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ABSTRACT 

 

Brittany Virginia Worley: Structure-Activity Characterization of Nitric Oxide-Releasing 

Dendrimers as Dual-Action Antibacterial Agents 

(Under the direction of Mark Schoenfisch) 

 

The increasing prevalence of antibiotic-resistant bacteria coupled with the inherent 

resistance of biofilm-based infections have necessitated the development of new antibacterial 

agents capable of eradicating biofilms without fostering resistance.  Nitric oxide (NO), an 

endogenously produced free radical, holds great promise as an antibacterial agent due to its broad-

spectrum antimicrobial action.  Combining NO with contact-based biocides on a macromolecular 

scaffold should further enhance bactericidal action.  Herein, the synthesis of NO-releasing 

antibacterial dendrimers and their anti-biofilm capabilities as a function of exterior modification 

are described. 

Dual-action antibacterial agents were synthesized through the functionalization of 

poly(amidoamine) dendrimer scaffolds with contact-based biocides and subsequent modification 

with N-diazeniumdiolate NO donors.  Quaternary ammonium- and alkyl chain-modified 

dendrimers were designed with a range of generations and alkyl chain lengths.  Nitric oxide storage 

was turned so that each set of modified dendrimers exhibited similar NO totals, allowing for the 

evaluation of antibacterial action independent of NO-release payloads. 

The antibacterial action of dual-action dendrimer biocides proved dependent on dendrimer 

generation, alkyl chain length, and bacterial Gram class.  Longer alkyl chain modifications were 

significantly more bactericidal than both unmodified scaffolds and shorter alkyl chains.  Efficacy 
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of the shorter chains was improved with higher dendrimer generations and the addition of NO 

release.  Long alkyl chain dendrimers did not benefit from NO release due to the significant 

membrane damage they induced precluding intracellular NO buildup.  The anti-biofilm action of 

alkyl chain-modified dendrimers was dependent on the biocide’s ability to penetrate into the 

biofilm and compromise cell membranes, with longer alkyl chains improving biofilm eradication 

due to greater membrane intercalation.  The addition of NO release enhanced the efficacy of 

dendrimer biocides incapable of good biofilm penetration, indicating the utility of dual-action 

dendrimers as broad-spectrum anti-biofilm agents. 

Electrospun polyurethane fibers capable of delivering NO-releasing dendrimers were 

fabricated by doping dendrimers into polyurethane solutions prior to electrospinning.  The 

electrospun fiber mats were semi-porous and exhibited sufficient water uptake, demonstrating 

promise as potential wound dressing materials.  Dendrimer- and NO-release rates were tunable by 

altering the dendrimer modification and polyurethane composition.  Nitric oxide-releasing fibers 

exhibited moderate to high antibacterial activity against planktonic bacteria with minimal 

cytotoxic effects. 
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CHAPTER 1: 

Designing Novel Antibacterial Agents for Enhanced Biofilm Eradication 

Biofilm-based infections, especially those caused by the opportunistic pathogens 

Pseudomonas aeruginosa and Staphylococcus aureus, continue to pose a tremendous challenge to 

the medical field.1-3  Biofilms are bacterial communities encased in a protective exopolysaccharide 

matrix that demonstrate a variety of protective mechanisms, allowing for their persistence despite 

treatment with antibiotics or antiseptics.4-6  The inability of current therapeutics to effectively 

eradicate biofilms promotes bacterial resistance.  Nitric oxide is an endogenously produced free 

radical that plays a central role in the host immune response to infection, exhibits broad-spectrum 

antibacterial action, and is unlikely to foster resistance, making it an ideal candidate for the 

development of novel biocidal agents.7-10  This chapter will describe the formation and protective 

mechanisms of biofilm-based infections, current research into more effective anti-biofilm 

therapeutics, the existing state of macromolecular scaffolds for controlled nitric oxide release, and 

the emergence of dual-action nitric oxide-releasing dendrimers as novel antibacterial agents. 

1.1 Biofilm-based infections 

Traditionally, planktonic (i.e., free-floating) bacteria have been used to evaluate antibiotic 

susceptibility; however, the majority of bacterial infections are believed to be caused by 

communities of bacteria called biofilms.4, 11-13  As opposed to their free-floating counterparts, 

biofilm-based bacteria are encased in a complex exopolymeric matrix that tethers the biofilm to a 

surface, protecting it from invasion by antimicrobial agents (e.g., antibiotics, antiseptics).4, 12, 14  

Biofilms are significantly more difficult to treat, often requiring therapeutic doses 3–4 orders of 
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magnitude greater than those required to eradicate planktonic bacteria.6, 15  It is thus important to 

examine the formation of these biofilm communities and the protective mechanisms that allow 

them to persist when designing new antibacterial agents. 

1.1.1  Biofilm formation 

Biofilm-based bacterial infections have been observed on most, if not all, implanted 

medical devices.2, 11, 14  The formation of a biofilm is initiated by the irreversible attachment of 

planktonic bacteria to both living and inanimate surfaces, including human tissue and medical 

implants (Figure 1.1).4-6, 11, 13, 14, 16, 17  Both the chemical properties of the underlying surface and 

the identity of colonizing bacterial cells impact the rate and extent of biofilm formation.6  While 

biofilms have been observed on both rough and smooth surfaces ranging from very hydrophobic 

(e.g., Teflon, silicone) to charged and hydrophilic (e.g., glass, metal) materials, rougher and more 

hydrophobic materials develop biofilms more rapidly.4  Bacterial appendages such as flagella or 

pili increase the rate of microbial attachment to surfaces, allowing bacteria to overcome repulsive 

or removal forces and remain attached.4 

After irreversible attachment, bacteria begin to form microcolonies and secrete an 

exopolysaccharide (EPS) matrix that both surrounds and protects the biofilm.4, 6, 11, 13  Although 

the specific composition of the EPS is dictated by the bacterial species it encloses, the matrix is 

generally composed of a combination of polysaccharides, proteins, glycoproteins, and DNA.2, 4, 17  

The EPS matrix provides the structural integrity critical for biofilm formation and survival.4  

During biofilm maturation, EPS synthesis is up-regulated and develops the complex biofilm  
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Figure 1.1 Stages of pathogenic biofilm formation: 1) initial and irreversible attachment of 

planktonic bacteria; 2) biofilm maturation and exopolysaccharide matrix production; 3) dispersion 

of planktonic cells to further infection.  The biofilm community is protected from antimicrobial 

agents and the host immune response.  Figure adapted from Monroe et al.14 (Copyright 2007) 
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Figure 1.2 Schematic representation of biofilm protection mechanisms, including the inability of 

antimicrobial agents to penetrate into the biofilm (yellow), the extreme chemical 

microenvironment at the biofilm depths (pink), and the presence of surviving “persister” cells 

(purple).  Reprinted with permission from the Center for Biofilm Engineering (Montana State 

University, Copyright 2001, www.biofilm.montana.edu).  
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architecture that protects the bacterial community from the immune response and antimicrobial 

agents.17  The protective mechanisms of the EPS matrix will be described in detail in Section 1.1.2.  

The resulting EPS-confined biofilms are highly hydrated (98% water), persistently bound to the 

underlying surface, and heterogeneous in space, time, and bacterial composition.4  Although P. 

aeruginosa and S. aureus are two of the most commonly isolated species in clinical infections, a 

more complex bacterial microflora has been observed with improvements in bacterial isolation 

techniques.2, 18, 19  Consequently, the accumulation of a complex biofilm composed of a diverse 

bacterial community is considered to be responsible for promoting systemic infection via the 

detachment of cells and aggregates from the parent biofilm.4 

1.1.2  Protective mechanisms of biofilms 

In addition to the increasing prevalence of antibiotic resistant bacteria,20-22 biofilm-based 

bacterial infections are notoriously resistant to standard antimicrobial treatment.4-6, 23, 24  Antibiotic 

treatments that are effective at killing planktonic bacteria are often ineffective against biofilms, 

with biofilm eradication often requiring a 1,000–10,000-fold increase in therapeutic dose.6, 15  Of 

importance, the common mechanisms of antibiotic resistance, including expression of efflux 

pumps, modified enzymes and target sites, and production of alternative metabolic pathways, are 

not necessarily responsible for the protection of these bacterial communities.22, 24  Biofilms instead 

exhibit several unique protective mechanisms that contribute to their overall robustness (Figure 

1.2).4, 5, 24 

The first of these protective mechanisms is the inability of antimicrobial agents to penetrate 

beyond the surface layers of the biofilm.5, 24  Diffusion through a biofilm may be slowed or 

completely prevented by charge interactions between antimicrobial agents and the EPS matrix, 

size exclusion by the matrix architecture, and/or reduced motility due to EPS viscosity.5, 13  In vitro 
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measurements of antibiotic penetration in biofilms have exhibited a wide variation in permeation 

rates through such matrices, dependent on both the antibiotic structure and biofilm architecture.23, 

24  Significant limitations in biofilm penetration have been reported for beta-lactams and 

aminoglycosides.23  In particular, positively-charged aminoglycosides are believed to bind to the 

negatively charged polymers within the biofilm, leading to antibiotic adsorption to the biofilm 

matrix and inhibited biofilm penetration.24  In addition to restricted penetration, antimicrobial 

agents may be deactivated through reaction with or binding to the biofilm EPS matrix.23, 25  For 

example, Nichols et al. demonstrated that the addition of alginate during biofilm formation reduced 

inhibition zones for tobramycin against Escherichia coli and S. aureus, suggesting the EPS matrix 

either interferes with antimicrobial action of tobramycin or inhibits its diffusion through the 

biofilm.26  In a similar study, Coquet et al. observed a decrease in antimicrobial action for both 

tobramycin and imipenem against alginate-embedded P. aeruginosa biofilms compared to 

planktonic bacteria.27  While the combination of tobramycin and imipenem was synergistic against 

planktonic cultures of P. aeruginosa, no synergy was displayed for the biofilm cultures. 

The extreme chemical microenvironment within the biofilm further contributes to the 

decreased activity of antimicrobial agents.5  Available oxygen is often consumed at the biofilm 

surface layers, leading to anaerobic pockets in the biofilm depths.24  Additionally, the 

accumulation of acidic waste products may lead to pH gradients (>1 pH unit) between the EPS 

matrix and the biofilm interior.23, 24  The pH, oxygen, and carbon dioxide gradients contribute to 

undesirable antibiotic effects within the deepest layers of the biofilm, where the acidic and 

anaerobic conditions are most dramatic.6  In particular, aminoglycosides have demonstrated 

decreased efficacy against the same bacteria strains in anaerobic as opposed to aerobic 

conditions,23, 24 and both aminoglycosides and tetracyclines are less effective under acidic 
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conditions.6  These chemical gradients also lead to heterogeneity within the bacterial community 

with respect to growth states, with populations ranging from the continuously proliferating to the 

metabolically inactive.5, 23, 24  The depletion of nutrients may cause bacteria to enter a slow- or 

non-growing state where they are protected from killing.  The varied rates of bacterial growth 

dramatically dictate the effectiveness of antibiotics, many of which only target rapidly growing 

bacteria.6, 23, 24 

Quorum sensing (QS) is a method of cell-to-cell communication between bacterial cells 

that allows for cell density and/or population-based gene regulation.28, 29  Individual bacterial cells 

produce and release small QS signaling molecules to detect and relay information on the 

characteristics of the surrounding environment.  The development of antibiotic and biocide 

tolerance or resistance phenotypes in biofilms is thought to be partially regulated by QS, although 

the exact mechanism is unknown.28, 30  The dense, confined biofilm environment enables the 

accumulation of QS signaling molecules, triggering QS-regulated gene expression and affecting 

the host immune response.28  For example, the release of various virulence factors by pathogenic 

bacteria is regulated by QS processes.2, 31  In the case of P. aeruginosa, production of the leukocidal 

toxin rhamnolipid B shields against invading neutrophils and other cellular components of the host 

response, contributing to the persistence of P. aeruginosa biofilms.2, 30 

The final proposed mechanism for increased biofilm survival is the presence of a 

subpopulation of “persister” bacteria that form a unique and highly protected phenotypic state.5, 23, 

24  Cells in this persister phenotype are considered to be specialized survivor cells and are neither 

defective nor antibiotic-stimulated.13  The hypothesized presence of persister bacteria is based on 

the survival of a small population (<1% of the original bacterial community) despite prolonged, 

continued exposure to antibiotics32, 33 and is further supported by the ability of bacterial biofilms 
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to resist killing by chemical disinfectants (e.g., chlorine bleach, glutaraldehyde, hydrogen 

peroxide) and antibiotics.23, 34  Further, this subpopulation of highly persistent bacteria is observed 

in newly formed biofilms that are too thin to provide an adequate barrier to antibiotic diffusion or 

metabolic gradients.34, 35  The presence of a persister subpopulation within a bacterial biofilm may 

promote the longevity and wide-spread resistance of bacteria to antimicrobial agents and 

disinfectants comprised of varying chemistries. 

1.2 Current research into anti-biofilm therapeutics 

The protective mechanisms exhibited by biofilms contributes to their ability to withstand 

treatment with antibiotics or antiseptics.  Further, the increased occurrence of antibiotic-resistant 

bacteria coupled with a decline in new antibiotic research has necessitated the development of 

novel therapies capable of lessening or completely eliminating biofilm-based infections.  This 

section describes the ongoing research aimed at either disrupting biofilm formation or killing 

established biofilms to reduce the bacterial burden in clinical infections. 

1.2.1  Prevention of initial biofilm attachment 

The majority of research on minimizing biofilm attachment focuses on developing or 

modifying surfaces to either prevent the initial bacterial adhesion (i.e., antifouling) or kill adhered 

bacterial cells (i.e., antimicrobial) through both passive or active strategies.4, 13, 36  Passive 

strategies rely on mechanisms intrinsic to the material itself to prevent fouling as opposed to 

actively releasing a biocidal agent.37  Active-release antimicrobial materials can be engineered 

through covalently binding, non-covalently immobilizing, or doping antimicrobial agents on or 

within a material to facilitate release.36  For example, antibiotics38-42 and silver43-47 have been 

incorporated into materials to allow for localized release, which advantageously avoids large, 

systemic doses and maintains antimicrobial action close to the potential infection site. 
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As microbial cell membranes tend to be hydrophobic and negatively-charged, antifouling 

properties are often imparted to surfaces through chemical modification with hydrophilic or 

negatively charged functional groups.48  Poly(ethylene glycol) (PEG) is one of the most highly 

investigated hydrophilic polymers for antifouling biomedical applications.  The utility of PEG 

stems from reducing protein adsorption and bacterial attachment through hydration and steric 

effects.49, 50  Unfortunately, resisting protein adhesion alone does not necessarily correlate with 

reduced bacterial adhesion due to adhesion mechanisms that do not rely on proteins and the 

instability of PEG coatings in physiological solutions.51, 52  The use of negatively charged polymer 

coatings (e.g., heparin, albumin) has resulted in significant reductions in catheter-related 

infections.53, 54  For example, a recent study demonstrated reduced adhesion of Staphylococcus 

epidermidis with a heparin-like polyurethane containing negatively charged sulfate groups.55  

Similarly, polycationic antimicrobial surfaces have been developed by tethering quaternary 

ammonium moieties to polymer coatings.56-58  While the QA-modified surfaces effectively killed 

adhered bacteria, these immobilized antimicrobial or anti-infective agents are often only toxic to 

the first wave of incoming bacteria, providing little antimicrobial action once layers of dead 

bacterial cells accumulate.11, 56   

Other research has focused on preventing bacterial attachment through an induced antibody 

response.  The initial bacterial attachment is normally facilitated by adhesion proteins (adhesins), 

with interactions between bacterial adhesins and host tissue being critical for biofilm formation.29  

Thus, the development of antibodies for specific adhesins to inhibit bacterial adhesion and 

colonization was hypothesized to reduce infection.59  Adhesins tend to be highly conserved 

proteins and lack major variation (~2% divergence) between similar bacterial strains, likely due to 

the required recognition of limited host receptors by all pathogenic strains.59, 60  The lack in 
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variation between adhesins allows for the development of antibodies that should be effective 

against a wide range of bacterial strains.  Langermann et al. reported antibodies against a single 

FimH adhesin protein with specificity for >90% of E. coli strains expressing the FimH adhesin.61  

This approach blocked the binding of E. coli to bladder cells in vitro.  Vaccination of mice with 

the FimH adhesin vaccine reduced the in vivo colonization of bladder mucosa by E. coli by >99% 

and elicited a long-term immune response to FimH.62 

Instead of studying individual adhesins, Schneewind and coworkers attempted to identify 

chemical reactions or binding steps that are shared by a large majority of surface proteins.29, 63  

Sortases are membrane enzymes present in many Gram-positive strains that catalyze the covalent 

anchoring of surface proteins to the outer peptidoglycan layer, making them an excellent target for 

anti-adhesion agents with broad clinical applications.63-65  Several sortase inhibitors have been 

identified to date, including methane-thiosulfonate and mercurial p-hydroxymercuribenzoic acid, 

which block Cys184 residues in the active pocket of sortase A.66, 67  However, these compounds 

exhibit poor therapeutic value due to their high toxicities.29   

1.2.2  Exopolysaccharide matrix disruption 

As the EPS matrix contributes significantly to the resistance of bacteria within biofilms to 

antimicrobial agents, strategies to enzymatically or chemically disrupt the biofilm matrix have 

become a popular approach for enhancing biofilm eradication.13, 36  Hatch et al. demonstrated that 

although the production of alginate, a major component of the P. aeruginosa EPS matrix, inhibits 

the dissemination of antibiotics, treatment with the enzyme alginate lyase facilitated the diffusion 

of gentamicin and tobramycin through P. aeruginosa biofilms.68  Similarly, Alipour et al. reported 

that the co-administration of alginate lyase with DNase enhanced the activity of aminoglycosides 

and reduced P. aeruginosa biofilm growth.69  For many bacterial species (e.g., S. epidermidis, S. 
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aureus, P. aeruginosa, E. coli), iron (Fe3+) is crucial for bacterial growth and metabolic enzyme 

function.11  Gallium (Ga), alternatively, exhibits many similar features as Fe3+ (i.e., ionic radius) 

but does not perform the same functions critical for proper enzyme performance; as such, the 

uptake of Ga over Fe3+ by biological systems renders the enzymes non-functional.11, 70  Kaneko et 

al. found that while P. aeruginosa grown in Ga concentrations >2 µM displayed a dose-dependent 

decrease in growth rate, sub-inhibitory Ga concentrations (1 µM) allowed for uninhibited P. 

aeruginosa growth but prevented biofilm formation.71 

One of the most studied components of the Gram-positive EPS matrix is the polysaccharide 

intercellular adhesion (PIA) protein synthesized by the icaADBC operon in staphylococci, which 

is required for staphylococcal biofilm development.36  The ica gene thus represents a viable 

potential target for the development of biofilm inhibitors.  Sub-inhibitory concentrations of the 

common antibacterial agent povidone-iodine have exhibited anti-biofilm activity against S. 

epidermidis by reducing the transcription of the icaADBC operon through activation of the icaR 

transcriptional repressor.72  The inhibition of PIA synthesis and staphylococcal biofilm disruption 

have also been demonstrated using the organosulfur compound allicin against S. epidermidis and 

sulfhydryl compounds (i.e., dithiothreitol, beta-mercaptoethanol, cysteine) against S. aureus.36, 73, 

74  As dimerization of specific protein domains in the presence of zinc (Zn2+) are required for 

biofilm formation by both S. epidermidis and S. aureus, Zn2+ chelation was similarly shown to 

prevent biofilm formation by both staphylococcal bacteria, including antibiotic-resistant strains.75 

1.2.3  Quorum sensing inhibition 

Quorum sensing was introduced in Section 1.1.2 as a contributing factor in biofilm 

resistance to antimicrobial agents through the regulation of virulence factor release by effective 

cell-to-cell communication.  As QS systems have been implicated in both biofilm formation and 
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infection, QS inhibitors have been developed to reduce bacterial pathogenicity.28, 29  Quorum 

sensing inhibition is achieved through the binding of the inhibitor molecule to the QS receptor 

proteins, displacing the QS regulation center.36 

Two of the leading classes of QS inhibitor candidates are furanones and RNA III inhibiting 

peptide (RIP).29  Furanones in particular have been investigated for their broad-spectrum QS 

inhibitory mechanisms and ability to inhibit the QS centers in both Gram-negative and Gram-

positive pathogens.  Additionally, furanones incapable of QS inhibition have been determined to 

increase biofilm susceptibility to antibiotics and antiseptics.  Hentzer et al. treated P. aeruginosa 

biofilms with several natural furanone compounds and found the furanones specifically targeted 

QS systems, inhibited virulence factor expression, and increased bacterial susceptibility to 

tobramycin and certain detergents.76  The QS inhibitor RIP has also been shown to suppress 

pathogenic virulence, biofilm formation, and antibiotic resistance in certain staphylococcal 

strains.77-80  Although RIP exhibited promising results as a QS inhibitor during studies with in vivo 

animal models, clinical applications have been limited due to concerns over in vivo stability and 

drug toxicity.29  These concerns notwithstanding, several in vitro studies have established the 

potential of QS inhibitors as surface-immobilized anti-biofilm agents, qualifying their ability to 

disrupt biofilm formation on surfaces.81, 82 

1.2.4  Development of novel anti-biofilm agents 

Conventional therapies for eradicating bacterial biofilms are frequently ineffective, 

resulting in the persistence of bacterial subpopulations that exhibit increased resistance to 

antibacterial agents.29, 36  Accordingly, new anti-biofilm strategies have been proposed to promote 

more complete killing of pathogenic biofilms.  The encapsulation of traditional antibiotics within 

various delivery systems, including liposomes, micelles, and polymeric nanoparticles, represents 
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one such area.25, 29, 36  While antibiotic delivery vehicles demonstrate several advantages, including 

more efficient antibiotic delivery, in vivo drug retention, and bacterial killing, fostering bacterial 

resistance continues to be a major drawback of these systems. 

Ionic silver (Ag+) has historically been used as an antimicrobial agent because it offers 

broad-spectrum activity at relatively low concentrations (0.05 ppm in PBS, ~50 ppm in biological 

fluids).83-86  The antimicrobial activity of silver ions stems from a number of biocidal mechanisms, 

including surface binding to and damaging of bacterial cell membranes, interfering with DNA 

replication, poisoning respiratory enzymes, and denaturing proteins (including DNA and RNA).83, 

84, 87  Although wide-spread resistance to silver is unlikely due to its multi-mechanistic biocidal 

activity, bacterial resistance to silver has been observed clinically.84, 86, 87  Several different types 

of silver-resistant clinical strains, mostly Gram-negative bacteria, have been recently isolated.84-86, 

88, 89  Bacterial resistance to silver is observed in two predominant forms: 1) the binding of silver 

by cells in the form of an intracellular complex; and, 2) the excretion of silver from 

microorganisms using cellular efflux pumps.86, 89  In addition to potential bacterial resistance, 

silver use is associated with several clinical disadvantages.  The use of silver products often leads 

to potential irritation or discoloration of the surrounding tissue (argyria), especially when using 

silver nitrate.87  Silver-based products also poorly discriminate between healthy cells and 

pathogenic bacteria, resulting in toxicity to both keratinocytes and fibroblasts at bactericidal silver 

levels.87, 89   

Antimicrobial peptides (AMPs) have recently been proposed as promising anti-biofilm 

agents.  As fairly large, cationic macromolecules, AMPs exhibit broad-spectrum antimicrobial 

activity by binding to negatively-charged structural molecules on the microbial membrane, leading 

to membrane disruption and cell death.29, 36  The ability of AMPs to permeate and damage cell 
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membranes makes them potentially effective against slow-growing or resistant bacteria embedded 

within biofilms; the development of resistance to this kind of mechanical disruption is rare.90, 91  

Unfortunately, AMPs are both difficult and expensive to synthesize in large quantities, have low 

specificity, and are sensitive to protease digestion, limiting current therapeutic utility.29 

Modification of AMPs has led to the development of selectively targeted antimicrobial 

peptides (STAMPs), which represent a novel strategy for species-specific biofilm control.  A 

typical STAMP contains a species-specific targeting peptide connected to an antimicrobial peptide 

via a 2 to 20 amino acid peptide chain.29  This configuration allows for specific microbe targeting 

without reducing antibacterial activity.  Eckert et al. first synthesized a P. aeruginosa-specific 

STAMP with increased bactericidal action and faster killing against P. aeruginosa than the non-

targeted, general-killing peptide control.92  The development of STAMPs has been extended to 

selectively remove both Gram-positive and Gram-negative bacterial strains from multi-species 

planktonic cultures.92, 93  To date, however, the use of STAMPs alone has only resulted in 

inhibitory effects against P. aeruginosa and various cariogenic biofilms, though the co-

administration of STAMPs with tobramycin has enhanced their biofilm eradication capabilities.94    

1.3 Nitric oxide 

Nitric oxide (NO) is an endogenously produced diatomic free radical that regulates several 

biological functions in the cardiovascular, respiratory, and nervous systems, including 

neurotransmission, angiogenesis, vasodilation, wound healing, and the immune response.7, 95-103  

The multifaceted roles of NO in the immune response to invading pathogenic bacteria, in 

particular, have led to countless investigations into the effects of exogenous NO delivery to 

promote bacteria killing and biofilm eradication, ultimately lessening the incidence of infection.  
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This section will consider the physiological roles of endogenously produced NO, including its 

innate antimicrobial action. 

1.3.1  Physiological roles of nitric oxide 

Nitric oxide is produced endogenously through the oxidation of L-arginine to L-citrulline 

via nitric oxide synthase (NOS).9, 95, 96, 98  The three distinct isoforms of NOS are divided into two 

classes – constitutive (cNOS) and inducible (iNOS).  The constitutive class encompasses the 

endothelial (eNOS) and neuronal (nNOS) isoforms with regulation by Ca2+ fluxes and binding to 

the messenger protein calmodulin.95, 96  iNOS is present in epithelial, endothelial, and 

inflammatory cells (e.g., macrophages and neutrophils) and upregulates upon cytokine expression 

and/or inflammatory stimuli.9, 95, 96  Although the three isoforms catalyze the same reaction to 

produce NO, they vary greatly with respect to regulation, concentration, and duration of NO 

production.  The lowest levels of NO are produced by eNOS (pM), an enzyme located in the 

vascular endothelium, neurons, epithelial cells, and cardiac myocytes.98  The low, intermittent 

levels of NO generated by eNOS help maintain basal vascular tone and proper blood flow and 

pressure.95  Similarly, nNOS rapidly produces low, transient levels of NO (pM–nM) in neurons, 

skeletal muscle, and epithelial cells, allowing NO to function as a neurotransmitter in neuronal 

tissue.95, 98  As might be expected, iNOS has the highest capacity for NO generation, yielding 

significantly greater quantities of NO (µM) per mole of enzyme per minute than either of the cNOS 

isoforms.95, 98  The iNOS isoform is expressed in several cell types, particularly neutrophils and 

macrophages, as part of the innate immune response against invading pathogens and will be 

detailed further in Section 1.3.2.95, 96, 98 

The low levels of NO produced by the cNOS isoforms readily diffuse across cell 

membranes to act as regulatory and signaling molecules.  Within the vascular endothelium, NO 
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reacts with the iron center of guanylate cyclase, activating the production of cyclic guanosine 

monophosphate (cGMP).95  The upregulation of cGMP leads to smooth muscle relaxation and 

vasodilation.  Nitric oxide production in the cardiovascular system also regulates vascular tone, 

myocardial contractility, endothelial-leukocyte interactions, and antithrombotic effects, while NO 

deficiencies due to endothelium injury can lead to cardiovascular conditions such as 

atherosclerosis, hypertension, coronary heart disease, and stroke.7, 95  Additionally, cNOS-derived 

NO acts as an intracellular messenger and neurotransmitter in the central nervous system through 

the stimulation of neuronal cGMP production.97, 99  The cGMP-dependent nervous system 

functions of NO include regulating the firing of neurons in various areas of the brain and spinal 

cord, the release of specific neurotransmitters (e.g., acetylcholine, serotonin), and membrane 

depolarization.99  The roles of endogenous NO span a wide range of functions in various biological 

systems, demonstrating its significance as a regulatory and signaling molecule. 

1.3.2  Antimicrobial properties of nitric oxide 

Nitric oxide production has been implicated in contributing to the innate host response to 

infectious pathogens.8, 9, 96  Both iNOS and eNOS have been found in immune-system cells (e.g., 

macrophages, dendritic cells).8  Infections in both humans and animal models are often associated 

with significant increases in endogenous NO.96  The production of NO by iNOS is stimulated by 

the presence of pro-inflammatory cytokines as well as microbial byproducts (e.g., 

lipopolysaccharide, lipoteichoic acid).8, 9  Low concentrations of NO (such as those released from 

macrophages after cytokine stimulation) upregulate the activation of iNOS, while substantially 

higher concentrations suppress iNOS and help prevent NO overproduction.96  Nitric oxide 

demonstrates remarkably extensive antimicrobial activity with an ability to eradicate a broad range 

of pathogenic microorganisms, including both Gram-negative and Gram-positive bacteria, viruses, 
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Figure 1.3 Schematic representation of the multi-mechanistic killing pathways of NO and its 

byproducts through the exertion of both nitrosative and oxidative stresses on bacteria.  Reprinted 

with permission from Hetrick et al.104 Copyright 2008, American Chemical Society. 
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fungi, and parasites.8, 9, 105-107  The broad-spectrum antimicrobial action of NO is attributed to its 

multi-mechanistic killing pathways, exerting both nitrosative and oxidative stresses on pathogens 

through the formation of reactive nitrogen and oxygen intermediates (Figure 1.3).7, 8, 104  Reactive 

nitrogen intermediates (e.g., N2O3) apply nitrosative stress to bacterial cells, modifying DNA, 

proteins, and lipids.8  DNA targeting results in deamination, abasic sites, and strand breaks.9  While 

nitrosation of protein thiols is one of the most important protein targets of NO, nitrosative stress 

can occur at heme groups, iron-sulfur clusters, or amines in addition to reactive thiols.8, 9  Reaction 

of NO with superoxide (O2
-) to form peroxynitrite (ONOO-) leads to oxidative DNA and protein 

damage as well as lipid peroxidation.8, 104, 108, 109  This multi-mechanistic action not only allows 

NO to exhibit broad-spectrum antimicrobial activity but also makes it unlikely to foster bacterial 

resistance.7  Indeed, Gram-positive, Gram-negative, and antibiotic-resistant bacteria that survived 

exposure to lethal exogenous NO doses after several passages (20 d) demonstrated minimal 

increases in inhibitory NO concentrations, rendering the development of NO release a viable 

option for designing novel antibacterial agents that do not foster bacterial resistance.10 

Along with potent antimicrobial action, NO shows selectivity towards invading pathogens 

over host mammalian cells due to their endogenous production of NO.  Eukaryotic cells have 

developed several protective measures against NO’s biocidal mechanisms at elevated 

concentrations.  One notable means of protection is the production of metallothionein, which is 

upregulated by eukaryotic cells in response to oxidative stress, a major contributing mechanism to 

the bactericidal action of NO.9  The expression of superoxide dismutase, an endogenously 

produced enzyme that removes superoxide (O2
-) and limits peroxynitrite (ONOO-) formation, also 

reduces the toxic side effects of NO in mammalian cells.8, 110  However, superoxide dismutase is 
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less efficient than NO at scavenging superoxide, making it only partially effective at mitigating 

toxicity at high NO concentrations.111 

1.4 Nitric oxide-releasing materials 

Exogenous NO donors have displayed substantial antibacterial and anti-biofilm activity 

against a broad range of microorganisms.  Indeed, applying gaseous NO to infected dermal wounds 

was found to reduce the microbial burden and improve wound healing.112, 113  Both Gram-negative 

and Gram-positive bacteria, including antibiotic-resistant strains, have been found to be 

susceptible to gaseous NO.114  Unfortunately, the rapid reactivity of gaseous NO makes its use 

impractical in a clinical setting, limiting any potential therapeutic utility.  A number of NO donors 

have been developed to allow for the controlled storage and delivery of NO, with the hope of 

expanding the range of potential clinical applications.  Several classes of NO donors exist, 

including metal nitrosyls, organic nitrites and nitrates, oximes, S-nitrosothiols (RSNOs), and N-

diazeniumdiolates.7, 115  To date, however, none have been translated to the clinic primarily due to 

challenging manufacturing issues.7  S-nitrosothiol and N-diazeniumdiolate NO donors represent 

the most extensively researched NO-release agents with the greatest potential as therapeutics, 

though still only in the development stages.115  

1.4.1  Nitric oxide donors  

S-Nitrosothiols (RSNO) are the endogenous NO delivery vehicles within biological 

systems.116, 117  On the bench, small molecule exogenous RSNO donors are synthesized through 

nitrosation of thiols with nitrous acid.  Nitric oxide release is achieved through a number of 

decomposition pathways (Figure 1.4A), including homolytic cleavage of the S-NO bond by light 

or heat, copper ion-mediated catalytic decomposition, and reaction with reducing agents (e.g., 
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ascorbate).118  The multiple decomposition pathways and triggers to liberate NO results in certain 

stability issue in vivo, complicating the progression of RSNO-based therapies to the clinic.115 

N-Diazeniumdiolate NO donors form on secondary amines under high pressures of NO gas in 

basic conditions to yield zwitterionic dialkylamino diazeniumdiolate salts (Figure 1.4B).119-121  The 

resulting NO-releasing materials are generally stable in basic solutions or as solids at room 

temperature or below.120  In aqueous solutions at neutral or acidic pH, protonation of the secondary 

amine nitrogen initiates NO donor breakdown, yielding two moles of NO for every mole of NO 

donor.120, 122  As such, N-diazeniumdiolate moieties undergo spontaneous dissociation to yield 

biologically active NO under physiological conditions (i.e., pH 7.4), facilitating the therapeutic 

utility of this NO donor class.  The rate of NO release is dependent on solution pH, with increasing 

solution acidity resulting in faster NO release.122  Moreover, the rate and duration of NO release 

can be tuned by varying the identity of the amine precursor, allowing for chemical control of the 

NO-release kinetics.121, 122  Similar to RSNO-based applications, no N-diazeniumdiolate-

containing compounds have been clinically approved; however, a variety of animal studies have 

demonstrated the biomedical utility of N-diazeniumdiolate NO donors as a therapeutic source of 

NO.115  Due to their increased stability and spontaneous NO release under physiological 

conditions, this work will primarily focus on N-diazeniumdiolate NO donor storage and delivery 

chemistries. 

1.4.2  Macromolecular nitric oxide-release scaffolds 

Initial investigations into the antibacterial action of NO donors were focused on the 

modification of low molecular weight small molecules.  For example, the amino acid proline was 

modified with N-diazeniumdiolates to yield PROLI/NO, which is capable of storing large  
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Figure 1.4 (A) Possible decomposition mechanisms for S-nitrosothiol (RSNO) NO donors, 

including heat, light, and copper-mediated decomposition. (B) Formation of N-diazeniumdiolate 

NO donors on secondary amines followed by proton-initiated decomposition to yield two moles 

of NO for every mole of NO donor. 
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quantities of NO (7.24 µmol/mg) due to the accessibility of secondary amines.123  Poor NO donor 

stability triggers rapid NO release (t1/2 = 1.8 s), however, resulting in NO liberation prior to 

association with bacteria and necessitating greater PROLI/NO doses for effective therapeutic 

action.124  In contrast, the small molecule N-diazeniumdiolate-modified diethylenetriamine 

(DETA/NO) exhibits slower NO donor breakdown, allowing for greater broad-spectrum 

antibacterial activity.125  Nevertheless, the antibacterial action of low molecular weight donors 

remains limited by uncontrolled NO release initiation and insufficient bacterial targeting, 

warranting the development of macromolecular scaffolds for NO delivery.   

Modifying macromolecular scaffolds with NO-release capabilities has several advantages 

over small molecule NO donors, including more controllable NO payloads and release rates, 

modifiable surface chemistries, and reduced toxicity to mammalian cells.  Several types of 

macromolecular scaffolds have been investigated for their NO-release capabilities, including 

liposomes,126-129 metal nanoparticles,130 metal organic frameworks,126, 131-133 chitosan,127, 134, 135 

silica nanoparticles,104, 136-140 and dendrimers.141-143  The use of NO-releasing macromolecular 

vehicles improves both control over NO release and bacterial targeting/association.  For example, 

the inhibitory concentration of S-nitrosated human serum albumin was decreased against bacteria 

by a factor of 5000 compared to two small molecule RSNO donors as a result of scaffold-bacteria 

association.144  Hetrick et al. also observed that NO-releasing silica eradicated planktonic P. 

aeruginosa cultures at NO doses 20x lower than those required from the small molecule NO donor 

PROLI/NO.104  The increase in bactericidal action was attributed to more efficient (targeted) NO 

delivery by the NO-releasing silica particles to the bacteria compared to PROLI/NO.   

Bacterial targeting and bactericidal efficacy are also dependent on the structural 

characteristics of the macromolecular scaffold, including size, shape, and exterior 
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functionalization.  Backlund and coworkers reported that NO-releasing silica nanoparticles with 

greater surface charge facilitated increased bacterial association, NO delivery efficiency, and 

bactericidal action over particles with lower zeta potential but similar NO totals and kinetics.136  

Carpenter et al. evaluated the ability of NO-releasing silica nanoparticles to reduce planktonic P. 

aeruginosa bacterial viability as a function of particle size through the synthesis of 50, 100, and 

200 nm silica nanoparticles, independent of total NO payload.137  Smaller (50 nm) particles were 

more effective at killing P. aeruginosa than larger (200 nm) particles, which was attributed to 

faster particle-bacteria association.  In a similar study, Slomberg et al. found that 14 and 50 nm 

NO-releasing silica particles were more effective at killing planktonic P. aeruginosa than 150 nm 

particles.140  Interestingly, the 50 and 150 nm NO-releasing particles exhibited similar action 

against planktonic Gram-positive S. aureus cultures, with increased bactericidal action observed 

for the 14 nm particles, demonstrating a dependence of Gram designation on NO antibacterial 

activity.  Lu and coworkers expanded these studies to investigate the effects of particle shape on 

bactericidal activity.  Nitric oxide-releasing silica nanorods were synthesized with varied aspect 

ratios, maintaining the same particle volume and NO release while increasing the rod length.145  

Greater antibacterial action against planktonic P. aeruginosa was observed with increasing aspect 

ratio due to more efficient NO delivery by the longer silica nanorods that associated with the 

bacteria longitudinally. 

1.4.3  Effect of nitric oxide-releasing scaffold properties on biofilm eradication  

Nitric oxide also exhibits anti-biofilm activity, including biofilm dispersion and 

eradication.  Lancaster hypothesized that the rapid diffusion properties of NO may enhance 

penetration into biofilms, increasing the efficacy of NO against biofilm-encapsulated bacteria.146  

Barraud and coworkers demonstrated the ability of small molecule NO donors (i.e., sodium 
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nitroprusside, SNAP, GSNO) to disperse bacterial cells using P. aeruginosa, E. coli, S. 

epidermidis, and multi-species biofilms.147, 148  To fully harness the anti-biofilm capabilities of 

NO, the development of NO-releasing scaffolds has focused on understanding the 

physicochemical properties of the scaffold with respect to enhanced biofilm eradication. 

Hetrick et al. reported broad-spectrum anti-biofilm activity for NO-releasing MAP3 silica 

nanoparticles against Gram-negative, Gram-positive, and pathogenic fungus biofilms.139  Further, 

the MAP3/NO silica nanoparticles demonstrated ~1000-fold greater efficacy against P. aeruginosa 

biofilms than the slower NO-releasing AHAP3/NO particles.  This dramatic increase in anti-

biofilm action was attributed to a combination of larger NO storage, faster NO-release kinetics, 

and the smaller size of the MAP3/NO scaffold.  To further assess the effects of particle size on 

biofilm eradication, Slomberg et al. evaluated the anti-biofilm efficacy of NO-releasing silica 

nanoparticles as a function of particle size independent of NO payloads, with only a slight variation 

in release kinetics.140  Smaller (14 nm) NO-releasing silica nanoparticles were more effective at 

eradicating both P. aeruginosa and S. aureus biofilms than larger (150 nm) particles.  The greater 

anti-biofilm action observed for the 14 nm particles was attributed to faster association of the 

smaller particles with the biofilm leading to more efficient NO delivery.  This study also evaluated 

the effects of particle shape on anti-biofilm action, with rod-like scaffolds being more effective at 

biofilm eradication versus the spherical particles.140  Similar to planktonic studies, the longer, rod-

shaped silica nanoparticles resulted in more efficient NO delivery and thus improved bactericidal 

action than spherical particles.  Unfortunately, many of the NO-releasing silica scaffolds were 

toxic to L929 fibroblast cells at concentrations required to eradicate biofilms.139, 140  However, the 

exhibited anti-biofilm efficacy of NO-releasing silica nanoparticles demonstrates the utility of NO 

for biofilm eradication. 
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1.5 Designing dual-action therapeutics 

The use of antibiotic combinations has become common in clinical practice in efforts to increase 

the spectrum of antimicrobial activity, lower doses to circumvent toxicity, and minimize the 

likelihood of emerging bacterial resistance.149  Combination therapies can be classified into four 

modes of action that allow for enhanced antimicrobial activity (Figure 1.5).150  The first three 

modes combine a secondary adjuvant compound that augments activity of the primary drug by 

either 1) preventing its degradation or modification, 2) allowing for its accumulation and retention, 

or, 3) inhibiting the repair or tolerance mechanism of microbial cells to the primary drug.  The 

fourth mode involves the combination of two or more mechanistically different biocides.  

Employing multiple compounds that work through different biocidal pathways should not only 

increase the bactericidal action and antibacterial sphere of influence, but also lessen the emergence 

of resistance due to the improbability of bacteria developing resistance to both biocidal 

mechanisms.150, 151  Further, combining two or more antibacterial agents can result in synergy, 

where the bactericidal efficacy of the combination is more effective than their individual sums.149, 

150  As such, the design of dual-action therapeutics has become a viable option for the development 

of novel antibacterial agents. 

Several antibiotic combinations have been successfully implemented to treat resistant 

bacterial infections.150-152  A major category of combination therapy is the coupling of β-lactam 

class antibiotics with lactamase inhibitors (or inactivators), where the β-lactam targets the cell wall 

while the inhibitor prevents antibiotic degradation by the β-lactamase enzyme.153  Combining the 

antibiotics trimethoprim and sulfamethoxazole, two inhibitors of folic acid metabolism, has been 

shown to promote synergistic bactericidal action as each inhibits a different step on the nucleotide 

biosynthesis pathway.150  Other work has centered on developing compounds that render  
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Figure 1.5 Modes of combination therapies.  In the first three modes, the adjuvant (i) prevents 

degradation of the antibacterial agent, (ii) allows accumulation of the antibacterial agent by 

inhibiting efflux pumps, or (iii) inhibits cellular tolerance mechanisms.  In the fourth mode (iv), 

both agents exhibit antibacterial activity through different biocidal mechanisms.  Reprinted with 

permission from Cottarel et al.150 Copyright 2007, Elsevier Ltd. 
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bacteriostatic drugs bactericidal.  For example, the bactericidal drug Synercid (King 

Pharmaceuticals; Bristol, Tennessee) is the combination of two static antibacterial compounds.152  

More recent work has focused on the development of dual-action compounds on a single scaffold.  

For example, Oxaquin (BioVertis; Vienna, Austria) combines the therapeutic components of two 

different compounds in one molecule.150, 154, 155   

The majority of dual-action antibacterial agents utilize a non-depleting, contact-based 

biocide as the base scaffold.  Quaternary ammonium (QA) compounds are a popular non-depleting 

biocide due to their broad-spectrum efficacy and ability to kill bacteria without altering the QA 

structure, allowing for continued bactericidal activity.156-158  The antibacterial action of QA 

compounds is derived from the attractive electrostatic interactions between the cationic QA group 

and the negatively charged bacterial cell membrane, in turn disrupting natural chemical balances 

by replacing essential metal cations (Figure 1.6).156, 159  Adding alkyl chain groups to the QA 

moiety increases the biocidal action by promoting bacterial membrane penetration and 

disruption.156, 157, 159, 160  Although their simple structure has allowed for the facile incorporation 

of QA moieties into a variety of systems (e.g., polymers, films, particles), tethering QAs to 

polymers or particles limits their action to only the bacteria that come into contact with the QA-

modified surface.  As a result, combining QA moieties with releasable antibacterial agents should 

increase the biocidal sphere of influence in addition to improving the overall bactericidal action. 

To prevent biofilm formation on surfaces, Wong et al. developed layer-by-layer coatings 

comprised of a permanently biocidal QA-modified structure topped with hydrolytically-

degradable films that allowed for the release of gentamicin.161  Antibiotic release increased the 

zone of inhibition (ZOI) for the dual-functionalized films over the QA-modified base, while the 

biocidal QA structure resisted biofilm formation even after gentamicin depletion.  In other work, 
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Hu et al. fabricated dual-action cellulose fibers by co-grafting N-halamine and QA salt monomers, 

allowing for the release of oxidative chlorine (Cl+) from QA-modified cellulose.162  The resulting 

dual-action fibers exhibited rapid and increased bactericidal action against Gram-negative and 

Gram-positive bacterial strains over the single-action QA-modified or Cl+-releasing cellulose 

alone. 

The efficacy of combining tethered QA moieties with releasable silver is another area of active 

research.  Multi-layer antibacterial coatings capable of both release- and contact-based killing were 

produced by incorporating QA moieties and silver in a layer-by-layer method.44, 163  For example, 

Grunlan et al. fabricated multi-layer films by dipping substrates into solutions containing either 

cetyltrimethylammonium bromide (QA moiety) or silver nitrite.  The resulting dual-action films 

exhibited increased ZOIs against both E. coli and S. aureus versus the single-action silver-releasing 

films.44  Alternatively, the antibacterial films developed by Li et al. were composed of a functional 

reservoir for silver ion release capped with QA-modified nanoparticles.  The bactericidal action of 

the dual-action coatings was greater than the single-action films, with the QA nanoparticles 

allowing for retained antibacterial action even after silver depletion.163  Similarly, Song et al. 

formed QA-modified polymer fibers doped with silver nanoparticles that were more bactericidal 

against E. coli and S. aureus than silver sulfadiazine.164 

Carpenter et al. reported the synthesis of NO-releasing QA-functionalized silica 

nanoparticles containing methyl, butyl, octyl, or dodecyl alkyl chains.138  All of the NO-releasing 

particles stored similar NO totals (~0.3 µmol NO/mg) regardless of QA modification, allowing for 

the evaluation of bactericidal action as a function of alkyl chain length independent of NO storage.  

Although the NO-releasing, QA-modified silica particles exhibited similar antibacterial action 

against planktonic cultures of P. aeruginosa as the single-action NO-releasing particles, the dual- 
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Figure 1.6 Mechanisms of action for quaternary ammonium (QA) compounds.  (B, C) QA 

compound associate with the cell membrane, replacing essential metal cations at the cell surface. 

(D) Intercalation of long alkyl chains into the cell membrane leads to membrane disruption and 

cell death. Reprinted with permission from Gilbert et al.159 Copyright 2005, John Wiley & Sons. 

  



30 
 

action particles were more effective at eradicating planktonic S. aureus than controls.  Further, the 

bactericidal action of the NO-releasing, QA-modified particles against S. aureus increased with 

increasing alkyl chain length, establishing the benefit of combining biocidal moieties with NO 

release.  Despite the improved antibacterial efficacy against Gram-positive bacteria, the NO-

releasing, QA-modified silica particles demonstrated toxicity to L929 fibroblast cells at 

concentrations required to eradicate planktonic bacteria, necessitating the development of an 

alternative dual-action macromolecular scaffold with improved bactericidal action and negligible 

toxicity to mammalian cells. 

1.6 Dendrimers as scaffolds for dual-action antibacterial agents 

Dendrimers are a family of hyperbranched macromolecular scaffolds exhibiting unique 

multivalent architectures and modifiable exterior functional groups (Figure 1.7).165, 166  Generally 

small in size (<5 nm) and monodisperse, dendrimers have recently been investigated as dual-action 

antibacterial scaffolds.167-169  Increasing the dendrimer generation allows for synthetic control over 

size and the number of terminal functional groups.170  Much work has focused on the modification 

of the dendrimer exterior with antibacterial functional groups, allowing for both the specific 

targeting of bacterial cell membranes and the combination of multiple biocides on a single 

scaffold.167, 171  The ability of dendrimers to associate with, cross, or even disrupt bacterial cell 

membranes, combined with their small scaffold size, makes dendrimers an attractive scaffold for 

developing combination therapeutics.172-174 

1.6.1  Antibacterial dendrimer scaffolds 

The antibacterial action of dendrimer scaffolds is dependent on the number of bactericidal end 

groups and the dendrimer’s ability to associate with and/or cross the bacterial cell membrane.175  

Both unmodified amino-terminated and modified (e.g., anionic, cationic, amphiphilic) 
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poly(amidoamine) (PAMAM) and poly(propyleneimine) (PPI) dendrimers have been shown to 

elicit antibacterial activity against Gram-negative and Gram-positive bacteria.167, 168, 171-174  Xue et 

al. reported the ability of amino-terminated PAMAM dendrimers to inhibit the growth of S. aureus 

and E. coli as a function of dendrimer generation.176  They found that the higher generations 

(generations 2 to 4) were more effective than the generation 1 (G1) scaffold.  S. aureus bacteria 

that survived exposure to G2 PAMAM dendrimers after several passages (15 d) displayed minimal 

increases in inhibitory concentration, indicating a lack of induction of bacterial resistance by the 

dendrimer scaffold. 

Amphiphilic compounds are known to perturb and disrupt bacterial cell membranes.  

Meyers et al. synthesized an anionic amphiphilic dendrimer scaffold that possessed efficient 

antibacterial activity against Gram-positive bacteria with minimal toxicity to eukaryotic cells.171  

Unfortunately, studies evaluating the effect of alkyl chain length on amphiphile bactericidal action 

resulted in no improvement in antimicrobial action with increasing alkyl chain length.  Similarly, 

Tulu et al. observed antibacterial action against Gram-negative and Gram-positive pathogens with 

both anionic- and cationic-terminated PAMAM dendrimers, with the cationic dendrimers 

generally demonstrating greater bactericidal efficacy.177   

As bacterial cell membranes are often hydrophobic and negatively charged, the use of 

cationic scaffolds allows for bacterial targeting leading to enhanced membrane disruption and 

permeation.178  Chen et al. reported that PPI dendrimers modified with QA moieties containing 

alkyl chains of eight or more carbons displayed the greatest antibacterial action, with activity 

against E. coli being dependent on both dendrimer size (i.e., generation) and alkyl chain length.160, 

179  Similarly, Charles et al. observed an increased ZOI for dodecylQA-modified generation 3 (G3) 

PAMAM dendrimers against E. coli and S. aureus compared to butylQA and hexylQA  
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Figure 1.7 Structure of poly(amidoamine) (PAMAM) dendrimer scaffold.  With each increase in 

generation (G0, G1, G2), dendrimer size increases linearly while the number of terminal functional 

groups (-NH2) increases exponentially. 
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modifications, with the latter systems exhibiting negligible antibacterial action at the 

concentrations tested.180  The antibacterial activity of cationic carbosilane dendrimers containing 

QA moieties was also reported by Javier de la Mata and coworkers.181-183  Increasing the number 

of QA moieties at the exterior of the carbosilane dendrimer scaffold improved the bactericidal 

action against both Gram-negative and Gram-positive bacteria over amine- and single QA-

functionalized dendrimers.183  Despite establishing the potential of QA-modified dendrimers for 

use as antibacterial agents, these initial investigations lacked a mechanistic understanding of 

bactericidal efficacy as a function of bacterial Gram designation and QA alkyl chain length. 

1.6.2  Nitric oxide-releasing dendrimers 

Previous work in the Schoenfisch lab demonstrated the ability to modify both PPI and 

PAMAM dendrimers with N-diazeniumdiolate and S-nitrosothiol NO donors.142, 143  Stasko et al. 

first reported the modification of PPI dendrimers with N-diazeniumdiolate moieties at primary 

amine sites.143  Due to the instability of primary amine N-diazeniumdiolates, the dendrimers were 

further functionalized to impart secondary amines on the scaffold prior to NO donor formation.  

Functionalizing the dendrimer scaffold altered the NO-release kinetics, with the more hydrophobic 

modifications resulting in longer NO-release half-lives than their hydrophilic counterparts.143  

Increasing the dendrimer generation from G3 to G5 within the same exterior modification slightly 

extended the NO-release half-life, although the statistical significance is unclear.   

These investigations were later expanded to include four PPI dendrimer generations (G2 – 

G5) and aromatic, hydrophilic, and hydrophobic functional groups.141  Similar to the initial work, 

the NO-release storage and kinetics were highly dependent on exterior modification, with the more 

hydrophobic functional groups (e.g., benzene rings, long alkyl chains) exhibiting longer NO-

release kinetics than the more hydrophilic functionalities (e.g., PEG, methyl groups).  Increasing 
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the dendrimer generation had an indiscriminate effect on NO-release kinetics.  While the more 

hydrophilic modifications demonstrated an increase in NO-release half-life at higher generations, 

little variance in the NO-release kinetics was observed for the hydrophobic groups; however, the 

statistical significance of these variations is again unclear.141  Alternatively, Lu et al. modified G1 

and G3 PAMAM scaffolds with a ratio of methyl and decene alkyl chains.  The resulting 

amphiphilic dendrimers were then tuned to exhibit similar NO-release totals and half-lives 

regardless of the hydrophobicity ratio or dendrimer generation (though dendrimers containing only 

hydrophilic methyl groups still maintained slightly faster NO-release kinetics).184  Based on these 

studies, the NO-release kinetics were observed to be more dependent on the hydrophobicity of the 

modification than the dendrimer generation. 

Nitric oxide-releasing dendrimers have displayed antibacterial action against both Gram-

negative and Gram-positive bacteria, including antibiotic-resistant strains.  For example,  Sun et 

al. reported the bactericidal action of G2 and G5 PPI dendrimers against planktonic cultures of P. 

aeruginosa and S. aureus as a function of dendrimer generation, exterior modification, and NO-

release capabilities.185  As expected, the more hydrophobic functionalities (e.g., benzene rings) 

were more effective at killing planktonic cultures than other modifications (e.g., PEG, methyl 

groups) due to increased association with the hydrophobic bacterial cell membrane.  The addition 

of NO-release generally improved the antibacterial action of the dendrimer scaffolds against both 

bacterial strains.  Additionally, the higher dendrimer generations exhibited greater bactericidal 

action than the lower generations, corresponding with more efficient NO delivery.   

Lu et al. also reported on the antibacterial action of amphiphilic NO-releasing dendrimers 

against planktonic and biofilm-based cultures of P. aeruginosa.184  Similar to previous 

observations, the dendrimers containing hydrophobic functional groups were more bactericidal 
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against planktonic P. aeruginosa than the hydrophilic methyl-modified dendrimers due to more 

rapid bacterial-association.  The most hydrophobic amphiphilic compositions also resulted in 

greater biofilm eradication.  Interestingly, the dendrimer structure exhibiting slight amphiphilicity 

(i.e., small ratio of hydrophilic side chains) was more effective than the purely hydrophobic-

modified dendrimers at eradicating P. aeruginosa biofilms.  This amphiphilic composition also 

resulted in faster and greater association of the dendrimer scaffold with the biofilm than the purely 

hydrophobic modification, suggesting that greater hydrophobicity may reduce the penetration of 

these scaffolds into the biofilm EPS matrix.    Despite the greater biofilm eradication observed for 

the more hydrophobic long alkyl chain modifications, these dendrimers were highly toxic to L929 

mouse fibroblast cells.  In contrast, the less hydrophobic amphiphiles had lower toxicity to 

mammalian cells at their anti-biofilm concentrations, with NO release increasing the antibacterial 

action, highlighting the benefit of combining multiple biocides on a single dendrimer scaffold. 

1.7 Summary of Dissertation Research 

The goal of my dissertation research was to design NO-releasing therapeutics for the 

eradication of biofilm-based infections.  First, I sought to develop dual-action antibacterial agents 

through the modification of poly(amidoamine) dendrimer scaffolds with various exterior 

functionalities and N-diazeniumdiolate NO donors.  The antibacterial and anti-biofilm actions of 

the resulting scaffolds were next evaluated as a function of exterior modification, dendrimer 

generation, and NO-release capabilities.  These dual-action antibacterial dendrimers were also 

incorporated into electrospun polyurethane fibers to produce polymers with potential utility as 

antibacterial wound dressings.  In summary, my research aimed to: 

1. Synthesize dual-action dendrimer biocides of varying dendrimer generation with 

distinct exterior modifications and tunable NO storage; 
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2. Assess the antibacterial action of dual-action dendrimers against planktonic 

bacteria as a function of dendrimer generation and exterior modification; 

3. Evaluate the ability of dual-action dendrimers to eradicate pathogenic biofilms and 

determine the corresponding anti-biofilm mechanism; and,  

4. Fabricate electrospun polyurethane fibers capable of antibacterial dendrimer and 

NO release as potential wound dressings. 

In this introductory chapter, I sought to describe how the formation and protective 

mechanisms of bacterial biofilms allows for the persistence of infection despite treatment with 

antibiotics.  The poor success of current anti-biofilm agents drives research related to the design 

of antibacterial agents capable of eradicating biofilms without fostering bacterial resistance.  The 

synthesis and characterization of a wide range of dual-action antibacterial dendrimers exhibiting 

biocidal exterior modifications (i.e., quaternary ammonium moieties, alkyl chains) and tunable NO 

storage are described in Chapter 2.  These dual-action, NO-releasing systems allowed for the 

detailed microbiological studies described in subsequent chapters.  In Chapter 3, the antibacterial 

action of dual-action dendrimers was evaluated against planktonic cultures of pathogenic bacteria 

such as those commonly isolated in clinical infections.  The ability of dual-action dendrimers to 

eradicate pathogenic biofilms, including Pseudomonas aeruginosa, Staphylococcus aureus, and 

methicillin-resistant Staphylococcus aureus, both alone and in concert with traditional antibiotics 

(i.e., vancomycin) is described in Chapter 4.  Chapter 5 outlines the fabrication of single-

component electrospun polyurethane fibers doped with antibacterial dendrimers modified with 

diverse exterior functionalities.  Chapter 6 describes the study of electrospun composite 

polyurethane fibers as a function of polyurethane composition and dendrimer dopant. The resulting 

antibacterial action of these materials was evaluated against model Gram-negative and Gram-
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positive pathogens.  Lastly, Chapter 7 provides a final summary of my research and suggests future 

investigations for the further development and evaluation of NO-releasing, dual-action 

antibacterial agents. 
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CHAPTER 2: 

Dual-Action Nitric Oxide-Releasing Poly(amidoamine) Dendrimers 

2.1 Introduction 

Nitric oxide (NO) is an endogenously produced free radical that regulates several 

biological functions in the cardiovascular, respiratory, and nervous systems.1, 2  Further, the up-

regulation of NO production in activated macrophages and monocytes is associated with host 

defenses against foreign pathogens.2-5  While the increased NO output in macrophages allows for 

a nonspecific defense mechanism to protect the host, the host cells themselves have evolved a 

detoxification mechanism against NO cytotoxicity.6  The broad-spectrum antibacterial activity of 

NO is derived from the production of reactive byproducts (e.g., dinitrogen trioxide and 

peroxynitrite) that compromise the bacterial membrane and cell function through both nitrosative 

and oxidative stresses.3, 7  The multi-mechanistic biocidal action of NO makes it effective against 

a multitude of infectious pathogens while minimizing its risk of fostering bacterial resistance.8   

The potential antibacterial activity of NO in vivo calls for efficient methods to chemically 

store and controllably release NO due to its short half-life in physiological milieu.  As such, several 

classes of NO donors have been developed to store and deliver NO, including organic nitrates, 

metal nitrosyls, S-nitrosothiols, and N-diazeniumdiolates.9  Of these NO donors, N-

diazeniumdiolates are well-suited for in vivo applications as they spontaneously dissociate under 

physiological conditions (pH 7.4, 37 °C) to produce two moles of NO for every mole of NO 

donor.10  Several small molecule N-diazeniumdiolate NO donors have been developed yielding a 

range of NO-release half-lives (i.e., PROLI/NO t1/2 ~ 1.8 s, DETA/NO t1/2 ~ 20 h).10  
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Unfortunately,  the large doses of low molecular weight NO donors generally required to kill 

bacteria due to inefficient bacterial-association combined with the toxicity of the parent amine to 

healthy mammalian cells necessitates the development of more efficient methods for NO delivery.7   

Large molecular frameworks capable of storing and controllably releasing NO have been 

developed as novel antibacterial agents.  For example, our laboratory has reported the synthesis 

and bactericidal efficacy of both NO-releasing silica nanoparticles and dendrimers against several 

strains of bacteria.7, 11-13  Similar to small molecule NO donors, these scaffolds spontaneously 

release NO under physiological conditions; however, there are several advantages in using larger 

NO-release scaffolds over small molecules.  First, the rate and duration of NO release can be 

controlled as a function of size, structure, composition, and/or surface hydrophobicity of the 

scaffold.11, 13  These scaffolds can also be tailored using specific functional groups to target specific 

cells or reduce the toxicity of the scaffold while maintaining therapeutic levels of NO release.7   

Of the NO-releasing macromolecular scaffolds pioneered by our lab, dendrimers are a 

particularly promising candidate for the development of novel antibacterial agents.  Dendrimers 

are hyperbranched macromolecular polymers exhibiting unique multivalent architectures and 

modifiable peripheral functional groups, making them excellent scaffolds for drug delivery.14-16  

The chemical environment surrounding the dendrimer can be altered by modifying the terminal 

primary amines with various functional groups, allowing for specific targeting of bacterial cell 

membranes.14, 17  Increasing the dendrimer generation allows for facile synthetic control over 

scaffold size and increases the number of terminal primary amines, resulting in greater functional 

group density.15, 16  Combining these factors with their ability to associate with and/or cross 

bacterial cell membranes makes dendrimers ideal candidates for use as antibacterial agents.18, 19   
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Previous work in our lab has established the ability to modify both poly(amidoamine) 

(PAMAM) and poly(propylene imine) (PPI) dendrimers with N-diazeniumdiolate and S-

nitrosothiol NO donors.  Stasko et al. demonstrated the ability to tune NO-release characteristics 

by modifying the dendrimer scaffold with either primary or tertiary S-nitrosothiol donors.20  

Further work demonstrated the increased stabilization of N-diazeniumdiolate NO donors on 

secondary amine-functionalized PPI dendrimers over unmodified dendrimer primary amines.21  Lu 

et al. expanded on this work through the modification of generation 2 (G2) through generation 5 

(G5) PPI dendrimers with diverse exterior functionalities (e.g., aromatic, hydrophilic, 

hydrophobic) that were further modified with N-diazeniumdiolate NO donors on the resultant 

secondary amine sites.22  It was found that both NO-release totals and kinetics were dependent on 

the exterior modification of the dendrimer scaffold, with hydrophobic modification resulting in 

slightly longer dendrimer NO-release half-lives than those functionalized with hydrophilic groups.   

To further expand our toolbox of NO-releasing dendrimers capable of efficient 

antibacterial action, we modified PAMAM dendrimers with both biocidal functional groups and 

NO-release capabilities.  Poly(amidoamine) dendrimers of varying generation were first modified 

with contact-based biocides (i.e., quaternary ammonium moieties or alkyl chains) before N-

diazeniumdiolate modification.  In this chapter, we describe the synthesis and characterization of 

these dual-action dendrimer biocides prior to antibacterial evaluation. 

2.2 Materials and Methods 

Triethylamine (TEA), trimethylsilanolate, glycidyltrimethylammonium chloride, 

epichlorohydrin, dimethylbutylamine, dimethyloctylamine, and dimethyldodecylamine, were 

purchased from Sigma-Aldrich (St. Louis, MO).  Methyl acrylate, 1,2-epoxybutane, 1,2-

epoxyhexane, 1,2-epoxyoctane, 1,2-epoxydodecane, and ethylenediamine (EDA) were purchased 
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from the Aldrich Chemical Company (Milwaukee, WI).  Sodium methoxide (5.4 M solution in 

methanol) was purchased from Acros Organics (Geel, Belgium). Cellulose ester dialysis 

membranes (500-1000 MWCO) were purchased from Spectrum Laboratories, Inc. (Rancho 

Dominguez, CA).  Common laboratory salts and solvents were purchased from Fisher Scientific 

(Fair Lawn, NJ).  Nitrogen (N2), argon (Ar), and nitric oxide (NO) calibration (25.87 PPM, balance 

N2) gases were purchased from National Welders (Raleigh, NC).  Pure nitric oxide (NO) gas 

(99.5%) was purchased from Praxair (Sanford, NC).  Distilled water was purified using a Millipore 

Milli-Q UV Gradient A-10 system (Bedford, MA), resulting in a total organic content of ≤6 ppb 

and a final resistivity of 18.2 mΩ·cm.  All materials were analytical-reagent grade and used as 

received without further purification. 

2.2.1  Synthesis of quaternary ammonium-modified PAMAM dendrimers 

Poly(amidoamine) (PAMAM) scaffolds were synthesized as described previously,15, 16, 23 

by repeated alkylation/amidation steps using methyl acrylate and EDA from an EDA core.  The 

addition of QA functionalities to the dendrimer scaffold necessitated the synthesis of quaternary 

ammonium epoxides (QA-epoxides), as described previously.11  Briefly, 0.04 mmol 

epichlorohydrin was reacted with 0.01 mmol N,N-dimethylbutylamine, N,N-dimethyloctylamine, 

or N,N-dimethyldodecylamine at room temperature overnight (~18 h).  The mixture was then 

added dropwise to cold ether while sonicating, and the solid/viscous liquid QA-epoxides were 

collected via centrifugation (810×g, 5 min).  The supernatant was decanted, and the QA-epoxides 

were washed with 50 mL of cold ether and sonicated extensively.  This washing procedure was 

repeated three times before drying the product in vacuo. 

A ring-opening reaction was then carried out between the QA-epoxides and the terminal 

primary amines of the PAMAM dendrimers.  G1 or G4 PAMAM (50 mg) was dissolved in 5 mL 
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of methanol.  One equivalent of triethylamine (e.g., with respect to the molar amount of primary 

amines) and 2.5 molar equivalents of QA-epoxide were then added to the vial.  The solution was 

stirred at room temperature for 4 d.  Solvent was then removed in vacuo.  The dendrimers were 

subsequently dissolved in water and purified by dialysis against water overnight.  The pure product 

was recovered via lyophilization. 

Representative 1H NMR data of QA-modified dendrimers via the reactions of G4 PAMAM 

with glycidyltrimethylammonium chloride (methylQA), glycidyldimethylbutylammonium 

chloride (butylQA), glycidyldimethyloctylammonium chloride (octylQA), and 

glycidyldimethyldodecylammonium chloride (dodecylQA) included the following peaks.  G4 

methylQA: 1H NMR (400 MHz, D2O, δ) 3.07 (s, CH2N
+(CH3)3), 2.31 (s, NCH2CH2C(O)NH).  G4 

butylQA: 1H NMR (400 MHz, CD3OD, δ) 2.30 (s, NCH2CH2C(O)NH), 1.81 (s, CH2N
+(CH3)2CH2-

CH2CH2CH3), 1.36–1.30 (q, CH2N
+(CH3)2CH2CH2CH2CH3), 0.93 (t, CH2N

+(CH3)2CH2-

CH2CH2CH3).  G4 octylQA: 1H NMR (400 MHz, CD3OD, δ) 2.31 (s, NCH2CH2C(O)NH), 1.80 

(s, CH2N
+(CH3)2CH2CH2(CH2)5CH3), 1.31–1.23 (m, CH2N

+(CH3)2CH2CH2(CH2)5CH3), 0.83 (t, 

CH2N
+(CH3)2CH2CH2(CH2)5CH3).  G4 dodecylQA: 1H NMR (400 MHz, CD3OD, δ) 2.31 (s, 

NCH2CH2C(O)NH), 1.81 (s, CH2N
+(CH3)2CH2CH2(CH2)9CH3), 1.32–1.22 (m, 

CH2N
+(CH3)2CH2CH2(CH2)9CH3), 0.83 (t, CH2N

+(CH3)2CH2CH2(CH2)9CH3). 

2.2.2 Synthesis of alkyl chain-modified PAMAM dendrimers 

To form alkyl chain-functionalized dendrimers without a QA moiety, G1 PAMAM 

dendrimers were modified with butyl, hexyl, octyl, and dodecyl alkyl chains.  Briefly, G1 PAMAM 

(100 mg) was dissolved in either 2 mL (butyl and hexyl modifications) or 5 mL (octyl and dodecyl 

modifications) methanol, and one equivalent of triethylamine (e.g., with respect to the molar 

amount of primary amines) and 1 molar equivalent of epoxide (i.e., epoxybutane, epoxyhexane, 
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epoxyoctane, or epoxydodecane) were then added to the vial.  The solution was stirred at room 

temperature for 3 d.  After reaction completion, solvent and excess epoxide was removed in vacuo.  

To ensure the removal of any unreacted epoxide, the single-action dendrimers were re-dissolved 

in 5 mL methanol and kept under vacuum overnight.  Complete removal of the epoxide was 

verified via 1H NMR spectroscopy. 

To investigate the effects of dendrimer generation, a ring-opening reaction was carried out 

between either epoxybutane or epoxyhexane and the terminal primary amines of the PAMAM 

dendrimers to yield single-action butyl- or hexyl-modified dendrimers.  Briefly, G2, G3, or G4 

PAMAM (100 mg) was dissolved in 2 mL of methanol, and one equivalent of triethylamine (e.g., 

with respect to the molar amount of primary amines) and 1 molar equivalent of epoxide were then 

added to the vial.  The solution was stirred at room temperature for 3 d.  After reaction completion, 

excess epoxide was removed in vacuo.  To ensure the removal of any unreacted epoxide, the single-

action dendrimers were re-dissolved in 5 mL methanol before being kept under vacuum overnight.  

Complete removal of the epoxide was verified via 1H NMR spectroscopy. 

Representative 1H NMR data of butyl- and hexyl-modified G4 PAMAM via the reaction 

of G4 PAMAM with epoxybutane and epoxyhexane included the following peaks.  G4 butyl: 1H 

NMR (400 MHz, MeOD, δ) 2.28 (s, NCH2CH2C(O)NH), 1.41–1.35 (m, 

NHCH2CH(OH)CH2CH3), 0.87–0.85 (t, NHCH2CH(OH)CH2CH3).  G4 hexyl: 1H NMR (400 

MHz, MeOD, δ) 2.28 (s, NCH2CH2C(O)NH), 1.34–1.20 (m, NHCH2CH(OH)C(H2)3CH3),  0.85–

0.81 (t, NHCH2CH(OH)C(H2)3CH3).  

2.2.3 N-Diazeniumdiolation of QA- and alkyl chain-modified PAMAM dendrimers 

To form N-diazeniumdiolate NO donors on the QA-functionalized dendrimer scaffold, 

QA-modified G1 and G4 PAMAM (20 mg) were added to varying ratios of anhydrous methanol 
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(MeOH) to tetrahydrofuran (THF) (1.5 mL solvent) depending on QA modification as follows: 

100% MeOH (methylQA, butylQA); 3:1 MeOH:THF (octylQA); 1:1 MeOH:THF (dodecylQA).  

Trimethylsilanolate was added in a 10-fold excess relative to secondary amines.   

To form N-diazeniumdiolate NO donors on the alkyl chain-modified dendrimer scaffold, 

single-action alkyl chain-modified G1 – G4 PAMAM (30 mg) were added to varying ratios of 

anhydrous MeOH to THF (1 mL solvent) depending on the alkyl chain modification and dendrimer 

generation as follows: 100% MeOH (G1 butyl, G2 butyl); 9:1 MeOH:THF (G3 butyl, G2 hexyl, 

G3 hexyl); 8.5:1.5 MeOH:THF (G4 butyl, G1 hexyl); 8:2 MeOH:THF (G4 hexyl); 3:2 MeOH:THF 

(G1 octyl); 2:3 MeOH:THF (G1 dodecyl).  The solutions were vortexed and then one molar 

equivalent (e.g., with respect to the molar amount of primary amines) of sodium methoxide was 

added. 

The dendrimer solutions were placed in a stainless steel reactor with continuous magnetic 

stirring and connected to an in-house NO reactor.  The vessel was flushed with Ar three times to a 

pressure of 7 bar, followed by three longer Ar purges (10 min) to remove trace oxygen from the 

solutions.  Following deoxygenation, the reactor was then pressurized to 10 bar with NO gas 

purified over KOH.  The pressure was maintained at 10 bar NO for 4 d, after which the solutions 

were again purged with Ar three times at short durations followed by extended purges (3 × 10 min) 

to remove unreacted NO.  Solvent was removed in vacuo, and the resulting NO-releasing 

dendrimers were dissolved in anhydrous methanol in a 1 dram glass vial, capped and parafilmed, 

and stored at -20 °C. 

2.2.4 Characterization of single- and dual-action PAMAM dendrimers 

1H nuclear magnetic resonance (1H NMR) spectra were recorded on a Bruker (400 MHz) 

spectrometer.  X-ray photoelectron spectroscopy (XPS) analysis was performed on a Kratos Axis 
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Ultra DLD X-ray Photoelectron Spectrometer with a monochromatic Al Kα X-ray source (150W).   

Electrons were collected at an angle of 90 degrees from the sample surface from a 300 x 700 µm2 

area on the sample.  The pass energy was set to 20 eV to obtain high resolution spectra.  All spectra 

were acquired with a step size of 0.1 eV and calibrated to the C1s peak at 284.6 eV.  Surface 

tension measurements were made using an Attension Sigma 701 tensiometer with a standard Du 

Noüy ring.  All UV measurements were obtained in methanol using an Evolution Array UV-

Visible Spectrophotometer (Thermo Scientific, Waltham, MA).  Infrared spectra were obtained 

using a Bruker Alpha FT-IR spectrometer operating in ATR mode and signal averaging over 18 

spectra. 

2.2.5 Characterization of NO storage and release 

Real-time NO release in deoxygenated PBS (pH 7.4, 37 °C) was monitored using a Sievers NOA 

280i chemiluminescence NO analyzer (NOA, Boulder, CO).  Prior to analysis, the NO analyzer 

was calibrated with air passed through a NO zero filter (0 ppm NO) and a 25.87 ppm NO standard 

gas (balance N2).  One milligram aliquots (or 0.5 mg for G1 octyl and dodecyl) of N-

diazeniumdiolate-functionalized PAMAM in methanol were added to 30 mL deoxygenated PBS 

to initiate NO release.  Nitrogen was flowed through the solution at a flow rate of 80 mL/min to 

carry the liberated NO to the analyzer.  Additional nitrogen flow was supplied to the flask to match 

the collection rate of the instrument at 200 mL/min.  Nitric oxide analysis was terminated when 

NO levels decreased to below 10 ppb NO/mg dendrimer.   
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Scheme 2.1 Reaction of PAMAM scaffold with either (A) QA or (B) alkyl chain epoxides to yield 

single-action dendrimers, followed by reaction with high pressures of NO to yield dual-action, 

NO-releasing dendrimers. 
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2.3 Results and Discussion 

2.3.1 Synthesis and characterization of quaternary ammonium-modified PAMAM Dendrimers  

Generation 1 (G1) and generation 4 (G4) PAMAM dendrimers were modified with QA 

moieties via a ring-opening reaction between the peripheral primary amines (n) and QA epoxides 

(Scheme 2.1 A).  To investigate the role of QA alkyl chain length on NO release, PAMAM 

dendrimers were functionalized with QA moieties containing methyl, butyl, octyl, and dodecyl 

alkyl chains.  While glycidyltrimethylammonium chloride (methylQA epoxide) is available 

commercially, butylQA, octylQA, and dodecylQA epoxides were synthesized through the reaction 

of epichlorohydrin with dimethylbutylamine, dimethyloctylamine, or dimethyldodecylamine, 

respectively.11  

The resulting QA epoxides were reacted with G1 (n=8) and G4 (n=64) PAMAM 

dendrimers in a 2.5-fold excess to the number of peripheral primary amines in methanol.  The 

number of QA moieties added to the dendrimer scaffold was determined using 1H NMR 

spectroscopy.  On average, 4 and 32 QA moieties were tethered to the G1 and G4 PAMAM 

scaffolds, respectively, resulting in approximately 50% functionalization of the peripheral primary 

amines (Table 2.1).  The addition of the quaternary ammonium to the dendrimer scaffold was 

confirmed using IR spectroscopy and X-ray photoelectron spectroscopy (XPS).  A weak IR stretch 

at 970 cm-1 indicative of the QA functional group was present for all QA-modified dendrimers 

(Figure 2.1 A).24  The N 1s binding energies of the PAMAM dendrimer amines ranged from 397 

– 399 eV, with an additional peak at 402 eV, corresponding to the quaternary ammonium group, 

present after modification with the QA moiety (Figure 2.1 B).25  Additionally, a doublet at 198 eV, 

absent for the PAMAM scaffold, was observed for the QA-modified dendrimers, signifying the 

presence of the chloride counter ion (Figure 2.1 C). 
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Table 2.1 Percent functionalization and corresponding molecular weight for QA-modified G1 and 

G4 PAMAM dendrimers.  

Dendrimer Average # QAs % Functionalized Molecular Weight (Da) 

G1 methylQA 4 ± 1 48 2006.2 

G1 butylQA 4 ± 1 53 2243.5 

G1 octylQA 4 ± 1 53 2479.2 

G1 dodecylQA 5 ± 1 58 2867.7 

G4 methylQA 35 ± 4 55 19522.1 

G4 butylQA 35 ± 7 55 20994.5 

G4 octylQA 30 ± 3 46 21709.0 

G4 dodecylQA 36 ± 3 56 25227.4 
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Figure 2.1 Representative (A) Fourier transform infrared spectra of G1 QA-modified dendrimers.  

Representative (B) N 1s and (C) Cl 2p XPS spectra for G1 QA-modified dendrimers. 
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Table 2.2 Nitric oxide-release properties for G1 and G4 QA-modified dendrimers in PBS (pH 7.4, 

37 °C) as measured by a chemiluminescence NO analyzer.a 

 
[NO]max

b 

(ppb/mg) 

tmax
c                   

(s) 

t[NO]d 

(µmol/mg) 

t[NO]4h
e 

(µmol/mg) 

t1/2
f          

(h) 

G1 methylQA/NO 15000 ± 3372 48 ± 7 1.50 ± 0.11 0.73 ± 0.07 4.4 ± 1.1 

G1 butylQA/NO 8675 ± 8182 61 ± 9 1.35 ± 0.30 0.78 ± 0.19 3.0 ± 0.5 

G1 octylQA/NO 3400 ± 1249 64 ± 5 1.30 ± 0.05 0.69 ± 0.06 3.6 ± 0.9 

G1 dodecylQA/NO 5016 ± 1379 71 ± 8 1.07 ± 0.16 0.72 ± 0.12 1.9 ± 0.8 

G4 methylQA/NO 5170 ± 252 52 ± 4 1.69 ± 0.22 0.77 ± 0.08 4.9 ± 0.6 

G4 butylQA/NO 4550 ± 3097 62 ± 13 1.48 ± 0.32 0.78 ± 0.18 3.8 ± 1.2 

G4 octylQA/NO 7721 ± 5372 62 ± 10 1.49 ± 0.41 0.86 ± 0.23 2.9 ± 0.4 

G4 dodecylQA/NO 3550 ± 1909 84 ± 4 1.17 ± 0.11 0.78 ± 0.06 1.9 ± 0.1 
aFor all measurements, n ≥ 3 pooled experiments. bMaximum flux of NO release. cTime required 

to reach maximum flux. dTotal NO payload released. eNO payload released after 4 h. fNO release 

half-life.  
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Figure 2.2 Representative UV-vis spectra for NO-releasing QA-modified dendrimers.  

Absorbance peak at ~253 nm is indicative of N-diazeniumdiolate NO donor. 
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Both G1 and G4 QA-modified dendrimers were exposed to high pressures of NO in the 

presence of a base to form N-diazeniumdiolate NO donors on secondary amines.  N-

diazeniumdiolate formation was confirmed by the presence of an absorbance maximum at 253 nm, 

a peak that was not observed in the absorbance spectra of QA-modified PAMAM dendrimer prior 

to diazeniumdiolate formation (Figure 2.2).7  Nitric oxide storage was tunable by adjusting the 

polarity of the charging solvent (i.e., by increasing the ratio of THF:methanol with increasing alkyl 

chain length).  The resulting NO-releasing QA-modified dendrimers exhibited similar 4 h NO 

payloads of approximately 0.76 µmol/mg (Table 2.2).  In this regard, the effects of both dendrimer 

generation and QA alkyl chain length on bactericidal efficacy could be evaluated independent of 

NO release totals. 

The N-diazeniumdiolated QA-modified dendrimers were characterized by an initial 

maximum burst of NO ([NO]max) after introducing the dendrimers into solution, followed by a 

steady decline in NO release.  For each generation, the time required to reach this maximum flux 

(tmax) increased as the QA alkyl chain length increased from methyl to dodecyl, with a concomitant 

decrease in the [NO]max values.  The increase in tmax with increasing alkyl chain length is attributed 

to the presence of the hydrophobic QA alkyl chains that decrease the rate of water diffusion to the 

secondary amine-bound NO donors.11  However, a decrease in NO-release half-life was also 

observed with increasing alkyl chain length, an opposite phenomenon than what might be expected 

from reduced water diffusion.  The observed decrease in half-life for longer (i.e., octylQA and 

dodecylQA) QA alkyl chains is likely due to the formation of dendrimer vesicles in aqueous 

solution, in which the hydrophobic alkyl chains of neighboring dendrimers face inwards (i.e., 

towards each other), exposing the portion of the dendrimer scaffold containing the N-

diazeniumdiolate to aqueous solution (Figure 2.3).  Indeed, Schenning et al. reported the formation 
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of dendrimer bilayers at pH 7.4 for hydrophobic alkyl chain-modified scaffolds.26  In this scenario, 

the hydrophobic alkyl chains align perpendicularly to the dendrimer scaffold, which faces the 

aqueous phase.26  To determine if the QA-modified dendrimers were in fact forming 

supramolecular structures in aqueous solution, the surface tension of phosphate buffered saline 

(pH 7.4) solutions with increasing concentrations of QA-modified dendrimers was measured to 

determine the critical vesicle concentration (CVC) for the dendrimer biocides (Figure 2.4 A-B).  

The CVCs of G4 octylQA and G4 dodecylQA were determined to be 29 ± 11 and 22 ± 4 µg/mL, 

respectively, suggesting the formation of vesicles in solution above these concentrations.  In 

comparison, the CVC of G4 butylQA was > 5 mg/mL due to the inability of the shorter QA alkyl 

chains to readily form vesicles at the concentrations employed herein.  Transmission electron 

microscopy further confirmed the formation of G4 dodecylQA vesicles (Figure 2.4 C). 

2.3.2 Synthesis and characterization of alkyl chain-modified PAMAM dendrimers 

Due to the inherent cationic nature of PAMAM dendrimers and their natural ability to 

associate with bacteria, we hypothesized that alkyl chain modification without QA moieties would 

reduce the synthetic burden to produce dual-action dendrimer biocides while still allowing us to 

evaluate the effects of alkyl chain length.  Thus, PAMAM dendrimers were functionalized with 

alkyl chains via a ring-opening reaction at the peripheral primary amines (Scheme 2.1 B).  We first  

synthesized single- and dual-action G1 PAMAM dendrimers modified with butyl, hexyl, octyl, or 

dodecyl alkyl chains to investigate the effects of alkyl chain length on NO release and bactericidal 

action without the presence of a quaternary ammonium.  To further evaluate the effects of 

dendrimer generation (i.e., size and functional group density) on antibacterial activity, we prepared  
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Figure 2.3 Formation of dendrimer vesicles at pH 7.4.  The hydrophobic alkyl chains of 

neighboring dendrimers face towards each other, exposing the N-diazeniumdiolate ions to aqueous 

solution. 
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Figure 2.4 Surface tension plots for (A) G4 dodecylQA and (B) G4 butylQA, demonstrating the 

decrease in surface tension with increasing dendrimer concentration.  Plot (A) indicates the 

leveling off of surface tension indicative of the CVC.  Error bars represent standard deviation of 

the mean. Transmission electron microscopy images (C) of G4 dodecylQA dendrimer vesicles 

(500 µg/mL in milli-Q water). 
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G1 (n = 8), G2 (n = 16), G3 (n = 32), and G4 (n = 64) butyl- and hexyl-modified PAMAM 

dendrimers with and without NO-release capabilities. 

After modification, the number of alkyl chains added to the G1 dendrimer scaffold was 

determined using 1H NMR spectroscopy.  On average, 5–6 functional groups were tethered to the 

G1 scaffold, resulting in approximately 65% functionalization (Table 2.3).  The addition of the 

alkyl chain modification was further verified with IR spectroscopy with a stronger IR stretch 

observed at 2900 cm-1 with increasing alkyl chain length, corresponding to the greater number of 

C–H bonds in the alkyl chain (Figure 2.5).  As longer alkyl chains resulted in vesicle formation 

for the QA-modified dendrimers, CVC values were also determined for each of the alkyl chain-

modified G1 PAMAM dendrimers by measuring the surface tension of solutions containing 

increasing concentrations of dendrimer.27  As expected, lower CVC values were measured for the 

longer chain G1 octyl and dodecyl dendrimers than the shorter G1 butyl or hexyl dendrimers 

(Table 2.3), indicating the formation of dendrimer vesicles at significantly lower concentrations.  

As such, chemiluminescent NO analysis for G1 octyl and dodecyl dendrimers was performed at 

concentrations below these CVC values to prevent vesicle formation from influencing the NO-

release kinetics. 

Alkyl chain-modified G1 dendrimers were exposed to high pressures of NO under basic 

conditions to form N-diazeniumdiolate NO donors on secondary amines.  Nitric oxide storage was 

tuned by increasing the ratio of THF:methanol with increasing alkyl chain length, resulting in  

similar NO payloads of ~1 µmol/mg.  The N-diazeniumdiolated alkyl chain-modified dendrimers 

were characterized by an initial maximum burst of NO after introducing the dendrimers into 

solution, followed by a steady decline in NO release.  Contrary to the QA-modified dendrimers, 

the time to reach this maximum flux was relatively constant regardless of alkyl chain length (Table  
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Table 2.3 Percent functionalization, corresponding molecular weight, and critical vesicle 

concentrations for alkyl chain-modified PAMAM dendrimers.  

 
No. Modified 

End Groups 
% 

Molecular 

Weight (Da) 

CVC 

(µg/mL) 

G1 butyl 5 ± 1 60 1776.1 3193 ± 3 

G1 hexyl 6 ± 1 73 2010.9 553 ± 11 

G1 octyl 5 ± 1 61 2058.3 31 ± 7 

G1 dodecyl 5 ± 1 63 2351.6 28 ± 7 

G2 butyl 11 ± 1 67 4026.4 3604 ± 2 

G2 hexyl 11 ± 1 69 4359.4 661 ± 5 

G3 butyl 24 ± 3 76 8667.3 2979 ± 3 

G3 hexyl 25 ± 2 78 9423.0 725 ± 4 

G4 butyl 43 ± 4 68 17330.2 3066 ± 2 

G4 hexyl 51 ± 4 80 19323.2 653 ± 10 
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Figure 2.5 Fourier transform infrared spectra of G1 alkyl chain-modified dendrimers. 
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2.4).  Further, a slight increase in NO-release half-life was observed for the longer octyl- and 

dodecyl-modified G1 dendrimers than the shorter butyl and hexyl chains (~21 to 37 min), 

indicating that the longer alkyl chains slightly impede water diffusion to the proton-labile N-

diazeniumdiolate NO donors.  Of note, the half-lives observed for the alkyl chain modifications 

were substantially lower than those of the QA-modified dendrimers (~0.5 h versus 2–5 h), 

suggesting that the quaternary ammonium group plays a significant role in determining NO-release 

kinetics.  Indeed, the presence of the permanent positive charge of the QA moiety may stabilize 

the N-diazeniumdiolate group, extending NO release.7, 22 

To evaluate the effects of dendrimer generation on NO release and bactericidal efficacy, 

epoxybutane or epoxyhexane was reacted with G1–G4 PAMAM dendrimers to yield butyl- and 

hexyl-modified PAMAM dendrimers.  The number of alkyl chains added to the dendrimer scaffold 

was determined using 1H NMR spectroscopy.  For each generation, approximately 70% of the 

terminal primary amines were modified with either butyl or hexyl chains (Table 2.3).  The surface 

tension of phosphate buffered saline (pH 7.4) solutions with increasing concentrations of alkyl 

chain-modified dendrimers were again measured to examine vesicle formation by the butyl- and 

hexyl-modified dendrimers at each generation.26  The CVCs of the butyl- and hexyl-modified 

dendrimers were ~3 mg/mL and ~650 µg/mL, respectively, with no dependence on dendrimer 

generation.  Based on these results, we concluded that vesicle formation does not occur at the 

concentrations required for NO release analysis.  As such, any differences in NO-release kinetics 

are solely due to dendrimer generation or alkyl chain length. 

Butyl- and hexyl-modified dendrimers were exposed to high pressures of NO under basic 

conditions to form N-diazeniumdiolate NO donors at secondary amines sites.  Nitric oxide storage 

was tunable by adjusting the ratio of THF to methanol in the N-diazeniumdiolate modification  
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Table 2.4.  Nitric oxide-release properties of alkyl chain-modified dendrimers in PBS (pH 7.4, 37 

°C) as measured by a chemiluminescence NO analyzer.a  

 
t[NO]b 

(µmol/mg) 

tmax
c 

(min) 

t1/2
d       

(min) 

td
e 

(h) 

G1 butyl/NO 1.06 ± 0.10 1.9 ± 0.4 21 ± 5 7 ± 2 

G1 hexyl/NO 0.98 ± 0.11 2.0 ± 0.8 24 ± 6 7 ± 1 

G1 octyl/NO 1.07 ± 0.13 2.8 ± 0.6 30 ± 5 9 ± 2 

G1 dodecyl/NO 1.12 ± 0.10 1.8 ± 0.4 37 ± 6 9 ± 1 

G2 butyl/NO 1.07 ± 0.15 1.2 ± 0.1 31 ± 5 10 ± 1 

G2 hexyl/NO 1.04 ± 0.12 1.3 ± 0.1 31 ± 8 10 ± 2 

G3 butyl/NO 0.93 ± 0.11 1.4 ± 0.6 26 ± 3 9 ± 1 

G3 hexyl/NO 0.90 ± 0.11 1.5 ± 0.4 25 ± 4 9 ± 1 

G4 butyl/NO 0.91 ± 0.09 1.5 ± 0.5 20 ± 3 8 ± 4 

G4 hexyl/NO 0.94 ± 0.07 1.3 ± 0.3 20 ± 1 10 ± 4 
aFor all measurements, n ≥ 3 pooled experiments. bTotal NO payload released. cTime required to 

reach maximum flux. dNO release half-life. eDuration of NO release. 
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Figure 2.6 Representative UV-vis spectra for NO-releasing alkyl chain-modified dendrimers.  

Absorbance peak at ~253 nm is indicative of N-diazeniumdiolate NO donor. 
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solvent.  N-diazeniumdiolate formation was confirmed by UV-vis spectroscopy with the presence 

of an absorbance maximum at 253 nm (Figure 2.6).7  Of note, little to no nitrosamine formation 

was observed after NO exposure, as evidenced by no absorbance maximum at 350 nm.28   

Chemiluminescence was used to evaluate real-time NO release in PBS (pH 7.4).  The alkyl 

chain-modified dendrimers released NO for approximately 10 h, yielding total NO payloads of ~1 

µmol/mg (Table 2.4).  Proton-initiated NO release was characterized by an initial burst of NO 

upon dendrimer introduction into aqueous solution, followed by a steady decline in NO release.  

The time required to reach the maximum NO flux (tmax) was similar for both the butyl- and hexyl-

modified dendrimers regardless of generation, indicating that the butyl and hexyl chains do not 

greatly influence water diffusion to the scaffold or N-diazeniumdiolate dissociation to NO.  

Similarly, each dendrimer system exhibited similar NO-release kinetics, with NO-release half-

lives (t1/2) of 20–30 min.  In this regard, the effects of generation and alkyl chain modification on 

antibacterial and anti-biofilm action could be evaluated independent of both NO-release totals and 

kinetics. 

2.4 Conclusions 

Poly(amidoamine) dendrimers of varying generation were successfully modified with 

either QA moieties or alkyl chains of varying length.  Nitric oxide-release kinetics were dependent 

on the type of modification (e.g., QA moiety or alkyl chain) and alkyl chain length but independent 

of dendrimer generation.  Quaternary ammonium-modified PAMAM dendrimers exhibited much 

longer NO-release half-lives than their alkyl chain-modified counterparts, suggesting the presence 

of the cationic QA moiety stabilizes the diazeniumdiolate and extends NO-release kinetics.  While 

the alkyl chain-modified G1 PAMAM dendrimers exhibited a slight increase in half-life with 

increasing alkyl chain length, the formation of vesicles at lower concentrations for the QA-



81 
 

modified dendrimers resulted in a significant decrease in NO-release half-life for the longer 

dodecylQA modifications at each generation.  Despite these differences in NO-release kinetics, 

altering the NO donor modification conditions allowed the total NO payloads to be tuned for each 

modification.  As such, bactericidal action can be evaluated independent of NO-release totals (QA 

modifications) and both NO-release totals and kinetics (alkyl chain modifications). 
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CHAPTER 3: 

Antibacterial Action of Dual-Action Dendrimers against Planktonic Bacteria 

3.1 Introduction 

Although antibiotics remain the gold standard in the treatment of bacterial infections, the 

increased occurrence of antibiotic-resistant bacteria coupled with a decline in the development of 

new antibiotics necessitates the development of alternative antibacterial agents.1  The co-

administration of two mechanistically different biocides has been demonstrated to reduce the 

emergence of bacterial resistance and can be synergistic, where the bactericidal efficacy of the 

combination is more effective than their individual sums.2, 3    Combining multiple biocides on a 

single macromolecular scaffold (e.g., nanoparticles, dendrimers) is expected to further increase 

bactericidal efficacy.4  Importantly, enhancing the bactericidal efficacy of a scaffold should lower 

the required therapeutic dose and concomitantly reduce any toxicity to healthy cells and tissue. A 

promising option for multimodal therapeutics is to modify non-depleting, contact-based 

antibacterial agents with chemistries that allow for spontaneous release of a secondary biocide, 

therefore increasing the antibacterial sphere of influence.  Further, the use of mechanistically 

different biocides reduces the emergence of resistance as bacteria are less likely to develop 

resistance to all of the employed mechanisms.2 

Nitric oxide (NO) is an endogenously produced, reactive free radical that plays a central 

role in the host defense against microbial pathogens.5, 6  The broad-spectrum antibacterial activity 

of NO is derived from the production of reactive byproducts (e.g., dinitrogen trioxide and 

peroxynitrite) that compromise the bacterial membrane and cell function through both nitrosative 
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and oxidative stresses.5, 7  The ability of NO to act through more than one bactericidal mechanism 

makes it effective against a multitude of infectious pathogens.  To harness the bactericidal actions 

of NO, large molecular frameworks capable of storing and controllably releasing NO have been 

developed as novel antibacterial agents.  Our laboratory has reported the synthesis and bactericidal 

efficacy of both NO-releasing silica nanoparticles and dendrimers against several strains of 

bacteria, including antibiotic-resistant strains.7-10  Benefits of these macromolecular scaffolds 

include controllable NO payloads and release rates, modifiable surface chemistries (e.g., to allow 

for the combination of multiple biocides on a single scaffold), and reduced toxicity to mammalian 

cells.8, 10  

Quaternary ammonium (QA) compounds, widely used as antiseptic and disinfectant 

agents, are popular non-depleting biocides due to their broad-spectrum efficacy.11  The bactericidal 

activity of QA compounds stems from the attractive electrostatic interactions between the cationic 

QA group and the negatively charged bacterial cell membrane, disrupting natural chemical 

balances by replacing essential metal cations.11  The addition of long alkyl chains to the QA group 

promotes bacterial membrane penetration, further amplifying biocidal activity.  The bactericidal 

efficacy of QA compounds is highly dependent on the length of this alkyl chain, with alkyl chains 

of at least eight carbon atoms demonstrating the greatest bactericidal activity due to increased 

penetration into the cell membrane.11-13  The combination of long chain QA moieties with a 

releasable biocide such as nitric oxide would thus be anticipated to increase antibacterial action.  

For instance, it has been demonstrated that QA-functionalized polymers capable of releasing silver 

ions (Ag+) exhibit a wider zone of inhibition than QA polymers alone.14, 15  Carpenter et al. 

similarly reported on NO donor-modified QA-functionalized silica nanoparticles with enhanced 

bactericidal efficacy against both Gram-positive and Gram-negative bacteria.8  Despite improved 
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antibacterial efficacy, however, the NO-releasing QA-modified silica particles demonstrated 

significant toxicity to mammalian cells at concentrations required to eradicate bacteria, motivating 

further development of these dual-action NO-releasing therapeutics. 

Dendrimers are a family of macromolecular scaffolds with hyper-branched architecture 

and multivalent surfaces that have been widely investigated for use as drug delivery and 

therapeutic vehicles.16, 17  The ability to functionalize the dendrimer exterior through 

straightforward chemical methods allows for their modification with specific biocidal end groups.  

This capability, combined with the ability of dendrimers to associate with and/or cross bacterial 

membranes, provides a potentially effective scaffold for the development of combination 

therapeutics.18, 19  Cooper and co-workers demonstrated that PPI dendrimers modified with QA 

moieties containing alkyl chains of eight or more carbons exhibited antibacterial activity as a 

function of dendrimer size and QA alkyl chain length.12, 20  Likewise, Charles et al. found that 

dodecylQA-modified G3 PAMAM dendrimers exhibited an increased zone of inhibition against 

Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus compared to butylQA 

and hexylQA modifications.21   

Herein, we report the antibacterial action of single- and dual-action generation 1 (G1) and 

generation 4 (G4) QA-modified PAMAM dendrimers against planktonic cultures of both Gram-

negative and Gram-positive bacteria.  The effects of QA alkyl chain length, dendrimer generation, 

and bacterial Gram designation on dendrimer bactericidal action were evaluated.  To further 

elucidate the effects of alkyl chain length on antibacterial activity independent of a QA moiety, 

the bactericidal efficacies of G1 PAMAM dendrimers modified with butyl, hexyl, octyl, and 

dodecyl alkyl chains were also assessed.  Finally, we report on the effects of dendrimer generation 
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on antibacterial action through the evaluation of G1–G4 butyl- and hexyl-modified PAMAM 

dendrimers against planktonic bacteria. 

3.2 Materials and Methods 

Phenazine methosulfate (PMS), fetal bovine serum (FBS), trypsin, 3-(4,5-dimethylthiazol-

2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt (MTS), penicillin 

streptomycin (PS), triethylamine (TEA), rhodamine B isothiocyanate (RITC), and propidium 

iodide (PI) were purchased from Sigma-Aldrich (St. Louis, MO).  Dulbecco's modified Eagle's 

medium (DMEM) and Dulbecco’s phosphate buffered saline (PBS) were obtained from Lonza 

Group (Basel, Switzerland).  4,5-Diaminofluorescein diacetate (DAF-2 DA) was purchased from 

Calbiochem (San Diego, CA).  Tryptic soy broth (TSB) and tryptic soy agar (TSA) were obtained 

from Becton, Dickinson and Company (Franklin Lakes, NJ).  Pseudomonas aeruginosa (P. 

aeruginosa; ATCC #19143), Staphylococcus aureus (S.aureus; ATCC #29213), and methicillin-

resistant S. aureus (MRSA; ATCC #33591) were obtained from American Type Tissue Culture 

Collection (Manassas, VA).  L929 mouse fibroblasts were obtained from the UNC Tissue Culture 

Facility (Chapel Hill, NC).  Carbon dioxide (CO2) was purchased from National Welders (Raleigh, 

NC).  Glass bottom microscopy dishes were received from MatTek Corporation (Ashland, MA).  

Common laboratory salts and solvents were purchased from Fisher Scientific (Fair Lawn, NJ).  

Distilled water was purified using a Millipore Milli-Q UV Gradient A-10 system (Bedford, MA), 

resulting in a total organic content of ≤6 ppb and a final resistivity of 18.2 mΩ·cm.  Unless noted 

otherwise, these and all other materials were analytical-reagent grade and used as received without 

further purification. 
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3.2.1  Planktonic bactericidal assays 

Lyophilized P. aeruginosa, S. aureus, and MRSA were reconstituted in tryptic soy broth 

(TSB) and cultured overnight at 37 °C.  A 0.5 mL aliquot of culture was grown in 50 mL TSB to 

a concentration of 108 colony forming units per mL (cfu/mL), collected by centrifugation 

(2355×g), resuspended in 15% glycerol (v/v in PBS), and stored at -80 °C in 1 mL aliquots.  For 

daily experiments, colonies of bacteria culture were inoculated in 2 mL TSB overnight at 37 °C 

and recultured in fresh TSB (50 mL) the next day. 

To assess the antibacterial action of QA-modified dendrimers, P. aeruginosa and S. aureus 

were cultured in tryptic soy broth to a concentration of 108 cfu/mL, collected by centrifugation 

(2355×g), resuspended in sterile phosphate buffered saline (PBS, pH 7.4), and diluted to 106 

cfu/mL.  Premeasured samples of QA-modified or NO-releasing QA-modified dendrimer in 

methanol were added to a 1 dram glass vial and dried under vacuum for 2 h prior to the bacteria 

assays.  Corresponding volumes of 106 cfu/mL bacteria were added to obtain a range of dendrimer 

concentrations (37 °C).  Untreated controls (blanks) were included in each experiment to ensure 

the bacteria remained viable (at 106 cfu/mL) over the 4 h assay.  The blanks and dendrimer-treated 

bacteria were then spiral-plated at 10- and 100-fold dilutions on tryptic soy agar plates using an 

Eddy Jet spiral plater (IUL; Farmingdale, NY).  Bacterial viability was assessed by counting the 

number of colonies formed on the agar plate using a Flash & Go colony counter (IUL; 

Farmingdale, NY).  Minimum bactericidal concentrations (MBC4h) were determined to be the 

minimum concentration of dendrimer that resulted in a 3-log reduction in bacterial viability 

compared to untreated cells after 4 h (i.e., reduced bacterial counts from 106 to 103 cfu/mL).  Of 

note, the plate counting method used has an inherent limit of detection of 2.5 x 103 cfu/mL.22 
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To test the antibacterial action of the alkyl chain-modified dendrimers, P. aeruginosa, S. 

aureus, and MRSA were cultured in TSB to a concentration of 108 colony forming units per mL 

(cfu/mL), collected by centrifugation (2355×g), resuspended in sterile PBS, and diluted to 106 

cfu/mL in pH 7.4 PBS.  For S. aureus and MRSA assays, the 106 cfu/mL solution in PBS was 

supplemented with 1% glucose and 0.5% TSB to ensure bacteria viability throughout the assay 

duration.  Of note, the addition of TSB did not influence the NO-release totals (i.e., NO totals were 

4.5 ± 1.8% lower in TSB-supplemented PBS; n ≥ 3).  Premeasured samples of single- or dual-

action dendrimer in methanol were added to a 1 dram glass vial and dried under vacuum for 2 h 

prior to the bacteria assays.  Corresponding volumes of 106 cfu/mL bacteria were added to obtain 

a range of dendrimer concentrations.  Untreated controls (blanks) were included in each 

experiment to ensure the bacteria remained viable (at 106 cfu/mL) over the 24 h assay at 37 °C.  

The blanks and dendrimer-treated bacteria were then spiral-plated at 10- and 100-fold dilutions on 

tryptic soy agar plates using an Eddy Jet spiral plater.  Bacterial viability was assessed by counting 

the number of colonies formed on the agar plate using a Flash & Go colony counter.  Minimum 

bactericidal concentrations (MBC24h) were determined to be the minimum concentration of 

dendrimer that resulted in a 3-log reduction in bacterial viability compared to untreated cells after 

24 h (i.e., reduced bacterial counts from 106 to 103 cfu/mL). 

3.2.2 Confocal microscopy to assess dendrimer-bacteria association 

Fluorescently-tagged G4 PAMAM dendrimers were synthesized as described 

previously.10, 23, 24  Briefly, 100 mg G4 PAMAM were added to a vial containing one molar 

equivalent of RITC (3.8 mg) in 2 mL methanol.  One equivalent of triethylamine (with respect to 

the molar amount of primary amines) was then added to the vial.  The solution was stirred for 24 

h in the dark, after which solvent was removed in vacuo.  Dendrimers were dissolved in water, 
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dialyzed against water (3 d), and then lyophilized.  The procedure for QA functionalization 

described in Section 2.2.1 was performed in the dark to modify the fluorescently-tagged G4 

PAMAM with methylQA, butylQA, and dodecylQA moieties.  P. aeruginosa and S. aureus were 

cultured as described above and diluted to 106 cfu/mL.  Aliquots of the bacteria solutions were 

incubated in a glass bottom confocal dish for 45 min at 37 °C.  A Zeiss 510 Meta inverted laser 

scanning confocal microscope with a 543 nm HeNe excitation laser (1.0 mW, 25.0% intensity) 

and a 560 – 615 nm band pass (BP) filter was used to obtain fluorescence images of the RITC-

modified dendrimers.  Both bright field and fluorescence images were collected using an N.A. 

(numerical aperature) 1.2 C-apochromat water immersion lens with a 40× objective.  Solutions of 

RITC-tagged dendrimers (100 µg/mL) in PBS (1.5 mL) were added to 1.5 mL of the bacteria 

solution in the glass confocal dish to achieve a final concentration of 50 µg/mL.  Images were 

collected every 2 min to temporally monitor association of the dendrimers with the bacteria. 

3.2.3 Confocal microscopy for detection of intracellular NO and cell death 

P. aeruginosa and S. aureus were cultured as described above and diluted to 106 cfu/mL in 

PBS containing 10 µM DAF-2 DA and 30 µM PI.  Aliquots of the bacteria solution were incubated 

in a glass bottom confocal dish for 45 min at 37°C.  A Zeiss 510 Meta inverted laser scanning 

confocal microscope with a 488 nm Ar excitation laser (30.0 mW, 2.0% intensity) and a BP 505 – 

530 nm filter was used to obtain DAF-2 (green) fluorescence images.  A 543 nm HeNe exciation 

laser (1.0 mW, 25.0% intensity) with a BP 560 – 615 nm filter was used to obtain PI (red) 

fluorescence images.  Both bright field and fluorescence images were collected using an N.A. 1.2 

C-apochromat water immersion lens with a 40× objective.  Solutions of G4 methylQA/NO, G4 

butylQA/NO, G4 octylQA/NO, or G4 dodecylQA/NO (40 µg/mL) in 1.5 mL PBS (containing 10 

µM DAF-2 DA and 30 µM PI) were added to 1.5 mL of the bacteria solution in the glass confocal 
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dish to achieve a final concentration of 20 µg/mL.  Images were collected every 5 min to 

temporally observe intracellular NO concentrations and bacteria cell death. 

3.2.4 In vitro cytotoxicity 

L929 mouse fibroblasts were grown in DMEM supplemented with 10 vol% FBS and 1 

wt% PS and incubated in 5 vol% CO2 under humidified conditions at 37 °C.  After reaching 80% 

confluency, the cells were trypsinized, seeded onto tissue culture-treated polystyrene 96-well 

plates at a density of 2 x 104 cells/mL, and incubated at 37 °C for 72 h.  The supernatant was then 

aspirated and replaced with 200 µL of fresh growth medium and either 50 µL of QA-modified 

dendrimer in PBS at the determined MBC4h against P. aeruginosa or S. aureus or 50 µL of alkyl 

chain-modified dendrimer in PBS at the lowest and highest planktonic MBC24h values.  Dimethyl 

sulfoxide (10%) and 50 µL PBS were used as positive and negative controls, respectively.  After 

incubation for 4 or 24 h at 37 °C, the supernatant was aspirated and 120 µL of a mixture of 

DMEM/MTS/PMS (105/20/1, v/v/v) was added to each well.  After 1.5 h incubation at 37 °C, the 

absorbance of the colored solutions was quantified at 490 nm using a Thermoscientific Multiskan 

EX plate reader (Waltham, MA).  The mixture of DMEM/MTS/PMS and untreated cells were used 

as a blank and control, respectively.  Results were expressed as percentage of relative cell viability 

as follows: 

                    % Cell Viability = [(Abs490 – Absblank)/(Abscontrol – Absblank)] x 100%              Eq. 3.1 

3.3 Results and Discussion 

3.3.1 Antibacterial action of QA-modified PAMAM dendrimers  

As P. aeruginosa and S. aureus represent two of the most commonly isolated species in 

chronic wounds, they were selected to test the antibacterial efficacy of the QA-modified 

dendrimers.25  Further, their use allowed us to examine the effect of Gram designation (i.e., Gram-



93 
 

positive or Gram-negative) on the bactericidal efficacy of these antibacterial agents.  Planktonic 

bacteria viability assays were performed under static conditions to determine the minimum 

dendrimer concentration required to elicit a 3-log reduction in bacterial viability over 4 h (MBC4h).  

The bactericidal NO dose for the NO-releasing QA-modified dendrimers was determined by 

multiplying the 4 h NO payload (t[NO]4h) by the corresponding MBC4h.   

The bactericidal efficacy of single-action (i.e., non-NO-releasing) QA-modified dendrimers was 

first assessed to determine the effects of QA alkyl chain length, dendrimer generation, and bacteria 

Gram designation on antibacterial activity prior to evaluating the effects of NO release.  All QA 

alkyl chain lengths exhibited a generation dependence on bactericidal efficacy against P. 

aeruginosa, with G4 QA-modified dendrimers resulting in improved killing (i.e., decreased 

MBC4h values) relative to their G1 counterparts (Table 3.1).  The generation-dependent increase 

in antibacterial activity against P. aeruginosa is attributed to the greater alkyl chain density of the 

G4 scaffold over the more sparsely functionalized G1 dendrimers.  Alternatively, only the 

methylQA-modified dendrimers exhibited a generation dependence against S. aureus.  While the 

bactericidal concentration of G1 methylQA against S. aureus was greater than 8.0 mg/mL, G4 

methylQA dendrimers resulted in complete bacterial killing at one-fourth that concentration (2.0 

mg/mL).  Although the shortest QA alkyl chain (methylQA) seemed to benefit from the increased 

functional group density of the G4 scaffold, no generation effect was observed for the remaining 

QA alkyl chain lengths, indicating that for antibacterials containing these longer QA alkyl chains 

(i.e., butylQA to dodecylQA), the mechanism of action against the Gram-positive pathogen S. 

aureus is not influenced by functional group density.  

Both dendrimer generation and QA alkyl chain length influenced bactericidal efficacy and 

were dependent on bacterial Gram designation.  While Gram-negative bacteria possess a lipid-rich  
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Table 3.1 Minimum bactericidal concentrations (MBC4h) and bactericidal NO doses for single- 

and dual-action QA-modified dendrimers against S. aureus and P. aeruginosa.a  

 S. aureus P. aeruginosa 

 
MBC4h 

(µg/mL) 

NO dose 

(µmol/mL) 

MBC4h 

(µg/mL) 

NO dose 

(µmol/mL) 

G1 PAMAM >8000  250  

G4 PAMAM 1000  30  

G1 methylQA >8000  1500  

G1 methylQA/NO 500 0.37 300 0.22 

G1 butylQA 3500  1500  

G1 butylQA/NO 500 0.39 300 0.23 

G1 octylQA 30  75  

G1 octylQA/NO 30 0.02 50 0.03 

G1 dodecylQA 10  20  

G1 dodecylQA/NO 10 0.01 10 0.01 

G4 methylQA 2000  500  

G4 methylQA/NO 300 0.23 250 0.19 

G4 butylQA 3500  1000  

G4 butylQA/NO 500 0.39 250 0.20 

G4 octylQA 30  30  

G4 octylQA/NO 20 0.02 30 0.03 

G4 dodecylQA 10  10  

G4 dodecylQA/NO 10 0.01 10 0.01 
aEach parameter was analyzed with multiple replicates (n ≥ 3). 
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outer membrane and a thin peptidoglycan sheet, the outer wall of Gram-positive bacteria is 

comprised of a thicker and more resistant peptidoglycan layer.26  For the short alkyl chains, both 

G1 and G4 scaffolds were more effective against Gram-negative P. aeruginosa than Gram-positive 

S. aureus.  The antibacterial activity of the short alkyl chain QAs is attributed to positively charged 

ammonium groups interacting with the negatively charged bacterial cell membranes.  Once 

associated, the QA functionality can induce cell death through a number of pathways, including 

disrupting membrane functions, replacing essential metal cations, interrupting protein activity, and 

damaging bacterial DNA.11, 13  The increased bactericidal action toward P. aeruginosa indicates 

greater association of the dendrimers with the outer membrane layers present in the Gram-negative 

bacterium, while the thick peptidoglycan layer of Gram-positive S. aureus likely reduced 

associated and QA-induced cell death.  Indeed, RITC-tagged G4 methylQA dendrimers associated 

with P. aeruginosa more rapidly than with S. aureus bacterial cells (Figures 3.1 and 3.2).  While 

association with P. aeruginosa was noted at 10 min, G4 methylQA dendrimer association with S. 

aureus was not observed until after 28 min.  In contrast, G1 dendrimers modified with longer QA 

alkyl chains more effectively killed S. aureus than P. aeruginosa, but neither modification 

demonstrated a Gram dependence with the G4 scaffold.  We believe that the penetration of the 

longer QA alkyl chains tethered to the G1 scaffold exerts greater physical damage to the thicker 

peptidoglycan layer of S. aureus compared to the outer membrane of P. aeruginosa.  This 

hypothesis, however, does not hold true for the G4 dendrimers, where the increased functional 

group densities afforded by the G4 scaffold result in similar killing against both strains of bacteria. 
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Figure 3.1.  Confocal microscopy images of P. aeruginosa exposed to 50 µg/mL RITC-tagged G4 

methylQA and G4 dodecylQA dendrimers at (A) 0, (B) 4, (C) 6, (D) 8, and (E) 10 min after 

dendrimer addition. Threshold reversed for clarity. 
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Figure 3.2.  Confocal microscopy images of S. aureus exposed to 50 µg/mL RITC-tagged G4 

methylQA and G4 dodecylQA dendrimers at (A) 0, (B) 20, (C) 24, (D) 28, and (E) 32 min after 

dendrimer addition.  Threshold reversed for clarity. 
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As expected, longer QA alkyl chains (i.e., octylQA, dodecylQA) were significantly more 

bactericidal than the shorter alkyl chains (i.e., methylQA, butylQA) for both dendrimer generations 

regardless of bacterial strain.  The increased efficacy of octylQA- and dodecylQA-modified 

dendrimers against S. aureus and P. aeruginosa is likely due to insertion of the longer alkyl chain 

groups into the peptidoglycan layer, resulting in physical disruption of the cell membrane.11  

Furthermore, the greater hydrophobicity of the octyl and dodecyl groups versus the shorter alkyl 

chains may allow for enhanced association of the dendrimers with the bacteria cell membranes.  

This is evident in the confocal microscopy images of RITC-tagged dendrimers with both P. 

aeruginosa and S. aureus, with G4 dodecylQA dendrimers associating to a greater extent in a 

shorter period of time than the G4 methylQA dendrimers (Figures 3.1 and 3.2).  The increased 

association efficiency combined with the potential for greater membrane damage results in 

dramatically enhanced killing for these biocides.  While the dodecylQA-modified dendrimers are 

slightly more effective than the octylQA-modified dendrimers for both generations, this trend does 

not apply to the methylQA- and butylQA-modified dendrimers.  For G1 dendrimers, the butylQA 

modification was more effective than methylQA against S. aureus, with a decrease in MBC4h from 

>8.0 to 3.5 mg/mL, respectively.  These results indicate that the slight increase in alkyl chain length 

may allow for better association of the G1 butylQA dendrimers, resulting in greater antibacterial 

activity against S. aureus.   

The same trend in bactericidal efficacy was not observed for the G4 scaffold.  In fact, G4 

methylQA dendrimers were almost twice as effective as G4 butylQA against both S. aureus and 

P. aeruginosa.  The lowered bactericidal efficacy is attributed to decreased dendrimer-bacteria 

association for the G4 butylQA dendrimers relative to the G4 methylQA system (Figure 3.3).  A 

number of factors may play a role in this decreased association.  Normally, the positively charged 



99 
 

ammonium group enhances association of the biocide with the bacteria membrane.  However, 

back-folding of the peripheral functional groups toward the dendrimer interior may shield the QA 

from the bacterial membrane, resulting in less membrane damage.27  Shielding effect are often 

further amplified for the G4 scaffold (as compared to G1) due to the closer proximity of terminal 

functional groups.  Although the bactericidal concentration of G4 butylQA was below the CVC 

(>5.0 mg/mL), a decrease in surface tension was still observed at these concentrations, which may 

be indicative of dendrimers assembling at the air-water interface instead of associating with 

bacteria in solution.28, 29  We hypothesize that the slightly longer alkyl chain amplifies both QA 

shielding and the formation of supramolecular assemblies for the G4 butylQA scaffold, reducing 

its bactericidal action from that of the methylQA system. 

The co-administration of active-releasing antibacterial agents with contact-based QA 

biocides has been shown to result in a more effective antibacterial treatment.14, 15  We thus sought 

to combine active NO release, itself a multi-mechanistic antimicrobial, with the contact-based 

biocidal attributes of QA-modified dendrimers.  The combination of NO release with the short QA 

alkyl chains dramatically increased the bactericidal efficacy for both G1 and G4 scaffolds, 

resulting in a 2 – 7 fold decrease in MBC4h values over single-action QA-modified dendrimers.  

For most of the scaffolds, the bactericidal NO doses required to kill S. aureus was nearly twice 

that required for P. aeruginosa (Table 3.1).  The larger NO dose for S. aureus killing is attributed 

to the more robust peptidoglycan layer inhibiting NO diffusion into the bacteria, while for P. 

aeruginosa the outer membrane and thinner peptidoglycan layer do not impede NO diffusion as 

efficiently.  The addition of NO release to the octylQA- and dodecylQA-modified G1 dendrimers 

resulted in increased bactericidal efficacy against P. aeruginosa compared to their non-NO-

releasing counterparts, but had no effect on their bactericidal action against S. aureus.  Imparting   
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Figure 3.3.  Confocal microscopy images of P. aeruginosa exposed to 50 µg/mL RITC-tagged 

(A) G4 methylQA and (B) G4 butylQA dendrimers after 20 min exposure.  Threshold reversed for 

clarity. 
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Figure 3.4.  Confocal microscopy images of P. aeruginosa and S. aureus exposed to 20 µg/mL 

G4 dodecylQA/NO dendrimers at (A) 0, (B) 25, (C) 35, (D) 45, and (E) 60 min after dendrimer 

addition. DAF-2 green fluorescence designates the presence of intracellular NO, while PI red 

fluorescence indicates compromised membranes (cell death). 
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NO release to the G4 dodecylQA dendrimers did not affect the efficacy against either pathogen; 

both the single- and dual-action dendrimers exhibited bactericidal action against S. aureus and P. 

aeruginosa at equivalent concentrations (10 µg/mL).  For this system, the long dodecyl chains 

likely cause increased physical disruption of the cell membrane, precluding intracellular NO 

buildup.  Intracellular NO levels and membrane disruption caused by the scaffolds were 

qualitatively assessed via confocal microscopy of bacterial suspensions stained with specific 

fluorescence probes (i.e., DAF-2 and PI).  In cases where NO serves as the lone antibacterial, a 

bright green fluorescent signal from DAF-2 (indicative of intracellular NO buildup) is generally 

observed prior to red fluorescence (PI), signifying membrane disruption and subsequent cell 

death.7  As this red fluorescence increases, the green fluorescence is concomitantly diminished as 

the DAF-2 diffuses out of the membrane-compromised bacteria.  Bacteria incubated with G4 

dodecylQA/NO, however, exhibited considerable membrane disruption before any significant NO 

accumulation (Figure 3.4).  For both P. aeruginosa and S. aureus, some intracellular NO was 

briefly observed after 25 min, but the significant membrane disruption observed for both strains 

shortly thereafter (at 35 min) supports our hypothesis that the dodecylQA modification 

compromises the cell membrane to such an extent it precludes the buildup of intracellular NO.   

Finally, we compared the bactericidal action of NO-releasing QA-modified dendrimers 

against unmodified G1 and G4 PAMAM scaffolds to determine if the combinatorial effects were 

indeed more efficacious.  The unmodified G1 and G4 dendrimers were significantly more effective 

against P. aeruginosa than S. aureus (Table 3.1).  For the G1 scaffold, both individual and dual 

action octylQA- and dodecylQA-modified dendrimers were more bactericidal than G1 PAMAM 

against both pathogens.  A similar result was obtained for the G4 modifications, with the exception 

of the individual and dual action G4 octylQA dendrimers, which exhibited equivalent bactericidal 
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efficacy as the G4 scaffold against P. aeruginosa.  Modifying the G1 and G4 scaffolds with short 

QA alkyl chains (i.e., methylQA and butylQA) greatly decreased their antibacterial action, with 

only G1 butylQA dendrimers exhibiting greater bactericidal efficacy against S. aureus than their 

corresponding PAMAM scaffold.  Efficacy of the NO-releasing methylQA and butylQA systems 

compared to the G1 and G4 scaffolds was dependent on bacterial Gram designation.  G4 

methylQA/NO and G4 butylQA/NO exhibited an almost 10-fold reduction in bactericidal action 

against P. aeruginosa from the G4 scaffold, while G1 methylQA/NO and G1 butylQA/NO 

maintained relatively similar antibacterial efficacy as G1 PAMAM.  However, all of the dual action 

QA-modified dendrimers displayed significantly greater bactericidal efficacy against Gram-

positive S. aureus than the unmodified PAMAM scaffolds, demonstrating the utility of these dual 

action dendrimers as broad-spectrum antibacterial agents. 

3.3.2 Antibacterial action of alkyl chain-modified PAMAM dendrimers 

As the bactericidal action of the QA-modified dendrimers was found to be highly dependent on 

alkyl chain length, we sought to investigate the effects of dendrimer hydrophobicity (i.e., alkyl 

chain length) on antibacterial action in the absence of the positively charged quaternary 

ammonium.  The antibacterial action of the alkyl chain-modified dendrimers was evaluated against 

the nosocomial pathogens P. aeruginosa, S. aureus, and methicillin-resistant S. aureus (MRSA).  

The use of these bacteria allowed us to further understand the effects of bacterial Gram class and 

antibiotic resistance on the bactericidal efficacy of the dendrimer biocides.  Similar to evaluation 

of QA-modified dendrimer antibacterial action, planktonic bacteria viability assays were 

performed under static conditions to determine the minimum dendrimer concentration required to 

elicit a 3-log reduction in bacterial viability over 24 h (MBC24h). 
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Table 3.2 Minimum bactericidal concentrations (MBC24h) for single- and dual-action alkyl chain-

modified dendrimers against planktonic P. aeruginosa, S. aureus, and MRSA.a  

 P. aeruginosa S. aureus MRSA 

 
MBC24h 

(µg/mL) 

MBC24h 

(µg/mL) 

MBC24h 

(µg/mL) 

Vancomycin  25 12.5 

G1 butyl 2000 3000 6000 

G1 butyl/NO 1000 2000 1000 

G1 hexyl 50 100 100 

G1 hexyl/NO 25 100 100 

G1 octyl 25 25 25 

G1 octyl/NO 25 25 25 

G1 dodecyl 25 25 25 

G1 dodecyl/NO 25 25 25 

G2 butyl 25 1000 1000 

G2 butyl/NO 50 2000 1000 

G2 hexyl 25 100 100 

G2 hexyl/NO 25 100 100 

G3 butyl 25 500 250 

G3 butyl/NO 50 1000 250 

G3 hexyl 10 50 50 

G3 hexyl/NO 25 50 100 

G4 butyl 50 500 500 

G4 butyl/NO 50 500 500 

G4 hexyl 25 100 100 

G4 hexyl/NO 25 50 100 

  aEach parameter was analyzed with multiple replicates (n ≥ 3). 

 

  



105 
 

Both the butyl- and hexyl-modified G1 dendrimers were more effective at eradicating 

planktonic P. aeruginosa than either S. aureus or MRSA (Table 3.2), corroborating our previous 

observations in which QA-modified dendrimers containing short alkyl chains exhibited greater 

bactericidal action against P. aeruginosa over S. aureus.30  The more effective killing was 

attributed to faster dendrimer association with P. aeruginosa bacteria and the inability of the 

shorter alkyl chains to effectively disrupt the thick peptidoglycan layer of Gram-positive S. aureus 

bacterial cells.26  As expected, the longer octyl and dodecyl alkyl chain modifications were more 

bactericidal than the shorter alkyl chains, especially against the Gram-positive bacterial strains.  

However, the G1 octyl and dodecyl dendrimers were equally effective at eradicating all three 

bacterial strains regardless of Gram designation, a discernable difference than the QA-modified 

system.  Of note, no increase in efficacy was observed for the dodecyl modifications over the octyl-

modified dendrimers.  G1 hexyl dendrimers exhibited similar efficacy against P. aeruginosa as the 

longer alkyl chain modifications, suggesting a limit to the benefits of increasing alkyl chain length, 

particularly for these longer bactericidal assays. 

Similar to previous observations, the addition of NO release was more beneficial for the 

shorter butyl and hexyl modifications than the longer octyl- and dodecyl-modified dendrimers.  

Indeed, G1 butyl/NO dendrimers exhibited greater bactericidal efficacy against all three bacterial 

strains compared to single-action G1 butyl, while G1 hexyl/NO dendrimers were slightly more 

effective at killing P. aeruginosa than G1 hexyl.  Neither the octyl nor dodecyl modifications 

benefited from the addition of NO-release capabilities against any of the strains tested.  Similar to 

the QA-modified dendrimers, this was attributed to these longer alkyl chains causing sufficient 

membrane damage to preclude the buildup of intracellular NO to bactericidal concentrations.30 



106 
 

The antibacterial action of G2 though G4 butyl- and hexyl-modified dendrimers was next 

evaluated to determine the effects of dendrimer generation on bactericidal action.  Following the 

trend observed for the G1 dendrimers, single-action (i.e., non-NO-releasing) butyl and hexyl 

modifications were more efficacious against P. aeruginosa regardless of generation.  The majority 

of the single-action biocides were equally effective against both Gram-positive bacteria strains, 

with only the G1 and G3 butyl biocides exhibiting dissimilar biocidal concentrations between S. 

aureus and MRSA.  The bactericidal concentration for G1 butyl was found to be double for MRSA 

over S. aureus (6 and 3 mg/mL, respectively) while the MBC24h for G3 butyl was greater for S. 

aureus over MRSA (500 and 250 µg/mL, respectively).  As such, bacterial antibiotic resistance 

was determined to have little effect on the bactericidal action of alkyl chain-modified dendrimers, 

most likely due to the contact-based killing mechanism of membrane disruption exhibited by the 

hydrophobic dendrimers.   

The hexyl-modified dendrimers were characterized by increased bactericidal activity over 

the butyl modifications against all three bacteria strains, likely due to greater membrane 

intercalation and cell membrane damage by the slightly longer hexyl chains.  Further, while the 

butyl-modified dendrimers exhibited a sizeable increase in antibacterial action at higher 

generations, the bactericidal action of the hexyl-modified dendrimers varied little with dendrimer 

generation.  G2–G4 butyl dendrimers proved more biocidal against each bacterial strain than G1 

butyl, suggesting that short alkyl chain modifications benefit substantially from greater functional 

group density.  Within the higher generations, G3 butyl dendrimers exhibited the greatest 

bactericidal action, requiring the lowest concentrations to eradicate each bacterial strain.  Likewise, 

the G3 hexyl dendrimers were more effective at eradicating planktonic bacteria compared to other 

generations, even though the hexyl-modified dendrimers demonstrated little variation in biocidal 
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activity with generation.  These observations suggest that the G3 scaffold may represent an optimal 

balance between size and functional group density, maximizing bactericidal action against both 

Gram-positive and Gram-negative bacteria. 

With the addition of NO release, the resultant biocidal action of the now dual-action 

dendrimer biocides was largely dependent on dendrimer generation.  The G1 scaffold benefited 

most from NO donor modification, with both G1 butyl/NO and G1 hexyl/NO dendrimers 

exhibiting greater efficacy than their non-NO-releasing counterparts.  In contrast, a slightly 

antagonistic effect was observed upon the addition of NO release to the G2 and G3 scaffolds.  

Indeed, G2 butyl/NO, G3 butyl/NO, and G3 hexyl/NO dendrimers all required similar or greater 

dendrimer concentrations to eradicate Gram-positive and Gram-negative bacteria versus controls 

(i.e., single-action biocides).  Little difference in bactericidal efficacy was observed between the 

single- and dual-action G4 dendrimers against any of the bacteria strains, suggesting that the 

increased functional group density of the larger scaffolds results in significant membrane damage, 

precluding any beneficial effects of NO release.   

3.3.3 In vitro cytotoxicity  

The relative toxicity against mammalian cells at bactericidal doses is critical to the design 

of any new antibacterial agent.  Although the clinical utility of long chain quaternary ammonium 

salts has been somewhat limited to topical applications due to their inherent toxicity, tethering QA 

moieties to larger scaffolds has been shown to mitigate their toxic effects.13, 31  The toxicity of the 

QA-modified dendrimers prepared herein was thus evaluated against L929 mouse fibroblast cells.  

The resulting dendrimer cytotoxicity was dependent on dendrimer generation, QA alkyl chain 

length, and biocide concentration (Figure 3.5).  While the G4 methylQA dendrimers were non-

toxic at 500 µg/mL (4% decrease in cell viability), increasing the biocide concentration four-fold 
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to 2.0 mg/mL reduced L929 cell viability by 20%.  In contrast, the toxicity of G4 butylQA 

dendrimers was generally independent of concentration (both 1.0 and 3.5 mg/mL reduced cell 

viability by 40%).  However, the toxicity of the butylQA functionality was generation dependent, 

with the G4 scaffold causing an additional 10% decrease in cell viability versus the G1 butylQA 

system at 3.5 mg/mL.  Of significance, the low (but highly antibacterial) concentrations (i.e., 10 

µg/mL) of the dodecylQA-modified dendrimers were relatively non-toxic, only reducing L929 cell 

viability by 15 and 2% for G1 and G4, respectively.   

While the large initial NO burst characteristic of these macromolecular scaffolds may yield 

toxic levels of NO at higher concentrations (i.e., those required to eradicate biofilms), the 

concentrations tested herein did not exhibit significant toxicity to mammalian cells.  Indeed, the 

NO-releasing QA-modified dendrimers proved to be relatively non-toxic, exhibiting >80% L929 

cell viability at the effective bactericidal concentrations.   Furthermore, NO release resulted in 

increased cell viability versus controls for nearly all of the QA modifications, demonstrating a 

substantial improvement over previously reported silica-based systems.8    For several of the 

scaffolds that exhibited the same bactericidal concentration for both the single- and dual-action 

QA-modified dendrimers, the addition of NO release resulted in increased fibroblast cell viability.  

For example, the G4 octylQA and G4 octylQA/NO dendrimers resulted in cell viabilities of 90 

and 101%, respectively, at 30 µg/mL doses.  These results indicate that the combination of low 

NO concentrations with QA moieties may be beneficial in decreasing the overall toxicity of QA 

scaffolds to mammalian cells.  It is important to note that the bactericidal doses for all of the NO-

releasing QA-modified dendrimers resulted in greater L929 cell viability than the unmodified G1 

and G4 PAMAM dendrimers, demonstrating the advantage of dual action therapeutics in reducing 

scaffold toxicity. 
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Figure 3.5.  Viability (%) of L929 mouse fibroblast cells following 4 h exposure to single- (blue) 

and dual-action (green) QA-modified dendrimers, as well as unmodified PAMAM dendrimers 

(red), at the MBC4h against (A) S. aureus and (B) P. aeruginosa compared to untreated control 

cells. For all measurements, n ≥ 3 pooled experiments with error bars representing standard 

deviation of the mean.  
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Figure 3.6.  Viability (%) of L929 mouse fibroblast cells following 24 h exposure to single- (blue) 

and dual-action (green) alkyl chain-modified dendrimers compared to untreated control cells.  

Values in parenthesis represent dendrimer concentration in µg/mL. For all measurements, n ≥ 3 

pooled experiments with error bars representing standard deviation of the mean.  
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The toxicity of alkyl chain-modified dendrimers was evaluated against L929 fibroblast 

cells at the highest and lowest bactericidal concentrations over 24 h.  In general, the alkyl chain-

modified dendrimers were overall less toxic than their QA counterparts.  All of the G1 alkyl chain 

dendrimers were relatively non-toxic at their highest bactericidal concentrations against planktonic 

bacteria, resulting in >80% cell viability compared to untreated controls (Figure 3.6 A).  For the 

most toxic G1 modifications (i.e., 6 mg/mL G1 butyl and 25 µg/mL G1 dodecyl), the addition of 

NO release resulted in improved cell viability.  While the decrease in toxicity for G1 butyl/NO 

dendrimers is likely due to the lower bactericidal concentration required, the dodecyl-modified 

dendrimers were tested at the same concentration with and without NO release.  Similar to the long 

alkyl chain QA modifications, the low levels of NO released by G1 dodecyl/NO dendrimers appear 

to mitigate some of the toxicity inherent to the dodecyl-modified scaffold, decreasing the reduction 

in cell viability from 15% to <1% at 25 µg/mL doses.   

Increasing the dendrimer generation appeared to have little impact on the toxicity of butyl- 

and hexyl-modified dendrimers at bactericidal concentrations.  Indeed, single-action butyl-

modified dendrimers exhibited >90% cell viability at concentrations up to 2 mg/mL regardless of 

dendrimer generation (Figure 3.6 B).  Within the hexyl modifications only the G4 hexyl scaffold 

exhibited significant toxicity, reducing cell viability by 67% at a concentration of 100 µg/mL.  As 

the G1 and G2 hexyl scaffolds reduced cell viability by <5% at similar concentrations, the dramatic 

increase in G4 hexyl toxicity is attributed to the increased functional group density afforded by the 

G4 scaffold.  Of note, butyl- and hexyl-modified G3 dendrimers, which exhibited the greatest 

bactericidal action, were non-toxic to mammalian cells (>94% viability at all concentrations 

tested). 
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The addition of NO release to the alkyl chain-modified scaffolds had mixed effects on 

dendrimer toxicity.  For most of the dendrimer modifications, the single- and dual-action 

dendrimers exhibited similar toxicity at the concentrations tested.  Nitric oxide-releasing G2 butyl 

dendrimers exhibited a concentration-dependent toxicity, with 1 and 2 mg/mL dendrimer 

concentrations resulting in 2 and 37% reductions in cell viability, respectively.  Alternatively, 

adding NO-release capabilities to the G4 hexyl scaffold decreased the toxicity by half, improving 

cell viability from 33 to 69% at 100 µg/mL.  These results suggest that NO toxicity is highly dose-

dependent.  While low NO concentrations help to mitigate some of the toxic effects of the 

dendrimer scaffold, larger NO doses (~2 µmol/mL and greater) detrimentally impact mammalian 

cells.   

3.4 Conclusions 

Both single and dual-action QA-modified PAMAM dendrimers exhibited biocidal activity 

against P. aeruginosa and S. aureus, with longer QA alkyl chains (i.e., octylQA, dodecylQA) 

proving more effective than shorter chain (i.e., methylQA, butylQA) modifications for both G1 

and G4 dendrimer scaffolds.  While previous work has suggested that QA compounds are more 

potent against Gram-positive versus Gram-negative bacteria due to the additional outer membrane 

barrier characteristic of Gram-negative bacteria, this observation has lacked a mechanistic 

understanding.12, 20  This work indicates that the potency of QA moieties against Gram-positive 

and Gram-negative bacteria is highly dependent on both the QA alkyl chain length and functional 

group density.  In contrast to a prior report,21 G4 dendrimers modified with shorter QA alkyl chains 

demonstrate reasonable bactericidal action against both P. aeruginosa and S. aureus, albeit at 

higher concentrations than those required for longer QA alkyl chain lengths.  While the addition 

of NO release markedly improves the bactericidal action of short alkyl chain QA-modified G1 and 
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G4 dendrimers against both bacteria strains, the longer alkyl chain QA dendrimers do not benefit 

from NO release in the same manner.  For these systems, the long alkyl chains induce significant 

damage to the bacteria membrane, greatly increasing their biocidal action but precluding the 

buildup of intracellular NO.   

The alkyl chain-modified dendrimers exhibited similar trends in bactericidal action as the 

QA modifications, with the shorter alkyl chains proving more effective against P. aeruginosa than 

S. aureus.  However, the longer octyl and dodecyl modifications were equally effective against 

each of the strains tested, suggesting the longer assay times allow for greater membrane damage 

to the bacterial cell regardless of Gram designation.  The addition of NO release had mixed effects 

on both the bactericidal action and cytotoxicity of the alkyl chain-modified dendrimers, with short 

alkyl chain-modified G1 dendrimers exhibiting greater bactericidal action with NO-release 

capabilities and the low levels of NO release from G4 hexyl dendrimers mitigating scaffold 

toxicity.  While the dual-action biocides did not exhibit dramatically improved bactericidal 

efficacy over the single-action dendrimers against planktonic bacteria, all systems were carried 

forward into biofilm assays due to the known challenges of eradicating these bacterial 

communities.  The majority of these dual-action QA- and alkyl chain-modified antibacterial agents 

continue to hold great therapeutic potential as they exhibit minimal toxicity to mammalian cells at 

the dendrimer concentrations required to elicit a three-log reduction in bacterial viability. 
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CHAPTER 4: 

Anti-Biofilm Efficacy of Dual-Action Dendrimers  

4.1 Introduction 

Nosocomial infections present a tremendous challenge to society, representing the fourth 

leading cause of death in the U.S. alone and resulting in over $5 billion in medical costs annually.1  

Approximately 10% of hospitalized patients acquire infections from opportunistic pathogens such 

as Pseudomonas aeruginosa and Staphylococcus aureus, which are notorious for forming chronic 

biofilms that resist standard antibiotic treatment.2  Biofilms form after planktonic bacteria 

irreversibly attach to a surface and produce an exopolysaccharide (EPS) matrix that surrounds and 

protects the bacterial community.3-5  Biofilm-based infections exhibit increased resistance to 

antibacterial agents, often requiring therapeutic doses 3–4 orders of magnitude greater than those 

required to eradicate planktonic bacteria.3  The inability of antibiotics to effectively eradicate 

biofilms is attributed to: 1) the EPS matrix limiting the diffusion of antibacterial agents into the 

biofilm; 2) slower bacterial metabolism reducing the efficacy of antibiotics; and, 3) the biofilm 

chemical microenvironment (e.g. pH, pCO2, pO2) adversely affecting antibacterial activity.3  The 

inherent resistance of biofilms to traditional therapeutics combined with the increasing prevalence 

of antibiotic-resistant bacteria in clinical settings necessitates the development of new antibacterial 

agents that are capable of eradicating biofilms without fostering resistance.1, 6  

Combination therapies, or the co-administration of two mechanistically different 

antibacterial agents, have been demonstrated to increase the bactericidal efficacy of individual 

biocides while reducing the emergence of bacterial resistance.7, 8   Specifically, the combination 
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of a non-depleting, contact-based biocide with releasable antibacterial agents prolongs bactericidal 

action while increasing the overall antibacterial sphere of influence.9, 10  The enhanced bactericidal 

efficacy of the dual-action scaffold should lower the required therapeutic dose and concomitantly 

reduce any toxicity to healthy cells and tissue.7 

Nitric oxide (NO), an endogenously produced free radical, holds great potential as a 

releasable antibacterial agent due to its central role in the body’s immune response to infection.11, 

12  The broad-spectrum antibacterial action of NO is attributed to the production of reactive 

byproducts (e.g., dinitrogen trioxide and peroxynitrite) that compromise bacterial cell function and 

lead to membrane disruption through both nitrosative and oxidative stresses.11-13  Furthermore, the 

multi-mechanistic killing of NO makes it unlikely to foster bacterial resistance.14  Alternatively, 

contact-based biocides such hydrophobic alkyl chains can exert antibacterial activity through 

direct interactions, such as intercalating into and disrupting the hydrophobic cell membrane.15-17  

Our laboratory has developed a toolbox of large molecular frameworks capable of storing and 

controllably releasing NO for use as novel antibacterial agents.13, 18-22  Benefits of these 

macromolecular scaffolds include controllable NO release rates and payloads as well as allowing 

for the combination of multiple biocides on a single scaffold.23, 24   

Of the NO-releasing macromolecular scaffolds pioneered by our lab, poly(amidoamine) 

(PAMAM) dendrimers are a particularly promising candidate for the development of anti-biofilm 

agents.  Dendrimers are hyperbranched macromolecular polymers exhibiting unique multivalent 

architectures and modifiable peripheral functional groups, making them excellent scaffolds for 

drug delivery.25-27  The dendrimer exterior can be altered by modifying the terminal primary 

amines with various functional groups, allowing for specific targeting of bacterial cell 

membranes.25, 28  Increasing the dendrimer generation allows for facile synthetic control over 
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scaffold size and increases the number of terminal primary amines, resulting in greater functional 

group density.26, 27  Combining these factors with their ability to associate with and/or cross 

bacterial cell membranes makes dendrimers ideal candidates for use as anti-biofilm agents.29, 30  

Indeed, initial investigations into the anti-biofilm activity of dendrimer scaffolds have yielded 

promising results.  Johansson et al. functionalized peptide dendrimer scaffolds with LecB ligands 

and found that the multivalency afforded by the dendrimer scaffold increased LecB binding over 

monovalent ligands, inhibiting P. aeruginosa biofilm growth.31  Similarly, Hou et al. found that 

antimicrobial dendrimeric peptides reduced the formation of Escherichia coli biofilms by 93% 

compared to untreated controls.32  In our lab, Lu et al. reported increased killing of P. aeruginosa 

biofilms with hydrophobic dendrimers; unfortunately, these dendrimers were toxic to L929 mouse 

fibroblast cells at low concentrations (i.e., 10–30 µg/mL).33  The use of more hydrophilic 

amphiphiles provided to be less toxic at therapeutic levels while demonstrating greater anti-biofilm 

activity with NO release, indicating the benefit of combining multiple biocides on a single 

macromolecular scaffold.  Herein, we describe the anti-biofilm action of single- and dual-action 

generation 1 (G1) through generation 4 (G4) butyl- and hexyl-modified PAMAM dendrimers to 

determine the effects of exterior hydrophobicity (i.e., alkyl chain length), dendrimer size 

(generation), and NO release against both Gram-positive and Gram-negative biofilms.  We further 

evaluate the efficacy of NO-releasing G3 dendrimers in concert with the traditional antibiotic 

vancomycin against Gram-positive S. aureus and methicillin-resistant S. aureus biofilms. 

4.2 Materials and Methods 

Phenazine methosulfate (PMS), fetal bovine serum (FBS) trypsin, 3-(4,5-dimethylthiazol-

2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt (MTS), penicillin 

streptomycin (PS), triethylamine (TEA), rhodamine B isothiocyanate (RITC), propidium iodide 
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(PI), and vancomycin hydrochloride (from Streptomyces orientalis) were purchased from Sigma-

Aldrich (St. Louis, MO).  Dulbecco's modified Eagle's medium (DMEM) and Dulbecco’s 

phosphate buffered saline (PBS) were obtained from Lonza Group (Basel, Switzerland).  4,5-

Diaminofluorescein diacetate (DAF-2 DA) was purchased from Calbiochem (San Diego, CA).  

Tryptic soy broth (TSB) and tryptic soy agar (TSA) were obtained from Becton, Dickinson and 

Company (Franklin Lakes, NJ).  Pseudomonas aeruginosa (P. aeruginosa; ATCC #19143), 

Staphylococcus aureus (S.aureus; ATCC #29213), and methicillin-resistant S. aureus (MRSA; 

ATCC #33591) were obtained from American Type Tissue Culture Collection (Manassas, VA).  

L929 mouse fibroblasts were obtained from the UNC Tissue Culture Facility (Chapel Hill, NC).  

The Centers for Disease Control and Prevention (CDC) bioreactor was purchased from BioSurface 

Technologies Corporation (Bozeman, MT).  Medical grade silicone rubber (1.45 mm thick) was 

purchased from McMaster Carr (Atlanta, GA) and doubled in thickness using Superflex Clear 

RTV silicone adhesive sealant (Loctite, Westlake, OH) to fabricate coupons to fit the CDC 

bioreactor (thickness ~4 mm; diameter ~12.7 mm).  Carbon dioxide (CO2) was purchased from 

National Welders (Raleigh, NC).  Collagen-coated glass bottom microscopy dishes were received 

from MatTek Corporation (Ashland, MA).  Common laboratory salts and solvents were purchased 

from Fisher Scientific (Fair Lawn, NJ).  Distilled water was purified using a Millipore Milli-Q UV 

Gradient A-10 system (Bedford, MA), resulting in a total organic content of ≤6 ppb and a final 

resistivity of 18.2 mΩ·cm.  Unless noted otherwise, these and all other materials were analytical-

reagent grade and used as received without further purification. 

4.2.1  Biofilm eradication assays 

Lyophilized P. aeruginosa, S. aureus, and MRSA were reconstituted in tryptic soy broth 

(TSB) and cultured overnight at 37 °C.  A 0.5 mL aliquot of culture was grown in 50 mL TSB to 
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a concentration of 108 colony forming units per mL (cfu/mL), collected by centrifugation 

(2355×g), resuspended in 15% glycerol (v/v in PBS), and stored at -80 °C in 1 mL aliquots.  For 

daily experiments, colonies of bacteria culture were inoculated in 2 mL TSB overnight at 37 °C 

and recultured in fresh TSB (50 mL) the next day. 

A CDC bioreactor was used to grow P. aeruginosa, S. aureus, and MRSA biofilms over 

48 h.34  Growth conditions (e.g., nutrient concentrations, additives, flow rate) were optimized for 

each biofilm system (bacterial strain).  Briefly, medical grade silicone rubber substrates were 

added to the coupon holders within the CDC bioreactor.  After autoclaving, the reactor effluent 

line was clamped and 500 mL sterile media (P. aeruginosa: 0.3 g/L TSB; S. aureus: 3.0 g/L TSB 

+ 0.1% glucose; MRSA: 4.0 g/L TSB) was added aseptically.  Bacteria were cultured in TSB to a 

concentration of 108 cfu/mL.  The bioreactor was then inoculated with either 1 mL (P. aeruginosa, 

S. aureus) or 2 mL (MRSA) of the resulting 108 cfu/mL bacterial suspension.  The completed 

assembly was incubated at 37 °C for 24 h with stirring (150 rpm; Reynolds number: 5000).  

Following this batch phase growth, the effluent line was opened, resulting in an effective volume 

of ~350 mL, and the reactor was continuously refreshed with new media (P. aeruginosa: 0.33% 

(v/v) TSB, 6 mL/min; S. aureus: 1% (v/v) TSB, 2 mL/min; MRSA: 5% TSB, 6 mL/min) for 

another 24 h to complete biofilm growth.  Premeasured samples of single- or dual-action dendrimer 

in methanol were added to a 2 dram glass vial and dried under vacuum for 2 h prior to the bacteria 

assays.  Biofilms grown on silicone rubber substrates were exposed immediately after 48 h growth 

to these single- or dual-action dendrimers in 3 mL PBS supplemented with 1% glucose and 0.5% 

TSB at 37 °C for 24 h with slight agitation.   Of note, the addition of TSB did not influence the 

NO-release totals (i.e., NO totals were 4.5 ± 1.8% lower in TSB-supplemented PBS; n ≥ 3).  For 

each experiment, 3 biofilms were untreated and incubated in glucose- and TSB-supplemented PBS 
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to confirm biofilm viability.  After 24 h incubation, the samples were sonicated (Elma Lab-Line 

9331, Melrose Park, IL;10 min, 60% power) and vortexed to disrupt the biofilm.  The blank and 

dendrimer-treated biofilm solutions were then spiral-plated at 10-, 100-, 1000-, and 10,000-fold 

dilutions on tryptic soy agar plates using an Eddy Jet spiral plater (IUL; Farmingdale, NY).  

Bacterial viability was assessed by counting the number of colonies formed on the agar plate using 

a Flash & Go colony counter (IUL; Farmingdale, NY).  The minimum biofilm eradication 

concentration (MBEC24h) was determined as the minimum concentration of dendrimer to reduce 

the viability of the biofilm to below the limit of detection for the plate counting method (2.5 x 103 

cfu/mL).35  

An adapted checkerboard assay36 was used to evaluate any possible synergistic effects 

between alkyl chain-modified dendrimers and the antibiotic vancomycin against Gram-positive 

biofilms.  Tested concentrations started at half the MBEC24h values for the dendrimer and 

vancomycin and were subsequently halved.  Premeasured samples of single- or dual-action 

dendrimer in methanol were added to a 2 dram glass vial and dried under vacuum for 2 h prior to 

the bacteria assays.  The appropriate amount of vancomycin was weighed out in a separate 2 dram 

glass vial.  To expose biofilms, 1.5 mL of PBS supplemented with 1% glucose and 0.5% TSB were 

added to each vial and then added to the biofilm sample in a 15 mL falcon tube for a final exposure 

volume of 3 mL PBS supplemented with 1% glucose and 0.5% TSB.  After exposure at 37 °C for 

24 h, biofilms were sonicated and plated as described above. 

4.2.2 Confocal microscopy to assess penetration into S. aureus biofilms 

Fluorescently-labeled G1 – G4 PAMAM dendrimers were synthesized as described 

previously.33, 37, 38  Briefly, 100 mg G1 through G4 PAMAM were added to separate vials 

containing one molar equivalent of RITC per mole dendrimer (G1: 37.5 mg; G2: 16.5 mg; G3: 7.8 
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mg; G4: 3.8 mg) in 2 mL methanol.  One equivalent of triethylamine (with respect to the molar 

amount of primary amines) was then added to the vial.  The solution was stirred for 24 h in the 

dark, after which solvent was removed in vacuo.  Dendrimers were dissolved in water, dialyzed 

against water (1–3 d), and then lyophilized.  The procedure for alkyl chain modification described 

in Section 2.2.2 was performed in the dark to modify the fluorescently-labeled G1 – G4 PAMAM 

with butyl and hexyl moieties. 

The visualization of RITC-tagged dendrimers penetrating into S. aureus biofilms was 

adapted from a previously reported assay.39  S. aureus was cultured in TSB to a concentration of 

108 cfu/mL, and 3 mL of the resulting bacteria suspension in TSB was added to a collagen-coated 

glass bottom confocal dish.  The bacteria were then incubated for 48 h at 37 °C with no agitation.  

After 2 d biofilm growth, the remaining TSB solution was removed, and the biofilms were washed 

with 1 mL sterile water and then kept in 1.5 mL PBS until exposure.  Solutions of RITC-labeled 

dendrimers (100 µg/mL) in PBS (1.5 mL) were added to the biofilm solutions to achieve a final 

concentration of 50 µg/mL.  A Zeiss 510 Meta inverted laser scanning confocal microscope with 

a 543 nm HeNe excitation laser (1.0 mW, 25.0% intensity) and a BP 560 – 615 nm filter was used 

to obtain fluorescence images of the RITC-modified dendrimers.  Z-stack fluorescence images 

were collected in 2 µm slices using an N.A. 1.2 C-apochromat water immersion lens with a 40× 

objective.  Images were collected every 10 min to temporally monitor dendrimer penetration into 

the biofilms. 

4.2.3 Confocal microscopy for detection of intracellular NO and cell death 

P. aeruginosa and S. aureus biofilms were grown on glass substrates (Biosurface 

Technologies) in the CDC bioreactor as described above.  P. aeruginosa and S. aureus biofilms 

were exposed to NO-releasing G1 butyl or G1 hexyl dendrimers (100 µg/mL) in PBS containing 
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10 µM DAF-2 DA and 30 µM PI for 1 – 2 h.  S. aureus biofilms were also exposed to NO-releasing 

G1 hexyl or G2 hexyl dendrimers (250 µg/mL) in PBS containing 10 µM DAF-2 DA and 30 µM 

PI for 2 – 3 h.  Before imaging, the substrates were dipped in PBS to remove excess dye and 

loosely adhered cells.  A Zeiss 510 Meta inverted laser scanning confocal microscope with a 488 

nm Ar excitation laser (30.0 mW, 2.0% intensity) and a BP 505 – 530 nm filter was used to obtain 

DAF-2 (green) fluorescence images.  A 543 nm HeNe exciation laser (1.0 mW, 25.0% intensity) 

with a BP 560 – 615 nm filter was used to obtain PI (red) fluorescence images.  Z-stack 

fluorescence images were collected in 5 µm slices using a Zeiss 1.2 C-apochromat lens with a 20× 

objective. 

4.2.4 In vitro cytotoxicity 

L929 mouse fibroblasts were grown in DMEM supplemented with 10 vol% FBS and 1 

wt% PS and incubated in 5 vol% CO2 under humidified conditions at 37 °C.  After reaching 80% 

confluency, the cells were trypsinized, seeded onto tissue culture-treated polystyrene 96-well 

plates at a density of 2 x 104 cells/mL, and incubated at 37 °C for 72 h.  The supernatant was then 

aspirated and replaced with 200 µL of fresh growth medium and 50 µL of varying concentrations 

of dendrimer in PBS.  Dimethyl sulfoxide (10%) and 50 µL PBS were used as positive and negative 

controls, respectively.  After 24 h incubation at 37 °C, the supernatant was aspirated and 120 µL 

of a mixture of DMEM/MTS/PMS (105/20/1, v/v/v) was added to each well.  After 1.5 h 

incubation at 37 °C, the absorbance of the colored solutions was quantified at 490 nm using a 

Thermoscientific Multiskan EX plate reader (Waltham, MA).  The mixture of DMEM/MTS/PMS 

and untreated cells were used as a blank and control, respectively.  Results were expressed as 

percentage of relative cell viability as follows: 

                    % Cell Viability = [(Abs490 – Absblank)/(Abscontrol – Absblank)] x 100%                Eq. 4.1 
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A killing curve was constructed for the single- and dual-action alkyl chain-modified dendrimers 

for each generation by plotting % cell viability vs dendrimer concentration.  IC50 values were 

determined for each curve, corresponding to the dendrimer concentration that resulted in a 50% 

reduction in cell viability. 

To assess the toxicity of single- and dual-action dendrimers in tandem with vancomycin, 

pre-measured samples of dendrimer and vancomycin were added to separate 1 dram glass vials.  

Each sample was dissolved separately in 100 µL PBS.  After aspirating the supernatant, the wells 

were filled with 200 µL of fresh growth medium, 25 µL of dendrimer sample, and 25 µL of 

vancomycin.  The cells were incubated for 24 h at 37 °C, and cell viability was determined as 

described above using Equation 4.1. 

4.3 Results and Discussion 

4.3.1 Anti-biofilm efficacy of alkyl chain-modified PAMAM dendrimers  

Although evaluation of antibacterial action against planktonic bacteria represents a viable 

screening method, the ability to eradicate pathogenic biofilms is more relevant for assessing the 

clinical utility of novel antibacterial agents.  P. aeruginosa, S. aureus, and MRSA biofilms grown 

on medical-grade silicone rubber substrates in a CDC bioreactor were exposed to varying 

concentrations of single- and dual-action dendrimer biocides in PBS (pH 7.4) to determine the 

minimum dendrimer concentration required to eradicate biofilms over 24 h (MBEC24h).  Of note, 

untreated biofilms resulted in average bacterial viabilities of 3 x 109, 7 x 107, and 2 x 107 cfu/mL 

for P. aeruginosa, S. aureus, and MRSA biofilms, respectively.  As the inherent detection limit of 

the plate counting method is 2.5 x 103 cfu/mL,35 total biofilm killing corresponded to 6- and 4-log 

reductions in bacterial viability against P. aeruginosa and S. aureus biofilms, respectively.  
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Analogous to planktonic studies, nearly all of the dendrimer biocides were more effective 

against P. aeruginosa than S. aureus (including MRSA) biofilms, with only the longer alkyl chains 

exhibiting equivalent action regardless of bacterial strain (Table 4.1).  The increased efficacy of 

both NO and short alkyl chain modifications against P. aeruginosa planktonic cultures has 

previously been attributed to both the thicker peptidoglycan layer present in S. aureus bacteria 

inhibiting NO diffusion and membrane disruption and the cytoprotective defenses exhibited by S. 

aureus against NO’s bactericidal activity.38, 40  However, the large disparity between the anti-

biofilm action of the butyl-modified dendrimers against Gram-negative and Gram-positive 

biofilms suggests differences in the biofilm architecture may further contribute to the increased 

NO tolerance of S. aureus biofilms over P. aeruginosa.  To elucidate the mechanism of dendrimer 

action against these biofilms, DAF-2 DA and PI fluorescent probes were utilized to visualize 

intracellular NO and cell membrane damage, respectively, via confocal microscopy.  After only 2 

h, G1 hexyl/NO dendrimers initiated substantial membrane damage to P. aeruginosa biofilms, 

while almost no intracellular NO or compromised membranes were observed for S. aureus 

biofilms (Figure 4.1).  The inability of G1 hexyl/NO dendrimers to cause damage to the S. aureus 

biofilms during a similar exposure to P. aeruginosa biofilms supports the hypothesis that 

differences in the biofilm architecture between these two bacterial strains affect the efficiency of 

dendrimer diffusion into the biofilm.  Of note, S. aureus biofilms produce copious amounts of 

extracellular proteins, DNA, and polysaccharides in their exopolysaccharide matrix,41 which may 

result in slower diffusion of dendrimer biocides into the biofilm.  Specifically, polycationic 

exopolysaccharides characteristically present in S. aureus biofilms may also electrostatically repel 

the cationic dendrimers, inhibiting biofilm penetrations.42  Further, P. aeruginosa and S. aureus 

biofilms exhibit distinct planktonic dispersal mechanisms, likely influencing their susceptibility to 
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antibacterial agents.  For example, several forms of P. aeruginosa biofilms demonstrate swarming 

dispersal, in which the outer wall of the biofilm consists of stationary bacteria exhibiting a biofilm 

phenotype while bacteria deeper within the biofilm remain planktonic cells, making them more 

vulnerable to the action of antibacterial agents.41  In contrast, S. aureus biofilms employ a clumping 

dispersal mechanism, shedding aggregates of bacteria from the biofilms instead of single cells.  

These smaller biofilm aggregates retain their exopolysaccharide matrix, and thus exhibit similar 

resistance to antibacterial agents as the parent biofilms.41  A combination of these architectural 

factors most likely contributes to the increased activity of the dendrimer biocides against P. 

aeruginosa biofilms over S. aureus. 

The hexyl-modified dendrimers exhibited superior anti-biofilm activity against P. aeruginosa 

biofilms regardless of dendrimer generation.  Neither the size of the dendrimer nor the functional 

group density affected hexyl chain-induced membrane damage or cell death against P. aeruginosa 

biofilms.  The hexyl-modified dendrimers also did not exhibit an improvement in anti-biofilm 

efficacy with the addition of NO release, suggesting that significant membrane damage initiated 

by the hexyl chains precludes the buildup of intracellular NO to bactericidal concentrations.38  In 

contrast, the butyl-modified dendrimers demonstrated greater anti-biofilm action with both 

increasing generation and NO-release capabilities, indicating the greater functional group density 

afforded by the higher generations improves the biocidal action of these shorter butyl chains. 

 The addition of NO release enhanced the anti-biofilm capabilities of all of the butyl-

modified dendrimers against P. aeruginosa biofilms.  The improved anti-biofilm efficacy of the 

dual-action butyl-modified dendrimers suggests the lack of membrane damage at lower 

concentrations (i.e., below the biocidal concentrations for single-action butyl-modified 

dendrimers) allows for the buildup of intracellular NO to bactericidal concentrations and NO- 
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Table 4.1 Minimum biofilm eradication concentrations (MBEC24h) for single- and dual-action 

alkyl chain-modified dendrimers against P. aeruginosa, S. aureus, and MRSA biofilms.a  

 
P. aeruginosa 

Biofilms 

S. aureus 

Biofilms 

MRSA 

Biofilms 

 
MBEC24h 

(µg/mL) 

MBEC24h 

(µg/mL) 

MBEC24h 

(µg/mL) 

Vancomycin  2000 5000 

G1 butyl 8000 >30,000 >30,000 

G1 butyl/NO 2000 10,000 20,000 

G1 hexyl 100 1000 2000 

G1 hexyl/NO 100 1000 1000 

G1 octyl 50 100 200 

G1 octyl/NO 50 100 200 

G1 dodecyl 100 100 200 

G1 dodecyl/NO 100 100 200 

G2 butyl 6000 >30,000 >30,000 

G2 butyl/NO 2000 5000 20,000 

G2 hexyl 150 4000 >10,000 

G2 hexyl/NO 150 2000 >10,000 

G3 butyl 2000 >30,000 >30,000 

G3 butyl/NO 1000 5000 20,000 

G3 hexyl 200 100 100 

G3 hexyl/NO 100 100 100 

G4 butyl 2000 >30,000 >30,000 

G4 butyl/NO 1000 20,000 20,000 

G4 hexyl 200 100 100 

G4 hexyl/NO 200 100 100 
aEach parameter was analyzed with multiple replicates (n ≥ 3). 
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Figure 4.1.  Confocal microscopy images of (A) P. aeruginosa and (B) S. aureus biofilms 

exposed to 100 µg/mL G1 hexyl/NO dendrimers for 2 h.  DAF-2 green fluorescence designates 

the presence of intracellular NO, while PI red fluorescence indicates compromised membranes.  

Threshold reversed for clarity.  
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mediated killing.  Confocal microscopy was used confirm this hypothesis by visualizing 

the buildup of intracellular NO and cell membrane damage (Figure 4.2).  A substantial amount of 

intracellular NO was noted after only 1 h upon exposure of P. aeruginosa biofilms to G1 butyl/NO.  

After 2 h, the bacteria membranes appear extensively compromised, indicating substantial cell 

death.  At this point, intracellular NO is no longer observed due to diffusion of DAF-2 out of the 

fully compromised membranes.13  Upon exposure to G1 hexyl/NO dendrimers, however, P. 

aeruginosa biofilms exhibited considerable membrane damage at 1 h, likely the result of the 

intercalation of the hexyl chains and not the bactericidal action of NO. 

Similar to G1 hexyl, octyl- and dodecyl-modified G1 dendrimers proved bactericidal against P. 

aeruginosa biofilms.  While G1 octyl dendrimers were slightly more effective at killing P. 

aeruginosa biofilms (MBEC24h = 50 µg/mL), the dodecyl-modified dendrimers exhibited similar 

efficacy as the hexyl modifications (MBEC24h = 100 µg/mL).  The decrease in anti-biofilm action 

observed for the dodecyl-modified dendrimers corroborates previous reports where hydrophobic 

decene-modified dendrimers were slightly less effective at eradicating P. aeruginosa biofilms than 

amphiphilic dendrimers, which was attributed to the increased hydrophobicity of the longer alkyl 

chains reducing efficient penetration into the biofilm exopolysaccharide matrix.33, 43  The lessened 

anti-biofilm action as a function of hydrophobicity was only apparent against P. aeruginosa 

biofilms, as both octyl- and dodecyl-modified dendrimers exhibited similar action against S. 

aureus (MBEC24h = 100 µg/mL).  The addition of NO release did not improve the anti-biofilm 

action of the octyl and dodecyl modifications against either bacterial strain, likely due to the 

increased membrane damage initiated by the longer alkyl chains precluding the buildup of 

intracellular NO. 
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Figure 4.2.  Confocal microscopy images of P. aeruginosa biofilms exposed to 100 µg/mL G1 

butyl/NO and G1 hexyl/NO dendrimers for (A) 1 h and (B) 2 h.  DAF-2 green fluorescence 

designates the presence of intracellular NO, while PI red fluorescence indicates compromised 

membranes.  Threshold reversed for clarity. 
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Figure 4.3.  Confocal microscopy images of S. aureus biofilms exposed to 50 µg/mL RITC-tagged 

(A) G1 butyl, (B) G2 butyl, (C) G4 butyl, (D) G1 hexyl, (E) G2 hexyl, and (F) G4 hexyl dendrimers 

for 1 h.  Threshold reversed for clarity. 
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The hexyl-modified dendrimers were more effective against S. aureus biofilms than the 

butyl modifications regardless of generation (Table 4.1), exhibiting at least an order of magnitude.  

Indeed, the butyl-modified dendrimers proved incapable of eradicating S. aureus biofilms at 

concentrations up to 30 mg/mL.  To elucidate why the hexyl-modified dendrimers exhibited a 

dramatic enhancement in anti-biofilm action over their butyl counterparts, confocal microscopy 

was used to visualize the extent to which RITC-tagged butyl- and hexyl-modified dendrimers 

associated with and penetrated into S. aureus biofilms.  As expected, both G1 hexyl (Figure 4.3 

D) and G4 hexyl (Figure 4.3 F) dendrimers exhibited extensive biofilm penetration relative to 

either G1 butyl (Figure 4.3 A) or G4 butyl (Figure 4.3 C) dendrimers.  These results indicate at 

least some of the increased anti-biofilm action of the hexyl modifications is due to their ability to 

infiltrate deeper into the biofilm at a faster rate than the butyl-modified dendrimers, in addition to 

hexyl chain-initiated membrane destruction. 

Nitric oxide release greatly improved the biocidal action of the butyl-modified dendrimers 

against S. aureus biofilms.  Increasing the dendrimer generation from G1 to G2 or G3 doubled the 

anti-biofilm action of the butyl system, with an MBEC24h value of 5 mg/mL for G2 and G3 

butyl/NO dendrimers versus 10 mg/mL for G1 butyl/NO.  The enhanced biofilm eradication is 

attributed to the greater functional group density of these larger scaffolds, facilitating more 

membrane disruption and biofilm-dendrimer association than the smaller G1 system.  However, 

the advantages of increased functional group density were mitigated for the G4 butyl/NO 

dendrimers, which demonstrated less anti-biofilm action than any of the dual-action butyl-

modified dendrimers against S. aureus biofilms (MBEC24h = 20 mg/mL).  While initially surprising 

as the G4 butyl/NO scaffold was effective against P. aeruginosa biofilms, the larger size of the 

dendrimers may limit diffusion into the S. aureus biofilms.  Confocal microscopy visualization of 
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biofilm penetration for RITC-tagged G1 butyl, G2 butyl, and G4 butyl dendrimers confirmed this 

hypothesis (Figure 4.3 A-C).  The G2 butyl dendrimers infiltrated the biofilm to a greater extent 

after 1 h, while G1 butyl dendrimers exhibited little dispersion, remaining mostly associated with 

the outermost region of the biofilm.  As such, the biofilm-penetrating G2 butyl scaffold allows for 

both cell membrane damage and internal NO release, resulting in more efficient biofilm 

eradication at lower dendrimer concentrations.  Alternatively, less association with the biofilm and 

decreased biofilm penetration was observed with the G4 butyl dendrimer system.  The 

accumulation of G4 butyl dendrimers at the biofilm surface (Figure 4.3 C) confirms the inability 

of this system to effectively breach the exopolysaccharide matrix. 

While the hexyl-modified dendrimers were more effective at eradicating S. aureus 

biofilms, the overall anti-biofilm action proved dependent on dendrimer generation.  As expected 

for highly antibacterial scaffolds, NO release provided little additional benefits on the anti-biofilm 

action of nearly all the hexyl modifications.  While G1 hexyl and G1 hexyl/NO dendrimers 

exhibited moderate anti-biofilm efficacy (MBEC24h = 1 mg/mL), both single- and dual-action G3 

and G4 hexyl dendrimers were appreciably more bactericidal and eradicated S. aureus biofilms at 

concentrations an order of magnitude lower (MBEC24h = 100 µg/mL).  The enhanced biofilm 

eradication capabilities are attributed to the increased functional group density of the G3 and G4 

scaffolds leading to greater membrane intercalation and biofilm penetration (Figure 4.3 F).  Of 

note, confocal microscopy further reveals the size of the G4 scaffold no longer inhibits its 

penetration into the biofilm when modified with hexyl alkyl chains, likely due to the increased 

hydrophobicity of the hexyl chains enabling improved association with and disruption of the 

exopolysaccharide matrix and bacterial cell membranes. 
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Single-action G2 hexyl dendrimers required a concentration four times greater than G1 hexyl for 

biofilm eradication (MBEC24h = 4 and 1 mg/mL, respectively), making it the least effective hexyl-

modified scaffold for biofilm eradication.  Confocal microscopy using RITC-tagged dendrimers 

revealed comparable biofilm penetration after 1 h between the G1 and G2 hexyl scaffolds (Figure 

4.3 D-E).  Thus, the reduced anti-biofilm activity is more likely the result of poor intercalation or 

membrane damage by the hexyl chains rather than hindered biofilm penetration of the scaffold.  

Further, NO release increased the antibacterial action of the G2 hexyl scaffold, supporting the 

hypothesis that the membrane damage caused by the hexyl chains does not prevent the buildup of 

intracellular NO.  As shown in Figure 4.4 A, biofilms exposed to G1 hexyl/NO dendrimers exhibit 

compromised cell membranes after 3 h with almost no intracellular NO present.  In contrast, 

considerable intracellular NO and negligible membrane damage were noted for biofilms exposed 

to G2 hexyl/NO dendrimers (Figure 4.4 B), verifying decreased membrane damage as the cause 

of reduced anti-biofilm action.  Factors that may be contributing to the decreased biocidal action 

of the G2 hexyl dendrimers include vesicle formation and backfolding of pendant functional 

groups towards the interior of the scaffold, reducing the exterior functional group density.38, 44-46 

Both single- and dual-action dendrimers exhibited similar bactericidal trends against 

MRSA biofilms, albeit mostly at higher bactericidal concentrations than for non-resistant S. 

aureus.  While butyl-modified dendrimers proved ineffective up to 30 mg/mL, the addition of NO-

release capabilities only moderately improved the anti-biofilm action of the butyl systems.  

Contrary to the results observed for S. aureus biofilms a generation dependence was not observed 

for the dual-action scaffolds, with all of the butyl/NO dendrimers eradicating MRSA biofilms at 

20 mg/mL.  The similar anti-biofilm action across all generations for the dual-action butyl 

modifications suggests that neither increased size nor functional group density influences the  
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Figure 4.4.  Confocal microscopy images of S. aureus biofilms exposed to 250 µg/mL (A) G1 

hexyl/NO and (B) G2 hexyl/NO dendrimers for 3 h.  DAF-2 green fluorescence designates the 

presence of intracellular NO, while PI red fluorescence indicates compromised membranes.  

Threshold reversed for clarity. 
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biocidal action of the dendrimers against MRSA biofilms.  Rather, a NO dose of ~20 µmol/mL is 

necessary for MRSA biofilm eradication in the absence of membrane damage. 

The generation dependence of the hexyl-modified dendrimers followed the same general 

trend as observed for S. aureus biofilms, with G3 and G4 hexyl dendrimers exhibiting greater 

efficacy against MRSA biofilms than either the G1 or G2 hexyl systems.  The concentrations of 

single- and dual-action G3 and G4 hexyl were identical for eradicating both MRSA and S. aureus 

biofilms (MBEC24h = 100 µg/mL).  Although G1 hexyl dendrimers were less effective against 

MRSA versus S. aureus (MBEC24h = 2 and 1 mg/mL, respectively), the addition of NO release 

increased their anti-biofilm action to similar levels (MBEC24h = 1 mg/mL).  G2 hexyl and G2 

hexyl/NO again represented the least effective anti-biofilm systems, with both being incapable of 

eradicating MRSA biofilms at concentrations up to 10 mg/mL.  Finally, the anti-biofilm action of 

the octyl- and dodecyl-modified dendrimers was reduced almost two-fold against MRSA biofilms 

from S. aureus (MBEC24h = 200 µg/mL and 100 µg/mL, respectively).  These results suggest that 

biofilms comprised of antibiotic-resistant bacteria decrease the anti-biofilm action of all but the 

most effective dendrimer biocides. 

As biofilms can often require therapeutic doses 3–4 orders of magnitude greater than those 

required to eradicate planktonic bacteria,3 we next compared the biofilm eradication 

concentrations for each strain to their corresponding planktonic bactericidal doses.  Against P. 

aeruginosa biofilms, all of the single- and dual-action G1 dendrimers only exhibited a 2–4-fold 

increase in therapeutic dose from planktonic bacteria.  A more substantial increase was observed 

for the higher generations, ranging from a 4-fold increase for G3 hexyl/NO to 240-fold for single-

action G2 butyl dendrimers.  The G2 butyl/NO dendrimers represented the largest gap in P. 

aeruginosa planktonic and biofilm eradication for the NO-releasing dendrimers with a 40-fold 
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concentration difference.  Similarly, the NO-releasing dendrimers exhibited a 2–40-fold increase 

in concentration against S. aureus biofilms and a 1–100-fold increase against MRSA biofilms.  

Alternatively, treatment of Gram-positive biofilms with vancomycin resulted in 80- and 400-fold 

increases in therapeutic dose over planktonic bacteria for S. aureus and MRSA, respectively, 

indicating another benefit of using NO as an anti-biofilm agent over traditional antibiotics. 

4.3.2 In vitro cytotoxicity  

Regardless of effective biocidal action, the utility of new antibacterial agents is ultimately 

dictated by their toxicity to mammalian cells.  Killing curves were constructed for the single- and 

dual-action alkyl chain-modified dendrimers for each generation by plotting % cell viability vs 

dendrimer concentration, and the concentration corresponding to a 50% reduction in L929 cell 

viability compared to untreated controls represented the inhibitory concentration at 50% viability 

(IC50). Toxicity was assessed using a therapeutic index (TI) by comparing the IC50 against L929 

mouse fibroblasts to the biofilm eradication concentrations for each dendrimer system, allowing 

the evaluation of the clinical utility for each biocide.  A higher TI index indicates a better toxicity 

ratio (i.e., greater bactericidal action with minimal toxicity to mammalian cells), while a TI below 

1 signifies extreme toxicity at biocidal concentrations. 

As expected, G1 octyl and dodecyl dendrimers exhibited significant toxicity (IC50 = 75 and 

40 µg/mL, respectively) due to the increased membrane intercalation and cell damage of the long 

alkyl chains (Table 4.2).  Similarly, hexyl-modified dendrimers were substantially more toxic than 

the butyl modifications, most likely due to the increased membrane disruption caused by the longer 

hexyl chains.  The toxicity of the hexyl-modified dendrimers increased with size (higher 

generations), as G4 hexyl dendrimers exhibited greater toxicity than the G1 scaffold (IC50 = 75 

and 1150 µg/mL, respectively).  Within each generation, however, the addition of NO release had 
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very little effect on the toxicity of the hexyl modifications.  The toxicity of the butyl-modified 

dendrimers was also dependent on dendrimer generation, with the G3 and G4 scaffolds (IC50 ~3 

mg/mL) exhibiting almost twice the toxicity of G1 or G2 butyl (IC50 values of ~8 and ~6 mg/mL, 

respectively).  Despite the generation dependence of the single-action dendrimers, dual-action 

butyl modifications resulted in similar toxicity regardless of dendrimer size (IC50 ~3 mg/mL), 

suggesting an NO dose of ~3 µmol/mL is relatively toxic to mouse fibroblast cells irrespective of 

functional group density. 

The overall therapeutic utility of the dendrimers as broad-spectrum antibacterial agents was 

determined by comparing the IC50 values against L929 cells for each system to their biofilm 

eradication concentrations and determining their TI.  Nearly all of the dendrimer biocides were 

capable of eradicating Gram-negative P. aeruginosa biofilms at non-toxic concentrations (i.e., TI 

> 1.00), with the exception of G1 butyl, G1 dodecyl, G1 dodecyl/NO, G4 hexyl, and G4 hexyl/NO 

(Table 4.3).  The greatest therapeutic utility was demonstrated by the G1 and G2 hexyl-modified 

dendrimers, which demonstrated maximal anti-biofilm action at concentrations well below their 

median inhibitory concentration (TI ≥ 7.50).  In contrast, the biofilm eradication concentrations 

for most of the single- and dual-action dendrimers against Gram-positive biofilms were greater 

than their corresponding IC50 values (TI < 1.00), limiting their clinical utility as broad-spectrum 

antibacterial agents.  The only scaffold capable of eradicating both Gram-negative and Gram-

positive biofilms at non-toxic concentrations was the G3 hexyl dendrimer system, with both single-

action and NO-releasing dendrimers eradicating biofilms at concentrations well below the IC50 

values (G3 hexyl TI ≥ 2.25; G3 hexyl/NO TI = 4.50).  These data suggest that the G3 scaffold, 

combined with the increased biocidal action of the hexyl modification, provides an optimal balance 

between dendrimer size and functional group density to maximize broad-spectrum antibacterial 
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Table 4.2 Inhibitory concentrations at 50% cell viability (IC50) for single- and dual-action alkyl 

chain-modified dendrimers against L929 mouse fibroblast cells.a  

 
IC50 

(µg/mL) 

G1 butyl 7700 

G1 butyl/NO 3000 

G1 hexyl 1150 

G1 hexyl/NO 750 

G1 octyl 75 

G1 octyl/NO 75 

G1 dodecyl 40 

G1 dodecyl/NO 40 

G2 butyl 6000 

G2 butyl/NO 2400 

G2 hexyl 1150 

G2 hexyl/NO 1150 

G3 butyl 2900 

G3 butyl/NO 2700 

G3 hexyl 450 

G3 hexyl/NO 450 

G4 butyl 3100 

G4 butyl/NO 3800 

G4 hexyl 75 

G4 hexyl/NO 150 
aEach parameter was analyzed with multiple replicates (n ≥ 3). 
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Table 4.3 Calculated therapeutic index (TI) for each dendrimer biocide against P. aeruginosa, S. 

aureus, and MRSA biofilms. 

 P. aeruginosa Biofilms S. aureus Biofilms MRSA Biofilms 

G1 butyl 0.96 <0.26 <0.26 

G1 butyl/NO 1.50 0.30 0.15 

G1 hexyl 11.50 1.15 0.58 

G1 hexyl/NO 7.50 0.75 0.75 

G1 octyl 1.50 0.75 0.38 

G1 octyl/NO 1.50 0.75 0.38 

G1 dodecyl 0.40 0.40 0.20 

G1 dodecyl/NO 0.40 0.40 0.20 

G2 butyl 1.00 <0.26 <0.26 

G2 butyl/NO 1.20 0.48 0.12 

G2 hexyl 7.67 0.29 <0.12 

G2 hexyl/NO 7.67 0.58 <0.12 

G3 butyl 1.45 <0.26 <0.26 

G3 butyl/NO 2.70 0.54 0.14 

G3 hexyl 2.25 4.50 4.50 

G3 hexyl/NO 4.50 4.50 4.50 

G4 butyl 1.55 <0.26 <0.26 

G4 butyl/NO 3.80 0.19 0.19 

G4 hexyl 0.38 0.75 0.75 

G4 hexyl/NO 0.75 1.50 1.50 
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action while minimizing toxicity to mammalian cells.  As such, both G3 hexyl and G3 hexyl/NO 

represent the most viable options for developing broad-spectrum anti-biofilm agents against the 

bacterial strains investigated herein. 

4.3.3 Synergy of dual-action dendrimers with vancomycin 

Another important aspect in the evaluation of combination therapies is the ability to 

demonstrate additive or synergistic bactericidal action with established therapeutics, namely 

traditional antibiotics.  The evaluation of potential synergy not only ensures that the combination 

of new and conventional therapies exhibits increased bactericidal activity, but also that the 

combination is not antagonistic, reducing the antibacterial action of the individual biocides.7  

Decreasing the required therapeutic concentration with increased biocidal action should mitigate 

toxic side effects to mammalian cells.  We thus sought to evaluate any possible synergistic effects 

between NO-releasing dendrimers and vancomycin in the eradication of both S. aureus and MRSA 

biofilms.   

Dual-action G3 butyl/NO and G3 hexyl/NO dendrimers were selected as test agents to 

evaluate the combined efficacy of NO release with vancomycin.  Single-action (i.e., non-NO-

releasing) G3 hexyl dendrimers were used as a control as they exhibited similar anti-biofilm 

efficacy as their NO-releasing counterparts,47 allowing us to evaluate any additional benefits of 

NO release.  The Gram-positive biofilms were exposed to single- or dual-action dendrimers 

concurrently with vancomycin using an adapted checkerboard assay, starting with concentrations 

at half the MBEC24h values for the dendrimer and vancomycin, and then subsequently halving 

them.36  Any resulting synergistic effects were determined by calculating the fractional bactericidal 

concentration index (FBC24h) using equation 4.2, where MBEC24hA and MBEC24hB represent the 

individual biofilm eradication concentrations for agents A and B, respectively, and MBEC24hAB 
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and MBEC24hBA are the concentrations of agents A and B constituting the most effective 

bactericidal combination as determined by the adapted checkerboard assay. 

                                    FBC24h =
MBEC24hAB

MBEC24hA
+

MBEC24hBA

MBEC24hB
        Eq. 4.2 

For each strain, FBC24h values between 0.50 and 1.00 indicate greater-than-additive (or moderately 

synergistic) bactericidal action, while an FBC24h ≤ 0.50 is defined as synergistic and FBC24h ≤ 0.25 

is highly synergistic.36, 48-50   

While G3 butyl/NO dendrimers were highly synergistic with vancomycin against S. aureus 

biofilms (FBC24h = 0.18), only moderate synergy with vancomycin was observed for MRSA 

biofilms (FBC24h = 0.63), most likely due to the inability of the G3 butyl scaffold to effectively 

penetrate MRSA biofilms.  Indeed, G3 butyl/NO dendrimers required four times the 

concentrations to eradicate MRSA over S. aureus biofilms.47  Combining G3 butyl/NO dendrimers 

with vancomycin resulted in an 8-fold decrease in dendrimer concentration (20 to 2.5 mg/mL) for 

the eradication of MRSA biofilms, indicating a marked improvement over G3 butyl/NO 

dendrimers alone.  Both G3 hexyl and G3 hexyl/NO demonstrated synergy (FBC24h = 0.50) with 

vancomycin against S. aureus biofilms, though the addition of NO release had no effect on the 

combined efficacy of the dual-action dendrimers (Table 4.4).  Alternatively, only G3 hexyl/NO 

dendrimers resulted in synergy with vancomycin against MRSA biofilms (FBC24h value of 0.50 

compared to 0.75 for G3 hexyl dendrimers), suggesting that NO improves the antibacterial action 

of the hexyl-modified dendrimer scaffold in concert with vancomycin against MRSA biofilms.   

To establish the utility of combining NO-releasing dendrimers and traditional antibiotics 

as anti-biofilm agents, the toxicity of the antibacterial combinations was evaluated against L929 

mouse fibroblast cells and compared to that of the individual biocides.  All of the combined 

dendrimer and vancomycin doses required to eradicate S. aureus biofilms demonstrated negligible 
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Table 4.4 Combined biofilm eradication concentrations and calculated fractional bactericidal 

concentration index (FBC24h) against S. aureus and MRSA biofilms.a 

S. aureus 

Biofilms 

Dendrimer 

(µg/mL) 

Vancomycin 

(µg/mL) 
FBC24h 

G3 butyl/NO 250 250 0.18 

G3 hexyl 25 500 0.50 

G3 hexyl/NO 25 500 0.50 

MRSA   

Biofilms 

Dendrimer 

(µg/mL) 

Vancomycin 

(µg/mL) 
FBC24h 

G3 butyl/NO 2500 2500 0.63 

G3 hexyl 50 1250 0.75 

G3 hexyl/NO 25 1250 0.50 

  aEach parameter was analyzed with multiple replicates (n ≥ 3). 
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Figure 4.5.  Viability (%) of L929 mouse fibroblast cells following 24 h exposure to individual 

(solid) and combined (hashed) dendrimer and vancomycin biofilm eradication concentrations 

against (A) S. aureus and (B) MRSA biofilms. 
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toxicity (>95% viability) to fibroblast cells (Figure 4.5).  Although the combination of G3 hexyl 

and G3 hexyl/NO dendrimers with vancomycin only improved cell viability by 10–20%, the 

synergistic effects exhibited by G3 butyl/NO with vancomycin significantly reduced the toxicity 

of G3 butyl/NO dendrimers at therapeutic concentrations with an increase in cell viability from ~8 

to ~97%.  For the concentrations required to eradicate MRSA biofilms, both control and NO-

releasing G3 hexyl dendrimers exhibited insignificant toxicity in concert with vancomycin (~100% 

cell viability).  However, the combination of G3 butyl/NO and vancomycin required against 

MRSA biofilms still proved relatively toxic, only improving the cell viability of G3 butyl/NO 

dendrimers from ~6 to 30%.  Such toxicity is attributed to the larger concentrations of G3 butyl/NO 

required to eradicate MRSA biofilms (MBEC24h = 2.5 mg/mL G3 butyl/NO + 2.5 mg/mL 

vancomycin).   

4.4 Conclusions 

The utility of alkyl chain-modified PAMAM dendrimers as broad-spectrum anti-biofilm 

agents was assessed through the systematic evaluation of eradication efficiency as a function of 

dendrimer generation, alkyl chain length, and bacterial Gram class.  The anti-biofilm efficacy of 

alkyl chain-modified dendrimers was highly dependent on the biocide’s ability to penetrate into 

the biofilm and compromise cell membranes.  Hexyl-modified dendrimers were considerably more 

effective at biofilm eradication than the butyl systems, likely a result of greater membrane 

intercalation, cell membrane damage, and biofilm penetration.  While increased membrane 

damage precludes the buildup of intracellular NO to bactericidal concentrations for these 

modifications, the addition of NO release enhanced the anti-biofilm action of dendrimer biocides 

that did not adequately compromise cell membranes, indicating the utility of dual-action 

dendrimers as broad-spectrum antibacterial agents.  The G3 dendrimer scaffold represented the 
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ideal balance of dendrimer size and functional group density for optimal biofilm eradication due 

to its limited toxicity to mammalian cells, making these systems the most promising option for the 

design of broad-spectrum anti-biofilm agents.  Indeed, NO-releasing alkyl chain-modified G3 

dendrimers demonstrated moderate to high synergy with vancomycin in the eradication of Gram-

positive biofilms, indicating the possible clinical utility of these scaffolds. 
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CHAPTER 5: 

Nitric Oxide-Releasing Single-Component Electrospun Polyurethane Fibers 

5.1 Introduction 

Chronic wounds, including diabetic foot ulcers, pressure ulcers, and venous leg ulcers, pose 

a serious health risk, with successful treatment often hindered by inefficient eradication of 

opportunistic infectious pathogens such as Pseudomonas aeruginosa and Staphyloccocus aureus.1-

3  Characteristics of an ideal wound dressing thus include facile gaseous and fluid exchange, the 

absorption of excess wound exudates, and protection against infectious microorganisms.4  

Electrospun fibers are inherently porous and possess high effective surface areas, which protect 

the wound from bacterial infections and allow for increased water absorption capabilities, making 

them excellent alternatives to traditional wound dressings.4  Khil et al. demonstrated improved 

wound healing capabilities of electrospun polyurethane fibers over the commercially-available 

wound dressing Tegaderm (3M Health Care; St. Paul, Minnesota) in adult male guinea pigs.5  The 

electrospun dressings were found to increase the rate of epithelialization, as well as prevent both 

infectious microorganism permeation and fluid accumulation.  Electrospun fibers can also be 

modified to exhibit antibacterial action through the incorporation of therapeutic compounds into a 

blended, all-in-one dressing.4, 6, 7  Initial work in the development of antibacterial electrospun 

wound dressings has investigated the ability to achieve controlled release of antibiotics6-8 or silver 

ions9, 10 from electrospun fibers composed of a range of polymers (e.g., polyurethane, polylactic 

acid, gelatin).  However, the use of such antimicrobial agents continues to pose bacterial resistance 
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concerns that warrant the development of wound dressings capable of delivering antibacterial 

agents that are unlikely to foster resistance.  

Nitric oxide (NO) is a promising antibacterial agent for the treatment of chronic wounds as 

it exhibits broad-spectrum antibacterial activity.11  Further, NO has been shown to play a 

significant role in the wound healing process.12  Indeed, the application of exogenous gaseous NO 

was found to improve the healing of skin wounds in rats from the inflammatory to the reparation 

phase, leading to faster scar tissue remodeling with less inflammation.13  Further, the treatment of 

S. aureus-infected wounds with gaseous NO substantially improved wound healing over untreated 

infected wounds, with complete wound healing occurring nine days faster for the NO-treated 

wound.13  Unfortunately, the direct application of gaseous NO to a wound is not trivial, 

necessitating the development of alternative methods for NO delivery. 

In this regard, Weller et al. applied a NO-generating acidified nitrite cream to incision 

wounds two days after injury and found significant improvements in wound healing in both control 

(i.e., non-diabetic) and diabetic mice.14  Balkus and coworkers have developed zeolite-containing 

and acrylonitrile-based electrospun fibers capable of NO release, but did not evaluate the 

antibacterial activity or wound healing characteristics of these materials.15, 16  Wold et al. 

covalently modified polymers with thiol functionalities prior to electrospinning to yield S-

nitrosothiol-modified electrospun fibers with NO release characteristics dependent on the identity 

of the thiol precursor.17  The NO-releasing fibers were found to reduce Acinetobacter baumannii 

viability by 96% after 2 h.17  Similarly, Vogt et al. reported the design of a light-triggered NO-

releasing nanofibrous gelatin matrix using S-nitrosothiol NO donors that was capable of S. aureus 

growth inhibition.18 



155 
 

Our lab has developed macromolecular scaffolds capable of controllable NO storage and 

release, including silica nanoparticles and dendrimers.  Indeed, Koh et al. doped silica 

nanoparticles modified with either N-diazeniumdiolate or S-nitrosothiol NO donors into 

electrospun fibers as a function of polyurethane water uptake capabilities.19  The resulting NO-

releasing fibers exhibited average release durations of ~15 and ~300 h for N-diazeniumdiolate- 

and S-nitrosothiol-containing fibers, respectively.  The incorporation of dual-action dendrimers 

combining a contact-based biocide with NO release instead of the inert silica scaffold may improve 

the antibacterial properties of NO-releasing electrospun fibers.20-23  Herein, we describe the 

fabrication of single-component electrospun polyurethane fibers doped with dual-action 

poly(amidoamine) dendrimers and evaluation of their in vitro antibacterial action as a function of 

dendrimer modification. 

5.2 Materials and Methods 

Triethylamine (TEA), rhodamine B isothiocyanate (RITC), dimethyloctylamine, 

epichlorohydrin, phenazine methosulfate (PMS), fetal bovine serum (FBS), trypsin, 3-(4,5-

dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt 

(MTS), penicillin streptomycin (PS), and glutaraldehyde solution were purchased from Sigma-

Aldrich (St. Louis, MO).  Methyl acrylate, 1,2-epoxyhexane, 1,2-epoxyoctane, 1,2-

epoxydodecane, and ethylenediamine (EDA) were purchased from the Aldrich Chemical 

Company (Milwaukee, WI).  Sodium methoxide (5.4 M solution in methanol) was purchased from 

Acros Organics (Geel, Belgium). Cellulose ester dialysis membranes (500-1000 MWCO) were 

purchased from Spectrum Laboratories, Inc. (Rancho Dominguez, CA).  Tecoflex (SG-80A) 

polyurethane was a gift from Thermedics (Woburn, MA). Hydrothane (AL 25-80A) polyurethane 

was a gift from AdvanSource Biomaterials Corp. (Willmington, MA). Tecoplast (TP-470) 
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polyurethane was a gift from Lubrizol (Cleveland, OH).  Dispensing needles for electrospinning 

(JG22-1.0P) were obtained from Howard Electronic Instruments, Inc (El Dorado, KS).  Dulbecco's 

modified Eagle's medium (DMEM) and Dulbecco’s phosphate buffered saline (PBS) were 

obtained from Lonza Group (Basel, Switzerland).  Tryptic soy broth (TSB) and tryptic soy agar 

(TSA) were obtained from Becton, Dickinson and Company (Franklin Lakes, NJ).  Pseudomonas 

aeruginosa (P. aeruginosa; ATCC #19143) and Staphylococcus aureus (S.aureus; ATCC #29213) 

were obtained from American Type Tissue Culture Collection (Manassas, VA).  L929 mouse 

fibroblasts were obtained from the UNC Tissue Culture Facility (Chapel Hill, NC).  Nitrogen (N2), 

argon (Ar), carbon dioxide (CO2), and nitric oxide (NO) calibration (25.87 PPM, balance N2) gases 

were purchased from National Welders (Raleigh, NC).  Pure nitric oxide (NO) gas (99.5%) was 

purchased from Praxair (Sanford, NC).  Common laboratory salts and solvents were purchased 

from Fisher Scientific (Fair Lawn, NJ).  Distilled water was purified using a Millipore Milli-Q UV 

Gradient A-10 system (Bedford, MA), resulting in a total organic content of ≤6 ppb and a final 

resistivity of 18.2 mΩ·cm.  Unless noted otherwise, these and all other materials were analytical-

reagent grade and used as received without further purification. 

5.2.1 Synthesis of QA- and alkyl chain-modified PAMAM dendrimers 

Poly(amidoamine) (PAMAM) scaffolds were synthesized as described previously20, 24, 25 

by repeated alkylation/amidation steps using methyl acrylate and EDA from an EDA core.  G4 

PAMAM dendrimers were then modified with either hexyl, octyl, and dodecyl alkyl chains or 

octylQA moieties.  To form alkyl-modified dendrimers,22 G4 PAMAM (100 mg) was dissolved in 

either 2 mL (hexyl modifications) or 5 mL (octyl and dodecyl modifications) methanol, and one 

equivalent of triethylamine (e.g., with respect to the molar amount of primary amines) and 1 molar 

equivalent of epoxide (i.e., epoxyhexane, epoxyoctane, or epoxydodecane) were then added to the 
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vial.  The solution was stirred at room temperature for 3 d.  After reaction completion, excess 

epoxide was removed in vacuo.  To ensure the removal of any unreacted epoxide, the single-action 

dendrimers were re-dissolved in 5 mL methanol before being kept under vacuum overnight.  

Complete removal of the epoxide was verified via 1H NMR spectroscopy (Bruker 400 MHz 

spectrometer).   

Representative 1H NMR data of alkyl chain-modified G4 PAMAM included the following 

peaks.  G4 hexyl: 1H NMR (400 MHz, MeOD, δ) 2.28 (s, NCH2CH2C(O)NH), 1.34–1.20 (m, 

NHCH2CH(OH)(CH2)3CH3),  0.85–0.81 (t, NHCH2CH(OH)C(H2)3CH3).  G4 octyl: 1H NMR (400 

MHz, MeOD, δ) 2.29 (s, NCH2CH2C(O)NH), 1.35–1.23 (m, NHCH2CH(OH)(CH2)5CH3),  0.83–

0.80 (t, NHCH2CH(OH)C(H2)5CH3).  G4 dodecyl: 1H NMR (400 MHz, MeOD, δ) 2.27 (s, 

NCH2CH2C(O)NH), 1.34–1.20 (m, NHCH2CH(OH)(CH2)9CH3),  0.82–0.78 (t, 

NHCH2CH(OH)(CH2)9CH3).   

To form QA-modified dendrimers, quaternary ammonium epoxides (octylQA-epoxide) 

were synthesized as described previously.23, 26  Briefly, 0.04 mmol epichlorohydrin was reacted 

with 0.01 mmol N,N-dimethyloctylamine at room temperature overnight (~18 h).  The mixture 

was then added dropwise to cold ether while sonicating, and the solid/viscous liquid octylQA-

epoxide was collected via centrifugation (810×g, 5 min).  The supernatant was decanted, and the 

octylQA-epoxide was washed with 50 mL of cold ether and sonicated extensively.  This washing 

procedure was repeated three times before drying the product in vacuo.  A ring-opening reaction 

was then carried out between the octylQA-epoxide and the terminal primary amines of the 

PAMAM dendrimers.  G4 PAMAM (100 mg) was dissolved in 5 mL of methanol.  One equivalent 

of triethylamine (e.g., with respect to the molar amount of primary amines) and 2.5 molar 

equivalents of octylQA-epoxide were then added to the vial.  The solution was stirred at room 
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temperature for 4 d.  Solvent was then removed in vacuo.  The dendrimers were subsequently 

dissolved in water, followed by dialysis against water overnight and lyophilization. 

Representative 1H NMR data of QA-modified G4 PAMAM included the following peaks.  

G4 octylQA: 1H NMR (400 MHz, CD3OD, δ) 2.31 (s, NCH2CH2C(O)NH), 1.80 (s, 

CH2N
+(CH3)2CH2CH2(CH2)5CH3), 1.31–1.23 (m, CH2N

+(CH3)2CH2CH2(CH2)5CH3), 0.83 (t, 

CH2N
+(CH3)2CH2CH2(CH2)5CH3).   

 5.2.2 N-Diazeniumdiolation of QA- and alkyl chain-modified PAMAM dendrimers 

To form N-diazeniumdiolate NO donors on the modified dendrimer scaffolds, single-action 

G4 PAMAM (30 mg) were dissolved in 1 mL of varying ratios of anhydrous methanol (MeOH) 

and tetrahydrofuran (THF) depending on the modification as follows: 8:2 MeOH:THF (G4 hexyl) 

or 1:1 MeOH:THF (G4 octyl, G4 dodecyl, G4 octylQA).  The solutions were vortexed and then 

one molar equivalent (e.g., with respect to the molar amount of primary amines) of sodium 

methoxide was added. 

The dendrimer solutions were placed in a stainless steel reactor with continuous magnetic 

stirring and connected to an in-house NO reactor.  The vessel was flushed with Ar three times to a 

pressure of 7 bar, followed by three longer Ar purges (10 min) to remove trace oxygen from the 

solutions.  Following deoxygenation, the reactor was then pressurized to 10 bar with NO gas pre-

scrubbed with KOH.  The pressure was maintained at 10 bar for 4 d, after which the solutions were 

again purged with Ar three times at short durations followed by extended purges (3 × 10 min) to 

remove unreacted NO.  Solvent was removed in vacuo, and the resulting dual-action, NO-releasing 

dendrimers were dissolved in anhydrous methanol in a 1 dram glass vial, capped and parafilmed, 

and stored at -20 °C. 
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5.2.3 Fabrication of single-component electrospun polyurethane fibers 

All polyurethane solutions (Tecoplast, Tecoflex, and Hydrothane) used herein were 12 

wt% (120 mg/mL) in 3:1:1 THF:DMF:MeOH.  Polyurethane solutions containing control and NO-

releasing dendrimers (10 mg/mL; 1 wt%) were prepared by first dissolving the polyurethane in 

THF and DMF, followed by the addition of dendrimer solution in the remaining equivalent of 

methanol.  

Electrospun fibrous mats were fabricated using a custom electrospinning apparatus27 

consisting of a ES20P-20W High Voltage power supply (Gamma High Voltage Research, Ormond 

Beach, FL), a Kent Scientific Genie Plus syringe pump (Torrington, CT), and grounded steel 

collector plate covered in aluminum foil.  All fibers were fabricated using an applied voltage of 15 

kV, 15 cm tip-to-collector distance, and 20 µL/min flow rate.  For all Tecoflex and Hydrothane 

fibers, 1.0 mL of polyurethane solution was electrospun and collected on aluminum foil, while 2.0 

mL of solution was required to obtain similar masses for the Tecoplast fibers.  After collection, 

fibers were cut using a 1.27 cm-diameter hole-punch to yield individual samples with a resultant 

surface area of 1.267 cm2. 

5.2.4 Characterization of NO storage and release 

Real-time NO release in deoxygenated PBS (pH 7.4, 37 °C) was monitored using a Sievers 

NOA 280i chemiluminescence NO analyzer (NOA, Boulder, CO).  Prior to analysis, the NO 

analyzer was calibrated with air passed through a NO zero filter (0 ppm NO) and a 25.87 ppm NO 

standard gas (balance N2).  Fibrous mat coupons (surface area: 1.267 cm2) or 0.5 mg aliquots of 

N-diazeniumdiolate-functionalized PAMAM in methanol were added to 30 mL deoxygenated PBS 

to initiate NO release.  Nitrogen was flowed through the solution at a flow rate of 80 mL/min to 

carry the liberated NO to the analyzer.  Additional nitrogen flow was supplied to the flask to match 
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the collection rate of the instrument at 200 mL/min.  Nitric oxide analysis was terminated when 

NO levels decreased to below 1 pmol/cm2 for fibers (9.7 ppb) or 10 ppb NO/mg dendrimer.  Total 

amount of dendrimer incorporated per milligram of fiber were determined by measuring total NO 

release in 50 mM HCl at 37 °C. 

5.2.5 Characterization of electrospun polyurethane fibers 

Fiber diameter and morphology were assessed using either an environmental scanning 

electron microscope (ESEM; FEI Quanta 200 field emission gun, Hillsboro, OR) or a FEI Helios 

600 Nanolab Dual Beam System (Hillsboro, OR) without additional metal coating.  Fiber 

diameters were determined using NIH ImageJ software (Bethesda, MD) and were averaged for at 

least 150 measurements over three separate fiber samples.   

Water absorption of the electrospun fibrous mats was assessed by comparing weights of 

the dry and hydrated samples.  Dry electrospun fibers were weighed before soaking in Milli-Q 

water overnight at room temperature.  The hydrated samples were removed from water, and the 

excess surface water was removed by dabbing with a Kimwipe before weighing the samples again.  

Water absorption was calculated by the following equation, where WH is the weight of the hydrated 

sample and WD is the initial weight of the dry fibrous mat: 

                      Water Absorption (%) = [(WH – WD)/WD] x 100%              Eq. 5.1 

The porosity of electrospun fibrous mats was determined using the liquid intrusion 

method.28, 29  Fiber mats were weighed prior to immersion in 100% ethanol at room temperature 

overnight to allow diffusion of ethanol into the void volume.  After incubation, fibers were 

removed from ethanol, dabbed with a Kimwipe, and weighed again.  Porosity was calculated by 

dividing the volume of intruded ethanol (determined by the change in mass and the density of 
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ethanol, 0.789 g/mL) by the total volume after intrusion (volume of ethanol + volume of fibers, 

determined by initial fiber mass and polyurethane density, 1.1 g/mL). 

Quantitation of dendrimer delivery was performed using electrospun fibers doped with 

RITC-tagged G4 PAMAM dendrimers.  Fluorescently-labeled G4 PAMAM dendrimers were 

synthesized as described previously.21-23  Briefly, 100 mg G4 PAMAM were added to a vial 

containing one molar equivalent of RITC per mole dendrimer (3.8 mg) in 2 mL methanol.  One 

equivalent of triethylamine (with respect to the molar amount of primary amines) was then added 

to the vial.  The solution was stirred for 24 h in the dark, after which solvent was removed in vacuo.  

Dendrimers were dissolved in water, dialyzed against water (3 d), and then lyophilized.  The above 

procedures for dendrimer modification and fiber mat fabrication were performed in the dark to 

yield RITC-tagged electrospun fibrous mats.  Individual fiber mats were incubated in 500 µL PBS 

(pH 7.4, 37 °C) for 2 h, 1 d, and 7 d.  After incubation, 100 µL of each solution was transferred to 

a black 96-well plate in triplicate and fluorescence intensity was measured using a BMG PolarStar 

Omega fluorescence plate reader (Ortenberg, Germany).  Calibration standards were prepared at 

concentrations ranging from 0 – 100 µg/mL in triplicate.  Dendrimer delivery was reported as 

percent dendrimer leached based on the experimental amount of dendrimer per milligram of fiber 

(calculated from the total dendrimer incorporation determined by NO release in 50 mM HCl) and 

mass of the fiber mat sample.  Fluorescence images of single-component RITC-tagged fibers were 

obtained on a Zeiss 200M inverted microscope with an XBO 75 Xe arc lamp, single band filter set 

(Omega Optical), and cascade 1 K CCD camera (Photometrics) with Micromanager software using 

a 40× objective and 50 ms exposure time.  
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5.2.6 In vitro cytotoxicity 

L929 mouse fibroblasts were grown in DMEM supplemented with 10 vol% FBS and 1 

wt% PS and incubated in 5 vol% CO2 under humidified conditions at 37 °C.  After reaching 80% 

confluency, the cells were trypsinized, seeded onto tissue culture-treated polystyrene 24-well 

plates at a density of 105 cells/mL, and incubated at 37 °C for 72 h.  The supernatant was then 

aspirated and replaced with 1 mL of fresh growth medium and the electrospun fiber mats.  

Dimethyl sulfoxide (10%) and 50 µL PBS were used as positive and negative controls, 

respectively.  After incubation for 2 or 24 h at 37 °C, the supernatant was aspirated and 500 µL of 

a mixture of DMEM/MTS/PMS (105/20/1, v/v/v) was added to each well.  After 1.5 h incubation 

at 37 °C, 100 µL of the colored solution was transferred to a 96-well plate in triplicate and the 

absorbance was quantified at 490 nm using a Thermoscientific Multiskan EX plate reader 

(Waltham, MA).  The mixture of DMEM/MTS/PMS and untreated cells were used as a blank and 

control, respectively.  Results were expressed as percentage of relative cell viability as follows: 

                    % Cell Viability = [(Abs490 – Absblank)/(Abscontrol – Absblank)] x 100%             Eq. 5.2 

5.2.7 In vitro cell proliferation 

L929 mouse fibroblasts were grown in DMEM supplemented with 10 vol% FBS and 1 

wt% PS and incubated in 5 vol% CO2 under humidified conditions at 37 °C.  After reaching 80% 

confluency, the cells were trypsinized, seeded onto electrospun fiber mats in tissue culture-treated 

polystyrene 24-well plates at a density of 105 cells/mL.  After incubation at 37 °C for 24 h, fiber 

mats were dipped once in sterile water to remove non-adhered cells then transferred to a 15 mL 

falcon tube containing 500 µL of a mixture of DMEM/MTS/PMS (105/20/1, v/v/v).  The solutions 

were then sonicated for 5 min at 60% power (Elma Lab-Line 9331, Melrose Park, IL).  For wells 

containing positive (10% DMSO) and negative controls, the supernatant was aspirated and 
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replaced with 500 µL of a mixture of DMEM/MTS/PMS.  After 1.5 h incubation at 37 °C, 100 µL 

of the colored solution was transferred to a 96-well plate in triplicate and the absorbance was 

quantified at 490 nm using a Thermoscientific Multiskan EX plate reader (Waltham, MA).  The 

mixture of DMEM/MTS/PMS and untreated cells (i.e., cells seeded in a well without fibers) were 

used as a blank and control, respectively.  The viability of cells adhered to blank fibers was 

calculated using Equation 5.2 and normalized to 100%.  The viability of cells adhered to control 

and NO-releasing fibers was then reported as a percentage of the cells adhered to blank fibers. 

To prepare fibers for imaging, blank, control, and NO-releasing G4 octyl-doped Tecoflex 

fibrous mats were exposed to L929 mouse fibroblast cells as described above.  After 24 h 

incubation, fibers were dipped once in sterile water then fixed in 1 mL 2.5% glutaraldehyde in 

Milli-Q water for 45 min.  After fixation, fibers were rinsed in sterile water (3 × 10 min) before 

dehydration in solutions of increasing percent ethanol (25, 50, 75, 95, 100%).  Fibers were fully 

dehydrated with a Tousimis Semidri PVT-3 critical point dryer and coated with 5 nm gold using a 

Cressington 108 Auto Sputter Coater.  Images were obtained using a FEI Helios 600 Nanolab Dual 

Beam System (Hillsboro, OR). 

5.2.8 Bacterial adhesion assays on single-component fibers 

Lyophilized P. aeruginosa and S. aureus were reconstituted in tryptic soy broth (TSB) and 

cultured overnight at 37 °C.  A 0.5 mL aliquot of culture was grown in 50 mL TSB to a 

concentration of 108 colony forming units per mL (cfu/mL), collected by centrifugation (2355×g), 

resuspended in 15% glycerol (v/v in PBS), and stored at -80 °C in 1 mL aliquots.  For daily 

experiments, colonies of bacteria culture were inoculated in 2 mL TSB overnight at 37 °C and 

recultured in fresh TSB (50 mL) the next day. 
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To assess the antibacterial action of the electrospun fibrous mats, P. aeruginosa and S. 

aureus were cultured in TSB to a concentration of 108 cfu/mL, collected by centrifugation 

(1045×g), and resuspended in simulated wound fluid (SWF; 25% FBS in PBS, pH 7.4) at 108 

cfu/mL.  Individual fiber mat samples (blank, control, and NO-releasing) were added to 1 dram 

glass vials and sterilized under UV light for 2 h prior to the bacteria assays.  Fibers were exposed 

to 500 µL 108 cfu/mL bacteria in SWF for either 2 or 6 h at 37 °C with light agitation.  Untreated 

controls (blanks) were included in each experiment to ensure the bacteria remained viable over the 

2 or 6 h assays.  After exposure, fibers were removed from the bacteria solutions, dipped once in 

sterile water to remove non-adhered cells, and transferred to a 15 mL falcon tube containing 3 mL 

sterile water.  The solutions were then sonicated for 5 min at 60% power (Elma Lab-Line 9331, 

Melrose Park, IL).  The resulting solutions were vortexed and then spiral-plated at 100-, 1000-, 

and 10,000-fold dilutions on tryptic soy agar plates using an Eddy Jet spiral plater (IUL; 

Farmingdale, NY).  Bacterial viability was assessed by counting the number of colonies formed 

on the agar plate using a Flash & Go colony counter (IUL; Farmingdale, NY).   

5.3  Results and Discussion 

5.3.1 Synthesis and characterization of NO-releasing G4 dendrimers   

To evaluate the effects of dendrimer modification on fiber NO-release characteristics, 

generation 4 (G4) poly(amidoamine) (PAMAM) dendrimers were modified with alkyl chains (i.e., 

hexyl, octyl, dodecyl) or octylQA moieties through a ring-opening reaction at the peripheral 

primary amines as described previously.22, 23  Addition of the functional groups was confirmed 

using 1H NMR spectroscopy.  On average, 46 functional groups were added to the G4 scaffold, 

resulting in ~70% functionalization of the terminal primary amines (Table 5.1).   
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The secondary amines were subsequently converted to N-diazeniumdiolate NO donors 

under high pressures of NO.  Nitric oxide storage was tuned by increasing the ratio of 

THF:methanol with increasing alkyl chain length, resulting in similar NO payloads of ~1 µmol/mg 

(Table 5.1).  All of the alkyl chain-modified dendrimers exhibited similar initial maximum fluxes 

and durations (~10 h).  However, a slight increase in NO-release half-life was observed with 

increasing alkyl chain length (~20 to ~34 min), likely due to decreased water diffusion to the 

proton-labile N-diazeniumdiolate NO donor.  The QA-modified dendrimer (G4 octylQA) 

exhibited an initial max flux about half that of the alkyl chain-modified dendrimers and an 

extended NO-release half-life (115 min) and duration (16 h).  The longer NO-release half-life 

exhibited by the QA-modified dendrimers suggests that the permanent positive charge of the QA 

moiety stabilizes the N-diazeniumdiolate group, extending NO release.  Fabrication of electrospun 

polyurethane fibers doped with dendrimers exhibiting a range of exterior modifications and NO-

release half-lives allows for the evaluation of fiber and NO-release characteristics as a function of 

dendrimer modification. 

5.3.2 Fabrication and characterization of single-component electrospun polyurethane fibers   

We have previously fabricated electrospun polyurethane fibers with NO-release 

capabilities through the incorporation of NO-releasing proline (PROLI/NO), silica nanoparticles, 

and poly(amidoamine) (PAMAM) dendrimers.19, 27, 30, 31  Nitric oxide-release kinetics were 

dependent on the dopant NO-release kinetics (i.e., PROLI/NO-doped fibers exhibited much faster 

release kinetics than either of the macromolecular scaffolds) and polyurethane hydrophobicity.  

Fibers comprised of NO-releasing dendrimers and silica nanoparticles demonstrated similar NO-

release totals and kinetics, but the dendrimer scaffolds were better retained within the polyurethane 

fibers.  Indeed, dendrimer-doped Tecoplast fibers exhibited <20% leaching after one week while  
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Table 5.1 Characterization and NO-release properties of G4 dendrimers in PBS (pH 7.4, 37 °C) 

as measured by a chemiluminescence NO analyzer.a 

 
No. Modified 

End Groupsb 

% 

Modified 

[NO]max
c 

(ppb/mg) 

tmax
d 

(min) 

t[NO]e 

(µmol/mg) 

t1/2
f 

(min) 

td
g 

(h) 

G4 hexyl/NO 51 ± 4 80 ± 6 3800 ± 1160 1.3 ± 0.3 0.94 ± 0.07 20 ± 1 10 ± 4 

G4 octyl/NO 47 ± 3 74 ± 5 4930 ± 780 2.7 ± 0.4 0.93 ± 0.05 23 ± 3 9 ± 1 

G4 dodecyl/NO 46 ± 7 71 ± 11 3880 ± 640 1.8 ± 0.4 0.90 ± 0.07 34 ± 3 10 ± 1 

G4 octylQA/NO 39 ± 5 61 ± 8 1570 ± 150 2.0 ± 0.3 1.03 ± 0.06 115 ± 6 16 ± 1 
aFor all measurements, n ≥ 3 pooled experiments. bDetermined by 1H NMR. cMaximum flux of 

NO release. eTime required to reach maximum flux. eTotal NO payload released. fNO release 

half-life. gDuration of NO release.  
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70–100% of NO-releasing silica nanoparticles leached from electrospun fibers regardless of 

polyurethane hydrophobicity.19, 31   

To fabricate single-component (i.e., composed of one polyurethane) electrospun fibers, 

three polyurethanes (Tecoplast, Tecoflex, and Hydrothane) exhibiting distinct hydrophobicity and 

water uptake properties were chosen for study.  Of these, Tecoplast was the most hydrophobic and 

Hydrothane exhibited the greatest water uptake, allowing us to evaluate the effects of polyurethane 

hydrophobicity on fiber formation and NO-release characteristics.  For these studies, control and 

NO-releasing G4 octyl dendrimers were doped into polyurethane solutions prior to 

electrospinning.  Blank (no dendrimer dopant), control (non-NO-releasing), and NO-releasing 

electrospun fibers were fabricated for each of the individual polyurethanes.  The resulting semi-

porous mats contained fibers exhibiting smooth morphology with little to no bead formation 

(Figure 5.1).  Fiber diameter was dependent on both the polyurethane composition and presence 

of dendrimer dopant (Table 5.2).  Blank Tecoplast and Hydrothane fibers exhibited similar 

diameters of ~630 nm, while blank Tecoflex fibers were larger (~930 nm), demonstrating no trend 

between fiber diameter and polyurethane hydrophobicity.  The effects of dendrimer dopant also 

varied with polyurethane composition.  Although Hydrothane fibers exhibited no significant 

variation in fiber diameter with the addition of control or NO-releasing G4 octyl dendrimers, the 

diameters of dendrimer-doped Tecoplast and Tecoflex fibers were decreased from blank fibers by 

approximately 300 and 150 nm, respectively.   

A critical characteristic for wound dressings is the allowance of gaseous and fluid 

exchanges.4  A porous nanofiber structure with high surface area allows for cell respiration, 

maintains an appropriately moist environment for the wound, and prevents stagnation at the wound 

site by absorbing excess wound exudate.  In this regard, the porosity of dendrimer-doped 
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electrospun fibrous mats was characterized via liquid intrusion by measuring the ability of a non-

wetting liquid to permeate the pores.28, 29  In general, porosity of the electrospun fibers trended 

with polyurethane hydrophobicity.  Blank Tecoplast fibers (most hydrophobic) exhibited the 

greatest porosity (~70%), which decreased upon addition of the dendrimer dopant by ~10% (Table 

5.2).  Blank, control, and NO-releasing electrospun fibers exhibited similar porosities of 

approximately 50 and 43% for Tecoflex and Hydrothane, respectively.  As expected, blank 

electrospun fibers exhibited greater water absorption with decreasing polyurethane 

hydrophobicity, most likely due to the increase in water uptake.  While blank, control, and NO-

releasing electrospun Tecoflex and Hydrothane fibers absorbed water at similar rates, both 

dendrimer-doped Tecoplast fibers exhibited significantly enhanced water absorption values 

(~750%) compared to blank Tecoplast fibers (~100%) (Table 5.2).  This increase in water 

absorption is surprising considering the hydrophobicity of the Tecoplast composition.  Indeed, it 

is likely connected to the decrease in fiber diameter and porosity observed for the dendrimer-doped 

fibers, leading to greater fiber surface area and allowing for increased water absorption.  

Nitric oxide release from electrospun polyurethane fibers was evaluated via 

chemiluminescence in PBS (pH 7.4, 37 °C).  Electrospun fibers were cut into coupons to yield 

fiber samples with a consistent surface area of 1.267 cm2.  Due to the proton-labile nature of N-

diazeniumdiolate NO donors, the maximum NO flux was expected to increase with decreasing 

polyurethane hydrophobicity with a concomitant decrease in the time to reach the maximum.  

Surprisingly, both values were similar for each of the polyurethanes regardless of hydrophobicity 

(Table 5.3).  Similarly, we expected the NO-release half-life (t1/2) to decrease with increasing 

polyurethane water uptake.  However, the most hydrophobic Tecoplast fibers exhibited the fastest 

NO-release half-life (17.5 min) and duration (1.4 h).  Although initially surprising, these values 
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Figure 5.1 Scanning electron micrographs of blank, control, and NO-releasing G4 octyl-doped 

electrospun Tecoplast, Tecoflex, and Hydrothane fibers. 
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Table 5.2 Characterization of single-component electrospun polyurethane fibers.a 

 
Fiber 

Diameter (nm) 

Porosity 

(%) 

Water 

Absorption (%) 

Tecoplast 623 ± 253 71.0 ± 4.5 102 ± 67 

Tecoplast-G4 octyl 342 ± 95 63.1 ± 4.8 765 ± 166 

Tecoplast-G4 octyl/NO 336 ± 107 59.1 ± 5.7 747 ± 149 

Tecoflex 927 ± 310 50.4 ± 7.6 116 ± 37 

Tecoflex-G4 octyl 771 ± 247 54.6 ± 5.6 112 ± 35 

Tecoflex-G4 octyl/NO 798 ± 266 49.4 ± 13.7 89 ± 29 

Hydrothane 636 ± 199 43.0 ± 9.3 173 ± 40 

Hydrothane-G4 octyl 603 ± 237 41.7 ± 10.5 167 ± 49 

Hydrothane-G4 octyl/NO 543 ± 151 44.6 ± 9.9 155 ± 37 
     aFor all measurements, n ≥ 3 pooled experiments. 
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were found to scale proportionally with total NO released (Figure 5.2 A).  Nitric oxide-releasing 

Tecoflex fibers exhibited the longest half-life (36.5 min) and greatest NO payload (0.037 

µmol/mg), while NO-releasing Tecoplast fibers only released 0.018 µmol NO/mg.  Both the half-

life (20.9 min) and total NO storage (0.027 µmol/mg) of NO-releasing Hydrothane fibers fell 

between these two, suggesting that polyurethane hydrophobicity has little effect on the NO-release 

kinetics of single-component electrospun fibers.  As evidenced by the variation in NO storage, the 

amount of dendrimer doped into the electrospun fibers varied greatly with polyurethane identity.  

Total dendrimer incorporation was calculated per mass of electrospun fiber by determining the 

total NO released under acidic conditions (50 mM HCl).  While electrospun Tecoflex-G4 octyl/NO 

fibers incorporated the greatest amount of dendrimer (~60 µg/mg), the more hydrophobic 

Tecoplast fibers exhibited much lower dendrimer incorporation (~20 µg/mg), indicating 

polyurethane hydrophobicity greatly affects dendrimer incorporation during electrospinning. 

While previous reports have attempted to minimize dopant leaching for in vivo applications,19, 31 

active release of dual-action dendrimers is expected to increase the antibacterial action of 

electrospun fibers.  To quantitate the amount of dendrimer delivered from each of the electrospun 

polyurethane fiber compositions, dendrimer leaching into solution over time was determined in 

PBS (pH 7.4, 37 °C) after 2 h, 1 d, and 7 d.  The G4 dendrimer scaffold was labeled with the 

fluorescent tag RITC prior to modification with octyl alkyl chains, and the resulting RITC-tagged 

dendrimers were used to fabricate fluorescent electrospun fibers (Figure 5.3).  Total dendrimer 

delivery (%) was determined after 2 h, 1 d, and 7 d using the total amount of incorporated 

dendrimer determined from NO release totals in acidic conditions.   
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Table 5.3 Nitric oxide-release properties for G4 octyl/NO-doped electrospun polyurethane fibers 

in PBS (pH 7.4, 37 °C).a 

 
[NO]max

b 

(pmol/cm2) 

tmax
c 

(min) 

t[NO]d 

(µmol/cm2) 

t[NO]e 

(µmol/mg) 

t1/2
f 

(min) 

td
g 

(h) 

t(dopant)h 

(µg/mg) 

Tecoplast 13.0 ± 4.0 3.9 ± 1.6 0.017 ± 0.006 0.018 ± 0.002 17.5 ± 2.1 1.4 ± 0.3 22 ± 2 

Tecoflex 11.7 ± 3.6 4.3 ± 2.1 0.036 ± 0.011 0.037 ± 0.008 36.5 ± 4.3 2.3 ± 0.4 61 ± 8 

Hydrothane 15.7 ± 5.4 4.3 ± 2.4 0.027 ± 0.010 0.027 ± 0.006 20.9 ± 4.8 1.6 ± 0.4 52 ± 4 

aFor all measurements, n ≥ 3 pooled experiments. bMaximum flux of NO release. cTime required 

to reach maximum flux. dTotal NO payload released per surface area.  eTotal NO payload released 

per mg. fNO release half-life. gDuration of NO release. hTotal amount of dendrimer incorporated 

as determined by total NO release in 50 mM HCl. 
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Figure 5.2 Representative total NO-release curves for (A) G4 octyl/NO-doped electrospun 

Tecoplast, Tecoflex, and Hydrothane fibers and (B) NO-releasing dendrimer-doped electrospun 

Tecoflex fibers. Representative NO-release curves for (C) G4 hexyl/NO, (D) G4 octyl/NO, (E) G4 

dodecyl/NO, and (F) G4 octylQA/NO-doped electrospun Tecoflex fibers. 
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Although total dendrimer release slightly increased over time, the majority of dendrimer 

delivery occurred in the first 24 hours (Figure 5.4).  As expected, dendrimer delivery was 

dependent on the hydrophobicity of the polyurethane, with the hydrophilic Tecoflex and 

Hydrothane polyurethanes exhibiting greater dendrimer release than the more hydrophobic 

Tecoplast fibers.  After 7 d, control and NO-releasing Tecoplast fibers exhibited 35 and 26% 

dendrimer release, respectively, with both fiber compositions delivering approximately 20% of the 

total dendrimer payload in the first day.  At each timepoint, the NO-releasing Tecoflex and 

Hydrothane fibers exhibited greater drug delivery than control (non-NO-releasing) fibers.  

Although control and NO-releasing Hydrothane fibers demonstrated similar dendrimer delivery 

after 7 d (72 and 76%, respectively), the NO-releasing fibers exhibited more rapid dendrimer 

release than their non-NO-releasing counterparts after 1 d (59 versus 69% for control and NO-

releasing fibers, respectively).  Furthermore, NO-releasing Tecoflex fibers were characterized as 

having faster and greater dendrimer delivery than control fibers after 7 d, exhibiting 48 and 65% 

release for control and NO-releasing fibers, respectively.  The faster release kinetics exhibited by 

the NO- releasing fibers suggests that dendrimer delivery is dependent on charge, with the 

zwitterionic N-diazeniumdiolate resulting in faster release rates. 

5.3.3 Fabrication and characterization of electrospun Tecoflex fibers with various dendrimer 

dopants 

 Due to the lower NO totals and dendrimer incorporation exhibited by Hydrothane and 

Tecoplast fibers, Tecoflex fibers were selected for further study to evaluate the effects of 

dendrimer exterior modification on NO-release and material characteristics.  Control and NO-

releasing G4 PAMAM dendrimers modified with hexyl, octyl, dodecyl, and octylQA functional 

groups were individually doped into electrospun Tecoflex fibers (Figures 5.1, 5.5).  While the  
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Figure 5.3 Electron micrographs of G4 RITC octyl-doped (A) Tecoplast, (B) Tecoflex, and (C) 

Hydrothane fibers.  (D) Fluorescence image of Tecoplast-G4 RITC octyl fibers. 
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Figure 5.4 Dendrimer delivery (%) for control (solid line) and NO-releasing (dashed line) G4 

octyl-doped electrospun Tecoplast (red), Tecoflex (blue), and Hydrothane (green) fibers after 2 h, 

1 d, or 7 d soaking in PBS (pH 7.4, 37 °C).  For all measurements, n ≥ 3 pooled experiments with 

error bars representing standard deviation of the mean.  
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addition of control and NO-releasing dendrimer dopant decreased the average fiber diameter from 

blank Tecoflex fibers (~930 nm), changes in the dendrimer exterior modification had little effect 

on the resulting fiber diameters, with average diameters ranging from 600–800 nm (Table 5.4).   

To evaluate the potential of these fibers to allow for gas and fluid exchange,4 the porosity 

and water absorption of the electrospun Tecoflex fibers were evaluated as a function of dendrimer 

modification.  As expected due to the similarity of the exterior modifications, the porosity of the 

fibrous mats containing alkyl chain-modified dendrimers (i.e., G4 hexyl, G4 octyl, G4 dodecyl) 

were unchanged from blank fibers (Table 5.4).  The QA-containing Tecoflex fibers exhibited the 

greatest porosities (62 and 68% for control and NO-releasing, respectively), possibly due to 

electrostatic repulsions from the QA moiety limiting fiber interactions.  For all modifications, the 

water absorption levels were less for the dendrimer-doped versus blank Tecoflex fibers, with 

almost all of the control and NO-releasing fibers exhibiting less than 100% water absorption (Table 

5.4).  Although control and NO-releasing G4 octyl-doped Tecoflex fibers exhibited >90% water 

absorption values, water uptake by the other modifications (i.e., hexyl, dodecyl, octylQA) was less 

(55–77%).  This result was somewhat unexpected due to the similarity in fiber diameters and 

porosities and identical polyurethane composition (Tecoflex). 

Nitric oxide release from electrospun polyurethane fibers (surface area: 1.267 cm2) was 

evaluated as described above (Figure 5.2 C-F).  The magnitude of the initial NO burst ([NO]max) 

decreased with increasing alkyl chain length (20 to 9 pmol/cm2) (Table 5.5).  Similarly, the time 

required to reach the maximum flux increased with alkyl chain length (3.8 to 13.8 min), suggesting 

the hydrophobicity of the dendrimer exterior influences initial water diffusion to the NO donor 

within the electrospun fibers.  Yet, all of the alkyl chain-doped Tecoflex fibers exhibited similar 
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Figure 5.5 Scanning electron micrographs of control and NO-releasing G4 hexyl-, G4 dodecyl-, 

and G4 octylQA-doped electrospun Tecoflex fibers. 
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Table 5.4 Characterization of electrospun Tecoflex fibers.a 

 
Fiber Diameter 

(nm) 

Porosity 

(%) 

Water Absorption 

(%) 

Tecoflex 927 ± 310 50.4 ± 7.6 116 ± 37 

Tecoflex-G4 hexyl 617 ± 187 57.0 ± 8.7 64 ± 21 

Tecoflex-G4 hexyl/NO 649 ± 202 52.2 ± 8.8 66 ± 27 

Tecoflex-G4 octyl 771 ± 247 54.6 ± 5.6 112 ± 35 

Tecoflex-G4 octyl/NO 798 ± 266 49.4 ± 13.7 89 ± 29 

Tecoflex-G4 dodecyl 691 ± 249 60.9 ± 8.2 77 ± 19 

Tecoflex-G4 dodecyl/NO 564 ± 183 53.1 ± 13.3 73 ± 32 

Tecoflex-G4 octylQA 595 ± 194 62.3 ± 10.1 55 ± 16 

Tecoflex-G4 octylQA/NO 646 ± 202 67.6 ± 13.5 59 ± 18 

      aFor all measurements, n ≥ 3 pooled experiments. 
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NO-release half-lives (30–40 min), totals (~0.038 µmol/mg), and durations (~2.5 h) regardless of 

alkyl chain modification.  In contrast, the QA-containing Tecoflex fibers exhibited a lower max 

flux (4.8 pmol/cm2) with extended NO-release half-life (151 min) and duration (6 h) (Figure 5.2).  

The longer NO release exhibited by G4 octylQA-containing fibers parallels the extended release 

of the QA dendrimers over the alkyl-modification systems in solution, suggesting the NO-release 

kinetics of the NO donor dopant may have greater influence over the NO-release characteristics of 

the electrospun fibers than the polyurethane identity.  While all of the dendrimer modifications 

incorporated similar amounts of dendrimer (60–70 µg/mg), the overall NO-release totals for 

Tecoflex-G4 octylQA/NO fibers were slightly lower than the alkyl chain modifications (0.027 

µmol/mg).  This behavior is most likely the result of unaccounted for NO release below the 

threshold (1 pmol/cm2) due to the extended release kinetics of these fibers at pH 7.4.  Of note, the 

1.267 cm2 fiber mats exhibited similar NO-release totals (~0.36 µmol/cm2).  

Dendrimer delivery into solution was determined in PBS (pH 7.4, 37 °C) at 2 h, 1 d, and 7 d as a 

function of dendrimer modification.  The majority of dendrimer release occurred within the first 

24 h (Figure 5.6).  As expected, the most hydrophobic dendrimer (G4 dodecyl) was better retained 

within the fibers, with control Tecoflex-G4 dodecyl fibers exhibiting only 38% dendrimer release 

after 7 d compared to ~48% for the other dendrimer systems.  Similar to observations in Section 

5.3.2, the NO-releasing fibers demonstrated greater dendrimer release than their non-NO-releasing 

counterparts due to increased instability of the zwitterionic N-diazeniumdiolate within the fibers.  

Of note, the Tecoflex-G4 octylQA/NO fibers exhibited the greatest levels of dendrimer delivery 

after 7 d (~80%), supporting the hypothesis that increased scaffold charged leads to faster and 

greater dendrimer release from electrospun fibers. 
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Table 5.5 Nitric oxide-release properties for NO-releasing electrospun Tecoflex fibers in PBS (pH 7.4, 37 °C).a 

 
[NO]max

b 

(pmol/cm2) 

tmax
c 

(min) 

t[NO]d 

(µmol/cm2) 

t[NO]2h
e 

(µmol/cm2) 

t[NO]f 

(µmol/mg) 

t1/2
g 

(min) 

td
h 

(h) 

t[dopant]i 

(µg/mg) 

G4 hexyl/NO 19.8 ± 6.8 3.8 ± 1.7 0.043 ± 0.014 0.039 ± 0.013 0.038 ± 0.007 30.5 ± 4.4 2.9 ± 0.4 68 ± 1 

G4 octyl/NO 11.7 ± 3.6 4.3 ± 2.1 0.036 ± 0.011 0.034 ± 0.010 0.037 ± 0.008 36.5 ± 4.3 2.3 ± 0.4 61 ± 8 

G4 dodecyl/NO 8.9 ± 2.4 13.8 ± 3.5 0.032 ± 0.010 0.030 ± 0.007 0.039 ± 0.004 38.3 ± 5.1 2.5 ± 0.4 65 ± 8 

G4 octylQA/NO 4.8 ± 1.1 2.3 ± 0.3 0.034 ± 0.010 0.014 ± 0.004 0.027 ± 0.005 151.0 ± 22.1 6.0 ± 0.9 72 ± 4 

aFor all measurements, n ≥ 3 pooled experiments. bMaximum flux of NO release. cTime required to reach maximum flux. 
dTotal NO payload released per surface area.  eNO payload released after 2 h.  fTotal NO payload released per mg. gNO 

release half-life. hDuration of NO release. iTotal amount of dendrimer incorporated as determined by total NO release in 50 

mM HCl.1
8
1
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Figure 5.6 Dendrimer delivery (%) for control (solid line) and NO-releasing (dashed line) G4 

hexyl- (red), G4 octyl- (blue), G4 dodecyl- (green), and G4 octylQA- (purple) doped electrospun 

Tecoflex fibers after 2 h, 1 d, or 7 d soaking in PBS (pH 7.4, 37 °C). For all measurements, n ≥ 3 

pooled experiments with error bars representing standard deviation of the mean.  
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5.3.4 In vitro cytotoxicity and cell proliferation 

The toxicity of blank, control, and NO-releasing electrospun polyurethane fibers was evaluated 

against L929 mouse fibroblast cells over 2 and 24 h.  Each of the G4 octyl-doped polyurethane 

fibers were non-toxic at both timepoints (>80% cell viability compared to untreated controls), with 

variations in toxicity dependent on polyurethane identity (Figure 5.7 A-B).  Blank, control, and 

NO-releasing Tecoflex fibers exhibited no toxicity (~100% viability) regardless of dendrimer 

dopant or NO release (Figure 5.7 C-D).  Control Tecoplast fibers were slightly more toxic at 24 

than 2 h (96 and 88% viability, respectively), while NO-releasing Tecoplast fibers exhibited 

similar toxicity (~95% viability) at both timepoints.  Electrospun Hydrothane fibers were 

characterized as having the highest toxicity, with control and NO-releasing fibers reducing cell 

viability to 87 and 81%, respectively, after 2 h exposure.  This may be attributed to the slightly 

higher dendrimer release exhibited by the Hydrothane fibers.  However, the lack of toxicity 

exhibited by control and NO-releasing Tecoflex fibers despite relatively similar concentrations of 

dendrimer delivery makes this unlikely.  Alternatively, the greater toxicity of the G4 octyl-doped 

Hydrothane fibers is likely due to the bulk characteristics of the fiber mat itself leading to fiber-

cell interactions and cell removal (from the well) upon removal of the fiber mat. 

The ability of L929 cells to proliferate on dendrimer-doped electrospun Tecoflex fibers 

was next evaluated upon direct cell seeding onto the fibrous mats.  While some prior studies have 

correlated the ability of cells to integrate into and proliferate on electrospun fibrous mats with 

wound healing capabilities,7, 32 Lalani et al. reported that a lack of cell adhesion on the fibers is 

more beneficial for use as removable wound dressings.10  Decreased cell adhesion on the wound 

dressings would allow for easier, painless dressing removal without harming the newly formed 

skin underneath.10  Along these lines, the ability of L929 cells to adhere to blank, control, and NO- 
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Figure 5.7 Viability (%) of L929 mouse fibroblast cells following (A,C) 2 h or (B,D) 24 h exposure 

to blank (solid), control (diagonal lines), and NO-releasing (horizontal lines) (A,B) G4 octyl-doped 

electrospun fibers or (C,D) dendrimer-doped electrospun Tecoflex fibers. For all measurements, n 

≥ 3 pooled experiments with error bars representing standard deviation of the mean.  
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Figure 5.8 (A) Viability (%) of L929 mouse fibroblast cells adhered to control (diagonal lines) 

and NO-releasing (horizontal lines) dendrimer-doped Tecoflex electrospun fibers following 24 h 

exposure. For all measurements, n ≥ 3 pooled experiments with error bars representing standard 

deviation of the mean.  (B) Scanning electron micrographs of L929 mouse fibroblast cells adhered 

to blank, control, and NO-releasing G4 octyl-doped Tecoflex electrospun fibers following 24 h 

exposure.   
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releasing electrospun Tecoflex fibers was evaluated with the idea that decreased adhesion would 

indicate greater potential for wound dressing compatibility. 

To assess any reductions in cell adhesion, the number of viable L929 cells adhered to blank 

Tecoflex fibers after 24 h (~10% of the total cells in the well) was normalized to 100%.  The 

percent viability of cells adhered to control and NO-releasing Tecoflex fibers was determined in 

relation to the blank fibers (Figure 5.8 A).  For each of the dendrimer dopants, control Tecoflex 

fibers exhibited a statistically significant decrease in adhered cell viability (~60% compared to 

blank fibers).  With the exception of Tecoflex-G4 hexyl/NO fibers, the remaining NO-releasing 

Tecoflex fibers further decreased cell viability (~50% compared to blank fibers).  While 

statistically significant from the blank Tecoflex fibers (p < 0.05 using two-tailed student’s t-test), 

this behavior was not significant from control fibers.  The lack of toxicity exhibited by the leached 

dendrimer, NO dose, and electrospun fibers to L929 cells above (Figure 5.7) indicates that these 

decreases in cell viability are most likely attributed to reduced cell adhesion and not cell death.  To 

confirm this, L929 cells were fixed with glutaraldehyde after 24 h exposure and imaged via 

scanning electron microscopy.  For both the control and NO-releasing G4 octyl-doped Tecoflex 

fibers, L929 cells appear to be less densely adhered to the electrospun fibers than for the blank 

fibers (Figure 5.8 B).  Of note, the L929 fibroblast cells in contact with NO-releasing fibers 

exhibited a morphology distinct from those adhered to blank or control fibrous mats.  This 

spherical morphology is often indicative of non-adhered cells, as opposed to spread-out, spindle 

shaped cells (as those adhered to the control fibers).33  While both control and NO-releasing 

Tecoflex fibers reduced L929 cell adhesion compared to blank fibers, cells in contact with NO-

releasing fibrous mats exhibited the morphology of non-adhered cells, indicating the benefits of 

NO release in further reducing cell adhesion and integration into electrospun fiber mats. 
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5.3.5 Antibacterial action of NO-releasing single-component electrospun fibers   

P. aeruginosa and S. aureus represent two of the most commonly isolated species in 

chronic wounds.2  Antibacterial action of single-component NO-releasing fibers was thus carried 

out to further assess the potential of these materials as wound dressings.  Electrospun fibers were 

cut into coupons to yield fiber samples with similar surface area (1.267 cm2) and NO payloads.  

Bacterial adhesion studies were performed in simulated wound fluid (SWF) composed of 25% 

fetal bovine serum in PBS (pH 7.4, 37 °C) for 2 or 6 h, corresponding to the duration of NO release 

for the Tecoflex-G4 octyl/NO and Tecoflex-G4 octylQA/NO fibers, respectively.  Log reductions 

in bacterial viability were determined by comparing the bacterial viability on control or NO-release 

fibers to that on blank Tecoflex fibers. 

Both control and NO-releasing electrospun Tecoflex fibers were found to reduce the 

viability of adhered P. aeruginosa and S. aureus compared to blank Tecoflex fibers after 2 and 6 

h exposures (Figure 5.9).  After 2 h exposure, the control G4 octyl-doped Tecoflex fibers proved 

more effective at reducing bacterial adhesion (both strains) than their NO-releasing counterparts, 

(Table 5.6).  In contrast, both control and NO-releasing Tecoflex-G4 octyl fibers exhibited similar 

reductions in adhered bacterial viability at 6 h, likely due to the inability of the dendrimers to 

eradicate the larger concentrations of bacteria resulting from bacterial growth.  Similar trends were 

observed for the G4 octylQA-doped Tecoflex fibers, with control fibers exhibiting greater 

reductions in adhered bacterial viability after 2 h exposure but similar reductions at 6 h as the NO-

releasing fibers against both bacterial strains.  As a result of the negligible killing by both control 

and NO-releasing Tecoflex fibers (≤1-log reduction), the evaluation of single-component 

electrospun fibers was abandoned.  The fabrication of composite electrospun polyurethane fibers  
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Figure 5.9 Viability of (A,B) P. aeruginosa or (C,D) S. aureus adhered to blank (solid), control 

(diagonal lines), and NO-releasing (horizontal lines) dendrimer-doped Tecoflex electrospun fibers 

following 2 or 6 h exposure. For all measurements, n ≥ 3 pooled experiments with error bars 

representing standard deviation of the mean. Asterisk indicates significant differences from blank 

(p < 0.05) using two-tailed student’s t-test. 
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Table 5.6 Average log reduction of adhered bacterial viability.a 

 P. aeruginosa S. aureus 

 2 h 6 h 2 h 6 h 

Tecoflex-G4 octyl 0.9 ± 0.6 0.8 ± 0.4 1.0 ± 0.6 0.6 ± 0.3 

Tecoflex-G4 octyl/NO 0.5 ± 0.2 0.9 ± 0.5 0.5 ± 0.2 0.6 ± 0.3 

Tecoflex-G4 octylQA 1.2 ± 0.5 0.8 ± 0.3 1.1 ± 0.9 0.9 ± 0.5 

Tecoflex-G4 octylQA/NO 0.9 ± 0.8 0.7 ± 0.4 0.4 ± 0.3 0.9 ± 0.3 
aFor all measurements, n ≥ 3 pooled experiments. 
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formed using a co-axial electrospinning setup was thus investigated (Chapter 6), as the distinct 

core-sheath structure of these fibers should allow for greater dendrimer incorporation and control 

over both dendrimer- and NO-release characteristics. 

5.4  Conclusions 

Three distinct polyurethanes were electrospun into single-component fibers doped with 

control or NO-releasing G4 octyl dendrimers.  While the fiber diameter, porosity, water absorption, 

and dendrimer incorporation were dependent on the polyurethane identity, NO-release proved 

independent of polyurethane hydrophobicity.  Electrospun Tecoflex fibers prepared using 

dendrimer dopants with a range of exterior modifications exhibited tunable NO-release kinetics 

and durations, indicating the dendrimer modification greatly influences the NO-release properites.  

Both control and NO-releasing dendrimer-doped electrospun Tecoflex fibers exhibited decreased 

L929 cell adhesion from blank Tecoflex fibers, with the fibroblasts exposed to NO-releasing fibers 

demonstrating non-adhesive morphologies.  However, the low antibacterial action of the NO-

releasing Tecoflex fibers against planktonic bacteria required a new direction for the development 

of electrospun fibers to allow for enhanced dendrimer storage, NO release, and bactericidal action. 

 

 

 

 

 

 

 

 



191 
 

REFERENCES 

 

(1) James, G. A., Swogger, E., Wolcott, R., Secor, P., Sestrich, J., Costerton, J. W., and 

Stewart, P. S. "Biofilms in chronic wounds" Wound Repair and Regeneration 2008, 16, 

37-44. 

 

(2) Bjarnsholt, T., Kirketerp-Møller, K., Jensen, P. Ø., Madsen, K. G., Phipps, R., Krogfelt, 

K., Høiby, N., and Givskov, M. "Why chronic wounds will not heal: A novel hypothesis" 

Wound Repair and Regeneration 2008, 16, 2-10. 

 

(3) Blakytny, R., and Jude, E. "The molecular biology of chronic wounds and delayed 

healing in diabetes" Diabetic Medicine 2006, 23, 594-608. 

 

(4) Zahedi, P., Rezaeian, I., Ranaei-Siadat, S. O., Jafari, S. H., and Supaphol, P. "A review 

on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages" 

Polymers for Advanced Technologies 2010, 21, 77-95. 

 

(5) Khil, M. S., Cha, D. I., Kim, H. Y., Kim, I. S., and Bhattarai, N. "Electrospun 

nanofibrous polyurethane membrane as wound dressing" Journal of Biomedical 

Materials Research Part B: Applied Biomaterials 2003, 67, 675-679. 

 

(6) Jannesari, M., Varshosaz, J., Morshed, M., and Zamani, M. "Composite poly (vinyl 

alcohol)/poly (vinyl acetate) electrospun nanofibrous mats as a novel wound dressing 

matrix for controlled release of drugs" International Journal of Nanomedicine 2011, 6, 

993-1003. 

 

(7) Unnithan, A. R., Barakat, N. A., Pichiah, P. T., Gnanasekaran, G., Nirmala, R., Cha, Y.-

S., Jung, C.-H., El-Newehy, M., and Kim, H. Y. "Wound-dressing materials with 

antibacterial activity from electrospun polyurethane–dextran nanofiber mats containing 

ciprofloxacin HCl" Carbohydrate Polymers 2012, 90, 1786-1793. 

 

(8) Thakur, R., Florek, C., Kohn, J., and Michniak, B. "Electrospun nanofibrous polymeric 

scaffold with targeted drug release profiles for potential application as wound dressing" 

International Journal of Pharmaceutics 2008, 364, 87-93. 

 

(9) Dongargaonkar, A. A., Bowlin, G. L., and Yang, H. "Electrospun blends of gelatin and 

gelatin–dendrimer conjugates as a wound-dressing and drug-delivery platform" 

Biomacromolecules 2013, 14, 4038-4045. 

 



192 
 

(10) Lalani, R., and Liu, L. "Electrospun zwitterionic poly (sulfobetaine methacrylate) for 

nonadherent, superabsorbent, and antimicrobial wound dressing applications" 

Biomacromolecules 2012, 13, 1853-1863. 

 

(11) Hetrick, E. M., Shin, J. H., Stasko, N. A., Johnson, C. B., Wespe, D. A., Holmuhamedov, 

E., and Schoenfisch, M. H. "Bactericidal efficacy of nitric oxide-releasing silica 

nanoparticles" ACS Nano 2008, 2, 235-246. 

 

(12) Schäffer, M. R., Tantry, U., Gross, S. S., Wasserkrug, H. L., and Barbul, A. "Nitric oxide 

regulates wound healing" Journal of Surgical Research 1996, 63, 237-240. 

 

(13) Shekhter, A. B., Serezhenkov, V. A., Rudenko, T. G., Pekshev, A. V., and Vanin, A. F. 

"Beneficial effect of gaseous nitric oxide on the healing of skin wounds" Nitric Oxide 

2005, 12, 210-219. 

 

(14) Weller, R., and Finnen, M. J. "The effects of topical treatment with acidified nitrite on 

wound healing in normal and diabetic mice" Nitric Oxide 2006, 15, 395-399. 

 

(15) Liu, H. A., and Balkus Jr, K. J. "Novel delivery system for the bioregulatory agent nitric 

oxide" Chemistry of Materials 2009, 21, 5032-5041. 

 

(16) Lowe, A., Deng, W., Smith Jr, D. W., and Balkus Jr, K. J. "Acrylonitrile-based nitric 

oxide releasing melt-spun fibers for enhanced wound healing" Macromolecules 2012, 45, 

5894-5900. 

 

(17) Wold, K. A., Damodaran, V. B., Suazo, L. A., Bowen, R. A., and Reynolds, M. M. 

"Fabrication of biodegradable polymeric nanofibers with covalently attached NO donors" 

ACS Applied Materials & Interfaces 2012, 4, 3022-3030. 

 

(18) Vogt, C., Xing, Q., He, W., Li, B., Frost, M. C., and Zhao, F. "Fabrication and 

characterization of a nitric oxide-releasing nanofibrous gelatin matrix" 

Biomacromolecules 2013, 14, 2521-2530. 

 

(19) Koh, A., Carpenter, A. W., Slomberg, D. L., and Schoenfisch, M. H. "Nitric oxide-

releasing silica nanoparticle-doped polyurethane electrospun fibers" ACS Applied 

Materials & Interfaces 2013, 5, 7956-7964. 

 

(20) Lu, Y., Slomberg, D. L., Shah, A., and Schoenfisch, M. H. "Nitric oxide-releasing 

amphiphilic poly (amidoamine)(PAMAM) dendrimers as antibacterial agents" 

Biomacromolecules 2013, 14, 3589-3598. 



193 
 

 

(21) Sun, B., Slomberg, D. L., Chudasama, S. L., Lu, Y., and Schoenfisch, M. H. "Nitric 

oxide-releasing dendrimers as antibacterial agents" Biomacromolecules 2012, 13, 3343-

3354. 

 

(22) Worley, B. V., Schilly, K. M., and Schoenfisch, M. H. "Anti-biofilm efficacy of dual-

action nitric oxide-releasing alkyl chain modified poly(amidoamine) dendrimers" 

Molecular Pharmaceutics 2015, 12, 1573-1583. 

 

(23) Worley, B. V., Slomberg, D. L., and Schoenfisch, M. H. "Nitric oxide-releasing 

quaternary ammonium-modified poly(amidoamine) dendrimers as dual action 

antibacterial agents" Bioconjugate Chemistry 2014, 25, 918-927. 

 

(24) Tomalia, D., Baker, H., Dewald, J., Hall, M., Kallos, G., Martin, S., Roeck, J., Ryder, J., 

and Smith, P. "A new class of polymers: Starburst-dendritic macromolecules" Polymer 

Journal 1985, 17, 117-132. 

 

(25) Tomalia, D. A. "Birth of a new macromolecular architecture: Dendrimers as quantized 

building blocks for nanoscale synthetic polymer chemistry" Progress in Polymer Science 

2005, 30, 294-324. 

 

(26) Carpenter, A. W., Worley, B. V., Slomberg, D. L., and Schoenfisch, M. H. "Dual action 

antimicrobials: Nitric oxide release from quaternary ammonium-functionalized silica 

nanoparticles" Biomacromolecules 2012, 13, 3334-3342. 

 

(27) Koh, A., Lu, Y., and Schoenfisch, M. H. "Fabrication of nitric oxide-releasing porous 

polyurethane membranes-coated needle-type implantable glucose biosensors" Analytical 

Chemistry 2013, 85, 10488-10494. 

 

(28) Pham, Q. P., Sharma, U., and Mikos, A. G. "Electrospun poly (ε-caprolactone) microfiber 

and multilayer nanofiber/microfiber scaffolds: Characterization of scaffolds and 

measurement of cellular infiltration" Biomacromolecules 2006, 7, 2796-2805. 

 

(29) Savoji, H., Rana, D., Matsuura, T., Tabe, S., and Feng, C. "Development of plasma 

and/or chemically induced graft co-polymerized electrospun poly (vinylidene fluoride) 

membranes for solute separation" Separation and Purification Technology 2013, 108, 

196-204. 

 

(30) Coneski, P. N., Nash, J. A., and Schoenfisch, M. H. "Nitric oxide-releasing electrospun 

polymer microfibers" ACS Applied Materials & Interfaces 2011, 3, 426-432. 

 



194 
 

(31) Storm, W. L. "Combined bactericidal/bacterial adhesion-resistant coating through nitric 

oxide release"  Department of Chemistry, University of North Carolina-Chapel Hill 2013. 

 

(32) Yari, A., Yeganeh, H., and Bakhshi, H. "Synthesis and evaluation of novel absorptive and 

antibacterial polyurethane membranes as wound dressing" Journal of Materials Science: 

Materials in Medicine 2012, 23, 2187-2202. 

 

(33) Shinmoto, H., Sato, K., and Dosako, S. "Inhibition by bovine lactoferrin of adhesion of 

L929 cells cultured in serum-free git medium" Bioscience, Biotechnology, and 

Biochemistry 1992, 56, 965-966. 

 



195 

 

 

 

CHAPTER 6: 

Active Release of Dual-Action Dendrimers from Co-Axial Electrospun Polyurethane Fibers 

6.1 Introduction 

The successful treatment of chronic wounds such as diabetic foot ulcers, pressure ulcers, 

and venous leg ulcers is often hindered by the inefficient eradication of opportunistic pathogens 

such as Pseudomonas aeruginosa and Staphyloccocus aureus.1-3  Left untreated, the proliferation 

of infectious bacteria and biofilms in chronic wounds often leads to significant morbidity (e.g.,  

limb amputation).3  While the use of wound dressings may facilitate some wound healing, the 

presence of bacteria hinders complete wound closure.  An ideal wound dressing wound provide 

facile gaseous and fluid exchange, absorb excess wound exudates, and act as a physical barrier to 

infectious microorganisms, while also reducing the bacterial burden in the wound site.4   

Polyurethane materials are often used as wound dressings because they exhibit adequate 

barrier properties, oxygen permeability, and tissue compatibility.5-8  Commercially-available 

wound dressings such as semi-permeable polyurethane films and foams have demonstrated utility 

as physical barriers, inhibiting the migration of bacteria to the wound and promoting wound 

closure.4, 9, 10  Incorporating silver ions into these polyurethane wound dressings as an active 

release antimicrobial agent further improved wound healing and reduced pain-related symptoms.11-

13  However, significant accumulation of wound fluid beneath the bandage continues to be a 

disadvantage of these dressings, requiring frequent wound aspiration to prevent leakage and 

infection.5, 14, 15  The fabrication of porous wound dressing materials via electrospinning has been 

proposed to further improve the wound healing capabilities of polyurethane wound dressings.  The 
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electrospinning technique, consisting of the application of a high potential difference between the 

head of a syringe needle containing a polymer solution and a grounded collector, produces 

nonwoven nanofibrous polymer webs.4, 16, 17  These mats demonstrate properties essential for 

wound healing due to their inherent porosity and large effective surface area.  Indeed, the high 

surface area to volume ratio allows for increased water absorption, while the semi-permeability 

and porous architecture of such materials allows for cell respiration and protects the wound from 

bacterial infection.4  Khil et al. reported improved wound healing capabilities of electrospun 

polyurethane fibers in adult male guinea pigs over the conventional Tegaderm (3M Health Care; 

St. Paul, Minnesota), a commercially-available polyurethane wound dressing.5  The electrospun 

dressings both increased the rate of epithelialization and prevented the permeation of infectious 

microorganisms with little observed fluid accumulation.   

Electrospun fibers have also been modified to exhibit antibacterial action via the 

incorporation of therapeutic compounds blended into an all-in-one dressing.4, 18, 19  Initial studies 

in the development of antibacterial electrospun wound dressings have demonstrated the controlled 

release of antibiotics18-20 and silver ions21, 22 from electrospun fibers.  However, bacterial resistance 

to both antibiotics and silver23-25 warrants the development of dressings capable of delivering next 

generation antibacterial agents that are unlikely to foster resistance.  

Nitric oxide (NO) is a promising antibacterial agent that exhibits both broad-spectrum 

antibacterial and wound-healing actions.26-28  Our lab has pioneered the development of 

antibacterial macromolecular scaffolds capable of controllable NO storage and release,29, 30 with 

dendrimers representing an excellent scaffold for the design of novel antibacterial agents.31-33  

Combining antibacterial NO release with a non-depleting, contact-based biocide (i.e., quaternary 

ammonium moieties or alkyl chains) has proven especially effective at producing broad-spectrum 
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dual-action antibacterial agents.34-37  The co-administration of two mechanistically different 

biocides in this manner is expected to reduce the emergence of bacterial resistance and improve 

the bactericidal efficacy of the scaffold, thereby lowering the required therapeutic dose.38, 39  We 

have previously reported on the ability of NO-releasing alkyl chain-modified dendrimers to 

eradicate both Gram-negative and Gram-positive biofilms as a function of dendrimer generation 

(i.e., size) and modification.35, 36  Herein, we report both the fabrication of electrospun composite 

polyurethane fibers doped with NO-releasing alkyl chain- or quaternary ammonium (QA)-

modified poly(amidoamine) dendrimers and evaluation of the antibacterial action of the resulting 

dendrimer- and NO-releasing fibers against both Gram-negative and Gram-positive bacteria.  Our 

study investigated the promise of dual-action dendrimer biocide release from electrospun 

polyurethane fibers as potential antibacterial wound dressings. 

6.2 Materials and Methods 

Triethylamine (TEA), rhodamine B isothiocyanate (RITC), dimethyloctylamine, epichlorohydrin, 

phenazine methosulfate (PMS), fetal bovine serum (FBS), trypsin, 3-(4,5-dimethylthiazol-2-yl)-5-

(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt (MTS), penicillin 

streptomycin (PS), and propidium iodide (PI) were purchased from Sigma-Aldrich (St. Louis, 

MO).  Methyl acrylate, 1,2-epoxyoctane, and ethylenediamine (EDA) were purchased from the 

Aldrich Chemical Company (Milwaukee, WI).  Sodium methoxide (5.4 M solution in methanol) 

was purchased from Acros Organics (Geel, Belgium).  Colloidal silica in methanol was obtained 

from Nissan Chemical America Corporation (Houston, TX).  Cellulose ester dialysis membranes 

(500-1000 MWCO) were purchased from Spectrum Laboratories, Inc. (Rancho Dominguez, CA).  

Tecophilic (HP-93A-100) and Tecoflex (SG-80A) polyurethanes were obtained from Thermedics 

(Woburn, MA).  Tecoplast (TP-470) polyurethane was a gift from Lubrizol (Cleveland, OH).  
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Dulbecco's modified Eagle's medium (DMEM) and Dulbecco’s phosphate buffered saline (PBS) 

were obtained from Lonza Group (Basel, Switzerland).  4,5-Diaminofluorescein diacetate (DAF-

2 DA) was purchased from Calbiochem (San Diego, CA).  Tryptic soy broth (TSB), tryptic soy 

agar (TSA), Luria-Bertani (LB) broth, LB, and Mueller Hinton agar were obtained from Becton, 

Dickinson and Company (Franklin Lakes, NJ).  Pseudomonas aeruginosa (P. aeruginosa; ATCC 

#19143), Eschericia coli (E. coli; ATCC #35150), Staphylococcus aureus (S. aureus; ATCC 

#29213), and methicillin-resistant Staphylococcus aureus (MRSA; ATCC #33591) were obtained 

from American Type Tissue Culture Collection (Manassas, VA).  L929 mouse fibroblasts were 

obtained from the UNC Tissue Culture Facility (Chapel Hill, NC).  Nitrogen (N2), argon (Ar), 

carbon dioxide (CO2), and nitric oxide (NO) calibration (25.87 PPM, balance N2) gases were 

purchased from National Welders (Raleigh, NC).  Pure nitric oxide (NO) gas (99.5%) was 

purchased from Praxair (Sanford, NC).  Common laboratory salts and solvents were purchased 

from Fisher Scientific (Fair Lawn, NJ).  Distilled water was purified using a Millipore Milli-Q UV 

Gradient A-10 system (Bedford, MA), resulting in a total organic content of ≤6 ppb and a final 

resistivity of 18.2 mΩ·cm.  Unless noted otherwise, all materials were analytical-reagent grade 

and used as received without further purification. 

6.2.1 Synthesis of QA- and alkyl chain-modified PAMAM dendrimers 

Poly(amidoamine) (PAMAM) scaffolds were synthesized as described previously,35, 40, 41 

by repeated alkylation/amidation steps using methyl acrylate and EDA from an EDA core.  G4 

PAMAM dendrimers were then modified with either octyl or octylQA moieties.  To form octyl-

modified dendrimers,36 G4 PAMAM (100.0 mg) was dissolved in 5 mL methanol, and one 

equivalent of triethylamine (with respect to the molar amount of primary amines) and one molar 

equivalent of epoxyoctane were then added to the vial.  This solution was stirred at room 
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temperature for 3 d.  After reaction completion, excess epoxide was removed in vacuo.  To ensure 

removal of any unreacted epoxide, dendrimers were re-dissolved in 5 mL methanol and kept under 

vacuum overnight.  Complete removal of the epoxide was verified via 1H NMR spectroscopy 

(Bruker 400 MHz spectrometer; Billerica, MA).   

To form octyl QA-modified dendrimers, quaternary ammonium epoxides (octylQA-

epoxide) were first synthesized as described previously.34, 37  Briefly, 0.04 mmol epichlorohydrin 

was reacted with 0.01 mmol N,N-dimethyloctylamine at room temperature overnight (~18 h).  The 

mixture was then added dropwise to cold ether while sonicating, and the solid/viscous liquid 

octylQA-epoxide was collected via centrifugation (810×g, 5 min).  The supernatant was decanted, 

and the octylQA-epoxide was washed with 50 mL of cold ether and sonicated extensively.  This 

washing procedure was repeated three times before drying the product in vacuo.  A ring-opening 

reaction was then carried out between the octylQA-epoxide and the terminal primary amines of 

the PAMAM dendrimers.  G4 PAMAM (100.0 mg) was dissolved in 5 mL of methanol.  One 

equivalent of triethylamine (with respect to the molar amount of primary amines) and 2.5 molar 

equivalents of octylQA-epoxide were then added to the vial.  The solution was stirred at room 

temperature for 4 d.  Solvent was then removed in vacuo.  The dendrimers were subsequently 

dissolved in water, followed by dialysis against water overnight and lyophilization. 

Representative 1H NMR data of modified G4 PAMAM included the following peaks.  G4 

octyl: 1H NMR (400 MHz, MeOD, δ) 2.29 (s, NCH2CH2C(O)NH), 1.35–1.23 (m, 

NHCH2CH(OH)(CH2)5CH3),  0.83–0.80 (t, NHCH2CH(OH)C(H2)5CH3).  G4 octylQA: 1H NMR 

(400 MHz, CD3OD, δ) 2.31 (s, NCH2CH2C(O)NH), 1.80 (s, CH2N
+(CH3)2CH2CH2(CH2)5CH3), 

1.31–1.23 (m, CH2N
+(CH3)2CH2CH2(CH2)5CH3), 0.83 (t, CH2N

+(CH3)2CH2CH2(CH2)5CH3).   

6.2.2 N-Diazeniumdiolation of QA- and alkyl chain-modified PAMAM dendrimers 
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To form N-diazeniumdiolate NO donors on the modified dendrimer scaffold, single-action 

G4 PAMAM (30 mg) were added to 1 mL solutions of 1:1 MeOH:THF.  One molar equivalent 

(e.g., with respect to the molar amount of primary amines) of sodium methoxide was added after 

mixing (vortexing) the solutions.  The resulting dendrimer solutions were placed in a stainless steel 

reactor with continuous magnetic stirring and connected to an in-house NO reactor.  The vessel 

was flushed with Ar three times to a pressure of 7 bar, followed by three longer Ar purges (10 min) 

to remove trace oxygen from the solutions.  Following deoxygenation, the reactor was pressurized 

to 10 bar with NO gas pre-scrubbed with KOH.  The pressure was maintained at 10 bar for 4 d, 

after which the solutions were again purged with Ar three times for short durations followed by 

extended purges (3 × 10 min) to remove unreacted NO.  Solvent was removed in vacuo, and the 

NO-releasing dendrimers were dissolved in anhydrous methanol in a 1 dram glass vial, capped and 

parafilmed, and stored at -20 °C. 

6.2.3 Fabrication of electrospun polyurethane fibers 

All polyurethane solutions used were prepared at a concentration of 10 wt% (100 mg/mL) 

in 3:1:1 THF:DMF:MeOH.  Polyurethane solutions containing control and NO-releasing 

dendrimers (5, 15, or 25 mg/mL) were prepared by first dissolving the polyurethane in THF and 

DMF, followed by the addition of dopant solution in the remaining equivalent of methanol.   

Electrospun fibrous mats were fabricated using a custom electrospinning apparatus42, 43 

consisting of a ES20P-20W High Voltage power supply (Gamma High Voltage Research, Ormond 

Beach, FL), two Kent Scientific Genie Plus syringe pumps (Torrington, CT), and a grounded steel 

collector plate covered in aluminum foil placed at a 45° angle to the needle.  All fibers were 

fabricated using an applied voltage of 15 kV and 15 cm tip-to-collector distance.  Composite 

polyurethane fibers were formed using a co-axial needle (Ramè-Hart; Succasunna, NY) composed 
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of two concentric needles (inner gauge: 22, outer gauge: 13).  The co-axial needle was supplied by 

both individual core and sheath solutions, each connected to a separate syringe pump (Appendix).  

Core solutions were composed of either 10 wt% Tecophilic (HP 93A) or Tecoflex (SG 80A) 

polyurethanes doped with control or NO-releasing dendrimer (blank fibers contained no dendrimer 

dopant in the core solution).  Sheath solutions were composed of 10 wt% Tecoplast (TP 470) or 

Tecoflex (SG 80A) polyurethanes with no dendrimer dopant.  Fibers prepared with a SG 80A 

sheath and HP 93A core were doped with either 5, 15, or 25 mg/mL dendrimer, while the core 

solutions for all fibers prepared using a TP 470 sheath were doped with 25 mg/mL dendrimer.  To 

form fibrous mats, 0.5 mL core solution (10 µL/min flow rate) and 1.5 mL sheath solutions (30 

µL/min flow rate) were electrospun and collected on aluminum foil.  After collection, fibers were 

cut using a 1.27 cm-diameter hole-punch to yield individual “coupon” samples with a resultant 

surface area of 1.267 cm2.  Each fiber sample was weighed, and any sample with a mass below 1 

mg or above 3.5 mg was excluded. 

6.2.4 Characterization of NO storage and release 

Nitric oxide release was evaluated in real-time in deoxygenated PBS (pH 7.4, 37 °C) using 

a Sievers NOA 280i chemiluminescence NO analyzer (NOA, Boulder, CO).44  Prior to analysis, 

the NO analyzer was calibrated with air passed through a NO zero filter (0 ppm NO) and a 25.87 

ppm NO standard gas (balance N2).  Fibrous mat coupons (surface area: 1.267 cm2) or 0.5 mg 

aliquots of N-diazeniumdiolate-functionalized PAMAM in methanol were added to 30 mL 

deoxygenated PBS to initiate NO release.  Nitrogen was flowed through the solution at a flow rate 

of 80 mL/min to carry the liberated NO to the analyzer.  Additional nitrogen flow was supplied to 

the flask to match the collection rate of the instrument at 200 mL/min.  Nitric oxide analysis was 
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terminated when NO levels decreased to below 1 pmol NO/cm2 for fibers (9.7 ppb) or 10 ppb 

NO/mg dendrimer.   

Nitric oxide release was also measured in 50 mM HCl at 37 °C to calculate the mass of 

dendrimer encapsulated within the fiber (µg dendrimer/mg fiber).  The total amount of dendrimer 

dopant incorporated into the fibers (t[dendrimer]) was determined by the following equation, 

where t[NO]dendrimer is the total NO payload released per milligram of dendrimer scaffold and 

t[NO]HCl is the total NO payload released per milligram of fiber in 50 mM HCl: 

                      t[dendrimer] = t[NO]HCl / t[NO]dendrimer x 1000                   Eq. 6.1 

6.2.5 Characterization of electrospun polyurethane fibers 

Fiber diameter and morphology were assessed using a FEI Helios 600 Nanolab Dual Beam 

System (Hillsboro, OR) without additional metal coating.  Fiber diameters were determined using 

NIH ImageJ software (Bethesda, MD) and averaged for at least 300 measurements over three 

separate fiber samples. 

Water absorption capabilities of the electrospun fibrous mats were assessed by comparing 

weights of the dry and hydrated samples.  Dry electrospun fibers were weighed before soaking in 

Milli-Q water overnight at room temperature.  The hydrated samples were removed from water, 

and the excess surface water was removed by dabbing with a Kimwipe before weighing the 

samples again.  Water absorption was calculated by the following equation, where WH is the 

weight of the hydrated sample and WD is the initial weight of the dry fiber mat: 

                     Water Absorption (%) = [(WH – WD)/WD] x 100%              Eq. 6.2 

The porosity of the electrospun fibrous mats was determined using the liquid intrusion 

method.45, 46  Fiber mats were weighed prior to immersion in 100% ethanol at room temperature 

overnight to allow diffusion of ethanol into the void volume.  After this incubation, fibers were 
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removed from ethanol, dabbed with a Kimwipe, and weighed again.  Porosity was calculated by 

dividing the volume of intruded ethanol (determined by the change in mass and the density of 

ethanol, 0.789 g/mL) by the total volume after intrusion (volume of ethanol and fibers, determined 

by initial fiber mass and polyurethane density, 1.1 g/mL). 

Leaching assays for determining dendrimer delivery were performed by doping RITC-

tagged G4 PAMAM dendrimers into the fibers.  Fluorescently-labeled G4 PAMAM dendrimers 

were synthesized as described previously.36, 37, 47  Briefly, 100 mg G4 PAMAM was added to a 

vial containing one molar equivalent of RITC per mole dendrimer (3.8 mg) in 2 mL methanol.  

One equivalent of triethylamine (with respect to the molar amount of primary amines) was then 

added to the vial.  The solution was stirred for 24 h in the dark, followed by solvent removal in 

vacuo.  Dendrimers were dissolved in water, dialyzed against water (3 d), and then lyophilized.  

The above procedures for dendrimer modification and fiber mat fabrication were performed in the 

dark to yield RITC-tagged electrospun fibrous mats.  Individual fiber mats were incubated in 500 

µL PBS (pH 7.4, 37 °C) for 30 min, 2 h, 6 h, and 24 h.  After incubation, 100 µL of each solution 

was transferred to a black 96-well plate in triplicate.  The fluorescence intensity was measured 

using a BMG PolarStar Omega fluorescence plate reader (Ortenberg, Germany).  Calibration 

standards were prepared at concentrations ranging from 0 – 200 µg/mL in triplicate.   

6.2.6 Zone of inhibition assays 

Lyophilized P. aeruginosa, E. coli, S. aureus, and MRSA were reconstituted in tryptic soy 

broth (TSB) or Luria-Bertani (LB) broth (E. coli) and cultured overnight at 37 °C.  A 0.5 mL 

aliquot of culture was grown in 50 mL TSB or LB broth to a concentration of 108 colony forming 

units per mL (cfu/mL), collected by centrifugation (2355×g), resuspended in 15% glycerol (v/v in 

PBS), and stored at -80 °C in 1 mL aliquots.  For daily experiments, colonies of bacteria culture 
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were inoculated in 2 mL TSB or LB broth overnight at 37 °C and recultured in fresh TSB or LB 

broth (50 mL) the next day. 

The antibacterial action of the electrospun fibers was evaluated using a corrected zone of 

inhibition test.48  Briefly, P. aeruginosa, E. coli, S. aureus, and MRSA were cultured in TSB or 

LB broth (E. coli) to a concentration of 108 cfu/mL, and 50 µL of the bacterial suspension in broth 

was spared over Mueller Hinton agar plates.  Individual fiber mat samples (blank, control, and 

NO-releasing) were placed on the bacteria-containing agar.  The plates were then incubated at 37 

°C overnight.  Zones of growth inhibition (ZOI) surrounding the fibers were measured (in mm) 

from the edge of the sample using calipers.  Of note, no plate dehydration was observed.  All zone 

of inhibition tests were repeated in triplicate. 

6.2.7 Bacterial log reduction assays 

An adapted time-kill kinetic log reduction assay was also employed to further assess the 

antibacterial action of the electrospun fibrous mats.48  Briefly, P. aeruginosa, E. coli, S. aureus, 

and MRSA were cultured in TSB or LB broth (E. coli) to a concentration of 108 cfu/mL.  Individual 

fiber mat samples (blank, control, and NO-releasing) were added to 1 dram glass vials and 

sterilized under UV light for 2 h prior to the bacteria assays.  Fibers were exposed to 200 µL 108 

cfu/mL bacteria in broth for either 2 or 24 h at 37 °C with light agitation.  Untreated controls 

(blanks) were included in each experiment to ensure the bacteria remained viable over the 2 or 24 

h assays.  After 2 h exposure, the bacteria solutions were vortexed and a 10 µL aliquot was removed 

for dilution and plating on tryptic soy agar (TSA) or LB agar (E. coli) plates.  The bacteria and 

fiber solutions were then returned to 37 °C with light agitation for the remainder of the 24 h 

incubation.  After exposure, the bacteria solutions were vortexed and then spiral-plated at 100-, 

1000-, and 10,000-fold dilutions on TSA or LB agar plates using an Eddy Jet spiral plater (IUL; 
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Farmingdale, NY).  Bacterial viability was assessed by counting the number of colonies formed 

on the agar plate using a Flash & Go colony counter (IUL; Farmingdale, NY).  Log reductions in 

bacterial viability were determined by the following equation, where Blank Viability is the 

viability of the unexposed bacterial blank solution and Exposed Viability is the resulting viability 

of bacteria solutions exposed to either blank, control, or NO-releasing electrospun fibers: 

                      Log Reduction = log10
𝐵𝑙𝑎𝑛𝑘 𝑉𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑐𝑓𝑢/𝑚𝐿)

𝐸𝑥𝑝𝑜𝑠𝑒𝑑 𝑉𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑐𝑓𝑢/𝑚𝐿)
             Eq. 6.3 

6.2.8 Fluorescence microscopy for detection of intracellular NO and cell death 

P. aeruginosa was cultured in TSB to a concentration of 108 cfu/mL, collected by 

centrifugation (2355×g), and resuspended in PBS containing 30 µM PI and 20 µM DAF-2 DA at 

108 cfu/mL.  Nitric oxide-releasing fibers were exposed to 200 µL P. aeruginosa in PBS/PI/DAF-

2 DA for 30 min.  Every 5 min, a 10 µL aliquot of the bacteria solution was deposited on a glass 

slide with a coverslip for wide-field fluorescence imaging.  An Olympus iX80 inverted microscope 

with an Olympus light source (Chroma) and Hamamatsu ORCA detector were used to image 

bacteria on slides.  Fluorescent PI images (red) were obtained using a BP 542 – 582 nm excitation 

and BP 604 – 644 nm emission filters.  Green DAF-2 images were obtained using BP 464 – 500 

nm emission and BP 516 – 556 nm excitation filters.  Images were acquired using Metamorph 

software and a 0.45 NA lens with a 20× objective.   

6.2.9 In vitro cytotoxicity 

L929 mouse fibroblasts were grown in DMEM supplemented with 10 vol% FBS and 1 

wt% PS and incubated in 5 vol% CO2 under humidified conditions at 37 °C.  After reaching 80% 

confluency, cells were trypsinized and seeded onto tissue culture-treated polystyrene.  To assess 

fiber cytotoxicity, L929 cells were seeded onto tissue culture-treated polystyrene 24-well plates at 

a density of 105 cells/mL, and incubated at 37 °C for 72 h.  The supernatant was then aspirated and 
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replaced with 1 mL of fresh growth medium and the electrospun fiber mats.  Dimethyl sulfoxide 

(10%) was used as a positive control.  After incubation for 2 or 24 h at 37 °C, the fiber mats were 

removed from the wells and the supernatant was aspirated.  Next, 500 µL of a mixture of 

DMEM/MTS/PMS (105/20/1, v/v/v) was added to each well.  After 1.5 h incubation at 37 °C, 100 

µL of the colored solution was transferred to a 96-well plate in triplicate.  The absorbance was 

quantified at 490 nm using a Thermoscientific Multiskan EX plate reader (Waltham, MA), with 

the DMEM/MTS/PMS mixture and untreated cells used as blanks and controls, respectively.  

Results were expressed as percentage of relative cell viability as follows: 

                    % Cell Viability = [(Abs490 – Absblank)/(Abscontrol – Absblank)] x 100%             Eq. 6.4 

To determine dendrimer toxicity, L929 cells were seeded onto tissue culture-treated 

polystyrene 96-well plates at a density of 2 x 104 cells/mL, and incubated at 37 °C for 72 h.  The 

supernatant was then aspirated and replaced with 200 µL of fresh growth medium and 50 µL of 

varying concentrations of dendrimer in PBS.  Dimethyl sulfoxide (10%) and 50 µL PBS were used 

as positive and negative controls, respectively.  After 2 or 24 h incubation at 37 °C, the supernatant 

was aspirated and 120 µL of a mixture of DMEM/MTS/PMS (105/20/1, v/v/v) was added to each 

well.  After 1.5 h incubation at 37 °C, the absorbance of the colored solutions was quantified at 

490 nm with percent cell viability determined using Eq. 4.  A killing curve was constructed for 

each dendrimer modification by plotting % cell viability versus dendrimer concentration.  IC50 

values, defined as the dendrimer concentration that corresponded to a 50% reduction in cell 

viability, were determined from each plot. 

 

 

 



207 

 

6.3 Results and Discussion 

6.3.1 Synthesis and characterization of NO-releasing G4 dendrimers 

Generation 4 (G4) poly(amidoamine) (PAMAM) dendrimers were modified with octyl 

alkyl chains or octylQA moieties through a ring-opening reaction at the peripheral primary amines 

as described previously (Scheme 1).36, 37  Covalent chemical modifications were confirmed using 

1H NMR spectroscopy.  On average, 40 – 50 functional groups were added to the G4 scaffold, 

resulting in ~70% functionalization of the terminal primary amines (Appendix).   

The resulting secondary amines were converted to N-diazeniumdiolate NO donors under high 

pressures of NO.  Nitric oxide storage was tuned by adjusting the ratio of THF:methanol, resulting 

in similar NO payloads of ~1 µmol/mg for each scaffold (Appendix).  The NO-releasing octyl-

modified dendrimers exhibited a half-life (t1/2) of ~25 min and duration of 9 h.  In contrast, G4 

octylQA/NO dendrimers were characterized by slower NO-release kinetics, with an initial max 

flux about half that of the G4 octyl/NO dendrimers and extended NO-release (t1/2 of 115 min and 

duration exceeding 16 h).  This longer NO release suggests that the permanent positive charge of 

the QA moiety stabilizes the N-diazeniumdiolate group.  The effects of dendrimer NO-release 

kinetics on the NO-release characteristics of electrospun polyurethane fibers could thus be 

evaluated due to the variation of dendrimer half-lives. 

6.3.2 Fabrication and characterization of electrospun polyurethane fibers 

To fabricate antibacterial wound dressings, electrospun fibers were formed from three 

medical grade thermoplastic polyurethanes.  Tecoplast (TP 470), a rigid, aromatic polyurethane, 

was the most hydrophobic system evaluated.  Tecoflex (SG 80A) and Tecophilic (HP 93A) 

represent hydrophilic aliphatic polyurethanes, with HP 93A, a polyether-based polyurethane, 

demonstrating the greatest water uptake capabilities.  The dendrimer-containing core solution was   
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Scheme 6.1 Reaction of G4 PAMAM scaffold with either (A) octyl alkyl chain or (B) octylQA 

epoxides to yield G4 octyl and G4 octylQA dendrimers, respectively, followed by reaction with 

high pressures of NO to generate NO-releasing dendrimers. 
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composed of either SG 80A or HP 93A aliphatic polyurethanes, while the outer (non-dendrimer-

containing) sheath polymer was either SG 80A or TP 470.  For clarity, the polymer compositions 

are denoted Sheath/Core-Dopant; for example, a G4 octyl-doped HP 93A core combined with a 

TP 470 sheath is referred to as TP 470/HP 93A-G4 octyl.  Fibers were fabricated using a custom 

electrospinning apparatus with a co-axial setup using concentric needles to introduce both core 

and sheath polymer solutions (Appendix).   

Blank (no dendrimer dopant), control (non-NO-releasing), and NO-releasing composite 

electrospun polyurethane fibers were prepared using three polymer compositions (i.e., SG 80A/HP 

93A, TP 470/SG 80A, and TP 470/HP 93A) and two dendrimer modifications (i.e., G4 octyl and 

G4 octylQA).  The resulting semi-porous electrospun fibrous mats exhibited smooth morphology 

with little to no bead formation (Figure 6.1).  Altering the polyurethane composition greatly 

influenced the macroscopic physical characteristics of the electrospun fiber mats (Figure 6.2).  

Fiber mats fabricated using SG 80A as either the core or sheath polyurethane were elastic and 

adhered to each other.  Alternately, the TP 470/HP 93A electrospun fibers maintained good shape 

over time and were easier to handle.  Fiber diameter distributions for polyurethane compositions 

were more dependent on the identity of the sheath polyurethane rather than the core (Figure 6.3).  

The SG 80A/HP 93A fiber diameters skewed larger, averaging around 600 nm compared to 400 – 

450 nm for both TP 470 sheath compositions.  These differences in fiber diameter were attributed 

to greater kinematic viscosity of the Tecoflex polyurethane solutions.43   

The allowance of gaseous and fluid exchanges represents an important characteristic for 

wound dressings.4  A porous nanofiber structure allows for adequate wound respiration and helps 

maintain an appropriately moist environment.  The porosity of dendrimer-doped electrospun 

fibrous mats was evaluated via liquid intrusion by measuring the ability of a non-wetting liquid to  
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Figure 6.1 Scanning electron micrographs of blank, control, and NO-releasing G4 octyl-doped 

electrospun SG 80A/HP 93A, TP 470/SG 80A, and TP 470/HP 93A fibers. 
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Figure 6.2 Image of electrospun fiber substrates (1.267 cm2).  From left to right: SG 80A/HP 93A, 

TP 470/SG 80A, and TP 470/HP 93A. 
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permeate the pores.45, 46  The SG 80A/HP 93A fibers exhibited greater mat porosity compared to 

fibers containing a TP 470 sheath (Table 6.1).  The cause of this substantial decrease in porosity, 

from ~70 to 30 – 50%, when moving from the SG 80A to TP 470 sheath polyurethane is unclear 

but most likely the result of larger fiber diameter distributions of the SG 80A/HP 93A fibers.  

Further, composite fibers containing TP 470 exhibited similar porosities regardless of core 

polyurethane.  While adding dendrimers to the TP 470/SG 80A fibers increased fiber mat porosity 

by ~10%, control and NO-releasing TP 470/HP 93A fibers exhibited porosities ~10% lower than 

blank fibers.  Overall, the electrospun fiber characteristics were more influenced by the 

composition of the sheath polymer than either the core polyurethane or dendrimer dopant. 

The absorption of water by electrospun fibers is an indicator of how efficiently the wound 

dressings can remove fluid from highly exuding wounds, preventing wound stagnation.4, 22  

Although all of the fiber samples demonstrated sufficient water uptake capabilities (>100%), SG 

80A/HP 93A fibers absorbed roughly half the water as fibers prepared using a TP 470 sheath 

(Table 6.1).  This result was initially surprising due to the greater hydrophobicity of the TP 470 

polyurethane compared to SG 80A.  However, the water absorption capabilities of the electrospun 

polyurethane fibers correlated directly with the percent porosity exhibited by the fibrous mat.  

Electrospun SG 80A/HP 93A fiber mats demonstrated both the largest porosity (~70%) and modest 

water absorption (~130%), while fibers prepared using a TP 470 sheath had lower porosities (30 – 

50%) and absorbed more water (>300%).  Control and NO-releasing TP 470/HP 93A fibers 

exhibited ~10% lower porosity than the blank fibers with enhanced water absorption (150 to 

~350%).  The increased water uptake with lower fiber mat porosity is attributed to the greater 

surface area available per volume allowing for more efficient absorption of water into the 

individual fibers.   
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Total NO and dendrimer storage were determined by measuring the NO release under acidic 

conditions (50 mM HCl).  Despite doping the core polyurethane solution with the same dendrimer 

concentration (25 mg/mL), total dendrimer incorporation varied dramatically between 

polyurethane compositions (Table 6.2).  SG 80A/HP 93A-G4 octyl/NO fibers demonstrated the 

largest dendrimer storage (~110 µg/mg), followed by the TP 470/SG 80A-G4 octyl/NO (~80 

µg/mg) and the TP 470/HP 93A-G4 octyl/NO (~60 µg/mg) fibers.  Additionally, dendrimer 

incorporation varied between dendrimer modifications, with the TP 470/HP 93A-G4 octylQA/NO 

fibers exhibiting the second largest storage (~95 µg/mg).  The identity of the core or sheath 

polyurethane had no clear effect on the amount of dendrimer incorporated into the fibers, 

suggesting the dendrimer loading cannot be projected prior to fiber fabrication due to potential 

dendrimer loss during the electrospinning process.  However, the total dendrimer incorporation 

could be tuned by varying the concentration of dendrimer in the initial core polyurethane solution.  

Doping G4 octyl/NO dendrimers into SG 80A/HP 93A fibers at initial concentrations of 5, 15, and 

25 mg/mL led to greater total dendrimer incorporation with increasing dendrimer concentration, 

highlighting the tunability of dendrimer loading within electrospun fibers.  Due to the low 

dendrimer loading within the 5 mg/mL SG 80A/HP 93A-G4 octyl/NO fibers (~5 µg/mg), only the 

15 and 25 mg/mL compositions were further evaluated. 

To evaluate dendrimer delivery from composite polyurethane fibers, control and NO-

releasing dendrimers were modified with a fluorescent RITC tag prior to electrospinning.  The 

resulting RITC-containing electrospun fiber mats (Appendix) were soaked in PBS to quantify the 

amount of dendrimer released over 24 h.  Impact of the fluorescent label on the scaffold was 

minimized by limiting the amount of RITC incorporated to one molecule per dendrimer scaffold 

(~3% of G4 PAMAM mass).  For all of the composite polyurethane fibers, most of the dendrimer  
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Figure 6.3 Histograms depicting fiber diameter distribution (nm) for blank, control, and NO-

releasing G4 octyl-doped electrospun SG 80A/HP 93A, TP 470/SG 80A, and TP 470/HP 93A 

fibers. 
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Table 6.1 Characterization of co-axial electrospun polyurethane fibers.a 

 

Substrate 

Mass 

(mg) 

Fiber 

Diameter 

(nm) 

Porosity 

(%) 

Water 

Absorption 

(%) 

SG 80A/HP 93A 1.41 ± 0.40 645 ± 292 71.4 ± 8.3 128 ± 41 

SG 80A/HP 93A-G4 octyl 1.58 ± 0.34 585 ± 228 78.0 ± 4.0 145 ± 26 

SG 80A/HP 93A-G4 octyl/NO 1.63 ± 0.60 590 ± 217 70.1 ± 7.4 120 ± 42 

TP 470/SG 80A 1.41 ± 0.25 394 ± 156 29.4 ± 5.0 306 ± 40 

TP 470/SG 80A-G4 octyl 1.74 ± 0.52 412 ± 127 40.3 ± 3.8 397 ± 44 

TP 470/SG 80A-G4 octyl/NO 1.36 ± 0.35 393 ± 157 42.6 ± 4.0 210 ± 48 

TP 470/HP 93A 1.77 ± 0.43 443 ± 152 51.3 ± 4.0 156 ± 70 

TP 470/HP 93A-G4 octyl 1.40 ± 0.28 409 ± 176 37.1 ± 5.0 333 ± 107 

TP 470/HP 93A-G4 octyl/NO 1.99 ± 0.78 433 ± 165 37.4 ± 8.3 379 ± 80 

TP 470/HP 93A-G4 octylQA 1.68 ± 0.36 440 ± 182 45.9 ± 5.3 435 ± 68 

TP 470/HP 93A-G4 octylQA/NO 1.82 ± 0.55 418 ± 155 39.0 ± 10.5 335 ± 90 
aFor all measurements, n ≥ 3 pooled experiments.  
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Table 6.2 Total nitric oxide storage and dendrimer encapsulation by fiber mass.a 

 
[Dendrimer]b 

(mg/mL) 

t[NO]c 

(nmol/mg) 

t[NO]HCl
d 

(nmol/mg) 

t[dendrimer]e 

(µg/mg) 

SG 80A/HP 93A-G4 octyl/NO 5 1.8 ± 0.8 3.8 ± 0.4 5 ± 1 

SG 80A/HP 93A-G4 octyl/NO 15 26.0 ± 3.6 35.0 ± 5.2 42 ± 6 

SG 80A/HP 93A-G4 octyl/NO 25 72.3 ± 9.0 93.8 ± 7.4 111 ± 10 

TP 470/SG 80A-G4 octyl/NO 25 42.4 ± 4.4 71.1 ± 8.3 81 ± 6 

TP 470/HP 93A-G4 octyl/NO 25 27.3 ± 4.1 51.0 ± 12.7 63 ± 13 

TP 470/HP 93A-G4 octylQA/NO 25 44.7 ± 11.0 88.8 ± 18.9 94 ± 23 

aFor all measurements, n ≥ 3 pooled experiments. bDendrimer concentration in the original 

polymer solution. cTotal NO payload released per mg of fiber in PBS (pH 7.4). dTotal NO payload 

released per mg of fiber in 50 mM HCl. eTotal amount of dendrimer encapsulated per mg of fiber 

(determined by total NO release in 50 mM HCl).   
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delivery occurred over the first 2 h, with only a slight increase in dendrimer release over the 

remaining 24 h (Figure 6.4).  Of note, an insignificant increase in dendrimer delivery was observed 

after 7 d, indicating the majority of dendrimer release is achieved during the first 24 h (data not 

shown).   

The polyurethane composition dramatically influenced the rate of control dendrimer 

delivery from composite electrospun fibers.  Fibers containing a SG 80A sheath were characterized 

by greater delivery of control dendrimers than either of the corresponding fibers with TP 470 as 

the sheath polyurethane (Figure 6.4 A-B).  Both the 15 and 25 mg/mL SG 80A/HP 93A-G4 octyl 

fibers exhibited similar dendrimer release (~30 µg/mL), although it corresponded to 65 and 30% 

of the total incorporated dendrimer, respectively.  Alternately, control TP 470/HP 93A and TP 

470/SG 80A fibers release dendrimer doses corresponding to ~10 and ~20% of the total 

incorporated dendrimer, respectively, indicating both core and sheath polyurethane identity 

influence the rate of dendrimer delivery.  The decreased dendrimer release exhibited by the TP 

470/SG 80A and TP 470/HP 93A fibers compared to the fibers containing an SG 80A sheath is 

attributed to the more rigid and hydrophobic TP 470 polyurethane acting as a more effective barrier 

layer compared to the aliphatic SG 80A.  Further, the greater release of control G4 octyl dendrimers 

from TP 470/SG 80A fibers compared to TP 470/HP 93A fibers is attributed to greater charge 

stabilization of the dendrimers within the more hydrophilic, polyether-based HP 93A 

polyurethane.   

Release of the NO-releasing dendrimers was dependent on the amount of dendrimer 

incorporated and sheath polyurethane, with the fibers containing an SG 80A polyurethane sheath 

resulting in greater dendrimer release.  Indeed, the 25 mg/mL SG 80A/HP 93A-G4 octyl/NO fibers 

delivered the largest total dendrimer dose (~60 µg/mg), representing ~50% of the total dendrimer 
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storage.  While the remaining G4 octyl/NO-doped fibers exhibited similar dendrimer release (~40 

µg/mg), this amount corresponded to ~55% of the total incorporated dendrimer for the fibers 

composed using a TP 470 sheath and ~100% delivery for the 15 mg/mL SG 80A/HP 93A-G4 

octyl/NO fibers, again demonstrating that the aliphatic SG 80A provides a less effective barrier 

layer than the hydrophobic TP 470 polyurethane. 

Larger doses of NO-releasing dendrimer were delivered than control dendrimers for all of 

the polyurethane compositions.  The N-diazeniumdiolate NO donor is zwitterionic and thus may 

destabilize the dendrimer scaffold within the polyurethane fibers relative to control dendrimers 

due to an overall increase in electrostatic charge.49  In a similar manner, control and NO-releasing 

TP 470/HP 93A-G4 octylQA fibers delivered greater dendrimer doses compared to the G4 octyl 

system (Figure 6.4 C), which lacks a cationic QA moiety.  Dendrimer release rates were clearly 

dependent on the resulting charge of the dendrimer scaffold after modification (e.g., QA moiety 

or N-diazeniumdiolate), with increased charge resulting in decreased dendrimer stability within 

the polyurethane fibers and faster delivery. 

Similar to dendrimer delivery, NO-release kinetics of the composite electrospun fibers was 

found to be dependent on both the polyurethane identity and dendrimer modification.  To evaluate 

NO-release kinetics from composite electrospun fibers under physiological conditions (pH 7.4, 37 

°C), fiber mats were cut into circular coupons with a standard surface area (1.27 cm2), and NO 

release was measured in real-time via chemiluminescence. 

Regardless of polyurethane composition, all of the NO-releasing fibers demonstrated an 

initial maximum burst of NO followed by a steady decline in release (Appendix).  The initial NO 

burst for both of the SG 80A/HP 93A-G4 octyl/NO fiber compositions was higher than that for 

either of the fibers containing a TP 470 sheath (Table 6.3).  This difference in initial NO flux was 
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attributed to the aliphatic SG 80A polyurethane being a less effective barrier layer to both water 

and dendrimers, leading to a faster release of dendrimers in solution and greater water access for 

N-diazeniumdiolate dissociation.  Further, while the 15 mg/mL SG 80A/HP 93A-G4 octyl/NO 

fibers exhibited similar NO totals as the G4 octyl/NO-doped fibers containing a TP 470 sheath 

(~45 nmol/cm2), they demonstrated faster NO-release kinetics.  Indeed, the SG 80A/HP 93A-G4 

octyl/NO fibers had a shorter half-life (22 min) and duration (2.2 h) than either of the fibers 

fabricated using a TP 470 sheath (half-life ~40 min, duration ~3 h), indicating the sheath 

polyurethane has a greater influence on fiber release kinetics than the core polyurethane identity. 

Between the two SG 80A/HP 93A-G4 octyl/NO compositions, both NO-release totals and kinetics 

were dependent on total dendrimer incorporation.  The 25 mg/mL composition exhibited larger 

total NO storage (87 versus 45 nmol/cm2) and longer NO-release half-life (36 versus 22 min) and 

duration (4.2 versus 2.2 h) than the 15 mg/mL fibers, demonstrating the ability to tune NO-release 

characteristics as well as dendrimer delivery for the electrospun fibers.  Similarly, the TP 470/HP 

93A-G4 octylQA/NO fibers exhibited both a greater NO-release half-life (102 min) and duration 

(~7 h) relative to the G4 octyl/NO-containing fibers.  This was attributed to the extended NO-

release properties characteristic of the G4 octylQA/NO scaffold (NO-release half-life ~115 min), 

indicating that fiber NO-release kinetics are highly dependent on the dendrimer modification. 

6.3.3 Zone of inhibition 

P. aeruginosa, E. coli, and S. aureus (including methicillin-resistant strains) are among the 

most commonly isolated species in chronic wounds.2, 50, 51  These pathogens were thus selected to 

evaluate the potential antibacterial action of control and NO-releasing electrospun fibers.  The use 

of two Gram-negative (P. aeruginosa, E. coli) and two Gram-positive (S. aureus, MRSA) bacterial 
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Figure 6.4 (A) Delivery of control (solid line) and NO-releasing (dashed line) G4 octyl dendrimers 

from electrospun SG 80A/HP 93A fibers at 15 (blue) and 25 (purple) mg/mL initial dendrimer 

concentration. (B) Delivery of control (solid line) and NO-releasing (dashed line) G4 octyl 

dendrimers from electrospun SG 80A/HP 93A (blue), TP 470/SG 80A (red), TP 470/HP 93A 

(black) fibers. (C) Delivery of control (solid line) and NO-releasing (dashed line) G4 octyl (square) 

and G4 octylQA (triangle) dendrimers from electrospun TP 470/HP 93A fibers. For all 

measurements, n ≥ 3 pooled experiments with error bars representing standard deviation of the 

mean. 
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Table 6.3 Nitric oxide-release properties for NO-releasing electrospun fibers in PBS (pH 7.4, 37 °C).a 

 
[Dendrimer]b 

(mg/mL) 

[NO]maxc 

(pmol/cm2) 

tmax
d 

(min) 

t[NO]e 

(nmol/cm2) 

t[NO]2h
f 

(nmol/cm2) 

t1/2
g 

(min) 

td
h 

(h) 

SG 80A/HP 93A-G4 octyl/NO 15 21.8 ± 5.7 6.1 ± 2.9 44.6 ± 11.1 43.7 ± 10.2 22.4 ± 3.3 2.2 ± 0.3 

SG 80A/HP 93A-G4 octyl/NO 25 27.6 ± 11.7 6.2 ± 2.2 87.2 ± 19.1 71.2 ± 17.3 35.7 ± 3.9 4.2 ± 0.8 

TP 470/SG 80A-G4 octyl/NO 25 14.0 ± 2.1 3.3 ± 0.6 46.7 ± 9.5 38.3 ± 7.2 47.8 ± 6.9 3.6 ± 0.5 

TP 470/HP 93A-G4 octyl/NO 25 17.2 ± 6.2 4.0 ± 1.6 44.3 ± 10.1 39.9 ± 9.1 39.0 ± 4.5 2.9 ± 0.4 

TP 470/HP 93A-G4 octylQA/NO 25 10.6 ± 1.5 4.3 ± 0.6 66.5 ± 16.5 36.2 ± 5.6 102.4 ± 24.6 6.8 ± 1.5 

 aFor all measurements, n ≥ 3 pooled experiments. bDendrimer concentration in the original polymer solution. cMaximum 

flux of NO release. dTime required to reach maximum flux. eTotal NO payload released per surface area.  fNO payload 

released after 2 h. gNO release half-life. hDuration of NO release.   2
2
1
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strains allowed for an initial evaluation of the effect of Gram designation on antibacterial action.   

As expected, electrospun composite polyurethane fibers prepared without dendrimers (i.e., 

blanks) were void of antibacterial action.  Nearly every control and NO-releasing polyurethane 

composition exhibited low antibacterial activity (ZOI <1 mm) against each of the Gram-negative 

strains, with only the TP 470/SG 80A-G4 octyl/NO fibers displaying an inhibition zone of 1.7 mm 

(Table 6.4).  Moderate bactericidal action was observed against Gram-positive bacteria.  Both 

control and NO-releasing SG 80A/HP 93A-G4 octyl fibers resulted in inhibition zones of ~1 mm, 

while the TP 470/SG 80A-G4 octyl/NO fibers again exhibited greater inhibition zones of 2.0 and 

1.6 mm against S. aureus and MRSA, respectively.  While NO-releasing TP 470/HP 93A fibers 

(i.e., G4 octyl and G4 octylQA) resulted in low to moderate antibacterial action against both Gram-

positive strains (ZOI 0.4 – 0.7 mm), the control TP 470/HP 93A fibers exhibited little to no 

bactericidal activity against either Gram-negative or Gram-positive bacteria (ZOI ≤0.2 mm).  

Despite small inhibition zones, bacterial growth was not observed beneath any of the control or 

NO-releasing fiber samples (Appendix).  The larger zones of inhibition (ZOI >0.6 mm) agree with 

results published by Vogt et al. who demonstrated the antibacterial efficacy of NO-releasing 

nanofibers against S. aureus (ZOI 0.75 – 1.2 mm).52  However, as NO diffuses in all directions, 

not just along the agar surface,52 we evaluated the reduction of bacterial growth in solution in 

conjunction with the zone of inhibition assay to fully assess the antibacterial action of NO-

releasing electrospun polyurethane fiber mats.   

6.3.4 Bacterial log reduction 

For log reduction tests, a compound is considered bactericidal if it reduces bacterial 

viability by at least three orders of magnitude.48, 53  Using this assay, we evaluated the ability of 

blank, control, and NO-releasing TP 470/HP 93A fibers to reduce the viability of P. aeruginosa, 
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Table 6.4 Average zone of inhibition against planktonic bacteria.a 

 
P. aeruginosa 

ZOI (mm) 

E. coli 

ZOI (mm) 

S. aureus 

ZOI (mm) 

MRSA 

ZOI (mm) 

SG 80A/HP 93A-G4 octyl 0.4 ± 0.3 0.5 ± 0.1 1.0 ± 0.1 1.2 ± 0.3 

SG 80A/HP 93A-G4 octyl/NO 0.5 ± 0.3 0.4 ± 0.1 0.9 ± 0.3 0.6 ± 0.1 

TP 470/SG 80A-G4 octyl 0.4 ± 0.5 0.4 ± 0.3 0.2 ± 0.3 0.0 ± 0.0 

TP 470/SG 80A-G4 octyl/NO 1.7 ± 0.3 1.8 ± 0.3 2.0 ± 0.1 1.6 ± 0.2 

TP 470/HP 93A-G4 octyl 0.1 ± 0.3 0.1 ± 0.2 0.2 ± 0.3 0.2 ± 0.3 

TP 470/HP 93A-G4 octyl/NO 0.4 ± 0.5 0.1 ± 0.2 0.7 ± 0.2 0.6 ± 0.1 

TP 470/HP 93A-G4 octylQA 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 

TP 470/HP 93A-G4 octylQA/NO 0.3 ± 0.5 0.6 ± 0.4 0.6 ± 0.2 0.4 ± 0.2 
aFor all measurements, n ≥ 3 pooled experiments. 
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E. coli, S. aureus, or MRSA planktonic cultures as a function of NO-release kinetics and dendrimer 

modification.  These studies were performed under growth conditions (i.e., in nutrient broth) over 

2 and 24 h to determine both the short- and long-term bactericidal action of control and NO-

releasing polyurethane fibers.  Fiber mats displayed high antibacterial activity if they exhibited at 

least a 3-log reduction in bacterial viability, moderate activity for a 1- to 3-log reduction, and low 

activity for <1-log reduction.48 

As expected, blank TP 470/HP 93A fibers did not eradicate bacteria (Appendix), while the 

antibacterial activity of control (i.e., non-NO-releasing) fibers was dependent on the dendrimer 

dopant.  Similar to the zone of inhibition studies, TP 470/HP 93A-G4 octylQA fibers demonstrated 

little to no antibacterial action against any of the pathogens at either timepoint (Table 6.5).  

Alternatively, TP 470/HP 93A-G4 octyl fibers were moderately antibacterial against the majority 

of bacterial strains tested (≥1-log reduction), only exhibiting low antibacterial action against S. 

aureus (<1-log reduction).  The increased bactericidal action of the G4 octyl-doped fibers over 

their G4 octylQA counterparts was surprising due to the lower corresponding dendrimer dose, but 

corroborates our previous observations that alkyl chains are more potent biocides than the QA 

moieties.36, 37  The G4 octyl-doped fibers were generally more effective at shorter timescales, with 

an average 2-log bacterial reduction after 2 h and only a 1-log reduction after 24 h.  This result 

was expected, however, as the majority of the low dendrimer dose is delivered over the first 2 h.   

Nitric oxide-releasing electrospun fibers proved to have greater antibacterial action than either 

blank or control fibers.  Indeed, moderate to high antibacterial activity was consistently observed 

against the bacterial strains evaluated.  The TP 470/HP 93A-G4 octyl/NO fibers demonstrated 

greater bactericidal action against Gram-negative pathogens while TP 470/HP 93A-G4 

octylQA/NO fibers were more effective against the Gram-positive strains, although the differences 
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in efficacy were modest (~1-log difference between the two dendrimer modifications).  In contrast 

to control fibers, the NO-releasing TP 470/HP 93A fibers were more effective at reducing bacterial 

viability at extended time periods (24 h), suggesting the greater doses provided by the NO-

releasing polyurethane fibers allows for continued bactericidal action of the dendrimer scaffold in 

solution.  Of note, at least one of the NO-releasing fiber formulations displayed high antibacterial 

activity against each bacterial strain, with an average 4-log reduction in bacterial viability observed 

at 24 h.  However, as TP 470/HP 93A-G4 octylQA/NO fibers deliver almost twice as much 

dendrimer per milligram of fiber (~35 and 80 µg/mg for G4 octyl/NO and G4 octylQA/NO fibers, 

respectively), the TP 470/HP 93A-G4 octyl/NO fibers exhibited greater broad-spectrum 

bactericidal activity with less antibacterial dendrimer delivery.  The broad-spectrum antibacterial 

action exhibited by the NO-releasing electrospun fibers is noteworthy, particularly in comparison 

to certain commercially available silver-releasing dressings that do not exhibit adequate 

bactericidal action against Gram-positive bacteria.48 

To elucidate the mechanism of antibacterial action for the NO-releasing electrospun fibers, 

DAF-2 DA and PI fluorescent probes were used to visualize intracellular NO and cell membrane 

damage, respectively.  After 5 min exposure to TP 470/HP 93A-G4 octyl/NO fibers, planktonic P. 

aeruginosa bacteria show evidence of both intracellular NO and substantial membrane damage 

(Figure 6.5).  Almost no overlap between the bacterial cells with compromised membranes and 

the localization of intracellular NO was noted, however, indicating the biocidal actions of G4 

octyl-modified dendrimers and NO are exerted independently from one another.  The diminished 

intracellular NO levels after 15 min and undetectable DAF-2 fluorescence at later timepoints 

suggests that any antibacterial activity derived from NO release is only observed at short 

timescales.  As such, the majority of bactericidal action exhibited by the NO-releasing fibers is the  
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Table 6.5 Average log reduction against planktonic bacteria.a 

 P. aeruginosa E. coli S. aureus MRSA 

 2 h 24 h 2 h 24 h 2 h 24 h 2 h 24 h 

TP 470/HP 93A 0.4 ± 0.8 0.6 ± 0.7 0.0 ± 0.2 0.2 ± 0.2 0.0 ± 0.1 -0.2 ± 0.2 0.0 ± 0.1 0.7 ± 0.8 

G4 octyl 2.0 ± 0.6 1.2 ± 1.4 2.5 ± 0.5 1.1 ± 1.0 0.7 ± 1.0 0.4 ± 0.9 1.5 ± 0.8 2.4 ± 1.5 

G4 octyl/NO 4.0 ± 0.8 3.7 ± 0.4 3.0 ± 0.6 4.2 ± 0.8 2.7 ± 0.8 4.3 ± 1.4 2.6 ± 0.6 4.4 ± 1.0 

G4 octylQA 0.5 ± 0.9 0.1 ± 0.5 0.0 ± 0.3 0.2 ± 0.3 0.2 ± 0.4 -0.2 ± 0.1 0.5 ± 0.5 0.4 ± 0.8 

G4 octylQA/NO 4.1 ± 0.9 3.5 ± 1.3 2.3 ± 0.5 2.6 ± 0.8 3.4 ± 0.7 4.7 ± 1.2 3.2 ± 1.0 4.7 ± 0.9 
aFor all measurements, n ≥ 3 pooled experiments. 
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Figure 6.5 Fluorescence microscopy images of P. aeruginosa exposed to TP 470/HP 93A-G4 

octyl/NO fibers for 5 and 15 minutes. DAF-2 green fluorescence depicts intracellular NO, while 

PI red fluorescence indicates compromised membranes.  Threshold inverted for clarity. 
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result of dendrimer-induced bacterial killing, corroborating our observation that greater dendrimer 

delivery from NO-releasing fibers increases bactericidal action compared to control fibers.  

6.3.5 In vitro cytotoxicity 

Toxicity of the electrospun fibers was assessed against L929 mouse fibroblast cells over 2 

and 24 h.  For comparison, the inhibitory concentrations at 50% cell viability (IC50) against L929 

mouse fibroblasts were evaluated for each of the control and NO-releasing dendrimers at both 

timepoints.  As expected, both control and NO-releasing dendrimers were significantly more toxic 

at longer timescales, with IC50 values ranging from 200 – 360 and 40 – 100 µg/mL after 2 and 24 

h, respectively (Appendix).  Due to this toxicity of octyl- and octylQA-modified dendrimers alone 

at relatively low concentrations, we hypothesized that the NO-releasing polyurethane fibers would 

exhibit substantial toxicity to L929 cells after 24 h exposure.  Yet, all of the fiber formulations 

were relatively non-toxic (≥ 80% cell viability) at both timepoints (Figure 6.6, Appendix).  The 

most significant toxicity was observed for the blank and control SG 80A/HP 93A fibers after 24 h 

(86 and 82% cell viability, respectively), while the SG 80A/HP 93A-G4 octyl/NO fibers exhibited 

no reduction in viability.  The reduction in cell viability observed for the blank fibers is attributed 

to cell adhesion to the fiber mat and subsequent removal from the culture plate.  All of NO-

releasing fibers demonstrated at least ~95% cell viability or greater, suggesting that releasing 

antibacterial dendrimers from electrospun fibers over time reduces their toxicity compared to 

direct exposure. 
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Figure 6.6 Viability (%) of L929 mouse fibroblast cells following (A) 2 h or (B) 24 h exposure to 

blank, control, and NO-releasing electrospun SG 80A/HP 93A (blue), TP 470/SG 80A (red), and 

TP 470/HP 93A (gray) fibers. For all measurements, n ≥ 3 pooled experiments with error bars 

representing standard deviation of the mean.  
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6.4 Conclusions 

The utility of dendrimer- and NO-releasing electrospun polyurethane fibers as potential 

antibacterial wound dressings was evaluated as a function of polyurethane composition and 

dendrimer modification.  The dendrimer-doped electrospun fibers exhibited adequate porosity and 

water absorption capabilities that should enable dynamic gas and fluid exchange in a chronic 

wound setting.  The release of antibacterial dendrimers and NO were tuned by adjusting the sheath 

polyurethane hydrophobicity, dendrimer modification, and amount of dendrimer incorporated into 

the fibers.  Fibers fabricated using a less hydrophobic sheath polyurethane were characterized by 

faster dendrimer and NO release, while the charged dendrimer modifications (e.g., N-

diazeniumdiolate or QA moieties) resulted in greater dendrimer delivery.  Similarly, NO-release 

kinetics were dependent on the dendrimer modification, reflecting the relative kinetics of the NO-

releasing dendrimers in solution.  The NO-releasing TP 470/HP 93A fibers demonstrated moderate 

to high antibacterial activity against several Gram-negative and Gram-positive species at both 

short and long timescales, averaging a 4-log reduction in bacterial viability after 24 h exposure.  

Finally, the release of the control and NO-releasing dendrimers from the electrospun fibers reduced 

the overall toxicity of the dendrimer scaffold to mammalian cells, demonstrating the utility of these 

fibers as broad-spectrum antibacterial dressings with minimal cytotoxic effects.   
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CHAPTER 7: 

Summary and Future Directions 

7.1 Summary 

The synthesis and subsequent microbiological evaluation of dual-action poly(amidoamine) 

(PAMAM) dendrimer biocides, followed by the design and preparation of nitric oxide (NO)-

releasing electrospun polyurethane fibers, represented the focus of my dissertation research.  

Chapter 1 provided an overview of the formation and protective mechanisms of biofilm-based 

infections, current research into anti-biofilm therapies, and the need for novel therapeutic agents 

capable of eradicating biofilms.  This introduction chapter further highlighted the benefits of 

combining multiple biocidal mechanisms to create dual-action antibacterial agents with increased 

bactericidal action while minimizing the emergence of bacterial resistance.   

Chapter 2 focused on modifying PAMAM dendrimers of varying generation (i.e., size and 

functional group density) with either quaternary ammonium (QA) moieties or alkyl chains of 

varying chain lengths.  Nitric oxide-release kinetics were dependent on the type of modification 

(e.g., QA moiety or alkyl chain) and alkyl chain length but independent of dendrimer generation.  

Quaternary ammonium-modified PAMAM dendrimers exhibited longer NO-release half-lives 

than their alkyl chain-modified counterparts, suggesting stabilization of the zwitterionic N-

diazeniumdiolate by the cationic QA moiety.  While half-lives for the QA-modified dendrimers 

were dependent on the alkyl chain length due to bilayer vesicle formation in solution, the NO-

release characteristics of the alkyl chain modifications were successfully controlled to yield dual-
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action dendrimers with similar NO totals and release kinetics.  The antibacterial and anti-biofilm 

actions of the resulting single- and dual-action dendrimers were evaluated in subsequent chapters. 

In Chapter 3, the antibacterial activity of QA- and alkyl chain-modified dendrimers was 

determined against planktonic cultures of pathogenic bacteria.  Both single and dual-action QA-

modified PAMAM dendrimers exhibited biocidal activity against P. aeruginosa and S. aureus, 

with longer QA alkyl chains (i.e., octylQA and dodecylQA) proving more effective than shorter 

chain (i.e., methylQA and butylQA) modifications for both G1 and G4 dendrimer scaffolds.  This 

work established the mechanism of biocidal action for the QA-modified dendrimers as a function 

of alkyl chain length and Gram designation that was lacking in previous research.1-3  The NO-

releasing octylQA- and dodecylQA-modified dendrimers exhibited similar bactericidal efficacy as 

their single-action counterparts due to the membrane damage inflicted on bacterial cell membranes 

by the long alkyl chains, greatly increasing their biocidal action but precluding the buildup of 

intracellular NO.  However, the addition of NO-release capabilities both improved the antibacterial 

action of short alkyl chain QA-modified dendrimers markedly and lessened the overall toxicity of 

the dendrimer scaffolds to mouse fibroblast cells, indicating the benefits of the dual-action system.  

The alkyl chain-modified dendrimers exhibited similar trends in bactericidal action as the QA 

modifications, with the shorter alkyl chains proving more effective against P. aeruginosa than S. 

aureus.  The addition of NO release, however, had mixed effects on both the bactericidal action 

and cytotoxicity of the alkyl chain-modified dendrimers.  Although the short alkyl chain-modified 

G1 dendrimers were more bactericidal with NO release, the antibacterial action for most of the 

remaining dendrimer biocides was not affected by NO release.  However, low levels of NO release 

from the more effective scaffolds were found to mitigate toxicity to mammalian cells, regardless 

of improvements to bactericidal action. 



239 

 

These studies were expanded in Chapter 4 to evaluate the ability of dual-action alkyl chain-

modified dendrimers to eradicate pathogenic biofilms as a function of dendrimer generation, alkyl 

chain length, and bacterial Gram class.  Single- and dual-action dendrimers were significantly 

more bactericidal against P. aeruginosa than Gram-positive S. aureus or MRSA biofilms.  Using 

confocal microscopy, this increased efficacy was attributed to the inability of the dendrimer 

biocides to effectively damage cell membranes in S. aureus biofilms compared to P. aeruginosa, 

most likely due to differences in the biofilm architecture.  Dendrimer anti-biofilm efficacy was 

found to be highly dependent on the biocide’s ability to penetrate into the biofilm and compromise 

cell membranes, which was corroborated using confocal microscopy.  Hexyl-modified dendrimers 

were considerably more effective at biofilm eradication than the butyl system, likely due to a 

combination of greater membrane intercalation, cell membrane damage, and biofilm penetration.  

Furthermore, the addition of NO release enhanced the anti-biofilm action of dendrimer biocides 

incapable of efficient membrane disruption and biofilm penetration.  While the majority of 

dendrimer biocides were toxic at concentrations required to eradicate Gram-positive biofilms, 

single- and dual-action G3 hexyl dendrimers were characterized as having a clinically relevant 

therapeutic index against all bacterial strains tested, suggesting the G3 dendrimer scaffold 

represents the ideal balance of dendrimer size and functional group density for optimal biofilm 

eradication with minimal cytotoxicity.  Indeed, NO-releasing alkyl chain-modified G3 dendrimers 

demonstrated moderate to high synergy with vancomycin in the eradication of Gram-positive 

biofilms, reducing the toxicity of the therapy to mouse fibroblasts and indicating the possible 

clinical utility of these scaffolds. 

In Chapter 5, G4 PAMAM dendrimers with various exterior modifications were 

incorporated into single component electrospun polyurethane fibers.  Control and NO-releasing 
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G4 octyl dendrimers were first doped into fibers fabricated from one of three polyurethanes 

exhibiting distinct water uptake capabilities.  While the fiber characteristics (i.e., fiber diameter, 

porosity, water absorption, and electrospinning efficiency) were dependent on polyurethane 

composition, the NO-release characteristics were overall independent of polyurethane 

hydrophobicity.  Electrospun fibers composed of a moderately hydrophilic polyurethane 

(Tecoflex) were doped with dendrimers exhibiting various exterior modifications (e.g., alkyl 

chains and QAs) and a range of NO-release kinetics.  The NO-release properties of the resulting 

electrospun fibers reflected those of the dendrimer dopant, indicating the dendrimer modification 

has greater influence on the NO-release characteristics of single component electrospun fibers than 

the polyurethane composition.  Both control and NO-releasing dendrimer-doped electrospun 

Tecoflex fibers exhibited decreased L929 cell adhesion from blank Tecoflex fibers, with the 

fibroblasts exposed to NO-releasing fibers demonstrating non-adhesive morphologies, suggesting 

NO-releasing electrospun fibers will allow for easy, painless wound dressing removal without 

harming the newly formed skin underneath.  However, the NO-releasing Tecoflex fibers exhibited 

low antibacterial and anti-adhesive action against P. aeruginosa and S. aureus bacteria, limiting 

the clinical utility of these fibers and necessitating the development of fibers capable of greater 

NO storage to allow for enhanced bactericidal action. 

To improve the antibacterial action of NO-releasing electrospun fibers, antibacterial 

dendrimers were incorporated into electrospun composite polyurethane fibers in Chapter 6.  

Composite electrospun fibers were formed from three medical grade thermoplastic polyurethanes 

using a co-axial electrospinning method.  The dendrimer dopant (i.e., G4 octyl or G4 octylQA) 

and polyurethane composition were varied to evaluate the effects of dendrimer modification and 

polyurethane hydrophobicity on fiber mat characteristics, including leaching of the dual-action 



241 

 

antibacterial scaffold into solution.  Release of antibacterial dendrimers from the fibrous mats was 

influenced by the polyurethane composition and dendrimer modification.  Increased 

hydrophobicity of the sheath polyurethane slowed dendrimer release from the electrospun fibers, 

while charged dendrimer modifications resulted in greater overall dendrimer release.  While the 

identity of the core polyurethane had little effect on NO-release kinetics, the use of a more 

hydrophilic sheath polyurethane led to faster NO release due to the sheath polyurethane being a 

less effective barrier layer to both water and dendrimer leaching.  Similar to the results in Chapter 

5, NO-release kinetics were dependent on the dendrimer modification and reflected the kinetics of 

the dendrimers alone in solution.  Nitric oxide-releasing fibers demonstrated moderate to high 

broad-spectrum antibacterial activity against four pathogenic species at both short (2 h) and long 

(24 h) timescales.  The long-term bactericidal action was due to the release of greater dual-action 

dendrimer concentrations from the NO-releasing fibers, averaging a 4-log reduction in bacterial 

viability after 24 h exposure.  Finally, release of the control and NO-releasing dendrimers from 

electrospun fibers reduced their overall toxicity to mammalian cells, demonstrating the utility of 

these fibers as broad-spectrum antibacterial dressings with minimal cytotoxic effects. 

7.2  Future Directions 

The investigations described in the prior chapters established the utility of NO-releasing 

dendrimer scaffolds as dual-action antibacterial agents, including the first report of NO-releasing 

dendrimer efficacy against MRSA biofilms.  Incorporation of these dendrimer biocides into 

electrospun polyurethane fibers proved highly antibacterial (≥3-log reduction in bacterial viability) 

against four strains of pathogenic bacteria.  While the results described herein demonstrate the 

utility of NO-releasing dendrimers as dual-action antibacterial agents alone and as dopants in 

electrospun fibers, substantial work is required before these therapeutics can be employed in a 
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clinical setting.  In this section, techniques to improve the efficacy and utility of NO-releasing 

dendrimers and electrospun fibers will be discussed, as well as studies to further demonstrate the 

ability of these materials to eradicate pathogenic biofilms. 

7.2.1 Studies to increase the antibacterial action of dual-action scaffolds 

In Chapters 3 and 4, the antibacterial and anti-biofilm efficacy of dual-action dendrimer 

scaffolds was evaluated, with control and NO-releasing G3 hexyl dendrimers exhibiting the most 

efficient anti-biofilm action and minimal toxicity to mammalian cells.  However, the addition of 

NO release had little impact on the antibacterial action of the dendrimer scaffold for many of the 

highly bactericidal agents discussed herein due to significant membrane disruption precluding 

buildup of intracellular NO.  To improve the antibacterial action of NO in conjunction with these 

contact-based biocides, the effects of NO-release kinetics on bactericidal action must be evaluated.  

In previous work, the antibacterial activity of NO-releasing silica nanoparticles was found to be 

highly dependent on NO flux and bacterial identity.4, 5  Lu et al. demonstrated that silica particles 

exhibiting faster NO-release kinetics eradicated planktonic cultures of both S. aureus and P. 

aeruginosa at significantly lower NO doses.  Designing NO-releasing dendrimers with shorter 

NO-release half-lives and larger initial NO fluxes may improve the anti-biofilm action of the dual-

action scaffold against these pathogenic strains. 

In addition to improving the efficacy of dendrimer scaffolds, future work should evaluate 

the bactericidal action of NO-releasing hyperbranched polymers.  While hyperbranched polymers 

exhibit similar multivalency as dendrimers, they can be synthesized via a one-pot reaction versus 

the time-consuming synthetic protocols required to form dendrimer scaffolds.6-9  Similar to 

dendrimers, the scaffold exterior can be tailored through modification of the terminal end groups, 

although these can be either primary amines or hydroxyl groups.6  Scaffold properties may be 
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altered further through backbone or hybrid modification, allowing for greater synthetic control 

over the hyperbranched structure and the fabrication of biocompatible or biodegradable polymers 

that may be less toxic to mammalian cells.  The use of hyperbranched polymers may allow for the 

same advantages afforded by the multivalent dendrimer scaffold while reducing the overall 

toxicity of the therapeutic. 

7.2.2 Methods to extend nitric oxide release from electrospun fibers 

In Chapters 5 and 6, electrospun polyurethane fibers were fabricated to incorporate 

antibacterial NO-releasing dendrimer scaffolds.  The resulting NO-release characteristics were 

highly dependent on dendrimer modification, reflecting the release kinetics of the dendrimers in 

solution.  The release durations for these fibers were relatively short (<12 h), likely limiting the 

ability of NO to enhance wound healing or antibacterial action.  Ideally, prolonged NO release 

would improve clinical utility by allowing for greater time between dressing changes (i.e., 1 – 3 

days versus <1 day) while maintaining antibacterial action and wound healing.10 

A promising method for extending NO release from electrospun fibers may be direct 

modification of the polyurethane with NO donors prior to electrospinning.  Direct polymer 

functionalization has several advantages over the incorporation of NO donors, including mitigating 

any potential toxicity from leached NO donors and extending NO release.  Direct modification of 

the polymer may alter its overall characteristics, which would require further investigation into 

polymer stability and mechanical properties.  Previous work has demonstrated the modification of 

polyurethanes with N-diazeniumdiolate NO donors through two general methods: 1) incorporating 

amine sites pendant to the polymer backbone and subsequent reaction with gaseous NO; or, 2) 

modifying the polymer backbone with O2-protected diazeniumdiolate functionalities followed by 

deprotection.11-13  Several methods have been developed to tether amine sites to the polymer 



244 

 

backbone, including adding secondary amine-containing monomers to the synthetic solution prior 

to polymerization, linking secondary amines to the polyurethane amide, and integrating lysine 

residues into polymer chain extenders.12-15  The resultant NO storage is dependent on the 

efficiencies of polymer modification and NO reaction with the derivatized polymer.  However, the 

use of protected N-diazeniumdiolate functionalities may potentially allow for controlled and 

predictable NO payloads from the polymer.13  Directly modifying polyurethanes with NO donors 

should allow for increased control over the NO-release characteristics, including NO flux, payload, 

and duration.  To evaluate the potential synthetic control, electrospun fibers should be fabricated 

from secondary-amine containing polyurethanes both before and after N-diazeniumdiolate 

formation.   

In all of the aforementioned studies, PAMAM dendrimers were modified with N-

diazeniumdiolate NO donors to allow for controllable NO storage and release.  In aqueous 

solutions at neutral or acidic pH, N-diazeniumdiolate moieties undergo proton-initiated 

dissociation to spontaneously release NO (Figure 1.4B).16, 17  Alternatively, NO release from S-

nitrosothiol (RSNO) donors is achieved through a number of decomposition pathways (Figure 

1.4A), including homolytic cleavage of the S-NO bond by light or heat, copper ion-mediated 

catalytic decomposition, and reaction with reducing agents (e.g., ascorbate).18, 19  As the RSNO-

derived NO release is independent of water uptake, it may be more useful in designing wound 

dressings for dry, low-exuding wounds where the aqueous decomposition of N-diazeniumdiolate 

NO donors would be inhibited.10 

Modifying electrospun fibers with RSNO-derived NO release could be accomplished 

through either direct polyurethane functionalization or incorporation of S-nitrosothiol-modified 

scaffolds (i.e., dendrimers, hyperbranched polyesters).6, 7, 20  In contrast to N-diazeniumdiolate 
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moieties, RSNO donors are uncharged and should be better retained within the fibers to allow for 

extended NO release.  Initial studies in the development of NO-releasing fibers have directly 

modified polymers with thiols groups for RSNO donor formation.  For example, Reynolds and 

coworkers reported the modification of polymers with three distinct thiol functionalities prior to 

electrospinning, followed by nitrosation to yield NO-releasing fibers with variable NO-release 

kinetics and durations.21  Similarly, Vogt et al. formed a highly porous nanofibrous gelatin matrix 

through phase separation fabrication.22  This scaffold was subsequently functionalized with a thiol 

precursor and nitrosated to produce photoinitiated NO-releasing matrices.  Coneski et al. 

incorporated free thiols into both the hard and soft segment polyurethane domains, with soft 

segment-thiol modification demonstrating retention of polyurethane characteristics and high thiol 

to RSNO conversion efficiencies.23  The various methods of RSNO integration into electrospun 

fibers should allow for synthetic control to finely tune the duration and flux of NO release 

independent of water uptake. 

7.2.3 Antibacterial action against polymicrobial biofilms 

As discussed in Chapter 1, pathogenic biofilms are complex and diverse multi-organism 

communities.24-29  As such, polymicrobial biofilm models (i.e., biofilms composed of several 

bacterial strains) should be used to more accurately represent in vivo biofilms as opposed to the 

over-simplified monomicrobial biofilms studied herein.  As P. aeruginosa and S. aureus represent 

the most commonly isolated species in clinical infections,24 a proper polymicrobial model would 

include both of these pathogens and their antibiotic-resistant strains.  A more complex model of 

polymicrobial biofilms would include other commonly isolated bacterial strains, such as S. 

epidermidis, E. coli, Klebsiella pneumoniae, and Enterococcus faecalis.27, 30 
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The biggest challenge in studying polymicrobial biofilms is quantifying the individual 

bacterial species present before and after treatment to accurately assess the bactericidal action of 

dual-action antibacterial agents.  Selective plating methods can provide accurate colony counts for 

distinct bacterial species within polymicrobial biofilms.  For example, mannitol salt agar, specific 

for staphylococci strains, does not allow for the growth of Gram-negative bacteria (e.g., E. coli, P. 

aeruginosa).31-33  The addition of a phenol red indicator further allows for differentiation between 

coagulase positive (e.g., S. aureus) and coagulase negative staphylococci.32  Isolation of P. 

aeruginosa is achieved using agar containing triclosan, an antimicrobial agent that selectively 

inhibits Gram-positive and Gram-negative bacteria, excluding Pseudomonas strains.34-36  While 

selective plating methods allow for general isolation of bacterial strains, additional evaluation is 

often required for further identification or quantification. 

Fluorescence in situ hybridization (FISH) can be used in combination with confocal 

microscopy to visualize individual bacterial strains within a polymicrobial biofilm.  The use of 

bacteria-specific probes in conjunction with FISH allows for the identification of specific 

pathogenic strains, including S. aureus, P. aeruginosa, E. faecalis, and K. pneumoniae.37, 38  

Fluorescence measurements can then be used to quantify specific bacterial strains within a mixed 

bacterial population.  Additionally, the polymerase chain reaction (PCR) can be used to isolate, 

amplify, and selectively detect pathogens from a complex bacterial community.  Species-specific 

primers have been developed for P. aeruginosa, S. aureus, MRSA, and E. faecalis, allowing for 

the determination of population distribution and bacterial load using quantitative, real-time PCR.38-

40 
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7.3 Conclusions 

The work described herein highlights the importance of complete biofilm eradication in 

treating infections.  As NO is a broad-spectrum antibacterial agent unlikely to foster bacterial 

resistance, particular focus was given to establishing the utility of NO-releasing dendrimer 

scaffolds as dual-action antibacterial agents capable of pathogenic biofilm eradication.  Higher 

generation (i.e., G3 or G4) hexyl-modified dendrimers demonstrated efficient and extensive 

biofilm penetration, eradicating biofilms at lower concentrations and mitigating toxicity to 

mammalian cells.  The addition of NO-release capabilities significantly enhanced the anti-biofilm 

activity of dendrimer scaffolds incapable of good biofilm penetration, highlighting the benefits of 

this dual-action system.  Further, the incorporation of dual-action dendrimer biocides into 

electrospun composite polyurethane fibers resulted in high broad-spectrum antibacterial action and 

lessened the toxicity of the dendrimer scaffold against mouse fibroblast cells.  The observations 

made in the prior chapters will aid in the future design of NO-releasing dual-action therapeutics 

with maximal anti-biofilm action while minimizing unwanted cytotoxicity. 
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Table A1. Characterization and NO-release properties of G4 dendrimers in PBS (pH 7.4, 37 °C) 

as measured by a chemiluminescence NO analyzera. 

 

No. 

Modified 

End 

Groupsa 

% 

Modified 

Molec. 

Weight 

(Da) 

[NO]max
c 

(ppb/mg) 

tmax
d 

(min) 

t[NO]e 

(µmol/mg) 

t1/2
f 

(min) 

td
g 

(h) 

G4 octyl/NO 47 ± 3 74 ± 5 25987.7 4760 ± 920 2.7 ± 0.4 0.92 ± 0.06 25 ± 6 9 ± 1 

G4 octylQA/NO 39 ± 5 61 ± 8 23953.6 1570 ± 150 2.0 ± 0.3 1.03 ± 0.06 115 ± 6 16 ± 1 
aFor all measurements, n ≥ 3 pooled experiments. bDetermined by 1H NMR. cMaximum flux of 

NO release. eTime required to reach maximum flux. eTotal NO payload released. fNO release 

half-life. gDuration of NO release.  
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Table A2. Inhibitory concentrations at 50% viability (IC50) against L929 mouse fibroblast cells.a 

 
2h IC50 

(µg/mL) 

24h IC50 

(µg/mL) 

G4 octyl 200 60 

G4 octyl/NO 360 100 

G4 octylQA 300 60 

G4 octylQA/NO 280 40 
aFor all measurements, n ≥ 3 pooled experiments  
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Figure A1. Custom electrospinning apparatus in co-axial configuration 
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Figure A2. Scanning electron micrographs of (A) TP 470/HP 93A-G4 octylQA and (B) TP 

470/HP 93A-G4 octylQA/NO electrospun fibers with corresponding fiber diameter histograms. 
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Figure A3. Scanning electron micrographs of (A) TP 470/HP 93A-G4 RITC octyl/NO and (B) TP 

470/HP 93A-G4 RITC octylQA/NO electrospun fibers.   
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Figure A4. Representative NO-release profiles for (A) SG 80A/HP 93A-G4 octyl/NO fibers at 5 

(red), 15 (blue), and 25 (black) mg/mL dendrimer concentrations, and (B) G4 octyl/NO-doped 

electrospun SG 80A/HP 93A (blue), TP 470/SG 80A (red), TP 470/HP 93A (black) fibers.   
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Figure A5.  Zone of inhibition images against MRSA showing no bacteria growth under control 

and NO-releasing TP 470/SG80A-G4 octyl fibers 
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Figure A6. Viability of (A) P. aeruginosa, (B) E. coli, (C) S. aureus, and (D) MRSA after 2 h 

exposure to blank, control, and NO-releasing co-axial electrospun TP 470/HP 93A fibers. For all 

measurements, n ≥ 3 pooled experiments with error bars representing standard deviation of the 

mean. Asterisk (*) indicates significant differences from blank (p < 0.05) and double asterisk (**) 

indicates significant differences (p < 0.05) using two-tailed student’s t-test. 
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Figure A7. Viability of (A) P. aeruginosa, (B) E. coli, (C) S. aureus, and (D) MRSA after 24 h 

exposure to blank, control, and NO-releasing co-axial electrospun TP 470/HP 93A fibers. For all 

measurements, n ≥ 3 pooled experiments with error bars representing standard deviation of the 

mean. Asterisk (*) indicates significant differences from blank (p < 0.05) and double asterisk (**) 

indicates significant differences (p < 0.05) using two-tailed student’s t-test. 
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Figure A8. Viability (%) of L929 mouse fibroblast cells following 2 h (solid) or 24 h (diagonal 

lines) exposure to blank, control, and NO-releasing electrospun TP 470/HP 93A-G4 octylQA 

fibers. For all measurements, n ≥ 3 pooled experiments with error bars representing standard 

deviation of the mean.  
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