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ABSTRACT 

 
PAMELA ROSE HESKER:  Defining the function of Pyrin, the Familial 

Mediterranean Fever-associated protein, in inflammation. 
(Under the direction of Dr. Beverly H. Koller, Ph.D.) 

 
 Every day, the immune system makes decisions to differentiate harmful and inert 

stimuli, which allows protection against pathogens and prevents unnecessary or 

uncontrolled inflammation.  Perturbations to the innate immune system can lead to 

autoinflammatory disorders such as Familial Mediterranean Fever (FMF), which is an 

inherited disorder characterized by unprovoked episodes of inflammation and fever.  The 

genetic abnormality underlying FMF disorder is mutations in the gene MEFV 

(Mediterranean Fever), which encodes the protein Pyrin.  Previous research indicates 

that Pyrin alters function of the inflammasome multiprotein complex that mediates post-

translational IL-1 family cytokine processing.  This work has led to disparate conclusions 

about the function of Pyrin.  Interpretation of these results is ambiguous, in part, because 

mutations within the Pyrin protein are not defined as gain or loss of function.  Previous 

research also indicates that the expression of MEFV is abundant in neutrophils, and that 

neutrophils from FMF patients display altered immune function and survival in 

comparison to neutrophils from healthy donors.  However, there is no direct evidence 

that mutations in Pyrin affect neutrophil cell processes.  We postulated that mice lacking 

Pyrin (Mefv-/-) would allow us to clarify the function of Pyrin in the regulation of the 

immune response and FMF pathophysiology.  Characterization of naïve Mefv-/- mice 

revealed no deficits in immune cell development or distribution and no indication of 

unprovoked inflammation.  In response to immune challenge in vitro, IL-1β cytokine 
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levels were increased by the absence of Pyrin.  However, neutrophil recruitment and 

survival  were not affected by the loss of Pyrin.  In vivo models of peritonitis 

demonstrated that Mefv-/- mice generate a normal hypothermic response and recruit and 

retain inflammatory cells normally.  No difference in the physiological outcome of 

immune challenge was detected.  These studies indicate that Pyrin negatively regulates 

the immune response by altering IL-1β secretion.  Since IL-1β is at least in part 

responsible for FMF-associated inflammation, our findings support a model in which 

loss-of-function mutations in Pyrin can cause FMF. 
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CHAPTER 1 

Introduction 

 

Familial Mediterranean Fever (FMF) is a disorder of the innate immune system 

 Familial Mediterranean Fever (FMF) is an inherited autoinflammatory disease characterized 

by sudden episodes of fever and inflammation that typically last 1 – 3 days.  Fever and acute 

abdominal pain are the most common symptoms, but symptoms can also include pain in the 

joints or lungs or lesions in the skin.  The location and the severity of pain and inflammation 

differ between patients and between attack episodes within each patient.  Acute attack periods 

are interspersed with remission periods of either low-grade or undetectable inflammation.  FMF 

has long-term consequences that include tissue scarring, which is secondary to inflammation, 

and amyloid deposition within organs, especially the kidneys.  Severe cases result in kidney 

failure and subsequent death.  Disease onset and diagnosis usually occurs in children before 

age eight (1, 2).   

 The innate, but not the adaptive, arm of the immune system mediates FMF pathologies.  

Local tissue inflammation is due, in part, to considerable deposition of neutrophils.  Neither T 

lymphocyte infiltration, nor auto-reactive antibodies have been detected, indicating that T and B 

lymphocytes are unlikely to be involved in mediating inflammation.  Patients have an increase in 

the acute phase reactants:  erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), 

serum amyloid A (SAA), β-2 microglobulin, and fibrinogen.  They also have increased levels of 
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the Interleukin (IL) cytokines 6 and 10 (3), and the cytokine SA100A12 (4) in comparison to 

healthy controls.  IL-1β cytokine levels are also elevated in some patients (3).  IL-1β is of 

particular interest because it is elevated in patients with several different overactive immune 

system disorders, and blocking the signaling of IL-1β can decrease inflammation.  IL-1β is 

produced predominantly by macrophages.   

 FMF was associated with mutations in Mefv (Mediterranean Fever) based on linkage 

analysis and was confirmed by positional cloning (5, 6).  Mefv encodes the protein Pyrin.  

Consistent with IL-1β-mediated inflammatory responses and neutrophil accumulation in FMF, 

Pyrin expression is highest in macrophage and neutrophil cells (7, 8).  Thus, the symptoms of 

FMF, clinical tests, and the properties of the Pyrin protein indicate that the innate immune 

system mediates disease.  Specifically, neutrophils and macrophages, are likely to play an 

important role in FMF-associated inflammation that is caused by mutations in the Mefv gene.  

Accordingly, previous laboratory research demonstrates a role of Pyrin in macrophage-mediated 

IL-1β production and in survival, chemotaxis, and phagocytosis processes of neutrophils.  In this 

chapter, I will summarize previous research on the regulation of IL-1β production and neutrophil 

functions, as they pertain to Mefv and FMF, and then discuss the features of the MEFV gene 

and Pyrin protein.  These data fit together nicely to provide support for a role of Pyrin in IL-1β 

production and neutrophil physiology, although the specific contribution of Pyrin is unclear.  One 

of the complications in interpreting the contribution of Pyrin is the limited understanding of the 

genetic inheritance of FMF and the consequences of FMF-associated mutations on Pyrin’s 

function.  Conflicting data suggests that mutations cause a loss-of-function or a gain-of-function.  

This will be presented later in this chapter.  The central aim of this work was to use the mouse 

as a model organism, capable of genetic manipulation, to isolate and differentiate Pyrin’s role in 

innate immune responses in an endogenous system. 
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Regulation of the innate immune system 

 Immune responses are normal physiological processes that are required for defense 

against invading pathogens, but must be limited to prevent excessive tissue damage.  

Appropriate activity is partially accomplished by coordinated processes of two phases of the 

immune response:  the innate immune response and the adaptive immune response.  The 

innate immune system orchestrates a relatively non-specific response against pathogens.  This 

phase begins immediately at the initial sensing of infection or tissue damage and clears most 

pathogens.  Protection is conferred by production and release of molecules such as proteases 

and free oxygen radicals that damage pathogens and through coordinated death of infected 

cells by apoptosis or phagocytosis.  Although critical to protect the organism as a whole, the 

innate immune response is damaging to local healthy tissue at the site of infection.  It is 

important for the immune response to be as weak as possible in order to limit healthy tissue 

damage while effectively preventing pathogenesis.  When the pathogen is persistent, and 

perhaps a less immediate threat to survival of the whole organism, activation of the adaptive 

immune system complements the limitations of the innate immune system.  The adaptive 

response phase is slower, but responds very specifically to the pathogen so that a more robust 

defense against the pathogen is possible without causing too much damage to healthy tissues.  

Disruptions to the mechanisms controlling these responses can cause either unproductive 

responses that allow the spread of infection, or overactive immune responses that damage 

healthy tissue.  These are referred to as autoinflammatory disorders, allergy, autoimmune 

disorders, or tissue graft rejection, depending on the tissues mediating the immune system 

activity.  Since FMF is an autoinflammatory disorder caused by misregulation of the innate 

immune system, the innate immune system will be the focus for the rest of this work.   
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 Appropriate pathogen recognition is critical for the prevention of autoinflammatory 

disorders.  The innate immune system must make quick decisions about whether or not a 

pathogen or foreign particle threatens the survival of the organism.  To confer this ability, cells 

often have co-stimulatory requirements or two independent pathways that converge and 

activate an immune response.  In 1994, Polly Matzinger proposed “the danger hypothesis” to 

account for some of the gaps in the current model describing the process of self versus non-self 

decisions.  “The danger hypothesis” proposes that the immune system does not directly detect 

self versus non-self stimuli to guide appropriate immune responses, but instead detects and 

protects against danger.  Indications of danger are provided by a network of extrinsic 

communication signals from damaged tissues and intrinsic cell stress signals.  Thus, the 

presentation of a pathogen in the context of a danger signal triggers the innate immune 

response.  These independent signals come together to tailor the breadth and magnitude of the 

response (9-11).  

 

Interleukin-1β production 

 Cytokine and chemokine signaling molecules circulate throughout the body and coordinate 

the strength and timing of pathogen responses.  The cytokine IL-1β is released very early during 

the innate immune response and is an important mediator of the overall magnitude of the 

immune response.  Its importance in the immune response is underscored by its contribution to 

sepsis, the autoimmune disorders rheumatoid arthritis, Crohn’s disease, and multiple sclerosis, 

and the autoinflammatory disorders CAPS, PAPA syndrome, and FMF.  Controlled experiments 

implicate Pyrin, the protein mutated in FMF, in the regulation of IL-1β production.  IL-1β is 

produced and secreted, predominantly by macrophages, in response to pathogen and danger 

signals.  For example, in response to simulation with sterile agents, such as necrotic cells which 

are a source of cellular damage or danger signals, IL-1β mediates a pro-inflammatory response 
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that can be quantified by neutrophil recruitment (12).  IL-1β binds to the IL-1 receptor (IL-1R) on 

the external surface of cells and promotes further downstream pro-inflammatory cytokine 

signaling, cell recruitment, fever, and overall metabolic changes (13).   

 IL-1β production involves two signaling pathways:  1) Pro-IL-1β transcripts are produced in 

a pathogen-stimulated and NF-kB-dependent manner, and 2) Caspase-1 processes pro-IL-1β 

protein to mature, or active, IL-1β cytokine (14).  Another IL-1 family cytokine, IL-18, is cleaved 

by Caspase-1 in an analogous manner.  Caspase-1, a cysteine-aspartic acid protease, is 

activated by autocatalytic cleavage, which is promoted by inflammasome complexes in 

response to cellular damage (15, 16).  The vast majority of IL-1β is produced in a Caspase-1-

dependent manner, although other proteases, produced by neutrophils and mast cells, can 

generate an active form of IL-1β with relatively low efficiency.  Pyrin is implicated in the 

regulation of IL-1β production during both the transcriptional and the inflammasome-dependent 

processing stages. 

 

The inflammasome complexes 

 There are at least six inflammasome complexes that activate Caspase-1.  Five are 

nucleated by a NLR family protein and the last contains the HIN-200 family member Absent in 

Melanoma 2 (AIM2).   The NLR/AIM2 protein binds either directly or indirectly to Caspase-1 

through their pyrin domain (PYD) or caspase activation and recruitment domain (CARD) 

domain.  Unfolding of the NLR protein is the “ignition switch” to inflammasome complex 

formation, and each is triggered by different stimuli.  In other words, the preferred 

inflammasome complex is dictated by the stimulus initiating the immune response, in order to 

allow some tailoring of the innate immune response.  Immune stimuli have been tested primarily 

in vitro using overexpression or knock-out experimental systems to access the contribution of 
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the indicated protein to IL-1β production.  It is unclear whether heterocomplexes with multiple 

NLRs form functional inflammasomes to further tailor a response to different stimuli.  Table 1.1 

shows the functional domain structures of the four proteins that nucleate inflammasomes, the 

predicted inflammasome complex structures, and the stimuli known to activate each of them.   
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Table 1.1 Inflammasome complexes. 

 

PYD, pyrin domain; LRR, leucine-rich repeat; FIIND, function to find; HIN, HIN-200/IF120x. 

The inflammasome structures are depicted as dimers, but also form higher-order molecular complexes. 

The indicated stimuli have been tested primarily in vitro, using a readout of Caspase-1 cleavage, Caspase-1 activity, or IL-1β 
production as a readout of inflammasome-mediated immune system activation. 
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 The protein domain structure of the NLRs is critical to their function.  NLRP1 – 3 and 6 and 

NLRC4 are members of the NLR protein family, based upon the presence of two domains for 

which they are named: the nucleotide-binding domain (NBD or NATCH) and the leucine-rich 

repeat (LRR).  These proteins also contain a pyrin domain (PYD) and/or a caspase recruitment 

domain (CARD).  NLRP1 contains an additional domain, a function to find (FIIND) domain.  

AIM2 contains a PYD and HIN-200/IF120x domain (HIN) and thus shows little structural 

similarity to the NLRs, but functional analysis indicates that it nucleates inflammasome 

complexes.  Unfolding of the NLR/AIM2 exposes the binding surfaces of the PYD and CARD 

domains and is regarded as the “ignition switch” for inflammasome complex formation.  The 

PYD and CARD form homodimers with cognate domains present in ASC (apoptosis-associated 

speck-like protein containing a CARD) or Caspase-1 to bring the inflammasome complexes 

together.  The inflammasome complexes are often depicted as dimers, but electron micrographs 

of in vitro reconstituted NLRP1 protein complexes show that they actually form higher order 

complexes, similar to apoptosomes, with 7 NLRP1 proteins forming a circular perimeter around 

the ASC and Caspase-1 proteins at the core (17).   

 The NLRP1 inflammasome was the first inflammasome to be described (18), and it remains 

the only inflammasome complex verified by reconstitution using purified human recombinant 

proteins (17).  The Nlrp1 gene was identified in mice based upon differential susceptibility of 

inbred mouse strains to Bacillus anthrax lethal toxin (LT) induced death.  The susceptibility 

region was mapped to a locus containing three orthologs analogous to the human NLRP1 gene: 

Nlrp1a, Nlrp1b, and Nlrp1c (19).  Further studies using genetically-deficient mice have verified 

that Nlrp1b is indeed necessary for LT-induced Caspase-1 activation and IL-1β production. 

 NLRP3, formerly referred to as NALP3, Cias1, Cryopyrin, and PYPAF1, responds to the 

broadest range of stimuli tested so far (20), and signaling through the NLRP3 inflammasome is 

most well-characterized.  Deletion of the NLRP3 gene in mice provides confirmation that NLRP3 
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is required for IL-1β production in response to pathogens and toxins (20).  NLRP3 mediates IL-

1β production following exposure to a diverse set of stimuli, including some bacteria, ATP, uric 

acid crystals common in gout, the vaccine adjuvant alum, antiviral drug compounds, reactive 

oxygen species, and cell membrane permeabilizing toxins.  It remains unclear how such a 

diverse set of stimuli can activate NLRP3, and it will be interesting for future studies to 

determine where the danger response pathways converge to trigger NLRP3 inflammasome 

complex formation.  Under physiological conditions, NLRP3 folds upon itself to prevent 

activation.  NLRP3 unfolds in response to low intracellular potassium levels induced by 

hypotonic cell medium or treatment with a toxin that permeabilizes the cell membrane.  These 

treatments favor potassium efflux (21-23).  It is likely that NLRP3 unfolding requires interaction 

between a phosphorylated nucleotide and the NACHT domain to transfer energy that enables 

protein unfolding.  Once unfolded, NLRP3 forms an inflammasome complex that brings together 

NLRP3 and Caspase-1 through the adaptor protein ASC (gene: Pycard).  Inflammasomes 

aggregate to form larger protein complexes called ASC specks.  Proximity of multiple Caspase-

1 molecules causes autocatalytic cleavage and activation of Caspase-1.  Active Caspase-1 

cleaves pro-IL-1β (and pro-IL-18) to their mature forms, and these molecules are released from 

the cell (24).  The NLRP3-mediated response to a combined exposure of LPS and ATP is well 

described.  LPS activates NF-κB-dependent transcription of IL-1β, and ATP triggers NLRP3 

unfolding (Figure 1.1).  Current research efforts also continue to delineate the role of NLRP3 

inflammasomes in inflammation-induced cell death and in shaping the adaptive immune 

response. 
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Figure 1.1. LPS and ATP stimulated IL-1β production.  IL-1β production is mediated by 1) 

NF-κB dependent transcription, and 2) Caspase-1 mediated cleavage of pro-IL-1β to form a 

mature protein capable of signaling. The pathogen-associated molecular pattern (PAMP) 

endotoxin (LPS) is recognized by Toll-like receptor 4 (TLR4).  Signaling through TLR4 results in 

NF-κB activation and induced transcription of IL-1β.  IL-1β production is also regulated at the 

protein level by the NLRP3 inflammasome.  The NLRP3 inflammasome is activated by the 

danger-associated molecular pattern (DAMP) of high extracellular ATP (concentrations >500 

times the physiological level) (25).  ATP binds to P2rX7 (purinergic receptor P2X, ligand-gated 

ion channel, 7), which is an ATP-dependent potassium channel.  P2rX7 allows rapid efflux of K+ 

from the cell.  Subsequently, NLRP3 unfolds, and its exposed pyrin domain forms homodomain 

interactions with the pyrin domain of ASC.  ASC is an adaptor protein that also binds pro-

Caspase-1 through CARD homodomain interactions. Pro-Caspase-1 is autocatalytically cleaved 

and activated Caspase-1 then cleaves pro-IL-1β inside of intracellular vesicles. IL-1β and 

Caspase-1 are released from the cell when the vesicles fuse with the plasma membrane (24). 
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 NLRC4, or Ipaf, responds to intracellular bacterial virulence factors and nucleates an 

inflammasome that contains either NLRC4 and Caspase-1 with ASC, or NLRC4 and Caspase-1 

alone and requires NAIP5 for activation.  Salmonella typhimurium, Pseudomonas aeruginosa, 

and Shingella flexneri activate a ASC-dependent NLRC4 inflammasome, whereas Caspase-1 

activation in response to Legionella pneumophila requires NAIP5, but not ASC (26).  Purified 

recombinant flagellin has also been shown to increase IL-1β production in an NLRC4-

dependent manner, indicating that flagellin alone can activate the NLRC4 inflammasome.  

Correspondingly, S. typhimurium and L. pneumophila that are deficinent in flagellin have a 

reduced ability to activate Caspase-1.  However, S. flexneri does not express flagellin; its 

recognition factor is unknown.  The intracellular delivery of virulence factors through a Type III 

or Type IV secretion system is critical for NLRC4 activation.  This finding helps to separate the 

NLRC4 inflammasome pathway as a virulence factor-sensing pathway that is independent of 

TLR5, which senses flagellin that is presented extracellularly (21, 27). 

 AIM2 is not an NLR protein, but nevertheless it contains a PYD that is capable of binding 

ASC and forming an inflammasome complex involved in both IL-1β and IL-18 production, as 

well as inflammasome-mediated cell death.  Elicited peritoneal and bone marrow-derived 

macrophages from AIM2-deficient mice have impaired Caspase-1 cleavage and IL-1β and IL-18 

release, and they are protected from cell death following transfection with double-stranded DNA 

(dsDNA).  Biologically, this translates to AIM2 mediating inflammasome activation in response 

to some bacteria and viruses, specifically Francisella tularensis, L. monocytogenes, vaccinia 

virus, and mouse cytomegalovirus (28).  Immunofluorescence micrographs of macrophages 

infected with F. tularensis brilliantly show cellular localization between dsDNA, AIM2, and ASC 

(29).  This result provides initial evidence that an inflammasome complex can directly perceive 

pathogen virulence factors (30).  The absence of the NACHT and LRR domain also confirms the 

capacity for the PYD to mediate inflammasome complex formation, at least for AIM2. 
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 The NLRP6 inflammasome was recently described.  NLRP6 complexes with ASC and 

Caspase-1 to form an inflammasome which mediates pro-IL-18 cleavage (31, 32).  In vivo, 

Nlrp6-deficient mice have exacerbated intestinal inflammation and an increased propensity for 

tumors in dextran sodium sulfate models of colitis (31-33).  Phenotypes are similar to those of 

Pycard-deficient mice (31). 

 The inflammasomes differ slightly between humans (depicted in Table 1.1) and mice.  The 

PYD of mouse NLRP1b is non-functional, and instead the C-terminal CARD binds directly to 

Caspase-1, whereas the CARD of human NLRP1 binds to caspase-5, another pro-inflammatory 

caspase.  Human NLRP3 inflammasome complex may also contain CARD8/CARDINAL.  The 

molecular contribution of CARD8 towards Caspase-1 activation and IL-1β production is not well-

described, and CARD8 is absent from the mouse genome (34).  However mutations in CARD8 

are associated with increased risk for Crohn’s disease and ulcerative colitis and increased IL-1β 

levels in some populations (35, 36).  However, despite these differences, the function of the 

inflammasomes is well-conserved between humans and mice. 

 The inflammasome complex provides a unique signaling pathway that is amendable to 

manipulation to specifically affect IL-1β and IL-18 production without affecting production of 

other cytokines.  Previous research indicates that both endogenous and pathogen-derived 

molecules can interfere with this pathway.  This is important on a clinical level, because it 

suggests that continued research will help to direct production of pharmaceutical agents that 

can interfere with IL-1β production in a more specific manner.  In theory, the inhibition of 

aberrant, disease-associated IL-1β production will be possible without limiting crucial pathogen-

stimulated IL-1β and IL-18 signaling.  Pyrin regulates inflammasome-mediated IL-1β production.  

Contradictory models suggest that pyrin nucleates its own Caspase-1-activating inflammasome, 

or that Pyrin inhibits activity of the NLRP3, or perhaps all, inflammasome complexes.  Directed 
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therapies to influence Pyrin’s molecular functions are a promising avenue for improved 

therapies for immune disorders. 

Inflammasome-mediated autoinflammatory disorders 

 Autoinflammatory disorders, by definition, are innate immune responses in the absence of 

an identifiable stimulus.  Familial Mediterranean Fever (FMF) is part of a group of hereditary 

autoinflammatory disorders.  It was originally identified as a unique disorder in 1948, and named 

benign paroxysmal peritonitis (37) and later periodic disease (38), periodic fever, and Siegal-

Cattan-Mamou syndrome.  Today, periodic disease describes a family  of genetic 

autoinflammatory disorders that include:  Cryopyrin-Associated Periodic Syndromes (CAPS), 

PAPA syndrome (Pyogenic sterile arthritis, pyoderma gangrenosum, and acne), Blau 

Syndrome, early-onset Sarcoidosis, Familial Hibernian Fever (also known as TNF-Receptor 

Associated Periodic Syndrome, or TRAPS), Hyperimmunoglobulinemia D with recurrent fever 

syndrome (also known as mevalonate kinase deficiency), PFAPA syndrome (Periodic fever, 

aphthous stomatitis, pharyngitis, and adenitis), and Deficiency of the Interleukin-1–receptor 

antagonist syndrome. 

 FMF, CAPS, and PAPA diseases are all characterized by spontaneous inflammation or 

inflammation in response to innocuous stimuli, such as cold temperatures (39), and have similar 

symptoms, including elevated levels of IL-1β and neutrophil deposition within inflamed tissues 

(Table 1.2).  Mutations in Pyrin, NLRP3, and PSTPIP1 cause FMF, CAPS, and PAPA 

syndrome, respectively, and have all been shown to influence IL-1β production.  NLRP3 

enhances IL-1β production.  The vast majority of CAPS-related mutations in NLRP3 are 

missense mutations within the NATCH domain, and it is hypothesized that they result in 

constitutive unfolding of NLRP3 and increased sensitivity to stimuli.  Thus, these mutations 

provide a gain-of-function with respect to IL-1β production (34).  Studies have contradictorily 

shown that Pyrin increases or decreases IL-1β production.  How mutations affect Pyrin’s 
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function, and why there are discrepancies in the results of various studies, is unclear.  The 

proposed mechanisms by which Pyrin alters IL-1β production will be discussed further in the 

following sections.  PSTPIP1 (also known as CD2BP1) binds to Pyrin, and this interaction 

influences the binding of Pyrin to ASC.  Mutations in PSTPIP1 increase PSTPIP1’s binding 

affinity for Pyrin (40, 41).  In one model, an interaction between Pyrin and PSTPIP1 leads to 

decreased binding between Pyrin and ASC.  In this model, Pyrin and ASC interaction functions 

to decrease IL-1β production (41).  However, an alternative model depicts that PSTPIP1-Pyrin 

interaction unfolds Pyrin and reveals the domains necessary for Pyrin to bind ASC.  In this 

model, Pyrin and ASC interaction forms a pyroptosome that promotes IL-1β production and cell 

death (40).  Despite the differences in these two models, they both posit that PAPA syndrome-

associated mutations in PSTPIP1 increase IL-1β production through a mechanism mediated by 

Pyrin and the inflammasome.   

 



15 
 

Table 1.2. Symptoms and genetic alterations of the inflammasome-mediated 
autoinflammatory disorders. .   

Disorder Symptoms Genetic Alteration 

Familial Mediterranean 
Fever (FMF) 

Fever, Peritonitis, pleuritis, Arthritis, 
Skin rashes, polymorphonuclear 
infiltration at sites of inflammation, 
Amyloidosis, Elevated IL-1β 

Missense mutations in 
Mefv; 
Autosomal recessive 

Cryopyrin-associated 
Periodic Syndromes (CAPS) 

• Familial cold autoinflammatory 
syndrome 

• Muckle-Wells syndrome 
• Neonatal-onset multisystem 

inflammatory disorder 

Skin rashes (uticaria) in response to 
cold, polymorphonuclear infiltration at 
uticarial sites, Fever, Hearing loss, 
Arthritis, Amyloidosis, Meningitis, 
Inflammation of the eyes, Elevated IL-
1β 

Missense mutations in 
NLRP3 (formerly 
Cryopyrin); 
Autosomal dominant 

PAPA syndrome (Pyogenic 
sterile arthritis, pyoderma 
gangrenosum, and acne) 

Arthritis, polymorphonuclear 
infiltration at sites of inflammation, 
Skin rashes with ulcerative lesions, 
cystic acne, Elevated IL-1β 

Point mutations in 
PSTPIP1; 
Autosomal dominant 

 

 

 The similarities among these diseases, and especially the common pathologies of elevated 

IL-1β and neutrophilia support a model that NLRP3, Pyrin, and PSTPIP1 function within the 

same signaling pathway to affect innate immune responses.  Further evidence to support a 

function for Pyrin in IL-1β production and neutrophil dynamics will be discussed later in this 

chapter.  First, I will provide a conceptual framework for these function of Pyrin by describing the 

expression pattern of Mefv and the molecular interactions previously reported for Pyrin. 

 

The FMF-associated gene, Mefv, encodes the protein Pyrin 

 The Mefv gene is part of chromosome 16 in the human (5, 6), chimpanzee, and mouse 

genomes, chromosome 6 in the dog, and chromosome 10 in the rat genome.  In both mouse 

and human, the genomic region contains 10 exons, which are all part of the coding region 

(Figure 1.2).  The corresponding human and mouse Pyrin proteins are also of similar length: 

781 and 767 amino acids, respectively.   
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The promoter region of human Mefv contains regulatory elements associated with 

inflammation-dependent transcription.  Specifically, C/EBPα and NF-κB response elements are 

necessary for mediating the increase in MEFV expression induced by tumor necrosis factor 

(TNF)-α (42).  In mice, cytokine-induced Pyrin expression is prevented by the genetic loss of 

Stat6 and NF-κB, indicating that these elements are critical to the regulation of Mefv expression 

(43), although the regulation of Mefv may be a downstream effect of another cytokine that is 

regulated by Stat6 and NF-κB elements, such as IL-4 or IFNγ.  Thus, it appears that Mefv 

expression is regulated somewhat differently in humans and mice. 

 Alternative splicing of both the human and mouse transcripts has been detected.  In 

humans, there are isoforms lacking one or more exons: exon 2 (del2), exons 3 and 4 (del34), 

exons 2,3,4 (del234), exons 2,3,4,5 (del2345), exon 7 (del7), and exon 7 and 8 (del78).  These 

are found in both FMF-patients and healthy controls, suggesting that mutations in MEFV may 

not influence splicing, and that alternative splicing may not have a pathological effect (44).  In 

peripheral blood leukocytes and sonovial fibroblasts, splice variants with alternative exons 2a 

and 4a in place of 2 and 4, respectively, have been identified.  The 4a exon substitution creates 

a frame-shift and a predicted truncated protein ending in exon 5.  A transcript that contains an 

extended version of exon 8 (8ext) and lacks exons 9 and 10 is induced by LPS and accounts for 

27% of transcripts in sonovial fibroblasts.  Transcripts with del2 or 2a combined with 4a or 8ext 

were also detected (45).  In mice, alternative splicing replaces exon 9 with 9a.  It remains 

unclear if these splice variants provide wild-type function in a similar, increased, or decreased 

capacity, or if they have novel function or no function at all.   

 Structural analysis of the Pyrin protein places it in several protein families.  The human 

Pyrin protein, also known as tripartite motif-20 (TRIM20) and marenostrin, contains five 

functional domains: a pyrin domain (PYD), a bZip domain (bZ), a B-box domain (BB), a coiled-

coiled domain (C-C), and a B30.2 domain (Figure 1.2).  The PYD is common to death-domain 



17 
 

family proteins (46).  Within this family are NLRs, several of which function in innate immunity, 

and specifically, IL-1β production.  As previously mentioned, the PYD mediates homodomain 

interactions that are essential to the formation of the inflammasome complexes (47).  However, 

in contrast to NLRs which contain a NBD and a LRR domain, the only common domain of Pyrin 

is the PYD.  Thus, Pyrin is part of a family of POPs (PYD-only proteins) that inhibit 

inflammasome-dependent IL-1β production (48).  Pyrin also has a B30.2 region with a PRY-

SPRY domain, which places it in the TRIM (tripartite motif) protein family.  Nearly 150 proteins 

contain a SPRY domain.  It forms an immunoglobulin-like structure that mediates protein-ligand 

and protein-protein interactions and is implicated in pathogen detection.  For example, allelic 

differences in TRIM5α change the capacity for TRIM5α to recognize the HIV viral capsid (49).  

The majority of FMF-associated mutations are found in the SPRY domain, suggesting that the 

SPRY domain provides an essential function.  However, conservation of the Pyrin protein 

between mice and rats, which both lack the PRY-SPRY domain (7), indicate that genetic 

selection pressure remains, despite the loss of this region.  Therefore, the PRY-SPRY domain is 

unlikely to account for all of the functions of Pyrin. 
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Figure 1.2.  Mefv encodes Pyrin.  The orthologous Mefv genes of the human and mouse 

genomes both contain ten exons and encode proteins with a high degree of homology.  Gene 

exons are shown as unfilled boxes and align with protein domains (filled boxes) as indicated.  

Exons 1-8, except exon 2, are especially similar between humans and mice.  The B30.2 domain 

of the human protein is missing from the mouse.  The mouse protein contains the bZip domain 

(bZ) sequence, but it is unclear if its function is conserved.  PYD, pyrin domain; BB, B-box; C-C, 

coiled-coiled domain. 

 

 The human and mouse proteins contain a high degree of similarity:  47.6% identity, 65.5% 

similarity.  The PYD is encoded by the first exon and is especially well-conserved between 

human and mouse, providing further evidence of the importance of the PYD in overall Pyrin 

function.  The BB and CC are also conserved between human and murine Pyrin, and the bZ is 

likely present in the mouse protein as well as the human protein.  The B30.2 domain that is 

present in human Pyrin, is however, absent from the mouse and rat protein (7).  Based upon the 

high degree of identity at the nucleotide level, 59%, it is believed that the B30.2 domain is 

absent due to a pre-mature stop codon created by an ancient frame-shift mutation (7).  As will 

be discussed in detail later, most of the common FMF-associated mutations in Pyrin cluster 
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within the B30.2 region of the human protein, creating a conundrum as to how function is 

conserved between mice and humans.  It is, however, clear that there are disease associated 

mutations which lie outside of the B30.2 region (50-54). 

 

Expression of Mefv 

Mefv expression is highest in immune tissues in both humans and mice.  In humans, 

significant expression can be detected in the spleen, lung, and muscle tissues and very low 

levels of expression are detected in several other human organs by RT-PCR (8).  At the cellular 

level, expression is highest in neutrophils and macrophages, and there is low expression in 

B220+ B cells, CD3+ T cells, eosinophils, dendritic cells, and epithelial cells of the lung, 

peritoneum, and synovium (8, 45, 55).  Rodents may have a more restricted expression pattern 

of Mefv in immune tissues.  By northern blot analysis, expression was detected in the spleen of 

mice and rats and also in the lung and kidney of rats.  Expression was not detected during 

mouse embryonic development.  In the murine spleen, in situ hybridization showed that 

expression was concentrated in the primary follicle and marginal zone regions, which contain 

mostly granulocytes and B cells.  At the cellular level, Pyrin is expressed in granulocytes and 

macrophages, but not lymphocytes (7).   

 At the sub-cellular level, human Pyrin has been detected in both the nucleus and cytoplasm 

of cells.  The intracellular localization of Pyrin appears to be affected by cell type, differential 

splicing, and Caspase-1 cleavage (45, 56, 57).  Full-length Pyrin is predominantly found in the 

cytosol (8), and it co-localizes with perinuclear ASC-specks (47), and cytoskeletal elements (58, 

59).  The del2 splice variant (56), and the N-terminal Caspase-1-mediated cleavage fragment of 

Pyrin, however, appears to localize to the nucleus.  It is unclear if any mutations within the 

coding region, such as those associated with FMF, affect Pyrin localization.  In COS-7 cells 
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overexpressing human Pyrin, localization was unaffected by M694V or V726A mutations (8).  

Less is known about the cellular localization of murine Pyrin.  Since there are fewer splice 

variants described for the mouse transcript and protein cleavage is not described, protein 

localization may be less complex in mouse cells. 

 Pyrin expression in humans and rodents is regulated by sterile immune stimuli and 

cytokines.  Lipopolysacchride (LPS), interferon (IFN)-γ, and IFN-α increase expression of MEFV 

in human macrophages (55), while IL-4, IL-10, and transforming growth factor (TGF)-β can 

abrogate the effect of increased expression following a combined treatment of LPS and IFN-γ 

(55).  There are some differences between humans and mice in the induction of Pyrin 

expression.  IFN-γ dose-dependently increases expression at the transcript and protein level in 

human macrophages (55, 57).  In mice, IFN-γ increases Mefv expression at the transcript level, 

although it has also been reported that a difference in Pyrin expression was not seen at the 

protein level in murine macrophages (43).  LPS, TNF-α, IL-1β, IL-2, IL-4, IL-6, IL-10, and IL-12 

increase expression of Pyrin in murine macrophages.  The TH2-inducing cytokines IL-4 and IL-

10 are the strongest inducers of mouse Pyrin expression (43), but perhaps not human Pyrin.  

Instead, IL-4 treatment inhibits expression at the transcript level, and IL-10 induces cleavage of 

the human Pyrin protein (57).  In vivo intratracheal administration of LPS or silica increased 

levels of Mefv in rats (60).  Thus, Pyrin expression is regulated by endogenous and exogenous 

immune stimulants, both in vitro and in vivo.  Mutations in Mefv that are associated with FMF 

may increase, decrease, or have no effect on levels of Pyrin expression.  

 

Molecular interactions 

 Previous research has demonstrated binding between Pyrin and several other proteins, 

cytoskeletal elements, and itself (Figure 1.3).  These interactions have fueled multiple 
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hypotheses for the function of Pyrin.  In this section, I will describe the previously-reported 

molecular interactions of Pyrin.  The functional relevance of these interactions will be discussed 

in subsequent sections, as they pertain to IL-1β production and neutrophil physiology. 

 

 

Figure 1.2. Pyrin’s molecular interactions.  Through co-immunoprecipitation experiments 

and/or co-localization experiments using cells overexpressing Pyrin, the human Pyrin protein 

has been shown to interact with several proteins, itself, and cytoskeletal elements.  These are 

shown as unfilled boxes placed under the domains in Pyrin that are necessary for the molecular 

interaction.  This figure summarizes findings from several groups using four different antibodies 

(43, 47, 57, 59, 61-65).  The interaction of Pyrin with ASC, NLRP3, and Caspase-1 is reported 

by more than one laboratory.  Published work indicates that the mouse Pyrin protein also 

interacts with ASC, but the other interactions have not been demonstrated for the mouse 

protein.  Murine Pyrin does not contain the B30.2 domain, so these interactions are especially 

unclear.  PYD, pyrin domain; bZ, bZip domain; C-C, coiled-coiled domain.  
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Protein interactions 

An interaction between Pyrin and ASC was demonstrated through a yeast two-hybrid screen 

of the human genome and through immunofluorescence microscopy and coimmunoprecipitation 

of endogenous human and mouse Pyrin with ASC proteins (47).   Several studies indicate that 

Pyrin’s interaction with ASC affects production of IL-1β (40, 43, 61, 66, 67) and inflammation-

associated cell death (40, 43, 47). 

 The SPRY domain of Pyrin interacts with the NACHT domain of NLRPs 1-3 the pro domain 

of pro-IL-1β, and Caspase-1 based upon co-immunoprecipitation experiments (61, 62).  These 

interactions support multiple models of ASC-independent contributions of Pyrin to IL-1β 

regulation. 

An interaction between Pyrin and 14-3-3 has also been shown.  14-3-3 is implicated in 

multiple signal transduction pathways and in protein shuttling across the nuclear membrane 

(64).  It is reasonable to hypothesize that 14-3-3 mediates cytoplasmic-nuclear shuttling of 

Pyrin. 

A co-immunoprecipitation experiment identified an interaction between Pyrin and Siva1.  

Siva1 is proapoptotic protein, and its interaction with Pyrin reduced the ability of Siva1 to induce 

apoptosis (63).  However, in a screen of gene networks involved in FMF pathogenesis, Siva1-

mediated apoptosis was not linked to FMF.  Gene network analysis in THP-1 human monocytes 

supports an interaction of Mefv with Pycard, Caspase-1, Nlrp3, Pstpip1, NF-κB, and Interferon-

α, but the gene networks for Mefv and Siva1 do not overlap (68). 

Cytoskeletal interactions 

In an initial yeast two-hybrid screen for proteins that interact with Pyrin, human Pyrin was 

shown to interact with a novel protein, dubbed Pyrin/marenostrin interacting protein 1 (P/M-IP1).  

M694V and V726A mutations decreased, but did not eliminate, protein interaction in yeast cells.  
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P/M-IP1 and Pyrin co-localized to perinuclear structures in Cos-7 cells (69).  Based upon these 

findings, Pyrin was believed to have a role in Golgi-mediated transport.  A direct interaction in 

human cells has not been demonstrated by coimmunoprecipitation experiments.  Further 

experiments have failed to demonstrate co-localization of Pyrin with Golgi structures.  In fact, 

paclitaxel or colchicine treatment of Cos-7 cells, at a dose capable of diffusing Golgi structures, 

did not disrupt the cellular distribution of Pyrin (58).   

Immunofluorescent co-localization and an in vitro binding assay were used to show that 

Pyrin associates with microtubules.  However, the common FMF-associated mutations M680I, 

M694V and V726A mutations did not affect binding, which limits support for the hypothesis that 

Pyrin’s association with microtubules has functional consequences that are important in FMF 

pathophysiology.  In the same study, Pyrin also co-localized with actin depolymerization ends 

located at cell membrane ruffles on the lagging end of HeLa cells (58).  Subsequently, another 

group found that Pyrin co-localized with actin, but not microtubules, and α-actin 

coimmunoprecipitated with Pyrin (59).  Furthermore, the toxin Cytochalasin D, which inhibits 

actin polymerization, disrupted the cellular distribution of both actin and Pyrin.  However, in this 

study, Pyrin and ASC co-localized in HeLa cells to the leading edge of cell membrane ruffles 

that are rich in polymerizing actin.  VASP and Arp3 proteins are important in actin 

polymerization, and a coimmunoprecipitation experiment using myc-labeled Pyrin and GFP 

labeled VASP or Arp3 showed that these proteins can bind to Pyrin.  VASP and Arp3 also co-

localized to ASC specks in the presence but not the absence of Pyrin (59).  Thus, these studies 

suggest that Pyrin may coordinate interaction between ASC specks and the polymerizing tails of 

actin at an immunological synapse.   

Pyrin binds to proline-serine-threonine phosphatase interacting protein 1 (PSTPIP1), which 

is associated with PAPA syndrome, as previously mentioned.  The B box and coiled-coiled 

region of Pyrin is necessary and sufficient for an interaction with PSTPIP1 (40, 41).  PSTPIP1 
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may influence Pyrin’s function with cytoskeletal elements.  PSTPIP1 binds to PTP-PEST, which 

is a scaffolding protein that associates with actin through the protein WASP (70).  Pyrin can co-

localize with actin even in the absence of ASC and PSTPIP1, indicating that Pyrin’s interaction 

with actin is not mediated by ASC or PSTPIP1 (59).  Rather, Pyrin recruited PSTPIP1 to ASC 

specks.  The PAPA-associated mutation W232A in PSTPIP1 prevented its recruitment to ASC 

specks (59), but the A230T and E250Q mutations caused an increase in recruitment (71).  In 

summary, through both direct interactions and indirect protein-protein mediated interactions, 

Pyrin is implicated in cytoskeletal function and could influence cell shape, cell migration, and 

organization of an immunological synapse (70).   

Intramolecular interactions 

 In one study, IL-1β interacted more strongly with independent domains of Pyrin compared 

to full-length Pyrin.  Further research based upon this observation showed that the SPRY 

domain interacts with the BB and C-C domains of Pyrin, and masks the interaction of the SPRY 

domain with pro-IL-1β in coimmunoprecipitation studies.  However, M694V mutation did not 

affect intermolecular binding or intramolecular binding, so the functional significance of these 

interactions remains unclear (62).  The BB region of Pyrin has also been shown to bind the PYD 

of Pyrin and interactions of these domains forms Pyrin homotrimers (40).  In contrast, however, 

a yeast two-hybrid assay failed to detect intramolecular interactions of human Pyrin, when 

expressed in yeast cells (69). 

 

Previous research implicates Pyrin in IL-1β production 

 Several lines of evidence indicate that Pyrin affects IL-1β production.  First, some FMF 

patients have elevated serum IL-1β during inflammatory attacks and blocking IL-1β signaling is 

an effective prophylactic treatment (61).  Second, controlled experiments indicate a role of Pyrin 
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in IL-1β production in human and mouse experimental systems.  Third, Pyrin interacts with 

proteins of the inflammasome complex, NF-κB and IκB-α, and IL-1β itself.  However, there are 

still outstanding questions.  First, it is unclear if WT Pyrin acts to positively or negatively regulate 

IL-1β production.  Second, do mutations in Pyrin cause a loss or gain of function relative to WT 

Pyrin that affects IL-1β production?  Does the mutant Pyrin protein also have novel functions?  

Third, does Pyrin affect IL-1β transcription, pro-IL-1β protein processing that is either dependent 

or independent of inflammasome complexes, and/or IL-1β cytokine release from the cell?   

In the sections below, I will detail the evidence that supports several hypotheses as to how 

Pyrin affects IL-1β production.  Some of the proposed models directly conflict with one another 

as to the function of Pyrin, and are thus unlikely to occur simultaneously.  The validity of these 

models is not necessarily mutually exclusive and may be context (i.e. pathogen) dependent.  It 

is also possible that more than one of these mechanisms facilitate concurrent and/or synergistic 

effects.   

Pyrin is a POP that negatively regulates IL-1β production 

 Based upon a high percent of amino acid sequence identity within predicted CARD and 

pyrin (PYD) domains, a group of proteins was identified within the human proteome which 

contain a CARD or PYD, but lack other domains necessary to propagate inflammasome activity.  

These proteins are predicted to bind ASC, Caspase-1 or the NLR protein through cognate 

domain interactions, and sequester them to prevent formation of productive inflammasomes.  

These proteins are called COPs (CARD-only proteins) and POPs (PYD-only proteins).  

Structurally, Pyrin is considered a POP.  Results using in vitro overexpression experimental 

systems support the COP and POP model for the CARD-containing inhibitors COP (CARD-only 

protein), INCA (inhibitory CARD) and ICEBERG (72-74) and the pyrin-containing inhibitor 

cPOP2 (cellular pyrin-only protein 2).  POP1 (pyrin-only protein 1) was originally shown to 

increase IL-1β production, but a recent protein binding study suggests that POP1 may also 



26 
 

decrease NLR-dependent IL-1β production (75-78).  The in vivo function of these genes has not 

been examined, because they are absent from the mouse genome.  Conversely, Caspase12 

deficient mice display increased IL-1β cytokine production, suggesting that it negatively 

regulates inflammasome activity in vivo.  Thus, there is support for the model of COPs in an in 

vivo system.  However, the significance of Caspase-12 in humans is questioned because the 

gene structure varies between mouse, dog, and human genomes (79).  Pyrin is the only COP or 

POP that has been shown to negatively regulate IL-1β production in vitro and in vivo in both 

humans and mice. 

More specifically, the POP model proposes that Pyrin competes with NLRs, specifically 

NLRP3, for interaction with ASC, resulting in less Caspase-1 activity and less mature IL-1β 

production.  In a mixed lymphyocyte system using lysates from PT67 mouse epithelial cells 

overexpressing human Pyrin, ASC, and CASP-1, CASP-1 interacted with ASC in the absence, 

but not the presence of Pyrin.  Pyrin coimmunoprecipitated with ASC regardless of CASP-1 

expression.  Together, these findings indicate that Pyrin competes with CASP-1 for binding to 

ASC (43). Using reconstituted HEK293T human epithelial cells, Pyrin was also shown to 

compete with NLRP3 for binding to ASC (65).  In another study, Pyrin was shown to dose-

dependently reduce IL-1β production in transiently-transfected HEK293T (80).  U937 human 

monocytes overexpressing Pyrin also had decreased IL-1β production in response to LPS 

compared to cells treated with empty vector.  The M694V mutation reduced but did not eliminate 

the regulatory effect of Pyrin (43).  Correspondingly, a knockdown of endogenous Pyrin 

expression by THP-1 cells was shown to increase IL-1β production in response to LPS (61), 

peptidoglycan (PGN) and uric acid crystals (MSU) (62). 

Pyrin forms an inflammasome which positively regulates IL-1β production 

 An antithetical model proposes that Pyrin’s interaction with ASC enables the formation of a 

Pyrin inflammasome that activates Caspase-1 and leads to increased IL-1β production.  This 
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model draws upon the similarity in structure between Pyrin and NLR proteins.  The PRY/SPRY 

domain of human Pyrin forms an immunoglobulin receptor-like structure that could facilitate 

pathogen recognition in a manner analogous to the predicted receptor function of the LRR of 

NLR proteins.  In a HEK293T cell overexpression system, increasing levels of Pyrin dose-

dependently increased Caspase-1 processing and IL-1β cleavage.  SPRY domain mutants 

M694V and V726A were also able to increase Caspase-1 processing at levels similar to WT 

Pyrin.  Overexpression of WT or M694V, but not the PYD mutant L16P/F24S, also induced ASC 

oligomerization.  Furthermore, a Pyrin-ASC complex was shown to coimmunoprecipitate 

Caspase-1.  These data are consistent with a model in which PYD-PYD interactions between 

Pyrin and ASC mediate the formation of an inflammasome complex (67).  Another group also 

showed that Pyrin dose-dependently increased Caspase-1 activity and IL-1β release from 

HEK293T cells reconstituted with Pyrin, ASC, and Caspase-1, with or without IL-1β, and without 

an NLR.  A knock-down of Pyrin expression in the human monocytic cell line THP-1 and in 

human peripheral blood mononuclear cells resulted in decreased IL-1β release in response to 

LPS (66).  In support of this model, there is positive selection for mutations within the B30.2 

domain that is likely to function as a ligand receptor, suggesting that mutations in Pyrin may 

provide some selective advantage against a pathogen.  The biggest caveat of this model is a 

lack of evidence to support a pathogen that requires Pyrin for an efficient immune response, 

and specifically, IL-1β production.  

 It is also reasonable to imagine that Pyrin self-regulates its function by masking functional 

domains through intramolecular interactions.  In this model, Pyrin increases IL-1β production 

through its PYD domain, but the PYD domain must be exposed.  The B30.2 domain inhibits this 

function by hiding the PYD domain until a ligand causes unfolding of Pyrin.  If this were true, a 

mutation in the B30.2 domain could permanently expose the PYD domain and lead to increased 

IL-1β production in the absence of a ligand.  This model follows a paradigm proposed for 
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NLRP3 that suggests that mutations in the NATCH domain cause its PYD domain to be 

permanently exposed.  It is important to note that NLRP3 is a positive regulator of IL-1β 

production.  By analogy then, it is also possible to explain how Pyrin could be a positive 

regulator of IL-1β production, and mutations in Pyrin lead to increased IL-1β production. 

Pyrin forms a pyroptosome 

 The Pyrin-ASC interaction is the central evidence for yet a third model.  In this model, Pyrin 

and ASC complex into a “pyroptosome” that increases apoptosis during inflammation-induced 

cell death processes.  IL-1β release may increase during this process, but is not produced in an 

active process, and is instead a by-product of cell death (40).  HEK293T cells transfected with 

full-length Pyrin or the PYD only, but not Pyrin with a deleted PYD, showed increased apoptosis 

(65).  In another sudy, however, Pyrin increased ASC-speck formation, which is associated with 

inflammasome-mediated cell death, but the ASC-speck positive cells actually had increased 

survival (47).  Additionally, Pyrin has been shown to interact with Siva, a proapoptotic protein 

(63); however, there is no evidence to support a functional outcome of this interaction (68).   

Pyrin’s interaction with Caspase-1 could lead to multiple outcomes  

 Pyrin has been shown to interact with the catalytic subunits of Caspase-1 in the absence or 

presence of ASC (61, 62).  This interaction is suggested to have three different outcomes.  First, 

it may function to sequester Caspase-1 and prevent Caspase-1-mediated IL-1β cleavage.  This 

model is similar to the POP model, except in this case Pyrin binds Caspase-1 rather than ASC, 

and the interaction could occur before or after inflammasome-mediated Caspase-1 cleavage.  In 

HEK293T cells overexpressing proIL-1β and Caspase-1, the addition of full-length Pyrin 

expression inhibited inflammasome-dependent IL-1β production induced by cold temperature 

(30°C).  Deletion of the PYD did not prevent the inhibitory effect, and the SPRY domain alone 

was sufficient for Pyrin’s inhibitory effect.  In a dose-dependent manner, expression of the 

SPRY domain alone increased the amount of pro-IL-1β that co-immunoprecipitated with 
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Caspase-1, but decreased the amount of processed IL-1β.  Therefore, Pyrin probably does not 

compete with proIL-1β for binding to Caspase-1, but inhibits the catalytic activity required for 

Caspase-1 to process proIL-1β (62).  Correspondingly, another group showed in a PT67 

overexpression system that deletion of the B30.2 region made the inhibitory effect of Pyrin on 

IL-1β production less pronounced than the inhibitory activity of full-length Pyrin.  FMF-

associated mutations in the B30.2 domain reduced binding of the C-terminal region to Caspase-

1.  Crystal structure modeling indicated that amino acids 680 and 694 are important in Pyrin-

Caspase-1 interaction (61).   

 Alternatively, in the second model, Pyrin does not inhibit Caspase-1 activity, but instead is a 

substrate for Caspase-1-mediated cleavage (57, 67).  The cleavage site was mapped to amino 

acids 330-331 in human Pyrin, which is between the PYD and BB, but the C-terminal B30.2 

region was important in mediating the interaction of Pyrin with Caspase-1.  FMF-associated 

mutations M690I, M694V, and V726A in the B30.2 domain increased Pyrin cleavage (57).  

However, another group demonstrated that the M694V mutation does not affect the ability of 

Pyrin to bind Caspase-1 (62).  IFNγ, IL-4, and IL-10 induce cleavage of Pyrin (57).  A panel 

comparing 10 healthy and 10 FMF patients showed an increased relative abundance of cleaved 

versus uncleaved Pyrin in FMF patients, and this correlated with increased IκB-α proteolysis.  

Treatment of HeLa cells with colchicine dose-dependently reduced IκB-α proteolysis (57). 

 The N-terminal 330 amino acid Caspase-1 cleavage fragment of Pyrin localizes to the 

nucleus, and the bZip domain and a short, adjacent C-terminal region bind to NF-κB and IκB-α, 

respectively.  These interactions result in NF-κB and IκB-α translocation to the nucleus, and IκB-

α proteolysis (57).  In theory, this should result in increased NF-κB-dependent transcription, and 

since the IL-1β promoter contains an NF-κB response element, the end result should be 

increased IL-1β transcription.  However, in a HEK293T cell overexpression system, neither WT 

nor M694V or V726A Pyrin expression had an effect on NF-κB-dependent luciferase activity 
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(67).  In another study using HEK293T cells, full-length Pyrin and the PYD alone actually 

decreased NF-κB-dependent luciferase activity, but expression of Pyrin with a PYD deletion had 

no effect (65).  Thus, an interaction between Pyrin and Caspase-1 has been investigate by 

several group and findings suggest that there are two functional outcomes.  The first is 

sequestration of Caspase-1 to prevent cleavage of IL-1β by Caspase-1.  This interaction 

depends on the B30.2 domain of Pyrin.  The second is Caspase-1-mediated cleavage of Pyrin.  

Cleaved Pyrin has a subsequent function of increasing NF-κB translocation to the nucleus.  

Importantly, cleaved Pyrin inself is also translocated to the nucleus, which would limit 

interactions of the PYD of cleaved Pyrin and elements, such as inflammasome complexes and 

the cytoskeleton, which are found in the cytoplasm.  The different functions of Pyrin could have 

context-dependent actions, or they could occur simultaneously.  It is important to note that the 

first and second functions require different sub-cellular locations of the N-terminal, but not the C-

terminal, region of Pyrin.  Since the SPRY domain mediates Pyrin’s interaction with Caspase-1, 

it is possible for the Caspase-1 inhibitory function of Pyrin to occur before, after, and/or 

simultaneously to Pyrin cleavage. 

Pyrin’s interaction with the cytoskeleton may mediate IL-1β production 

 Pyrin’s interaction with cytoskeletal elements may also mediate IL-1β production.  

Colchicine and nacodazole, cytoskeletal disrupting agents, inhibit the ability of Pyrin to activate 

Caspase-1 (40).  Pyrin may also regulate formation or stability of an immunological synapse of 

inflammasome complexes and the actin cytoskeleton.  This provides a nice explanation for the 

therapeutic benefit of colchicine in FMF patients. 

Evidence using mouse models support conflicting hypotheses 

 So far, the evidence detailed above comes from in vitro experiments, mostly using 

overexpression systems in immortalized cell lines.  There is also evidence to support a role of 

Pyrin in vivo using three mouse model systems.  In the first mouse model (Mefvtrunc/trunc), a 
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disruption of Pyrin in exon 3 leaves the PYD intact while removing the BB and C-C domains, 

and the C-terminal region corresponding to the B30.2 domain of human Pyrin.  The mutation 

was designed to mimick FMF-associated mutations in the human B30.2 domain, and is based 

upon the assumption that the function of the B30.2 domain is lost as a result of FMF-associated 

point mutations.  These mice were reported to display exacerbated innate immune responses.  

Macrophages had increased Caspase-1 cleavage and production of IL-1β following treatment 

with LPS or LPS and IL-4.  Macrophages also had impaired apoptosis following LPS/IL-4 

treatment.  Furthermore, Mefvtrunc/trunc mice displayed exacerbated hypothermia and an 

increased susceptibility to septic shock induced by LPS.  Importantly, IL-1β release, 

macrophage apoptosis, and LPS-induced lethality of heterozygotes was similar to WT, 

indicating that two mutant alleles are necessary to produce an altered phenotype.  The authors 

concluded that the truncation of the Pyrin protein resulted in hypomorphic Pyrin function that let 

to heightened sensitivity and response to pathogens.  Thus, a biological basis for selection of 

allelic variants is an increased resistance to pathogens.  A significant conclusion was made 

based upon these studies:  FMF-associated mutations are hypomorphic.  However, there are 

two major caveats to this study.  First, the Mefvtrunc allele expresses a partial protein, and 

furthermore, expression of the PYD domain appears to be increased in these mice (43).  

Therefore, the Pyrin truncation mouse could represent a functional hypermorph, rather than a 

hypomorph, as the authors suggest.  Second, the endogenous mouse protein lacks the B30.2 

domain, so correlating the function of mouse Pyrin back to humans is a controversial matter. 

 Another mouse model system, reported recently, was designed to specifically address the 

role of the B30.2 domain.  Knock-in mouse lines were constructed to add the B30.2 domain of 

human Pyrin onto the end of the mouse Pyrin protein.  Specifically, exons 7–10 of mouse Mefv 

were replaced with exons 7–10 of human Mefv.  Four mouse lines were created to introduce the 

WT B30.2 sequence and 3 FMF-associated B30.2 domain mutants:  M964V, M680I, and 
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V726A.  The system was designed to test the hypothesis that mutations in the B30.2 region 

cause a gain-of-function that leads to FMF disease.  Mice with two B30.2 mutant alleles showed 

severe spontaneous inflammation and even developmental retardation.  Pathology indicated a 

substantial increase in CD11b+ innate immune cells in the peripheral blood and spleen of naïve 

homozygous V726A mutants compared to WT mice.  Furthermore, homozygous mice showed 

aberrant Caspase-1 cleavage and IL-1β production in response to LPS alone.  Pycard (ASC) 

deficiency largely rescued the phenotype of homozygous Pyrin B30.2 mutant mice so that 

CD11b+ populations and IL-1β production was similar to WT mice.  NLRP3-deficiency, however, 

did not rescue mice from spontaneous inflammation.  Thus, the inflammatory phenotype in 

these mice was dependent upon inflammasome-mediated IL-1β production, but not the NLRP3 

inflammasome in particular. 

 However, heterozygous MefvV726A/+ mice were healthy and had CD11b+ cell populations and 

IL-1β production similar to WT mice, which is inconsistent with a model in which mutations 

promote FMF via a gain-of-function.  Even more puzzling, mice homozygous for WT B30.2 were 

not born, suggesting that developmental retardation is too severe to be compatible with life.  

Interestingly, another group has observed that THP-1 cells infectected with retrovirus to express 

only the SPRY domain of Pyrin were not viable, whereas, in the same system, full-lenth Pyrin 

was not toxic (62).  Furthermore, the severity of homozygous B30.2 mutant mice is inversely 

proportional to the severity of FMF-phenotypes for the three mutations tested.  These findings 

are actually consistent with the hypothesis that murine Pyrin containing a wild-type B30.2 

domain causes aberrant function that is incompatible with life, and mutations in the B30.2 

domain cause a loss-of-function of these aberrant wild-type B30.2 domain mutations.  Thus, 

FMF is inherited in a phenotypically recessive manner, which is typical of diseases caused by a 

loss of protein function.  To address this possibility, Mefv-deficient mice were generated.  Mefv-/- 

mice did not display spontaneous inflammation nor statistically significant increases in CD11b+ 
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cell populations or in IL-1β production detected by western blot analysis.  The conclusion of this 

work was that B30.2 mutations cause a gain-of-function, but in a dose-dependent manner.  It is 

important to recognize that the inability to characterize mice homozygous for the WT B30.2 

domain means that this conclusion is predicated on a lack of a phenotype of the Mefv-deficient 

mice.  While the severe spontaneous inflammation of the homozygous B30.2 domain mutant 

mice is an overt phenotype that would be easily identified in the Mefv-/- mice if it were present, it 

remains possible that Mefv-/- mice have an innate immune system phenotype that could not be 

distinguished by the experiments chosen to test these mice. 

 In summary, evidence from these studies support conflicting models of Pyrin’s function, and 

further experiments are necessary to clarify both the contribution of Pyrin to the innate immune 

system and the inheritance pattern of FMF. 

 

Evidence from human patients supports conflicting hypotheses 

 Evidence shows that IL-1β production is altered during FMF-associated inflammatory 

attacks in at least some patients.  PBMC from patients with FMF have increased IL-1β 

production (43).  Treatment with IL-1β blockers helps prevent and lessen the severity of 

inflammatory attacks.  However, the role that mutations in Pyrin play in IL-1β production in FMF 

patients is less clear.  The expression level of Pyrin in patients compared to healthy controls is 

increased, decreased, or unchanged, depending upon the patient, and is not correlated with 

specific mutations within Mefv in a qualitative or quantitative way.  Moreover, mutations may 

affect alternative splicing, post-translational modifications, cellular localization, and/or Caspase-

1 cleavage of Pyrin, and one or more of these effects indirectly changes IL-1β levels.  It is most 

likely, however, that mutations directly affect the functional activity of Pyrin, since the majority of 

mutations are located in functionally significant exonic regions.  In summary, it is uncertain if 
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mutations mediate a gain or loss of Pyrin expression, localization, or function, and thus it is 

unclear if WT Pyrin positively or negatively regulates IL-1β production. 

 

The role of neutrophils in FMF 

 Early studies to determine the pathophysiology of FMF focused on neutrophils for three 

reasons:  1) Inflamed tissues in FMF patients have considerable neutrophil deposition (81), 

indicating that the autoinflammatory response in these patients is mediated, at least in part, by 

neutrophils.  2) Colchicine drug therapy can prevent FMF attacks, and while its mechanism of 

action in FMF is unclear, previous research indicates that colchicine is sequestered mainly by 

neutrophils (82, 83), so its therapeutic effects are likely to be on this cell type.  3) Neutrophils 

express Mefv at high levels (7, 55).  These data support the hypothesis that mutations in Mefv 

cause altered neutrophil physiology, and the correlative nature of these data leave open many 

possible processes of neutrophils that could be affected by Pyrin.  In the next section, the 

normal functions of neutrophils are reviewed, and in the following section, I will detail some of 

the previous research to assess the function of neutrophils in FMF patients.  

  

Neutrophil physiology 

Neutrophil Production 

 Neutrophils differentiate in the bone marrow from hematopoietic stem cells, through the 

myeloid lineage, and into the terminally-differentiated neutrophil cell type.  Concurrent with 

development, neutrophils migrate from the marrow region across sinusoidal endothelium into 

sinusoid vessels within the bone.  From there, neutrophils enter general circulation through the 

bloodstream (84).  The cytokine granulocyte-colony stimulating factor (G-SCF) regulates both 
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the differentiation of neutrophils from myeloid precursor cells and release of neutrophils from the 

bone marrow (85).  Neutrophils are maintained in high numbers (2.0 – 7.5 x 109 cells/L) within 

the blood under normal physiological conditions (86), but their circulatory half-life averages only 

6 hours in humans and 8 hours in mice (85).  The average human body produces greater than 5 

– 10 x 1010 neutrophils each day to counter the rapid turnover (87).  Neutrophil production is 

amplified during inflammation, in response to the cytokines G-CSF, GM-CSF, and IL-3 produced 

in the bone marrow, and GM-CSF, IL-6, and IL-17 produced by peripheral tissues (85).  The cell 

surface marker Gr-1 is used to detect the differentiation of myeloid precursor cells to 

neutrophils.  Gr-1 belongs to the Ly-6 gene family of adhesion molecules, and its expression is 

restricted to differentiated granulocytes, whereas it is absent from myeloid precursor cells and 

other hematopoietic-lineage cells (88).  

Neutrophil recruitment 

 In the absence of infection, the location of neutrophils is limited to the bone marrow, 

bloodstream, spleen, and liver.  Neutrophils are rapidly recruited to sites of inflammation by 

cytokine/chemokine concentration gradients.  TNF-a, IL-1β, Leukotriene B4 (LTB4), IL-8, and 

monocyte chemoattractant protein-1 (MCP-1) have all been shown to promote neutrophil 

recruitment to peripheral tissues (89-91).  Chemotactic stimuli activate signaling pathways to 

alter cell surface marker expression and to facilitate cytoskeletal rearrangements.  These 

changes result in migration of neutrophils from the bone marrow through the bloodstream and 

into peripheral tissues, where they help control local infections (87).  In vitro studies to mimic the 

movement of neutrophils in the bloodstream have shown that neutrophils begin rolling along an 

endothelial cell layer within two minutes of thrombin-induced endothelial cell damage (92).  In 

vivo, neutrophils can be visualized within infected tissues by 2 hours post-infection.  The 

presence of neutrophils in peripheral tissues is typically accompanied by signs of their 

activation. 
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Neutrophil effector functions  

 When neutrophils reach the source of the chemoattractant, (i.e. the pathogen or the highest 

cytokine/chemokine concentration), their cellular profile changes.  The once-migratory cells are 

immobilized and neutrophil effector functions initiate (87).  Neutrophils propagate a localized 

host response at infected or damaged tissues through several effector mechanisms:  1) the 

release of microbicidal agents and proteolytic enzymes, including myeloperoxidase, defensins, 

and hydrolases, from cytoplasmic granules, 2) the release of pro-inflammatory cytokines such 

as IL-8 and TNFα, which recruit and activate immune cells, 3) a respiratory burst that produces 

reactive oxygen species that kill pathogens, 4) the phagocytosis of pathogens, and 5) the 

extrusion of neutrophil extracellular traps (NETs), which help immobilize pathogens.   

Neutrophil lifespan 

 Neutrophils are short lived cells.  Non-activated neutrophils survive in the bloodstream for 

an average of 5.4 days (86), and activated neutrophils which have migrated to peripheral 

tissues survive for an even briefer time period of 1 – 3 days.   

 As human neutrophils age, they show signs of reduced chemotaxis in vivo, and reduced 

phagocytosis and respiratory burst in vitro.  This is likely caused by a reduction in several 

receptor-mediated signaling pathways, including protein kinase B, phosphoinositide-3-kinase, 

and JAK-STAT (Janus kinase – signal transducers and activators of transcription) signaling 

(93).  Non-activated neutrophils are removed from circulation by migrating to the bone marrow, 

spleen, or liver, where they apoptose.  It is suggested that age-dependent removal is important 

for maintaining adequate overall anti-microbial function (87).   

 Removal of activated, peripheral neutrophils is an important step in the resolution of 

inflammation.  While neutrophil functions mitigate risk of the spread of infection, their release of 

oxidizing agents and proteases is also damaging to neighboring healthy tissue.  Neutrophil 
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clearance from peripheral tissues occurs via apoptosis, necrosis, or phagocytosis by 

neighboring macrophages.  Neutrophils also die via uncontrolled necrosis induced by the 

pathogen.  A balance in the rate and extent of neutrophil influx, anti-microbial activity, and tissue 

clearance is critical to allow pathogen defense and prevent extensive tissue damage and 

chronic inflammation (94). 

Evidence for altered neutrophil physiology in FMF 

Neutrophil activation is altered in FMF patients 

 Differences have been detected in the ex vivo activation of neutrophils from patients with 

FMF compared to healthy controls. Oxidative burst in response to either phorbol myristate 

acetate (PMA) or monosodium urate crystals (MSU) is increased in neutrophils from FMF 

patients compared to healthy controls (95).  Furthermore, spontaneous free radical production 

and chemotaxis-, phagocytosis-, and PKC- induced respiratory burst by neutrophils from FMF 

patients is greater compared to neutrophils from healthy controls (96).  Neutrophils from FMF 

patients are also more effective at phagocytosing bacteria than neutrophils from healthy controls 

(97).  Interestingly, activation of the oxidative burst and phagocytosis in neutrophils 

demonstrates a biphasic phenotype in which activation of neutrophils collected from FMF 

patients in remission is more intense than in neutrophils harvested from FMF patients during an 

attack period (97-99).  This suggests that the inflammatory actions of neutrophils are quite 

variable during the course of FMF disease. 

Neutrophil survival is altered in FMF patients 

 As previously mentioned, extreme neutrophilia at inflamed tissues during FMF attacks has 

been observed by histological staining, and it could be a result of increased neutrophil 

production, chemotaxis, survival, or retention at sites of inflammation.  It is interesting to note 

that FMF attacks last 1 – 3 days, which corresponds to the deposition and clearance of 
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neutrophils from inflamed tissues.  This begs the question of whether or not resolution of FMF 

attacks is influenced by direct alterations of the kinetics of neutrophil apoptosis.  Indeed, 

circulating neutrophils from FMF patients have altered survival in experimental systems.  

Neutrophils from humans or rodents quickly die in culture.  Exposure to cytokines or endotoxin 

(LPS) reduces the rate at which neutrophils from healthy human donors or wild-type mice 

spontaneously apoptose (100, 101).  Neutrophils from FMF patients, however, show an 

increase in apoptosis following exposure to endotoxin (100).  If anything, these data suggest 

that the accumulation of neutrophils in FMF patients is not due to increased survival or impaired 

apoptosis of neutrophils, but data are too limited to make a clear statement regarding the 

survival kinetics of neutrophils FMF patients compared to healthy controls. 

Treatment of FMF with colchicine 

 Some of the most convincing evidence that neutrophils are directly altered in FMF is 

actually based on successful treatment of FMF with colchicine.  Colchicine is the main 

therapeutic agent prescribed for patients with FMF. Colchicine is sequestered mainly by 

neutrophils in vivo, suggesting that its beneficial effects are through modulation of neutrophil 

physiology (82, 83).  Colchicine treatment modulates chemotaxis, oxidative burst, and 

phagocytosis functions of neutrophils.  Colchicine inhibits neutrophil chemotaxis by decreasing 

expression of both E- and L- selectin, which are required for neutrophil migration to inflamed 

tissues (102).  Colchicine also inhibits release of chemotactic substances from neutrophils 

following phagocytosis of urate crystals (103).  In neutrophils from FMF patients, colchicine 

blocks initiation of the spontaneous respiratory burst.  Once induced, however, colchicine 

actually increases the intensity of the respiratory burst (104).  Colchicine inhibits phagocytosis of 

bacteria by neutrophils from FMF patients in a dose-dependent and time-dependent manner. 

Suppression of phagocytosis becomes more effective as the bacterial burden decreases (97).  

Evidence that colchicine alters neutrophil physiology suggests that FMF inflammatory attacks 
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are mediated at least in part by neutrophils, and thus mutations in Mefv may directly affect 

neutrophil function.   

 

The genetics of FMF 

 Polymorphisms within Mefv were identified by linkage analysis and positional cloning as the 

underlying genetic defect associated with FMF.  Mutations M680V, M694I, M694V and V726A 

were identified in the initial analysis and are all associated with one founding haplotype (5, 6).  

In a later study, another founding haplotype containing the mutation E148Q was associated with 

FMF, adding further support for Mefv’s association with FMF (105).  To date, these five 

mutations account for the vast majority of FMF patients.  The first four, as well as the majority of 

all polymorphisms, lie within the B30.2 domain, which suggests that this domain is especially 

important for Pyrin’s function.  Figure 1.4 summarizes the polymorphisms within the Mefv gene.  

There are 211 sequence variants within a relatively small 2.3 kb mRNA.  Ninety-one are 

associated with a phenotype.  The polymorphisms are all missense mutations or deletion point 

mutations (51-54) and infers that non-sense mutations or copy number variations either have no 

phenotype, or conversely, are incompatible with life.   
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Figure 1.4.  Mefv sequence variants.  Polymorphisms within the Mefv gene are found primarily 

within exons, especially exon 10, and are single nucleotide polymorphisms that cause missense 

mutations or single amino acid deletions or duplications. 

 

 Molecular and pedigree analyses support a pattern of predominantly recessive inheritance 

of FMF.  Most patients have mutations within the coding region of both Mefv alleles, however 

some individuals that fulfill Tel-Hashomer criteria (106) for FMF disease have only one mutated 

allele.  There is a wide breadth of phenotypic variation among patients in both the severity of 

FMF and the penetrance of FMF-associated mutations.  For example, pedigree analysis of one 

family indicates that 1 asymptotic grandmother and 1 asymptotic father carry the same allelic 

variants (M694V/V726A) as 4 grandchildren with childhood disease onset (107).  M694V and 
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ΔM694 are associated with aggressive renal amyloidosis and poor prognosis in patients with 

two allelic variants, especially M694V/M694V (2).  These mutations also exhibit some dominant 

penetrance.  At least two patients with one V726A mutation and no other detectable mutations 

also have FMF symptoms (108).  In a population genetics study in Crete, 83.1% (59/71) of 

patients carried 2 mutant alleles (109), but in a more recent study with 2,067 Turkish patients, 

only 23.7% (490/2,067) had 2 mutant alleles (110).  Evidence of dominant penetrance is limited, 

however, by the ability to detect a second allelic variant.  Genetic testing is largely confined to 

detection of the common mutations and/or sequencing of exon 10, which encodes the B30.2 

domain (111).  The studies in Crete and Turkey, for example, were limited to the 12 most 

common MEFV mutations.  Many patients are compound heterozygotes, so there is an 

extended range of potential activity of Pyrin created by a large number of possible genotype 

combinations. 

 The five most common FMF-associated mutations originated 3,000 – 30,000 years ago in 

people descendent from ethnic groups originating from the Mediterranean region, especially 

Iraqi and Ashkenazi Jews, Armenians, and Druze populations, and have been maintained 

through a founding effect (112).  Accordingly, FMF primarily affects ethnic groups that originate 

from the Mediterranean region, especially: Armenians, Sephardic Jews, Turks, North Africans, 

Arabs, and, less commonly, Greeks and Italians.  The incidence of FMF in Armenians is 1:500.  

The carrier frequency is especially high in these populations as well (1).  A clear association 

between the prevalence of disease-associated haplotypes and geographic origin suggests that 

an environmental stress caused the founding mutations (6). 

 Evolution studies indicate that there is positive selection for allelic variants of Mefv.  

Statistical analysis of the ratio of the frequency of nonsynonymous to synonymous mutations 

confirms a model of episodic positive selection for allelic variants of MEFV  (113).  Increased 

incidence of carriers in the Mediterranean area compared to other parts of the world suggests 
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that positive selection pressure maintains heterozygous carriers within this region due to an 

environmental stressor.  Carrier frequencies are astonishingly high, reaching 1:3 in some sub-

populations within the Mediterranean region.  While the five most common FMF-associated 

mutations show a founding affect in genetically-isolated populations, mutations also repeatedly 

arise de novo, indicating that there is a selection for allelic variants.  

 Genetic evidence clearly defines Mefv as the FMF-associate gene, but complexities of the 

underlying genetics makes interpretations of functional studies difficult.  Recessive inheritance 

of FMF suggests that a functional loss of both Mefv alleles is necessary for disease pathology.  

However, reports of dominant penetrance of disease argues that mutations lead to a gain-of-

function.  This implication is limited, however, by confined genetic testing to identify a second 

allelic variant.  In summary, further molecular genetic, population, and functional studies are 

fundamental to elucidate what appears to be a complex role for Mefv in innate immunity. 

 

Mice and Man:  Using the mouse as a model organism 

 The immune response is generally well-conserved between human and mice, which allows 

the mouse to be used as a small animal model system for inflammation that is amenable to 

genetic manipulations and in vivo studies.  Cross-species infection models allow for direct 

comparison of the dynamics of the immune response between mice and humans.  Inflammatory 

mediators that regulate the innate immune response to these pathogens are fairly well-

conserved on both a genetic and functional level.  Specifically, IL-1β production and signaling 

can be correlated between mice and humans.  For example, mouse models implicating IL-1β in 

disease progression have been translated to successful treatment of the corresponding disease 

in humans using IL-1β blocking therapies (13). 
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 The in vivo immune response is an orchestrated effort of many cell types that involves cell 

migration, extravasation, activation, and resolution.  The dynamics of these processes cannot 

be appreciated by any in vitro experiment.  It is especially important to recognize the overall in 

vivo process of the immune system in the case of an autoinflammatory disorder such as FMF.  

Since these disorders stem from unprovoked responses in the absence of a pathogen, it is 

necessary to develop a mouse model system in which aberrant immune activation can be tested 

in the context of an endogenous system.  By harnessing the power of manipulation to the 

mouse genome, we were able to create a system to allow for removal of the Mefv gene and 

stable Mefv expression.  Specifically for Mefv, this is an important point since various 

overexpression and knock-down experimental systems have provided inconclusive results. 

 

Summary and Significance of this work 

 The literature described above details some of the incredible work that has shaped our 

understanding of the recognition stage of the innate immune response and how danger signals 

can help guide the magnitude and duration of the immune response in order to promote 

necessary immune system activation and prevent autoinflammatory disorders such as FMF.  

Familial Mediterranean Fever (FMF) is an autosomal recessive autoinflammatory disease 

characterized by unprovoked fevers and acute inflammation leading to peritonitis, arthritis, 

pleuritis, skin rashes, and amyloidosis.  In the Mediterranean region, the incidence of FMF is 

estimated at 1:500 Armenians (1) and between 1:3000 and 1:6000 Iranian Jews (114), 

indicating that FMF is a major health concern in some populations.   

 Current therapeutic regimes for FMF patients involve nonsteroidal anti-inflammatory drugs 

to alleviate acute inflammatory episodes and life-long prophylactic treatment with colchicine or 

IL-1β blockers (2).  Colchicine drug therapy is the treatment of choice for FMF patients.  Its 
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mechanism of action is unclear, and some patients do not respond to colchicine treatment or 

cannot tolerate its side effects.  A better understanding of the function of Pyrin may shed light on 

the mechanism of action of colchicine and lead to the ability to predict whether or not colchicine 

will be beneficial to individual patients.  Furthermore, the IL-1β blocker anakinra has been 

successfully used to treat colchicine-nonresponsive patients (115).  This indicates that IL-1β is 

at least partially responsible for the symptoms of FMF.   

 IL-1β is a critical mediator of not just in FMF pathology, but of many innate immune 

responses.  Its production is regulated by the inflammasome signaling pathway, which is 

activated by danger signals.  IL-1β/IL-1R interaction drives a pro-inflammatory immune 

response, and approaches to block this interaction effectively decrease inflammation.  Lifelong 

therapeutic use of IL-1β-blockers has dangerous side effects, as long-term, broad immune 

suppression leaves the body susceptible to dangerous pathogens.  Further knowledge of the 

regulation of the inflammasome pathway should help in the design of tailored therapeutic 

approaches to more precisely control aberrant IL-1β production.  Several chronic autoimmune 

disorders, including rheumatoid arthritis and multiple sclerosis, as well as the autoinflammatory 

CAPS and FMF, are treated with IL-1β blockers.  While this proposal focuses primarily on 

characterizing the function of Pyrin in disease symptoms related to FMF, delineating the role of 

Pyrin will provide insight into the causes and potential treatments of all inflammatory disorders.  

 The overall aim of this dissertation was to assess the role of Pyrin in regulating innate 

immune responses.  Our approach was to generate Pyrin-deficient mice and characterize these 

mice in a naïve state and during innate immune responses.  We addressed the contribution of 

Pyrin to immune cell development, recruitment, activation, and survival.  The first specific aim 

focused on determining if Pyrin modulates inflammasome-mediated IL-1β production.  Although 

previous work has indicated that Pyrin can modulate IL-1β production, its contribution as a 

positive or negative regulator of IL-1β production is controversial.  Here, we address this 
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question using a genetic approach and in vitro and in vivo experimental systems.  The second 

specific aim of this work addresses the direct contribution of Pyrin to neutrophil physiology.  We 

used a genetic approach and in vitro and in vivo studies to detect differences in neutrophil 

development, recruitment, and/or survival in vitro and in vivo.  Our findings provide a framework 

for us to think about how mutations in Pyrin lead to misregulation of the inflammatory responses 

and contribute to spontaneous activation of the innate immune system in FMF. 

 

Research presented in this dissertation 

  In this dissertation, I present our investigations into how Pyrin regulates innate immune 

responses.  We generated Mefv-deficient mice, as described in chapter 2, that we used 

throughout this study to provide a novel in vitro and in vivo genetic system for assessing the 

consequences of a loss of Pyrin function.  Chapter 3 describes our studies to characterize the 

naïve state of Pyrin-deficient mice in order to determine if these mice had altered immune cell 

development or indications of spontaneous inflammation.  Chapter 4 details the role of Pyrin in 

IL-1β production.  Chapter 5 discusses our work to characterize the contribution of Pyrin to 

neutrophil physiology.  In chapter 6, we describe in vivo experimental models that we used to 

ascertain a role of Pyrin in fever and peritonitis, common symptoms of FMF.  Together, this 

work demonstrates that a loss of Pyrin function can alter the innate immune response, and 

specifically, inflammasome-dependent IL-1β production.  This finding suggests that a loss of 

Pyrin function is responsible for at least some of the pathological phenotypes seen in FMF 

patients. 
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CHAPTER 2  

Expression of Mefv 

 

 Familial Mediterranean Fever (FMF) is characterized by aberrant activation of the immune 

system.  Thus, it not surprising that MEFV expression levels are high in immune tissues in both 

humans and mice.  To further clarify which immune tissues of the mouse express Mefv, real-

time PCR was used to assess expression.  Mefv expression was detected in several organs and 

it was particularly high in bone marrow.   High expression was found in cells of the myeloid 

lineage and increased as cells matured along this lineage.  Expression of Mefv in macrophages 

was induced after exposure to lipopolysaccharide (LPS) and Interleukin-4 (IL-4).  The detection 

of Mefv in immune tissues of naïve mice, and the increased expression of Mefv during immune 

cell maturation and activation suggests that Pyrin function is important to the immune system 

during normal physiological states and is increasingly important during activation of the immune 

system.  
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Introduction 

 FMF is characterized by sudden inflammatory episodes associated with neutrophil influx 

and elevated acute response proteins and cytokines (1).  Previous research suggests that FMF 

is, at least in part, due to problems with intrinsic neutrophil and monocyte/macrophage functions 

(2-5). Accordingly, expression of MEFV can be detected in neutrophils and macrophages from 

humans and mice (6, 7).  However, several conundrums in the proposed models by which 

mutations in Pyrin causes FMF leave open the possibility that Pyrin may contribute to processes 

in additional cell types that have not been examined.   

 Neutrophils and macrophages differentiate from a common myeloid precursor cell in the 

bone marrow.  The profile of neutrophils and macrophages changes as they mature and 

following exposure to immune stimuli and cytokines.  For example, the expression of surface 

antigen receptors changes during the 24 h lifespan of neutrophils, and the expression profiles 

correlates with the extent of activation, extravasation, recruitment, and apoptosis of neutrophils 

(8).  Macrophages develop from immature macrophages, or monocytes, give rise to other cell 

types:  dendritic cells and osteoclasts, and to 4 subsets of macrophages:  innate activated, 

classically activated, alternatively activated, and deactivated.  Each of these cell types differs in 

immune function (9).  Differences between monocytes and macrophages are particularly well-

characterized and include differences in phagocytosis, cytokine release, cell migration, and cell 

survival mechanisms (9-11).  Specifically, the magnitude and kinetics of IL-1β cytokine release 

varies with monocyte/macrophage cell maturity (11).  This is of particular interest since human 

MEFV expression changes following maturation of and activation of neutrophils and 

macrophages (2, 11, 12). 

 We examined the expression levels of Mefv in immune tissues collected from mice.  Mefv 

expression was high in the spleen and bone marrow, but was also detected, at a much lower 
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level, in other immune organs.  Mefv expression was high in neutrophils and macrophages and 

was increased by cell maturation and activation. 
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Materials and Methods 

Sources of RNA 

 Whole organs (lung, iguanal lymph nodes, thymus, and spleen) were snap-frozen and 

smashed to collect tissue for RNA preparation.  Whole bone marrow was collected by flushing 

femurs and tibias with phosphate-buffered saline (PBS; Gibco).  Bone marrow was cultured with 

appropriate cytokines to derive mast cells (interleukin-3, stem-cell factor) and macrophages (L-

cell conditioned media as a source of M-CSF).  Bone-marrow neutrophils were isolated from 

total bone marrow by centrifugation through a Histopaque density gradient (density 1.083 g/mL 

and 1.119 g/mL; Sigma-Aldrich) per manufacturer’s instructions.  Greater than 90% of cells 

were classified as neutrophils based upon morphological analysis of cytospun cells stained with 

Hema-3 (Protocol, Fisher Scientific).  Resident peritoneal macrophages were collected by PBS 

lavage from the peritoneal cavity of naïve mice.  Peritoneal cells were cultured in media without 

serum for 2 h to isolate adherent macrophages from other cell types.  Recruited/elicited 

peritoneal macrophages were collected by peritoneal lavage, as above, from mice treated 3 d 

prior with intraperitoneal (i.p.) injection of 3 mLs of 3% Brewer’s thioglycolate medium.  Elicited 

neutrophils were collected from the peritoneal cavity of mice at 4 h following i.p. injection of 1 

mL of 1 mg/mL Zymosan-A in PBS. 

 Total RNA was isolated using RNA Bee (Tel-test) as instructed by the manufacturer.  RNA 

was eluted in nuclease-free water.  The optical density (OD) at 260 nm was used to determine 

RNA concentration, and the 260/280 nm ratio was 1.7 – 2.0 for all samples.   

Real-time PCR  

 Total RNA was converted to cDNA per manufacturer’s protocol (high capacity cDNA 

Reverse Transcription Kit; Applied Biosystems).  For neutrophils, 500 ng of total RNA was used.  

Expression of Mefv, Nlrp3, Pycard, Il1b, Gapdh, β-actin, and Hprt were detected with TaqMan 
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universal PCR master mix and probes Mm00490258_m1 (Mefv), 4352932-070313 (Gapdh), 

4352664-0608007 (β-actin), and Mm00446968_m1 (Hprt) by an ABI Prism 7900HT detection 

system according to manufacturer protocol (all from Applied Biosystems).  The Mefv probe 

detects all known splice variants.  Relative gene expression values were calculated from the 

cycle number (Ct) data by the equations below. 

1. Ct Mefv – Ct Gapdh = Δ Ct  (normalizes Mefv to the Gapdh internal sample control) 

2. Δ Ct of sample - Δ Ct of control sample = ΔΔ Ct  (normalizes values to control sample) 

3. 2 ^ -ΔΔ Ct = fold change  (converts values to relative expression ratio) 

Northern blot expression analysis 

 Total neutrophil RNA was electrophoresed on a 1.1% formaldehyde, 1.2% agarose gel 

containing formamide and transferred to a nylon membrane (Bright Star Plus Positively-charged 

nylon membrane, Ambion).  Full-length cDNA corresponding to Mefv was radiolabeled with [α-

32P]dCTP per manufacturer’s instructions (Random Primed DNA Labeling Kit; Roche 

AppliedScience).  RNA blots were probed with radiolabled cDNA probe in hybridization buffer 

following manufacter’s protocol (ULTRAhyb Ultrasensitive Hybridization Buffer, Applied 

Biosystems).  Membranes were hybridized and washed at 42°C.  RNA was visualized on 

autoradiography film (BioMax, Kodak) following overnight storage with the membrane at -80°C.  

Membranes were probed with a β-actin probe following the same protocol.   

Statistical Analyses 

 One-way ANOVA and Tukey’s post-test were used to determine significance. 

Animal Care and Use 

 All experiments were conducted in accordance with the National Institutes of Health Guide 

for the Care and Use of Laboratory Animals as well as the Institutional Animal Care and Use 

Committee guidelines of UNC Chapel Hill. 
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Results 

Cells of the myeloid lineage express high levels of Mefv 

 Broader expression of MEFV has been detected in humans by RT-PCR (12) than in mice 

by northern blot (7).  We reasoned that Mefv might have a broader expression pattern in mice at 

a low-level that limits detection by northern blot.  Mefv expression in immune tissues was 

analyzed using real-time PCR.  Expression was detected in spleen as expected, but also in 

lymph node and bone marrow and to a lesser extent in lung and thymus (Figure 2.1A).  Based 

upon northern blot analysis, expression was highest in myeloid cells, and expression in 

neutrophils was markedly increased compared to macrophages (Figure 2.1B).  Expression of 

Mefv was undetectable in bone marrow-derived mast cells (data not shown).   
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Figure 2.1.  Mefv is expressed in immune tissues.  A, Real-time PCR analysis of Mefv 

expression in WT tissues.  Ct values are normalized to Gapdh and expressed as fold change 

relative to bone marrow.  The raw Ct value of Mefv in all tissues was below 32 for all tissues 

shown.  The Ct value of neutrophils from Mefv-/- mice was undetermined (>40).  B, Northern blot 

analysis to detect Mefv transcripts in bone marrow, recruited peritoneal neutrophils, and 

recruited peritoneal macrophages.  Full-length Mefv cDNA was used as a probe.  Equal 

amounts of RNA for each sample were loaded.   
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Mefv expression is increased upon maturation of neutrophils and macrophages 

 To further characterize the expression of Mefv in myeloid cells, neutrophils and 

macrophages were harvested from different tissues within the mouse.  Neutrophils were 

isolated from total bone marrow or peritoneal cells were collected at 4 h following treatment with 

Zymosan A.  At the mRNA transcript level, Mefv expression was 23-fold higher in neutrophils 

recruited to the peritoneal cavity than in neutrophils isolated from the bone marrow (Figure 

2.2A).  In macrophages, Mefv expression was easily detected in bone marrow-derived 

monocyte/macrophages.  Bone marrow-derived macrophages were cultured for 8 – 12 days 

before expression analysis, and no significant differences were seen in Mefv expression.  

However, Mefv expression was markedly higher in both resident peritoneal macrophages 

(rpMΦ) and in macrophages collected from the peritoneal cavity at 72 h after the induction of 

peritonitis with the sterile immunostimulant, thioglycolate (Figure 2.2B).   
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Figure 2.2.  Mefv expression increases upon matuaration of neutrophils and 
macrophages collected from mice.  Relative expression of Mefv was determined by real-time 

PCR analysis for neutrophils, A, and macrophages, B.  A, Neutrophils were isolated from bone 

marrow or peritoneal cells were harvested at 4 h after treatment with 1 mg of Zymosan-A i.p.  

Greater than 90% of cells were considered neutrophils by differential cell staining.  Data are 

expressed as fold change relative to bone marrow neutrophils.  RNA from several wild-type 

B6;129S6 mice was pooled.  Results are representative of two experiments.  B, Macrophages 

were derived from whole bone marrow (BMMΦs) or were collected from the peritoneal cavity of 

naïve mice (resident peritoneal macrophages, rpMΦs) or mice at 72 h after treatment with 

thioglycolate (elic pMΦs).  Expression of myeloperoxidase, a gene expressed in neutrophils but 

not macrophages, was measured to ensure that differences in expression were not due to the 

presence of neutrophils.  Data are expressed as fold change relative to BMMΦs. 

 

Mefv expression is increased upon activation of macrophages 

 Previous reports indicate that Pyrin expression is affected by treatment of macrophages 

with LPS and cytokines.  However, previous studies show that Interleukin (IL)-4 and Interferon-

gamma (IFN-γ) have opposing affects on Mefv expression in mice and humans.  Whereas IL-4 

increases Pyrin protein expression in mice, it inhibits expression in humans.  IFN-γ does not 

affect expression of mouse Pyrin but increases Pyrin protein levels in humans (2, 5).  Here, the 
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abundance of Mefv transcripts was measured in macrophages cultured for 24 h in the presence 

of LPS, LPS and IL-4, or left untreated.  Consistent with previous findings at the protein level 

(5), Mefv expression increased after treatment with LPS and LPS and IL-4.  Expression levels of 

inflammasome proteins Nlrp3 and Pycard, which are involved in IL-1β production, and 

expression of Il1β itself were also determined.  Similar to Mefv, Nlrp3, and Il1β expression were 

increased after treatment with LPS.  The addition of IL-4 resulted in a further increase in Nlrp3 

and Il1β expression (Figure 2.3).     
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Figure 2.3.  Mefv expression in macrophages is increased after pathogen and cytokine 
treatment.  Thioglycolate-elicited peritoneal macrophages were cultured for 22 h with 1 µg/mL 
lipopolysaccharide (LPS) and 12.5 ng/mL as indicated.  Relative expression of A, Mefv, B, 
Nlrp3, C, Pycard, and D, Il1β was detected by real-time PCR.  Results are expressed as fold 
change compared to PBS-treated samples.  n = 3.  *, p < 0.05 for LPS or LPS + IL-4 treatment 
compared to PBS treatment.  #, p < 0.05 for LPS + IL-4 treatment compared to LPS. 
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Discussion 

 Here, we describe our analysis of Mefv expression in wild-type mice.  Previous studies 

indicate that Mefv is expressed in a broad set of tissues in humans (12), and we hypothesized 

that expression in the mouse might be broader than previously appreciated due to the detection 

limit of northern blot analyses.  The pathology of FMF is especially complex and many different 

tissue and cell types may be involved in inflammatory attacks.   

 Our studies indicate that Mefv expression is highest in the bone marrow, spleen, and lymph 

nodes, but can also be detected at low levels in the lung and thymus.  On a cellular level, 

expression was highest in neutrophils and macrophages and was undetectable in bone marrow-

derived mast cells.  By using cDNA derived from Mefv-null neutrophils as a negative control, a 

difference between low-level expression and no expression could be resolved.  Our findings 

extend the panel of tissues in mice that express Mefv, although these results should be 

confirmed at the protein level once a Pyrin antibody is commercially available.  Among the panel 

of tissues previously characterized by northern blot analysis, expression was detected in the 

spleen but not the thymus, lung, brain, heart, kidney, liver, muscle, ovary, or testis (7).  In 

humans, significant expression of MEFV can be detected in the spleen, lung, consistent with the 

profile of mouse Mefv.  In contrast, human MEFV is also expressed in muscle, and previous 

results of semi-quantitative RT-PCR analysis also showed a low number of MEFV transcripts in 

cDNA collected from heart, kidney, and liver organs.  MEFV transcripts were not detected in the 

small intestines, brain, prostate, or ovary (12), and the later three organs in the mouse also lack 

Mefv expression (7).  At the cellular level, human MEFV expression is highest in neutrophils and 

macrophages, and there is low expression in B220+ B cells, CD3+ T cells, eosinophils, dendritic 

cells, and epithelial cells of the lung, peritoneum, and synovium (6, 12, 13).  Previous reports 

suggest that murine Mefv expression is limited to neutrophils and monocytes/macrophages.  

Expression of Mefv in whole bone marrow or lymph nodes was not examined previously.  High 
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expression in bone marrow was expected, since a large portion of bone marrow cells are 

developing/maturing neutrophils.  It is not surprising to see low level of expression in the lung, 

since expression of Mefv in the lung has been reported for rats and humans.  The low level of 

expression in that was detected in the lung and thymus in our studies using real-time PCR is 

likely below the detection limit of northern blot analysis that was used in the previous study (7).  

Low expression in human T cells may correspond with the low level of Mefv expression that we 

detected in the thymus of mice. 

 We found that Mefv expression was increased in neutrophils and macrophages from the 

peritoneal cavity in comparison to neutrophils collected from the bone marrow or 

monocytes/macrophages derived from bone marrow precursors.  Since expression is also 

increased in resident or resting peritoneal macrophages compared to bone marrow-derived 

macrophages, the increased expression is likely to be a function of cell maturity in the myeloid 

lineage.  In humans, on the other hand, the expression of Pyrin decreases as peripheral blood 

mononuclear cells are differentiated from monocytes to macrophages (11).  However, our 

findings for neutrophils are consistent with previous reports that expression of MEFV increases 

in HL-60 promyeloblast cells and peripheral blood hematopoietic precursors as they differentiate 

along a granulocytic lineage (12).  The influence of cell maturity on Mefv expression may be a 

species and/or cell type –specific contribution, but further research is necessary to examine this 

possibility. 

 Consistent with previous reports (5), our results indicate that expression of the mouse Mefv 

gene is enhanced following exposure to LPS and IL-4, at least in macrophages.  Expression 

levels of inflammasome complex genes and Il1β were also assessed in parallel to provide 

context for future studies to assess the role of Pyrin in inflammasome-dependent IL-1β 

production, which will be discussed in Chapter 4.  Expression of the human MEFV gene is also 

increased after exposure of monocytes and macrophages to LPS (2, 6, 11), however, IL-4 does 
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not increase human MEFV expression in peripheral blood mononuclear cells and instead 

decreases MEFV expression (2).  IL-4 stimulates an alternative activation phenotype of 

macrophages (14) and polarizes T cells towards a T helper type 2 response (9, 15).  

Interestingly, Interferon-gamma, which polarizes T cells towards T helper type 1, increases 

MEFV expression in humans and mice (2, 5, 9).  One previous study found that FMF patients 

have higher levels of cytokines associated with T helper type 1 responses (16).  Further studies 

are needed to clarify the role of wild-type and mutant Pyrin proteins in T cell polarization and 

alternative versus classical activation of macrophages.   

 It is unclear whether or not FMF-associated mutations within MEFV have an effect on 

MEFV expression levels.  Since the majority of these mutations lie within the coding region 

rather than the promoter or intronic regions, they are more likely to affect protein function or 

protein stability rather than transcript or protein expression levels.  Previous studies have 

demonstrated increased, decreased, or unchanged expression of MEFV in FMF patients 

compared to healthy controls (17, 18).  Alternative splicing of the MEFV transcript has been 

well-described (19), so conclusions regarding the effect of mutations on expression levels are 

complicated by the ability to detect splice variants of the MEFV transcript or isoforms of the 

Pyrin protein they encode.  A recent study has also shown that non-sense mediated decay is 

involved in the regulation of expression of MEFV transcripts (18). 

Information from these expression analyses extends the rationale for future studies using Mefv-

deficient mice.  Since a difference due to the loss of Mefv will be more apparent in cells with 

high levels of expression, future studies will focus on neutrophils and macrophages isolated 

from the peritoneal cavity. 
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CHAPTER 3 

Creation of Mefv null mice and characterization of naïve mice 

 

 The ability to engineer mouse lines with mutations in genes suspected to contribute to a 

particular signaling pathway has facilitated our understanding of the immune response.  In 

particular, mice with mutations in genes involved in inflammasome signaling have extended our 

knowledge of the involvement of these genes during in vivo pathogen responses.  In this 

chapter, I describe the creation of a mouse line that lacks the Mefv gene, which encodes the 

Pyrin protein.  We used a unique targeting strategy to remove the coding region and all known 

regulatory elements.  The loss of Mefv did not impact the growth or survival of mice, nor did it 

impact the size or cellular composition of immune organs.  These results suggest that mice in a 

naïve state can compensate for the loss of Pyrin function. 
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Introduction 

 Genetically altered mice provide a system to isolate the contribution of a gene in a 

physiologically relevant in vivo system.  The development of constitutive knock-out, conditional 

knockout, and transgenic mouse models, as well as selective breeding strategies to maintain 

spontaneous mutations, have helped to elucidate the contribution of a gene or cell type towards 

inflammation.  Specific to the inflammasome pathway, mice deficient in Nlrp1b, Nlrp3, Nlrc4, 

Aim2, Pycard (ASC), and Caspase-1 have been developed (1-4).  Bone marrow-derived 

macrophages and macrophages collected from the peritoneal cavities of these animals have 

impaired IL-1β production, demonstrating that these proteins enhance IL-1β production (1-5).  

Caspase-12 deficient mice, on the other hand, display elevated levels of IL-1β, indicating that 

Caspase-12 negatively regulates IL-1β production in mice (6).  Treatment of genetically deficient 

mice provides evidence that the importance of these proteins for IL-1β production and pathogen 

resistance is maintained in vivo. (1-4, 6-9).  Thus, it is reasonable to anticipate that a 

contribution of Mefv (Pyrin) towards inflammasome-dependent IL-1β production, either 

enhancing or inhibiting IL-1β production, will be detectable using in vitro and in vivo 

experimental systems. 

 Targeting constructs designed to generate null alleles can result in modified loci, which 

because of alternative splicing, continue to direct the production of a protein with some activity.  

Perhaps even more problematic, in some cases, integration of a targeting vector generates an 

allele that produces transcripts encoding proteins with novel function.  These possibilities are of 

particular concern when alternative splicing has been well documented, as is the case for the 

Mefv gene (10, 11).  Alternative splicing of Mefv transcripts may significantly alter Pyrin function 

(10). 

 The inflammatory attacks of Familial Mediterranean Fever (FMF) occur in the apparent 

absence of a pathogen, thus, stimulation of the immune response with a pathogen is not 
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required to detect the immune system defect in these patients.  Consistent with this, as 

previously described in Chapter 2, Mefv is expressed in immune organs of naïve, or untreated 

mice, which suggests that Pyrin functions in the development or maintenance of the immune 

system in a naïve, or homeostatic, state.   

 To enable further study of the contribution of Pyrin to IL-1β production and FMF 

pathophysiology, we created a Mefv-defecient mouse line.  A targeting construct capable of 

removing the entire coding sequence and the promoter region of the gene was developed to 

ensure that the mutation introduced into the Mefv locus creates a null allele.  The survival and 

growth of these mice, and the cell profiles of immune organs were maintained despite the loss 

of Pyrin. 
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Materials and Methods 

Creation of MefvDel targeting plasmid 

 A bacterial artificial chromosome (BAC) containing the Mefv genomic region of the mouse 

strain 129S7/SvEv (clone ID bMQ133e1, Geneservice, United Kingdom) was altered by Red/ET 

recombination in bacteria to generate a targeting vector (MefvDel).  The entire coding region and 

5 kb upstream and downstream was removed and replaced with a deletor cassette.  

Bioinformatic websites http://genome.ucsc.edu/ and http://genome.lbl.gov/vista/index.shtml were 

used to assign the gene region and assess possible regulatory regions within the promoter and 

3’ intergenic region.  The deletor cassette contains a Neor,Kanr gene that was used for 

selection, a loxP site and the 3’ end of the Hprt gene that were used for a later genetic 

manipulation of the Mefv locus, and Bam HI and Xba I restriction digest sites that allowed for 

screening of targeting events by Southern blot.  The region downstream of the Mefv gene in the 

BAC was shortened and replaced with an ampicillin resistance cassette (Ampr), but proper 

recombination in ESCs prevents incorporation of Ampr into the mouse genome.  MefvDel was 

linearized and electroporated into embryonic stem cells (ESCs) derived from 129Sv/Ev mice.  

Table 2.2 lists the PCR primers used in construction of MefvDel. 

Detection of ESC transformants and mice carrying a targeted allele 

 ESC transformants were isolated by selection using standard methodologies (12) ESC 

lysates were prepared and used for PCR analysis with the primers listed in Table 2.2.  For 

Southern blotting, DNA was isolated from ESCs using standard methodologies.  DNA was 

digested with Bam HI or Xba I and electrophoresed through a 0.8% agarose gel and transferred 

to a Nitrocellulose (Hybond-N) membrane.  A 527-bp genomic fragment, created by PCR using 

the primers shown in Table 2.2, hybridizes downstream of the targeted region and was used as 

a probe.  The probe was radiolabeled with [α-32P]dCTP per manufacturer’s instructions 

(Random Primed DNA Labeling Kit; Roche AppliedScience) and hybridized to the nylon 
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membrane as instructed (Rapid-hyb, GE Healthcare Life Sciences).  DNA fragment length was 

visualized on autoradiography film (BioMax, Kodak) following overnight storage with the 

membrane at -80°C.  A custom-made real-time PCR probe (Applied Biosystems) was 

engineered to detect the copy numbers of exon 1 of Mefv in the genome relative to the number 

of copies of the Hprt gene.  ESCs that contained a targeted Mefv allele were injected into 

C57BL/6 blastocysts, and the chimeric blastocysts were implanted into C57BL/6 foster moms.  

Chimeric mice were identified by coat color and mated with both C57BL/6 and 129/SvEv mice.  

Transmission of the targeted allele was identified by Southern blot. 

Northern blotting 

 Total RNA was isolated from neutrophils using RNA Bee (Tel-test) as instructed by the 

manufacturer.  RNA was electrophoresed through a 1.1% formaldehyde, 1.2% agarose gel 

containing formamide and transferred to a nylon membrane (Bright Star Plus Positively-charged 

nylon membrane, Ambion).  Full-length cDNA corresponding to Mefv was radiolabeled with [α-

32P]dCTP per manufacturer’s instructions (Random Primed DNA Labeling Kit; Roche 

AppliedScience).  RNA blots were probed with radiolabled cDNA probe in hybridization buffer 

following manufacter’s protocol (ULTRAhyb Ultrasensitive Hybridization Buffer, Applied 

Biosystems).  Membranes were hybridized and washed at 42°C.  RNA was visualized on 

autoradiography film (BioMax, Kodak) following overnight storage with the membrane at -80°C.  

Membranes were probed with a β-actin probe following the same protocol.   

Real-time PCR to detect Mefv expression 

 Total RNA was isolated from the bone marrow and spleen, and the optical density (OD) at 

260 nm was used to determine RNA concentration.  RNA was converted to cDNA per 

manufacturer’s protocol (high capacity cDNA Reverse Transcription Kit; Applied Biosystems).  

TaqMan universal PCR master mix and probes corresponding to Mefv and β-actin mRNA 

transcripts were used to quantify fluorescence intensity by an ABI Prism 7900HT detection 
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system according to manufacturer protocol (all from Applied Biosystems).  The Mefv probe 

detects all known splice variants.  Relative expression values were calculated from the cycle 

number (Ct) data. 

Mouse genotyping 

 Mice used in experiments were genotyped by PCR and/or Southern blot.  PCR primer 

sequences listed in Table 2.2.  PCR product sizes were 351 bases for the WT allele and 594 

bases for the targeted allele. 

Flow cytometry 

 Single-cell suspensions of thymocytes, splenocytes, and lymph node cells were prepared 

using standard methodologies.  Cells were incubated in PBS containing 0.1% BSA during 

staining.  Fc-block, Gr-1-APC, CD11b-PE, CD-11c-FITC, CD-3-FITC, CD-4-PE, CD-8-PE Abs 

(BD Biosciences) were used as recommended by the manufacturer and compared with isotype-

matched Ab controls.  Samples were scanned using a Beckman Coulter CyAn ADP Analyzer, 

and data were analyzed using FloJo (TreeStar) software. 

Peritoneal lavage 

The peritoneal cavity was lavaged with 4 mL phosphate-buffered saline (PBS) and the 

concentration of cells was determined using a hemocytometer. 

Blood analysis 

 Blood was collected by cardiac puncture.  Whole blood containing 5mM EDTA was used for 

analysis on the Heska Hematology Analyzer by the Animal Clinical Chemistry and Gene 

Expression Laboratory at UNC-Chapel Hill.   
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Use of animals   

 All experiments were conducted in accordance with the National Institutes of Health Guide 

for the Care and Use of Laboratory Animals as well as the Institutional Animal Care and Use 

Committee guidelines of UNC Chapel Hill. 

 

Table 2.1. PCR primers. 

Construction of MefvDel vector: 
 3’ Red/ET arm upper (56624): gagaggtacCAAGAGGGGCAAGATTTGAA 

 3’ Red/ET arm 5’ junx lower (56621): 
GTGCTCGAAGGAGTTTCCTGcaattggctagc
acgcgtggatcctctagaGCCCTGTGTTGCCATA
ACTT 

 5’ Red/ET arm upper (56623): gagaggtacCTCATGGCTCTTGCTGCATA 

 5’ Red/ET arm lower (56622): CAGGAAACTCCTTCGAGCAC 

 Amp 3’ deletion (56719): 
CTTTGGCCGCCGCCCAGTCCTGCTCGCT
TCGCTACTTGGAGCCACTATCGATGATCT
TTTCTACGGGGTCTGACG 

Screen for targeted ESCs: 
 Upper Common BAC primer 

 Lower: AGATCCACGCCTAGCTTTCA 

3’ probe for Southern blot: 
 Upper: GTGGTGGGTCTTCCTGTGTT 

 Lower: GGTCTCTGTATGGGGTTGAAA 

Mouse genotyping primers: 
 Endogenous: CTTTGGAGATTGCTGGCTGT 

 Common: TCCAGGAAATGGAGAGATGG 

 Targeted: AAATGCCTGCTCTTTACTGAAGG 
PCR primers are listed in forward orientation. 
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Results 

Design of the Mefv targeting vector 

 The mouse Mefv gene is located within a 10 kb region on chromosome 16 in the mouse.  

The primary transcript contains 10 exons, with the translational start site located in exon 1.  To 

generate a mouse line carrying a null Mefv allele, we designed a targeting construct capable of 

deleting the entire Mefv locus.  Homologous recombination of this vector with the endogenous 

gene resulted in a 21 kb deletion at the Mefv locus, replacing the gene with a selectable marker 

gene. This deletion includes all identified exons as well as the 5 kb promoter region and the 

intergenic region immediately 3’ of the 3’UTR (Figure 3.1A).  A Vista plot of the genomic region 

was used to ensure that regions which are conserved between the human, mouse, and rat 

genomes and are likely to represent regulatory regions were removed upon homologous 

recombination (13).  The genomic region was replaced with a cassette containing: 1) a 

neomycin resistance gene (Neor) that was used for selection, 2) Bam HI and Xba I restriction 

digest sites that were used to screen for recombinants, and 3) elements for a later genetic 

manipulation at the targeted locus.   

Targeted mouse ESCs were identified 

 Correctly targeted ES cell lines were identified by three methods.  PCR was used as a 

preliminary screen and detected a fragment length consistent with incorporation of the targeting 

vector into the mouse genome in some cell lines.  These clones were screened by Southern blot 

analysis using the 3’ probe (Figure 3.1A).  Proper targeting of the Mefv locus created Bam HI 

and Xba I fragments that were shorter than those corresponding to the endogenous allele 

(Figure 3.1B).  Finally, real-time PCR detected a 50% decrease in the relative copy number of 

Mefv in the mouse genome (Figure 3.1C).  Proper recombination at the Mefv locus occurred at 

a frequency of 0.15% (2 of 672 ESC colonies screened).   
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Figure 3.1.  Targeting of the Mefv locus and screening of ESC clones.  A, Schematic 

showing the endogenous Mefv locus, gene-targeting construct, and targeted locus after 

homologous recombination with the targeting construct.  Upon homologous recombination, the 

entire coding region and 5 kb on either side of the Mefv gene was replaced with a selectable 

neomycin resistance (neor) gene.  Exons are depicted as filled boxes.  Arrow indicates 

directionality of the open reading frames.  Bam HI and Xba I restriction sites and the genomic 

fragment (3’ probe) used in Southern blot analysis are indicated.  B, Southern blot of DNA 

collected from ES cell lines and digested with Bam HI (top) or Xba I (bottom).  Labels identify 

individual ES cell lines.  C, Genomic copy number of the Mefv gene relative to the Hprt gene.  

Real-time PCR on genomic DNA collected from ES cell lines detects exon 1 of Mefv and a 

unique genomic region within Hprt.  Since Hprt is located on the X chromosome, a wild-type 

male has 2 copies of Mefv per Hprt.  Targeted male ES cell lines and wild-type female ES cell 
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lines have a 1:1 of Mefv to Hprt.  A comparison between DNA from a wild-type male and wild-

type female served as an assay control (checkered boxes).  Results are normalized to a wild-

type male.  Labels identify individual ES cell lines.  Results for clones 1072-3B4 and 1100-2A11 

were confirmed by at least two independent experiments. 

 

Mice carrying a null Mefv allele were generated 

 Chimeras generated from targeted 129S6 ES cell lines were crossed with both C57BL/6 

and 129S6 mice.  As the ES cells were generated from the 129 substrain, breeding with 129S6 

mice generated 129 Mefv-/- co-isogenic mice, which were used in all functional assays.  Mefv+/- 

mice were intercrossed, and DNA collected from the offspring was screened by Southern blot 

analysis and identifed pups that inherited the null allele (Figure 3.2A).  Inheritance of the null 

Mefv allele followed a Medelian pattern.  DNA from animals homozygous for the targeted locus 

(Mefv-/-) was subjected to additional Southern blot analysis to verify the absence of the Mefv 

gene.  As expected, DNA from these pups failed to hybridize with probes corresponding to 

various regions of the Mefv gene.    

 Consistent with our Southern analysis, northern blot analysis using a full length Mefv cDNA 

probe failed to detect Mefv transcripts in mRNA prepared from Mefv-/- neutrophils.  Mefv 

transcripts present in the wild type cells were absent, and no aberrant transcripts could be 

detected, confirming that the targeting strategy generated a null Mefv allele.  A β-actin cDNA 

probe was used to verify equivalent loading of RNA (Figure 3.2B). 

 To further define the mutation introduced into the Mefv locus, RNA was prepare from the 

bone marrow and spleen of Mefv+/+, Mefv+/- and Mefv-/- animals, and Mefv expression was 

assessed by quantitative PCR using primers specific for mRNA transcripts of the WT gene.  

Expression of Mefv is undetectable in Mefv-/- animals.  A 50% decrease in expression is 
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observed in heterozygous animals compared to Mefv+/+ animals, indicating that there is little or 

no compensatory transcription from the remaining wild-type Mefv allele (Figure 3.2C).    
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Figure 3.2. Verification of Mefv-/- mice.  A, Southern blot analysis of DNA from offspring 

generated by the intercross of mice heterozygous for the Mefv mutant allele.  The 8.6 kb BamHI 

restriction fragment is generated by the endogenous WT Mefv alelle and the 5.9 kb fragment is 

generated by the targeted Mefv null allele.  B, Northern blot analysis of RNA collected from 

recruited peritoneal neutrophils of Mefv+/+ and Mefv-/- mice.  A full-length Mefv cDNA probe was 

used to detect transcripts corresponding to the Mefv gene.  Several bands were detected in the 

WT sample, indicating the presence of multiple splice variants of Mefv.  All bands are absent in 

Mefv-/- mice.  A probe specific to β-actin confirms equal loading of the RNA samples.  C, 

Relative expression of Mefv in bone marrow and spleen tissues collected from Mefv+/+, Mefv+/-, 

and Mefv-/- mice. 

 

Naïve Mefv-deficient mice showed no developmental abnormalities 

 The loss of Pyrin did not impact the survival, growth, or reproductive performance of the 

mice.  Intercrossing heterozygous animals produced litters with Mefv-/- mice at expected 
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Mendelian ratios, and the size and frequency of litters from Mefv-/- mating pairs were similar 

compared to coisogenic Mefv+/+ (WT) 129/S6 mice.  Total body weight (Figure 3.3A) and organ 

weights (Figure 3.3B) were similar between age-matched 10-week-old WT and KO mice. 

Furthermore, Mefv-/- mice be distinguished from littermates based on morphological or 

behavioral criteria.  Mefv-deficient mice displayed no overt signs of acute or chronic disease, 

such as lethargy or sudden death.   
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Figure 3.3. Mefv-/- mice had normal body and organ weights.  A, Body weight of Mefv+/+ and 

Mefv-/- mice at 10 weeks of age.  n = 18 Mefv+/+, 19 Mefv-/- mice, p = 0.57.  B, Weight of spleen, 

thymus, and lung organs is expressed as percent of total body weight.  n = 3 mice per 

genotype. 

 

 Since Mefv expression was detected in immune organs of untreated mice, and FMF is an 

autoinflammatory disorder characterized by episodes of spontaneous inflammation, we 

hypothesized that the loss of Mefv might affect the resting, or naïve, state of the immune 

system.  We characterized naïve animals maintained in a sterile and pathogen-free environment 
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for indications of altered immune system development or signs of inflammation.  Cell 

populations within the primary immune organs of the thymus, spleen, and mesenteric lymph 

nodes from naïve mice were characterized by flow cytometry.  No change in cellularity of the 

thymus, spleen, or lymph nodes was apparent.  Furthermore, analysis of the cellular 

composition of these organs failed to identify a role for Mefv in the development of lymphocytes 

or cells of myeloid lineage, despite the high level of expression of Mefv in this later population 

(Figure 3.4A-C and data not shown).  To examine a large population of innate immune cells, 

cells residing in the peritoneal cavity were collected by lavage.  The total number of cells was 

similar between WT and KO animals (Figure 3.4D).  Additionally, blood collected from 6-month-

old WT and Mefv-/- animals also indicated a similar concentration of circulating lymphocytes, 

monocytes, and granulocytes between cohorts (Figure 3.4E).   
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     E 

WT 129 1.71 ± 0.28 8.29 ± 0.16 238.10 ± 29.55 73.47 ± 3.29 17.08 ± 2.13 10.50 ± 0.65 45.29 ± 0.98 13.79 ± 0.25

Mefv -/- 2.12 ± 0.35 8.34 ± 0.24 285.50 ± 31.61 67.25 ± 6.08 23.72 ± 6.97 10.03 ± 0.65 45.73 ± 1.09 13.90 ± 0.30

MONO HCT HGB

x103/uL x106/uL x103/uL % % % % g/dL

WBC RBC PLT LYMPH GRAN

 

Figure 3.4. Naïve Mefv-/- mice have a normal immune system profile.  A-C, FACS analysis 

shows the percentage of thymocytes, A, splenocytes B, and lymph node cells, C, that are 

positive for T lymphocyte (CD3/CD4 and CD3/CD8), B lymphocyte (B220), macrophage 

(CD11b), dendritic cell (CD11c), and neutrophil (Gr-1) cell receptors.  n = 3 – 6 mice per 

genotype for each tissue.  D, Total number of resident peritoneal cells collected in 4 mL of 

lavage fluid.  Each dot represents one mouse.  E, Analysis of blood collected from WT and 

Mefv-/- mice.  n = 13 mice per genotype. 
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Discussion 

 We describe here the generation of a mouse in which the entire Mefv gene is excised.  

Although a more difficult mutation to generate, this strategy ensures the loss of not only the 

primary Mefv transcript, but also transcripts initiated from internal promoters and splice variants 

from the Mefv locus.  Thus, proteins containing all or a subset of the many functional domains of 

Pyrin cannot be generated from this modified locus.  Pyrin null mice were born at a normal 

Mendelian ratio and displayed normal growth and development.  Immune system development 

was unaffected by the loss of Pyrin, and naïve mice showed no signs of inflammation or illness.  

Our results suggest that there may be a mechanism to prevent a functional deficit caused by the 

loss of Pyrin, at least in a naïve immune state.   

 Our northern blot analysis indicates that alternative splicing of murine Mefv is more 

extensive than previously described.  Although multiple splice variants of the human MEFV 

gene have been described (10), in mice and rats, only one transcript for the Mefv gene was 

detected by previous northern blot analysis (14).  Using RT-PCR, one splice variant of the 

mouse gene was identified in which exon 9 is replaced with an alternative exon a found in intron 

9 (11).  Nucleotide sequencing of the bands detected by our northern blot analysis is necessary 

to confirm the identity of these bands as transcripts of the Mefv gene, however their absence in 

Mefv null mice provides preliminary support. 

 It is not too surprising that naïve mice showed no signs of inflammation or illness.  The 

contribution of many genes cannot be detected in knock-out mice in a naïve state, but following 

treatments to induce an innate immune response, the contribution of these genes to 

inflammation is striking.  Many other mouse lines with deficiencies in genes that contribute to 

the innate immune response do not display a phenotype.  Specific to IL-1β production, Il1β, 

Caspase-1, Nlrp1b, and Nlrp3 –deficient mice do not show overt signs of spontaneous 

inflammation or developmental deficits.  Furthermore, immune cell composition of naïve mice 
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was unaltered by the loss of Aim2 (15).  Moreover, analogous to these previous studies, the 

lack of a detectable phenotype in naïve mice leaves open the possibility that a functional role of 

Pyrin may be distinguished following treatment to Pyrin-deficient mice to induce inflammation.   

 Mice carrying a disrupted Mefv allele were previously generated.  These mice carry an 

allele in which exon 3 is disrupted to place eGFP and pgk-Neor cassettes in frame, and a stop 

codon terminates translation within the altered third exon.  These mice produce a protein with 

an intact pyrin domain (PYD), but the rest of the protein is deleted.  Anecdotal notes of 

exacerbated immune function were reported in naïve mice and significant function differences 

were seen upon treatment of homozygous mutant mice with immune stimulants.  Immunological 

phenotypes including fever, increased IL-1β production, increased lethality in response to LPS, 

increased cellularity after the induction of peritonitis, and impaired apoptosis of macrophages 

were observed (11).  However, extrapolating the results of these studies to define the function of 

Pyrin is complicated by the presence of a truncated Pyrin protein in these animals, especially 

since individual domains within Pyrin appear to be functionally competent.  The authors based 

the interpretations of their studies on the idea that these mice express proteins with 

hypomorphic function.  However, expression of the truncated Pyrin protein appears to be 

greater than that of endogenous Pyrin.  This finding is more consistent with a model in which the 

disrupted gene produces a protein with increased function.  Furthermore, mutations in human 

Pyrin may not confer a loss-of-function to the Pyrin protein.  Intramolecular interactions between 

the domains of Pyrin have been seen (16), and it is reasonable to hypothesize that a mutation 

might alter these protein interactions and influence Pyrin to lead to a gain-of-function.  The PYD 

of the truncated mouse protein may function very differently than the wild-type Pyrin protein 

and/or mutant Pyrin generated by FMF-associated alleles.  Mutations could even result in 

hypermorphic function with respect to some interactions and hypomorphic function with respect 

to others.  Therefore, to address the overall function of Pyrin, we generated mice missing the 
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entire Pyrin protein.  Our strategy to remove the entire coding region and eliminate all potential 

splice variants will help to clarify what appears to be a quite complex contribution of Pyrin to 

innate immune responses. 

 A recent report describes the generation of mice expressing a chimeric Pyrin protein.  The 

majority of the protein is of endogenous origin, but a short region of the C-terminal end is 

removed and replaced with a mutated C-terminal region of human Pyrin, which includes the 

B30.2 domain.  Homozygous mice displayed delayed growth, visual signs of inflammation 

including dermatitis, and an increased number of innate immune cells, even in a resting state.  

Similar to studies using mice expressing a truncated Pyrin protein, work with these mice 

suggests that disruption to the Pyrin protein leads to inflammatory phenotypes.  However, again, 

discerning the contribution of Pyrin to the innate immune system is complicated by the presence 

of an altered protein which could have novel functions.  Consistent with this hypothesis, mice in 

which the wild-type B30.2 sequence was incorporated into the Mefv locus could not be 

generated, perhaps due to a novel protein function(s) that is incompatible with embryonic 

development. 

 While the majority of the Mefv gene is orthologous between mice and humans, a point 

mutation within the mouse gene forms a stop codon and causes early termination of 

transcription.  Thus, Pyrin encoded by the mouse gene lacks the C-terminal domain, termed 

B30.2, present in the human protein.  This complicates comparison of gene function, not only 

because numerous functions including interaction with Caspase-1, NLRPs1-3, and IL-1β have 

been assigned to this domain (16), but also because the majority of the FMF mutations are 

located in this C-terminal region (17).  In addition, major differences in the regulation of the gene 

have been noted between human and mouse: while the mouse gene is induced by IL-4 (11), 

this cytokine inhibits expression of the human ortholog (18).  These differences raise the 

possibility that one or more functions of Pyrin is unique to the human protein and is therefore 
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difficult to model in the mouse.  Thus, perhaps for no other autoinflammatory disorder is the 

validity of extrapolating results from mouse studies more subject to scrutiny than for FMF.  To 

address this problem, the targeted Mefv locus is designed to allow a further recombination event 

to introduce the human MEFV gene and its regulatory elements into the mouse genome.  Future 

studies, beyond the scope of this work, will examine the contribution of the B30.2 domain to the 

overall function of the Pyrin protein. 
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CHAPTER 4 

Genetic loss of murine Pyrin, the Familial Mediterranean Fever protein, 
increases Interleukin-1β levels 

 

 

 Familial Mediterranean Fever (FMF) is an inherited autoinflammatory disorder 

characterized by unprovoked episodes of fever and inflammation.  The associated gene, MEFV 

(Mediterranean Fever), is expressed primarily by cells of myeloid lineage and encodes the 

protein Pyrin/TRIM20/Marenostrin.  The mechanism by which mutations in Pyrin alter protein 

function to cause episodic inflammation is controversial.  To address this question, we have 

generated a mouse line lacking the Mefv gene by removing a 21 kb fragment containing the 

entire Mefv locus.  We show enhanced IL-1β release by Mefv-/- macrophages in response to a 

spectrum of inflammatory stimuli, including stimuli dependent on IL-1β processing by the 

NLRP1b, NLRP3 and NLRC4 inflammasomes.  These results are consistent with a model in 

which Pyrin acts to limit the release of IL-1β generated by activation and assembly of 

inflammasomes in response to subclinical immune challenges.  
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Introduction 

 Mutations in MEFV predispose humans to Familial Mediterranean Fever (FMF), a disease 

characterized by spontaneous activation of the innate immune system in the absence of a 

detectable pathogenic stimulus.  Fever and acute abdominal pain are the most common 

symptoms, but disease manifestations also include arthritis, pleuritis, localized erythema, and 

amyloidosis of the kidneys. The inflammation observed in FMF patients is characterized by 

neutrophil influx to peripheral tissues and increased serum levels of acute-phase reactant 

proteins and cytokines (1).  The efficacy of pharmacological inhibitors of IL-1β/IL-1 receptor 

signaling in treatment of some patients supports the hypothesis that pathophysiology of FMF is 

mediated in part by this cytokine (2).   

 MEFV encodes a 781 a.a. cytoplasmic protein comprised of 5 domains:  pyrin, b-Zip, B-

Box, coiled-coiled, and PRY/SPRY (B30.2), although this later domain is absent in the mouse 

protein. The pyrin domain is of particular interest since this domain is found in several proteins 

critical in IL-1β production (3). Similar to most cytokines, Il1β transcript levels are enhanced by 

cellular stimulation with cytokines or pathogen-associated molecular patterns (PAMPs) (4).  

However, the Il1β gene does not encode a leader peptide to facilitate transport and secretion of 

the protein (5).  Instead, it is synthesized as an inactive pro protein which is cleaved by the 

cysteine-aspartic acid protease Caspase-1 (CASP-1) to form mature IL-1β.  Catalytic activity of 

CASP-1 also requires removal of a regulatory domain, although in this case, this is achieved 

through autocatalytic cleavage.  Activation of CASP-1 is observed after exposure of cells to both 

host-derived signals of cellular stress or damage, called danger-associated molecular patterns 

(DAMPs) and to PAMPS.  These signals trigger the assembly of inflammasomes, protein 

scaffolds nucleated by a nucleotide-binding domain, leucine-rich repeat family (NLR) protein.  A 

number of NLRs are capable of assembling an inflammasome in response to unique but 

overlapping DAMPS and PAMPS.  To date, these include NLRP3, NLRP1b, NLRC4, NLRP2 
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and NLRP6 (6-11).  However, assembly of a CASP-1 activating  inflammasome complex is not 

restricted to the NLR family, as more recently, the protein absent in melanoma 2 (AIM2) has 

been shown to contribute to CASP-1 activation and IL-1β release in response to dsDNA (12).   

 In addition to the NLR/AIM2 protein, the inflammasome often contains the protein adaptor 

ASC which facilitates the recruitment of pro-Caspase-1 to the complex (3).  Interaction between 

the pyrin and card domains of various proteins is critical for inflammasome assembly, both the 

self association of the NLR proteins and the recruitment of ASC and CASP-1 to the complex.  It 

is, therefore, not surprising that it has been suggested that proteins which contain a PYD or 

CARD domain, yet lack other critical functional domains, act as dominant negative regulators of 

inflammasome assembly (13).  Furthermore, a number of studies indicate that Pyrin might 

function in a similar manner, with disease-associated mutations resulting in reduced ability to 

limit inflammasome assembly (14-17).  Such a model is consistent with the recessive pattern of 

inheritance of the disease (18, 19) and with previous findings that Pyrin can bind ASC, CASP-1, 

NLRPs 1-3, and IL-1β (15, 17, 20, 21). 

 Not all reports, however, support this model.  Molecular genetic reports of both the absence 

of individuals carrying null MEFV alleles and the observation of disease in some individuals 

believed to carry a wild-type allele, have led to the suggestion that FMF is an autosomal 

dominant disease with variable penetrance (22, 23).  It has been posited that Pyrin itself can 

assemble a CASP-1 activating inflammasome, with the assembly of the mutant Pyrin 

inflammasome triggered by lower, subclinical, levels of PAMPs/DAMPs (21, 24-27).  

Transfection and knockdown studies provide limited clarification of the function Pyrin, as in 

some studies, Pyrin increased IL-1β release, while in others, using similar strategies, cytokine 

production was decreased (14-17, 21, 25-27). 
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 To further examine the function of Pyrin, we generated a mouse carrying a null Mefv allele.  

This mouse lacks the entire 21 kb locus.  Using primary cells from this mouse line, we show that 

Pyrin negatively regulates IL-1β production in response to inflammasome-dependent stimuli. 
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Materials and Methods 

In vitro macrophage activation studies 

 Resident peritoneal cells were collected by lavage and cultured in RPMI media (Gibco) 

containing 10% FBS (Cellgro), 10 mM HEPES (Gibco) and supplements (L-glutamine, 

pen/strep, 2β-mercaptoethanol) at 106 cells/mL and 105 cells/well in a 96-well plate.  Cells were 

washed with phosphate-buffered saline (PBS, Gibco) to remove non adherent cells, primed with 

1 µg/mL crude lipopolysaccharide derived from Escherichia coli (LPS, Sigma) and then 

stimulated as indicated.  250 µg/mL Aluminum hydroxide (Alum), 250 µg/mL silica, 100 µg/mL 

calcium pyrophosphate dihydrate (CPPD), 1mM ATP, 250 ng/mL each of lethal factor and 

protective antigen from Bacillus anthracis (LT), 10 ug/mL muramyl dipeptide (MDP), 5 ug/mL 

titanium dioxide (TiO2).  For LT treatment, cells were cultured in DMEM without glutamine and 

containing 2 mM Glutamax (Invitrogen), 10% FBS, 2 mM HEPES, and 50 ug/mL gentamycin.  

For ATP stimulation, cells were incubated in BSSH buffer.  Cell culture supernatants were 

collected and stored at -80°C.  After collection of media, cells were lysed with and total protein 

was measured. 

Real-time PCR Analysis 

 Total RNA was converted to cDNA using High Capacity cDNA Reverse Transcription Kit.  

TaqMan universal PCR master mix and recommended probes were detected by ABI Prism 

7900HT detection system (Applied Biosystems).  Gene expression was calculated as the 

relative expression of Mefv, Il1β, or Il6 normalized by Gapdh or 18s.   

Protein analyses 

 IL-1β and IL-6 ELISA (eBioscience), lactate dehydrogenase (LDH, Clontech) and total 

protein (BCA protein assay, Thermo Scientific Pierce) protocols were followed.   



94 
 

LPS/ATP treatment in vivo 

 Mice were treated with 1 mg/mouse of crude LPS at time 0 h, followed by 500 µL/mouse of 

30 mM ATP at 2 h, and harvested at 2.5 h.  The peritoneal cavity was lavaged with PBS.  

Peritoneal cell concentrations and viability were assessed using a hemocytometer and trypan 

blue.  Samples were centrifuged to pellet cells and the supernatant was collected for IL-1β 

ELISA.   

Animal Care and Use 

 All experiments were conducted in accordance with the National Institutes of Health Guide 

for the Care and Use of Laboratory Animals as well as the Institutional Animal Care and Use 

Committee guidelines of the University of North Carolina at Chapel Hill. 



95 
 

Results 

Pyrin-deficient mice displayed normal responses to LPS 

 The N-terminal cleaved fragment of Pyrin has been reported to interact with IκB-α and the 

p65 subunit of NF-κB, increasing the activity of this transcription factor (28).  If this model is 

correct, it is reasonable to expect that the induction of NF-κB transcripts after treatment of cells 

with inflammatory mediators such as LPS would be attenuated in Mefv-/- mice.  To test this 

hypothesis, we compared the mRNA levels of two NF-κB sensitive transcripts, Il1β and Il6, in 

macrophages before and after exposure to LPS.  Basal levels of mRNA for both of these 

cytokines were similar in the Mefv-/- and control macrophages.  As expected, treatment of the 

cells with LPS for 24 hours resulted in a robust increase in expression of these genes.  

However, the magnitude of the increase in expression of Il1β and Il6 was not altered in cells 

lacking Pyrin (Figure 4.1A).   

 To address this point further, we examined the level of IL-6 and IL-1β in the supernatant of 

cultures of rpMΦ before and after LPS treatment.  IL-6, similar to most cytokines, is released 

through a classical secretion pathway (4).  Consistent with the increase in mRNA levels, a 

dramatic increase in the level of IL-6 was observed in the supernatants from the LPS-treated 

cells.  No difference, however, was observed in IL-6 levels in samples from wild-type (WT) and 

Pyrin-deficient cell cultures (Figure 4.1B).   Similar to IL-6, LPS results in an increase in 

expression of Il1β mRNA, but efficient release of this cytokine requires processing of the 

immature protein by Caspase-1 (7).  Thus, not unexpectedly, the level of IL-1β in the 

supernatant collected from macrophage cultures is low, and while these levels increased 

significantly after LPS treatment, the magnitude of this increase was small.  Loss of Pyrin did 

not augment or attenuate the release of IL-1β by rpMΦ either left untreated or following 

treatment with LPS (Figure 4.1C).  Survival of the macrophages, either under control conditions 

or in the presence of LPS was not altered by the lack of Pyrin: levels of the cytoplasmic enzyme 
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LDH in the supernatant did not differ between samples collected from Mefv-/- and WT cultures 

(Figure 4.1D).       
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Figure 4.1.  Loss of Mefv does not affect the response to LPS.  rpMΦ from Mefv+/+ and 

Mefv-/- littermate mice were untreated or treated with 1 µg/mL LPS for 24 h.  A, Il1β and Il6 

expression at the transcript level is expressed as fold induced by LPS treatment.  n = 3 mice per 

genotype.  B and C, Concentration of IL-6 and IL-1β in supernatants from LPS-treated rpMΦ 

cultures as determined by ELISA.  n = 6 mice per genotype.  D, The concentration of lactate 

dehydrogenase (LDH) released into cell supernatants was used as an indicator of cell death. 
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NLRP3 Inflammasome-dependent IL-1β production is increased in Mefv-deficient 

macrophages 

 To determine if a loss of Pyrin modulates inflammasome-mediated IL-1β production, WT 

and Mefv-/- rpMΦ were exposed to a variety of elicitors that induce NLRP3 inflammasome-

dependent IL-1β production.  Cells were pre-treated with LPS to induce IL-1β transcription and 

then stimulated with one of the following NLRP3 inflammasome elicitors: titanium dioxide 

(TiO2), aluminum hydroxide (alum), calcium pyrophosphate dehydrate crystals (CPPD), silica, 

or ATP (6, 29).  IL-1β and IL-6 levels in the cell supernatants were determined  by ELISA.  As 

expected, treatment of cells with compounds that trigger assembly of the NLRP3 inflammasome 

resulted in substantial increase in the levels of extracellular IL-1β, compared to cultures treated 

with LPS alone.  In addition, in all cases, higher IL-1β cytokine levels were measured in 

supernatants collected from Mefv-/- cultures compared to those collected from similarly treated 

WT cultures.  The magnitude of the increase in the levels of IL-1β in Mefv-/- cultures compared 

to controls varied depending on the stimulus, ranging from an increase of 1.5-fold in cells 

exposed to silica to an increase of almost 5-fold in the response of Mefv-/- cells to Alum (Figure 

4.2A).  No difference was observed in the levels of IL-6 present in the samples from WT and 

Mefv-/- cultures (Figure 4.2B).  Both mature and pro-IL-1β can be released into the supernatant 

after cell death, and most ELISAs do not bind exclusively to the mature protein.  It is therefore 

possible that the increase in IL-1β in samples collected from Mefv-/- cultures reflects an increase 

in cell death.  To address this question, we measured levels of LDH in the supernatant.  Many of 

the agents used to stimulate NLRP3 assembly decrease cell viability (30), and the magnitude of 

this decrease was dependant on the agent used to elicit the inflammasome, but viability was not 

influenced by the absence of Pyrin: LDH levels did not differ significantly between Mefv-/- and 

WT macrophage cultures (Figure 4.2C).   
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Figure 4.2.  A loss of Pyrin causes 
increased IL-1β protein levels in 
response to NLRP3 inflammasome 
stimuli.  rpMΦs from Mefv+/+ and 

Mefv-/- littermate mice were exposed 

to LPS and the indicated stimuli.  The 

concentration of IL-1β, A, and IL-6, B, 

cytokines in cell culture supernatants 

was determined by ELISA.  C, LDH 

protein levels detected in cell 

supernatants.  The total protein of 

cell lysates was measured to verify 

equivalent plating of cells.  TiO2, 

titanium dioxide; Alum, aluminum 

hydroxide; CPPD, calcium 

pyrophosphate dihydrate; ATP, 

adenosine 5’ triphosphate.  n = 6 

mice per genotype.  Results are 

representative of at least 4 

independent experiments.  A 

student’s t test was used to calculate 

p values for WT versus Mefv-/- 

cultures.  **, p ≤ 0.001; ***, p < 

0.0001. 
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Negative regulation of IL-1β production is not limited to the NLRP3 inflammasome 

 Caspase-1 activation and IL-1β release is also observed after exposure of macrophages to 

agents that mediate the assembly of NLRC4 and NLPR1b -containing inflammasomes (7).  We 

therefore asked whether a loss of Pyrin impacts only NLRP3-mediated IL-1β release or whether 

it also modulates IL-1β release secondary to assembly of these inflammasomes.  WT and Mefv-

/- rpMΦ were treated with LPS and exposed to agents known to elicit the NLRC4 and NLRP1b 

inflammasomes.  The NLRC4 inflammasome is assembled in response to flagellin, while 

NLRP1b is required for IL-1β production in response to Bacillus anthracis (anthrax) lethal toxin 

(LT).  Muramyl dipeptide (MDP) alone and MDP plus titanium dioxide (TiO2) activate both 

NLRP1 and NLRP3 inflammasomes (7, 29).  Again, significantly higher levels were observed in 

samples collected from cultures of Mefv-/- macrophages compared to similarly treated WT 

controls (Figure 4.3A).  In contrast, IL-6 and LDH levels in supernatants collected from WT and 

Mefv-/- cultures were similar (Figure 4.3B and C). 
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Figure 4.3.  A loss of Pyrin causes 
increased IL-1β protein levels in 
response to NLRC4 and NLRP1b 
inflammasome stimuli.  rpMΦs from 

Mefv+/+ and Mefv-/- littermate mice were 

exposed to LPS and the indicated 

stimuli.  The concentration of IL-1β, A, 

and IL-6, B, cytokines in cell culture 

supernatants was determined by 

ELISA.  C, LDH protein levels detected 

in cell supernatants.  The total protein 

of cell lysates was measured to verify 

equivalent plating of cells.  MDP, 

muramyl dipeptide; LT, lethal toxin of 

Bacillus anthracis; TiO2, titanium 

dioxide.  n = 6 mice per genotype.  

Results are representative of at least 4 

independent experiments.  A student’s 

t test was used to calculate p values for 

WT versus Mefv-/- cultures. #, p < 0.05; 

*, p ≤ 0.01. 
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IL-1β levels after LPS/ATP treatment in vivo were not affected by the loss of Pyrin 

 To determine if Pyrin affected inflammasome-mediated IL-1β production in vivo, we 

exposed mice to LPS and ATP.  In contrast to the significant 2-fold increase in IL-1β levels in 

supernatants of macrophages treated with LPS/ATP in vitro (p < 0.0001), Mefv-/- and WT mice 

released similar amounts of IL-1β in vivo (Figure 4.4A).  The concentration and viability of 

peritoneal cells was also unaffected by the loss of Pyrin (Figure 4.4B and C).  Previous studies 

have demonstrated that systemic IL-1β levels are increased in vivo after LPS/ATP treatment by 

a NLRP3 inflammasome-dependent mechanism (31, 32), and we were able to verify these 

findings using our experimental system (Figure 4.4D and E).  However, given the variability 

which is inherent to this experimental system, it is unlikely that a 2-fold change in IL-1β levels 

would be detected.   
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Figure 4.4.  Loss of Pyrin does not affect the response to LPS/ATP treatment in vivo.  A – 

C, Mefv+/+, Mefv-/-, and Caspase-1-/- mice were treated with 1 mg/mouse of crude LPS at time 0 

h, followed by 500 µL/mouse of 30 mM ATP at 2 h, and harvested at 2.5 h.  The peritoneal 

cavity was lavaged with 4 mL of PBS.  A, IL-1β concentration in lavage fluid as detected by 

ELISA.  B, Cell concentrations were determined using a hemocytometer and C, trypan blue to 

assess viability.  Each dot represents one mouse in A – C.  D, Nlrp3+/+ and Nlrp3-/- mice were 

treated as in A.  n = 3 mice per genotype.  p < 0.05.  E, WT B6 and P2rX7
-/- mice were treated 

with LPS followed by either PBS or ATP and harvested as in A using 3 mLs of PBS.  n = 3 and 

3 for LPS/PBS and 4 and 7 for LPS/ATP.  *, p < 0.05. 
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Discussion 

 Using Pyrin null mice, we show a marked change in the response of primary macrophages 

to a number of inflammatory stimuli; specifically, a significant increase in the release of IL-1β 

observed in cultures derived from Mefv-/- mice in comparison to WT mice.  

 Since the discovery of the genetic lesions which cause FMF, numerous models have 

emerged that attempt to incorporate information gleaned from the genetic and clinical 

characteristics of the disease, from the structure of the protein and its pattern of expression, and 

from studies of the gene in model systems.  One model suggests that Pyrin is a substrate for 

Caspase-1, and the N-terminal fragment of Pyrin potentiates inflammation by interacting with 

proteins of the NF-κB pathway.  An increased ratio of cleaved to intact protein was detected in 

clinical samples from FMF patients (28).  However, other investigators have not observed 

increased NF-κB-dependent luciferase activity following overexpression of full-length MEFV (16, 

21).  Our studies of mouse macrophages lacking Pyrin do not support a role for Pyrin in activity 

of the NF-κB pathway, although more extensive studies are required.  An increase in expression 

of NF-κB sensitive transcripts was not observed in Mefv-/- cells in a naïve state or after exposure 

to LPS.  As expected, i.p. injection of LPS resulted in an acute peritonitis characterized by a 

rapid drop in body temperature and accumulation of inflammatory cells in the peritoneal cavity. 

However, again, no difference was observed in the response of the mutant mice compared to 

control littermates.   

 The phenotype of the Mefv null mice differs in some aspects from those reported previously 

for mice carrying a disrupted Mefv locus. Macrophages from these mice were shown to release 

more IL-1β than wild type cells.  In addition, these animals displayed an exaggerated cryogenic 

response to low-dose LPS, and an increase in morbidity upon exposure to high-dose LPS or 

LPS and D-Gal.  An increase in the number of inflammatory cells recovered from peritoneal 

lavage fluid was observed in these mice after exposure to thioglycolate. Furthermore, apoptosis 
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was impaired in macrophages collected from animals homozygous for the targeted locus (14).  

In contrast, we did not observe an increase in the release of IL-1β from Mefv-/- cells treated with 

LPS alone, and as discussed above, the response of the Mefv-/- animals to LPS delivered i.p. 

could not be distinguished from that of the controls. We also failed to detect any change in the 

survival of Mefv null cells: no difference in the rate of cell death was observed in cultured 

macrophages, or in the number of cells surviving after stimulation of these cultures with 

inflammatory mediators.  In addition, ex vivo survival of recruited peritoneal neutrophils lacking 

Pyrin was not altered (data not shown).  One explanation for the differences between the mutant 

Mefv line characterized in this earlier report and the line described here is that in the former, a 

Mefv transcript and a truncated Pyrin protein were created by the targeted allele.  In fact, the 

level of this truncated protein, based on western analysis, appeared to be higher than that 

observed for the native protein.  It is possible that this truncated protein conferred unique 

functions not observed in mice carrying a null allele. 

 While we did not observe an increase in the IL-1β release by macrophages in response to 

LPS alone by cells lacking Pyrin, increased levels of IL-1β were detected in the culture media 

after stimulation of these mutant cells with agents that lead to inflammasome assembly.  The 

increase in IL-1β levels was observed in supernatants collected from cells stimulated with 

agents known to trigger assembly of NLRP1b, NLRP3, and NLRC4 inflammasomes.  Increased 

release of IL-1β from cells in response to all of the tested inflammatory stimuli is inconsistent 

with a model in which Pyrin modulates IL-1β production by regulating the assembly of a specific 

inflammasome, such as the NLRP3 inflammasome.  It is unlikely that Pyrin acts to block ASC or 

Caspase-1 association with the inflammasome, because no alteration in Caspase-1 activity was 

observed between Mefv-/- and wild-type cells (data not shown).  Our results differ from studies 

carried out with a human monocyte/macrophage cell line and PBMCs in which silencing of the 

MEFV transcript suppressed secretion of IL-1β (25, 26), and from transfection studies in which 
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overexpression of Pyrin increased Caspase-1 activity and IL-1β release (21).  However, our 

results are consistent with models in which Pyrin acts as a negative regulator of innate immune 

pathways, and with a genetic model in which Pyrin mutations causing FMF represent loss-of-

function mutations.  In opposition to the studies mentioned above, silencing of MEFV has been 

shown to increase IL-1β release from a human monocyte/macrophage cell line (15, 17).  This 

model is also supported by transfection studies in which wild-type Pyrin inhibited pro-IL-1β 

processing in macrophage cell lines, whereas the FMF-associated alleles proved less active in 

these assays (14, 15). 

 It is becoming increasingly apparent that production of IL-1β is regulated at many different 

levels, and that the relative importance of these mechanism(s) is likely dependant on many 

factors including the cell type, its local environment, and the nature of the stimuli (33). For 

example, recently, induction of autophagy by rapamycin was reported to result in degradation of 

pro-IL-1β and reduced secretion of IL-1β (34).  Interestingly, in one study, examination of PMNs 

from FMF patients revealed a gene expression pattern consistent with impaired basal 

autophagy (35), raising the possibility that increased IL-1β levels in FMF patients and the 

increase in IL-1β release by the Mefv-/- macrophages reflect a defect in regulation of cellular 

levels of pro-IL-1β.  Many other means by which Pyrin could modulate release of IL-1β are 

apparent.  For example, alteration in uptake of particulate matter and/or decrease in lysosomal 

stability or transport could increase IL-1β maturation in response to many stimuli (7).  It has 

been previously reported that mice with peritonitis induced by octacalcium phosphate (OCP) 

crystals had elevated IL-1β levels, and IL-1β release is was not impaired by the loss of the 

inflammasome components NLRP3 or ASC (36).  In another study, crystal-induced IL-1β 

production was blocked by colchicine, a prophylactic drug for FMF patients (37).  Furthermore, 

higher levels of reactive oxygen species have been reported in cells from FMF patients (38), 

and reactive oxygen species can increase IL-1β release (39-41).  Pyrin may regulate the 
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release of mature IL-1β from the cytoplasm, a process that is poorly understood (5).  Together, 

these data support a hypothesis that Pyrin regulates trafficking of vesicles containing IL-1β.  

Further studies will be required to identify at which of these many steps Pyrin acts to limit 

release of IL-1β.  

 Recently, an additional mouse line carrying a mutant Mefv-/- gene was reported.  No 

difference in the release of IL-1β by macrophages after treatment with LPS or LPS and ATP, 

after infection with Salmonella typhimurium, or after tranfection of DNA was reported (24).  A 

number of explanations for these differences are possible.  First, while our studies use mature 

peritoneal macrophages which express high levels of Pyrin (Figure 2.2B), Chae, et al. examine 

IL-1β production in bone marrow-derived macrophages.  As cultured bone marrow-derived 

macrophages express very low levels of Pyrin, the impact of the loss of this protein on IL-1β 

processing and/or release might not be as apparent with this cell type as on comparison of cells 

with higher levels of expression.  In addition, the two studies use mice of differing genetic 

backgrounds: those reported here carried out entirely with co-isogenic 129S6 mouse lines, while 

those of Chae and collegues use N6 B6.129 animals.  It is possible that the regulatory role of 

Pyrin might be more apparent on some genetic backgrounds.  Correspondingly, the severity of 

FMF can differ dramatically between individuals carrying the same mutation (1).  

 The demonstration here that loss of Pyrin can result in increase in IL-1β release is 

consistent with the original designation of FMF as a recessive genetic disorder.  However, 

perhaps for no other autoinflammatory disorder is the validity of extrapolating results from 

mouse studies more subject to scrutiny than for FMF.  Pyrin encoded by the mouse gene lacks 

the C-terminal domain, termed B30.2, that is present in the human protein.  This complicates 

comparison of gene function, not only because numerous functions including interaction with 

Caspase-1, NLRPs1-3, and IL-1β have been assigned to this domain (17), but also because the 

majority of the FMF mutations are located in this C-terminal region (14).  In addition, major 
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differences in the regulation of the gene have been noted between human and mouse: while the 

mouse gene is induced by IL-4 (14), this cytokine inhibits expression of the human ortholog 

(42).  These differences raise the possibility that one or more functions of Pyrin is unique to the 

human protein and is therefore difficult to model in the mouse.  Thus, until novel methods and 

reagents are developed for addressing this limitation, we can only ascertain that Pyrin can act to 

limit the activity of proinflammatory pathways, namely the release of IL-1β by macrophages, in 

at least some species. 
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CHAPTER 5 

The role of Pyrin in neutrophils 

 

 In FMF patients, neutrophils accumulate at sites of inflammation, implying that these 

immune cells may play a role in disease pathophysiology.  Neutrophils from patients with FMF 

are reported to have altered activity and survival in ex vivo assays.  We hypothesize that genetic 

lesions within the MEFV gene alter a primary function of Pyrin in neutrophils and promote FMF 

pathology.  To address this hypothesis, we created a mouse line lacking the Mefv gene and 

Pyrin protein.  We characterized the development, recruitment, and survival of neutrophils.  We 

did not detect any differences in neutrophils from Mefv-/- mice compared to neutrophils from 

wild-type mice using these criteria, despite high expression of Mefv in murine neutrophils.  While 

more extensive characterization is necessary, these results do not support the hypothesis that 

neutrophil phenotypes seen in FMF patients result from mutations to the MEFV gene. 
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Introduction 

 Neutrophils are very dynamic cells and are critical for the host pathogen response.  

Neutrophils are the first line of defense against bacterial, yeast, and fungal infections.  Their 

rapid recruitment to sites of tissue damage helps to prevent the early spread of infection and 

shape the overall immune response.  In addition to infection, neutrophils also respond to 

mechanical injury (such as cuts or burns), oxidative stress (brought on by ischemia/reperfusion), 

and thermal stress (brought on by overheating or excessive exercise).  Significant neutrophil 

deposition can be maintained in peripheral tissue during chronic inflammation.  

 Three pieces of correlative evidence support a model in which neutrophils play a role in 

FMF pathophysiology.  First, during inflammatory attacks, neutrophils accumulate at sites of 

inflammation.  Furthermore, the lifespan of neutrophils is 1–3 days (1), which correlates with the 

duration of symptoms and suggests that neutrophils mediate the onset and amelioration of 

inflammation.  While these data suggest that FMF-associated inflammation engages 

neutrophils, they do not clarify if mutations in Mefv directly affect neutrophils or if neutrophil 

accumulation is an indirect result of perturbations to immune signaling upstream of neutrophil 

recruitment, activation, and/or survival.  Second, colchicine can successfully ameliorate 

inflammatory episodes in many FMF patients.  As colchicine is sequestered mainly by 

neutrophils (2), this suggests that altering neutrophil function can alter the outcome of FMF.  

Colchicine modulates the oxidative burst, phagocytosis, and chemotaxis functions of neutrophils 

(3-5).  Still, the therapeutic effects of colchicine cannot distinguish between a direct reversal of 

the cause of FMF pathophysiology or an indirect bypass of exacerbated upstream signaling.  

Third, Mefv is expressed more highly in neutrophils than any other cell type tested.  This argues 

that Mefv could play a direct role in neutrophil function.   

 Previous studies with neutrophils from FMF patients demonstrate altered neutrophil 

physiology.  Oxidative burst and phagocytosis are increased in neutrophils from FMF patients 
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compared to controls (3-11).  Interestingly, neutrophils demonstrates a biphasic phenotype in 

which activation of neutrophils collected from FMF patients between attacks is more intense 

than in neutrophils harvested from FMF patients during an attack period (4, 8, 9).  Furthermore, 

previous work demonstrates that neutrophils from FMF patients are more susceptible to 

apoptosis.  Following endotoxin (LPS) exposure, neutrophils from healthy human donors show a 

decrease in apoptosis, while neutrophils from FMF patients show an increase in apoptosis 

compared to untreated neutrophils (10).   

 To test the hypothesis that Pyrin functions in neutrophils to mediate acute episodic 

inflammation associated with FMF, in vitro and in vivo experimental systems were used to 

determine if a deficiency of the Pyrin protein affected neutrophils.  In this chapter, studies 

designed to isolate and differentiate a role of Mefv in intrinsic neutrophil processes are 

presented.  The following chapter describes in vivo models of peritonitis that were designed to 

detect differences in not only neutrophil function, but also macrophage function and the overall 

immune response in Mefv-/- mice compared to WT mice.  The development, recruitment, and 

survival of neutrophils were not affected by the loss of Pyrin function. 
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Methods 

Isolation of bone marrow neutrophils 

 The polymorphonuclear fraction that contained bone-marrow neutrophils was isolated from 

total bone marrow by centrifugation through a density gradient per manufacturer’s instructions 

(density 1.083 g/mL and 1.119 g/mL; Histopaque, Sigma-Alrich).  Greater than 90% of cells 

were classified as bone-marrow neutrophils based upon morphological analysis of cytospun 

cells stained with Hema-3 (Protocol, Fisher Scientific).   

Peritoneal neutrophil recruitment 

 Wild-type (WT) and Mefv-/- mice were treated with 1 mL of 1 mg/mL zymosan-A (from 

Saccharomyces cerevisiae; Sigma-Aldrich) dissolved in PBS, by intraperitoneal (i.p.) injection 

using a 27G needle.  Zymosan-A solution was aspirated through a 30G needle before injections 

to ensure the solution was homogeneous.  Mice were sacrificed at 4 h after treatment, and the 

peritoneal cavity was lavaged with 4 mLs of Delbucco’s phosphate-buffered saline (PBS; Gibco) 

to collect peritoneal cells.  The majority of peritoneal cells were elicited neutrophils.  Cell 

numbers within the peritoneal lavage fluid were determined using a hemocytometer. 

In vitro neutrophil survival studies 

 WT and Mefv-/- thirteen-week-old female mice were used in these studies.  Elicited 

peritoneal neutrophils were collected in PBS at 4 h following zymosan-A treatment, as stated 

above.  Cells were kept on ice during harvest.  Samples were diluted 2-fold with PBS and then 

washed once with 10 mLs of PBS containing 10% fetal bovine serum.  Centrifuge steps were 

done at 230 x g for 10 minutes at 4°C.  Cells were eluted in 13 mLs of DMEM containing 10% 

FBS, 150 U/mL of penicillin, 150 µg/mL of streptomycin, 0.438 mg/mL of L-glutamine (all from 

Invitrogen), gentamicin, and 57.2 µM 2-Mercaptoethanol (Sigma-Aldrich).  Cell densities were 

determined using a hemocytometer, and cells were diluted to 1 x 106 cells/mL.  Cells were kept 
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at room temperature in a laminar flow hood while counting.  400 µL (4 x 105 cells) were plated 

into each well of 48-well plates.  Cell cultures were maintained in a constant environment 

(humidified 37°C, 5% CO2) for the indicated times.  When cultured in 10% serum, 80 – 90% of 

neutrophils are strongly or loosely -adherent to the culture dish.  At harvest, wells were pipette-

mixed in order to collect the majority of neutrophils in the well. 

Trypan Blue 

 Viability was assessed by hemocytometer using cell samples containing 0.1x volume of 

trypan blue.  Percent viability was calculated as the number of live cells excluding trypan blue 

divided by the total number of cells. 

LDH Assays 

 Cell culture samples were collected from duplicate wells per mouse for each timepoint.  

Samples were centrifuged at 200 x g for 5 minutes at room temperature.  The clarified 

supernatant was stored at -80°C until use.  The amount of LDH released into the culture media 

was measured by a colorimetric assay following the manufacturer’s protocol (Clontech).  

Results were standardized to the total LDH released from cells treated with 1% Triton-X (100% 

lysis control) in order to control for differences in cell plating densities.  Absorbance values were 

corrected by values at 0h to control for differences in initial viability.  The percentage of total 

LDH released was calculated using the formula: ((Absorbance at time X – Absorbance at 

0h)/(Absorbance of 100% lysis control – Absorbance at 0h)) x 100%. 

Flow cytometry 

 Fluorescently activated cell sorting (FACS) was used to detect Gr-1 receptor expression, 

phosphatidylserine translocation, and nuclear membrane permeability using the fluorescently 

labeled agents APC-conjugated anti-Gr-1 (Ly-6G and Ly-6C; 553129, BD Pharmingen), FITC-

conjugated Annexin V (An V; BD Pharmigen), and propidium iodide (PI; Cell Technology).   
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 Triplicate wells were pipette-mixed and 400 µL was collected and stained for either Gr-1 

and An V or for PI.  For samples stained with Gr-1 and An V, 4 mL of PBS was added as an 

initial wash step, and then cells were washed with Annexin V binding buffer.  Cells were 

resuspended in 110 µL of binding buffer containing 5 µL of An V and 5 µL of mouse BD Fc 

Block (anti-CD16/CD32; 553142, BD Pharmigen), which was used to prevent background 

staining.  Samples were incubated for 10 minutes and then 2 µL of Gr-1 or isotype antibody was 

added.  Samples were incubated 10 minutes and then 400 µL of binding buffer was added.  

FACS staining was done at room temperature.  Gr-1 positive/negative gate parameters were set 

using a sample stained with APC-conjugated IgG2b, κ isotype control (553991, BD Pharmigen).  

For samples stained with PI, cells were collected and stained directly in culture media to avoid 

unnecessary disturbances to the cells or removal of dead cells.  PI was used at 0.01x volumes.  

Samples were scanned using a Beckman Coulter CyAn ADP Analyzer, and data were analyzed 

using Summit V5.2 software.  

Animal Care and Use 

 All experiments were conducted in accordance with the National Institutes of Health Guide 

for the Care and Use of Laboratory Animals as well as the Institutional Animal Care and Use 

Committee guidelines of UNC Chapel Hill.  

Statistical analyses  

 A two-tailed unpaired t-test was used to determine statistical probability of differences 

between WT and Mefv-/- neutrophils, with a significance limit of p ≤ 0.05. 
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Results 

Development of neutrophils is not impaired by the loss of Pyrin 

 As discussed in Chapter 2 and visualized in Figures 2.1 and 2.2, Mefv is expressed in 

myeloid-lineage cells, and specifically, in neutrophils, at a higher level than any other cell type.  

It is expressed in bone marrow neutrophils, a relatively immature and inactive neutrophil 

subpopulation.  Despite the already high expression level, Mefv expression was increased 23-

fold at the transcript level in mature peritoneal neutrophils compared to bone marrow 

neutrophils.   Since expression of Mefv was increased concurrently with cell maturation, we 

asked if Pyrin contributes to neutrophil differentiation.  Since neutrophils develop from myeloid 

precursor cells in the bone marrow, we characterized the abundance and maturity of neutrophils 

within the bone marrow of wild-type and Mefv-/- mice.  By visual analysis of cells stained with 

Hema-3, greater than 95% of cells fit the morphological criteria of neutrophils.  The total 

number, viability, and relative abundance of neutrophils in the bone marrow was unaffected by 

the loss of Pyrin (Figure 5.1A and data not shown).  Neutrophils are also commonly identified by 

Gr-1 surface receptor expression.  The Gr-1 receptor is involved in neutrophil adhesion, and it 

expression is restricted to mature neutrophils.  Using FACS analysis, Gr-1 expression was 

found to be similar (p = 0.82) between WT and Mefv-/- samples (Figure 5.2).  These analyses 

suggest that Mefv-deficiency does not cause a defect in neutrophil development. 
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Figure 5.1.  Mefv-deficiency does not affect neutrophil differentiation.  The 

polymorphonuclear fraction was isolated from total bone marrow of wild-type (WT 129) and 

Mefv-/- (KO) mice using a density (Histopaque) gradient.  A, Micrographs of cells from WT (left) 

and KO (right) mice.  Cells were cytospun and stained with Hema-3.  Neutrophils have an 

almost translucent cytoplasm and a darkly stained, multi-lobular, U-shaped nucleus.  B, The 

percentage of cells expressing Gr-1 was detected by FACS analysis.  Each dot represents one 

mouse.  p = 0.82. 

 

Neutrophil recruitment in Mefv null mice is normal 

 Since an large number of neutrophils are detected at inflamed tissues in FMF patients (12), 

and excessive neutrophil recruitment can cause uncontrolled  inflammation, we postulated that 
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exacerbated neutrophil recruitment to peripheral tissues contributes to FMF disease pathology.  

Thus, we predicted that recruitment of neutrophils would be augmented in Mefv-/- animals 

compared to controls.  To test this hypothesis, Zymosan-A, a component of yeast, was used to 

induce peritonitis and elicit neutrophils to the peritoneal cavity.  Neutrophils were rapidly 

recruited to the peritoneal cavity, and by 4 h post-treatment, the peritoneal cavity contained 6-

fold more cells compared to that of untreated mice, and 95% of cells were classified as 

neutrophils based upon morphological analysis, which is striking increase from untreated mice 

in which less than 5% of peritoneal cells were neutrophils.  The total number of peritoneal cells 

and the percentage of cells expressing Gr-1 was similar between Mefv+/+ and Mefv-/- animals 

(Figure 5.3A and B).  These studies indicate that Pyrin deficiency does not augment, nor inhibit, 

neutrophil recruitment. 
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Fig
ure 5.2.  Mefv-deficiency does not affect neutrophil recruitment.  Mefv+/+ (WT 129) and 

Mefv-/- mice were treated by i.p. injection with 1 mL of 1 mg/mL Zymosan-A.  At 4 h after 

treatment, peritoneal cells were collected.  A, The total number of peritoneal cells was 

determined using a hemocytometer.  Results are representative of several independent 

experiments.  B, The percentage of peritoneal lavage cells expressing Gr-1, as determined by 

FACS analysis.  Each dot represents one mouse, n = 5 mice per genotype. 
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Neutrophil survival 

 Since inflammatory episodes in FMF patients are characterized by neutrophilia, yet we 

were unable to detect a difference in neutrophil recruitment, we reasoned that Pyrin might affect 

neutrophil survival.  To examine this, the constitutive cell death of recruited peritoneal 

neutrophils was monitored ex vivo.  The percentage of cells retaining integrity of the cell 

membrane was determined by trypan blue exclusion and this number decreased at each 

timepoint tested:  0, 4, 6, 12, and 17 h.  Additionally, the level of lactate dehydrogenase (LDH), 

an enzyme that is released as cells die, in the supernatant of cultured neutrophils was 

monitored over a 24 h timecourse.  Both methods of testing showed that at least 90% of 

neutrophils died by 24 h in culture, and the rate of cell death was especially rapid between 6 

and 16 h.  However, the extent and the rate of neutrophil cell death was unchanged between 

Mefv+/+ and Mefv-/- neutrophils (Figure 5.3A and B).  FACS analyses was also used to determine 

if there were small changes in the survival of Mefv+/+ and Mefv-/- neutrophils that could not be 

detected by trypan blue or LDH assays.  At 0, 4, and 8 h, the percentage of wild-type and Mefv-/- 

neutrophils that were stained with Gr-1 and Annexin-V or Propidium Iodide was similar (Figure 

5.3C and D).  Consisent Gr-1 expression at all timepoints indicated that results were not skewed 

by a loss of receptor expression (Figure 5.3E).  The rapid decrease in total cell counts made 

FACS analysis inconsistent at later timepoints, but LDH release remained a precise assessment 

of cell survival even at the later timepoints.  These analyses indicate that a loss of Pyrin does 

not affect constitutive neutrophil cell death.   
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Figure 5.3.  The loss of Pyrin does not affect neutrophil survival.  Recruited peritoneal cells 

were collected from wild-type and Mefv-/- mice at 4 hours after treatment with Zymosan-A.  

Peritoneal lavage cells were placed in culture at a density of 106 cells/mL at 0 h.  At least 90% of 

cells were classified as neutrophils by morphological assessment of cells stained with Hema-3 

and visualized under a microscope.  A, The percentage of cells excluding trypan blue was 

assessed at the indicated times using a hemocytometer.  B, Neutrophil cell death is represented 

as the percent of total lactate dehydrogenase (LDH) released into the media at each timepoint 

compared to 100% lysis control samples.  n = 4 wild-type and 5 Mefv-/- mice for A and B.  

Results of 3 replicate wells/mouse were averaged in B.  C and D, The percentage of apoptotic 

(Annexin-V+) neutrophils (Gr-1+), in C, or dead (Propidium Iodide+) cells, in D, at 0, 4, and 8 h.  

The percentage of Gr-1+ cells was similar at each timepoint.  n = 5 mice per genotype. 
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Discussion 

 The high expression of Mefv in neutrophils, alongside previous functional research using 

neutrophils from FMF patients, suggests that the Pyrin protein has an important function in 

neutrophils.  However, we did not detect a change in neutrophil development, recruitment, or 

survival due to the loss of Pyrin expression.   

 Recruitment of neutrophils to the peritoneal cavity was similar between WT and Mefv-/- 

animals, despite elevated Mefv expression concurrent with recruitment (see Chapter 2).  We 

used an established experimental system to elicit neutrophils; zymosan-A-induced peritonitis 

has been used in previous studies to detect genes important in neutrophil recruitment in mice, 

including LTB4, TNF-α, and IL-8 (13, 14).  Furthermore, colchicine impacts neutrophil 

chemotaxis (5), so it is logical to assume that FMF patients have altered neutrophil chemotaxis 

caused by mutations in Pyrin.  However, our study is the first to compare WT neutrophils with 

neutrophils lacking Pyrin.  The data presented here leaves open the possibility that Pyrin is 

involved in neutrophil migration in response to other stimuli.  It is also important to keep in mind 

that most studies describing altered chemotaxis of neutrophils following colchicine treatment 

examine neutrophils in ex vivo assays.  Previous studies have shown neutrophil phenotypes in 

vitro that cannot be detected in vivo (15).  The difference between the in vitro and in vivo 

environment cannot be overlooked, especially since neutrophils dynamically respond to external 

cues from other cell types.  Thus, it is also possible that a mechanism(s) prevents altered Pyrin 

function from having an effect in vivo. 

 We also saw no differences in the rate of spontaneous, or constitutive, apoptosis of 

neutrophils.  In contrast, neutrophils from FMF patients display altered survival ex vivo.  The 

spontaneous apoptosis of neutrophils from FMF patients was increased compared to healthy 

controls (17).  Additionally, while exposure to LPS extends the lifespan of wild-type neutrophils, 

LPS treatment reduces the lifespan of neutrophils from FMF patients (9). 
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 Pyrin protein binding partners ASC, Caspase-1, and Siva are expressed in neutrophils.  

Expression of ASC, a Pyrin protein binding partner, is absent or weak in non-activated human 

neutrophils, but is expressed by neutrophils at sites of peripheral tissue inflammation.  Its 

expression is upregulated by LPS and by IL-1α, IL-1β, IFN-α, IFN-γ, and TNFα pro-inflammatory 

cytokines.  These results suggest that ASC is a positive regulator of inflammation in neutrophils 

at the early stages of an immune response.  However, caspase-dependent, Fas-mediated death 

signaling also increases human ASC expression concurrent with neutrophil apoptosis, 

suggesting that in later stages of the immune response, ASC promotes apoptosis of neutrophils 

and resolution of inflammation (18).  Caspase-1 shows a similar pattern.  Its expression is 

increased by LPS (Chapter 2 and (19)), but Caspase-1 deficient neutrophils show a delay in 

spontaneous neutrophil apoptosis in vitro, suggesting that Caspase-1 promotes apoptosis in 

neutrophils (15).  Siva, which also interacts with Pyrin, is a proapoptotic protein (20).  Whether 

or not Siva modulates apoptosis in neutrophils is unknown.  Gene network mathematic 

predictions have failed to link Siva-mediated apoptosis to the pathogenesis of FMF (21). 

 It remains possible that the experimental systems used in these studies lack the resolution 

required to detect a phenotype in neutrophils from Mefv null animals.  For example, the methods 

used to assess neutrophil development from myeloid precursor cells are not sensitive to 

potential variations within the Gr-1+ neutrophil subset.  In humans, many neutrophil subsets are 

described, but these states are not well-defined for mouse neutrophils.  Furthermore, neutrophil 

survival was examined in vitro because this method allows greater sensitivity; however, in vivo, 

non-activated neutrophils can migrate to the bone marrow, spleen, or liver where they 

apoptosis, and activated neutrophils can be phagocytosed by macrophages.  Thus, it is possible 

that a difference in neutrophil survival is the result of coordinated processes which are only 

detectable via in vivo models.  We cannot rule out the possibility that further studies may reveal 

a role of Pyrin in neutrophil physiology.  However, our studies demonstrate that Pyrin-deficient 
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neutrophils respond normally under at least some external conditions.  Therefore, the neutrophil 

deposition seen in FMF and the ability of colchicine to prevent FMF attacks may be mediated by 

altered production of extrinsic cytokines or chemokines that indirectly affect neutrophil function. 
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CHAPTER 6 

In vivo models of peritonitis 

 

 Inappropriate activation or resolution of an immune response can lead to inflammatory 

disorders such as Familial Mediterranean Fever (FMF).  FMF is an autoinflammatory disorder 

caused by mutations in the gene Mefv which encodes the protein Pyrin.  Previous studies 

presented in Chapter 4 indicate that Pyrin negatively regulates IL-1β production, but the 

contribution of Pyrin to innate immune responses in vivo remains unclear.  To study the role of 

Pyrin in the initiation and resolution of innate immune responses in vivo, inflammation was 

induced in Mefv null mice via multiple peritonitis models.  Using physiological parameters, 

cellular profiling, and molecular protein assays, we were able to detect active innate immune 

responses in wild-type and Mefv-/- animals.  However, Mefv null mice did not display impaired or 

exacerbated inflammation compared to wild-type mice.  Compensatory mechanisms may 

prevent Pyrin-deficiency from altering immune responses in vivo, in response to at least some 

innate immune stimuli. 
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Introduction 

 The acute inflammatory attacks that are characteristic of Familial Mediterranean Fever 

(FMF) are mediated by the innate immune system.  An innate immune response is a very 

dynamic process that results from the interplay of resident immune cells and epithelial cells that 

perceive immune stimuli, recruited immune cells that migrate to the site of inflammation, 

endothelial cells that are involved in immune cell extravasation, and physiological processes 

including fever.   

 The kinetics of cellular efflux, cell activation, and cell death are intricately regulated.  Cell 

recruitment is orchestrated by multiple cytokines and chemokines, including IL-1β, TNFα, IL-8, 

macrophage inflammatory protein-2 (MIP-2), and monocyte chemoattractant protein-1 (MCP-1) 

(1), the majority of which are released by macrophages.  Since we previously showed that Pyrin 

regulates IL-1β levels (see Chapter 4), it is important to note that IL-1β enhances the 

recruitment of neutrophils to localized sites of inflammation (2).  During pathogen clearance and 

resolution of the immune response, the kinetics of immune cell death are controlled by a 

balance of pro-apoptotic and anti-apoptotic, or survival, signals intrinsic and extrinsic to the cell 

and is affected by the presence of a pathogen or immune stimulant (3, 4).  Cell death can be 

either an autonomous process or involve the interplay of multiple phagocytic immune cells.  

Phagocytosis of neutrophils by macrophages is an important mechanism for limiting tissue 

inflammation (5).  Given the interplay of numerous processes and cell types involved in immune 

cell recruitment and cell death, it is important to examine these processes in vivo. 

 Fever accompanies the inflammatory episodes of FMF (6).  Fever is a regulated 

physiological response that facilitates survival of the host during infection (7).  In mice, the body 

temperature markedly declines before a subsequent, subtle fever response (8).  The initial 

hypothermic response is often used to study pathogen-induced changes in temperature 

regulation.  The magnitude and duration of hypothermia correlates with the endotoxin load in 
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LPS-induced peritonitis models (9).  Since our previous work in Chapter 4 indicates that Pyrin 

negatively regulates IL-1β production, it is important to note that IL-1β mediates body 

temperature in both humans and mice (7, 10).  In mice, IL-1β levels increase in a dose-

dependent manner following LPS treatment in vivo (9), and IL-1β-deficient mice treated 

systemically with LPS have a shortened hypothermic phase compared to wild-type mice (10-

12).  Thus, by modulating IL-1β production, or through another uncharacterized function, Pyrin 

may modulate thermic responses. 

 Previous studies suggest that Pyrin is involved in cell recruitment and survival during 

inflammation (8).  In FMF patients, extreme neutrophil deposition is apparent in inflamed 

tissues, and the ex vivo survival of neutrophils harvested from FMF patients is altered (3, 13).  

Also, previously described interactions between Pyrin and cytoskeletal elements (14-16) may 

influence cell shape, which is necessary for extravasation; cell motility, which is necessary for 

cell migration; and cell death, which is influenced by cytoskeletal integrity (17).   

 To assess the contribution of Pyrin in the activity, initiation, and resolution of the innate 

immune responses in vivo, we induced peritonitis in Mefv-/- and Mefv+/+ (WT) mice.  We drew 

upon knowledge of the most common symptoms for FMF—peritonitis, immune cell deposition in 

peripheral tissues, and fever—to guide testing of Pyrin-deficient mice.  We exposed mice to 

thioglycolate, LPS, and Psuedomonas aeruginosa, and compared the physiologic, cellular, and 

molecular responses of Mefv-/- and WT animals.  We found that Mefv-/- and WT mice had similar 

innate immune responses in these experimental systems. 
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Materials and Methods 

Thioglycolate-induced peritonitis 

 Mice were treated with 2 or 3 mLs of 3% Brewer’s thioglycolate medium by i.p. injection.  

The peritoneal cavity was lavaged with 4 mLs of PBS to collect peritoneal cells.  Total peritoneal 

cells were counted using a hemocytometer.  Lavage samples were cytospun and stained with 

Hema-3.  Cell identity was based upon classification of morphology using microscopic visual 

analysis.  FACS analysis was used to detect 7AAD, Gr-1+, and Mac-1+ staining as previously 

described in Chapter 5.  Peritoneal lavage fluid was used to determine IL-1β concentration by 

ELISA (BD Biosciences).  Lavage samples were processed to isolate myeloperoxidase (MPO) 

enzyme and its catalytic activity was evaluated by colorimetric assay. 

In vivo LPS treatment 

 Mice were treated with 2.5 mg/kg or 0.25 mg/kg of LPS (serotypes 127:B8 and 055:B5, 

respectively) by i.p. injection.  Body temperature was measured with a rectal thermometer 

probe.  Mice were sacrificed at 20 h (2.5 mg/kg of LPS) or 24 h (0.25 mg/kg of LPS).  The 

peritoneal cavity was lavaged with 4 mLs of PBS.  Weight loss was calculated using body 

weights measured at 0 h and the time of harvest.  Peritoneal lavage fluid was used to determine 

IL-1β and TNFα concentrations by ELISA (BD Biosciences).  Peritoneal cell concentrations and 

MPO were measured as described above. 

Pseudomonas aeruginosa infection 

 Cultures of WT PAK strain bacteria were started from glycerol stocks and grown overnight 

in Luria broth media.  A 1:100 dilution was made in brain-heart infusion media and cultures were 

grown to OD 0.3.  A 1:27 dilution in PBS was used for injections.  The CFU/mouse was 

calculated by plaque assay using a dilution of the injected culture and determined to be 5.4 x 

106.  Mice were harvested at 19 h post-infection.  The peritoneal cavity was lavaged with 4 mLs 
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of PBS.  Blood was collected by cardiac puncture.  Samples were lysed to release intercellular 

bacteria.  Dilutions were spread on Luria broth plates and the number of bacterial plaques was 

counted following an overnight incubation of the plates at 37°C.  Cellularity and IL-1β 

concentrations of peritoneal lavage fluid, body weight, and body temperature were measured as 

described above. 

Animal Care and Use 

 All experiments were conducted in accordance with the National Institutes of Health Guide 

for the Care and Use of Laboratory Animals as well as the Institutional Animal Care and Use 

Committee guidelines of UNC Chapel Hill.  

Statistical analyses  

 A two-tailed unpaired t-test was used to determine statistical probability of differences 

between wild-type and Mefv-/- cohorts, with a significance limit of p ≤ 0.05. 
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Results 

A loss of Pyrin does not affect cell recruitment or survival in vivo 

 Since autoinflammatory disorders such as FMF result from overactivation or a lack of 

resolution of the innate immune response, we reasoned that Mefv might play a role in either 

mobilization of cells to an inflamed tissue and/or retention of cells at the inflamed tissue.  To 

evaluate the kinetics of cell recruitment, cell retention, and cell death in Mefv null mice, 

peritonitis was induced with the sterile immunostimulant, thioglycolate, which has been used in 

several previous studies to distinguish differences in neutrophil and/or macrophage recruitment 

in knock-out mice (18).  Cellularity in fluid lavaged from the peritoneal cavity was evaluated at 

multiple times post-treatment.  Both neutrophils and macrophages were recruited to the 

peritoneal cavity in this experimental system (Figure 6.1A), which is consistent with previously 

published results for WT mice (1).  Neutrophil recruitment was rapid:  neutrophils were detected 

in the lavage fluid at 2 h after the induction of peritonitis.  The absolute number of neutrophils 

continued to increase through 5.5 h but was decreased at 24 h and more markedly decreased 

by 4 d (Figure 6.1B).  Macrophages displayed slower kinetics, as there was not a significant 

increase in the total number of macrophages at 2 h or 4 h, but an increase was noted at 24 h 

and was more significant at 3 d and 4 d (Figure 6.1A, C, and data not shown). 

 We analyzed 4 h and 4 d timepoints more extensively and assessed total cellularity, the 

percentage of dead cells, and cellular composition in the peritoneal lavage fluid.  Following 

treatment with 3 mLs of 3% thioglycolate, mice displayed a 6-fold increase in the total number of 

peritoneal lavage cells at both 4 h and 4 d post-treatment.  Total cellularity was similar in Mefv+/+ 

and Mefv-/- mice at both timepoints (Figure 6.1D).  At 4 h, 10% of cells were dead, and 50% of 

cells at 4 d were considered dead by 7AAD staining.  Since thioglycolate is a sterile 

immunostimulant, these values reflect endogenous mechanisms of regulating inflammation by 

controlled cell death.  The percentage of dead cells was similar for Mefv+/+ and Mefv-/- mice at 
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both timepoints (Figure 6.1E).  Similar values of both total cell number and percentage of dead 

cells suggest that cell recruitment and cell death kinetics are not affected by the loss of Pyrin.  

Consistent with this, there was no difference in the cell composition of Mefv+/+ and Mefv-/- 

animals at 4 h or 4 d (Figure 6.1F and G).  Similar studies using Zymosan A, a component of 

Saccharomyces cerevisiae yeast, to induce peritonitis also showed that at 4 h post-treatment, 

the total number of cells and the percentage of Gr-1+ neutrophils in the peritoneal cavity were 

similar between WT and Mefv-/- animals (see Chapter 5 and Figure 5.2).   
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Figure 6.1. Loss of Mefv does not affect peritoneal cell recruitment or survival.  Mefv+/+ 

and Mefv-/- mice were treated with 3 mLs of 3% Brewer’s thioglycolate medium by i.p. injection.  

At the indicated times, the peritoneal cavity was lavaged with 4 mLs of PBS to collect peritoneal 

cells.  A, The total number of peritoneal lavage cells at the indicated times after the induction of 

peritonitis.  B, The percentage of granulocytes was determined by visual analysis of cytospin 

samples stained with Hema-3.  Samples correspond to A.  n = 3 mice per genotype for A and B.  

C, Peritoneal cell concentration at 3 d after the induction of peritonitis, as determined by 

hemocytometer.  n = 15 mice per genotype.  D, The total number of peritoneal lavage cells at 4 

h and 4 d after the induction of peritonitis.  E, The percentage of peritoneal cells from D that 

were stained with 7AAD, a marker of dead cells.  F, The relative abundance of neutrophils 

(Mac-1+/Gr-1+) and macrophages (Mac-1+/Gr-1-) in the peritoneal lavage fluid at 4h, as 

determined by FACS analysis.  Samples correspond to the 4 h timepoint in D.  G, The 

percentage of granulocytes, macrophages, and lymphocytes was determined by visual analysis 
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of cytospin samples stained with Hema-3.  Samples correspond to the 4 d timepoint in D.  n = 3 

– 5 mice per genotype for D – G.   

 We also considered the possibility that a subtle difference in immune cell recruitment and/or 

clearance might be resolved by inducing a weaker immune response.  Using a 1/3 lower dose of 

thioglycolate to induce peritonitis, we examined the 4 d timepoint.  However, we found no 

difference between Mefv+/+ and Mefv-/- cohorts in the total number of cells, the percentage of 

dead cells, or the relative number of neutrophils (Figures 6.2A – C).  These results suggest that 

a loss of Pyrin function does not affect cell recruitment, cell retention, or cell death in the 

peritoneal cavity following treatment with thioglycolate.   
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Figure 6.2. Loss of Mefv does not affect the cell profile at 4 d after the induction of mild 
peritonitis.  Mefv+/+ and Mefv-/- mice were treated with 2 mLs of 3% Brewer’s thioglycolate 

medium by i.p. injection.  At 4 d after the induction of peritonitis, the peritoneal cavity was 

lavaged with 4 mLs of PBS to collect peritoneal cells.  A, Peritoneal cell concentration at 4 d, as 

determined by hemocytometer.  B, The percentage of cells stained with 7AAD as detected by 

FACS analysis.  C, The relative abundance of neutrophils as determined by myeloperoxidase 

(MPO) activity within peritoneal lavage samples.  n = 8 Mefv+/+ and 9 Mefv-/- mice. 
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A loss of Pyrin does not affect the response to LPS in vivo 

 Next, wild-type and Mefv-/- mice were evaluated following treatment with 2.5 or 0.25 mg 

LPS/kg body weight (serotypes 127:B8 and 055:B5, respectively).  Mice were lethargic following 

LPS treatment in a dose-dependent manner that was independent of Mefv genotype.  LPS 

induced a rapid drop in temperature, with core body temperature reaching a minimum at 2 hours 

after treatment.  Both the magnitude of the drop in temperature, as well as the kinetics of the 

temperature change and subsequent recovery of the animals was similar in the Mefv-/- and 

control cohorts.  No difference was observed in the cryogenic response of the Mefv-/- and wild-

type control animals to i.p. LPS at both doses of endotoxin examined (p > 0.8; Figure 6.3A and 

B).  In addition to hypothermia, LPS treatment results in a measurable drop in body weight.  

Weight loss was also similar between WT and Mefv-/- cohorts (Figure 6.3C).  At 20 (2.5 mg/kg 

LPS) or 24 (0.25 mg/kg LPS) hours after treatment peritoneal lavage samples were collected.  

The total number of immune cells present in the peritoneal cavity increased with the dose of 

LPS, however neither the number or composition of cells recruited to the peritoneal cavity 

distinguished the Mefv-/- mice from control animals (Figure 6.3C).  The concentration of IL-1β 

and TNF-α cytokines in the peritoneal lavage fluid was examined by ELISA.  In WT and Mefv-/- 

animals, levels of both cytokines were below the limit of detection (data not shown). 
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Figure 6.3.  Loss of Mefv does not affect the response to LPS.  WT and Mefv-/- mice were 

treated with 2.5 mg/kg (A, n = 8 WT and 5 Mefv-/- mice) or 0.25 mg/kg (B, n = 18 and 19) crude 

LPS by i.p. injection at time 0 h, as indicated by arrows.  Rectal temperature at the indicated 

times is shown in A and B.  The table shown in C lists other parameters of inflammation 

corresponding to the mice in A and B:  percent of body weight lost between 0 h and the time of 

harvest, concentration of immune cells present in the peritoneal lavage fluid, and relative 

abundance of neutrophils in lavage samples as determined by myeloperoxidase (MPO) activity 

within peritoneal lavage cell samples. 
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A loss of Pyrin does not affect the outcome of Pseudomonas aeruginosa infection 

 To examine whether or not Pyrin shapes the overall immune response to live pathogens, 

mice were infected with Pseudomonas aeruginosa.  P. aeruginosa is an opportunistic bacteria 

that can cause pneumonia, necrotising enterocolitis, urinary tract infection, skin infection, and 

septic shock in humans.  In mice, depending upon the initial bacterial burden, wild-type mice 

either die or completely clear the bacteria by 48 hours post-infection (19).  P. aeruginosa 

infection induces inflammasome-dependent IL-1β release (20), so it is reasonable to 

hypothesize that mutations in Pyrin may alter IL-1β production and/or the course of infection.  

The bacterial load was optimized in this study so that WT 129 mice would show signs of 

bacterial burden but no lethality at a relatively late time-point post infection, so that a role for 

Pyrin in either the early phase and/or the late phase of the response would be evident.  5.4 x 

106 CFU/mouse were injected into the peritoneal cavity of mice, and animals were assessed at 

19 h post-infection.  While all mice had some bacteria remaining in the peritoneal cavity at 19 h, 

mice were split into two populations.  One group showed signs of bacterial clearance.  Bacterial 

burdens in these mice ranged from 102 – 103 CFU/mL, which is less than the initial burden of 

1.35 x 106 CFU/mL.  The other group showed signs of bacterial proliferation, having burdens of 

107 – 109 CFU/mL, which is above the initial load.  Importantly, the same population split was 

seen in WT and Mefv-/- groups, indicating that the response of individual mice within each 

genotype differs more than the response of mice between the two genotypes at this timepoint 

(Figure 6.4A).  The bacterial load in the blood showed a similar trend.  Mice that were clearing 

the bacterial infection in the peritoneal cavity had no bacteria in the blood, while some mice with 

high bacterial loads in the peritoneal cavity were also septic.  Again, the population split was 

independent of the Mefv genotype.  50% of WT animals (2 of 4 tested) were septic, and 43% (3 

of 7) Mefv-/- mice were septic (Figure 6.4B).  The total number of peritoneal cells was increased 

in infected mice compared to PBS (vehicle) treated mice; however, the cell counts were similar 

between WT and Mefv-/- animals (Figure 6.4C).  The IL-1β concentration in the peritoneal lavage 
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fluid correlated with bacterial burden; mice with the highest bacterial burdens also had the 

highest production of IL-1β; however, cytokine levels were not affected by the loss of Pyrin 

(Figure 6.4D).  Corresponding to the cell and molecular indicators of inflammation, infection 

caused a 7% loss of body weight, and a decrease in body temperature, but again, results were 

independent of the Mefv genotype (Figure 6.4E and data not shown).  Together, these results 

suggest that a loss of Pyrin does not affect the outcome of P. aeruginosa bacterial infection; 

however, a more extensive timecourse analysis is necessary. 
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Figure 6.4.  Loss of Pyrin does not affect the outcome of Pseudomonas aeruginosa 
infection.  5.4 x 106 CFU/mouse or PBS vehicle were injected into the peritoneal cavity of WT 

and Mefv-/- mice (n = 7 and 7), and animals were assessed at 19 h post-infection.  The 

peritoneal cavity was lavaged with 4 mLs of PBS.  A and B, Number of live bacteria (colony 

forming units (CFU) per mL of peritoneal lavage fluid, A, or mL of blood, B.  The initial burden in 

the peritoneal cavity was determined by plating a sample of the injected solution.  C, Peritoneal 

cell concentration, as determined by hemocytometer.  Mice with greater bacterial loads in the 

peritoneum had slightly lower cell counts.   D, IL-1β concentration in peritoneal lavage fluid was 

determined by ELISA.  E, The percent of body weight lost during the course of infection (19 h).  

Each dot represents one mouse.  
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Discussion 

 This chapter describes studies to assess the in vivo innate immune response of Mefv null 

mice.  These studies provide a functional complement to the work described in previous 

chapters in which we characterized the activation and survival of individual immune cell types 

isolated from the mouse.  Following exposure to thioglycolate, LPS, and P. aeruginosa, WT and 

Mefv-/- mice showed similar physiological, cellular, and IL-1β responses.  Peritoneal exposure to 

thioglycolate and LPS demonstrated that Mefv-/- mice recruit and retain inflammatory cells at 

sites of inflammation normally (p = 0.83 and 0.88, respectively).  The hypothermic response 

induced by LPS was similar in Mefv-/- and WT mice.  No differences in cytokine production or 

bacterial load were detected between Mefv-/- and WT mice following P. aeruginosa infection.  

While our results failed to support our hypothesis that Pyrin-deficiency causes exacerbated 

innate immune responses, they leave open the possibility that Pyrin may be involved in some, 

but not all, immune responses.  It is also possible that compensatory mechanisms within the 

mouse prevent Pyrin-deficiency from altering the immune response in vivo. 

 Since we wanted to test the contribution of Pyrin to the general innate immune response, 

we used sterile peritonitis models, so that the interpretation of our results was not complicated 

by the pathogenicity of a microorganism.  Furthermore, we chose LPS because Mefv 

expression is induced by LPS (Chapter 3 and previously published reports (8)).  This affect on 

gene expression is not unique to murine Mefv.  In rats, intratracheal instillation of LPS increases 

Mefv expression in bronchial aviolar lavage cells (21), and treatment with LPS also increases 

expression of human MEFV (22).  Consistent with expression data, exacerbated hypothermia 

was observed after LPS treatment in mice carrying alleles encoding a truncated Pyrin protein.  

However, the possibility that Pyrin is involved in pathogen defense through a mechanism that is 

only apparent upon infection with live pathogens, such as bacterial clearance, was also 

addressed.  Pseudomonas aeruginosa activates NF-κB-dependent Il1β transcription and 
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inflammasome-dependent IL-1β release (20, 23-26).  Specifically, association of LPS with TLRs 

2 and 4 and of flagellin with TLR5 results in MyD88 and NF-κB dependent Il1β transcription.  

Induction of Il1β expression is dose-dependent according to the bacterial burden (24-26).  

Release of IL-1β from macrophages exposed to P. aeruginosa in vitro is dependent upon 

Caspase-1, Nlrc4, and Nlrp3, but not Pycard (20, 23).  Accordingly, Caspase-1 cleavage is 

absent in Nlrc4-/- macrophages, and in vivo, reduced IL-1β production in Nlrc4-/- mice was 

accompanied with increased bacterial burden (20).  Given these previous findings, P. 

aeruginosa infection was a good model system to evaluate the contribution of Pyrin to bacterial 

defense.   

 Previous work has demonstrated that genetic perturbation of Mefv in mice causes 

exacerbated inflammatory responses.  Chae, et al. created and characterized mice carrying a 

disrupted Mefv allele.  The promoter and 5’ end of the gene, which encodes the pyrin domain 

and a small portion of the linker region, were maintained, but the remaining 3’ end, which 

encodes the B-box, coiled-coiled, and B30.2 domains, was replaced with DNA encoding green 

fluorescent protein (GFP).  This allele, Mefvtrunc, encodes a truncated Pyrin protein that the 

authors describe as hypomorphic.  Homozygous mutant mice exhibited phenotypes resembling 

FMF.  An increased number of inflammatory cells was observed at 4 d after thioglycolate-

induced peritonitis, perhaps as a result of impaired macrophage cell death in these animals (8).  

Relative to wild-type mice, homozygous mutant mice displayed exacerbated LPS-induced 

hypothermia and increased lethality following LPS and D-gal treatment.  Peritoneal 

macrophages from these mice produced more IL-1β after immune stimulation in vitro.  It is 

unclear why Mefvtrunc/trunc mice with hypomorphic Pyrin function would have different immune 

responses compared to WT littermates, while Mefv-/- mice with no Pyrin function have 

responses similar to coisogenic WT mice.  While effort was taken to match experimental 

variables between these studies, factors such as housing conditions and genetic background 
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could not be controlled.  For example, the gut microbiome is influenced by external housing 

conditions, and it significantly alters the course of peritoneal inflammation (27).  The genetic 

background of mice affects endotoxin-induced lethality and IL-1β production in WT mice (28).  

Furthermore, IL-1 receptor antagonist (IL-1ra) deficiency has varying degrees of severity in 

BALB/cA, C57BL/6, and 129 mice (reviewed in (29)).  Interestingly, the cellularity of Mefv-/- and 

WT cohorts in this study was similar to that of Mefvtrunc/trunc mice in the previous study, but 

differed from the wild-type mice.  The dramatic difference between wild-type responses lends 

support to the idea that genetic and/or microbiome influences may contribute to the findings of 

these studies. 

 In chapter 3, we showed that the loss of Pyrin increases IL-1β levels, however, release of 

mature IL-1β requires a danger signal.  Thus, it is not surprising that IL-1β levels were not 

dramatically increased in vivo.  Mefvtrunc/trunc mouse macrophages, on the other hand, released 

significant IL-1β in response to LPS.  Therefore, it is not surprising that cell recruitment and 

thermic responses, which are regulated in part by IL-1β, were exacerbated in these mice.  It is 

important to note that the mechanism of cellular recruitment induced by thioglycolate differs 

from that induced by IL-1β.  In most cases, knock-out mice that display a difference in IL-1β-

induced cell recruitment also display a difference in thioglycolate-induced cell recruitment (18).  

However, an example to the contrary is Icam2-/- mice, which have reduced neutrophil 

recruitment in response to IL-1β treatment but not thioglycolate treatment (30).  It remains 

possible that changes in IL-1β production alter cellular recruitment in Pyrin-deficient mice. 

 It is possible that the experimental systems that we chose were not sensitive enough to 

resolve a functional contribution of Pyrin.  We submit several arguments against this possibility.  

1) We used well-established model systems that have been used in the past to detect functional 

changes in mouse models.  2) We reproduced experiments that were used previously to 

demonstrate inflammatory hyperresponsiveness in homozygous Mefv mutant mice.  3) We 
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further mitigated this risk by using multiple models of inflammation.  We chose diverse models 

to stimulate robust (thioglycolate, Zymosan-A, and P. aeruginosa) and mild inflammation (0.25 

mg/kg LPS), in order to entertain the possibility that Pyrin modulates only robust or only mild 

inflammation.  4) Large cohorts were used in these studies in order to resolve a more subtle 

phenotype.  However, the variability that is inherent to in vivo studies does severely limit the 

ability to conclude that there is no phenotype in Mefv null animals.  Nevertheless, our studies 

suggest that a complete loss of Pyrin function does not affect the sensitivity or magnitude of an 

innate immune response in vivo following treatment with at least some stimuli. 
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CHAPTER 7 

Conclusions and Perspectives 

 

Summary 

 This dissertation summarizes our work to elucidate the role of Pyrin in innate immune 

responses.  Using a reverse genetics approach with Pyrin-deficient mice, we were able to 

examine the outcome of a complete loss of Pyrin function in an endogenous system.  Building 

upon previous research addressing Pyrin function in systems with hypormorphic or 

hypermorphic Mefv expression, and guided by the pathology of FMF and Mefv expression, we 

chose to investigate the contribution of Pyrin in macrophage-dependent IL-1β production and in 

neutrophil processes.  We identified a role of Pyrin in IL-1β production, as a negative regulator 

of inflammasome-mediated IL-1β levels.  Pyrin null neutrophils, however, did not display altered 

phenotypes in an unstimulated state or in the context of innate immune responses, despite 

especially high expression of Mefv in wild-type neutrophils.  Our results are consistent with a 

model in which mice in a steady-state have adequate immune function despite the loss of Pyrin, 

but during inflammation, the loss of Pyrin causes functional changes, and specifically, a loss in 

appropriate regulation of IL-1β levels.  

 Previous research is consistent with a functional contribution of Pyrin to the innate immune 

response and a model in which abnormal function, due to FMF-associated mutations, causes 

uncontrolled inflammation.  Previous studies using in vitro human and mouse model systems 
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have shown that Pyrin contributes to macrophage-dependent IL-1β production (1-8); however, 

its specific contribution is unclear.  Studies using neutrophils isolated from FMF patients indicate 

that neutrophils have altered chemotaxis, phagocytosis, oxidative burst, and survival (9-15), 

although the association of mutations in Mefv with these neutrophil phenotypes has not been 

determined.  Thus, we addressed questions which remained as to how mutations in Mefv alter 

the innate immune response to cause FMF pathology.   

 We found that macrophages from wild-type and Mefv-/- mice release a similarly low amount 

of IL-1β after treatment with LPS; however, following the addition of a number of different agents 

that stimulate the inflammasomes, IL-1β levels in the supernatant of macrophages from Mefv-/- 

animals were elevated compared to those in the supernatant of macrophages from wild-type 

mice.  While the concentration of IL-1β and the magnitude of the difference between Mefv-/- and 

wild-type macrophages changed depending on the treatment, the effect of Pyrin-deficiency 

remained the same.  Exposure to NLRP1b, NLRP3, and NLRC4-dependent stimuli all led to 

increased levels of IL-1β in the supernatant of Mefv-/- macrophages compared to wild-type 

macrophages.  Neutrophils, on the other hand, did not display any deficits due to a loss of Pyrin.  

No differences in development, recruitment, or survival were found.  In vivo, the induction of 

peritonitis did not lead to detectable changes in the recruitment or survival of macrophages or 

neutrophils, or in the overall health of mice, as detected by parameters of body temperature, 

weight loss, and bacterial load.  While the data from these studies suggest that there are 

mechanisms to protect against an alteration to the in vivo inflammatory response to at least 

some stimuli, further testing of Pyrin null mice is critical for making these conclusions.  Certainly 

the importance of Mefv is clear, based upon its conservation in the genome and the association 

of mutations with an autoinflammatory phenotype. 

 This chapter discusses how our findings further previous research on Pyrin and FMF, 

primarily regarding the role of Pyrin in IL-1β production, and then hypothesizes where Pyrin fits 
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into the pathway for IL-1β production and release.  Given that Pyrin negatively regulates IL-1β 

production, other mechanisms of endogenous regulation of inflammasome-dependent IL-1β 

production are discussed, in order to create a context for Pyrin’s role in the complex regulation 

of IL-1β synthesis and release.  Many questions remain, regarding not only Pyrin’s regulation of 

IL-1β, but also mechanisms that regulate Pyrin’s function.  Finally, the genetics of FMF are 

revisited, given our findings that a loss of Pyrin function leads to an IL-1β phenotype that is 

characteristic of FMF. 

Previous mouse models 

 Work published previous to our study also demonstrated that a genetic perturbation 

targeted to Mefv led to exacerbated pro-inflammatory responses.  The targeted Mefv allele 

encodes a truncated Pyrin protein, in which the pyrin domain and a small portion of the linker 

region are fused to green fluorescent protein (GFP).  Homozygous mutant mice (Mefvtrunc/trunc) 

displayed exacerbated LPS-induced hypothermia, increased inflammatory cell recruitment in 

response to thioglycolate, and increased lethality following LPS and D-gal treatment.  

Furthermore, peritoneal macrophages from Mefvtrunc/trunc mice had excessive IL-1β production 

and decreased apoptosis in vitro (1).  These findings certainly support an important role for 

Pyrin in vivo and suggest that disrupting Mefv significantly alters innate immune responses to 

induce and/or maintain exacerbated inflammatory responses.  However, there are limitations 

which prevent a logical inference to the function of human Pyrin and the consequences of FMF-

associated mutations based upon studies using Mefvtrunc/trunc mice.  Due to the presence of a 

partial protein, and furthermore, a GFP-fusion protein, it is difficult to define the disrupted allele 

as causing a partial or complete loss of wild-type Pyrin function or as producing a gain of wild-

type function or even novel function.  It is interesting that in Pyrin null mice, elevated IL-1β levels 

were also detected, but exacerbated hypothermia, cellularity, and sepsis-induced lethality 

phenotypes, and the decreased macrophage cell death phenotype, were not reproduced.  It is 
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possible that these differences result from function(s) of the truncated, GFP-fusion, Pyrin protein 

that is present in Mefvtrunc/trunc mice. 

 A major caveat to using the mouse to model human Pyrin function is the absence of the 

B30.2 domain from the mouse protein.  Recently-published work addresses the function of the 

B30.2 domain by creating a hybrid Mefv gene in which the promoter, PYD, BB, and C-C 

domains of the mouse protein are intact, and the B30.2 domain of the human Pyrin protein is 

attached to the C-terminal end (16).  Despite significant effort, a knock-in of the WT B30.2 

domain could not be created, perhaps because it was incompatible with life.  However, within 

this system, the effects of three missense mutations in the B30.2 domain were examined.  All 

three mutations, collectively referred to here as mutB30.2, caused delayed growth, spontaneous 

inflammation, more circulating immune cells, and elevated IL-1β levels in homozygous mice.  

Heterozygous MefvmutB30.2/+ and MefvmutB30.2/- were unaffected.  The investigators concluded that 

mutations in the B30.2 region cause a gain-of-function and have a dosage effect.  Similar to the 

Mefvtrunc/trunc mice, it is difficult to define the chimeric Pyrin protein as causing a gain-of-function.  

To address this question, it was emphasized that Pyrin deficient mice, with a loss-of-function, 

had no disease phenotype in the assays used for testing.  Specifically, the relative number of 

circulating CD11b+ cells was similar to Mefv+/+ mice.  Mefv-/- mice did not display increased IL-1β 

processing in response to NLRP3, NLRC4, or AIM2 stimuli.  However, mice did secrete more IL-

1β following treatment with LPS alone.  In contrast, our results show that the loss of Pyrin 

causes significantly elevated IL-1β levels following treatment with NLRP3, NLRC4, and NLRP1b 

inflammasome stimuli, but not following treatment with LPS alone.  Taking these IL-1β 

phenotypes into consideration, the conclusions that Pyrin null mice have no phenotype and that 

B30.2 missense mutations cause a gain-of-function are less clear.  Another possible conclusion 

from studies using mutB30.2 mice is that the introduction of the wild-type B30.2 domain into the 

mouse protein causes a gain-of-function, either increased wild-type function or novel function, 
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and that missense mutations in the B30.2 domain cause a partial loss of the gained function.  

This later model in which missense mutations cause a loss-of-function is more consistent with 

autosomal recessive inheritance of FMF. 

 

Where in the pathway? 

 IL-1β was undetected in peritoneal lavage samples from Mefv-/- and WT mice at 20 and 24 

h following in vivo exposure to LPS, 4 h or 4 d following thioglycolate treatment, and untreated 

cells.  Therefore, the removal of Mefv from the mouse does not cause spontaneous IL-1β 

release.  Furthermore, in our studies, treatment with LPS alone did not alter IL-1β production 

from Mefv null macrophages in comparison to WT macrophages.  Thus, the regulation of IL-1β 

production by Pyrin is independent of IL-1β transcription.  Rather, inflammasome activation 

remains a requirement for the release of IL-1β from Pyrin-deficient macrophages.  This is 

consistent with the episodic nature of inflammation in FMF—an unknown endogenous stimulus 

activates an inflammatory response, but severe inflammation is not chronic. 

 Pyrin can negatively regulate IL-1β production that is mediated by multiple inflammasomes.  

Therefore, Pyrin most likely contributes to a part of this pathway which is common to multiple 

modes of pathogen uptake and signaling through multiple inflammasome complexes.  Since 

ASC and Caspase-1 are common between the inflammasomes, a likely possibility is that Pyrin 

interacts with ASC and/or Caspase-1, sequestering them away from inflammasome complexes.  

Previous studies detected protein interactions between Pyrin and both ASC and Caspase-1 (1, 

2, 6-8, 17).  In particular, one study demonstrated that Pyrin competed with NLRP3 for binding 

to ASC (3). 

 Mice deficient in inflammasome components ASC or Caspase-1 are more resistant to 

endotoxin-induced lethality than WT mice (18), while mice lacking IL-1β have unaltered 
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susceptibility compared to wild-type mice (19).  These data should be reproduced using all three 

knock-out mice in parallel, but they provide preliminary in vivo evidence that inflammasome-

dependent, IL-1β-independent signaling contributes to inflammation.  Indeed, the formation of 

inflammasome complexes is associated with not only IL-1β production, but also inflammation-

induced cell death (20).  As expected, we observed an increase in macrophage cell death 

following exposure to stimuli which activate inflammasome complexes.  However, 

inflammasome-associated cell death was not affected by the loss of Pyrin.  This places Pyrin’s 

role in inflammasome function as part of a divergent pathway that is limited to IL-1β production 

and not cell death.   

 Initial work suggested that inflammasome activation leads to both IL-1β production and cell 

death in a ASC-dependent, Caspase-1-dependent manner.  Thus, it was perplexing to us that 

Pyrin affected IL-1β production but not cell death.  We anticipated that if Pyrin affected 

inflammasome complex formation, or a theoretical common function upstream of inflammasome 

complex formation, we would observed changes in cell death as well as IL-1β production.  

However, more recent work has begun to tease apart two partially overlapping, but independent 

pathways for IL-1β production and cell death.  IL-1β production in response to Legionalla 

pneumophila requires NLRC4, ASC, and Caspase-1, but cell death is dependent on only 

NLRC4 and Caspase-1 and not ASC (21).  These findings elucidated the possibility that Pyrin 

could interact with ASC and affect IL-1β production without affecting cell death.  Further 

research has shown that divergent pathways control IL-1β production and cell death in response 

to Francisella novicida, Salmonella typhimurium, and Pseudomonas aeruginosa, as well as 

Legionella pneumophila.  Caspase-1 and ASC are both required for IL-1β production, but 

Caspase-1 is also absolutely required for cell death and ASC is not (22).  These results are 

consistent with a model in which Pyrin sequesters ASC to prevent the formation of 

inflammasomes complexes that mediate IL-1β production.  However, importantly, the “death 
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complex” is formed by CARD-CARD interactions between NLRC4, NLRP1b, or a CARD-Aim2 

chimera and Caspase-1.  Thus, there is still no model to explain how Pyrin can regulate NLRP3 

inflammasome complex formation without affecting cell death as well as IL-1β production.   

 Our results are consistent with a model in which Pyrin negatively regulates IL-1β release 

from the cell.  IL-1β, IL-18, IL-33, and high mobility group box protein 1 (HMGB1) are uniquely 

shuttled to the plasma membrane in endolysosomes, in contrast to most proteins which are 

sorted within the Golgi into vesicles released from the cell (23).  The interplay between 

inflammasome complex formation, endolysosomes, and cytokine release is undefined.  

Immunofluorescence microscopy studies place the inflammasome complexes and ASC specks 

within the cytosol, however, Caspase-1 may cleave pro-IL-1β within the endolysosomes.  

Although not directly proven, sequestering Caspase-1 activity within the endolysosomes would 

explain how the cell might protect itself against off-target cleavage of other proteins by 

Caspase-1 (24).  In support of this model, mature Caspase-1 release can be detected 

concurrent with IL-1β release (25).  The mechanism by which IL-1β and Caspase-1 enter the 

endolysosomes is a mystery (24).  Are active transporters required or do endolysosomes form 

around ASC specks?  Another unanswered question is what cytoskeletal elements and 

associated proteins are necessary for shuttling of the endolysosomes through the cell.  Since 

Pyrin has been shown to interact with cytoskeletal elements in addition to inflammasome 

complexes, it is reasonable to hypothesize that Pyrin may be a link between these elements that 

are necessary for IL-1β production.  This link, called an immune synapse, was previously 

described. 

 There are several approaches to test the model that Pyrin is involved in IL-1β release from 

the cell.  Cellular colocalization would be an ideal way to visualize an interaction between Pyrin, 

the cytoskeleton, and active Caspase-1, however, reagents necessary to facilitate image 

resolution to such detail are currently unavailable.  A more amenable method to test the 
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hypothesis that Pyrin interacts with inflammasome proteins ASC and/or Caspase-1 in cells is to 

quantify the formation of ASC specks and the activation of Caspase-1.  If Pyrin interacts with 

ASC to prevent inflammasome complex formation, then the percentage of ASC-speck positive 

cells should be increased in macrophages from Pyrin-deficient mice compared to macrophages 

from wt mice.  Similarly, Caspase-1 activity should be increased.  If Pyrin interacts with the 

catalytic subunits of pro-Caspase-1 or mature Caspase-1, then Caspase-1 activity will still be 

increased, however, ASC-speck formation should be similar between Pyrin-deficient and wt 

cells.  This pattern of results is seen in cells treated with Caspase-1 inhibitors (26).  It is 

important to recognize that Pyrin’s affect on IL-1β production is subtle and a phenotypic 

difference in these assays is also likely to be subtle.  Therefore, a detectable difference argues 

for a role of Pyrin in inflammasome complex formation and/or function, but results which are 

similar between WT and Mefv null cells is inconclusive.  It could indicate that Pyrin does not 

affect inflammasome function, but alternatively, it could indicate that the phenotype could not be 

resolved by these assays.   

 An easy, albeit inconclusive, way to suggest that Pyrin’s regulatory action is through 

endolysosome shuttling rather than inflammasome complex formation is to compare HMGB1 

release from Pyrin deficient and sufficient macrophages following treatment with LPS.  Since 

HMGB1 is released through endolysosomes, but does not require Caspase-1 cleavage, 

detection of HMGB1 levels provides a nice assay to separate Caspase-1 activation and 

endolysosome shuttling functions.  Elevated levels of HMGB1 release from Pyrin-deficient 

macrophages suggest that Pyrin’s effect is on a function common to HMGB1 and IL-1β release, 

i.e. endolysosome shuttling.  Similar levels of HMGB1, on the other hand, argue that the 

regulatory role of Pyrin is limited to IL-1β and not HMGB1, and thus suggests that Pyrin 

regulates inflammasome function. 
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 Together, these assays provide complementary methods to detect whether Pyrin affects 

inflammasome complex formation or IL-1β release.  A question that could remain following this 

work is how Pyrin affects IL-1β release following inflammasome stimulation, but has no effect on 

IL-1β release in response to LPS alone.  In mice, little IL-1β is released without additional 

danger stimuli to activate the inflammasome.  Given the subtle regulatory effect of Pyrin, it is 

possible that a difference in IL-1β levels following LPS treatment could not be detected.  It is 

also possible that a small amount of mature or immature IL-1β is released from macrophages 

through another mechanism, such as passive diffusion from dying cells (7).  Pro-IL-1β can be 

cleaved following its release from the cell (27).  Further experiments are necessary to address 

this possibility.  Initially, it would be interesting to test IL-1β release following other stimuli that 

activate production of pro-IL-1β but do not activate the inflammasome.  It would also be 

interesting to examine a mouse with Caspase-1 and Pyrin deficiencies.  This would be another 

way to discern whether or not the regulatory effect of Pyrin is dependent upon the 

inflammasome complex, although given the small amount of IL-1β release independent of the 

inflammasome, the detection limit of reagents may prevent resolution of a phenotype. 

  

Endogenous regulation of inflammasome-dependent IL-1β production 

 Considering the severe consequences which result from unregulated IL-1β signaling, it is 

not surprising that there are multiple stages at which IL-1β signaling is controlled.  As previously 

mentioned, IL-1β transcription and the stability of pro-IL-1β protein is influenced by multiple 

factors (28-30).  Additionally, regulation of inflammasome complexes influences IL-1β release.  

This section focuses on regulation of inflammasome signaling as a mechanism to fine-tune the 

timing and magnitude of IL-1β production. 
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Sequestration of inflammasome complex proteins 

 Two classes of negative regulators that prevent inflammasome protein interactions are 

CARD-only proteins (COPs) and PYD-only proteins (POPs).  As their names suggest, these 

proteins have CARD or PYD protein binding domains, but lack the functional NACHT and LRR 

domains that are necessary to promote Caspase-1 activation.  COPs and POPs bind to the 

CARD or PYD domains, respectively, of the NLRs, ASC, and/or Caspase-1 to prevent 

inflammasome complex interactions and Caspase-1 activation.  Human COP, INCA (inhibitory 

CARD) and ICEBERG have been shown to block IL-1β production using in vitro overexpression 

systems (31-33).  Similarly, human pyrin-only proteins POP1 and cPOP2 have been shown to 

regulate IL-1β production in vitro.  POP1 was originally shown to increase IL-1β production, but 

a recent protein binding study suggests that POP1 may decrease NLR-dependent IL-1β 

production, similar to cPOP2 (34-37).  The in vivo function of these genes has not been 

examined, because they are absent from the mouse genome.  Pyrin, on the other hand, is 

suspected to act as a POP that negatively regulates IL-1β production in both humans and mice.   

 Additionally, Caspase-12 deficient mice display increased IL-1β cytokine production, but the 

significance of Caspase-12 in humans is questioned because the region that mediates the 

regulatory effect in mice is missing from the human gene (38).  Bcl-2 and Bcl-XL, on the other 

hand, bind NLRP1 and reduce Caspase-1 activation in human cell lines, and Bcl-2 deficient 

mice showed increased IL-1β production in response to muramyl dipeptide (MDP) treatment in 

vivo (39).  p202, a HIN-family protein, inhibits AIM2-dependent inflammasome activity in 

response to dsDNA.  p202 can bind dsDNA and also AIM2, so it may function to sequester one 

or both of these to prevent Caspase-1 activation (40).  The serpin proteinase inhibitor 9 (PI-9) 

inhibits Caspase-1 and pro-IL-1β processing in human vascular smooth muscle cells (41).   
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Feedback loops 

 In addition to inflammasome complex disruption, a second mechanism of regulation occurs 

through feedback loops that converge upon NF-κB.  NF-Κb promotes transcription of IL-1β, 

NLRP2, NLRP3, ICEBERG, and MEFV.  Increasing IL-1β, NLRP2, and NLRP3 transcription 

should increase inflammasome-dependent IL-1β production and promote an inflammatory 

response, whereas ICEBERG and Pyrin inhibit IL-1β production.  Activation of the IKK/NF-κB 

pathway, in turn, is regulated by IL-1β, TNFα, NLRP2-4, Pyrin, and ASC in a complex manner.  

Reconstitution of the pathway in HEK293T cells indicates that IL-1β or TNFα treatment alone 

induces NF-κB activity, and overexpression of NLRP3 or Pyrin also increases NF-κB activity 

above baseline (42).  ASC alone dose-dependently reduces NF-κB activity (43) and abrogates 

the effects of IL-1β and TNFα (42).  Interestingly, although NLRP3 and Pyrin increase NF-κB 

activity in untreated cells, they reduce the effect that TNF-α treatment has in promoting NF-κB 

activity.  Moreover, while ASC alone reduces TNFα-dependent NF-κB activity, ASC increases 

NF-κB activity when NLRP3 or Pyrin is combined with TNFα.  In this study, ASC affects IKKα 

and IKKβ activity through its PYD (42).  To add further regulation, the expression of Mefv and 

IL-1 receptors 1 and 2 (IL-1r1 and IL-1r2) are also driven by NF-κB in a TNF-α dependent 

manner (44).   

 Other investigations have shown that, in untreated cells, Pycard (ASC) overexpression 

induces NF-κB activity (45).  The NLRs PYNOD (NLRP10) and NLRP2 reduce NF-κB activity 

which is promoted by ASC.  PYNOD binds to ASC (46) to inhibit ASC-mediated induction of NF-

κB activity.  NLRP2 inhibits NLRP3-mediated induction as well as ASC-mediated induction of 

NF-κB activity (45).  NLRP2 expression is promoted by NF-κB in a TNFα-dependent manner.  

Since TNFα is itself regulated by NF-κB activity, NLRP2 mediates a feedback regulatory loop 

(47).  Fas-associated factor 1 (FAF1) also binds to NLRP3 and inhibits NLRP3 and ASC-
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mediated activation of NF-κB.  Furthermore, immune stimulants can influence the expression of 

regulatory genes.  For example, LPS increases NF-κB-mediated transcription of pro-IL-1β, ASC, 

NLRP3, Pyrin, and FAF1 (48).  Thus, timing of NF-κB-driven gene expression and NF-κB 

regulation can shape the transcriptome and the immune response.  As previously mentioned, in 

one study Pyrin increased NF-κB translocation (49) and in another study Pyrin increased NF-κB 

activity (42), but other investigators have seen no change in NF-κB activity following the 

overexpression of Pyrin (3, 8). 
 In addition to regulatory loops that affect NF-κB activity, NF-Κb-mediated regulatory loops 

also affect inflammasome activity.  In addition to IL-1β, NLRP2, NLRP3, ICEBERG, and MEFV, 

as previously mentioned, Serpin plasminogen activator inhibitor 2 (PAI-2) and Bcl-XL are NF-κB 

regulated genes.  Both negatively regulate Caspase-1 dependent IL-1β secretion.  Therefore, 

NF-Κb-dependent genes negatively regulate IL-1β release, whose transcription is positively 

regulated by NF-κB.  Interestingly, PAI-2 is not expressed in THP-1 cells, which release IL-1β 

following stimulation with LPS only (50).  PYNOD, mentioned above as an inhibitor of ASC-

dependent NF-κB activity, also inhibits IL-1β release.  Using both human and mouse proteins, 

PYNOD was shown to co-immunoprecipitate with IL-1β and Caspase-1, indicating that its affect 

on IL-1β release occurs through inflammasome complex interaction and not just NF-κB-

regulated transcription of pro-IL-1β.  In Jurkat cells, PYNOD expression slightly increased 

following LPS stimulation, thus PYNOD expression can also be regulated by inflammatory 

signaling in at least some hematopoietic cells (46). 

 A recent study in mice demonstrated another mechanism of inflammasome regulation:  cell-

mediatied suppression by adaptive immune cells.  Activated effector and memory CD4+ T-cells 

suppress inflammasome activity during the primary adaptive immune phase and during 

secondary immune challenge.  T-cell ligands, including CD40, mediate this effect (40).  These 
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findings provide a nice conceptual advancement as to how the innate immune response can be 

resolved, at least in part, by action of the adaptive immune response. 

PRY-SPRY Domain 

 Another TRIM-family protein, TRIM30α, has been shown to regulate IL-1β production at 

both the transcriptional level and inflammasome-mediated processing level.  Knockdown of 

TRIM30α in the immortalized mouse macrophage cell line J774 led to increased IL-1β 

production in response to multiple NLRP3-inflammasome elicitors (51).  Overexpression of 

TRIM30α in transgenic mice cause reduced IL-1β production in vivo following treatment with 

MSU (51).  Another SPRY-containing protein, estrogen-responsive B-box protein, was also 

shown to regulate inflammasome activity, albeit in a positive manner (52). 

 In summary, regulation of inflammasome-dependent IL-1β production is a complex process, 

mediated by NF-κB activation and regulatory feedback loops that converge upon Caspase-1 

activity.  Further research efforts are necessary to discern how all of these regulatory 

mechanisms, now including Pyrin, synergize to provide appropriate regulation of IL-1β-

dependent immune responses. 

 

Regulation of Pyrin’s function 

Splice variants 

 One interesting area for future research involves the study of Mefv splice variants.  Several 

investigators have observed that Mefv has one primary transcript but several minor transcripts 

(53).  To date, studies have characterized splice variants in PBMCs, granulocytes, and sonovial 

fibroblasts (54).  So far, it appears that some splice variants may be unique to one or more cell 

types.  However, no study has used the same methodology to detect splice variants of different 
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cell types in parallel.  Thus, the apparent differences in the presence of splice variants between 

cell types could reflect the relative detection capabilities of the experimental systems used.  

Future studies should address whether or not splice variants vary in a qualitative or quantitative 

way between different cell types.  A related question is whether or not splicing changes within a 

cell type as the cell matures or becomes activated.  Indeed the abundance of minor splice 

variants increases in sonovial fibroblasts following activation with LPS (54).  Is splicing also 

regulated by external signals from neighboring cells through soluble mediators or cell-cell 

interaction?  Another important question is:  What are the functional consequences of 

differential splicing?  Do splice variants have increased, decreased, or novel function in 

caparison to the primary transcript?  By potentially changing the overall structure of Pyrin, these 

transcripts could favor different protein-protein, protein-cytoskeletal, or intramolecular 

interactions.  Or perhaps they change the protein stability of Pyrin.  A third avenue for future 

research regarding Mefv splicing is addressing the hypothesis that mutations in Mefv affect 

splicing.  So far, there is no evidence to directly support this hypothesis, and there are no 

mutations at splice donor or acceptor sites.  However, since the abundance of minor transcripts 

increases concurrently with immune activation, and FMF disease is caused by aberrant immune 

activation, it seems possible that mutations could increase the abundance of splice variants and 

cause immune activation. 

 To address the first question, cells could be sorted based upon type, maturity, and 

activation by flow cytometry and assessed for the relative abundance of splice variants by 

quantitative real-time PCR.  This experiment should be done using both human and mice 

tissues, since there is substantial evidence for splice variants of the human Mefv gene, but a 

broader range of tissues is available from the mouse.  To assess the function of splice variants, 

two complementary experimental systems could be used.  First, Mefv genes capable of 

expressing only one splice variant could be overexpressed in a human cell line that lacks 
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endogenous expression of Pyrin.  This system allows for independent evaluation of the function 

of each splice variant.  IL-1β production, NF-κB activity, ASC-speck formation, Caspase-1 

activity, and cellular localization should be assessed.  Second, antibodies specific to a splice 

variant of Pyrin could be used to determine protein binding capabilities and cell localization of 

endogenous Pyrin in primary human cells.  This method is likely to produce results with better 

correlation to what occurs in vivo, but technical limitations could prevent a clear interpretation of 

results.  Lastly, to assess the hypothesis that mutations affect splicing, Mefv genes with FMF-

associated mutations could be overexpressed in a human cell line followed by quantification of 

the abundance of each splice variant by real-time PCR. 

Cleavage of Pyrin 

 The human Pyrin protein was shown to be cleaved by Caspase-1.  By, overexpressing 

human Pyrin and Caspase-1 proteins in murine PT67 cells, the Pyrin protein was observed at 

multiple molecular weights.  The production of the lower molecular weight form of Pyrin was 

blocked by the Caspase-1 inhibitor z-VAD-fmk (49).  It is important to note that Pycard is not 

expressed in PT67 cells.  The expression of Pycard (ASC), as is typical in an endogenous 

system, could alter the interaction of Pyrin and Caspase-1, since Pyrin binds to both of these 

proteins.  ASC may sequester Pyrin or Caspase-1 from interacting with the other or promote the 

formation of a trimeric protein complex.  It is also interesting to note that these cells were 

unstimulated.  In another study using THP-1 monocytes, two different weights of endogenous 

human Pyrin were detected by western blotting with an antibody that recognizes the N-terminal 

portion of Pyrin, similar to the aforementioned study.  The estimated size of the smaller protein 

correlates nicely.  Stimulation of cells with cold temperature (30°C) stimulated NLRP3 

inflammasome-mediated Caspase-1 activity, and decreased the abundance of full-length Pyrin.  

However, the Caspase-1 inhibitor did not prevent the disappearance of the predominant 85 kDa 

Pyrin band.  Thus, this study suggests that Caspase-1 does not mediate cleavage of Pyrin.  The 
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authors instead suggest that Pyrin is degraded when the NLRP3 inflammasome is activated by 

cold temperature (5).   

 In FMF patient samples, there is a higher percentage of a low molecular weight form of 

Pyrin, compared to healthy controls (49).  It is tempting to conclude that Caspase-1-mediated 

cleavage of Pyrin is increased as a result of FMF-associated  mutations within the Pyrin protein 

and that the cleavage of Pyrin alters its function to produce the FMF disease phenotype.  

However, interpretation of data from human patient samples is complicated by a couple 

experimental limitations.  First, the presence of a lower molecular weight band is not necessarily 

indicative of cleavage of Pyrin.  Instead, it could be the natural protein product of a shorter 

transcript of the MEFV gene.  Second, it is unclear if the samples from FMF patients and 

healthy controls have similar cell populations.  Differential splicing of MEFV in neutrophils and 

macrophages (or perhaps other cell types) could explain the difference in the relative 

abundance of isoforms of the Pyrin protein. 

 Caspase-1 is expressed in most cells which express Pyrin:  human macrophages (55), 

neutrophils (56, 57), dendritic cells (58), B and T lymphocyte cell lines (59, 60), and primary 

fibroblasts (61), and it can be detected by RT-PCR in synovial tissue of some, but not all 

patients with arthritis or healthy controls (62).  Caspase-1 activity is increased in the psoriatic 

lesions of the skin (63), and in B-cells, Caspase-1 can mediate apoptosis (59, 60), thus 

Caspase-1 is functional in non-myeloid cells.  The overlapping expression pattern of Caspase-1 

with Pyrin is consistent with the idea that Caspase-1-mediated cleavage of Pyrin mediates the 

function of Pyrin.   

 However, the site of Caspase-1 cleavage of Pyrin is not conserved among all species.  The 

cleavage site was mapped to amino acids 330 – 31 of the human protein, between aspartate 

and serine amino acids (49).  The amino acid sequence is conserved in the chimpanzee, 
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monkey, and dog Pyrin proteins.  In the mouse and rat protein, however, the corresponding 

amino acids are two serines.  Thus, it is unlikely that the mouse and rat Pyrin protein can be 

cleaved by Caspase-1, although cleavage may be conserved in the chimpanzee, monkey, and 

dog. 

 

The genetics of FMF 

 Inferences about the function of Pyrin have been made based upon dominant versus 

recessive inheritance:  dominance suggests that mutants have a gain-of-function; recessivity 

suggests mutants have a loss of WT Pyrin function.  Our data indicate that a loss of Pyrin 

function causes aberrant IL-1β production.  We did not identify a phenotype in intrinsic 

neutrophil function, but the loss of Pyrin function may affect neutrophils in a manner that was 

beyond our detection by the assays we chose for testing.  Together, our data support a model 

for FMF-associated mutations causing a loss-of-function, which in turn supports a recessive 

inheritance model.  We cannot, however, rule out the possibility that some point mutants create 

a gain-of-function phenotype. 

 It is surprising that there is a large population of FMF patients with only one or no identified 

mutation in MEFV, although analysis is typically confined to examination of mutational hotspots.  

Two phenomena could explain this:  1) the recently established Tel Hashomer criteria and 

molecular genetic testing for mutations in MEFV facilitate diagnosis of FMF in milder cases, 

including asymptomatic individuals, and milder cases may be associated with unidentified 

mutations in MEFV, and 2) in response to changing selection pressures, new allelic variants are 

emerging that are beyond detection of current testing panels.  Thus, caution should be used 

when concluding dominant or recessive inheritance patterns based upon an absence of 

molecularly-defined mutations. 
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 Intramolecular interactions within Pyrin were reported by multiple investigators (5, 7), and 

could be an indication that either Pyrin interacts with itself on a monomeric level, or that Pyrin 

forms multimers with itself.  Indeed, there is evidence to support a model in which Pyrin forms 

homotrimers (7).  It is interesting to assimilate this idea with our knowledge of FMF inheritance.  

Our research indicates that the loss of function of one allele is not compensated through 

increased expression of the other allele of Mefv.  Thus, if we assume that both wt and mutant 

alleles are expressed equally in heterozygous individuals, then it is reasonable to assume that 

each trimer of Pyrin could have 0, 33, 67 or 100% of the function of a trimer from homozygous 

WT individuals.  These percentages represent the extreme where one allele has full function 

and the other allele has a complete loss-of-function.  In actuality, since mutations are point 

mutations, and primarily missense mutations, they may cause only a partial loss-of-function.  

Additionally, most individuals with two mutant alleles are compound heterozygotes.  Therefore, 

the range of functionality of Pyrin trimers varies greatly.  On a phenotypic level, this broad 

functionality could explain the broad range in severity or apparent penetrance of FMF disorder.  

This does not rule out the possibility that there are genetic modifiers of the FMF phenotype. 

 The presence of the same MEFV genotype in patients with different FMF severity, even 

asymptomatic in some cases, indicates that there is really interesting biology that we don’t yet 

understand.  Unidentified modifiers of FMF pathology probably exist.  Modifiers of disease 

penetrance and/or severity of symptoms can be either genetic or environmental.  For example, 

in a large cohort of 2,067 patients, there was a female:male ratio of 1.38 (64).  This bias may be 

due to the contribution of sex-specific genetic modifiers, but this conclusion warrants further 

investigation.  An environmental influence of FMF pathology is clear.  The country of residence 

affects the prevalence of MEFV mutations, the emergence of new mutations, and disease 

severity, specifically the risk of developing amyloidosis (65, 66).  Populations within the 

countries of France, Turkey, Armenia, Spain, Lebanon, and Italy carry the largest number of 
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sequence variants (66-69), suggesting that environmental stressors within the Mediterranean 

region are selecting for Mefv allelic variants.   

 Mefv may protect against a pathogen that is most prevalent in the Mediterranean region.  

Functional protein analysis supports this hypothesis.  The PRY-SPRY region within the B30.2 

domain of Pyrin forms a 3D-structure with hypervariable loops, similar to the variable regions 

within immunoglobulin proteins.  The PRY-SPRY domain is common to Tripartite motif (TRIM) 

family proteins.  Among these are TRIM5α and TRIM21 (Ro52).  A single amino acid 

substitution within TRIM5α has led to susceptibility for HIV infection in humans while 

chimpanzees that retain the evolutionary wild-type sequence remain resistant to HIV.  Mutations 

within TRIM21 lead to systemic lupus erethymatosus susceptibility.  Mutations in TRIM5α and 

TRIM21, along with the most severe disease-causing mutation (M694V) within Pyrin/TRIM20, 

map to a hyper-variable loop region of the PRY-SPRY domain.  Thus, both the structural 

similarity between Pyrin and other TRIM-family proteins, and the association of PRY-SPRY 

mutations with disease, support a model in which the amino acids within the variable loop 

regions undergo frequent substitutions throughout evolution.  These allelic variants may be 

maintained as a way of adapting new or better immune defenses to resist a pathogen(s).  

Consistent with this hypothesis, Pyrin expression is increased in response to treatment with 

LPS, retroviral infection, and treatment with some pro-inflammatory cytokines (7, 70).  To 

provide a conceptual framework for this hypothesis, the phenotypes caused by mutations in 

Mefv may follow a model for mutations in the beta globin chain of hemoglobin, wherein 

heterozygosity provides protection against malaria, but homozygosity causes the sickle-cell trait. 
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