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Abstract Purpose: Molecular classification of breast cancer has been proposed based on gene expres-
sion profiles of human tumors. Luminal, basal-like, normal-like, and erbB2+ subgroups were
identified and were shown to have different prognoses. The goal of this research was to deter-
mine if these different molecular subtypes of breast cancer also respond differently to preopera-
tive chemotherapy.
Experimental Design: Fine needle aspirations of 82 breast cancers were obtained before
starting preoperative paclitaxel followed by 5-fluorouracil, doxorubicin, and cyclophosphamide
chemotherapy. Gene expression profiling was done with Affymetrix U133A microarrays and the
previously reported ‘‘breast intrinsic’’gene set was used for hierarchical clustering andmultidimen-
sional scaling to assign molecular class.
Results:The basal-like and erbB2+ subgroups were associated with the highest rates of patho-
logic complete response (CR), 45% [95% confidence interval (95% CI), 24-68] and 45% (95%
CI, 23-68), respectively, whereas the luminal tumors had a pathologic CR rate of 6% (95% CI,
1-21). No pathologic CR was observed among the normal-like cancers (95% CI, 0-31).Molecular
class was not independent of conventional cliniocopathologic predictors of response such as
estrogen receptor status and nuclear grade. None of the 61genes associated with pathologic CR
in the basal-like group were associated with pathologic CR in the erbB2+ group, suggesting that
the molecular mechanisms of chemotherapy sensitivity may vary between these two estrogen
receptor ^ negative subtypes.
Conclusions: The basal-like and erbB2+ subtypes of breast cancer are more sensitive to
paclitaxel- and doxorubicin-containing preoperative chemotherapy than the luminal and normal-
like cancers.

Breast cancer is a clinically heterogeneous disease. Histologi-
cally similar tumors may have different prognoses and may
respond to therapy differently. It is believed that these
differences in clinical behavior are due to molecular differences
between histologically similar tumors. DNA microarray tech-
nology is ideally suited to reveal such molecular differences. A
novel molecular classification of breast cancer based on gene
expression profiles was recently proposed (1). The investigators
identified a set of stably expressed genes (‘‘intrinsic gene set’’;
n = 534) that accounted for much of the molecular differences
between 42 breast cancers and did hierarchical cluster analysis
to identify subgroups of cancers with separate gene expression
profiles. Luminal, basal-like, normal-like, and erbB2+ sub-
groups were identified and were shown to have different
prognoses (1–4). These results were confirmed in follow-up
experiments by the same group and others using larger
numbers of cases. The basal-like (mostly estrogen receptor
negative) and erbB2+ (mostly HER-2 amplified and estrogen
receptor negative) subgroups had the shortest relapse-free and
overall survival, whereas the luminal-type (estrogen receptor–
positive) tumors had a more favorable clinical outcome (2–4).
There is no published data on how the different molecular
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classes of breast cancer respond to chemotherapy. The goal of
the current project was to examine if these different molecular
subclasses of breast cancer also respond differently to anthracy-
cline- and paclitaxel-containing preoperative chemotherapy.

Patients and Methods

Fine needle aspirations of breast cancer were collected in a
prospectively designed pharmacogenomic marker discovery study at
the Nellie B. Connally Breast Center of the University of Texas M.D.
Anderson Cancer Center. The goal of the ongoing clinical study was to
develop multigene predictors of pathologic complete response (CR) to
preoperative therapy. The current analysis was undertaken to examine
if molecular class is associated with sensitivity to chemotherapy. Gene
expression results from the first 82 patients with stage I to III breast
cancer were included in this analysis. Patient characteristics were
presented in Table 1. Fine needle aspiration was done using a 23- or
25-gauge needle before starting preoperative chemotherapy with 12
weeks of paclitaxel followed by 5-fluorouracil, doxorubicin, and
cyclophosphamide � 4 courses. Cells from 2 to 3 passes were
collected into vials containing 1 mL of RNAlater solution (Ambion,
Austin, TX) and stored at �80jC. Median RNA yield of the 82
specimens was 2.0 Ag (1-22 Ag). Approximately 70% of all aspirations
yielded at least 1 Ag total RNA, which is required for gene expression
profiling. The main reason for failure to obtain sufficient RNA was
acellular aspirations (low cell yield). The cellular composition of the
fine needle aspiration samples was previously reported; in brief, fine
needle aspiration samples on average contain 80% neoplastic cells and
the rest of the cells are infiltrating leukocytes (5). These samples
contain little or no stromal cells (fibroblasts and adipocytes) or
normal breast epithelium. Of the 82 RNA specimens used in this
analysis, 33 were included in a previous pharmacogenomic analysis
using cDNA arrays (6). These 33 cases were profiled on both platforms
(Affymetrix U133A and proprietary cDNA) and the results of the cross
platform comparison of gene expression data were published
separately (7). All patients underwent surgery after completion of 24
weeks of preoperative chemotherapy. Grossly visible residual cancer
was measured and representative sections were submitted for routine
histopathologic examination. When there was no grossly visible
residual cancer, the slices of the specimen were radiographed and all
areas of radiologically and/or architecturally abnormal tissue were
entirely submitted for histopathologic study. Patients without any
residual invasive cancer in the breast and axillary lymph nodes were
considered to have pathologic CR. Patients with residual in situ cancer
(DCIS) only were also considered to have pathologic CR. Estrogen
receptor and HER-2 status was determined by routine clinical
diagnostic methods [using mouse monoclonal anti–estrogen receptor
antibody 6F11 (Novacastra/Vector Laboratories, Burlingame, CA) and
fluorescence in situ hybridization assay to determine HER-2 amplifi-
cation (PathVision kit, Vysis, Dovners Grove, IL)] on a diagnostic core
needle biopsy obtained before or concomitant to the research fine
needle aspiration. Nuclear grade was defined by the modified Black’s
nuclear grading system (1 = low grade, 2 = intermediate grade, and 3 =
high grade; ref. 8). The study was approved by the Institutional Review
Board of M.D. Anderson Cancer Center, and all patients signed an
informed consent.

RNA was extracted from fine needle aspiration samples using the
RNAeasy Kit (Qiagen, Valencia CA). The amount and quality of RNA
were assessed with a DU-640 UV Spectrophotometer (Beckman
Coulter, Fullerton, CA) and by an Agilent 2100 Bioanalyzer RNA
6000 LabChip kit (Agilent Technologies, Palo Alto, CA). Profiling was
done without second round amplification using a minimum of 1 Ag
total RNA. Double-stranded cDNA was synthesized, followed by in vivo
transcription reaction to generate biotinylated cRNA. Biotin-labeled and
fragmented cRNA was hybridized to Affymetrix U133A gene chips

overnight at 42jC. The Affymetrix GeneChip system was used for
hybridization and scanning and the dCHIP V1.3 (http://dchip.com)
software was used to generate probe level signal and for normalization
of data across arrays.

Data Analysis

dCHIP V1.3 software was used for normalization; this
program normalizes all arrays to one standard array that
represents a chip with median overall intensity. After
normalization, estimates of feature level intensity were derived
from the 75th percentile of pixel level intensity of each
feature. Each individual probe was aggregated at the feature
level to form a single measure of intensity for each probe set.
We used the perfect match model. Statistical analysis was

Table1. Clinical information and demographics of the
patients included in the study (n = 82)

Female 82 (100%)
Median age 52 y (range 29-79)
Race

Caucasian 56 (68%)
African American 11 (13%)
Asian 7 (9%)
Hispanic 6 (7%)
Mixed 2 (2%)

Histology
Invasive ductal 73 (89%)
Mixed ductal/lobular 6 (7%)
Invasive lobular 1 (1%)
Invasive mucinous 2 (2%)

Tumor-node-metastasis stage
T1 7 (9%)
T2 46 (56%)
T3 15 (18%)
T4 14 (17%)
N0 28 (34%)
N1 38 (46%)
N2 8 (10%)
N3 8 (10%)

Nuclear grade (benign melanocytic nevus)
1 2 (2%)
2 23 (37%)
3 35 (61%)

Estrogen receptor positive* 35 (43%)
Estrogen receptor negative 47 (57%)
HER-2 positivec 57 (70%)
HER-2 negative 25 (30%)
Neoadjuvant therapyb

Weekly T (80 mg/m2) � 12 + FAC� 4 69 (84%)
3-weekly T (225 mg/m CI) � 4 + FAC � 4 13 (16%)

Pathologic CR 21 (26%)
Residuald isease 61 (74%)

*Cases where >10% of tumor cells stained positive for estrogen receptor with
immunohistochemistry were considered positive.
cCases that showed gene copy number > 2.0 were considered HER-2 positive.
bT, paclitaxel; CI, 24-hour continuous infusion; and FAC, 5-flurouracil
(500 mg/m2), doxorubicin (50 mg/m2), and cyclophosphamide (500 mg/m2).
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done by using the BRB-Arraytools version 3.0 software
package (http://linus.nci.nih.gov/BRB-ArrayTools.html). Com-
plete linkage hierarchical clustering was done with the
previously published breast cancer intrinsic gene set with 1�
Pearson correlation coefficient as distance metric (1). Cluster
reproducibility and the robustness of the dendograms were
examined by the method proposed by McShane et al. (9)
based on 500 perturbations. Tumors clustering together in
significant dendrogram branches were categorized as one
molecular class. We also used multidimensional scaling with
the Eucledian distance as metric to provide graphical
representation of the distances among samples. This method
also made it possible to test global statistical significance to
determine whether the expression profiles form distinct
clusters (rather than represent the same multivariate Gaussian
distribution). Genes differentially expressed in a particular
molecular class compared with all other tumors and between
cases of pathologic CR and residual cancer within a single
molecular subgroup were identified using the significance
analysis of microarrays (SAM) software with 1,000 sample
permutations. SAM uses permutations to estimate the false
discovery rate and an adjustable threshold allows for control
of the false discovery rate (10).

Pathologic complete response rates were calculated for each
molecular class and assessed in univariate analysis (m2 test) and
multivariate analysis (logistic regression). Estrogen receptor and
HER-2 status, nuclear grade, tumor size, and lymph node
involvement were included in the multivariate analysis. We
built logistic regression–based prediction models with various
combinations of clinical variables and molecular class to
examine if knowledge of the molecular class improves
prediction accuracy above what can be achieved by combining
routine clinical variables.

Results

Hierarchical clustering with the breast cancer intrinsic gene set
reveals previously described molecular classes in fine needle
aspiration specimens. The intrinsic breast cancer gene set
consists of 534 genes of which expression showed significantly
larger variation between tumors than between paired samples
from the same tumor in an early seminal publication (1). Of
these intrinsic genes, 424 were represented on the Affymetrix
U133A chip. We did supervised hierarchical clustering with 689
Affymetrix probe sets that represented these 424 genes to define
the molecular classes of breast tumors in our data. The tumors
clustered into four major classes. The reproducibility indices of
the four distinct clusters were 0.82, 0.76, 0.85, and 0.78,
respectively, which indicates reasonably robust clusters (9).
Tumors within each molecular subtypes corresponded well to
the previously described clinicopathologic phenotypes of
luminal (n = 30), normal-like (n = 10), basal-like (n = 22),
and erbB2+ (n = 20) cancers (Fig. 1A). All of the luminal
tumors were estrogen receptor positive by immunohistochem-
istry. All but two cases (80%) of the erbB2+ molecular class had
HER-2 gene amplification by fluorescence in situ hybridization
analysis. All but one of the basal-like tumors (95%) was
estrogen receptor negative and 75% of these tumors were also
high nuclear grade. These groups did not differ significantly in
nodal status, tumor size, or patient age distribution (Fig. 1B).
Multidimensional scaling analysis also confirmed the presence

of significant clustering of the cases (global test of significance
P = 0.04, Fig. 1C). To examine how sensitive the cluster results
are to the actual gene set used for clustering, we did a
multidimensional scaling analysis using the probe sets with the
highest variance (top 10%) across all samples (2,228 probe sets
including 229 overlapping probes with the intrinsic gene set).
Cases with the same molecular class (as defined by the intrinsic
gene set) continued to cluster together (global test of
significance P = 0.047; Fig 1E). This suggests that the gene
signature–based groups are robust.

To define the molecular differences further between the
subgroups, we identified differentially expressed genes between
the four molecular classes using SAM analysis on the most
variably expressed probe sets (n = 2,228). Setting the most
stringent false discovery rate at 0.0001, 372 probe sets
representing 298 genes were identified as differentially
expressed between the four distinct groups (Supplementary
Table S1). The high expression of estrogen receptor 1 and
several of the known estrogen receptor–inducible genes, such
as X-box binding protein 1 and SLC39A6 among many others,
characterized the luminal subgroup. The basal-like subgroup
was characterized by the expression of keratin 17, keratin 5, and
g-aminobutyric acid receptor k subunit among others. The
erbB2+ subtype was characterized by the overexpression of
genes that are located in the HER-2 amplicon including erbB2
and GRB7. Interestingly, the normal-like group had only 15
genes that were overexpressed in this subgroup. These gene lists
could be used to further characterize the various molecular
subclasses and for the development of supervised molecular
class prediction methods.

Correlation between molecular class and pathologic complete
response to preoperative chemotherapy. The rates of pathologic
CR differed significantly among the four molecular classes of
breast cancer defined by clustering using the intrinsic gene set.
Basal-like and erbB2+ subgroups were associated with the
highest rate of pathologic CR, 45% [95% confidence interval
(95% CI), 24-68] and 45% (95% CI, 23-68), respectively,
whereas luminal tumors had a pathologic CR rate of 6% (95%
CI, 1-21). No pathologic complete response was observed in
the normal-like subclass (Table 2). We next used multidimen-
sional scaling graph to explore if the breast intrinsic gene set
can separate cases with pathologic CR versus those with
residual disease (Fig. 1D). The global test of significance
showed that the observed clusters of pathologic CR and
residual disease were significantly separate (P = 0.026).

Next, we examined the clinical pathologic variables that were
associated with pathologic CR in this data. Age < 50 years and
estrogen receptor–negative status were identified as indepen-
dent variables associated with higher likelihood of pathologic
CR in multivariate analysis including age, estrogen receptor and
HER-2 status, tumor size, clinical nodal status, and nuclear
grade (Table 3). To examine if knowledge of the molecular class
improves estimation of probability of pathologic CR beyond
what can be achieved with routine clinical variables, we built
three different logistic regression models including the clinical
variables (age, tumor, node stage), the histopathologic varia-
bles (grade, estrogen receptor, and HER-2 status), and the
molecular class in various combinations. For this analysis, we
merged the luminal and the normal-like groups because there
was no pathologic CR in the normal-like category and these
tumors were phenotypically similar to the luminal tumors
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Fig. 1. Different molecular classes of breast cancer show distinct clinicopathologic features and respond differently to chemotherapy. A , hierarchical clustering using the
689 probe sets (424 unique genes) corresponding to the breast intrinsic gene set (n = 82 cases). B, correlation between molecular subclass and clinicopathologic
characteristics in univariate analysis.C, graphical representation of the distances among the samples that belong to different molecular classes using multidimensional scaling
(P = global test of significance for molecular subclasses).D, cases with pathologic CR form a separate cluster in multidimensional scaling analysis. E , when genes with the
greatest variance (top10%, n = 2228) across samples were used for multidimensional scaling, rather than the intrinsic gene set, molecular subgroups continued to cluster
together.
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(HER-2 normal and estrogen receptor positive) that also had
low pathologic CR rates. Molecular class was not independently
associated with pathologic CR because of the high correlation
between molecular class and estrogen receptor status and
nuclear grade in this cohort. We constructed Receiver Operating
Characteristic curves to measure the predictive accuracy of the
logistic regression models including (a) clinical + pathologic
variables, (b) clinical variables + molecular classification, and
(c) clinical + pathologic variables + molecular class (Fig. 2). The
three models yielded similar areas under the Receiver Operating

Characteristic curve. This indicates that the molecular class
alone can replace histopathologic characteristics (estrogen
receptor, HER-2 status, or grade) for prediction of pathologic
CR but provides little additional information when these charac-
teristics are included. More directed supervised class prediction
methods may be needed to develop a multigene predictor of
pathologic CR. Such predictors can be developed by identifying
informative genes that are differentially expressed between cases
of pathologic CR and residual disease and combing these genes
into a weighted prediction score or algorithm.

Table 2. Correlation between molecular classification and pathologic complete response

Pathologic complete response

No Yes

Molecular classification n [% (95% CI)] n [% (95% CI)]
Luminal A/B subtype 28 [93% (78-99)] 2 [7% (1-22)]
Normal breast like 10 [100% (29-100)] 0 [0% (0-31)]
erbB2+ 11 [55% (32-77)] 9 [45% (23-68)]
Basal subtype 12 [55% (32-76)] 10 [45% (24-68)] P < 0.001

Table 3. Multivariate analysis of predictive factors for pathologic CR

Variables Model1: clinical and
histologic variables

Model 2: clinical variables and
molecular classification

Model 3: clinical, histologic variables,
molecular classification

OR (95% CI) P OR (95% CI) P OR (95% CI) P

Age (y)
<50 1 1 1
>50 0.27 (0.8-0.91) 0.035 0.17 (0.06-0.45) <0.001 0.43 (0.11-1.7) 0.43

Tumor (cm)
<5 1 1 1
>5 0.55 (0.14-2.3) 0.41 0.53 (0.15-1.8) 0.28 0.64 (0.14-2.9) 0.56

Node
N0 1 1 1
N1-3 0.96 (0.31-3.0) 0.94 0.65 (0.22-2.0) 0.18 0.90 (0.22-3.7) 0.90

Estrogen receptor
Negative 1 1
Positive 0.12 (0.02-0.31) <0.001 0.08 (0.02-0.35) 0.001

HER-2
Negative 1 1
Positive 1.77 (0.42-7.5) 0.43 0.32 (0.03-3.6) 0.34

Nuclear grade
1/2 1 1
3 2.6 (0.81-8.4) 0.11 2.5 (0.4-13.6) 0.30

Histology
Ductal 1 1
Other 1.14 (0.17-7.5) 0.89 2.3 (0.11-1.7) 0.76

Molecular classification
Luminal/normal-like 1 1
Normal-like 0 (0-. . .) 0.99 0 (0-. . .) 0.99
Basal-like 3.3 (1.0-11) 0.06 0.8 (0.12-5.5) 0.83
erbB2+ 4.4 (1.2-17) 0.026 7.8 (0.62-100) 0.11

NOTE: Multivariate analysis of different combinations of clinical (age, tumor, node) and histopathologic characteristics (grade, estrogen receptor and HER-2 status, and
histologic type) and molecular class as variables.Three distinct prediction models were examined: clinical plus histopathologic variables (model1), clinical variables plus
molecular class (model 2), and all three types of information together (model 3).
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Genes associated with pathologic complete response in the
different molecular subgroups. We next examined if the genes
of which expression was associated with pathologic CR differed
between basal-like and erbB2+ subtypes. Because only two
cases of pathologic CR were observed in the luminal group and
no pathologic CR was seen in the normal-like group, these
groups were not included in this exploratory analysis. Seventy-
two probe sets (corresponding to 61 genes) were differentially
expressed between basal-like tumors that achieved a pathologic
CR and those that did not (Table 4). All highly variable genes
(n = 2,228) were used in this analysis and the false discovery
rate was set at 5%. Interestingly, within the erbB2+ group, zero
genes were identified at false discovery rate < 10%. If the false
discovery rate was set at 50%, 16 probe sets (15 genes) were
identified; however, half of these could represent spurious
discovery (data not shown). A greater variance of gene expres-
sion among erbB2+ tumors and, therefore, greater molecular
heterogeneity compared with basal-like tumors combined with
the small sample size (erbB2+; n = 20) may explain why it was
difficult to identify genes in this group. Importantly, none of
the genes associated with pathologic CR in the basal-like group
was associated with pathologic CR in the erbB2+ group. We
also assessed if there was a correlation between fold differences
of expression of pathologic CR-associated genes in cases with
pathologic CR compared with residual disease in basal-like and
erbB2+ tumors, respectively. There was no correlation (P =
0.19). The absence of correlation suggests that genes associated
with chemotherapy sensitivity are different between these two
molecular subgroups of breast cancer.

Discussion

The goal of this current project was to further evaluate the
clinical relevance of a novel gene expression–based classifica-
tion system of breast cancer. This new classification is based on
gene expression signatures of variably expressed genes in breast
cancer (1). It has previously been shown that the various
molecular classes have different long-term survivals (1–4).
However, it is not possible to decipher from these earlier
studies if the differences in survival are due to different
metastatic potentials or to different sensitivities to adjuvant
chemotherapy or hormonal therapy because the patients
included in these studies received various forms of multi-

modality treatment. In the current study, we examined newly
diagnosed stage I to III breast cancers that all received
preoperative treatment with anthracycline and taxane followed
by surgery to determine if the different molecular classes show
different chemotherapy sensitivities based on pathologic
response to preoperative chemotherapy.

All previous reports on molecular classification used frozen
breast cancer tissues for gene expression profiling. The current
study differs from these in that we used fine needle aspiration
specimens. Surgically resected cancer tissues differ from fine
needle aspiration in cellular composition. The fine needle
aspiration material contains 80% to 90% pure neoplastic cells
whereas surgical biopsies or core needle biopsies contain a
variable amount of stromal cells. It was therefore of interest to
determine if the intrinsic gene set that discriminated molecular
class in surgical specimens could also separate molecular classes
of breast cancer in fine needle aspiration data. If such
separation can be observed, this would suggest that these
informative genes are primarily expressed in neoplastic cells
rather than in stromal cells.

In the current study, we did hierarchical clustering and
multidimensional scaling analysis using the breast cancer
intrinsic gene set which mimics the original class discovery
process because there are presently no uniformly accepted
class prediction tools to define the molecular classes of breast
cancer utilizing gene expression data. We observed very similar
results in our fine needle aspiration data as was reported by
others on surgical tissues. The two most readily distinguish-
able molecular classes of breast cancer are the basal-like and
luminal subtypes whereas the normal-breast like class is the
least robust. This may be due to the possibility that the
original samples in this category contained significant amount
of contaminating normal breast tissue. The basal-like, erbB2+,
and luminal subclasses were distinguished by some of the
same genes and histologic phenotypes in our series as
previously reported. This supports the hypothesis that these
clusters represent genuinely different diseases within breast
cancer (3, 4).

The different molecular classes of breast cancer showed
different sensitivities to preoperative chemotherapy. The basal-
like and erbB2+ subgroups had the highest rates of pathologic
CR, 45% (95% CI, 23-68). The luminal and normal-like
tumors had low pathologic CR rates of 6% (95% CI, 1-21)

Fig. 2. Receiver Operating Characteristic
curves for logistic regression models. Three
different prediction models were compared
including clinical plus histopathologic
variables (model 1), clinical variables plus
molecular classification (model 2), and
clinical plus histopathologic plus molecular
classification (model 3). All three models
were similarly done.
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and 0% (95% CI, 0-21%), respectively. However, the
pathologic predictors of response (i.e., grade and estrogen
receptor status). The basal-like and erbB2+ tumors were
predominantly high nuclear grade and the basal-like tumors
were almost all estrogen receptor negative. Both of these
characteristics are known to be associated with higher
likelihood of pathologic CR to preoperative chemotherapy
(11 – 13). Because of this association, incorporation of
molecular class into a logistic regression–based predictor of
response did not improve the prediction accuracy compared
with using routine clinical and pathologic variables only.
Therefore, it is likely that more focused gene signature–based
predictors will need to be developed through supervised
outcome prediction methods.

How to define the best multigene predictor of response to
chemotherapy is not known. One approach is to group all
breast cancers into either responders (e.g., pathologic CR) or
nonresponders (e.g., residual disease), define the gene
expression differences between these groups, and use this

information to construct a response prediction score or

machine learning–based predictor. This approach was suc-
cessfully applied to develop prognostic signatures for breast
cancer and was also promising in small pilot studies of
chemotherapy response prediction (6, 14, 15). To develop the
best possible supervised classifier for prediction of pathologic
CR from this data set was not the goal of this current analysis.
However, if distinct molecular classes of breast cancer exist,
one could hypothesize that stratification of patients by
molecular class may yield more accurate class-specific pre-
dictors than unstratified use of the data.

As an exploratory analysis, we attempted to define the
molecular differences between tumors that are extremely
chemotherapy sensitive (pathologic CR) and those that are
more resistant (residual disease) within the basal-like and
erbB2+ groups, separately. In the basal-like group (n = 22,
including 10 pathologic CR), 61 genes were identified that
were statistically significantly associated with pathologic CR. It
is important to realize that none of these genes are associated
with estrogen receptor status or high grade (the two

Table 4. Genes associated with pathologic CR in
basal-like breast cancer

Probe set Gene
symbol

Fold difference of means
between residual disease
and pathologic CR

1 213060___s___at* CHI3L2 4.117

2 200052___s___at ILF2 2.645

3 213338___at RIS1 3.181

4 214433___s___at* SELENBP1 2.735

5 204319___s___at RGS10 2.183

6 213005___s___at ANKRD15 2.517

7 221561___at SOAT1 2.156

8 212190___at SERPINE2 2.448

9 209387___s___at TM4SF1 3.096
10 221727___at PC4 1.842
11 213716___s___at SECTM1 2.183
12 203165___s___at SLC33A1 1.826
13 207414___s___at PACE4 1.732
14 201819___at SCARB1 2.118
15 217983___s___at RNASET2 1.915
16 214540___at HIST1H2BO 1.864
17 218538___s___at MRS2L 1.794
18 202506___at SSFA2 1.678
19 215071___s___at HIST1H2AC 2.099
20 202988___s___at RGS1 2.328
21 220624___s___at ELF5 2.521
22 221505___at* ANP32E 2.51
23 208370___s___at DSCR1 2.332
24 204407___at TTF2 1.913
25 218398___at MRPS30 1.595
26 213754___s___at TRIM26 1.844
27 210147___at ART3 3.943
28 204809___at CLPX 1.813
29 202035___s___at SFRP1 6.461
30 209389___x___at DBI 1.792
31 201897___s___at CKS1B 1.937
32 209142___s___at UBE2G1 1.746

Probe set Gene
symbol

Fold difference of means
between residual dis-
ease
and pathologic CR

33 209340___at UAP1 1.724
34 203362___s___at MAD2L1 1.967
35 217028___at CXCR4 2.097
36 205044___at* GABRP 6.224
37 36711___at MAFF 2.271
38 202023___at EFNA1 1.721
39 212915___at PDZRN3 2.539
40 217851___s___at C20orf45 1.734
41 211762___s___at KPNA2 1.849
42 213134___x___at* BTG3 2.007
43 204162___at KNTC2 2.283
44 212276___at LPIN1 2.219
45 219768___at B7-H4 1.843
46 209551___at MGC11061 1.925
47 203744___at HMGB3 1.457
48 200975___at PPT1 1.628
49 221931___s___at SEC13L 1.796
50 209786___at HMGN4 1.63
51 218963___s___at KRT23 3.088
52 219209___at MDA5 2.337
53 214214___s___at C1QBP 1.799
54 209656___s___at TM4SF10 2.645
55 203706___s___at* FZD7 2.603
56 206055___s___at SNRPA1 1.799
57 204825___at MELK 1.735
58 212762___s___at TCF7L2 1.928
59 203423___at RBP1 1.82
60 210605___s___at* MFGE8 2.085
61 214835___s___at SUCLG2 1.576

NOTE: There are 72 probes sets significant by SAM, corresponding to 61
genes. The median false discovery rate among the 72 significant genes is
0.04. Genes are ranked by significance.

Table 4. Genes associated with pathologic CR in
basal-like breast cancer (Cont’d)

Probe set Gene
symbol

Fold difference of means
between residual disease
and pathologic CR

Human Cancer Biology

www.aacrjournals.orgClin Cancer Res 2005;11(16) August15, 2005 5684

Cancer Research. 
on February 27, 2018. © 2005 American Association forclincancerres.aacrjournals.org Downloaded from 

http://clincancerres.aacrjournals.org/


conventional strong predictors of pathologic CR) because the
basal-like group almost exclusively consists of high-grade and
estrogen receptor–negative tumors. We could not define a
robust gene set that correlated with pathologic CR in the
erbB2+ group (n = 20, including 9 pathologic CR).
Importantly, the genes that were associated with pathologic
CR in the basal-like group were not associated with pathologic
CR in the erbB2+ group. This suggests that distinct sets of
genes are associated with pathologic CR in the different
molecular classes.

It is tempting to speculate on the biological function of the
genes that are differentially expressed between cases with
pathologic CR and those with residual cancer. However, not
all of these genes may play a causative role in determining
sensitivity to chemotherapy. Some of these may be distant
downstream transcriptional effects of biological events that
influence drug sensitivity and a few could represent spurious
discovery. From the vantage point of gaining mechanistic
insight into the biology of chemotherapy sensitivity or

resistance, these gene lists should be regarded as hypothesis-
generating and will require further in vitro experimentation to
show a functional role for any particular molecule.

In summary, these results indicate that the major molecular
classes of breast cancer can be detected in gene expression data
regardless of tissue sampling method (i.e., fine needle
aspirations, core needle, or surgical biopsies). The different
molecular classes of breast cancer not only have different
prognoses but also show distinct sensitivities to preoperative
chemotherapy. The basal-like and erbB2+ subtypes of breast
cancer are more sensitive to paclitaxel- and doxorubicin-
containing preoperative chemotherapy than the luminal and
normal-like cancers. The genes associated with pathologic CR
were different between the basal-like and erbB2+ subgroups,
which suggest that the mechanisms of chemotherapy sensi-
tivity may vary across the subtypes. The possibility that
distinct predictive signatures can be developed for the
different molecular subtypes of breast cancer warrants further
examination.

References
1. Perou CM, Sorlie T, Eisen MB, et al. Molecular por-

traits of human breast tumours. Nature 2000;406:
747^52.

2. Sorlie T, Perou CM, Tibshirani R, et al. Gene expres-
sion patterns of breast carcinomas distinguish tumor
subclasses with clinical implications. Proc Natl Acad
Sci US A 2001;98:10869^74.

3. Sorlie T, Tibshirani R, ParkerJ, et al. Repeated obser-
vation of breast tumor subtypes in independent gene
expression data sets. Proc Natl Acad Sci U S A
2003;100:8418^23.

4. Sotiriou C, Neo SY, McShane LM, et al. Breast
cancer classification and prognosis based on
gene expression profiles from a population-based
study. Proc Natl Acad Sci U S A 2003;100:
10393^8.

5. Symmans WF, Ayers M, Clark EA, et al. Total RNA
yield and microarray gene expression profiles from
fine-needle aspiration biopsy and core-needle biopsy
samples of breast carcinoma. Cancer 2003;97:
2960^71.

6. Ayers M, Symmans WF, StecJ, et al. Gene expression

profiles predict complete pathologic response to neo-
adjuvant paclitaxel and fluorouracil, doxorubicin, and
cyclophosphamide chemotherapy in breast cancer.
JClin Oncol 2004;22:2284^93.

7. StecJ, WangJ, Coombes K, et al. Comparison of the
predictive accuracy of DNA array based multigene
classifiers across cDNA arrays and Affymetrix Gene-
Chips. JMol Diagnostics. In press 2005.

8. Cutler SJ, Black MM, Mork T, et al. Further observa-
tions on prognostic factors in cancer of the female
breast. Cancer1969;24:653^67.

9. McShane LM, Radmacher MD, Freidlin B, et al.
Methods for assessing reproducibility of clustering
patterns observed in analyses of microarray data.
Bioinformatics 2002;18:1462^9.

10.Tusher VG, Tibshirani R, Chu G. Significance anal-
ysis of microarrays applied to the ionizing radiation
response. Proc Natl Acad Sci U S A 2001;98:
5116^21.

11. Mathieu MC, Rouzier R, Llombart-Cussac A, et al.
The poor responsiveness of infiltrating lobular breast
carcinomas to neoadjuvant chemotherapy can be

explained by their biological profile. Eur J Cancer
2004;40:342^51.

12. Rouzier R, Extra JM, Klijanienko J, et al. Incidence
and prognostic significance of complete axillary
downstaging after primary chemotherapy in breast
cancer patients withT1toT3 tumors and cytologically
proven axillary metastatic lymph nodes. J Clin Oncol
2002;20:1304^10.

13. Kuerer HM, Newman LA, SmithTL, et al. Clinical
course of breast cancer patients with complete patho-
logic primary tumor and axillary lymph node response
to doxorubicin-based neoadjuvant chemotherapy.
JClin Oncol1999;17:460^9.

14. Gianni L, Zambetti M, Clark K, et al. Gene expression
profiles of paraffin-embedded core biopsy tissue pre-
dict response to chemotherapy in patients with locally
advanced breast cancer. ASCO Annual Meeting Pro-
ceedings 2004;22:501.

15. Chang JC, Wooten EC, Tsimelzon A, et al. Gene
expression profiling for the prediction of therapeutic
response to docetaxel in patients with breast cancer.
Lancet 2003;362:362^9.

Molecular Subtypes of Breast Cancer

www.aacrjournals.org Clin Cancer Res 2005;11(16) August15, 20055685

Cancer Research. 
on February 27, 2018. © 2005 American Association forclincancerres.aacrjournals.org Downloaded from 

http://clincancerres.aacrjournals.org/



