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Abstract

This paper evaluates the role of various volatility speci,cations, such as multiple stochastic
volatility (SV) factors and jump components, in appropriate modeling of equity return distri-
butions. We use estimation technology that facilitates nonnested model comparisons and use a
long data set which provides rich information about the conditional and unconditional distribu-
tion of returns. We consider two broad families of models: (1) the multifactor loglinear family,
and (2) the a4ne-jump family. Both classes of models have attracted much attention in the
derivatives and econometrics literatures. There are various tradeo6s in considering such diverse
speci,cations. If pure di6usion SV models are chosen over jump di6usions, it has important
implications for hedging strategies. If logarithmic models are chosen over a4ne ones, it may
seriously complicate option pricing. Comparing many di6erent speci,cations of pure di6usion
multifactor models and jump di6usion models, we ,nd that (1) log linear models have to be ex-
tended to two factors with feedback in the mean reverting factor, (2) a4ne models have to have
a jump in returns, stochastic volatility or probably both. Models (1) and (2) are observationally
equivalent on the data set in hand. In either (1) or (2) the key is that the volatility can move
violently. As we obtain models with comparable empirical ,t, one must make a choice based
on arguments other than statistical goodness-of-,t criteria. The considerations include facility to
price options, to hedge and parsimony. The a4ne speci,cation with jumps in volatility might
therefore be preferred because of the closed-form derivatives prices.
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0. Introduction

Stochastic volatility (SV) models are speci,cally designed to capture salient prop-
erties of volatility such as randomness and persistence. However, one of the most
important recent ,ndings is that these models are not able to characterize all aspects of
asset returns distribution. 1 Indeed, given a reasonable ,t to the conditional dynamics
of volatility, SV models cannot match the high conditional kurtosis of returns (tail
thickness) documented in the literature for many classes of ,nancial assets, of which
equities are the most prominent example.
This paper evaluates the role of various factors, such as additional volatility factors

and jumps, in appropriate modeling of equity returns. To do so we estimate a variety
of extensions of SV models using the same estimation technology with a common data
set.
We are particularly interested in the role of SV factors and their functional form

because this issue has not been considered in the prior work as much as the role
of jump components has. Moreover, the evidence from option markets shows that
adding a jump component to returns is not su4cient to fully capture the dynam-
ics of ,nancial series. Bakshi et al. (1997) and Bates (2000) ,nd that the volatility
of volatility coe4cient, which is estimated from the underlying asset time series is
much lower than the one estimated from the options cross-section. In addition,
Pan (2002) using simultaneously equity returns and options prices ,nds evidence
suggesting that the volatility of volatility is stochastic. This observation is con,rmed
by Jones (2003) who ,nds, based on the implied volatility series, that
volatility of volatility is higher during the more volatile periods in the stock
market.
This evidence suggests that an appropriate extension might involve two SV fac-

tors, thus breaking the link between tail thickness and volatility persistence. Depend-
ing on model speci,cation—a4ne or logarithmic—a second SV factor may act as
either a factor dedicated to exclusive modeling of tail behavior (the ,rst factor is
then often referred to as a long memory component), or as a stochastic volatility
of volatility factor. In the latter speci,cation, the volatility would be capable of mak-
ing rapid moves, which is prohibited by a single SV speci,cation. EJP propose
to model the same feature by introducing a jump component to the SV
factor.
There are various tradeo6s in considering these di6erent speci,cations. If pure dif-

fusion models are chosen over jump di6usions, it has important implications for hedg-
ing strategies. If logarithmic models are chosen over a4ne ones, it may seriously
complicate option pricing. Finally, if we obtain models with comparable empirical
,t, we would still have to make a choice based on arguments other than statis-
tical goodness-of-,t criteria. Such arguments could be facility to price options, to
hedge, or simply parsimony. Our approach allows us to address all these
issues.

1 Formal statistical diagnostics and rejections of SV models are reported in Andersen et al. (2002) (ABL
hereafter), Chernov and Ghysels (2000), Eraker et al. (2003) (EJP hereafter), Jones (2003), and Pan (2002).
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We estimate a total of ten di6erent models, broadly classi,ed as either a4ne or
logarithmic. The benchmark for each class is a single SV model, i.e. the Heston (1993)
model for a4ne class, and the Scott (1987) model for the logarithmic class. In the
a4ne class the model is extended by considering two SV factors, a jump to returns
(ABL), and a simultaneous jump to both returns and volatility (EJP). In the logarithmic
class the extensions are achieved by adding a second SV factor, and by considering
models with feedback (Gallant et al., 1999).
We consider a long data set, providing rich information about the conditional and

unconditional distribution of returns under the objective probability measure. The com-
mon data set consists of returns on the Dow Jones industrial average (DJIA) index
from January 1953 to July 1999, covering in addition to the market crash of October
1987, the more recent crashes of October 1997 and August 1998, as well as historical
events such as the Cuban Missile Crisis in October 1962, or Arab Oil Embargo in
October 1973. The long data set also o6ers more variety in the dynamics of volatility,
which allows the determination of a more robust model. These are the longest series
considered for such a study: corresponding to the combination of ABL, and EJP, who
study 1953–1996 and 1980–1999, respectively. Although these authors use the S& P
500 index, our results should be qualitatively comparable because historically DJIA
closely tracks the S& P 500 index.
Since the risk-neutral measure used in derivatives valuation has to coincide with the

objective one up to sets of measure zero, the models of equities will retain the same
factor structure under both probability measures. Therefore, despite the fact that we are
not using options data in the present paper, we motivate our work by empirical results
from both underlying and options literature. By the same token, our results will have
implications for both.
The common estimation method is the e4cient method of moments (EMM) of

Gallant and Tauchen (1996). The advantages of using EMM, critical for comparison of
several models, are that it o6ers: (1) formal statistical tests of a model ,t, (2) formal
diagnostics of model inadequacies and most importantly (3) nonnested speci,cations
can be compared in a meaningful way since EMM forces all models to confront the
same set of moment conditions.
The paper is organized as follows. In a ,rst section, we describe the models that

we consider in the study. The next section covers the estimation methods, brieHy
summarizing EMM procedure and the SNP model selection. Section three reports the
empirical results. A ,nal section concludes the paper.

1. Models speci�cations

In this section we describe the various classes of models we consider in our study,
starting with single index volatility di6usion models in a ,rst subsection. Special cases
include a4ne models, constant elasticity of variance (CEV) and logarithmic models.
In the second subsection, we discuss jump-di6usion models. In the third and ,nal
subsection we introduce a uni,ed notation for the di6erent models.
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1.1. Single index volatility di:usion models

The starting point is the multifactor pure di6usion SV model. We consider models
with at most four factors, namely,

dPt=Pt = (�10 + �12U2t) dt + �(�10 + �13U3t + �14U4t)

×( 11 dW1t +  13 dW3t +  14 dW4t); (1)

dU2t = (�20 + �22U2t) dt + �20 dW2t ; (2)

dUit = (�i0 + �iiUit) dt + (�i0 + �iiUit)�i dWit; i = 3; 4: (3)

In the above, Pt represents the ,nancial price series evolving in continuous time (we
reserve the notation U1t for the logarithm of the price).
We allow for a Hexible drift speci,cation via a stochastic factor U2t , which evolves

according to an Ornstein–Uhlenbeck process. This speci,cation can accommodate the
mild serial correlation appearing in the returns series, which may be explained by
the nonsynchronous trading and unexpected stochastic dividend e6ects. An alternative
strategy to incorporate these e6ects would be to pre,lter the data as was done in ABL
or Gallant and Tauchen (1993).
We model the di6usion coe4cient �(:) as a function of the linear combination of the

two stochastic volatility factors U3t and U4t , which are described by the usual mean
reverting processes. The mean reversion parameters �ii or respective volatility half-lives
log 2=�ii measure persistence of these processes.
The use of a functional transformation of linear combination of factors is reminiscent

of index models used in various areas of econometrics. 2 We can, therefore, refer to
the volatility models as single index volatility (SIV) models. Di6erent speci,cations
of the index function will yield various classes of SV models, including a4ne and
logarithmic two volatility factor models.

Finally, we parameterize  11 =
√
1−  2

13 −  2
14 so that  13 and  14 are correlation co-

e4cients. Note that, when we have multiple stochastic volatility factors, the correlation
coe4cients loose the interpretation of the leverage e6ect, i.e. the instantaneous corre-
lation between returns and changes in variance. In this case, as can be easily shown,
the leverage e6ect is equal to

corr(dU1t ; �13 dU3t + �14 dU4t)

=
�13 13(�30 + �33U3t)�3 + �14 14(�40 + �44U4t)�4√

�2
13(�30 + �33U3t)2�3 + �2

14(�40 + �44U4t)2�4
dt: (4)

As a result, the leverage e6ect is state dependent in these models.

2 For cross-sectional applications see for instance Powell et al. (1989) and Stoker (1993), for time-series
applications in term structure models see Ghysels and Ng (1998) and in portfolio allocation see AMNt-Sahalia
and Brandt (2001).
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The classical models of Heston (1993) and Scott (1987) are obtained when U2t

and U4t are switched-o6. These models proved to be a substantial improvement over
the Black and Scholes (1973) speci,cation because of their formulation of volatility
as a random persistent process. However, this persistence turned out to be the weak-
ness of the model as well: extreme movements in returns occur more frequently in
the observed data than would be implied by the Heston or Scott model calibrated
to the data (see, for instance, ABL). These observations prompt us to explore gen-
eralizing the Heston and Scott models to better accommodate the data. In particular,
we introduce a second stochastic volatility factor. The presence of two volatility factor
breaks the aforementioned linkage between tail thickness and volatility persistence.
We have to note that the list of the models considered is by no means exhaustive.

For example, Meddahi (2001) proposes to model the di6usion coe4cient as a ,nite
order expansion based on the eigenfunctions of the expectations of the state variables.
In our notation his model can be represented as

�2(U3t ; U4t) =
∑

06i; j6p

ai; jE3; i(U3t)E4; j(U4t); (5)

where p is the order of expansion. The advantage of such a speci,cation is that it nests
all the models we consider here and o6ers more Hexibility in modeling the di6usion
term. However, as is often the case with nonparametric speci,cations, the intuition
behind the speci,cation is lost because of the higher-order expansions. The goal of
this paper is to compare intuitive and commonly used speci,cations, therefore we leave
nonparametric Hexible form alternatives for future research. In the next subsections we
consider (1) a4ne, (2) CEV and (3) logarithmic models, all particular cases of index
volatility models.

1.1.1. A;ne models
A4ne di6usion models are characterized by linearity of the drift and variance func-

tions. Dai and Singleton (2000) discuss the most general speci,cation of such models
including the identi,cation and admissibility conditions. We consider a very simple
representative of this class by specializing the SIV speci,cation in (1)–(3) to

�(u) =
√
u; (6)

�i = 0:5; i = 3; 4: (7)

The volatility factors enter additively into the di6usion component speci,cation, as in
Engle and Lee (1999). Hence, they could be interpreted as short and long memory
components. The long memory (persistent) component should be responsible for the
main part of the returns distribution, while the short memory component will accom-
modate the extreme observations.

1.1.2. CEV models
The SIV model specializes to the CEV class when the volatility function of the a4ne

models (6), is modi,ed to allow �i in the range from 0.5 to 1. As extreme cases, the
class contains the a4ne models, when �i = 0:5, and the GARCH di6usion models
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(Nelson, 1990), when �i = 1. We do not provide a detailed discussion of the CEV
models in this paper because our ,t was very close to a4ne models, and, therefore,
did not provide many new insights. Jones (2003) has success with these models, when
allowing for volatility induced stationarity (�i ¿ 1) and confronting it with the joint
options and the underlying index data set.

1.1.3. Logarithmic models
In logarithmic models, the variance is an exponential function of the factors. We

consider the following specializations of SIV (1)–(3):

�(u) = exp(u): (8)

We study two di6erent Havors of the logarithmic models, depending on the value of
the coe4cients �i.
When �i =0, i=3; 4 the volatility factors are described by Ornstein–Uhlenbeck pro-

cesses. In this case, the drift and variance of the volatility factors are linear functions.
Hence, this is a multifactor generalization of the Scott (1987), also known as log-linear,
speci,cation. 3 When �i = 1, i= 3; 4 we have volatility feedback, a feature which will
turn out to be empirically relevant. The key property of interest is that it permits the
volatilities of the volatility factors, via the terms �33U3t and/or �44U4t , to be high when
the volatility factors themselves are high. These terms are found to be important in
Gallant et al. (1999). 4

The logarithmic models with feedback violate the standard regularity conditions.
Therefore, the stochastic integrals and solutions of the SDEs associated with these
models are not de,ned. To remedy this problem one can splice the exponential volatility
function in (8) with, essentially, the linear growth condition at the level of volatility so
high that it is unlikely to be observed in the U.S. equity index returns. Fig. 6 compares
the exponential function in (8) and the actual speci,cation that we use. All the details
are relegated to Appendix A.
The model with feedback also has a di6erent volatility domain. As opposed to the

a4ne and log-linear models, where �(u) ranges between zero and in,nity, this model
has a lower bound equal to exp(�10 − �13�30=�33 − �14�40=�44). 5 While there is no
a priori consideration against this on pure modeling ground—after all volatility never
reaches zero in practice—the fact that volatility boundary depends on the parameters
may lead to nonstandard asymptotic behavior of estimators. Method of moment esti-
mators are less prone to boundary problems than are maximum likelihood estimators. 6

3 We are not the ,rst to suggest two-factor log-linear SV models, see for instance Alizadeh et al. (2002),
Chacko and Viceira (1999), Gallant et al. (1999) and the two-factor GARCH model of Engle and Lee
(1999).

4 We use the terminology “feedback” to refer to a feature of the latent factors. One might argue that it
is di4cult to label and compare models through latent factor features. However, if we de,ne feedback on
the basis of the time variation of the variance of the instantaneous variance of returns, we would ,nd that
almost all SV models exhibit feedback. Our terminology is therefore based on distinct features of the latent
volatility factors.

5 When �i = 1, the volatility factors are equal to GARCH di6usion model shifted by �i0=�ii . Since the
domain of GARCH di6usion is [0;∞), the domain of our volatility factors is [− �i0=�ii ;∞).

6 For further discussion of ML estimation with boundary parameters, see e.g. van der Vaart (2000).
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Nonetheless, we strongly suspect that the densities are smooth enough at the boundary
so that the parameter estimates follow the usual

√
N -asymptotics; however, we have

been unable to prove this. An alternative strategy to address the boundary issue is to
subtract the lower bound from the volatility speci,cation in (8) as this would ensure
that the lower bound is equal to zero. However, our estimation results showed that this
speci,cation is dominated by the one we consider here in terms of overall ,t.
It is perhaps not so surprising that the feedback model has good empirical properties.

Intuitively, the second factor not only takes care of the tail behavior, as the jump
process does, it also features dynamics that seem appealing for modeling extreme
market conditions. Indeed, the process can accommodate (mild) persistence in volatility
during high volatility days, and when �44 �= 0 (assuming the second factor determines
tail behavior), the volatility of volatility increases as well. These properties cannot be
accomplished by a simple Poisson jump process, which can accommodate tail behavior
but not the dynamics of extreme events. It should also be noted that a nice feature of
the logarithmic speci,cation is the multiplicative e6ect of U3t and U4t on the volatility
of returns. Neither a4ne models nor jump processes feature separate factors which scale
multiplicatively the Brownian motion W1t . Also, the ability of the exponential function
to generate very high volatility values adds additional capability to model market stress.
All these properties of logarithmic models facilitate mimicking the short-lived erratic
behavior through the second volatility factor.

1.2. A;ne jump di:usion models

As will be seen from empirical results, the log-linear models dominate the pure
a4ne di6usion models and are not rejected by statistical tests. We would like to give
a4ne models a fair chance and consider extensions of the Heston SV model via jump
components.
As a benchmark, we will consider a constant intensity jump di6usion model. Namely

the SV model is augmented by the jump to returns, U1t = logPt , speci,ed as

dq1; t = J1; t dNt; (9)

where

Nt ∼ Poi(�J ); (10)

J1; t ∼ N(�J ; �2
J ); (11)

which is added to the a4ne version of (1) when U4t ≡ 0. ABL constrain �J to be
equal to zero. We estimate both constrained and unconstrained speci,cations.
EJP consider a jump to the volatility factor U3t as well, namely,

dq3; t = J3; t dNt; (12)

where

J3; t ∼ exp(�) (13)

This speci,cation means that jumps to returns and volatility are driven by the same
Poisson process Nt , i.e. jumps occur at the same time. Such a speci,cation allows the
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introduction of correlation between jump sizes: the jump to return speci,cation (11)
should be replaced by

J1; t ∼ N(�J +  J J3; t ; �2
J ) (14)

EJP ,nd this model to be the most successful a4ne speci,cation in terms of the
residual properties and the shape of implied volatilities smile.

1.3. Normalizations and model abbreviations

Some normalizations are needed to achieve identi,cation of the various speci,cations
described in the previous subsection. In the SIV speci,cation (1)–(2) the long-run mean
of the drift is simultaneously controlled by �10 and �20, while the volatility of the drift
volatility is controlled by �12 and �20. Therefore, we impose

�20 = 0; �20 = 1: (15)

By analogy, for the general a4ne model in (3), (6) and (7) we impose the restrictions:

�10 = 0; �30 = 0; �33 = 1; �40 = 0; �44 = 1: (16)

Finally, for the logarithmic speci,cation (3) and (8) we set

�30 = 0; �40 = 0; �30 = 1; �40 = 1: (17)

Note, that �10 is not equal to zero here, because it controls the long-run mean of the
total volatility.
It proves convenient to have acronyms for the various models:
AFF1V means the simplest AFFine One Volatility factor model appearing in

(1)–(3), (6), and (7). This model with constant drift corresponds to the
Heston (1993) model.
AFF2V stands for the AFFine Two Volatility factor model, i.e. the most general

model appearing in (1)–(3), (6), and (7). This model augments the previous one with
an additional continuous path factor.
AFF1V-J0 represents the simplest AFFine One Volatility factor model with Jumps

to returns appearing in (1)–(3), (6), and (7) in combination with the Poisson process
as speci,ed in (9)–(11) and mean jump size, �J , constrained to be equal to 0. This is
the ABL model.
AFF1V-J is the AFFine One Volatility factor model with Jumps to returns appear-

ing in (1)–(3), (6), and (7) in combination with the Poisson process as speci,ed in
(9)–(11).
AFF1V-JJ is AFFine One Volatility factor model appearing in (1)–(3), (6), and

(7) with the Poisson process speci,ed in (10) driving both Jumps to volatility in (12)
and (13) and Jumps to returns in (9) and (14). This is the model introduced in Du4e
et al. (2000) and estimated by EJP.
LL1V means the simplest Log Linear One Volatility factor model with no volatility

feedback. This model with constant drift corresponds to the Scott (1987) model.
LL1VF means the One Volatility factor version of (1)–(3), (8), and �i = 1, i= 3; 4

with Feedback where �14 = 0 making the second volatility factor irrelevant.
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LL2V is the model (1)–(3), (8), and �i = 0, i = 3; 4 meaning Log Linear, Two
Volatility Factors without volatility feedback.
LL2VI is the model meaning Log Linear, Two Volatility Factors—the Intermediate

case—one without volatility feedback and the other one with the feedback, i.e. �3 = 0
and �4 = 1.
LL2VF is the most general model, where the acronym means Log Linear, Two

Volatility Factors, which feature Feedback via �33 �= 0 and �44 �= 0 from the Gallant,
Hsu, and Tauchen (1999) exploredvolatility factors to their own volatilities. This is the
Gallant et al. (1999) model.
The various models are summarized in Table 1. In what follows, � denotes the

parameters of the underlying SDE that is to be estimated. For example, for the largest
logarithmic speci,cation LL2VF the parameter vector is

�= (�10; �12; �22; �33; �44; �10; �13; �14; �33; �44;  13;  14): (18)

2. E cient method of moments

Let {yt}∞t=−∞, yt ∈RM , be a discrete stationary time series. In this paper, {yt} is
100 × [log(Pt) − log(Pt−1)], where Pt is the daily DJIA. When, as here, {yt} comes
from a discretely sampled SDE system, then the SDE speci,cation implicitly deter-
mines the density p(yt−L; : : : ; yt |�) of a contiguous stretch of length L+ 1 from {yt},
where �∈Rp� is a vector of unknown parameters of the generic di6usion process (1).
The fundamental problem that blocks straightforward application of standard statistical
methods is that an analytic expression for p(yt−L; : : : ; y0|�) is not available. (see for
instance, AMNt-Sahalia, 2002; Elerian et al., 2001, Durham and Gallant, 2000 for further
discussion). However, by using simulation, an expectation of the form

E�(g) =
∫

· · ·
∫

g(y−L; : : : ; y0)p(y−L; : : : ; y0|�) dy−L · · · dy0

can be computed for given �: That is, for given �, one can generate a simulation
{ŷ t}Nt=1 from the system and put

E�(g) =
1
N

N∑
t=1

g(ŷ t−L; : : : ; ŷ t)

with N large enough that Monte-Carlo error is negligible.
Gallant and Tauchen (1996) propose a minimum chi-squared estimator for � in

this situation, which they termed the e4cient method of moments (EMM) estimator.
Being minimum chi-squared, the optimized chi-square criterion can be used to test
system adequacy. The moment equations that enter the minimum chi-squared criterion
of the EMM estimator are obtained from the score vector (9=9") logf(yt |xt−1; ") of
an auxiliary model f(yt |xt−1; ") where xt−1 is a lagged state vector. The auxiliary
model is termed the score generator. Gallant and Long (1997) show that if the score
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generator is the SNP density fK (y|x; "K) described below, then the e4ciency of the
EMM estimator can be made as close to that of maximum likelihood as desired by
taking K large enough. The ,rst step in computing the EMM estimator �̂n is to use
the score generator

f(yt |xt−1; ") "∈' (19)

to summarize the data {ỹ t ; x̃t−1}nt=1 by computing the quasimaximum likelihood esti-
mate

"̃n = argmax
"∈'

1
n

n∑
t=1

log[f(ỹ t |x̃t−1; ")]

and the corresponding estimate of the information matrix

Ĩn =
1
n

n∑
t=1

[
9
9" logf(ỹ t |x̃t−1; "̃n)

] [
9
9" logf(ỹ t |x̃t−1; "̃n)

]′
: (20)

Estimator (20) presumes the score generator (19) provides an adequate statistical ap-
proximation to the transition density of the data, so that {(9=9") logf(ỹ t |x̃t−1; "̃n)} is
essentially serially uncorrelated. If (19) is not adequate, then one of the more com-
plicated expressions for Ĩn set forth in Gallant and Tauchen (1996) must be used,
although the EMM estimator is still consistent and asymptotically normal. De,ne

m(�; ") = E�

{
9
9" log[f(y0|x−1; ")]

}
;

which is computed by averaging over a long simulation

m(�; ") :=
1
N

N∑
t=1

9
9" log[f(ŷ t |x̂t−1; ")]: (21)

The EMM estimator is

�̂n = argmin
�∈Rp�

m′(�; "̃n)(Ĩn)−1m(�; "̃n): (22)

The estimator is consistent and asymptotically normally distributed with asymp-
totic distribution given in Gallant and Tauchen (1996). Under the null hypothesis that
p(y−L; : : : ; y0|�) is the correct model, n times the minimized value of the objective
function is asymptotically chi-squared on p" − p� degrees of freedom where p" and
p� are, respectively, the lengths of parameter vectors " and �.
The EMM estimation involves simulating continuous path di6usions which has been

covered extensively in the literature. We rely on a standard Euler discretization scheme.
The simulations involve a sampling frequency with twenty four steps per trading day.
The trading day was set equal to 1

252 , therefore the models parameters have annual
scaling.
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We use a nonstandard approach to simulate the a4ne di6usions from (1)–(3), (6),
and (7). 7 Instead of a naive discretization of U3t and U4t , we ,rst derive the dynamics
of logU3t and logU4t using the Itô’s lemma. Then we apply the Euler scheme to these
processes. As is well known, square-root processes require constraints on the coe4-
cients for the processes to stay positive (e.g. Feller, 1971). Given our normalizations
in (16), these constraints translate into �i0 ¿ 0:5 for i = 3; 4. If we directly simulate
the a4ne processes these constraints impose numerical burdens, as it becomes hard to
take numerical derivatives and even simulate for the borderline cases. When we sim-
ulate the log-versions of U3t and U4t , we are not concerned with the positivity of the
processes, so we can let the parameters �i0 change freely. This manipulation improves
the stability of the procedure tremendously. Therefore, although a4ne di6usions satisfy
the standard regularity conditions, we might expect, on this basis, that simulating the
log provides some increase in numerical accuracy. This approach is related to the Doss
transformation which improves the speed of convergence of simulation-based estimates
(Detemple et al., 2002).
We took the following approach with respect to jump component simulation. We

opted a pro,ling approach, where the EMM objective function is optimized with respect
to the parameters � appearing in (18) and the jump size parameters. Since we focus on
a standard Merton type jump process the size distribution is Gaussian and involves two
parameters. The jump frequency is drawn from a Poisson process, with its intensity
parameter ,xed and moved over a grid to appraise the overall ,t of the model. The
jump process was implemented by drawing durations between jumps from a exponential
distribution. When the durations fell inside the discretization interval, the size of the
jump was attributed time proportionally to the hourly observations bracketing the jump
event. In practice, this scheme is equivalent to the one in Platen and Rebolledo (1985)
and hence achieves the same convergence.
The best choice of a moment function to implement simulated method of moments

is the score of a auxiliary model that closely approximates the system dynamics
where the parameter vector of the auxiliary model is evaluated at its quasi maxi-
mum likelihood estimate. The SNP density of Gallant and Tauchen (1989,1992,2003),
which is derived as a location-scale transform of an innovation density represented
as a Hermite expansion leads to a useful, general purpose auxiliary model. We give
a brief description. Here, yt represents the observed process and, for now, xt−1 =
(yt−L; : : : ; yt−1). We frequently drop the time subscripts and write y and x
generically.
If one expands

√
p(x; y | �0) in a Hermite series, that is, expands the square root of

the stationary density of system (1) in a Hermite series, and derives the approximation
to the transition density p(y | x; �0) of the system that corresponds to the truncated
expansion, then one obtains an approximating transition density fK (yt | xt−1) that has
the form of a location-scale transform

y = Rxz + �x (23)

7 We are greatful to Michael Johannes for suggesting this.
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of an innovation zt , where Rx is an upper triangular matrix (see Gallant et al., 1997). 8

The density function of the innovation zt , is

hK (z|x) = [P(z; x)]2,(z)∫
[P(u; x)]2,(u) du

; (24)

where P(z; x) is a polynomial in (z; x) of degree K and ,(z) denotes the multivariate
normal density function with dimension M , mean vector zero, and variance–covariance
matrix the identity.
It proves convenient to express the polynomial P(z; x) in a rectangular expansion

P(z; x) =
Kz∑

|j|=0


 Kx∑

|i|=0

aijxi


 zj; (25)

where K = (Kz; Kx), i and j are multiindexes, and | · | denotes the degree of an index.
Because [P(z; x)]2=

∫
[P(u; x)]2,(u) du is a homogeneous function of the coe4cients

of the polynomial P(z; x), P(z; x) can only be determined to within a scalar multiple.
To achieve a unique representation, the constant term a00 of the polynomial P(z; x) is
put to one. With this normalization, hK (z|x) has the interpretation of a series expansion
whose leading term is the normal density ,(z) and whose higher-order terms induce
departures from normality.
The advantage of a rectangular expansion is that it gives the polynomial P(z; x) the

interpretation of a polynomial in z of degree Kz whose coe4cients are polynomials of
degree Kx in x. This is useful in applications because putting Kx = 0 implies that the
innovation density hK (zt |xt−1) does not depend on xt−1 and is therefore homogeneous.
That is, if Kx=0 none of the moments of the innovation density hK (z|xt−1) will depend
on the past. Conversely, if Kx ¿ 0, then the shape of the innovation distribution does
depend on the history xt−1=(yt−L; : : : ; yt−1) of the process {yt}∞t=−∞. In the empirical
application we will compare parameter estimates obtained from both homogeneous and
heterogeneous scores for certain models.
The location function takes the form of an autoregression �x = b0 +

∑Lu
k=1 Bkyt−k .

Consequently, the density determined by the location-scale transform y = Rz + �x

together with the innovation density hK (z|x) is a Gaussian vector autoregression if
Kz = Kx = 0. It is a semi-parametric autoregression along the lines of Engle and
Gonzales-Rivera (1991) if Kz ¿ 0 and Kx = 0, and is a fully nonparametric nonlinear
process if Kz ¿ 0 and Kx ¿ 0: The two choices of Rx that have given good results in ap-
plications are an ARCH-like moving average speci,cation and a GARCH-like ARMA
speci,cation which are discussed in Gallant and Tauchen (1997). In summary, Lu, Lg,
and Lr determine the location-scale transformation y=Rxzt+�x and hence determine the
nature of the leading term of the expansion. The number of lags in the location function
�x is Lu and the number of lags in the scale function Rx is Lu+Lr . The number of lags

8 Although R does not depend on x in this derivation, it proves advantageous in applications to allow
the scale matrix Rx to depend on x because it reduces the degree Kx required to achieve an adequate
approximation to the transition density p(y|x; �0).



238 M. Chernov et al. / Journal of Econometrics 116 (2003) 225–257

that go into the x part of the polynomial P(z; x) is Lp. The parameters Kz, Kx determine
the degree of P(z; x) and hence the nature of the innovation process {zt}.

3. Empirical �ndings

In a ,rst subsection we cover the estimation of the auxiliary model. The second
subsection reports and discusses the estimates. A ,nal subsection discusses reprojection
of the factors and their properties.

3.1. Data and auxiliary model

The raw data for analysis consist of 11 717 daily observations January 2, 1953, to
July 16, 1999, on the (geometric) percent movement

yt = 100 ∗ [log(Pt)− log(Pt−1)] (26)

of the DJIA, Pt . As noted earlier, we use the raw series and do not perform any
transformation on the raw data which are plotted in Fig. 1. The ,rst step is to project
the data {yt} onto an auxiliary model, which is the SNP model described above. We
reserve the ,rst 47 data points for forming lags leaving 11 670 observations, net. The
tuning parameters Lu, Lg, Lr , Lp, Kz, and Kx are selected by moving upward along an
expansion path using the BIC criterion:

BIC = sn("̃) + (1=2)(pK=n) log(n);

where the objective function sn(") is given by

sn(") =−1
n

n∑
t=1

log [fK (ỹ t |x̃t−1; ")]

to guide the search. Models with small values of BIC are preferred.
The expansion path has a tree structure. Rather than examining the full tree, the

strategy is to expand ,rst in Lu with Lg=Lr=Lp=Kz=Kx=0 until BIC turns upward.
For ARCH-type speci,cations, we expand Lr with Lg = Lp =Kz =Kx =0, then expand
Kz with Kx = 0, and lastly Lp and Kx. It is useful to expand in Kz, Lp and Kx at a
few intermediate values of Lr because it sometimes happens that the smallest value
of BIC lies elsewhere within the tree. For GARCH-type speci,cations, the strategy is
similar: we put Lg = Lr = 1, then expand Kz, Lp and Kx as above. We then check
Lg = Lr = 2. These two are the only GARCH-type speci,cations considered, which is
consistent with standard practice among GARCH practitioners. There is the di4culty
that increases in Kx add a plethora of parameters. We control this by restricting the
coe4cients aij of the Hermite expansion (25) to be zero when |j|¿ 2 and |i|¿ 1,
which was motivated by inspecting t-statistics on Hermite coe4cients of larger models
without such restrictions. The net e6ect of the restrictions is that the Hermite coe4cients
of (25) are state dependent, i.e. dependent upon x, only up through quadratic terms;
the Hermite coe4cients of zj are constant for cubics and higher.
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Fig. 1. DJIA 1953–1999.

The ,nal SNP model selected via this procedure has

Lu = 1; Lr = 1; Lg = 1; Lp = 1; Kz = 8; Kx = 1: (27)

This SNP model, preferred under BIC, can be characterized as a GARCH(1,1) with a
nonparametric error density represented as an eighth-degree Hermite expansion where
the Hermite coe4cients up through quadratic terms are state dependent. The model
is akin to the semiparametric GARCH of Engle and Gonzales-Rivera (1991), except
their nonparametric error density is represented as a state-independent kernel density.
Unlike SNP, the kernel representation of the semiparametric GARCH precludes state
dependence of the error density, which is found to be empirically important for this
data set.
We generate starting values for the optimization by ,rst estimating the models based

on a homogeneous score where the state dependence of the Hermite polynomial is not
incorporated, namely the tuning parameters are set to

Lu = 1; Lr = 1; Lg = 1; Lp = 1; Kz = 8; Kx = 0: (28)

We use the EMM package capability to process a sequence of input parameter ,les
with many randomly perturbed starting values from each input ,le and,
therefore, bad starting values leading to local optima are not a concern. This strategy
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yielded satisfactory ,ts sometime substantially improving results of previous
work.

3.2. Estimation results

Table 1 shows the various model speci,cations along with the minimized value of the
EMM objective function appearing in (22), scaled to follow an asymptotic chi-squared
on p"−p� degrees of freedom. Tables 3 and 4 report parameter estimates of the a4ne
and logarithmic models, respectively. The parameters correspond to returns expressed in
decimal form on a yearly basis. The models diagnostics via t-ratios of individual SNP
score elements are provided in Table 5. We start the discussion with the benchmark
case of single factor SV models, and then analyze various extensions.

3.2.1. Benchmark case: single factor SV models
It is not surprising that all three single factor SV speci,cations, AFF1V, LL1V,

and LL1VF, are rejected. The t-ratios indicate that because of the misspeci,cation
the models can match only some aspects of the returns distribution exempli,ed by
components of the SNP score. All of these models seem to capture the tails of the
distribution foregoing matching more intuitively appealing GARCH components. The
AFF1V model is the most dramatic example: its speed of mean reversion, �33 is
about 28 times larger than that of logarithmic models, which indicates highly erratic
behavior capable of generating extreme tails, but missing the main bulk of the returns
distribution.
In fact, the estimated �33 is about 40 times larger than the speed coe4cient in a4ne

models estimated by ABL and EJP. In order to understand this puzzling result better,
we evaluate the AFF1V estimation results based on the homogeneous score 11 118 000
appearing in (28). This score mitigates the inHuence of the tails, and, therefore, a
misspeci,ed model should be able to match the GARCH components of the score
better.
Table 2 reports the parameter estimates of AFF1V based on the homogeneous score

11 118 000. The most interesting feature of Table 2 is that it o6ers two sets of pa-
rameters for one model. The parameter estimates di6er particularly with respect to �33
measuring the speed of mean reversion in the volatility process. The intuitive ,t yields
estimates with slow mean reversion, i.e. �33 equals −3:39, or half-life of 2.5 months,
which conforms to the usual empirical ,ndings. However, the intuitive ,t turns out
to be a local minimum of the EMM objective function equal to 31.815, as there is a
better ,t, which we refer to as the best with a lower �2 of 17.886 and, unlike previous
,ndings, with very fast mean reversion, which corresponds to volatility half-life of 1.3
days. 9 Panel B of Table 2 shows the EMM t-ratio diagnostics. We learn that the intu-
itive ,t violates the moment conditions associated with Hermite polynomial coe4cients

9 The better ,t was discovered with the help of the heterogenous score, but theoretically it can be found
via meticulous grid search of the starting values, so the heterogeneous score is not required for this.
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Table 2
Parameter estimates, standard errors and t-ratio diagnostics for the AFF1V model, homogeneous score case

Intuitive Best

Est SE Est SE

Panel A. Parameter estimates and standard errors
�10 0.1096 0.0652 0.0989 0.0203
�12 0.8992 1.5165 5.7842 2.3474
�22 −1.1644 3.5986 −44.5889 30.8810
�30 0.8445 0.1460 1.1864 0.0136
�33 −3.3857 0.7865 −132.2989 36.0200
�13 0.0604 0.0115 1.1245 0.0783
 13 −0.2786 0.1459 −0.1574 0.0948

�26 = 31:815 �26 = 17:886

Intuitive Best

Panel B. t-ratio diagnostics
AR b0 −1.806 2.725
AR b1 1.771 1.159
GARCH 20 2.102 2.335
GARCH 21a 0.849 3.352
GARCH 21g 1.671 3.111
Hermite a01 −1.753 2.531
Hermite a02 2.748 2.767
Hermite a03 −2.305 2.733
Hermite a04 2.527 2.786
Hermite a05 −2.560 0.973
Hermite a06 2.028 2.903
Hermite a07 −2.662 0.023
Hermite a08 1.762 2.670

Notes: Entries to the table show the parameter estimates along with conventional Wald-type standard
errors determined by numerical di6erentiation for one-factor a4ne models:

dPt
Pt

= (�10 + �12U2t) dt +
√

�13U3t(
√

1−  2
13 dW1t +  13 dW3t);

dU2t = �22U2t dt + dW2t ;

dU3t = (�30 + �33U3t) dt +
√

U3t dW3t :

,tting the tail behavior, whereas the best ,t fails at mimicking the GARCH volatility
persistence moment conditions.
This evidence indicates that there is a dilemma in accommodating at the same time

volatility persistence and tail behavior via a single SV factor. 10 The AFF1V model
combined with the homogenous score can put emphasis either on the persistence in the

10 Meddahi (2001) gives an excellent theoretical discussion of this issue in the framework of the
discrete-time LL1V model.
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Table 5
t-ratio diagnostics

LL1V LL1VF LL2V LL2VI LL2VF AFF1V AFF2V AFF1V-J0 AFF1V-J AFF1V-JJ

AR b0 −1.509 −0.081 1.706 0.410 −0.110 1.428 0.912 −3.120 0.566 1.553
AR b1 1.593 0.521 0.941 0.011 −0.409 0.397 1.122 0.266 −0.137 0.456

GARCH 20 3.828 3.519 2.364 1.842 1.675 3.580 0.858 2.996 −0.699 −1.884
GARCH 21a 2.804 2.641 3.167 1.521 1.761 3.992 1.844 2.079 −0.448 −2.335
GARCH 21g 3.664 3.164 2.765 1.708 1.688 3.973 1.483 2.905 −0.553 −2.133

Hermite a10 0.033 0.665 −0.748 −0.273 −0.177 −0.497 −1.853 −0.919 −1.379 −0.614
Hermite a01 0.694 0.094 2.117 0.407 0.051 1.085 2.240 −0.837 2.509 0.992
Hermite a11 1.938 0.531 0.740 −0.473 −0.825 −0.604 0.955 1.623 −0.504 −0.047
Hermite a02 3.899 3.660 3.719 0.789 −0.034 2.325 2.471 2.106 0.556 1.827
Hermite a12 −1.189 −0.743 −1.477 −0.841 −0.469 −0.920 −2.653 −1.738 −1.213 −0.591
Hermite a03 −0.080 −0.233 2.134 0.136 0.040 0.827 1.064 −0.981 2.432 0.562
Hermite a04 4.313 4.192 4.012 1.106 0.115 1.633 2.758 1.942 0.430 1.173
Hermite a05 −1.243 −0.790 0.252 −0.451 −0.076 0.582 −0.826 −1.119 1.580 −0.115
Hermite a06 3.502 3.557 1.587 1.344 0.392 1.597 2.464 1.539 0.075 0.253
Hermite a07 −1.841 −1.075 −1.095 −0.912 −0.276 0.253 −1.706 −1.103 0.806 −0.343
Hermite a08 2.528 2.710 1.271 1.079 0.358 1.833 2.168 1.290 −0.420 −0.754

volatility or the tail behavior whereas the heterogeneous score restricts the one factor
model to emphasizing the tail behavior only.

3.2.2. Di:usion extensions: multiple SV models
The second SV factor in AFF2V leads to a tremendous improvement in capturing

the returns dynamics. The t-ratios indicate that the model does a good job with the
tails and signi,cantly improves the ,t for the GARCH components of the score. It
is clear that for this speci,cation one SV factor, U3, is working on the main part of
the distribution (notice that its persistence is much higher than that of the AFF1V
model) and another factor, U4, is matching the tails. The relative success of this model
is evident in the dramatic decrease of the objective function value from 20.196 for
AFF1V to 13.668. However, the speed of mean reversion of the persistent factor U3 is
still very high, which indicates potential misspeci,cation of the model. Moreover, the
loss of degrees of freedom associated with the increase in the number of parameters
is not compensated by the decrease in the objective function value. The p-values for
the two a4ne models are roughly the same and therefore AFF2V is rejected as well.
Note that while single factor models are known to have negative correlation between

innovations in volatility and returns, this may not be the case for the two-factor model.
The models have been parameterized so that the coe4cients  13 and  14 come out as
correlations. We ,nd in Table 3 a correlation in AFF1V equal to −0:19, the correlations
of returns with U3 and U4 are equal to −0:41 and 0.90, respectively. The leverage e6ect
formula (4) will allow us to understand how these correlations a6ect overall relationship
between returns and volatility.
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Specializing the general formula (4) to the case of AFF2V we obtain

corr(dU1t ; �13 dU3t + �14 dU4t) =
�13 13

√
U3t + �14 14

√
U4t√

�2
13U3t + �2

14U4t

dt: (29)

Since correlation coe4cients take opposite signs, the leverage could become positive in
certain states. To asses the likelihood of this happening, we ,rst compute the “average”
case. Ideally, we would have to compute the unconditional leverage e6ect. However,
we cannot do this analytically. Therefore, we compute something that is very close to
the unconditional leverage e6ect. Namely, we evaluate the conditional leverage e6ect
at the unconditional, or long-run, means of the states, which are equal to �i0=�ii. After
substituting values of the parameters and the long-run means into (29) we ,nd the
value of leverage e6ect equal to −0:3971.
In order to investigate a possibility of the positive value of the leverage e6ect, we

consider a very unlikely scenario: factor U3 is equal to 1=10th of its long-run mean
and factor U4 is equal to 10 times of its long-run mean. This scenario puts a lot
of weight on the contribution of the positive correlation coe4cient  14 to the overall
leverage e6ect. In this case, the leverage is equal to −0:3175. So, as the factor U4

increases, the leverage e6ect moves into the positive direction, but very slowly. As a
result, positive leverage is theoretically feasible, but is highly unlikely.
The second factor in logarithmic models leads to improvements as well. However,

since it enters the model multiplicatively, U4 will work as stochastic volatility of volatil-
ity rather than the factor dedicated to the tails of distribution. The LL2V is the least
successful speci,cation. Despite its p-value of 2% being higher than those of all pure
di6usive a4ne models and all single factor logarithmic models, it is still quite low for
the model to be retained as an adequate model. In particular, when one examines the
t-ratio diagnostics, they show only marginal improvements over single factor models.
Moreover, some of the key model parameters related to the more persistent factor U3

(�33, �13, and  13) are insigni,cant.
The LL2VF speci,cation, which adds feedback to the LL2V speci,cation, dominates

all di6usion models based on t-ratios, p-values, and objective function values. The
estimated parameters clearly indicate extreme persistence, i.e. near unit root discretely
sampled, of U3 and extreme mean reversion, i.e. near white noise discretely sampled,
of U4.
Evaluating LL2VF more carefully, one observes that �33, the coe4cient controlling

the feedback component of U3 is not signi,cantly di6erent from zero. The factor’s
persistence parameter, �33, is not signi,cant either. Our last logarithmic speci,cation
LL2VI explores the possibility of modeling the persistent factor U3 without feedback.
We ,nd that, despite an increase in the objective function, additional degree of freedom
leads to p-value very close to that of LL2VF. Moreover, all nice t-ratio diagnostics
remain intact and �33 becomes signi,cant. These results suggest that the introduction
of feedback to both SV factors is unnecessary, and LL2VI becomes our preferred
logarithmic model.
Interestingly, the point estimates of the leverage e6ect coe4cients  13 and  14 are

−0:30 and −0:29, respectively. Hence, they are both negative and signi,cant. The value
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of  14 is quite a dramatic reversal as compared to AFF2V. This is additional evidence
that a4ne and logarithmic speci,cations work in fundamentally di6erent ways.
Indeed, specializing the general formula (4) to the case of LL2VI we obtain

corr(dU1t ; �13 dU3t + �14 dU4t) =
�13 13 + �14 14(1 + �44U4t)√

�2
13 + �2

14(1 + �44U4t)2
dt: (30)

As we noted earlier in Section 1.1.3, the factor U4 is a GARCH-di6usion shifted by
1=�44. Therefore, the expression 1+�44U4 will always be nonnegative. Since both cor-
relation coe4cients are below zero, the leverage e6ect will be negative in any state.
For comparison with the a4ne model, we compute the conditional leverage e6ect eval-
uated at the long-run mean of U4. It is equal to −0:3006. So, on average, logarithmic
models produce a slightly smaller leverage e6ect.

3.2.3. Jump extensions
Our ,ndings indicate that logarithmic di6usion models overwhelmingly dominate

the a4ne di6usion models mainly because of the multiplicative speci,cation of the
volatility. However, we would like to investigate the role of jumps in a4ne models
since they were shown to be important by several authors. This analysis will lead to a
fair comparison between a4ne and logarithmic models.
The ,rst speci,cation, AFF1V-J0, o6ers a somewhat modest improvement in the

EMM objective function value as compared to AFF1V. Moreover, because of the loss
of one degree of freedom the p-value is slightly worse. Turning to the t-ratios we see
a mild improvement in the GARCH components of the score. However, looking at
the parameter estimates, it becomes clear that the di6usion part of the model becomes
much more reasonable. In particular, the persistence of U3 increases 24-fold. This is
not surprising: incorporating jumps provides additional Hexibility in ,tting the tails of
the returns distribution, relieving the volatility factor from this burden. Therefore, the
volatility process coe4cients are much more closely aligned with the intuitive ,t in
Table 2.
ABL, who study the speci,cation of type (1) ,nd that jump occur about six times

per year and on average jump up and down by the same magnitude. Clearly, jump
component is ,tting the tail behavior. A priori, it seems that a second SV factor can
perform the same task. Our results con,rm this intuition: AFF2V does even a better
job than AFF1V-J0.
The jumps in AFF1V-J0 are symmetric (because �J was set to zero) and occur

5.6 times per year. 11 Casual observation of the return series in Fig. 1 indicates that
this is not the case: there seem to be more negative than positive jumps, and the
negative moves tend to more severe. Moreover, the extreme events seem to occur less
frequently than six times a year. One way to formally test this is to estimate �J as a free
parameter. AFF1V-J shows a very di6erent picture: the frequency of jumps drops to
1.7 per year and the jump size has a signi,cant negative mean, which is consistent with

11 Because of our pro,ling approach to the estimation of �J (see Section 2), we cannot compute standard
errors. However, for all of our jump models the objective function dramatically increased outside of the
interval �̂J ± 0:1. Hence, this could be considered as an informal con,dence interval.
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negative skewness of returns. The volatility component becomes even more persistent.
The improvement occurs not only in realism of the parameters estimates, but in statistic
inference as well: t-ratios substantially improve and the model cannot be rejected at 5%
con,dence level, but is rejected at 10%. Moreover, the properties of the jump-di6usion
model become intuitive: volatility is more persistent, jumps are seldom: a little bit less
than two per year.
The AFF1V-JJ model has an appealing feature that during market stress, when

returns jump down, spot volatility jumps up. 12 In combination these two components
can produce a market move of a large size. As a result of a jump, volatility deviates
from its long-run mean and then mean reversion pulls it back via di6usive movements.
Such dynamics are very similar to the one generated by multiplicative volatility factors
in LL2VI. Despite the intuitive appeal of AFF1V-JJ, we cannot distinguish it from
a more parsimonious AFF1V-J based on the EMM diagnostics. Dramatic decrease in
the objective function is not compensated by the degrees-of-freedom loss. As a result,
asymptotic p-values are almost identical. The t-ratio diagnostics do not clarify the
picture either: while the GARCH part of the auxiliary model seems to be ,t worse by
AFF1V-JJ, we have recently uncovered evidence that the t-ratios might not be reliably
estimated when the degrees of freedom are small. Hence, based on the parsimony
considerations, we select AFF1V-J as our preferred a4ne model.

3.3. Additional diagnostics via reprojection

Our results up to this point indicate that, intuitively, a pure di6usion model with mul-
tiplicative volatility factors, one of which is almost explosive, can generate dynamics
similar to that of single volatility model with explicit jump component. The empirical
success of the logarithmic speci,cation can intuitively be explained by the fact that
the second factor not only accommodates the tails of the (conditional) return distribu-
tion, but also accommodates the volatility dynamics during extreme market conditions,
since the speci,cation of the second factor is mean reverting with local persistence
and state-dependent volatility of volatility. The potential explosiveness of the persistent
volatility factor contributes to realistic modeling of the extreme behavior. This ,nd-
ing has potentially very important implications because, if the di6usion model turns
out to be better than the jump di6usion previously advocated in the literature, this
will have very important simplifying implications for hedging as well as complicating
implications for option pricing.
For this reason, we further investigate the best models from each class in order to

better understand the di6erences and commonalities between the two models. We turn
therefore our attention to the time-series properties of the volatility factors. Since the
factors are latent we use the reprojection method of Gallant and Tauchen (1998).
Figs. 2–5 report time-series plots of the Dow Jones returns and volatility factors

12 This behavior is modeled by negative correlation  J . It is very hard to estimate this parameter with high
precision because it measures the correlation of two seldom and unobservable events, therefore the large
standard error reported in the table should not be surprising.
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Fig. 2. Reprojection of volatility factors from AFF1V and AFF1V-J models—1953–1999.

reprojected from the single volatility (benchmark) models in a4ne and logarithmic
class as well as from the most successful models in each class.
The ,rst two plots pertain to AFF1V and AFF1V-J covering sample 1953–1999

(Fig. 2) and a single year, namely 1998 (Fig. 3). Likewise, Figs. 4 and 5 cover LL1VF
and LL2VI for the same samples, i.e. 1953–1999 and 1998. Note that we report the
estimates of the logarithm of the a4ne volatility factors to make them comparable
to the volatility factors from the logarithmic models. It is worth noting that when one
looks at Figs. 3 and 4 it appears that the model without jumps (AFF1V) creates a more
volatile reprojected factor than the model with jumps (AFF1V-J). This is as expected
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Fig. 3. Reprojection of volatility factors from AFF1V and AFF1V models—1998.

given that the parameter estimates of the model will jumps yielded a more persistent
U3 process. Note that in logarithmic models the volatility level is controlled through
one parameter �10, while in a4ne models it is controlled through �i0=�ii. Since we can
not allocate �10 between the two volatility factors in LL2VF, we report factors scaled
by the respective weights, �i0, without regard to the level on all plots. As a result, one
can compare the shape and relative size of the volatility, but not the level.
The one-factor models yield reprojected volatilities which look quite di6erent. The

AFF1V appears to be more erratic, which is consistent with a much lower persistence
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Fig. 4. Reprojection of volatility factors from LL1VF and LL2VI models—1953–1999.

measured by �33. Nonetheless, the overall pattern and the volatility range seems to be
close for both models. These plots partially con,rm the ,ndings of ABL, who compare
the empirical ,t of logarithmic and a4ne volatility models.
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Fig. 5. Reprojection of volatility factors from LL1VF and LL2VI models—1998.

The volatility factors in the preferred speci,cations resemble each other much better.
The persistence, range and level (after taking into an account the value of �10 ≈
−2:2) of the ,rst volatility factor, U3t , of the LL2VI model is very close to the
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only volatility factor of AFF1V-J. We plotted a single year from the sample, namely
1998, to highlight that the ,rst factor in LL2VI picks up persistence, as does the
volatility factor in AFF1V-J, (see Figs. 3 and 5), and in fact resembles very much
the single factor model reprojected volatilities. The second factor of LL2VI looks very
di6erent. This is apparent from both the entire sample plot in Fig. 4 as well as the
1998 reprojected volatilities. The second volatility factor U4t clearly behaves like white
noise allowing to generate observations in the tails similarly to the jump component
of AFF1V-J. 13

The local behavior of LL2VI is very di6erent from AFF1V-J model, even from a
theoretical point of view. For the jump-di6usion model extreme events are represented
by the i.i.d. jump process, while the second volatility factor in the LL2VI model has
a half-life of three and a half-days, meaning that extreme events taper o6 over several
days. This is consistent with Das and Sundaram (1999) who ,nd downward sloping
and hump-shaped term structures of higher moments for jump di6usions and pure
di6usions, respectively. The model diagnostics that we have used do not pick up the
subtle features of the data generating processes. The statistical tools appear unable to
discriminate between such features pertaining to events rarely occuring over the entire
sample (despite its length).

4. Conclusion

In this paper, we examine various generalizations of SV models via the EMM
estimation procedure applied to a sample of post-war Dow Jones daily return
series.
We explored and compared the following two-factor speci,cations (1) a continuous

path a4ne di6usion factor process augmented with a jump component to better ,t
the tail behavior, (2) a two-factor logarithmic SV speci,cation with possible feedback,
the latter causing volatility of volatility to increase, and (3) the two factor a4ne SV
model.
We ,nd that none of the one-factor stochastic volatility speci,cations ,t the data,

which con,rms previous ,ndings. We note that the asymptotic p-value for the a4ne
model is much higher than for logarithmic speci,cation.
The two-factor a4ne model improves dramatically upon the single volatility model in

terms of the EMM objective function value. However, the associated loss of degrees of
freedom does not compensate enough: p-values of one and two factor a4ne models are
roughly the same. The same conclusion applies to a4ne model with jumps to returns
which have zero mean. However, the model cannot be rejected at 10% con,dence level
when the constraint on the mean of the jump size is relaxed. Moreover, this simple
modi,cation dramatically changes the behavior of both volatility, which becomes more
persistent, and jumps, which become less frequent. The jumps to volatility further
reduce the objective function value.

13 We notice that the reprojected path of U4t features the local exuberance around the summer of 1998
when LTCM and the Russian ,nancial crisis shook ,nancial markets.
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Based on the p-values we ,nd that the logarithmic two-factor model speci,cation
without feedback is rejected at the 5% signi,cance level, though it dominates all
rejected a4ne models. The most important new ,nding is that two factor logarith-
mic speci,cation involving at least one volatility factor with feedback ,t the data with
the p-values of over 50%. Thus, we ,nd that logarithmic factor model with feedback,
which has rapidly moving stochastic volatility of volatility, is at par with the a4ne
jump model.
All two-factor speci,cations feature one factor which accounts for the persistence in

volatility and the second determines the tail behavior. The empirical success of the log-
arithmic speci,cation can intuitively be explained by the fact that the second factor not
only accommodates the tails of the (conditional) return distribution, but also accom-
modates the volatility dynamics during extreme market conditions, since the speci,ca-
tion of the second factor is mean-reverting with local persistence and state-dependent
volatility of volatility. The near explosiveness of the short memory volatility factor
contributes to realistic modeling of the extreme behavior.
Casual observations of the data reveal that abrupt changes in the volatility are an

essential ingredient of a successful model. Jumps in returns and volatility simultane-
ously appear to be the ideal model. Yet, the improvement in statistical ,t is not strong
enough to justify this conclusion. The statistical tools combined with the data do not
allow us to ,ne-tune the diagnostic any further to declare an overall winner. Addi-
tional data, e.g. options data, would help in discriminating the remaining competing
models.
An alternative approach is, rather than trying to establish the “ideal” model, to

realize that there will always be uncertainty regarding model misspeci,cation and
to be robust with respect to it in the spirit of Anderson et al. (2002). However,
our model uncertainty does not directly fall into their framework because the model
perturbations are not absolutely continuous with respect to each other. Hence, more
theoretical work is required before this approach can be implemented in
practice.
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Appendix A. Regularity conditions for logarithmic models

The use of logarithmic volatility models raises several issues regarding regularity
conditions which ensure existence of moments, strong solutions to stochastic di6er-
ence equations (SDEs), and convergence of discretization schemes. In particular, the
stochastic integrals associated with the SDEs of the logarithmic SV models with feed-
back are not de,ned in the usual sense (the integrand has to be in L2, e.g. Kloeden
and Platen, 1995, pp. 81–82). 14 The exponential transformation of the volatility fac-
tors results in explosive behavior. The explosiveness of the logarithmic SV process
has been recognized for a while in the term structure literature. For instance, Brace
et al. (1997) replace the continuously compounded rate by the e6ective annual rate.
This removes the exponentiation of a lognormal variable, which in its turn removes
fatness in the tail, so that the moments exist.
We have to ensure that solutions to the speci,ed logarithmic SV processes exist

and are unique. 15 The processes we consider do satisfy the local Lipshitz conditions,
but violate the usual growth conditions in Itô’s theorem (Kloeden and Platen, 1995,
p. 128). To resolve this problem we splice the exponential volatility function in (8)
with appropriate growth conditions at the point, which corresponds to the volatility
level unlikely to occur in the U.S. markets, i.e. 150% annualized. 16

Formally, instead of the volatility speci,cation (8), we estimated

�(u) =




exp(u) if u6 u0 = log(1:5)

eu0√
u0

√
u0 − u20 + u2 otherwise

(A.1)

where at least one of the �i in (3) is equal to one. Now it is clear that we can ,nd a
constant K , such that

�2(u)6K2(1 + u2): (A.2)

The particular functional form of � in (A.1) is selected to ensure a smooth splicing,
i.e. the two functions and their ,rst derivatives coincide at u0.
This modi,cation is adequate to ensure the existence of stochastic integrals, SDE so-

lutions, convergence of discretization schemes, and EMM applicability. From the prac-
tical perspective, we are e6ectively considering the exponential form of the volatility
function. Fig. 6 compares both speci,cations.

14 We are greatful to Nour Meddahi for pointing this out to us.
15 It should be noted that we are discussing su4cient conditions. See Chen et al. (2001) for further

discussion.
16 For comparison, on October 19, 1987 implied 1 month volatility on S& P 100, which is approximately

equal to integrated volatility over the whole month, was equal to 150%.
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Fig. 6. The functional form of the di6usion coe4cient in logarithmic models: spline vs. pure exponential
form.
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