D(tj;φ))

−∫
Vs

0
exp{(Z̃(t)○ψT )Σ1/2

b b+Z(t)γ

+(Z̃(t) ○ψT )Σ1/2
b (

nN

∑
j=1

YjX̃j

A(D(tj;φ))
+∆(Z̃(t) ○ψT ))

T

}dΛs(t)}db,

R(t) = (Z̃(t) ○ψT )Σ1/2
b (Z̃(v) ○ψT )T , B1(β;b) = B(β; g1(b)), B2(β;b) = B(β; g2(b)),

g1(b) = Σ
1/2
b [b+(∑nN

j=1 (YjX̃j/A(D(tj;φ)))+(∆+1)(Z̃(v)○ψT ))T ] and g2(b) = Σ
1/2
b [b+
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(∑nN
j=1 (YjX̃j/A(D(tj;φ))) +∆(Z̃(v) ○ψT ))T ].

Using assumption (A2), we can easily show that Q1(v,O;θ) is continuously differ-

entiable with respect to v and θ, and

∣∣∇θQ1(v,O;θ)∣∣ + ∣ d
dv
Q1(v,O;θ)∣ ≤ ek1+k2∣∣Y ∣∣

for some positive constants k1 and k2. Furthermore, it holds that

∣∣∇θQ2(v,O;θ,Λs)∣∣ + ∣ d
dv
Q2(v,O;θ,Λs)∣

≤ ∫b
[ exp{ − 1

2
bTb −

nN

∑
j=1

B1(β;b)
A(D(tj;φ))

} × ek3∣∣b∣∣+k4∣∣Y ∣∣+k5 ×Bs0]db

≤ ek6+k7∣∣Y ∣∣

and ∣∣∇θQ3(v,O;θ,Λs)∣∣+∣
d

dv
Q3(v,O;θ,Λs)∣ ≤ ek8+k9∣∣Y ∣∣

for some positive constants k3, k4, . . . , k9. Additionally, note that, for any 0 < Λ < ∞,

0 < e−Λ < 1 and e−Λ < Λ and thus e−Λ1 − e−Λ2 < Λ1 − Λ2 for any Λ1 and Λ2 over (0,∞).

Hence,

∣Q2(v,O;θ,Λs1) −Q2(v,O;θ,Λs2)∣

= ∣∫b
exp{ − 1

2
bTb −

nN

∑
j=1

B1(β;b)
A(D(tj;φ))

} × [ exp{ − ∫
Vs

0
exp{(Z̃(t) ○ψT )Σ1/2

b b

+Z(t)γ + (Z̃(t) ○ψT )Σ1/2
b (

nN

∑
j=1

YjX̃j

A(D(tj;φ))
+∆(Z̃(t) ○ψT ))

T

+R(t)}dΛs1(t)}

− exp{−∫
Vs

0
exp{(Z̃(t) ○ψT )Σ1/2

b b +Z(t)γ + (W̃ (t) ○ψT )Σ1/2
b (

nN

∑
j=1

YjX̃j

A(D(tj;φ))

+∆(Z̃(t) ○ψT ))
T

+R(t)}dΛs2(t)}]db∣

≤ ∣∫b
exp{ − 1

2
bTb −

nN

∑
j=1

B1(β;b)
A(D(tj;φ))

} × ∫
Vs

0
exp{(Z̃(t) ○ψT )Σ1/2

b b +Z(t)γ
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+ (Z̃(t) ○ψT )Σ1/2
b (

nN

∑
j=1

YjX̃j

A(D(tj;φ))
+∆(Z̃(t) ○ψT ))

T

+R(t)}d(Λs1 −Λs2)(t)]db∣

= ∣∫b
exp{ −

nN

∑
j=1

B1(β;b)
A(D(tj;φ))

} × [∫
Vs

0
exp{ − 1

2
[bTb − 2(Z̃(t) ○ψT )Σ1/2

b b

+ (Z̃(t) ○ψT )Σ1/2
b ((Z̃(t) ○ψT )Σ1/2

b )T − (Z̃(t) ○ψT )Σ1/2
b ((Z̃(t) ○ψT )Σ1/2

b )T ]

+Z(t)γ+(Z̃(t)○ψT )Σ1/2
b (

nN

∑
j=1

YjX̃j

A(D(tj;φ))
+∆(Z̃(t)○ψT))

T

+R(t)}d(Λs1−Λs2)(t)]db∣

= ∣∫b
exp{ −

nN

∑
j=1

B1(β;b)
A(D(tj;φ))

} × (2π)db/2

× (2π)−db/2 × [∫
Vs

0
exp{ − 1

2
[b − ((Z̃(t) ○ψT )Σ1/2

b )T ]
T

[b − ((Z̃(t) ○ψT )Σ1/2
b )T ]}

× exp{1

2
(Z̃(t) ○ψT )Σ1/2

b ((Z̃(t) ○ψT )Σ1/2
b )T +Z(t)γ

+(Z̃(t) ○ψT )Σ1/2
b (

nN

∑
j=1

YjX̃j

A(D(tj;φ))
+∆(Z̃(t) ○ψT ))

T

+R(t)}d(Λs1 −Λs2)(t)]db∣

≤ ∣Eb [ exp{−
nN

∑
j=1

B1(β;b)
A(D(tj;φ))

}](2π)db/2∫
Vs

0
exp{1

2
(Z̃(t)○ψT )Σ1/2

b ((Z̃(t)○ψT )Σ1/2
b )T

+Z(t)γ + (Z̃(t)○ψT )Σ1/2
b (

nN

∑
j=1

YjX̃j

A(D(tj;φ))
+∆(Z̃(t)○ψT ))

T

+R(t)}d(Λs1−Λs2)(t)∣

=K0∣ ∫
Vs

0
exp{1

2
(Z̃(t) ○ψT )Σ1/2

b ((Z̃(t) ○ψT )Σ1/2
b )T

+Z(t)γ+(Z̃(t)○ψT )Σ1/2
b (

nN

∑
j=1

YjX̃j

A(D(tj;φ))
+∆(Z̃(t)○ψT ))

T

+R(t)}d(Λs1−Λs2)(t)∣

=K0∣ − ∫
Vs

0
(Λs1(t) −Λs2(t))

d

dt
[ exp{1

2
(Z̃(t) ○ψT )Σ1/2

b ((Z̃(t) ○ψT )Σ1/2
b )T

+Z(t)γ + (Z̃(t) ○ψT )Σ1/2
b (

nN

∑
j=1

YjX̃j

A(D(tj;φ))
+∆(Z̃(t) ○ψT ))

T

+R(t)}]d(t)

+ (Λs1(Vs) −Λs2(Vs)) exp{1

2
(Z̃(Vs) ○ψT )Σ1/2

b ((Z̃(Vs) ○ψT )Σ1/2
b )T

+Z(Vs)γ + (Z̃(Vs) ○ψT )Σ1/2
b (

nN

∑
j=1

YjX̃j

A(D(tj;φ))
+∆(Z̃(Vs) ○ψT ))

T

+R(Vs)}∣

≤K0[∫
Vs

0
∣Λs1(t) −Λs2(t)∣∣

d

dt
[ exp{1

2
(Z̃(t) ○ψT )Σ1/2

b ((Z̃(t) ○ψT )Σ1/2
b )T
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+Z(t)γ + (Z̃(t) ○ψT )Σ1/2
b (

nN

∑
j=1

YjX̃j

A(D(tj;φ))
+∆(Z̃(t) ○ψT ))

T

+R(t)}]∣dt

+ ∣Λs1(Vs) −Λs2(Vs))∣ exp{1

2
(Z̃(Vs) ○ψT )Σ1/2

b ((Z̃(Vs) ○ψT )Σ1/2
b )T

+Z(Vs)γ + (Z̃(Vs) ○ψT )Σ1/2
b (

nN

∑
j=1

YjX̃j

A(D(tj;φ))
+∆(Z̃(Vs) ○ψT ))

T

+R(Vs)}]

≤ ek10+k11∣∣Y ∣∣{∣Λs1(Vs) −Λs2(Vs))∣ + ∫
τ

0
∣Λs1(t) −Λs2(t)∣dt},

where K0 = Eb [ exp{ − ∑nN
j=1 (B1(β;b)/A(D(tj;φ)))}](2π)db/2, k10 and k11 are positive

constants. Similarly,

∣Q3(v,O;θ,Λs1) −Q3(v,O;θ,Λs2)∣

≤ ek12+k13∣∣Y ∣∣{∣Λs1(Vs) −Λs2(Vs)∣ + ∫
τ

0
∣Λs1(t) −Λs2(t)∣dt},

where k12 and k13 are positive constants.

On the other hand, there exist positive constants k14, . . . , k24 such that

∣Q1(v,O;θ)∣

= ∣ exp{Z(v)γ + (
nN

∑
j=1

YjX̃j

A(D(tj;φ))
+∆(Z̃(v) ○ψT ))(Z̃(v) ○ψT )T

+1

2
(Z̃(v) ○ψT )(Z̃(v) ○ψT )T}∣

≤ ek14+k15∣∣Y ∣∣,

∣Q2(v,O;θ,Λs)∣

= ∣∫b
exp{ − 1

2
bTb −

nN

∑
j=1

B1(β;b)
A(D(tj;φ))

− ∫
Vs

0
exp{(Z̃(t) ○ψT )Σ1/2

b b +Z(t)γ

+(Z̃(t) ○ψT )Σ1/2
b (

nN

∑
j=1

YjX̃j

A(D(tj;φ))
+∆(Z̃(t) ○ψT ))

T

+R(t)}dΛs(t)}db∣

≤ ∣∫b
exp{ − 1

2
bTb −

nN

∑
j=1

B1(β;b)
A(D(tj;φ))

} × [2∫
Vs

0
exp{(Z̃(t) ○ψT )Σ1/2

b b +Z(t)γ
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+(Z̃(t) ○ψT )Σ1/2
b (

nN

∑
j=1

YjX̃j

A(D(tj;φ))
+∆(Z̃(t) ○ψT ))

T

+R(t)}dΛs(t)]db∣

≤ ∣∫b
exp{ − 1

2
bTb −

nN

∑
j=1

B1(β;b)
A(D(tj;φ))

} × 2 exp{k16∣∣b∣∣ + k17∣∣Y ∣∣ + k18} ×Bs0 db∣

≤ ek19+k20∣∣Y ∣∣,

and Q3(v,O;θ,Λs)

= ∫b
exp{ − 1

2
bTb −

nN

∑
j=1

B2(β;b)
A(D(tj;φ))

− ∫
Vs

0
exp{(Z̃(t) ○ψT )Σ1/2

b b +Z(t)γ

+(Z̃(t) ○ψT )Σ1/2
b (

nN

∑
j=1

YjX̃j

A(D(tj;φ))
+∆(Z̃(t) ○ψT ))

T

}dΛs(t)}db,

≥ ∫b
exp{ − 1

2
bTb −

nN

∑
j=1

B2(β;b)
A(D(tj;φ))

− exp{k21∣∣b∣∣ + k22∣∣Y ∣∣ + k23} ×Bs0}db,

≥ k24 > 0.

Moreover,

∣∣∇θQ(v,O;θ,Λs)∣∣ + ∣ d
dv
Q(v,O;θ,Λs)∣

= ∣∣(∇θQ1)
Q2

Q3

+Q1(∇θ
Q2

Q3

)∣∣ + ∣( d

dv
Q1)

Q2

Q3

+Q1(
d

dv
(Q2

Q3

))∣

= ∣∣(∇θQ1)
Q2

Q3

+Q1[(∇θQ2)
1

Q3

+Q2
(−1)
Q2

3

(∇θQ3)]∣∣

+∣( d

dv
Q1)

Q2

Q3

+Q1[(
d

dv
Q2)

1

Q3

+Q2
(−1)
Q2

3

( d

dv
Q3)]∣

= ∣∣(∇θQ1)
Q2

Q3

+(∇θQ2)
Q1

Q3

−(∇θQ3)
Q2

Q2
3

∣∣+∣( d

dv
Q1)

Q2

Q3

+( d

dv
Q2)

Q1

Q3

−( d

dv
Q3)

Q1Q2

Q2
3

∣

≤ (∣∣∇θQ1∣∣ + ∣ d
dv
Q1∣)∣

Q2

Q3

∣ + (∣∣∇θQ2∣∣ + ∣ d
dv
Q2∣)∣

Q1

Q3

∣ + (∣∣∇θQ3∣∣ + ∣ d
dv
Q3∣)∣

Q1Q2

Q2
3

∣

≤ ek25+k26∣∣Y ∣∣,

for some positive constants k25 and k26. Therefore, by the mean-value theorem, we

conclude that, for any (v1,θ1,Λs1) and (v2,θ2,Λs2) in [0, τ] ×Θ ×A ,
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∣Q(v1,O;θ1,Λs1) −Q(v2,O;θ2,Λs2)∣

≤ ek25+k26∣∣Y ∣∣{∣∣θ1 − θ2∣∣ + ∣Λs1(Vs) −Λs2(Vs)∣ +∫
Vs

0
∣Λs1(t) −Λs2(t)∣dt + ∣v1 − v2∣} (3.32)

holds for some positive constants k25 and k26.

Applying Theorem 2.7.5 (p159) in van der Vaart and Wellner (1996) to our situation,

the entropy number for the class A satisfies logN[⋅](ε,A , L2(P )) ≤K/ε, where K is a

constant. Thus, we can find exp{K/ε} brackets, {[Lj, Uj]}, to cover the class A such

that ∣∣Uj −Lj ∣∣L2(P ) ≤ ε for each pair of [Lj, Uj]. On the other hand, we can further find

a partition of [0, τ] × Θ, say I1⋃ I2⋃⋯, such that the number of partitions is of the

order (1/ε)d+1, and, for any (v1,θ1) and (v2,θ2) in the same partition, their Euclidean

distance is less than ε. Therefore, the partition {I1, I2, . . .} × {[Lj, Uj]} bracket covers

[0, τ] × Θ × A , and the total number of the partitions is of order (1/ε)d+1 exp{1/ε}.

Hence, from (3.32), for any Il and [Lj, Uj], the set of the functions {Q(v,O;θ,Λs) ∶

(v,θ) ∈ Sl,Λs ∈ A ,Λs ∈ [Lj, Uj]} can be bracket covered by

[Q(vl,O;θl,Λsl) − ek25+k26∣∣Y ∣∣{ε + ∣Uj(Vs) −Lj(Vs)∣ +∫
Vs

0
∣Uj(t) −Lj(t)∣dt},

Q(vl,O;θl,Λsl) + ek25+k26∣∣Y ∣∣{ε + ∣Uj(Vs) −Lj(Vs)∣ +∫
Vs

0
∣Uj(t) −Lj(t)∣dt}], (3.33)

where (vl,θl) is a fixed point in Il and Λsj is a fixed function in [Lj, Uj]. Note that

the L2(P ) distance between these two functions in the above bracket (3.33) is less than

O(ε). Therefore, we have

N[⋅](ε,F , ∣∣ ⋅ ∣∣L2(P ) ≤ O((1

ε
)
d+1

e1/ε).

Furthermore, F has an L2(P )-integrable covering function, which is equal to O(
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ek25+k26∣∣Y ∣∣). From Theorem 2.5.6 (p130) in van der Vaart and Wellner (1996), F

is P-Donsker.

Additionally, in the above derivation, we also note that all the functions in F are

bounded from below by e−k27−k28∣∣Y ∣∣ for some positive constants k27 and k28.

3.5.3.2 Proof of P-Donsker property of G

Recall that we defined the class

G = {lθ(θ,Λs)Th1 + lΛs(θ,Λs)[h2] − lθ(θ0,Λs0)Th1 + lΛs(θ0,Λs0)[h2],

∣∣θ − θ0∣∣ + sup
t∈[0,τ]

∣Λs(t) −Λs0(t)∣ ≤ δ, (h1, h2) ∈ H },

where (hβ1 ,h
φ
1 ,h

b
1,h

ψ
1 ,h

γ
1) denote the corresponding components of h1 for the parame-

ters (β,φ,Vec(Σb), ψ,γ), respectively. We can write that for (h1, h2) ∈ H ,

lθ(θ,Λs)Th1 + lΛs(θ,Λs)[h2]

=[µ1(O;θ,Λs)Th1−∫
Vs

0
µ2(t,O;θ,Λs)Th1dΛs(t)]+∆h2(Vs)−∫

Vs

0
µ3(t,O;θ,Λs)h2(t)dΛs(t),

where

µ1(O;θ,Λs)Th1

= {∫b
G(b,O;θ,Λ2)db}

−1

× ∫b
G(b,O;θ,Λ2) × [b

TΣ−1
b DbΣ

−1
b b

2
− 1

2
Tr(Σ−1

b Db)

+
nN

∑
j=1

{ − (
Yj(Xjβ + X̃jb) −B(β;b)

(A(D(tj;φ)))2
)A′(D(tj;φ))h

D(tj ;φ)
1 +C ′(Yj;D(tj;φ))h

D(tj ;φ)
1 }

+
nN

∑
j=1

(
YjXj

A(D(tj;φ))
hβ1 −B′(β;b)hβ1) +∆s[(Z̃(Vs) ○ hψ1 )

T
b +Z(Vs)hγ1]]db,
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µ2(t,O;θ,Λs)Th1

= {∫b
G(b,O;θ,Λ2)db}

−1

×∫b
G(b,O;θ,Λ2) × exp{Z̃(t)(ψ ○ b) +Z(t)γ} × [(Z̃(t) ○ hψ1 )

T
b +Z(t)hγ1]db,

µ3(t,O;θ,Λs)

= {∫b
G(b,O;θ,Λ2)db}

−1

× ∫b
G(b,O;θ,Λ2) × exp{Z̃(t)(ψ ○ b) +Z(t)γ}db,

Db is the symmetric matrix such that Vec(Db) = hb1, A′(D(tj;φ)) and C ′(Yj;D(tj;φ))

are the derivatives of A(D(tj;φ)) and C(Yj;D(tj;φ)) with respect to D(tj;φ) respec-

tively, and B′(β;b) is the derivative of B(β;b) with respect to β.

For l = 1,2,3, we denote ∇θµl and ∇Λsµl[δΛs] as the derivatives of µl with respect

to θ and Λs along the path Λs + εδΛs. Then, using the similar arguments done in

Section 3.5.3.1, it is verified that ∇Λsµl[δΛs] = ∫
t

0 µl+3(u,O;θ,Λs)dδΛs(u) and there

exist two positive constants q1 and q2 such that

∑
l

{∣µl∣ + ∣∇θµl∣} ≤ e
q1+q2∣∣Y ∣∣

By the mean value theorem, we have that, for any (θ,Λs,h1, h2) and (θ̃, Λ̃s, h̃1, h̃2) in

Ξ ×H ,

lθ(θ,Λs)Th1 + lΛs(θ,Λs)[h2] − lθ(θ̃, Λ̃s)T h̃1 − lΛs(θ̃, Λ̃s)[h̃2]

= lθ(θ,Λs)Th1 + lΛs(θ,Λs)[h2] − lθ(θ̃, Λ̃s)Th1 − lΛs(θ̃, Λ̃s)[h2]

+ lθ(θ̃, Λ̃s)Th1 + lΛs(θ̃, Λ̃s)[h2] − lθ(θ̃, Λ̃s)T h̃1 − lΛs(θ̃, Λ̃s)[h̃2]

= [lθ(θ,Λs)T − lθ(θ̃, Λ̃s)T ]h1 + [lΛs(θ,Λs) − lΛs(θ̃, Λ̃s)][h2]

+ lθ(θ̃, Λ̃s)T (h1 − h̃1) + lΛs(θ̃, Λ̃s)([h2] − [h̃2])

= (θ − θ̃)T [ d
dθ
lθ(θ,Λs)∣

θ=θ
∗

,Λs=Λ∗
s

]h1 + [ d

dΛs

lθ(θ,Λs)∣
θ=θ

∗

,Λs=Λ∗
s

]
T

[Λs − Λ̃s]h1
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+ (θ − θ̃)T [ d
dθ
lΛs(θ,Λs)∣

θ=θ
∗

,Λs=Λ∗
s

][h2] + [ d

dΛs

lΛs(θ,Λs)∣
θ=θ

∗

,Λs=Λ∗
s

]
T

[Λs − Λ̃s][h2]

+ lθ(θ̃, Λ̃s)T (h1 − h̃1) + lΛs(θ̃, Λ̃s)([h2] − [h̃2])

= (θ − θ̃)T∇θµ1(O;θ∗,Λ∗
s)h1 − (θ − θ̃)T ∫

VS

0
∇θµ2(t,O;θ∗,Λ∗

s)dΛ∗
s(t)h1

+∫
Vs

0
µ4(t,O;θ∗,Λ∗

s)Th1d(Λs − Λ̃s)(t)

−∫
Vs

0
∫

t

0
µ5(u,O;θ∗,Λ∗

s)Td(Λs − Λ̃s)(u)h1dΛ∗
s(t)

−∫
Vs

0
µ2(t,O;θ∗,Λ∗

s)T (Λs − Λ̃s)h1dt

−(θ − θ̃)T ∫
VS

0
∇θµ3(t,O;θ∗,Λ∗

s)h2(t)dΛ∗
s(t)

−∫
Vs

0
∫

t

0
µ6(u,O;θ∗,Λ∗

s)Td(Λs − Λ̃s)(u)h2(t)dΛ∗
s(t)

−∫
Vs

0
µ3(t,O;θ∗,Λ∗

s)T (Λs − Λ̃s)h2(t)dt

+ µ1(O; θ̃, Λ̃s)T (h1 − h̃1) − ∫
VS

0
µ2(t,O; θ̃, Λ̃s)T (h1 − h̃1)dΛ̃s(t)

+ ∆s(h2(Vs) − h̃2(Vs)) − ∫
VS

0
µ3(t,O; θ̃, Λ̃s)(h2(Vs) − h̃2(Vs))dΛ̃s(t), (3.34)

where (θ∗,Λ∗
s) is equal to ε∗(θ,Λs)+ (1− ε∗)(θ̃, Λ̃s) for some ε∗ ∈ [0,1]. Thus, we have

∣lθ(θ,Λs)Th1 + lΛs(θ,Λs)[h2] − lθ(θ̃, Λ̃s)T h̃1 − lΛs(θ̃, Λ̃s)[h̃2]∣

≤ eq1+q2∣∣Y ∣∣{∣∣θ − θ̃∣∣ + ∣∣h1 − h̃1∣∣ + ∣Λs(Vs) − Λ̃s(Vs)∣

+∫
τ

0
∣Λs(t) − Λ̃s(t)∣[dt + d∣h2(t)∣ + d∣̃h2(t)∣]

+∣h2(Vs) − h̃2(Vs)∣ + ∫
τ

0
∣h2(Vs) − h̃2(Vs)∣[Λs(t) − Λ̃s(t)]}, (3.35)

where d∣h2(t)∣ = dh+2(t) + dh−2(t) and d∣̃h2(t)∣ = dh̃+2(t) + dh̃−2(t). As done in Section

3.5.3.1, by applying Theorem 2.7.5 (p159) in van der Vaart and Wellner (1996), we

note that for a set H 2 = {h2 ∶ ∣∣h2∣∣V ≤ B1}, logN[⋅](ε,H 2, L2(P )) ≤K/ε for a constant

B1 and any probability measure P where K is a constant. Thus, we can find exp{K/ε}

brackets, {[Lj, Uj]}, to cover the class H 2 such that ∣∣Uj −Lj ∣∣L2(P ) ≤ ε for each pair of
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[Lj, Uj]. On the other hand, we can further find a partition of H 1 = {h1 ∶ ∣∣h1∣∣ ≤ 1},

say I1⋃ I2⋃⋯, such that the number of partitions is of the order (1/ε), and, for any

h1 and h2 in the same partition, their Euclidean distance is less than ε. Therefore, the

partition {I1, I2, . . .}×{[Lj, Uj]} bracket covers H 1 ×H 2, and the total number of the

partitions is of order (1/ε) exp{1/ε}. Then, we obtain

logN[⋅](ε,G , L2(P )) ≤ O(1

ε
+ log ε).

Moreover, G has an L2(P )-integrable covering function, which is equal to O(eq1+q2∣∣Y ∣∣).

Hence, from Theorem 2.5.6 (p130) in van der Vaart and Wellner (1996), G is P-Donsker.

Additionally, from (3.35), we can calculate

∣lθ(θ,Λs)Th1 + lΛs(θ,Λs)[h2] − lθ(θ0,Λs0)Th1 − lΛs(θ0,Λs0)[h2]∣

≤ eq1+q2∣∣Y ∣∣{∣∣θ − θ0∣∣ + ∣Λs(Vs) −Λs0(Vs)∣ + ∫
τ

0
∣Λs(t) −Λs0(t)∣dt}

+ ∣∫
τ

0
µ3(t,O;θ∗,Λ∗

s)h2(t)d(Λs(t) −Λs0(t)∣. (3.36)

If ∣∣θ−θ0∣∣ → 0 and supt∈[0,τ] ∣Λs(t)−Λs0(t)∣ → 0, the above expression converges to zero

uniformly. Therefore,

sup
(h1,h2)∈H

P [lθ(θ,Λs)Th1 + lΛs(θ,Λs)[h2] − lθ(θ0,Λs0)Th1 − lΛs(θ0,Λs0)[h2]]
2 Ð→ 0.

3.5.3.3 Derivative operator ∇Uξ0

From (3.34) in the previous Section 3.5.3.2, we can obtain that

lθ(θ,Λs)Th1 + lΛs(θ,Λs)[h2] − lθ(θ0,Λs0)Th1 − lΛs(θ0,Λs0)[h2]

= [lθ(θ,Λs)T − lθ(θ0,Λs0)T ]h1 + [lΛs(θ,Λs) − lΛs(θ0,Λs0)][h2]
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= (θ − θ0)T∇θµ1(O;θ∗,Λ∗
s)h1 − (θ − θ0)T ∫

VS

0
∇θµ2(t,O;θ∗,Λ∗

s)h1dΛ∗
s(t)

+∫
Vs

0
µ4(t,O;θ∗,Λ∗

s)Th1d(Λs −Λs0)(t)

−∫
Vs

0
∫

t

0
µ5(u,O;θ∗,Λ∗

s)Td(Λs −Λs0)(u)h1dΛ∗
s(t)

−∫
Vs

0
µ2(t,O;θ∗,Λ∗

s)Th1d(Λs −Λs0)(t)

− (θ − θ0)T ∫
VS

0
∇θµ3(t,O;θ∗,Λ∗

s)h2(t)dΛ∗
s(t)

−∫
Vs

0
∫

t

0
µ6(u,O;θ∗,Λ∗

s)Td(Λs −Λs0)(u)h2(t)dΛ∗
s(t)

−∫
Vs

0
µ3(t,O;θ∗,Λ∗

s)Th2(t)d(Λs −Λs0)(t)

= (θ − θ0)T{∇θµ1(O;θ∗,Λ∗
s) − ∫

VS

0
∇θµ2(t,O;θ∗,Λ∗

s)dΛ∗
s(t)}h1

+ hT1 {∫
τ

0
I(t ≤ Vs)[µ4(t,O;θ∗,Λ∗

s) − µ2(t,O;θ∗,Λ∗
s)

− µ5(u,O;θ∗,Λ∗
s)∫

Vs

t
dΛ∗

s(u)]d(Λs −Λs0)(t)}

− (θ − θ0)T ∫
τ

0
I(t ≤ Vs)∇θµ3(t,O;θ∗,Λ∗

s)h2(t)dΛ∗
s(t)

−∫
τ

0
{I(t ≤ Vs)µ6(t,O;θ∗,Λ∗

s)∫
Vs

0
h2(u)dΛ∗

s(u)

+ I(t ≤ Vs)µ3(t,O;θ∗,Λ∗
s)h2(t)}d(Λs −Λs0)(t). (3.37)

Then, we have that

∇Uξ0(θ − θ0,Λs −Λs0)[h1, h2]

= (θ − θ0)T P{∇θµ1(O;θ0,Λs0) − ∫
VS

0
∇θµ2(t,O;θ0,Λs0)dΛs0(t)}h1

+ hT1 {∫
τ

0
P [I(t ≤ Vs)(µ4(t,O;θ0,Λs0) − µ2(t,O;θ0,Λs0)

− µ5(t,O;θ0,Λs0)∫
Vs

t
dΛs0(u))]d(Λs −Λs0)(t)}

− (θ − θ0)T ∫
τ

0
P{I(t ≤ Vs)∇θµ3(t,O;θ0,Λs0)}h2(t)dΛs0(t)
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−∫
τ

0
P{I(t ≤ Vs)µ6(t,O;θ0,Λs0)∫

Vs

0
h2(u)dΛs0(u)

+ I(t ≤ Vs)µ3(t,O;θ0,Λs0)h2(t)}d(Λs −Λs0)(t).

By the similar algebra done in (3.36), we can verify that, for j = 1, . . . ,6,

sup
t∈[0,τ]

∣∣µj(t,O;θ∗,Λ∗
s) − µj(t,O;θ0,Λs0)∣∣ ≤ eq3+q+4∣∣Y ∣∣{∣∣θ∗ − θ0∣∣ + sup

t∈[0,τ]

∣Λ∗
s −Λs0∣},

which implies that the linear operator ∇Uξ0 is bounded.

Then, we obtain that

P [lθ(θ,Λs)Th1 + lΛs(θ,Λs)[h2] − lθ(θ0,Λs0)Th1 − lΛs(θ0,Λs0)[h2]]

= ∇Uξ0(θ − θ0,Λs −Λs0)[h1, h2] + o(∣∣θ − θ0∣∣ + sup
t∈[0,τ]

∣Λs −Λs0∣)(∣∣h1∣∣ + ∣∣h2∣∣V ).

Therefore, Uξ is Fréchet differentiable at ξ0.

Additionally, from (3.37) and the above expression, we have

∇Uξ0(θ − θ0,Λs −Λs0)[h1, h2] = (θ − θ0)TΩ1[h1, h2] + ∫
τ

0
Ω2[h1, h2]d(Λs −Λs0)(t),

where

Ω1[h1, h2] = P{∇θµ1(O;θ0,Λs0) − ∫
VS

0
∇θµ2(t,O;θ0,Λs0)dΛs0(t)}h1

−∫
τ

0
P{I(t ≤ Vs)∇θµ3(t,O;θ0,Λs0)}h2(t)dΛs0(t)

and
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Ω2[h1, h2]

= hT1 P{I(t ≤ Vs)[µ4(t,O;θ0,Λs0) − µ2(t,O;θ0,Λs0) − µ5(u,O;θ0,Λs0)∫
Vs

t
dΛs0(u)]}

−P{I(t ≤ Vs)µ6(t,O;θ0,Λs0)∫
Vs

0
h2(u)dΛs0(u)}

−P{I(t ≤ Vs)µ3(t,O;θ0,Λs0)}h2(t).

Thus, Ω = (Ω1,Ω2) is the bounded linear operator from Rd × BV [0, τ] to itself. Fur-

thermore, we note that Ω =H + (M 1,M 2), where

H(h1, h2) = (h1,−P{I(t ≤ Vs)µ3(t,O;θ0,Λs0)}h2(t)),

M 1(h1, h2) = Ω1[h1, h2] − h1,

M 2(h1, h2) = hT1 P{I(t ≤ Vs)[µ4(t,O;θ0,Λs0) − µ2(t,O;θ0,Λs0)

−µ5(u,O;θ0,Λs0)∫
Vs

t
dΛs0(u)]}

−P{I(t ≤ Vs)µ6(t,O;θ0,Λs0)∫
Vs

0
h2(u)dΛs0(u)},

and also note that H is obviously invertible. Since M 1 maps into a finite-dimensional

space, it is compact. The image of M 2 is a continuously differentiable function in

[0, τ]. By the Arzela-Ascoli theorem (p41) in van der Vaart and Wellner (1996), M 2 is

a compact operator from Rd ×BV [0, τ] to BV [0, τ]. Thus, we conclude that Ω is the

summation of an invertible operator H and a compact operator M = (M 1,M 2).

3.6 Simulation Studies

In this section, we present some results from our simulation studies. Two sets of

simulations with different generalized linear mixed models for the longitudinal outcomes
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are performed. Binary and Poisson data are considered for longitudinal process in the

first and second sets of simulations, respectively.

3.6.1 Binary longitudinal outcomes and survival time

In this first set of simulations, we assume Yij to be a binary outcome following

P (Yij = yij ∣bi) = exp{yijηij − log(1 + exp{ηij})}, yij = 0, 1,

with ηij =X ijβ + bi = β0 + β1X1i + β2X2i + β3X3ij + bi for j = 1, . . . , ni, and

h(t∣bi) = λ(t) exp{ψbi +Zi(t)γ} = λ(t) exp{ψbi + γ1Z1i + γ2Z2i},

where bi ∼ N(0, σ2
b), X1i ≡ Z1i are simulated from a Bernoulli distribution with success

probability being 0.5, andX2i ≡ Z2i are simulated from the uniform distribution between

0 and 1. The longitudinal data are generated for every 0.3 unit of time, and thus X3ij,

the time at measurement, has the value of every 0.3 unit ranging over 0 through 2.4. We

consider different ψ values of -0.1, 0, and 0.1 for negative, zero, and positive dependency

between longitudinal process and survival time model, respectively. The parameters

in the two models are chosen as β0 = −1, β1 = 1, β2 = −0.5, β3 = −0.2, σ2
b = 0.5, ψ

= −0.1/ 0/ 0.1, γ1 = −0.1, γ2 = 0.1, and λ(t) = 1. Censoring time is generated from

the uniform distribution between 0.4 and 2.4, and the censoring proportion is around

25∼35%. We consider different sample sizes (n=200, 400) with 1000 replications. The

average number of longitudinal observations (ni) is 3 with the range of 1 to 8. For the

comparison of the estimated baseline cumulative hazards over simulations, we consider

the three time points of 0.9, 1.4, 1.9 which are three quartiles of the observed survival

time. The results of the maximum likelihood estimates for θ and baseline cumulative

hazards at the given three time points and their respective standard error estimates
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are reported in Table 3.3. The simulation study is conducted using R.

In Table 3.3, “True” gives the true values of parameters; the averages of the max-

imum likelihood estimates from the EM algorithm are in “Est.”; the sample standard

deviations from 1000 simulations are reported in “SSD”; “ESE” is the average of 1000

standard error estimates based on the observed information matrix; “CP” is the cov-

erage proportion of 95% nominal confidence intervals based on the estimated standard

error “ESE”. Satterthwaite method is used for the coverage probability of σ2
b .

From Table 3.3, we can see that even for the smaller sample size (n=200), the bias of

the estimates from EM algorithm is negligible for most cases. The estimated standard

errors calculated from the observed information matrix are close to the sample standard

deviations from the 1000 estimates, and the 95% confidence interval coverage rates are

close to 0.95 except those for ψ. The parameter ψ tends to be underestimated with

higher than the nominal level coverage rates, but the coverage rate is improved for

larger sample size. Thus, with small sample size, the test for ψ is conservative, which

strengthens the test results when rejecting the null (ψ = 0), and the type I error becomes

closer to the nominal level as sample size increases. In addition, the simulations show

that the variances of the estimators decrease as the sample size (n) increases. We also

can see that the estimates are fairly robust and close to the true values for all different

ψ values.

3.6.2 Poisson longitudinal outcomes and survival time

In the second set of simulations, we assume Yij to follow a Poisson distribution,

P (Yij = yij ∣bi) = exp{yijηij − exp{ηij} − log(yij!)},
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Table 3.3: Summary of simulation results of maximum likelihood estimation for binary
longitudinal outcomes and survival time.

n=200 n=400

ψ Par. True Est. SSD ESE CP Est. SSD ESE CP

- .1 β0 -1.0 -1.008 .270 .272 .951 -1.006 .194 .191 .945
β1 1.0 1.015 .241 .232 .942 .997 .162 .162 .949
β2 - .5 - .522 .405 .392 .939 - .500 .282 .274 .945
β3 - .2 - .173 .252 .245 .947 - .187 .181 .172 .952
σ2
b .5 .502 .231 .288 .968 .493 .168 .200 .974
ψ - .1 - .083 .353 .390 .990 - .102 .235 .245 .978
γ1 - .1 - .102 .174 .174 .949 - .104 .121 .121 .955
γ2 .1 .099 .296 .303 .953 .097 .214 .210 .950
Λ( .9) .9 .910 .181 .184 .955 .906 .132 .128 .943
Λ(1.4) 1.4 1.444 .294 .299 .962 1.421 .211 .204 .943
Λ(1.9) 1.9 1.980 .446 .449 .955 1.945 .312 .302 .951

0 β0 -1.0 -1.012 .281 .273 .944 -1.008 .192 .192 .948
β1 1.0 1.014 .235 .233 .954 1.006 .164 .163 .948
β2 - .5 - .501 .414 .393 .934 - .503 .278 .276 .949
β3 - .2 - .190 .263 .246 .936 - .194 .175 .173 .950
σ2
b .5 .505 .237 .290 .960 .503 .176 .203 .963
ψ .0 .008 .375 .388 .994 .003 .236 .241 .980
γ1 - .1 - .108 .180 .174 .942 - .103 .113 .121 .968
γ2 .1 .098 .309 .303 .949 .101 .209 .210 .951
Λ( .9) .9 .920 .188 .186 .952 .905 .131 .127 .944
Λ(1.4) 1.4 1.463 .306 .303 .948 1.415 .206 .202 .952
Λ(1.9) 1.9 2.006 .462 .457 .953 1.937 .306 .299 .948

.1 β0 -1.0 -1.009 .285 .274 .948 -1.000 .192 .192 .945
β1 1.0 1.004 .224 .234 .964 1.004 .166 .163 .952
β2 - .5 - .510 .414 .395 .945 - .512 .284 .276 .943
β3 - .2 - .186 .260 .249 .948 - .185 .189 .175 .929
σ2
b .5 .519 .249 .295 .946 .498 .174 .203 .965
ψ .1 .117 .354 .386 .990 .129 .246 .247 .986
γ1 - .1 - .096 .175 .175 .946 - .101 .117 .122 .966
γ2 .1 .086 .312 .304 .944 .101 .212 .211 .948
Λ( .9) .9 .915 .184 .185 .957 .904 .129 .127 .946
Λ(1.4) 1.4 1.455 .305 .303 .955 1.413 .203 .203 .954
Λ(1.9) 1.9 2.010 .481 .463 .952 1.938 .303 .302 .959
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with ηij defined as in Section 3.6.1. We also consider the same hazards model and

simulation setting as those used in Section 3.6.1 except σ2
b = 0.2. The simulated Poisson

longitudinal outcomes range over 0 to 7 with the average 0.5.

Table 3.4 shows that overall the estimates perform well even for the smaller sample

size n = 200 with small biases of the estimates except ψ. We conducted additional

simulations with sample sizes of 800 and 1000, and the bias of ψ existing for the

small sample size decreases as sample size increases over 200, 400, 800 and 1000. The

estimated standard errors using the observed information matrix are close to the sample

standard deviations, and the 95% confidence interval coverage rates are close to 0.95

except for σ2
b and ψ.

From Table 3.4, ψ is seemingly underestimated with higher than the nominal cover-

age rates, but the coverage rate decreases to close to 95% nominal level as sample size

increases. Additional simulations we conducted show that, with sample sizes of 800,

the 95% confidence interval coverage rates for ψ =-0.1, 0 and 0.1 were 95.5%, 95.9%

and 95.9%, respectively. σ2
b also appears to have high coverage rates, which may be

due to numerical problem since its coverage rates are still high for larger sample sizes.

This implies that variance of σ2
b may not be estimated well for Poisson longitudinal

distribution. In the meantime, the test for σ2
b is conservative, which strengthens the

test result for rejecting the null (σ2
b = 0). On the other hand, profile likelihood may be

an alternative estimation approach for σ2
b . It is also shown that the variances of the

estimators decrease for larger sample size, and the estimates are fairly robust and close

to the true values for all three different ψ values.

3.7 Analysis of the CHANCE Study

We now return to the CHANCE study described in Section 3.2, and apply our proposed

method to Head and Neck Cancer Specific symptoms (HNCS) among QoL domains with
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Table 3.4: Summary of simulation results of maximum likelihood estimation for Poisson
longitudinal outcomes and survival time.

n=200 n=400

ψ Par. True Est. SSD ESE CP Est. SSD ESE CP

- .1 β0 -1.0 -1.001 .186 .192 .959 -1.005 .135 .135 .949
β1 1.0 1.014 .165 .161 .949 1.008 .118 .113 .933
β2 - .5 - .513 .275 .260 .938 - .502 .189 .182 .951
β3 - .2 - .188 .178 .164 .941 - .189 .128 .115 .921
σ2
b .2 .195 .074 .096 .978 .197 .051 .067 .986
ψ - .1 - .056 .603 .621 .981 - .075 .417 .388 .970
γ1 - .1 - .098 .177 .175 .952 - .098 .126 .121 .940
γ2 .1 .081 .311 .305 .946 .103 .218 .211 .956
Λ( .9) .9 .922 .189 .187 .949 .902 .130 .127 .946
Λ(1.4) 1.4 1.466 .321 .307 .941 1.418 .209 .204 .950
Λ(1.9) 1.9 2.036 .502 .474 .950 1.947 .308 .304 .950

0 β0 -1.0 -1.000 .190 .192 .946 -1.003 .134 .135 .948
β1 1.0 1.009 .162 .161 .944 1.004 .114 .113 .949
β2 - .5 - .512 .277 .260 .933 - .496 .187 .183 .940
β3 - .2 - .190 .179 .165 .934 - .187 .125 .116 .935
σ2
b .2 .195 .076 .096 .977 .199 .052 .067 .984
ψ .0 .017 .606 .628 .989 .061 .403 .382 .968
γ1 - .1 - .098 .174 .175 .952 - .105 .125 .121 .940
γ2 .1 .094 .311 .305 .952 .101 .212 .211 .950
Λ( .9) .9 .914 .185 .185 .955 .906 .130 .128 .944
Λ(1.4) 1.4 1.459 .305 .304 .954 1.428 .209 .205 .942
Λ(1.9) 1.9 2.016 .472 .464 .957 1.961 .308 .305 .945

.1 β0 -1.0 -1.000 .192 .193 .947 -1.005 .131 .135 .958
β1 1.0 1.013 .168 .162 .939 1.007 .115 .114 .945
β2 - .5 - .522 .279 .261 .937 - .500 .191 .183 .939
β3 - .2 - .193 .191 .167 .929 - .188 .129 .117 .928
σ2
b .2 .198 .076 .096 .978 .197 .053 .067 .984
ψ .1 .152 .609 .627 .993 .137 .403 .390 .975
γ1 - .1 - .098 .174 .176 .944 - .103 .120 .121 .951
γ2 .1 .089 .303 .306 .953 .090 .203 .211 .958
Λ( .9) .9 .919 .187 .187 .945 .913 .122 .128 .962
Λ(1.4) 1.4 1.461 .317 .308 .952 1.439 .205 .207 .961
Λ(1.9) 1.9 2.038 .519 .480 .951 1.965 .308 .307 .956
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survival time in this section. We are interested in testing the correlation between sur-

vival time and longitudinal QoL outcomes and investigating which variables predict

the QoL satisfaction or the risk of death or both. In the full models for both longi-

tudinal QoL and survival time, race, the number of 12 oz. beers consumed per week,

household income, surgery, radiation therapy, chemotherapy, tumor site, and tumor

stage are considered as categorical, and age at diagnosis, the number of persons sup-

ported by household income, body mass index (BMI), and the total number of medical

conditions reported as continuous. Additionally, 2 interactions with race, i.e. race ×

the total number of medical conditions reported and race × tumor site, are included in

both models since we are particularly interested in the difference of QoL and survival

between African American and White. Time at survey measurement is also included as

a covariate for longitudinal outcomes. A random intercept for the dependence between

the QoL satisfaction and the risk of death is included in both models, and assumed to

follow a normal distribution with mean zero. In addition to the simultaneous analysis,

we also conduct separate analyses fitting the generalized linear mixed model and the

Cox proportional hazards model to the longitudinal QoL and survival time respectively

and compare the results to those from our proposed simultaneous method.

After fitting the simultaneous models with all the covariates, we use backward

variable selection based on the Likelihood Ratio Test (LRT) and find that surgery,

chemotherapy, tumor site, age at diagnosis, and all 2 interactions are not statistically

significant in both models for HNCS QoL satisfaction and survival time at the sig-

nificance level 0.05. We remove these variables and refit the simultaneous models.

Then, the LRT shows that race, radiation therapy, the number of persons supported by

household income, BMI, and the total number of medical conditions reported are not

statistically significant for the risk of death. We further reduce the models by removing

them from the hazards model and refit the reduced simultaneous models. Table 3.5
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gives the results from this final models. From the “Simultaneous” columns, we see

that the number of 12 oz. beers consumed per week, household income, tumor stage,

and the total number of medical conditions reported are significantly associated with

both patients’ HNCS QoL satisfaction and hazard of death. Using 30 or more of 12 oz.

beers consumed per week as the reference group, all categories of the smaller amount

are associated with HNCS QoL satisfaction and lower risk of death, higher household

income is overall associated with HNCS QoL satisfaction and lower risk of death, and

both patients’ HNCS QoL satisfaction and risk of death are significantly different for

patients in different tumor stages. Specifically, for instance, with the log-scaled odds

and hazard ratios of 1.060 and -1.076 for HNCS QoL satisfaction and death respectively,

patients who consumed 5 to 14 of 12 oz. beers per week appear to have 2.886 times

odds for HNCS QoL satisfaction and 0.341 times hazards of death compared to those

that consumed 30 or more of 12 oz. beers per week in the study after adjusting for the

other covariates in the model. Looking at the number of medical conditions reported,

for each additional medial condition reported, the odds ratio of HNCS QoL satisfaction

is decreased by 16% and the hazard of death is increased by 29%. That is, patients with

a greater number of medical conditions reported have lower HNCS QoL satisfaction and

higher risk of death after adjusting for the other covariates in the model. In the mean-

time, race (African-American), radiation therapy, the number of persons supported by

household income, and BMI are selected only in the HNCS QoL longitudinal model.

African-Americans, patients not treated with radiation therapy, patients in the family

with the smaller number of persons supported by household income, or patients with

higher BMI are likely to be more satisfied with longitudinal HNCS QoL while the risk

of death is not affected by race, radiation therapy, the number of persons supported

by household income and BMI. Furthermore, we also find that time at survey mea-

surement is statistically significant in the HNCS QoL longitudinal model implying that
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patients are more satisfied over time. The parameter ψ for the dependence between

longitudinal HNCS QoL and survival time is negative and has p-value as 0.131. This

implies that the longitudinal HNCS QoL and survival time are marginally correlated

and some latent factors which increase HNCS QoL satisfaction also decrease the risk

of death. For the purpose of comparison, we conducted separate analyses for longitu-

dinal HNCS QoL and survival time whose results are given in the last three columns

of Table 3.5. The generalized linear mixed model (GLMM) and the Cox proportional

hazards model are used for longitudinal outcomes and survival time respectively. The

GLMM also considers individual heterogeneity through subject-specific random effects

although it does not incorporate the correlation between longitudinal outcomes and

survival time. Comparing the results from the simultaneous and separate analyses of

Table 3.5, we can see our simultaneous analysis additionally indicates the number of

persons supported by household income, BMI, and the total number of medical condi-

tions reported in the HNCS QoL longitudinal model (p-values=0.025, 0.007, and 0.030,

respectively) and the number of 12 oz. beers consumed per week in the hazard model

(p-values=0.045 and 0.005 for ‘None’ and ‘5 to 14’) as significant which are not selected

by separate analyses. Figure 3.1 shows the estimated baseline cumulative hazard rates

over follow-up time with the 95% confidence interval. Since the baseline cumulative

hazard rates are bounded by 0, we first log-transformed the estimated baseline cumu-

lative hazard rates and obtained the 95% lower and upper bounds for the log-scaled

estimated baseline cumulative hazards. Then, we re-transformed them into their orig-

inal scale. The estimated baseline cumulative hazard rates look flat at the very early

time within a year, but soon appear to be linearly increasing. Figure 3.2 shows the

Kaplan-Meier estimates (solid line) and the predicted survival probabilities based on

the simultaneous analysis (dashed line). These two survival curves are very close to

each other which implies our proposed method fits the data well.
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Table 3.5: Analyses results for the HNCS QoL and survival time of the CHANCE study

Simultaneous Separate
Parameter Est. ESE P-value Est. ESE P-value

< HNCS QoL longitudinal model >

Intercept β0 .744 .538 .167 1.190 .390 .002
Race (ref= White)
– African American β1 .564 .229 .014 .511 .256 .047
# of 12 oz. beers consumed per week (ref=30 or more)
– None β2 .636 .269 .018 .622 .300 .038
– less than 1 β3 .830 .357 .020 .735 .396 .064
– 1 to 4 β4 1.302 .294 <.001 1.268 .326 <.001
– 5 to 14 β5 1.060 .251 <.001 1.018 .279 <.001
– 15 to 29 β6 .601 .289 .037 .547 .327 .095
Household income (ref= level1: 0–10K)
– level2: 20–30K β7 -.271 .231 .241 -.328 .258 .204
– level3: 40–50K β8 .297 .255 .245 .250 .282 .376
– level4: ≥ 60K β9 1.199 .274 <.001 1.045 .286 <.001
Radiation therapy (ref= No)
– Yes β10 -1.132 .260 <.001 -1.048 .280 <.001
Tumor stage (ref= I)
– II β11 -.416 .300 .166 -.352 .330 .286
– III β12 -1.335 .284 <.001 -1.198 .314 <.001
– IV β13 -1.175 .254 <.001 -1.057 .277 <.001
# of persons supported by household income β14 -.189 .084 .025
BMI β15 .041 .015 .007
Total # of medical conditions reported β16 -.175 .080 .030
Time at survey measurement (years) β17 .241 .066 <.001 .254 .067 <.001
variance of random effects σ2

b .303 .173 .013 1.169 .257

< Hazards model >

Random effect coefficient ψ -1.427 .946 .131
# of 12 oz. beers consumed per week (ref=3 or more)
– None γ1 -.772 .386 .045
– less than 1 γ2 -.155 .426 .715
– 1 to 4 γ3 -.802 .414 .053
– 5 to 14 γ4 -1.076 .383 .005
– 15 to 29 γ5 -.591 .399 .139
Household income (ref= level1: 0–10K)
– level2: 20–30K γ6 -.218 .294 .459 -.219 .263 .406
– level3: 40–50K γ7 -.941 .371 .011 -.928 .331 .005
– level4: ≥ 60K γ8 -1.463 .401 <.001 -1.393 .358 <.001
Tumor stage (ref= I)
– II γ9 -.199 .465 .668 -.295 .435 .498
– III γ10 .235 .433 .588 .136 .389 .727
– IV γ11 1.059 .360 .003 .914 .295 .002
Total # of medical conditions reported γ12 .256 .110 .020 .205 .091 .025

P-value for testing σ2
b being zero is based on a mixture of 0 and χ2 distribution with 1 degree of freedom with equal mixing

probabilities.
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Figure 3.1: Estimated baseline cumulative hazards (solid line) with 95% confidence
interval (dashed lines) by the simultaneous analysis of HNCS QoL longitudinal outcome
and survival time

103



Figure 3.2: Kaplan-Meier estimates (solid line) and the predicted survival probabilities
based on the simultaneous analysis of HNCS QoL longitudinal outcome and survival
time (dashed line)
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3.8 Concluding Remarks

We have proposed a method for the simultaneous modeling of longitudinal outcomes

including both categorical and continuous data with a generalized linear mixed model

and survival time with a stratified multiplicative proportional hazards model through

random effects. We have also developed a maximum likelihood estimation method for

the proposed simultaneous model, and presented asymptotic properties of the proposed

estimators. The proposed estimation procedure using EM algorithm has been assessed

via simulation studies. The proposed estimates performed well in finite samples. The

variance estimates based on the observed information matrix approximate the true

variance well in finite samples.

The proposed method was applied to the CHANCE study data. The results for

longitudinal HNCS and survival time have shown that, after adjusting for the other

covariates in the simultaneous models, the lower amount of beers consumed per week,

higher household income, lower stage, and the lower total number of medical conditions

reported are associated with more HNCS QoL satisfaction and lower risk of death. Fur-

ther, African-Americans, patients not treated with radiation therapy, patients in the

family with the smaller number of persons supported by household income, or patients

with higher BMI are likely to be more satisfied with longitudinal HNCS QoL while

the risk of death is not affected by race, radiation therapy, the number of persons sup-

ported by household income and BMI. Time at survey measurement in the HNCS QoL

longitudinal model is also statistically significant implying that patients are more sat-

isfied over time. Furthermore, our proposed method additionally finds more predictors

including: the number of persons supported by household income, BMI, and the total

number of medical conditions reported in the HNCS QoL longitudinal model and the

predictor, number of 12 oz. beers consumed per week, in the hazard model while sepa-

rate analyses do not select them. This result comparing the simultaneous and separate
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analyses supports that, even when the longitudinal outcomes and survival time are

only marginally correlated, our simultaneous analysis could provide better power than

separate analyses not considering the dependency between the longitudinal outcomes

and survival time.

In our proposed method, all the information on survival, longitudinal outcomes, and

covaraties are used. As a result of this, the parameter estimates can be more efficient.

The proposed model also generalizes previous work to general longitudinal outcomes.

This work fills in some gaps in the joint modeling research. Future work can include

relaxing normal assumption for the random effects and considering generalization to

mixed types of longitudinal outcomes.
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Chapter 4

JOINT MODELING OF SURVIVAL

TIME AND LONGITUDINAL

OUTCOMES WITH FLEXIBLE

RANDOM EFFECTS

4.1 Introduction

In biomedical or public health research, it is common that both longitudinal outcomes

over time and survival endpoint are collected for the same subject along with the

subject’s characteristics or risk factors. Investigators are interested in finding important

variables which predict both longitudinal outcomes and survival time. Among the

existing approaches for longitudinal data and survival time, the selection model and

the pattern mixture model have been widely used. The selection model estimating the

distribution of survival time given longitudinal data was studied by numerous authors,

for example, Tsiatis et al. (1995), Tsiatis and Davidian (2001), Xu and Zeger (2001a,b)

and Tseng et al. (2005). The pattern mixture model focuses on the trend of longitudinal

outcomes conditional on survival time and was studied by Wu and Carroll (1988), Hogan

and Laird (1997), Albert and Follmann (2000, 2007) and Ding and Wang (2008) among

others. On the other hand, simultaneous modeling of the longitudinal and survival data



was proposed by Xu and Zeger (2001b), Zeng and Cai (2005), Elashfoff et al. (2007,

2008) and Rizopoulos et al. (2008). Wang and Taylor (2001), Brown and Ibrahim (2003)

and Hu et al. (2009) studied simultaneous modeling in the Bayesian perspective.

In all the joint models, random effects are incorporated to accommodate the latent

dependence between survival time and longitudinal outcomes. Random effects are

conventionally assumed to be normally distributed. However, it is unclear whether

the normality assumption is truly satisfied in practice. Furthermore, misspecifying

normality assumption can lead to serious bias in estimation (Neuhaus et al., 1992;

Kleinman and Ibrahim, 1998; Heagerty and Kurland, 2001; Agresti et al., 2004).

In this paper, we assume that the underlying distribution of random effects is un-

known. In estimating model parameters, we propose to use a mixture of Gaussian dis-

tributions as an approximation for the unknown random effect distribution. Moreover,

we simultaneously model the survival time with a stratified Cox proportional hazards

model and longitudinal outcomes with a generalized linear mixed model to incorporate

both categorical and continuous longitudinal outcomes. Finite sample properties of the

proposed estimators and robustness of the mixture distribution are assessed via simu-

lations. We adopt AIC and BIC for selecting the number of mixtures and also conduct

simulation studies to assess these selection procedures.

The outline of this paper is as follows. In Section 4.2, we present a simultaneous

modeling for longitudinal outcomes and survival time with random effects from an

unknown distribution, and describe the inference procedure. Asymptotic properties of

the proposed estimators and the technical details of their proofs are investigated in

Section 4.3 and Section 4.4, respectively. Numerical results from simulation studies

are given in Section 4.5. Our proposed method is illustrated with the data from the

Carolina Head and Neck Cancer Study (CHANCE) in Section 4.6. In Section 4.7, we

discuss some further consideration. EM-algorithms are provided in Appendix.
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4.2 Models and Inference Procedure

4.2.1 Model formulation and notation

We use Y (t) to denote the value of a longitudinal marker process at time t. Suppose

Y (t) is from a distribution belonging to exponential family in order to incorporate both

continuous and categorical measurements. Let T denote survival time, and suppose that

the survival time T is possibly right censored. Suppose a set of n subjects are followed

over an interval [0, τ], where τ is the study end time. Denote b∗i , i = 1, . . . , n, as a vector

of subject-specific random effects of dimension db and b∗i ’s are mutually independent.

Given the random effects b∗i , the observed covariates, and the observed outcome

history till time t, we assume that the longitudinal outcome Yi(t) at time t for subject

i follows a distribution from the exponential family with density,

exp{yiηi(t) −B(ηi(t))
A(Di(t;φ))

+C(yi,Di(t;φ))} (4.1)

with µi(t) = E(Yi(t)∣b∗i ) = B′(ηi(t)) and vi(t) = Var(Yi(t)∣b∗i ) = B′′(ηi(t))A(Di(t;φ)),

satisfying

ηi(t) = g(µi(t)) =X i(t)β + X̃ i(t)b∗i

and vi(t) = v(µi(t))A(Di(t;φ)), where g(⋅) and v(⋅) are known link and variance func-

tions respectively, X i(t) and X̃ i(t) are the row vectors of the observed covariates for

subject i, and β is a column vector of coefficients for X i(t). X i(t) does not include

intercept and it does not contain any covariates in X̃ i(t) because the intercept and

any potential common covariates for fixed effects are combined with the corresponding

random effects in X̃ i(t) so that mean of random effects does not have restriction.

Given the random effects b∗i , the observed covariates, and the observed survival

history before time t, the conditional hazard rate function for the survival time Ti of
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subject i is assumed to follow a stratified multiplicative hazards model,

λs(t) exp{Z̃i(t)(ψ ○ b∗i ) +Zi(t)γ}, (4.2)

where Zi(t) and Z̃i(t) are the row vectors of the observed covariates and may share

some components, ψ is a vector of parameters of the coefficients for random effects,

λs(t) is the s-th stratum baseline hazard rate function, and γ is a column vector of

coefficients for Zi(t). Note that Zi(t) and Z̃i(t) do not include dummy variables for

strata since baseline hazard rate is stratum-specific. Here, for any vectors a1 and a2 of

the same dimension, a1 ○ a2 denotes the component-wise product. In addition, X̃ i(t)

and Z̃i(t) have the same dimensions as b∗i ’s. For the subject-specific random effects

b∗i , we assume the underlying distribution of b∗i is unknown and denote its density as

f(b∗i ) .

Let ni be the number of the observed longitudinal measurements for subject i, and

assume that the distributions of ni and the observation times for longitudinal mea-

surements are independent of the parameters of interest in this joint model. The

observed data from n subjects are (ni, Yij,X ij, X̃ ij), j = 1, . . . , ni, i = 1, . . . , n, and

(Vi,∆i, Si,{(Zi(t), Z̃i(t)) ∶ t≤Vi}), i=1, . . . , n, where for subject i, (Yij,X ij, X̃ ij) is the

j-th observation of (Yi(t),X i(t), X̃ i(t)), Ci is the right-censoring time and independent

of Ti and Yi(t) given the covariates and the random effects, Vi = min(Ti,Ci), Si denotes

the stratum, and ∆i = I(Ti ≤ Ci). For all n subjects, we write Y = (Y T
1 , . . . ,Y

T
n)T ,

Y i = (Yi1, . . . , Yini)T , V = (V1, . . . , Vn)T , and b∗ = (b∗T1 , . . . ,b∗Tn )T . Then, the likelihood

function of the complete data (Y ,V ,b∗) has the form,

Lc(Y ,V ,b∗) =
n

∏
i=1

f(Y i∣b∗i )(
S

∏
s=1

[f(Vi∣b∗i )]
I(Si=s))f(b∗i )

=
n

∏
i=1

exp{
ni

∑
j=1

[
Yij(X ijβ + X̃ ijb

∗
i ) −B(β;b∗i )

A(Di(tj;φ))
+C(Yij;Di(tj;φ))]}
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× (
S

∏
s=1

[λs(Vi)∆i exp{∆i[Z̃i(Vi)(ψ ○ b∗i ) +Zi(Vi)γ]

−∫
Vi

0
exp{Z̃i(u)(ψ ○ b∗i ) +Zi(u)γ}dΛs(u)}]

I(Si=s)

)

× f(b∗i ), (4.3)

and the full likelihood function of the observed data (Y ,V ) is expressed as

Lf(Y ,V ) = ∫b∗
Lc(Y ,V ,b∗)db∗. (4.4)

The parameter ψ in model (4.2) characterizes the dependence between the longi-

tudinal outcomes and the survival time due to latent random effects: ψ = 0 means the

dependence between the survival time and longitudinal responses are not due to these

latent variables; ψ ≠ 0 means such dependence may be due to these latent variables. In

other words, ψ > 0 implies there may be some latent factors increasing both the longi-

tudinal outcomes and the risk of survival endpoint simultaneously while ψ < 0 implies

some latent factors causing the increment of longitudinal outcomes may decrease the

risk of survival endpoint.

4.2.2 Inference procedure

For parameter estimation, we approximate the random effect distribution with a mix-

ture of Gaussian distributions. This method was studied in some literature to extend

normality assumption of random effects. For instance, Verbeke and Lesaffre (1996),

Verbeke and Molenberghs (2000), and Zhang and Davidian (2001) used it in a linear

mixed model, and Verbeke and Lesaffre (1996), Fieuws et al.. (2004), and Caffo et

al. (2007) considered it in a GLMM. Alternatively, Ghidey et al.. (2004) and Komárek

and Lesaffre (2008a) used the penalized Gaussian mixture (PGM) approach in a linear

mixed model and a GLMM respectively. Furthermore, Komárek and Lesaffre (2008b,
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2009) suggested a Bayesian accelerated failure time (AFT) model with random effects

following a PGM.

For the subject-specific random effects b∗i in Section 4.2.1, we approximate the

distribution of b∗i with a mixture of a finite number of db-dimensional multivariate nor-

mal distributions. That is, the distribution of b∗i is approximated by ∑K
k=1wkN(µk,Σb),

where K is the number of mixture components. We denote the probability of belonging

to component k by wk, such that ∑K
k=1wk = 1. µk is the mean of the k-th component and

it is assumed that each component has the same covariance matrix Σb. This constraint

is needed to avoid infinite likelihoods (Böhning, 1999). We write w = (w1, . . . ,wK−1)T ,

the vector of K − 1 component probabilities, and µ = (µT1 , . . . ,µTK)T , the vector of all

component means. We introduce bi and αi = k, (k = 1, . . . ,K), as the i-th subject’s

random effects following the mixture distribution and the k-th component of the mix-

ture from which bi is sampled, respectively. The distribution of αi is then described by

P (αi = k) = wk and, given αi = k, bik ∼ N(µk,Σb). Thus, bi = ∑K
k=1 I(αi = k)bik, where

I(αi = k) is the indicator of belonging to component k. For n subjects, b = (bT1 , . . . ,bTn)T

and α = (α1, . . . , αn)T .

Now we estimate and make inferences on the parameters θ = (βT,φT,Vec(Σb)T,µT,

wT,ψT,γT )T and the baseline cumulative hazard functions with S strata,Λ(t)=(Λ1(t),

. . . ,ΛS(t))T , where Λs(t) = ∫
t

0 λs(u)du, s = 1, . . . , S. The parameters β and φ are from

the longitudinal model, ψ and γ are from the hazard model, and, µ, w, and Σb are

associated with the random effects Vec(⋅) operator creates a column vector from a ma-

trix by stacking the diagonal and upper-triangle elements of the matrix. The likelihood

function (4.3) of the complete data (Y ,V ,b,α) and the full likelihood function (4.4)

of the observed data (Y ,V ) for (θ,Λ) have the following forms respectively,
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Lc(θ,Λ;Y ,V ,b,α)

=
n

∏
i=1

K

∏
k=1

[ exp{
ni

∑
j=1

[
Yij(X ijβ + X̃ ijbik) −B(β;bik)

A(Di(tj;φ))
+C(Yij;Di(tj;φ))]}

× (
S

∏
s=1

[λs(Vi)∆i exp{∆i[Z̃i(Vi)(ψ ○ bik) +Zi(Vi)γ]

−∫
Vi

0
exp{Z̃i(u)(ψ ○ bik) +Zi(u)γ}dΛs(u)}]

I(Si=s)

)

× (2π)−db/2∣Σb∣−1/2 exp{ − 1

2
(bik −µk)TΣ−1

b (bik −µk)} ×wk]
I(αi=k)

and Lf(θ,Λ;Y ,V ) = ∑
α
∫b

Lc(θ,Λ;Y ,V ,b,α)db.

The proposed estimation method is to calculate the maximum likelihood estimates for

(θ,Λ(t)) over a set of θ and Λ(t). We let each Λs(t) of Λ(t), s = 1, . . . , S, be a non-

decreasing and right-continuous step function with jumps only at the observed failure

times belonging to stratum s.

EM-algorithm is used for calculating the maximum likelihood estimates. In the

EM-algorithm, bi and αi are considered as missing data for i = 1, . . . , n. Therefore, the

M-step solves the conditional score equations from complete data given observations,

where the conditional expectation can be evaluated in E-step. The procedure involves

iterating between the following two steps until convergence is achieved: at the m-th

iteration,

(1) E-step Calculate the conditional expectations of some known functions of bi and

αi, needed in the next M-step, for subject i with Si=s given observations and the cur-

rent estimate (θ(m),Λ
(m)
s ). The conditional expectation is calculated using the Gauss-

Hermite Quadrature numerical approximation, denoted as E[q(bi, αi)∣θ(m),Λ
(m)
s ] for a
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known function q(bi, αi).

(2) M-step After differentiating the conditional expectation of complete data log-

likelihood function given observations and the current estimate (θ(m),Λ(m)), the up-

dated estimator (θ(m+1), Λ(m+1)) can be obtained as follows: (β(m+1),φ(m+1)) solves the

conditional expectation of complete data log-likelihood score equation using one-step

Newton-Raphson iteration; For the covariance matrix of random effects,

Σ
(m+1)
b = 1

n

n

∑
i=1

S

∑
s=1

K

∑
k=1

E [I(αi = k)(bik −µk)(bik −µk)T ∣θ(m),Λ
(m)
s ]I(Si = s);

For the k-th mixture component (k = 1, . . . ,K),

µ
(m+1)
k =

∑n
i=1∑S

s=1 E [I(αi = k)bik∣θ(m),Λ
(m)
s ]I(Si = s)

∑n
i=1∑S

s=1 E [I(αi = k)∣θ(m),Λ
(m)
s ]I(Si = s)

and w
(m+1)
k = 1

n

n

∑
i=1

S

∑
s=1

E [I(αi = k)∣θ(m),Λ
(m)
s ]I(Si = s);

(ψ(m+1),γ(m+1)) solves the partial likelihood score equation from the full data using

one-step Newton-Raphson iteration,

n

∑
i=1

S

∑
s=1

∆i

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛
⎜⎜
⎝

E[(Z̃T

i (Vi) ○ bi)∣θ(m),Λ
(m)
s ]

Zi

⎞
⎟⎟
⎠

−

∑l∶Vl≥Vi

⎛
⎜⎜
⎝

E[(Z̃T

l (Vi) ○ bl) exp{Z̃ l(Vi)(ψ○bl)+Z l(Vi)γ}∣θ(m),Λ
(m)
s ]

E[Z l(Vi) exp{Z̃ l(Vi)(ψ ○ bl)+Z l(Vi)γ}∣θ(m),Λ
(m)
s ]

⎞
⎟⎟
⎠
I(Sl=s)

∑l∶Vl≥Vi
E[exp{Z̃ l(Vi)(ψ ○ bl)+Z l(Vi)γ}∣θ(m),Λ

(m)
s ]I(Sl=s)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

I(Si=s)

= 0;

Λ
(m+1)
s is obtained as an empirical function with jumps only at the observed failure time,
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Λ
(m+1)
s (t)=∑

i∶Vi≤t

∆iI(Si=s)
∑l∶Vl≥Vi E [ exp{Z̃ l(Vi)(ψ(m+1) ○ bl) +Z l(Vi)γ(m+1)}∣θ(m),Λ

(m)
s ]I(Sl=s)

.

The expressions of the conditional expectation and the conditional score equations

calculated in the E- and M-steps for continuous longitudinal outcomes following a

normal distribution and binary longitudinal outcomes with survival time are given

respectively in Appendices A.1 and A.2.

The observed information matrix via Louis (1982) formula is adopted to obtain the

variance estimate for (θ̂, Λ̂(t)). The variance of
√
n θ̂ is asymptotically equal to the

corresponding sub-matrix of the inverse of the calculated observed information matrix.

4.2.3 EM algorithm – examples

4.2.3.1 Continuous longitudinal data with Normal distribution and survival

time

(1) E-step : For continuous longitudinal outcomes following a normal distribution and

survival time, we calculate the conditional expectation of q(bi, αi) for subject i with

Si = s given the observations and the current estimate (θ(m),Λ
(m)
s ) for some known

function q(⋅). The conditional expectation denoted by E[q(bi, αi)∣θ(m),Λ
(m)
s ] can be

expressed as the following: Given the current estimate (θ(m),Λ
(m)
s ),

E[q(bi, αi)∣θ(m),Λ
(m)
s ] =

∑K
αi=1Cαi ∫zαi q(R(zαi))κ(zαi) exp{−zTαizαi}dzαi

∑K
a=1Ca ∫za κ(za) exp{−zTa za}dza

, (4.5)

where

R(zαi) = ( 1

σ2
y

ni

∑
j=1

X̃
T

ijX̃ ij + (Σ(m)

b )−1)
−1

[
ni

∑
j=1

1

σ2
y

(yij −X ijβ)X̃
T

ij +∆i(Z̃
T

i (Vi) ○ψ(m))
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+(Σ(m)

b )−1
µαi] +

√
2[ 1

σ2
y

ni

∑
j=1

X̃
T

ijX̃ ij + (Σ(m)

b )−1]
− 1

2

zαi ,

κ(zαi) = exp{ −
S

∑
s=1

I(Si = s)∫
Vi

0
e
̃Z i(u)(ψ(m)○R(zαi))+Z i(u)γ(m)dΛ

(m)
s (u)},

Cαi = exp{ 1

2
[
ni

∑
j=1

1

σ2
y

(yij −X ijβ)X̃
T

ij +∆i(Z̃
T

i (Vi) ○ψ(m)) + (Σ(m)

b )−1
µαi]

T

× ( 1

σ2
y

ni

∑
j=1

X̃
T

ijX̃ ij + (Σ(m)

b )−1)
−1

× [
ni

∑
j=1

1

σ2
y

(yij −X ijβ)X̃
T

ij

+ ∆i(Z̃
T

i (Vi) ○ψ(m)) + (Σ(m)

b )−1
µαi]

− 1

2
µTαi(Σ

(m)

b )−1
µαi + logwαi}

is a constant,

(Σ(m)

b )
1
2 is an unique non-negative square root of Σ

(m)

b (i.e. (Σ(m)

b )
1
2 ×(Σ(m)

b )
1
2 = Σ

(m)

b ),

and zαi follows a multivariate Gaussian distribution with mean zero.

(2) M-step : Since normal distribution has a dispersion parameter φ as σ2
y, we estimate

β(m+1) and σ2
y in longitudinal process. β(m+1) is the linear regression coefficients of

regressing {Y i − E[X̃ ibi∣θ(m),Λ(m)], i = 1, . . . , n} on {X i, i = 1, . . . , n}, where X i =

(XT
i1, ...,X

T
ini

)T and X̃ i = (X̃T

i1, ..., X̃
T

ini
)T .

(σ2
y)(m+1) =

∑n
i=1 [DT

i Di +E[(X̃ ibi)2∣θ(m),Λ(m)] − (E[X̃ ibi∣θ(m),Λ(m)])2]
∑n
i=1 ni

,

where Di=Y i−X iβ
(m+1)−E[X̃ ibi∣θ(m),Λ(m)]. Σ

(m+1)
b , µ(m+1), w(m+1), (ψ(m+1),γ(m+1)),

and Λ
(m+1)
s have the same expressions as in Section 4.2.2.

4.2.3.2 Binary longitudinal data and survival time

(1) E-step : For binary longitudinal outcomes and survival time, given the current

estimate (θ(m),Λ
(m)
s ), the conditional expectation denoted by E[q(bi, αi)∣θ(m),Λ

(m)
s ]
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can be expressed as in (4.5), where

R(zαi) = Σ
(m)

b [
ni

∑
j=1

yijX̃
T

ij +∆i(Z̃
T

i (Vi) ○ψ(m))] +µαi +
√

2(Σ(m)

b )
1
2zαi ,

κ(zαi) = exp{ −
ni

∑
j=1

log(1 + eXijβ
(m)

+
̃X ijR(zαi))

−
S

∑
s=1

I(Si = s)∫
Vi

0
e
̃Z i(u)(ψ(m)○R(zαi))+Z i(u)γ(m)dΛ

(m)
s (u)}, and

Cαi = exp{ 1

2
[Σ(m)

b (
ni

∑
j=1

yijX̃
T

ij +∆i(Z̃
T

i (Vi) ○ψ(m))) +µαi]
T

× (Σ(m)

b )−1

×[Σ(m)

b (
ni

∑
j=1

yijX̃
T

ij +∆i(Z̃
T

i (Vi) ○ψ(m))) +µαi]

− 1

2
µTαi(Σ

(m)

b )−1
µαi + logwαi}

is a constant.

(2) M-step : Since the parameter φ is set to 1 for logistic distribution, we estimate only

β in the longitudinal process. β(m+1) solves the conditional expectation of complete

data log-likelihood score equation, using one-step Newton-Raphson iteration,

n

∑
i=1

ni

∑
j=1

(yij−
S

∑
s=1

E[
exp{X ijβ

(m+1)+X̃ ijbi}
1+exp{X ijβ

(m+1)+X̃ ijbi}
∣θ(m),Λ

(m)
s ]I(Si=s))XT

ij = 0.

Σ
(m+1)
b ,µ(m+1),w(m+1),ψ(m+1),γ(m+1), and Λ

(m+1)
s have the same expressions as in Sec-

tion 4.2.2.

4.3 Asymptotic Properties

To study the asymptotic properties of the proposed estimator (θ̂, Λ̂(t)) with θ̂ =

(β̂
T
, φ̂

T
,Vec(Σ̂b)T ,µT , wT , ψ̂

T
, γ̂T )T and Λ̂(t) = (Λ̂1(t), . . . , Λ̂S(t))T , we assume the

following conditions.

(A1) The true parameter θ0 = (βT0 ,φT0 ,Vec(Σb0)T ,µT ,wT ,ψT
0 ,γ

T
0 )T belongs to a known
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compact set Θ which lies in the interior of the domain for θ.

(A2) The distribution of random effects b∗i is a mixture of a finite number of db-

dimensional multivariate normal distributions with means µ = (µT1 , . . . ,µTK)T

and a common covariance matrix Σb. i.e. b∗i ∼ ∑K
k=1wkN(µk,Σb), where K is the

number of mixture components.

(A3) The true baseline hazard rate function λ0(t) = (λ10(t), . . . , λS0(t)) is continuous

and positive in [0, τ], where τ is the time of study end.

(A4) For the censoring time C, P (C ≥ τ ∣Z, Z̃,X, X̃) = P (C = τ ∣Z, Z̃,X, X̃) > 0.

(A5) For the number of observed longitudinal measurements per subject nN , P (nN >

db∣X, X̃) > 0 with probability one, and P (nN ≤ n0) = 1 for some integer n0.

(A6) Both XTX and X̃
T
X̃ are full rank with positive probability. Moreover, if there

exist constant vectors c1 and c2 such that, with positive probability, for any t,

Z(t)c1 = α0(t) and Z̃(t) ○ c2 = 0 for a deterministic function α0(t), then c1 = 0,

c2 = 0, and α0(t) = 0.

Assumption (A4) means that, by the end of the study, some proportion of the sub-

jects will still be alive and censored at the study end time τ , and thus the maximum

right censoring time is equal to τ . Assumption (A5) implies that some proportion of

the subjects have at least db longitudinal observations, and there exists an integer n0

such that all subjects have a finite number of longitudinal observations which are not

larger than n0. Consistency and asymptotic distribution of the proposed estimator are

summarized in the following two theorems. We will present outlines of the proofs here.

The detailed technical proofs are given in Section 4.4.

Theorem 4.1. Under the assumptions (A1)∼(A6), as n→∞, the maximum likelihood

estimator (θ̂, Λ̂(t)) is consistent under the product norm of the Euclidean distance and
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the supreme norm on [0, τ]. That is, ∣∣θ̂ − θ0∣∣ + supt∈[0,τ] ∣∣Λ̂(t) − Λ0(t)∣∣ Ð→ 0, a.s.,

where ∣∣Λ̂(t) −Λ0(t)∣∣ = ∑S
s=1 ∣Λ̂s(t) −Λs0(t)∣.

Consistency in Theorem 4.1 can be proved by verifying the following three steps:

First, we show that the maximum likelihood estimate (θ̂, Λ̂) exists. Second, we show

that, with probability one, Λ̂s(τ), s = 1, . . . , S, are bounded as n → ∞. Third, given

that the second step is true, by Helly’s selection theorem (van der Vaart, 1998), we

can choose a subsequence of Λ̂s(t) such that Λ̂s(t) weakly converges to some right-

continuous monotone function Λ∗
s(t) with probability one. Also, for any sub-sequence,

we can find a further sub-sequence, still denoted as θ̂, such that θ̂→θ∗. Using empirical

process formulation and relevant Donsker properties with parameter identifiability, we

can show that θ∗ = θ0 and Λ∗
s =Λs0, s = 1,. . . ,S. Once the three steps are completed,

we can conclude that, with probability one, θ̂ converges to θ0 and Λ̂s(t) converges to

Λs0(t) in [0, τ], s = 1,. . . ,S. Moreover, since Λs0(t) is right-continuous in [0,τ], the

latter can be strengthened to uniform convergence; that is, supt∈[0,τ] ∣∣Λ̂(t)−Λ0(t)∣∣ → 0

almost surely.

Theorem 4.2. Under the assumptions (A1)∼(A6), as n → ∞,
√
n((θ̂ − θ0)T , (Λ̂(t) −

Λ0(t))T )
T

weakly converges to a Gaussian random element in Rdθ × `∞[0, τ] × ⋯ ×

`∞[0, τ], and the estimator θ̂ is asymptotically efficient, where dθ is the dimension of

θ and `∞[0, τ] is the normed space containing all the bounded functions in [0, τ].

Once consistency holds, the conditions of Theorem 3.3.1 in van der Vaart and Well-

ner (1996), which implies the asymptotic normality in Theorem 4.2, are verified via

the tools of empirical processes. These conditions are restated in Theorem 4 of Parner

(1998). The smooth conditions in Theorem 4 of Parner (1998) can be verified using the

regularity of the log-likelihood function in terms of model parameters and the Donsker

properties of the score operators. In particular, in the invertibility condition of the
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information operator in Theorem 4 of Parner (1998), the verification of the one-to-one

property of the information operator is specific to our proposed models and requires

non-trivial work. Therefore, by Theorem 3.3.1 of van der Vaart and Wellner (1996),

√
n((θ̂−θ0)T , (Λ̂(t)−Λ0(t))T )

T
weakly converges to a Gaussian process, and by Propo-

sition 3.3.1 in Bickel et al. (1993), θ̂ is an efficient estimator for θ0.

4.4 Technical Details – Proofs for Asymptotic Properties

In this section, we present the detailed technical proofs for the asymptotic properties

of the proposed estimator (θ̂, Λ̂(t)) with θ̂ = (β̂
T
, φ̂

T
,Vec(Σ̂b)T , µ̂T , ŵT , ψ̂

T
, γ̂T )T and

Λ̂(t) = (Λ̂1(t), . . . , Λ̂S(t))T . Meanwhile, the supplementary proofs needed to prove the

asymptotic properties are provided in Section 4.4.3. We use b to denote random effects

instead of b∗ for convenience in all proofs. From the following full likelihood function

of observed data (Y ,V ) for (θ,Λ),

Lf(θ,Λ;Y ,V )

= ∑
α
∫b

Lc(θ,Λ;Y ,V ,b,α)db

=
n

∏
i=1

(
K

∑
αi=1

∫b1

⋯∫bK
Lc(θ,Λ;Y i, Vi,bαi , αi)db1⋯dbK)

=
n

∏
i=1

(
K

∑
αi=1

∫bαi
Lc(θ,Λ;Y i, Vi,bαi , αi)dbαi)

=
n

∏
i=1

(
K

∑
αi=1

K

∏
k=1

[∫bk
( exp{

ni

∑
j=1

[
Yij(X ijβ + X̃ ijbik) −B(β;bik)

A(Di(tj;φ))
+C(Yij;Di(tj;φ))]}

× (
S

∏
s=1

[λs(Vi)∆i exp{∆i[Z̃i(Vi)(ψ ○ bik) +Zi(Vi)γ]

−∫
Vi

0
exp{Z̃i(u)(ψ ○ bik) +Zi(u)γ}dΛs(u)}]

I(Si=s)

)

× (2π)−db/2∣Σb∣−1/2 exp{ − 1

2
(bik −µk)TΣ−1

b (bik −µk)} ×wk)dbk]
I(αi=k)

),
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we have the observed log-likelihood function

n

∑
i=1

log(
K

∑
αi=1

K

∏
k=1

[∫bk
( exp{

ni

∑
j=1

[
Yij(X ijβ + X̃ ijbik) −B(β;bik)

A(Di(tj;φ))
+C(Yij;Di(tj;φ))]}

× (
S

∏
s=1

[λs(Vi)∆i exp{∆i[Z̃i(Vi)(ψ ○ bik) +Zi(Vi)γ]

−∫
Vi

0
exp{Z̃i(u)(ψ ○ bik) +Zi(u)γ}dΛs(u)}]

I(Si=s)

)

× (2π)−db/2∣Σb∣−1/2 exp{ − 1

2
(bik −µk)TΣ−1

b (bik −µk)} ×wk)dbk]
I(αi=k)

).

Then, we obtain the following modified object function by replacing λs(Vi) with Λs{Vi}

in the above expression where Λs{Vi} is the jump size of Λs(t) at the observed time Vi

with ∆i = 1,

ln(θ,Λ)

=
n

∑
i=1

log(
K

∑
αi=1

K

∏
k=1

[∫bk
(exp{

ni

∑
j=1

[
Yij(X ijβ + X̃ ijbik) −B(β;bik)

A(Di(tj;φ))
+C(Yij;Di(tj;φ))]}

× (
S

∏
s=1

[Λs{Vi}∆i exp{∆i[Z̃i(Vi)(ψ ○ bik) +Zi(Vi)γ]

−∫
Vi

0
exp{Z̃i(u)(ψ ○ bik) +Zi(u)γ}dΛs(u)}]

I(Si=s)

)

× (2π)−db/2∣Σb∣−1/2 exp{ − 1

2
(bik −µk)TΣ−1

b (bik −µk)} ×wk)dbk]
I(αi=k)

),

(4.6)

and (θ̂, Λ̂) maximizes ln(θ,Λ) over the space {(θ,Λ) ∶ θ ∈ Θ,Λ ∈ Wn × Wn⋯ ×

Wn}, where Wn consists of all the right-continuous step functions only; that is, Λ =

(Λ1, . . . ,ΛS)T , s = 1, . . . , S,Λs ∈ Wn. For the proofs of both Theorem 4.1 and Theorem

4.2, the modified object function is used in the place of the observed log-likelihood

function.
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4.4.1 Proof of consistency

Consistency can be proved by verifying the following three steps: First, we show the

maximum likelihood estimate (θ̂, Λ̂) exists. Second, we show that, with probability

one, Λ̂s(τ), s = 1, . . . , S, are bounded as n → ∞. Third, if the second step is true, by

Helly’s selection theorem (p9 of van der Vaart (1998), we can choose a subsequence of

Λ̂s such that Λ̂s weakly converges to some right-continuous monotone function Λ∗
s with

probability one; that is, the measure given by µs([0, t]) = Λ̂s(t) for t ∈ [0, τ] weakly

converges to the measure given by µ∗s([0, t]) = Λ∗
s(t). By choosing a sub-sequence, we

can further assume θ̂ → θ∗. Thus, in this third step, we show θ∗ = θ0 and Λ∗
s = Λs0,

s = 1, . . . , S.

Once the three steps are completed, we can conclude that, with probability one,

θ̂ converges to θ0 and Λ̂s converges to Λs0 in [0, τ], s = 1, . . . , S. However, since Λs0

is continuous in [0, τ], the latter can be strengthened to uniform convergence; that is,

supt∈[0,τ] ∣∣Λ̂(t)−Λ0(t)∣∣ → 0 almost surely. Then, the proof of Theorem 4.1 will be done.

In the first step, we will show the existence of the maximum likelihood estimate

(θ̂, Λ̂). Since θ belongs to a compact set Θ by the assumption (A1), it is sufficient to

show that Λs{Vi}, the jump size of Λs at Vi for which ∆i = 1, is finite. Since, for each

subject i with ∆i = 1,

Λs{Vi} exp{ − ∫
Vi

0
exp{Z̃i(t)(ψ ○ b) +Zi(t)γ}dΛs(t)}

≤ exp{ − 2(Z̃i(Vi)(ψ ○ b) +Zi(Vi)γ)}(Λs{Vi})
−1
,

we have that, from (4.6),

ln(θ,Λ)

≤
n

∑
i=1

log(
K

∑
αi=1

K

∏
k=1

[∫bk
( exp{

ni

∑
j=1

[
Yij(X ijβ + X̃ ijbk) −B(β;bk)

A(Di(tj;φ))
+C(Yij;Di(tj;φ))]}
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× (
S

∏
s=1

[(Λs{Vi})
−∆i

exp{ −∆i[Z̃i(Vi)(ψ ○ bk) +Zi(Vi)γ]}]
I(Si=s)

)

× (2π)−db/2∣Σb∣−1/2 exp{ − 1

2
(bk −µk)TΣ−1

b (bk −µk)} ×wk)dbk]
I(αi=k)

).

Thus, if Λs{Vi} → ∞ for some i with ∆i = 1, then ln(θ,Λ) → −∞, which is contradictory

to that ln(θ,Λ) is bounded. Therefore, we conclude that Λs{⋅}, the jump size of Λs for

stratum s, must be finite. By the conclusion and the assumption (A1), the maximum

likelihood estimate (θ̂, Λ̂) exists.

In the second step, we will show that Λ̂s(τ) is bounded as n goes to infinity with

probability one. We define ζ̂s = log Λ̂s(τ) and rescale Λ̂s by the factor eζ̂s . Then, we

let Λ̃s denote the rescaled function; that is, Λ̃s(t) = Λ̂s(t)/Λ̂s(τ) = Λ̂s(t)e−ζ̂s . thus,

Λ̃s(τ) = 1. To prove this second step, it is sufficient to show ζ̂s is bounded. After some

algebra in (4.6), we obtain that, for any Λ ∈W ×W⋯×W,

n−1ln(θ̂,Λ)

= 1

n

n

∑
i=1

[
ni

∑
j=1

(
YijX ijβ̂

A(Di(tj; φ̂))
+C(Yij;Di(tj; φ̂)))+

S

∑
s=1

∆iI(Si=s) log Λs{Vi}+∆iZi(Vi)γ̂

− 1

2
log {(2π)db ∣Σ̂b∣} −

1

2
log ∣Σ̂b∣ + log [

K

∑
α=1

[ŵα exp{1

2
MT

iαM iα −
1

2
µ̂TαΣ̂

−1

b µ̂α}

× ∫bα0

[ exp{ − 1

2
bTα0bα0 −

ni

∑
j=1

B(β̂;bα0)
A(Di(tj; φ̂))

−
S

∑
s=1

I(Si = s)∫
Vi

0
eQ1iα(t,bα0,

̂θ)dΛs(t)}]dbα0]]],

where M iα = [(
ni

∑
j=1

YijX̃ ij

A(Di(tj; φ̂))
+∆i(Z̃i(Vi) ○ ψ̂

T ))Σ̂
1/2

b + µ̂TαΣ̂
−1/2

b ]
T

,

bα0 = Σ
−1/2
b bα −M iα,

and Q1iα(t,bα0, θ̂) = (Z̃i(t) ○ ψ̂T )Σ̂
1/2

b bα0 +Zi(t)γ̂ + (Z̃i(t) ○ ψ̂T )Σ̂
1/2

b M iα.
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Thus, since 0 ≤ n−1ln(θ̂, Λ̂) − n−1ln(θ̂, Λ̃) where Λ̂ = e
̂ξ ○ Λ̃, it follows that

0 ≤ 1

n

n

∑
i=1

S

∑
s=1

I(Si = s)∆i( log eζ̂sΛ̃s{Vi} − log Λ̃s{Vi})

+ 1

n

n

∑
i=1

log [
K

∑
α=1

[ŵα exp{1

2
MT

iαM iα −
1

2
µ̂TαΣ̂

−1

b µ̂α}

×∫bα0

exp{ − 1

2
bTα0bα0 −

ni

∑
j=1

B(β̂;bα0)
A(Di(tj; φ̂))

−
S

∑
s=1

I(Si = s)eζ̂s ∫
Vi

0
eQ1iα(t,bα0,

̂θ)dΛ̃s(t)}bα0]]

− 1

n

n

∑
i=1

log [
K

∑
α=1

[ŵα exp{1

2
MT

iαM iα −
1

2
µ̂TαΣ̂

−1

b µ̂α}

×∫bα0

exp{ − 1

2
bTα0bα0 −

ni

∑
j=1

B(β̂;bα0)
A(Di(tj; φ̂))

−
S

∑
s=1

I(Si = s)∫
Vi

0
eQ1iα(t,bα0,

̂θ)dΛ̃s(t)}dbα0]]. (4.7)

According to the assumption (A3), there exist some positive constants C1, C2 and

C3 such that ∣Q1iα(t,bα0, θ̂)∣ ≤ C1∣∣bα0∣∣ +C2∣∣Y i∣∣ +C3. By denoting bα0 as a vector of

variables following a standard multivariate normal distribution, from concavity of the

logarithm function, in the third term of (4.7),

log [
K

∑
α=1

[ŵα exp{1

2
MT

iαM iα −
1

2
µ̂TαΣ̂

−1

b µ̂α}

×∫bα0

exp{− 1

2
bTα0bα0 −

ni

∑
j=1

B(β̂;bα0)
A(Di(tj; φ̂))

−
S

∑
s=1

I(Si=s)∫
Vi

0
eQ1iα(t,bα0,

̂θ)dΛ̃s(t)}dbα0]]

= db
2

log(2π) + log [Eα [ exp{1

2
MT

iαM iα −
1

2
µ̂TαΣ̂

−1

b µ̂α}

×Ebα0∣α
[ exp{ −

ni

∑
j=1

B(β̂;bα0)
A(Di(tj; φ̂))

−
S

∑
s=1

I(Si = s)∫
Vi

0
eQ1iα(t,bα0,

̂θ)dΛ̃s(t)}]]]

= db
2

log(2π) + log [Eα,b0
[ exp{1

2
MT

iαM iα −
1

2
µ̂TαΣ̂

−1

b µ̂α}

× exp{ −
ni

∑
j=1

B(β̂;bα0)
A(Di(tj; φ̂))

−
S

∑
s=1

I(Si = s)∫
Vi

0
eQ1iα(t,bα0,

̂θ)dΛ̃s(t)}]]
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≥ db
2

log(2π) + log [Eα,b0
[ exp{1

2
MT

iαM iα −
1

2
µ̂TαΣ̂

−1

b µ̂α

−
ni

∑
j=1

B(β̂;bα0)
A(Di(tj; φ̂))

− eC1∣∣bα0∣∣+C2∣∣Y i∣∣+C3}]]

≥ db
2

log(2π)+log [Eα,b0
[1

2
MT

iαM iα−
1

2
µ̂TαΣ̂

−1

b µ̂α−
ni

∑
j=1

B(β̂;bα0)
A(Di(tj; φ̂))

−eC1∣∣bα0∣∣+C2∣∣Y i∣∣+C3]]

= −eC2∣∣Y i∣∣+C4 −C5,

where C4 and C5 are positive constants. Then, since it is easily verified that Eα,b0
[1

2M
T
iα

M iα − 1
2µ̂

T
αΣ̂

−1

b µ̂α −∑ni
j=1

B(
̂β;bα0)

A(Di(tj ;φ̂))
− eC1∣∣bα0∣∣+C2∣∣Y i∣∣+C3] < ∞, by the strong law of large

numbers and the assumption (A5), the third term of (4.7)

− 1

n

n

∑
i=1

log [
K

∑
α=1

[ŵα exp{1

2
MT

iαM iα −
1

2
µ̂TαΣ̂

−1

b µ̂α}

×∫bα0

exp{− 1

2
bTα0bα0−

ni

∑
j=1

B(β̂;bα0)
A(Di(tj; φ̂))

−
S

∑
s=1

I(Si=s)∫
Vi

0
eQ1iα(t,bα0,

̂θ)dΛ̃s(t)}dbα0]]

≤ 1

n

n

∑
i=1

(eC2∣∣Y i∣∣+C4 +C5) ≜ C6

can be bounded by some constant C6 from above. Then (4.7) becomes

0 ≤ 1

n

n

∑
i=1

S

∑
s=1

∆iI(Si = s)ζ̂s

+ 1

n

n

∑
i=1

log [
K

∑
α=1

[ŵα exp{1

2
MT

iαM iα −
1

2
µ̂TαΣ̂

−1

b µ̂α}

×∫bα0

exp{− 1

2
bTα0bα0 −

ni

∑
j=1

B(β̂;bα0)
A(Di(tj; φ̂))

−
S

∑
s=1

I(Si=s)eζ̂s∫
Vi

0
eQ1iα(t,bα0,

̂θ)dΛ̃s(t)}bα0]]

+C6

≤ 1

n

n

∑
i=1

S

∑
s=1

∆iI(Si = s)ζ̂s

+ 1

n

n

∑
i=1

I(Vi = τ) log [
K

∑
α=1

[ŵα exp{1

2
MT

iαM iα −
1

2
µ̂TαΣ̂

−1

b µ̂α}

×∫bα0

exp{− 1

2
bTα0bα0−

ni

∑
j=1

B(β̂;bα0)
A(Di(tj; φ̂))

−
S

∑
s=1

I(Si=s)eζ̂s∫
τ

0
eQ1iα(t,bα0,

̂θ)dΛ̃s(t)}bα0]]
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+ 1

n

n

∑
i=1

I(Vi ≠ τ) log [
K

∑
α=1

[ŵα exp{1

2
MT

iαM iα −
1

2
µ̂TαΣ̂

−1

b µ̂α}

×∫bα0

exp{ − 1

2
bTα0bα0 −

ni

∑
j=1

B(β̂;bα0)
A(Di(tj; φ̂))

}bα0]]

+C6

≤ 1

n

n

∑
i=1

S

∑
s=1

∆iI(Si = s)ζ̂s

+ 1

n

n

∑
i=1

I(Vi = τ) log [
K

∑
α=1

[ŵα exp{1

2
MT

iαM iα −
1

2
µ̂TαΣ̂

−1

b µ̂α}

×∫bα0

exp{− 1

2
bTα0bα0−

ni

∑
j=1

B(β̂;bα0)
A(Di(tj; φ̂))

−
S

∑
s=1

I(Si=s)eζ̂s∫
τ

0
eQ1iα(t,bα0,

̂θ)dΛ̃s(t)}bα0]]

+C7, (4.8)

where C7 is a constant. On the other hand, since, for any Γ ≥ 0 and x > 0, Γ log (1 +

x/Γ) ≤ Γx/Γ = x, we have that e−x ≤ (1+x/Γ)−Γ
. Therefore, in the second term of (4.8),

exp{ − 1

2
bTα0bα0 −

ni

∑
j=1

B(β̂;bα0)
A(Di(tj; φ̂))

−
S

∑
s=1

I(Si = s)eζ̂s ∫
τ

0
eQ1iα(t,bα0,

̂θ)dΛ̃s(t)}

≤ exp{− 1

2
bTα0bα0−

ni

∑
j=1

B(β̂;bα0)
A(Di(tj; φ̂))

}×{1+∑
S
s=1 I(Si=s)eζ̂s∫

τ

0 e
Q1iα(t,bα0,

̂θ)dΛ̃s(t)
Γ

}
−Γ

≤ ΓΓ×exp{− 1

2
bTα0bα0 −

ni

∑
j=1

B(β̂;bα0)
A(Di(tj; φ̂))

}×{
S

∑
s=1

I(Si=s)eζ̂s∫
τ

0
eQ1iα(t,bα0,

̂θ)dΛ̃s(t)}
−Γ

.

(4.9)

Since Q1iα(t,bα0, θ̂) ≥ −C1∣∣bα0∣∣ −C2∣∣Y i∣∣ −C3,

∫
τ

0
eQ1iα(t,bα0,

̂θ)dΛ̃s(t) ≥ ∫
τ

0
e−C1∣∣bα0∣∣−C2∣∣Y i∣∣−C3dΛ̃s(t)

= e−C1∣∣bα0∣∣−C2∣∣Y i∣∣−C3 × {Λ̃s(τ) − Λ̃s(0)}

= e−C1∣∣bα0∣∣−C2∣∣Y i∣∣−C3 .

Thus, in (4.9),
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{
S

∑
s=1

I(Si=s)eζ̂s∫
τ

0
eQ1iα(t,bα0,

̂θ)dΛ̃s(t)}
−Γ

≤ {
S

∑
s=1

I(Si = s)eζ̂s}
−Γ

eC1Γ∣∣bα0∣∣+C2Γ∣∣Y i∣∣+C3Γ

and (4.9) ≤ ΓΓ exp{ − 1

2
bTα0bα0 −

ni

∑
j=1

B(β̂;bα0)
A(Di(tj; φ̂))

− Γ log(
S

∑
s=1

I(Si = s)eζ̂s)

+C1Γ∣∣bα0∣∣ +C2Γ∣∣Y i∣∣ +C3Γ}.

Therefore, (4.8) gives that

0 ≤ C7 +
1

n

n

∑
i=1

∆i(
S

∑
s=1

I(Si = s)ζ̂s)

+ 1

n

n

∑
i=1

I(Vi = τ) log [
K

∑
α=1

[ŵα exp{1

2
MT

iαM iα −
1

2
µ̂TαΣ̂

−1

b µ̂α}

×∫bα0

ΓΓ exp{ − 1

2
bTα0bα0 −

ni

∑
j=1

B(β̂;bα0)
A(Di(tj; φ̂))

− Γ
S

∑
s=1

I(Si = s)ζ̂s

+C1Γ∣∣bα0∣∣ +C2Γ∣∣Y i∣∣ +C3Γ}dbα0]]

= C7 +
1

n

n

∑
i=1

∆i(
S

∑
s=1

I(Si = s)ζ̂s)

+ 1

n

n

∑
i=1

I(Vi = τ) log [ΓΓexp{−Γ
S

∑
s=1

I(Si=s)ζ̂s}
K

∑
α=1

[ŵαexp{1

2
MT

iαM iα−
1

2
µ̂TαΣ̂

−1

b µ̂α}

×(2π)db/2(2π)−db/2∫bα0

exp{ − 1

2
bTα0bα0 −

ni

∑
j=1

B(β̂;bα0)
A(Di(tj; φ̂))

+C1Γ∣∣bα0∣∣ +C2Γ∣∣Y i∣∣ +C3Γ}dbα0]]

= C7 +
1

n

n

∑
i=1

∆i(
S

∑
s=1

I(Si = s)ζ̂s) +
1

2
log(2π)

+ 1

n

n

∑
i=1

I(Vi = τ)[Γ log Γ − Γ
S

∑
s=1

I(Si = s)ζ̂s

+ log Eα,b0
[ exp{1

2
MT

iαM iα −
1

2
µ̂TαΣ̂

−1

b µ̂α −
ni

∑
j=1

B(β̂;bα0)
A(Di(tj; φ̂))
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+C1Γ∣∣bα0∣∣ +C2Γ∣∣Y i∣∣ +C3Γ}]]

= C8 +
1

n

n

∑
i=1

∆i(
S

∑
s=1

ζ̂s) −
Γ

n

n

∑
i=1

I(Vi = τ)(
S

∑
s=1

ζ̂s) +C9(Γ), (4.10)

where C8 is a constant and C9(Γ) is a deterministic function of Γ. For the s-th stratum,

(4.10) is that

0 ≤ C8 +
n

∑
i=1

∆iI(Si = s)ζ̂s −
Γ

n

n

∑
i=1

I(Vi = τ)I(Si = s)ζ̂s +C9(Γ).

By the strong law of large numbers, ∑n
i=1 I(Vi = τ)I(Si = s)/n Ð→ P (Vi = τ, Si = s) > 0.

Then, we can choose Γ large enough such that ∑n
i=1 ∆iI(Si = s)/n ≤ (Γ/2n)∑n

i=1 I(Vi =

τ)I(Si = s). Thus, we obtain that

0 ≤ C8 +C9(Γ) − Γ

2n

n

∑
i=1

I(Vi = τ)I(Si = s)ζ̂s.

In other words,

ζ̂s ≤ (C8 +C9(Γ))2n
Γ∑n

i=1 I(Vi = τ)I(Si = s)
Ð→ (C8 +C9(Γ))2

ΓP (Vi = τ, Si = s)
.

If we denote Bs0 = exp{2(C8 +C9(Γ))/(ΓP (Vi = τ, Si = s))}, we conclude that Λ̂s(τ) ≤

Bs0, s = 1, . . . , S. Note that the above arguments hold for every sample in the proba-

bility space except a set with zero probability. Therefore, we have shown that, with

probability one, Λ̂s(τ) is bounded for any sample size n.

In the third step, the goal of this step is to show that, if θ̂ → θ∗ and Λ̂s weakly

converges to Λ∗
s with probability one, then θ∗ = θ0 and Λ∗

s = Λs0, s = 1, . . . , S. We

set some preliminaries as the followings: For convenience, we omit the index i for

subject and use O to abbreviate the observed statistics (Y ,X, X̃, V,∆, nN , s) and

{Z(t), Z̃(t),0 ≤ t ≤ V } for a subject. By dropping (λs(V ))∆ from the complete data
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likelihood function, we define

G(b, α,O;θ,Λs)

= exp{
nN

∑
j=1

[
Yj(Xjβ + X̃ ibα) −B(β;bα)

A(D(tj;φ))
+C(Yj;D(tj;φ))]}

× exp{∆[Z̃(V )(ψ ○ bα) +Z(V )γ] − ∫
V

0
exp{Z̃(t)(ψ ○ bα) +Z(t)γ}dΛs(t)}

×(2π)−db/2∣Σb∣−1/2 exp{ − 1

2
(bα −µα)TΣ−1

b (bα −µα)}wα,

and Q(v,O;θ,Λs) =
∑α ∫bαG(bα, α,O;θ,Λs) exp{Z̃(v)(ψ ○ bα) +Z(v)γ}dbα

∑α ∫bαG(bα, α,O;θ,Λs)dbα
.

Furthermore, for any measurable function f(O), we use operator notation to define

Pn f = n−1∑n
i=1 f(Oi) and P f = ∫ fdP = E[f(O)]. Thus, Pn f is the empirical measure

from n i.i.d observations and
√
n(Pn −P) is the empirical process based on these ob-

servations. We also define a class F = {Q(v,O;θ,Λs) ∶ v ∈ [0, τ],θ ∈ Θ,Λs ∈W,Λs(0) =

0,Λs(τ) ≤ Bs0}, where Bs0 is the constant given in the second step and W contains all

nondecreasing functions in [0, τ]. According to the result proved in Section 4.4.3.1, F

is P-Donsker.

Let ms denote the number of subjects in stratum s; i.e. n = ∑S
s=1ms. Vs and ∆s

denote the observed time and censoring indicator for a subject belonging to stratum

s, respectively. Thus, Vsl and ∆sl are the l-th subject observed time and censoring

indicator in stratum s.

Now we start the proof of the third step. Since (θ̂, Λ̂) maximizes the function

ln(θ,Λ), where Λ = (Λ1, . . . ,ΛS)T and Λs, s = 1, . . . , S, are any step functions with

jumps only at Vi belonging to stratum s for which ∆i = 1, we differentiate ln(θ,Λ) with

respect to Λs{Vsl} and obtain the following equation, satisfied by Λ̂s,

Λ̂s{Vsl} =
∆sl

msPms {I(Vs ≥ v)Q(v,O; θ̂, Λ̂s)}∣v=Vsl
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Imitating the above equation, we also can construct another function, denoted by Λ̄ =

(Λ̄1, . . . , Λ̄S)T such that Λ̄s, s = 1, . . . , S, are also step functions with jumps only at the

observed Vsl and the jump size Λ̄s{Vsl} is given by

Λ̄s{Vsl} =
∆sl

msPms {I(Vs ≥ v)Q(v,O;θ0,Λs0)}∣v=Vsl
.

Equivalently,

Λ̄s(t) =
1

ms

ms

∑
l=1

I(Vsl ≤ t)∆sl

Pms {I(Vs ≥ v)Q(v,O;θ0,Λs0)}∣v=Vsl
.

Then, we claim Λ̄s(t) uniformly converges to Λs0(t) in [0, τ]. To prove the claim, note

that

sup
t∈[0,τ]

∣Λ̄s(t) −E [ I(Vs ≤ t)∆s

P{I(Vs ≥ v)Q(v,O;θ0,Λs0)}∣v=Vs
]∣

= sup
t∈[0,τ]

∣ 1

ms

ms

∑
l=1

I(Vsl ≤ t)∆sl

Pms {I(Vs ≥ v)Q(v,O;θ0,Λs0)}∣v=Vsl

−Pms [
I(Vs ≤ t)∆s

P{I(Vs ≥ v)Q(v,O;θ0,Λs0)}∣v=Vs
]

+Pms[
I(Vs ≤ t)∆s

P{I(Vs ≥ v)Q(v,O;θ0,Λs0)}∣v=Vs
]−P[ I(Vs ≤ t)∆s

P{I(Vs ≥ v)Q(v,O;θ0,Λs0)}∣v=Vs
]∣

≤ sup
t∈[0,τ]

∣ 1

ms

ms

∑
l=1

I(Vsl ≤ t)∆sl[
1

Pms{I(Vs ≥ v)Q(v,O;θ0,Λs0)}

− 1

P{I(Vs ≥ v)Q(v,O;θ0,Λs0)}
]∣
v=Vsl

∣

+ sup
t∈[0,τ]

∣(Pms −P )[ I(Vs ≤ t)∆s

P{I(Vs ≥ v)Q(v,O;θ0,Λs0)}∣v=Vs
]∣

≤ sup
t∈[0,τ]

∣ 1

Pms {I(Vs ≥ v)Q(v,O;θ0,Λs0)}
− 1

P{I(Vs ≥ v)Q(v,O;θ0,Λs0)}
∣

+ sup
t∈[0,τ]

∣(Pms −P )[ I(Vs ≤ t)∆s

P{I(Vs ≥ v)Q(v,O;θ0,Λs0)}∣v=Vs
]∣. (4.11)
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In (4.11), the right hand side converges to 0 because the first and second terms on the

right hand side converges to 0 in the following: First, according to Section 4.4.3.1,

{Q(v,O;θ0,Λs0) ∶ v ∈ [0, τ]} is a bounded and Glivenko-Cantelli class. {I(Vs ≥

v)Q(v,O;θ0,Λs0) ∶ v ∈ [0, τ]} is also a Glivenko-Cantelli class because {I(Vs ≥ v) ∶

v ∈ [0, τ]} is a Glivenko-Cantelli class and the functional (f, g) → fg for any bounded

two functions f and g is Lipschitz continuous. Then, we obtain that

supt∈[0,τ]∣Pms{I(Vs ≥ v)Q(v,O;θ0,Λs0)}−P{I(Vs ≥ v)Q(v,O;θ0,Λs0)}∣ converges to 0.

Besides, from Section 4.4.3.1, P{I(Vs ≥ v)Q(v,O;θ0,Λs0)} > P{I(Vs ≥ v) exp{−C10 −

C11∣∣Y ∣∣}} for the two constants C10 and C11, which means P{I(Vs ≥ v)Q(v,O;θ0,Λs0)}

is bounded from below. Thus, the first term tends to 0. Second, since the class

{I(Vs ≤ t)∆s/P{I(Vs ≥ v)Q(v,O;θ0,Λs0)}∣v=Vs ∶ t ∈ [0, τ]} is also a Glivenko-Cantelli

class, the second term vanishes as ms goes to infinity.

Therefore, we conclude that Λ̄s(t) uniformly converges to

E [ I(Vs ≤ t)∆s

P{I(Vs ≥ v)Q(v,O;θ0,Λs0)}∣v=Vs
]. (4.12)

We can easily verify that (4.12) is equal to Λs0(t). Thus, the claim that Λ̄s(t) uniformly

converges to Λs0(t) in [0, τ] has been proved.

From the construction of Λ̄s(t), we obtain

Λ̂s(t) = ∫
t

0

dΛ̂s(v)
dΛ̄s(v)

dΛ̄s(v) = ∫
t

0

Pms {I(Vs ≥ v)Q(v,O;θ0,Λs0)}

Pms {I(Vs ≥ v)Q(v,O; θ̂, Λ̂s)}
dΛ̄s(v). (4.13)

Λ̂s(t) is absolutely continuous with respect to Λ̄s(t). On the other hand, since both

{I(Vs ≥ v) ∶ v ∈ [0, τ]} and F are Glivenko-Cantelli classes, {I(Vs ≥ v)Q(v,O;θ,Λs) ∶

v ∈ [0, τ]} is also a Glivenko-Cantelli class. Thus, we have
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sup
v∈[0,τ]

∣(Pms−P){I(Vs≥v)Q(v,O; θ̂, Λ̂s)}∣+ sup
v∈[0,τ]

∣(Pms−P){I(Vs≥v)Q(v,O;θ0,Λs0)}∣

Ð→ 0 a.s.

By the bounded convergence theorem and the fact that θ̂ converges to θ∗ and Λ̂s con-

verges to Λ∗
s , for each v, P{I(Vs ≥ v)Q(v,O; θ̂, Λ̂s)} Ð→ P{I(Vs ≥ v)Q(v,O;θ∗,Λ∗

s)};

moreover, it is straightforward to check the derivative of P{I(Vs ≥ v)Q(v,O; θ̂, Λ̂s)}

with respect to v. Thus, by the Arzela-Ascoli theorem, uniformly in [0, τ],

P{I(Vs ≥ v)Q(v,O; θ̂, Λ̂s)} Ð→ P{I(Vs ≥ v)Q(v,O;θ∗,Λ∗
s)}.

Then, combining the above result and (4.13), it holds that, uniformly in [0, τ],

dΛ̂s(v)
dΛ̄s(v)

=
Pms {I(Vs ≥ v)Q(v,O;θ0,Λs0)}

Pms {I(Vs ≥ v)Q(v,O; θ̂, Λ̂s)}
Ð→

P{I(Vs ≥ v)Q(v,O;θ0,Λs0)}
P{I(Vs ≥ v)Q(v,O;θ∗,Λ∗

s)}
. (4.14)

After taking limits on both sides of (4.13), we obtain that

lim
ms→∞

Λ̂s(t) = ∫
t

0

P{I(Vs ≥ v)Q(v,O;θ0,Λs0)}
P{I(Vs ≥ v)Q(v,O;θ∗,Λ∗

s)}
dΛs0(v), (4.15)

Therefore, since Λs0(t) is differentiable with respect to the Lebesque measure, so is

Λ∗
s(t); that is, (4.15) is equal to

∫
t

0

dΛ∗
s(v)

dΛs0(v)
dΛs0(v). (4.16)

And we denote λ∗s(t) as the derivative of Λ∗
s(t). Additionally, from (4.14) ∼ (4.16),

note that Λ̂s{Vs}/Λ̄s{Vs} uniformaly converges to dΛ∗
s(Vs)/dΛs0(Vs) = λ∗s(Vs)/λs0(Vs).

Therefore, a second conclusion is that Λ̂s uniformly converges to Λ∗
s since Λ∗

s is contin-
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uous.

On the other hand,

n−1ln(θ̂, Λ̂) − n−1ln(θ0, Λ̄)

=
S

∑
s=1

(Pms [∆s log
Λ̂s{Vs}
Λ̄s{Vs}

] +Pms [ log
∑α ∫bαG(b, α,O; θ̂, Λ̂s)dbα
∑α ∫bαG(b, α,O;θ0, Λ̄s)dbα

])

≥ 0. (4.17)

Using the result of Section 4.4.3.1 and similar arguments as above, we can verify that

log
∑α ∫bαG(b, α,O; θ̂, Λ̂s)dbα
∑α ∫bαG(b, α,O;θ0, Λ̄s)dbα

belongs to a Glivenko-Cantelli class and

P [ log
∑α ∫bαG(b, α,O; θ̂, Λ̂s)dbα
∑α ∫bαG(b, α,O;θ0, Λ̄s)dbα

] Ð→ P [ log
∑α ∫bαG(b, α,O;θ∗,Λ∗

s)dbα
∑α ∫bαG(b, α,O;θ0,Λs0)dbα

].

Since Λ̂s{Vs}/Λ̄s{Vs} uniformaly converges to λ∗s(Vs)/λs0(Vs), we obtain that, from

(4.17),

P [ log{
(λ∗s(Vs))

∆s∑α ∫bαG(b, α,O;θ∗,Λ∗
s)dbα

(λs0(Vs))
∆s∑α ∫bαG(b, α,O;θ0,Λs0)dbα

}] ≥ 0.

Note that the left-hand side of the inequality is the negative Kullback-Leibler informa-

tion. Then, the equality holds with probability one, and it immediately follows

(λ∗s(Vs))
∆s∑

α
∫bα

G(b, α,O;θ∗,Λ∗
s)dbα = (λs0(Vs))

∆s∑
α
∫bα

G(b, α,O;θ0,Λs0)dbα.

(4.18)

Our proof will be completed if we can show θ∗ = θ0 and Λ∗
s = Λs0 from (4.18). Since

(4.18) holds with probability one, (4.18) holds for any (Vs,∆s = 1) and the case (Vs =

τ,∆s = 0), but may not hold for (Vs,∆s = 0) when Vs ∈ (0, τ). However, we can show
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that (4.18) is also true for (Vs,∆s = 0) when Vs ∈ (0, τ). To do this, treating both sides

of (4.18) as functions of Vs, we integrate these functions over an interval (Vs, τ) for

∆s = 0 as the following;

∫
τ

Vs
∑
α
∫bα

G(b, α,O;θ∗,Λ∗
s)dbα = ∫

τ

Vs
∑
α
∫bα

G(b, α,O;θ0,Λs0)dbα

to obtain that

∑
α
∫bα

G(b, α,O;θ∗,Λ∗
s)dbα∣

∆s=0,Vs=τ

−∑
α
∫bα

G(b, α,O;θ∗,Λ∗
s)dbα∣

∆s=0,Vs=Vs

= ∑
α
∫bα

G(b, α,O;θ0,Λs0)dbα∣
∆s=0,Vs=τ

−∑
α
∫bα

G(b, α,O;θ0,Λs0)dbα∣
∆s=0,Vs=Vs

.

After comparing this above equality with another following equality, which is given by

(4.18) at ∆s = 0 and Vs = τ ,

∑
α
∫bα

G(b, α,O;θ∗,Λ∗
s)dbα∣

∆s=0,Vs=τ

= ∑
α
∫bα

G(b, α,O;θ0,Λs0)dbα∣
∆s=0,Vs=τ

,

we obtain

∑
α
∫bα

G(b, α,O;θ∗,Λ∗
s)dbα∣

∆s=0,Vs=Vs

= ∑
α
∫bα

G(b, α,O;θ0,Λs0)dbα∣
∆s=0,Vs=Vs

,

and therefore

∑
α
∫bα

G(b, α,O;θ∗,Λ∗
s)dbα∣

∆s=0

= ∑
α
∫bα

G(b, α,O;θ0,Λs0)dbα∣
∆s=0

;

that is, (4.18) also holds for any Vs and ∆s = 0.

Thus, first to show that β∗ = β0, φ∗ = φ0, Σ∗
b = Σb0, µ∗α = µα0, and w∗

α = wα0,

α = 1, . . . ,K, we let ∆s = 0 and Vs = 0 in (4.18). After integrating over bα and summing
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up over α, we have that, with probability one,

∑
α
∫bα

G(b, α,O;θ∗,Λ∗
s)dbα∣

∆s=0,Vs=0

= ∑
α
∫bα

G(b, α,O;θ0,Λs0)dbα∣
∆s=0,Vs=0

⇒ ∑
α
∫bα

exp{
nN

∑
j=1

[
Yj(Xjβ

∗ + X̃jbα)−B(β∗,bα)
A(D(tj;φ∗))

+C(Yj;D(tj;φ∗))]}

×(2π)−db/2∣Σ∗
b ∣−1/2 exp{− 1

2
(bα −µ∗α)TΣ∗−1

b (bα −µ∗α)}dbα

= ∑
α
∫bα

exp{
nN

∑
j=1

[
Yj(Xjβ0 + X̃jbα)−B(β0,bα)

A(D(tj;φ0))
+C(Yj;D(tj;φ0))]}

×(2π)−db/2∣Σb0∣−1/2 exp{− 1

2
(bα −µα0)TΣ−1

b0 (bα −µα0)}dbα

⇒ exp{
nN

∑
j=1

[
YjXjβ

∗

A(D(tj;φ∗))
+C(Yj;D(tj;φ∗))]}(2π)−db/2∣Σ∗

b ∣−1/2

×∑
α
∫bα

exp{
nN

∑
j=1

YjX̃jbα
A(D(tj;φ∗))

−
nN

∑
j=1

B(β∗;bα)
A(D(tj;φ∗))

− 1

2
bTαΣ∗−1

b bα +µ∗α
TΣ∗−1

b bα −
1

2
µ∗α

TΣ∗−1
b µ∗α}w∗

αdbα

= exp{
nN

∑
j=1

[
YjXjβ0

A(D(tj;φ0))
+C(Yj;D(tj;φ0))]}(2π)−db/2∣Σb0∣−1/2

×∑
α
∫bα

exp{
nN

∑
j=1

YjX̃jbα
A(D(tj;φ0))

−
nN

∑
j=1

B(β0;bα)
A(D(tj;φ0))

− 1

2
bTαΣ−1

b0 bα +µTα0Σ
−1
b0 bα −

1

2
µTα0Σ

−1
b0µα0}wα0dbα.

By some algebra, the left hand side becomes

exp{
nN

∑
j=1

[
YjXjβ

∗

A(D(tj;φ∗))
+C(Yj;D(tj;φ∗))]}(2π)−db/2∣Σ∗

b ∣−1/2

×∑
α
∫bα

exp{ − 1

2
[(Σ

∗−1/2
b bα)

T (Σ
∗−1/2
b bα)

−2(
nN

∑
j=1

YjX̃j

A(D(tj;φ∗))
+µ∗α

TΣ∗−1
b )Σ

∗1/2
b Σ

∗−1/2
b bα

+[(
nN

∑
j=1

YjX̃j

A(D(tj;φ∗))
+µ∗α

TΣ∗−1
b )Σ

∗1/2
b ][(

nN

∑
j=1

YjX̃j

A(D(tj;φ∗))
+µ∗α

TΣ∗−1
b )Σ

∗1/2
b ]

T

]
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+ 1

2
[(

nN

∑
j=1

YjX̃j

A(D(tj;φ∗))
+µ∗α

TΣ∗−1
b )Σ

∗1/2
b ][(

nN

∑
j=1

YjX̃j

A(D(tj;φ∗))
+µ∗α

TΣ∗−1
b )Σ

∗1/2
b ]

T

−
nN

∑
j=1

B(β∗;bα)
A(D(tj;φ∗))

− 1

2
µ∗α

TΣ∗−1
b µ∗α}w∗

αdbα

= exp{
nN

∑
j=1

[
YjXjβ

∗

A(D(tj;φ∗))
+C(Yj;D(tj;φ∗))]}(2π)−db/2∣Σ∗

b ∣−1/2

×∑
α

w∗
α[ exp{1

2
[(

nN

∑
j=1

YjX̃j

A(D(tj;φ∗))
+µ∗α

TΣ∗−1
b )Σ

∗1/2
b ]

×[(
nN

∑
j=1

YjX̃j

A(D(tj;φ∗))
+µ∗α

TΣ∗−1
b )Σ

∗1/2
b ]

T

− 1

2
µ∗α

TΣ∗−1
b µ∗α}

×∫bα
exp{− 1

2
[Σ

∗−1/2
b bα−(

nN

∑
j=1

YjX̃j

A(D(tj;φ∗))
+µ∗α

TΣ∗−1
b )

T

]
T

×[Σ
∗−1/2
b bα−(

nN

∑
j=1

YjX̃j

A(D(tj;φ∗))
+µ∗α

TΣ∗−1
b )

T

]}

× exp{−
nN

∑
j=1

B(β∗;bα)
A(D(tj;φ∗))

}dbα]

= exp{
nN

∑
j=1

[
YjXjβ

∗

A(D(tj;φ∗))
+C(Yj;D(tj;φ∗))]}

×∑
α

w∗
α[exp{1

2
(
nN

∑
j=1

YjX̃j

A(D(tj;φ∗))
+µ∗α

TΣ∗−1
b )Σ∗

b(
nN

∑
j=1

YjX̃j

A(D(tj;φ∗))
+µ∗α

TΣ∗−1
b )

T

−1

2
µ∗α

TΣ∗−1
b µ∗α}Ebα∣α [ exp{−

nN

∑
j=1

( B(β∗;bα)
A(D(tj;φ∗))

)}]]

= exp{
nN

∑
j=1

[
YjXjβ

∗

A(D(tj;φ∗))
+C(Yj;D(tj;φ∗))]}

×∑
α

w∗
α[ exp{1

2
(
nN

∑
j=1

YjX̃j

A(D(tj;φ∗))
)Σ∗

b(
nN

∑
j=1

YjX̃j

A(D(tj;φ∗))
)
T

+(
nN

∑
j=1

YjX̃j

A(D(tj;φ∗))
)Σ∗

b(µ∗α
TΣ∗−1

b )
T

} ×Ebα∣α [ exp{−
nN

∑
j=1

B(β∗;bα)
A(D(tj;φ∗))

}]]

= exp{
nN

∑
j=1

C(Yj;D(tj;φ∗))}∑
α

w∗
α[exp{1

2
(
nN

∑
j=1

YjX̃j

A(D(tj;φ∗))
)Σ∗

b(
nN

∑
j=1

YjX̃j

A(D(tj;φ∗))
)
T

+
nN

∑
j=1

Yj
A(D(tj;φ∗))

(Xjβ
∗ + X̃jµ

∗
α)} ×Ebα∣α [ exp{−

nN

∑
j=1

B(β∗;bα)
A(D(tj;φ∗))

}]]

= ∑
α

[ exp{1

2
(
nN

∑
j=1

YjX̃j

A(D(tj;φ∗))
)Σ∗

b(
nN

∑
j=1

YjX̃j

A(D(tj;φ∗))
)
T
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+
nN

∑
j=1

Yj
A(D(tj;φ∗))

(Xjβ
∗ + X̃jµ

∗
α)}

× exp{
nN

∑
j=1

C(Yj;D(tj;φ∗))}w∗
α Ebα∣α [ exp{−

nN

∑
j=1

B(β∗;bα)
A(D(tj;φ∗))

}]]. (4.19)

Likewise, the right-hand side becomes

∑
α

[ exp{1

2
(
nN

∑
j=1

YjX̃j

A(D(tj;φ0))
)Σb0(

nN

∑
j=1

YjX̃j

A(D(tj;φ0))
)
T

+
nN

∑
j=1

Yj
A(D(tj;φ0))

(Xjβ0 + X̃jµα0)}

× exp{
nN

∑
j=1

C(Yj;D(tj;φ0))}wα0 Ebα∣α [ exp{−
nN

∑
j=1

B(β0;bα)
A(D(tj;φ0))

}]]. (4.20)

Then, to compare the coefficients of Y TY and Y in the exponential part and the

constant term out of the exponential part from (4.19) and (4.20), we have

(
nN

∑
j=1

YjX̃j

A(D(tj;φ∗))
)Σ∗

b(
nN

∑
j=1

YjX̃j

A(D(tj;φ∗))
)
T

= (
nN

∑
j=1

YjX̃j

A(D(tj;φ0))
)Σb0(

nN

∑
j=1

YjX̃j

A(D(tj;φ0))
)
T

,

(4.21)
nN

∑
j=1

Yj
A(D(tj;φ∗))

(Xjβ
∗ + X̃jµ

∗
α) =

nN

∑
j=1

Yj
A(D(tj;φ0))

(Xjβ0 + X̃jµα0), (4.22)

and

exp{
nN

∑
j=1

C(Yj;D(tj;φ∗))}w∗
α Ebα∣α [ exp{−

nN

∑
j=1

B(β∗;bα)
A(D(tj;φ∗))

}]

= exp{
nN

∑
j=1

C(Yj;D(tj;φ0))}wα0 Ebα∣α [ exp{−
nN

∑
j=1

B(β0;bα)
A(D(tj;φ0))

}]. (4.23)

Furthermore, by the assumption of the generalized linear mixed model with canonical

link function for longitudinal outcome Y (t) at time t, we have µ(t) = E(Y (t)∣b) =

B′(η(t)) and v(t) = Var(Y (t)∣b) = B′′(η(t))A(φ(t)), where b = ∑K
k=1 I(α = k)bk, η(t) =

g(µ(t)) = X(t)β + X̃(t)b, v(t) = v(µ(t))A(φ(t)), g(⋅) and v(⋅) are known link and
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variance functions respectively, and B′(η(t)) and B′′(η(t)) are the first and second

derivatives of B(η(t)) with respect to the canonical parameter η(t). Hence, we have

E(Yj ∣b) = B′(ηj) = B′(β∗;b) = B′(β0;b) (4.24)

and

Var(Yj ∣b) = B′′(ηj)A(D(tj;φ)) = B′′(β∗;b)A(D(tj;φ∗)) = B′′(β0;b)A(D(tj;φ0)).

(4.25)

By the continuous mapping theorem and (4.24), we obtain β∗ = β0. Then, (4.25) be-

comes B′′(β0;b)A(D(tj;φ∗)) = B′′(β0;b)A(D(tj;φ0)). Hence, by assumption (A6),

A(D(tj;φ∗)) = A(D(tj;φ0)), and, by the continuous mapping theorem, we obtain

D(tj;φ∗) =D(tj;φ0), j = 1, . . . , nN , and φ∗ = φ0. Thus, (4.21) can be written as

(
nN

∑
j=1

YjX̃j

A(D(tj;φ0))
)Σ∗

b(
nN

∑
j=1

YjX̃j

A(D(tj;φ0))
)
T

= (
nN

∑
j=1

YjX̃j

A(D(tj;φ0))
)Σb0(

nN

∑
j=1

YjX̃j

A(D(tj;φ0))
)
T

.

Then, by assumption (A6), we obtain Σ∗
b = Σb0. Since β∗ = β0 and φ∗ = φ0, (4.22) can

be written as

nN

∑
j=1

Yj
A(D(tj;φ0))

(Xjβ0 + X̃jµ
∗
α) =

nN

∑
j=1

Yj
A(D(tj;φ0))

(Xjβ0 + X̃jµα0).

Also, by assumption (A6), we obtain µ∗α = µα0, α = 1, . . . ,K. In (4.23) for the constant

terms, note that the random effect bα on the left-hand side follows a multivariate normal

distribution with mean Σ∗
b(∑

nN
j=1 YjX̃j/A(D(tj;φ∗)))

T +µ∗α and covariance Σ∗
b and the

random effect bα on the right-hand side follows a multivariate normal distribution

with mean Σb0(∑nN
j=1 YjX̃j/A(D(tj;φ0)))

T +µα0 and covariance Σb0. (i) Because Σ∗
b =

Σb0, µ∗α = µα0, α = 1, . . . ,K, and φ∗ = φ0, the random effects bα’s on both sides
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follow the same multivariate normal distribution. (ii) Besides, because β∗ = β0 and

φ∗ = φ0, we have ∑nN
j=1

B(β
∗

;bα)
A(D(tj ;φ∗))

= ∑nN
j=1

B(β0;bα)
A(D(tj ;φ0))

. By (i) and (ii), we obtain (iii)

Ebα∣α [ exp{ B(β
∗

;bα)
A(D(tj ;φ∗))

}] = Ebα∣α [ exp{ B(β0;bα)
A(D(tj ;φ0))

}]. Also, (iv) since φ∗ = φ0, we have

exp{∑nN
j=1C(Yj;D(tj;φ∗))} = exp{∑nN

j=1C(Yj;D(tj;φ0))}. By (iii) and (iv), (4.23) can

be written as

exp{
nN

∑
j=1

C(Yj;D(tj;φ0))}w∗
α Ebα∣α [ exp{ B(β0;bα)

A(D(tj;φ0))
}]

= exp{
nN

∑
j=1

C(Yj;D(tj;φ0))}wα0 Ebα∣α [ exp{−
nN

∑
j=1

B(β0;bα)
A(D(tj;φ0))

}].

Then, by assumption (A6), we obtain w∗
α = wα0. α = 1, . . . ,K.

Next, to show that ψ∗ = ψ0, γ∗ = γ0 and Λ∗
s = Λs0, we let ∆s = 0 in (4.18). Through

the similar arguments done for the proof of β∗ = β0, φ∗ = φ0, Σ∗
b = Σb0, µ∗α = µα0, and

w∗
α = wα0, α = 1, . . . ,K, we obtain

Ebα∣α [ exp{ −
nN

∑
j=1

B(β∗;bα)
A(D(tj;φ∗))

− ∫
Vs

0
exp{Z̃(t)(ψ∗ ○ bα) +Z(t)γ∗}dΛ∗

s(t)}]

= Ebα∣α [ exp{ −
nN

∑
j=1

B(β0;bα)
A(D(tj;φ0))

− ∫
Vs

0
exp{Z̃(t)(ψ0 ○ bα) +Z(t)γ0}dΛs0(t)}],

(4.26)

where the random effects bα’s on both sides follow a multivariate normal distribution

with mean Σb0(∑nN
j=1 YjX̃j/A(D(tj;φ0)))

T +µα0 and covariance Σb0.

For any fixed X̃ = (X̃T

1 , . . . , X̃
T

nN
)T , treating X̃

T
Y as a parameter in this normal

family, bα = ∑K
k=1 I(α = k)bk is the complete statistic for X̃

T
Y . Therefore,

exp{ −
nN

∑
j=1

B(β∗;bα)
A(D(tj;φ∗))

− ∫
Vs

0
exp{Z̃(t)(ψ∗ ○ bα) +Z(t)γ∗}dΛ∗

s(t)}

= exp{ −
nN

∑
j=1

B(β0;bα)
A(D(tj;φ0))

− ∫
Vs

0
exp{Z̃(t)(ψ0 ○ bα) +Z(t)γ0}dΛs0(t)}.
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Since β∗ = β0 and φ∗ = φ0, equivalently, we have

exp{Z̃(t)(ψ∗ ○ bα) +Z(t)γ∗}λ∗s(t) = exp{Z̃(t)(ψ0 ○ bα) +Z(t)γ0}λs0(t).

By assumptions (A3) and (A6), ψ∗ = ψ0, γ∗ = γ0 and Λ∗
s = Λs0.

Since all the three steps are completed, we can conclude that, with probability one,

θ̂ converges to θ0 and Λ̂ converges to Λ0 in [0, τ]. Moreover, as mentioned in the

beginning of this proof for consistency, since Λ0 is continuous in [0, τ], the latter can

be strengthened to uniform convergence; that is, supt∈[0,τ] ∣∣Λ̂(t) − Λ0(t)∣∣ → 0 almost

surely. Therefore, Theorem 4.1 is proved.

4.4.2 Proof of asymptotic normality

Asymptotic distribution for the proposed estimator can be shown if we can verify the

conditions of Theorem 3.3.1 (p310) in van der Vaart and Wellner (1996). Then, we will

show that the distribution is normal. For completeness, we state this theorem below

following Theorem 4 in Appendix A of Parner (1998).

Theorem 4.3. (Theorem 3.3.1 in van der Vaart and Wellner, 1996; Theorem 4 in

Parner, 1998) Let Un and U be random maps and a fixed map, respectively, from ξ to

a Banach space such that:

(a)
√
n(Un −U)(ξ̂n) −

√
n(Un −U)(ξ0) = o∗P (1 +

√
n∣∣ξ̂n − ξ0∣∣).

(b) The sequence
√
n(Un−U)(ξ0) converges in distribution to a tight random element

Z.

(c) the function ξ → U(ξ) is Fréchet differentiable at ξ0 with a continuously invertible

derivative ∇Uξ0 (on its range).

(d) Uξ0 and ξ̂n satisfies Un(ξ̂n) = o∗P (n−1/2) and converges in outer probability to ξ0.
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Then
√
n(ξ̂n − ξ0) ⇒ ∇U−1

ξ0
Z.

We will prove the conditions (a)∼(d). In our situation, the parameter ξs = (θ,Λs) ∈

Ξ = {(θ,Λs) ∶ ∣∣θ − θ0∣∣ + supt∈[0,τ] ∣Λs(t) − Λs0(t)∣ ≤ δ, s = 1, . . . , S} for a fixed small

constant δ. We note that Ξ is a convex set. Define a set H = {(h1, h2) ∶ ∣∣h1∣∣ ≤

1, ∣∣h2∣∣V ≤ 1}, where ∣∣h2∣∣V is the total variation of h2 in [0, τ] defined as

sup
0=t0≤t1≤⋯≤tl=τ

l

∑
j=1

∣h2(tj) − h2(tj−1)∣.

Furthermore, we define that, for stratum s,

Ums(ξs)(h1, h2) = Pms{lθ(θ,Λs)Th1 + lΛs(θ,Λs)[h2]}

and Us(ξs)(h1, h2) = P{lθ(θ,Λs)Th1 + lΛs(θ,Λs)[h2]},

where lθ(θ,Λs) is the first derivative of the log-likelihood function from one single

subject belonging to stratum s, denoted by l(O;θ,Λs), with respect to θ, and lΛs(θ,Λs)

is the derivative of l(O;θ,Λsε) at ε = 0, where Λsε(t) = ∫
t

0 (1+εh2(u))dΛs(u). Therefore,

we can see that both Ums and Us map from Ξ to `∞(H ) and
√
ms{Ums(ξs) − Us(ξs)}

is an empirical process in the space `∞(H ).

Denote (hβ1 ,h
φ
1 ,h

Σb
1 ,hµ1 ,h

w
1 ,h

ψ
1 ,h

γ
1) as the corresponding components of h1 for the

parameters (β,φ,Vec(Σb), µ,w,ψ,γ), respectively. From Section 4.4.3.2, for any

(h1, h2) ∈ H , the class

G = {lθ(θ,Λs)Th1 + lΛs(θ,Λs)[h2] − lθ(θ0,Λs0)Th1 + lΛs(θ0,Λs0)[h2],

∣∣θ − θ0∣∣ + sup
t∈[0,τ]

∣Λs(t) −Λs0(t)∣ ≤ δ, (h1, h2) ∈ H }

is shown as P-Donsker (Section 2.1 of van der Vaart and Wellner (1996), and it is also
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implied that

sup
(h1,h2)∈H

P [lθ(θ,Λs)Th1 + lΛs(θ,Λs)[h2] − lθ(θ0,Λs0)Th1 + lΛs(θ0,Λs0)[h2]]
2 Ð→ 0

as ∣∣θ − θ0∣∣ + supt∈[0,τ] ∣Λs(t) −Λs0(t)∣ → 0. Then we conclude the followings:

(a) follows from Lemma 3.3.5 (p311) of van der Vaart and Wellner (1996).

(b) holds as a result of Section 4.4.3.2 and the convergence is defined in the metric

space `∞(H ) by the Donsker theorem (Section 2.5 of van der Vaart and Wellner

(1996).

(d) is true because (θ̂, Λ̂s) maximizes Pms l(O;θ,Λs), (θ0,Λs0) maximizes P l(O;θ,

Λs), and (θ̂, Λ̂s) converges to (θ0,Λs0) from Theorem 4.1.

Now, we need to verify the conditions in (c). Since the proof of the first half in (c), that

the function ξ → U(ξ) is Fréchet differentiable at ξ0, is given in Section 4.4.3.3, we

will only prove that the derivative ∇Uξ0 is continuously invertible on its range `∞(H ).

According to Section 4.4.3.3, ∇Uξ0 can be expressed as follows: for any (θ1,Λs1) and

(θ2,Λs2) in Ξ,

∇Uξ0(θ1 − θ2,Λs1 −Λs2)[h1, h2] = (θ1 − θ2)TΩ1[h1, h2] +∫
τ

0
Ω2[h1, h2]d(Λs1 −Λs2)(t),

(4.27)

where both Ω1 and Ω2 are linear operators on H , and Ω = (Ω1,Ω2) maps H ⊂ Rd ×

BV[0, τ] to Rd × BV[0, τ], where BV[0, τ] contains all the functions with finite total

variation in [0, τ]. The explicit expressions of Ω1 and Ω2 are given in Section 4.4.3.3.

From (4.27), we can treat (θ1−θ2,Λs1−Λs2) as an element in `∞(H ) via the following

definition:

(θ1−θ2,Λs1−Λs2)[h1, h2]=(θ1−θ2)Th1+∫
τ

0
h2(t)d(Λs1−Λs2)(t), ∀(h1, h2)∈Rd×BV[0,τ].
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Then ∇Uξ0 can be expanded as a linear operator from `∞(H ) to itself. Therefore, if

we can show that there exists some positive constant ε such that εH ⊂ Ω(H ), then

we will have that for any (δθ, δΛs) ∈ `∞(H ),

∣∣∇Uξ0(δθ, δΛs)∣∣`∞(H )
= sup

(h1,h2)∈H
∣δθTΩ1[h1, h2] + ∫

τ

0
Ω2[h1, h2]dδΛs(t)∣

= ∣∣(δθ, δΛs)∣∣`∞(Ω(H ))
≥ ε∣∣(δθ, δΛs)∣∣`∞(H )

,

and ∇Uξ0 will be continuously invertible.

Note that to prove εH ⊂ Ω(H ) for some ε is equivalent to showing that Ω is

invertible. We also note from Section 4.4.3.3, that Ω is the summation of an invertible

operator and a compact operator. By Theorem 4.25 of Rudin (1973), for the proof of

the invertibility of Ω, it is sufficient to verify that Ω is one to one: if Ω[h1, h2] = 0, then,

by choosing θ1 −θ2 = ε∗h1 and Λs1 −Λs2 = ε∗ ∫ h2dΛs0 in (4.27) for a small constant ε∗,

we obtain

∇Uξ0(h1,∫ h2dΛs0)[h1, h2] = ε∗(hT1 , h2)
⎛
⎜⎜
⎝

Ω1[h1, h2]

Ω2[h1, h2]

⎞
⎟⎟
⎠
= ε∗(hT1 , h2)Ω[h1, h2] = 0.

By the definition of ∇Uξ0 , we note that ∇Uξ0(h1, ∫ h2dΛs0)[h1, h2] is the negative in-

formation matrix in the submodel (θ0 + εh1,Λs0 + ε ∫ h2dΛs0). Thus, the score func-

tion along this submodel should be zero with probability one; that is, lθ(θ0,Λs0)Th1 +

lΛs(θ0,Λs0)[h2] = 0; that is, with probability one, for the numerator of the score func-

tion

0 = ∑
α
∫bα

G(b, α,O;θ0,Λs0) × [
nN

∑
j=1

1

A(D(tj;φ0))
(YjXj −B′(β0;bα))hβ1

+
nN

∑
j=1

{−(
Yj(Xjβ0 + X̃jbα) −B(β0;bα)

A(D(tj;φ0))2
)A′(D(tj;φ0)) +C ′(Yj;D(tj;φ0))} hφ1
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+ 1

2
(bα −µα0)TΣ−1

b0DbΣ
−1
b0 (bα −µα0) −

1

2
Tr (Σ−1

b0Db)

+ (bα −
1

2
µα0)

T

Σ−1
b0 hµα1 + 1

wα0

hwα0
1 +∆s{(Z̃(Vs) ○ bTα)h

ψ
1 +Z(Vs)hγ1}

− ∫
Vs

0
exp{Z̃(t)(ψ0 ○ bα) +Z(t)γ0} × {(Z̃(t) ○ bTα)h

ψ
1 +Z(t)hγ1}dΛs0(t)]dbα

+∑
α
∫bα

G(b, α,O;θ0,Λs0) × [∆sh2(Vs)

−∫
Vs

0
h2(t) exp{Z̃(t)(ψ ○ bα) +Z(t)γ0}dΛs0(t)]dbα, (4.28)

where A′(D(tj;φ0))and C ′(Yj;D(tj;φ0)) are the derivatives of A(D(tj;φ))and C(Yj;

D(tj;φ)) with respect to φ evaluated at φ0 and B′(β0;b) is the derivative of B(β;b)

with respect to β evaluated at β0. Note that (4.28) holds with probability one, so it

may not hold for any Vs ∈ [0, τ] when ∆s = 0. However, by the similar arguments done

in Section 4.4.1, if we integrate both sides from Vs to τ and substract the obtained

equation from (4.28) at ∆s = 0 and Vs = τ , it is easily shown that (4.28) also holds for

any Vs ∈ [0, τ] when ∆s = 0. Hence, the proof of the invertibility of Ω will be completed

if we can show h1 = 0 and h2(t) = 0 from (4.28).

To show h1 = 0, particularly we let ∆s = 0 and Vs = 0 in (4.28) and obtain

0 = ∑
α
∫bα

G(b, α,O;θ0,Λs0) × [
nN

∑
j=1

1

A(D(tj;φ0))
(YjXj −B′(β0;bα))hβ1

+
nN

∑
j=1

{−(
Yj(Xjβ0 + X̃jbα) −B(β0;bα)

A(D(tj;φ0))2
)A′(D(tj;φ0)) +C ′(Yj;D(tj;φ0))} hφ1

+ 1

2
(bα −µα0)TΣ−1

b0DbΣ
−1
b0 (bα −µα0) −

1

2
Tr (Σ−1

b0Db)

+ (bα −
1

2
µα0)

T

Σ−1
b0 hµα1 + 1

wα0

hwα1 ]dbα

= ∑
α

[ exp{
nN

∑
j=1

Yj
A(D(tj;φ0))

X̃jµα0}wα0

×[Ebα∣α [ exp{ −
nN

∑
j=1

B(β0;bα)
A(D(tj;φ0))

}] × (
nN

∑
j=1

1

A(D(tj;φ0))
YjXjh

β
1
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+
nN

∑
j=1

{ −
YjXjβ0

A(D(tj;φ0))2
A′(D(tj;φ0)) +C ′(Yj;D(tj;φ0))} hφ1

+1

2
µTα0Σ

−1
b0DbΣ

−1
b0µα0 −

1

2
Tr (Σ−1

b0Db) −
1

2
µTα0Σ

−1
b0 hµα1 + 1

wα0

hwα1 )

+Ebα∣α [ exp{ −
nN

∑
j=1

B(β0;bα)
A(D(tj;φ0))

} × ( −
nN

∑
j=1

B′(β0;bα)
A(D(tj;φ0))

hβ1

+
nN

∑
j=1

{ − (
YjX̃jbα −B(β0;bα)

A(D(tj;φ0))2
)A′(D(tj;φ0))} hφ1

+1

2
(bTαΣ−1

b0DbΣ
−1
b0 bα − 2bTαΣ−1

b0DbΣ
−1
b0µα) + bTαΣ−1

b0 hµα1 )]]].(4.29)

We first examine the coefficient for Y in (4.29).

nN

∑
j=1

{Yj(
1

A(D(tj;φ0))
Xjh

β
1 −

1

A(D(tj;φ0))2
Xjβ0A

′(D(tj;φ0)) hφ1)

× [∑
α

[ exp{
nN

∑
j=1

Yj
A(D(tj;φ0))

X̃jµα0}wα0 Ebα∣α [ exp{ −
nN

∑
j=1

B(β0;bα)
A(D(tj;φ0))

}]]]}

−
nN

∑
j=1

{
YjX̃j

A(D(tj;φ0))2
A′(D(tj;φ0)) hφ1

× [∑
α

[ exp{
nN

∑
j=1

Yj
A(D(tj;φ0))

X̃jµα0}wα0 Ebα∣α [ exp{ −
nN

∑
j=1

B(β0;bα)
A(D(tj;φ0))

}bα]]]}

=
nN

∑
j=1

Yj
A(D(tj;φ0))

{Xj(hβ1 −
1

A(D(tj;φ0))
β0A

′(D(tj;φ0)) hφ1)

× [∑
α

[ exp{
nN

∑
j=1

Yj
A(D(tj;φ0))

X̃jµα0}wα0 Ebα∣α [ exp{ −
nN

∑
j=1

B(β0;bα)
A(D(tj;φ0))

}]]]

−
X̃j

A(D(tj;φ0))
A′(D(tj;φ0)) hφ1

× [∑
α

[ exp{
nN

∑
j=1

Yj
A(D(tj;φ0))

X̃jµα0}wα0 Ebα∣α [ exp{ −
nN

∑
j=1

B(β0;bα)
A(D(tj;φ0))

}bα]]]}

=
nN

∑
j=1

Yj
A(D(tj;φ0))

{Xjh
β
1 ∑
α

[ exp{
nN

∑
j=1

Yj
A(D(tj;φ0))

X̃jµα0}wα0

×Ebα∣α [ exp{ −
nN

∑
j=1

B(β0;bα)
A(D(tj;φ0))

}]]
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− 1

A(D(tj;φ0))
A′(D(tj;φ0)) hφ1(Xjβ0∑

α

[ exp{
nN

∑
j=1

Yj
A(D(tj;φ0))

X̃jµα0}wα0

×Ebα∣α [ exp{ −
nN

∑
j=1

B(β0;bα)
A(D(tj;φ0))

}]]

+ X̃j∑
α

[ exp{
nN

∑
j=1

Yj
A(D(tj;φ0))

X̃jµα0}wα0 Ebα∣α [ exp{ −
nN

∑
j=1

B(β0;bα)
A(D(tj;φ0))

}bα]])}

= 0.

Based on assumption (A6), hβ1 = 0 and hφ1 = 0.

Then, we examine the constant terms without Y in (4.29). Since hβ1 = 0 and hφ1 = 0,

(4.29) becomes

∑
α

[ exp{
nN

∑
j=1

Yj
A(D(tj;φ0))

X̃jµα0}wα0

× [Ebα∣α [ exp{ −
nN

∑
j=1

B(β0;bα)
A(D(tj;φ0))

}] × (1

2
µTα0Σ

−1
b0DbΣ

−1
b0µα0

−1

2
Tr (Σ−1

b0Db) −
1

2
µTα0Σ

−1
b0 hµα1 + 1

wα0

hwα1 )

+Ebα∣α [ exp{ −
nN

∑
j=1

B(β0;bα)
A(D(tj;φ0))

} × (1

2
bTαΣ−1

b0DbΣ
−1
b0 bα

−bTαΣ−1
b0DbΣ

−1
b0µα + bTαΣ−1

b0 hµα1 )]]]

= Eα,b [ exp{
nN

∑
j=1

Yj
A(D(tj;φ0))

X̃jµα0} × exp{ −
nN

∑
j=1

B(β0;bα)
A(D(tj;φ0))

}

× (1

2
µTα0Σ

−1
b0DbΣ

−1
b0µα0 −

1

2
Tr (Σ−1

b0Db)

−1

2
µTα0Σ

−1
b0 hµα1 + 1

wα0

hwα1 + 1

2
bTαΣ−1

b0DbΣ
−1
b0 bα − bTαΣ−1

b0DbΣ
−1
b0µα + bTαΣ−1

b0 hµα1 )]

= 0,

where b follows a multivariate normal distribution with mean Σb0(∑nN
j=1(YjX̃j/A(D

(tj;φ0)))) +µα0 and covariance Σb0. For any fixed X̃, treating XTY as a parameter
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in this normal family, b = ∑K
k=1 I(α = k)bk is the complete statistic for XTY , therefore,

exp{
nN

∑
j=1

Yj
A(D(tj;φ0))

X̃jµα0−
nN

∑
j=1

B(β0;bα)
A(D(tj;φ0))

} × (1

2
µTα0Σ

−1
b0DbΣ

−1
b0µα0−

1

2
Tr(Σ−1

b0Db)

−1

2
µTα0Σ

−1
b0 hµα1 + 1

wα0

hwα1 + 1

2
bTαΣ−1

b0DbΣ
−1
b0 bα − bTαΣ−1

b0DbΣ
−1
b0µα + bTαΣ−1

b0 hµα1 )

= 0.

Since exp{∑nN
j=1

Yj
A(D(tj ;φ0))

X̃jµα0 −∑
nN
j=1

B(β0;bα)
A(D(tj ;φ0))

} ≠ 0, by (A6), we have

1

2
µTα0Σ

−1
b0DbΣ

−1
b0µα0 −

1

2
Tr (Σ−1

b0Db) + ( − 1

2
µTα0 + bTα)Σ−1

b0 hµα1 + 1

wα0

hwα1

+1

2
bTαΣ−1

b0DbΣ
−1
b0 bα − bTαΣ−1

b0DbΣ
−1
b0µα = 0.

∵ −1
2µ

T
α0 + b

T
α ≠ 0 and Σ−1

b0 ≠ 0 Ô⇒ ∴ hµα1 = 0, α = 1, . . . ,K, by (A6).

∵ 1/wα ≠ 0 Ô⇒ ∴ hwα1 = 0, α = 1, . . . ,K, by (A6).

∵ Σ−1
b0 ≠ 0 Ô⇒ ∴ Db = 0 by (A6).

Next, we let ∆s = 0 in (4.28) and obtain

0 = ∑
α
∫bα

G(b, α,O;θ0,Λs0) × [
nN

∑
j=1

1

A(D(tj;φ0))
(YjXj −B′(β0;bα))hβ1

+
nN

∑
j=1

{ − (
Yj(Xjβ0 + X̃jbα) −B(β0;bα)

A(D(tj;φ0))2
)A′(D(tj;φ0)) +C ′(Yj;D(tj;φ0))} hφ1

+ 1

2
(bα −µα0)TΣ−1

b0DbΣ
−1
b0 (bα −µα0) −

1

2
Tr (Σ−1

b0Db)

+ (bα −
1

2
µα0)

T

Σ−1
b0 hµα1 + 1

wα0

hwα0
1

− ∫
Vs

0
exp{Z̃(t)(ψ0 ○ bα) +Z(t)γ0} × {(Z̃(t) ○ bTα)h

ψ
1 +Z(t)hγ1}dΛs0(t)]dbα

+∑
α
∫bα

G(b, α,O;θ0,Λs0)×[−∫
Vs

0
h2(t) exp{Z̃(t)(ψ ○ bα) +Z(t)γ0}dΛs0(t)]dbα.

Since hβ1 = 0, hφ1 , hµα1 = 0, hwα0
1 = 0, α = 1, . . . ,K, and Db = 0, the above expression can

147



be written as

0 = Eα,b [ exp{
nN

∑
j=1

Yj
A(D(tj;φ0))

(Xjβ0 + X̃jµα0) −
nN

∑
j=1

B(β0;bα)
A(D(tj;φ0))

}

×∫
Vs

0
exp{Z̃(t)(ψ0 ○ bα) +Z(t)γ0} × [(Z̃(t) ○ bTα)h

ψ
1 +Z(t)hγ1 + h2(t)]dΛs0(t)],

(4.30)

where bα follows a multivariate normal distribution with mean Σb0[∑nN
j=1 (YjZ̃j/A(D

(tj;φ0)))] + µα0 and covariance Σb0. Likewise, for any fixed X̃, treating XTY as a

parameter in this normal family, bα is the complete statistic for XTY , therefore,

exp{
nN

∑
j=1

Yj
A(D(tj;φ0))

(Xjβ0 + X̃jµα0) −
nN

∑
j=1

B(β0;bα)
A(D(tj;φ0))

}

× ∫
Vs

0
exp{Z̃(t)(ψ0 ○ bα) +Z(t)γ0} × [(Z̃(t) ○ bTα)h

ψ
1 +Z(t)hγ1 + h2(t)]dΛs0(t)

= 0.

Since exp{∑nN
j=1 [Yj(Xjβ0+X̃jµα0)/A(D(tj;φ0))]−∑nN

j=1 [B(β0;b)/A(D(tj;φ0))]} ≠ 0,

equivalently

∫
Vs

0
exp{Z̃(t)(ψ0 ○ bα) +Z(t)γ0} × [(Z̃(t) ○ bTα)h

ψ
1 +Z(t)hγ1 + h2(t)]dΛs0(t) = 0

by assumption (A6). From assumption (A6), this immediately gives hψ1 = 0, hγ1 = 0 and

h2(t) = 0. Hence, the proof of condition (c) is completed.

Since the conditions (a)–(d) have been proved, Theorem 3.3.1 of van der Vaart and

Wellner (1996) concludes that
√
ms(θ̂−θ0, Λ̂s−Λs0) weakly converges to a tight random

element in `∞(H ). Furthermore, we obtain
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√
ms∇Uξ0(θ̂ − θ0, Λ̂s −Λs0)[h1, h2]

=
√
ms(Pms −P){lθ(θ0,Λs0)Th1 + lΛs(θ0,Λs0)[h2]} + oP (1), (4.31)

where oP (1) is a random variable which converges to zero in probability in `∞(H ).

On the other hand, from (4.27), we have

√
ms∇Uξ0(θ̂ − θ0, Λ̂s −Λs0)[h1, h2]

=
√
ms{(θ̂ − θ0)TΩ1[h1, h2] + ∫

τ

0
Ω2[h1, h2]d(Λ̂s −Λs0)(t)}. (4.32)

By denoting (h∗
1, h

∗
2) = Ω−1(h1, h2), we have (h1, h2) = Ω(h∗

1, h
∗
2), and replacing (h1, h2)

with (h∗
1, h

∗
2) in (4.31) and (4.32) leads to the followings, respectively.

√
ms∇Uξ0(θ̂ − θ0, Λ̂s −Λs0)[h∗

1, h
∗
2]

=
√
ms(Pms −P){lθ(θ0,Λs0)Th∗

1 + lΛs(θ0,Λs0)[h∗2]} + oP (1),

and

√
ms∇Uξ0(θ̂ − θ0, Λ̂s −Λs0)[h∗

1, h
∗
2]

=
√
ms{(θ̂ − θ0)TΩ1[h∗

1, h
∗
2] + ∫

τ

0
Ω2[h∗

1, h
∗
2]d(Λ̂s −Λs0)(t)}

=
√
ms{(θ̂ − θ0)Th1 + ∫

τ

0
h2(t)d(Λ̂s −Λs0)(t)}.

Thus, we obtain

√
ms{(θ̂ − θ0)Th1 + ∫

τ

0
h2(t)d(Λ̂s −Λs0)(t)}

=
√
ms(Pms −P){lθ(θ0,Λs0)Th∗

1 + lΛs(θ0,Λs0)[h∗2]} + oP (1). (4.33)
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Note that the first term on the right-hand side in (4.33) is
√
ms{Ums(θ0,Λs0) −Us(θ0,

Λs0)}, which is an empirical process in the space `∞(H ), and it is shown that G is

P-Donsker in Section 4.4.3.2. Therefore,
√
ms(θ̂ − θ0, Λ̂s − Λs0) weakly converges to a

Gaussian process in `∞(H ).

In particular, if we choose h2 = 0 in (4.33), then θ̂
T
h1 is an asymptotic linear

estimator for θT0 h1 with influence function being lθ(θ0,Λs0)Th∗
1+lΛs(θ0,Λs0)[h∗2]. Since

this influence function is in the linear space spanned by the score functions for θ0 and

Λs0, Proposition 3.3.1 (p65) in Bickel, Klaassen, Ritov and Wellner (1993) concludes

that the influence function is the same as the efficient influence function for θT0 h1; that

is θ̂ is an efficient estimator for θ0 and Theorem 4.2 is proved.

4.4.3 Supplementary proofs

The proofs for P-Donsker property of the classes F and G needed in Sections 4.4.1 and

4.4.2 are presented in Sections 4.4.3.1∼4.4.3.2 respectively. In Section 4.4.3.3, we prove

Fréchet differentiability of U(ξ) at ξ0 and derive the derivative operator ∇Uξ0 used in

Section 4.4.2.

4.4.3.1 Proof of P-Donsker property of F

We defined that a class F = {Q(v,O;θ,Λs) ∶ v ∈ [0, τ],θ ∈ Θ,Λs ∈ A , s = 1, . . . , S},

where A = {Λs ∈ W,Λs(0) = 0,Λs(τ) ≤ Bs0, s = 1, . . . , S}, Bs0 is the constant given in

the second step and W contains all nondecreasing functions in [0, τ]. We can rewrite

Q(v,O;θ,Λs) as

Q(v,O;θ,Λs) = Q1(v,O;θ)Q2(v,O;θ,Λs)
Q3(v,O;θ,Λs)

,

where
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Q1(v,O;θ)

= exp{Z(v)γ+(
nN

∑
j=1

YjX̃j

A(D(tj;φ))
+∆(Z̃(v)○ψT ))Σb(Z̃(v)○ψT)T + 1

2
R(v)},

Q2(v,O;θ,Λs)

= ∑
α
∫bα

exp{− 1

2
bTαbα + (

nN

∑
j=1

YjX̃j

A(D(tj;φ))
+ (∆+1)(Z̃(v) ○ψT ))µα −

nN

∑
j=1

B1(β;bα)
A(D(tj;φ))

− ∫
Vs

0
exp{(Z̃(t) ○ψT )Σ1/2

b bα +Z(t)γ

+ (Z̃(t) ○ψT )[Σb(
nN

∑
j=1

YjX̃j

A(D(tj;φ))
+∆(Z̃(t)○ψT ))

T

+µα]+R(t)}dΛs(t)}wαdbα,

Q3(v,O;θ,Λs)

= ∑
α
∫bα

exp{ − 1

2
bTαbα + (

nN

∑
j=1

YjX̃j

A(D(tj;φ))
+∆(Z̃(v) ○ψT ))µα −

nN

∑
j=1

B1(β;bα)
A(D(tj;φ))

− ∫
Vs

0
exp{(Z̃(t) ○ψT )Σ1/2

b bα +Z(t)γ

+ (Z̃(t) ○ψT )[Σb(
nN

∑
j=1

YjX̃j

A(D(tj;φ))
+∆(Z̃(t) ○ψT ))

T

+µα]}dΛs(t)}wαdbα,

R(t) = (Z̃(t) ○ ψT )Σb(Z̃(t) ○ ψT )T , R(v) is R(t) evaluated at t = v, B1(β;bα) =

B(β; g1(bα)), B2(β;bα) = B(β; g2(bα)), g1(bα) = Σ
1/2
b bα + Σb[∑nN

j=1 (YjX̃j/A(D(tj;

φ)))+ (∆+1)(Z̃(v) ○ψT )]T +µα and g2(bα) = Σ
1/2
b bα +Σb[∑nN

j=1 (YjX̃j/A(D(tj;φ)))+

∆(Z̃(v) ○ψT )]T +µα.

Using assumption (A3), we can easily show that Q1(v,O;θ) is continuously differ-

entiable with respect to v and θ, and

∣∣∇θQ1(v,O;θ)∣∣ + ∣ d
dv
Q1(v,O;θ)∣ ≤ ek1+k2∣∣Y ∣∣

for some positive constants k1 and k2. Furthermore, it holds that
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∣∣∇θQ2(v,O;θ,Λs)∣∣ + ∣ d
dv
Q2(v,O;θ,Λs)∣

≤ ∑
α
∫bα

[ exp{ − 1

2
bTαbα + (

nN

∑
j=1

YjX̃j

A(D(tj;φ))
+ (∆ + 1)(Z̃(v) ○ψT ))µα

−
nN

∑
j=1

B1(β;bα)
A(D(tj;φ))

} × ek3∣∣bα∣∣+k4∣∣Y ∣∣+k5(α) ×Bs0 ×wα]dbα

≤ ek6+k7∣∣Y ∣∣

and ∣∣∇θQ3(v,O;θ,Λs)∣∣+∣
d

dv
Q3(v,O;θ,Λs)∣ ≤ ek8+k9∣∣Y ∣∣

for some positive constants k3, k4, k6, k7, k8, and k9, and a deterministic function of α,

k(α). Additionally, note that, for any 0 < Λ < ∞, 0 < e−Λ < 1 and e−Λ < Λ and thus

e−Λ1 − e−Λ2 < Λ1 −Λ2 for any Λ1 and Λ2 over (0,∞). Hence,

∣Q2(v,O;θ,Λs1) −Q2(v,O;θ,Λs2)∣

= ∣∑
α
∫bα

exp{ − 1

2
bTαbα + (

nN

∑
j=1

YjX̃j

A(D(tj;φ))
+ (∆ + 1)(Z̃(v) ○ψT ))µα

−
nN

∑
j=1

B1(β;bα)
A(D(tj;φ))

[ exp{ − ∫
v

0
exp{(Z̃(t) ○ψT )Σ1/2

b bα +Z(t)γ

+ (Z̃(t) ○ψT )[Σb(
nN

∑
j=1

YjX̃j

A(D(tj;φ))
+∆(Z̃(t) ○ψT ))

T

+µα]

+R(t)}dΛs1(t)} − exp{ − ∫
v

0
exp{(Z̃(t) ○ψT )Σ1/2

b bα +Z(t)γ

+ (Z̃(t) ○ψT )[Σb(
nN

∑
j=1

YjX̃j

A(D(tj;φ))
+∆(Z̃(t) ○ψT ))

T

+µα]

+R(t)}dΛs2(t)}]wαdbα∣

≤ ∣∑
α
∫bα

exp{ − 1

2
bTαbα + (

nN

∑
j=1

YjX̃j

A(D(tj;φ))
+ (∆ + 1)(Z̃(v) ○ψT ))µα

−
nN

∑
j=1

B1(β;bα)
A(D(tj;φ))

}[∫
v

0
exp{(Z̃(t) ○ψT )Σ1/2

b bα +Z(t)γ
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+ (Z̃(t) ○ψT )[Σb(
nN

∑
j=1

YjX̃j

A(D(tj;φ))
+∆(Z̃(t) ○ψT ))

T

+µα]

+R(t)}d(Λs1 −Λs2)(t)]wαdbα∣

= ∣∑
α
∫bα

exp{(
nN

∑
j=1

YjX̃j

A(D(tj;φ))
+ (∆+1)(Z̃(v)○ψT ))µα−

nN

∑
j=1

B1(β;bα)
A(D(tj;φ))

}×(2π)db/2

× (2π)−db/2 × [∫
v

0
exp{ − 1

2
[bα − ((Z̃(t) ○ψT )Σ1/2

b )T ]T [bα − ((Z̃(t) ○ψT )Σ1/2
b )T ]}

× exp{1

2
((Z̃(t) ○ψT )Σ1/2

b )((Z̃(t) ○ψT )Σ1/2
b )T +Z(t)γ

+ (Z̃(t) ○ψT )[Σb(
nN

∑
j=1

YjX̃j

A(D(tj;φ))
+∆(Z̃(t) ○ψT ))

T

+µα]

+R(t)}d(Λs1 −Λs2)(t)]wαdbα∣

≤ ∣∑
α

[ exp{(
nN

∑
j=1

YjX̃j

A(D(tj;φ))
+ (∆ + 1)(Z̃(v) ○ψT ))µα} × (2π)db/2

× ∫
v

0
[ exp{1

2
((Z̃(t) ○ψT )Σ1/2

b )((Z̃(t) ○ψT )Σ1/2
b )T +Z(t)γ

+ (Z̃(t) ○ψT )[Σb(
nN

∑
j=1

YjX̃j

A(D(tj;φ))
+∆(Z̃(t) ○ψT ))

T

+µα] +R(t)}

× (2π)−db/2∫bα
exp{ −

nN

∑
j=1

B1(β;bα)
A(D(tj;φ))

}

× exp{ − 1

2
[bα − ((Z̃(t) ○ψT )Σ1/2

b )T ]T [bα − ((Z̃(t) ○ψT )Σ1/2
b )T ]}dbα]

d(Λs1 −Λs2)(t)]wα∣

= ∣∑
α

[ exp{(
nN

∑
j=1

YjX̃j

A(D(tj;φ))
+ (∆ + 1)(Z̃(v) ○ψT ))µα} × (2π)db/2

× ∫
v

0
[ exp{1

2
((Z̃(t) ○ψT )Σ1/2

b )((Z̃(t) ○ψT )Σ1/2
b )T +Z(t)γ

+ (Z̃(t) ○ψT )[Σb(
nN

∑
j=1

YjX̃j

A(D(tj;φ))
+∆(Z̃(t) ○ψT ))

T

+µα] +R(t)}

×Ebα∣α [ exp{ −
nN

∑
j=1

B1(β;bα)
A(D(tj;φ))

}]]d(Λs1 −Λs2)(t)]wα∣

153



= ∣∑
α

[ exp{(
nN

∑
j=1

YjX̃j

A(D(tj;φ))
+ (∆ + 1)(Z̃(v) ○ψT ))µα} × (2π)db/2

× [(Λs1(v) −Λs2(v)) exp{1

2
((Z̃(v) ○ψT )Σ1/2

b )((Z̃(v) ○ψT )Σ1/2
b )T +Z(t)γ

+ (Z̃(v) ○ψT )[Σb(
nN

∑
j=1

YjX̃j

A(D(tj;φ))
+∆(Z̃(v) ○ψT ))

T

+µα] +R(v)}

×Ebα∣α [ exp{ −
nN

∑
j=1

B1(β;bα)
A(D(tj;φ))

}]

−∫
v

0
[(Λs1(t)−Λs2(t))

d

dt
[exp{1

2
((Z̃(t) ○ψT )Σ1/2

b )((Z̃(t) ○ψT )Σ1/2
b )T+Z(t)γ

+ (Z̃(t) ○ψT )[Σb(
nN

∑
j=1

YjX̃j

A(D(tj;φ))
+∆(Z̃(t) ○ψT ))

T

+µα] +R(t)}

×Ebα∣α [ exp{ −
nN

∑
j=1

B1(β;bα)
A(D(tj;φ))

}]]]dt]]wα∣

≤ ∑
α

wα[ exp{(
nN

∑
j=1

YjX̃j

A(D(tj;φ))
+ (∆ + 1)(Z̃(v) ○ψT ))µα} × (2π)db/2

× [∣Λs1(v) −Λs2(v)∣ exp{1

2
((Z̃(v) ○ψT )Σ1/2

b )((Z̃(v) ○ψT )Σ1/2
b )T +Z(t)γ

+ (Z̃(v) ○ψT )[Σb(
nN

∑
j=1

YjX̃j

A(D(tj;φ))
+∆(Z̃(v) ○ψT ))

T

+µα] +R(v)}

×Ebα∣α [ exp{ −
nN

∑
j=1

B1(β;bα)
A(D(tj;φ))

}]

+∫
v

0
[∣Λs1(t)−Λs2(t)∣∣

d

dt
[exp{1

2
((Z̃(t) ○ψT )Σ1/2

b )((Z̃(t) ○ψT )Σ1/2
b )T+Z(t)γ

+ (Z̃(t) ○ψT )[Σb(
nN

∑
j=1

YjX̃j

A(D(tj;φ))
+∆(Z̃(t) ○ψT ))

T

+µα] +R(t)}

×Ebα∣α [ exp{ −
nN

∑
j=1

B1(β;bα)
A(D(tj;φ))

}]]∣]dt]]

= ∣Λs1(v) −Λs2(v)∣ exp{1

2
((Z̃(v) ○ψT )Σ1/2

b )((Z̃(v) ○ψT )Σ1/2
b )T +Z(t)γ

+ (Z̃(v) ○ψT )Σb(
nN

∑
j=1

YjX̃j

A(D(tj;φ))
+∆(Z̃(v) ○ψT ))

T

+R(v)} × (2π)db/2

×Eα,b [ exp{(
nN

∑
j=1

YjX̃j

A(D(tj;φ))
+ (∆ + 1)(Z̃(v) ○ψT ))µα −

nN

∑
j=1

B1(β;bα)
A(D(tj;φ))

}]
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+ ∫
v

0
[∣Λs1(t) −Λs2(t)∣ × (2π)db/2

×Eα,b [ exp{(
nN

∑
j=1

YjX̃j

A(D(tj;φ))
+ (∆ + 1)(Z̃(v) ○ψT ))µα}

× ∣ d
dt

[ exp{1

2
((Z̃(t) ○ψT )Σ1/2

b )((Z̃(t) ○ψT )Σ1/2
b )T +Z(t)γ

+ (Z̃(t) ○ψT )[Σb(
nN

∑
j=1

YjX̃j

A(D(tj;φ))
+∆(Z̃(t) ○ψT ))

T

+µα]

+R(t) −
nN

∑
j=1

B1(β;bα)
A(D(tj;φ))

}]∣]]dt

≤ (2π)db/2 exp{1

2
((Z̃(v) ○ψT )Σ1/2

b )((Z̃(v) ○ψT )Σ1/2
b )T +Z(t)γ

+ (Z̃(v) ○ψT )Σb(
nN

∑
j=1

YjX̃j

A(D(tj;φ))
+∆(Z̃(v) ○ψT ))

T

+R(v)}

×Eα,b [ exp{(
nN

∑
j=1

YjX̃j

A(D(tj;φ))
+ (∆ + 1)(Z̃(v) ○ψT ))µα −

nN

∑
j=1

B1(β;bα)
A(D(tj;φ))

}]

× [∣Λs1(v) −Λs2(v)∣ + ∫
v

0
∣Λs1(t) −Λs2(t)∣dt]

≤ ek10+k11∣∣Y ∣∣[∣Λs1(v) −Λs2(v)∣ + ∫
τ

0
∣Λs1(t) −Λs2(t)∣dt],

where k10 and k11 are positive constants. Similarly,

∣Q3(v,O;θ,Λs1) −Q3(v,O;θ,Λs2)∣

≤ ek12+k13∣∣Y ∣∣[∣Λs1(v) −Λs2(v)∣ + ∫
τ

0
∣Λs1(t) −Λs2(t)∣dt],

where k12 and k13 are positive constants.

On the other hand, there exist positive constants k14, . . . , k26 such that

∣Q1(v,O;θ)∣

= ∣ exp{Z(v)γ + (
nN

∑
j=1

YjX̃j

A(D(tj;φ))
+∆(Z̃(v) ○ψT ))Σb(Z̃(v) ○ψT )T + 1

2
R(v)}∣
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≤ ek14+k15∣∣Y ∣∣,

∣Q2(v,O;θ,Λs)∣

= ∣∑
α
∫bα

exp{ − 1

2
bTαbα + (

nN

∑
j=1

YjX̃j

A(D(tj;φ))
+ (∆ + 1)(Z̃(v) ○ψT ))µα

−
nN

∑
j=1

B1(β;bα)
A(D(tj;φ))

− ∫
Vs

0
exp{(Z̃(t) ○ψT )Σ1/2

b bα +Z(t)γ

+ (Z̃(t) ○ψT )[Σb(
nN

∑
j=1

YjX̃j

A(D(tj;φ))
+∆(Z̃(t) ○ψT ))

T

+µα]

+R(t)}dΛs(t)}wαdbα∣

≤ ∣∑
α
∫bα

exp{ − 1

2
bTαbα + (

nN

∑
j=1

YjX̃j

A(D(tj;φ))
+ (∆ + 1)(Z̃(v) ○ψT ))µα

−
nN

∑
j=1

B1(β;bα)
A(D(tj;φ))

} × [2∫
v

0
exp{(Z̃(t) ○ψT )Σ1/2

b bα +Z(t)γ

+ (Z̃(t) ○ψT )[Σb(
nN

∑
j=1

YjX̃j

A(D(tj;φ))
+∆(Z̃(t) ○ψT ))

T

+µα]

+R(t)}dΛs(t)]wαdbα∣

≤ ∣∑
α
∫bα

exp{ − 1

2
bTαbα + (

nN

∑
j=1

YjX̃j

A(D(tj;φ))
+ (∆ + 1)(Z̃(v) ○ψT ))µα

−
nN

∑
j=1

B1(β;bα)
A(D(tj;φ))

} × 2 × exp{k16∣∣bα)∣∣ + k17∣∣Y ∣∣ + k18∣∣µα∣∣ + k19} ×Bs0 ×wαdbα∣

≤ ek19+k20∣∣Y ∣∣,

and

Q3(v,O;θ,Λs)

= ∑
α
∫bα

exp{ − 1

2
bTαbα + (

nN

∑
j=1

YjX̃j

A(D(tj;φ))
+∆(Z̃(v) ○ψT ))µα −

nN

∑
j=1

B1(β;bα)
A(D(tj;φ))

− ∫
Vs

0
exp{(Z̃(t) ○ψT )Σ1/2

b bα +Z(t)γ

+ (Z̃(t) ○ψT )[Σb(
nN

∑
j=1

YjX̃j

A(D(tj;φ))
+∆(Z̃(t) ○ψT ))

T

+µα]}dΛs(t)}wαdbα

156



≥ ∑
α
∫bα

exp{ − 1

2
bTαbα + (

nN

∑
j=1

YjX̃j

A(D(tj;φ))
+∆(Z̃(v) ○ψT ))µα −

nN

∑
j=1

B1(β;bα)
A(D(tj;φ))

− exp{k22∣∣bα∣∣ + k23∣∣Y ∣∣ + k24∣∣µα∣∣ + k25} ×Bs0}wαdbα

≥ k26 > 0.

Moreover,

∣∣∇θQ(v,O;θ,Λs)∣∣ + ∣ d
dv
Q(v,O;θ,Λs)∣

= ∣∣(∇θQ1)
Q2

Q3

+Q1(∇θ
Q2

Q3

)∣∣ + ∣( d

dv
Q1)

Q2

Q3

+Q1(
d

dv
(Q2

Q3

))∣

= ∣∣(∇θQ1)
Q2

Q3

+Q1[(∇θQ2)
1

Q3

+Q2
(−1)
Q2

3

(∇θQ3)]∣∣

+∣( d

dv
Q1)

Q2

Q3

+Q1[(
d

dv
Q2)

1

Q3

+Q2
(−1)
Q2

3

( d

dv
Q3)]∣

= ∣∣(∇θQ1)
Q2

Q3

+ (∇θQ2)
Q1

Q3

− (∇θQ3)
Q1Q2

Q2
3

∣∣

+∣( d

dv
Q1)

Q2

Q3

+ ( d

dv
Q2)

Q1

Q3

− ( d

dv
Q3)

Q1Q2

Q2
3

∣

≤ (∣∣∇θQ1∣∣ + ∣ d
dv
Q1∣)∣

Q2

Q3

∣ + (∣∣∇θQ2∣∣ + ∣ d
dv
Q2∣)∣

Q1

Q3

∣ + (∣∣∇θQ3∣∣ + ∣ d
dv
Q3∣)∣

Q1Q2

Q2
3

∣

≤ ek27+k28∣∣Y ∣∣,

for some positive constants k27 and k28. Therefore, by the mean-value theorem, we

conclude that, for any (v1,θ1,Λs1) and (v2,θ2,Λs2) in [0, τ] ×Θ ×A ,

∣Q(v1,O;θ1,Λs1) −Q(v2,O;θ2,Λs2)∣

≤ ek27+k28∣∣Y ∣∣[∣∣θ1 − θ2∣∣ + ∣Λs1(V ) −Λs2(V )∣ + ∫
τ

0
∣Λs1(t) −Λs2(t)∣dt + ∣v1 − v2∣]

(4.34)

holds for some positive constants k27 and k28 and 0 ≤ V ≤ τ (V = v1 or v2).
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Applying Theorem 2.7.5 (p159) in van der Vaart and Wellner (1996) to our situation,

the entropy number for the class A satisfies logN[⋅](ε,A , L2(P )) ≤K/ε, where K is a

constant. Thus, we can find exp{K/ε} brackets, {[Lj, Uj]}, to cover the class A such

that ∣∣Uj −Lj ∣∣L2(P ) ≤ ε for each pair of [Lj, Uj]. On the other hand, we can further find

a partition of [0, τ] × Θ, say I1⋃ I2⋃⋯, such that the number of partitions is of the

order (1/ε)dθ+1, and, for any (v1,θ1) and (v2,θ2) in the same partition, their Euclidean

distance is less than ε. Therefore, the partition {I1, I2, . . .} × {[Lj, Uj]} bracket covers

[0, τ] × Θ × A , and the total number of the partitions is of order (1/ε)dθ+1 exp{1/ε}.

Hence, from (4.34), for any Il and [Lj, Uj], the set of the functions {Q(v,O;θ,Λs) ∶

(v,θ) ∈ Il,Λs ∈ A ,Λs ∈ [Lj, Uj]} can be bracket covered by

[Q(vl,O;θl,Λsl) − ek27+k28∣∣Y ∣∣{ε + ∣Uj(V ) −Lj(V )∣ + ∫
τ

0
∣Uj(t) −Lj(t)∣dt},

Q(vl,O;θl,Λsl) + ek27+k28∣∣Y ∣∣{ε + ∣Uj(V ) −Lj(V )∣ + ∫
τ

0
∣Uj(t) −Lj(t)∣dt}], (4.35)

where (vl,θl) is a fixed point in Il and Λsj is a fixed function in [Lj, Uj]. Note that

the L2(P ) distance between these two functions in the above bracket (4.35) is less than

O(ε). Therefore, we have

N[⋅](ε,F , ∣∣ ⋅ ∣∣L2(P ) ≤ O((1

ε
)
dθ+1

e1/ε).

Furthermore, F has an L2(P )-integrable covering function, which is equal to O(

ek27+k28∣∣Y ∣∣). From Theorem 2.5.6 (p130) in van der Vaart and Wellner (1996), F

is P-Donsker.

Additionally, in the above derivation, we also note that all the functions in F are

bounded from below by e−k29−k30∣∣Y ∣∣ for some positive constants k29 and k30.
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4.4.3.2 Proof of P-Donsker property of G

Recall that we defined the class

G = {lθ(θ,Λs)Th1 + lΛs(θ,Λs)[h2] − lθ(θ0,Λs0)Th1 + lΛs(θ0,Λs0)[h2],

∣∣θ − θ0∣∣ + sup
t∈[0,τ]

∣Λs(t) −Λs0(t)∣ ≤ δ, (h1, h2) ∈ H },

where (hβ1 ,h
φ
1 ,h

Σb
1 ,hµ1 ,h

w
1 ,h

ψ
1 ,h

γ
1) denote the corresponding components of h1 for the

parameters (β,φ,Vec(Σb), µ,w,ψ,γ), respectively. We can write that for (h1, h2) ∈

H ,

lθ(θ,Λs)Th1 + lΛs(θ,Λs)[h2]

=[ρ1(O;θ,Λs)Th1−∫
Vs

0
ρ2(t,O;θ,Λs)Th1dΛs(t)]+∆h2(Vs)−∫

Vs

0
ρ3(t,O;θ,Λs)h2(t)dΛs(t),

where

ρ1(O;θ,Λs)Th1

= {∑
α
∫bα

G(b, α,O;θ,Λs)dbα}
−1

×∑
α
∫bα

G(b, α,O;θ,Λs)

× [
nN

∑
j=1

1

A(D(tj;φ))
(YjXj −B′(β;bα))hβ1

+
nN

∑
j=1

{ − (
Yj(Xjβ + X̃jbα) −B(β;bα)

A(D(tj;φ))2
)A′(D(tj;φ)) +C ′(Yj;D(tj;φ))} hφ1

+ 1

2
(bα −µα)TΣ−1

b DbΣ
−1
b (bα −µα) −

1

2
Tr (Σ−1

b Db)

+ (bα −
1

2
µα)

T

Σ−1
b hµα1 + 1

wα
hwα1 +∆s{(Z̃(Vs) ○ bTα)h

ψ
1 +Z(Vs)hγ1}]dbα,

ρ2(t,O;θ,Λs)Th1

= {∑
α
∫bα

G(b, α,O;θ,Λs)dbα}
−1

×∑
α
∫bα

G(b, α,O;θ,Λs)

× exp{Z̃(t)(ψ ○ bα) +Z(t)γ} × [(Z̃(t) ○ bTα)h
ψ
1 +Z(t)hγ1]dbα,
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ρ3(t,O;θ,Λs)

= {∑
α
∫bα

G(b, α,O;θ,Λs)dbα}
−1

×∑
α
∫bα

G(b, α,O;θ,Λs) × exp{Z̃(t)(ψ ○ bα) +Z(t)γ}dbα,

B′(β;b) is the derivative of B(β;b) with respect to β, A′(D(tj;φ)) and C ′(Yj;D(tj;φ))

are the derivatives of A(D(tj;φ)) and C(Yj;D(tj;φ)) with respect to φ respectively,

and Db is the symmetric matrix such that Vec(Db) = hb1.

For l = 1,2,3, we denote ∇θρl and ∇Λsρl[δΛs] as the derivatives of ρl with respect to

θ and Λs along the path Λs + εδΛs. Then, using the similar arguments done in Section

4.4.3.1, it is verified that ∇Λsρl[δΛs] = ∫
t

0 ρl+3(u,O;θ,Λs)dδΛs(u) and there exist two

positive constants q1 and q2 such that

∑
l

{∣ρl∣ + ∣∇θρl∣} ≤ e
q1+q2∣∣Y ∣∣

By the mean value theorem, we have that, for any (θ,Λs,h1, h2) and (θ̃, Λ̃s, h̃1, h̃2) in

Ξ ×H ,

lθ(θ,Λs)Th1 + lΛs(θ,Λs)[h2] − lθ(θ̃, Λ̃s)T h̃1 − lΛs(θ̃, Λ̃s)[h̃2]

= lθ(θ,Λs)Th1 + lΛs(θ,Λs)[h2] − lθ(θ̃, Λ̃s)Th1 − lΛs(θ̃, Λ̃s)[h2]

+ lθ(θ̃, Λ̃s)Th1 + lΛs(θ̃, Λ̃s)[h2] − lθ(θ̃, Λ̃s)T h̃1 − lΛs(θ̃, Λ̃s)[h̃2]

= [lθ(θ,Λs)T − lθ(θ̃, Λ̃s)T ]h1 + [lΛs(θ,Λs) − lΛs(θ̃, Λ̃s)][h2]

+ lθ(θ̃, Λ̃s)T (h1 − h̃1) + lΛs(θ̃, Λ̃s)([h2] − [h̃2])

= (θ − θ̃)T [ d
dθ
lθ(θ,Λs)∣

θ=θ
∗

,Λs=Λ∗
s

]h1 + [ d

dΛs

lθ(θ,Λs)∣
θ=θ

∗

,Λs=Λ∗
s

]
T

[Λs − Λ̃s]h1

+ (θ − θ̃)T [ d
dθ
lΛs(θ,Λs)∣

θ=θ
∗

,Λs=Λ∗
s

][h2]+[
d

dΛs

lΛs(θ,Λs)∣
θ=θ

∗

,Λs=Λ∗
s

]
T

[Λs−Λ̃s][h2]

+ lθ(θ̃, Λ̃s)T (h1 − h̃1) + lΛs(θ̃, Λ̃s)([h2] − [h̃2])
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= (θ − θ̃)T∇θρ1(O;θ∗,Λ∗
s)h1 − (θ − θ̃)T ∫

VS

0
∇θρ2(t,O;θ∗,Λ∗

s)TdΛ∗
s(t)h1

+ ∫
Vs

0
ρ4(t,O;θ∗,Λ∗

s)Th1d(Λs − Λ̃s)(t)

+ ∫
Vs

0
∫

t

0
ρ5(u,O;θ∗,Λ∗

s)Td(Λs − Λ̃s)(u)h1dΛ∗
s(t)

− ∫
Vs

0
ρ2(t,O;θ∗,Λ∗

s)T (Λs − Λ̃s)h1dt − (θ − θ̃)T∫
VS

0
∇θρ3(t,O;θ∗,Λ∗

s)h2(t)dΛ∗
s(t)

+ ∫
Vs

0
∫

t

0
ρ6(u,O;θ∗,Λ∗

s)d(Λs − Λ̃s)(u)h2(t)dΛ∗
s(t)

− ∫
Vs

0
ρ3(t,O;θ∗,Λ∗

s)T (Λs − Λ̃s)(t)h2(t)dt

+ ρ1(O; θ̃, Λ̃s)T (h1 − h̃1) − ∫
VS

0
ρ2(t,O; θ̃, Λ̃s)T (h1 − h̃1)dΛ̃s(t)

+∆s(h2(Vs) − h̃2(Vs)) − ∫
VS

0
ρ3(t,O; θ̃, Λ̃s)(h2(Vs) − h̃2(Vs))dΛ̃s(t), (4.36)

where (θ∗,Λ∗
s) is equal to ε∗(θ,Λs) + (1− ε∗)(θ̃, Λ̃s) for some ε∗ ∈ [0,1]. Thus, we have

∣lθ(θ,Λs)Th1 + lΛs(θ,Λs)[h2] − lθ(θ̃, Λ̃s)T h̃1 − lΛs(θ̃, Λ̃s)[h̃2]∣

≤ eq1+q2∣∣Y ∣∣{∣∣θ − θ̃∣∣ + ∣∣h1 − h̃1∣∣ + ∣Λs(Vs) − Λ̃s(Vs)∣

+∫
τ

0
∣Λs(t) − Λ̃s(t)∣[dt + d∣h2(t)∣ + d∣̃h2(t)∣]

+∣h2(Vs) − h̃2(Vs)∣ + ∫
τ

0
∣h2(Vs) − h̃2(Vs)∣[dΛs(t) − dΛ̃s(t)]}, (4.37)

where d∣h2(t)∣ = dh+2(t) + dh−2(t) and d∣̃h2(t)∣ = dh̃+2(t) + dh̃−2(t). As done in Section

4.4.3.1, by applying Theorem 2.7.5 (p159) in van der Vaart and Wellner (1996), we

note that for a set H 2 = {h2 ∶ ∣∣h2∣∣V ≤ B1}, logN[⋅](ε,H 2, L2(P )) ≤K/ε for a constant

B1 and any probability measure P where K is a constant. Thus, we can find exp{K/ε}

brackets, {[Lj, Uj]}, to cover the class H 2 such that ∣∣Uj −Lj ∣∣L2(P ) ≤ ε for each pair of

[Lj, Uj]. On the other hand, we can further find a partition of H 1 = {h1 ∶ ∣∣h1∣∣ ≤ 1},

say I1⋃ I2⋃⋯, such that the number of partitions is of the order (1/ε), and, for any

h1 and h2 in the same partition, their Euclidean distance is less than ε. Therefore, the
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partition {I1, I2, . . .}×{[Lj, Uj]} bracket covers H 1 ×H 2, and the total number of the

partitions is of order (1/ε) exp{1/ε}. Then, we obtain

logN[⋅](ε,G , L2(P )) ≤ O(1

ε
+ log ε).

Moreover, G has an L2(P )-integrable covering function, which is equal to O(eq1+q2∣∣Y ∣∣).

Hence, from Theorem 2.5.6 (p130) in van der Vaart and Wellner (1996), G is P-Donsker.

Additionally, from (4.37), we can calculate

∣lθ(θ,Λs)Th1 + lΛs(θ,Λs)[h2] − lθ(θ0,Λs0)Th1 − lΛs(θ0,Λs0)[h2]∣

≤ eq1+q2∣∣Y ∣∣{∣∣θ − θ0∣∣ + ∣Λs(Vs) −Λs0(Vs)∣ + ∫
τ

0
∣Λs(t) −Λs0(t)∣dt}

+∣∫
τ

0
ρ3(t,O;θ∗,Λ∗

s)h2(t)d(Λs(t) −Λs0(t))∣. (4.38)

If ∣∣θ−θ0∣∣ → 0 and supt∈[0,τ] ∣Λs(t)−Λs0(t)∣ → 0, the above expression converges to zero

uniformly. Therefore,

sup
(h1,h2)∈H

P [lθ(θ,Λs)Th1 + lΛs(θ,Λs)[h2] − lθ(θ0,Λs0)Th1 − lΛs(θ0,Λs0)[h2]]
2 Ð→ 0.

4.4.3.3 Derivative operator ∇Uξ0

From (4.36) in the previous Section 4.4.3.2, we can obtain

lθ(θ,Λs)Th1 + lΛs(θ,Λs)[h2] − lθ(θ0,Λs0)Th1 − lΛs(θ0,Λs0)[h2]

= [lθ(θ,Λs)T − lθ(θ0,Λs0)T ]h1 + [lΛs(θ,Λs) − lΛs(θ0,Λs0)][h2]

= (θ − θ0)T∇θρ1(O;θ∗,Λ∗
s)h1 − (θ − θ0)T ∫

VS

0
∇θρ2(t,O;θ∗,Λ∗

s)Th1dΛ∗
s(t)

+∫
Vs

0
ρ4(t,O;θ∗,Λ∗

s)Th1d(Λs −Λs0)(t)

+∫
Vs

0
∫

t

0
ρ5(u,O;θ∗,Λ∗

s)Td(Λs −Λs0)(u)h1dΛ∗
s(t)
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−∫
Vs

0
ρ2(t,O;θ∗,Λ∗

s)Th1d(Λs −Λs0)(t)

− (θ − θ0)T ∫
VS

0
∇θρ3(t,O;θ∗,Λ∗

s)h2(t)dΛ∗
s(t)

+∫
Vs

0
∫

t

0
ρ6(u,O;θ∗,Λ∗

s)Td(Λs −Λs0)(u)h2(t)dΛ∗
s(t)

−∫
Vs

0
ρ3(t,O;θ∗,Λ∗

s)Th2(t)d(Λs −Λs0)(t)

= (θ − θ0)T{∇θρ1(O;θ∗,Λ∗
s) − ∫

VS

0
∇θρ2(t,O;θ∗,Λ∗

s)TdΛ∗
s(t)}h1

+ hT1 {∫
τ

0
I(t ≤ Vs)[ρ4(t,O;θ∗,Λ∗

s) − ρ2(t,O;θ∗,Λ∗
s)

+ ρ5(t,O;θ∗,Λ∗
s)∫

Vs

t
dΛ∗

s(u)]d(Λs −Λs0)(t)}

− (θ − θ0)T ∫
τ

0
I(t ≤ Vs)∇θρ3(t,O;θ∗,Λ∗

s)h2(t)dΛ∗
s(t)

−∫
τ

0
{ − I(t ≤ Vs)ρ6(t,O;θ∗,Λ∗

s)∫
Vs

t
h2(u)dΛ∗

s(u)

+ I(t ≤ Vs)ρ3(t,O;θ∗,Λ∗
s)h2(t)}d(Λs −Λs0)(t). (4.39)

Then, we have

∇Uξ0(θ − θ0,Λs −Λs0)[h1, h2]

= (θ − θ0)T P{∇θρ1(O;θ0,Λs0) − ∫
VS

0
∇θρ2(t,O;θ0,Λs0)dΛs0(t)}h1

+ hT1 {∫
τ

0
P [I(t ≤ Vs)(ρ4(t,O;θ0,Λs0) − ρ2(t,O;θ0,Λs0)

+ ρ5(t,O;θ0,Λs0)∫
Vs

t
dΛs0(u))]d(Λs −Λs0)(t)}

− (θ − θ0)T ∫
τ

0
P{I(t ≤ Vs)∇θρ3(t,O;θ0,Λs0)}h2(t)dΛs0(t)

−∫
τ

0
P{ − I(t ≤ Vs)ρ6(t,O;θ0,Λs0)∫

Vs

t
h2(u)dΛs0(u)

+ I(t ≤ Vs)ρ3(t,O;θ0,Λs0)h2(t)}d(Λs −Λs0)(t).
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By the similar algebra done in (4.38), we can verify that, for j = 1, . . . ,6,

sup
t∈[0,τ]

∣∣ρj(t,O;θ∗,Λ∗
s) − ρj(t,O;θ0,Λs0)∣∣ ≤ eq3+q4∣∣Y ∣∣{∣∣θ∗ − θ0∣∣ + sup

t∈[0,τ]

∣Λ∗
s −Λs0∣},

which implies that the linear operator ∇Uξ0 is bounded.

Then, we obtain

P [lθ(θ,Λs)Th1 + lΛs(θ,Λs)[h2] − lθ(θ0,Λs0)Th1 − lΛs(θ0,Λs0)[h2]]

= ∇Uξ0(θ − θ0,Λs −Λs0)[h1, h2] + o(∣∣θ − θ0∣∣ + sup
t∈[0,τ]

∣Λs −Λs0∣)(∣∣h1∣∣ + ∣∣h2∣∣V ).

Therefore, Uξ is Fréchet differentiable at ξ0.

Additionally, from (4.39) and the above expression, we have

∇Uξ0(θ − θ0,Λs −Λs0)[h1, h2] = (θ − θ0)TΩ1[h1, h2] + ∫
τ

0
Ω2[h1, h2]d(Λs −Λs0)(t),

where

Ω1[h1, h2] = P{∇θρ1(O;θ0,Λs0) − ∫
VS

0
∇θρ2(t,O;θ0,Λs0)dΛs0(t)}h1

−∫
τ

0
P{I(t ≤ Vs)∇θρ3(t,O;θ0,Λs0)}h2(t)dΛs0(t)

and

Ω2[h1, h2]

= hT1 P{I(t ≤ Vs)[ρ4(t,O;θ0,Λs0) − ρ2(t,O;θ0,Λs0) + ρ5(u,O;θ0,Λs0)∫
Vs

t
dΛs0(u)]}

+P{I(t ≤ Vs)ρ6(t,O;θ0,Λs0)∫
Vs

t
h2(u)dΛs0(u)}

−P{I(t ≤ Vs)ρ3(t,O;θ0,Λs0)}h2(t).

164



Thus, Ω = (Ω1,Ω2) is the bounded linear operator from Rd × BV [0, τ] to itself. Fur-

thermore, we note that Ω =H + (M 1,M 2), where

H(h1, h2) = (h1,−P{I(t ≤ Vs)ρ3(t,O;θ0,Λs0)}h2(t)),

M 1(h1, h2) = Ω1[h1, h2] − h1,

M 2(h1, h2) = hT1 P{I(t ≤ Vs)[∇θρ4(t,O;θ0,Λs0) − ρ2(t,O;θ0,Λs0)

+ρ5(t,O;θ0,Λs0)∫
Vs

t
dΛs0(u)]}

+P{I(t ≤ Vs)ρ6(t,O;θ0,Λs0)∫
Vs

t
h2(u)dΛs0(u)},

and also note that H is obviously invertible. Since M 1 maps into a finite-dimensional

space, it is compact. The image of M 2 is a continuously differentiable function in

[0, τ]. By the Arzela-Ascoli theorem (p41) in van der Vaart and Wellner (1996), M 2 is

a compact operator from Rd ×BV [0, τ] to BV [0, τ]. Thus, we conclude that Ω is the

summation of an invertible operator H and a compact operator M = (M 1,M 2).

4.5 Simulation Studies

In this section, we present the results from our simulation studies. First, to assess

finite sample properties of the proposed maximum likelihood estimators, two sets of

simulations with different generalized linear mixed models for the longitudinal outcomes

are performed. Continuous and binary data are considered for longitudinal process in

the simulations in Sections 4.5.1 and 4.5.2, respectively. Then, we conduct simulation

studies for robustness of the assumed mixture distribution in Section 4.5.3. Selection

procedures for the number of mixtures by AIC and BIC criteria are assessed through

simulation studies in Section 4.5.4.
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4.5.1 Continuous longitudinal outcomes and survival time

In this section, we assume Yij follows a Gaussian distribution given a subject-specific

random intercept. Specifically we have

Yij =X ijβ + bi + εij = β1X1i + β2X2i + β3X3ij + bi + εij,

for j = 1, . . . , ni, where εij ∼ N(0, σ2
y), and

h(t∣bi) = λ(t) exp{ψbi +Zi(t)γ} = λ(t) exp{ψbi + γ1Z1i + γ2Z2i},

where bi ∼ ∑K
k=1wkN(µk, σ2

b), K is the number of mixture components, and K = 2 and

K = 3 are simulated. X1i ≡ Z1i are simulated from a Bernoulli distribution with success

probability being 0.5, andX2i ≡ Z2i are simulated from the uniform distribution between

0 and 1. The longitudinal data are generated for every 0.1 unit of time, and thus X3ij,

the time at measurement, has the value of every 0.1 unit ranging over 0 through 2.4.

We consider ψ = −0.1 indicating negative dependency between longitudinal process

and survival time model. The parameters in the longitudinal and hazard models are

chosen as β1 = 1, β2 = −0.5, β3 = −0.2, σ2
y = 0.5, ψ = −0.1, γ1 = −0.1, γ2 = 0.1, and

λ(t) = 1. The parameters in the mixture distribution for random effects are µ1 = −1.5,

µ2 = 1.5, and w1 = 0.4 for K = 2 and µ1 = −3, µ2 = 0, µ3 = 3, w1 = 0.4, and w2 = 0.3

for K = 3. The weight of the last mixture component (w2 and w3 for K = 2 and K = 3

respectively) is determined from the restriction ∑K
k=1wk = 1. The variance of random

effects σ2
b is chosen as 0.3. Censoring time is generated from the uniform distribution

between 0.4 and 2.4, and the censoring proportion is around 25∼35%. We consider

different sample sizes (n=400, 800) with 1000 replications. The average number of

longitudinal observations (ni) is 7–8 with the range of 1 to 24. For the estimated baseline

cumulative hazard function, we consider three fixed time points of 0.9, 1.4, and 1.9.
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The results of the maximum likelihood estimates for θ = (βT , σ2
y ,µ

T ,wT , σ2
b , ψ,γ

T )T

and baseline cumulative hazards at the three time points and their respective standard

error estimates are reported in Table 4.1. In Table 4.1, “True” gives the true values of

parameters; the averages of the maximum likelihood estimates from the EM algorithm

are in “Est.”; the sample standard deviations from 1000 simulations are reported in

“SSD”; “ESE” is the average of 1000 standard error estimates based on the observed

information matrix; “CP” is the coverage proportion of 95% confidence intervals based

on the estimated standard error “ESE”. Satterthwaite method is used for the coverage

probabilities of σ2
y and σ2

b .

From Table 4.1, we can see that even for the smaller sample size (n=400), the

bias of the estimates from EM algorithm is negligible for most cases. The estimated

standard errors calculated from the observed information matrix are close to the sample

standard deviations from the 1000 estimates, and the 95% confidence interval coverage

rates are close to 0.95 except for weights of the mixture components. The coverage

rates of weights are improved for larger sample size in both 2 and 3 mixtures. The

estimates for the parameters in the longitudinal and hazards models (β, σ2
y, ψ, γ and

Λ(t)) perform well for different mixtures.

4.5.2 Binary longitudinal outcomes and survival time

In this section, we assume that Yij is a binary outcome following

P (Yij = yij ∣bi) = exp{yijηij − log(1 + exp{ηij})}, yij = 0, 1,

with ηij =X ijβ + bi = β1X1i + β2X2i + β3X3ij + bi for j = 1, . . . , ni, and we consider the

same hazards model and simulation setting as those used in Section 4.5.1 except the

followings. The parameters in the mixture distribution for random effects are µ1 = −3,
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Table 4.1: Summary of simulation results of maximum likelihood estimation using
mixtures of Gaussian distributions for random effects in the joint modeling of continuous
longitudinal outcomes and survival time.

n=400 n=800

Mixture Par. True Est. SSD ESE CP Est. SSD ESE CP

2 β1 1.0 .983 .066 .068 .958 .985 .047 .048 .947
β2 - .5 - .529 .107 .119 .969 - .540 .079 .084 .947
β3 - .2 - .203 .033 .033 .955 - .203 .024 .024 .952
σ2
y .5 .500 .014 .014 .954 .500 .010 .010 .948
µ1 -1.5 -1.478 .081 .088 .962 -1.469 .060 .062 .938
µ2 1.5 1.524 .075 .082 .966 1.530 .055 .058 .940
w1 .4 .400 .025 .033 .991 .401 .018 .023 .981
σ2
b .3 .296 .029 .029 .955 .298 .020 .020 .958
ψ - .1 - .102 .040 .039 .950 - .100 .028 .028 .946
γ1 - .1 - .101 .123 .121 .945 - .105 .085 .085 .952
γ2 .1 .102 .209 .210 .954 .096 .144 .147 .950
Λ( .9) .9 .911 .130 .128 .950 .909 .087 .090 .955
Λ(1.4) 1.4 1.421 .206 .202 .942 1.415 .139 .141 .952
Λ(1.9) 1.9 1.939 .304 .295 .953 1.924 .205 .205 .950

3 β1 1.0 .983 .070 .071 .947 .984 .049 .050 .956
β2 - .5 - .543 .116 .123 .952 - .543 .085 .087 .922
β3 - .2 - .203 .034 .034 .949 - .204 .024 .024 .960
σ2
y .5 .500 .014 .014 .957 .500 .010 .010 .950
µ1 -3.0 -2.970 .084 .090 .954 -2.968 .064 .063 .909
µ2 .0 .028 .093 .097 .954 .032 .069 .068 .933
µ3 3.0 3.030 .089 .094 .954 3.034 .063 .066 .925
w1 .4 .400 .025 .033 .992 .400 .018 .023 .983
w2 .3 .299 .024 .029 .980 .300 .017 .020 .977
σ2
b .3 .295 .029 .029 .956 .298 .021 .021 .946
ψ - .1 - .101 .024 .024 .956 - .101 .017 .017 .941
γ1 - .1 - .091 .112 .119 .963 - .096 .085 .084 .950
γ2 .1 .088 .215 .207 .946 .114 .146 .146 .944
Λ( .9) .9 .913 .125 .127 .948 .897 .088 .088 .951
Λ(1.4) 1.4 1.417 .202 .200 .949 1.402 .141 .140 .949
Λ(1.9) 1.9 1.928 .297 .292 .946 1.908 .206 .204 .948
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µ2 = 3, and w1 = 0.4 for K = 2 and µ1 = −6, µ2 = 0, µ3 = 6, w1 = 0.4, and w2 = 0.3

for K = 3. The binary longitudinal data are generated for every 0.1 and 0.05 units of

time for the mixture of 2 and 3 normal distributions, respectively, and X3ij, the time at

measurement, has the values of every 0.1 and 0.05 units corresponding to the mixture

distributions ranging over 0 through 2.4. Thus, the average numbers of longitudinal

observations (ni) are 7–8 with the range of 1 to 24 and 15–16 with the range of 1 to 48

for the mixture of 2 and 3 distributions, respectively.

The results of the maximum likelihood estimates for θ = (βT ,µT ,wT , σ2
b , ψ,γ

T )T

and baseline cumulative hazards at the given three time points and their respective

standard error estimates are reported in Table 4.2. Similar to the results for the con-

tinuous longitudinal outcomes, Table 4.2 shows that overall the estimates perform well

even for the smaller sample size n = 400 with small biases. The parameters of inter-

est in longitudinal and hazards models have the estimated standard errors which are

close to the sample standard deviations. Meanwhile, the estimated standard errors of

the parameters of mixture components which are means of random effects and weights

appear to be overestimated being larger than their sample standard deviations, which

leads to the wide confidence interval.

4.5.3 Sensitivity for model-misspecification

In this section, we conduct simulation studies to examine the sensitivity of the assumed

mixture distribution. We consider continuous longitudinal outcomes and survival time

with the same setting used in Section 4.5.1 except for the true distribution of random

effects. Random effects are generated from a mixture of a t-distribution with 10 degrees

of freedom and non-centrality of -1 and a Gamma distribution with shape and scale

parameters of 7 and 1/8 respectively. We assume equal probability for the two distri-

butions. We fit 5 sets of simultaneous models assuming different mixtures for random
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Table 4.2: Summary of simulation results of maximum likelihood estimation using
mixtures of Gaussian distributions for random effects in the joint modeling of binary
longitudinal outcomes and survival time.

n=400 n=800

Mixture Par. True Est. SSD ESE CP Est. SSD ESE CP

2 β1 1.0 1.029 .193 .201 .960 1.015 .143 .141 .942
β2 - .5 - .508 .292 .323 .966 - .495 .205 .227 .965
β3 - .2 - .200 .166 .180 .966 - .203 .116 .127 .968
µ1 -3.0 -3.046 .241 .275 .968 -3.034 .164 .193 .970
µ2 3.0 3.016 .211 .253 .976 3.011 .142 .177 .984
w1 .4 .401 .025 .033 .993 .400 .017 .023 .991
σ2
b .3 .329 .133 .195 .940 .332 .092 .136 .956
ψ - .1 - .099 .021 .021 .949 - .099 .015 .015 .955
γ1 - .1 - .103 .121 .122 .959 - .098 .087 .086 .947
γ2 .1 .091 .210 .211 .944 .104 .142 .149 .958
Λ( .9) .9 .910 .131 .130 .955 .900 .088 .091 .956
Λ(1.4) 1.4 1.421 .209 .206 .934 1.402 .142 .143 .956
Λ(1.9) 1.9 1.932 .310 .299 .941 1.899 .205 .207 .948

3 β1 1.0 .988 .167 .171 .953 .993 .123 .121 .947
β2 - .5 - .519 .268 .287 .960 - .516 .189 .203 .967
β3 - .2 - .208 .126 .128 .957 - .206 .091 .091 .951
µ1 -6.0 -5.844 .353 .483 .967 -5.872 .260 .342 .963
µ2 .0 .023 .172 .194 .970 .018 .127 .138 .966
µ3 6.0 6.024 .397 .504 .984 6.006 .303 .349 .971
w1 .4 .402 .025 .035 .995 .402 .018 .024 .989
w2 .3 .298 .025 .034 .986 .298 .017 .024 .985
σ2
b .3 .277 .095 .100 .977 .289 .070 .072 .966
ψ - .1 - .102 .014 .015 .955 - .101 .011 .010 .946
γ1 - .1 - .103 .121 .120 .955 - .107 .085 .084 .948
γ2 .1 .104 .201 .208 .961 .099 .147 .146 .949
Λ( .9) .9 .909 .128 .130 .950 .911 .094 .092 .930
Λ(1.4) 1.4 1.421 .202 .207 .960 1.420 .147 .146 .946
Λ(1.9) 1.9 1.926 .297 .302 .958 1.929 .220 .213 .946

170



effects which are 1 normal distribution without mixture and the mixtures of 2, 3, 4 and

5 normal distributions, and we compare the results for the parameters of interest in lon-

gitudinal and hazards models and the estimated density plots of random effects. Table

4.3 shows the results of longitudinal and hazards models from assuming the 5 different

models for random effects. We can see that bias gets smaller and coverage rates become

closer to the 95% nominal level as the number of mixtures increases. From the table,

we also find that more mixture produces estimates more close to the true values in the

longitudinal model while estimates in hazards model are less sensitive to the number of

distributions in mixture. In other words, when the true distribution of random effects

is not a Gaussian distribution, the use of mixture is effective in longitudinal model but

the inference on hazards model is reasonable regardless of mixture. Figure 4.1 shows

the true and estimated density plots of random effects. From these density plots, all

the mixture models of 2, 3, 4 and 5 normal distributions produces similar shapes to

the true distribution while one normal distribution does not. The mixture of 5 normal

distribution appears to be close to the true density. Figure 4.2 shows the relative bias

plot of the parameters in longitudinal and hazard models which are denoted with thin

and thick lines respectively. The relative biases are calculated from the median absolute

biases divided by their absolute true values. This Figure 4.2 confirms what we observe

in Table 4.3.

4.5.4 Selection of the number of mixture distributions

We adopt Akaike Information Criterion (AIC) and Bayesian information criterion (BIC)

for selection of the number of normal distribution in mixture and assess these selection

procedures through simulation studies in this section. AIC gives a penalty to a model

with more parameters and BIC gives a penalty to a model with more parameters and

larger sample size. Given a data set, competing models are ranked according to their
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Figure 4.2: Relative bias plot of parameters in longitudinal and hazard models (thin and
thick lines respectively) from simulation results of sensitivity for model-misspecification
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Table 4.4: Summary of simulation results: Frequencies on the selected number of
Normal distributions in mixture (n=200)

Selected # of Normal distributions in mixture
Criteria 1 2 3 4 5

AIC 0 0 969 21 10
BIC 0 0 990 5 5

AIC (or BIC), with the one having the lowest AIC (or BIC) being the best. Continuous

longitudinal outcomes and survival time are considered with the same setting used in

Section 4.5.1. Random effects are generated from a mixture of 3 normal distributions.

We fit 5 sets of simultaneous models with different mixtures for random effects which

are 1 normal distribution without mixture and the mixtures of 2, 3, 4 and 5 normal

distributions. AIC and BIC values are calculated for all 5 fitted mixture models in each

data set and we report frequencies of mixture models selected as best by AIC and BIC

among 1000 data sets. We consider sample sizes of 200 and 800.

In Table 4.4, we summarize the results for the sample size of 200. We see that both

AIC and BIC mostly select the true distribution of a mixture of 3 normal distributions

as best. For the large sample size of 800, the mixture of 3 normal distributions is

selected by both AIC and BIC for all 1000 simulated data sets. This demonstrates

that the number of mixture distributions is properly selected by AIC and BIC even for

small sample sizes.

4.6 Analysis of the CHANCE Study

The Carolina Head and Neck Cancer Study (CHANCE) is a population based epi-

demiologic study conducted at 60 hospitals in 46 counties in North Carolina from 2002

through 2006 (Divaris et al. 2010). Patients were diagnosed with head and neck cancer

(oral, pharynx, and larynx cancer) from 2002–2006. Their survival status was collected
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up to 2007 and QoL was evaluated over time for three years after diagnosis. QoL

information was collected through questionnaires. Based on summary scores of the

five domains of self-perceived quality of life including Physical Well-Being (PWB), So-

cial/Family Well-Being (SWB), Emotional Well-Being (EWB), Functional Well-Being

(FWB) and Head and Neck Cancer Specific symptoms (HNCS), patient’s QoL informa-

tion was classified into satisfaction or dissatisfaction with life. Survival time is defined

as the time to death from diagnosis. Demographic and life style characteristics, medical

histories and clinical factors are also collected. Ending in December 2009 and excluding

the patients with missing data, information on QoL has been obtained from 554 head

and neck cancer patients. Based on the death information through 2007 available from

the National Death Index (NDI), 85 of 554 patients died and the censoring rate is 85%.

The number of observations per patient ranges 1 to 3 with average of 1.93. It is of

interest to elucidate the variables which are associated with both QoL satisfaction and

survival time for patients with head and neck cancer. In particular, we are interested in

the comparison between African-Americans and Whites since it is known that African-

Americans have a higher incidence of head and neck cancer and worse survival than

Whites. The longitudinal QoL satisfaction outcomes and survival time are correlated

within a patient, and this dependency should be taken into account in the analysis.

We apply our proposed method to Head and Neck Cancer Specific symptoms (HNCS)

among QoL domains with survival time. Longitudinal HNCS QoL outcomes are binary

measurements with 1 (“satisfied”) and 0 (“dissatisfied”). We are interested in inves-

tigating which factors are related to QoL satisfaction and the risk of death. In the

full models for both longitudinal QoL and survival time, we consider race (African-

Americans, Whites), the number of 12 oz. beers consumed per week (None, <1, 1–

4, 5–14, 15–29, ≥ 30), household income (0–10K, 20–30K, 40–50K, ≤ 60K), surgery

(Yes/No), radiation therapy (Yes/No), chemotherapy (Yes/No), primary tumor site
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(Oral & Pharyngeal, Laryngeal) and tumor stage (I, II, III, IV) as categorical, and age

at diagnosis (range: 24–80), the number of persons supported by household income

(range: 1–5), body mass index (BMI) (range: 15.66–56.28) and the total number of

medical conditions reported (range: 0–6) as continuous. Additionally, 2 interactions

with race, i.e. race × the total number of medical conditions reported and race × tumor

site, are included in both models since we are particularly interested in the difference of

QoL and survival between African American and White. Time at survey measurement

is also included as a covariate for longitudinal outcomes. A random intercept for the

dependence between the QoL satisfaction and the risk of death is included in both

models, and assumed to follow a mixture of normal distributions.

For the full model, we first considered 5 different distributions for random effects

which are 1 normal distribution without mixture and the mixtures of 2, 3, 4 and 5

normal distributions, and both AIC and BIC selected a mixture of 3 normal distribu-

tions with their lowest values as best. Then, we conducted backward variable selection

based on the Likelihood Ratio Test (LRT) from the full model assuming the mixture

of 3 normal distributions for random effects. Table 4.5 gives the results from the final

models after removing non-significant covariates by LRT. From the “Simultaneous”

columns, we see the number of 12 oz. beers consumed per week, household income and

tumor stage are significantly associated with both patients’ HNCS QoL satisfaction and

hazard of death. Using 30 or more of 12 oz. beers consumed per week as the reference

group, all categories of the smaller amount are associated with higher odds of being

satisfied while the categories of ‘none’ and ‘5 to 14’ of 12 oz. beers consumed per week

are associated with lower risk of death. Higher household income is generally associated

with higher odds of being satisfied and lower risk of death. Both patients’ HNCS QoL

satisfaction and risk of death are significantly different for patients in different tumor

stages. On the other hand, race (African-American), radiation therapy, the number of
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Table 4.5: Results from final models of simultaneous and separate analyses for the
Quality of Life and survival time for the CHANCE study

Simultaneous Separate
Parameter Est. ESE P-value Est. ESE P-value

HNCS QoL longitudinal model
Intercept β0 1.190 .390 .002
Race (ref= White): African American β1 .900 .399 .024 .511 .256 .047
# of 12 oz. beers consumed per week (ref=30 or more)
– None β2 .858 .428 .045 .622 .300 .038
– less than 1 β3 1.119 .600 .062 .735 .396 .064
– 1 to 4 β4 1.588 .563 .005 1.268 .326 <.001
– 5 to 14 β5 1.450 .428 .001 1.018 .279 <.001
– 15 to 29 β6 1.007 .531 .058 .547 .327 .095
Household income (ref= level1: 0–10K)
– level2: 20–30K β7 - .337 .358 .346 - .328 .258 .204
– level3: 40–50K β8 .633 .440 .151 .250 .282 .376
– level4: ≥ 60K β9 1.960 .509 <.001 1.045 .286 <.001
Radiation therapy (ref= No) : Yes β10 -1.668 .608 .006 -1.048 .280 <.001
Tumor stage (ref= I)
– II β11 - .683 .554 .218 - .352 .330 .286
– III β12 -2.012 .534 <.001 -1.198 .314 <.001
– IV β13 -1.826 .507 <.001 -1.057 .277 <.001
# of persons supported by household income β14 - .388 .140 .006
BMI β15 .061 .026 .021
Time at survey measurement (years) β16 .354 .093 <.001 .254 .067 <.001

Hazards model
Random effect coefficient ψ - .206 .078 .008
# of 12 oz. beers consumed per week (ref=30 or more)
– None γ1 - .705 .347 .042
– less than 1 γ2 - .156 .393 .692
– 1 to 4 γ3 - .712 .385 .064
– 5 to 14 γ4 - .991 .348 .004
– 15 to 29 γ5 - .579 .370 .117
Household income (ref= level1: 0–10K)
– level2: 20–30K γ6 - .206 .274 .453 - .219 .263 .406
– level3: 40–50K γ7 - .884 .341 .010 - .928 .331 .005
– level4: ≥ 60K γ8 -1.401 .374 <.001 -1.393 .358 <.001
Tumor stage (ref= I)
– II γ9 - .255 .443 .564 - .295 .435 .498
– III γ10 .168 .403 .677 .136 .389 .727
– IV γ11 .950 .306 .002 .914 .295 .002
Total # of medical conditions reported γ12 .207 .095 .030 .205 .091 .025

P-value for testing σ2
b being zero is based on a mixture of 0 and χ2 distribution with 1 degree of freedom with equal mixing

probabilities.

178



persons supported by household income and BMI are selected only in the HNCS QoL

longitudinal model while the number of medical conditions reported is significant only

in the hazard model. The results indicate that African-Americans, patients not treated

with radiation therapy, patients in the family with the smaller number of persons sup-

ported by household income, or patients with higher BMI are associated with higher

odds of being satisfied, but the risk of death is not affected by these factors. On the

other hand, higher number of reported medical conditions is associated with higher risk

of death, but it is not associated with HNCS QoL satisfaction. Furthermore, time at

survey measurement is statistically significant in the HNCS QoL longitudinal model

implying that patients have higher odds to be satisfied over time. The parameter ψ

for the dependence between longitudinal HNCS QoL and survival time is negative and

is statistically significant with p-value as 0.008. This means the longitudinal HNCS

QoL and survival time are correlated and some latent factors which increase HNCS

QoL satisfaction also decrease the risk of death. Although not provided in Table 4.5,

we have additional parameters of the mixture distribution for random effects in the

simultaneous modeling. The obtained estimates of three means of random effects are

−3.146, 0.376, and 1.730 with estimated standard errors of 1.284, 2.897 and 0.986 and

p-values of 0.014, 0.897 and 0.079, respectively. The first and second mixture compo-

nents have the weight estimates of 0.147 and 0.105 with estimated standard errors of

0.062 and 0.051 and p-values of 0.018 and 0.037, respectively, and the common vari-

ance estimate of random effects is 0.637 with its estimated standard error of 1.286 and

p-value of 0.483. In particular, the two weights of mixture components are significant

at significant level 0.05, which strengthens the mixture of 3 normal distributions with

the estimated 3 means of random effects.

For the purpose of comparison, we also conducted separate analyses for longitudinal

HNCS QoL and survival time whose results are given in the last three columns of Table
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4.5. Comparing the results from the simultaneous and separate analyses in Table 4.5,

we can see our simultaneous analysis identifies two additional factors (the number of

persons supported by household income and BMI) in the HNCS QoL longitudinal model

and one additional factor (the number of 12 oz. beers consumed per week) in the hazard

model.

Figure 4.3 shows the estimated baseline cumulative hazard rates over follow-up

time with 95% confidence interval. The estimated baseline cumulative hazard rates

look flat at the very early time within a year, but soon appear to be linearly increasing.

Figure 4.4 shows the predicted conditional longitudinal trend of HNCS QoL satisfaction

probabilities based on the simultaneous models (solid line) and the empirical longitudi-

nal trend of HNCS QoL satisfaction probabilities (dotted line) based on the empirical

longitudinal HNCS QoL satisfaction probabilities (dots). The predicted conditional

probability of HNCS QoL satisfaction is calculated as the conditional expectation of

the conditional probability of HNCS QoL satisfaction given the subject is alive at time

t. That is, Eb,α [P(Y (t) = 1∣T > t) ∣ θ̂, Λ̂] using model notations in Section 4.2. The

empirical probability of HNCS QoL satisfaction is calculated for every 0.05 unit of time

at survey measurements. From Figure 4.4, the longitudinal trend of HNCS QoL satis-

faction probabilities appears to be increasing over time and the empirical probabilities

also gradually increase over time.

4.7 Concluding Remarks

We have relaxed normality assumption of random effects in the simultaneous modeling

of longitudinal outcomes and survival time. Assuming the underlying distribution of

random effects to be unknown, we used a mixture of Gaussian distributions as an ap-

proximation for the random effect distribution. We developed a maximum likelihood

estimation method for the proposed simultaneous models and presented asymptotic
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Figure 4.3: Estimated baseline cumulative hazards (solid line) with 95% confidence
interval (dotted lines) by the simultaneous analysis of HNCS QoL longitudinal outcome
and survival time
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Figure 4.4: The predicted conditional longitudinal trend based on the simultaneous
models (solid line) and the empirical longitudinal trend (dotted line) based on the
empirical longitudinal HNCS QoL satisfaction probabilities (dots)
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properties of the proposed estimators. The proposed estimation procedure using EM

algorithm has been assessed via simulation studies for both continuous and binary lon-

gitudinal data with survival time. The proposed estimates performed well in finite

samples. The variance estimates based on the observed information matrix approxi-

mate the true variance well in finite samples. Simulation studies indicated that, when

the true distribution of random effects is not normal, mixture distributions yield less

biased estimates than no mixture and all the estimated density plots of random effects

based on mixture distributions appear to have similar shapes to the true distribution.

Furthermore, simulation studies also showed that the number of mixture distributions

is properly selected by AIC and BIC. The proposed method was applied to data from

the CHANCE study.

Our proposed method is an effort to relax the assumption that the random effects

come from a normal distribution which is often made for computational reasons. This

normality assumption is difficult to check because random effects are latent and never

observed. Furthermore, if this assumption fails to hold, the estimates of the parameters

in the generalized linear mixed model and the hazards model are biased. In this paper,

the mixture of normal distributions has been shown to be a good approximation for

the random effects in the simultaneous modeling when the underlying distribution of

random effects is unknown. The advantage of this approach is that many continuous

distributions can be well approximated by a finite normal mixture which implies that

our proposed method will generally perform well. When sample size and the number

of observations per subject are too large, computation may be intensive due to the

integration of complete data likelihood over random effects. It will be of interest to

develop a more computationally efficient approach. One possibility is to consider a

penalized likelihood approach by the Laplace approximation which is currently under

investigation by us.
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Chapter 5

PENALIZED LIKELIHOOD APPROACH

FOR JOINT ANALYSIS OF SURVIVAL

TIME AND LONGITUDINAL

OUTCOMES

5.1 Introduction

In biomedical or public health research, it is common that both longitudinal outcomes

over time and survival endpoint are collected for the same subject along with the sub-

ject’s characteristics or risk factors. Investigators are interested in finding important

variables which predict both longitudinal outcomes and survival time. Among the ex-

isting approaches for longitudinal data and survival time, the selection model and the

pattern mixture model have been widely used. The selection model estimating the dis-

tribution of survival time given longitudinal data was studied by numerous authors, for

example, Tsiatis, Degruttola, and Wulfsohn (1995), Tsiatis and Davidian (2001), Xu

and Zeger (2001a,b) and Tseng, Hsieh and Wang (2005). The pattern mixture model

focuses on the trend of longitudinal outcomes conditional on survival time and was stud-

ied by Wu and Carroll (1988), Hogan and Laird (1997), Albert and Follmann (2000,

2007) and Ding and Wang (2008) among others. On the other hand, simultaneous



modeling of the longitudinal and survival data was proposed by Xu and Zeger (2001b),

Zeng and Cai (2005), Elashfoff, Li and Ni (2007, 2008) and Rizopoulos, Verbeke, Lesaf-

fre and Vanrenterghem (2008). Wang and Taylor (2001), Brown and Ibrahim (2003)

and Hu, Li and Li (2009) studied simultaneous modeling in the Bayesian perspective.

In the joint models, random effects are incorporated to accommodate the latent

dependence between survival time and longitudinal outcomes, and often assumed to

be normally distributed so that we can integrate a complete data likelihood over ran-

dom effects to obtain a full likelihood. The maximum likelihood approach using an

Expectation-Maximization algorithm provides the estimators which are asymptotically

consistent and follows an asymptotic Gaussian process. However, the EM algorithm

may be intensive on computation with large sample sizes and large numbers of longi-

tudinal observations per subject. In the view of the cumbersome and often intractable

numerical integrations required for a full likelihood, one possible alternative can be the

penalized likelihood approach which gives a penalty for regarding random effects as

fixed effects in the likelihood obtained by Laplace approximation. In generalized linear

mixed models (GLMM), the penalized quasi-likelihood (PQL) approach is the most

common estimation procedure. The PQL was proposed as an approximate Bayes pro-

cedure for some commonly occurring GLMM’s by Laird (1978) and the PQL method

exploited by Green (1987) for semiparametric regression analysis is available for infer-

ence in hierarchical models where the focus is on shrinkage estimation of the random

effects (Robinson, 1991). Breslow and Clayton (1993) proposed to use the PQL with

some modifications to a Laplace expansion for a GLMM in order to motivate stan-

dard estimating equations that may be solved by iterative application of normal theory

procedures. Breslow and Lin (1995) and Lin and Brelsow (1996) derived the general ex-

pressions for the asymptotic biases in approximate estimators of regression coefficients

and variance component in the GLMMs with a single source of extraneous variation
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and multiple components of dispersion, respectively. The PQL also has been studied

in a wide variety of GLMMs by Bartlett and Sutradhar (1999), Huber and Victoria-

Feser (2004), Localio, Berlin and Ten Have (2006), Nelson and Leroux (2008), Dang,

Mazumdar and Houck (2008), Jang and Lim (2009), and Masaoud and Stryhn (2010).

Furthermore, the PQL is already built in SAS GLIMMIX procedure and used for the

analysis of the GLMM. On the other hand, Ripatti and Palmgren (2000) proposed a

penalized partial likelihood for multivariate frailty models in survival analysis. In joint

modeling framework, Ye, Lin and Taylor (2008) proposed a penalized joint likelihood

for a selection model and considered a continuous longitudinal process to be included as

a covariate for survival time. Their penalized joint likelihood is obtained by replacing

the full survival likelihood with a partial likelihood in the Laplace approximation to

the full joint likelihood function, which is not equal to the actual form derived from

the full joint likelihood function. On the other hand, there is no work done on the

penalized likelihood approach for the simultaneous modeling of longitudinal outcomes

and survival time. Furthermore, the previous study using the penalized likelihood in

joint analysis (Ye, Lin and Taylor, 2008) considered continuous longitudinal data from

a normal distribution.

In this paper, we propose to use a penalized likelihood to develop a more efficient es-

timation procedure on computation for simultaneous modeling than the EM algorithm

of the maximum likelihood approach. We consider a generalized linear mixed model

for longitudinal outcomes to incorporate both categorical and continuous data and a

stratified Cox proportional hazards model for survival time. In this estimation proce-

dure, all the parameters are estimated together at the same time. If the EM algorithm

of maximum likelihood approach performs similarly to the penalized likelihood method

on computational time. it will be better to use the full likelihood. In the meantime, if

the penalized likelihood method takes less time and provides unbiased and consistent
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estimates similar to those from EM algorithm, the penalized likelihood method will be

preferred.

The organization of this paper is as follows. We present a simultaneous modeling for

longitudinal outcomes and survival time with random effects in Section 5.2 and describe

the proposed estimation procedure in Section 5.3. Numerical results from simulation

studies are given in Section 5.4, and our proposed method is illustrated with the data

from the Carolina Head and Neck Cancer Study (CHANCE) in Section 5.5. In Section

5.6, we discuss some further consideration.

5.2 Model Formulation and Notation

We use Y (t) to denote the value of a longitudinal marker process at time t. Suppose

Y (t) is from a distribution belonging to exponential family in order to incorporate both

continuous and categorical measurements. Let T denote survival time, and suppose that

the survival time T is possibly right censored. Suppose a set of n subjects are followed

over an interval [0, τ], where τ is the study end time. Denote bi, i = 1, . . . , n, as a vector

of subject-specific random effects of dimension db and bi’s are mutually independent

and identically distributed from a multivariate normal with mean zero and covariance

matrix Σb.

Given the random effects bi, the observed covariates, and the observed outcome

history till time t, we assume that the longitudinal outcome Yi(t) at time t for subject

i follows a distribution from the exponential family with density,

exp{yiηi(t) −B(ηi(t))
A(Di(t;φ))

+C(yi,Di(t;φ))} (5.1)

with µi(t)=E(Yi(t)∣bi)=B′(ηi(t)) and vi(t)=Var(Yi(t)∣bi)=B′′(ηi(t))A(Di(t;φ)), sat-

isfying
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ηi(t) = g(µi(t)) =X i(t)β + X̃ i(t)bi

and vi(t) = v(µi(t))A(Di(t;φ)), where g(⋅) and v(⋅) are known link and variance func-

tions respectively, X i(t) and X̃ i(t) are the row vectors of the observed covariates for

subject i, and β is a column vector of coefficients for X i(t). The random effect bi

is allowed to differ for different individuals. Additionally, X i(t) and X̃ i(t) can be

completely different or share some components, and may include dummy variables for

different strata.

Given the random effects bi, the observed covariates, and the observed survival

history before time t, the conditional hazard rate function for the survival time Ti of

subject i is assumed to follow a stratified multiplicative hazards model,

λs(t) exp{Z̃i(t)(ψ ○ bi) +Zi(t)γ}, (5.2)

where Zi(t) and Z̃i(t) are the row vectors of the observed covariates and may share

some components, ψ is a vector of parameters of the coefficients for random effects,

λs(t) is the s-th stratum baseline hazard rate function, and γ is a column vector of

coefficients for Zi(t). Note that Zi(t) and Z̃i(t) do not include dummy variables for

strata since baseline hazard rate is stratum-specific. Here, for any vectors a1 and a2 of

the same dimension, a1 ○ a2 denotes the component-wise product. In addition, X̃ i(t)

and Z̃i(t) have the same dimensions as bi’s.

Under models (5.1) and (5.2), the two outcomes Y (t) and T are independent con-

ditional on the covariates and random effect. The parameter ψ in model (5.2) charac-

terizes the dependence between the longitudinal outcomes and the survival time due to

latent random effect: ψ = 0 means that the dependence between the survival time and

longitudinal responses are not due to these latent variables; ψ ≠ 0 means that such de-
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pendence may be due to these latent variables. In other words, ψ > 0 implies that there

may be some latent factors increasing both the longitudinal outcomes and the risk of

survival endpoint simultaneously while ψ < 0 implies that some latent factors causing

the increment of longitudinal outcomes may decrease the risk of survival endpoint.

Let ni be the number of the observed longitudinal measurements for subject i, and

assume that the distributions of ni and the observation times for longitudinal mea-

surements are independent of the parameters of interest in this joint model. The

observed data from n subjects are (ni, Yij,X ij, X̃ ij), j = 1, . . . , ni, i = 1, . . . , n, and

(Vi,∆i, Si,{(Zi(t), Z̃i(t)) ∶ t≤Vi}), i=1, . . . , n, where for subject i, (Yij,X ij, X̃ ij) is

the j-th observation of (Yi(t),X i(t), X̃ i(t)), Ci is the right-censoring time and inde-

pendent of Ti and Yi(t) given the covariates and the random effects, Vi = min(Ti,Ci),

Si denotes the stratum, and ∆i = I(Ti ≤ Ci).

Our goal is to estimate and make inferences on the parameters θ=(βT,φT,Vec(Σb)T,

ψT,γT )T and the baseline cumulative hazard functions with S strata, Λ(t)=(Λ1(t), . . . ,

ΛS(t))T , where Λs(t) = ∫
t

0 λs(u)du, s = 1, . . . , S. The parameters β and φ are from the

longitudinal model, ψ and γ are from the hazard model, and Σb is associated with the

random effects. Vec(⋅) operator creates a column vector from a matrix by stacking the

diagonal and upper-triangle elements of the matrix.

5.3 Estimation Procedure

For all n subjects, we write Y =(Y T
1 , . . . ,Y

T
n)T, Y i =(Yi1, . . . , Yini)T, V =(V1, . . . , Vn)T,

and b=(bT1 , . . . ,bTn)T. Then, the likelihood function of the complete data (Y ,V ,b) has

the form,
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Lc(θ,Λ;Y ,V ,b)

=
S

∏
s=1

n

∏
i=1

[f(Y i, Vi∣bi)f(bi)]
I(Si=s) =

n

∏
i=1

f(Y i∣bi)(
S

∏
s=1

[f(Vi∣bi)]
I(Si=s))f(bi)

=
n

∏
i=1

exp{
ni

∑
j=1

[
Yij(X ijβ + X̃ ijbi) −B(β;bi)

A(Di(tj;φ))
+C(Yij;Di(tj;φ))]}

× (
S

∏
s=1

[λs(Vi)∆i exp{∆i[W̃ i(Vi)(ψ ○ bi) +W i(Vi)γ]

−∫
Vi

0
exp{W̃ i(u)(ψ ○ bi) +W i(u)γ}dΛs(u)}]

I(Si=s)

)

× (2π)−db/2∣Σb∣−1/2 exp{ − 1

2
bTi Σ−1

b bi},

and the full likelihood function of the observed data (Y ,V ) for the parameter (θ,Λ)

is expressed as

Lf(θ,Λ;Y ,V ) = ∫b
Lc(θ,Λ;Y ,V ,b)db. (5.3)

The primary difficulty in implementing this full likelihood inference lies in the integra-

tions needed to evaluate the complete data likelihood Lc(θ,Λ;Y ,V ,b) and its partial

derivatives.

In the EM algorithm of maximum likelihood approach, the random effect bi is

considered as missing data for i = 1, . . . , n. Thus, the M-step solves the conditional

score equations from complete data log-likelihood given observations, where the condi-

tional expectation is evaluated in the E-step. The procedure involves iterating between

the two steps until convergence is achieved. In the E-step calculating the conditional

expectations of some known functions of bi needed in the next M-step, a numerical

approximation method such as the Gauss-Hermite Quadrature is required for the in-

tegration with the posterior probability of random effects. When sample size (n), the

190



number of observations per subject (ni), and the number of parameters to be estimated

are large, the task involving the integration in the E-step is very challenging. There-

fore, to make the simultaneous modeling more practical, we build the algorithm which

relieves the computational burden.

Our proposed estimation method is to calculate the maximum penalized likelihood

estimates for (θ,Λ(t)) over a set in which θ is in a bounded set and Λs(t) of Λ(t)

belongs to a space consisting of all the increasing functions with Λs(0) = 0, s = 1, . . . , S.

We let each Λs(t) of Λ(t), s = 1, . . . , S, be an increasing and right-continuous step

function with jumps only at the observed failure times belonging to stratum s. The

penalized likelihood is obtained by Laplace approximation, and the proposed approach

is expected to be less intensive in computation in the sense that it imposes the penalty

for considering the random effect as the fixed effect in the likelihood and therefore no

calculation for integrating the likelihood over random effects is needed.

5.3.1 Laplace approximation

The full likelihood (5.3) can be written as

Lf(θ,Λ;Y ,V ) = (2π)−ndb/2∣Σb∣−n/2∫b
exp{

n

∑
i=1

[li∣b(θ,Λs) −
1

2
bTi Σ−1

b bi]}db, (5.4)

where the logarithm of the conditional joint density given an unobserved random effect

bi is

li∣b(θ,Λs) =
ni

∑
j=1

[
Yij(X ijβ + X̃ ijbi) −Bij(β;bi)

A(Di(tj;φ))
+C(Yij;Di(tj;φ))]

+
S

∑
s=1

I(Si = s)[∆i log(λs(Vi)) +∆i[Z̃i(Vi)(ψ ○ bi) +Zi(Vi)γ]

−∫
Vi

0
exp{Z̃i(u)(ψ ○ bi) +Zi(u)γ}dΛs(u)]. (5.5)
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Then, we have the following form of the full log-likelihood,

lf(θ,Λ;Y ,V ) =
n

∑
i=1

[ − db
2

log(2π) − 1

2
∣Σb∣ + li∣b(θ,Λs) −

1

2
bTi Σ−1

b bi]. (5.6)

In (5.4), define

−κ(b) =
n

∑
i=1

[li∣b(θ,Λs) −
1

2
bTi Σ−1

b bi] =
n

∑
i=1

[ −κi(bi)] (5.7)

and apply Laplace’s approximation as following,

−κi(bi) ≈ −κi(b̃i) −
1

2
(b − b̃i)Tκ′′i (b̃i)(bi − b̃i),

where κ′ and κ′′ denote the db vector and db×db dimensional matrix of first- and second-

order partial derivatives of κ with respect to b and b̃ denotes the solution to κ′(b) = 0

that minimizes κ(b). Then, the full likelihood function (5.4) can be approximated as

followings,

Lf(θ,Λ;Y ,V )

= (2π)−ndb/2∣Σb∣−n/2∫b
exp{ −κ(b)}db =

n

∏
i=1

[(2π)−db/2∣Σb∣−1/2∫b
exp{ −κi(bi)}db]

≈
n

∏
i=1

[(2π)−db/2∣Σb∣−1/2∫b
exp{ −κi(b̃i) −

1

2
(bi − b̃i)Tκ′′i (b̃i)(bi − b̃i)}db]

=
n

∏
i=1

[∣Σb∣−1/2 exp{−κi(b̃i)}∣κ′′i (b̃i)∣−1/2

(2π)−db/2∣κ′′i (b̃i)∣1/2∫b
exp{− 1

2
(bi−b̃i)Tκ′′i (b̃i)(bi−b̃i)}db]

=
n

∏
i=1

[∣Σb∣−1/2 exp{−κi(b̃i)}∣κ′′i (b̃i)∣−1/2]

= ∣Σb∣−n/2 exp{
n

∑
i=1

[−κi(b̃i) −
1

2
log ∣κ′′i (b̃i)∣]}. (5.8)
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In the above (5.8), ignoring the multiplicative constant, the approximation yields

−κ(b) ≈ −1

2
log ∣κ′′(b̃)∣ −κ(b̃).

Note that, from (5.7),

κi(b̃i) = −l̃i∣b(θ,Λs) +
1

2
b̃
T

i Σ−1
b b̃i,

κ′i(b̃i) = −l̃′i∣b(θ,Λs) +Σ−1
b b̃i,

κ′′i (b̃i) = −l̃′′i∣b(θ,Λs) +Σ−1
b , (5.9)

where l̃i∣b(θ,Λs) is (5.5) evaluated at b̃i, and l̃′
i∣b
(θ,Λs) and l̃′′

i∣b
(θ,Λs) are the first and

second derivatives of (5.5) with respect to bi evaluated at b̃i. Then, the first order

Laplace approximation to the full likelihood becomes

(5.8) = exp{
n

∑
i=1

[ − 1

2
log ∣Σb∣ −κi(b̃i) −

1

2
log ∣ − l̃′′i∣b(θ,Λs) +Σ−1

b ∣]}

= exp{
n

∑
i=1

[ − 1

2
log ∣Idb −Σbl̃

′′
i∣b(θ,Λs)∣ + l̃i∣b(θΛs) −

1

2
b̃
T

i Σ−1
b b̃i]}

= exp{
n

∑
i=1

l̃fi(θ,Λs)} = exp{l̃f(θ,Λs)},

where l̃f(θ,Λs) is the first order Laplace approximation to the full log-likelihood func-

tion lf(θ,Λs) of (5.6). That is,

l̃f(θ,Λ) =
n

∑
i=1

[ − 1

2
log ∣Idb −Σbl̃

′′
i∣b(θ,Λs)∣ + (l̃i∣b(θ,Λs) −

1

2
b̃
T

i Σ−1
b b̃i)], (5.10)

where l̃′′
i∣b
(θ,Λs) = l′′i∣b(θ,Λs; b̃i) and l̃i∣b(θ,Λs) = li∣b(θ,Λs; b̃i), and the first and second

derivatives of li∣b(θ,Λs; b̃i) in (5.5) with respect to bi are
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l′i∣b(θ,Λs) =
ni

∑
j=1

[
YijX̃ ij

A(Di(tj;φ))
−

B′
ij(β;bi)

A(Di(tj;φ))
] +

S

∑
s=1

I(Si=s)[∆i(Z̃i(Vi) ○ψT )

−∫
Vi

0
exp{Z̃i(u)(ψ○bi) +Zi(u)γ}(Z̃i(u)○ψT )dΛs(u)]

and

l′′i∣b(θ,Λs) = −
ni

∑
j=1

B′′
ij(β;bi)

A(Di(tj;φ))

−
S

∑
s=1

I(Si=s)∫
Vi

0
exp{Z̃i(u)(ψ○bi)+Zi(u)γ}(Z̃

T

i (u)○ψ)⊗2dΛs(u), (5.11)

where B′
ij(β;bi) and B′′

ij(β;bi) are the first and second derivatives of Bij(β;bi) with

respect to bi.

5.3.2 Penalized likelihood

Now, we further approximate (5.11). The first term of (5.11) can be expressed as

X̃
T

i W iX̃ i, where W i is the ni ×ni diagonal matrix with wij = A(Di(tj;φ))[g′(µbij)]
−1

,

g(⋅) is a canonical link function, µbij = E (Yij ∣bi), g′(µbij) is the derivative of g(µbij) with

respect to µbij, and X̃ i = (X̃T

i1, . . . , X̃
T

ini
)T . Generalized linear model (GLM) iterative

weights W i (i.e. wij) vary slowly or not at all at the function of the mean, and hance,

by taking an expectation,

E [ −
ni

∑
j=1

B′′
ij(β;bi)

A(Di(tj;φ))
] = E [X̃T

i W iX̃ i] (5.12)

becomes a constant. In the second term of (5.11), by taking an expectation, we have

E [∫
Vi

0
exp{Z̃i(u)(ψ ○ bi) +Zi(u)γ}(Z̃

T

i (u) ○ψ)(Z̃i(u) ○ψT )dΛs(u)]
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= E [∫ (Z̃T

i (u) ○ψ)(Z̃i(u) ○ψT )I(Vi ≥ u) exp{Z̃i(u)(ψ ○ bi) +Zi(u)γ}λs(u)du]

= E [∫ (Z̃T

i (u) ○ψ)(Z̃i(u) ○ψT )I(Ti ≥ u)I(Ci ≥ u)
1

SsT (u)
dFsT (u)]

= E [(Z̃T

i (Vi) ○ψ)(Z̃i(Vi) ○ψT )∆i]

becomes a constant. Thus, the expectation of second term in (5.11)

S

∑
s=1

I(Si = s)E [ − (Z̃T

i (Vi) ○ψ)(Z̃i(Vi) ○ψT )∆i] (5.13)

also becomes a constant including ψ. Since the expected value of (5.11), E [l′′
i∣b
(θ,Λs)],

is the sum of (5.12) and (5.13), l′′
i∣b
(θ,Λs) in (5.11) also becomes asymptotically a

constant. Therefore, in (5.10), ∣Idb−Σbl̃′′i∣b(θ,Λs)∣ is asymptotically a constant including

Σb and ψ. Then, we derive the penalized log-likelihood as following,

lP (θ,Λ)

=
n

∑
i=1

[− 1

2
log ∣Idb−Σb(E [X̃T

i W iX̃ i]−
S

∑
s=1

I(Si=s)E [(Z̃T

i (Vi) ○ψ)(Z̃i(Vi) ○ψT )∆i])∣

+ (l̃i∣b(θ,Λs) −
1

2
b̃
T

i Σ−1
b b̃i) ]. (5.14)

Since ∣Idb − Σbl̃′′i∣b(θ,Λs)∣ in (5.10) which corresponds to the first term in (5.14) is

asymptotically a constant including Σb and ψ, it only contributes to the estimating

equations of Σb and ψ, and we ignore the term to obtain the estimating equations of

β, φ and γ. −1
2 b̃

T

i Σ−1
b b̃i is the penalty term for regarding the random effects as fixed

effects by replacing b with b̃ in the likelihood. We choose θ to maximize the penalized

likelihood lp(θ,Λ) in (5.14). That is, (θ̂, b̃) jointly maximize the equation (5.14). The

score equations for (θ,b) are obtained by differentiating (5.14) with respect to θ and

b, respectively.
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5.3.3 Implementation

We conduct the Newton-Rapshon method for estimating equations to obtain b̃ and θ̂.

The procedure involves iterating between the following two steps until convergence is

achieved: at the k-th iteration,

Step1 : Conduct one-step Newton-Rapshon iteration to obtain the solution b̃ of κ′(b) =

0. The (k + 1)-th estimate is b̃
(k+1)

= b̃
(k)

− [κ′′(b̃
(k)

)]−1[κ′(b̃
(k)

)]T , where b̃
(k)

=

b̃
(k)

(θ̂
(k−1)

), κ′(b) = (κ′1(b1)T , . . . ,κ′n(bn)T )T and κ′′(b) = (κ′′1(b1)T , . . . ,κ′′n(bn)T )T ,

and the functions κ′i(bi) and κ′′i (bi), i = 1, . . . , n, are given in (5.9).

Step2 : By one-step Newton-Rapshon iteration, the (k+1)-th estimate is calculated as

θ̂
(k+1)

= θ̂
(k)

−[S′P (θ̂
(k)T

)]−1[SP (θ̂
(k)T

)]T , where SP (θ) is the score equation for θ from

the penalized log-likelihood and S′P (θ) is the first derivative of SP (θ) with respect to

θ. With (θ̂
(k+1)

, b̃
(k+1)

), the (k+1)-th Breslow-type estimate of the baseline cumulative

hazard for the s-th stratum is obtained as an empirical function which has jumps only

at the observed failure time,

Λ
(k+1)
s (t) = Λ

(k+1)
s (t; θ̂

(k+1)
, b̃

(k+1)
)

= ∑
i∶Vi≤t

∆iI(Si=s)

∑l∶Vl≥Vi
exp{Z̃ l(Vi)(ψ̂

(k+1)
○ b̃

(k+1)

l ) +Z l(Vi)γ̂(k+1)}I(Sl=s)
. (5.15)

For variance estimation of (θ̂, Λ̂(t)), we adopt the observed information matrix

via Louis (1982) formula and conduct the Expectation step used in the maximum

likelihood approach with the estimates by the penalized likelihood method. For the nu-

merical calculation of the observed information matrix, we consider Λs{Vi}, the jump

size of Λs(t) at Vi belonging to stratum s for which ∆i = 1, instead of λs(Vi). That

is, Λ{⋅} = (ΛT
1{⋅}, . . . ,ΛT

S{⋅})T with Λs{⋅} = (Λ{Ts1}, . . . ,Λ{Tsms})T for ms failure times

among ns subjects (0 ≤ ms ≤ ns) of the s-th stratum, s = 1, . . . , S. Then, by the Louis

(1982) formula,
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I(θ,Λ{⋅};Y ,V ) = Eb∣Y,V [Bc(θ,Λ{⋅};Y ,V ,b)∣Y ,V ]

− Eb∣Y,V [Uc(θ,Λ{⋅};Y ,V ,b)UT
c (θ,Λ{⋅};Y ,V ,b)∣Y ,V ]

+ Eb∣Y,V [Uc(θ,Λ{⋅};Y ,V ,b)]Eb∣Y,V [UT
c (θ,Λ{⋅};Y ,V ,b)],

where Uc(θ,Λ{⋅};Y ,V ,b) and Bc(θ,Λ{⋅};Y ,V ,b) are the first derivative vector and

the negative of the second derivative matrix for the complete data log-likelihood lc(θ,

Λ{⋅};Y ,V ,b), respectively. For subject i with Si = s, given observations and the

penalized likelihood estimate (θ̂, Λ̂s), we calculate the following conditional expectation

of a known function q(bi) needed in the observed information matrix,

E[q(bi)∣θ̂, Λ̂s] = ∫bi q(bi)f(Y i, Vi∣bi, θ̂, Λ̂s)f(bi∣θ̂, Λ̂s)dbi

∫bi f(Y i, Vi∣bi, θ̂, Λ̂s)f(bi∣θ̂, Λ̂s)dbi

= ∫zG q(R(zG))K(zG) exp{−zTGzG}dzG
∫zGK(zG) exp{−zTGzG}dzG

, (5.16)

where zG follows a multivariate Gaussian distribution with mean zero, zG = R−1(bi),

K(zG) = exp{zTGzG} f(Y i, Vi∣R(zG),θ(k),Λ
(k)
s ) f(R(zG)∣θ̂, Λ̂s), and Gauss-Hermite

Quadrature numerical approximation is used for the calculation of integration. Note

that, in (5.16), the functions of R(⋅) and K(⋅) have different expressions for different

longitudinal distributions.

The proposed penalized likelihood approach for simultaneous modeling can be ap-

plied to all generalized linear mixed models of longitudinal outcomes. Next, we provide

the expressions of the penalized log-likelihood and relevant equations for continuous

and binary longitudinal outcomes with survival time.

Ex 1. Continuous longitudinal data with Normal distribution and survival time

Continuous longitudinal outcomes following a normal distribution has A(Di(tj;φ)) =
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σ2
y , Bij(β;bi) = (X ijβ+X̃ ijbi)

2/2, and C(Yij;Di(tj;φ)) = −(y2/σ2
y+log(σ2

y)+log(2π))/2

in (5.1), where σ2
y is the variance of longitudinal outcomes given bi. Then, the κ′i(bi)

and κ′′i (bi), i = 1, . . . , n, used in Step 1 are

κ′i(bi)

= −[
ni

∑
j=1

1

σ2
y

(Yij −X ijβ − X̃ ijbi)X̃ ij +
S

∑
s=1

I(Si=s)(∆i(Z̃i(Vi) ○ψT )

−∫
Vi

0
exp{Z̃i(u)(ψ ○ bi) +Zi(u)γ}(Z̃i(u) ○ψT )dΛs(u))] + bTi Σ−1

b

and

κ′′i (bi)

= −[
ni

∑
j=1

( − 1

σ2
y

)X̃T

ijX̃ ij

+
S

∑
s=1

I(Si=s)(−∫
Vi

0
exp{Z̃i(u)(ψ○bi)+Zi(u)γ}(Z̃

T

i (u)○ψ)(Z̃i(u)○ψT)dΛs(u))]

+Σ−1
b .

In Step2, the penalized log-likelihood (5.14) has the following form for continuous lon-

gitudinal outcomes from a normal distribution and survival time,

lP (θ,Λ)

=
n

∑
i=1

[ − 1

2
log ∣Idb−Σb(E [X̃T

i W iX̃ i]−
S

∑
s=1

I(Si=s)E [(Z̃T

i (Vi)○ψ)(Z̃i(Vi)○ψT)∆i])∣

−
ni

∑
j=1

1

2σ2
y

(Yij −X ijβ − X̃ ij b̃i)
2 − ni

2
log (2πσ2

y)

+
S

∑
s=1

I(Si = s)[∆i log(λs(Vi)) +∆i[Z̃i(Vi)(ψ ○ b̃i) +Zi(Vi)γ]

−∫
Vi

0
exp{Z̃i(u)(ψ ○ b̃i) +Zi(u)γ}dΛs(u)] −

1

2
b̃
T

i Σ−1
b b̃i) ]. (5.17)
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For the expected values in (5.17), we use the original expressions of W and ∆i, eval-

uated at the parameter estimates at the previous iteration and the random effects

estimates from Step 1 at the current iteration, as Ŵ and ∆̂i, which are

−
ni

∑
j=1

1

σ̂2
y

X̃
T

ijX̃ ij and exp{Z̃i(Vi)(ψ̂ ○ b̃i) +Zi(Vi)γ̂}Λ̂s(Vi),

respectively. On the other hand, the observed variance of longitudinal outcomes and

the observed event for each subject also may be used as σ̂2
y and ∆̂i. SP (θ) is ob-

tained by differentiating (5.17) with respect to θ, and S′P (θ) is the derivative of SP (θ)

with respect to θ. The Breslow-type estimator of the baseline cumulative hazard for

the s-th stratum has the same expression given in (5.15) for all different longitudinal

distributions.

Ex 2. Binary longitudinal data and survival time

Logistic distribution has A(Di(tj;φ)) = 1, Bij(β;bi) = log (1+exp{X ijβ+X̃ ijbi}), and

C(Yij;Di(tj;φ)) = 0 in (5.1). Thus, the κ′i(bi) and κ′′i (bi), i = 1, . . . , n, in Step 1 are

κ′i(bi)

= −[
ni

∑
j=1

(Yij −
exp{X ijβ + X̃ ijbi}

1 + exp{X ijβ + X̃ ijbi}
)X̃ ij +

S

∑
s=1

I(Si=s)(∆i(Z̃i(Vi) ○ψT )

−∫
Vi

0
exp{Z̃i(u)(ψ ○ bi) +Zi(u)γ}(Z̃i(u) ○ψT )dΛs(u))] + bTi Σ−1

b

and

κ′′i (bi)

= −[
ni

∑
j=1

( −
exp{X ijβ + X̃ ijbi}

(1 + exp{X ijβ + X̃ ijbi})2
)X̃T

ijX̃ ij

+
S

∑
s=1

I(Si=s)(−∫
Vi

0
exp{Z̃i(u)(ψ○bi)+Zi(u)γ}(Z̃

T

i (u)○ψ)(Z̃i(u)○ψT)dΛs(u))]

+Σ−1
b .
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In Step 2, the penalized log-likelihood (5.14) has the following form for binary longitu-

dinal outcomes and survival time,

lP (θ,Λ)

=
n

∑
i=1

[ − 1

2
log ∣Idb−Σb(E [X̃T

i W iX̃ i]−
S

∑
s=1

I(Si=s)E [(Z̃T

i (Vi)○ψ)(Z̃i(Vi)○ψT)∆i])∣

+
ni

∑
j=1

[Yij(X ijβ + X̃ ij b̃i) − log (1 + exp{X ijβ + X̃ ij b̃i})]

+
S

∑
s=1

I(Si = s)[∆i log(λs(Vi)) +∆i[Z̃i(Vi)(ψ ○ b̃i) +Zi(Vi)γ]

−∫
Vi

0
exp{Z̃i(u)(ψ ○ b̃i) +Zi(u)γ}dΛs(u)] −

1

2
b̃
T

i Σ−1
b b̃i) ]. (5.18)

For the expected values in (5.18), we use the original expressions of X̃
T

i W iX̃ i and ∆i,

evaluated at the parameter estimates at the previous iteration and the random effects

estimates from Step 1 at the current iteration, as X̃
T

i Ŵ X̃ i and ∆̂i, which are

−
ni

∑
j=1

exp{X ijβ̂ + X̃ ij b̃i}
(1 + exp{X ijβ̂ + X̃ ij b̃i})2

X̃
T

ijX̃ ij and exp{Z̃i(Vi)(ψ̂ ○ b̃i) +Zi(Vi)γ̂}Λ̂s(Vi),

respectively. On the other hand, since the original expression of X̃
T

i W iX̃ i is same as

−ni Var(Yij ∣bi), the observed variance of longitudinal outcomes of each subject may be

used as V̂ar(Yij ∣bi). Likewise, the individual observed event also may be used as ∆̂i.

SP (θ) and S′P (θ) are the first and second derivatives of (5.18) with respect to θ.

5.4 Simulation Studies

In this section, through simulation studies, we compare numerical performances on

the computing time, bias, and mean squared error (MSE) of the penalized likelihood

method and the EM algorithm used in maximum likelihood estimation for the simul-

taneous modeling of binary longitudinal outcomes and survival time with a random
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intercept.

We assume that Yij is a binary outcome following

P (Yij = yij ∣bi) = exp{yijηij − log(1 + exp{ηij})}, yij = 0, 1,

with ηij =X ijβ + bi = β0 + β1X1i + β2X2i + β3X3ij + bi for j = 1, . . . , ni, and

h(t∣bi) = λ(t) exp{ψbi +Zi(t)γ} = λ(t) exp{ψbi + γ1Z1i + γ2Z2i},

where bi ∼ N(0, σ2
b), X1i ≡ Z1i are simulated from a Bernoulli distribution with success

probability being 0.5, and X2i ≡ Z2i are simulated from the uniform distribution be-

tween 0 and 1. For the time at which longitudinal data are observed, we consider 4

different units of 0.3, 0.1, 0.05 and 0.03. The longitudinal data are generated for every

unit of time, and thus X3ij, the time at measurement, has the value of every unit rang-

ing over 0 through 2.4. We consider ψ = −0.1 indicating negative dependency between

longitudinal process and survival time model. The parameters in the two models are

chosen as β0 = −1, β1 = 1, β2 = −0.5, β3 = −0.2, σ2
b = 0.5, ψ = −0.1, γ1 = −0.1, γ2 = 0.1, and

λ(t) = 1. Censoring time is generated from the uniform distribution between 0.4 and

2.4, and the censoring proportion is around 25∼35%. We consider different sample sizes

(n) of 200 and 400 with 1000 replications and different average numbers of longitudinal

observations per subject (ni) which are 4, 8, 15 and 25. For the estimated baseline

cumulative hazard function, we consider three fixed time points of 0.9, 1.4, and 1.9.

Table 5.1 and Table 5.2 show the simulation results of maximum likelihood estimation

(MLE) and maximum penalized likelihood estimation (MPLE) for θ = (βT , σ2
b , ψ,γ

T )T

and baseline cumulative hazards at the given three time points in the simultaneous

modeling of binary longitudinal outcomes and survival time with sample sizes of 200

and 400, respectively. In Table 5.1 and Table 5.2, “ni” is the average number of lon-
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Table 5.1: Summary of simulation results from maximum likelihood estimation (MLE) and
maximum penalized likelihood estimation (MPLE) in the simultaneous modeling of binary
longitudinal outcomes and survival time (n=200).

MLE MPLE
ni Par. True Est. Bias SSD ESE MSE CP Est. Bias SSD ESE MSE CP

4 β0 -1.0 -1.013 - .013 .247 .243 .061 .948 - .932 .068 .226 .228 .056 .948
β1 1.0 1.004 .004 .203 .205 .041 .953 .928 - .072 .186 .190 .040 .933
β2 - .5 - .479 .021 .358 .349 .128 .944 - .444 .056 .330 .327 .112 .940
β3 - .2 - .201 - .001 .207 .209 .043 .960 - .191 .009 .193 .203 .037 .969
γ1 - .1 - .096 .004 .169 .174 .029 .964 - .098 .002 .170 .177 .029 .965
γ2 .1 .098 - .002 .301 .302 .091 .948 .100 .000 .301 .314 .091 .954
ψ - .1 - .111 - .011 .316 .316 .100 .980 - .131 - .031 .404 .472 .164 .989

σ2
b .5 .516 .016 .204 .217 .042 .949 .360 - .140 .138 .172 .038 .997

Λ( .9) .9 .917 .017 .191 .184 .061 .945 .932 .032 .196 .200 .052 .952
Λ(1.4) 1.4 1.446 .046 .302 .297 .043 .945 1.471 .071 .314 .328 .040 .959
Λ(1.9) 1.9 1.977 .077 .440 .442 .134 .958 2.013 .113 .460 .494 .122 .966

8 β0 -1.0 - .994 .006 .201 .198 .040 .946 - .927 .073 .187 .188 .040 .928
β1 1.0 .990 - .010 .165 .168 .027 .954 .927 - .073 .154 .158 .029 .933
β2 - .5 - .504 - .004 .296 .288 .087 .948 - .471 .029 .277 .273 .078 .945
β3 - .2 - .206 - .006 .156 .156 .024 .953 - .199 .001 .148 .152 .022 .956
γ1 - .1 - .102 - .002 .179 .173 .032 .939 - .103 - .003 .179 .173 .032 .939
γ2 .1 .114 .014 .288 .300 .083 .962 .116 .016 .288 .305 .083 .965
ψ - .1 - .112 - .012 .230 .232 .053 .976 - .114 - .014 .266 .264 .071 .974

σ2
b .5 .502 .002 .138 .142 .019 .961 .402 - .098 .106 .115 .021 .998

Λ( .9) .9 .906 .006 .176 .181 .040 .959 .913 .013 .178 .188 .035 .964
Λ(1.4) 1.4 1.421 .021 .282 .289 .028 .958 1.432 .032 .287 .299 .025 .961
Λ(1.9) 1.9 1.949 .049 .413 .428 .090 .965 1.964 .064 .419 .441 .081 .968

15 β0 -1.0 - .989 .011 .168 .166 .028 .946 - .938 .062 .159 .159 .029 .931
β1 1.0 .997 - .003 .145 .142 .021 .943 .948 - .052 .137 .136 .021 .933
β2 - .5 - .508 - .008 .248 .245 .062 .950 - .481 .019 .235 .235 .055 .952
β3 - .2 - .201 - .001 .109 .113 .012 .958 - .198 .002 .105 .112 .011 .961
γ1 - .1 - .083 .017 .167 .172 .028 .955 - .084 .016 .168 .172 .028 .954
γ2 .1 .114 .014 .301 .299 .091 .951 .118 .018 .301 .301 .091 .953
ψ - .1 - .098 .002 .185 .190 .034 .956 - .090 .010 .200 .200 .040 .950

σ2
b .5 .487 - .013 .098 .100 .010 .966 .424 - .076 .082 .085 .012 .944

Λ( .9) .9 .900 .000 .182 .179 .028 .955 .902 .002 .183 .182 .025 .957
Λ(1.4) 1.4 1.400 .000 .297 .283 .021 .948 1.403 .003 .297 .287 .019 .953
Λ(1.9) 1.9 1.914 .014 .431 .416 .062 .949 1.919 .019 .434 .422 .055 .952

25 β0 -1.0 - .992 .008 .149 .150 .022 .949 - .951 .049 .142 .145 .023 .938
β1 1.0 .997 - .003 .132 .130 .017 .947 .957 - .043 .125 .125 .017 .934
β2 - .5 - .501 - .001 .223 .225 .050 .950 - .481 .019 .209 .217 .044 .964
β3 - .2 - .203 - .003 .086 .090 .007 .954 - .200 .000 .084 .089 .007 .960
γ1 - .1 - .101 - .001 .177 .172 .031 .941 - .098 .002 .174 .172 .030 .941
γ2 .1 .100 .000 .310 .299 .096 .943 .112 .012 .305 .300 .093 .947
ψ - .1 - .091 .009 .177 .169 .031 .947 - .084 .016 .185 .173 .034 .938

σ2
b .5 .490 - .010 .083 .084 .007 .956 .446 - .054 .073 .073 .008 .931

Λ( .9) .9 .913 .013 .188 .182 .022 .941 .910 .010 .186 .183 .020 .944
Λ(1.4) 1.4 1.428 .028 .305 .288 .018 .937 1.421 .021 .305 .289 .016 .932
Λ(1.9) 1.9 1.958 .058 .454 .426 .053 .947 1.946 .046 .450 .426 .046 .946
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Table 5.2: Summary of simulation results from maximum likelihood estimation (MLE) and
maximum penalized likelihood estimation (MPLE) in the simultaneous modeling of binary
longitudinal outcomes and survival time (n=400).

MLE MPLE
ni Par. True Est. Bias SSD ESE MSE CP Est. Bias SSD ESE MSE CP

4 β0 -1.0 -1.003 - .003 .172 .170 .030 .949 - .924 .076 .158 .159 .031 .932
β1 1.0 1.004 .004 .145 .143 .021 .946 .929 - .071 .132 .133 .023 .916
β2 - .5 -.503 -.003 .248 .244 .061 .941 -.465 .035 .229 .229 .053 .944
β3 - .2 -.196 .004 .147 .147 .022 .952 -.186 .014 .137 .142 .019 .959
γ1 - .1 -.100 .000 .124 .121 .015 .936 -.101 -.001 .124 .121 .015 .938
γ2 .1 .114 .014 .213 .210 .046 .950 .116 .016 .213 .213 .046 .957
ψ - .1 -.096 .004 .205 .203 .042 .963 -.112 -.012 .262 .270 .069 .978

σ2
b .5 .496 - .004 .136 .150 .018 .961 .349 - .151 .095 .119 .032 1.000

Λ( .9) .9 .898 - .002 .129 .126 .030 .948 .905 .005 .131 .131 .025 .950
Λ(1.4) 1.4 1.406 .006 .208 .201 .021 .949 1.418 .018 .213 .208 .018 .953
Λ(1.9) 1.9 1.916 .016 .302 .295 .062 .944 1.934 .034 .311 .306 .053 .951

8 β0 -1.0 - .998 .002 .147 .139 .022 .938 - .930 .070 .138 .132 .024 .903
β1 1.0 1.001 .001 .120 .118 .014 .946 .937 - .063 .112 .111 .017 .904
β2 - .5 -.509 -.009 .205 .203 .042 .951 -.476 .024 .192 .192 .038 .944
β3 - .2 -.195 .005 .112 .109 .013 .939 -.188 .012 .107 .107 .012 .942
γ1 - .1 -.098 .002 .125 .120 .016 .953 -.098 .002 .125 .120 .016 .953
γ2 .1 .106 .006 .207 .209 .043 .948 .107 .007 .206 .210 .043 .950
ψ - .1 -.104 -.004 .155 .156 .024 .967 -.103 -.003 .178 .176 .032 .965

σ2
b .5 .498 - .002 .093 .099 .009 .963 .401 - .099 .072 .080 .015 .937

Λ( .9) .9 .902 .002 .127 .126 .022 .943 .905 .005 .127 .128 .019 .942
Λ(1.4) 1.4 1.413 .013 .206 .200 .015 .946 1.417 .017 .206 .203 .013 .949
Λ(1.9) 1.9 1.924 .024 .299 .292 .043 .946 1.930 .030 .300 .296 .038 .949

15 β0 -1.0 - .996 .004 .117 .117 .014 .946 - .944 .056 .110 .112 .015 .923
β1 1.0 1.000 .000 .099 .101 .010 .954 .949 - .051 .095 .096 .012 .925
β2 - .5 -.504 -.004 .172 .173 .030 .955 -.477 .023 .163 .166 .027 .955
β3 - .2 -.199 .001 .081 .080 .006 .943 -.196 .004 .078 .079 .006 .947
γ1 - .1 -.100 .000 .118 .120 .014 .962 -.100 .000 .118 .120 .014 .964
γ2 .1 .108 .008 .208 .209 .043 .955 .110 .010 .208 .209 .043 .954
ψ - .1 -.099 .001 .128 .130 .016 .959 -.089 .011 .140 .136 .020 .953

σ2
b .5 .495 - .005 .070 .071 .005 .959 .431 - .069 .058 .060 .008 .886

Λ( .9) .9 .899 - .001 .126 .126 .014 .955 .901 .001 .126 .127 .012 .955
Λ(1.4) 1.4 1.405 .005 .198 .199 .010 .951 1.408 .008 .198 .200 .009 .953
Λ(1.9) 1.9 1.917 .017 .289 .290 .030 .948 1.915 .015 .286 .292 .027 .951

25 β0 -1.0 -1.004 - .004 .104 .106 .011 .949 - .961 .039 .099 .102 .011 .939
β1 1.0 .998 - .002 .093 .092 .009 .945 .954 - .046 .087 .088 .010 .921
β2 - .5 -.486 .014 .158 .159 .025 .943 -.467 .033 .150 .153 .024 .944
β3 - .2 -.198 .002 .063 .063 .004 .962 -.197 .003 .063 .063 .004 .964
γ1 - .1 -.101 -.001 .118 .120 .014 .961 -.100 .000 .118 .120 .014 .965
γ2 .1 .099 - .001 .217 .208 .047 .941 .103 .003 .213 .209 .046 .948
ψ - .1 -.096 .004 .115 .117 .013 .959 -.081 .019 .120 .120 .015 .957

σ2
b .5 .493 - .007 .058 .059 .003 .964 .446 - .054 .051 .052 .006 .872

Λ( .9) .9 .911 .011 .135 .127 .011 .931 .910 .010 .132 .127 .010 .940
Λ(1.4) 1.4 1.419 .019 .213 .200 .009 .933 1.414 .014 .207 .200 .008 .940
Λ(1.9) 1.9 1.925 .025 .299 .291 .026 .947 1.925 .025 .294 .292 .023 .949
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gitudinal outcomes per subject; “True” gives the true values of parameters; the middle

6 columns under “MLE” and the right 6 columns under “MPLE” are the results of

the maximum likelihood estimates from the EM algorithm and the proposed maximum

penalized likelihood estimates, repectively; the averages of the estimates are in “Est.”;

the averages of the bias estimates of the parameter estimates subtracted from true val-

ues are in “Bias”; the sample standard deviations from 1000 simulations are reported

in “SSD”; “ESE” is the average of 1000 standard error estimates based on the ob-

served information matrix; “MSE” gives the mean squared error calculated by adding

the squared bias and the squared sample standard deviations; “CP” is the coverage

proportion of 95% nominal confidence intervals based on the estimated standard error

“ESE”. Note that “ESE” under “MPLE” is based on the observed information matrix

obtained by maximum likelihood approach using the maximum penalized likelihood

estimates. Satterthwaite method is used for the coverage proportion of σ2
b .

From Table 5.1 and Table 5.2, we can see that the bias of the proposed MPLE is

small for most cases although it is bigger than the MLE’s, but overall the bias of the

MPLE decreases for the larger number of longitudinal observations per subject and

the larger sample size like the MLE’s does. On the other hand, the estimate of σ2
b of

the MPLE is smaller than its true value showing the biggest bias, but it is improved

soon being close to the true values as the number of longitudinal observations per

subject increases. It is already known that the penalized quasi-likelihood (PQL) used

for GLMMs tends to underestimate somewhat the variance components when applied

to clustered binary data but the situation improves rapidly for binomial observations

having denominators greater than one (Breslow and Clayton, 1993). The result from

our simulation studies conforms this fact. For both MLE and MPLE, the estimated

standard errors calculated from the observed information matrix are close to the sam-

ple standard deviations from the 1000 estimates. They decrease over the number of
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longitudinal observations per subject except for the baseline cumulative hazards esti-

mates, and they also decrease as sample size increases. The MPLE has smaller sample

standard deviations and estimated standard errors than MLE for most cases. As for

the mean squared error representing both bias and sample standard deviation together,

the mean squared error of the MPLE appears to be smaller than or close to the MLE’s.

The mean squared errors from both MLE and MPLE decrease as the number of longi-

tudinal observations per subject and sample size increase. The 95% confidence interval

coverage rates are close to 0.95 except those for ψ of both MLE and MPLE with the

small numbers of longitudinal observations per subject (ni=4 and 8) of the small sample

size (n=200), for σ2
b of the MPLE with the small number of longitudinal observations

per subject (ni=4 and 8) of the small sample size (n=200), and for σ2
b of the MPLE

with the very small or large number of longitudinal observations per subject (ni=4, 15

and 25) of the large sample size (n=400). For both MLE and MPLE, the coverage rate

of the parameter ψ is recovered for the large number of longitudinal observations per

subject and the large sample size. Thus, with small number of longitudinal observations

per subject and small sample size, the test for ψ is conservative, which strengthens the

test results when rejecting the null (ψ = 0), and the type I error becomes closer to the

nominal level as the number of longitudinal observations per subject and sample size

increase. While the high coverage rate of σ2
b of the MLE is improved for both large

number of longitudinal observations per subject and large sample size, the coverage

rate of σ2
b of the MPLE appears to be improved for the large number of longitudinal

observations per subject with small sample size and the small number of longitudinal

observations per subject with the large sample size. With the small sample size of

200 of Table 5.1, the high coverage rates of σ2
b of the MPLE at the small numbers of

longitudinal observations per subject (ni=4 and 8) are recovered at the large numbers

of longitudinal observations per subject (ni=15 and 25). On the other hand, with the
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relatively small number of longitudinal observations per subject (ni=8), the high cov-

erage rate of σ2
b of the MPLE shown at the small sample size of 200 in Table 5.1 is

improved for the large sample size of 400 in Table 5.1. In additional simulation studies

conducted with the larger sample size of 800 whose results are not provided in this

paper, the high coverage rates of σ2
b of the MPLE shown at the smallest number of

longitudinal observations per subject (ni=4) with sample sizes of 200 and 400 in both

Tables 5.1 and 5.2 actually reached 95% nominal level for the sample size of 800. Figure

5.1 shows the ratios of mean squared errors (MSEs) of the proposed MPLE to the MLE

with sample sizes of 200 and 400 for the parameters of predictors in longitudinal and

hazard models. This figure confirms the results provided in Table 5.1 and Table 5.2 in

that all plots indicate the ratios of mean squared errors are close to 1 which implies

the proposed MPLE provides the mean squared errors close to the MLE’s. Figure 5.2

shows the ratios of user times of the proposed MPLE to the MLE with sample sizes of

200 and 400. Both plots show the proposed MPLE is more efficient reducing about 70%

of the computing time of the MLE over all different numbers of longitudinal outcomes

per subject and sample sizes.

5.5 Analysis of the CHANCE Study

The Carolina Head and Neck Cancer Study (CHANCE) is a population based epi-

demiologic study conducted at 60 hospitals in 46 counties in North Carolina from 2002

through 2006 (Divaris et al. 2010). Patients were diagnosed with head and neck cancer

(oral, pharynx, and larynx cancer) from 2002–2006. Their survival status was collected

up to 2007 and QoL was evaluated over time for three years after diagnosis. QoL

information was collected through questionnaires. Based on summary scores of the

five domains of self-perceived quality of life including Physical Well-Being (PWB), So-

cial/Family Well-Being (SWB), Emotional Well-Being (EWB), Functional Well-Being
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Figure 5.2: Plot of ratios of user times of maximum penalized likelihood estimator
(MPLE) to maximum likelihood estimator (MLE) (n=200, 400)

(FWB) and Head and Neck Cancer Specific symptoms (HNCS), patient’s QoL informa-

tion was classified into satisfaction or dissatisfaction with life. Survival time is defined

as the time to death from diagnosis. Demographic and life style characteristics, medical

histories and clinical factors are also collected. Ending in December 2009 and excluding

the patients with missing data, information on QoL has been obtained from 554 head

and neck cancer patients in the analysis. Based on the death information through 2007

available from the National Death Index (NDI), 85 of 554 patients died and the cen-

soring rate is 85%. The number of observations per patient ranges 1 to 3 with average

of 1.93. It is of interest to elucidate the variables which are associated with both QoL

satisfaction and survival time for patients with head and neck cancer. In particular,

we are interested in the comparison between African-Americans and Whites since it is

known that African-Americans have a higher incidence of head and neck cancer and

worse survival than Whites. The longitudinal QoL satisfaction outcomes and survival

time are correlated within a patient, and this dependency should be taken into account
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in the analysis.

We apply both approaches of the maximum likelihood estimation (MLE) and maxi-

mum penalized likelihood estimation (MPLE) to Head and Neck Cancer Specific symp-

toms (HNCS) among QoL domains with survival time. Longitudinal HNCS QoL out-

comes are binary measurements with 1 (“satisfied”) and 0 (“dissatisfied”). In both

longitudinal QoL and hazards models, we consider race (African-Americans, Whites),

the number of 12 oz. beers consumed per week (None, <1, 1–4, 5–14, 15–29, ≥ 30),

household income (0–10K, 20–30K, 40–50K, ≤ 60K), surgery (Yes/No), radiation ther-

apy (Yes/No), chemotherapy (Yes/No), primary tumor site (Oral & Pharyngeal, La-

ryngeal) and tumor stage (I, II, III, IV) as categorical, and age at diagnosis (range:

24–80), the number of persons supported by household income (range: 1–5), body mass

index (BMI) (range: 15.66–56.28) and the total number of medical conditions reported

(range: 0–6) as continuous. Additionally, 2 interactions with race, i.e. race × the total

number of medical conditions reported and race × tumor site, are included in both

models since we are particularly interested in the difference of QoL and survival be-

tween African American and White. Time at survey measurement is also included as

a covariate for longitudinal outcomes. A random intercept for the dependence between

the QoL satisfaction and the risk of death is included in both models, and assumed to

follow a mixture of normal distributions. In Table 5.3, we compare the estimates and

the estimated standard errors of the maximum likelihood estimation (MLE) and maxi-

mum penalized likelihood estimation (MPLE). From both “Est.” and “ESE” columns,

we see that MLE and MPLE provide similar estimates and estimated standard errors

each other for the parameters of interest in longitudinal QoL and hazards models. On

the other hand, the parameters of σ2
b and ψ, which denote the variance of random effects

and the coefficient of random effects characterizing the dependence between longitu-

dinal QoL and survival processes, respectively, have different estimates and estimated
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Table 5.3: Analyses results from maximum likelihood estimation (MLE) and maximum penal-
ized likelihood estimation (MPLE) for the Quality of Life and survival time for the CHANCE
study

Est. ESE
Parameter MLE MPLE MLE MPLE

HNCS QoL longitudinal model

Intercept β0 .197 .206 .824 .922
Race (ref= White): African American β1 .562 .564 .345 .391
# of 12 oz. beers consumed per week (ref=30 or more)
– None β2 .615 .618 .275 .315
– less than 1 β3 .751 .706 .366 .409
– 1 to 4 β4 1.259 1.253 .300 .337
– 5 to 14 β5 1.062 1.072 .257 .294
– 15 to 29 β6 .581 .577 .294 .336
Household income (ref= level1: 0–10K)
– level2: 20–30K β7 - .268 - .254 .236 .271
– level3: 40–50K β8 .291 .309 .257 .293
– level4: ≥ 60K β9 1.181 1.162 .279 .313
Surgery (ref= No): Yes β10 - .029 - .032 .205 .234
Radiation therapy (ref= No): Yes β11 -1.179 -1.098 .299 .323
Chemotherapy (ref= No): Yes β12 .219 .197 .245 .280
Tumor site (ref=Oral & Pharyngeal): Laryngeal β13 - .225 - .218 .225 .255
Tumor stage (ref= I)
– II β14 - .479 - .470 .306 .334
– III β15 -1.494 -1.418 .320 .358
– IV β16 -1.383 -1.342 .308 .343
Age at diagnosis β17 .012 .012 .009 .011
# of persons supported by household income β18 - .174 - .176 .088 .100
BMI β19 .042 .040 .015 .017
Total # of medical conditions reported β20 - .208 - .203 .092 .104
Race (African-American) × Tumor site (Laryngeal) β21 - .156 - .178 .438 .496
Race (African-American) × Total # of medical conditions reported β22 .088 .095 .197 .224
Time at survey measurement (years) β23 .243 .216 .067 .070

variance of random effects σ2
b .317 1.037 .185 .394

Hazards model

Random effect coefficient ψ -1.560 - .623 1.060 .285
Race (ref= White): African American γ1 .482 .411 .461 .384
# of 12 oz. beers consumed per week (ref=30 or more)
– None γ2 - .866 - .795 .417 .354
– less than 1 γ3 - .241 - .198 .444 .395
– 1 to 4 γ4 - .915 - .845 .447 .389
– 5 to 14 γ5 -1.180 -1.106 .409 .350
– 15 to 29 γ6 - .616 - .568 .422 .372
Household income (ref= level1: 0–10K)
– level2: 20–30K γ7 - .168 - .195 .321 .283
– level3: 40–50K γ8 - .898 - .852 .400 .353
– level4: ≥ 60K γ9 -1.359 -1.319 .446 .396
Surgery (ref= No): Yes γ10 - .489 - .501 .324 .282
Radiation therapy (ref= No): Yes γ11 - .454 - .468 .411 .361
Chemotherapy (ref= No): Yes γ12 .065 .052 .372 .334
Tumor site (ref=Oral & Pharyngeal): Laryngeal γ13 - .012 - .018 .333 .295
Tumor stage (ref= I)
– II γ14 - .163 - .240 .489 .428
– III γ15 .302 .179 .506 .426
– IV γ16 1.239 1.086 .478 .375
Age at diagnosis γ17 .023 .017 .019 .008
# of persons supported by household income γ18 .086 .059 .137 .110
BMI γ19 .015 .011 .022 .016
Total # of medical conditions reported γ20 .277 .249 .134 .112
Race (African-American) × Tumor site (Laryngeal) γ21 .342 .339 .573 .505
Race (African-American) × Total # of medical conditions reported γ22 - .256 - .242 .270 .245
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standard errors between the MLE and MPLE. This discrepancy of the MPLE from

the MLE may be a numerical issue due to the small cluster size with the average of

1.93. In addition, the MPLE provides slightly bigger estimated standard errors than

the MLE for the parameters in the longitudinal model while it appears in the reverse

direction in hazards model. This also may be a numerical issue due to the small number

of longitudinal outcomes per subject since the estimation in the longitudinal model is

directly affected by the individual cluster size while the estimation in hazards model is

not. Comparing the computing time spent on producing the results in Table 5.3, the

proposed MPLE took only a sixth of the time the MLE did (62.83 and 361.78 seconds

for MPLE and MLE respectively). This analysis result indicates that, even for the

small cluster size, the proposed MPLE provides the similar results to those of the MLE

for the parameters of interest taking less computing time than the MLE. In the studies

with larger number of longitudinal outcomes per subject, the results of the MPLE are

expected to be close to those of the MLE for all parameters with much better efficiency

on calculation.

5.6 Concluding Remarks

In this paper, we have developed a more computationally efficient estimation procedure

adopting a penalized likelihood based on Laplace approximation for the simultaneous

modeling of longitudinal outcomes and survival time. Our proposed penalized likelihood

estimation method is an effort to reduce the intensity on computation still providing the

similar estimates to those by the EM algorithm of the maximum likelihood approach.

Simulation studies indicated that the penalized likelihood approach performs as well

as the EM algorithm of maximum likelihood approach, but only requires a fraction of

the computing time. We also illustrated this comparison with the CHANCE data.

For the purpose of comparison, we also conducted the simulation studies of two ad-

211



ditional approximation methods which are using the Laplace approximation to the full

log-likelihood in (5.10) and using the observed variance of the longitudinal outcomes

and the observed event for the expected values in the penalized log-likelihood (5.18) for

binary longitudinal outcomes and survival time. The simulation results indicated that

the former provides the estimates more close to the maximum likelihood estimates but

takes longer time than the two penalized likelihood procedures although its computing

time is also less than the maximum likelihood approach. It is because, from the Laplace

approximated full log-likelihood, all parameters in ∣Idb −Σbl̃′′i∣b(θ,Λs)∣ are used for es-

timation and thus the calculation is more complicated than the penalized likelihood

estimation methods. In the mean time, the latter provides the most biased estimates

but takes the least computing time since it uses the most approximated expression of

log-likelihood. Therefore, in terms of bias and computing time, the proposed penalized

likelihood method using the original expressions for the expected values in the penalized

likelihood appears to behave best among the three approximation methods.

In the simultaneous modeling considered in this paper, we assumed random effects

to follow a Gaussian distribution with mean zero. However, it is unclear whether the

normality assumption is truly satisfied in practice. Future work can include develop-

ing an approach to diminish computational intensity efficiently through the penalized

likelihood approach for relaxing the normality assumption of random effects in the

simultaneous modeling.
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Chapter 6

SUMMARY AND FUTURE RESEARCH

In this dissertation, we have studied statistical methods for joint analysis of survival

time and longitudinal data and particularly proposed the simultaneous modeling of

the two different types of outcomes. Random effects are introduced to account for the

dependence between longitudinal outcomes and survival time due to unobserved factors.

Specifically, in terms of the distributional assumption of random effects, the following

two scenarios were studied: 1) assuming a Gaussian process for random effects, 2)

assuming the underlying distribution of random effects to be unknown.

This dissertation research is motivated by biomedical and public health applications

where it is common that both longitudinal outcomes over time and survival endpoint

are collected for the same subject along with the subject’s characteristics or risk fac-

tors. Investigators are often interested in finding important variables for predicting

both longitudinal outcomes and survival time which are correlated within a subject.

This naturally led us to consider simultaneous models. Thus, the main contribution

of this dissertation is to provide statistical methods which address the association of

covariates to both longitudinal outcomes and survival time of interest while the de-

pendence between the two outcomes is taken into account. Generalized linear mixed

model was considered for longitudinal process in order to incorporate both categorical



and continuous longitudinal outcomes. A stratified proportional hazards model was

assumed for survival time. The cumulative baseline hazard functions were also studied

and Breslow-type estimates were proposed.

In Chapter 3, we have assumed random effects to follow a multivariate Gaussian

process in the joint analysis and considered a nonparametric maximum likelihood es-

timation approach. The EM algorithm was adopted for estimation, and the proposed

estimates performed well in finite samples under the various simulation settings consid-

ered. The variance estimates based on the observed information matrix approximated

the true variance well in finite samples. In Chapter4, we have relaxed normality as-

sumption for random effects in the joint analysis. Assuming the underlying distribution

of random effects to be unknown, we used a mixture of Gaussian distributions as an

approximation for the random effect distribution. We also developed a nonparametric

maximum likelihood estimation method, and weights of the mixture components were

estimated with model parameters using the EM algorithm. The proposed estimators

were shown to have nice finite sample properties via simulation studies. The simula-

tion studies conducted for robustness of the assumed mixture distribution indicated

that, when the true distribution of random effects is not normal, the mixture of nor-

mal distributions well-approximate the random effect distribution by yielding the less

biased estimates for the parameters of interest in longitudinal and hazards models and

the more similar shaped density plot to the true distribution than no mixture. The

number of mixture distributions was shown to be properly selected by AIC and BIC

through simulation studies. For both maximum likelihood approaches with and with-

out normality assumption of random effects studied in Chapters 3 and 4 respectively,

the proposed estimators were proved to have desirable asymptotic properties such as

consistency and asymptotic normality, and most of the proofs relied on the empiri-

cal processes theory. In Chapter 5, we have considered the penalized likelihood for
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a more computationally efficient estimation procedure than the EM algorithm of the

maximum likelihood approach with a Gaussian process for random effects. Simulation

studies showed the proposed penalized likelihood approach reduced the computational

intensity spending only a fraction of the computing time the EM algorithm took, still

providing the similar estimates and mean squared errors to those by the EM algorithm.

All proposed methods in this dissertation were illustrated with the real-world data

sets from the CHANCE study. We compared the results from the proposed simulta-

neous analysis and separate analyses in Chapters 3 and 4. Under both situations of

normally distributed and distributional free random effects, the simultaneous analysis

additionally identified more predictors for longitudinal quality of life and survival time

than separate analyses. In Chapter 5, we compared the analysis results from the max-

imum likelihood approach and maximum penalized likelihood approach for assuming

normality of random effects. The latter showed the remarkable reduction from the

former’s computing time while both produced the similar results in estimation.

The proposed methods in this dissertation research can be extended in several di-

rections:

First, in this dissertation, we considered the generalized linear mixed model for lon-

gitudinal process to incorporate both categorical and continuous longitudinal outcomes.

In the the joint analysis framework, relatively little work was done for categorical lon-

gitudinal data while continuous longitudinal data were studied by many authors. Our

proposed approaches generalize previous work to general longitudinal outcomes and

this work fills in some gaps in the joint modeling research. Then, future work can

include considering generalization to mixed types of longitudinal outcomes.

Second, in some applications where sample size and the number of observations

per subject are too large, the EM algorithm of maximum likelihood approach may

be intensive on computation due to the integration of complete data likelihood over
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random effects. Thus, in my dissertation, we considered a penalized likelihood for the

simultaneous modeling with a Gaussian process of random effects. It will be also of

interest to develop an approach to relieve computational burden efficiently through the

penalized likelihood approach for relaxing the normality assumption of random effects

in the simultaneous modeling.

Third, we considered one survival event in the simultaneous analysis proposed in

this dissertation, but one may be interested in multivariate endpoints such as recurrent

events, multiple disease outcome data and competing risk factors. Therefore, exploring

the possibility of the extension of the proposed approaches to multivariate survival data

would be worth pursuing.

Last, but not least, in real applications, the proportional hazards assumption con-

sidered in this dissertation may not always be true or one may be interested in modeling

association from different aspects. A natural extension would be to consider other types

of models for survival time including, but not limited to the proportional odds model,

the accelerated failure time model, or the additive hazards model.
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