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ABSTRACT

NICHOLAS A. LARSEN: Model Selection with Machine Learning for Classifying Network
Community Structures

(Under the direction of Peter J. Mucha, Shankar Bhamidi, and Nicolas Fraiman)

By representing data entities as a map of edges and vertices, where each edge encodes a

relationship between two vertices, networks have an almost unlimited ability to capture relationships

and patterns impossible to see with the human eye. Because these patterns often reflect key aspects of

the data, a significant portion of network science is devoted to detecting and distinguishing networks

by using these topological features. The use of machine learning for classifying networks is a

popular solution; research in this area includes techniques ranging from k-Nearest Neighbors to

language modeling-inspired deep learning methods. Another area of interest with respect to networks

is model selection, which can provide unique insights into a graph’s topological and probabilistic

properties. This thesis combines the two areas of network classification with machine learning and

generative model selection by using the popular algorithm known as “random forests” as a potential

model selection criterion. First, we perform a series of experiments designed to characterize the

discriminatory power of random forests on a wide variety of synthetic graphs generated by dozens

of Stochastic Block Models (SBMs). Then, we take advantage of well-known network structural

properties and compare the generative model of best fit selected by random forests to the model

chosen by a previously established selection criterion known as Integrated Completed Likelihood

(ICL). In applying these techniques to selecting Erdős-Rényi mixture models for a macaque brain

connectivity dataset and using the model that maximizes the ICL criterion as the “gold standard,” we

observed that random forests serves as a comparable model selection method when using topological

network statistics as the feature space, selecting the same best-fit model chosen by ICL over 95% of

the time.
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CHAPTER 1

Introduction

As sensitive mathematical abstractions of complicated relationships within real-world systems,

networks have a wide range of applications in fields such as neuroscience, political science, statistics,

and social media (Waugh et al., 2009; Singh et al., 2016; Stam, 2014; Blei et al., 2007; Centola, 2010).

Equally extensive are the tools used to further understand networks, from community detection in

multilayer networks to network classification with deep learning (Mucha et al., 2010; Yanardag and

Vishwanathan, 2015). In this thesis, we combine two popular network science sub-fields: network

classification and model selection. In network classification, the goal is to use supervised learning

methods to build models that can differentiate between networks of differing properties. For example,

suppose one is given a social networks data set of movie stars in Hollywood, where nodes represent

actresses or actors and edges are drawn between them if they appear in the same film. In a supervised

classification scenario, each network would have a known label, perhaps denoting the genre of the

movie. The task is to then take advantage of the networks’ properties to build a classifier that can

distinguish between the different genres/networks. Model selection in network science focuses on

how one can extract probabilistic information about the large-scale structures that may occur within

networks in order to define a generative model that can be used to generalize the data or make

predictions. If an observed network instance can be mapped to a model, the underlying principles

governing the data are easier to identify, however, this is not a trivial task. Our work in this thesis

seeks to scale the problem of model selection into a more intuitive framework by converting the issue

into a networks classification scenario and using random forests (Breiman, 2001) to select the best

model from a set of candidates. We propose that framing model selection in this manner has the

combined benefit of 1) taking advantage of the well-studied area of machine learning classification

in the context of network science, 2) using popular and simple-to-understand network statistics as



a feature space, and 3) using the built-in feature ranking aspect of random forests to potentially

alleviate the “black box” problem that can occur when trying to understand why a particular model

has been chosen as a best fit to the data.

We conclude Chapter 1 with a brief overview of some of the literature in network model selection

and classification, with more in-depth descriptions provided later as needed, as well as a statement

about our motivation and goals. In Chapter 2, we introduce a type of generative model for networks

called the Stochastic Block Model (SBM) and describe the discriminatory power of random forests

when classifying instances of these models. In Chapter 3, we describe a subtype of the SBM and fit

several to a brain connectivity networks data set, using random forests as a model selection criteria

and comparing it to an established metric for model selection called Integrated Completed Likelihood

(ICL). Our conclusions and future directions are presented in Chapter 4.

1.1 Overview of Network Classification and Modeling

In network classification, the data is assumed to be comprised of networks belonging to the same

general space, such as protein-protein interactions or actresses in Hollywood. Within this space

there is assumed to exist a finer scale of classification, where within each class networks share more

similar properties than with networks from a different class. The goal is to use known instances of

each class in order to identify which features best distinguish networks from one another and to use

these to build a classifier. Some researchers employ automated feature selection and classification

methods such as deep learning with kernel functions, while others rely on manual feature selection

and extraction, using traditional supervised machine learning techniques such as k-nearest neighbors,

support vector machines, or random forests (Yanardag and Vishwanathan, 2015; Canning et al., 2017;

Li et al., 2012; Barnett et al., 2016; Caceres et al., 2016). In section 2.4, we describe the pros and

cons of using automated versus manual feature extraction and use previous comparative literature

to back our choice of manually selecting network statistics as our feature set. Previous research in

network classification has shown that random forests performs quite well when compared to other

classification algorithms and was used to inform our decision with respect to the use of random

forests in this thesis (Barnett et al., 2016; Li et al., 2012). Additionally, research examining the

discriminatory power of random forests in classifying instances of SBMs has also shown promising

2



results, in that random forests can very accurately label instances of SBMs with the correct model

for certain graph types, presuming the model parameters are sufficiently different from one another

(Caceres et al., 2016).

The sheer number of possible underlying structures that occur in networks has lead to a variety

of techniques designed to develop generative models aimed at capturing these properties. Some

methods focus on taking advantage of any community structure inherent in the network to devise a

metric for community detection (Fortunato, 2010; Newman, 2006; Girvan and Newman, 2002), while

others use empirical data to estimate the parameters governing a network’s underlying large scale

structure (Daudin et al., 2008; Holland et al., 1983; Airoldi et al., 2008). A particularly intriguing

model selection criterion is the one proposed by Peixoto (2015). Peixoto notes the difficulties that

arise when attempting to compare models that result in diverging descriptions of the same network.

To compensate, Peixoto proposes a model selection procedure based on the minimum description

length principle. As in this thesis, Peixoto also tests this principle using the stochastic block model

and its variants, as well as on a number of empirical network data sets, illustrating the efficiency and

scalability of his algorithm. In this thesis, we chose to use the generative model structure proposed by

Daudin et al. (2008) and used the model selected by the modified selection criteria defined by Daudin

et al. (2008) and originally established by Biernacki et al. (2000) as our gold standard with which to

compare random forests’ performance. Further information describing Daudin et al. (2008)’s work is

presented in section 3.1.2.

1.2 Motivation and Goals

The motivation for this research was inspired by the following question: given a set of N generative

models fit to a networks data set, can a random forests classifier trained on a fixed number of

instances from each model choose the best model when asked to classify the original data set?

Research conducted by Caceres et al. in A Model Selection Framework for Graph-based Data asked

a similar question in a narrower context, exploring the discriminatory power of random forests within

the parameter space of the Erdős-Rényi and simple stochastic block models (SBM) and using a

framework similar to figure 1.1. While thorough in exploring the behavior of random forests with

respect to these two simple models, this research did not account for the variety of SBM types that
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Figure 1.1: Methodology Pipeline. A schematic of the methods implemented in this research. The
top branch is a framework for experiments on synthetic data sets. The lower branch outlines the
steps for using random forests to select the best generative model for real data. The arrow connecting
“real” to “Random Forest Classifier” means once the classifier is trained on instances from the M
models, we input the original data set into the classifier. The classifier will then match the original
data to the model it deems most similar.

can occur, nor did it explore how to use random forests for choosing the best generative model for a

real data set. This honors thesis aims to incorporate these additional facets that, to the knowledge of

the authors, have not been examined in the previous research.

Over the course of this research, we implemented the schematic shown in figure 1.1 using two

different feature sets, described later in Chapter 2. The overall methodology for the experiments in

Chapter 2 is encapsulated by the top “synthetic” branch of the pipeline in figure 1.1. The goal in

implementing this branch was to perform a series of experiments designed to provide some intuition

about how random forests distinguishes different stochastic block models when trained on a set

of realizations from each model. The bottom “real” branch in this figure gives an overview of the

methodology used in the work presented in Chapter 3, with the goal of analyzing the effectiveness of

framing model selection as a networks classification problem using random forests.
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CHAPTER 2

Experiments with Synthetic data sets

To the current knowledge of the authors, the extent of literature exploring the behavior of

random forests in the context of network classification and model selection amounts only to the work

conducted by Caceres et al. (2016), whose findings are discussed in section 2.2. The key differences

between our results and those presented by Caceres et al. (2016) are 1) we explore a much more

substantial range of graph types and parameters and 2) we use random forests as a model selection

criterion and compare this to other accepted model selection methods (see Chapter 3). Other related

research conducted by Canning et al. (2017) and Barnett et al. (2016) that uses random forests

for network classification focused more on comparing random forests to other machine learning

techniques or simply determining the discriminatory power of network classification by random

forests on synthetic or applied data sets, rather than exploring the general behavior of random forest

classification in the context of networks.

In this chapter, we implemented two general sets of network classification experiments using

random forests with the goal of documenting and understanding the circumstances under which these

classifiers perform well or poorly. The first set of experiments focused on classifying graphs of the

same type (defined in section 2.1) where each type was further categorized by differing numbers of

communities. The second set of experiments tested classification accuracy on graphs of the same

type and same number of communities, but generated by probability matrices of varying parameter

combinations. For each set of experiments, a suite of SBMs using parameters designed to give a

full range of possibilities was designed. Synthetic graph data sets were then created by generating

100 instances graphs per SBM. Each graph was assigned a unique, arbitrary label matching it to

the parent SBM. These general sets of experiments were implemented twice, the first time using

raw edge-weights as the feature set (section 2.3), the second time using a set of network statistics



(section 2.5). The feature sets were split multiple times into training and test sets used to build and

test classification accuracy of a random forest model. For each split, the models were trained over a

parameter space of ntrees = {100, 200, 300, 400, 500} using 10-fold cross-validation to select the

best model for calculating prediction accuracy.

2.1 Introduction to Stochastic Block Models

Aaron Clauset’s Network Analysis and Modeling online lecture notes provided the main template

for determining which type of SBM structures to employ in these analyses (Clauset, 2013). Using

Clauset’s notation, the general stochastic block model is comprised of a k × k probability matrix

M where the entry i, j gives the probability of a vertex in community i connecting to a vertex in

community j and k represents the number of communities in the model. SBMs typically also include

an n× 1 scalar vector that stores the community membership of a node, where n is the number of

nodes in the graph. To generate a graph instance of an SBM, simply loop through each i, j’th pairing

and generate an edge with probability Mij . In other words, the probability for each element in a

graph adjacency matrix A generated from an SBM with probability matrix M is defined as,

P (Aij = 1) ∼ Bernoulli(Mij) (2.1)

Clauset’s lecture identifies five basic SBM structures which are used as the basis for these

experiments, referred to in this paper as graph types or type (Clauset, 2013).

1. Random Graphs: Another name for the Erdős-Rényi graph model, where edge-probabilities

are the same for all nodes in all communities.

Mij = p constant ∀ i, j ∈ {1, ..., k} (2.2)

2. Assortative Graphs: The classic SBM, where vertices have strong within-edge probabilities

and weaker between-edge probabilities. These tend to produce networks with obvious dense

clusters that are sparsely connected. The corresponding probability matrices exhibit strong

on-diagonal components and relatively weaker values off the diagonal.
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Mii > Mij for i 6= j (2.3)

3. Disassortative Graphs: The opposite of assortative graphs, these produce a structure where

a given node is more likely connect to nodes outside of its community than within. These

matrices have strong off-diagonal components and weak on-diagonals.

Mii < Mij for i 6= j (2.4)

4. Ordered Graphs: These are similar to assortative graphs in that vertices of the same community

are more likely to be connected, with the additional characteristic of being closely connected

to adjacent communities. In terms of matrix structure, these SBMs resemble assortative graphs

with strong first-off-diagonal components.

Mii ≈Mi,i−1 ≈Mi,i+1 (2.5)

5. Core-periphery Graphs: The core-periphery structure is a subtype of ordered graph, where

the probability of an edge decreases exponentially with community index. It may be helpful

to think of the probability matrix as containing one large “core” probability which serves

as the initial quantity in a system subject to an exponential decay by which the subsequent

probabilities are defined. This creates a nested core structure where community densities

decrease with community index. In general terms, M is defined as

Mk×k =

 P0e
−λ(j−1) when j is on the diagonal

P0e
−λ(j) when j is off the diagonal

where P0 =M1,1, λ is the rate of probability decay, and j = 1, ..., k is a column index. Here

we also briefly provide a rough intuition behind the effect of core-periphery parameters λ

and P0. As | λ |→ ∞, the edges located in the outer-cores of the graph begin to drop of

exponentially, resulting in single nodes surrounding a small core of nodes connected with

probability P0. As | λ |→ 0, subsequent probabilities Mij approach P0, making the network
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more closely resemble a random structure. Large values of P0 typically mean larger values in

Mij , which translates into more densely connected graphs. In generating dozens of different

SBMs with the core-periphery structure, we also observed, at least from a visual point of view,

that the effect of λ on the number of edges in the graph appears to be much stronger than that

of P0.

2.2 Motivation for Synthetic Experiments and Description of SBM Pa-

rameters

The goal of the research presented in this chapter is to observe the behavior of random forests

in classifying graphs according to their corresponding SBM under a variety of scenarios. To the

knowledge of the authors, little has been to done in the way of exploration when it comes to

understanding how graphs of different types are distinguished from the perspective of machine

learning techniques. Research conducted by Caceres et al. (2016) touches on some of this, exploring

the discriminatory power of random forests in the context of classifying Erdős-Rényi and assortative

graphs, whose parameters are given in figure 2.1. In particular, Caceres et al. (2016) noticed that

classification accuracy decreases as the distance between SBM parameters, δ = pin − pout, shrinks.

Chapter 2 expands on this idea, presenting a much larger set of SBM types using a variety of different

parameters that are summarized in the tables located in this section. Note that the “Label” column

refers to the label provided to random forests for later classification, thus each label corresponds

to groups of graphs generated from the same SBM. Each parameter has been chosen with the aim

of providing settings where random forests must discriminate between graphs of largely different

parameters to graphs of very similar parameters. With the ultimate goal being model selection, we

also defined some parameters designed to produce graphs with approximately the same density, as

intuition suggests that candidate models for a data set would also produce graphs of similar density.

The instance graphs generated from these models were used both in the experiments conducted in

sections 2.3 and 2.5. A summary of the total number of SBMs and corresponding instance graphs

is provided in table 2.1. Note that the set of SBMs for the core-periphery graph case is particularly

extensive due to the wide range of parameter combination possibilities available. As a result, we
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Figure 2.1: Table 1 in Caceres et al. (2016). This figure presents the parameters used for testing the
random forests’ ability to discriminate between Erdős-Rényi models and assortative SBMs.

Total SBMs Total Graphs
58 5800

Table 2.1: Summary of Total Number of SBMs and Instance Graphs. For each SBM, we
generated 100 instance graphs for use in evaluating the discriminatory power over these sets of SBM
parameters.

decided to break up the set of core-periphery graphs of varying probability matrices into three general

categories. The parameter summaries for each category are presented in tables 2.4, 2.5 and 2.6.

2.3 Experiments Using Flattened Adjacency Matrices as a Feature

Space.

2.3.1 Using flattened adjacency matrices as feature sets

For these experiments, random forest models were trained using graph edge-weights, specifically the

graphs’ flattened adjacency matrices, as the feature set. In other words, suppose synthetic graph Gi is

generated from an SBM labeled Lj , where Gi is undirected and unweighted with adjacency matrix

Graph Type Parameters (fixed for each k = 3, 5, 8)
Random n = 50, p = 1/k

Assortative n = 50, pii = 0.5, pij = 0.01 j 6= i

Disassortative n = 50, pii = 0.01, pij = 0.12 j 6= i

Ordered n = 50, pii = 0.5, pi,j±1 = 0.3

Core-periphery n = 50, P0,0 = 0.7, λ = −0.50

Table 2.2: Summary of SBM parameters used for classification of graphs of same type, where
only the number of communities differ. Networks generated by these models were used in sections
2.3.2 and 2.5.1. n is the number of nodes for each graph, pij represents the (i, j)th entry in the
probability matrices. In the case of the core-periphery structure, λ is the rate of exponential decay as
defined earlier. The parameters summarized here represent total of 15 SBMs with three models per
graph type, one for each k.
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Graph Type Label 0 Label 1 Label 2 Label 3 Label 4
Random (n = 50, k = 5) p = 0.035 p = 0.05 p = 0.1 p = 0.2 p = 0.5

Assortative (n = 100, k = 5, pi,i = 0.5) pi,j = 0.01 pi,j = 0.02 pi,j = 0.05 pi,j = 0.10 pi,j = 0.25

Disassortative (n = 50, k = 5, pi,i = 0.5) pi,i = 0.01 pi,i = 0.01 pi,i = 0.01 pi,i = 0.011 pi,i = 0.012
pi,j = 0.12 pi,j = 0.24 pi,j = 0.06 pi,j = 0.058 pi,j = 0.28

Ordered (n = 75, k = 5) pi,i = 0.5 pi,i = 0.3 pi,i = 0.7 pi,i = 0.31 pi,i = 0.68
pi,j±1 = 0.2 pi,j±1 = 0.1 pi,j±1 = 0.5 pi,j±1 = 0.085 pi,j±1 = 0.55

Table 2.3: Summary of SBM parameters used for classification of graphs of the same type,
where each label corresponds to a probability matrix with different parameter values. See
tables 2.4, 2.5, and 2.6 for summary of the core-periphery structure parameters. Networks generated
by these models were used in sections 2.3.3 and 2.5.2. For all graph types we have fixed the number
of communities at 5. In the case of the random graphs, values of p have been chosen to generate
graphs with a range of densities. Smaller values of p indicate low edge probability, resulting in
sparser networks. Conversely, as p increases, the network density grows as well. For assortative
graphs, we have fixed inter-community probability as 0.5 and vary the between-community edge
probabilities (pij where j 6= i). As pij increases, the assortative structure more closely resembles
that of a random graph. The disassortative parameters mimic the assortative case, in that we only
vary pij . Values of pij are selected such that nodes in graphs from differing labels are twice as likely
or half as likely to connect to nodes in other communities. Other parameters for the disassortative
graphs are selected as dense and sparse counterparts. The parameters for the ordered graphs are
selected such that two labels have the same value for pii − pi,i±1 and other labels are slightly sparser
or denser versions.

Label P0 λ

Label 0 0.7 -0.5
Label 1 0.7 -0.2
Label 2 0.7 -0.7
Label 3 0.55 -0.5
Label 4 0.55 -0.2
Label 5 0.55 -0.7
Label 6 0.7 -0.45
Label 7 0.55 -0.45

Table 2.4: Parameter Summary for Core-periphery Case, Sub-Experiment 1. (Reference item
5 in section 2.1 for notation.) Networks generated by these models were used in sections 2.3.3
and 2.5.2. Labels 0, 1, and 2 correspond to networks with strong inner-core edge probability (P0)
with varying rates of decay (λ). Labels 3, 4, and 5 test the same idea with a weaker inner-core
edge probability. Labels 6 and 7 were used to test classification problems where networks have the
same inner-core edge probabilities and similar rates of decay. They were tested with labels 0 and 3
respectively.

Label P0 λ

Label 8 0.7 -0.3
Label 9 0.72 -0.32
Label 10 0.58 -0.52

Table 2.5: Parameter Summary for Core-periphery Case, Sub-Experiment 2. Labels 8 and 9
were used for testing discriminatory power in the case of similar cores and decay rates when the
networks are dense. Labels 10 and 3 were used for the same purpose except for sparse networks.
Networks generated by these models were used in sections 2.3.3 and 2.5.2.
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Label P0 λ

Label 11 0.85 -0.5
Label 12 0.74 -0.5
Label 13 0.78 -0.5
Label 14 0.59 -0.5
Label 15 0.63 -0.5
Label 16 0.57 -0.7
Label 17 0.73 -0.3

Table 2.6: Parameter Summary for Core-periphery Case, Sub-Experiment 3. Labels 0, 3, and
11 were used for discriminating graphs with the same decay rate λ = −0.5 but very different inner-
core probabilities. Labels 0, 12, and 13 were used as a case for same λ and similar large inner-core
probabilities, and labels 3, 14, and 15 provided an analogous case for similar small inner-core
probabilities. Labels 5 and 16 were used for testing classification when inner-core probabilities are
small and similar with identical high rates of decay. Labels 8 and 18 test the same idea for large
inner-core probabilities and a lower rate of decay. Networks generated by these models were used in
sections 2.3.3 and 2.5.2.

Ai ∈ Rn×n. The corresponding feature vector for Gi, the so-called “flattened adjacency matrix”, is a

row vector of zero’s and one’s.

vec(Ai)T = Fi ∈ R1×(n×n) (2.6)

2.3.2 Classification of graphs of same type, where only the number of communities

differ.

For each graph type in section 2.1, three sets of SBMs were defined. The only parameter that varied

was the number of communities, k, where k = 3, 5, 8. Table 2.2 is a summary of the graph types and

corresponding parameters that were fixed as k varied.

For each SBM, 100 instance graphs were generated and their flattened adjacency matrices Fi

extracted. An instance graph was labeled by the number of communities of the corresponding

parent SBM. Random forest classifiers were trained on 67% of the data and accuracy scores from

classifying the held-out 33% were used to estimate the models’ test accuracies. Generally speaking,

random forests seem able to discriminate fairly accurately between SBM instances of the same type

with differing numbers of communities. Visually speaking, the structural differences between these

graph classes were easy to spot. In many cases, strong classification accuracies seemed to follow

the cases where graph instances of different communities exhibited very different structures. The
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Graph Type Accuracy Score
Random 87.85± 10.66

Assortative 61.89± 16.11

Disassortative 38.11± 19.36

Ordered 81.0± 15.86

Core-periphery 83.89± 12.76

Table 2.7: RF Accuracy Scores for Discriminating between Graphs of k = {3, 5, 8} on a Flat-
tened Adjacency Matrix Feature Space. Random and Core-periphery graphs are shown to be the
easiest to classify when using random forests with flattened adjacency matrices. Keeping in mind that
classifying by random chance is equivalent to rolling a three-sided die (13 probability), the accuracy
scores in this table suggest that random forests can discriminate between graphs of the same type
with different numbers of communities fairly well and better than random chance in all cases.

one exception, seen in the low accuracy score of the disassortative experiment, corresponded to a

case where it was very difficult to visually distinguish the graph types. A likely contributing factor

to the lower classification score is that the parameter values of the corresponding SBMs of these

graphs varied perhaps the least out all the experiments. Both the results in Caceres et al. (2016) and

subsequent experiments in section 2.5 also suggest that the discriminatory power of random forests

decreases as SBM parameters become more similar.

2.3.3 Classify graphs of the same type, where each label corresponds to a probability

matrix with different parameter values.

The possibilities for combinations of different SBM parameters within a graph type resulted in a

slightly more involved series of experiments than those described above. For each graph type, a

set of SBMs were defined in such a way to give a wide range of graph parameters. As in section

2.3.2, 100 instance graphs were generated for each of the SBMs used in an experiment and random

forest classifiers were trained on 67% of the data and tested on the remaining 33%. Graphs were

assigned a unique label corresponding to their parent SBM. The following discussion summarizes

each experiment (corresponding to graph type).

Summarizing experiments using Random, Assortative, Dissassortative, and Ordered Graphs:

The results for these experiments are given in tables 2.8 and 2.9. For both tables 2.8 and 2.9, accuracy

was the lowest when random forests were tasked to classify graphs from wide range of parameters.

The subsequent rows in table 2.8 show as the distance between the parameters increases, classification
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Label Set Random Assortative
L0, L1, L2, L3, L4 60.22± 11.07 43.00± 09.71

L0, L1 (sparse case) 67.46± 18.97 49.37± 15.78

L2, L3 (dense case) 95.08± 8.71 90.87± 10.52

Table 2.8: Random Forest Classification Accuracy on Random and Assortative Graphs Sets.
See table 2.3 for the parameters corresponding to each label. The first row tests random forests’
discriminatory power on a wide range of graph parameters. The second and third rows test binary
classification scenarios when graphs have approximately similar density.

Label Set Disassortative Ordered
L0, L1, L2, L3, L4 46.56± 11.22 48.60± 11.24

L0, L1, L2 66.70± 16.13 91.96± 8.73

L2, L3 (sparse case) 52.30± 18.13 53.57± 22.06

L1, L4 (dense case) 53.73± 21.58 55.40± 22.07

Table 2.9: Random Forest Classification Accuracy on Disassortative and Ordered Graphs Set.
See table 2.3 for the parameters corresponding to each label. The first row tests random forests’
discriminatory power on a wide range of graph parameters. For the disassortative graphs, labels 0, 1,
and 2 represent probability matrices that have the same diagonal values, but with off-diagonal values
that differ by factors of 2. For the ordered graphs, these labels represent probability matrices where
the differences between on- and off-diagonal values is approximately 0.2. The last two rows test
binary classification scenarios when graphs have approximately similar density.

accuracy also increases. Differences between the parameters for L0 and L1 were not as large as

differences between parameters for L2 and L3 due to the relatively smaller probability values for

the sparser case. As a result, we see the strongest classification scores in the final row of table 2.8.

A similar case can be made for table 2.9, except notice that the largest differences in parameters

occurred for the L0, L1, L2 label set, rather than the sparse and dense label sets.

In general, the results in tables 2.8 and 2.9 tell us that when parameters of SBMs are selected

to produce instance graphs of similar parameters, even if graph density is similar, random forests’

classification accuracy decreases. However, for sufficient differences in the parameters, even using a

feature set as trivial as flattened adjacency matrices allows for strong classification accuracy. For

example, consider the classification accuracies for the ordered graph types in table 2.9. When tasked

to classify sets of graphs with similar parameters (L2 & L3 and L1 & L4), the random forest models

performed barely better than a coin toss. However, when classifying a set of graphs with a wide

enough range of parameters (label set L0, L1, L2), classification accuracy jumped to nearly 92

percent.
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Label Set Accuracy
L0, L1, L2 (Same strong core density, wide range of decay rates) 83.22± 11.36

L3, L4, L5 (Same weak core density, wide range of decay rates) 72.26± 14.68

L0, L6 (Same strong core density, similar decay rates) 49.52± 20.15

L3, L7 (Same weak core density, similar decay rates:) 59.92± 21.17

Table 2.10: RF Classification Accuracy Summary for Core-periphery Case, Sub-Experiment
1. See table 2.4 for a summary of the parameters. The first two rows correspond to classification
accuracy when the parameters λ are fairly different. The last two rows correspond to classification
scenarios with more similar λ.

Experiments with Core-Periphery graphs: The set of SBMs for the core-periphery graph case is

particularly extensive due to the wide range of parameter combination possibilities available. Recall

that this particular core-periphery structure is defined by exponentially decreasing probabilities

indexed by community. As magnitude of the rate of decay approaches infinity, all that is left is the

“core” community with edge-probabilities of nodes in the outer-cores approaching zero and overall

density decreasing. As the rate of decay magnitude moves in the opposite direction, approaching zero,

overall graph density increases and the core-periphery structure acts more like a random graph, with

outer-core edge-probabilities staying very close to the inner-core P0. In other words, an increased

rate of decay results in a decrease in graph density and a decrease in decay rates results in an increase

of graph density. Conversely, larger P0 values give denser graphs, whereas smaller P0 results in

weaker out-core probabilities. In order to take into account the various interactions at play, we

devised the three following sub-experiments.

Core-periphery case, sub-experiment 1: Here we defined 8 SBMs designed to provide clas-

sification scenarios where random forests discriminated between core-periphery graphs with the

same P0 and differing rates of decay. From the last two rows of table 2.10, one can observe how

the discriminatory power of random forests decreases when it is tasked with classifying graphs of

similar λ rates. Otherwise, classification accuracy was fairly strong for a wider range of parameter

differences.

Core-periphery case, sub-experiment 2: Here we compared 2 sets of graphs defined by similar

P0 and λ values. As expected, classification accuracies were quite low, with both worse than a

random coin toss (table 2.11).

Core-periphery case, sub-experiment 3: This sub-experiment compared core-periphery structures

of same rates of decay λ and differing core-probabilities P0. Overall, classification accuracies were
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Label Set Accuracy
L8, L9 (dense case) 46.51± 22.48

L3, L10 (sparse case) 47.06± 20.02

Table 2.11: RF Classification Accuracy Summary for Core-periphery Case, Sub-Experiment
2. See table 2.5 for a summary of the parameters.

Label Set Accuracy
L0, L3, L11 (λ = −0.5, different P0 ) 48.89± 15.92

L0, L12, L13 (λ = −0.5, similar large P0) 31.74± 15.53

L3, L14, L15 (λ = −0.5, similar small P0) 33.67± 15.57

L5, L16 (λ = −0.7, sparse case) 43.65± 17.48

L8, L18 (λ = −0.3, dense case) 55.08± 12.86

Table 2.12: RF Classification Accuracy Summary for Core-periphery Case, Sub-Experiment
3. See table 2.6 for a summary of the parameters.

much lower for these scenarios, most likely due to the fact that the rate of decay has a stronger

influence on the graph structure than P0, thus graphs are more similar to one another when their

respective λ’s are also similar, regardless of their P0 values.

2.3.4 Summary of results on the flattened adjacency feature space

Generally speaking, when classifying graph instances from models of sufficiently different parameters,

random forests were often fairly adept at distinguishing graphs from most SBM types. Clearly,

however, accuracy scores varied depending on which graph type was the focus of the experiment.

For example, classification scores for ordered graphs in both general experiments varying number of

communities and varying probability matrix values were usually quite strong, whereas disassortative

graphs seemed to produce lesser accuracy scores in all cases. The relationship between the parameter

differences and random forest classification accuracy was also noted by Caceres et al. (2016) for

Erdős-Rényi models (random graphs) and the assortative SBM structure.

2.4 Using Network Statistics

In section 2.3, we employed perhaps the most trivial method for converting graphs into a numeric

feature space for classification by mapping each graph Gi to vector Fi, where Fi = vec(Ai)T .

In other words, section 2.3 explored graph classification using one-dimensional vectors of binary

variables, where each variable denoted the existence of an edge between all given node pairings.
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This method worked adequately for graphs from sufficiently different parameter spaces, however, in

the cases where graph parameters became more similar, using the flattened adjacency matrix feature

space often failed to provided models with strong discriminatory power. Perhaps more importantly,

the representation of graphs by their flattened adjacency matrices lacks interpretability.

The problem of feature representation in the context of graph classification has recently attracted

many researchers and has resulted in several alternative methods for mapping graphs to an adequate

feature space (Li et al., 2012; Barnett et al., 2016; Caceres et al., 2016; Canning et al., 2017; Yanardag

and Vishwanathan, 2015) (see also “Related Work” in Li et al., 2012). Many have explored the use

of a graph’s topological properties, also known as “network statistics” in the field of network science,

as an effective means of representing graph data sets for classification (Newman, 2010; Li et al.,

2012; Barnett et al., 2016; Caceres et al., 2016; Canning et al., 2017). Another alternative to defining

a feature space with network statistics is to employ kernel methods. As defined in Shawe-Taylor

and Cristianini (2004), the appeal of using kernel methods is that the so-called kernel function can

bypass feature-vector representation by calculating the inner products between the projections of

data pairings into the feature space without computing their actual coordinates in said feature space.

In other words, a kernel function is a direct inner product of the input features that avoids explicitly

mapping to a feature space. To paraphrase the notation defined in Shawe-Taylor and Cristianini

(2004), a kernel function is

κ(Gi,Gj) = 〈φ(Gi), φ(Gj)〉 (2.7)

where φ is a mapping to feature space F ⊆ RN

φ : Gi → φ(Gi) ∈ F (2.8)

This method appealingly makes accessible feature spaces that are exponentially or even infinitely

large (Shawe-Taylor and Cristianini, 2004). However, some comparative analyses suggest that not

only does the use of a feature space defined by network statistics yield comparable to more accurate

graph classification results for a variety of discriminatory algorithms, calculating such a feature space

also takes substantially less time than other kernel methods (Barnett et al., 2016; Li et al., 2012).

Because many network statistics, such as average degree, are intuitively easy to connect to the “real
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world” properties of a graph, classification based off these features has the additional benefit of clear

interpretability, particularly if the classifier automatically identifies the features most relevant to

classification (such as random forests). As a result, we have decided to explore model selection using

graph classification on a feature space defined by a variety of network statistics described in section

2.4.1.

2.4.1 Description of network statistics

The following list of thirty-seven network statistics (including the minimums, maximums, averages,

and standard deviations of certain measurements) has been compiled using the variety of relevant

literatures listed in the introduction of this section. Generally speaking, items 3 – 10, 16 – 18

comprise of measurements that encapsulate notions of node degree and “connectedness” of a graph,

items 11 – 15, 24, and 25 employ information about shortest paths, and items 19 – 23 use information

encoded in the graphs’ adjacency matrices. For the measurements using eccentricity (items 11 – 13)

and for item 14, we calculated averages weighted by number of nodes per component if the graphs

were disconnected (Li et al., 2012).

We would like to credit the follow recent works for inspiring the use of these network statistics:

Li et al. (2012) for items 7 – 23 and Caceres et al. (2016) for items 3 – 6, 24, and 25. All statistics

were computed using the Python module NetworkX (Hagberg et al., 2008).

1. Number of Nodes: Total number of nodes in the graph.

2. Number of Edges: Total edge count.

3. Number of Triangles: A triangle is defined as a complete graph consisting of three nodes and

three edges. The total number of triangles is defined with respect to the entire graph.

4. Maximum Triangles: The maximum number of triangles for a single node in the graph.

5. Average Triangles: The average number of triangles to which a single node belongs.

6. Standard Deviation of Triangles: The corresponding standard deviation.
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7. Global Clustering Coefficient: The number of closed triplets (3× total number of triangles)

divided by the total number of connected three-node subgraphs. See Fig 1. in Li et al. (2012).

This statistic provides an overall measure of clustering for the entire graph.

8. Local Clustering Coefficient: As implied by the name, the local clustering coefficient is

defined same as above, this time with respect to a single node. Essentially, this measure

quantifies the amount of “connectedness” obtained by a given node and its’ neighbors. We

compute the average, standard deviation, minimum, and maximum local clustering coefficients

for each graph.

9. Average Degree: The average degree over all nodes in a graph, where “degree” refers to the

number of edges directly adjacent to a given node.

10. Degree Assortivity Coefficient: A measurement of a node’s “preference” for attaching to

other nodes with similar degree. In this case, the standard Pearson correlation coefficient is

used (see equation 21 in Newman (2003)). Negative values imply that a given high degree

node will tend to connect with nodes of lower degree and vice versa. Positive values indicate

that high degree nodes tend to connect with other high degree nodes and low degree nodes

more frequently connect with other low degree nodes.

11. Average Eccentricity: The maximum distance from a node v to all other nodes in the graph.

12. Radius: Minimum eccentricity.

13. Diameter: Maximum eccentricity.

14. Percentage of Central Points: Ratio of nodes with minimum eccentricity over total nodes in

the graph.

15. Closeness Centrality: For a given node v, closeness centrality is the reciprocal of the sum

of the lengths of the shortest paths. Larger centrality measures correspond to more “central”

nodes. The NetworkX module normalizes these scores by multiplying by total nodes minus

one.

16. Giant Connected Ratio: Ratio of number of nodes in the largest connected component to

total nodes in the graph.
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17. Percentage of Isolated Nodes: Nodes with degree equal to zero expressed as a percentage.

18. Percentage of Endpoints: Nodes with degree equal to one expressed as a percentage.

19. Spectral Radius: Eigenvalue of the largest magnitude in the adjacency matrix.

20. Second Largest Eigenvalue: Eigenvalue of the second largest magnitude in the adjacency

matrix.

21. Trace of Adjacency Matrix: The trace of the adjacency matrix, also known as the sum of the

eigenvalues.

22. Energy: Squared sum of eigenvalues.

23. Number of Distinct Eigenvalues: Quantifies the number of distinct eigenvalues of the adja-

cency matrix. In the undirected case, this should correspond to the total number of nodes.

24. Shortest path: The length of the path is always 1 less than the number of nodes involved

in the path. The shortest paths involving all pairs of nodes are summarized using minimum,

maximum, average, and standard deviation.

25. Betweenness Centrality: For a given node v, betweenness centrality is the ratio of the number

of shortest paths going through v divided by all other shortest paths not including v.

2.5 Experiments Using Network Statistics as a Feature Space

The subsequent parts of section 2.5, subsections 2.5.1 and 2.5.2, closely mirror the previous sections

describing random forest classification accuracy using the graphs’ flattened adjacency vectors, Fi. In

fact, these sections repeat the classification experiments described in sections 2.3.2 and 2.3.3 except

this time using network statistics as the feature space.

2.5.1 Classification of graphs of same type, where only the number of communities

differ.

As seen in table 2.13, the discriminatory power of network statistics-based random forest classi-

fier is very strong when working with synthetic graphs. In particular, random forests seemed to
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Graph Type Accuracy Score
Random Graphs 100.00± 0.00

Assortative Graphs 99.33± 0.95

Disassortative Graphs 59.26± 1.26

Ordered Graphs 100.00± 0.00

Core-Periphery Graphs 98.65± 0.95

Table 2.13: RF Accuracy Scores from Discriminating between Graphs of k = {3, 5, 8} on a
Network Statistics Feature Space. Accuracy scores from classifying on a held-out test set, using
the same data and classification set up as described in table 2.7.

Label Set Random Graphs Assortative Graphs
L0, L1, ..., L5 (spectrum of edge-probabilities) 96.36± 1.31 99.60± 0.29

L0&L1 (sparse comparison) 86.36± 4.46 100.00± 0.00

L2&L3 (dense comparison) 100.00± 0.00 100.00± 0.00

Table 2.14: RF RF classification scores between graphs of differing M matrices on a network
statistics feature space for random and assortative graphs. Accuracy scores from classifying on
a held-out test set, using the same data and classification set up as described in table 2.8.

perform exceptionally well on graph types generated by probability matrices with relatively strong

diagonal components or when edge-probabilities are constant throughout (i.e., in the case of random

graphs). Note the highest scores correspond to either graphs exhibiting strong community structures

(assortative, ordered, and core-periphery) or graphs whose edge-probability is directly dependent

on the number of communities (random graphs with p = pin = pout =
1
k ). The lowest score by far

corresponds to the disassortative case, which by definition generates communities that have small pin.

Comparing results from using flattened adjacency matrices as a feature space (table 2.7) shows that

using network statistics yields a minimum 15% increase in accuracy for these experiments. In both

cases, random graphs prove to be the easiest to classify, dominating in terms of accuracy in table 2.7

and maintaining the lead in table 2.13. Additionally, graphs with a disassortative structure proved

hardest to classify in both cases. However, the general increase in accuracy for assortative, ordered,

and core-periphery graphs does not precisely mirror this trend, with assortative graphs moving from

fourth to second in terms of accuracy and core-periphery graphs moving from second to third.
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Label Set Ordered Graphs Disassortative Graphs
L0, L1, ..., L4 (spectrum of edge-probabilities) 68.89± 1.25 73.13± 0.76

L0, L1, L2* 100.00± 0.00 100.0± 0.0

L1, L3 (sparse comparison) 63.64± 6.19 51.01± 3.11

L2, L4 (dense comparison) 69.19± 2.58 86.87± 1.89

Table 2.15: RF classification scores between graphs of differing M matrices on a network
statistics feature space for ordered and disassortative graphs. *For ordered graphs, the label set
L0, L1, L2 represents graphs whose M matrices have similar differences Mii −Mi,i±1. In the case
of the disassortative graphs, the set L0, L1, L2 corresponds to M matrices with the same on-diagonal
values.

Label Set Accuracy
L0, L1, L2 (Same strong core density, wide range of decay rates) 99.33± 0.48

L3, L4, L5 (Same weak core density, wide range of decay rates) 96.63± 1.26

L0, L6 (Same strong core density, similar decay rates) 72.22± 4.34

L3, L7 (Same weak core density, similar decay rates:) 72.22± 1.89

Table 2.16: RF classification scores for core-periphery graphs, sub-experiment 1, on a network
statistics feature space. Reference table 2.4 for a summary of relevant SBM parameters and section
2.3.3 for a description of the experimental set-up.

Label Set Accuracy
L8, L9: same-ish core, same-ish decay rate, dense case 57.58± 1.24

L3, L10: same-ish core, same-ish decay rate, sparse case 47.98± 4.34

Table 2.17: RF classification scores for core-periphery graphs, sub-experiment 2, on a network
statistics feature space. Reference table 2.5 for a summary of relevant SBM parameters and section
2.3.3 for a description of the experimental set-up.

Label Set Accuracies
L0, L3, L11: Same decay rate (-0.5), very different core densities 72.39± 0.48

L0, L12, L13: Same decay rate (-0.5), similar strong core density 31.31± 6.23

L3, L14, L15: Same decay rate (-0.5),similar weak core density 48.48± 2.47

L5, L16: Same decay rate (-0.7), sparse case 49.49± 3.11

L8, L18: Same decay rate (-0.3), dense case 61.11± 5.85

Table 2.18: RF classification scores for core-periphery graphs, sub-experiment 2, on a network
statistics feature space. Reference table 2.6 for a summary of relevant SBM parameters and section
2.3.3 for a description of the experimental set-up.
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2.5.2 Classification graphs of the same type, where each label corresponds to a prob-

ability matrix with different parameter values.

As in subsection 2.5.1, in all cases one can observe substantial gains in classification accuracy on the

held-out test sets when compared to classification on a flattened adjacency matrix feature space. As

also observed in subsection 2.5.1, some within-experiment accuracy scores maintained their relative

positions while others did not. The scenario where an accuracy remains the highest when compared

to other experiments is most clearly apparent for the experiments in using ordered graphs (tables

2.9 and 2.15). In other cases, the pattern does not quite hold. Consider tables 2.14 and 2.8. When

using flattened adjacency matrices as a feature space, random forests struggled the most when tasked

with classifying graphs displaying a spectrum of edge-probabilities. However, when using network

statistics, random forests yielded lower classification accuracy scores for the experiment comparing

relatively sparse graphs than when discriminating on a spectrum of edge-probabilities.

Similar comparisons can be made for all the relevant tables, with the most relevant conclusion

being that, for all cases, the use of network statistics as a feature space results in large gains with

respect to classification accuracy. In many cases, under network statistics, random forests achieved

perfect discriminatory power. Interestingly, whether the relative changes in accuracy across sub-

experiments mirrors those displaced in the flattened adjacency cases seems to depend on graph type

and the set of graphs random forests is tasked with classifying.

2.6 Summary

The motivation for implementing the experiments presented in Chapter 2 stemmed primarily from a

desire to document and understand the general behavior of random forests when trained on different

feature spaces under a variety of classification scenarios induced by different combinations of

stochastic block model types and parameter combinations. The workflow for these experiments is

summarized in the “synthetic” branch of figure 1.1. Our results are summarized in figures 2.2, 2.3,

and 2.4. Unsurprisingly, for all but a few cases in the core-periphery experiments (figure 2.4), the use

of network statistics as a feature space results in classifiers of discriminatory power much greater

than those trained on the flattened adjacency matrix feature space.
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Figure 2.2: Summary of Classification Accuracies when Varying Number of Communities.
Results from tables 2.7 and 2.13.

Recall that sets of experiments in sections 2.3.2 and 2.5.1 examined random forests’ discrimina-

tory power when classifying between models of the same type (i.e. random, assortative, disassortative,

ordered, and core-periphery) with the same numbers of nodes and general parameters in the prob-

ability matrix. The only differences between these models was the number of communities. As

seen in figure 2.2 not only did the use of network statistics result in substantial gains for all graph

types, the relative accuracies between graph types was also approximately the same. In other words,

classifiers on the flattened adjacency matrix space that performed better for a given graph type versus

a different graph type still performed better for the given graph type when trained on the network

statistics space.

The second set of experiments (sections 2.3.3 and 2.5.2) examined the discriminatory power

of random forests when graph types are the same with same numbers of communities and nodes,

but with different underlying edge probabilities. As noted before, when using network statistics as

a feature set, the discriminatory power of random forests substantially increases. In many cases

random forests achieved perfect classification accuracy scores. Interestingly, the relative change

in accuracy when using network statistics as opposed to flattened adjacency matrices as a feature

space does not necessarily remain the same as it did for figure 2.2. For example, consider the results
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Figure 2.3: Summary of Classification Accuracies when Varying SBM Probability Matrices.
Results from tables 2.8, 2.9, 2.14, & 2.15. The lefthand column summarizes random forest classifica-
tion accuracies on the flattened adjacency matrix feature space for experiments using all graph types,
excluding core-periphery graphs. The righthand column does the same for the network statistics
feature space.

for assortative and random graphs shown in the top row of figure 2.3. When trained on flattened

adjacency matrices, random forests had better overall accuracy in discriminating different instances

of random graphs than when classifying different assortative graphs. However, when using network

statistics as a feature space, higher classification rates occur for the assortative graphs. This trend

reversal also occurs when comparing disassortative and ordered graphs (second row of figure 2.3).

While the use of network statistics as a feature space lead to substantial gains in discriminatory

power, it should be noted that not all gains were equal across graph types and classification scenarios.

In general, it appears that the discriminatory power of random forests does depend on graph type and,

as already noted by Caceres et al. (2016), the difference between the underlying graph parameters.

From these results, we now have a working idea of under which circumstances random forests can

best classify graphs generated by SBMs and can explore random forests’ capability as a model

selection criterion according to the second workflow outlined in figure 1.1.
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Figure 2.4: Summary of Classification Accuracies when Varying SBM Probability Matrices
(core-periphery graphs). Results from tables providing accuracy scores from both feature spaces
for the sub-experiments using core-periphery graph types. Red columns correspond to results from
classifiers trained on the flattened adjacency matrix feature space, blue columns correspond to those
trained on the network statistics feature space.
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CHAPTER 3

Model Selection Using Random Forests

This chapter explores the question posed at the beginning of this thesis: given N candidate

stochastic block models for a particular networks data set, is it possible for a random forests classifier

trained on a set of instance graphs generated from these N SBMs to select the best fit to a real-

world network? Our goal is to determine whether this well-known and relatively easy to implement

machine-learning classification technique can serve as a comparable method for fitting generative

models to a given network’s physical and probabilistic structure. We have divided this chapter into

two sections. The first provides an overview of the tools and techniques used to determine the N

candidate models. This section also describes the real data set used for our experiments. The final

section presents our findings in comparing the model selected by random forest to the “gold standard”

model selected using the criteria described below.

3.1 Overview of the R package ‘mixer’and data set

The R package mixer provides routines for unsupervised clustering of networks using a generalized

version of the Erdős-Rényi model, the Erdős-Rényi mixture for random graphs (MixNet). Mixer

contains a wrapper-function for estimation of the MixNet parameters and automatically applies

the Integrated Classification Likelihood criterion to select the best “mixer” model. Additionally,

mixer contains the data set macaque, a networks representation of a macaque brain containing 47

brain cortical regions (nodes) and 505 inter-regional pathways (edges). According to the package

documentation, the mixer model accurately identifies regions within this data set that serve as

“hubs” for information flow within the macaque brain (LAPACK et al., 2015). With respect to the

terminology used in this thesis, “hubs” for our purposes are communities. In particular, the methods

employed by mixer defines communities using nodes that are heavily connected to one another,



Figure 3.1: Summary of Mixer Models fitted to the Macaque data set. Top left: ICL vs number
of communities per model. The dotted red line indicates that the 4-community MixNet model
maximizes ICL and is therefore the best fit to the macaque data set. This model serves as the gold
standard with which to compare the our own “best model” chosen by random forests. Top right:
Adjacency matrix organized under the best model. Bottom left: Degree distribution. Bottom right:
Schematic of probability strength between and within communities under the best model.

resulting in a pattern strongly reminiscent of the assortative graph structure. Using mixer, the process

of fitting several MixNets of differing numbers of communities to the macaque data set is trivialized

to a few lines of code and has the additional benefit of allowing us to choose in advance a gold

standard with which to compare our random forests results. As shown in figure 3.1, we shall assume

that the best model for our data set has 4 communities.

3.1.1 Brief overview of MixNet models

This section provides a brief summary of previous work that derived the tools and methods used

to define our set of N models for the macaque data set. A detailed description for the derivation,

properties, parameter estimation techniques, and model selection criteria of the Erdős-Rényi mixture
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for random graphs can be found in Daudin et al. (2008) and information regarding ICL is presented

in Biernacki et al. (2000).

In defining MixNet, Daudin et al. (2008) assumes the mixture model framework for defining

the underlying probabilistic structure of a given network. Note that the SBMs presented in section

2.1 are all mixture models and thus are a reflection of the same framework about to be described.

Paraphrasing the notation in Daudin et al. (2008), mixture models assume nodes are grouped into

K communities with prior probability αk. Let {Zik} be an indicator variable for the community of

node i, then the prior probabilities of node-community membership can be expressed as

αk = Pr{Zik = 1}, with
∑
k

Zik = 1 ,
∑
k

αk = 1 (3.1)

Recall that setting edge-probabilities as P (Aij = 1) ∼ Bernoulli(p) produces the so-called Erdős-

Rényi random graph model, G(n, p). Rather than assuming that edges are independent with

Bernoulli(p) distributions, Daudin et al. (2008) requires the definition of inter-community probabili-

ties πkl, or the probability that a node in community k connects to a different node in community l. As

in the cases outlined in section 2.1, graphs are assumed to be undirected, which means that πkl = πlk.

Finally, edges in these graphs are assumed to be conditionally independent of the communities

involved and no self-loops are allowed,

 Aij |{Zik = 1, Zjl = 1} ∼ Bernoulli(πkl)

Aii = 0
(3.2)

The connectivity matrix πππ = (πkl) in Daudin et al. (2008) is the same as our own probability matrix

M defined in section 2.1.

3.1.2 MixNet model estimation

The paper for MixNet models by Daudin et al. (2008) provides extensive proofs concerning parameter

estimation. As these are not directly related to the main focus of this thesis, we will let the reader

defer to them as needed and limit ourselves to presenting their propositions. The following formulas

and corresponding algorithms are implemented in the R package ’mixer’.
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To begin, Daudin et al. (2008) defines the log-likelihood of a network defined under the MixNet

model as

logL(X ,Z) =
∑
i

∑
k

Zik logαk +
1

2

∑
i 6=j

∑
k,l

ZikZjk logBernoulli(Xij ;πkl) (3.3)

where X = {Xij} is the set of all edges and Z = {Zik} is the set of all indicator variables defined

previously. Note that Bernoulli(X;π) = πX(1−π)1−X . As discussed in the literature, the likelihood

L(X ) cannot be simplified into a more tractable form for computation. Instead, Daudin et al. (2008)

proposes a variational approach that attempts to optimize the lower-bound of the likelihood function

and an iterative algorithm designed to estimate the prior probabilities ααα and the class-connectivity

matrix πππ while maximizing this lower bound. This algorithm assumes a fixed number of communities

K when updating the parameters ααα and πππ. To choose the best model given different K, Daudin

et al. (2008) uses a modified Integrated Classification Likelihood selection criterion developed by

Biernacki et al. (2000). Given a model mK of K communities, this model selection criterion is

defined as

ICL(mK) = max
θθθ

logL(X , Z̃|θθθ,mK)− 1

2
× K(K + 1)

2
log

n(n− 1)

2
− K − 1

2
log n (3.4)

where θθθ = (ααα,πππ) is the entire set of mixture parameters, Z̃ are the predictions of Z , and n is the

total number of nodes in the model (Daudin et al., 2008). The R mixer() function implements

these equations on a given adjacency matrix for a pre-defined range of K. For each of the K models,

equation 3.4 is computed. The model with the largest ICL value is selected as the best fit to the data

(see panel 1 in figure 3.1).

3.2 Model Selection using Random Forests

Using the tools described in section 3.1, we are now able to examine random forests’ effectiveness as

a model selection criterion for the macaque data set. Following the workflow defined in figure 1.1 for

real data sets, we specified the following binary classification problem using the tools described in

section 3.1. SBMs of 4 and 5 communities were estimated on the macaque data set (see figure 3.2
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MixNet Average Density
k = 4 0.2899

k = 5 0.2886

Table 3.1: Average Densities of 4- and 5-Block MixNet Realizations. As reflected in this table,
the models fitted to the macaque data set produce graphs of roughly the same density. In this case,
the average densities over all realizations used for this experiment are shown. Intuitively, one may
expect any classifier to perform poorly once graphs achieve a certain level of similarity with respect
to their densities, particularly if one notices that many of our features in section 2.4.1 are closely
related to graph density. However, as shown in Caceres et al. (2016) and later in this section, random
forests discriminatory power remains quite strong as long as the underlying edge-probabilities remain
relatively distinct.

and table 3.1) with 100 graph realizations generated from each model, to be used as a train/test set.

Additionally, we also generated another data set in the same manner for use as a further test set. Each

graph realization was assigned a label corresponding to the number of communities of the parent

SBM. Both the flattened adjacency matrices and the list of network statistics (section 2.4.1) were

extracted from the realization data sets as well as the original data as separate feature sets.

To test random forests’ ability to select the best generative model for this data set, (where “best”

is assumed to be the 4-community model that maximizes the modified ICL criterion), individual

forests of 5, 10, 15, ..., 150 trees were constructed. Each forest was fit using 10-fold stratified cross-

validation and the classification accuracy scores were averaged over the held-out test sets and again

over the additional set of 200 different instance graphs. The classifiers were additionally tasked to

select one of the SBMs as a fit for the original data set, receiving a score of 1 if correctly matching

the original data set to the 4-block SBM and receiving a 0 otherwise. This process was repeated

100 times for each given number of trees and the final accuracy scores were recorded as averages

across these 100 iterations. The entire experiment was conducted first using the flattened adjacency

matrices as a feature set, then using network statistics.

3.2.1 Model selection with edge-based classification

Using the flattened adjacency matrices as a feature set, random forests classification accuracy for the

SBM realizations increased with the number of trees, leveling out at nearly 100 percent accuracy

around 50 trees. The same trend was observed on the additional held-out data set. On the other hand,

as a model selection criteria, random forests on a flattened adjacency space typically failed to match
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Figure 3.2: Adjacency Matrices of Original Macaque Data with 4- and 5-Block Realizations.
Using the methods described in section 3.1, SBMs of 4 and 5 blocks were estimated for the macaque
data set. The original adjacency matrix (left) and two realizations of the 4- and 5-block models (top
and bottom) are shown.

the original data set with the gold standard 4-community model. As the classifier grew in number of

trees, becoming more and more adept at discriminating between the instances of the 4- and 5-block

models, the chance of selecting the gold standard model became practically zero.

3.2.2 Model selection with network statistics-based classification

From the perspective of network statistics, random forests did less well in classifying realizations of

the 4- and 5-block SBMs but vastly out-performed random forests trained on the flattened adjacency

feature space as a model selection criterion. As the number of trees per classifier grew, these models

not only became more adept in classifying graph realizations, they also began to consistently match

the original data set to the same 4-community model chosen by ICL model selection criteria.

3.2.3 Results

The results for this experiment are summarized in figure 3.3. The green lines, corresponding to

“test set 1,” represent classification accuracy on the held-out test sets during stratified 10-fold cross-

validation. The blue lines for “test set 2” represent classification accuracy on the separate, N = 200
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data set. This serves as an additional check on the behavior of random forests by using a “new” data

set that was not used in the training/testing phase. Recall that both test sets 1 and 2 consist entirely of

instance graphs generated from the 4- and 5- block SBMs. Finally, the red lines represent how often

a random forests classifier on a given feature space and number of trees matched the original data set

with the gold standard 4-community SBM. In the framework of this experiment, these curves can

be interpreted as a rough proportion of the frequency (out of 100) with which the given classifier

chooses the optimal model maximizing the ICL criterion in section 3.1.2. Our best random forests

model selection criteria was the 140 tree model trained using network statistics, which chose the gold

standard model approximately 97 times out of 100. In contrast, the best random forests classifier

using flattened adjacency matrices selected the gold standard model for the macaque data set only

28 times out of 100 using 10 trees. Interestingly, strong performance as a model selection criteria

does not seem to necessarily translate into strong discriminatory power between graph realizations of

the 4- and 5- block SBMs. As seen in the blue and green curves in the lefthand plot, the edge-based

classifiers achieve perfect discriminatory power between graph realizations using nTrees > 50.

However, network statistics-based classifiers never achieve perfect discriminatory power with respect

to the instance graphs, achieving an average accuracy of at most around 87.14% for nTrees = 135.

Our results from chapter 2 would suggest that the use of network statistics as a feature space

would lead to stronger classification power when performing model selection. As shown in figure 3.3,

this is only half true; random forests modeled on the network statistics feature space do outperform

those modeled on the flattened adjacency feature space in terms of model selection, but not in terms

of discriminatory power in classifying instances of the candidate models. This suggests that, at least

for the macaque data set, raw edge-weights fail to capture some subtleties in the original data that

appear to be captured when using our list of network statistics.
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Figure 3.3: Random Forests as a Model Selection Criterion. Left: Classification accuracy versus
number of trees for random forests modeled on flattened adjacency matrices of the instance graphs
and original data set. Right: Classification accuracy versus number of trees for random forests
modeled on network statistics (section 2.4.1) of the instance graphs and original data set. For both
plots smoothed lines of fit are given, with grey areas representing standard error.
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CHAPTER 4

Conclusion and Future Directions

In this thesis, we have outlined a series of experiments that explores random forests’ dis-

criminatory power over an extensive range of Stochastic Block Model parameters and structural

configurations. To provide further comparison, we implemented these experiments using two differ-

ent feature spaces, the first taking advantage of the trivial form of connectivity information encoded

in raw edge-weights of the graphs - our so-called “flattened adjacency matrix feature space” - the

second building off of previous research in network classification by using an extensive list of

network statistics. These network statistics can be loosely grouped into measurements related to node

degree and graph connectivity, information about shortest paths, and linear algebra concepts using

the graphs’ adjacency matrices. Overall, classifiers trained on a network statistics feature space not

only vastly outperformed those trained on the flattened adjacency feature space, but also generally

achieved high rates of classification accuracy. While this is perhaps not a difficult conclusion to

comprehend, knowing beforehand that one can expect good discriminatory power in reasonable

network classification scenarios by using random forests and network statistics can be extremely

helpful to researchers needing fast, easily interpretable results when classifying networks.

This thesis also examines the use of random forests as a generative model selection criterion

for real networks data. In other words, we provided an answer to the question “given N candidate

stochastic block models for a particular networks data set, is it possible for a random forests classifier

trained on a set of instance graphs generated from these N SBMs to select the best fit to a real-world

network?” While Caceres et al. (2016) is acknowledged to have also touched on this question, to

the knowledge of the authors, ours is the first instance of research exploring this topic in an applied

setting and comparing random forests to other accepted model selection methods. As described in

Chapter 3, we found that, given a real data set, a random forest classifier trained on a set of graph



instances generated from a suite of candidate models will choose the same model selected by the

Integrated Classification Likelihood selection criteria over 95% of the time if using the network

statistics feature space described previously and a sufficient number of trees. While this is by no

means a rigorous way of concluding random forests’ generalized viability as a model selection

criterion, our work does serve as a promising first step. There are certainly many adequate model

selection methods for networks already established and well-proven, however, our method of using

random forests not only adds to this area, but also promises a method that is, intuitively speaking,

very easy to understand. First, our method uses already well-understood network statistics that can

be used to summarize most properties and characteristics of a given graph. Second, we can take

advantage of the built-in feature ranking implemented by the random forests algorithm to further

understand why a particular generative model is selected for a data set.

Future directions will be aimed at further understanding the behavior of random forests as a

model selection criterion. The first step will entail identifying additional real-world networks that are

structured in a way that allows the R mixer package to select a viable MixNet model for them. We

will then perform experiments similar in nature to those outlined in section 3.2 as a way of verifying

the applicability of our method with respect to different data. Assuming model selection with random

forests can apply to data sets of all types, we will then delve into exploring the characteristics of

random forests as a model selection criteria. One area of exploration is to track which features, if

any, are most frequently used by random forests when selecting a model for a data set. Another area

is to repeat a series of experiments similar to those performed in Chapter 2. Rather than analyzing

the discriminatory power of random forests on synthetic data, we would document random forests’

strength as a model selection criteria for many different data sets, and perhaps many different types

of generative models. A potential question of interest is whether or not random forests will always

select the generative model chosen by a given model selection criterion. Evidence in Chapter 3

suggests that this may heavily depend on the feature set used, in which case we would also like to

see if there are any limits to our network statistics feature set, and if so, under what conditions they

fail. We also hope to compare our method to a large range of model selection criteria.
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