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Abstract 

 
Diana Kay Hoover: Electroactive Nanoarrays for the Biospecific-Ligand Mediated 

Study of Single Cell Adhesion and Polarization 
(Under the direction of Prof. Muhammad N. Yousaf) 

 
 

Cell adhesion, polarization, and migration are vital to numerous biological 

phenomena. Therefore, a greater understanding of the mechanisms of these 

processes will have broad impacts in fields ranging from developmental biology to 

medicine. This work has focused on developing a nanoscale model system that will 

allow one to study the effect of the spatial presentation of immobilized ligands on the 

nanoarchitecture of adherent cells. 

In Chapter 2, the development of electroactive nanoarrays of hydroquinone-

terminated alkanethiol, produced by dip-pen nanolithography (DPN) is described. 

These nanoarrays, in conjunction with an oxime-chemistry based chemoselective 

immobilization strategy and high-resolution fluorescence microscopy, were used to 

study biospecific-ligand mediated single cell adhesion. The difference in ligand 

affinity of linear and cyclic Arg-Gly-Asp (RGD) was shown to have a dramatic affect 

on the intracellular nanoarchitecture of adherent fibroblasts.  

The production of asymmetric nanoarrays used to study single cell polarization is 

described in Chapter 3. Asymmetric nanoarrays presenting linear RGD were found 

to induce net directional cell polarization in adherent fibroblasts, while linear RGD-
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presenting symmetric nanoarrays did not induce net polarity. This demonstrates a 

direct correlation between the spatial distribution of cell adhesive ligand and the 

establishment and maintenance of directional cell polarization. In addition, there was 

no net directional cell polarity found on asymmetric nanoarrays presenting a higher 

affinity ligand cyclic RGD, indicating that ligand affinity also has a profound effect on 

cell polarization. The relationship between ligand affinity and spatial distribution of 

immobilized ligand was further explored through double asymmetric nanoarrays 

presenting cyclic RGD, which were shown to impose directional cell polarization.  

In order to extend this methodology to examine other aspects of cell adhesion 

and polarization on electroactive nanoarrays other methods of visualization were 

considered. There have been conflicting reports regarding the use of total internal 

reflection fluorescence microscopy (TIRFM) to visualize cells near thin metal layers. 

In Chapter 4, it was determined that TIRFM is an effective method to examine 

intercellular structures of cells adhered to patterned SAMs on gold surfaces. This 

was demonstrated through the use of microcontact printing and DPN patterning 

methods. Future applications of this research are presented in Chapter 5.  

 
 

 
 

 
 
 
 
 
 
 
 
 
 



  iv

 
 

 
 
 

To Jack Morningstar (Pappy Jack) who taught me the value of hard work and 
education. Thank you “Great” - I miss you every day. 

 
& 
 

To Amanda, for showing how much a positive attitude in the face of adversity       
can make a difference. You are an inspiration.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



  v

 
 
 
 
 

ACKNOWLEDGEMENTS 
 
 

First I would like to thank Dr. Muhammad Yousaf for allowing me the opportunity 

to research in his lab. Without his guidance, I would not be where I am today. I am 

also indebted to the past and present members of the Yousaf group. Graduate 

school is a road best walked with friendly company – thank you all and best of luck! 

I would like to thank Dr. Susan Deupree and Laurel Averett of the 

Schoenfisch research group, Dr. Ryan Fuierer of Asylum Research, and Dr. Erika 

Pearson and Vanessa DeRocco of the Erie research group for their expertise and 

helpful discussions in the completion of my dissertation research.   

I am also grateful to the professors in the chemistry department at Edinboro 

University of Pennsylvania, for their continued support and advice. Thank you to Drs. 

Naod Kebede, Nancy S. Mills, Monica Valentovic, and Tom Guetzloff for introducing 

me to research. Thank you to all who have supported my career goals.  

I have to thank my family and friends for the love, support, patience, and 

perspective they have shown throughout my academic career. I would like to 

especially thank my parents, Donald and Peggy Hoover. They have always 

supported me in every endeavor, and have taught me that the traditional yardsticks 

of success are not always the most important in life. I would not have made it this far 

without such a support system. I hope you enjoy the final product.  

“Cells die, scientists rejoice.” 
 



  vi

 
 

 
 

 
TABLE OF CONTENTS 

 
LIST OF SCHEMES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xi 

 
LIST OF FIGURES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii 

 
LIST OF ABBREVIATIONS AND SYMBOLS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv 
 
CHAPTER 
 
1. Introduction: Biological Significance of Cell Adhesion Polarization,  
    and Migration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 
 

1.1 Influence of Cell Adhesion, Polarization, and Migration in vivo. . . . . . . . . 1 
 

1.1.1 Eukaryotic cells in vivo:  the extracellular matrix. . . . . . . . . . . . .1 
 

1.1.2 Directed eukaryotic cell migration. . . . . . . . . . . . . . . . . . . . . . . .2 
 

1.2 Cell Adhesion: Focal Adhesion Formation. . . . . . . . . . . . . . . . . . . . . . . . . 2 
 

1.2.1 The role of integrin receptors in cell adhesion. . . . . . . . . . . . . . 2 
 

1.2.2 The structure of integrin receptors. . . . . . . . . . . . . . . . . . . . . . . 2 
 

1.2.3 Focal adhesion structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 
 

1.3 Current Methods Used to Study Cell Adhesion, Polarization,  
and Migration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 
 

1.3.1 Microscale cell adhesion studies: cell culture surfaces  
coated with adsorbed ECM proteins. . . . . . . . . . . . . . . . . . . . . .6 

 
1.3.2 Microscale cell adhesion studies: microcontact printing. . . . . . .6 

 
1.3.3 Nanoscale studies: fibronectin patterned by nanosphere  

lithography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
 

1.3.4 Nanoscale studies: comb polymers presenting clusters  



  vii

of RGD ligands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
 

1.3.5 Nanoscale studies: patterned gold nanoparticles presenting  
RGD ligands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 

 
1.3.6 Nanoscale studies: dip-pen nanolithography and protein  

adsorption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 
 

1.3.7 Potential downfalls of previous methods used to study cell  
adhesion, polarization, and migration. . . . . . . . . . . . . . . . . . . . .9 

 
1.4 Significance and Goals of This Research. . . . . . . . . . . . . . . . . . . . . . . . .11 

 
1.5 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 

 
2. Symmetric Electroactive Nanoarrays for Single Cell Adhesion Studies. . . . . . . . 17 
 

2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 
 

2.1.1 Self-assembled monolayers as a model system for cell  
          biology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 

 
2.1.2 Physical characteristics of SAMs of alkanethiols on gold. . . . .19  

 
2.1.3 Dip-pen nanolithography as a nanopatterning tool. . . . . . . . . .22 

 
2.1.4 Nanoscale model system for single cell studies. . . . . . . . . . . .24  
 

2.2 Experimental Materials and Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . .24 
 

2.2.1 Synthesis of 11-(2,5-dihydroxylphenyl)-1- 
mercaptoundecane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24 

 
2.2.2 Synthesis of 23-mercapto-3,6,9,12-tetraoxatricosan-1-ol. . . . .27  

 
2.2.3 Synthesis of linear RGD-oxyamine peptide . . . . . . . . . . . . . . .30 

 
2.2.4 Gold-coated substrate preparation . . . . . . . . . . . . . . . . . . . . . 32 

 
2.2.5 Dip-pen nanolithography (DPN) methodology . . . . . . . . . . . . .33  
 
2.2.6 Characterization of electroactive nanoarrays by cyclic  

voltammetry (CV) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
 

2.2.7 Immobilization of peptide ligands to electroactive  
nanoarrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  



  viii

 
2.2.8 Cell seeding and staining techniques . . . . . . . . . . . . . . . . . . . 35 

 
2.2.9 Fluorescence microscopy of patterned cells . . . . . . . . . . . . . . 36  

 
2.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  

 
2.3.1 DPN method development . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 

 
2.3.2 Lateral force microscopy characterization of electroactive  

nanoarrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
 

2.3.3 Electrochemical characterization of electroactive  
nanoarrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  

 
2.3.4 Cell adhesion studies on symmetric electroactive  

nanoarrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
 

2.3.5 Effects of ligand affinity on cell adhesion to immobilized  
peptide nanoarrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  

 
2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48 

 
2.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  

 
3. Asymmetric Electroactive Nanoarrays for Single Cell Polarization Studies. . . . . 52 

 
3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52 

 
3.1.1 Cell polarity: asymmetry in form and function. . . . . . . . . . . . . .52 

 
3.1.2 Experimental markers of cell polarization in fibroblasts. . . . . . 54  

 
3.1.3 Previous studies of cell polarization in fibroblasts. . . . . . . . . . .55  

 
3.2 Experimental Materials and Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . .57 
 

3.2.1 Design and production of asymmetric nanoarrays for  
single cell polarization studies. . . . . . . . . . . . . . . . . . . . . . . . . .57  
  

3.2.2 Cell seeding and staining techniques. . . . . . . . . . . . . . . . . . . .59  
 

3.2.3 High-resolution fluorescence microscopy. . . . . . . . . . . . . . . . .60  
 

3.2.4 Focal adhesion studies on asymmetric nanoarrays. . . . . . . . . 60   
 



  ix

3.3 Results and Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
 

3.3.1 Design and LFM characterization of asymmetric  
nanoarrays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  

 
3.3.2 Single cell polarization studies on symmetric nanoarrays  

presenting linear RGD peptide. . . . . . . . . . . . . . . . . . . . . . . . . 62 
 

3.3.3 Single cell polarization studies on asymmetric nanoarrays  
presenting linear RGD peptide. . . . . . . . . . . . . . . . . . . . . . . . . 64  

 
3.3.4 The effect of ligand affinity on single cell polarization 

on asymmetric nanoarrays. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
 

3.3.5 The effects of ligand spatial distribution on single cell            
polarization on double asymmetric nanoarrays presenting                
cyclic RGD peptide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  

 
3.3.6 The effect of ligand affinity on focal adhesion formation in  

single cells on asymmetric nanoarrays. . . . . . . . . . . . . . . . . . .68  

 
3.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  

 
3.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  

 
4. Total Internal Reflection Fluorescence Microscopy as a Method to Study         
    Cell Adhesion on Patterned Gold Surfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76 

 
4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76  

 
 4.1.1 Physical basis of total internal reflection (TIR) . . . . . . . . . . . . .76  
 

4.1.2 Use of total internal reflection fluorescence microscopy       
(TIRFM) in cell biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78  

 
4.1.3 Controversy: can TIRFM be used to study cell adhesion  

on gold surfaces? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80  
 

4.2 Experimental Materials and Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . .82  
 

4.2.1 Preparation of gold-coated quartz substrates . . . . . . . . . . . . . 82  
 

4.2.2 Substrate patterning by microcontact printing . . . . . . . . . . . . . 82  
 

4.2.3 Substrate patterning by DPN . . . . . . . . . . . . . . . . . . . . . . . . . .83  



  x

 
4.2.4 Cell seeding and staining procedures . . . . . . . . . . . . . . . . . . . 83  

 
4.2.5 Visualization with TIRFM . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84  

 
4.2.6 Visualization with high-resolution fluorescence             

microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85   
 

4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85 
  

4.3.1 Prism-based TIRFM experimental design. . . . . . . . . . . . . . . . .85  
 

4.3.2 TIRFM visualization of cell adhesion on microcontact    
printed patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  

 
4.3.3 TIRFM and high-resolution fluorescence microscopy  

of adherent fibroblasts on symmetric nanoarrays  
presenting biospecific ligands. . . . . . . . . . . . . . . . . . . . . . . . . .90  

 
4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92  

 
4.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  

 
5. Summary and Future Directions of Research. . . . . . . . . . . . . . . . . . . . . . . . . . . .99  

  
 5.1 Summary of Dissertation Research. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  

 
 5.2 Future Directions of Dissertation Research. . . . . . . . . . . . . . . . . . . . . . 100 
 

5.2.1 Introduction: development of parallel AFM cantilever 
arrays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 

 
5.2.2 Introduction: development of massively parallel DPN. . . . . . .102 

 
5.2.3 Whole-substrate nanopatterns for cell migration studies. . . . 104 

 
5.2.4 Arrays of nanoarrays: towards single cell assays for  

drug discovery and mechanistic studies of cell adhesion 
and polarization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104 

 
  5.2.5 Complex nanopatterns presenting multiple, biospecific  
   ligands for cell biology studies. . . . . . . . . . . . . . . . . . . . . . . . 105 
 
 5.3 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 

 
 5.4 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107 



  xi

   
LIST OF SCHEMES 

 
 

Scheme 2.1  Synthesis of 11-(2,5-dihydroxylphenyl)-1- 
mercaptoundecane (H2Q-C11-SH) . . . . . . . . . . . . . . . . . . . . . .25 

 
Scheme 2.2  Synthesis of 23-mercapto-3,6,9,12-tetraoxatricosan-1-ol  

(EG4-C11-SH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 
 
Scheme 2.3 Fmoc-based solid-phase peptide synthesis of the cell     

adhesive peptide, oxyamine-terminated linear RGD . . . . . . . .31 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 



  xii

 
LIST OF FIGURES 

 
 
Figure 1.1 Simplified diagram of focal adhesion structure . . . . . . . . . . . . . 5 

 
Figure 2.1  Self-assembled monolayers of alkanethiols on gold . . . . . . . . 21 

Figure 2.2  Electroactive chemoselective immobilization strategy.  
(A) SAMs of H2Q-C11-SH are oxidized to the quinone,             
and then reacted with an oxyamine-tethered ligand                     
(R-ONH2) to form a redox active oxime linkage. (B) CVs       
show characteristic shifts in redox potentials . . . . . . . . . . . . . .23  

 
Figure 2.3 LFM characterization of electroactive nanoarrays.                    

(A) LFM image demonstrating the effect of dwell time on 
average spot size in nanoarrays. (B) Table of values of     
varying spot diameter with increasing dwell time (n = 3  
nanoarrays) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 

 
Figure 2.4 Electroactive nanoarrays for cell adhesion studies.                  

(A) LFM image of an electroactive nanoarray of                    
H2Q-C11-SH on gold. (B) Lateral force profile of expanded 
region of nanoarray, demonstrating consistency in  

 patterning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 
 
Figure 2.5 Characterization of electroactive nanoarrays by CV,        

showing the characteristic peak shift from 
hydroquinone/quinone redox couple (red trace) to                 
oxime product redox couple (blue trace) . . . . . . . . . . . . . . . . . 40 

 
Figure 2.6 Schematic of the preparation of electroactive               

nanoarrays by DPN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 
 
Figure 2.7 Structures of two cell-adhesive peptides that were      

immobilized to nanoarrays for cell adhesion studies.  
(A) Linear RGD peptide, (B) cyclic RGD peptide . . . . . . . . . . .44 

 
Figure 2.8 Representative fluorescent micrographs of 3T3 Swiss         

Albino fibroblasts on immobilized oxyamine-terminated       
linear RGD nanoarrays. Cells were stained for nuclei           
(blue), actin (red), and paxillin (green) . . . . . . . . . . . . . . . . . . .45 

 
Figure 2.9 Representative fluorescent micrographs of 3T3 Swiss         

Albino fibroblasts on immobilized cyclic oxyamine-terminated 
RGD nanoarrays. Cells were stained for nuclei (blue), actin 



  xiii

(red), and paxillin (green) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47 
 
Figure 3.1  (Left) Schematic depiction of a polarized fibroblast.  

(Right) Micrograph of a polarized 3T3 Swiss Albino mouse 
fibroblast showing the nucleus (blue), Golgi apparatus       
(green), and the actin cytoskeleton (red) . . . . . . . . . . . . . . . . .53  

 
Figure 3.2 Schematic diagram of the production of asymmetric 

electroactive nanoarrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 
 
Figure 3.3 Design of asymmetric electroactive nanoarrays for single cell 

polarization studies. (A) A diagram of the entire asymmetric 
nanoarray composed of two regions: a higher density region 
and a lower density region. (B) LFM image of an expanded   
area of asymmetric nanoarray . . . . . . . . . . . . . . . . . . . . . . . . .61  

 
Figure 3.4 Representative micrographs of 3T3 Swiss Albino fibroblasts 

adhered to symmetric nanoarrays presenting linear RGD 
peptide. The cells were stained for nuclei (blue), actin  

  cytoskeleton (red), and Golgi apparatus (green) . . . . . . . . . . .63   
  
Figure 3.5 Representative micrographs of 3T3 Swiss Albino fibroblasts 

adhered to asymmetric nanoarrays presenting linear RGD 
peptide. The cells were stained for nuclei (blue), actin  
cytoskeleton (red), and Golgi apparatus (green) . . . . . . . . . . .65  

 
Figure 3.6 Representative micrographs of 3T3 Swiss Albino fibroblasts 

adhered to asymmetric nanoarrays presenting cyclic RGD 
peptide. The cells were stained for nuclei (blue), actin 
cytoskeleton (red), and Golgi apparatus (green) . . . . . . . . . . .67  

 
Figure 3.7 Double asymmetric nanoarrays for single cell polarization 

studies. (Top left) Diagram of the double asymmetric  
nanoarray produced. (Top right, bottom) Representative 
micrographs of 3T3 Swiss Albino fibroblasts adhered to    
double asymmetric nanoarrays presenting cyclic RGD    
peptide. The cells have been stained for nuclei (blue), actin  
cytoskeleton (red), and Golgi apparatus (green) . . . . . . . . . . .69  

 
Figure 3.8 Representative micrographs of 3T3 Swiss Albino fibroblasts 

adhered to asymmetric nanoarrays presenting lower affinity 
linear RGD peptide (A) and higher affinity cyclic RGD peptide 
(B). The cells were stained for nuclei (blue), actin      
cytoskeleton (red), and paxillin (green) . . . . . . . . . . . . . . . . . . 70 

 



  xiv

Figure 4.1  Total internal reflection fluorescence microscopy (TIRFM).      
(A) Demonstrates incident light at an interface at θi < θc  and     
θi ≥ θc (TIR). (B) TIR induced fluorescence. An evanescent 
wave is established at the interface; fluorophores in the       
lower refractive index material within the evanescent field        
are excited and can fluoresce. . . . . . . . . . . . . . . . . . . . . . . . . .79   

 
Figure 4.2  (A) Prism-based TIRFM experimental design for cell adhesion 

studies. The interface of interest is highlighted by the dashed 
box and is expanded in (B). The evanescent wave produced by 
the TIR extends into the cytoplasm of adherent cells. (C) 3T3 
Swiss Albino fibroblast grown on bare quartz and stained with  
phalloidin-TRITC to visualize the actin cytoskeleton. . . . . . . . .87  

 
Figure 4.3  (A) Microcontact printing technique used to pattern hydrophobic 

SAMs on gold. (B) Representative micrographs of 3T3 Swiss 
Albino fibroblasts on 50 µm microcontact printed patterns of 
adsorbed fibronectin. Clockwise, from top left: circle, square, 
hexagon, and oval. The cells were stained to visualize focal  
adhesions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  

 
Figure 4.4  (A) Representative TIRFM micrograph showing the distribution 

of paxillin in a fibroblast adhered to a symmetric nanoarray 
presenting immobilized linear RGD ligand. The cell was stained 
for focal adhesions, nuclei, and the actin cytoskeleton. (B) 
Representative fluorescence micrograph of a fibroblast on a  
symmetric nanoarray following TIRFM imaging. . . . . . . . . . . . 91   

 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 



  xv

LIST OF ABBREVIATIONS 
 

 
~        approximately 
 
Å        Ångström(s)  
 
δ        chemical shift (NMR) 
 
λ        wavelength  
 
µm        micrometer(s) 
 
θi        incident angle  
 
θc         critical angle 

 
AFM        atomic force microscope 
 
Ag/AgCl silver / silver chloride 

reference electrode 
 
AIBN 2,2’-azobisisobutyronitrile  
 
AOAA (aminooxy) acetic acid (also 

known as O-(carboxymethyl)-
hydroxylamine hemichloride) 

 
aq aqueous  
 
BBr3  boron tribromide  
 
Boc butyloxycarbonyl  

 
°C        degree(s) Celsius 
 
CCD charge coupled device 
 
CDCl3 deuterated chloroform 
 
CO2 carbon dioxide 
 
cm centimeter(s) 
 
CRP cysteine rich protein 
 



  xvi

C16-SH hexadecanethiol 
 
CV cyclic voltammetry (or 

voltammogram) 
 
Cy-2 cyanine 2 dye 
 
d evanescent wave depth of 

penetration 
 
Da dalton(s) 
 
DAPI 4’,6-diamidino-2-phenylindole 

dihydrochloride 
 
DCM dichloromethane  
 
DIEA N,N-diisopropylethylamine 

 
DMEM Dulbecco’s modified Eagle’s 

medium 
 
DMF dimethylformamide  
 
DPN        dip-pen nanolithography 
 
ds (in NMR characterization)    doublet of singlets 
 
ECM        extracellular matrix  
 
e.g.        exempli gratia, “for example” 
 
EG4-C11-SH 23-mercapto-3,6,9,12-

tetraoxatricosan-1-ol 
 
eq.        equivalents  
 
ESI+ positive electrospray 

ionization source 
 
et al. et alii, “and others” 
 
etc. et cetera, “and so forth” 
 
EtOAc        ethyl acetate 
 



  xvii

EtOH        ethanol 
 
FAK        focal adhesion kinase 
 
FITC        fluorescein isothiocyanate 
 
Fmoc        9-fluorenylmethoxycarbonyl 
 
Fmoc-Arg(Pbf)-OH N-α-Fmoc-NG-(2,2,4,6,7-

pentamethyl-
dihydrobenzofuran-5- 
sulfonyl)-L-arginine 

 
Fmoc-Asp(OtBu)-OH N-α-Fmoc-L-aspartic acid β - 

t-butyl ester 
 
Fmoc-Gly-OH N-α-Fmoc-glycine 
 
Fmoc-Ser(tBu)-OH N-α-Fmoc-O-t-butyl-L-serine 
 
g        gram(s) 
 
1H NMR proton nuclear magnetic 

resonance spectroscopy 
 
HBTU O-benzotriazole-N,N,N’,N’-

tetramethyl-uronium-
hexafluorophosphate 

 
HCl hydrochloric acid 
 
HClO4        perchloric acid 
 
H2O        (distilled) water 
 
H2O2        hydrogen peroxide 
  
H2Q-C11-SH 11-(2,5-dihydroxylphenyl)-1-

mercaptoundecane 
 
h  hour(s) 
 
H2SO4  sulfuric acid 
 
Hz Hertz (second-1) 
 



  xviii

I intensity  
 
i.e.  id est, “that is” 
 
IgG immunoglobulin G  
 
ILK integrin-linked kinase 
 
J J coupling constant 
 
Kd dissociation constant 
 
kW kilowatt(s) 
 
LFM        lateral force microscopy 
 
LIM        cysteine-rich protein structural  

domains 
 
m        meter(s) 
 
m (in NMR characterization)    multiplet  
 
M        molar 
 
MeOH        methanol  
        
mg        milligram(s)  
 
MHz        megaHertz 
        
min         minute(s) 
 
mL        milliliter(s) 
 
mm        millimeter(s) 
  
mM        millimolar  
 
mmol        millimole(s) 
 
mol        mole(s) 
 
MS        mass spectrometry 
 
mV        millivolt(s) 



  xix

 
n        refractive index  
 
N        Newton(s) 
 
N2        molecular nitrogen 
 
NA        numerical aperture 
 
NaOH        sodium hydroxide 
 
Na2SO4       sodium sulfate 
 
nm        nanometer(s) 
 
nM         nanomolar 
 
q (in NMR characterization)    quartet 
 
QQQ triple quadrupole mass 

spectrometer 
 
PBS        phosphate buffered saline 
 
PDMS        polydimethylsiloxane 
 
RGD arginine-glycine-aspartic acid 

tripeptide  
 
RT room temperature (~25 °C) 
 
s        second(s) 
 
s (in NMR characterization)    singlet 
 
SAM(s)       self-assembled monolayer(s) 
 
Src        family of proto-oncogenic  

tyrosine kinases 
 
t (in NMR characterization)     triplet  
 
TFA        trifluoroacetic acid 
 
THF        tetrahydrofuran  
 



  xx

TIR        total internal reflection 
 
TIRFM total internal reflection 

fluorescence microscopy 
 
TIPS        triisopropylsilane 
 
TRITC tetramethylrhodamine B 

isothiocyanate 
 
UV        ultraviolet 
 
vs.        versus 
 
v:v        volume to volume ratio 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  1

 
 
 
 

 
CHAPTER 1  

INTRODUCTION: BIOLOGICAL SIGNIFICANCE OF CELL ADHESION, 
POLARIZATION, AND MIGRATION  

 

1.1 Influence of Cell Adhesion, Polarization, and Migration in vivo 

1.1.1 Eukaryotic cells in vivo:  the extracellular matrix. In nature, eukaryotic cells 

exist in a complex environment known as the extracellular matrix (ECM). The ECM 

is composed primarily of two main classes of biomacromolecules: fibrous proteins 

(e.g. fibronectin, collagen, fibrinogen, elastin, and laminin) and proteoglycans (e.g. 

glycosaminoglycans covalently bound to proteins). The ECM is permeable to small 

molecules and also provides mechanical strength to connective tissues. This 

complex matrix is mainly secreted and organized by the cells growing within it. For 

example, in mammalian connective tissues most of the ECM is produced and 

maintained by a cell type known as fibroblasts.1,2  

In order to undergo vital biological functions such as embryogenesis, 

differentiation, and proliferation, the cell must first adhere to the underlying ECM.3,4 

Cell adhesion and migration are also central in normal tissue repair processes 

including the immune response,5-7 wound healing,8-10 and angiogenesis.11 Moreover, 

improper cell adhesion and migration has been implicated in disease states, such as 

cancer cell metastasis.12,13 Therefore, a greater understanding of the mechanisms of 

cell adhesion, polarization, and migration will have broad impacts in fields as diverse 

as medicine and developmental biology.  
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1.1.2 Directed eukaryotic cell migration. In order for cells to undergo directional 

migration a complex series of events must take place. These actions can be 

grouped into three major categories: adhesion, polarization, and migration. First, the 

cell surface receptors must recognize and adhere to components of the ECM. Then, 

the cell must interpret both external and internal signals in order to “choose” a 

direction to migrate. Finally, the cell can begin migration by forming extensions of the 

leading edge of the cell membrane while releasing contacts in the rear of the cell 

body.14-16 There are a multitude of factors that influence this process, thereby 

creating an intricate network of interactions. As a consequence, the exact 

mechanism of directional cell migration is still an area of active study.17-19 A more 

thorough description of cell adhesion will be presented in Section 1.2, and a 

discussion of cell polarization will be offered in Chapter 3.   

 

1.2 Cell Adhesion: Focal Adhesion Formation  

1.2.1 The role of integrin receptors in cell adhesion. As previously mentioned, in 

order to migrate a cell must first adhere to ligands presented in the ECM. While 

numerous cell surface receptors are known, the integrin family of cell surface 

receptors is key in cell – ECM interactions. Since the identification of the integrin 

family of cell-surface receptors in the late 1980s,20,21 there has been keen interest in 

the study of integrin receptor – ligand interactions. 

1.2.2 The structure of integrin receptors. Integrin receptors are heterodimeric 

transmembrane glycoproteins that are composed of α and β subunits. Currently, 

there are 18 α and 8 β known subunits in mammals, which selectively combine in 
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the form αβ. It is interesting to note that, based on the number of α and β subunits 

known, there are nearly 150 permutations possible, yet there have been only 24 

distinct integrin receptors identified to date. This is partially due to the fact that the α 

and β subunits that have been identified are not all expressed in the same manner – 

some are expressed universally, while others are more restricted to certain tissue 

types or developmental stages of the organism.22,23 

The extracellular domains of integrin receptors recognize a wide range of ECM 

components, as well as some divalent cations.24 Some of the specific peptide 

sequences responsible for integrin receptor recognition of ECM components have 

been identified, while many others are still unknown. The short peptide sequence 

Arg-Gly-Asp-Ser (RGDS) was identified as a binding motif in several ECM 

components including fibronectin, fibrinogen, vitronectin, laminin, and some 

collagens. It was later discovered that the minimum sequence necessary to promote 

cell adhesion was RGD, with some flexibility allowed in the fourth amino acid 

position.25,26 Approximately half of the known integrin receptors recognize the RGD 

sequence when binding to ECM ligands.27  

1.2.3 Focal adhesion structure. The individual affinity of an integrin receptor 

ligand pair is quite low (Kd = 10-6 to 10-7).28 Therefore, a number of integrin receptors 

must cluster together in order to create a strong enough interaction between the cell 

surface and the surrounding ECM to promote adhesion. During the clustering 

process a wide range of intracellular proteins are recruited in order to produce a 

physical connection between the filamentous actin fibers of the cytoskeleton and the 

ECM through the cytoplasmic tails of the integrin receptor subunits. This large, 
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dynamic collection of proteins is known as a focal adhesion. A representative 

diagram of a focal adhesion is shown in Figure 1.1.   

At least 50 distinct proteins have been identified in focal adhesions.29 Actin, α-

actinin, filamin, talin, tensin and vinculin have all been identified as serving a 

structural role in focal adhesions,30 while some LIM-domain containing proteins (e.g. 

paxillin, CRP, and zyxin), as well as many enzymes (e.g. ILK, FAK, and Src 

enzymes) have been shown to exhibit regulatory functions.31,32 In the past three 

decades many research groups have worked to identify the multitude of interactions 

within focal adhesions. 

The term “focal adhesion” will be used within this dissertation to describe the 

cluster of proteins that are visualized through fluorescence immunocytochemistry 

staining for the adaptor protein paxillin. Paxillin is known to be present in mature 

focal adhesions.33 There are currently four distinctions used to describe cell-matrix 

adhesions in the literature. These categories are based, in part, on the dynamics of 

the protein cluster, the morphology exhibited, and the cell type under investigation. 

The first, most transient cell-matrix contact is known as a focal complex; small (~100 

nm), dot-like structures found in migrating cells. Focal complexes will either 

experience rapid turnover, or will mature to focal adhesions (also known as focal 

contacts). Focal adhesions are larger (~100 µm), more established cell – matrix 

contact points typically found in cells with lower motility. The third category is a 

subset of focal adhesions known as fibrillar adhesions that are characterized by the 

arrangement of ECM proteins in relation to the intercellular focal adhesion 

structures.34-36   Finally,   in   some   specialized   cell   lines   (e.g.   osteoblasts  and  
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Figure 1.1 Simplified diagram of focal adhesion structure (not drawn to scale). 
Some selected focal adhesion proteins include integrin receptor heterodimers 
(individual subunits designated by α and β), α -actinin (α-Act), focal adhesion 
kinase (FAK), integrin-linked kinase (ILK), paxillin (Pax), particularly interesting new 
Cys-His protein (PINCH), Src-family kinases (Src FK), talin (Tal), tensin (Ten), 
vinculin (Vin), and zyxin (Zyx). Of note is paxillin (Pax), the protein that will be used 
as a marker for focal adhesions in Chapters 2, 3, and 4. 
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neutrophils) the cell-matrix adhesion structures are known as podosomes.37 

 

1.3 Current Methods Used to Study Cell Adhesion, Polarization, and Migration 

As was previously described in Section 1.2.3, a number of biospecific 

interactions between extracellular ligands and cell surface receptors are required for 

cell adhesion and migration. The molecular level process of focal adhesion 

formation, and its subsequent influence on the organization of the intercellular 

nanoarchitecture, is an area of intense investigation. It has been recognized for 

several years that nanoscale clustering of integrin receptors are important for cell 

adhesion and migration.38,39 However, the understanding of the mechanisms within 

these processes remains elusive due to the lack of nanoscale, molecularly well-

defined model substrates.40 The following subsections will describe several 

examples of micro- and nanoscale model systems that have been employed to study 

cell adhesion. 

1.3.1 Microscale cell adhesion studies: cell culture surfaces coated with 

adsorbed ECM proteins. One of the most commonly employed methods to study cell 

adhesion is the use of flat surfaces (often glass or polystyrene cell culture dishes) 

that are coated with an ECM protein (e.g. collagen, fibronectin, laminin, or 

vitronectin). Cells are then added, allowed to adhere, migrate, grow, or differentiate, 

depending on the cell type under study.41 For example, this methodology has been 

used to investigate the formation of focal adhesion in osteoblasts on a variety of 

substrata, including glass and titanium coated with fibronectin or serum.42  
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1.3.2 Microscale cell adhesion studies: microcontact printing. Microcontact 

printing has been used to pattern self-assembled monolayers (SAMs) on metal thin 

film metal surfaces for cell biology studies for the past decade. Microcontact printing 

involves the transfer of an “ink” solution (e.g. hydrophobic alkanethiolate solutions) 

from an elastomeric stamp to a surface (e.g. thin films of gold and silver). The 

background areas of metal can be passivated by the adsorption of poly(ethylene 

glycol) (PEG)-terminated alkanethiolates. Proteins (e.g. fibronectin and vitronection) 

can then be adsorbed and cell adhesion is observed through immunostaining and 

microscopy.43 Microcontact printing has been used to pattern single cells in various 

geometries,44 as well as producing micropatterned substrates presenting ≤ 1 µm2 

patches of fibronectin to study cell spreading.45  

1.3.3 Nanoscale cell adhesion studies: fibronectin patterned by nanosphere 

lithography. Recently, Slater and Frey have used nanosphere lithography to produce 

arrays of gold “nanoislands” with diameters of 90 – 400 nm. Silica spheres are 

deposited in mono- or bilayers on a glass substrate and then gold is thermally 

evaporated onto the surface. Following removal of the spheres through sonication, 

the patterned gold “nanoislands” can be functionalized by immersion in 

alkanethiolate solutions. Silane-based PEG passivates the remaining bare areas of 

glass. The size and spacing of the “nanoislands” can be controlled by the diameter 

of silica spheres used, as well as the configuration of the mono- and bilayers. The 

authors adsorbed intact fibronectin on the “nanoislands” and observed the influence 

of the lateral spacing of adhesive patches on cell adhesion.46  

1.3.4 Nanoscale cell adhesion studies: comb polymers presenting clusters of 
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RGD ligands. It has been recognized in the field of biomaterials development that 

cellular responses to an engineered surface may vary widely based on the spatial 

distribution of biospecific ligands. Griffith et al. have developed comb copolymers of 

methyl methacrylate and poly(oxyethylene) methacrylate (P(MMA-r-POEM)) that can 

be modified through conjugation chemistry to present RGD peptides. By combining 

modified and non-modified combs, nanoclusters of RGD ligands can be presented 

on a background that is resistant to non-specific protein and cell adhesion, due to 

the poly(oxyethylene) methacrylate combs. Thin films of the comb copolymers were 

produced on glass or polystyrene cell culture materials, and cell adhesion behavior 

was studied. It was found that the nanoscale clustering of RGD ligands on the 

polymer thin films was able to support cell adhesion. This platform has also been 

investigated as a possible route to three dimensional tissue scaffolds.47,48 The 

presentation of RGD ligands on these comb polymer surfaces can be partially 

controlled by adjusting the amount of modified comb polymer added, the degree to 

which that comb is modified with ligand, and the molecular weight of the comb 

polymer.  

1.3.5 Nanoscale cell adhesion studies: patterned gold nanoparticles presenting 

RGD ligands. Spatz and co-workers have developed a method to study the effects of 

spatial distribution of cell adhesive ligands on cell adhesion, spreading, and 

migration based on the self-assembly of diblock copolymer micelles containing gold 

nanoparticles. A diblock copolymer (polystyrene-block-poly[2-vinylpyridine    

(HAuCl4)0.5]) is first deposited on a glass surface. After the polymer background is 

removed via plasma treatment, nearly uniform arrangements of gold nanoparticles 
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remain on the surface. The gold nanoparticles are then functionalized with thiol-

terminated cyclic RGD peptides, while the areas between nanoparticles are 

passivated using PEG. The authors have theorized that the diameter of the gold 

nanoparticles (typically 5 – 8 nm) coincide with the reported size of a single integrin 

receptor heterodimer based on published crystallography data. Through this work, 

Spatz et al. have reported that the optimal lateral spacing between integrin receptors 

to be approximately 60 nm, based on focal adhesion formation as shown through 

immunostaining and the observation of cell spreading and migration rates through 

live cell microscopy.49-51 These reports are among the first to study the effects of the 

spatial presentation of cell adhesive ligands with some control over the orientation of 

the immobilized ligand.  

1.3.6 Nanoscale cell adhesion studies: dip-pen nanolithography and protein 

adsorption. Since the introduction of dip-pen nanolithography (DPN) in the late 

1990s,52 there have been several studies using this powerful technique to directly 

pattern biologically relevant molecules, including ECM proteins53 and antibodies.54, 55 

However, there has been a significant lack of studies using DPN-generated surfaces 

for cell adhesion studies. Mirkin, Mrksich, and co-workers reported a proof-of-

concept study based on protein nanoarrays produced by DPN. In this work, 

hexadecanethiol is patterned in nanoarrays of dots (200 nm diameter, 700 nm pitch, 

total patterned area of 6400 µm2). A fusion protein based on the ECM protein 

fibronectin is then adsorbed to the nanoarrays, and fibroblasts are seeded to the 

surface.56 This report is significant in that it is the first to report the adhesion of cells 

to nanoarrays created using DPN.  
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1.3.7 Potential downfalls of previous methods used to study cell adhesion, 

polarization, and migration. Each of the previously mentioned micro- and nanoscale 

patterning techniques do offer a variety of advantages. For example, using ECM 

coated cell culture dishes and microcontact printing is both affordable and easily 

accessible for many research groups. However, both of these methods lack well-

defined interactions between the cells and the model substrate. It is known that cells 

have a great impact on the organization of the surrounding ECM. Following 

adhesion, the cells patterned on fibronectin or other ECM proteins will rearrange the 

orientation of the presented ligands, thus changing the interactions between the cell 

and the model substrate.1 In the case of ECM coated substrates, cell-cell 

interactions will also likely influence the behavior of single cells. 

 Several of the nanoscale methods addressed some of these limitations by 

patterning single, biospecific ligands. Ultimately, there was little control over the 

exact orientation and distribution of cell adhesive ligands on the surface in these 

methods. The work of Mirkin, Mrksich, et al. showed promise by using DPN® to 

control the location of ligands at the nanoscale. However, the use of retronectin as 

the cell adhesive ligand presented caused ill-defined interactions between the cells 

and the surfaces, such that there were multiple interactions occurring through a 

variety of cell surface receptors. Also, the use of only optical microscopy excluded 

the observation of the effects of the nanoscale presentation of ligands on the internal 

nanoarchitecture of the adherent cells. The focus of my dissertation research is 

aimed at developing a nanoscale model system for cell adhesion and polarization 

that addresses these limitations, as described below.                 
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1.4 Significance and Goals of this Research 

Several examples of the many efforts made to design a nanoscale model system 

to study cell adhesion and migration were described in Section 1.3. My dissertation 

research has focused on developing a nanoscale model surface that will allow the 

study of the effect of the spatial presentation of immobilized ligands on the 

nanoarchitecture of adherent cells. I propose that such a model substrate must meet 

several criteria. First, the feature sizes of the ligands must be in the nanometer 

regime. Next, the spatial distribution of immobilized ligands must be precisely 

defined. In addition, the interactions between the cell surface receptors and the 

immobilized ligands of interest must be biospecific. Finally, the substrate must be 

compatible with cell culture and high-resolution fluorescence microscopy. 

Chapter 2 will describe the model system and nanopatterning method chosen 

and the development of symmetric electroactive nanoarrays to study single cell 

adhesion.57 In Chapter 3 the extension of this technology to the development of 

asymmetric electroactive nanoarrays in order to induce and observed single cell 

polarization will be presented.58 The goal of Chapter 4 is to discuss proof-of-principle 

experiments demonstrating the use of total internal reflection fluorescence 

microscopy to study cell adhesion on nanopatterned surfaces.59 The summary, 

conclusions, and future directions of this work will be discussed in Chapter 5.  
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CHAPTER 2 

SYMMETRIC ELECTROACTIVE NANOARRAYS FOR SINGLE CELL ADHESION 
STUDIES 

 
 

 
2.1 Introduction  

In order to study the nanoarchitecture of adherent cells in response to biospecific 

interactions, four main criteria must be defined. The first criterion addresses that the 

interactions between the cell surface receptors and the immobilized ligands must be 

well defined and free of nonspecific influences. Second, the substrate must be 

compatible with standard cell culture conditions and the use of high-resolution 

fluorescence microscopy for visualization. Finally, the feature sizes of the presented 

ligands must be in the nanometer scale, and the spatial distribution of immobilized 

ligands must be precisely defined. The following subsections will describe self-

assembled monolayers (SAMs) of alkanethiols on gold as a proposed model system 

to fulfill the first two requirements, as well as the use of dip-pen nanolithography 

(DPN) as a nanopatterning tool to satisfy the latter two criteria.  

2.1.1 Self-assembled monolayers as a model system for cell biology. While the 

concept of self-assembly of organic molecules on surfaces was first recognized in 

the 1940s,1 the first report of SAMs on gold was not published until Nuzzo and Allara 

described the adsorption of ω-substituted dialkyl disulfides on gold in 1983.2 There 

has been a significant amount of research devoted to elucidating the structure of 
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SAMs on gold and other materials, describing the kinetics of the self-assembly 

process, and further developing these surfaces as platforms for a range of 

applications.1,3 In particular, SAMs have been under consideration as potential 

model systems in biology for several years. SAMs of siloxanes on hydroxylated 

surfaces and alkanethiols on gold (111), as well as on other noble and coinage 

metals have been widely investigated.3  

2.1.1.1 Silane-based SAMs on hydroxylated surfaces. SAMs of silanes are 

produced by the formation of polysiloxane connections between the silanes in 

solution (typically alkyl chlorosilanes, alkyl alkoxysilanes, or alkyl aminosilanes) and 

the surface silanol groups. The hydroxylated surfaces that have been investigated 

include silicon dioxide (SiO2), mica, glass, and quartz. While these surfaces are 

compatible with cell culture and microscopy, there are several limitations that hinder 

the use of such model surfaces in cell biology. First, the silane chemistry that is 

employed in creating these SAMs is not trivial and is extremely sensitive to 

fluctuations in moisture, pH, and temperature.1 It is also difficult to tailor the surface 

chemistry to a specific application because many functional groups are not 

compatible with silane chemistry. Also, the substrates used are amorphous, and the 

SAMs are not as mobile on the surface (due to the formation of numerous –O-Si-O- 

bonds), which leads to less-ordered SAMs.1 Typically the substrates used with 

siloxane SAMs are transparent, easily enabling the use of microscopy to visualize 

adhered cells. However, the non-conductive nature of the surface hinders the use of 

several other techniques, including surface plasmon resonance spectroscopy (SPR) 

and electrochemistry. While silane-based SAMs are more thermally stable than 
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SAMs of alkanethiols on gold,4 the experimental difficulties and the reproducibility 

problems of a silane-based system are a significant hindrance to its widespread 

applicability.  

2.1.1.2 SAMs of alkanethiols on noble and coinage metals other than gold. Sulfur 

is known to have a high affinity for transition metals.5 The properties of SAMs of 

alkanethiols on gold (111) surfaces have been historically the most studied system. 

Other popular systems that have been studied included SAMs of alkanethiols on 

silver (111), with SAMs on copper (111) and palladium garnering less attention. 

There are two major disadvantages to using SAMs on silver (111) as a platform for 

cell biology studies. First, silver oxidizes readily in air under ambient conditions, 

forming a native oxide layer that can lead to surface defects and, eventually, SAM 

degradation. Also, cytotoxic silver cations (Ag+) can leach into the media. On the 

other hand, copper (111) surfaces oxidize even more rapidly in air to form copper 

oxides at the surface. In contrast, palladium surfaces offer a unique opportunity: 

palladium does not oxidize readily at room temperature, and is approximately 

equivalent in price as gold. However, the physical properties of SAMs on palladium 

are currently not as well known as those on gold (111).3,6  

2.1.2 Physical characteristics of SAMs of alkanethiols on gold. It has been shown 

that long-chain ω-substituted alkanethiols of the form HS(CH2)nX (where 0 ≤ n ≤ 21 

and X = CH3, CH=CH2, COOH, OH, etc.) will spontaneously form well-ordered 

monolayers on gold (111) surfaces.5 The thiol functionality binds to the gold surface 

through chemisorption. The long alkyl chains stabilize the SAM through 

intermolecular interactions such as van der Waals forces. The head group at the ω 
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position can also help stabilize the structure through other intermolecular 

interactions (e.g. dipolar forces or hydrogen-bonding), depending on the nature of 

the functionality introduced. Due to the difference in the distance between 

chemisorbed sulfur atoms (~5 Å) and the optimum distance between the alkane 

chains to maximize interchain interactions (~4.25 Å), the SAM takes on a well-

ordered structure with a 30° tilt normal to the surfa ce, as shown in Figure 2.1.1,5,6 

Another advantage of this system is the ease of producing alkanethiols with a range 

of head groups, due to the compatibility of many standard organic synthetic methods 

with thiol chemistry.6     

2.1.2.1 Protein resistant SAMs of alkanethiols on gold. In order to study a 

biospecific interaction between only the immobilized ligand of interest and cell-

surface receptors, it is critical that the remainder of the model surface be inert to the 

nonspecific adsorption of proteins and cells. Surfaces that are comprised of 

polyethylene oxide (PEO) or polyethylene glycol (PEG) are among the most 

commonly studied protein-resistant surfaces for the development of biomedical 

devices.7 This study has been extended into the use of SAMs of oligo-(ethylene 

glycol)-terminated alkanethiols (EGn-C11-SH, where n is 2 – 7) on gold as an inert 

background for cell biological platforms. Characterization studies have shown that 

EGn-C11-SH self-assembles on gold much like n-alkanethiols, retaining a 30° tilt, 

thus forming a well-ordered structure.6 SAMs of EGn-C11-SH (n = 2 – 7) on gold have 

been shown to resist nonspecific adhesion of proteins of various sizes.8 Under cell 

culturing conditions, SAMs of EGn-C11-SH (n = 3 and 6) on gold have been shown to  
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Figure 2.1 Self-assembled monolayers of alkanethiols on gold. Adapted from (1). 
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remain inert to cell adhesion and migration for up to 2 weeks.9 While there have 

been many studies addressing several factors involved in the resistance of such 

surfaces to nonspecific protein adsorption, the exact mechanism of this process is 

still under investigation.10,11   

2.1.2.2 Chemoselective immobilization of ligands. The ease of introducing 

chemical functionality into a SAM of alkanethiols on gold can be combined with the 

electroactive nature of the gold surface to produce an immobilization methodology. 

The Yousaf research group has developed a strategy using hydroquinone- 

terminated alkanethiols to form SAMs on gold substrates that takes advantage of the 

well-known hydroquinone/quinone redox couple (Figure 2.2A).12-14 When the 

hydroquinone is oxidized electrochemically, the corresponding quinone can 

chemoselectively react with oxyamine functionalized ligands (R-ONH2). This reaction 

proceeds at room temperature, under physiological conditions to produce a stable, 

covalent oxime product. The resulting oxime is also redox active, yielding a 

diagnostic oxidation peak that provides a method of monitoring the extent of reaction 

at the surface via cyclic voltammetry (Figure 2.2B).15,16    

2.1.3 Dip-pen nanolithography as a nanopatterning tool. Dip pen nanolithography 

(DPN) can be used to pattern SAMs with precise spatial control in the nanometer 

regime. DPN is a technique based on atomic force microscopy (AFM) that is capable 

of forming features that are tens of nanometers wide.17,18 In DPN, an AFM tip is used 

as a pen to directly write a molecule of interest (often referred to as the “ink”) onto 

the surface. The “ink” solution is physically coated onto the AFM tip and is 

transported to the surface through diffusion processes. There are many factors that  
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Figure 2.2  (A) SAMs of H2Q-C11-SH are oxidized to the quinone, which can then  
undergo a chemoselective reaction with an oxyamine-tethered ligand (R-ONH2) to 
form a redox active oxime linkage. (B) Cyclic voltammograms (50 mV/s, 1 M HClO4) 
show the shift in redox potentials from the hydroquinone / quinone couple (red trace) 
to the oxime product couple (blue trace). 
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affect the patterning of “ink” molecules in DPN, including humidity, temperature, tip-

substrate contact force, tip-substrate contact time (dwell time), writing speed, tip 

geometry, and other chemical and physical properties of the “ink” and substrate.19,20 

2.1.4 Nanoscale model system for single cell studies. This project combines SAM 

surfaces, chemoselective immobilization, and DPN technology to produce 

nanopatterned substrates that meet all of the requirements necessary to study the 

nanoarchitecture of adherent cells. This model system also allows for quantifying the 

amount of ligand immobilized through cyclic voltammetry. SAMs of alkanethiols on 

gold are compatible with typical cell culture conditions and high-resolution 

fluorescence microscopy,21 thus enabling the observation of the internal structures of 

adherent cells. 

 

2.2 Experimental Materials and Methods 

2.2.1 Synthesis of 11-(2,5-dihydroxylphenyl)-1-mercaptoundecane (Scheme 2.1). 

All reagents were purchased from Sigma (St. Louis, MO) and used as received. 1H 

NMR spectra were obtained on a Bruker 400 MHz Avance spectrometer. Flash 

column chromatography was performed using silica as a stationary phase.  

2.2.1.1 Synthesis of 11-(2,5-dimethoxyphenyl)-1-undecene. A solution of 1,4-

dimethoxybenzene (3.026 g, 21.9 mmol) in anhydrous THF (20 mL) was cooled to    

-78 °C in a dry ice / acetone bath under an inert at mosphere of N2. A solution of tert-

butyllithium (3.1 mL, 1.7 M in pentane, 5.27 mmol) was added via syringe. The 

reaction was stirred for 1 h, and then warmed to RT. 11-Bromo-1-undecene (3.0 mL, 

0.0137 mol) was added via syringe, and again stirred for 18 h, then concentrated in  
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Scheme 2.1 Synthesis of 11-(2,5-dihydroxylphenyl)-1-mercaptoundecane  
(H2Q-C11-SH). 
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vacuo, yielding a yellow-orange liquid. The product was purified by flash column 

chromatography (20:1 hexanes : EtOAc mobile phase), yielding a clear, colorless oil 

(0.870 g, 3.00 mmol, 57%). 1H NMR spectrum (CDCl3, 400 MHz): δ 1.25 (m, 12H, 

CH2), 1.60 (m, 2H, Ar-CH2-CH2-, J = 7.4 Hz), 2.00 (m, 2H, -CH2-CH=CH2, J = 6.7 

Hz), 2.55 (t, 2H, Ar-CH2-, J = 8.1 Hz), 3.80 (ds, 6H, -OCH3), 4.90 (m, 2H, -CH=CH2), 

5.80 (m, 1H, -CH=CH2), 6.75 (m, 3H, Ar-H).  

2.2.1.2 Synthesis of 11-(2,5-dimethoxyphenyl)-1-(thioacetyl)undecane. A solution 

of 11-(2,5-dimethoxyphenyl)-1-undecene (0.870 g, 3.00 mmol) was dissolved in 

anhydrous THF (25 mL) and heated to reflux (75 – 80 °C). A catalytic amount of 

AIBN was added, and the reaction continued to stir under N2. Thiolacetic acid (3 eq., 

0.75 mL, 0.0105 mol) was added dropwise to the reaction mixture. The reaction was 

stirred under reflux for 18 h, and then concentrated in vacuo to a yellow liquid. The 

product was purified by flash column chromatography (6:1 hexanes : EtOAc mobile 

phase), yielding a light brown oil (0.756 g, 2.06 mmol, 69%). 1H NMR spectrum 

(CDCl3, 400 MHz): δ 1.25 (m, 14H, -CH2-), 1.55 (m, 4H, Ar-CH2-CH2- and -CH2-CH2-

S, J = 7.2 Hz), 2.30 (s, 3H, -CH3), 2.55 (t, 2H, Ar-CH2-, J = 7.6 Hz), 2.83 (t, 2H, -

CH2-S-, J = 7.2 Hz), 3.75 (ds, 6H, -OCH3), 6.70 (m, 3H, Ar-H).  

2.2.1.3 Synthesis of 11-(2,5-dihydroxylphenyl)-1-(thioacetyl)undecane. 11-(2,5-

Dimethoxyphenyl)-1-(thioacetyl)undecane (0.756 g, 2.06 mmol) was dissolved in 

anhydrous DCM (25 mL) and cooled to -78 °C in a dry ice / acetone bath under an 

inert atmosphere of N2. BBr3 (1.2 mL, 12.7 mmol) was added via syringe after which 

the reaction was warmed to RT and allowed to stir for  2 h. The reaction was cooled 

again to -78 °C in a dry ice / acetone bath and excess B Br3 was quenched by adding 
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a mixture of H2O and diethyl ether via syringe. The reaction mixture was washed 

with H2O (2 x 20 mL) and brine (1 x 20 mL). The organic layer was dried over 

Na2SO4 and concentrated in vacuo to yield a light brown oil (1.259 g crude), which 

afforded a yellowish-white solid after 18 h of refrigeration (4 °C). The lack of the 

singlets at δ 3.75 (-OCH3) in the crude 1H NMR spectrum (CDCl3, 400 MHz) 

indicated that the deprotection reaction was successful.  

2.2.1.4 Synthesis of 11-(2,5-dihydroxylphenyl)-1-mercaptoundecane (H2Q-C11-

SH). 11-(2,5-Dihydroxylphenyl)-1-(thioacetyl)undecane (crude yield, 1.259 g) was 

dissolved in ethanol (50 mL) and heated to reflux (80 °C). Hydrochloric acid (5 mL, 

12 M, 60.5 mmol) was added dropwise and the reaction was allowed to stir at reflux 

for 18 h. The reaction mixture was then concentrated in vacuo to a yellow oil which 

was dissolved in EtOAc (50 mL), washed with H2O (1 x 20 mL, 1 x 40 mL), dried 

over Na2SO4 and concentrated in vacuo. The product was purified by flash column 

chromatography (3:1 hexanes : EtOAc mobile phase) to yield a white solid (0.400 g, 

1.35 mmol, 66% yield from expected yield of 11-(2,5-dimethoxyphenyl)-1-

(thioacetyl)undecane starting material). 1H NMR spectrum (CDCl3, 400 MHz): δ 1.30 

(m, 14H, -CH2-), 1.55 (m, 5H, -SH, Ar-CH2-CH2- and -CH2-CH2-S, J = 7.6 Hz), 2.51 

(m, 4H, Ar-CH2- and -CH2-CH2-S, J = 7.6 Hz), 4.32 (ds, 2H, Ar-OH), 6.56 (m, 3H, Ar-

H).  

2.2.2 Synthesis of 23-mercapto-3,6,9,12-tetraoxatricosan-1-ol (Scheme 2.2).  All 

reagents were purchased from Sigma (St. Louis, MO) and used as received, unless 

otherwise  noted.  1H  NMR  spectra  were  obtained  on  a  Bruker  400 MHz Avance  
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Scheme 2.2 Synthesis of 23-mercapto-3,6,9,12-tetraoxatricosan-1-ol  
(EG4-C11-SH). 
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spectrometer. Flash column chromatography was performed using silica as a 

stationary phase. 

2.2.2.1 Synthesis of 3,6,9,12-tetraoxatricos-22-en-1-ol tetra(ethylene glycol). 2,2’-

(2,2’-oxybis(ethane-2,1-diyl)bis(oxy))diethanol, 11.0 mL, 63.7 mmol) was heated to 

100 °C, after which 1.0 mL of 50% NaOH (aq) was added  and stirred for 30 min. 11-

Bromo-1-undecene (8.5 mL, 38.7 mmol) was added and the reaction mixture was 

stirred for 15 h at 100 °C. After the reaction mixtur e was cooled to RT, hexanes (3 x 

25 mL) was added, stirred vigorously for 30 min, and separated from the aqueous 

layer. The aqueous layer was extracted a final time with hexanes (1 x 15 mL). The 

organic layers were combined and concentrated in vacuo to a dark yellow liquid. The 

product was purified by flash column chromatography (1:1 hexanes : EtOAc mobile 

phase, followed by pure EtOAc, and pure methanol) to yield a pale yellow oil (1.50 g, 

4.33 mmol, 11%). 1H NMR spectrum (CDCl3, 400 MHz): δ 1.30 (m, 12H, -CH2-), 1.50 

(m, 2H, -O-CH2-CH2-CH2, J = 6.8 Hz), 2.00 (m, 2H, -CH2-CH=CH2, J = 5.6 Hz), 2.60 

(t, 1H, -OH, J = 6.4 Hz), 3.40 (t, 2H, -O-CH2-CH2-CH2-, J = 6.8 Hz), 3.60 (m, 16H, -

O-CH2-CH2-O-), 4.90 (m, 2H, -CH=CH2, J = 8.8 Hz), 5.70 (m, 1H, -CH=CH2, J = 10 

Hz). 

2.2.2.2 Synthesis of S-1-hydroxy-3,6,9,12-tetraoxatricosan-23-yl ethanethioate. A 

solution of 3,6,9,12-tetraoxatricos-22-en-1-ol (1.50 g, 4.33 mmol) in methanol (25 

mL) was heated to 75 °C under reflux with stirring. A  catalytic amount of AIBN was 

added. Thiolacetic acid (0.6 mL, 8.39 mmol) was added via syringe. The solution 

was refluxed for 18 h. After the reaction cooled to RT, the solution was concentrated 

in vacuo to afford a light yellow solid precipitate. Prior to further purification, EtOAc 
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was added to the solution and the yellow solid (~30 mg) was removed by gravity 

filtration. The yellow solution was then purified by flash column chromatography (1:1 

hexanes : EtOAc mobile phase, followed by 4:1 EtOAc : methanol, and pure 

methanol) and afforded a yellow oil (1.30 g, 3.08 mmol, 71%). 1H NMR spectrum 

(CDCl3, 400 MHz): δ 1.23 (m, 14H, -CH2-), 1.50 (m, 4H, -O-CH2-CH2-CH2- and -CH2-

CH2-S, J = 6.8 Hz), 2.75 (s, 3H, -CH3), 2.82 (t, 2H, -CH2-CH2-S, J = 7.2 Hz), 3.40 (t, 

2H, -O-CH2-CH2-CH2-, J = 6.8 Hz), 3.57 (m, 14H, -O-CH2-CH2-O-), 3.68 (m, 2H, HO-

CH2-, H = 4.4 Hz).  

2.2.2.3 Synthesis of 23-mercapto-3,6,9,12-tetraoxatricosan-1-ol (EG4-C11-SH).  

Hydrochloric acid (10.0 mL, 12 M, 0.120 mol) was added to a solution of S-1-

hydroxy-3,6,9,12-tetraoxatricosan-23-yl ethanethioate (1.30 g, 3.08 mmol) in 

methanol (30 mL). This solution was stirred and heated to reflux (80 °C) for 18 h, 

then cooled to RT and concentrated in vacuo to yield a light yellow-brown oil. This oil 

was redissolved in EtOAc (20 mL), washed with NaHCO3 (3 x 15 mL), brine (1 x 15 

mL), dried over Na2SO4 and concentrated in vacuo to yield light yellow oil (0.900 g, 

2.36 mmol, 77%). 1H NMR spectrum (CDCl3, 400 MHz): δ 1.30 (m, 14H, -CH2-), 1.50 

(m, 4H, -O-CH2-CH2-CH2- and -CH2-CH2-S), 2.49 (q, 2H, -CH2-S, J = 7.2 Hz), 3.42 

(t, 2H, -O-CH2-CH2-, J = 6.8 Hz), 3.60 (m, 14H, -O-CH2-CH2-O-), 3.70 (t, 2H, HO-

CH2-, J = 4.4 Hz).    

2.2.3 Synthesis of linear RGD-oxyamine peptide (Scheme 2.3). Standard Fmoc-

based solid-phase peptide synthesis was used to produce oxyamine-terminated 

linear RGD using an automated peptide synthesizer (C S Bio Co., Menlo Park, CA). 

Rink  amide  4-methylbenzhydrylamine  (MBHA)  resin  (0.58 mmol/g),  amino  acids  
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Scheme 2.3 Fmoc-based solid-phase peptide synthesis of the cell adhesive  
peptide, oxyamine-terminated linear RGD. 
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(Fmoc-Arg(Pbf)-OH, Fmoc-Asp(OtBu)-OH, Fmoc-Gly-OH, and Fmoc-Ser(tBu)-OH), 

Boc-aminooxy acetic acid, and HBTU were purchased from AnaSpec (San Jose, 

CA). DIEA and TIPS were purchased from Acros Organics. Fmoc-6-aminohexanoic 

acid was purchased from Sigma. Piperidine was purchased from Fluka, and solvents 

(DMF, DCM) were purchased from Fisher.  

Rink amide MBHA resin (0.127 g, 0.1 mmol) was placed in an automated peptide 

synthesizer chamber. The amino acids Fmoc-Arg(Pbf)-OH, Fmoc-L-Asp(OtBu)-OH, 

Fmoc-L-Gly-OH, Fmoc-Ser(tBu)-OH), Boc-aminooxy acetic acid, and Fmoc-6-

aminohexanoic acid were measured in threefold excess (0.30 mmol) and dissolved 

in 5 mL of DMF for each time the amino acid appears in the desired sequence. All 

other reagents were prepared in DMF: 0.1 M HBTU, 0.1 M DIEA, and 20% (by 

volume) piperidine. Following peptide elongation, the resin was placed in a N2 

bubbling chamber with a cleavage cocktail of TFA : H2O : TIPS (95% : 2.5% : 2.5%, 

by volume) for 60 min. The resin was then removed by filtration and the peptide 

containing solution was concentrated in vacuo. The peptide was precipitated by ice-

cold diethyl ether, centrifuged, and the peptide pellet redissolved in H2O. The H2O 

solution was frozen and lyophilized to yield a white solid. Direct infusion MS (QQQ, 

ESI+): expected exact mass 675.33 Da, observed exact mass 675.4 Da.   

Cyclic RGD peptide was prepared by Eun-ju Lee (Yousaf group, University of 

North Carolina at Chapel Hill) and used without further purification.  

2.2.4 Gold-coated substrate preparation. Glass cover slips, concentrated H2SO4, 

and 30% H2O2 were purchased from Fisher. Gold and titanium evaporation slugs 
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were purchased from Aldrich. Distilled water was obtained using a Millipore Direct-Q 

UV system (Millipore Corporation, Bedford, MA). All thin layer metal deposition was 

performed using a vacuum evaporator system with a 3 kW electron beam gun 

(Model VE-100, Thermionics Laboratory, Inc., Port Townsend, WA). 

Glass cover slips (Fisher) were cleaned with Piranha solution (3:1 (v:v) 

concentrated H2SO4 : 30% H2O2). An adhesion layer of titanium (5-6 nm) and a 

transparent layer of gold (15-24 nm) were then thermally evaporated onto the 

surface. After preparation, the gold-coated substrates were again cleaned with 

Piranha solution (1:1 (v:v) concentrated H2SO4 : 30% H2O2) for ~1 min, thoroughly 

rinsed with H2O, and either stored in H2O or dried with compressed air and used 

directly.  

2.2.5 Dip-pen nanolithography (DPN) methodology. Silicon AFM tips (nominal 

spring constants: 0.03 - 0.08 N/m) were purchased from MikroMasch USA, 

Wilsonville, OR. Acetonitrile (Optima grade) was purchased from Fisher. All DPN 

and lateral force microscopy (LFM) measurements were made using a MFP-3D 

Stand Alone atomic force microscope (Asylum Research, Santa Barbara, CA). DPN 

pattern design and image analysis was performed using IgorPro software 

(WaveMetrics, Inc., Portland, OR) and MicroAngelo™ LithoStep nanolithography 

software (Aslyum Research).  

AFM tips were immersed in a solution of H2Q-C11-SH (5 mM in acetonitrile, 40 s) 

and then gently dried with compressed air. MicroAngelo™ LithoStep program was 

used to produce nanoarray patterns. Square nanoarrays of H2Q-C11-SH on bare 

gold (20 x 20, 3.0 µm pitch, dwell time 30.0 s, diameter ~500 nm, total patterned 
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area of 60 µm x 60 µm) were produced by DPN for cell adhesion studies. The 

nanoarrays were imaged directly following printing at a scan rate of 4 Hz. IgorPro 

software was used for image analysis and feature size measurements. The 

remaining bare regions of gold were passivated by immersing the substrate in a 

solution of EG4-C11-SH (1 mM in ethanol, ~12 h). The nano-patterned substrates 

were either stored in H2O for less than 36 h prior to use, or were hydrated in H2O for 

1 – 1.5 h prior to immediate ligand immobilization.   

2.2.6 Characterization of electroactive nanoarrays by cyclic voltammetry (CV).  

All CV experiments were performed using a three-electrode potentiostat (BAS 

100B/W Electrochemical Analyzer, Bioanalytical Systems, Inc., West Lafayette, IN) 

with a Ag/AgCl reference electrode, platinum wire auxiliary electrode, and the gold-

coated substrate as the working electrode.  HClO4 was purchased from Fisher and 

AOAA was purchased from Sigma.  

Four nanoarrays (20 x 20) of dots of H2Q-C11-SH (3.0 m pitch, dwell time 30.0 

s, diameter ~500 nm) were produced on a gold-coated glass substrate, as previously 

described. The remaining bare regions of gold were passivated by immersing the 

substrate in a solution of EG4-C11-SH (1 mM in ethanol, ~12 h), followed by 

immersion in H2O for 1 h prior to use. CVs of the unmodified H2Q-C11-SH 

nanoarrays were obtained in 1.0 M HClO4 (potential window: –150 to 750 mV vs. 

Ag/AgCl, scan rate: 50 mV/s). The hydroquinone groups were oxidized to the 

quinone by applying a potential of 750 mV (vs Ag/AgCl) for 15 s. Following the 

immobilization reaction of AOAA (150 mM in H2O, 4 h), CVs were taken with the 

same parameters as previously described.  
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2.2.7 Immobilization of peptide ligands to electroactive nanoarrays. The H2Q-C11-

SH nanoarrays were oxidized by applying a potential of 750 mV (vs. Ag/AgCl, 1.0 M 

HClO4) for 15 s. Following electrochemical oxidation of the nano-patterned 

substrates, the resulting quinone was then reacted with oxyamine-terminated linear 

RGD peptide (10 mM in PBS) or cyclic RGD peptide (10 mM in PBS) for 5 h. 

2.2.8 Cell seeding and staining techniques. 3T3 Swiss Albino mouse fibroblasts22 

were obtained from the Tissue Culture Facility, the University of North Carolina at 

Chapel Hill. DMEM, bovine calf serum, Dulbecco’s PBS, Triton X – 100, DAPI and 

phalloidin-TRITC were purchased from Sigma, and paraformaldehyde solution 

(32%) was purchased from Fisher. Penicillin/streptomycin was purchased from 

Gibco. Mouse anti-paxillin antibody was purchased from B D Biosciences (San Jose, 

CA), normal goat serum and Cy-2 conjugated goat anti-mouse IgG was purchased 

from Jackson ImmunoResearch Laboratories, Inc. (West Grove, PA). Fluorescence 

mounting medium was purchased from Dako (Carpinteria, CA). 

3T3 Swiss Albino mouse fibroblasts were seeded on the patterned substrates in 

serum-free DMEM for 3 h, followed by incubation for ~18 h in DMEM containing 10% 

bovine calf serum and 1% penicillin/streptomycin (37 ºC, 5% CO2 atmosphere). The 

patterned cells were then fixed with 3.2% formaldehyde in Dulbecco’s PBS and 

permeated with PBS containing 0.1% Triton X – 100. Both dye mixtures were made 

in 5% normal goat serum in PBS containing 0.1% Triton X –100. The substrates 

were placed in a humidified chamber and incubated with the first dye mixture 

(mouse anti-paxillin, 1:1000 dilution; phalloidin-TRITC, 1:50 dilution) for 2 h, then 

washed with PBS (3 x 10 min). The substrates were then incubated in the humidified 
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chamber with a second dye mixture (DAPI, 1:500 dilution; phalloidin-TRITC, 1:50 

dilution; Cy-2 conjugated goat anti-mouse IgG, 1:100 dilution). The substrates were 

then prepared for microscopy by securing the nano-patterned substrate gold-coated 

side down in fluorescence mounting medium on a glass coverslip.  

2.2.9 Fluorescence microscopy of patterned cells.  Fluorescence images were 

taken using a Nikon Eclipse TE2000-E inverted microscope (Nikon USA, Inc., 

Melville, NY). Image analysis was performed using MetaMorph software (Molecular 

Devices, Downingtown, PA). Oil immersion images were obtained using a Plan Fluor 

40X oil immersion objective with a 1.30 NA (Nikon USA). Immersion oil was 

purchased from Carl Zeiss MicroImaging, Inc. (Thornwood, NY) and lens paper was 

purchased from Fisher. All images were obtained within 36 h of the staining 

procedure and substrates were kept in a dark, dry environment when not in use.      

 

2.3 Results and Discussion 

2.3.1 DPN method development. Silicon AFM tips were inked by immersion in a 

solution of H2Q-C11-SH. MicroAngeloTM LithoStep, a program for lithography and 

nano-manipulation from Asylum Research (Santa Barbara, CA), was used to 

produce arrays of spots. This program controls various parameters of DPN including 

the number of grid points in the x- and y-axis, the pitch (separation between the 

centers of adjacent spots), and the dwell time (tip – substrate contact time) at each 

point. The effect of dwell time on the deposition of H2Q-C11-SH on gold was studied 

under ambient conditions (Figure 2.3A). A 5 x 5 nanoarray with a pitch of 1 µm was  

printed  with  a  dwell  time  that  began  at  3.0 s  and  increased  by  3.0 s with each  
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Figure 2.3  (A) LFM image demonstrating the effect of dwell time on average spot  
size in nanoarrays produced via DPN. The nanoarray of H2Q-C11-SH was printed 
with an increasing dwell time (beginning dwell time of 3.0 s, increasing by steps of 
3.0 s). Average spot diameter for a dwell time of 30.0 s is approximately 500 nm.  
(B) The effect of dwell time (s) on average spot diameter in DPN. As dwell time is 
increased, the average spot diameter increases, and appears to plateau at around 
30.0 s (n = 3 arrays). 
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subsequent spot. As can be seen in Figure 2.3B, the spot diameter increased with 

increasing dwell time. Prior to printing each 20 x 20 nanoarray for cell adhesion 

studies, a test nanoarray was produced and the dwell time adjusted accordingly to 

create ~500 nm diameter spots. A dwell time of 30.0 s was typically determined to 

be the optimal under ambient conditions required to produce spots with an average 

diameter of 500 nm.  

2.3.2 Lateral force microscopy characterization of electroactive nanoarrays. A 20 

x 20 nanoarray was produced following the procedure described above. The 

nanoarrays were imaged directly following printing using the same tip at a scan rate 

of 4 Hz and a scan angle of 90.0°, producing the late ral force image in Figure 2.4A. 

The nanoarray is composed of 400 spots, with a total patterned area of 60 µm X 60 

µm. The lateral force profile taken across the expanded area of the nanoarray in 

Figure 2.4B demonstrates that each spot is similar in terms of diameter and lateral 

force. The average diameter of the dots in this array is ~500 nm.  

2.3.3 Electrochemical characterization of electroactive nanoarrays. Four 

nanoarrays (20 x 20, ~500 nm diameter spots) of H2Q-C11-SH were produced on a 

gold-coated glass substrate, as described above. A BAS 100B/W Electrochemical 

Analyzer was used to generate CVs of the hydroquinone / quinone redox couple, as 

shown in Figure 2.5 (red trace). The hydroquinone groups presented in the 

nanoarrays underwent a reversible oxidation at 660 mV and reduction at -20 mV. 

Previous reported CVs of full SAMs of H2Q-CHn-SH have shown a CV peak-to-peak 

potential separation of ~500 mV and ~600 mV for H2Q-CH10-SH  and H2Q-CH12-SH, 
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Figure 2.4 (A) LFM image of an electroactive nanoarray of H2Q-C11-SH on gold  
generated by DPN. The 20 x 20 nanoarray consists of 400 spots with an average 
spot diameter of 500 nm. (B) A lateral force profile for the line drawn across the 
expanded image (region in white box in A) is shown below the expanded image, 
indicating that each spot is consistent, both in diameter and lateral force. 
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Figure 2.5 Electroactive nanoarrays of H2Q-C11-SH are first oxidized to the  
corresponding quinone, which can then chemoselectively react with (aminooxy) 
acetic acid (R-ONH2). Cyclic voltammograms show the shift from the hydroquinone / 
quinone redox couple (red trace) to the oxime product redox couple (blue trace). 
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respectively.23,24 The oxidation and reduction potentials found for nanoarrays of 

H2Q-C11-SH are also comparable to the previously reported oxidation and reduction 

potentials (580 mV and –30 mV, respectively) of 100% monolayers of H2Q-C11-SH.12 

The hydroquinone groups were then oxidized to the quinone by applying a potential 

of 750 mV (vs. Ag/AgCl, 1 M HClO4) for 15 s. CVs taken following the immobilization 

of AOAA resulted in a shift in the oxidation and reduction peaks corresponding to 

oxime product to 520 mV and 235 mV, respectively. This result, taken in conjunction 

with the decrease in the oxidation and reduction peaks of the parent hydroquinone – 

quinone couple, indicate that the chemoselective immobilization reaction occurred. 

2.3.4 Cell adhesion studies on symmetric electroactive nanoarrays.25   Figure 2.6 

represents a schematic of the experimental design used to study single cell 

adhesion on electroactive nanoarrays. Symmetric electroactive nanoarrays of H2Q-

C11-SH were prepared as described above, yielding a total patterned area of 60 µm 

x 60 µm. Following electrochemical oxidation of the substrates, the resulting quinone 

was reacted with an oxyamine-terminated peptide. 3T3 Swiss Albino mouse 

fibroblasts were seeded on the patterned substrates, incubated in serum-containing 

DMEM (37 ºC, 5% CO2, ~18 h), fixed, and then permeated in PBS containing 0.1% 

Triton X-100. The cells were visualized using three fluorescent dyes targeting the 

nuclei, actin cytoskeleton, and focal adhesions. The focal adhesion structure was 

analyzed by staining with an anti-paxillin antibody. Paxillin is a protein found in focal 

adhesions.26 Fluorescent micrographs were taken using a Nikon Eclipse TE2000-E 

inverted microscope. 
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Figure 2.6 Schematic diagram for the preparation of electroactive nanoarrays by 
DPN. Nanoarrays of H2Q-C11-SH are patterned by DPN. After the remaining bare 
gold region is backfilled with EG4-C11-SH, the hydroquinone is oxidized to produce 
the quinone. An oxyamine-terminated peptide is chemoselectively immobilized via 
an oxime conjugate to promote cell adhesion on the electroactive nanoarray. 
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The first electroactive nanoarrays for cell adhesion studies were functionalized 

with immobilized oxyamine-terminated linear RGD (Figure 2.7A). The purpose of 

these experiments was twofold. First, this study was to ensure that the nanoarray 

presenting cell-adhesive ligand could support cell adhesion. The second objective 

was to observe the influence of the spatial presentation of linear RGD on the 

nanoarchitecture of the adherent cell through staining for paxillin.  

Several representative micrographs of 3T3 Swiss Albino mouse fibroblasts 

adhered to nanoarrays of immobilized linear RGD peptide are shown in Figure 2.8. 

The cells were stained with three fluorescent dyes: DAPI (nuclei, blue), phalloidin-

TRITC (actin cytoskeleton, red), and anti-paxillin with Cy-2 secondary fluorescent 

antibody (focal adhesions, green). The cells adopt a square to rectangular 

morphology which closes corresponds to the size of a single nanoarray (~60 µm x 

~60 µm). Interestingly, the focal adhesion structures are localized primarily to the 

periphery of the adherent cell. This lack of well-formed focal adhesions throughout 

the cell likely results from the relatively low affinity for integrin receptors for linear 

RGD peptide, which has a Kd of ~10-6
 (µM).27 This low affinity leads to the cell 

staying in a more motile state, such that the cell is sampling the environment at a 

higher rate. In order to further investigate this phenomenon and to study the effect of 

ligand affinity on focal adhesion structures of adherent cells, a series of symmetric 

electroactive nanoarrays of the same dimensions as those produced for linear RGD 

studies were produced and an oxyamine-terminated cyclic RGD (Figure 2.7B) 

peptide was immobilized, as described below. 
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Figure 2.7 Structures of two cell-adhesive peptides that were immobilized to  
electroactive nanoarrays for cell adhesion studies. Integrin receptors are known to 
have a lower affinity to linear RGD peptide (A) than cyclic RGD peptide (B). 
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Figure 2.8 Representative fluorescent micrographs of 3T3 Swiss Albino fibroblasts 
on immobilized oxyamine-terminated linear RGD nanoarrays. Cells were stained 
for nuclei (blue), actin (red), and paxillin (green). The majority of the focal adhesions 
(green dots) are located at the periphery of the cells. 
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2.3.5 Effects of ligand affinity on cell adhesion to immobilized peptide 

nanoarrays. The affinity of integrin receptors for cyclic RGD is known to be much 

stronger than that of linear RGD (Kd of nM versus µM, respectively).27 It has been 

suggested that this difference in binding is due to the conformation and flexibility 

inherent in the linear and cyclic forms of the RGD motif. A predominant hypothesis is 

that cyclic peptides more closely mimic the native environment of the RGD motif in 

ECM proteins, therefore inducing a higher affinity for integrin receptors.28 It has been 

previously shown to dramatically affect focal adhesion patterning in adherent cells 

on model substrates presenting linear and cyclic RGD peptides homogeneously.29 

Figure 2.9 shows representative fluorescent micrographs of 3T3 Swiss Albino 

fibroblasts adhered to single nanoarrays of immobilized cyclic RGD. The adherent 

cells were again stained with the same three fluorescent dyes: DAPI (nuclei, blue), 

phalloidin-TRITC (actin cytoskeleton, red), and anti-paxillin with Cy-2 secondary 

fluorescent antibody (focal adhesions, green). Again, the cells adopt a square 

morphology of approximately the same size as the single nanoarray (~60 µm x ~60 

µm), indicating that the cell has been immobilized by a single nanoarray. In this 

instance, there are many more distinct focal adhesions that are distributed 

throughout the interior of the cells.  

A two-step mechanism has been proposed to describe the assembly of focal 

adhesions. The first step, termed nucleation, is the gathering of integrin receptors 

into a condensed cluster structure. The second step, growth, is achieved by the 

recruitment of many single integrin receptors and clusters to form a mature focal 

adhesion.29  It  has been observed that the difference in ligand affinity between linear   
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Figure 2.9 Representative fluorescent micrographs of 3T3 Swiss Albino fibroblasts 
on immobilized cyclic oxyamine-terminated RGD nanoarrays. Cells were stained for 
nuclei (blue), actin (red), and paxillin (green). The majority of the focal adhesions 
(green dots) are distributed throughout the cells. 
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and cyclic RGD peptides could possibly be due to the difference in these two steps. 

In adherent cells on linear RGD peptides, the integrin receptors are more mobile as 

a result of the lower affinity (lower Kd). Therefore, the nucleation of focal adhesions 

is decreased, while the growth of focal adhesions is increased. This results in fewer 

mature focal adhesions in the cells. On the other hand, in cells adhered to cyclic 

RGD peptides, there is increased nucleation of focal adhesions, because it takes 

fewer clustered integrin receptors to form clusters due to the higher affinity of the 

ligand. However, the growth of the focal adhesions is slower, resulting in more 

numerous, yet smaller focal adhesions distributed throughout the cell.  

 

2.4 Conclusions 

It was determined that the combination of the patterning of electroactive SAMs 

through DPN, a chemoselective immobilization strategy, and high-resolution 

fluorescence microscopy is a valid method to study single cell adhesion. The 

difference in integrin receptor affinity for linear and cyclic RGD peptides was shown 

to have a dramatic affect on the organization of intracellular nanoarchitecture in 

adherent fibroblasts. This work shows promise in a range of applications in the fields 

of drug discovery and live-cell migration studies. These future directions will be 

described in further detail in Chapter 5.  
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CHAPTER 3 
 

ASYMMETRIC ELECTROACTIVE NANOARRAYS FOR SINGLE CELL 
POLARIZATION STUDIES 

 

3.1 Introduction 

3.1.1 Cell polarity: asymmetry in form and function. The simplest definition of cell 

polarization is the establishment of morphologically and functionally distinguishable 

regions of the internal structures of the cell.1 The proper operation of this process is 

vital in many biological phenomena, as was described in Chapter 1 (Section 1.1.1). 

The ability to polarize has been shown to be important in a wide range of cell types, 

from simple budding yeast to specialized eukaryotic cells including epithelial cells, 

fibroblasts, helper T cells, and neurons.2-5 While the molecular mechanism is thought 

to be highly conserved in eukaryotic cells,6 there have been extensive studies 

demonstrating that many of the pathways and components involved are specific in 

relation to the cell line under study, as well as experimental conditions.7,8   

Polarization is an essential step in cell migration. In order to move in a directional 

manner, the cell must adopt and maintain a polarized shape. This asymmetry 

manifests as a polarization of several key organelles, resulting in a distinctive cell 

front and rear.9-11 A depiction of a polarized, migratory fibroblast is shown in Figure 

3.1. The leading edge of the cell is characterized by the presence of protrusions of 

the plasma membrane; flattened, wide projections known as lamellipodia, and 

smaller, spike-like  filopodia. These  membrane  extensions  are  driven  primarily  by  
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Figure 3.1 (Left) Schematic depiction of a polarized fibroblast. The cell is depicted 
with a condensed Golgi apparatus (green) and MTOC (purple) located forward of the 
nucleus (blue), towards the leading edge of the cell. This indicates that there is net 
cell polarity in the direction of migration (indicated by the white arrow). The 
microtubule network is shown in black, and the dense concentration of actin 
cytoskeleton associated with lamellipodial extension is shown in red. (Right) 
Micrograph of a polarized 3T3 Swiss Albino mouse fibroblast showing the nucleus 
(blue), Golgi apparatus (green), and the actin cytoskeleton (red). As evidenced by 
the extended morphology, and placement of the condensed Golgi apparatus relative 
to the nucleus, the cell was migrating in the direction of the white arrow. 



  54 

actin polymerization, which in turn is dependent on a variety of signaling 

pathways.12,13 Several other cytoplasmic organelles are thought to be involved in the 

development of cell polarization in fibroblasts. These are discussed in more detail 

below.  

3.1.2 Experimental markers of cell polarization in fibroblasts. The flattened 

protrusions of the cellular plasma membrane know as lamellipodia are typically ~2 – 

5 µm in width.14 This projection is supported by the polymerization of a network of 

actin filaments that exclude, for the most part, other cytoplasmic organelles. This 

concentration of actin polymerization at the leading edge of the cell is countered by a 

decrease in the amount of actin filaments in the rear edge of the cell, which is 

accomplished by selective depolymerization of existing filaments. The actin filaments 

in the cell that are not directly involved in lamellopodial extension or retraction of the 

cell rear are organized in such a way as to support the rest of the cell body.14,15 The 

extension of lamellopodia and retraction of the cell rear are all closely involved with 

cell adhesion, previously discussed in Chapters 1 and 2.   

In addition to the actin cytoskeleton, the microtubule network is involved in cell 

polarization. It has been shown that cell polarization can be disrupted by the use of 

microtubule-depolymerizing drugs.1,14 The number and arrangement of microtubules 

is commonly controlled by a structure known as the centrosome. The centrosome is 

one type of microtubule-organizing center (MTOC) that is comprised of a pair of 

centrioles containing γ-tubulin, surrounded by an amorphous collection of 

proteins.16,17 The MTOC has been found to be critical in a range of cellular functions 

and organization. A major example is the arrangement of several membrane-bound 
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organelles including the nucleus, Golgi apparatus, and endoplasmic reticulum during 

cytokinesis (cell division), as well as possible connections in cell polarization.18  

In migrating fibroblasts, both the MTOC and the Golgi apparatus are often 

reoriented in front of the nucleus, towards the leading edge of the cell. It is thought 

that the reorientation of the Golgi apparatus in the direction of cell movement is a 

response to intracellular signals for new membrane components at the leading edge 

of the cell. These components can be provided through increased vesicular transport 

from the Golgi apparatus, mediated by the microtubule network.19,20 However, it has 

also been shown that some cell lines (e.g. mammalian neutrophils and Dictyostelium 

ameobae) do not always reorient the MTOC in this manner, inferring dependence on 

culturing conditions and substrate geometries.21-23 Regardless, the Golgi apparatus 

and MTOC are known to co-localize in many cell types, including NIH-3T3 

fibroblasts.24    

The nucleus of cells is known to shift position in the cytoplasm of many cell 

types, although the mechanism and driving force behind such movements are not 

always clear. In animal cells, the nuclear membrane is thought to interact with 

microtubules, which may be involved in the positioning of both the nucleus and the 

MTOC.25 The repositioning of the nucleus of cells is also typically used as a marker 

of cell polarization. The nucleus has been used as a reference point in order to 

observe the organization of other organelles, including the Golgi apparatus and the 

MTOC.13  

3.1.3 Previous studies of cell polarization in fibroblasts. Many of the fundamental 

studies of cell polarization have been performed using wound-healing assays. In 
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these experiments adherent cells are grown to confluence on a flat substrate, then 

the cell monolayer is manually disrupted, creating an artificial wound. The 

reorganization of organelles, establishment of cell polarization, and subsequent 

migration of cells at the edge of the experimental wound are then observed through 

immunofluorescence staining and microscopy.7,19,20 The Yousaf group has also 

reported the study of cell polarization on patterns presenting biospecific RGD 

peptides in gradients.26 In these studies, the polarization that occurs is due not only 

to cell-substrate interactions, but also cell-cell interactions. To remedy this, several 

groups have attempted to produce patterned substrates such that the cell-cell 

interactions would be reduced or removed completely. 

Whitesides and coworkers have produced cell adhesive patterns of various 

shapes to observe the effect of geometry and surface constraint on lamellipodial 

extension. Lamellipodia were found to preferentially extend from the corners of the 

patterns.27,28 In an extension of this work, Whitesides et al. produced asymmetric 

micropatterns of hydrophobic SAMs on gold to probe the relationship between 

imposed cell polarity and cell migration direction. In this work, it was demonstrated 

that the cell migration direction can be controlled by the direction of the imposed cell 

polarity following electrochemical desorption of the hydrophobic SAMs.29 Finally, 

Théry et al. have probed the relationship between cell polarization and the position 

of adhesive and non-adhesive areas in single cells. Various shapes presenting 

fibronectin, an ECM protein, were produced in order to ascertain how the organelles 

and cytoskeletal elements reorganize in response to asymmetry in the 

microenvironment of the cell.30  
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In order to probe the effects of the spatial distribution and ligand affinity of 

biospecific cell adhesive ligands on single cell polarity, the DPN methodology 

developed in Chapter 2 will be used to produce symmetric and asymmetric 

nanopatterns. This technique will be combined with immunofluorescence microscopy 

of several key organelles, including the nucleus, Golgi apparatus, actin cytoskeleton, 

and focal adhesions, in order to observe cell polarization in single, adherent 

fibroblasts. Therefore, the effects of the spatial distribution of biospecific ligands on 

single cell polarity can be examined in the absence of cell-cell contact.  

 

3.2 Experimental Materials and Methods 

3.2.1 Design and production of asymmetric nanoarrays for single cell polarization 

studies. Square nanoarrays with an asymmetric distribution of spots were produced 

via DPN on bare gold using H2Q-C11-SH as ink, with a total patterned area of 60 µm 

x 60 µm, as shown in Figure 3.2. The higher density region was a 20 x 10 nanoarray 

(3.0 µm pitch), while the lower density region was a 10 x 5 nanoarray (6 µm pitch), 

both with ~500 nm diameter spots. The nanoarrays were imaged directly following 

printing at a scan rate of 4 Hz. The remaining exposed areas of gold were 

passivated by immersing the substrate in a solution of EG4-C11-SH (1 mM in ethanol, 

12 h). The patterned substrates were either stored in H2O before use, or were 

hydrated in H2O for 1 – 1.5 h prior to immediate ligand immobilization. Following 

electrochemical oxidation of the hydroquinone-presenting asymmetric nanoarrays to 

the corresponding quinone (750 mV vs. Ag/AgCl, 15 s, 1.0 M HClO4), linear or cyclic 

RGD peptide was immobilized as previously described.  
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Figure 3.2 Schematic diagram of the production of asymmetric electroactive 
nanoarrays. An asymmetric nanoarray of H2Q-C11-SH was produced on gold via 
DPN, and the remaining non-patterned gold surface was passivated by immersion in 
a solution of EG4-C11-SH. The H2Q-C11-SH asymmetric nanoarrays were then 
electrochemically oxidized to the corresponding quinone, and an oxyamine-
terminated peptide ligand was chemoselectively immobilized. Fibroblasts are then 
seeded and stained with several fluorescent dyes in order to evaluate cell 
polarization. 
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3.2.2 Cell seeding and staining techniques. 3T3 Swiss Albino mouse fibroblasts 

were obtained from the Tissue Culture Facility at the University of North Carolina at 

Chapel Hill. DMEM, bovine calf serum, Dulbecco’s PBS, Triton X – 100, DAPI and 

phalloidin-TRITC were purchased from Sigma, and paraformaldehyde solution 

(32%) was purchased from Fisher. Penicillin/streptomycin were purchased from 

Gibco and mouse anti-paxillin antibody was purchased from B D Biosciences (San 

Jose, CA). Normal goat serum, FITC-conjugated goat anti-rabbit IgG and Cy-2 

conjugated goat anti-mouse IgG were purchased from Jackson ImmunoResearch 

Laboratories, Inc. (West Grove, PA). Rabbit polyclonal anti-giantin primary antibody 

was purchased from Covance Research Products (Berkeley, CA), and fluorescence 

mounting medium was purchased from Dako (Carpinteria, CA).   

3T3 Swiss Albino mouse fibroblasts were seeded on the patterned substrates in 

serum-free DMEM for 3 h, followed by incubation for 5 h in DMEM containing 10% 

bovine calf serum and 1% penicillin/streptomycin (37 ºC, 5% CO2 atmosphere). The 

patterned cells were then fixed with formaldehyde (3.2% in PBS) and permeated in 

PBS containing 0.1% Triton X – 100. All fluorescent dye mixtures were made in PBS 

containing 5% normal goat serum and 0.1% Triton X –100. The substrates were 

placed in a humidified chamber and incubated with the first dye mixture (rabbit anti-

giantin, 1:400 dilution; phalloidin-TRITC, 1:250 dilution) for 2 h, washed with PBS (3 

x 10 min), and incubated with a second dye mixture (DAPI, 1:500 dilution; phalloidin-

TRITC, 1:50 dilution; FITC conjugated goat anti-rabbit IgG, 1:400 dilution). The 

substrates were then secured gold-coated side down in fluorescence mounting 

medium on a glass coverslip.  
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3.2.3 High-resolution fluorescence microscopy. All fluorescence images were 

taken with a Nikon Eclipse TE2000-E inverted microscope (Nikon USA, Inc., 

Melville, NY) and a Plan Fluor 40X oil immersion objective (1.30 NA, Nikon USA). 

Immersion oil was purchased from Carl Zeiss MicroImaging, Inc. (Thornwood, NY) 

and lens paper was purchased from Fisher. Image analysis was performed using 

MetaMorph software (Molecular Devices, Downingtown, PA). 

3.2.4 Focal adhesion studies on asymmetric nanoarrays. Asymmetric nanoarrays 

were produced as described above, and linear RGD peptide was immobilized. 3T3 

Swiss Albino mouse fibroblasts were seeded and fixed as previously described. The 

substrates were placed in a humidified chamber and incubated with the first dye 

mixture (mouse anti-paxillin, 1:200 dilution; phalloidin-TRITC, 1:250 dilution) for 2 h, 

washed with PBS (3 x 10 min), and incubated with the second dye mixture (DAPI, 

1:500 dilution; phalloidin-TRITC, 1:50 dilution; Cy-2 conjugated goat anti-mouse IgG, 

1:200 dilution). Following staining, the substrates were secured in fluorescence 

mounting medium and imaged by fluorescence microscopy.   

 

3.3 Results and Discussion31 

3.3.1 Design and LFM characterization of asymmetric nanoarrays. Asymmetric 

nanoarrays of H2Q-C11-SH were patterned as described above. The biospecific 

ligands were presented such that there was ~4 fold more cell adhesive area in the 

higher density region of the nanoarray, as shown in Figure 3.3A. The nanoarray was 

imaged directly following patterning by DPN at a scan rate of 4 Hz. An expanded 

region of an asymmetric nanoarray is shown in the LFM image in Figure 3.3B.   
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Figure 3.3 Design of asymmetric electroactive nanoarrays for studies of single cell 
polarization. (A) A diagram of the entire asymmetric nanoarray composed of two 
regions: a higher density region (20 x 10, 3 µm pitch, ~500 nm diameter spots) and a 
lower density region (10 x 5, 6 µm pitch, ~500 nm diameter spots) for a total 
patterned area of ~60 µm x ~60 µm. (B) A LFM image of an expanded area of this 
asymmetric nanoarray. 
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3.3.2 Single cell polarization studies on symmetric nanoarrays presenting linear 

RGD peptide. It has been proposed that cells can spontaneously polarize in 

environments that present a certain stimulus in a macroscopically homogenous 

way.9 This may be a result of cellular perception of gradients of stimuli in 

microscopic defects in the homogenous environment. This implies that a population 

of cells in a homogenous environment would be randomly polarized, with no net cell 

polarity in any specific direction. In order to test this hypothesis, symmetric 

nanoarrays of H2Q-C11-SH were produced (20 x 20, 3 µm pitch, ~500 nm diameter 

spots), with a total patterned area of ~60 µm x ~60 µm. Linear RGD peptide was 

immobilized, and 3T3 Swiss Albino mouse fibroblasts were seeded on the surface 

for a total of 8 h, then fixed and stained for several markers of cell polarization: the 

nucleus, Golgi apparatus, and actin cytoskeleton. An antibody targeting giantin, an 

integral membrane protein found in the cisternae of the Golgi apparatus, was used 

to visualize this organelle.32  

Figure 3.4 shows representative micrographs of adherent fibroblasts on 

symmetric electroactive nanoarrays presenting linear RGD peptide. The cells adopt 

a square morphology, closely corresponding to the total patterned area of the 

nanoarray (~60 µm x ~60 µm). The nuclei was found approximately in the cell center 

in cells adhered to symmetric nanoarrays. In some instances the Golgi apparatus 

was condensed to one side of the nucleus, indicative of cell polarity. However, in 

most cases the Golgi apparatus was diffusely distributed surrounding the nucleus, 

strongly suggesting that there was no net directional cell polarization in fibroblasts 

on symmetric nanoarrays presenting linear RGD peptide.  This signifies that the cells  
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Figure 3.4 Representative micrographs of 3T3 Swiss Albino fibroblasts adhered to 
symmetric nanoarrays (20 x 20, 3 µm pitch, ~500 nm diameter spots) presenting 
immobilized linear RGD peptide, and stained for cell polarization. The cells were 
visualized using three fluorescent dyes: DAPI (nuclei, blue), phalloidin-TRITC (actin 
cytoskeleton, red), and anti-giantin followed by FITC secondary antibody (Golgi 
apparatus, green). There was no net directional cell polarity observed, as evidenced 
by the diffuse distribution of the Golgi apparatus surrounding the cell nuclei.  
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may polarize in random directions in an effort to escape the constraining nanoarray. 

However, the lack of net directional polarity also indicates that there is no specific 

direction that is favored in the case of a symmetric nanoarray presenting the 

immobilized ligand in a homogenous manner. 

3.3.3 Single cell polarization studies on asymmetric nanoarrays presenting linear 

RGD peptide. The experimental design used to study single cell adhesion on 

asymmetric nanoarrays is shown in Figure 3.2. Briefly, an asymmetric nanoarray of 

H2Q-C11-SH was produced with a higher density region (20 x 10, 3.0 µm pitch, ~500 

nm diameter spots) and a lower density region (10 x 5, 6 µm pitch, ~500 nm 

diameter spots). Following electrochemical oxidation and chemoselective 

immobilization of ligand, 3T3 Swiss Albino mouse fibroblasts were seeded for 8 h 

and imaged.  

The representative micrographs in Figure 3.5 show single fibroblasts adhered to 

asymmetric nanoarrays presenting linear RGD peptide. The cells generally adopt a 

shape and size corresponding to the total patterned area of the nanoarray (~60 µm x 

~60 µm). The position of the nuclei and the presence of the concentrated Golgi 

apparatus forward of the nuclei demonstrate that the cells are polarized towards the 

higher density region of the nanoarray. When a vector is drawn between the center 

of the nucleus and that of the condensed Golgi apparatus, the net vector found is 

directed towards the higher density region of the asymmetric nanoarray, indicating 

that there is a net directional cell polarization towards the higher density region of 

the nanoarray. This result, taken in conjunction with the lack of directional cell 

polarity found  on  symmetric  nanoarrays  presenting  the  same ligand, leads to the 
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Figure 3.5 Representative micrographs of 3T3 Swiss Albino fibroblasts adhered to 
asymmetric nanoarrays presenting immobilized linear RGD peptide. The higher 
density region of the asymmetric nanoarrays was situated toward the top of the 
figure. The cells have been visualized using three fluorescent dyes: DAPI (nuclei, 
blue), phalloidin-TRITC (actin cytoskeleton, red), and anti-giantin followed by FITC 
secondary antibody (Golgi apparatus, green). As can be seen in these micrographs, 
there is a net directional cell polarity towards the higher density region of the 
asymmetric nanoarray as evidenced by the relative orientation of the condensed 
Golgi apparatus structure with respect to the nuclei.  



  66 

conclusion that the nanoscale spatial distribution of cell adhesive ligands can induce 

directional cell polarization in fibroblasts.  

3.3.4 The effect of ligand affinity on single cell polarization on asymmetric 

nanoarrays. Integrin receptors are known to have a higher affinity to cyclic RGD 

peptide than to linear RGD peptide (Kd of nM and µM, respectively).33 Therefore, 

cyclic RGD peptide was immobilized to asymmetric nanoarrays were produced with 

identical features as those described above in order to study the effects of ligand 

affinity on single cell polarization. 3T3 Swiss Albino fibroblasts were seeded, and 

stained for cell polarity markers.  

Figure 3.6 shows representative micrographs of single fibroblasts adhered to 

asymmetric nanoarrays presenting cyclic RGD peptide. The cells have assumed a 

square morphology of approximately the size of the total patterned area of a single 

nanoarray (~60 µm x ~60 µm). It was found that on single asymmetric nanoarrays 

presenting cyclic RGD peptide, the Golgi apparatus is found to be diffuse and 

distributed around the nuclei, with no net directional cell polarization towards the 

higher density region of array. This is in stark contrast to the net directional cell 

polarization observed on asymmetric nanoarrays of linear RGD peptide, suggesting 

that the higher ligand affinity for cyclic RGD peptide overrides the effects of spatial 

presentation on cell polarization. In order to examine this phenomenon in more 

detail, a double asymmetric nanoarray was designed and is discussed in more detail 

below.  

3.3.5 The effects of ligand spatial distribution on single cell polarization on double 

asymmetric nanoarrays presenting cyclic RGD peptide.  In order to create a more  
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Figure 3.6 Representative micrographs of 3T3 Swiss Albino fibroblasts adhered to 
asymmetric nanoarrays presenting cyclic RGD peptide. The higher density region of 
the asymmetric nanoarrays was situated toward the top of the figure. The cells have 
been visualized using three fluorescent dyes: DAPI (nuclei, blue), phalloidin-TRITC 
(actin cytoskeleton, red), and anti-giantin followed by FITC secondary antibody 
(Golgi apparatus, green). As can be seen in these micrographs, there is no net 
directional cell polarity towards the higher density region of the asymmetric 
nanoarray as evidenced by the diffuse Golgi apparatus structures surrounding the 
nuclei. 
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dramatic difference in cell adhesive area, a double asymmetric nanoarray was 

designed, consisting of a higher density region (20 x 10, 3 µm pitch, ~500 nm 

diameter spots), and a lower density region (10 x 5, 6 µm pitch, ~250 nm diameter 

spots), as shown in Figure 3.7. Double asymmetric nanoarrays were produced via 

DPN and cyclic RGD peptide was immobilized as previously described. 3T3 Swiss 

Albino fibroblasts were seeded, and stained for cell polarity markers. Several 

representative micrographs of adherent fibroblasts on double asymmetric 

nanoarrays are shown in Figure 3.7. The placement of the condensed Golgi 

apparatus and the nuclei indicate that the cells are polarized toward the higher 

density region of the double asymmetric nanoarray. Thus, the cells can distinguish 

the ~8 fold difference in cell adhesive ligand area presented across the nanoarray. 

This reveals that there may be a subtle relationship between spatial distribution and 

ligand affinity in the establishment and retention of directional cell polarization in 

fibroblasts.  

3.3.6 The effect of ligand affinity on focal adhesion formation in single cells on 

asymmetric nanoarrays. Asymmetric nanoarrays were used to examine the influence 

of both the spatial presentation of immobilized ligand and ligand affinity on focal 

adhesion formation in adherent cells. Asymmetric nanoarrays were produced with 

the feature sizes previously described and linear or cyclic RGD peptide was 

immobilized. 3T3 Swiss Albino fibroblasts were seeded and stained for focal 

adhesions by visualizing paxillin, a focal adhesion protein.34  

Figure 3.8 show representative micrographs of fibroblasts adhered to asymmetric 

nanoarrays of identical feature size, presenting a lower affinity ligand, linear RGD  
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Figure 3.7 Double asymmetric nanoarrays for single cell studies of cell polarization. 
(Top left) The double asymmetric nanoarray is produced with a higher density 
region (20 x 10, 3 µm pitch, ~500 nm diameter spots) and a lower density region (10 
x 5, 6 µm, ~250 nm diameter spots), for a total patterned area of ~60 µm x ~60 µm. 
Representative micrographs of 3T3 Swiss Albino fibroblasts adhered to double 
asymmetric nanoarrays presenting immobilized cyclic RGD peptide. The cells have 
been stained with fluorescent dyes: DAPI (nuclei, blue), phalloidin-TRITC (actin 
cytoskeleton, red), and anti-giantin followed by FITC secondary antibody (Golgi 
apparatus, green). Interestingly, there is net directional cell polarity in the direction of 
the higher density region of the nanoarray. 
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Figure 3.8 Representative micrographs of 3T3 Swiss Albino fibroblasts adhered to 
asymmetric nanoarrays presenting lower affinity linear RGD peptide (A) and higher 
affinity cyclic RGD peptide (B) and stained for focal adhesions. The higher density 
region of the asymmetric nanoarrays was situated toward the top of the figure. The 
cells have been visualized using three fluorescent dyes: DAPI (nuclei, blue), 
phalloidin-TRITC (actin cytoskeleton, red), and anti-paxillin followed by fluorescent 
Cy-2 secondary antibody (focal adhesions, green). When only the focal adhesion 
staining is compared (A and B, bottom), the difference in focal adhesion distribution 
is quite apparent.  
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(Figure 3.8A), and a higher affinity ligand, cyclic RGD (Figure 3.8B). As can be 

clearly seen in the lower images showing only the green paxillin staining, there is an 

increase in focal adhesion formation correlating to the higher density region of the 

asymmetric nanoarray presenting linear RGD. Interestingly, there is no such 

increase in focal adhesion formation on an asymmetric nanoarray of the same 

dimensions presenting cyclic RGD peptide, a higher affinity ligand. This is in 

agreement with the observations mentioned previously that adherent cells on single 

asymmetric nanoarrays presenting cyclic RGD peptide did not show directional cell 

polarization. While asymmetric focal adhesion distribution is not an indication of cell 

polarization per se, it is expected that there will be increased focal adhesion 

formation at the leading edge of a polarized cell.9,35  

 

3.4 Conclusions  

Asymmetric nanoarrays with various spot diameters and distributions were 

produced to study single cell polarization. It was found that while there was no net 

directional cell polarity found in symmetric nanoarrays presenting linear RGD 

peptide, asymmetric nanoarrays presenting the same ligand were found to induce 

net directional cell polarization in adherent fibroblasts. This demonstrates the effect 

that the spatial distribution of cell adhesive ligand has on the establishment and 

maintenance of directional cell polarization. There was no net directional cell polarity 

found on asymmetric nanoarrays presenting cyclic RGD peptide, a higher affinity 

ligand than linear RGD, thus indicating that ligand affinity also has a profound effect 
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on cell polarization. The relationship between ligand affinity and spatial distribution of 

immobilized ligand was explored through the development of double asymmetric 

nanoarrays presenting cyclic RGD, which were shown to impose directional cell 

polarization. In conclusion, asymmetric nanoarrays produced by DPN, in conjunction 

with the quinone-based chemoselective immobilization strategy developed, were 

demonstrated to be a powerful platform for studies aimed at investigating the effects 

of ligand affinity and ligand spatial distribution on many facets of cell polarization in 

fibroblasts. 
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CHAPTER 4 
 

TOTAL INTERNAL REFLECTION FLUORESCENCE MICROSCOPY AS A 
METHOD TO STUDY CELL ADHESION ON PATTERNED GOLD SURFACES 

 

4.1 Introduction 

There are a multitude of vital events that occur at the cellular plasma membrane. 

These events often occur on a very short temporal timescale, and the components 

involved are often present in low concentrations. Therefore, a method that is both 

sensitive, preferably at the single molecule level, and able to be time-resolved on the 

order of milli- to microseconds is needed to study these transient events.1,2  

While the total internal reflection (TIR) of light was first predicted by Isaac 

Newton in his 1717 book Opticks,3 total internal reflection fluorescence microscopy 

(TIRFM) did not become popular as a method to study interfacial processes until the 

early 1980s. TIRFM is based on the TIR of light and excitation of fluorophores at 

surfaces. It has been implemented in the study of a variety of processes at 

biologically relevant interfaces.4-6 The following sections will describe the physical 

basis of TIRFM, the application of TIRFM to questions in cell biology, and the 

experimental question that will be addressed in this chapter.  

4.1.1 Physical basis of total internal reflection (TIR). Consider a beam of light 

traveling in a higher refractive index medium (n1) that encounters the interface with a 

lower refractive index medium (n2). At incidence angles (θi) less than the critical 
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angle (θc), the beam of light will be split. The critical angle is a function of the 

refractive indices of the two adjoining media, and can be described by the equation 

          
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A fraction of the beam will be reflected back into the higher refractive index medium 

at an angle θr, and the remainder will be transmitted into the lower refractive index 

medium at an angle θt, as shown in Figure 4.1A. The relative proportions can be 

described by the Fresnel formulations.7  

If the angle of incidence θi is larger than the critical angle θc, total internal 

reflection (TIR) will occur (Figure 4.1A). In essence, the light will be completely 

reflected back into the higher refractive index medium, with no transmission of light 

into the lower refractive index medium. An electromagnetic field known as the 

evanescent wave will be established at the interface.8 This wave only propagates 

parallel to the interface, i.e. it does not propagate into the lower refractive index 

medium, and is the same frequency as the incident light.9 The intensity of the 

evanescent wave decays exponentially as shown in the equation 
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where I(z) is the intensity of light at a distance z from the interface, Io is the intensity 

of light at the interface, and d is the depth of penetration. This distance is typically 

where I(z) has fallen to 37% of Io.
10 The depth of penetration of the evanescent wave 

is a function of the refractive indices of the media involved, as well as the angle of 

incidence, shown in the equation 
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where λo is the wavelength of the incident light in a vacuum, and all other variables 

are as defined above.11 Typical penetration depths range from λo / 10 to λo.
12  

Figure 4.1B illustrates an example of TIRF. In this system the θc for the interface 

between glass (n1 = 1.51) and water (n2 = 1.333) is 62º. The incident angle θi (70º) of 

a 512 nm laser beam is greater than θc, and thus, TIR occurs. The calculated d for 

this system is 87 nm. If there are fluorophores close to the interface where the 

evanescent wave is established, there is a high probability that the fluorophore will 

be excited, and fluoresce.  

 4.1.2 Use of total internal reflection fluorescence microscopy (TIRFM) in cell 

biology. TIRFM has found many applications in the study of biologically relevant 

surfaces, such as protein adsorption to surfaces,13,14 as well as substrate-supported 

planar membranes.15 Among the earliest reports of TIRFM used to study cell 

adhesion involved investigating the adhesion of cells with fluorescently labeled 

plasma membranes on a glass coverslip.16 TIRFM has also been used to study other 

aspects of cell-substrate contacts, including examining the space between the 

plasma membrane and surface,11,17-19 observations of the proximity of various 

organelles to the cell surface,9 the dynamics of integrin receptor clustering,20 and the 

affects of ligand affinity on endothelial cell adhesion.21,22  

One of the most prevalent uses of TIRFM has been to examine the mechanisms 

of vesicle fusion with the plasma membrane during endo- and exocytosis in a variety  
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Figure 4.1 The physical basis of total internal reflection fluorescence microscopy 
(TIRFM). (A) At θi < θc, an incident beam of light will be split at the interface between 
two media with dissimilar refractive indices (n1 > n2, red line). At all θi ≥ θc, the light 
beam will achieve total internal reflection (TIR) back into the higher refractive index 
material (blue line). (B) Total internal reflection induced fluorescence. A laser beam 
(λ = 532 nm) establishes TIR at θi > θc. An evanescent wave is established at the 
interface (represented by gradient). Fluorophores in the lower refractive index 
material (black dots) that are within the evanescent field are excited, and can emit 
observable fluorescence (red stars).  
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of cell types.23-30 These reports highlight one of the major advantages of TIRFM over 

other available visualization techniques. For example, in one- or two-photon confocal 

fluorescence microscopy the large background fluorescence of out-of-focus 

fluorophores that is observed due to the larger field of view (~500-800 nm)31 would 

obscure the single fusion events at the plasma membrane. However, in TIRFM the 

range of the evanescent wave is ~3z.32 Therefore, the optical plane that is viewed is 

typically ~100-200 nm from the interface. This makes TIRFM an attractive choice for 

the selective study of events at interfaces. 

The short range of the evanescent wave also allows for longer-term studies of 

living cells, due to the decreased exposure of the whole cell to damaging light, and 

decreased photobleaching of dyes. Several research groups have exploited this 

feature by observing living cells for periods up to one week33,34 and using TIRFM to 

observe the movement of single fluorescent proteins in living cells.35,36 

However, given that TIRFM can not produce three dimensional images of a 

sample, it is often beneficial to use this method in conjunction with other 

techniques.37 TIRFM has been successfully used as a complementary technique to 

alternating-laser excitation (ALEX) spectroscopy,38 fluorescence correlation 

spectroscopy (FCS),39-41 fluorescence recovery after photobleaching (FRAP),13,42 

fluorescence resonance energy transfer (FRET),43,44 and interference reflection 

microscopy.45  

4.1.3 Controversy: can TIRFM be used to study cell adhesion on gold surfaces? 

There have been conflicting reports regarding the practicality of TIRFM in the 

presence of thin metal layers, specifically patterned gold surfaces. Borisy and 
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colleagues have reported that the presence of gold attenuates the fluorescence 

signal to an unacceptable level, preventing the use of TIRFM to study cell adhesion 

on gold surfaces.46 On the other hand, Ariwa and Iwata recently reported the use of 

TIRFM to study the effects of surface chemistry on cell adhesion by observing the 

interaction of cells with fluorescently labeled plasma membranes with a variety of 

SAMs on gold.47 

The presence of a thin metallic layer at the interface between media with 

unmatched refractive indices has been shown not to prevent TIRF from occurring.4 

However, there is an effect on the depth of penetration and intensity of the 

evanescent wave produced near metallic surfaces.6 The effect of the metallic layer 

on the excitation and emission of a fluorophore has been found to be very distance-

dependent, both by theoretical and experimental studies.48-51  

The affects of the metal can be roughly divided into three distance regions. When 

a fluorophore is within the Förster radius distance (typically ~5-7 nm) from the metal 

surface, the excited fluorophore will undergo a nonradiative transfer of energy to the 

metal in the form of heat. This is known as ‘fluorescence quenching’. On the other 

extreme, when a fluorophore is relatively far from the surface (typically >20 nm, but 

no further than the evanescent wave), the result is the emission of observable 

fluorescence. Fluorophores at intermediate distances (~10 – 15 nm) from the metal 

layer have shown a coupling of excitation energy with the plasmonic states of the 

metal, resulting in a complex emission of fluorescence from the metal surface.52 

Some groups have taken advantage of this distance-dependent quenching by using 

a thin metal film to reduce background fluorescence of non-specifically adsorbed 
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analytes, while still allowing fluorescence imaging of structures of interest located 

farther from the surface.53,54 

The goals for the experiments that will be discussed below were two-fold. The 

primary goal was to determine if it was possible to observe intracellular structures of 

interest using TIRFM on patterned gold surfaces. Second, if the methodology proved 

viable, the next priority would be to verify that TIRFM would be compatible with 

conventional fluorescence microscopy, a commonly used method to study the 

nanoarchitecture of adherent cells. 

 

4.2 Experimental Materials and Methods 

4.2.1 Preparation of gold-coated quartz substrates. Quartz microscope slides 

were cleaned with Piranha solution (1:1 (v/v) concentrated H2SO4 : 30% H2O2). 

Layers of titanium (6 nm) and gold (24 nm) were thermally evaporated onto the 

quartz slides using a Thermionics vacuum evaporator system. The gold-coated 

substrates were stored in ethanol until use.  

4.2.2 Substrate patterning by microcontact printing. A PDMS elastomeric stamp 

with 50 µm features of several shapes (e.g. circles, ovals, several polygons, 

squares, triangles) was produced using soft lithography techniques as previously 

described.55 The stamp was inked with hexadecanethiol (C16-SH, 1 mM in ethanol), 

brought into contact with gold-coated quartz substrates, producing a hydrophobic 

SAM pattern on the surface. The remaining bare gold region was passivated by 

immersing the surface in EG4-C11-SH (1 mM in ethanol) for 12 h. Bovine fibronectin 
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(Fisher, 0.1 mg/mL in H2O) was adsorbed to the hydrophobic patterns for 1 h. The 

surfaces were stored in H2O until use. 

4.2.3 Substrate patterning by DPN. Nanoarrays (20 x 20, 3.0 µm pitch, ~500 nm 

diameter spots) were patterned as previously described (Chapter 2, Section 2.2.5), 

followed by immersing the substrate in EG4-C11-SH (1 mM in ethanol, 12 h). The 

substrate was then electrochemically oxidized (750 mV vs. Ag/AgCl, 15 s, 1 M 

HClO4), followed by immobilization of oxyamine-terminated linear RGD peptide (10 

mM in H2O, 2 h). 

4.2.4 Cell seeding and staining procedures. 3T3 Swiss Albino mouse fibroblasts 

were purchased from the Tissue Culture Facility at the University of North Carolina 

at Chapel Hill. DMEM, bovine calf serum, Dulbecco’s PBS, Triton X – 100, DAPI and 

phalloidin-FITC were purchased from Sigma, and paraformaldehyde solution (32%) 

was purchased from Fisher. Penicillin/streptomycin were purchased from Gibco. 

Mouse anti-paxillin antibody was purchased from B D Biosciences (San Jose, CA). 

Normal goat serum and TRITC-conjugated goat anti-mouse IgG were purchased 

from Jackson ImmunoResearch Laboratories, Inc. (West Grove, PA). 

After the gold-coated quartz substrates were patterned by microcontact printing 

or DPN, 3T3 Swiss Albino mouse fibroblasts were seeded on the surface in serum-

free DMEM for 3 h, followed by incubation in DMEM containing 10% bovine calf 

serum and 1% penicillin/streptomycin for > 18 h (37 ºC, 5% CO2 atmosphere). The 

cells were fixed in 3.2% formaldehyde in PBS, then permeated in PBS containing 

0.1% Triton X – 100. All dye mixtures were prepared in 5% normal goat serum in 

PBS containing 0.1 % Triton X –100.  
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Substrates that were patterned using microcontact printing were incubated in a 

humidified chamber with a primary mouse anti-paxillin antibody (1:400 dilution) for 

45 min. The surfaces were then rinsed with PBS (3 x 10 min), followed by incubation 

with TRITC secondary fluorescent antibody (1:400 dilution) for 45 min.  

DPN-patterned surfaces were placed in a humidified chamber and stained with a 

dye mixture (mouse anti-paxillin, 1:400 dilution; phalloidin-FTIC, 1:250 dilution) for 

45 min, and then rinsed with PBS (3 x 10 min). The substrates were incubated with a 

second dye mixture (DAPI, 1:500 dilution; phalloidin-FITC, 1:50 dilution; TRITC 

secondary fluorescent antibody, 1:400 dilution). 

4.2.5 Visualization with TIRFM. Glass cover slips, PBS, and lens paper were 

purchased from Fisher. Immersion oil (n = 1.4790, type FF) was purchased from 

Cargille-Sacher Laboratories, Inc. (Cedar Grove, NJ). Quick curing epoxy (Araldite 

2043) was purchased from McMaster-Carr (Princeton, NJ). All TIRFM was 

performed using an Olympus IX51 inverted microscope with an Olympus UPLSAPO 

60X (NA 1.2) water immersion objective (Olympus America, Inc., Center Valley, PA). 

The radiation source was a green diode laser module (GDLM-5030L, Photop 

Technologies, Chatsworth, CA). A green emission filter (585 nm / 70 nm bandpass, 

Chroma HQ585/70) was purchased from Chroma Technology (Rockingham, VT) 

and a CCD camera (Cascade II 512B) was purchased from Photometrics (Tucson, 

AZ). MatLab R2007b software (The Mathworks, Inc., Natick, MA) was used for 

image analysis.  

Patterned gold-coated quartz substrates were prepared for TIRFM analysis 

following the staining procedure. A glass cover slip was flamed-dried, allowed to 
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cool, and placed over the area of patterned cells, trapping a layer of PBS between 

the glass and quartz. The edges of the cover slip were sealed to retain the PBS 

medium using 90 second curing epoxy. All TIRFM measurements were made using 

a prism-based method56 with an Olympus IX51 inverted microscope and Olympus 

UPLSAPO 60X water immersion objective. The substrate was placed between a 

quartz prism and the 60X water immersion objective, using immersion oil and water, 

respectively, in order to maintain a similar refractive index at each interface. TIR was 

obtained by adjusting the position of the quartz prism, thus changing the θi of the 

excitation laser beam (λex = 532 nm, 30 mW). The emitted radiation of the 

fluorophores of interest was collected by a 60X water immersion objective, directed 

through a green emission filter (585 nm / 70 nm bandpass), and finally collected by a 

CCD camera. Image analysis was performed using MatLab R2007B software. 

4.2.6 Visualization with high-resolution fluorescence microscopy. Fluorescence 

images of DPN patterned substrates were taken following visualization with TIRFM 

using a Nikon Eclipse TE2000-E inverted microscope (Nikon USA, Inc., Melville, 

NY). Oil immersion images were obtained using a Plan Fluor 40X oil immersion 

objective (1.30 NA, Nikon USA). Image analysis was performed using MetaMorph 

software (Molecular Devices, Downingtown, PA). 

 

4.3 Results and Discussion57  

4.3.1 Prism-based TIRFM experimental design. A prism-based method of TIRFM 

was used to examine cells adhered on patterned SAMs on gold-coated quartz 

surfaces, as shown in Figure 4.2A. A patterned gold-coated quartz slide was 
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prepared as described above, and placed in contact between a quartz prism and a 

60X water immersion objective, using immersion oil and water, respectively, to 

maintain a similar refractive index between each interface. TIR was established by 

adjusting the quartz prism, thus changing the θi of the incident green diode laser 

beam (λ = 532 nm). 

 The interface of interest is shown in more detail in Figure 4.2B. The θc for this 

system was calculated to be ~69.3º, using equation 4.1 with the refractive index of 

fused quartz (n1 = 1.46), and an average refractive index of the cell cytoplasm  (n2 = 

1.366). This average refractive index is based on the experimentally determined 

refractive index range (1.358 – 1.374) of the cytoplasm of 3T3 fibroblasts reported 

by Lanni, et al.9 The evanescent wave that is created will extend into the cell 

cytoplasm approximately 120 nm as calculated with equation 4.3 (for θi = 75º). The 

evanescent wave will extend ~80 – 90 nm into the interior of the cell as depicted in 

Figure 4.2B, taking into account the thickness of the SAM (~2 nm), adsorbed 

fibronectin layer (~2 nm), cell plasma membrane (~10 nm),58 and the extracellular 

domain of integrin receptors (~20 nm).59 A representative micrograph of a 3T3 Swiss 

Albino fibroblast grown on bare quartz and stained for the actin cytoskeleton is 

shown in Figure 4.2C. This demonstrates the visualization of the internal structures 

of adherent cells by TIRFM in the absence of a thin metal layer.  

These estimations, in conjunction with the distance-dependent fluorescence 

emission of fluorophores near thin metal films that was described in Section 4.1.3, 

led to the hypothesis that the internal structures of adherent cells on patterned gold  
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Figure 4.2 Prism-based TIRFM experimental design for cell adhesion studies. (A) 
The patterned gold-coated quartz slide is placed between a quartz prism and a 60X 
water immersion objective (using immersion oil and water, respectively, to maintain 
similar refractive indices at each interface). TIR is established by manual adjustment 
of the quartz prism. TIR induced fluorescence is collected through the objective, sent 
through a green emission filter, and captured by a CCD camera. The interface of 
interest is highlighted by the dashed box and is expanded in (B). Diagram of the 
interface of interest (not drawn to scale). The evanescent wave produced by the TIR 
of the green laser extends into the cytoplasm of adherent cells, enabling the use of 
fluorescent tags to study internal cellular structures. (C) 3T3 Swiss Albino fibroblast 
grown on bare quartz and stained with phalloidin-TRITC to visualize the actin 
cytoskeleton (TIRFM signal false colored red).  
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surfaces could be observed with TIRFM. In the studies discussed below, focal 

adhesions, the structures of interest, should be within the range of the evanescent 

wave, allowing for the excitation of fluorescent labels. Also, the fluorophores should 

be distant enough from the gold surface so that the excitation energy will not be 

transferred back to the metal film, quenching the fluorescence signal. In order to test 

this hypothesis, an experiment using microcontact printing to pattern SAMs on gold 

was conducted.  

4.3.2 TIRFM visualization of cell adhesion on microcontact printed patterns. 

SAMs of C16-SH on gold-coated quartz slides were patterned using microcontact 

printing, as shown in Figure 4.3A. An elastomeric PDMS stamp with 50 µm features 

of various shapes (e.g. circles, ovals, several polygons, squares, triangles) was 

inked with a solution of C16-SH and brought into contact with a clean gold surface. 

Hydrophobic SAMs were formed in the pattern of the stamp, and the remaining non-

patterned gold surface was rendered inert to nonspecific cell adhesion by backfilling 

with EG4-C11-SH. The ECM protein fibronectin was then adsorbed to the 

hydrophobic patterns in order to support cell adhesion. 3T3 Swiss Albino mouse 

fibroblasts were seeded to the surface, fixed, and stained with an antibody targeting 

paxillin, a protein found in focal adhesions,60 followed by a TRITC secondary 

antibody. Several representative micrographs of various shapes are shown in Figure 

4.3B (clockwise from top left: circle, square, hexagon, oval). The TIRFM signal (false 

colored red) demonstrates that paxillin, representing the distribution of focal 

adhesions, is dispersed throughout the cells. These results indicated that TIRFM is a 

viable method to examine the internal structures of adherent cells in the presence of  
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Figure 4.3 TIRFM visualization of cell adhesion on microcontact printed patterns. 
(A) Microcontact printing technique. An elastomeric stamp is inked with C16-SH and 
placed in contact with a gold surface, producing a patterned SAM. The remaining 
gold areas are backfilled with EG4-C11-SH, the ECM protein fibronectin is adsorbed, 
and fibroblasts are seeded. (B) Representative micrographs of 3T3 Swiss Albino 
fibroblasts adhered to 50 µm microcontact printed patterns of adsorbed fibronectin. 
Clockwise, from top left: circle, square, hexagon, and oval. The cells were stained 
with anti-paxillin and a TRITC secondary antibody to visualize the focal adhesions 
(TIRFM signal is false colored red). Paxillin is shown to be distributed throughout the 
cells.  
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a thin metal layer. Next, DPN patterned surfaces were produced in order to 

demonstrate the use of TIRFM to study biospecific ligand mediated cell adhesion, as 

well as to investigate the use of TIRFM in combination with high-resolution 

fluorescence microscopy.  

4.3.3 TIRFM and high-resolution fluorescence microscopy of adherent fibroblasts 

on symmetric nanoarrays presenting biospecific ligands. Symmetric nanoarrays 

were produced via DPN on gold-coated quartz slides as previously described 

(Chapter 2, Section 2.2.5). Following electrochemical oxidation of the hydroquinone-

presenting nanoarray to the corresponding quinone, oxyamine-terminated linear 

RGD peptide was immobilized (10 mM in H2O, 2 h). 3T3 Swiss Albino mouse 

fibroblasts were then seeded to the substrates, fixed, and stained for nuclei, the 

actin cytoskeleton, and paxillin.  

As shown in Figure 4.4A, the TIRFM signal from paxillin is localized primarily to 

the periphery of the cell. This corroborates well with the results previously discussed 

(Chapter 2, Section 2.3.4). The same substrates were then visualized with 

conventional fluorescence microscopy. A representative micrograph of one such cell 

is shown in Figure 4.4B. Interestingly, there is not a significant amount of 

photobleaching of the TRITC secondary antibody following extended imaging using 

TIRFM. This is to be expected, to some extent, based on the theoretical descriptions 

of the behavior of excited fluorophores near thin metal layers. Essentially, the 

efficient energy transfer and quenching mechanism of the metal layer will protect a 

fluorescent molecule by shortening the excitation lifetime of the molecule. This will 

ex 
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Figure 4.4 (A) Representative TIRFM micrograph of an adherent fibroblast on a 
symmetric nanoarray presenting immobilized linear RGD ligand. The cell was 
stained with anti-paxillin with a TRITC secondary fluorescent antibody, DAPI, and 
phalloidin-FITC. TIRFM signal (false colored red) demonstrates that paxillin is 
localized primarily to the periphery of the cell. (B) Representative fluorescence 
micrograph of adherent fibroblast on a symmetric nanoarray following TIRFM 
imaging. The cell was stained with anti-paxillin with a TRITC secondary antibody 
(focal adhesions, red), DAPI (nuclei, blue), and phalloidin-FITC (actin cytoskeleton, 
green). The TRITC signal corresponding to paxillin is still visible, suggesting that the 
fluorescent label has not been photobleached by prolonged viewing with TIRFM.    
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increase the number of excitation cycles the molecule can undergo before 

photodamage occurs.61  

  

4.4 Conclusions  

It was determined that TIRFM is an effective method to visualize the internal 

structures of cells adhered to patterned SAMs on gold surfaces. This was 

demonstrated through the use of microcontact printing to produce patterns of 

nonspecifically adsorbed protein, as well as electroactive nanoarrays presenting 

biospecific ligands. Secondly, TIRFM imaging can be used in conjunction with more 

traditional methods of imaging, such as fluorescence microscopy to study cellular 

nanoarchitecture. The intensity of the signal collected for the fluorophores studied in 

these cells is decreased compared to those in cells imaged in the absence of a gold 

layer (see Figure 4.2C). However, it was shown that this technique still yields a 

sufficient signal to study cell adhesion on patterned gold surfaces, thus TIRFM 

imaging for cell biology studies is not prohibited in the presence of a thin metal layer, 

as was previously reported.46 In the future, TIRFM could be used to explore the 

intricacies of the cell nanoarchitecture on engineered surfaces presenting various 

patterns of biospecific ligands. More details descriptions of the potential future 

directions of this technique will be presented in more detail in Chapter 5.  
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CHAPTER 5 
 

SUMMARY AND FUTURE DIRECTIONS OF RESEARCH 
 

5.1 Summary of Dissertation Research 

Cell adhesion, polarization, and migration are vital to numerous biological 

phenomena. As such, a greater understanding of the mechanisms of these essential 

processes will have broad impacts in fields as diverse as developmental biology to 

medicine. This work has focused on developing a nanoscale model system, based 

on surface chemistry, which will allow for the study of the spatial presentation of 

immobilized ligands and their effect on the nanoarchitecture of adherent cells. 

In Chapter 2, the development of electroactive nanoarrays of hydroquinone-

terminated alkanethiol, produced by dip-pen nanolithography (DPN) is described.1 

These nanoarrays, in conjunction with an oxime-chemistry based chemoselective 

immobilization strategy and high-resolution fluorescence microscopy, were used to 

study biospecific-ligand mediated single cell adhesion. The difference in ligand 

affinity of two cell adhesive peptides (linear and cyclic RGD) was shown to have a 

dramatic affect on the organization of intracellular nanoarchitecture in adherent 

fibroblasts.  

The production of asymmetric nanoarrays used to study single cell polarization is 

discussed in Chapter 3.2 Asymmetric nanoarrays presenting linear RGD peptide 

were found to induce net directional cell polarization in adherent fibroblasts, while 

symmetric nanoarrays presenting the same ligand did not induce net polarity. This 
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demonstrates a direct correlation between the spatial distribution of cell adhesive 

ligand and the establishment and maintenance of directional cell polarization. It was 

also shown that there was no net directional cell polarity found on asymmetric 

nanoarrays presenting a higher affinity ligand cyclic RGD peptide. This indicates that 

ligand affinity also has a profound effect on cell polarization. The relationship 

between ligand affinity and spatial distribution of immobilized ligand was further 

explored through the development of double asymmetric nanoarrays presenting 

cyclic RGD, which were shown to impose net directional cell polarization.  

In order to extend this methodology to examine other aspects of cell adhesion 

and polarization on electroactive nanoarrays other methods of visualization were 

considered. There have been conflicting reports regarding the use of total internal 

reflection fluorescence microscopy (TIRFM) to visualize cells near thin metal layers. 

In Chapter 4, TIRFM was used to examine the internal structures of cells adhered to 

patterned SAMs on gold surfaces, using both microcontact printing and DPN SAM 

patterning methods.3 The intensity of the signal collected for the fluorophores 

studied in these cells is decreased compared to those in cells imaged in the absence 

of a gold layer. However, it was shown that this technique still yields sufficient signal 

to study cell adhesion on patterned gold surfaces. Thus, TIRFM imaging for cell 

biology studies is not precluded in the presence of a thin metal layer, as was 

previously reported. 

5.2 Future Directions of Dissertation Research 

The research described in this dissertation would best be applied in 

conjunction with improvements of DPN patterning throughput afforded by several 



  101 

technological advances described below. One of the major limitations of DPN 

methodology is serial patterning of consecutive features with a single tip. The 

development and commercialization of massively parallel AFM cantilever arrays 

capable of patterning many features concurrently will first be described, followed by 

the discussion of possible future applications. 

5.2.1 Introduction: development of parallel AFM cantilever arrays. From the first 

report of DPN by Mirkin et al. in 1999,4 the typical DPN experiment has consisted of 

a single AFM tip patterning in a serial manner. It soon became apparent that in order 

to fully capitalize on the potential of DPN in a variety of applications, the previous 

serial patterning method would have to be replaced by a parallel system. An ideal 

parallel technique would be capable of vastly improving the throughput of DPN. 

Increasing the effective area that can be patterned by a single DPN probe, which is 

typically constrained by the scanning window of the AFM model used, would also 

improve the throughput of DPN.5,6  For example, the scanning area of the MFP-3D 

Stand Alone AFM from Asylum Research is 90 µm x 90 µm (0.0081 mm2). 

Parallel arrays of AFM cantilevers have been previously investigated for parallel 

imaging applications, as well as the development of new data storage media. Quate 

et al. reported the production of AFM images with horizontal distances of 2 mm and 

6.4 mm, with 10 x 1 and 32 x 1 linear arrays of cantilevers, respectively.7 The 

authors also demonstrated the use of a 50 x 1 linear cantilever array to pattern a 1 

cm2 area through oxidative lithography.7 The following year a 5 x 5 two-dimensional 

array of AFM cantilevers capable of patterning a 5 mm x 5 mm area was reported.8 
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These two examples show a vast improvement over the typical scanning area that 

can be imaged by a single AFM tip.  

In another application of massively parallel AFM cantilever arrays, researchers at 

the IBM Zurich Research Laboratory have been developing a concept known as “the 

millipede.” The millipede is a 32 x 32 two dimensional array of AFM cantilevers that 

operates by thermomechanical means to write and read bits of data embedded in a 

thin polymer substrate.9 The theoretical density of data storage using this method, 

0.5 – 1 Terabits / inch2, is far beyond what is possible with magnetic disc drives now 

available (<100 Gigabits / inch2).10 In order to make full use of such a data storage 

system, each cantilever must be individually addressable, requiring sophisticated 

electronics and microfabrication methods.  

5.2.2 Introduction: development of massively parallel DPN. Mirkin et al. first 

demonstrated that up to eight commercially available AFM cantilevers could be used 

in tandem as an array for both parallel, single ink DPN experiments, as well as 

serial, multiple ink experiments.11 This report also remarked on the relative 

independence of DPN-generated feature size on contact force applied at the AFM 

tip.11 This important finding reduces one of the major obstacles in the development 

of parallel DPN experiments; namely, the perceived requirement that each tip must 

be engaged with the surface identically. The first example of arrays of cantilevers 

specifically designed for DPN experiments included a 32 x 1 linear array of silicon 

nitride cantilevers.12 There have been several subsequent examples of design 

optimization of cantilever arrays,13 the generation of multilayer organic thin films by 
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parallel DPN,14 the use of parallel DPN to immobilize proteins,15,16 virus particles,17 

and to pattern silicon nanostructures.18 

There are several manufacturing aspects that are crucial in the development of 

massively parallel cantilever arrays, including the design and microfabrication of the 

cantilevers, as well as the integration of the feedback system for cantilever 

deflection.19 This has led to the simultaneous development of two main types of 

parallel cantilever arrays for DPN, passive cantilever arrays and individually 

addressable cantilever arrays. In passive arrays, only one cantilever is used for 

feedback, typically through the optical lever deflection system found in conventional 

AFM arrangements. Using one cantilever simplifies the electronics required for the 

cantilever array, allowing for the design and production of very large arrays of 

cantilevers for DPN.19 One notable example of this is an array consisting of 55,000 

passive cantilevers, arranged with a pitch of 90 µm x 20 µm (x and y, respectively), 

covering a total area of 1 cm2. This array was able to replicate 88,000,000 dot 

features in less than 30 min by printing 40 x 40 dot arrays at each of the 55,000 tips 

simultaneously.20 However, in order to produce more intricate patterns or to 

concurrently pattern motifs with multiple inks, each cantilever must be controlled 

individually. This calls for more sophisticated cantilever design involving integrated 

wiring produced during microfabrication, deflection detection systems, and external 

electronics to process the large amounts of data collected.21-23 For example, a 

multifunctional cantilever array including five DPN cantilevers, nine scanning probe 

contact printing cantilevers, and three imaging cantilevers was designed, with each 

cantilever capable of being actuated independently of the others.22  
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5.2.3 Whole-substrate nanopatterns for cell migration studies. A linear passive 

cantilever array could be implemented for the rapid patterning of a relatively large 

surface area, on the order of several square millimeters to square centimeters. This 

vast improvement in throughput, combined with the sub-100 nm resolution provided 

by DPN, would be a great advantage in producing a wide range of feature sizes and 

spatial distribution in a relatively short amount of time. A variety of oxyamine-

terminated cell adhesive ligands could be immobilized to such nanopatterned 

surfaces through the chemoselective immobilization strategy based on 

hydroquinone-terminated SAMs, as previously described.  

Morphological studies of cell behavior could then be undertaken by observing cell 

migration on the nanopatterned, biospecific-ligand presenting surface through 

brightfield microscopy. Alternatively, cells could be allowed to migrate, given specific 

cues such as the spatial presentation and binding affinity of the biospecifc ligands 

presented, and then fixed and stained to study internal cellular nanoarchitecture. 

Another application of these surfaces would be live-cell migration studies conducted 

using transfected cell lines expressing fluorescently labeled cellular organelles of 

interest.24 This would allow for real-time studies of the reorganization of cellular 

nanoarchitecture during migration on nanopatterns presenting biospecific ligands of 

interest.   

5.2.4 Arrays of nanoarrays: towards single cell assays for drug discovery and 

mechanistic studies of cell adhesion and polarization. Another application for the use 

of passive parallel DPN cantilever arrays would be to pattern arrays of nanoarrays 

over an entire surface. In this study, nanoarrays similar in size to those described in 



  105 

Chapters 2 and 3 (symmetric and asymmetric nanoarrays, respectively) could be 

replicated for high throughput, single cell adhesion and polarization studies. The 

large numbers of nanoarrays capable of confining single cells could subsequently be 

used as a type of single cell based assay. These assays could then be implemented 

in the screening of drug candidates, in addition to more complete mechanistic 

studies of the fundamental aspects of cell adhesion and polarization. This 

methodology could be particularly powerful in the area of developing more targeted 

and effective therapies for various cancers.25-27 Furthermore, such single cell based 

assays could be used in conjunction with the tissue, protein, and nucleic acid based 

microarrays currently utilized to study disease and identify drug targets in medical 

fields as diverse as oncology (e.g. breast, lung, ovarian, and colon cancers), 

infectious disease (e.g. methicillin resistant Staphylococcus aureus (MRSA), 

tuberculosis), and neurological disorders (e.g. depression, schizophrenia, 

Parkinson’s).28-30 

5.2.5 Complex nanopatterns presenting multiple, biospecific ligands for cell 

biology studies. Arrays of individually addressable cantilevers will enable the 

production of more complex nanopatterns. For example, DPN patterning could be 

combined with microfluidic lithography, a SAM patterning technique based on the 

delivery of alkanethiol solution to spatially defined areas through the application of a 

microfluidic cassette.31,32 The combination of a nanopatterned surface presenting 

one biospecific ligand with an overlaid gradient of a second ligand would be of 

particular interest. This could be possible with the use of a microfluidic lithography 

generated gradients.33 The combination of DPN with other SAM patterning 
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techniques allow for the production of surfaces that are functionalized with two or 

more biospecific ligands in order to parse apart the complex mechanisms of cell 

adhesion, polarization, and migration. The application of both technologies would 

enable the spatial and temporal control of ligand presentation to more closely mimic 

the complex microenvironments of cells in vivo. 

5.3 Conclusions 

The results presented herein have demonstrated that DPN-generated 

electroactive nanoarrays, in conjunction with a chemoselective immobilization 

strategy and microscopy techniques, were shown to be a versatile method for 

examining various facets of biospecific-ligand mediated cell adhesion and 

polarization. Specifically, it was determined that the spatial distribution, as well as 

ligand affinity for two cell adhesive ligands (linear and cyclic RGD) had dramatically 

different effects on the cellular nanoarchitecture of adherent fibroblasts, as observed 

through the fluorescent labeling of focal adhesion proteins and the Golgi apparatus. 

The potential future applications of this work rely heavily on the commercialization of 

massively parallel DPN cantilever arrays. Thus far, such parallel arrays are only 

currently available from one source, and are only for use with for a specific DPN 

instrument.34 In the future, as such technology is more widely disseminated, the 

research described here will have a broader impact in diverse fields, including 

medical and basic biological research.   
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