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ABSTRACT

Brittany Virginia Worley: Structure-Activity Characterization of Nitric Oxide-Releasing
Dendrimers as Dual-Action Antibacterial Agents
(Under the direction of Mark Schoenfisch)

The increasing prevalence of antibiotic-resistant bacteria coupled with the inherent
resistance of biofilm-based infections have necessitated the development of new antibacterial
agents capable of eradicating biofilms without fostering resistance. Nitric oxide (NO), an
endogenously produced free radical, holds great promise as an antibacterial agent due to its broad-
spectrum antimicrobial action. Combining NO with contact-based biocides on a macromolecular
scaffold should further enhance bactericidal action. Herein, the synthesis of NO-releasing
antibacterial dendrimers and their anti-biofilm capabilities as a function of exterior modification
are described.

Dual-action antibacterial agents were synthesized through the functionalization of
poly(amidoamine) dendrimer scaffolds with contact-based biocides and subsequent modification
with N-diazeniumdiolate NO donors.  Quaternary ammonium- and alkyl chain-modified
dendrimers were designed with a range of generations and alkyl chain lengths. Nitric oxide storage
was turned so that each set of modified dendrimers exhibited similar NO totals, allowing for the
evaluation of antibacterial action independent of NO-release payloads.

The antibacterial action of dual-action dendrimer biocides proved dependent on dendrimer
generation, alkyl chain length, and bacterial Gram class. Longer alkyl chain modifications were

significantly more bactericidal than both unmodified scaffolds and shorter alkyl chains. Efficacy



of the shorter chains was improved with higher dendrimer generations and the addition of NO
release. Long alkyl chain dendrimers did not benefit from NO release due to the significant
membrane damage they induced precluding intracellular NO buildup. The anti-biofilm action of
alkyl chain-modified dendrimers was dependent on the biocide’s ability to penetrate into the
biofilm and compromise cell membranes, with longer alkyl chains improving biofilm eradication
due to greater membrane intercalation. The addition of NO release enhanced the efficacy of
dendrimer biocides incapable of good biofilm penetration, indicating the utility of dual-action
dendrimers as broad-spectrum anti-biofilm agents.

Electrospun polyurethane fibers capable of delivering NO-releasing dendrimers were
fabricated by doping dendrimers into polyurethane solutions prior to electrospinning. The
electrospun fiber mats were semi-porous and exhibited sufficient water uptake, demonstrating
promise as potential wound dressing materials. Dendrimer- and NO-release rates were tunable by
altering the dendrimer modification and polyurethane composition. Nitric oxide-releasing fibers
exhibited moderate to high antibacterial activity against planktonic bacteria with minimal

cytotoxic effects.
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CHAPTER 1:
Designing Novel Antibacterial Agents for Enhanced Biofilm Eradication

Biofilm-based infections, especially those caused by the opportunistic pathogens
Pseudomonas aeruginosa and Staphylococcus aureus, continue to pose a tremendous challenge to
the medical field.1® Biofilms are bacterial communities encased in a protective exopolysaccharide
matrix that demonstrate a variety of protective mechanisms, allowing for their persistence despite
treatment with antibiotics or antiseptics.*® The inability of current therapeutics to effectively
eradicate biofilms promotes bacterial resistance. Nitric oxide is an endogenously produced free
radical that plays a central role in the host immune response to infection, exhibits broad-spectrum
antibacterial action, and is unlikely to foster resistance, making it an ideal candidate for the
development of novel biocidal agents.”*° This chapter will describe the formation and protective
mechanisms of biofilm-based infections, current research into more effective anti-biofilm
therapeutics, the existing state of macromolecular scaffolds for controlled nitric oxide release, and
the emergence of dual-action nitric oxide-releasing dendrimers as novel antibacterial agents.
1.1  Biofilm-based infections

Traditionally, planktonic (i.e., free-floating) bacteria have been used to evaluate antibiotic
susceptibility; however, the majority of bacterial infections are believed to be caused by
communities of bacteria called biofilms.* 1113 As opposed to their free-floating counterparts,
biofilm-based bacteria are encased in a complex exopolymeric matrix that tethers the biofilm to a
surface, protecting it from invasion by antimicrobial agents (e.g., antibiotics, antiseptics).* 12 14

Biofilms are significantly more difficult to treat, often requiring therapeutic doses 3—4 orders of



magnitude greater than those required to eradicate