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ABSTRACT 
 
 

Joshua D Currie: TOG Proteins: Essential +TIP Regulators of Interphase 
Microtubule Dynamics 

(Under the direction of Dr. Stephen L. Rogers)  
 

 
Microtubules exhibit a signature behavior, termed dynamic instability, in which 

individual microtubules cycle between phases of growth and shrinkage while the 

total microtubule polymer remains constant. These dynamics are promoted by 

the conserved XMAP215/Dis1 family of microtubule-associated proteins (MAPs). 

During my thesis I have conducted an in vivo structure-function analysis of the 

Drosophila homologue, Mini spindles (Msps). Msps exhibits EB1-dependent and 

spatially regulated localization to microtubules, localizing to microtubule plus 

ends in the cell interior and decorating the lattice of growing and shrinking 

microtubules in the cell periphery. RNAi rescue experiments revealed that Msps’ 

NH2-terminal four TOG domains were sufficient to partially restore microtubule 

dynamics and promote EB1 comet formation and that TOG domains function as 

paired units. We also identified TOG5 and novel inter-TOG linker motifs that are 

sufficient for binding to the microtubule lattice. These novel microtubule contact 

sites are necessary for Msps peripheral lattice association and allow Msps to 

regulate dynamic instability. Additionally, I have been able to determine the 

region of Msps that is responsible for plus end tracking in cells. This occurs 

through a novel interaction with the EB1-binding protein, Sentin, that enhances 
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Msps accumulation at the plus end and affects the velocity and lifetime of plus 

end growth. From these results we have learned that Msps is an important 

microtubule regulator that controls multiple parts of dynamic instability through its 

unique domain structure. 
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Chapter 1 

INTRODUCTION 

 

Summary 

 Microtubules are a dynamic cytoskeleton that is essential for intracellular 

traffic, cell migration, and chromosome segregation. The dynamic nature of 

microtubules is regulated in cells by a diverse group of proteins called plus end 

proteins or +TIPs. It is the function and interplay between these +TIPs that 

produces the the normal dynamic instability found in vivo. In this chapter, I will 

outline our current understanding of microtubule dynamics in cells and how this is 

thought to be regulated by +TIPs. I will briefly introduce the major families of 

+TIP proteins and how they interact in interphase to regulate microtubule 

dynamics. Finally, I will examine the role for +TIPs in cell migration using a novel 

Drosophila cell line called D17. 

 

The Dynamic Microtubule Cytoskeleton 

 Microtubules are polymers that form a network of cellular tracks necessary 

for intracellular transport, cell signaling, chromosome segregation, and 

establishing and reinforcing specific sub-cellular compartments of protein activity.  

 The vital property that enables microtubules to participate in all these 

functions is their dynamic nature. Far from being static paths connecting regions 
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of the cell, microtubules are able to rapidly switch between phases of growth and 

shrinkage. This allows them to probe the cellular environment for vesicular cargo, 

contact sites of cortical signaling that require the delivery of key regulatory 

factors, or capture sister chromatids at the kinetochore during mitosis, in a 

process aptly termed microtubule “search and capture” (for review see Odde, 

2005). The stochastic switching in microtubule behavior between phases of 

polymerization, depolymerization, and pause has been termed dynamic instability 

(Mitchison and Kirschner, 1984). 

 The rapid assembly and disassembly of microtubules is an inherent 

characteristic of the polymer that is based on the properties of the tubulin 

monomer. Tubulin exists as an obligate heterodimer of α and β tubulin. Both 

subunits have similar structures and bind soluble GTP (Caplow and Reid, 1985), 

but it is the hydrolysis of GTP to GDP by the β subunit that alters the ability of the 

tubulin heterodimer to incorporate into microtubules (Weisenberg et al., 1976). 

Tubulin monomers are added onto microtubules in a head to tail fashion with α 

tubulin making connections with a previously added β subunit (Amos and Klug, 

1974), so that GTP-bound β tubulin is at the distal end of the filament (Figure 1). 

Strands of tubulin in end-to-end connections, termed protofilaments, also form 

lateral interactions with other protofilaments to form the characteristic tube of 13 

protofilaments (Mandelkow and Mandelkow, 1985). This polarity of tubulin 

heterodimer addition is also translated into the polymerized microtubule, where 

addition and subtraction happens preferentially at one end (Allen and Borisy, 
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1974), termed the plus end, while the other minus end is stable and often 

anchored at the microtubule organizing center (MTOC) in animal cells.  

 It is the process of β tubulin GTP hydrolysis that is thought to signal a 

switch from polymerization to depolymerization. Shortly after incorporation, GTP 

is hydrolyzed and is thought to change the conformation of the tubulin 

heterodimer from a “straight” conformation that facilitates lateral interactions 

between subunits to that of a “kinked” conformation that disrupts lateral 

interactions between adjacent molecules (Krebs et al., 2005). Polymerization is 

thought to persist based on the existence of a cap of GTP bound monomers that 

maintain strong lateral interactions among protofilaments at the growing plus end 

(Caplow and Shanks, 1996) (Figure 1).  

 The predominant dogma is that polymerization happens through the 

addition of heterodimers onto individual protofilaments that elongate together as 

a sheet and fold into a tubule structure with a seam. Loss of the GTP cap through 

rapid GTP hydrolysis or a lag in the incorporation of new GTP monomers causes 

depolymerization by the peeling of “kinked” GDP-bound protofilaments off the 

microtubule plus end in a “rams head” structure (Zovko et al., 2008). A third, 

paused microtubule structure is thought to exist where a meta-stable, uniform 

GTP cap prevents the addition or subtraction of monomers from the microtubule 

plus end (Tran et al., 1997; Shelden and Wadsworth, 1993)(Figure 1). Although 

microtubules can clearly be seen to cycle through stages of growth, shrinkage, or 

pause, it is not clear how a microtubule might transition between these distinct 

structural states, and it is not known if the paused state exists as an obligate 
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intermediate structure that microtubules must transition through to progress from 

growth to shrinkage, termed catastrophe, or from shrinkage toward growth, know 

as rescue.  

 

Regulation of Microtubule Dynamics by Microtubule Associated Proteins 

 The intrinsic dynamic instability of microtubules can be observed in the 

presence of purified tubulin heterodimers below a critical concentration of 

approximately 15µM and the presence of excess GTP (Mitchison and Kirschner, 

1984). Although this in vitro setting can recapitulate many of the behaviors of 

microtubules in vivo, the rates of transition as well as the rates of growth or 

shrinkage in-vivo are much higher than what can be reproduced using purified 

tubulin. This discrepancy between the kinetics of dynamic instability in vitro 

versus in vivo is due to a diverse set of molecules known as Microtubule 

Associated Proteins (MAPs). In general, these molecules can be subdivided into 

three general classes of molecules based on their interactions with tubulin. 

Classical or neuronal MAPs such as Tau (for review see Nunez and Fischer, 

1997) were some of the first MAPs discovered, due to their enrichment in brain 

tissue, the source of most experimentally purified tubulin. These molecules bind 

exclusively to the lateral sidewall of the microtubule and increase growth by 

stabilizing and protecting microtubules from disassembly. Second, molecular 

motors such as Kinesin family motors and dynein carry out most of the transport 

roles of microtubules by processively moving across the length of microtubules 

while tethered to cargo (Gennerich and Vale, 2009). Finally, plus end proteins, or 
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+TIPs, are a class of MAPs that specifically recognize and bind to the plus end of 

microtubules to regulate dynamic instability and connect 
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Figure 1. Microtubules Are A Dynamic Polymer Network. 

Cartoon schematic of the three states of microtubule dynamic instability. Growth 

(left) represents the addition of GTP-loaded tubulin heterodimers (represented by 

blue β-tubulin) forming a protective GTP cap that is predicted to built from a 

sheet that closes into the characteristic 13 protofilament tube. Shrinkage (right) is 

the loss of “curved” GDP-bound subunits in a curling “rams head” structure. A 

protofilament is illustrated (bottom right) as the head-to-tail arrangement of 
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tubulin heterodimers that form lateral interactions to become a microtubule. The 

paused state (middle) represent a stable microtubule configuration where there is 

a stable GTP cap that prevents the addition or loss of subunits. It is thought that 

microtubules transition through the pause state from growth to shrinkage (termed 

catastrophe) or from shrinkage to growth (termed rescue). 
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microtubule ends with relevant cellular sites (Akhmanova and Steinmetz, 2008). 

+TIPs play a key role in enhancing and regulating microtubule dynamic instability 

and will be the focus of the rest of this manuscript. 

Plus end Proteins (+TIPs) 

 +TIPs represent an expanding and diverse family of proteins that are 

loosely categorized by their accumulation at microtubule plus ends. Although 

often studied in isolation, it has become increasing clear that +TIPs exist in 

complex milieu of hierarchical interactions. This is also confounded by the fact 

that many interacting +TIPs produce opposing phenotypes when depleted from 

cells (Laycock et al., 2006). How seemingly antagonistic +TIPs exist and interact 

on the common interface of the microtubule plus end to regulate microtubule 

dynamics is one of the key questions left unanswered. I will now briefly discuss 

the various classes of +TIPs (Figure 2) that directly regulate microtubule 

dynamics and how they contribute to the unique hierarchy of plus end protein 

structure.
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Figure 2. +TIP Families and Their Domain Structure.  

Adapted from (Akhmanova and Steinmetz, 2008), this diagram represents the 

major +TIP families such as the End Binding proteins, Cap-Gly proteins, TOG 

proteins, +TIPs with MAP or non-MAP function that have EB1-dependent plus 

end localization, and the Kin I family of microtubule depolymerases. Coil-coil 

motifs represent known dimerization domains in the case of EB proteins, Cap-Gly 

proteins, and Kin I motors.
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End Binding (EB) Proteins 

 EB1 and other End Binding family members represent the core plus end 

protein conserved in all eukaryotic cells. All species possess at least one family 

member (Akhmanova and Hoogenraad, 2005), and in animals there is a 

ubiquitous isoform, commonly EB1 or EB3, and several tissue specific isoforms 

(Komarova et al., 2005). EB1 is thought to form the nucleus of the +TIP protein 

complex (Akhmanova and Steinmetz, 2008; Vaughan, 2005). Nearly all +TIPs 

have either a direct or indirect interaction with EB1, and this interaction may 

represent the primary plus end localization signal for other +TIPs. 

 EB1 was first isolated as a binding partner for the tumor suppressor 

Adenamatous Polyposis Coli (APC) (Su et al., 1995). Immunofluorescence of 

EB1 revealed colocalization at the distal ends of microtubules (Morrison et al., 

1998), the first observation of a protein accumulating at plus ends. Since that 

time, there has been an ever-expanding array of EB1 interacting proteins. These 

can be generally subdivided between EB1-binding MAPs that utilize other 

domains to bind tubulin and/or microtubules to regulate microtubule dynamics, 

and EB1-binding proteins such as RhoGEF2 (Rogers et al., 2004b), which 

harness tip tracking on plus ends in order to dynamically alter other aspects of 

cellular behavior. EB1, on the other hand, seems to be one of the few, bonafide 

plus end proteins that can localize to the plus end in vitro in the absence of any 

other factors (Bieling et al., 2007).  
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 This highlights a key question: How do +TIPs such as EB1 recognize the 

plus end? While the exact mechanism remains a mystery several models have 

arisen to explain the preference for the plus end by +TIPs such as EB1. One 

model postulates that EB1 recognizes a unique structure at the edges of the plus 

end sheet and facilitates its closure into a tube. This is based on in vitro evidence 

by cryo-electron microscopy that EB1 was preferentially localized to the 

microtubule seam where presumably protofilaments converge to close the 

microtubule (Vitre et al., 2008). This is also consistent with the types of 

microtubules that form in the presence of EB1. In vitro polymerized microtubules 

often deviate from the normal 13 protofilament structures found in cells, with 

tubes containing anywhere from 13-16 protofilaments. Under the same 

conditions, the addition of EB1 promotes the assembly of 13 protofilament-

microtubules with a decrease in the number of higher protofilament tubes (Vitre 

et al., 2008). Another more prevalent model is that EB1 recognizes a specific 

conformation of GTP-bound tubulin that specifically labels the plus end.  

 A recent in vitro study using specific GTP analogs that slow or prevent 

hydrolysis, thus locking tubulin in a GTP-bound state, revealed that EB1 would 

then bind the entire length of the polymerized microtubule (Maurer et al., 2011). 

This was true for GTP analogues such as GTPγS that modify the third or γ-

phosphate of GTP. Modification of the β-phosphate using GMPCPP did not lead 

to any association of EB1 with the microtubule lattice. This suggests that EB1 

may recognize not only the unique straight conformation of GTP-tubulin, but may 

also sense the nucleotide state of tubulin between GTP, GDP-Pi, and GDP-
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bound forms. This recognition of tubulin seems to be specific to incorporated 

tubulin, as EB1 exhibits relatively low affinity for soluble tubulin (Slep and Vale, 

2007; Niethammer et al., 2007). 

 EB1 consists of three domains: a microtubule-binding calponin homology 

domain, a dimerization domain, and a COOH-terminal interaction domain. EB1’s 

calponin homology (CH) domain represents a divergent line of CH domains also 

present in other MAPs such as Ndc80 (Wei et al., 2007). They differ from the 

classically defined CH structures that bind actin when present in pairs (Hayashi 

and Ikura, 2003). The interaction domain has a terminal EEY motif that mimics 

the final residues of tubulin’s C-terminal E-hooks (also EEY) (Honnappa et al., 

2006). These motifs seem to represent a mode for many MAPs to recognize and 

bind tubulin (Steinmetz and Akhmanova, 2008). Crystal structure complexes of 

EB1 with +TIPs CLIP170 and p150/Glued demonstrate a conserved mechanism 

for both binding EB1 and tubulin at these C-terminal regions through interaction 

with their Cap-Gly domains (more below). A similar ETF motif at the C-terminal 

end of CLIP170 causes a competitive auto-inhibition in cis and a trans inhibition 

of the p150 Cap-Gly domain (Hayashi et al., 2007). Posttranslational modification 

of tubulin can regulate MAP affinities by the cyclic removal and addition of the 

final tyrosine by tubulin carboxypeptidase and tubulin tyrosine ligase, respectively 

(Peris et al., 2006). MAP binding to tubulin’s E-hooks can also be assayed 

experimentally in vitro using the protease subtilisin, which selectively removes 

the E-hooks (Rodionov et al., 1990). It is not yet clear if any of these same 
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modifications are made in vivo to EB family proteins and if it can affect their 

function and interaction with other +TIPs.  

 The majority of EB1’s interactions with other +TIPs occur through a 

recently characterized “SKIP” motif that binds to EB1’s dimerization domain (Slep 

et al., 2005, Honnappa et al., 2009). The inclusion of this motif is sufficient to 

target proteins to the plus end, and it is found in a wide range of proteins that 

possess additional microtubule association domains (e.g. CLIP170, CLASP) as 

well as proteins with no characterized microtubule regulatory function (e.g. 

RhoGEF2, STIM1). EB1 association via SKIP motifs even exists within +TIPs 

that antagonize microtubule growth, as in the depolymerizing kinesin 13 member 

MCAK (Honnappa et al., 2009). It seems that this SKIP motif is a general 

microtubule plus end localization signal that is a characteristic of almost every 

+TIP identified to date. 

 The lynchpin characteristic of EB1 at the center of +TIP hierarchy 

somewhat confounds systematic investigation of its affect on microtubule 

dynamics in cells. Because of EB1 can accumulate at microtubule plus ends, in 

vitro reconstitution seemed to be a excellent reductionist system to study purified 

tubulin and EB proteins (Bieling et al., 2007). Despite several in vitro studies, no 

consensus has emerged that completely correlates with the in vivo evidence for 

EB1’s affect on microtubules. In vitro, EB1 consistently increases the rate of 

microtubule growth (Komarova et al., 2009, Vitre et al., 2008, Bieling et al., 

2007). In some in vitro studies, EB1 suppresses catastrophes and promotes 

rescue, while in other in vitro settings EB proteins increase both catastrophe and 
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rescue (Komarova et al., 2009, Vitre et al., 2008). The latter agrees the most with 

in vivo examination of EB proteins. In Drosophila S2 cells, depletion of EB1 by 

RNAi lowers the frequencies of both catastrophe and rescue and results in 

paused, non-dynamic microtubules (Rogers, 2002). In mammalian cells, 

depletion of EB proteins results in a loss of persistent microtubule growth and a 

large increase in catastrophe frequency that is not mediated through EB1’s SKIP 

interacting C-terminal tail (Komarova et al., 2009). Overall, it seems that EB 

proteins are responsible for promoting growth through their CH domains as well 

as through interactions with other +TIP binding partners. Whether independently 

or through interactions with other +TIPs, EB proteins exert an important role in 

enhancing the normal dynamic instability of microtubules. 

 

Cytoplasmic Linker Proteins (CLIPs) 

 Cytoplasmic Linker Protein (CLIP170) was first isolated from Hela cells as 

a MAP essential for coupling endocytic vesicles to microtubules in vitro (Pierre et 

al., 1992). In the first observation of realtime tip tracking, GFP-CLIP170 labeled 

the growing ends of microtubules and presented an unprecedented view of 

microtubule dynamics at the growing end (Perez et al., 1999). Upon cloning the 

gene, it became clear that it was a part of a conserved family of proteins with 

multiple isoforms across several taxa. It shared homology in its principle 

microtubule binding domain with other MAPs like Drosophila p150/glued as well 

as tubulin chaperones (Pierre et al., 1992). Molecular examination of CLIP170’s 

domain structure revealed two N-terminal Cytoskeletal Associate Protein Glycine 
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Rich (CAP-Gly) domains necessary for binding both EB1 and tubulin’s EEY 

terminus (Steinmetz and Akhmanova, 2008), a serine rich microtubule-lattice 

binding domain, a homo-dimerizing coil-coil, a zinc-binding regulatory domain, 

and a C-terminal ETF motif. As mentioned previously, CLIP170, but not the 

shorter CLIP115 isoform, exhibits a head to tail auto-inhibition by binding of the 

CAP-Gly domains to the zinc binding domain and ETF motif at the C-terminus 

(Lansbergen et al., 2004) (Hayashi et al., 2007). It is the CAP-Gly domains that 

bind tubulin and EB1 and target CLIPs to the plus end (Dixit et al., 2009) 

(Wittmann, 2008), but the serine-rich domain also seems essential for plus end 

localization. It is likely that it mediates some form of microtubule lattice diffusion 

(Hoogenraad et al., 2000). The N-terminal CAP-Gly domains and serine-rich 

domains also have potent microtubule polymerization-stimulating abilities in bulk 

in vitro assays (Gupta et al., 2010). 

 CLIP family proteins display two main functions in regulating interphase 

microtubule function. As microtubule-vesicle linkers, CLIPs act to efficiently allow 

microtubule plus ends to “search and capture” endocytic vesicles (Pierre et al., 

1992, Lomakin et al., 2009); how exactly they couple cargo microtubule 

attachment to minus end-directed motor movement is currently unknown. This 

coupling of capture to minus end movement is most likely linked to CLIP’s shared 

domain structure and association with p150/glued and the dynein/dynactin 

complex (Coquelle et al., 2002, Lansbergen et al., 2004). CLIP proteins also 

exert a stabilizing effect on microtubule dynamics. In cells, loss of CLIP170 leads 

to an increase in catastrophe frequency and a destabilization of microtubules at 
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the cell’s leading edge (Komarova et al., 2002). It is not entirely clear if this is due 

to the activity of CLIP170 or its ability to recruit CLASPs to the plus end (see 

below). It seems likely that the multimerization of CAP-Gly domains and a serine 

rich region allow CLIPs themselves to exert affects on microtubule dynamics. 

This question has not been definitively answered in vitro to determine the 

mechanism of CLIP170’s affect on dynamic instability. 

 

Cytoplasmic Linker Associated Proteins (CLASPs) 

 Using either CLIP115 or CLIP170 as bait in a yeast two hybrid screen of 

embryonic mouse cDNA, Ana Akhmanova and colleagues identified two related 

protein that bound to a portion of the CLIP coil-coil region (Akhmanova et al., 

2001). These novel MAPs were aptly named CLIP associated protein or CLASP1 

and CLASP2. They were related to a previously characterized Drosophila gene, 

Chromosome bows/Mast/Orbit, mutation of which had a variety of deleterious 

effects on the formation of the mitotic spindles during syncytial blastula divisions 

and later embryogenesis (Inoue et al., 2000, Lemos et al., 2000). In mammalian 

cells, depletion of CLASP1 and 2 destabilized microtubules that had oriented at 

the leading edge of migrating fibroblasts (Akhmanova et al., 2001). Without 

stabilized microtubules to reinforce a polarized front and rear, CLASP2 knockout 

cells were unable to maintain a persistent direction of cell migration, although the 

distance cells migrated was unchanged (Drabek et al., 2006). 

 CLASP1 and CLASP2 are similar in structure and have redundant 

functions; often represented as a single gene in lower eukaryotes (Yin et al., 
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2002, Al-Bassam et al., 2010). At their N-terminus, CLASPs have a series of 

three domains designated as TOG(1) and TOG-like(2) domains (Slep, 2009). 

TOG domains bind tubulin (Slep and Vale, 2007) and were first characterized in 

another family of +TIPs, the Dis1/XMAP215 family of proteins (see below). 

Between the first and second TOG-like (TOGL) domain is a serine and threonine-

rich region that acts as a high affinity microtubule association domain (Wittmann 

and Waterman-Storer, 2005). Within this region is an EB1-binding “SKIP” motif 

(Mimori-Kiyosue et al., 2005). Finally, at the extreme C-terminus of the protein is 

the CLIP interaction domain. Although all of these domains have been elucidated 

and functionally tested separately, we have little knowledge about how these 

domains interact to affect CLASP function within the +TIP hierarchy. In 

mammalian fibroblasts, CLASP localizes at the plus end of leading edge 

microtubules, where it is associated with a stable, cortical complex of proteins 

including the microtubule/actin crosslinker MACF7/Shortstop, the 

posphatidylinositol (3,4,5)-binding (PIP3) protein LL5β, and the scaffolding 

protein ELKS (Lansbergen et al., 2006). These membrane bound cortical 

patches appear to be important in anchoring microtubules and preventing their 

catastrophe away from the leading edge. Additionally, cortical patches often 

localize near cortical actin and focal adhesions, but do not overlap perfectly. One 

complication is that cortical patches appear to be cell type specific, as they were 

observed in Swiss 3T3 fibroblasts and Hela cells, but not epithelial COS7 cells. 

 The leading edge of a polarized culture cell has discrete zones of actin 

assembly and remodeling that are established by activation of Rho family 
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GTPases. Activation of the small GTPase Rac initiates dendritic actin assembly 

within an outermost three micrometer zone termed the lamellipodia (Hall, 2005). 

This actin array treadmills rearward, in a process termed retrograde flow, into the 

lamella sub-compartment where it is disassembled and recycled or remodeled 

into longer, unbranched filaments that are incorporated into stress fibers. The 

action of retrograde flow actively opposes the movement of microtubules into the 

cell periphery, leaving a relative few “pioneer” microtubules able to penetrate to 

the cell cortex (Waterman-Storer and Salmon, 1997). Although Rac activation 

increases the forces opposing cortical microtubule growth, Rac activity also 

positively promotes microtubule growth into the lamella/lamellipodia. This occurs 

through several means, although all of the molecular mechanisms have yet to be 

elucidated. One such mechanism is where p21 activated kinase (Pak) 

downstream of Rac promotes microtubule growth into the lamella/lamellipodia. 

This net growth in pioneer microtubules could be due in part to both an activation 

of growth promoting factors and inactivation of microtubule depolymerization 

factors. Op18/stathmin is a cytosolic tubulin-sequestering phosphoprotein that 

induces microtubule catastrophe by lowering the available pool of monomers 

competent to incorporate into protofilaments. Phosphorylation downstream of 

Rac/Pak, specifically within the lamella/lamellipodia, inactivates Op18/stathmin 

and frees tubulin monomers, raising the concentration of available tubulin 

(Wittmann et al., 2004). Finally, modulation of CLASP’s domains downstream of 

Rac activation results in a preferential stabilization of pioneer microtubules 

(Wittmann and Waterman-Storer, 2005). In epithelial cells such as Ptk1 cells, 
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CLASP exhibits a bimodal localization pattern. In the cell body, CLASP labels the 

plus end of microtubules similar to EB1. In the lamella and lamellipodia, however, 

CLASP localizes along the length of the microtubule. As mentioned previously, 

CLASP possesses a serine-threonine rich microtubule lattice-binding domain that 

overlaps with its EB1 binding SKIP motif. The serine and threonines within this 

domain include nine phosphorylation motifs for glycogen synthase kinase 3 

(GSK3) (Kumar et al., 2009). GSK3β remains active within the cell body and its 

phosphorylation of CLASP negatively regulates the tip tracking domain. It is the 

degree of phosphorylation along the stretch of serines that determines either 

localization: cytosolic in the case of full phosphorylation, plus end tracking when 

partially phosphorylated, or lamella microtubule lattice- binding when partially 

phosphorylated, or lamella microtubule binding when completely 

unphosphorylated. In the lamella, GSK3 is inactivated by Akt phosphorylation 

downstream of activated PI3K at the leading edge (Wittmann and Waterman-

Storer, 2005). This leads to the rapid dephosphorylation of CLASP and lamella 

association that stabilizes lamella microtubules as they polymerize into the cell 

periphery. For now, this observation seems limited to certain epithelial cell types, 

but may reflect a broad regulation of CLASPs that is not as easily discernible in 

cell types without large lamella which more readily compartmentalize the 

complex signaling involved. Interestingly, in these same epithelial cells, there is 

no accumulation of CLASP in cortical patches as observed in fibroblasts, but 

both pathways accomplish similar affects on microtubules downstream of PIP3 

production at the leading edge. This could represent convergent pathways based 
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on either signaling gradients or cell type specific binding partners to modulate 

CLASP activity in the periphery to stabilize microtubules.  

 

Dis1/XMAP215 TOG Proteins 

 The first representative of one of the most highly conserved +TIP families 

was Xenopus XMAP215. It was the first +TIP identified, isolated from a fraction of 

mitotic extract, this protein accelerated the polymerization of microtubules in vitro 

by ten fold (Gard and Kirschner, 1987). Because of its effects on microtubules, it 

appeared that unlike previously described MAPs, XMAP215 acted at the plus 

end to increase polymerization. Additionally, unlike conventional MAPs such as 

Tau which promotes growth through microtubule stabilization, XMAP215 not only  

stimulated microtubule growth, but microtubules were also more dynamic, prone 

to switch between rapid disassembly and rescue at their plus ends. Shortly 

thereafter, similar proteins were described in budding and fission yeast, Stu2p 

and Dis1, respectively (Wang and Huffaker, 1997, Nabeshima et al., 1995). 

Analysis of secondary structure revealed a common iteration of six helical pairs 

in an arrangement related to known Armadillo repeats. These domains were 

named Tumor Overexpressed Gene domains, or TOG domains, after a 

homologous human protein found to be elevated in colonic and hepatic cancers 

(Charrasse et al., 1995, Charrasse et al., 1998). These roughly 200 amino acid 

TOG domains are a hallmark of Dis1/XMAP215 family members and have been 

used to the identify family members in all species examined thus far (Gard et al., 

2004). With the exception of fission yeast which possess two related TOG 
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proteins, Dis1 and Alp14 (Garcia, 2001), all other species seem to possess only 

one XMAP215 homolog (Kinoshita et al., 2002). While other proteins also 

possess TOG domains (e.g. CLASP family members), there is little redundancy 

in their functions as a core regulators of microtubule dynamics. Dis1/XMAP215 

family members interact with the plus end through their TOG domains, which 

bind tubulin using a tandem pair of TOG domains. It is thought that the TOG 

domains act to rapidly add or subtract tubulin from the plus end through their 

TOG domains (Slep and Vale, 2007; Al-Bassam et al., 2007). Several in vitro 

studies have focused on XMAP215’s ability to contribute to individual facets of 

microtubule dynamics such as growth or disassembly (Popov et al., 2002; 

Brouhard et al., 2008; Shirasu-Hiza, 2003), but the exact mechanism by which 

XMAP215 functions to increase overall microtubule dynamics has yet to be fully 

determined. One model postulates that because TOG domains bind tubulin from 

solution and facilitate addition to the plus end, and the local concentration of 

soluble tubulin heterodimer is what dictates whether TOG proteins contribute to 

growth or shrinkage (Brouhard et al., 2008). When the local concentration of 

tubulin drops below a certain level, TOG proteins bind to tubulin at the plus end, 

stripping monomers from the end and promoting depolymerization. 

 The domain structure of Dis1/XMAP215 family members consists of an N-

terminal array of TOG domains followed by a C-terminal protein interaction 

domain. In yeast TOG proteins there are two TOG domains followed by a serine-

rich region and a C-terminal dimerization domain, bringing the functional number 

of TOG domains to four (Wang and Huffaker, 1997). Animals, plants (Whittington 
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et al., 2001), and amoeba (Gräf et al., 2003) have arrays of five TOG domains, 

but lack the dimerization domain of their yeast homologues. As mentioned 

previously, TOG domains are comprised of six adjacent pairs of α helices 

connected by inter helical loops (Slep, 2009). By sequence analysis, the most 

conserved feature between TOG domains of separate species is the inter-helical 

loops that form a linear interface that is hypothesized to interact with tubulin. Of 

particular note is a conserved tryptophan (or phenylalanine in the case of TOG5) 

within the first inter-helical loop. Using a bacterially purified TOG1-2 construct, a 

binding shift can be observed with purified tubulin using gel filtration. Mutation of 

the either one or both tryptophans results in a stepwise loss of tubulin interaction 

in this assay (Slep and Vale, 2007).  

 Since a minimum of two TOG domains is needed to bind tubulin, it was 

originally proposed that the array of five TOG domains in XMAP215 would bind 

oligomers of tubulin in solution, thus templating protofilaments to accelerate 

microtubule growth (Spittle et al., 2000; Asbury, 2008). Evidence for this has 

recently come from in vitro examination of microtubule growth using a sensitive 

optic trap that could detect nanometer changes in microtubule length. In the 

presence of XMAP215, microtubule growth and disassembly happened in large 

steps, upward of 64 nanometers or eight tubulin heterodimers (Kerssemakers et 

al., 2006), although the temporal sensitivity of this assay may have skewed the 

interpretation of such large growth changes. This suggests that XMAP215 can 

affect microtubule dynamics by adding or subtracting tubulin en bloc through 

TOG domain interactions. Evidence to the contrary has come from a different in 
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vitro study using single molecules of XMAP215 to measure microtubule 

dynamics using total internal reflective fluorescence (TIRF) microscopy 

(Brouhard et al., 2008). Examining single molecules, the study’s authors 

observed processive movement of XMAP215 with the growing or shrinking 

microtubule end. In addition, the authors observed XMAP215 formed a 1:1 

complex with tubulin by gel filtration, suggesting that this was the normal 

stoichiometry at the plus end. The authors proposed an alternate model where by 

XMAP215 family members processively move with the plus end, rapidly adding 

or subtracting single heterodimers to the plus end. One key question is how 

these observations correlate with the in vivo functions of XMAP215 family 

members. Exploration of this topic will be the subject of later chapters. 

 

Kinesin 13, or Kin I Depolymerase Motor Proteins 

 In contrast to growth promoting factors such as EB1 and XMAP215, 

Kinesin 13 family members are plus end factors that strongly promote 

microtubule depolymerization (for review see Moores and Milligan, 2006). While 

several classes of cargo-carrying, conventional kinesin motors can influence 

depolymerization, such as Kinesin 8 (Varga et al., 2006; Du et al., 2010), Kinesin 

13 motors are solely devoted to regulating microtubule disassembly. Kinesin 13 

motors lack cargo binding domains like conventional kinesins and have an 

internal motor domain rather than a N-terminal motor domain, prompting their 

initial characterization as Kin I (as hereby referred) for “internal” motors (Vale and 

Fletterick, 1997). Kin I proteins are generally composed of a an N-terminal 
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localization domain, a Kin I-specific neck domain, a conserved core motor 

domain, and a C-terminal homodimerization domain.  

 The motor core domain of Kin I proteins has conserved ATP-binding 

features compared to other Kinesin motors, but also has unique features that are 

thought to aid its function of microtubule depolymerization. In particular, the α4 

helix is the main energy transducer of the motor domain. This helix is thought to 

protrude from the arrow-like configuration of the motor domain into the intra-

dimer cleft between α and β tubulin (Niederstrasser et al., 2002; Ogawa et al., 

2004; Mulder et al., 2009). Based on this structural modeling, it is hypothesized 

that Kin I proteins use ATP-driven motor activity to induce a “bent” confirmation 

to the tubulin heterodimer that destabilizes lateral interactions and promotes the 

peeling “rams head” depolymerizing plus end structure. Kin I proteins are 

competent to form these microtubule end structures in vitro even in the presence 

of microtubule stabilizing reagents such as paclitaxel or the non-hydrolyzable 

GTP analog, GMPCPP (Desai et al., 1999; Hertzer et al., 2006). This suggests 

that Kin I proteins exert a measurable force to affect microtubules even in the 

presence of stabilizing agents that inhibit normal dynamic instability. 

 The N-terminal localization domain is competent to localize to most of the 

same structures as the full length molecule, but there is some indication that both 

the motor domain and C-terminus have roles in microtubule binding (Moore et al., 

2005; Cooper et al., 2010). Expression of the motor core domain alone is 

sufficient to bind along the microtubule lattice, but this form is essentially inactive 

as a depolymerase (Moores et al., 2003). Another role the N-terminus is the 
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observed rapid diffusion of the molecule in vitro toward microtubule ends (Cooper 

and Wordeman, 2009). The discrimination of the Kin I motor for the microtubule 

ends versus the lattice seems to be a property of the N-terminus and neck 

domain, aided by dimerization through the C-terminus (Cooper et al., 2010).  

 The neck domain is a large stretch of highly charged residues. This 

appears to have multiple roles in the process of Kin I depolymerization. Kin I 

constructs missing the neck or with mutations that neutralize the neck’s charged 

amino acids have lower microtubule association rates, suggesting that the neck 

is vital for the initial attachment to microtubules (Cooper et al., 2010). These 

same mutants also display lower rates of microtubule depolymerization, even at 

saturating concentrations when microtubule association and diffusion have 

negligible affects on depolymerization. This suggests that the neck has an 

additional role in Kin I removal of tubulin heterodimers at the plus end. The 

addition of the N- and C-terminus appear to offer specific advantages and 

disadvantages as a microtubule depolymerase. A construct encoding only the 

neck domain and motor core displays the most potent depolymerization activity in 

vitro (Cooper et al., 2010).  

 What purpose then do the other domains add to Kin I function? In the case 

of the N-terminal localization domain, it seems that this domain acts to 

specifically enrich Kin I motors at the growing end. In human MCAK and 

Drosophila KLP10A this is accomplished through EB1 SKIP motifs (Mennella et 

al., 2005; Honnappa et al., 2009). These depolymerases associate as comets on 

the plus end through an unknown mechanism, promoting catastrophe and 
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polymer shrinkage. It is not yet clear if this is a constitutively active process or if 

these proteins become active through some regulation such as phosphorylation 

(Jiang et al., 2009). At the C-terminus, the dimerization domain exerts the most 

negative effect on the total Kin I depolymerization activity in vitro (Cooper et al., 

2010). From in vitro assays, monomeric constructs that retain the neck and N-

terminus, associate and dissociate with microtubule lattice at elevated rates and 

seem to target to the plus end much faster than wildtype constructs. Surprisingly 

however, these constructs are ten fold less efficient at removing tubulin from the 

plus end in vitro. Dimerizing two full length motors may enhance the ability of Kin 

I motors to processively peel heterodimers off of the plus end as well as enhance 

their ability to dissociate from their heterodimer substrate to begin another cycle 

of depolymerization (Cooper et al., 2010). 

 The activities of Kin I motors have often been viewed as antagonistic to 

other +TIPs that contribute to microtubule growth and stability such as CLASPs 

(Laycock et al., 2006) and Dis1/XMAP215 (Hyman et al., 1999) family members. 

This simplistic model of polar antagonism toward either growth or shrinkage is 

largely based on the interpretation of opposing mitotic phenotypes in Drosophila 

syncytial embryos or using Xenopus mitotic extracts. In interphase cells, this 

antagonism may be species specific or more complex than direct antagonism. In 

mammalian cells, depletion or co-depletion of ch-TOG or MCAK does not seem 

to have any gross affects on microtubule organization or polymer level in 

interphase(Holmfeldt et al., 2004). Interestingly, treatment with nocodazole, a 

microtubule destabilizing drug, in ch-TOG depleted cells resulted in the same 
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degree of microtubule depolymerization as control treated cells. Overexpression 

of ch-TOG however, caused a surprising destabilization of microtubules that was 

entirely dependent on MCAK expression (Holmfeldt et al., 2004). This suggests 

that the role for mammalian ch-TOG and MCAK may be more specialized to 

regulate specific parameters of dynamic instability and not overall polymer and 

organization. This is in contrast to interphase Xenopus extracts, which have 

lower microtubule growth and shrinkage rates when depleted of XMAP215. In 

this experimental system, XKCM1 (the Xenopus MCAK) seems to specifically 

influence catastrophe frequency which can be elevated by depletion of XMAP215 

(Hyman et al., 1999; Kinoshita, 2001), suggesting that the relationship between 

these proteins is much more complex than an antagonism between polymerase 

and depolymerase. This topic will be be further expanded upon in later chapters. 

 

Novel +TIPs 

 The dynamic nature of microtubules allows for a rapid sampling of the 

cytosolic environment and delivery of key regulatory factors to specific locations. 

This requires an adaptable mechanism to couple the microtubule plus end to 

these sampling and delivery roles on non-microtubule proteins. Although there 

are specialized roles for the +TIPs discussed above to interact with non-MAPs 

such as endocytic vesicles with CLIPs (see above), this is primarily accomplished 

through the “SKIP” motif of EB1-dependent plus end localization signal. This 

allows proteins that either have no microtubule-binding domains or have other, 
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non-plus end microtubule interactions domains, to be coupled to the plus end to 

spatially regulate cellular behavior or microtubule organization.  

 One example of a non-microtubule protein that relies on an EB1 SKIP 

motif to localize to plus ends is the Drosophila Rho guanine nucleotide exchange 

factor, RhoGEF2. Immunofluorescence or GFP-tagged RhoGEF2 in Drosophila 

S2 cells revealed a localization identical to that of EB1, i.e. as a “comet” 

associated with the growing plus end (Rogers et al., 2004b). In Drosophila 

morphogenesis, RhoGEF2 works to activate Rho downstream of GPCR ligand 

binding to constrict the apical surface and internalize presumptive mesoderm 

cells (Parks and Wieschaus, 1991). EB1-mediated plus end tracking is thought to 

allow RhoGEF2 to probe the apical surface for Gα activation. Interestingly, this 

plus end association seems to be negatively regulated by G protein activation, as 

expression of a constitutively active Gα resulted in the mislocalization of 

RhoGEF2 from plus ends (Rogers et al., 2004b). Stromal interaction molecule 1 

(STIM1) is another interesting example of a non-microtubule protein that 

localizes to the plus end through EB1 (Grigoriev et al., 2008). STIM1 is a 

transmembrane protein within the endoplasmic reticulum (ER) that regulates the 

influx of calcium ions into the ER (Dziadek and Johnstone, 2007). Using 

microtubule plus end association, STIM1 can translocate ER compartments 

toward the plasma membrane and thereby activate plasma membrane calcium 

channels. This provides a close proximity between the calcium channel and the 

ER to prevent the diffusion of large amounts of calcium into the free cytosol. This 
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also provides an additional mechanism for translocating and remodeling the 

endoplasmic reticulum.  

 One example of a MAP that uses EB1 plus end localization to affect 

microtubule behavior at the plus end is the ACF7 spectraplakin family of 

microtubule-actin crosslinkers (Kodama et al., 2003). These protein are 

enormous polypeptides with internal coil-coil plakin and spectrin-like repeats. At 

their N-terminus are a pair of actin binding calponin homology (CH) domains. At 

their C-terminus is GAS2 microtubule lattice binding domain. The Drosophila 

homolog of ACF7, named kakapo or shortstop, is essential in several processes 

that integrate cytoskeletal crosstalk between microtubules and actin, such as 

axon guidance and the formation of neuromuscular junctions (Subramanian et 

al., 2003). To effectively modulate these processes, shortstop and other 

spectraplakins must localize to the point of overlap between cytoskeletal 

systems. To accomplish this, mouse MACF7, Shortstop, and other 

spectraplakins contain a their extreme C-terminus an EB1-binding SKIP motif 

(Honnappa et al., 2009; Applewhite et al., 2010). Coupling microtubule and actin 

crosslinking to the plus end allows microtubules to track along actin bundles to 

facilitate the disassembly of integrin-based focal adhesions in motile cells (Wu et 

al., 2008). Crosslinking also allows microtubules to be anchored to the peripheral 

actin network to prevent their displacement by molecular motors. In the context of 

mammalian fibroblasts, spectraplakins act in a cortical complex with LL5β, ELKS, 

and CLASPs. Spectraplackins appear to be responsible for localizing CLASP 

within this complex (Lansbergen et al., 2006; Drabek et al., 2006). 
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Interfacing at the Plus End 

 Above, I have outlined the major +TIP families and how they contribute to 

regulate interphase microtubule dynamics. One of the enduring questions 

concerning +TIPs is how these proteins are integrated, regulated, and 

functionally balanced to produce the dynamics and behaviors at the microtubule 

plus end. This is an intriguing question, as the plus end is a somewhat nebulous 

cellular organelle, dynamic and below the diffraction limit of light microscopy. 

Added to that are the diverse set of molecules with contradictory functions that 

are all acting, seemingly simultaneously, on this same substrate, the plus end. 

Many studies have examined the individual contribution of proteins in vivo 

through depletion or overexpression techniques. Furthermore, structure-function 

studies at both the molecular and atomic level have yielded detailed domain 

maps of the major +TIP families. The next step will consist of taking these data 

and beginning to functionally test how these domains contribute to both 

microtubule behavior (dynamics and organization) as well as to the +TIP 

hierarchy among interacting partners, both known and unknown. 

 In addition to understanding how +TIPs function in regulating microtubule 

dynamics, another important area of research is understanding the contribution 

that those dynamics as well as extra +TIP domains have toward essential cellular 

and morphogenetic processes (Figure 3). This is a natural progression of study 

since it is clear that microtubules and their dynamic nature have many roles in 

cell processes such as mitosis, endocytosis, and membrane traffic. It will be 
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important to expand these roles for +TIPs to more complex processes such as 

cell polarity, cell migration, and collective cell movements. More than simply 

identifying the +TIPs involved, it will be essential to understand the mechanism 

by which +TIPs contribute to these processes; either indirectly through regulation 

of microtubule dynamics or directly through other non-microtubule-binding 

domains.
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Figure 3. Microtubules are Essential for Key Cellular Processes.  

Microtubules play an instructive role in epithelial polarity, chromosome 

segregation and spindle orientation, and cell migration. In polarized epithelial 

cells (right, top), microtubules help to establish and maintain the apical and basal 

cellular compartments. In addition, microtubules act as tracks for transcytosis, 

the directed traffic of nutrients from the intestinal lumen at the apical surface to 

tissue at the basal surface. During mitosis (bottom, middle), microtubules are not 

only essential for faithfully segregating chromosomes through each cell division 

cycle, but for orienting the spindle to define the cell division axis. During 

asymmetric cell division, the orientation axis determines mother stem cell fate 

and daughter progenitor fate. During cell migration (left, top), microtubules 

coordinate cell polarity, protrusion, cell adhesion, and retraction at the cell rear. 
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The Role of +TIPs in Cell Migration 

 Cell migration is a multi-step process that involves the coordination of 

distinct cellular pathways to produce net cell locomotion (for review see Ridley et 

al., 2003). Cell motility begins with an initial polarization of the cell that identifies 

a direction of migration via a chemotactic, haptotactic, or durotactic signal. This 

can happen before the cell undergoes any morphological changes, but once 

initiated, the unique morphological subdomains that are established give the cell 

an asymmetry that reinforces polarity through the positive feedback of master 

regulatory proteins.  

 Once polarity is established, the cell will send out a protrusion consisting 

of an Arp2/3-nucleated branched array of actin, termed the lamellipodia. The 

lamellipodia is thought to be the primary force generation machinery for motility 

and establishes the directional context for other motility-based structures. The 

lamellipodia acts to push the membrane forward and seed nascent adhesions 

that are essential for force production and focal adhesion formation. Behind the 

lamellipodia towards the cell center, the lamellipodia is broken down and either 

recycled back to the leading edge for reincorporation or is remodeled into linear, 

bundled stress-fibers that are linked to a subset of the matured product of the 

lamellipodia’s nascent adhesions: the focal adhesion. Focal adhesions are 

clustered plaques of transmembrane integrins that connect the actin cytoskeleton 

to the extracellular matrix (ECM) substrate. Focal adhesions form the anchored 

structures that allow cells to produce the traction forces necessary for cell body 
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translocation and the final step of retraction of the cell rear. Cell retraction 

requires the de-adhesion of focal adhesions through endocytosis of integrin, 

disassembly of intracellular focal adhesion components, and myosin-II based 

constriction to pull up adhesions from the substrate. These multiple steps happen 

more or less sequentially in cycles and must be tightly coordinated between 

leading and lagging edge of the cell to couple protrusion and retraction to 

produce movement. 

 Microtubules are essential players within several parts of this process (for 

reviews see Rodriguez et al., 2003; Goode et al., 2000). During initial 

polarization, microtubules perform three key functions: 1) They must become 

stabilized in the new direction of migration to facilitate the transport of materials 

to and from the leading edge, such as the endocytic vesicles containing ligand-

bound receptors; 2), in becoming stabilized toward the leading edge, 

microtubules reorient the centrosome and with it the Golgi apparatus and 3), 

microtubules deliver factors that both positively and negatively regulate Rho 

family small GTPases, which are needed to establish polarity and initiate 

protrusion. The stabilization of microtubules is thought to occur through two 

distinct mechanisms. In epithelial cells, microtubule stabilization is caused by the 

association of Adenamatous Polyposis Coli (APC) to the plus ends of 

microtubules downstream of Rho family GTPase, Cdc42 (Cau and Hall, 2005; 

Etienne-Manneville and Hall, 2003). In fibroblasts as discussed previously, 

cortical complexes of CLASP, LL5β, ELKS, and ACF7 stabilize leading edge 

microtubules downstream of PIP3 (Lansbergen et al., 2006). Delivery of GEFs 
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and GAPs to the leading edge via interactions with +TIPs, helps to regulate the 

balance between antagonistic Rho GTPases to create cycles of protrusive 

lamellipodia (Fukata et al., 2002; Pegtel et al., 2007). 

 Microtubules also have an important role in the maintenance of focal 

adhesions in migrating cells. Focal adhesions form through the initial binding of 

transmembrane integrins to extracellular matrix components such as fibronectins 

or laminins. Matrix binding causes a conformational change of the intracellular 

integrin tail and recruitment of a series of proteins to form a mature focal 

adhesion. Although the exact molecular events that lead to maturation and 

disassembly remain unclear, two molecular hallmarks that leads to focal 

adhesion disassembly are the phosphorylation and activation of focal adhesion 

kinase (FAK) as well as activated Rho-based contractility (Palazzo et al., 2004). 

 Microtubules are known to target mature focal adhesions and it is the 

targeted overlap between microtubules and focal adhesions that activates Rho 

and causes the breakdown of focal adhesions (Kaverina et al., 1998; Small and 

Kaverina, 2003). In turn, Rho activates its effector Diaphanous, or Dia, which 

stabilizes microtubules toward adhesions and the leading edge (Palazzo et al., 

2004). In addition, the targeting of microtubules toward adhesions is promoted by 

the spectraplakin family of +TIPs. Using their bimodal actin and microtubule 

crosslinking domains, they guide growing microtubules along actin stress fibers 

that are anchored in adhesions (Wu et al., 2008). Embryonic fibroblasts isolated 

from knockout mice null for mACF7 have defects in migration that are due to long 

lived adhesions that are not efficiently targeted by microtubules and broken 
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down. In the same way that microtubules activate Rho at focal adhesions toward 

the direction of migration, microtubules similarly target the lagging edge of the 

cell to activate myosin II-based contractility downstream of Rho to facilitate 

retraction of the cell rear . This is also thought to be facilitated by endocytosis of 

the integrins at the cell rear to disassembly substrate attachments (Batchelder 

and Yarar, 2010). 

 

+TIPs in Drosophila Cell Migration 

 Overall, the contribution of microtubules to cell migration is both 

permissive and instructive; coordinating and regulating the various events of 

polarization, protrusion, adhesion, and retraction in order to perfectly orchestrate 

cell locomotion. The key microtubule structure for coordinating these events 

seems appropriately to be the plus end, as it is often at the forefront of 

cytoskeletal interfaces. Due to their localization, +TIPs stand to be important 

regulators of cell migration. One of the problems thus far in investigating the role 

of +TIPs in cell migration and morphology has been the amount of gene 

redundancy in mammalian model systems. Several families of +TIPs such as 

spectraplakins, end binding proteins, and CLASPs exist in multiple isoforms in 

both mice and the human cell lines that are studied in cell migration. Although the 

advent of cell lines isolated from knockout mice have partially addressed this 

problem, this has prevented the systematic analysis of the major +TIP families in 

one cell migration model system.  
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 Drosophila melanogaster represents an ideal model organism in which to 

study +TIP function. In terms of gene redundancy, Drosophila has only one 

isoform of most of the +TIP families, with the exception of EB proteins. In this 

regard, EB1 seems to be the major end binding protein and although similar 

proteins have been identified, they do not seem exhibit major overlap functionally 

with EB1. In addition to a more concise number of +TIPs, embryogenesis during 

the blastula stage of Drosophila development is dependent on the integrity of 

syncytial mitotic divisions, leading to the initial identification and characterization 

of many +TIPs through mutagenesis screens (Cullen et al., 1999; Lemos et al., 

2000; Rogers et al., 2004a). In addition to being a developmental in vivo model 

organism, immortalized Drosophila cell lines such as Schneider’s line 2 (S2) cells 

have provided an in vitro system to examine the molecular behavior of 

Drosophila +TIPs in cells (Rogers, 2002; Brittle and Ohkura, 2005; Sousa et al., 

2007; Applewhite et al., 2010). S2 cells not only offer a concise genome and the 

ability to observe intracellular dynamics at high resolution, but they are also 

highly susceptible to RNA interference (RNAi) gene knockdown. Despite these 

advantages, S2 cell lines are limited in the number of cellular behaviors that can 

be analyzed ex vivo. S2 cells exist as single cells and do not form cell-cell 

contacts or exhibit any form of motility.  

 Using a recently characterized Drosophila motile cell line, named D17 (for 

protocol and characterization, see chapter 2), I conducted a small scale RNAi 

screen to identify the affect of +TIPs on D17 cell migration. To do this, I depleted 

D17 cells of +TIPs by RNAi and assayed their migration using a classical scratch 
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wound assay over 16 hours. To perform this assay, D17 cells were cultured to 

monolayer confluency and then wounded along a line of approximately 300-

400µm with a sterile pipet tip. Cells on the wound margin sense the loss of cell 

contact and migrate in to fill the wound. Mammalian fibroblasts or epithelial cells 

often close the wound as a contiguous line of cells. In the case of D17 cells, the 

cells sometimes retain cell contacts as they move, but primarily populate the 

wound as single cells and then regain cell-cell contacts as their confluency 

increases. By manually tracking cells as they migrate into this scratch wound 

assay, I calculated parameters of migration such as velocity, distance traveled, 

and directionality for single cells as they migrated in to the wound. 

 From this initial screen, I was able to identify +TIPs that displayed specific 

loss and gain of function phenotypes upon RNAi depletion (Figure 4). RNAi of the 

Drosophila CLASP homologue, Orbit and CLIP190 resulted in an increase in 

migration velocity. In contrast, RNAi of EB1 or Mini spindles (Msps) the 

Drosophila XMAP215 homologue, caused a decrease in the overall velocity of 

D17 cell migration. As a positive control for RNAi-based affects on cell migration, 

I depleted the Arp2/3 activator, SCAR, to inactivate the protrusive actin 

machinery of D17 cells (Rogers et al., 2003). The overall trend between gain and 

loss of function phenotypes suggested that the overall “dynamicity” of 

microtubules might affect the rate of D17 migration. Loss of +TIPs such as Orbit 

and CLIP190, that are thought to stabilize microtubules, resulted in greater cell 

motility (Sousa et al., 2007; Komarova et al., 2002), while loss of EB1 and Msps, 

which enhance dynamic instability, resulted in lower rates of migration (Rogers, 
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2002; Brittle and Ohkura, 2005). This suggests that increasing the ability of 

microtubules to dynamically probe the cellular interior appears to have a positive 

effect on the rate of migration. 
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Figure 4. +TIPs involved in Drosophila melanogaster D17 cell migration.  

Mean instantaneous velocity of single D17 cells migrating into a wound over 16 

hours. D17 cells were treated with dsRNA against the indicated gene for 7 days 

before wounding a cell monolayer. RNAi depletion of SCAR disrupts Arp2/3-

mediated actin assembly and inhibits D17 migration. Depletion of +TIPs that 

promote microtubule stability such as Orbit and CLIP190, result in a gain of 

migration. Depletion of +TIPs that enhance microtubule dynamics such as EB1 

and Msps, give a loss in D17 migration velocity. This suggests that migration is 

positively regulated by dynamic microtubules and inhibit by static or stable 

microtubules.
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 Using these initial results, I decided to more carefully examine the 

interplay between +TIPs in S2 cells. My goal has been to understanding the 

complex hierarchy of protein interactions at the plus end. To this end, I have 

focused on the core plus end proteins: EB1 and XMAP215. EB1 is the primary 

plus end hub molecule (Akhmanova and Steinmetz, 2008) and acts as a primary 

localization signal for other +TIPs (Honnappa et al., 2009). XMAP215, in 

contrast, is one of the few +TIPs that has been shown to localize to plus ends 

independently of EB1 (Brouhard et al., 2008) and is thought of as a master 

regulator of microtubule growth (Kinoshita et al., 2002). It is both the interplay 

between EB1 and XMAP215 and other +TIPs, as well as the contribution of 

XMAP215ʼs unique domain structure that sculpt in vivo dynamic instability 

(Chapter 3).



CHAPTER 2

 

D17-c3, A NOVEL DROSOPHILA MELANOGASTER CELL CULTURE SYSTEM 
FOR STUDYING CELL MOTILITY 

 

This chapter is an initial characterization and protocol for using the D17 cell line 

that I developed in conjunction with my graduate advisor, Stephen Rogers. This 

manuscript is currently under secondary review for publication and the formatting 

of this chapter is based on the journal’s protocol format. 

 

Summary 

 Cultured Drosophila melanogaster cell lines such as S2 or S2R+, have 

become an important tool in uncovering fundamental aspects of cell biology as 

well in gene discovery. Despite their utility, these cells lines are non-motile and 

cannot build polarized structures or cell-cell contacts. Here we outline a 

previously isolated, but uncharacterized Drosophila cell line named Dm-D17-c3 

(or D17). These cells spread and migrate in culture, form cell-cell junctions, and 

are susceptible to RNA interference (RNAi). Using this protocol, we will outline 

how investigators, upon receiving cells from the Bloomington stock center, can 

culture cells, and prepare the necessary reagents to plate and image migrating 

D17 cells to examine intracellular dynamics or observe loss of function 
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phenotypes through RNAi. From first thawing frozen ampules of D17 cells, 

investigators can expect to begin assaying RNAi phenotypes in D17 cells within 

roughly two to three weeks. 

 

Introduction 
 
 Cultured Drosophila melanogaster cells have become a powerful genetic 

tool for the study of numerous cell biological processes. Established lines such 

as S2 and S2R+ offer high resolution cytology, simple culture conditions, a fairly 

homogeneous morphology when seeded on the lectin concanavalin A, and most 

importantly, a potent susceptibility to RNA interference (RNAi) that can be 

applied on a genomic level(Schneider, 1972; Yanagawa et al., 1998; Clemens et 

al., 2000; Rogers, 2002; Ramadan et al., 2007). These benefits are additionally 

advantageous due to the succinct nature of the fly genome(Adams et al., 2000) 

(roughly ~14,000 genes) and the potential to easily move cell culture 

observations into a model organism (Rogers et al., 2008). The end result has 

been a cell culture system that has been applied to disciplines as diverse as 

developmental biology (Wheeler et al., 2009; Johnston et al., 2009; Jiang et al., 

2007), microbiology (Dorer et al., 2006), and high-throughput functional 

genomics (Wagner et al., 2007; D'Ambrosio and Vale, 2010). 

 Although lines like S2 and S2R+ have advanced our understanding of the 

basic mechanisms underlying cell morphology and cytoskeletal organization, 

their use is somewhat limited in this regard due to their lack of true cell 

locomotion. Moreover, these cell lines usually exist in culture as single, rounded 
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cells that lack characteristics such as cell-cell junctions, which are necessary 

structures for organismal development.  

 The Drosophila Genomics Resource Center (DGRC, 

https://dgrc.cgb.indiana.edu/) in Bloomington, IN is a repository for dozens of 

Drosophila cells lines derived from various fly tissues at different developmental 

stages. Many of these cell lines have remained uncharacterized with respect to 

their ability to respond to RNAi or their real-time dynamics in culture.  

 One such line, Dm-D17-c3 (hereafter referred to as D17), was isolated in 

addition to roughly two dozen other cell lines in the lab of the late Tadashi Miyake 

at the Mitsubishi-Kasei Institute of Life Sciences in Tokyo. Although only half of 

these lines were ever published(Ui et al., 1987), the entire collection of lines 

isolated from third instar larvae is currently available at the DGRC 

(https://dgrc.cgb.indiana.edu/cells/store/catalog.html?category=2). The D17 and 

their sibling lines were cultured from dissected imaginal discs, pools of 

multipotent cells in the developing Drosophila larvae responsible for creating the 

vast array of adult tissue needed during metamorphosis. 

 
 Characteristics of D17 

 When observing D17 cells in culture, the cells display a more 

heterogeneous set of morphologies than S2 cells, but usually spread and form 

islands of epithelial-like colonies or migrate non-directionally as single cells. In 

confluent culture, the cells often form a complete monolayer, but are not 

classically contact inhibited, resulting in foci of cells that build-up above the 

surface of the cell monolayer. Timelapse video microscopy of D17 cells revealed 
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a robust motility of roughly 25-30µm/hour (Fig. 1, panel b), similar to the initial 

speeds of Drosophila hemocytes in vivo as they migrate along the ventral 

midline(Wood et al., 2006) (~24µm/hour). Additionally, when migrating, these 

cells adopt a morphology reminiscent of mammalian cells migrating in culture; 

producing a polarized, triangular organization with a large fan-like lamella at the 

leading edge and trailing retraction fibers in the rear of the cell (Fig. 2a).  

 Although the D17 cells were originally believed to be epithelial cells due to 

the nature of the tissue they were derived from(Ui et al., 1987), the cells display 

properties reminiscent of Drosophila hemocytes which are migratory Drosophila 

immune cells. This is evident from their similar morphological properties during 

migration(Wood and Jacinto, 2007) as well as the D17’s propensity for 

phagocytic clearance. Indeed, we often observe D17 cells in culture that exhibit a 

chemotactic attraction to the debris of their apoptosed neighbors and even 

undergo whole-cell engulfment (JDC and SLR, unpublished observations). D17 

cells also mimic hemocytes in their ability to secrete extracellular matrix which 

they require for migration (see Box 1). In addition to this observational evidence 

for the D17’s possible cell lineage, thanks to recent genomic information 

available from the modENCODE project (Celniker et al., 2009; 

http://www.modencode.org), we can make inferences about the differentiated 

state of the D17 cell line based on their transcriptional profile. Using these online 

tools we have found that similarly to S2 and S2R+ cells, D17 cells express 

elevated message levels of the hemocyte specific transcription factor 

Serpent(Rehorn et al., 1996)as well as other hemocyte specific genes, 
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suggesting that these two cell lines may have comparable expression profiles. 

Recent work from the modENCODE project has further characterized the 

transcriptional profile of 25 established Drosophila cell lines, including the D17 

cell line(Cherbas et al., 2011). Expression profile clustering demonstrated that 

D17 cells share broad expression similarities to embryonic S2R+ cells. However, 

based on the expression of the homeotic transcription factor, Teashirt(Fasano et 

al., 1991), in D17 cells, the authors conclude that D17 cells are indeed imaginal 

haltere disc cells. This conclusion is somewhat confounded by the fact that 

embryonic S2 and S2R+ cells also express relatively high levels of Teashirt 

based on modENCODE expression data and it seems that this fact alone does 

not explicitly reveal the identity of the D17 cell line. Further work will be 

necessary to establish the identity of the D17 cell line based on gene expression, 

cell biological observations, and biochemical analysis between various 

Drosophila cell lines. Hopefully, continued use of the D17 cell line further open up 

intriguing questions about the mechanisms of cell identity, cell morphology, and 

cell motility. 

  
 Advantages and key applications of D17 

 The key component that makes Drosophila cells an advantageous system 

is their potent susceptibility to RNA interference and the relative simplicity in 

producing and treating cells with double stranded RNA (dsRNA). Generally, this 

procedure involves creating dsRNA that is transcribed from a target DNA 

template with flanking T7 RNA polymerase start sites. Addition of the produced 

dsRNA to cell growth medium is sufficient to induce cellular uptake and gene 
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depletion(Clemens et al., 2000) without the use of lipid-based transfections or 

virus infection. This methodology has been greatly enhanced by commercial and 

academic resources that provide online tools for designing dsRNA primers 

(Harvard Drosophila RNAi Screening Center, http://www.flyrnai.org), obtaining 

cDNA templates (Open Biosystems, http://www.openbiosystems.com), and 

procuring genome-wide as well as custom sub libraries (Harvard DRSC) of RNAi 

targets.  

The utility of the D17 cell line should augment the studies of many in the 

cell biology and Drosophila communities that wish to study target genes and 

pathways in the context of biological processes such as cell migration and cell-

cell interactions (Fig. 3a). In addition, many of the protocols already established 

for S2 cell culture(Rogers and Rogers, 2008) can easily be adapted for D17 cell 

culture. The D17 cell line represents an untapped resource to enhance existing 

questions in various fields as well as provide a model to ask new questions about 

the genetic basis of cell migration, chemotaxis, and cell differentiation. 

 
Overview of the Procedure 

 We will outline in this protocol how to: thaw frozen ampules from the 

DGRC and establish cultures that can be passaged; prepare D17 growth medium 

and isolate a crude extracellular matrix preparation from conditioned media that 

allows users to plate D17 cells on glass surfaces. We will also outline how to 

experimentally assay D17 cells by transient transfection, dsRNA treatment, and 

examine migration through a classical wound healing assay that can be used to 

analyze RNAi phenotypes. Using the protocols outlined here we have been able 
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to previously demonstrate the negative regulation of D17 migration by the 

microtubule severing enzyme, Katanin(Zhang et al., 2011).  

 
EXPERIMENTAL DESIGN 

RNAi: D17 cells can be treated in much the same way as common S2 and S2R+ 

lines (Steps 9-13). For any RNAi experiment, it is important that users include 

important RNA interference controls to ensure that RNAi phenotypes are 

penetrant and effectively affect migration. We recommend using the small 

GTPase Rho as a positive control for penetrant RNAi phenotypes in S2 cells as 

well as D17 cells as it can be assayed by western blot (Fig. 1e) and produces a 

easily visible multinucleate phenotype (Fig. 1d)(Rogers and Rogers, 2008; 

Drechsel et al., 1997). As a positive control for RNAi migration phenotypes, we 

suggest using the Drosophila Arp2/3 activator SCAR. SCAR exists as a single 

isoform in Drosophila and significantly inhibits D17 migration (Fig. 1c). RNAi 

against the small GTPase Rac can also be used to inhibit D17 migration, but 

investigators should note the compensatory effects of the two Drosophila Rac 

isoforms and related GTPase Mtl(Paladi and Tepass, 2004; Stramer, 2005). 

Control treated cells can be treated with dsRNA made against the Bluescript 

plasmid(Rogers and Rogers, 2008).  

 The depletion of target proteins can vary between cell lines depending on 

the differential stability or expression level of the target polypeptide as well as the 

kinetics of protein dilution through sequential cell divisions, making a direct 

comparison of RNAi efficacy between S2 cells and D17 cells tenuous at best. 

Immunoblots of tubulin and Rho from equally loaded lysates reveal that S2 and 
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D17 cells express different levels of both proteins. Seven day treatment of 

dsRNA using the protocol outlined here results in a similar degree of knockdown 

between cell lines (Fig. 1e)., We suspect that the kinetics of protein depletion 

may be slightly slower in D17 cells due to their longer doubling time of 48-72 

hours versus a 24 hour doubling time in S2 cells (JDC and SLR, unpublished 

observations). In our hands, potent depletion (greater than 80% knockdown) in 

D17 cells can usually be obtained within 7-9 days. We recommend that 

investigators empirically optimize the length of dsRNA treatment in D17 cells for 

each RNAi target to achieve the optimal knockdown.  

  

Isolation of ECM: The methodology described in Box 1 is based on the early 

purification steps for isolating Drosophila ECM components outlined by John 

Fessler of UCLA(Fessler et al., 1994). So far, we have not yet identified the 

specific ECM components or factors that support D17 growth. Despite our 

attempts, commercial mammalian ECM components do not seem to replicate 

D17 ECM, and D17 ECM is not competent to convey cell spreading or motility to 

nonmotile S2 or S2R+ cells. D17 ECM is essential for culturing D17 cells on 

glass surfaces for wound healing assays, single cell motility, or fluorescent 

visualization. Although the above mentioned assays can be performed in tissue 

culture-treated plastic vessels, the use of glass surfaces allows greater resolution 

and decreased chromatic aberrations. One alternative is using a tissue culture-

treated optical polystyrene that does not require ECM coating and can be used 

for oil immersion microscopy.  
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 Because the concentration of ECM components can vary from batch to 

batch, it is important that investigators test newly made ECM to ensure 

consistency across many experiments. To do this investigators should plate and 

image D17 cells at a range of ECM concentrations (diluted in PBS, see step 14, 

generally ranging from 1:10 to 1:300). Analyzing the velocity and other 

parameters of migration (see step 21) for each concentration should allow 

investigators to find an ECM concentration that either replicates results from a 

previous ECM batch or displays the desired parameters of migration for a given 

experimental approach. 

 
Transient transfection: D17 transfection will allow the user to image the 

dynamics and localization of exogenous transgenes through high resolution 

immunofluorescence or in real time using bioluminescent tags such as EGFP. 

D17 cells are amenable to most of the expression constructs currently used for 

S2 cells. One caveat is that D17 cells seem to be somewhat insensitive to the 

commonly used Metallothionein promoter constructs (referred to as pMT 

vectors). These reagents can be used, but require significantly higher doses of 

copper sulfate to induce gene expression (between 500µM-5mM concentrations). 

Based on our experience, constitutive promoters such as the actin promoter or 

the OpIE2 promoter, give medium to high levels of expression and can be used 

when an endogenous protein promoter is unavailable. It is important that 

researchers use the proper controls to ensure both the expression of their 

desired transgene and to account for deleterious effects on D17 cell viability and 

cell migration. Expressing the empty vector backbone of a given transgene, that 
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only expresses an affinity or bioluminescent tag in D17 cells can both 

troubleshoot problems with the transfection protocol and control for the effects of 

toxic gene expression with a given assay. Users can also test transgenes by 

transfection in S2 cells or other non-motile Drosophila cell lines to determine the 

effects of their transgene on cell morphology. Using this protocol we normally 

achieve 10-40% transfection efficiency in D17 cells after 48 hours. The 

transfection protocol outlined here differs from protocols for transecting S2 cells 

by which we can commonly achieve 20-70% transfection efficiency, but both cell 

types seem to respond poorly to the transfection protocol of the other cell type.  

 

Migration assays: The ability to assay cell migration is the key strength of 

designing experiments using the D17 cell line. We have outlined in this protocol a 

classical wound healing assay that has been previously used to measure the 

migratory capability of mammalian cells(Liang et al., 2007). One of the key 

advantages of this kind of assay is that it can easily be scaled from the 

examination of single conditions to high-throughput assays of many dsRNA 

treatments or conditions(Yarrow et al., 2004). We previous used this method to 

initially determine that depletion of the microtubule severing protein, Katanin, 

lead to an increase in the rate of wound closure. We then went on to examine the 

migration parameters of single cells migrating at subconfluent densities. This 

two-fold approach allowed us to determine an initial phenotype before further 

defining the exact mechanism of this migratory gain of function. In addition, 

investigators can often combine the two techniques (as described in step 21) to 
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measure both wound closure as well as the migratory properties of single cells 

moving into the wound.  

 When imaging D17 cells as single cells or within the context of a scratch 

wound assay, it is important that investigators consider: 1) the resolution of 

observation, 2) the temporal resolution of time series acquisition, and 3) 

maintaining consistency between conditions.  

 The magnification used for acquiring images of D17 migration should 

encompass the entire wound when using a scratch wound assay. When tracking 

single cells, the resolution for image acquisition should also be adequate to 

provide the necessary contrast and resolution to faithfully track cells as well as 

determine differences in morphology. We recommend using between 10 and 20x 

magnification for scratch wound assay, and increasing magnification to between 

20-40x when imaging and tracking single D17 cells. 

 Users should be aware of the spatial resolution that are using to follow 

D17 migration. During a scratch wound assay, users should empirically 

determine, based on the size of their scratch, a time frame that would be feasible 

to detect both loss and gain of function migration phenotypes. This often means 

setting a final timepoint where control-treated cells migrate into the wound, but do 

not completely fill the wound area.  When creating a timelapse series of 

wound healing or of subconfluent, single D17 cells, users should ensure that the 

rate of image acquisition is adequate to capture all cell movements. Lengthy 

intervals might lose small movements of cells and potentially skew 

measurements of directionality and velocity. This should be balanced by limiting 
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the cell’s exposure to heat and evaporation caused by light illumination. 

Typically, intervals of 3-7 minutes should be an adequate rate of acquisition to 

alleviate these effects. 

 Finally, users should attempt to maintain consistent assay conditions 

across various experimental conditions. This includes the number of cells treated 

and plated for each condition, although this can difficult to avoid when treatments 

affect cell viability. Performing a wound healing assay with a pipette tip can also 

cause inconsistencies between conditions. Users should attempt to create the 

most uniform scratches possible between wells by maintaining a constant angle 

and pressure on the pipette tip while wounding cell monolayers. Custom and 

commercial apparatus can also be used to aid in wounding multiwell plates of 

D17 cells (Vitorino and Meyer, 2008; Yarrow et al., 2004). 

 Currently, one of the primary limitations of using the D17 cell line is the 

lack of directional migration assays toward chemotactic, haptotactic, or durotactic 

cues. Analysis of D17 migration using a scratch wound assay or imaging single 

cells migrating in culture is currently restricted to the non-directional migration of 

cells based on unknown cues. Because the migration of D17 cells is random, it 

also can lead to heterogeneity in the total number of cells in a population that are 

migrating as well as the persistence of migration in a single direction and the 

duration of migration. Investigators should be aware of this limitation and repeat 

experiments at least three times, sampling an adequate number of cells to truly 

determine the effect of dsRNA or other treatment on a population of cells. 

Understanding the cues that govern D17 motility will be an important advance in 
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order to harness these guidance cues to spatially and temporally direct D17 

migration. 
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Figure 2-1. D17-c3 (D17) is a motile Drosophila melanogaster cell line.  
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(a) D17 cells plated to monolayer confluency and scratched with a 200µl pipet tip 

(left) and allowed to migrate into the the wounding area over 16 hours (right). 

Representative migration tracks from two cells are indicated on the right in blue 

and green. The full movie is can be found in Movie S1. (b) Measure 

instantaneous or step velocity of individual D17 cells from either a control or 

SCAR dsRNA treatment. N=3, 10 cells tracked for each experiment. Error bars 

indicate SEM. (c) D17 cells treated with SCAR dsRNA and wounded at 0 hours 

(top) and after 16 hours (bottom). (d) D17 cells after seven days of either control 

dsRNA (left) or Rho dsRNA (right). Depletion of Rho results in cytokinesis 

defects and multinucleate cells. (e) Immunoblots of S2 or D17 lysates for tubulin 

(DM1α, Sigma) or Rho1 (p1D9, Developmental Hybridoma Bank, University of 

Iowa). Lysates were taken from cells treated with control dsRNA or Rho1 dsRNA 

for seven days and represent equal protein load as determined by Bradford 

assay. 
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Figure 2-2. Dynamic protein localization within a migrating D17 cell. 

(a) D17 cell expressing the Drosophila microtubule plus end protein Orbit/Mast 

tagged with GFP under the Metallothionein promoter (pMT GFP-Orbit) imaged by 

spinning disc confocal microscopy.  
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Figure 2-3. Immunofluorescence localization of cell-cell junction protein 
Canoe (Cno) in D17 cells.  

(a) D17 cell stained for F-actin (left) using Alexa 488 phalloidin (Molecular 

Probes) and the junctional protein Canoe (Cno) (middle). Canoe localizes 

specifically to locations of cell-cell contact. 
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MATERIALS 

 

Reagents: 

· ML-DmD17-c3 cell stocks are available from the Drosophila Genomics 

Resource Center (https://dgrc.cgb.indiana.edu/) 

· Schneider’s Insect medium (Invitrogen, cat. no. 11720-034) 

· Antibiotic/Antimycotic (Invitrogen, cat. no. 15240-096) 

· Fetal Bovine Serum (FBS) (Invitrogen, cat. no. 10099-141) 

· Human Insulin (Invitrogen, cat. no. 12585-014) 

*CRITICAL* Many vendors sell FBS that is already heat-inactivated, usually 

at temperatures exceeding 65°C. This heat-inactivated serum is not suitable 

for D17 cell culture as it does not support long term cell passage, presumably 

because of the inactivation of important trophic factors. Non-heat-inactivated 

serum can be purchased and heat-inactivated by submerging the thawed 

serum in a 55°C water bath for one hour with occasional inversions to mix the 

serum. 

· Cell Dissociation Buffer, PBS based (Invitrogen, cat. no. 13151-014) 

· D17 growth medium (see REAGENT SETUP)  

*CRITICAL* D17 growth medium should be made in advance of receiving 

frozen ampules from the Bloomington stock center. 

· Sulfuric Acid (Fisher Scientific, cat. no. SA212-1)*CAUTION* Caustic 

reagent. 
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· Hydrogen Peroxide (Fisher Scientific, cat. no. H325-100)*CAUTION* 

Irritant. 

· Sterile Phosphate buffered solution (PBS) (Invitrogen, cat. no. 10010-023) 

· Saturated Ammonium Sulfate solution (Sigma-Aldrich, cat. no. A6387) 

(see REAGENT SETUP) *CAUTION* Irritant. Users should wear gloves 

when handling ammonium sulfate. 

· Conditioned D17 growth medium (see Box 1) 

· Fugene HD Transfection reagent (Roche, cat. no. 04709705001) 

· sterile water 

·  Suitable transfection vectors e.g. Metallothionein promoter pMT vectors 

(Invitrogen, cat. no. V4120-20), OpIE2 promoter pIZ vectors (Invitrogen, 

cat. no. V800001) or Actin promoter pAc5.1 vectors (Invitrogen, cat. no. 

V4110-20). Vector backbones can be modified or purchased to 

accommodate bioluminescent probes and other user-specific transgenes. 

· D17 freezing medium (see Reagent Setup) 

·  dsRNA. These are user-defined and created based on standard 

methods(Rogers and Rogers, 2008) 

 

Equipment 

· UV transilluminator (such as Fisher Scientific, cat. no. PBDLT88AQ) or 

other power source such as a plasma treater that can bombard treated 

coverslips with at least 8000µw/cm2. *CAUTION* Always use appropriate 

eye and skin apparatus and necessary shielding when using UV light.  
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· Polystyrene petri dishes, 35 x 10 mm2 (Becton-Dickinson, cat. no. 351008) 

· Glass bottom multi-well plate (Greiner, cat. no. 662892) 

· Optical grade polystyrene/Polymer base multiwell plate (Nunc, cat. no. 

165305) 

· Glass coverslips, no. 1.5, 22mm2 (Corning, cat. no. 2940-225) 

· Coverslip rack, porcelain (Coors, via Thomas Scientific cat. no. 8542E40) 

· swinging -bucket tabletop centrifuge 

· tissue culture flask vessels, 25cm2 (T25) (Becton-Dickinson, cat. no. 

353082) 

· tissue culture flask vessels, 75cm2 (T75) (Becton-Dickinson, cat. no. 

353135) 

· Sterile, laminar flow hood 

· 500ml sterile bottle-top filter flask (Corning, cat. no. 431117) 

· 25cm cell scraper (Becton-Dickinson, cat. no. 353086) 

· Dialysis tubing (Pierce cat. no. 68035) 

· Dialysis clips (Pierce cat. no. 68011) 

· Inverted microscope with CCD camera 

· Microscope image acquisition software e.g. MetaMorph (Molecular 

Devices) or NIS Elements (Nikon) 

· ImageJ software (http://rsbweb.nih.gov/ij/) 

 

Equipment Setup 
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Coverslip preparation (Timing - 1.5 hours) Before ECM-treating glass 

coverslips, coverslips should be cleaned by immersion in a strong acid for at 

least one hour. Before treatment, load untreated coverslips into porcelain racks. 

To prepare the acid solution, add two parts sulfuric acid to one part hydrogen 

peroxide. Typically this volume is 200ml of sulfuric acid added to 100ml of 

hydrogen peroxide within a one liter glass beaker. Carefully lower the porcelain 

rack(s) into the acid solution and ensure that the coverslips are fully immersed. 

After one hour acid treatment, coverslips should be rinsed continuously with 

sterile running water for 15 minutes and dried. Once dry, place in 35mm dishes 

either individually or together to prevent dust accumulation on their surface. 

 

Reagent Setup 

D17 growth medium (Timing - 15 minutes)  Prepare growth medium (cell 

culture medium) within a sterile, laminar flow hood by combining 5 mls 

antibiotic/anitmycotic (100x stock concentration), 50 mls heat-inactivated FBS 

(10% total medium volume), 1.25ml of human insulin (4mg/ml stock 

concentration to final 10µg/ml final concentration), and 445 mls Schneider’s 

medium to a final volume of 500 mls. This solution should then be sterile filtered 

using a 2µm filter filter flask to exclude any precipitated serum or contaminates. 

Store at 4°C and warm to room temperature (approximately 25°C) before use. 

D17 growth medium is stable for 1-3 months, although serum crystals will form 

over time. These crystals should remain on the bottle bottom and do not seem to 

affect D17 culture. 
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D17 freezing medium: (Timing - 10 minutes) D17 freezing medium can be made 

by mixing 4ml of conditioned D17 growth medium, 4ml of fresh D17 growth 

medium, and 1ml of sterile DMSO. 

 

Saturated Ammonium Sulfate solution (Timing - 30 minutes) Prepare a 

saturated ammonium sulfate solution by adding approximately 750g of 

ammonium sulfate to 1L of distilled and deionized water. Heat the solution until 

the ammonium sulfate is totally dissolved and then cool to room temperature (25 

oC). Upon cooling, crystals should form, indicating the solution is indeed 

saturated. The saturated ammonium sulfate can be stored and used at room 

temperature and has an indefinite shelf life.
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PROCEDURE 

 

Thawing D17 cells *Timing - 1.5-2.5 hours* 

 

1.  In a sterile laminar flow hood, add 7 mls of D17 growth medium to a T25 

tissue culture flask; this should be carried out prior to thawing the cells. 

*CRITICAL STEP* Because the delivery conditions of dry ice are suboptimal 

for the storage of frozen cells, it is important that the ampule of cells be plated 

as soon as it arrives from Bloomington. 

 

2.  Remove the vial of cells from the dry ice delivery container and immerse 

the bottom of the ampule in a 37°C water bath, shaking often to thaw the 

ampule as quickly as possibly to room temperature. 

*CRITICAL STEP* All attempts should be made to keep the cryo vial lid from 

coming into contact with the water bath water. This will prevent contamination 

of the D17 cells. 

 

3. Once the ampule contents are liquid, remove from the water bath and 

sterilize the ampule by wiping the outside with a 70% ethanol solution. 

 

4. In the laminar flow hood, add the contents of the ampule to the 7 mls of 

D17 growth medium in the T25 culture flask prepared in step 1. 
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5. Leave the cells for 1-2 hours at room temperature (25 oC) to attach and 

spread on the bottom of the culture flask. Then, remove the medium and 

replace it with a fresh 7 mls of growth medium to remove any DMSO that 

was present in the frozen cell solution. D17 cultures can be grown in a 

sterile incubator or on a shelf at 25°C. Flasks do not require gas exchange 

vents or special atmospheric considerations. 

 

Passaging D17 cultures *Timing - 20-60 minutes* 

 

6. Remove the D17 growth medium from the culture flask and store this 

conditioned medium at 4°C for extracellular matrix production (See Box 1).  

 

7. Split D17 cells using either Cell Dissociation Buffer (option A) or using a 

cell scraper (option B). 

 

(A) Passaging using Dissociation Buffer 

(i) Wash the cells in the culture vessel by gently pipetting 2 mls of 

Cell Dissociation buffer onto the cells, briefly tilting the vessel to 

allow the buffer to wash over the cells, and removing the buffer with 

a pipette from the tilted culture vessel. 

(ii) Add another 2 mls of Cell Dissociation buffer, or enough volume 

to cover the bottom of the flask. Incubate the cells for 25-30 

minutes at room temperature outside the laminar flow hood. Under 
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magnification, the cells should be seen to round up and lose cell-

cell adhesion.  

*Troubleshooting* 

 

(iii) Gently remove the Cell Dissociation Buffer with a pipette and 

add 5 mls of fresh D17 growth medium. Vigorously pipette the 

medium up and down several times to detach the cells from the 

bottom of the culture flask. 

 

(B) Passaging using a cell scraper 

(i) Add 6mls of fresh D17 growth medium to the flask. Insert the cell 

scraper into the flask and move the blade across the flask 

bottom, trying to remove a maximum amount of cells with the 

least blade strokes. 

 

8. Seed the cell suspension into new culture vessels at concentrations of 1 to 

2x106/ml or roughly 40-60% confluency in either a T25 or T75 flask. The 

D17 cells should reach 100% confluency after 3 to 7 days depending on 

the concentration of cells seeded. Within the culture flask, the cells should 

reach a monolayer with small foci of additional cell growth above the 

monolayer. In cases where the cells are grown from sparse conditions, the 

user may find large colonies of cells that form islands of monolayers with 

exaggerated foci of cells on top. This is also adequate to passage to new 
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vessels as the cells contained within the foci should be competent to 

repopulate a new vessel. Aliquots of D17 cells can be frozen in D17 

freezing medium using previously published protocols for S2 cells (Rogers 

and Rogers, 2008). 

*CRITICAL STEP* The growth rate and survival of D17 cells is very 

sensitive to plating density. The most common error when culturing D17 is 

to plate them at low densities which can result in extremely slow growth or 

cell death. An optimal density of 40-60% is essential for healthy cells and 

confluent passaging between 3-6 days. 

CRITICAL STEP: The user should keep track of passage iterations as D17 

cells will reach a terminal state after 25-30 passages where they may 

respond poorly to RNAi or transfection and may have slow growth or 

abnormal morphology.  

*Troubleshooting* 

 

 

RNA interference treatment *Timing*:   7-9 days 

9. Plate cells in tissue culture-treated multiwell culture vessel at subconfluent 

density (40-60% or 4,000-5,000 cells/mm). We recommend performing 

RNAi in tissue culture-treated vessels and then transferring cells to 

coverslips or glass vessels, when possible. 
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10. Allow the cells to adhere to the vessel bottom for one hour at room 

temperature (25°C). Cells can be transfected (see Box 2) within 30 

minutes after plating and at anytime during RNAi treatment.  

 

11. Remove media and replace with culture medium containing approximately 

10µg/ml dsRNA. Treated cells should be incubated as normally passaged 

cells at room temperature (25°C). 

 

12. Repeat dsRNA treatment (step 11) every two days for 7-9 days of 

treatment. 

 

13.  At 6-9 days of dsRNA treatment, harvest cell lysates for western blot 

analysis or transfer to ECM-coated vessels to assay for loss of function 

phenotypes e.g. migration phenotypes can be assayed as described in 

steps 18-21 below. The user should empirically determine the optimal 

length of treatment for each dsRNA construct and gene product.  

 *Troubleshooting* 

 

 Plating D17 cells on ECM-coated surfaces *Timing- 1 hour* 

 

14. Using a stock solution of D17 cell ECM (see Box 1), dilute the ECM 

solution in sterile PBS to the desired concentration. The exact 

concentration of ECM will need to be determined empirically by the user 
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based on the optimal assay conditions and the yield of ECM purified per 

batch (see Experimental Design). As a general starting point, dilutions of 

ECM to PBS ranging from 1:50 - 1:200 seem to support robust attachment 

and migration in our hands.  

 *Troubleshooting* 

 

15.  Apply enough of the ECM/PBS solution to cover the surface of the 

coverslip or glass-bottom plate intended for culture. 

  

16. Crosslink the ECM solution to the glass surface by plasma treatment for 

several minutes or high energy UV treatment for 45 minutes. For many 

users, placing the dish or coverslip onto the surface of a UV 

transilluminatior used to visualize Ethidium bromide-stained agarose gels 

is sufficient, provided it can produce enough energy (approximately 8000 

µw/cm2) to crosslink the ECM to the glass surface.  

*CRITICAL STEP* D17 cells should be plated within several hours of ECM 

crosslinking. Plasma or UV treatment is a temporary crosslinking procedure 

which can affect the efficiency of D17 adherence and motility for some 

applications. *Troubleshooting* 

 

17. After crosslinking, remove the ECM/PBS solution. Plate the cells at the 

desired density to produce an adherent monolayer or single cells. D17 

cells should adhere and spread on the crosslinked glass surface within 1 
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hour. Cells are viable on these crosslinked surfaces for several days and 

can proliferate to form confluent monolayers if plated in sub-confluent 

number. Generally, for sub-confluent plating, cell densities of 4,000-5,000 

cells/mm surface are sufficient while densities of 7,000-8,000 cells/mm 

when cell monolayers are desired. 

 

 Wound Migration Assay *Timing - 18-24 hours* 

 

18.  Seed cells at monolayer densities on either tissue-culture treated vessels 

or ECM-coated glass surfaces at room temperature (25°C). Cells can be 

allowed to settle anywhere from 2-24 hours before wounding cell 

monolayers. Additionally, if too few cells are initially seeded, users can 

apply additional cells to increase the confluency of D17 cells to monolayer 

density. 

 

19.  Once monolayers are obtained, use a 200µl pipette tip or other pointed 

implement to scratch though the monolayer, creating a wound. Wounds 

should be at least 200µm in size without visible obstructions of cell debris 

or substrate etching. 

 

20.  Once wounded, pipette off the growth medium and wash the wells with 

fresh medium to remove debris. 
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21.  Mount the vessel on an inverted light microscope with phase contrast or 

DIC filters and begin imaging. D17 wounded monolayers can be imaged 

over the course of 18-24 hours using either discrete timepoints (option A) 

or a timelapse series (option B).  

  

(A) Imaging D17 wounded monolayers using discrete 

timepoints 

(i) Keeping the vessel stationary on the inverted microscope 

throughout the migration assay, acquire images of the 

wound at regular intervals or a acquire a set of images 

representing the beginning and end of the migration 

assay. 

(ii)  After acquiring all timepoint images, ImageJ software can 

be used to outline the scratch area and measure the area 

of the wound at each timepoint. By comparison of the total 

area between the initial timepoint and later timepoints, 

investigators can obtain the percentage of wound closure 

over a given time. 

(B) Imaging D17 wounded monolayers using a timelapse 

series 

(i) Keeping the vessel stationary on the inverted 

microscope throughout the course of the assay, acquire 
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images at regular intervals of between 3-7 minutes (see 

Experimental Design). 

(ii) Using ImageJ software, timelapse intervals can be 

assembled into a multi-image tiff file.  

(iii) Apply the Manual Tracking plugin (Fabrice 

Cordelières, 

http://rsbweb.nih.gov/ij/plugins/track/track.html) to the 

multi-image tiff files to track individual cells as they 

migrate into the wounded area. Parameters such as 

instantaneous and mean velocity, distance, and 

directionality can be obtained using this plugin. Analysis 

of D17 single cell motility at subconfluent densities can 

also be performed using steps i-iii. 

 
TROUBLESHOOTING 

Troubleshooting advice can be found in Table 1 

 

TIMING 

Equipment Setup: coverslip preparation ~ 1.5 hours 

Reagent Setup: D17 growth medium ~ 15 minutes once all ingredients are 

thawed 

Reagent Setup: Saturated ammonium sulfate ~ 30 minutes 

Steps 1-5: Thawing D17 cells, 1.5-2.5 hours 

Steps 6-8: Passaging cells via: 
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Step 7(A) Cell Dissociation buffer: 25-60 minutes 

Step 7(B) cell scraper: 20 minutes 

Steps 9-11: RNAi plating and initial treatment, 1.5 hours 

Step 12: Subsequent dsRNA treatment, 30 minutes 

Step 13: Full dsRNA treatment, 7-9 days 

Steps 14-17: Plating D17 cells on ECM surfaces, 1 hour 

Steps 18-21: Wound healing assay, 18-24 hours and can be performed 

concurrently with the end of dsRNA treatment 

Box 1: Preparing D17 ECM, 18-24 hours 

Box 2: D17 transient transfection, 30 minutes and can be performed concurrently 

with dsRNA treatment, wound healing treatment, or both. 

 

 

 

Box 1 Preparing D17 Extracellular Matrix *Timing - 18-24 hours* 

 

1. Collect conditioned medium from confluent flasks of adherent D17 cells 

and store at 4°C. This can be collected every 3 days from 100% confluent 

flasks or every 6 days from subconfluent flasks. The most straightforward 

approach is to save the medium that cells have been cultured in when 

passaging cells to new culture vessels.  
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2. Once a sufficient amount has been collected (at least 100 mls), spin the 

media at 200xg for 10minutes to remove any cells or large precipitants.  

*CRITICAL STEP* Because there is some variability between lots of 

prepared ECM, in an effort to maintain consistency it is important that a 

large enough batch of conditioned media is processed to accommodate the 

user’s aims. To this end we would recommend processing between 200-

400ml of conditioned medium at any one time which will produce enough 

ECM to last the user over one hundred experiments depending on the final 

concentration it is used at.  

 

3. Pour the cell-free medium into a glass beaker and stir slowly on a stir 

plate. 

 

4. Add approximately 40% volume of saturated ammonium sulfate dropwise 

to the slowly stirring medium (i.e. 40 mls ammonium sulfate added to 100 

mls conditioned medium). The key to success at this step is to continue 

adding ammonium sulfate until the medium is cloudy and opaque (which 

indicates the precipitation of large proteins out of solution) rather than 

adding a precise volume.  

 

5. Pour the precipitated medium solution into 50ml conical tubes and spin at 

speeds in excess of 3000xg for 30 minutes to 1 hour at 4°C.  After 
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centrifugation, the precipitated proteins should be pelleted and the 

supernatant should again be clear. 

 

6. Discard the supernatant and resuspend the pellet in 1/100th of the 

original medium volume (i.e. for 100 mls conditioned medium, resuspend 

the pellet in 1ml) in cold, sterile PBS.   

 

7. Pipette the resuspend pellet into a dialysis bag and dialyze in 1L of PBS 

at 4°C, changing the PBS out 2 to 3 times over the course of 16 to 24 hours 

to remove the ammonium sulfate from the ECM solution. 

*Pause Point* The resuspended ECM pellet can be left to dialyze in fresh 

PBS overnight at 4°C. 

 

8. Aliquot the dialyzed ECM into 1.7ml microcentrifuge tubes and spin in a 

tabletop centrifuge at 4°C at speeds in excess of 16,000xg for 10 minutes 

and transferring the supernatant to another microcentrifuge tube to remove 

any remaining precipitate. 

 

9. The ECM is now ready for use (see Steps 14-17 of the main Procedure). 

Test each new batch for efficacy to match the ideal assay conditions (see 

Experimental Design). 

PAUSE POINT: ECM can be stored short-term (1-2 months) at 4 oC or long-

term by flash freezing in liquid nitrogen and storing at -80 oC. 
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Box 2 Transient Transfection of D17 cells *Timing - 30 minutes* 

 

1. Plate D17 cells in either an ECM-coated glass vessel or a tissue 

culture-treated polystyrene multi-well dish to a confluency of 50-80% 

and leave them to adhere at room temperature (25°C) for 30 minutes to 

24 hours. 

 

2. After the cells have adhered to the culture vessel surface, replace the 

medium to remove cell debris. 

 

3. Make up the Fugene HD transfection mixture and treat cells according 

to the manufacturer’s protocol at a ratio of 3µl Fugene HD to 2µg total 

DNA (3:2) diluted in sterile water, although we recommend that each 

user empirically determine their optimal transfection conditions for each 

transgene. The transfection reagent can remain on the plated D17 cells 

indefinitely. 

  

4. Assess gene expression; this can be carried out within 24 hours 

depending on the type of promoter used to induce transgene 

expression.  

  *Troubleshooting* 
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 ANTICIPATED RESULTS 

 Using either a wound healing assay (Fig. 1a) or by imaging single cells 

(Fig. 2a) over various time periods, the investigator can acquire timelapse data 

sets from which they may derive various parameters of cell migration including 

distance, velocity (Fig. 1b), and directional persistence.. In a wound healing 

assay, an investigator can expect control-treated cells to migrate from both sides, 

not necessarily as a single cell sheet, to fill in approximately 150-250µm of the 

wound area over 18-24 hours. 

 By optimizing the length of dsRNA treatment to obtain greater than 85% 

knockdown by western blot analysis, the user should expect a highly penetrant 

RNAi migration phenotype. Combining transfection of D17 cells with a wound 

healing assay 

or single cell migration assay will also allow the user to determine the affects of 

overexpression on cell migration. Investigators can also take advantage of 

dsRNA against the 5‘ or 3‘ untranslated region (UTR) of an endogenous gene, 

allowing them to express exogenous cDNA transgenes to examine the 

sufficiency of a particular gene to rescue RNAi migration phenotypes. In these 

cases, the lower transfection efficiency of 10-40% expressing cells can be 

advantageous, as the user can use untransfected cells within the same condition 

as controls.  
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Table 2.1: Troubleshooting 
 
 
Step 

Problem Possible reason Possible Solution(s) 

7(A)i D17 cells fail to 
de-adhere after 
treatment with 
Cell 
Dissociation 
Buffer 

 
D17 growth medium may 
remain after washing with 
Dissociation buffer or D17 
cells are present in high 
density and are more 
resistant to Dissociation 
Buffer. 

Incubate D17 cells for longer 
periods with Cell 
Dissociation Buffer. Use a 
more powerful electronic 
pipet to mechanically 
remove cells.  

8 D17 cultures 
die after a 
short number 
of initial 
passages 
 

Lack of growth factors in the 
medium can lead to a death 
of D17 cells over the course 
of several passages. This 
can be caused by an 
improper inactivation of fetal 
bovine serum (FBS). 

Be sure that FBS is heat 
inactivated at a temperature 
of 55˚C (see Materials). 

8 D17 cells never 
reach 100% 
confluency, but 
instead form 
large foci and 
single cells 
adopt a spindly 
morphology. 

D17 were possibly plated at 
too low a density.  

Consider dissociating and 
passaging the foci with 
vigorous pipetting or 
Dissociation Buffer into a 
smaller culture flask. 
Consider replacing 1/2 the 
culture medium with fresh 
D17 growth medium to 
provide fresh growth factors. 

13, 
Box 2, 
Step 4 

D17 cells stop 
responding to 
dsRNA 
treatment or 
transient 
transfection. 
D17 cultures 
begin to die 
after more than 
20 passages. 

Although D17 cells are an 
immortalized line, they begin 
to lose their susceptibility to 
RNAi and reach a terminal 
growth sometime after 20 
passages.  

Consider ordering new cells 
or thawing fresh aliquots of 
D17 cells. 
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14, 16 D17 cells do 
not adhere and 
migrate on 
ECM-
crosslinked 
glass surfaces 
 

This could be due to an 
inefficient crosslinking 
process or inefficacious 
ECM. 

If using a UV crosslinking 
treatment, determine the 
power output of the UV 
source or use a plasma 
treatment system. D17 
migration can be impaired by 
too low or too high 
concentrations of ECM. The 
user should empirically test a 
range of ECM 
concentrations to determine 
the optimal concentration per 
ECM batch (see 
Experimental Design). 

 
 

 
 



Chapter 3 
 

THE MICROTUBULE LATTICE AND PLUS-END ASSOCIATION OF 

DROSOPHILA MINI SPINDLES IS SPATIALLY REGULATED TO FINE-TUNE 

MICROTUBULE DYNAMICS 

 

This chapter represents a manuscript currently in resubmission. I performed all of 

the experimentation under the support and advice of my graduate advisor, 

Stephen Rogers. I also depended on my committee member Kevin Slep for 

critical advice and specific key reagents. An undergraduate under my 

mentorship, Gregory Schimizzi, assisted me with some of the molecular biology 

necessary for this project. Shannon Stewman, a postdoctoral fellow under the 

advisement of Ao Ma, at Albert Einstein Medical College, performed automated 

tracking and analysis of microtubule dynamics for this project. 

 

Summary 

 Microtubules exhibit a signature behavior, termed dynamic instability, in 

which individual microtubules cycle between phases of growth and shrinkage 

while the total microtubule polymer remains constant. These dynamics are 

promoted by the conserved XMAP215/Dis1 family of microtubule-associated 

proteins (MAPs). We have conducted an in vivo structure-function analysis of the 

Drosophila homologue, Mini spindles (Msps). Msps exhibits EB1-dependent and 

spatially regulated localization to microtubules, localizing to microtubule plus 

ends in the cell interior and decorating the lattice of growing and shrinking 

microtubules in the cell periphery. RNAi rescue experiments revealed that Msps’ 
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NH2-terminal four TOG domains were sufficient to promote microtubule dynamics 

and EB1 comet formation and that the TOG domains function as paired units. We 

also identified TOG5 and novel inter-TOG linker motifs that are sufficient for 

binding to the microtubule lattice. These novel microtubule contact sites are 

necessary for Msps peripheral lattice association and to allow Msps to regulate 

dynamic instability. 

 

Introduction 
 Microtubules are non-covalent polymers of the protein tubulin that perform 

essential transport and structural roles within eukaryotic cells (Lansbergen and 

Akhmanova, 2006; Rodriguez et al., 2003; Howard and Hyman, 2003).  

Microtubules exhibit a steady state behavior, termed dynamic instability, in which 

individual microtubules randomly switch between phases of growth and 

shrinkage while the total level of microtubule polymer within the cell remains 

constant (Mitchison and Kirschner, 1984).  Dynamic instability is crucial to 

microtubule function and allows cells to rapidly remodel the microtubule network 

in response to cell cycle cues or extracellular signals and to perform “search-and-

capture” functions producing stable interactions between microtubules and 

organelles, kinetochores, or cortical binding sites.  In many cell types, the slow 

growing minus ends are attached to a microtubule-organizing center, while 

growth and shrinkage is caused by addition or loss of α- and β-tubulin 

heterodimers at the fast growing plus ends.  Microtubules prepared from purified 

tubulin do not exhibit the same parameters of dynamic instability as microtubules 

observed in extracts or in cells, underscoring the role of microtubule-associated 
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proteins (MAPs) as key regulators of microtubule behavior (Kinoshita, 2001; 

Gardner et al., 2008; van der Vaart et al., 2009). MAPs may be categorized into 

two types: conventional MAPs, that bind along the microtubule lattice and 

stabilize, and microtubule tip-interacting proteins (+TIPs), which preferentially 

associate with plus ends to regulate growth, shrinkage, and attachment to other 

structures within the cell. Although many MAPs and +TIPs have been individually 

studied through genetic, biochemical, and cell biological approaches, it has 

become widely accepted that these molecules function in a complex hierarchy of 

interactions (Akhmanova and Steinmetz, 2008). For example, the +TIP EB1 has 

emerged as a key molecule necessary for recruitment of other +TIPs to growing 

plus ends (Vaughan, 2005). Currently, we lack a mechanistic understanding 

about how these interactions work in concert to regulate microtubule dynamics. 

 XMAP215 was the first protein identified that affected microtubule 

dynamics at their plus ends; since that time members of the XMAP215/Dis1 

protein family have emerged as key regulators of dynamic instability (Kinoshita et 

al., 2002).  XMAP215 was originally identified in Xenopus egg extracts as a 

factor that stimulated the polymerization rate of purified tubulin almost ten-fold in 

vitro (Gard and Kirschner, 1987).  Conserved homologues have been found 

across all eukaryotic taxa and, where tested functionally, they have all been 

implicated as promoters of microtubule dynamics and are required for proper 

assembly and function of meiotic and mitotic spindles (Cullen et al., 1999; Cullen 

and Ohkura, 2001; Gergely et al., 2003; Srayko et al., 2003; Gard et al., 2004).  

All XMAP215/Dis1 proteins exhibit a conserved domain structure characterized 
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by the presence of NH2-terminal TOG domains.  Tandem pairs of TOG domains 

bind to tubulin and can trigger robust microtubule nucleation in vitro when 

present as multiple pairs (Slep and Vale, 2007).  In almost all multicellular 

eukaryotes, XMAP215 homologues possess an array of five TOG domains that 

can be classified into three types based on sequence similarity: TOG domains 1 

and 3 are type A, TOG domains 2 and 4 are type B, while TOG domain 5 is 

classified as type C (Gard et al., 2004; Slep, 2009). This pattern suggests that 

animal XMAP215 homologues evolved by sequential duplications of their TOG 

domains, generating a pair of TOG domains that reduplicated to produce the 

modern day tandem arrangement of five copies. Crystal structures of isolated 

TOG domains from several species (Al-Bassam et al., 2007; Slep and Vale, 

2007) revealed that they are flat, “paddle”-shaped domains composed of six 

tandem HEAT-repeats. HEAT repeats have a helix-loop-helix motif with the 

highly conserved intra-helical loop regions serving as the proposed tubulin 

contact sites (Slep, 2009). 

 Although a role for XMAP215/Dis1 proteins as promoters of microtubule 

plus end dynamics is well established in several systems, there is no unifying 

framework for how the domain structure of these proteins contributes to their 

localization and unique effects on microtubules in living cells.  Two recent studies 

using high-resolution in vitro assays both demonstrated that XMAP215 acts as a 

microtubule polymerase,, although they arrived at different conclusions as to the 

exact molecular mechanism of XMAP215’s “enzymatic” action (Kerssemakers et 

al., 2006; Brouhard et al., 2008). In addition to the large body of work indicating 
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that XMAP215/Dis1 family members affect microtubule growth, there is evidence 

that this family of proteins have a more complex role that also involves regulating 

microtubule shrinkage. Several in vitro studies have found potent effects on 

microtubule depolymerization in the presence of XMAP215 and other family 

members (van Breugel et al., 2003; Shirasu-Hiza, 2003; Brouhard et al., 

2008). Perhaps most telling, depletion of Drosophila Mini spindles (Msps) in S2 

cells resulted in non-dynamic, paused microtubules (Brittle and Ohkura, 2005). 

Based on these data, the authors of this study suggested that XMAP215/Dis1 

family members might act as “anti-pause” factors that exist to rapidly catalyze the 

transition from pause to either growth or shrinkage, thereby enhancing the 

dynamics of microtubules in addition to their ability to add monomers to the 

growing end.  

  In this study, we have conducted an in vivo characterization of Drosophila 

Mini spindles (Msps) in cultured Drosophila S2 cells. We found that Msps exhibits 

EB1-dependent and spatially regulated localization to microtubules, localizing to 

microtubule plus ends in the cell interior and decorating the lattice of growing and 

shrinking microtubules in the cell periphery. RNAi rescue experiments revealed 

that the NH2-terminal four TOG domains of Msps were sufficient to promote 

microtubule dynamics and EB1 comet formation and that the TOG domains 

function as paired units. We also identified TOG5 and novel inter-TOG linker 

motifs that are sufficient for binding to the microtubule lattice. These novel 

microtubule contact sites were necessary for Msps peripheral lattice association 

and allowed Msps to regulate dynamic instability. Thus, Msps regulates 
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microtubule dynamics through several mechanisms that involve its unique, multi-

domain structure. 

 

Results 
 

Msps exhibits a differential localization to microtubule plus ends in the cell 
interior and to the microtubule lattice in the periphery of interphase S2 
cells. 
 
 Brittle et al. (2005) previously described the localization of Msps in S2 

cells plated on concanavalin A (con A) and found it to be present on spindle 

microtubules and centrosomes in mitotic cells, and as punctae along individual 

microtubules with prominent foci present at microtubule plus ends.  We 

reexamined Msps localization using novel antibodies (Supplemental Figure S1A) 

raised against the second TOG domain (TOG2).  Msps distribution in S2 cells 

was roughly similar in our hands; however, we observed more discrete patterns 

of localization along microtubules during interphase.  Endogenous Msps 

accumulated at microtubule plus ends in the interior of the cell, labeling "comet"-

like structures with a similar mean length to that of EB1 (Figure 1E).  Triple 

labeling for Msps, microtubules and EB1-GFP (Figure 1A) revealed that Msps 

colocalized extensively with EB1 at these interior microtubule plus ends and 

confirmed prior observations that Msps behaves as a microtubule plus end-

interacting protein (+TIP) (Lee et al., 2001).  In the cellular periphery, however, 

Msps exhibited a strikingly different interaction with microtubules; in addition to 

plus end localization, we found that endogenous Msps decorated the microtubule 

lattice in a discontinuous pattern over several microns in length (Figure 1E).  We 
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also observed that some of the peripheral microtubule segments that exhibited 

Msps lattice association lacked EB1 (Figure 1C), suggesting that these 

microtubules had stopped growing just prior to fixation.   

 The periphery of S2 cells plated on con A is made up of concentric actin-

based sub-compartments - the peripheral lamellipodium, the lamella, and the 

convergence zone - that are defined by local actin dynamics and are established 

by intracellular signaling  
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Figure 3-1. Msps localizes to both microtubule plus ends and to the lattice 
of peripheral microtubules.  

(A) Interphase Drosophila S2 cell transfected with EB1::EB1-GFP (middle) and 

immunostained for Msps (left) and α-tubulin (right). (B) S2 cell immunostained for 

Msps (left), actin (middle), and α-tubulin (right). (C) Inset from (A), Msps 
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colocalizes with EB1 and peripheral microtubules that are EB1 negative. (D) 

Inset from (B), Msps lattice accumulations (left) are coincident with actin-rich 

lamella (right). (G) Graph of microtubule decoration length for immunostained 

EB1, and interior-localized and peripheral Msps. Error bars are 95% CI.
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cascades downstream of Rho family GTPases (Iwasa and Mullins, 2007).   

Wittmann and Waterman-Storer (2005) previously demonstrated that the +TIP 

CLASP exhibited regional differences in dynamics of certain mammalian cells; 

CLASP tracks with microtubule plus ends in the central cell body, but associates 

with the microtubule lattice in the lamella and lamellipodium.  In order to test the 

hypothesis that Msps’ compartment-based behavior resembled mammalian 

CLASP, we plated S2 cells on con A and stained them to visualize Msps, 

microtubules, and actin (Figure 1B). While Msps staining rarely extended to the 

very peripheral lamellipodia in S2 cells, the pool of microtubule lattice-associated 

Msps coincided predominantly with the peripheral lamella (Figure 1D).  This 

association did not depend on the actin cytoskeleton, as latrunculin treatment did 

not alter Msps localization to the microtubule lattice (data not shown). These data 

indicate that Msps is able to interact with microtubules through at least two 

different modes - via an association with growing microtubule plus ends in a 

manner analogous to EB1, and to segments of the microtubule lattice similar to 

mammalian CLASP, and suggests that these two modes are spatially regulated 

in response to the localized cytoplasmic environment within the cell. 

 In order to characterize Msps dynamics relative to microtubules, we used 

confocal microscopy to perform 2-color time-lapse imaging of Msps-GFP and 

mCherry-tubulin in S2 cells.  The localization of Msps-GFP in living cells was 

identical to that of the endogenous protein observed by immunofluorescence 

(Figure 2A, Movie 1).  In the interior of the cell, Msps-GFP localized to growing 

microtubule plus ends.  As microtubules grew into the periphery of the cell, Msps-
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GFP at the plus ends of individual microtubules frequently converted to a lattice-

bound population that extended along the microtubule lattice in a discontinuous, 

punctate pattern (Figure 2A, arrows, Figure 2B). Remarkably, these lattice-

associated GFP punctae in the cell periphery were very dynamic and seemed to 

exhibit frequent, short, bidirectional movements along microtubules (Figure 2B, 

Movie 2), often coalescing onto the end of a depolymerizing microtubule. In 

addition, foci of Msps-GFP often remained associated with the plus ends of 

microtubules after catastrophe and could track with the tips as they 

depolymerized (Figure 2C, Movie 3), consistent with a recent in vitro report of 

family member, XMAP215 (Brouhard et al., 2008). In addition to microtubule 

localization, we also observed Msps-GFP associating with non-motile 

cytoplasmic punctae (Figure 2A, arrowhead); double labeling with antibodies to 

PLP revealed these structures to be centrioles (data not shown). From these 

observations we conclude that Msps is able to track microtubule plus ends during 

phases of growth or shrinkage in living cells and that it also interacts with the 

microtubule lattice in peripheral regions of the cell. 

 

S2 cells exhibit two distinct populations of microtubule plus ends based on 
their origin and location between the cell interior and periphery 
 
 We next wanted to examine how Msps effects microtubule dynamics in 

living cells. We began by characterizing the behavior of microtubule plus ends in 

interphase S2 cells using either EB1-GFP or GFP α-Tubulin. EB1-GFP allowed 

us to specifically characterize the growth of microtubules in the cell interior which 

is challenging due to absence of an interphase microtubule organizing center in 
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Drosophila cells (Rogers et al., 2008), making the cell interior a complex 

meshwork of overlapping microtubules with indistinguishable plus and minus 

ends. The cell periphery, however, was amenable to analysis by GFP-Tubulin, 

which allowed us to employ an automated microtubule tracking algorithm (see 

Materials and Methods and Figure S4)(Zhang et al., 2011) to analyze the various 

parameters of microtubule dynamic instability. 

 Observation of EB1-GFP dynamics in S2 cells revealed that the majority 

of plus end EB1 comets originated in the cell interior and translocated 

persistently through the cell with a velocity of 11.91 µm/min (±0.57, 95%CI) 

toward the cell periphery, so that the majority of plus ends were oriented radially 

at the cell periphery (Figure S1B, green tracks). When these interior EB1-GFP 

comets reached the cell cortex, they would disappear or stall momentarily before 

disappearing. We also observed a second population of EB1-GFP comets that 

specifically arose in the cell periphery, a region we defined coincidental with the 

cell lamella or roughly 3µm from the cell edge(Iwasa and Mullins, 2007). These 

peripheral EB1-GFP comets likely represented rescue events, growth of paused 

microtubules, or de novo nucleation of new microtubules originating in the cell 

periphery. Most surprisingly, these peripheral EB1-GFP comets polymerized at a 

slower velocity of 6.11 µm/min (±0.6, 95%CI)(Figure S1B, red tracks), suggesting 

that they perhaps experience different physical forces, such as actin retrograde 

flow, that influence their polymerization, or they have a different molecular 

complement at their plus ends than those in the cell interior. 
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 In a series of complimentary experiments, we observed peripheral 

microtubule dynamics by imaging GFP-tubulin. Microtubules formed a fairly 

stable polymer mass in the cell interior (Figure S4A), while the peripheral 

microtubule ends were highly dynamic, best characterized by single growth and 

shrinkage events that spanned several microns with intermittent pauses and 

transitions to other dynamic states (Figure S4C). The growth rate of these 

peripheral GFP-Tubulin microtubules (6.134 µm/min, Table 1) also correlated to 

the slower population of peripheral EB1-GFP we had previously observed (Figure 

S1B). Thus, interphase S2 cells possess two populations of microtubule plus 

ends that exhibit different dynamics: 1) fast-growing interior plus ends that grow 

persistently with little pause or catastrophe, and 2), slower peripheral 

microtubules that are extremely dynamic, undergoing large growth and shrinkage 

events interspersed with pause. 

 

Msps and EB1 are mutually dependent for their normal dynamics at 
microtubule plus ends. 
 
 We next wanted to test the hypothesis that Msps interacts with other 

+TIPs for its localization and ability to regulate dynamic instability. We focused 

specifically on EB1, since Msps and EB1 exhibit two interesting parallels with 

respect to their dynamics and functions in S2 cells: 1) both proteins localize to 

microtubule plus ends throughout the cell cycle; and 2) depletion of either 

molecule results in reduced dynamic instability and  
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Figure 3-2. Msps-GFP dynamics in S2 cells is EB1 dependent.  

(A, Movie 1) Interphase S2 cell expressing mCherry α-tubulin (right) and Msps-

GFP (left) on microtubule plus ends in the interior, peripheral lattice 

accumulations (arrows) and centrioles (red arrowhead). (B) EB1-depleted S2 cell 
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expressing Msps-GFP (left) and mCherry α-tubulin (right). (C) Western blot 

demonstrating EB1 knockdown from (B) over 6 days RNAi. (D) 

Immunoprecipitation of EB1 and western blot for EB1 (right, top), Msps (right, 

middle), and EB1-binding protein CLIP190 (right, bottom). (E, Movie 3) Times 

series and kymograph of S2 cells expressing Msps-GFP (above) and mCherry α-

tubulin (below). Growing ends are indicated by green dots and shrinking ends by 

red. (F, Movie 2) Msps-GFP dynamically moving along peripheral microtubules, 

represented as a kymograph (right). Yellow arrows on the kymograph (far right) 

indicate the direction of movement and red arrowheads represent a fiduciary 

fluorescent mark along the microtubule that indicates microtubule translocation 

(kymograph, right). 
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an increased microtubule “pause” state (Rogers, 2002; Brittle and Ohkura, 2005). 

Given these similarities, we wanted to explore how Msps influenced the 

dynamics of EB1 and vice versa by depleting one protein using RNAi and 

observing the other. Depletion of EB1 after 7 days RNAi treatment (Figure 2E) 

completely abolished the accumulation of Msps-GFP at the plus end and lattice 

of microtubules (Figure 2B), and this loss of Msps-GFP from microtubules 

seemed to enhance its localization to centrioles during interphase (Figure 2D, 

arrowheads, Movie 4). In control experiments, immunofluorescence of the 

endogenous Msps in EB1 RNAi conditions and exactly matched the localization 

of the exogenous transgene (Supplemental Figure S2A, B). In the reciprocal 

experiment, depletion of endogenous Msps dramatically reduced the 

accumulation and pattern of endogenous EB1 (Supplemental Figure S2C) or 

EB1-GFP at microtubule plus ends in most cells (Figure 3D-E) and completely 

eliminated it in a minority of the population (~10% of cells, data not shown). 

Under these conditions, EB1-GFP did not resemble typical EB1 “comets” 

observed in control cells (Figure 3A-B), but instead formed spot-like punctae on 

microtubule ends in the cell interior that exhibited short back-and-forth 

displacements (Figure 3F) moving at a velocity of 3.72 µm/min (±0.21, 95%CI) as 

opposed to the persistent, track-like vectors seen in controls (Figure 3C) that 

moved at a rate of 11.91 µm/min (±0.57, 95%CI). Similar observations were 

recently reported in Drosophila sensory neurons (Stone et al., 2008), as well as 

with temperature sensitive alleles of the Arabidopsis XMAP215 homolog, MOR1 

(Kawamura and Wasteneys, 2008). To see if these proteins interact, we 
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performed co-immunoprecipitation using antibodies against EB1. Although we 

were able to pull down endogenous EB1 and a known EB1-binding protein, 

CLIP190, we were unable to co-precipitate endogenous Msps (Figure 2F), 

consistent with previous attempts to demonstrate binding in interphase extracts 

(Niethammer et al., 2007). This suggests that the mutual dependency for normal 

dynamics between EB1 and Msps may be due to synergistic effects on 

microtubule dynamics or may be mediated indirectly through another protein. 

Together, these data demonstrate that EB1 relies on Msps-dependent 

microtubule polymerization for normal dynamics, while proper localization of 

Msps is entirely dependent on EB1, although the two proteins may not interact 

directly. 

 

Msps TOG domains are sufficient to promote microtubule polymerization 
and EB1 dynamics. 
 
 If Msps functions as a microtubule polymerase in living cells as it does in 

vitro, we hypothesized that the non-dynamic microtubules produced by Msps-

depletion could not accommodate normal EB1 comet motility. Since TOG 

domains are sufficient to potently stimulate microtubule polymerization in vitro 

(Slep and Vale, 2007), we asked whether expression of the NH2-terminal 

domains of Msps was sufficient to rescue microtubule growth, and concomitantly, 

EB1 behavior. We depleted endogenous Msps using RNAi targeting either the 5’ 

untranslated region (5’ UTR) or the non-TOG domain-containing COOH-terminus 

(Figure S1A), then expressed versions of the gene tagged at its COOH-terminus 

with TagRFP and observed EB1-GFP dynamics specifically in the cell interior 
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where we could observe persistent and fast plus end tracks in wildtype cells. 

Cells treated with Msps dsRNA and transfected with TagRFP alone exactly 

recapitulated the aberrant EB1 tip localization pattern described above (data not 

shown). Cells depleted of endogenous Msps and transfected with full-length 

Msps-TagRFP, however, exhibited EB1 comets of normal size that moved with 

an average velocity of 12.24µm/min (±0.72, 95%CI), a rate that was not 

statistically different from EB1 movements in cells treated with control dsRNA 

(11.91µm/min) (Figure 3S). We next prepared an expression construct 

embodying all five TOG domains (TOG1-5: residues 1 to 1428), transfected 

together with EB1-GFP, into cells depleted of endogenous Msps. Consistent with 

our hypothesis, TOG1-5 was able to rescue persistent EB1 plus end tracking 

(Figure 3G-I, Movie 5) to velocities of 8.12 µm/min (±0.74, 95%CI)(Figure 3S). To 

exclude the possibility that rescue of microtubule dynamics was due to 

overexpression of EB1-GFP, we performed the rescue without EB1-GFP and 

examined the localization of endogenous EB1 by immunofluorescence. We found 

that expression of TOG1-5 was sufficient to partially restore the localization 

pattern and length of endogenous EB1 on microtubule tips (Figure 3T), which 

has been shown to correlate to the measured velocity of EB1 comets in cells 

(Bieling et al., 2008). These data demonstrate that the TOG domains of Msps are 

sufficient to promote microtubule growth and indirectly support EB1 plus end 

tracking in living cells. 

 

TOG domains function in paired functional units during microtubule growth 
in vivo. 
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 We previously demonstrated that a tandem construct of Msps TOG1-2 

formed a complex with tubulin by gel filtration chromatography, but did not 

promote microtubule polymerization in vitro unless artificially homodimerized or 

expressed as an arrayed construct (TOG1212)(Slep and Vale, 2007). These data 

suggested that the TOG domains of Msps functionally interact with tubulin as 

alternating paired arrays of A-type and B-type TOG domains. To test this 

hypothesis in vivo using the Msps RNAi/EB1-GFP rescue as an assay, we 

prepared an expression construct encoding the first four TOG domains (TOG1-4: 

residues 1 to 1080) fused to TagRFP and used this to replace endogenous 

Msps. As predicted by the model, TOG1-4 was also sufficient to partially rescue 

persistent EB1-GFP tip tracking to 9.42 µm/min (±0.66, 95%CI) (Figure 3J-L). 

This rescue of EB1 velocities was approximately equivalent to that of TOG1-5, 

suggesting that the first four TOG domains of Msps comprise the functional 

microtubule polymerase portion of the protein. 

 We next addressed whether individual pairs of TOG domains could 

functionally substitute for endogenous Msps using constructs encoding TOG1-2 

(residues 1 to 498) or TOG3-4 (residues 583 to 1080). Strikingly, TOG1-2 

exhibited a small rescue of EB1-GFP velocities within Msps-depleted cells 

(Figure 3M-O, Movie 6). EB1-GFP comets in TOG1-2-expressing cells were 

smaller than in control RNAi or TOG1-4-expressing cells and exhibited slower 

velocities of 6.0 µm/min (±0.7, 95%CI). Although comet movement was less 

processive as compared to control or TOG1-4-rescued cells, EB1-GFP 

movement usually persisted in a single direction, albeit slower with short phases 
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of pause, unlike the saltatory, back and forth movement in untransfected Msps 

RNAi cells (Figure 3O and Supplemental Figure S3). This EB1 movement 

produced by TOG1-2 was never observed under any other condition. Expression 

of TOG3-4, however, failed to produce any qualitative rescue of EB1 velocity 

(Figure 3P-R), although the measured velocity of 4.6 µm/min (±0.5, 95%CI) was 

statistically different than that of Msps depleted cells. These data suggest that 

Msps requires two paired arrays of TOG domains to act cooperatively in vivo to 

promote microtubule polymerization. Our results also suggest that Msps’ TOG 

domains are not functionally equivalent and may have differential affinities for 

tubulin. To further test this, we used a previously described construct (Slep and 

Vale, 2007) that has the first two TOG domains arrayed twice in a single 

polypeptide with the normal linkers preserved (linker1 and linker2) between the 

TOG domains (TOG1212 tRFP). Surprisingly, this construct was not able to 

significantly rescue EB1 velocities (5.2 µm/min ±0.4, 95%CI, Figure 3S) 

compared with TOG1-4, suggesting that the unique combination of TOG domains 

1-4 are required to effectively act as microtubule polymerase. 

 In addition to measuring EB1-GFP velocities, we also wanted to determine 

if the same TOG domain constructs could rescue other aspects of microtubule 

dynamics, specifically the highly dynamic peripheral microtubules we previously 

observed (Figure S4C). Using our automated microtubule tracking algorithm, we 

measured the dynamics of visible microtubule ends in the cell periphery after 

seven days of either control or Msps dsRNA. After Msps depletion, microtubules 

in the periphery no longer exhibited the large growth and shrinkage events that 
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characterized the wildtype peripheral microtubules. Although the average velocity 

of growth was unchanged between Control and Msps dsRNA treatment (Table 

1), as previously observed (Brittle and Ohkura, 2005), the amplitude of these 

growth and shrinkage events was severely diminished, with small spurts of 

growth and shrinkage interrupted by pause or a small rescue/catastrophe 

transition (Figure 4C). Additionally, the primary characteristic of this treatment 

was the significant increase in the frequencies of pause (Table 1), in agreement 

with a previous study (Brittle and Ohkura, 2005). These data are consistent with 

a role for Msps as an important enhancer of microtubule dynamicity. Expression 

of either TOG1-4 or TOG1-5 was able to partially restore most of the parameters 

of dynamic instability, although these conditions maintained higher frequencies of 

transitions from growth to pause, suggesting that they could suppress 

catastrophe but were not able to fully restore the large persistent growth events 

seen in control cells. Interestingly, when these constructs were expressed in 

control or Msps dsRNA conditions, both TOG1-4 and TOG1-5 showed an 

increase in the microtubule shortening velocity over control cells, and in the case 

of TOG1-5/control dsRNA (7.55µm/min), significantly greater than that of 

untransfected Msps depleted cells (6.894µm/min). This suggested to us that in 

addition to promoting microtubule polymerization, these constructs also influence 

microtubule disassembly. The measured parameters of dynamic instability are 

summarized in Table 1. Overall these data reinforce the conclusion that the NH2-

terminus of Msps is capable of partially rescuing both EB1 velocities and 

dynamic instability. 
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Msps has a novel microtubule lattice-binding site that spans the linker 
region between TOGs 4 and 5 and TOG5 itself. 
 
 Having identified a function for the NH2-terminal TOG domains in 

regulating microtubule behavior, we wondered how other uncharacterized 

domains might also contribute to Msps’ function in cells. Since full-length Msps 

exhibited dual modes of microtubule interaction, we wanted to identify the 

domain(s) that allowed the protein to interact with either the lattice or to the plus 

end. When transfected into S2 cells, TOG1-5 exhibited a very robust localization 

along the lengths of microtubules during interphase and mitosis (Figure 4B and 

C), as well as spindle poles and condensed chromosomes in mitosis (Figure 6C). 

This pattern differed from the localization of full-length Msps, which was 

recruited, to plus ends and to peripheral microtubule segments, as described 

above. Transfected cells exhibited relatively low cytoplasmic pools of TOG1-5-

TagRFP, suggesting that this construct interacted with microtubules with a 

relatively high affinity. In contrast, TOG1-4, was predominantly soluble in 

transfected cells (Figure 4D). TOG1-4 did not localize to mitotic spindle 

microtubules or poles, but did accumulate at condensed  
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Figure 3-3. Expression of Msps TOG domains are sufficient to partially 
rescue Msps microtubule polymerization and EB1 dynamics.  

(A, Movie 4) Interphase S2 cell expressing EB1::EB1-GFP with wildtype 

localization (inset, B) and velocity visualized using a 180-second maximum 

projection (C). Localization and velocity is altered when cells are Msps dsRNA-

treated (D-F), but can be partially rescued by addition of TOG1-5 TagRFP (G-I), 

TOG1-4 TagRFP (J-L), TOG1-2 (M-O, Movie 5) and by a very small amount by 

TOG3-4 (P-R). Insets in G, J, M, and P show TagRFP expression. (S) 

Distribution of EB1 velocities, dots indicate velocities outside the 10 and 90th 

percentile. Numbers in parentheses indicate cells analyzed and number of 

velocities, respectively. (T) Endogenous EB1 immunofluorescent comet length in 

cells treated with control or Msps dsRNA. Error bars are 95% CI. Asterisks 

indicate p value calculated using an unpaired t-test between two conditions (*, p< 

0.05; ***, p<0.0005).
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chromosomes in a fashion similar to TOG1-5 (Figure 4E). These data led us to 

hypothesize that Msps possesses a microtubule lattice-binding site in the region 

of the TOG5 domain. To test this possibility, we generated a series of additional 

Msps truncations fused to TagRFP, cotransfected them into S2 cells together 

with GFP-tubulin, and scored them for their ability to localize to the interphase 

microtubule lattice and to the mitotic spindle and spindle poles (Figure 4A). 

 Using the portion that comprised the difference between TOG1-4 and 

TOG1-5-TagRFP, we designed an expression construct starting from the linker 

region between TOG4 and TOG5 extending to TOG5 (linker4-TOG5: residues 

1079 to 1428). When transfected into cells, linker4-TOG5-TagRFP associated 

strongly with microtubules, spindles, and poles (Figure 4F) indicating the 

presence of a microtubule binding activity in this region of Msps. 

 Multiple TOG domains are thought to have evolved through duplication 

events, such that linker2-TOG3 and linker4-TOG5 are similar class TOG 

domains and linkers of similar size with an overall positive charge. Therefore, we 

postulated that linker2-TOG3 might be a second microtubule lattice-binding 

domain similar to that of linker4-TOG5. To assess this, we generated an 

equivalent construct that included the linker between TOG2 and TOG3 extending 

to the end of TOG3 (linker2-TOG3-TagRFP: residues 498-821). We found that 

linker2-TOG3 did exhibit microtubule- and spindle-binding activities as well as the 

localization to condensed chromosomes as seen with TOG1-4 and TOG1-5 

constructs (Figure 4G). The fact that this microtubule-binding activity is only 

apparent when the individual domain is expressed, as opposed to a larger region 
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such as TOG1-4, suggests that it is either regulated or somehow masked in the 

context of full-length Msps or TOG1-4. 

 Finally, we examined the localization of the COOH-terminal domain 

(residues 1407 to 2050) of Msps fused to TagRFP.  This construct did not 

associate with the lattice of interphase microtubules, but was recruited to mitotic 

spindle poles (data not shown) consistent with published observations that the 

COOH-terminus of XMAP215 targets it to the centrosome in Xenopus (Popov et 

al., 2001).  
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Figure 3-4. Structure/function analysis of Mini spindles reveals two 
microtubule lattice-binding sites.  
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(A) Domain structure of Drosophila Dis1/XMAP215 homolog, Mini spindles. 

COOH-terminal TACC interaction domain is indicated as a rectangle. All Msps 

constructs were COOH-terminally tagged with TagRFP and transfected with 

GFP-α-tubulin to observe localization to distinct microtubule structures. (B) Msps 

TOG1-5 TagRFP (left) colocalizes with GFP-α-tubulin (middle) in interphase and 

spindle poles, spindle microtubules, and condensed chromosomes in mitosis (C). 

(D) Msps TOG1-4 TagRFP (left) does not colocalize with GFP-α-tubulin (middle) 

in interphase or mitosis, but does localize to condensed chromosomes in mitosis 

(E). Insets represent single TagRFP channel from merge. (F) Linker4-TOG5 

TagRFP in interphase (left) or mitotic (right) S2 cells. (G) Linker2-TOG3 in 

interphase (left) and mitotic (right) S2 cells.



 

 110 

 

Msps possesses conserved microtubule-binding motifs within the inter-
TOG linker regions. 
 
 Our next objective was to define the minimal structural components in 

Msps linker4-TOG5 that were required for association with the microtubule 

lattice.  Given the well-documented interactions between other TOG domains 

and tubulin, we hypothesized that TOG5 would be sufficient to mediate this 

interaction.  We subdivided the construct into only the linker4 (residues 1079-

1173) or TOG5 (residues 1173-1427), fused these fragments to TagRFP, and 

expressed them in S2 cells (Figure 5A).  We were surprised to observe that 

neither fragment associated with microtubules in vivo alone, but rather exhibited 

a diffuse localization throughout the cytoplasm (data not shown), demonstrating 

that elements in both the linker4 and TOG5 domains were required together for 

microtubule lattice association. The orientation of the TOG domain and linker 

was also important, as TOG4-linker4 was not sufficient to bind microtubules in S2 

cells (data not shown). 

 We hypothesized that TOG5 interacts with the microtubule lattice in a 

similar fashion to other TOG domains in vitro, via its intra-HEAT repeat loops 

(Slep and Vale, 2007). We previously found that a conserved non-polar residue 

on the first HEAT repeat loop is absolutely required for tubulin binding in vitro 

(Slep and Vale, 2007). In TOG5 this residue is a phenylalanine at position 

1204. Mutagenesis of F1204 to glutamic acid in linker4-TOG5 prevented its 

localization to microtubules in interphase cells (Figure 5B). This result suggests 

that TOG5 is able to bind microtubules using the same surface used by other 
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TOG domains to bind to tubulin. Surprisingly however, this point mutation did not 

prevent linker4-TOG5 from localizing to the spindle or spindle poles in mitotic 

cells, indicating that there is either an enhanced affinity or an indirect association 

with the spindle during mitosis (Figure 5B, bottom).  

 To identify the residues in linker4 that are necessary for microtubule 

association, we made a series of NH2-terminal truncations of the linker4-TOG5 

fragment.  Using this strategy, we found that a construct composed of residues 

1099-1427 associated with microtubules, but a construct spanning residues 

1111-1427 did not (Figure 5A).  This observation suggested that the 12 residues 

(EEPKLKTVRGGG) spanning amino acids 1099-1111 were important for 

microtubule lattice binding. Because microtubule binding is often mediated 

through electrostatic interactions between positively charged residues on MAPs 

and the overall negatively charged surface of tubulin, we hypothesized that 

reversing the amino acid charge of residues within this necessary region of 

linker4 would eliminate microtubule association. Mutation of lysines and an 

arginine in this region of linker4-TOG5-TagRFP to either glutamic acid or alanine 

was sufficient to eliminate microtubule association in interphase (Figure 5B). To 

our surprise, this construct exhibited a weak, albeit very distinct, localization to 

the spindle and spindle poles as cells entered mitosis, similarly to linker4-TOG5 

F1204E. These data indicate that this positively charged patch of residues in the 

linker4-TOG5 sequence is required for its association with microtubules during 

interphase.   
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 We also tested if TOG5 was unique in its ability to cooperatively bind 

microtubules with linker4 or if other TOG domains would be sufficient for 

recruitment to microtubules by preparing a chimeric protein consisting of linker4 

fused to TOG1, a type A TOG domain.  Linker4-TOG1 did not associate with 

microtubules in interphase; however, it did localize to the spindle and spindle 

poles during mitosis (Figure 5D), which suggests that some region of the linker 

may act as a second mechanism to recruit Msps to the mitotic spindle. Indeed, 

GFP fusions of either linker2 (data not shown) or linker4 localized to the 

cytoplasm during interphase and to the spindle and spindle poles in dividing cells 

(Figure 5E).   Taken together, these data identify a region in linker4 required for 

binding of linker4-TOG5 to interphase microtubules and further suggest that 

there is some specificity for TOG5 for this association.  They also suggest that a 

second mechanism exists for recruiting Msps to the mitotic spindle via the inter-

TOG linkers. 

 We next examined the sequences of linker2 or linker4 to determine if there 

were additional microtubule-binding motifs present in these regions of the 

protein. Although many Dis1/XMAP215 family members retain a high degree of 

sequence similarity within TOG domains, the linker regions connecting them 

share less sequence similarity.  
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Figure 3-5. Msps has a novel microtubule lattice binding site that spans 
the linker region between TOGs 4 and 5 and TOG5 itself.  
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(A) Detailed domain structure of TOG4 through TOG5 (821-1428). Interphase 

(above) and mitotic (below) localization of linker4-TOG5 F1204E TagRFP (B), 

linker4-TOG5 charge reversal TagRFP (residues 1102-1107) TagRFP (C), 

chimeric linker4-TOG1 TagRFP (D), linker4 TagRFP (residues 1079-1173) (E). 

(F) linker2-TOG3 TagRFP with KVLK charge-reversal mutation in interphase 

(left) and mitosis (right). Scale bars represent 10µm. (G) Representative western 

blot of in vitro microtubule cosedimentation assay. (H) Binding curves 

summarizing in vitro cosedimentation assays for various Msps constructs. 

Dissociation constants are indicated where applicable. Error bars are 95% CI. 
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Generally, the linker2 and linker4 among higher animal and plant XMAP215 

family members share similar lengths (approximately 100 amino acids) and an 

overall higher percentage of positively charged residues relative to linkers 1 and 

3. By using the previously described region within either linker2 (residues 498-

583) or linker4 (1099-1111) we were able to distinguish three unique motifs that 

occurred from NH2-terminal to COOH-terminal within the linker2 or 4 region of 

Dis1/XMAP215 family members (Figure S5). The most conserved feature of 

these motifs was a sequence exactly matching or similar to “KVLK” within the 

third linker motif. Although the exact EEPKLKTVRGGG sequence was absent 

from Msps linker2, this domain does possess a stretch of residues rich in basic 

and non-polar amino acids that also contains this KVLK motif. To test if this 

region of homology could represent another cryptic microtubule binding site, we 

mutated the KVLK motif to EAAE within linker2-TOG3 and found that this 

completely abrogated the interphase microtubule-binding activity, but not mitotic 

spindle localization of linker2-TOG3 (Figure 5F). These data suggest the 

presence of a second microtubule interaction site in the second inter-TOG linker 

that contains at least one highly conserved binding motifs. 

 To verify that the microtubule interactions that we observed in S2 cells 

were mediated directly by the expressed fragments of Msps, we tested their 

ability to cosediment with microtubules in vitro. We expressed various pieces of 

Msps tagged at their COOH-terminus with TagRFP using a reticulocyte 

transcription/translation system, incubated the lysate proteins with taxol-

stabilized microtubules, and centrifuged them through a glycerol cushion. The 
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supernatant and microtubule pellet were then collected and immunoblotted for 

the presence of TagRFP (Figure 5G). Both linker4-TOG5 and linker2-TOG3 

cosedimented with microtubules, and by varying the concentration of tubulin we 

were able to extrapolate an apparent Kd, which is the concentration of tubulin at 

which half the translated construct would be expected to pellet (Figure 5H). 

Linker2-TOG3 and linker4-TOG5 had similar apparent Kd’s of 14µM and 21µM, 

respectively. Linker-TOG constructs containing mutations that abrogated 

microtubule association in vivo only minimally cosedimented with tubulin at levels 

approaching background detection. These domains bind tubulin at lower affinities 

than what has previously been observed for other full length XMAP/Dis1 family 

members (Spittle et al., 2000; Al-Bassam et al., 2010). We postulate that this 

may be due to cooperative interactions within the full-length protein between both 

microtubule binding sites and the added interactions of TOGs 1, 2, and 4 with 

tubulin. 

 

The linker regions are necessary for Msps peripheral lattice association 
and influence microtubule dynamics in the cell periphery 
 
 To determine how Msps microtubule lattice association via linker2-TOG3 

and linker4-TOG5 influence its dynamics and function in cells, we created full-

length constructs that contained either the linker2 KVLK charge reversal 

mutation, the linker4 charge reversal mutation, or both mutations (Figure 6A). 

When tagged COOH-terminally with GFP and expressed in cells depleted of 

endogenous Msps using 5‘UTR dsRNA, either of single mutants appeared 

qualitatively similar (data not shown) to wild type Msps (Figure 6B). This 
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suggests that in context of the full-length molecule, the inter-TOG linker 

microtubule binding sites act redundantly or can compensate for loss of the 

other. The double mutant Msps (Double Mut Msps), on the other hand, displayed 

significantly altered localization and dynamics compared to wild type Msps when 

expressed in Msps depleted cells (Figure 6C). Firstly, in the peripheral lamella, 

the microtubule lattice association was greatly reduced (Figure 6E, Movie 7) 

compared to wild type (Figure 6D). Double Mut Msps-GFP displayed no 

discernible association along the length of microtubules, and no longer decorated 

the lattice as a discontinuous patch of GFP fluorescence (Figure 6D). Instead the 

Double Mut Msps localized primarily to small comet-like structures on the plus 

end of lamella microtubules (Figure 6E). Using fluorescent intensity line-scans, 

this reduction in the peripheral lattice binding was readily apparent compared to 

both wild type Msps-GFP and EB1-GFP (Figure 6F). In addition to the alteration 

of Msps dynamics, expression of Double Mut Msps also affected the morphology 

and dynamics of microtubules in the cell periphery. In control cells, microtubules 

that enter the cell lamella are often highly dynamic, growing straight until they 

encounter the cell cortex at a perpendicular angle before undergoing a 

catastrophe that depolymerizes the microtubule out of the peripheral region 

(Figure 6B, D). In cells only expressing Double Mut Msps, however, long 

microtubules were often observed to curl away from the periphery (Figure 6C, E, 

Movie 7); we postulated this was caused by continued microtubule growth after 

contact with the cell cortex. Our hypothesis was confirmed by time-lapse images 

in which microtubule plus ends in the cell periphery grew and stalled at the cell 



 

 118 

edge or would begin to curve and grow parallel to the cell lamellipodia. These 

peripheral microtubules were decorated with small comet/dots of Double Mut 

Msps and seemed to exhibit shorter durations of depolymerization before 

recovering and growing again (Figure 6H, Movie 8) compared with wild type 

Msps (Figure 6G, Movie 8). 

 In order to examine the dynamics of these peripheral microtubules we first 

wanted to set a baseline of microtubule dynamics within cells expressing 

exogenous full length (FL) Msps-GFP. Expression of FL Msps-GFP in addition to 

endogenous Msps (Control treated cells) closely replicated untransfected control 

cells with the exception of increased growth and shrinkage rates (Table 2). 

Rescue of Msps 5’ UTR dsRNA-treated cells with FL Msps-GFP caused an 

increase in microtubule growth and shrinkage, suppressed catastrophe, and 

increased microtubule transitions out of pause. Expression of a single linker2-

mutated full length Msps-GFP elevated growth and shrinkage rates, but had no 

affect on the dynamic transitions of control-treated cells and was fully competent 

to rescue Msps 5‘UTR depletion. 

 We next examined the effect of Double Mut Msps on peripheral 

microtubule dynamics. In control treated cells, Double Mut Msps had little effect 

on microtubule dynamics, although it did result in elevated growth and shrinkage 

rates. However, when S2 cells were depleted of endogenous Msps by 5‘UTR 

dsRNA, Double Mut Msps had a notable effect on both the rates of growth and 

shrinkage and the dynamic transitions of microtubules. Double Mut Msps did not 

elevate growth rates as other full length  
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Figure 3-6. Mutation to the linker regions of Msps abrogates interaction 
with the lattice of peripheral microtubules.  
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(A) Cartoon schematic of full-length double mutant Msps (Double Mut Msps) that 

contains the linker2 “KVLK” charge reversal and linker4 charge reversal. (B) 

Interphase S2 cell depleted of endogenous Msps using 5‘UTR dsRNA, 

expressing wild type Msps-GFP (B, Movie 6) or Double Mut Msps-GFP (C). (D) 

Inset of B, with Msps Double Mut-GFP (top), mCherry-Tubulin (middle), and the 

merge (bottom). Linescans across plus ends of S2 cells expressing either 

EB1::EB1-GFP, full length wild type Msps-GFP, or full-length double mutant 

Msps-GFP (Double Mut Msps). Linescans for Msps are of peripheral 

microtubules at equal exposures and time frames, error bars are standard 

deviation. (E, Movie 7) Peripheral microtubule decorated with wild type Msps-

GFP and the associated kymograph. (F, Movie 8) Peripheral microtubule end 

with Double Mut Msps-GFP and kymograph.



 

 121 

constructs could and had a slightly negative effect on growth rates, unlike any 

other construct we had previously analyzed. More surprising, was the affect on 

dynamic transitions. Rescue by Double Mut Msps-GFP resulted in a decrease in 

transitions from either growth or shrinkage into pause (G/S ➔ P) as well as the 

inverse of paused microtubules transitioning into growing or shrinking 

microtubules (P ➔ G/S) (Table 2). If we broadly classify paused microtubules as 

non-dynamic and growing or shrinking microtubules as dynamic, these data 

suggest that Double Mut Msps-GFP microtubules were more likely to stay locked 

in either dynamic or non-dynamic states and were unable to transition normally 

between these states. This suggests that Msps’ interactions with the lattice of 

peripheral microtubules plays a key role in balancing dynamic instability in this 

population of plus ends.  

 

Discussion 
 

 Growing evidence from several model systems indicates that members of 

the XMAP215/Dis1 protein family enhance microtubule dynamic instability and 

mitotic spindle assembly (Kinoshita et al., 2002). These multi-domain proteins 

are highly conserved across taxa and there is particular interest in the human 

homologue, ch-TOG, as its overexpression has been documented in several 

cancer cell types (Charrasse et al., 1995; 1998). Despite the importance of these 

proteins, we know relatively little about their dynamics in living cells or about how 

their domain structure relates to their function in vivo. In this study, we have used 

the Drosophila XMAP215 homologue, Mini spindles (Msps), as a model to 



 

 122 

address these questions in living S2 cells. We found that Msps exhibits a 

complex and dynamic behavior in vivo. It localizes both to growing and shrinking 

microtubule plus ends. In the actin-rich cell periphery, Msps-GFP punctae exhibit 

a discontinuous and dynamic association with the microtubule lattice. Consistent 

with roles for both Msps and EB1 as key regulators of dynamic instability, we 

observed that depletion of either of these proteins lead to alteration of the other’s 

dynamics at microtubule plus ends. Remarkably, microtubule dynamics and EB1 

velocity could be partially restored by replacing endogenous Msps with the NH2-

terminal four TOG domains TOG1-4. Our structure/function analysis also 

revealed the presence of novel microtubule lattice-binding domains, which 

include sequences in two of the inter-TOG linker domains. These linkers contain 

novel motifs responsible for this interaction and are important for the normal 

dynamics of Msps as mutation of these motifs causes a loss of Msps from the 

lattice of peripheral microtubules and an alteration to the morphology and 

dynamics of the microtubule cytoskeleton. Thus, our data demonstrate that Msps 

is able to interact with microtubules through at least two mechanisms and that 

this bimodal interaction is required for normal dynamic instability. 

 Our study, the first detailed examination of a Msps/Dis1 family member in 

a living animal cell, revealed that Msps exhibits a complex pattern of dynamics. 

Throughout the cell, Msps localizes to the plus ends of growing microtubules, 

consistent with other published descriptions of Msps behavior in early Drosophila 

embryos (Lee et al., 2001) and in vivo dynamics of homologues Stu2 (S. 

cereviscae, (He et al., 2001; Kosco et al., 2001; van Breugel et al., 2003; Tanaka 
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et al., 2005; Wolyniak et al., 2006), Alp14 (S. pombe, (Sato et al., 2004; Garcia, 

2001; Nakaseko et al., 2001), and AlpA (A. nidulans, (Enke et al., 2007). Our 

observations in S2 cells are in line with family members acting as microtubule 

polymerases that promote the incorporation of free tubulin at the plus end. Msps 

also exhibits dynamics similar to the in vitro behavior of XMAP215 (Brouhard et 

al., 2008) as both proteins remain associated with microtubules during phases of 

growth and shrinkage. At present, the biological significance of Msps association 

with shrinking microtubules is not understood, however, Stu2 and XMAP215 do 

destabilize microtubules under specific in vitro experimental conditions (van 

Breugel et al., 2003; Shirasu-Hiza, 2003; Brouhard et al., 2008). Persistent 

interaction with shrinking microtubules may reflect a physiologically important 

role for Msps during depolymerization in vivo. We favor a model based on this 

interaction with both growing and shrinking microtubules, first articulated by 

Shirasu-Hiza et al. (2003) and further elaborated by Brittle and Ohkura (2005), in 

which Msps acts, not only as a polymerase, but as an anti-pause factor that is 

capable of “catalyzing” the transition to either polymerization or depolymerization 

(Figure 7). Although it has primarily been shown to enhance the growth of 

microtubules, Msps is also necessary for their transition to disassembly in vitro 

and in vivo. These two seemingly opposing roles are mediated by 1) the TOG 

domains and plus end localization which enhance microtubule growth; and 2) 

microtubule lattice binding sites within linker2-TOG3 and linker4-TOG5 which 

enhance the transition between dynamic and non-dynamic states and also 

influence microtubule disassembly rates. Regulation and balance of these two 
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domains maintain normal microtubule dynamics. In the future, it will be 

interesting to learn if these in vivo dynamics also apply to XMAP215 or human 

chTOG, which remain largely uncharacterized in cells. 

 One of the central observations from this work was that the NH2-terminal 

TOG domains of Msps are the key determinants of the protein's activity in vivo. 

Several previous studies have indicated a role for TOG domains as primary 

binding sites for tubulin in XMAP215/Dis1 proteins (Spittle et al., 2000; Popov et 

al., 2001; Gard et al., 2004; Al-Bassam et al., 2007; Slep and Vale, 2007). 

Biochemical analysis of the TOG domains from Msps revealed that TOG1-2 was 

the minimal construct that was able to bind tubulin (Slep and Vale, 2007). 

Moreover, a construct consisting of a tandem array of TOG1212 functioned as a 

potent microtubule nucleator in vitro, suggesting that multiple pairs of TOG 

domains act in concert to promote polymerization. We found that a fragment of 

Msps containing TOG1-4 was sufficient to rescue many aspects of microtubule 

dynamic instability in living S2 cells depleted of endogenous Msps, both in terms 

of interior EB1-GFP growth velocities and persistence as well as the frequencies 

of catastrophe and rescue. Consistent with the in vitro data, constructs 

embodying TOG1-2 imparted only a slight rescue of microtubule growth in S2 

cells, while TOG3-4 did not. These data imply that individual pairs of TOG 

domains may contribute unequally to the activity of the protein, but do function 

cooperatively to promote persistent microtubule growth. The lack of rescue by 

TOG1212 also indicates that each pair of TOG domains is uniquely suited to 

fulfill the cooperative function of tubulin addition. Although TOG1-4 exerted a 
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strong effect on tubulin incorporation and loss from the plus end as measured by 

GFP-Tubulin and EB1-GFP growth rates, the TOG1-4 protein exhibited a 

predominantly cytoplasmic localization and did not accumulate at microtubule 

tips. These data suggest a mechanism in which TOG1-4 is able to associate with 

one or more tubulin heterodimers to transiently promote their addition or loss 

from the plus end (Figure 7, number 2) without interacting in a processive 

manner (Figure 7, number 1) or associating with the microtubule lattice (Figure 7 

number 3). 

 Another key observation is the identification of novel microtubule 

interaction sites spanning the TOG3 and TOG5 and their preceding inter-TOG 

linkers. These sites are necessary for association with the microtubule lattice and 

for the lattice-associated diffusive movements exhibited by full-length Msps. Our 

analyses identified the presence of conserved motifs in the inter-TOG regions 

that were enriched in basic amino acid residues, which we predict form an 

electrostatic interaction with the negative COOH-terminus of tubulin. The linkers 

between Msps’ TOG domains are predicted to be disordered stretches without 

secondary structure that that we found to cooperate with the highly structured 

TOG3 or TOG5 to mediate microtubule binding. The cooperation between 

ordered and disordered domains to mediate microtubule binding has become a 

common trend as more of the structural determinants of MAP-microtubule 

association have recently been elucidated (Subramanian et al., 2010; Guimaraes 

et al., 2008). These disordered regions seem to allow a diffusion-capable 

attachment to microtubules in addition to the ability to “titer” the interaction 
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strength by charged residue addition or modification (i.e., phosphorylation) 

(Kumar et al., 2009).  

 Whatever the structural basis for microtubule lattice-association, we 

observed that Msps employs this mechanism in a spatially restricted manner in 

the actin-rich lamella of S2 cells. In other cell types, microtubules that enter this 

subcellular compartment exhibit decreased catastrophe rates, due to the small 

GTPase Rac1 regulating MAPs that influence microtubule dynamics (Wittmann 

et al., 2003; 2004). In this regard, the spatial transition from plus end binding to 

MAP lattice association has also been observed in mammalian epithelial cells for 

the +TIP CLASP (Wittmann and Waterman-Storer, 2005). In our hands, the 

Drosophila CLASP homolog, Orbit/MAST, when tagged with GFP displayed plus 

end dynamics similar to that of EB1 and did not differentially localize in the 

periphery of the cell (unpublished observations, J.C and S.R.). One possibility is 

that Msps functions in an orthologous manner to mammalian CLASP, which 

could be due to their shared structure as TOG domain-containing proteins. In any 

case, we speculate that this transition from tip-tracking to lattice-binding reflects a 

regulated change in the conformation of Msps. Given the observation that TOG1-

5 decorates the microtubule lattice constitutively, we also hypothesize that the 

COOH-terminus of the protein is involved in this regulation and acts to "gate" the 

microtubule binding activity of linker4-TOG5 in the full length protein. Future 

studies will address the basis of this regulation. 

 Ablating these microtubule lattice association sites in the full-length 

molecule had a dramatic effect on the dynamics and morphology of the 
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microtubule cytoskeleton. Although lattice association is commonly a stabilizing 

property of most MAPs, we were surprised to find that without its normal lattice 

association, Msps Double Mutant produced very stable microtubules that 

exhibited fewer transitions and continuous growth after microtubules encountered 

the cell cortex. In contrast, although Msps dsRNA also produces very stable 

microtubules, these microtubules are seldom able to persistently grow against 

the actin retrograde flow in the peripheral lamella. These data, in conjunction with 

the increased shrinkage rates we observed when cells expressed TOGs1-4 or 

TOG1-5, lead us to propose that these lattice association sites may influence the 

catalysis between dynamic states and the shrinkage rates of peripheral 

microtubules. Microtubules in peripheral regions of S2 cells exhibit increased 

dynamic instability as compared to the interior of the cell and our data suggest a 

mechanism through which Msps may regulate these peripheral behaviors 

through its lattice association.  

 We hypothesize that this influence on dynamics could be caused by three 

non-mutually exclusive mechanisms. Firstly, Msps lattice association could act to 

“strip” Msps from the plus end, potentially taking heterodimers with it and 

lowering the concentration of this polymerase from the microtubule tip. Secondly, 

Msps’ lattice binding domains could act to slightly perturb lateral interactions 

between heterodimers along the decorated protofilament. This cascade of small 

perturbations could act to prime the microtubule lattice for depolymerization 

several microns distal to the plus end. Finally, lattice-bound Msps could be acting 
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in concert with other +TIPs, such as kinesin-13 depolymerases, to influence 

catastrophe and shrinkage. 

 Msps’ dependence on EB1 for its plus end localization in interphase is 

novel in light of our current knowledge of XMAP215/Dis1family members, but is a 

property of most +TIPs characterized to date. Unlike most other EB1 interactions, 

however, there is a mutual reliance on each protein for normal plus end 

dynamics. For Msps, EB1 seems to be absolutely required for plus end 

localization as well as for its association with microtubule lattice structures. 

Although we have no data for how this might happen, it suggests that the ability 

of full-length Msps to recognize the microtubule lattice is in some way tied to its 

plus end association. One possibility could be a whole-molecule conformational 

change that occurs when Msps interacts with EB1 at the growing end, which 

might be required to license Msps for association along the microtubule lattice. 

This most likely is concurrent with some other spatially regulated control that 

gives Msps a bimodal function between the cell interior and the periphery. EB1’s 

plus end localization does not require Msps, as a population of EB1 remains on 

microtubule tips following Msps depletion, however, its dynamics are drastically 

altered. Rescue of EB1 velocities using the TOG domain region of Msps 

suggests that EB1 relies on the polymerase activity of Msps for its normal 

dynamics. This also seems true since Msps fragments that rescue EB1-GFP 

comet formation do not seem to localize to the microtubule plus end, although we 

cannot rule out the possibility that there may be transient pools of TOG domain-

fragments at the plus end. Instead, we favor a model where these TOG domain 
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fragments act en masse to chaperone tubulin onto the plus end, subtly 

influencing the on and off rates of heterodimer addition. This creates a plus end 

structure with sufficient binding sites to support more normal EB1 comets. 

 Based on our data, Msps exhibits at least two modes of interaction with 

microtubules, both of which are essential to promote normal parameters of 

dynamic instability. We envision a cycle of interactions that begins upon 

association between soluble Msps and one or more tubulin heterodimers. The 

Msps-tubulin complex then recognizes the microtubule plus end and associates 

transiently. The molecular basis of this recognition is unknown, but may reflect a 

conformation of tubulin at the plus end (e.g. a growing sheet), a chemical 

signature (e.g. a cap of GTP tubulin), the presence of another +TIP such as EB1, 

or some combination of these. Upon binding, Msps delivers its tubulin 'cargo' to 

promote polymerization. In the cell interior, Msps then dissociates, thus behaving 

as a typical +TIP. In the cell periphery, however, following tubulin delivery, Msps 

receives a signal that causes it to engage its lattice-binding activity and to diffuse 

along the microtubule surface. Msps also associates with microtubule plus ends 

upon transition to catastrophe, perhaps working cooperatively with destabilizing 

factors such as kinesin-13 proteins and stathmin/OP18.  
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Methods 

 

Cell culture and RNA interference 

Culture and RNAi of Drosophila S2 cells was performed as previously described 

(Rogers and Rogers, 2008).  For RNAi, the T7 promoter sequence was 

appended to gene-specific primer sequences to generate dsRNA using T7 

RiboMAX in vitro transcription (Promega). Primer sequences used for 

approximately 1.5Kb of the Msps 5‘UTR are fwd 5’ CGCAACGACGCTGTTGG-3’ 

and rev 5’-TCGTGTTTCGTACGCTAC-3’. Msps COOH-terminal dsRNA was 

made against amino acids 1752-1927, fwd 5’-GCCGAAGTTTACAGACCTGC-3’ 

and rev 5’-TGTACTTGTGAAATGGGGCA-3’. EB1 dsRNA primers fwd 5’-

GAGAATGGCTGTAAACGTCTACTCCACAAATGTG-3’ and rev 5’-GAG 

ATGCCCGTGCTGTTGGCACAGGCGTTTA-3’. 

 

Immunofluorescence microscopy 

Methodology for the fixation of S2 cells was adapted from previously described 

protocols (Rogers and Rogers, 2008).  S2 cells were seeded on coverslips 

coated with concanavalin A (con A) for 1 hour, washed briefly in BRB80 buffer 
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(80mM PIPES, pH 6.9; 1mM magnesium sulfate; 1mM EGTA), and fixed for 10 

minutes in methanol pre-chilled to -80°C.  Antibodies used in this study for 

immunofluorescence were: Msps (described below) 1:1,000, actin (Millipore 

MAB1501) 1:500, α-tubulin (Sigma DM1α) 1:1,000, and anti-EB1 (Rogers et al., 

2002).  Secondary antibodies Cy2, Rhodamine red, and Cy5 (Jackson 

ImmunoResearch Laboratories) were used at a final concentration of 1:300.  

Cells were imaged using either a Nikon Eclipse Ti-E or a Leica TCS SP5 X laser-

scanning confocal.  

 

Immnunoblotting 

Samples for immunoblots were prepared as described (Rogers et al., 2009) and 

resolved on 7-12% SDS-PAGE gels.  RNAi efficacy was assayed by immunoblot 

and the protein loads were normalized using α-actin antibody (Millipore 

MAB1501). Percent depletion was determined by densitometry using scanned 

film images with ImageJ (NIH). 

 

Immunoprecipitation 

S2 cells grown under normal culture conditions (see above) were pelleted at 

8,000 rpm for 2min and resuspended in lysis buffer (150 mM NaCl, 1 mM DTT, 

50 mM Tris, 0.5% Triton X-100, 2.5 mM PMSF, 0.5 mM EDTA, and Complete 

EDTA-free protease inhibitor cocktail (Roche). Lysates were precleared by 

centrifugation and then diluted two fold with lysis buffer. Samples were removed 

for input controls before being incubated with either mouse IgG (Sigma), or anti-

EB1 (Rogers, 2002) at 4°C for 2 hours followed by incubation with Sepharose 
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Protein A beads for another 2 hours. Sepharose Protein A bead immuno-

complexes were washed three times with lysis buffer and then resuspended in 

Lamelli sample buffer. Samples were run on SDS-PAGE and immunoblotted 

using either anti-EB1 (Rogers, 2002), anti-Msps (this manuscript), or anti-

CLIP190(Dzhindzhev et al., 2005). 

 

Antibody production 

Antibodies were raised in rabbits (Proteintech Group) against Drosophila Mini 

spindles TOG2 domain (residues 267-500) (Slep and Vale, 2007). Antibodies 

were further affinity-purified using either recombinant TOG2 or TOG1-TOG2 

(residues 1-505) (Slep and Vale, 2007). 

 

Microtubule Cosedimentation Assay 

Microtubule cosedimentation was performed using a variation of previously 

published work (Spittle et al., 2000); Campbell and Slep, 2010). Briefly, 

fragments of Msps were subcloned using Topo-D pEntry vectors (Invitrogen) with 

a COOH-terminal TagRFP and then recombined into the pDEST17 bacterial 

expression vector with 5’ T7 promoter sites. These plasmids were then used as 

templates for in vitro transcription/translation reactions (TNT, Promega). After a 

90 minute incubation, the lysates were diluted threefold in BRB80 buffer and 

clarified for 30 minutes at 100,000xg. 60µl of the clarified lysate (representing 

100-200ng translated protein according to the manufacturers estimates) were 

then added to varying concentrations of taxol-stabilized microtubules for 20 

minutes. These reactions were then spun through a glycerol cushion for 30 
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minutes at 100,000xg and samples were taken from the supernatant (60µl 

supernatant added to 60µl 2x Lamelli buffer) and washed pellet (60µl fresh 

BRB80 with 60µl Lamelli buffer). Equal volumes were loaded onto a SDS-PAGE 

gel from all reactions and were immunoblotted for TagRFP at 1:1000 (Evrogen) 

and then 1:750 anti-rabbit HRP. The resulting film was scanned and 

densitometry was performed to determine the relative amount of translated 

protein in the supernatant and microtubule pellet. Relative binding affinity was 

plotted as the percent of total protein pelleted, i.e., the pellet’s intensity divided by 

the added intensity of both supernatant and pellet. These were plotted against 

the concentration of microtubules and a curve was fit to the points using non-

linear regression of one-site binding (Graphpad Prism). Based on the curve 

formula, an apparent Kd was calculated where exactly half of the translated 

protein would be expected to pellet with microtubules. 

 

Molecular biology and Transfection 

EB1::EB1-GFP was constructed subcloning ~1.5Kb genomic DNA sequence 5’ of 

the EB1 gene in front of the 5’ start of EB1-GFP (Rogers et al. 2002). All 

fragments of Mini spindles were sub-cloned into a metallothionein promoter, pMT 

A vector backbone (Invitrogen) that contained a COOH-terminal fusion of 

TagRFP (Roger Tsien; Shaner et al., 2008).  A previously described Msps 

construct (Lee et al., 2001) was used as a cDNA template and all constructs 

were amplified by either Pfu or KOD polymerase (Novagen). Full-length Msps-

GFP was sub-cloned using the Gateway TopoD pEntr system (Invitrogen) into a 

final zeocin-selectable pIZ backbone (Invitrogen) that had both the 
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metallothionein promoter as well as the Gateway (Invitrogen) LR recombination 

sites inserted into the multi-cloning site.  Transfections were performed using the 

Amaxa Nucleofector II transfection system (Lonza) according to manufacturers’ 

protocols. Constructs were induced 24 hours after transfection with 40µM copper 

sulfate for approximately 12-18 hours before imaging. 

 

Live Cell Microscopy 

S2 cells were seeded onto ConA-coated glass-bottom dishes (MatTek) in 

Schneiders growth medium at room temperature (~25°C) one hour prior to 

imaging.  Time-lapse images were acquired with a 100x NA 1.45 Plan 

Apochromat objective using a Yokogawa (Perkin-Elmer) or VT-Hawk(Visitech) 

confocal systems, captured with Hamamatsu Orca-ER and Orca-R2 cameras, 

respectively.  MetaMorph and VisiTech Vox software were used to control the 

respective confocal systems and acquire images. Images were acquired at three 

second intervals over periods of 3-10 minutes. 

 

EB1-GFP Comet Tracking 

EB1-GFP velocities were acquired from timelapse movies (described above, 

Yokogawa spinning disc) using the ImageJ (NIH) Manual Tracking plugin 

(Fabrice Cordelieres, Institut Curie). Single comets were manually tracked for 

their full life time and the mean comet velocity was calculated using the 

instantaneous frame-to-frame velocity. The collection of mean comet velocities 
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were then plotted by a box and whisker plot and statistical comparisons were 

made between two conditions using an unpaired t-test (Graphpad Prism). 

 

Automated Microtubule Tracking 

Definition of the tracking region. For each cell, we tracked microtubules in a 

hand-selected region-of-interest (ROI). It consists of an outer (the cortex; Figure 

S4) and an inner (to avoid tracking the crowded interior) boundary. In all 

calculations, the data from cells of the same treatment (Control dsRNA, Msps 

dsRNA + TOG1-4, etc.) were pooled. 

 

Definition of growth and shrinkage.  

To define growth and shortening behavior, we calculated the angle α between 

the direction of the displacement of the microtubule tip and the direction of the 

microtubule itself. A value of cos(α)>0.2 (α<~78°) indicated probable growth, and 

cos(α)<-0.2 (α>~101°) indicated probable shortening. For a microtubule to be 

counted as growing or shortening, we required that it display the same behavior 

(either growing or shortening) for at least two consecutive frames, and that the 

overall displacement in a run of growth or shrinkage be at least 3 pixels. 

 

Calculating state populations.  

State populations were calculated as the total amount of time observed for a 

state (growing, shortening, or paused) divided by the total amount of time 

observed in the trajectories. Confidence intervals were estimated by a BCa-
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corrected bootstrap procedure that resampled the trajectories included in this 

statistic 1000 times. 

 

Calculating transition rates.  

To calculate transition rates, each frame of a microtubule trajectory was marked 

as either grow, shorten, or pause. Grow and shorten states were defined as 

previously described. Pause was defined as neither growing nor shortening. The 

lifetimes of states that began and ended in the middle of a trajectory (not on a 

boundary), as well as the state they transitioned to, were collected. The rate of 

transition between an initial state k (k=grow, shrink, or pause) and a final state l 

(l≠k) is  

 

We used a bootstrap approximation to construct 95% confidence intervals of 

each transition, with 1000 resamples of all lifetimes. Statistical significance was 

established using a two-sided permutation test with 10000 resamples of the 

statistic , where  and  correspond to the rates 

calculated in resample i of the control vector and the treatment vector (e.g., Msps 

dsRNA, Msps dsRNA + TOG1-4, etc.). 
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Table 3.1. Microtubule dynamics parameters rescued with NH2-terminal 

TOG domain constructs 

 

†Numbers in parentheses indicate the number of cells analyzed and the 

analyzed events for each condition, respectively. ‡ Indicates values statistically 

different from Control dsRNA where P < 0.05. * indicates P < 0.05, ** P < 0.005, 

*** P < 0.0005, and **** P < 0.00005. Statistical significance for transition rates 

was determined using a two-tailed permutation test with 10,000 resamples. For 

growth and shrinkage rates, a two-sample t-test was used to determine statistical 

significance.
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Table 3.2. Microtubule dynamics parameters with full-length Msps 

transgenes 

 

†Numbers in parentheses indicate the number of cells analyzed and the 

analyzed events for each condition, respectively. § Indicates values statistically 

different from Control dsRNA were P < 0.05. ‡ Indicates values statistically 

different from Control dsRNA + FL-Msps where P < 0.05. * indicates P < 0.05, ** 

P < 0.005, *** P < 0.0005, and **** P < 0.00005. Statistical significance for 

transition rates was determined using a two-tailed permutation test with 10,000 

resamples. For growth and shrinkage rates, a two-sample t-test was used to 

determine statistical significance.
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Figure 3-S1. Expression levels of endogenous and exogenous Drosophila 
Msps using a novel antibody raised against TOG domain 2. 
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 (A) Rabbit polyclonal antibody raised against Drosophila Msps recognizes a 

220KDa band in control treated S2 cells as well as a non-specific band at 

approximately 125KDa. Msps is depleted upon treatment with either C-terminally 

targeted dsRNA or dsRNA against the 5‘UTR of Msps. Anti-α-tubulin is also 

present at 55KDa to represent equal protein load. (B) Representative EB1-GFP 

cell tracks from the cell interior (green) and EB1-GFP comets originating in the 

cell periphery (red), denoted as a 3µm region from the cell cortex that 

encompasses the actin-rich lamella ( Iwasa and Mullins, 2007). Scatter plot of 

instantaneous velocities of EB1-GFP comets from the cell interior (green, right) 

or the cell periphery (red, left).  Error bars represent 95% confidence intervals 

and center bar represents mean.  N = 5 cells, approximately 7 EB1-GFP comets 

per cell, approximately 1000 velocity points per condition. (C) Relative fold 

increase in fluorescence of transiently transfected S2 cells expressing various 

Msps transgenes in the presence of either control dsRNA (left) or Msps dsRNA 

(right) stained with Msps antibody. Error bars indicate standard deviation. (D) 

Western blots of cells from (C). Several degradation products are denoted (left) 

in control lysates and the Msps transgene where detectable is denote by red 

arrowhead. A separate blot from the same lysates is below to show equivalent 

protein load.
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Figure 3-S2. Expression of Msps fragments TOG1-4 and TOG1-5 restore 
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normal plus end localization to endogenous EB1.  

 

S2 cells stained for endogenous EB1 (left) or Msps (right) treated with (A) control 

dsRNA, (B) EB1 dsRNA, (C) Msps dsRNA, (D) Msps dsRNA with TOG1-4, and 

(E) Msps dsRNA with TOG1-5.
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Figure 3-S3. Representative EB1::EB1-GFP kymographs of S2 cells 
treated with control or Msps dsRNA and transfected with Msps fragments.  
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Distance in micrometers is indicated to the left of each kymograph and the y axis 

of time is indicated to the right. Each kymograph represents the full life span of 

one EB1 comet for each condition.
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Figure 3-S4. Automated microtubule tracking algorithm. 

 

 (A) Representative control cell with trajectories of at least ten frames overlaid. 

Scale bar is 5 microns. (B) Zoom of inset from (A) showing 15 second intervals 

over 1 minute. Scale bar is 1.5 microns. (C) Microtubule lifetime plots of 

representative microtubules shown for Control dsRNA and Msps dsRNA 

treatments. Plots are arranged on the distance axis to indicate a mean distance 
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of 5 microns.
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Figure 3-S5 Conserved motifs within the linker2 and linker4 of Drosophila 
Msps and other Dis1/XMAP215 members.  

 

(A) Partially conserved motifs found in linkers of XMAP215/Dis1 members are 

labeled 1-3 based on their occurrence from NH2-terminal to COOH-terminal 

within the linker. Green titled sequences indicate a position within the linker2 and 

blue within the linker4 where applicable. Outlined boxes are partial amino acid 

conservation, gray boxes absolute conservation in at least three members, black 

boxes indicate key positively-charged residues, and red boxes indicate the 

“KVLK” motif.



CHAPTER 4 

 

SENTIN REGULATES THE PLUS END ASSOCIATION OF THE DROSOPHILA 
XMAP215 HOMOLOGUE MINI SPINDLES 

 

This chapter represents a manuscript in preparation based on two related works 

in press from other labs. I have done all the experimentation, with the exception 

of identifying the minimal Msps plus end association domain, which was done by 

an undergraduate, Greg Schimizzi, under my supervision. This work was 

facilitated by the support and advice of my graduate advisor, Stephen Rogers. 

 

Summary 

 Microtubule dynamics allow the cell to quickly remodel its cytoskeleton to 

perform a wide range of essential tasks. Plus end proteins or +TIPs are vital to 

regulating this rapid assembly or disassembly of microtubules. Recent evidence 

points to a key adaptor protein, SLAIN/Sentin, which link two of the core 

microtubule +TIPs, EB1 and ch-TOG/Msps. We demonstrate that in Drosophila 

S2 cells, Sentin interacts with Msps on plus ends and also influences its 

interaction on the microtubule lattice. EB1 and EB1-GFP are largely unaffected 

by Sentin RNAi, but do exhibit a loss of growth velocity and comet lifetime in 

Sentin RNAi cells. Sentin also plays a key role in maintain the balance of Msps 

between the mitotic spindle and the centrosome. 
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Introduction 

 Microtubules are dynamic polymers that can be quickly remodeled to 

transport materials between organelle compartments, asymmetrically polarize 

intracellular signaling, or build the mitotic spindle. The properties of the tubulin 

heterodimer’s GTPase activity bestow both the rapid kinetics of polymer addition 

and subtraction as well as the unequal dynamics of monomer addition or 

subtraction to one end of the microtubule, termed the plus end (Howard and 

Hyman, 2009). At a critical concentration in vitro, purified tubulin will polymerize 

into microtubules and display a stochastic switching behavior between growth 

and shrinkage termed dynamic instability (Mitchison and Kirschner, 1984). This 

same behavior is observed in living cells, although the rates of growth and 

shrinkage and the frequency of transitions between growth, shrinkage, and 

pause are much higher in vivo (Kinoshita, 2001).  

 The ability to enhance and regulate microtubule dynamics selectively at 

the plus end is a property of a diverse class of proteins referred to as plus end 

proteins or +TIPs (Akhmanova and Steinmetz, 2008). Despite their diverse 

domains and in some cases antagonistic effect on microtubules, +TIPs exist as a 

complex hierarchy of interactions at the plus end. End binding proteins such as 

EB1, are the core +TIP molecules that act as a localization hub to recruit most 

other plus end proteins (Vaughan, 2005). One method in which +TIPs associate 

with EB1 is via one or multiple “SKIP” motifs that link proteins to the dimerization 

domain of EB1 (Honnappa et al., 2009). SKIP motifs are necessary and sufficient 

to link both microtubule associated proteins (MAPs) such as CLASPs (Mimori-
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Kiyosue et al., 2005) and non-MAP proteins such as RhoGEF2 (Rogers et al., 

2004b) to the plus end. 

 Dis1/XMAP215 family members represent another class of essential 

microtubule regulators (Popov and Karsenti, 2003; Kinoshita et al., 2002; Slep, 

2009). With the exception of fission yeast, which have two related proteins 

(Garcia, 2001; Nabeshima et al., 1995), other eukaryotic taxa each have one 

conserved member (Gard et al., 2004). Dis1/XMAP215 members share a series 

of N-terminal TOG domains. In vitro, a pair of TOG domains can bind a single 

tubulin heterodimer, giving rise to the hypothesis that TOG proteins use arrays of 

TOG domains to successively add heterodimers to the plus end and increase the 

rate of polymerization (Slep and Vale, 2007). Yeast TOG proteins display two 

TOG domains followed by a microtubule lattice binding domain and a coiled-coil 

for homodimerization (Wang and Huffaker, 1997), bringing the functional number 

of TOG domains to four. In higher eukaryotes: amoeba (Gräf et al., 2003), plants 

(Kawamura and Wasteneys, 2008), and animals (Vasquez et al., 1994), TOG 

proteins are monomeric, but display an array of five TOG domains.  

 Previously, we found that the Drosophila TOG protein, Mini spindles 

(Msps), contains two microtubule lattice binding domains. Both consisted of an 

inter-TOG linker and its C-terminal TOG domain. Linker2-TOG3 was functional to 

bind microtubules in vitro and in cells, but this activity was masked when 

expressed within TOGs 1-4. Linker4-TOG5 in contrast, acted as a general 

microtubule lattice binding domain when expressed individually or within TOGs 1-

5. This suggests that Drosophila Msps uses TOGs 1-4 for tubulin addition in a 
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similar fashion to their homo-dimerized yeast counterparts, while linker4-TOG5 

functions in microtubule binding with the contribution of linker2-TOG3 under 

certain situations where this domain is unmasked. 

 C-terminal to the fifth TOG domain is a helical domain without any 

predicted domain structure. The function of this region, encoding roughly one-

third of an animal TOG protein’s sequence, has remained largely 

uncharacterized. It is mainly thought to mediate an interaction at the very C-

terminus with TACC proteins that recruit TOG proteins to the centrosome (Lee et 

al., 2001; Srayko et al., 2003). From our previous structure-function analysis of 

Msps we could make two inferences as to the function of this C-terminal domain. 

Firstly, the C-terminus of Msps must be involved in the plus end localization of 

the molecule, as N-terminal TOG fragments never displayed plus end 

association. Secondly, the C-terminus must act to regulate the microtubule lattice 

association of the full length molecule. Previously, we found that Msps displayed 

a bimodal localization, associating with plus ends in the cell interior and along the 

microtubule lattice in the cell periphery. Msps TOG1-5, lacking the C-terminus, 

lost this regulated change in localization and instead bound constitutively to the 

microtubule lattice. 

 Recently, several studies have identified novel EB1-binding proteins that 

influence the localization of TOG domain proteins to the plus end. In vertebrates, 

SLAIN links the Msps homolog, chTOG, to EB1 as well as to CLIP and CLASP. 

SLAIN is necessary to localize chTOG to plus ends. In Drosophila, a novel EB1-

interacter named Sentin was recently shown to be responsible for the plus end 
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accumulation of Msps, but this study failed to examine the functional 

consequence of this association. 

 In this study we examine the role for Msps’ association with EB1 through 

the linker molecule, Sentin. We find that depletion of Sentin causes a 

mislocalization of endogenous Msps from microtubules. In cells depleted of 

Sentin, Msps-GFP is reduced at microtubule plus ends, but still associates with 

the plus end and constitutively with the microtubule lattice at higher expression 

levels. In mitosis, depletion of Sentin causes a reduction of Msps from the mitotic 

spindle, but not the centrosome. I have mapped the plus end association domain 

within Msps to a 150 amino acid region within the C-terminus of Msps. The N-

terminus of Sentin is essential for association with Msps and expression of an N-

terminal fragment is sufficient to compete Msps from endogenous Sentin and 

exert a dominant negative affect on the localization of Msps at microtubule plus 

ends. Finally, we find that this EB1 and Sentin-dependent localization of Msps to 

plus ends is essential for enhancing the lifetime and velocity of wildtype plus end 

growth. 

 

Results 

 

Sentin affects the localization of endogenous Msps to microtubules 

 To begin to examine the relationship between Sentin and Msps, I first 

depleted S2 cells of Sentin by RNAi and examined endogenous Msps and EB1 

by immunofluorescence. In control cells, Msps localized to microtubule plus ends 
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in the cell interior and to the microtubule lattice in the cell periphery as we have 
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Figure 4-1. Sentin RNAi affects the localization to microtubules of 



 

 155 

endogenous Msps, but not EB1. 

(A-B) S2 cells treated with control dsRNA and stained with anti-tubulin, DAPI, 

and either anti-Msps or anti-EB1. (C-E) Cells treated with Sentin dsRNA and 

stained with anti-tubulin, DAPI, and either anti-Msps or anti-EB1.
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previously shown (Figure 1B). Surprisingly, upon Sentin depletion, although there 

was some coincidence of Msps along microtubules, Msps no longer strongly 

labeled either the microtubule plus end or the microtubule lattice (Figure 1D-E). 

In some cells, Msps could be seen accumulated in larger dots which may 

represent centriole localization or alternatively, protein aggregation (Figure 1E). 

In contrast, EB1 showed little if any change in localization upon Sentin RNAi 

(Figure 1C). EB1 still labeled microtubule plus ends as a comet-like accumulation 

in control and Sentin RNAi cells (Figure 1A, C).  

 

EB1-GFP velocity and lifetime are effected in Sentin RNAi 

 To examine the realtime behavior of EB1 and Msps in the absence of 

Sentin, I first expressed EB1::EB1-GFP in control and Sentin dsRNA treated 

cells. In both conditions, EB1-GFP labeled growing plus ends that tracked 

throughout the cell (Figure 2A). In Sentin RNAi cells, EB1-GFP comets exhibited 

shorter lifetimes of growth as seen from projections of EB1-GFP over one minute 

(Figure 2, bottom). In addition, EB1-GFP comets were slightly small than those in 

control treated cells and moved at a statistically slower average velocity than 

control cells (Figure 2B-C). Interestingly, while this velocity far exceeded that of 

cells lacking Msps, it was not statistically distinct from cells depleted of 

endogenous Msps and rescued with the N-terminal TOGs1-4, which does not 

localize to microtubule structures(Figure 2C). 

 

Sentin regulates Msps plus end association upstream of EB1 and 
influences its association with the microtubule lattice. 
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 I next examined the dynamics of Msps-GFP in control and Sentin dsRNA-

treated cells. In control cells, Msps-GFP decorated interior comets and the lattice 

of peripheral microtubules (Figure 3A, left). In Sentin RNAi cells, Msps comets 

were lost from the cell and instead small punctae of Msps-GFP could be seen 

decorating the microtubule plus end (Figure 3A, middle). This phenotype was 

also observed when cells were depleted of EB1 by RNAi, suggesting that Sentin 

is the upstream regulator of Msps plus end association (Figure 3A, right). Msps-

GFP was also mislocalized from the lattice of peripheral microtubules. 

Fluorescent linescans of microtubule plus ends revealed that Msps-GFP 

accumulation at plus end was diminished from control cells, which exhibited 

comets similar in their intensity profile to EB1 (Figure 3B).  

 

The N-terminus of Sentin acts as a dominant negative to displace Msps-
GFP from microtubule plus ends 
  

 Based on the hypothesis that SLAIN and Sentin have analogous functions 

in cells to bind TOG proteins through their N-terminus and EB1 at their C-

terminus, I wondered if expressing the N-terminus of Sentin would be sufficient to 

dissociate Msps from plus ends by competing with endogenous Sentin. To do 

this, I co-transfected S2 cells with the first 237 amino acids of Sentin tagged with 

mCherry under the constitutive actin promoter and Msps-GFP under an inducible 

promoter to control the levels of expressed Msps. Using this approach, pAc-

Sentin1-237-mCh was able to mislocalize Msps-GFP from the plus end and 

phenocopy the Sentin RNAi phenotype (Figure 3C).  
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Sentin influences the ability of Msps-GFP to associate with the lattice of 
interior microtubules 
 

 When examining the localization of Msps-GFP in control and Sentin RNAi 

cells, I often observed in Sentin RNAi cells where Msps-GFP decorated the 

lattice of interior microtubules, a phenotype that was not observed for the control 

cells, where Msps lattice binding was restricted to the periphery (Figure 3D). To 

quantitate this, I counted the cells observed to exhibit this aberrant localization to 

the interior microtubule lattice versus cells with a localization of Msps-GFP to 

small punctate plus end accumulations, with normal wildtype comets, or with an 

entirely cytosolic pool of fluorescent protein. In control cells and EB1 depleted 

cells, a small percentage of cells (~15-20%) had lattice-labeled interior 

microtubules. Upon Sentin RNAi this was elevated to approximately 50-60% of 

the observed cells (Figure 3E). Double Sentin/EB1 dsRNA treatment did not 

change this value, suggesting that it is Sentin itself that may normally negatively 

regulate the association of Msps with the lattice of interior microtubules.  

 

Msps’ plus end association domain 

 Finally, to assess which part of Msps is sufficient to localize to the plus 

end, we performed a structure function analysis of the C-terminus of Msps from 

residues 1406-2050. Expression of Msps1406-2050-GFP was sufficient to 

localize to microtubule plus ends and displayed a localization similar to EB1 

rather than wildtype Msps-GFP. This might be expected since this fragment of 
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Msps does not contain any microtubule lattice-binding domains. Further 

dissection of Msps’ C-terminus lead us to find a 150 amino acid region of Msps, 

amino acids 1707-1852, that was sufficient when co-expressed with EB1-tRFP to 

decorate the plus end of microtubules in S2 cells (Figure 4). This suggests that 

this region maybe necessary for binding to the adaptor protein, Sentin. Further 

study will determine if this is the case.
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Figure 4-2. Sentin RNAi affects the velocity and lifetime of EB1-GFP 
comets 

(A) S2 cell expressing EB1-GFP driven from its endogenous promoter treated 

with either control dsRNA (left) or Sentin dsRNA (right). Below are maximum 

projections of the timelapses for 60 seconds. (B) Fluorescent intensity profiles of 

EB1-GFP comets in control and Sentin RNAi treated cells. (C) Mean velocities of 

EB1-GFP comets from either control treated, Sentin RNAi treated, or Msps RNAi 

treated expressing Msps-TOG1-4. Asterisks denote p = < 0.005.  
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Figure 4-3. Sentin is responsible for the plus end accumulation of Msps-
GFP and negatively regulates the microtubule lattice association Msps-
GFP for interior microtubules 

(A) Msps-GFP in control treated (left), Sentin dsRNA treated (middle), or EB1 

dsRNA treated (right). Fluorescent intensity linescans of Msps-GFP in control or 
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Sentin dsRNA-treated cells. (C) Cell co-expressing Msps-GFP and pAC-Sentin1-

237-mCh (inset). (D) Msps-GFP decorating the lattice of interior microtubules in a 

Sentin RNAi background. (E) Phenotypic counts of cells expressing Msps-GFP 

under various dsRNA treatment backgrounds. Counts are not cumulative and 

represent overlapping phenotypes, specifically between “tiny tips” and lattice 

association.
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Figure 4-4. Msps 1707-1852 is the minimal plus end association domain of 
Msps. 

Cartoon schematic demonstrating constructs used to assay the plus end 

association domain of Msps. Constructs were C-terminally tagged with GFP and 

co-expressed with EB1::EB1-tRFP in S2 cells. 

Tip Tracking 

       

 

 

    

    

  

  

   

 

  

   

 

ND 

+ 

+ 

+ 

+ 

+ 

+ 

ND 

1406 1659 1596 1852 1707 1940 2050 



Chapter 5

 
CONCLUSION AND FUTURE DIRECTIONS 

 

 Although microtubules are inherently dynamic polymers, cells have 

evolved a host of microtubule associated proteins (MAPs) to regulate their 

assembly, disassembly, and dynamicity. Specifically, Plus end proteins (+TIPs) 

are important regulators that recognize and control microtubules at their growing 

end (Akhmanova and Steinmetz, 2008). Despite having identified a large number 

of +TIP molecules, we lack a full understanding of how they regulate one another 

and function together to regulate microtubule dynamics. Below, I will outline 

some of the unanswered questions essential to understanding +TIP, and 

specifically, TOG protein function. 

 

In Vivo Study of Interphase TOG Dynamics 

 Since their first characterization in the late 1980’s (Gard and Kirschner, 

1987), studies of TOG proteins have benefited from the conserved nature of the 

protein super family (Kinoshita et al., 2002) and established in vitro and in vivo 

experimental systems that are extremely amenable to studying MAP function. 

While these have two key attributes have yielded numerous studies of TOG 

proteins, they have primarily focused on a narrow subset of experimental 

approaches and phenotypic functions. Specifically, the bulk of research has 

focus on XMAP215 phenotypes in mitosis (Hyman et al., 1999; Cullen et al., 

1999; Wang and Huffaker, 1997) with functional approaches often performed 
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using vitro systems of either purified components (Brouhard et al., 2008) or 

Xenopus extracts (Hyman et al., 1999). Based on the phenotypes of inhibited 

spindle and astral microtubule growth, many of these studies have described the 

sole function of TOG proteins as that of microtubule polymerases. Past studies 

have also neglected or been unable to study the realtime dynamics of TOG 

proteins and have instead used bulk microtubule assays (Spittle et al., 2000) or 

fixed samples (Basto et al., 2007) to assay protein localization and behavior. 

These studies have been extremely valuable, however, in identifying important 

binding partners for TOG proteins such as the conserved TACC family proteins 

(Lee et al., 2001). Additionally, in vitro Xenopus extract experiments previously 

described a potent microtubule disassembly property of TOG proteins (Shirasu-

Hiza, 2003). In 2005, Ohkura and Brittle were the first to describe an interphase 

function for the Drosophila TOG protein Mini spindles (Msps). They found that 

depletion of Msps lead to an increase in microtubule pause, suggesting that TOG 

proteins may have a more complex function in vivo (Brittle and Ohkura, 2005). 

Recent work examining single XMAP215-GFP molecules interacting with 

microtubules, became the first study of realtime dynamics of any animal TOG 

protein (Brouhard et al., 2008). This revealed behaviors for XMAP215 that were 

unique compared to other +TIPs. While XMAP215 plus end tracked in vitro 

similarly to EB1, instead of transiently associating and dissociating with the plus 

end like other +TIPs, XMAP215 stayed associated with the plus end for several 

seconds and “surfed” processively along the growing end. In addition, XMAP215 

was able to diffuse along the lattice of in vitro microtubules and could associate 
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with soluble tubulin while diffusing along the microtubule lattice. The use of 

purified components unequivocally identified a number of ways that XMAP215 

can autonomously interact with microtubules. But how do these in vitro behaviors 

translate to explain the function and behavior of TOG domain proteins in cells? 

This has been the goal of my research; to examine TOG protein function and 

behavior in cells and relate this information to the structure and information 

revealed from in vitro studies. 

 

The Spatial Regulation of Msps Localization 

 One of the most surprising revelations about the behavior of Drosophila 

Mini spindles is that the plus end and lattice association, both behaviors 

previously described in vitro, are spatially segregated localizations in S2 cells. In 

the cell interior, Msps localizes to the plus end, much like EB1, while in the 

peripheral lamella, Msps associates along the lattice and plus end of growing and 

shrinking microtubules. This suggests that the nature of this bimodal localization 

is a regulated process. I do not yet know the exact mechanism of this switch, but 

I can hypothesize based on my structure-function analysis of Msps.  

 Expression of Msps’ first five TOG domains (TOG1-5), which encodes two 

lattice-binding domains, constitutively associates with the microtubule lattice. 

Unlike the wildtype protein, this fragment does not discriminate between interior 

or peripheral microtubules. This suggests that the regulation of microtubule 

lattice association is conferred by or requires a more C-terminal portion of the 

protein. Additionally, plus end tracking seems to be a function of the C-terminus 
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of Msps, as no fragment lacking this region was observed to plus end track. Most 

studies of TOG proteins have focused on the more clearly defined N-terminal 

TOG domains, but our work puts an unexpected emphasis on the C-terminus of 

Msps for the protein’s behavior in cells. I speculate that it is an interplay between 

the microtubule plus end localization domain and the microtubule lattice binding 

domain that regulates this spatial switch in S2 cells. Based on this hypothesis 

there are two key questions that will be critical in future research of Msps. Firstly, 

is this a direct intra-molecular interplay between two the Msps domains or is it 

mediated through an adaptor such as EB1 or Sentin. Secondly, if this is true, 

what is the molecular mechanism to initiate this switch? 

 RNAi treatments against candidate adaptors such as Sentin should begin 

to address the question concerning how this regulated switch is achieved. In vitro 

microtubule cosedimentation assays using fragments of Msps that encode both 

lattice binding domains and the C-terminus should also help reveal if this inter-

molecular regulation exists and how it is maintained.  

 

The Molecular Switch Between the Plus End and Microtubule Lattice 

 Identifying the molecular mechanism of this switch will likely be more 

challenging. Post-translational modification seems a likely mechanism, since this 

switch in localization is spatial coincidental with the cell lamella. This cellular 

subcompartment is established and identifiable by the activity of several cell 

signaling cascades. Most notably, the small GTPase Rac1 is responsible for 

orchestrating the assembling and remodeling of the dendritic array of actin at the 
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lamellipodia and lamella. Rac activity itself is often downstream of 

phosphatidylinositol signaling via PI3K. Coincidentally, the PI3K pathway has 

been shown to down-regulate the activity of GSK3β, a kinase that regulates the 

microtubule lattice and plus end association of mammalian CLASP in epithelial 

cells (Wittmann and Waterman-Storer, 2005). If post-translational 

phosphorylation is regulating the switch between Msps’ ability to plus end track 

or bind the microtubule lattice, it will be important to identify if this 

phosphorylation positively or negatively affects lattice binding. In the case of 

CLASP, CLASP is normally phosphorylated within the cell body and remains 

solely on plus ends. Dephosphorylation of CLASP and deactivation of GSK3β in 

the lamella leads to lattice association (Kumar et al., 2009). One important 

caveat to the hypothesis of phosphorylation regulating Msps’ spatial localization 

is that this post-translational modification need not be applied directly to Msps. 

This phosphorylation of Msps could instead be applied to EB1 or Sentin within 

the peripheral region of the cell, freeing Msps to associate with the microtubule 

lattice. In particular, the localization of Msps-GFP in either Sentin or EB1 RNAi 

when examined by TIRF more closely resembles the localization of Msps in the 

cell periphery than the plus end comets from the cell interior. This suggests that 

the peripheral lattice binding constitutes at least a partial dissociation from either 

a Sentin/EB1 complex or Sentin alone. The ability of a N-terminal portion of 

Sentin to disrupt plus end tracking, but not lattice association, also suggests that 

a partial association with Sentin may still be possible while bound to the 

microtubule lattice.  
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 One alternative mechanism for Msps’ peripheral lattice association is that 

Msps binds to the microtubule lattice based on an alteration of microtubules 

within the cell periphery. I found that Msps contains two microtubule lattice 

binding sites within the N-terminal TOG domains. Linker4-TOG5 seemed to be a 

constitutive microtubule binding domain, meaning it bound microtubules when 

expressed in any truncated form of Msps. Linker2-TOG3, however, displayed 

microtubule lattice binding only in configurations where it was the most N-

terminal portion expressed. Within TOG1-4, the linker2-TOG3 microtubule 

binding site was masked and displayed a cytosolic localization in S2 cells. 

However, using an in vitro cosedimentation assay, I found that TOG1-4 bound 

taxol-stabilized microtubules with a high avidity (Figure 1A). In cells treated with 

taxol, TOG1-4 quickly mobilized from the cytosol to the microtubule lattice 

(Figure 1B). This suggests that this microtubule binding site is unmasked when 

tubulin is stabilized by taxol. This taxol-stabilized confirmation of tubulin may 

mimic a GTP-bound or “straight” confirmation of tubulin that would normally exist 

at the plus end as a cap on untreated peripheral microtubules. The recognition by 

linker2-TOG3 could cause a cascading confirmation change that activates lattice-

binding by linker4-TOG5 and disengages plus end association. We believe that 

both microtubule binding domains have a large degree of functional overlap, 

since mutation of just one domain gives a qualitatively similar localization pattern 

as the wildtype protein.  

 An alternative to a nucleotide-dependent confirmation might be that of a 

post translational modification to the microtubule that occurs preferentially in the 
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cell periphery. Modifications such as acetylation and detyrosination have been 

associated spatially with peripheral microtubule segments or the leading edge 

microtubules of fibroblasts at a wound edge (for review see Verhey and Gaertig, 

2007; Janke and Kneussel, 2010). Many of these modifications that make up the 

“tubulin code” are known to stabilize tubulin and 
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Figure 5-1. TOG1-4 binds with high affinity to taxol-stabilized 
microtubules. 

 

(A) Microtubule cosedimentation assay of in vitro transcribed/translated proteins 

incubated with varying concentrations of purified taxol-stabilized microtubules. 

Apparent Kd is calculated as the concentration of tubulin at which exactly half the 

concentration of Msps fragment would be expect to bind. (B) S2 cells expressing 
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Msps TOG1-4tRFP and treated with 200nM taxol at 49 sec. The MspsTOG1-4 

quickly mobilizes to the microtubules within ten minutes.
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are even increased themselves by taxol-treatment (Piperno et al., 1987). How 

similar they may be structurally or functionally to taxol-stabilized microtubules is 

not known. A survey of the modifying enzymes in S2 cells by both RNAi and 

overexpression would help to determine if these modifications cause changes in 

+TIP localization. 

 

The Function of Msps’ Microtubule Lattice Association 

 Upon identifying how Msps transitions to the lattice of peripheral 

microtubules, the next question presented is what function does this transition 

have on peripheral microtubules and their dynamics? From my work, we can 

abrogate Msps’ microtubule lattice domains by mutating key positively charged 

residues within the linkers to glutamic acid. By knocking down the endogenous 

protein, we found that this mutated form of Msps was no longer able to localize to 

the lattice of peripheral microtubules. This had a strong effect not only on the 

dynamics of peripheral microtubules, but also their organization at the cell cortex. 

Instead of microtubules that remain perpendicular to the cortex as they slow and 

eventually depolymerize, microtubules labeled with the linker mutant Msps 

continued to grow past the cell cortex and instead began to curve around the cell 

cortex. Examination of microtubule dynamics revealed that microtubules seemed 

“locked” into a particular state of growth, pause, or shrinkage. This meant that 

microtubules that were growing were statistically more likely to continue growing 

than to transition to shrinkage or pause. This suggested that lattice association is 

vital for affecting the transition of microtubules to different states in the periphery. 
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How might lattice association accomplish this? Several mutually inclusive 

hypotheses might explain how lattice association can help catalyze microtubule 

transitions. 

 Specifically in the case of growing microtubules, diverting the pool of Msps 

onto the microtubule lattice, away from the plus end where it acts as a 

microtubule polymerase, could act to slow polymerization enough to cause a 

transition to pause or shrinkage. While the lattice association of most classical 

MAPs such as Tau has been found to stabilize microtubules, this may not be the 

case for Msps. Because Msps is thought to specifically enhance the dynamic 

instability of microtubules, its lattice binding behavior may have a destabilizing 

effect on microtubules in the periphery. This would not necessarily have the 

same degree of destabilization as that of a Kin I motor, where ATPase motor 

activity is used to peel away protofilaments. Instead, Msps’ lattice association 

could slightly perturb lateral interactions between heterodimers and subtly 

destabilizing protofilaments, priming the microtubule for rapid depolymerization 

once the MT pauses or the GTP cap is exhausted. This activity could also work 

in conjunction with Kin I proteins such as MCAK or KLP10A. For microtubules 

that are already in a state of depolymerization, having a population of Msps that 

is associated several microns distal from the plus end may also act as a 

safeguard to “catch” microtubules from excessive depolymerization out of the cell 

periphery. This safeguard mechanism would also allow severed microtubules to 

retain Msps on their new plus end. Lattice associated Msps may also diffuse 

along the lattice toward the plus end of paused microtubules. This lattice diffusion 
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would allow Msps to efficiently target to paused plus ends in order to catalyze a 

transition to growth or shrinkage. The lateral diffusion of both Msps as well as Kin 

I motors to plus ends might also serve as a “timer” function. This would allow 

microtubules a small temporal window to remain paused at the cell cortex to 

facilitate the delivery of proteins or cargo attachment to minus end motors. This 

timer would last until a critical concentration of TOG and Kin I protein was able to 

target to the plus end and catalyze disassembly. 

 

New Potential Msps Partners 

 Another unanswered question arising from structure-function analysis of 

Msps is related to the potential for additional binding partners. Particularly, 

expression of the inter-TOG linkers 2 and 4, displayed unique localization 

patterns in mitosis that suggests these regions mediate other protein-protein 

interactions. Although neither Linker2 or Linker4, when C-terminally tagged with 

TagRFP, localized to microtubules in interphase, both transgenes localized to the 

spindle microtubules and centrosomes in mitosis. Additionally, linker2-TOG3 as 

well as TOG1-4 localized to chromatin specifically in mitosis. Several 

presumptive and verified binding partners have been established for Msps in 

Drosophila development, primarily through analysis of mutants that caused a loss 

of Msps from the mitotic and meiotic spindle. These include Hsp90 (Basto et al., 

2007), cyclin B (Basto et al., 2007), the mitotic motor Ncd (Cullen and Ohkura, 

2001), Augmin components (Bucciarelli et al., 2009), and conserved TACC family 

member dTACC (Lee et al., 2001). Many of these interactions have only been 
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tested using bulk extracts or through genetic interactions. Identifying these 

potential interactors using biochemical or proteomic approaches could seriously 

progress our understanding of how TOG proteins work with other factors in vivo. 

This approach has been applied several times to +TIPs such as EB1 (Rogers et 

al., 2004b) and CLIP170 (Akhmanova et al., 2001), generating novel insights into 

the +TIP interactome.  

 

Msps’ Connections at the Plus End 

 In addition to identifying new partners of Msps function, it will be essential 

to understand the molecular mechanism and function of Msps’ known 

interactions with other +TIPs. At the heart of these interactions is Msps’ 

interaction with EB1. Although it seems that molecular mechanism may happen 

indirectly through the adaptor protein, Sentin, making sense of how these two 

vital +TIPs coordinate their activities to promote microtubule growth will build a 

foundation for a “core” +TIP complex. It will be important to understand if the 

relationship between Msps and EB1 represents a truly cooperative promotion of 

growth through their unique microtubule interaction domains, or if it is simply a 

matter of enhancing Msps’ localization to the plus end through a connection to 

EB1. Although either possibility exist, I speculate that the later scenario is more 

likely, since depletion of Sentin still retains a small population of Msps-GFP on 

plus ends and only has a minor impact on microtubule growth velocity. The 

partial rescue EB1-GFP velocities achieved by expression of TOG domain 

constructs also supports this conclusion. The difference between a partial rescue 
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and wildtype velocities would represent enhanced polymerization due to EB1-

dependent concentration of Msps at the plus end. 

 The addition of Sentin to a complex between Msps and EB1 adds another 

layer of complexity that remains to be elucidated. Although there appears to be 

some similarities between SLAIN and Sentin functionally, the two proteins seem 

to lack a complete overlap of functions. Their core function as an adaptor seems 

completely analogous since the TOG and EB1 binding domains are similarly 

located N- and C-terminally, respectively. It will be interesting to further 

investigate if the placement of these domains has a functional significance or if 

they can be switched or shortened. It will also be interesting to determine if a 

chimeric version of Msps with N-terminal TOG domains and a Sentin EB1-

binding C-terminus would be sufficient to rescue wildtype dynamics. In mitosis, 

the relationship between Msps and Sentin could represent a unique parsing of 

Msps activity between spindle and astral microtubule activity. In Sentin RNAi, 

Msps localization to the spindle is diminished and the net spindle length is 

shorter. Sentin RNAi astral microtubules, however, are long and resemble a 

KLP10A RNAi treatment, where presumably there is an imbalance between 

polymerase and depolymerase activity. Sentin-dependent localization of Msps to 

the spindle may balance the pools of Msps between spindle and dTACC-bound 

centrosome pools. It will be interesting in the future to probe this interaction 

through double Sentin/dTACC RNAi conditions. 

 Finally, Msps’ relationship with the Kin I MCAK/KLP10A depolymerases 

represent an intriguing possibility for coupling Msps’ dynamic-enhancing ability 
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with Kin I depolymerization. Instead of strict antagonism between opposing 

activity, Msps depletion in S2 cells results in loss of growth and shrinkage at the 

plus end (Brittle and Ohkura, 2005). Additionally, in mammalian cells, MCAK 

depolymerization was dependent on the presence of ch-TOG (Holmfeldt et al., 

2004). Finally, both Msps and KLP10A exhibit a coincidental localization to the 

lattice of peripheral microtubules in S2 cells (Mennella et al., 2005). Although, 

there we have not been able to find a direct interaction between these two +TIPs 

(data not shown), the possibility remains that they may cooperate to induce 

microtubule shrinkage.  

 

Concluding Remarks 

 Dis1/XMAP215 proteins represent important regulators of microtubule 

dynamics. Understanding the complete spectrum of their functions in cells will 

increase our insight into how cells control the microtubule plus end. Although, our 

conception of these molecules has perhaps been oversimplified by 

protagonist/antagonist views of growth versus shrinkage, slowly the complexity of 

their function is coming to light. Instead of being simply a family of microtubule 

polymerases, Dis1/XMAP215 molecules represent molecules that are inexorably 

tied to promoting and enhancing dynamic growing and shrinking microtubule 

ends. Hopefully, by understanding their unique domain structure, in vivo 

behavior, and interactions at the microtubule plus end we can begin to unravel 

the molecular intricacies of TOG proteins. 
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