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ABSTRACT

YIYUN TANG: Individualized Therapy for Cystic Fibrosis Using Artificial

Intelligence

(Under the direction of Dr. Michael R. Kosorok)

Optimal clinical management of inherited chronic diseases, such as Cystic Fibrosis

(CF), requires a dynamic approach which updates treatments to cope with the evolv-

ing course of illness and to tailor medicines and dosages for individual patients. The

chronic progressive nature of CF and heterogeneity across patients lead to challenges

of developing optimal regimens. An adaptive individualized therapy provides a solu-

tion and a means toward these goals. In this dissertation, we examine the problem of

computing optimal adaptive individualized therapy for CF patients. A temporal dif-

ference reinforcement learning method called fitted Q-iteration is utilized to discover

the optimal treatment regimen directly from clinical data. We propose multi-state

discrete-time Markov process to model the disease dynamic for cystic fibrosis patients

with Pseudomonas aeruginosa infection with the model parameters tuned and esti-

mated from the published data in Wisconsin CF neonatal screening project. Our

study results indicate that reinforcement learning and the clinical reinforcement trial

framework can be an effective tool in discovering and developing personalized therapy

which optimises the benefit-risk trade off in multi-stage decision making and improves

long term outcomes in chronic diseases.
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1 INTRODUCTION

Cystic Fibrosis (CF) is the most common lethal hereditary disorder in Caucasians. It

affects approximately 30,000 people in the United State and 70,000 people worldwide

(Cystic Fibrosis Foundation, 2008). The most fundamental pathogenesis of CF is

that the CF transmembrane conductance regulator (CFTR) protein is encoded by a

defective gene on chromosome 7 which leads to life-threatening lung infections and

obstruction of the pancreas (Rowe, et al., 2005). The prognosis of the disease is

substantially dependent on chronic respiratory infection, a hallmark of CF.

In clinical practice, treatment of many inherited chronic diseases, such as CF, is a

dynamic process involving a series of therapeutic decisions over time. For example, in

treating CF patients with chronic lung infections by the most common and significant

pathogen, Pseudomonas aeruginosa (Pa), clinicians routinely modify therapy in the

face of infection severity, toxicity and antibiotics resistance, reducing the duration,

dose, or switching medication (Döing, et al., 2000; Flume, et al., 2007) Essentially,

these treatment decisions are made based on clinical judgement sequentially over

time combined with accruing information on the patient. The quality of life, length

of survival and cost of care are commonly determined by the success of the entire

sequence of antibiotic treatment over many years.

The unique characteristics of the disease require personalized, time varying and

multistage consideration in order to improve patient longterm outcome. There are

three primary issues to consider. First, various defective CFTR mutations lead to

different cellular consequences (Rowe, et al., 2005). Second, the frequent infection

relapse and progression require timely treatment modification (Flume, et al., 2007).

Third, the chronic nature of CF leads to repeated courses of potentially toxic drugs



for many years, increasing risk of cumulative side-effect, such as drug resistance,

impairment of renal function and hearing (Döing, et al., 2000; Döing, et al., 2004;

Flume, et al., 2007). These characteristics reflect in multidimensional heterogeneities,

consisting in part of variation between patients due to genetic factors and within-

patient heterogeneities over time.

These aspects of the disease pose increasingly difficult challenges for studying CF

therapies, because standard, single-decision trials are unable to correct for individual

differences and prior history in assessing treatments. The reviews of clinical trials in

CF (Döing, et al., 2007; Langton Hewer, et al., 2009; Retsch-Bogart, 2009; Ryan, et

al., 2000; Waters, et al., 2008) have found the common dilemma between limited num-

ber of CF patients and the need to control for confounding factors including mutation

class, age, disease severity, and prior treatment, among other factors. The increasing

evidence and growing recognition of the influence of prior and subsequent treatments

has led to considerable interest in studying the prolonged treatment effect and to

evaluate entire treatment sequences. For example, early aggressive Pa eradication

therapy is of significant interest because it might be able to improve overall survival

in the long term (Taccetti, et al., 2005; Treggiari, et al., 2009; Treggiari, et al., 2007);

specifically, the strategy of intermittent administration of inhaled tobramycin may

reduce the risk of resistance development (Ramsey, et al., 1999). Moreover, even if

the value of a specific antibiotic therapy has been established, significant questions

remain as to optimum dosage, duration of treatment and frequency of administration.

In this thesis, we present a “clinical reinforcement trial” procedure to discover

optimal personalized therapy for CF which seeks to address the above questions and

to leverage patient differences in order to improve the entire decision-making process.

The clinical reinforcement trial approach based on Q-learning for discovering effective

regimens was first introduced for potentially irreversible diseases such as cancer. This

framework was further refined for clinical trials in non-small cell lung cancer after

adaptation to handle right-censored survival data. This clinical reinforcement trial

2



framework is an extension and melding of earlier work on dynamic treatment regimens

in counterfactual frameworks (Murphy, 2005; Murphy, et al.,2001; Robins, 2004) and

sequential multiple assignment randomized trials (SMART) (Murphy, 2005; Thall, et

al., 2002) which have been applied to behavioral and psychiatric disorders (Murphy,

et al.,2007; Pineau, et al., 2007). There are, however, several fundamental differences

between the challenge of identifying personalized therapy for CF and the tailored

therapy settings for the other therapeutic areas studied in previous work. To begin

with, CF patients are usually diagnosed by neonatal screening at birth as described

in (Southern, et al., 2009), acquire Pa infection in early childhood, and experience

frequent reinfection (Kosorok, et al., 2001; Li, et al., 2005). CF patients are usually

monitored and treated at regular intervals, with three month intervals being typical,

throughout a life time with median survival between 30 and 40 years of age (Cystic

Fibrosis Foundation, 2008). A significant therapeutic goal is to delay acquisition of

the mucoid variant of Pa, which usually occurs a median of 13 years after initial Pa

infection, since mucoid Pa is associated with marked decline in lung function (Li, et

al., 2005). As a consequence, the decision making process involves more stages over

a much longer period of time in CF than in many other therapeutic areas. Thus the

degree of adaptation and modification of previous methodologies required to meet the

challenges of CF therapy is significant.

We propose a new clinical reinforcement trial design wherein patients are enrolled

at various age ranges in order to capture the known age-specific feature of Pa infec-

tion. Aiming at exploring the possible treatment sequences, the proposed multiple

courses trial involves a fair randomization of patients among different treatment op-

tions as well as collection of clinically relevant outcomes and biomarkers at each time

point. We then propose to estimate from the resulting data a personalized therapeutic

regimen which synthesizes all patient information available at each decision point as

input and dictates treatments that result in the most desirable long term outcomes,

with particular emphasis on delaying mucoid Pa.
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In order to efficiently inform the therapy in a manner clinically useful for patients

at all ages and decision times, we utilize fitted Q-iteration (Ernst, et al., 2005) in

reinforcement learning (RL) (Kalbfleisch, 1985) to estimate the optimal therapy. In

some applications of RL to inform multi-stage therapies, such as STI strategies for

HIV (Ernst, et al., 2006), the procedures involve a mixture of learning and confirming,

which is analogous to response adaptive randomization during trial conduct. This

approach does not appear to be fruitful in the CF setting, due in part to the generally

irreversible progression of lung disease in CF (Farrell, et al., 2003), and so we propose

instead to conduct a second, confirmatory trial to validate the estimated optimal

therapy by comparing to existing, standard-of-care alternatives.

Due to limited actual clinical data on treatment mechanism, in-silico modeling

of disease dynamics is a cost effective tool for examining the feasibility of using the

proposed procedure to identify optimal therapy. We utilize a simple, multistate dis-

ease model of Pa infection which has been tuned to approximately match published

clinical outcome data from the Wisconsin CF neonatal screening project (Li, et al.,

2005). The model expresses disease dynamics as a discrete time non-homogeneous

Markov chain with stochastic transitions among three phenotypically distinguishable

states, Pa free, non-mucoid Pa infection, and mucoid Pa.

The remainder of this dissertation is organized as follows. In Section 2.1, we

provide a background introduction of Cystic Fibrosis and antibiotic therapy against

Pa in CF. The review of clinical trial design with particular attention given to dynamic

treatment regimes and personalized medicines are provided in Section 2.2. In Chapter

3, we formulate the problem within a reinforcement learning context in Section 3.1,

specifically Q-learning in Section 3.2, followed by the fitted Q-iteration algorithm

for estimating the required Q-functions without the time index in Section 3.3. We

describe one of the extensions of support vector machine (SVM), support vector

regression (SVR), which makes fitting Q-functions feasible for clinical data sets in

Section 3.4.
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In Chapter 4, we propose a discrete time non-homogeneous Markov model for the

Pa infection disease dynamic in Cystic Fibrosis, with clinical and biological rationale

provided in Section 4.1 and the probability model presented in Section 4.2. In Section

4.3, we tune the model parameter based on the literature research results as one

approach to obtain the data generative model in our simulation studies in Chapter

5. Another approach to obtain the model parameters is based on the data analysis

of the Wisconsin Nenotal Screening Project in Section 4.4.

In Chapter 5, we provide the reinforcement learning procedure to discover optimal

adaptive personalized therapy within the “clinical reinforcement trial” framework.

We specialize our overall approach to Cystic Fibrosis clinical trials in Section 5.1

and the details of estimating optimal therapy in Section 5.2. To demonstrate the

reinforcement learning’s potential in discovering optimal therapies, in Chapter 6, we

apply our proposed method to virtual randomized sequential trials, which are based

on the disease models and parameters obtained from Chapter 5. This study examines

the performance of reinforcement learning via SVR and demonstrates that the therapy

found using Q-learning is superior to any constant-dose regimen.

Finally, we summarize our proposed methods in Chapter 7 and discuss some chal-

lenges for future research.
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2 BACKGROUND

2.1 Cystic Fibrosis and Antibiotic Therapy against Pseu-

domonas Aeruginosa Infection in CF

Cystic Fibrosis (CF) is the most common lethal hereditary disorder with autosomal

recessive heredity in Caucasians (Ratjen, 2001) that affects approximately 30,000

people in the United State, and 70,000 people worldwide. It occurs in 1:3,500 live

births among the Caucasian population (CFF Patient Registry, 2008). The CF trans-

membrane conductance regulator (CFTR) protein is encoded by a defective gene on

chromosome 7 (Rowe, et al., 2005). The protein products cause the body to produce

unusual thick and sticky mucus that clogs the lungs, leads to life-threatening lung

infections, obstructs the pancreas and stops natural enzymes from helping the body

break down and absorb food. The prognosis of the disease is substantially dependent

on chronic respiratory infection, a hallmark of CF, which may start very early (Burns,

et al., 2001) and has been recognized as having the greatest role in morbidity and

mortality leading to premature death in 90% of patients (Gibson, et al., 2003a).

Pseudomonas aeruginosa (Pa), a ubiquitous environmental bacterium, is the most

common and significant pathogen for patients with CF. After variable time periods,

children with CF usually acquire nonmucoid Pa, which is transient and can possibly

be eradicated by aggressive anti-Pa antibiotics (Ratjen, et al., 2001; Valerius, et al.,

1991). Mucoid Pa, a mutant phenotype of Pa, develops at subsequent stage (Rosen-

feld, et al., 2001), and lives in a defensive mode of growth called biofilm (Hentzer, et

al., 2001). Hence it confers resistance to phagocytosis, antibiotics and is much more



difficult to treat and eradicate (Prince, 2002). Early acquisition of mucoid Pa was

associated with 4-fold greater decrease in cumulative survival. Antibiotic-resistant,

biofilm-forming mucoid Pa is believed to play a dominant role in the progression of

lung disease in patients with CF (Li, et al., 2005). Therefore, therapy to prevent or

delay the onset of chronic Pa infection is an essential component of CF clinical care.

The quality of life, length of survival and cost of care are commonly determined by

the success or failure of the antibiotic treatment of the initial Pa infection in early

childhood, and by subsequent antibiotic treatments. The scope of our study is to

improve the antibiotic treatment against Pa in patients with CF.

The approaches to management of Pa infection and the pulmonary sequelae of

CF include early eradication, chronic suppression and acute exacerbation therapies

(Waters and Ratjen, 2008; Retsch-Bogart, 2009; Smyth, et al., 2009; Ryan, et al.,

2009; UK CF Trust, 2009).

For chronic stable CF patients, the well-studied inhaled antibiotic for chronic

suppression of Pa is tobramycin solution for inhalation (TOBI). Another macrolide

antibiotic is azithromycin. They were approved by the FDA for patients older than

6 years and persistent infection with Pa cultures. Other nebulizer antibiotics, such

as aztreonam lysine for inhalation (AZLI), TOBI Inhaled Powder (TIP), inhaled col-

istin, liposomal formulation of amikacin inhaled (SLIT-amikacin), and inhaled fluoro-

quinolones ciprofloxacin, are still under investigation. In general, mucus treatments

with Deoxyribonucleic (DNase) and Hypertonic Saline are strongly recommended in

patients with and without Pa infection.

For early infection CF patients, there is increasing evidence that a window of

opportunity exists to eradiate nonmucoid and antibiotic-sensitive Pa and to provide

potential long term benefit by delaying or preventing chronic infection (Treggiari, et

al., 2009, 2007). The benefits of eradication must be weighed against the potential

harms of prolonged antibiotic therapy.

Due to the differences of acute pulmonary exacerbation in rate and volume of dis-
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tribution of elimination for many antibiotics caused by Pa patients, high doses and

shorter intervals may be required. Depending upon the severity of exacerbation, sen-

sitivity to different antibiotics from sputum cultures of patients, combination therapy

with an aminoglycoside and a beta-lactam (e.g. carbapenem) anti-Pa antibiotic will

be chosen. The optimal frequency, mode of delivery (oral, intravenous, inhaled) and

time to switch are currently debated and multiple parameters of clinical status are

needed to help to determine.

Based on all approaches mentioned above, the repeated courses of potentially

toxic drugs over multiple years impairs renal function, hearing and has other adverse

effects, such as hypersensitivity, allergic reactions, and the risk of bacterial resistance.

Also, the complex treatment history and different risk levels which are caused by the

underlying various mutations of the defective gene lead to huge heterogeneity in an

individual’s response. Additionally, screening, diagnosis and ongoing monitoring of

infection, antibiotic resistance, and toxicity are crucial. Hence increasing the time

varying and personalized consideration in CF treatment is necessary and important.

Uncertainty continues as to the best antibiotic regimens for each individual with

different prognostic factors including genetic mutation, treatment and response his-

tory, resistance, toxicity profile, age, disease severity and stage, etc. As a consequence,

many of the following questions remain unsolved: best suited combination of antibi-

otic, dosage schedule, modes of administration, duration, and timing to initiate or

alter treatment. Benefits and risks in each individual at different time points need to

be assessed and taken into account in order to improve long term health outcome.

Based on prognostic factors, it is therefore timely to develop optimal sequential

antibiotic therapy tailored to each individual. For instance, how and when to alter the

intensity, type, dosage, or delivery of treatment at the critical decision time points?

The goal of our study is to deliver the right drug to the right person at the right dose,

mode and time in the management of this chronic disease to improve the patients’

long term health outcomes. If this can be achieved in a well-structured study, it will

8



lead to a huge impact in clinical practice and in CF patient life.

2.2 Dynamic Treatment Regime and Individualized Therapy

Optimal clinical management of a chronic disease, such as CF, requires a dynamic

approach which updates treatments to cope with the evolving course of illness. Be-

cause there exist heterogeneities of patients as well as delayed effects in an ongoing

process, the optimal therapy should contain personalized care, time varying adapta-

tion and long term benefit as key components. A one-size-fits-all or once-and-for-all

may not be appropriate in this therapeutical area. Specifically, the heterogeneities

include within patient temporal difference and between patients inherent difference in

treatment responses. For example, in CF, due to its genetic pathogenesis and chronic

nature, these heterogeneities reflect in the following ways: various response and side-

effects linked to different mutant classes of CFTR gene pathologically, reoccurrence

of infection over time, gradually progression to mucoid Pa, and increasing patient

burden and risk of antibiotics resistance. The delayed effects lead to controversial

issues on schedule of antibiotics and increased research activities to assess the long

term benefit of the early aggressive eradication therapy of Pa. To summarize, there

are three key desired features in the solution: tailoring to individual patient, dy-

namic adapting to time varying prognostic factors, and incorporating delayed effects

to maximize long term benefit.

The closest related previous works have been referred to variously as “dynamic

treatment regime”, “adaptive treatment strategies”. An adaptive treatment strategy

is characterized by a sequence of individually tailored decision rules, each of which

specifies how to treat a patient at the critical decision point based on observation

of the patient up to that point in the medical care process. These strategies were

utilized in a variety of health related areas, such as the treatment of alcoholism,

smoking cessation, cocaine abuse, depression and hypertension (Murphy, et al., 2005a,

9



2007a, 2007b; Lavori, et al., 2000a; and Collins, et al., 2004), and acute HIV infection

(Altfel and Walker, 2001; Albert and Yun, 2000). Adaptive treatment strategies

operationalize the clinical practice of adapting treatment options based on patient’s

progress thereby facilitating systematic study and refinement.

In developing adaptive treatment strategies, one might ask if we can use the usual

meta-analysis on multiple trials in separate courses. This simple “piece together”

approach may not appropriate, because it ignores the potential delayed treatment

effects stimulated by the synergy of early-stage and late-stage treatments and the

potential cohort effects leading to study population shift. From a study type point of

view, there are two approaches to identify and compare adaptive treatment regimes:

experimental and observational approaches. The experimental approach is based on a

Sequential Multiple Assignment Randomization Trial (SMART) (Murphy, 2005a) in

which subjects are randomized to follow different regimes in multiple stages. Exam-

ples of SMARTs include: the CATIE 2001 trial involving the treatment of psychosis

in Alzheimer’s disease, schizophrenia patients (Schneider, et al., 2001); the STAR*D

2003 trial investigating the treatment of depression; the ongoing Pelham study involv-

ing the treatment of ADHD (Rush, et al., 2003; Lavori, et al., 2001); ongoing Oslin

trial investigating the treatment of Alcohol Dependence (Oslin, et al., 2003). The

observational approach is based on observational longitudinal data, where treatments

actually received over time have been recorded along with other information for each

subject. Implementation examples include constructing adaptive treatment strate-

gies from cancer and leukemia group B (CALGB) protocol 8923 study; the Enhanced

Suppression of the Platelet IIb/IIIa Receptor with Integrilin Therapy (ESPRIT) trial

in nonurgent coronary stenting (O’Shea, et al., 2001). In our preliminary study, we

apply the experimental approach in a simulation study, and discuss more details in

Section 3.

Methodological challenges for developing adaptive treatment strategies primarily

come from two considerations: methods must incorporate the effect of future treat-

10



ment decisions when evaluating the present treatment decision; the specified model

associated with the methods needs to be chosen appropriately to the application sce-

narios and driven by practical consideration. Murphy and Robins have pioneered

statistical methods for inferring the optimal regime from both experimental and ob-

servational data (Murphy, 2002; Robins, 2004). Murphy proposed semiparametric

methods for estimating the optimal rules when the multivariate distribution of co-

variates and outcome is unknown. The parametric part was used to estimate those

optimal rules by modeling the regret function. The iterative minimization procedure

was utilized to identify the optimal rules. Robins proposed g-estimation methods in

structural nested mean models (SNMM). Under some regularity conditions, these es-

timates were most efficient. Another novel Bayesian-frequentist compromise approach

was also proposed by Robins. Moodie et al showed that Murphy’s and Robin’s ap-

proaches are closely related (Moodie, et al., 2006).

The other related work in the literatures involves personalized medicine discov-

ery. The term “personalized medicine” usually refers to the application of genomic

and molecular data to better target the delivery of health care. Essentially, person-

alized medicine is in many ways an extension of traditional clinical medicine taking

advantage of the cutting edge of genetics research. For instance, there is cutting edge

research on the impact of genetic variation on the efficacy and safety of medication in

pharmacogenetics, the disease-causing mutation to inform “at risk” individuals, and

targeted therapy designed to target aberrant molecular pathways in cancer manage-

ment. Some of the first instances of personalized therapy at work include Herceptin

in treating breast cancer with HER2 over expressed patients (Slamon, et al., 2001;

Romond, et al., 2005), and Gleevec in treating chronic myelogenous leukemia (CML)

patients with Bcr-Abl mutation (Druker, et al., 2001, 2006). Compared to personal-

ized therapy that we described in earlier chapters, personalized medicine is contained

within the individualized or tailoring therapy, which is a larger concept that encom-

passes the many different types of personalized approaches to medicine.
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Adaptive clinical trials hold the promise of radically altering the clinical devel-

opment process and boosting the biopharmaceutical industry’s return on investment

in drug development. The adaptation on study design aspects based on accruing

information on the ongoing trial is the key component of adaptive design. The ter-

minology “adaptive” in these examples include the adaptative nature of treatment

itself and the adaptation in the design aspect, for example, adaptive randomization

allocation to the next cohort in the trial. There are a lot of implementations and

research activities. The adaptive designs in developing individualized therapy usu-

ally are biomarker-adaptive design. From the design prospective, biomarkers can

be used in targeted design, biomarker-stratified design, and enrichment design (see,

e.g., Wang, 2007; Simon, 2008). From the design adaptation prospective, biomark-

ers and early responses can serve as bases for adaptive randomization and sample

size reassessment for enriching subgroups. From the modeling perspective, many

researchers study the relationship between treatment, biomarkers and outcome by

parametric models. For example, under the Bayesian framework (see, e.g. Thall, et

al., 2000, 2002), some biomarker response adaptive designs are very efficient and have

been successfully implemented in many trials. Sequentially randomized trials with

adaptive randomization had been addressed in a Bayesian framework and analyzed

for optimal regimes using a likelihood approach (Thall, et al., 2002). However, usu-

ally these trials did not take advantage of their multiple course sequential nature, but

rather treated each phase as a separate trial. Moreover, frequent adaptation based

on earlier biomarker or immediate treatment outcome indeed does not fit the goal of

long term benefit in our chronic disease management setting.

Computer scientists have also developed parallel reinforcement learning techniques

to tackle these problems (see, e.g., Sutton, 1998). They have been formulated in a

framework under which a summarized scalar value outcome is obtained from sequen-

tial interactions with the environment and solved by backward and/or recursive al-

gorithms. Reinforcement learning has been applied to treating behavioral disorders,
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where each patient typically has multiple opportunities to try different treatments

(Pineau et al, 2007; Ernst et al, 2006). Q-learning is one of the most important

breakthroughs in reinforcement learning, for constructing decision rules for chronic

psychiatric disorders, since such chronic conditions often require sequential decision

making to achieve the best clinical outcomes. The extension and melding of adaptive

treatment strategy, reinforcement learning and statistical learning have been intro-

duced and investigated in solving dosage and timing issues on therapy for advanced

non-small cell lung cancer (NSCLC) patients (Zhao et al, 2009). Their research re-

sults showed that some current statistical learning methods have the advantage of

flexibility and facility to handle many variables and complex nonlinear relationships,

and thus are capable of avoiding many of the problems caused by model misspeci-

fication. However, the time-indexed solutions in previous works are not suitable to

handle the frequently repeated courses of age related treatment, which are common

and challenging in CF and in other chronic diseases. In our study, we employ a

similar combination approach but without a time-index in the CF therapeutic area,

and discuss more details about fitted Q iteration reinforcement learning methods in

Chapter 5.
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3 REINFORCEMENT LEARNING IN MEDICAL

DECISION MAKING

In this section, our main aim is to introduce the reinforcement learning framework,

particularly, Q-learning and fitted Q iteration combined with SV R which will be used

to discover optimal adaptive personalized therapy for a cystic fibrosis reinforcement

clinical trial presented in Section 4. In section 3.1, we introduce the key elements

of reinforcement learning in the setting related to our study and three fundamental

classes of methods for solving the reinforcement learning problem along with a unified

view. In section 3.2, we take a step closer to Q-learning which can be efficiently

combined with many supervised learning methods.

3.1 Reinforcement Learning Framework

Reinforcement learning (RL) is an active sub-area of machine learning and artificial

intelligence concerned with how an agent ought to take actions in an environment so as

to maximize some notion of long-term reward. RL is a powerful artificial intelligence

technique in which an agent learns to optimize sequences of actions in an evolving

system by exploring possible action sequences, receiving both the long and short term

consequences for those actions, and estimating the relationship between actions and

consequences (Kaelbling, et al., 1996; Sutton, et al., 1998).

Reinforcement learning uses a formal framework defining the interaction between

a learning agent and its environment in terms of states, actions, and rewards. The

agent, for example, the physician, interacts with the dynamic environment, which

represents the complex system consisting of the CF patient body and more sources of



Figure 1: Reinforcement learning in anti-Pa therapy treating lung infection for cystic

fibrosis

Decision Maker πt

State St:
Culture Result

Serology Measure
Lung Function
Prior History

etc.

Utility Rt

Anti-Pa Treatment At

1

error and restrictions on what can be measured in our study. Based on the patient’s

states, such as clinical status, the agent makes decisions, and gives an action that

assigns some treatment to the patient. By measuring the patient’s clinical status at

the next visit, the agent gets feedback, the so called reward for the previous action.

While these interactions continually happen, the agent chooses a sequence of actions

applied to the patient, and gets feedback from the response to those actions from

patients. If the feedback is positive, when facing the same situation in the future,

the agent is more likely to apply that action, and vice versa: this is what meant by

the term “reinforcement”. The goal is to maximize the long term cumulative reward.

A large class of real world problems can be formulated as such stochastic multistage

decision processes. The focus is more on goal-directed learning from interaction than

on other approaches. A detailed survey of the reinforcement learning literature can

be found in Sutton and Barto (1998).

First, we introduce the key elements of reinforcement learning in the more specific

setting related of the medical decision making. The key elements of reinforcement
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learning include “state” St, “action” At and incremental “reward” Rt at the t-th

decision time, t = 0, ..., T . Let St represents the set of environmental “states”, cor-

responding to the vector of patient information at that time, such as time-varying

sputum culture results in CF, serology measures, pulmonary function tests, prior re-

sponse, treatment history and baseline characteristics including mutation class, etc.

The action At refers to the treatment given at that decision point. Specifically, we

use upper case letters, such as S and A, to denote random variables, and use lower

case letters, such as s and a, to denote the realized values of the random variables S

and A, respectively. Let S̄t = (S0, ..., St) and Āt = (A0, ..., At) represent histories of

state and action.

At each time step, after a series of treatments, the agent receives a numerical

reward Rt. The reward is defined as a function of action and state, which maps

the previous states, actions series, and next state to a single number, i.e., Rt =

rt(S̄t+1, Āt). It is typically a clinically meaningful outcome, which reflects the benefit-

risk assessment base on previous treatment history and responses at different time

points at the individual level. It reflects the immediate utility that contributes to

the ultimate patient outcome of interest. For example, the immediate status of Pa

infection stage and lung function contribute to future transition to mucoid Pa status

and overall survival of CF patients.

The discounted cumulative return crt is given by the following equation, where

γ is the discount rate (0 ≤ γ ≤ 1), balancing the weights of a patient’s immediate

rewards and future rewards, i.e.

crt = rt + γrt+1 + γ2rt+2 + . . .+ γT rt+T =
T∑
k=0

γkrt+k,

In this equation, γ is the discount rate (0 ≤ γ ≤ 1), which means, rewards that are

received in the future are geometrically discounted according to γ. Additionally, we

can interpret γ in another way. It can be seen as a control to the balance the agent’s

immediate rewards and future rewards. If γ = 0, we easily see that Rt = rt, we only
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need to learn how to choose at so as to maximize/minimize the immediate reward

rt. As γ approaches 1, we take future rewards into account more strongly. In the

extreme case, when γ = 1, we fully maximize/minimize rewards over the long run.

Figure 1 gives a schematic of the fundamental components of reinforcement learn-

ing described above in the anti-Pa therapy context for CF. The available data from

either clinical practice, observational studies or sequential randomized trials, are re-

alizations of the time-order random variables

(S0, A0, R0, ..., ST , AT , RT , ST+1).

The “policy” πt(s̄t, āt−1) = at maps from the state-action history (s̄t, āt−1) to

the probability that action at is taken. In the deterministic setting, the policy is

the decision rule about which treatment to assign to patients given the history, i.e.

πt(s̄t, āt−1) = at. We denote the distribution of a patient’s longitudinal trajectories

as Pπ, and expectations with respect to Pπ as Eπ, when the policy π is applied

to generate actions. The goal and principle of reinforcement learning are learning

what to do, how to map situations from state space S to action space A, how to

choose at, to find the optimal policy resulting in the maximum expected discounted

return
∑T

t=0 γ
trt. By seeking action sequences that maximize the cumulative return,

we optimize benefit to achieve a favorable outcome. This corresponds to our aim to

discover the optimal personalized therapy which achieves the most beneficial ultimate

outcome in the long run.

To accomplish this goal, a “state-value function” Vt(s̄t), which is formulated as a

function of the history of state s̄t, represents the total amount of rewards expected to

accumulated in the future for the agent to start from some state and following some

policy π afterward. The optimal value function V ∗t (s̄t) is defined by maximizing over

π ∈ Π:
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Vt(s̄t) = Eπ

[ T∑
k=0

γkRt+k

∣∣∣S̄t = s̄t

]
,

V ∗t (s̄t) = max
π∈Π

Vt(s̄t) = max
π∈Π

Eπ

[ T∑
k=0

γkRt+k

∣∣∣S̄t = s̄t

]
.

Using the dynamic programming concept and the Bellman equation (Bellman,

1957), the optimal policy is the decision rule that we expect to yield the highest long

term reward:

π∗t (s̄t) ∈ argmax
at

V ∗t (s̄t),

π∗t (s̄t) ∈ argmax
at

E
[
Rt + γV ∗t+1(S̄t+1)

∣∣∣S̄t = s̄t, Āt = āt

]
.

A fundamental property of value functions used throughout reinforcement learning

is that they satisfy particular recursive relationships. To see this, first let T = ∞,

then we extend equation (2.2) as follows,

Vt(s̄t, āt−1) = Eπ

[ ∞∑
k=0

γkrt+k

∣∣∣S̄t = s̄t, Āt−1 = āt−1

]
= Eπ

[
rt + γ

∞∑
k=0

γkrt+k+1

∣∣∣S̄t = s̄t, Āt−1 = āt−1

]
= Eπ

[
rt + γVt+1(S̄t+1, Āt)

∣∣∣S̄t = s̄t, Āt = āt

]
=
∑
at

πt(s̄t+1, āt)
∑
s′

Pass′
[
Ra
ss′ + γVt+1(s′)

]
,

where Pass′ = Pr{st+1 = s′|s̄t = s, āt = a} and Ra
ss′ = E

[
rt|s̄t = s, āt = a, st+1 = s′

]
.

The last two equations are two forms of the Bellman equations for Vt(s̄t, āt−1). The

Bellman equation was first introduced by Bellman (1957). The Bellman equation

expresses the relationship between the value of a state and the values of its successor

states: the value of the start state is equivalent to the value of the expected next

state plus the expectation of the reward along the way. It’s worth noting that the

value function Vt(s̄t, āt−1) is the unique solution to its Bellman equation.

To summarize, the key elements in reinforcement learning include agent-environment

interface (state, action, reward), a goal and return (immediate and discounted cumu-

lative rewards), a policy (maps from state-action history to next action), and a value
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function (performance, in terms of expected future return). Additionally, the Markov

property is assumed in many reinforcement learning problems and serves as a foun-

dation case for extension to more complex and non-Markovian cases.

Modern techniques and methods for estimating optimal value functions or op-

timal policies can be categorized into one of the following three classes: dynamic

programming, Monte Carlo method and temporal difference learning (Sutton, 1998;

Kaelbling, et al., 1996; Bertsekas, et al., 2000). Assuming the environment is a fi-

nite Markov decision process (MDP), its dynamics are given by a set of transition

probabilities, and the expected immediate rewards. If the Markov assumption holds

for the environment, then the environment’s response at t + 1 depends only on the

state and action representations at t, and we can replace s̄t with st and āt with at.

Overall, at each time step t, (st, at, st+1, rt) provides the knowledge of full information

for the agent. The key idea is to use a step-by-step based generalized policy iteration

(GPI), which is the generalized idea of two interacting processes revolving around an

approximate policy and an approximate value function. The valuation process takes

the policy as given and performs some form of policy valuation. The improvement

process takes the value function as given and performs some form of policy improve-

ment in order to make it better. Each process changes the bases for the other, overall

they work together to find a joint solution, which is optimal when both the policy

and value function are unchanged by either process. The reason that this iteration

can be realized in a step-by-step manner is that we assume the perfect model of the

environment as an MDP exists. The backup updates the value of one state based on

the values of all possible one step successor states and their transition probabilities

from the known model.

In the other hand, the Monte Carlo method requires the sample episodes instead

of a model of the environment’s dynamic. In the interacting GPI processes, Monte

Carlo methods provide an alternative policy evaluation process. Rather than use a

model to compute the values of each state, they average many returns that start in
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the state and don’t update the value estimates based on other value estimates. Thus,

the GPI process is incrementally implemented on an episode-by-episode basis in a

model-free manner.

The third method, temporal difference (TD) learning, is a combination of DP and

Monte Carlo ideas. Like Monte Carol methods, TD methods can learn directly from

raw experience in a model-free manner and avoid the harm of the violation of the

Markov property. Like DP methods, TD methods update estimates based in part on

other learned estimates, without waiting to the end of the sample episode for the final

outcome. For control to find an optimal policy, TD, DP and Monte Carlo methods all

employ some variation of GPI, for example, a greedy search or some searching with

exploitation and exploration balance or softmax selection, or learning in an off-line

or on-line fashion.

One fundamental expression of TD-learning is the incremental implementation,

which requires less memory and computation. The general form is

new estimate← old estimate + stepsize
[
target− old estimate

]
.

Specifically, if we replace estimate with value function, target with reward function,

and denote stepsize as α, then in this case TD learning becomes

Vt(S̄t, Āt−1)← Vt(S̄t, Āt−1) + α
[
rt + γVt+1(S̄t+1, Āt)− Vt(S̄t, Āt−1)

]
.

Roughly speaking, the TD method bases its incremental implementation in part

on an existing estimate. Recalling the Bellman equation, we know that

Vt(s̄t, āt−1) = Eπ

[ ∞∑
k=0

γkrt+k

∣∣∣S̄t = s̄t, Āt−1 = āt−1

]
= Eπ

[
rt + γ

∞∑
k=0

γkrt+k+1

∣∣∣S̄t = s̄t, Āt−1 = āt−1

]
= Eπ

[
rt + γVt+1(S̄t+1, Āt)

∣∣∣S̄t = s̄t, Āt = āt

]
.

In these equations, under a policy π, each V represents the true value of a state-

action pair, but this is not known. Thus, the TD target uses the current estimate V
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instead of the true V . TD learning as discussed above is also known as TD(0) learning,

which is a special case of TD(λ) learning. Almost any TD(λ) learning belongs to the

“eligibility traces” problem. The one step TD and Monte Carlo methods are actually

corresponding to two cases in TD(λ) as 0 or 1. The choice of λ depends on the

uncertainty on a state’s value estimates. By adjusting λ, we can place eligibility

trace methods anywhere between a continuum from the Monte Carlo to one-step TD

methods. It protects against both long-delayed rewards and non-Markovian tasks

with less memory requirement and computational expense.

3.2 Q-learning

A key break through and the most widely used algorithm in reinforcement learning

off-policy TD learning is Watkins’ Q-learning (Watkins, 1989; Watkins and Dayan,

1992). Q-learning no longer requires estimating the value function, it estimates a

Q-function instead. From a statistical perspective, the optimal time-dependent Q-

function is

Q∗t (s̄t, āt) = E
[
rt + V ∗t+1(S̄t+1, Āt)

∣∣∣S̄t = s̄t, Āt = āt

]
.

Note that since V ∗t (s̄t, āt−1) = maxat Q
∗
t (s̄t, āt−1, at), we have

π∗t (s̄t, āt−1) = argmax
at

Q∗t (s̄t, āt−1, at)

as an optimal policy. So once one has Q∗, it is relatively easy to determine an optimal

policy.

Under some appropriate and rigorous assumptions, Qt has been shown to converge

to Q∗ with probability 1 (Watkins and Dayan, 1992). More general convergence

results were proved by Jaakkola, et al. (1994) and Tsitsiklis, et al. (1994).

This approach has advantages of the simple recursive form, minimal computational

expense and the capacity for effectively combining with many statistical learning

methods. Instead of maximizing the value function, Q-learning optimizes the Q-
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function which has the direct relationship with value function, and is easy to use to

determine the optimal policy.

First, we describe the fitted Q procedure to learn the optimal policy under both

non-Markovian and Markovian settings in batch mode.

The estimator of the non-Markovian policy based on a training data set will be

denoted by the series of time-indexed Q-functions, Qt, where t = 0, 1, . . . , T . Its fitted

procedure is based on the one-step Q-learning recursive form:

Qt(s̄t, āt) = E
[
Rt + γmax

at+1

Qt+1(S̄t+1, Āt+1)
∣∣∣S̄t = s̄t, Āt = āt

]
. (3.1)

Backward induction is the key point of the optimization, which starts at the end

with the effects of the last treatment at t = T and works backward through time

t = T − 1, . . . , 1, until to Q0 at the beginning of the trajectories. The input/output

pairs at the previous time point are obtained by merely refreshing the output values

by the one-step recursive form, and are used to approximate Qt by any (parametric or

non-parametric) regression architecture. After this backwards approximation is done,

we can easily estimate the optimal policies π̂t from the sequence {Q̂0, Q̂1, . . . , Q̂T} by

π̂t(s̄t) = argmaxat Q̂t(s̄t, āt; θt), for t = 0, 1, . . . , T .

In learning a non-stationary non-Markovian policy with one set of finite horizon

trajectories (training data set)

{S0, A0, R0, S1, A1, R1, . . . , AT , RT , ST+1},

we denote the estimator of the optimal Q-functions based on this training data by Q̂t,

where t = 0, 1, . . . , T . According to the recursive form of Q-learning in (2.8), we must

estimate Qt backwards through time t = T, T − 1, . . . , 1, 0, that is, estimate QT from

the last time point back to Q0 at the beginning of the trajectories. And we set QT+1

equal to 0 in the first equation. One-step Q-learning has a simple recursive form

Qt(S̄t, Āt)← rt + γmax
at+1

Qt+1(S̄t+1, Āt, at+1).

In order to estimate each Qt, we denote Qt(s̄t, āt; θ) as a function of a set of

parameters θ, and we allow the estimator to have different parameter sets for different
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time points t. Once this backwards estimation process is done, we save the sequence

of {Q̂0, Q̂1, . . . , Q̂T} for estimating optimal policies,

π̂t = argmax
at

Q̂t(s̄t, āt; θt), t = 0, 1, . . . , T.

and thereafter use these optimal policies to test or predict for a new data set.

The most suitable type of Q-learning for our setting is model-free Q-learning in

batch mode with an approximation algorithm (Watkins, 1989). This is because in

complicated diseases the relationship between disease dynamics and the unknown

treatment effects are impossible to know in advance and should thus be nonparamet-

rically modeled. The batch offline learning mode is more ethical in some medical

settings because it protects against potential risks to patients due to inadequately

trained solutions in the early stages of online learning. Because algorithms with

a tabular representation are infeasible in many real-life medical applications which

typically have a continuous state space, continuous and nonparametrically modeled

Q-functions are needed.

Additionally, the properties of other promising learning methods based on modifi-

cation or extension of Q-learning, for example, A-learning (Blatt, et al., 2004) and the

Sarsa algorithm (Rummery and Niranjan, 1994), have not been carefully investigated.

Thus, we will restrict our attention to Q-learning for our future study’s methodology

and application.

3.3 Fitted Q-Iteration Algorithm

Under the Markovian assumption, the dynamic environment’s response depends only

on the current state and action. These one-step dynamics enable us to predict the

next state and expected next reward, and serve as the base for choosing actions. In

contrast to the non-Markovian case, where the fitted Q-functions have a time-index,

we fit the stationary Q-functions through the backward recursive iteration.
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The fitted Q-iteration algorithm (Ernst, et al., 2005) makes use of a set of one-

step dynamic system transition samples in a Markov decision process (MDP) F =

{(slt, alt, rlt, slt+1)}#F
l=1. The recurrence relation of (3.1) in the discrete MDP problem

becomes:

Q?
N(St, At) = E

[
R(St, At) + γmax

a
Q?
N−1(St+1, a)|St, At

]
,∀N > 1 (3.2)

with Q?
1(St, At) = R(St, At). As N increases, this sequence converges in infinity

norm to the optimal stationary Q-function. The resulting optimal policy is π∗N(s) =

argmaxaQ
?
N(s, a).

At each iteration, using the empirical rt, the approximation (3.2) can be formu-

lated as a sequence of standard supervised learning steps on the kth training sample,

taking the form

T Sk = {(slt, alt, rlt + γmaxaQ̂k−1(slt+1, a))}#F
l=1, ∀k > 1

with T S0 = {(slt, alt, rlt, slt+1)}#F
l=1, Q̂0(s, a) = 0,∀s, a. The estimated stationary policy

is

π̂N(s) = argmax
a
Q̂N(s, a). (3.3)

Hence, fitted Q-iteration can be combined with any regression algorithm to fit

the Q-function. The extensive testing of fitted Q-iteration in standard RL simula-

tion (Ernst, et al., 2005) and in clinical applications in HIV (Ernst, et al., 2006)

and epilepsy (Guez, et al., 2008) demonstrate encouraging performance, even with

high-dimensional state spaces, and efficient use of training data. In chronic disease

treatment, the frequent regular monitoring provides relatively complete transition

samples, and a stationary Q-function is often the most useful policy in practice. Age-

specific characteristics can be accommodated by adding age as a covariate.
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3.4 Approximation Methods

There are many similarities between reinforcement learning and supervised learning,

in both of which a general function is learned from from samples. Especially, the tem-

poral difference family of algorithms can be viewed as supervised learning algorithms

in which the training examples consist of the approximation of the true state value

(s, V̂ (s)), or approximation of true state action value (s, a, Q̂(s, a)) pairs.

Ormoneit and Sen (2002) formulated the Q-function problem as a sequence of

kernel-based regression problems by applying fitted value iteration ideas (Gordon,

1999) to kernel based reinforcement learning. This framework takes full advantage in

the context of reinforcement learning of the generalization capabilities of any regres-

sion algorithm, and this is not limited to parametric function approximators. Ernst,

et al. (2005) and Geurts, et al. (2006) utilized a nonparametric tree based method

such as pruned CART, KD-tree, random forests and extremely randomized tree in

a batch mode in a simulation of HIV infection (Ernst, et al., 2006) and adaptive

treatment of Epilepsy (Guez, et al., 2008).

This fitted-Q iteration has consistency properties when combined with kernel-

based, tree-based regressors (Ernst, et al., 2003). In chronic disease treatment, the fre-

quent regular monitoring and repeated treatment provide relatively complete states,

which leads to an appropriate Markovian working assumption and the need for the

stationary Q-function as the simplified policy in practice. In the Wisconsin CF neona-

tal screening project (Farrell, et al., 1997), where the patients are diagnosed at birth

and continuously monitored afterward, we add age as one of the covariates in the

Q-function to preserve the time-varying age-specific characteristic in the personalized

therapy.

Due to challenges that may arise from the complexity of the true Q-function,

including the non-smooth maximization operation and the potential high-dimension

of the state and action variables, we apply support vector regression (SVR) (Watkins,
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1989) as the main approximation method for fitting the Q-functions.

As one of the most popular extensions of the support vector machine, SVR is

derived within the reproducing kernel Hilbert space (RKHS) context to minimize the

ε-insensitive loss function, which is defined as L(f(x̄i), yi) = (|f(x̄i)− yi| − ε)+, ε > 0

(Vapnik, 1995; Vapnik, et al., 1997). Given training data {(x̄i, ȳi) ∈ X ×Y }ni=1, SVR

solves the following optimization problem:

min
w̄,b,ξ,ξ′

1

2
‖w̄‖2 + C

n∑
i=1

(ξi + ξ′i),

subject to (w̄TΦ(x̄i) + b)− yi ≤ ε+ ξi, yi − (w̄TΦ(x̄i) + b) ≤ ε+ ξ′i,

where ξi, ξ
′
i ≥ 0, i = 1, . . . , n. Since errors within deviation ε are considered acceptable

and the data is mapped through the nonlinear transformation into a feature space,

SVR is a more general and flexible approach compared to competing methods to

handle the potentially complex nonlinear relationship between rewards and state-

action pairs. Also, by minimizing the regularization term 1
2
‖w̄‖2 and the training

error C
∑n

i=1(ξi + ξ′i), SVR can avoid overfitting the training data and yield both fast

and high quality performance. SVR performs with similar or better reproducibility in

clinical research settings (Zhao, et al., 2009) as extremely randomized trees (Geurts,

et al., 2006), a popular, more computationally intense alternative also used for fitted

Q-iteration.

26



4 DISEASE DYNAMICS OF CYSTIC FIBROSIS

In this section, we propose a discrete time nonhomogeneous Markov model for the

underlying disease dynamic in Pa infection. Dynamic analysis in longitudinal medical

studies, where patients may experience several clinical states, is naturally carried out

by use of multi-state models, which is a model for the stochastic process allowing

individuals to move through a series of states. Based on the biological and clinical

rationale in Section 4.1, we present the model structure in Section 4.2. We then

present two approaches to obtain the model parameters. The first set of parameters

in Section 4.3 is obtained by tuning the parameters to match the results in literature.

The second set of parameters is obtained through maximum likelihood estimation

procedure in Section 4.4. The model with two sets of parameters will be used in the

virtual clinical trial studies and in the evaluation of long term outcome in Chapter 6.

4.1 Model Rationale

To obtain data which mimics real life clinical data for CF patients with Pa infection,

we briefly review prior knowledge of this disease process. After being diagnosed at

birth, children with CF usually acquire nonmucoid Pa, which is transient and can

possibly be eradicated by aggressive anti-Pa antibiotics (Kosorok, et al., 2001; Meira-

Machado, et al., 2009; Taccetti, et al., 2005; Treggiari, et al., 2007). Mucoid Pa, a

mutant phenotype of Pa, develops at later stages, and lives in a defensive mode of

growth called a biofilm (Prince, 2002). Hence it confers resistance to phagocytosis

and antibiotics and is much more difficult to treat and eradicate (Gibson, et al., 2003).

Therefore, there are three phenotypically distinguishable states: free of Pa (state 1),



Figure 2: Pa infection progression in 3-state Markov Model for cystic fibrosis

Pa+

Mucoid Pa

Pa−

1

nonmucoid Pa (state 2), and irreversible mucoid Pa (state 3), as illustrated in Figure

2.

In CF clinical trials, there are three major classes of endpoints, clinical efficacy

measures, surrogate endpoints and biomarkers. First, common clinical efficacy mea-

sure for definitive clinical trials in lung infection is pulmonary exacerbations. Sec-

ondly, FDA defines both FEV1 at a given time point and rate of decline in FEV1 as

surrogate endpoints because they are a well established predictor of survival. Thirdly,

one of the most established sets of biomarkers in CF is microbiological parameters

relating to Pa (Murphy, et al. 2001). The progression to mucoid state is associated

with irreversible damage of lung function (Li, et al., 2002), and many studies have

demonstrated the reduction of Pa bacterial density or eradication of Pa lead to sig-

nificant improvement in FEV1 and reduction in pulmonary exacerbations (Flume, et

al., 2009).

Hence, the transitions between three states in Pa infection are closely related to

both biological patheogensis and clinical outcomes. In this section, we propose a

discrete time nonhomogeneous Markov model for this underlying disease dynamic in

Pa infection.
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Table 1: Patient outcomes and biomarkers collected in regular study visits

Patient Information Definition

∆F508H ∆F508/∆F508 at CFTR residue 508 indicator

Cul(t) Pa phenotype nonmucoid + isolated from respiratory culture

Ser(t) Pa serology tests + indicator

Muc(t) Pa phenotype mucoid + isolated from respiratory culture

FEV1(t) Pulmonary function test predicted FEV1

D2(t) Cumulative duration in nonmucoid infection

Sev(t) Severity: 50% Pa + in past year to divide as chronic or intermittent

CumD(t) Cumulative intensity of drug D exposure

SusD(t) Susceptibility tests result of drug D

We aim at optimizing the maintance therapy of Pa infection, while pulmonary

exacerbation usually happens after the mucoid infection development. The patient

outcomes that we simulated include the observed Pa infection state and severity

and FEV1 based on the underlying true state. In Chapter 5, we incorporate these

outcomes into a benefit-risk assessment for guidance of the optimal therapy that

we are seeking for. Table 1 shows the content of patient information and outcomes

typically collected.

The transitions between three states in Pa infection are closely related to both

biological pathogenesis and clinical outcome. Specifically, progression to the mucoid

state is associated with irreversible damage of lung function (Kosorok, et al., 2001;

Langton and Smyth, 2009), and many studies have demonstrated that reduction of Pa

bacterial density or eradication of Pa leads to significant improvement in FEV1 and

reduction in pulmonary exacerbations (Gibson, et al., 2003). Motivated by regularity

of clinical patient observations and the progressive nature of CF, we propose a discrete

time non homogeneous Markov model for Pa infection.
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4.2 Probability Model

The proposed multi-state model is expressed as a continuous stochastic process with

a finite state space and time-homogeneous assumption, and is partly motivated by

competing risks survival analyses from earlier work (Kalbfleisch, et al., 1985; Meira-

Machado, et al., 2009; Putter, et al., 2007). For non-homogeneous processes, the

model is either reduced to the homogeneous case or fitted through piecewise constant

transition intensities between different time points (Meira-Machado, et al., 2009).

We propose a multi-state model that expresses the underlying disease dynamics as

a discrete-time stochastic process Y (t), for t = 0, 1, . . ., with transitions between three

states having covariate-dependent transition probabilities pij(s, t,Z(s)) dependending

on time-dependent covariates Z(s), denoted

pij(s, t,Z(s)) = pr{Y (t) = j|Y (s) = i,Z(s)}, (s < t),

and with the one time unit step transition matrix P (t, t+1,Z(t)) having the structure

1− p12(t, t+ 1,Z(t)) p12(t, t+ 1,Z(t)) 0

p21(t, t+ 1,Z(t)) 1− p21(t, t+ 1,Z(t)) p23(t, t+ 1,Z(t))

− p23(t, t+ 1,Z(t))

0 0 1


.

Based on longitudinal studies of Pa development (Burns, et al., 2001; Gibson, et

al., 2003; Kosorok, et al., 2001; Li, et al., 2002; Rosenfeld, et al., 2001; Starner, et al.,

2005), pij(t, Z̄(t)) is related to individual characteristics through the time-dependent

covariates Z̄(t)), consisting of age, ∆F508H, Trt(t), Cul(t), Ser(t), D2(t), with cor-

responding definitions given in Table 1. First, the probability of first acquisition

of nonmucoid, p12(t), depends on age, and mutation class in CFTR at residue 508.

∆F508H indicates ∆F508 homozygosity or not. Secondly, the probability of success-

ful eradication of nonmucoid Pa infection, p21(t), relates to treatment effect, age and
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∆F508H. Because of the relatively low sensitivity of throat sputum cultures issue

in CF, the detection of nonmucoid Pa infection can be improved by combining with

serology measurements as reflected in antibody titer levels, as the detection criteria.

In our model, the observated nonmucoid infection is determined by the product of

culture Pa + indicator, Cul(t), and serology tests + indicator, Ser(t). These are

Bernoulli random variables which are linked to the true state 2 by the published sen-

sitivities of these tests. Thirdly, the probability of progression to mucoid Pa infection,

p23(t) depends on the true cumulative duration in nonmucoid infection D2(t), age and

∆F508H.

The following generalized logistic model accounts for the time varying treatment

structure, biomarkers, and prognostic covariates. We denote the linear components

at time t by

η12(t,Z(t)) = β120 + β121t+ β122∆F508H,

η21(t,Z(t)) = β210 + β211t+ β212(t)Trt(t)
Cul(t)×Ser(t) + β213∆F508H, (4.1)

η23(t,Z(t)) = β230 + β231t+ β232D2(t) + β233∆F508H.

We characterize the regression of one time unit step transition at time t on time-

dependent covariates Z̄(t) by probability functions

p12(t, t+ 1,Z(t)) =
exp(η12(t,Z(t)))

1 + exp(η12(t,Z(t)))

p21(t, t+ 1,Z(t)) =
exp(η21(t,Z(t)))

1 + exp(η21(t,Z(t))) + exp(η23(t,Z(t)))
(4.2)

p23(t, t+ 1,Z(t)) =
exp(η23(t,Z(t)))

1 + exp(η21(t,Z(t))) + exp(η23(t,mathbfZ(t)))

The formulation in (4.1) and (4.2) also accommodates an arbitrary number of

treatment courses as well as options for either discrete or continuous time. Because
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we aim at optimizing the maintenance therapy of Pa infection, the patient outcomes

simulated include the observed Pa infection state, severity, and FEV1 based on the

underlying true state.

Because for the patients who have never been infected, the transition probability

p12 is assumed to be different from the patients who have been infected before, we

use the logistic regression model with age as covariates to model p12:

p12(t, t+ 1) =
exp(β

′
120

+ β
′
121
t)

1 + exp(β
′
120

+ β
′
121
t)
.

4.3 Parameter Tuning

We tune the model so that when under standard care or some anti-Pa antibiotic

treatment, the patient outcomes roughly match those in prior clinical studies (Arm-

strong, et al., 1996; Douglas, et al., 2009; Geurts, et al., 2006; Gibson, et al.,

2003; Kosorok, et al., 2001; Li, et al., 2005; Mayer-Hamblett, et al., 2007; Peder-

sen, et al., 1987; Rosenfeld, et al., 1999; Taccetti, et al., 2005). The tuning pa-

rameters are (β120 , β121 , β122)=(−1, 0.01, 0.01); (β210 , β211 , β212)=(−2.5,−0.05,−0.02);

(β230 , β231 , β232 , β233)=(−4.8, 0.02, 0.01, 0.32) for after the first Pa acquisition. Before

the first Pa infection, the parameters are (β
′
120
, β
′
121

)=(−1, 0.001). The anti-Pa treat-

ment effect parameter β212(t)=0 as mentioned before. We list the important clinical

outcomes in Table 2, including time to first acquisition and progression to mucoidy,

pulmonary function and sensitivity of culture and serology tests, etc. The age preva-

lences given in (Li, et al., 2005) and average prevalence in 1000 simulated datasets

consisting of the same numbers of CF patients are shown in Figure 3. This model

not only reflects the important issues in CF clinical care, but also mimics the disease

progression in a relatively realistic way.
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Table 2: Literature and model generating patient outcomes

Patient Outcomes Literature Model Output

Time to first acquisition of nonmucoid Pa (yr) 1.0 (0.5−1.5) [1] 1.0 (0.5−2.5)†
Time to mucoid Pa (yr) 13.0 (10.0−14.9) [1] 13.6 (9.84−17.5)†
Pa free duration after eradication (month) 8 (3−25) [3],18 (4−80) [2] 9 (1.54−39)*

∆FEV1 · yr−1 standard care -4.69±2.95% [2] -4.42±12.2%‡
∆FEV1 · yr−1 some anti-Pa treatment -1.63±1.60% [2] -1.5±8.1%‡
Sputum culture sensitivity 83% [4] 85%

Serology markers sensitivity 93% [5] 93%

† Median (95%CI), * Median (Range) , ‡ Mean ± SD.

[1]: Li, et al., 2005

[2]: Starner, et al., 2005

[3]: Douglas, et al., 2009

[4]: Rosenfeld, et al., 1999

[5]: Pedersen, et al., 1987

Figure 3: Age-specific prevalence of no, nonmucoid, and mucoid Pa from birth to

age 16 years (Li, et al., 2005) and prevalence in simulations. The barplot represents

the prevalence in literature (Li, et al., 2005). The line represents the prevalence in

simulations.
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4.4 Wisconsin Neonatal Screening Data Analysis

The Wisconsin CF Neonatal Screening Project (Farrell, et al., 1997; Farrell, et al.,

2003) is a randomized clinical trial conducted to assess neonatal screening for CF using

a standardized evaluation and treatment protocol that prevented malnutrition. In

this Section, we use a dataset for the study of longitudinal development of mucoid Pa

infection (Li, et al., 2008), consisting of 69 CF patients at two CF centers in Madison

and Milwaukee, Wisconsin, from birth up to age 16 years with 56 cases diagnoses made

through the Wisconsin CF Neonatal Screening Project. In this dataset, the 69 cases

were followed up every 6 weeks for their first year of life and every 3 months thereafter

to age 16 years. The outcomes include culture result and antibiotic susceptibility

testing based on respiratory secretions, which were obtained from patients every 6

months by protocol, either by sputum or vigorous oropharyngeal swabbing, with

antibody responses to P aeruginosa from serum samples every 6 months coinciding

with cultures. Lung function was examed by spirometry every 6 months after age 4

years, including forced expiratory volume in 1 second (FEV1), forced vital capacity

(FVC), FEV1/FVC ratio, and forced expiratory flow between 25% and 75% of FVC

(FEF25%-75%). The combined culture and serologic (cell lysate titer > 8) positive

results were used to define the timing of the first appearance of nonmucoid Pa and

mucoid Pa. All patients have genotype information of ∆F508 homozygosity or not.

The treatment effect of anti-Pa drug in this data is not obvious, because “at the

discretion of physicians, patients could be treated with anti-Pa antibiotics if there

were clinically significant infections, but patients did not routinely receive anti-Pa

antibiotics after the first Pa detection, in accordance with the prevailing standard

of care” (Li, et al., 2008). Additionally, the transitions with anti-Pa antibiotics are

about 3% in the total transitions in the dataset. In the following analysis, we use the

transitions without anti-Pa antibiotics to estimate the disease dynamics under the

prevailing standard of care. We use the last observation carried forward to handle
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the missing values.

The maximum likelihood estimation procedure is utilized to fit the model specified

in (4.1) and (4.2). In the dataset, there are transitions from Pa free state to mucoid

pa state, where nonmucoid Pa might happen between the regular 3 months clinical

visits. We model the probability p13 as

p13(t, t+ 1,Z(t)) = p12(t, t+ 1,Z(t))× p23(t, t+ 1,Z(t)). (4.3)

For reasons of simplicity in presentation, we first consider the situation of just

one patient. The vectors for a transition as Y = (y11, y12, y13, y21, y22, y23))T for one

patient, where yij represents the indicator of the ture underlying transition from state

i to j with yij=1 and others are zero. The corresponding probability pij is specified

in (4.1), (4.2) and (4.3). z = (z1, ..., zl)
T is the vector of covariates, and βij is the

parameter vector corresponding to the ij-th transition category.

logΠijp
yij

ij = y12β
T
12z + y13(βT12z + βT23z) + y22β

T
22z + y23β

T
23z

−(y11 + y12 + y13)log[1 + exp(βT12z)]

−(y21 + y22 + y23 + y13)log[1 + exp(βT21z) + exp(βT23z)]

Let β = (β120 , β121 , β122 , β210 , β211 , β212β230 , β231 , β232 , β233)
T denote the 10 param-

eters. We have for the partial derivative as following, with m,m
′ ∈ (1, ..., l)

∂L

∂β12m

= (y12 + y13)zm − (y11 + y12 + y13)
exp(βT12z)

1 + exp(βT12z)
zm

∂L

∂β21m

= y21zm + (y21 − y22 + y23 + y13)
exp(βT21z)

1 + exp(βT21z) + exp(βT23z)
zm

∂L

∂β23m

= (y23 + y13)zm − (y21 + y22 + y23 + y13)
exp(βT23z)

1 + exp(βT21z) + exp(βT23z)
zm

The observed information can be computed to be

− ∂2L

∂β12m∂β12
m
′

= (y11 + y12 + y13)(p̂12 − p̂2
12)zmzm′
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− ∂2L

∂β21m∂β21
m
′

= (y21 + y22 + y23 + y13)(p̂21 − p̂2
21)zmzm′

− ∂2L

∂β23m∂β23
m
′

= (y21 + y22 + y23 + y13)(p̂23 − p̂2
23)zmzm′

− ∂2L

∂β21m∂β23
m
′

= (y21 + y22 + y23 + y13)(−p̂21p̂23)zmz
′

m

Where

p̂12 =
exp(βT12z)

1 + exp(βT12z)

p̂21 =
exp(βT21z)

1 + exp(βT21z) + exp(βT23z)

p̂23 =
exp(βT23z)

1 + exp(βT21z) + exp(βT23z)

The other elements in the observed information matrix are zeros. We use the

Newton-Raphson optimation algorithm to estimate the parameter β iteratively, with

zeros as initial values and 1e-06 as convergence stopping criteria. This is the estima-

tion procedure when we assume that there is no measurement error in the data.

If we consider the sensitivity issue in CF, we need to incoporate the misclassifi-

cation matrix E, whose entry e(r, s) represents the probability of observing s state

when ture state is r. The absorbing state mucoid infection is assumed to be observed

without measurement error. According to the sensitivity and specificity of throat cul-

ture in literature (Rosenfeld, et al., 1999; Pedersen, et al., 1987), we have specificity

λ1 = 93% and sensitivity λ2 = 85%.
λ1 1− λ1 0

1− λ2 λ2 0

0 0 1

 .
The predict value matrix V , whose entry v(s, r) represents the probability of

predicting true state as r when s is observed. According to nd the predictive values

of positive and negative throat culture in literature (Bonnie, et al., 1991), we have
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predictive value of positive culture λ3 = 83% and predictive value of negative culture

λ4 = 70%.


λ4 1− λ4 0

1− λ3 λ3 0

0 0 1

 .
Let O = (o12, o12, o13, o21, o22, o23)T denote the observed transition corresponding

to Y = (y11, y12, y13, y21, y22, y23))T . The corresponding probability pOij
can be com-

puted by pij in (4.1), (4.2) and (4.3) and the misclassification matrix E and predictive

value matrix V . pOij
is the (i, j) entry of the product of matrices:


λ4 1− λ4 0

1− λ3 λ3 0

0 0 1

× P ×

λ1 1− λ1 0

1− λ2 λ2 0

0 0 1


The final probability matrix for observed transition PO is


pO11 pO12 0

pO21 pO22 0

0 0 1


pO11 = λ1λ4p11 + λ1(1− λ4)p21 + (1− λ2)λ4p12 + (1− λ2)(1− λ4)p22

pO12 = (1− λ1)λ4p11 + (1− λ1)(1− λ4)p21 + λ2λ4p12 + λ2(1− λ4)p22

pO21 = λ1(1− λ3)p11 + λ1λ3p21 + (1− λ2)(1− λ3)p12 + (1− λ2)λ3p22

pO22 = (1− λ1)(1− λ3)p11 + (1− λ1)λ3p21 + λ2(1− λ3)p12 + λ2λ3p22

The likelihood for one observation is Πijp
oij

Oij
. Numerical methods need to be used

to maximize the likelihood , e.g. a quasi-Newton algorithm, which does not require

the specification of the derivatives of the objective function, which are computed by

finite differences and used to estimate the Hessian at the maximum (Dennes and

Schnabel, 1983).
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Because the probabilities of acquisition of nonmucoid Pa is quite different between

the patients who were never infected and those who had been infected before, we sep-

arate the transitions in the dataset by having been infected by nonmucoid Pa or not.

For the transitions from patients who have been infected before, the parameter β are

presented in Table 3. The transition probabilities are significantly associated with age,

which indicates the higher risk of developing nonmucoid and mucoid Pa infection and

greater treatment difficulty as patients grow older. There are significant association

between D2 and p23, which indicates that the longer the patients stay in nonmucoid

Pa infection, the higher the probability of developing mucoid infecttion. The results

of parameters related to ∆F508H reveal the difference between two subpopulation in

terms of transition probabilities. The patients with ∆F508 homozygosity are more

easily acquire nonmucoid Pa infection. As for the probability of p21 and p23, although

the estimates are not significant, the trends match the previous research results that

the patients with ∆F508 homozygosity are harder to treat, with more severe disease

and being more susceptible to mucoid Pa infection.

For the transitions from patients who have never been infected, we use the logistic

regression model with age as covariates to model p12:

p12(t, t+ 1) =
exp(β

′
120

+ β
′
121
t)

1 + exp(β
′
120

+ β
′
121
t)
.

The parameter estimates are provided at the bottom of Table 3.

Analysis of the state transitions on this dataset by fitting the proposed model

provide insights into the dynamics of Pa infection and refine the data generative model

in simulation studies. We simulated 68 patients in order to compare the simulated

longitudinal data based on the proposed model and estimated parameters to the

original Wisconsin neonatal screening project dataset with 69 patients. Figure 4 shows

the Kaplan-Meier plots of time to first nonmucoid Pa infection T1, time to mucoid

Pa infection T2 and the time between first acquisition of nonmucoid and mucoid

infection T12 respectively. The darker line represents the patients data from the
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Table 3: Parameter estimates for Wisconsin neonatal screening project data

Parameter Covariate Estimate St erros Est/SE p-value

β120 Intercept -0.876464 5.56839 -0.1574 0.8749273

β121 Age 0.017504 0.004941 3.5429 0.0003958

β122 ∆F508H 0.008112 0.003575 2.2692 0.0232556

β210 Intercept -0.155778 0.119471 -1.3039 0.1922808

β211 Age -0.005863 0.003148 -1.8626 0.0625213

β213 ∆F508H -0.029767 0.030761 -0.9677 0.3332058

β230 Intercept -3.722290 0.395525 -9.4110 < 2.2e-16

β231 Age 0.097886 0.019947 4.9074 9.23e-07

β232 D2 0.215752 0.060433 3.5701 0.0003569

β233 ∆F508H 0.033001 0.0455311 0.7248 0.4685742

Patients who never been infected

β
′
120

Intercept -1.575928 0.510372 -3.0878 0.0020163

β
′
121

Age 0.004296 0.001321 3.2511 0.0011494

original Wisconsin neonatal screening project dataset, where there are some censored

data. The lighter line corresponds to the simulated patients data by the proposed

disease model and parameters estimated in this section. We can see the simulated

data reflect the disease progression in the dataset in a realistic way.

The analysis of pulmonary function reveals little influence of the change from

no Pa to nonmucoid Pa, as well as the infection severity level changes before the

development of mucoid infection on the change of lung function.

In order to exam the capacity of the reinforcement learning procedure to discover

optimal therapy in such disease dynamics, we simulate the treatment effect scenarios

with time-varying efficacy and toxicity through a model parameter β212(t). The details

will be provided in the presentation of the simulation study given in Chapter 6.
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Figure 4: Kaplan-Meier plot of time to first acquisition of nonmucoid Pa infection

T1.
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Figure 5: Kaplan-Meier plot of time to mucoid Pa infection T2.
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Figure 6: Kaplan-Meier plot of time between first acquisition of nonmucoid and

mucoid infection T12.
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5 CYSTIC FIBROSIS CLINICAL REINFORCE-

MENT TRIALS

In developing adaptive personalized therapy, the usual meta-analysis on multiple tri-

als in separate disease stages or treatment courses is not appropriate because the

potential delayed treatment effects and the potential cohort effects leading to the

shift of the study population will be ignored. There are three advantages of using

an experimental approach based on sequential randomization comparing to the ob-

servational approach based on observational longitudinal data. First, the sequential

randomization at multiple decision times ensures the assigned treatment is indepen-

dent of potential future responses to treatment, conditional on the history to date.

The sequential ignorability and stable unit treatment value assumptions (SUTVA) al-

ways holds under these experimental studies, while it is not testable in observational

studies. Secondly, one is forced to limit the options and minimize some confounding

effects by randomization, while in the observational context, it will be impossible

to control such variations. Thirdly, the complete information at each decision time

on patients who experiened all possible beneficial treatment sequences by prototol

facilitate the construction of optimal personalized therapy.

The proposed “clinical reinforcement trial” consists of both a learning stage (phase

IIb) and a confirmatory stage (phase III) trial to optimize and validate the person-

alized therapy. As mentioned in Section 1, background for the general strategy and

key aspects of clinical reinforcement trial designs can be found in (Zhao, et al., 2009;

Zhao, et al., 2010) and for SMART designs can be found in (Murphy, 2005; Murphy,

et al., 2007; Thall, et al., 2002). Based on the published results from previous CF

trials (Döring, et al., 2007), the CF neonatal screening project (Gibson, et al., 2003;



Taccetti, et al., 2005), and a contemporary CF trial (Treggiari, et al., 2009), we de-

velop a virtual clinical reinforcement trial that provides a realistic approximation to

a potential real CF trial.

5.1 Clinical Reinforcement Trial Conduct

1. Learning stage trial design.

In a randomized trial in CF for patients 1–25 years of age, N1 trial participants

are sequentially fairly randomized at enrollment and at each decision time based

on detection of Pa from quarterly respiratory cultures (culture-based therapy)

to one of the five treatment options A-L, A-H, B-L, B-H and S-C defined below

with an equal allocation ratio for L1 years. The randomization is stratified by

patient indicator of mutation class ∆F508 homozygosity. The primary endpoint

is the time to presence of mucoid isolated from Pa respiratory culture. The

secondary clinical endpoint is the decline in pulmonary function FEV1. The

secondary microbiological endpoint is the proportion of patients with new Pa-

positive respiratory cultures during the study. Patient clinical outcomes and

biomarker values are collected at each quarterly clinical visit.

For simplicity and without loss of generality, we here consider four active anti-Pa

treatments, consisting of two anti-Pa antibiotic drugs A and B having different

intensity levels high (H) and low (L). The choice of drug could, for exam-

ple, be based on FDA approved inhaled antibiotics tobramycin and consensus

panel supported oral ciprofloxacin (Döring, et al., 2000; Treggiari, et al., 2009).

The treatment S-C represents a the prevailing standard of care, a hypothetical

placebo, or other treatment without targeted anti-Pa antibiotics.

2. Learning stage rationale and goal.

The rationale of culture-based therapy is based on the clinical guidance for Pa

infection in CF patients (Döring, et al., 2000; Döring, et al., 2004; Flume, et

44



al., 2007) Usually anti-Pa treatment is applied only when Pa is detected, since

risk of nephrotoxicity due to long term preventive treatment may out-weigh

benefit. For patients in the mucoid stage, a high intensity treatment such as IV

anti-Pa treatments are required (Flume, et al., 2007). The scientific goal of this

trial is to uncover the optimal strategy based on existing treatments to prolong

the time to the mucoid stage for young CF patients whenever nonmucoid Pa is

detected.

3. Learning stage utility.

The relatively short study duration is one of the common characteristics in phase

II trials. Due to its strong relationship to both time to mucoid Pa and nonmu-

coid Pa infection severity, FEV1 serves as a surrogate endpoint or biomarkers

in our phase IIb trial. A utility function, i.e., a reward in the reinforcement

learning framework rt = R(st, at, st+1), for t = 0, 1, . . . , 4L1 − 1, is prespecified

and contains an appropriately weighted assessment of benefit and risk based on

the outcomes available at each interval. We use a combination of three clinical

meaningful components, lung function, infection status, and severity, as guid-

ance for the optimal therapy we are seeking for (Langton Hewer, et al., 2009).

Specifically, Table 4 and Table 7 are our reward functions for the simulation

studies in Chapter 6. The utility/reward set-up in RL enables us to integrate

benefits at the individual level and cumulated over time.

4. Estimating optimal therapy.

(a) Inputs: State variables St consisting of age, ∆F508H, Cul(t), Ser(t),

D2(t), Muc(t), Sev(t), FEV1(t), CumA(t), CumB(t), SusA(t), SusB(t)

and Trt(t), as given in Table 1. The patients have longitudinal observa-

tions quaterly for L1 years {si0, ai0, ri0, si1, ai1, ri1, ..., ai(4L1−1), ri(4L1−1), si(4L1)}N1
i=1.

The set of one-step system transitions is obtained after separation and stan-

dardization as a training set T S of 4-tuples of the form 〈s, a, r, s′〉. Hence,
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T S0 = {(slt, alt, rlt, slt+1)}#T S0

l=1 with #T S0 = 4× L1 ×N1.

(b) Initialization: Q̂0(s, a) = 0,∀s, a,

(c) Estimation: Q?
N(s, a) sequence in (3.2) is fitted by Q-iteration:

• repeat at each iteration k,k ≥ 1

– for all 〈s, a, r, s′〉 on T Sk−1 do

– r
′ ← r + γmaxa′ Q̂k−1(s

′
, a
′
)

– update 〈s, a, r′, s′〉 as T Sk

– approximate Q̂k(s, a) on T Sk by SVR

– end for

• until stop criteria max∀s,a |Q̂k(s, a)− Q̂k−1(s, a)| ≤ ε is met.

We use the Gaussian kernel K(x,y) = exp (−ζ‖x− y‖2) in SVR ap-

proximation iterations. The tuning parameter pair (C, ζ) are selected by

grid search over cost parameter C = 2−5, 2−3, . . . , 215 and scale parameter

ζ = 2−15, 2−9, . . . , 23 in 10-fold cross-validation.

(d) Output: Personalized therapy π̂∗(s) = argmaxa Q̂
?
N(s, a)

5. Confirmatory stage design.

In a separate, potentially longer duration L2 years trial, N2 trial participants are

only randomized at enrollment to either one of four fixed therapies A-L, A-H,

B-L, B-H or the new arm R-L with equal allocation in a conventional way. The

therapy R-L represents the adaptive personalized therapy identified in Step 4.

The randomization, stratification, endpoints and patients information are the

same as those in the Step 1 trial. The objective is to investigate whether the

adaptive personalized therapy prolongs time to mucoid infection and reduces

the isolation of Pa from respiratory cultures, compared with the four fixed

treatment options. The placebo arm is not included at this stage.
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5.2 Estimating Optimal Therapy

In this section, we connect the estimating procedure described in previous section

5.1 step 4(c) to the optimal treatment strategy within counterfactual framework. We

extend some of the previous work (Murphy, 2005; Zhao, et al., 2010) to the fitted

Q iteration procedure. We denote at, at+1 as the decision at time point t and t + 1,

respectively. We let Q?
N(St, At) be the potential outcome as the N -th iteration Q-

function value of the sequence by fitted Q-iteration in (3.2), after time t and before

t + 1. We also let Q?
N−1(St+1, At+1) be the potential outcomes from the N -1-th Q-

function in fitted Q-iteration.

Moreover, we let St denote the states at time t. Under the Markovian working

assumption, we let St+1(at) denote the state at time t + 1, after policy at and inde-

pendent of any other previous action sequence. Within a counterfactual framework,

we maximize the value state function in order to find an optimal treatment strategy:

Eat

[
Q?
N(at)

∣∣∣St] = Eat

[
R(St, at) + γmax

at+1

Q?
N−1(St+1(at), at+1)

∣∣∣St]

= Eat

[
R(St, at) + γmax

at+1

Eat,at+1

[
Q?
N−1(at+1)

∣∣∣St+1(at)

]∣∣∣St].
For the first iteration step, we have Eat

[
Q?

1(at)
∣∣∣St] = Eat

[
R(St, at)

]
. Based on

Q-iteration algorithm, the optimal policy in (3.3) can be obtained via the iterative

step.

In the 1-th iteration step,

π∗1 = argmax
at

Eat

[
R(St, at)

]
.

In the N -1-th iteration step,

π∗N−1(πN) = argmax
at+1

EπN ,at+1

[
Q?
N−1(at+1)

∣∣∣St+1(πN)

]
. (5.1)
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In the N -the iteration step,

π∗N = argmax
at

Eat

[
R(St, at) + γEat,π∗N−1

[
Q?
N−1(π∗N−1)|St+1(at)

]∣∣∣St]. (5.2)

Assuming the stable unit treatment value assumptions (SUTVA) and no unmeasured

confounders, which are guarantee under our sequential randomized designs. We have

the relationship:

Q?
1(St, At) =

∑
at

R(St, at)I(At = at),

Q?
N(St, At) =

∑
at

Q?
N(St, at)I(At = at),

Q?
N−1(St+1, At+1) =

∑
at,at+1

Q?
N−1(St+1, at+1)I(At = at, At+1 = at+1).

Particularly, in the 1-th iteration, Eat

[
Q?

1(at)
∣∣∣St] = Eat

[
R(St, at)

]
can be esti-

mated via estimating E[R(St, At)|St, At].

Because in the fitted Q iteration, in all the iteration, four-tuples consist of the

same St,At,St+1, these imply the quantity to be maximized in (5.1) as

Eat,at+1

[
Q?
N−1(at+1)

∣∣∣St+1

]
= Eat+1

[
Q?
N−1(at+1)

∣∣∣St+1, At = at, At+1 = at+1

]

= E

[
Q?
N−1(At+1)

∣∣∣St+1, At+1 = at+1

]
.

Hence, the function of the potential outcomes on the right hand side of (5.1) can be

estimated via estimating E[Q?
N−1|St+1, At+1].

Similarly, we can write the quantity to be maximized in the
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Eat

[
R(St, at) + γEat,π∗N−1

[
Q?
N−1(π∗N−1)|St+1(at)

]∣∣∣St]

= E

[
R(St, at) + γmax

at+1

E

[
Q?
N−1|St+1, At+1 = at+1

]∣∣∣St, At = at

]

= E

[
R(St, At) + γmax

at+1

E

[
Q?
N−1|St+1, At+1 = at+1

]∣∣∣St, At = at

]
.

Therefore, the function regarding the potential outcome on the right hand side of

(5.2) can be estimated via estimating E[Q?
N |St, At].
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6 REINFORCEMENT LEARNING TREATMENT

STRATEGIES

In this section, we simulate virtual CF patients based on the underlying disease

process using the proposed Markov model in Chapter 4, and implement the proposed

sequentially randomized clinical reinforcement trial in Chapter 5. In order to examine

the performance of the proposed design and methodology, we compare the long term

outcome, time to mucoid Pa infection based on the same working model, with the

other fixed regimens in extensive simulation studies. We conduct the simulation

studies based on the Markov model in section 4.2, with the tuned parameters in

section 4.3 and with the estimated parameters from section 4.4 respectively.

6.1 Clinical Scenarios

We evaluate the design under realistic clinical scenarios (Flume, et al., 2007; Ramsey,

et al., 1999; Retsch-Bogart, 2009; Rosenfeld, et al., 2001; Sutton, et al., 1998; Treg-

giari, et al., 2009; Treggiari, et al., 2007; Valerius, et al., 1991) described in Table

4. There are differential treatment efficacy and side effects in terms of probability of

successful eradication for a two mutation class population. Patients who are ∆F508

homozygous are a high risk population, generally more severe, more easily acquire

mucoidy, and have greater difficulty eradicating Pa infection. Additionally, immedi-

ate efficacy is time varying and age specific. The optimal treatments are also different

by age group as presented in Table 4.

For example, for the low risk population, antibiotic A is best in both high (H)

and low (L) intensity regimens when the patient is under 8 years old; while antibiotic



Table 4: Efficacy and side-effects of treatments in simulations

Age Range Antibiotics Intensity Non∆F508H ∆F508H

Immediate Age ≤ 8 A L High Low

Efficacy H High Low

B L Low Medium

H Low High

8 < Age A L Low Low

H Low Medium

B L Medium Low

H High Low

Delayed No Off-drug Cycle Susceptibility ↓

Side-effects Life-time Exposure> 20 Eradication ↓

51



B is best with high intensity (H) as the preferable regimen when the patient is older

than 8 years old. For the high risk population, antibiotic B with high intensity (H)

is the preferable regimen when the patient is under 8 years old; while antibiotic A is

best when the patient is older than 8 years old; the higher intensity level regimens

are more successful for bacteria eradication. However, in this more severe group of

patients who are ∆F508 homozygous, the treatments have lower efficacy compared

to the other group of patients.

In the bottom panel of Table 4, the delayed side effects are modeled when the

cumulative drug use exceeds a threshold or repeated courses of the same anti-Pa drug

without a “drug-off” period, antibiotic resistance will then develop, and consequently,

the eradication probability will decrease. The “drug-off” or switching drug can lead to

some degree of return of susceptibility, as has been observed with inhaled tobramycin

(TOBI) (Flume, et al., 2007; Gibson, et al., 2003; Guez, et al., 2008; Ramsey, et al.,

1999; Ratjen, et al., 2001).

6.2 Simulation Methods and Results

6.2.1 Study I with tuned parameters

We generate a virtual CF trial based on the disease model in section 4.3 with treat-

ment effect scenarios described in Section 6.1. The conduct of the clinical rein-

forcement trial follows the procedure proposed in Section 5.1 with total sample sizes

N1 = 1000 and study durations L1 = 2 years and L2 = 4 years for the learning

and confirmatory stages respectively. Without loss of generality, we assume equal

numbers of patients in two subgroups defined by whether patients are ∆F508H in

all studies. Besides the testing scenario in the confirmatory trial with N2 = 1000

and 4 years of follow up, we exam the procedure with N2 = 1000 in the scenario

where we can apply the therapies from birth until a mucoid Pa event occurs. We use
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Table 5: Reward/utility function setup I

State Variables Change Reward

Culture/Serology Infected to free of Pa 1

Lung Function ↑> 10% 0.1

no ↓> 10% 0.1

Severity of Infection progress to mucoid 0

intermittent to chronic/stay 0.1

chronic to intermittent 0.2

the threshold ε in fitted Q-iteration with stopping criteria 10−4 and discount factor

γ = 0.5. The immediate reward function set up in Table 5.

6.2.2 Testing results of study I in virtual trial from birth till mucoid

infection

In this testing scenario, we apply therapies and follow up all the virtual patients until

the development of mucoid Pa infection. As shown in Figure 8, we provide the boxplot

of the time to mucoid Pa infection corresponding to the fixed treatment regimens S-C,

A-L, A-H, B-L, B-H and the adaptive personalized therapy denoted R-L. There are

200 patients in each arm with one half being ∆ F508 homozygous. The empirical

performances of these treatment regimens are illustrated in Figure 8 and Table 6. In

terms of time to mucoid Pa infection, the fixed treatment regimens S-C, A-L, A-H,

B-L, B-H have differential effects on the different risk groups classified by ∆F508

homozygosity. In Table 6, the other endpoints, nonmucoid Pa infection proportion,

predicted FEV1%, and change per year, all demonstrate the same treatment effect

patterns. This matches the treatment effect patterns in the clinical scenarios in
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Section 5.1, Table 4, where the high risk population requires higher intensity level

treatment to eradicate Pa infection and the right drug chosen in early childhood

improves prognosis in both subpopulations.
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Figure 7: Boxplot of distribution of time to mucoid Pa in study I. The gray and dark

green represent patients with ∆ F508 homozygosity, otherwise the colors are blue and

light green.
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Figure 8: Boxplot of distribution of time to mucoid Pa grouped by two subpopulations

in study I.
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In Figure 8, we illustrate results of the same simulated trial in a different way

by grouping patients from the two subpopulations based on ∆ F508 homozygosity

together. If one ignores patient heterogeneity of mutation class, the benefits of treat-

ment remain undetected among the fixed treatment therapies. For example, drug B’s

benefit to patients with ∆F508H is “averaged out” with outcomes for patients with-

out this characteristics. Similarly, drug A’s benefit to patients who are not ∆F508H

is also masked. Figure 9 shows the observed frequency of the three states (Pa free

(in green), nonmucoid Pa (in red) and mucoid Pa (in black)) among the 200 pa-

tients in each arm over time, demonstrating a similar pattern to time to mucoid Pa.

By optimizing the usage of these existing drugs, the discovered personalized therapy

achieves superior patient outcomes than any other fixed treatment therapies even in

the mixture of the two subpopulations. The treatment benefits of these drugs may

be missed by a traditional, single-decision point clinical trial.

The top two subplots of Figure 10 illustrate the discovered therapies for two

individual patients who are not ∆ F508 homozygous. When a patient is younger

than 8 years old, the right antibiotic A is chosen at the effective and lower intensity

level more frequently. When a patient is older than 8 years old, the right antibiotic B

is chosen more frequently and with higher intensity level, with alternating patterns

to avoid resistance or regain susceptibility.

The two subplots at the bottom of Figure 10 illustrate the discovered therapies

for two individual patients who are ∆ F508 homozygous. The discovered regimen

chooses the right antibiotic B initially, and automatically switches to the more suit-

able antibiotic A at the correct age of 8 years old. In this more severe group, the

higher intensity level is chosen more often than the lower intensity level. At the same

time, switching the drug or lowering the intensity level, alternatively, is achieved

and preferable in order to avoid resistance development and to lower the cumulative

burden to the patient.

The discovered adaptive personalized therapy by the reinforcement learning proce-
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Figure 9: Barplot of Pa infection states average proportions over time using different

therapies in a simulated trial with follow up till development of mucoid Pa in Study

I.
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Figure 10: Representation of the optimal adaptive regimens for four individuals who

are not ∆ F508 homozygous on the top and ∆ F508 homozygous at the bottom.
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Figure 11: Cumulative reward function.
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dure outperforms any fixed treatment regimen therapies because it considers the time

varying treatment effect on different age specific groups and balances the trade-off

between efficacy and side effects, and immediate and delayed effects, simultaneously.

These findings demonstrate the reinforcement learning procedure’s substantially pow-

erful long term capabilities. Note that the reinforcement learning approach is unaware

of the generative treatment model, and thus the proposed method is able to discover

an optimal regimen without prior knowledge of the treatment mechanism.

Although the direct interpretation of the discovered regimen by reinforcement

learning using support vector regression is challenging, we use a contour plot of the

fitted Q-function by age in two subpopulations to visualize the discovered regimen

in Figure 11. Here we fixed the other state variables, including intermittent severity,

cumulative intensity level 10 for both antibiotics, 85% predicted FEV1%, and nonmu-

coid Pa duration as 30% of age. The estimated Q-function demonstrates differential

patterns in the two subpopulations and in different age intervals. The overall trend
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for patients who are not ∆ F508 homozygous is to prefer antibiotic A first and then

antibiotic B with low intensity level at early ages, with high intensity level for older

ages. While the other group of patients with ∆ F508 homozygous prefers antibiotic

B first and then antibiotic A with high intensity level.

6.2.3 Testing results of study I in 4 years virtual trial

In the second testing scenario corresponding to Section 5.1, Step 5, we simulated a

trial with total sample size 1000 and study duration 4 years. Figure 12 illustrates

the Kaplan-Meier plot of time to mucoid Pa of the four fixed treatment regimens and

the discovered personalized therapy. The analyses are based on the Cox proportional

hazards model (PH), stratified Cox model (SPH), log rank test (LR) and stratified

log rank test (SLR), with ∆F508H as the stratification factor. All tests show no

significant treatment difference between the four fixed treatment regimens with p-

values given in Figure 12, while the discovered personalized therapy is significantly

superior to the other four therapies. In addition, the analysis of the proportion of Pa

positive patients during the repeated measurement of culture by a GEE model using

a logit link shows no significant treatment differences among the four fixed treatment

regimens, while the discovered personalized therapy is significantly superior than the

other four therapies.

6.2.4 Study II with MLE parameters

We generate the virtual CF trial based on the disease model in Chapter 4 with treat-

ment effect scenarios described in Section 6.1. The parameters are estimated through

maximum likelihood estimation procedure from the Wisconsin neonatal screening

project (Li, et al., 2005) in Section 4.4. Similar to Section 6.2.1, the conduct of the

clinical reinforcement trial follows the procedure proposed in Section 5.1 with total

sample sizes N1 = 1000, N2 = 1000 and study durations L1 = 2 years and L2 = 4
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Figure 12: Kaplan-Meier plot of time to mucoid Pa infection using different therapies

in a simulated trial with 4 years of follow up.
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Table 7: Reward/utility function setup II

State Variables Change Reward

Culture/Serology Infected to free of Pa 1

Severity of Infection progress to mucoid 0

intermittent to chronic/stay 0.1

chronic to intermittent 0.2

years for the learning and confirmatory stages respectively, assuming equal numbers

of patients in two subgroups defined by whether patients are ∆F508H. We also have

two testing scenarios including the confirmatory trial with 1000 total sample size and

4 years of follow up and the scenario with N2 = 1000 where we can apply the therapies

to 1000 patients from birth until a mucoid Pa event occurs. We use the threshold

ε in fitted Q-iteration with stopping criteria 10−4 and discount factor γ = 0.8. The

immediate reward function set up is in Table 7. Because the little influence of Pa

infection state change and infection severity change on pulmonary function in the

Wisconsin data, we do not assign reward based on the change of FEV 1.

6.2.5 Testing results of study II in virtual trial from birth till mucoid

infection

In this testing scenario, all the virtual patients are given one of the treatment regimes

and followed up until the development of mucoid Pa infection. Figure 13 shows the

boxplot of the time to mucoid Pa infection corresponding to the fixed treatment

regimens S-C, A-L, A-H, B-L, B-H and the adaptive personalized therapy denoted

R-L. There are 200 patients in each arm with one half being ∆ F508 homozygous.

The empirical performances of these treatment regimens are illustrated in Figure 13
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and Table 8. In terms of time to mucoid Pa infection, the fixed treatment regimens

S-C, A-L, A-H, B-L, B-H have differential but not obvious effects on the different risk

groups classified by ∆F508 homozygosity. The high risk population requires higher

intensity level treatment to eradicate Pa infection, which matches the treatment effect

patterns in the clinical scenarios in Section 6.1, Table 4. But when the right drug is

chosen in early childhood, the prognosis will not necessary to be better in average in

both subpopulations.

In Figure 14, we illustrate results of the same study of Figure 13 in a different way

by grouping patients from the two subpopulations based on ∆ F508 homozygosity

together. If one ignores patient heterogeneity, the benefits of treatment remain un-

detected among the fixed treatment therapies and are not even significantly different

from standard of care. The differential treatment effects are not obvious due to the

big variation. The Figure 15 shows the observed frequency of the three states (Pa

free (in green), nonmucoid Pa (in red) and mucoid Pa (in black)) among the 200 pa-

tients in each arm over time, demonstrating a similar pattern to time to mucoid Pa.

By optimizing the usage of these existing drugs, the discovered personalized therapy

achieves superior patient outcomes than any other fixed treatment therapies even in

the mixture of the two subpopulations.
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Figure 13: Boxplot of distribution of time to mucoid Pa in study II. The gray and

dark green represent patients with ∆ F508 homozygosity, otherwise the colors are

blue and light green.
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Figure 14: Boxplot of distribution of time to mucoid Pa grouped by two subpopula-

tions in study II.

●

●

●

T
im

e 
to

 M
uc

oi
d 

P
a 

(y
r)

●

●

●

●

●

●●

●

●

●

●

●

●

S−C A−L A−H B−L B−H R−L

0
5

10
15

20
25

30
35 11.2 13.8 15 13.5 14.8 23.4

Fixed Treatment Therapy Adaptive Personalized Therapy

67



Figure 15: Barplot of Pa infection states average proportions over time using different

therapies in a simulated trial with follow up till development of mucoid Pa in Study

II.
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Figure 16 illustrates the discovered therapies for four individual patients, who are

not ∆ F508 homozygous on the top two subplots and who are ∆ F508 homozygous

on the bottom two subplots. The discovered regimen chooses the right antibiotic B

initially, and automatically switches to the more suitable antibiotic A at the correct

age of 8 years old. In this more severe high risk group, the higher intensity level

is selected more frequently. When the high cumulative exposure level or continuous

usage of a drug occurs, switching the drug or lowering the intensity level, alterna-

tively, is achieved and preferable in order to lower the treatment burden and regain

susceptibility.

6.2.6 Testing results of study II in 4 years virtual trial

Corresponding to Section 5.1, Step 5, we simulated a trial with total sample size 1000

and study duration 4 years. Figure 16 shows the Kaplan-Meier plot of time to mucoid

Pa of the four fixed treatment regimens and the discovered personalized therapy. The

analyses are based on the Cox proportional hazards model (PH), stratified Cox model

(SPH), log rank test (LR) and stratified log rank test (SLR), with ∆F508H as the

stratification factor. All tests show no significant treatment difference between the

four fixed treatment regimens with p-values given in Figure 17, while the discovered

personalized therapy is significantly superior than the other four therapies.
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Figure 16: Representation of the optimal adaptive regimens for four individuals who

are not ∆ F508 homozygosity on the top and ∆ F508 homozygous at the bottom in

study II.
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Figure 17: Kaplan-Meier plot of time to mucoid Pa infection using different therapies

in a simulated trial with 4 years of follow up in study II.
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7 CONCLUDING REMARKS

7.1 Overview

In this dissertation, we have proposed the use of a clinical reinforcement trial pro-

cedure for discovering effective personalized therapy for patients with CF. After de-

veloping a plausible multi-state Markov disease model for the underlying disease dy-

namics, we simulated several virtual CF trials to investigate the performance of the

proposed procedure. In the simulated clinical scenario where standard one-size-fits-

all and once-and-for-all approaches are ill-suited, we have shown that the proposed

procedure has great potential in tailoring therapy to individual patients, optimizing

the timing to switch treatment, and identifying the best suited treatment to a sub-

population. Such adaptive personalized therapies can reduce antibiotic burden while

taking into account a drug’s immediate and delayed toxicity.

Our research also presents a step towards a potential paradigm shift in the way

antibiotic therapies for Pa lung infection in CF patients are conceived and evaluated,

by taking the view that treatment is part of sequential decision making and thinking

in the context of individualized therapies. The proposed clinical reinforcement trial

could reveal the treatment effects which might be masked in the traditional clinical

trial with single time point and/or ignoring patient heterogeneity.

Additionally, the proposed clinical reinforcement trial procedure has several dis-

tinct advantages, including optimizing therapy without relying on the identification

of accurate mechanistic models, efficient usage of one unit time step disease transi-

tions by fitted Q-iteration, constructing stationary personalized therapy that has high

practicality as a single function representing an adaptive personalized therapy for pa-



tients at different decision time points. Also, at the same time, the therapy preserves

age specific characteristics of therapy. Moreover, the cumulative reward procedure in

the proposed trial not only provides a novel metric to quantify benefits and risks in

the long term, but also provides a framework to integrate benefit risk assessment at

the individual level and then accumulates over time to improve decision making. All

these encouraging results suggest that the proposed clinical reinforcement trial and

accompanying methods can be powerful tools for improving treatment strategies for

long term outcomes in chronic diseases.

7.2 Future Research

There are a number of additional topics to work on and challenges we expect to

address in future research. First of all, the benefit risk assessment through the reward

functioning consists of the metrics and the dimension reduction to quantify the benefit

and risk within patient; however, it is unclear how changing these numbers affects

the resulting optimal personalized therapies identified. The sensitivity analysis of

the reward function, and understanding the robustness of Q-learning to choices of

numerical reward and approximation function, clearly deserves further investigation.

Secondly, the model parameters can be estimated from existing data such as the

EPIC clinical trial and observational study (Treggiari, et al., 2009), along with expert

judgment. The refinement of the disease model for cystic fibrosis and computer tools

for evaluation of treatment and monitoring regimens can be very useful in practice

to improve the design and to predict long-term health outcomes in this patient pop-

ulation. Refining the proposed clinical reinforcement learning trial will require close

collaboration with clinical researchers to improve the practical, logistic aspects, and

for actual implementation.

Thirdly, in Chapter 6, we observed that with sample size N = 1000 for a clinical

reinforcement trial, the discovered personalized therapies are effective and confirmed.
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Although the results in extensive simulation studies indicate that good performance

can be achieved when the sample size is relatively small, this assumption may be

violated in other settings due to the complexity associated with the performance of

the approximation of the Q-function through fitted Q iteration algorithm, the higher

dimensional state or action space, the estimation accuracy due to approximation

through SVR. This sample size calculation is related to the statistical learning error

problem. Murphy (2005) derived finite sample upper bounds in the finite horizon

non Markovian setting. The finite sample bounds for the fitted Q iteration with

regularized supervised learning method such as SVR as approximation methods is an

interesting but potentially very difficult question. The further development of this

theory can lead to better understand of how the performance of Q-learning with SVR

is related to the sample size of the training data in clinical reinforcement trials.

In future research, we also plan to adapt this procedure to other antibiotic ther-

apies for CF patients as well as other therapeutic areas; and to create user-friendly

software tools to implement the proposed reinforcement learning procedure for public

use.
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