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Abstract

An early matter-dominated era (EMDE) is a brief period between the end of inflation and reheating
where a matter-like energy source dominates the cosmic stage. During the EMDE, sub-horizon
matter density perturbations grow linearly with the scale factor, as compared to logarithmically
during the radiation-dominated (RD) era. Perturbation modes outside the comoving Hubble horizon
at reheating, with R > RH ≡ 1/(aRHHRH) and thus k < kRH, are unaffected by the EMDE.
Free-streaming of the dark matter particle will eliminate structure formation on scales below the
free-streaming cut-off scale Rcut = 1/kcut. Modes in the wavenumber range kRH < k < kcut will be
enhanced by the EMDE, and thus we are interested in the ratio kcut/kRH as a function of the reheat
temperature TRH, temperature at kinetic decoupling in a RD universe TkdS, and dark matter mass
mχ. A larger ratio corresponds to a larger range of modes enhanced by the EMDE. We find that for
a ratio TkdS/TRH ≈ 6, a ratio kcut/kRH = 20 is attainable. The enhanced matter power spectrum
is used as initial conditions for the GADGET-2 N-body simulation code to study the formation and
survival fraction of dark matter microhalos below the reheat mass. The microhalos that survive
until today are bound into galaxy-mass host halos as substructure. This high-density substructure
causes a boost in the dark matter annihilation rate. Our simulation results demonstrate that slightly
fewer microhalos survive than previously expected, resulting in a somewhat lower annihilation boost
factor than that of analytical predictions.
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I. INTRODUCTION

The first second of the Universe is the most poorly un-
derstood epoch on the cosmological timeline. There is
strong evidence that a rapid accelerating expansion of
space, known as cosmic inflation, lasted from ∼10−36

to ∼10−32 seconds after the Big Bang [1]. The cur-
rent cosmological model splits the post-inflation history
of the universe into the eras of radiation, matter, and
dark energy domination. The inflationary period rapidly
decreases radiation density and yet the universe must be-
come radiation dominated before the onset of Big Bang
Nucleosynthesis (BBN) around one second after the Big
Bang. The one-second evolution of the Universe between
inflation and BBN consists of a temperature decrease
from ∼1016 GeV to several MeV, and yet science has
uncovered almost nothing concrete about what occurs
during this drastic temperature scale change.

The most basic models of inflation consist of one driv-
ing scalar field, the inflaton. Slow-roll inflation ends when
the inflaton reaches the bottom of its potential well and
begins to oscillate, eventually decaying. An oscillating
scalar field at the bottom of a quadratic potential well,
such as in “chaotic” inflation, follows the same dynam-
ics as a pressureless fluid, namely what we call matter
[2]. Therefore, a generic prediction of inflation is a brief
period of domination by a matter-like energy source be-
tween the end of inflation and the onset of radiation dom-
ination at reheating. Other high-energy theories, such as
string and M-theory, predict that after the inflaton de-
cays, other oscillating scalar fields may briefly dominate
the cosmic energy density in an early matter-dominated
era (EMDE) [3]. In string theory, scalar fields called
stabilized moduli are generic and important ingredients
to realistic models whose energy density could dominate
briefly after inflation [4]. Yet another possibility is that
the inflaton or some other field decays into quasi-stable
massive particles before BBN. The notion of a pre-BBN
EMDE is a fairly general prediction of early universe
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theories. With several potential theories predicting an
EMDE, it is possible that there may be more than one
EMDE before reheating. Of particular interest to the
study of structure formation and evolution is the final
EMDE that leads up to the point of reheating. This
EMDE is particularly important because it generates the
current content of the Universe. Reheating is often as-
sumed to occur at extremely high temperatures (∼1016

GeV), too early in the Universe’s history to have much
impact on observables. However, string theory predicts
that the lightest stabilized moduli should have mass on
order ∼1000 TeV, resulting in a reheat temperature less
than a few hundred GeV [3]. This temperature scale is
fairly general to other EMDEs predicted by string theory.

In an EMDE, the domination of this matter-like en-
ergy source, in the form of a scalar field, would enhance
all matter density perturbation modes on scales up to
the comoving Hubble horizon RH ≡ 1/[aH(a)], which
is analagous to all wavenumbers k > kRH = R−1

RH. Here,
kRH = aRHHRH(aRH) is the mode that enters the horizon
at reheating [5]. At the end of the EMDE, the scalar field
decays and radiation domination begins at the reheat
temperature TRH, which is currently only constrained by
BBN to be above 3 MeV [6, 7]. For low, GeV-scale re-
heat temperatures, the enhanced density perturbations
will significantly increase the formation of dark mat-
ter microhalo populations at higher formation redshifts
from that of a Universe that transitions directly from re-
heating to radiation domination. These microhalos pre-
dominantly lie within the sub-Earth mass regime, with
higher densities due to earlier formation times compared
to their counterparts that form in a standard radiation-
dominated universe [8–10]. The increased formation of
higher density substructure boosts the dark matter an-
nihilation rate compared to the evolution without an
EMDE because annihilation scales with the square of the
dark matter density. Analytical calculations of this boost
factor are on the order of ∼ 105 [11]. These calculations
are highly uncertain due to a lack of experimental data on
interactions between microhalos and the effects on micro-
halo density profiles as a result of these interactions. In
particular, it is unclear what the fate of the earliest form-
ing microhalos will be. Ref. [11] concludes that N-body
simulations of microhalos are necessary to determine if
they can survive their absorption into larger microhalos
that form slightly later. If the majority of the primordial
microhalos do indeed survive, the boost factor will also
be sensitive to how much of their mass is tidally stripped
by their host halo.

In this work, we will attempt to determine this boost
factor using cosmological N-body simulations and com-
pare with prior analytical results. A more accurate boost
factor will be necessary to determine if there is a viable
parameter space of reheat temperatures, kinetic decou-
pling temperatures, and dark matter masses such that
the EMDE produces results that agree with observations
of the dark matter relic abundance. The dark matter in
the enhanced substructure was created entirely through

FIG. 1. Demonstration of linear enhancement due to an
EMDE for subhorizon modes. Standard logarithmic growth
begins at reheating. Figure from Ref. [11]

pair production, with no non-thermal dark matter gener-
ation due to scalar field decay. After dark matter freezes
out, its comoving number density is conserved. How-
ever, during the EMDE, the matter-like scalar field acts
as a source to the radiation, and thus additional photons
are created. This causes the dark matter-radiation ra-
tio to decrease. For the dark matter relic abundance to
remain in agreement with current observational bounds
from the Planck mission [12], freeze-out must occur ear-
lier, and thus the annihilation cross section 〈σv〉 must
decrease from the standard value of 3 × 10−26 cm3 s−1.
For observations to constrain an EMDE, the boost factor
must be sufficiently large to compensate for a lower an-
nihilation cross section in order to bring the dark matter
annihilation rate above the current observable threshold.

The effects from an EMDE on the matter power spec-
trum will primarily depend on TRH and the cut-off scale
kcut due to dark matter free-streaming. Causally con-
nected density perturbation modes grow linearly with the
scale factor during the EMDE. When the universe drops
below the reheat temperature, the EMDE ends and radi-
ation domination begins, and evolution of all subhorizon
perturbation modes becomes logarithmic until matter-
radiation equality. Scales that are larger than the cosmic
horizon at reheating (k < kRH) will have experienced
no density perturbation enhancement, only growing log-
arithmically since horizon entry. Figure 1 demonstrates
this behavior for a mode that enters the horizon during
an EMDE. Lower reheat temperatures result in a longer
EMDE, which allows the density perturbations to grow
larger.

After dark matter kinetically decouples from radiation
at Tkd, the remaining velocities of the dark matter parti-
cles create a free-streaming effect that reduces perturba-
tions on scales below the free-streaming distance, which is
the distance a DM particle has traveled since decoupling.
This residual velocity determines the free-streaming cut-
off scale, kcut, such that modes with k > kcut are sup-
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pressed due to free-streaming. Ultimately, the modes
within the range kRH < k < kcut will be enhanced by the
EMDE. We first aim to establish the relationship between
kRH and kcut as a function of the dark matter mass and
the temperatures at reheating and kinetic decoupling.

The post-EMDE matter power spectrum can be used
to run cosmological N-body simulations. Given a spe-
cific reheat temperature and free-streaming cut-off scale,
a power spectrum can be generated and used as input for
GADGET-2 [13], a robust cosmological N-body simulator
code. This simulates dark matter structure formation on
small scales within a cube with side on the order of tens
of parsecs/h, running through the cosmic dark ages up
until a redshift of zf ∼ 30, allowing us to analyze in-
creased microhalo populations as a result of the EMDE.
Analytical models of an EMDE have shown an increase
in the fraction of dark matter bound in microhalos from
the standard ∼ 10−10 up to 50% for low reheat tem-
peratures. We will use the results of these numerical
simulations to verify theoretical results and analyze the
structure of individual microhalos.

The focus of this thesis is to determine what happens
to these microhalos as the universe evolves. As small
microhalos merge with larger microhalos, they may re-
main intact as discrete subhalos within the larger host
halo. It is also possible that the substructure is destroyed
due to these mergers. Microhalo substructure drastically
boosts the DM annihilation rate, which is quantified by
the boost factor defined as:

1 +Bs =
J∫

ρ2
χ4πr2dr

(1)

where J is the integral of density squared over the micro-
halo volume and the denominator is the integral over a
halo with the same mass and virial radius but a smooth
density profile. More substructure will cause J to in-
crease, in turn increasing the boost factor. If enough
substructure has survived in halos, the dark matter an-
nihilation rate could be sufficiently boosted for detection
using gamma ray telescopes. Of particular interest is the
relative boost factor (1 + B)/(1 + Bstd), where 1 + Bstd

is the standard substructure boost in annihilation due to
subhalos above the reheat scale that form in the absence
of an EMDE. Ref. [11] finds that if 90% of the dark
matter is still contained in microhalos at z = 50, the
relative boost from an EMDE is 100, which is not high
enough to overcome the suppression in the annihilation
cross section. However, if the microhalos form sufficiently
early at z = 400 with 60% of dark matter bound into mi-
crohalos at that time, and these microhalos survive to
today as subhalos within a larger host halo, the relative
boost factor could be as large as 30,000. This boost fac-
tor would be sufficiently high to increase the dark matter
annihilation rate in dwarf spheroidal galaxies above the
observational limits of the Fermi Gamma-Ray Telescope
[14].

The structure of this document is as follows: In Sec-
tion II, we use numerical solutions to a system of coupled

ordinary differential equations [15] to study the evolu-
tion of the phase space density of dark matter perturba-
tion modes. We will study the perturbation dependence
on TRH, Tkd, and dark matter mass mχ. Our ultimate
goal in this section is to construct and verify an analyt-
ical model for the free-streaming cut-off scale as a func-
tion of the aforementioned temperatures and dark matter
mass. We will attempt to determine a set of suitable pa-
rameters that result in a cut-off scale small enough to
produce sufficient boost in annihilation. Once the rela-
tionship kcut/kRH has been determined, we can generate
the matter power spectrum and run cosmological simu-
lations, which will be the focus of Section III. We will
also employ the Rockstar [16] halo cataloging program
to find the phase-space coordinates, masses, and radii of
all well-resolved, gravitationally-bound structures in the
simulation particle data. We will use these halo catalogs
to compare the numerical halo mass functions to the an-
alytical Sheth-Tormen [17] and Press-Schecter [18] mass
functions. For further verification of the simulations, we
will fit generalized Navarro-Frenk-White density profiles
[19] to simulated halos and compare to analytical pre-
dictions for microhalos formed at high redshift. We will
also discuss the mass-concentration relationship for mi-
crohalos. We will measure the evolution of the bound
matter fraction of entire simulations as well as the sub-
structure mass percentage of individual host halos. In
Section IV, we will calculate the boost factor for micro-
halos and generate a boost-mass relationship Bs(Mmh).
This relationship will be integrated over all mass scales
below the reheat mass to determine the total substruc-
ture boost for galaxy-mass host halos. These total boosts
will be compared to observational limits for a given dark
matter annihilation cross-section.

Note: Natural units (~ = c = kB = 1) are used
throughout this work.

II. FREE-STREAMING CUT-OFF SCALE

The linear enhancement from an EMDE is only present
in modes that enter the horizon before reheating (k >
kRH) and modes that are larger than the free-streaming
cut-off scale (k < kcut). We seek to understand the de-
pendence of the cut-off scale on the dark matter mass mχ

and the temperatures at reheating (TRH) and at kinetic
decoupling (Tkd).

Before kinetic decoupling, the dark matter is coupled
to the lepton-photon plasma. After the Universe drops
below Tkd, the dark matter particles can be modeled as a
collisionless gas. After reducing the Boltzmann equation
for dark matter-lepton interactions to a Fokker-Planck
equation for the evolution of dark matter density pertur-
bations, Ref. [15] derives a system of coupled ordinary
differential equations (Eq. (12)) to describe the evolution
of the phase space density of each perturbation mode k.

We will now build up some of the necessary background
in order to study this set of equations, introducing them
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in Subsec. II C. In particular, we begin by introducing
KDEMDE, the code used to study the evolution of the
dark matter perturbations, in Subsec. II A. Then, we
study the evolution of matter, radiation, and scalar field
densities in Subsec. II B. In Subsec. II D, we will focus
particularly on numerical effects due to the truncation of
an infinite sum that is present due to the boxed terms
in Eq. (12). Once we have generated data for the indi-
vidual perturbation modes, we will study their relative
magnitudes with the “transfer function” in Subsec. II E.
Lastly, we will construct an analytical model of kcut/kRH

in Subsec. II F.

A. KDEMDE Introduction and Parameterization

The code to study Eq. (12), KDEMDE, was written
by Cosmin Ilie in 2016. The following introduction to
numerical evolution of perturbation modes is based on a
document written by Cosmin Ilie. The parameters that
describe the system are the reheat temperature TRH, the
kinetic decoupling temperature in a standard radiation-
dominated (RD) universe TkdS, the dark matter parti-

cle speed cχ ≡
√

2TkdS/mχ, and the mode of interest
relative to the mode that enters at reheating k/kRH.
Note that the dark matter mass is fixed by the particle
speed. The standard kinetic decoupling temperature is
reached when the momentum transfer rate γ falls below
the Hubble rate in a standard, radiation-dominated uni-
verse HRD, and is thus defined by HRD(TkdS) = γ(TkdS).
Also, by focusing on the ratio k/kRH, we know that if
k/kRH > 1, the mode enters the horizon before reheat-
ing, and if k/kRH < 1, the mode enters the horizon after
reheating.

The mode that enters the horizon at a particular time
is k = R−1

H = aH(a), where RH is the comoving Hub-
ble radius, as mentioned in the introduction. The mode
that enters the horizon at reheating kRH = aRHH(aRH),
where the Hubble parameter H ∝ a−3/2 during the
EMDE. This is because during the EMDE, the dominant
energy source is a pressureless fluid, namely the scalar
field, whose energy density ρφ ∝ a−3 and H ∝ √ρφ.
This allows us to set the mode that enters the horizon at
reheating as kRH ≡ H1

(
aRH

aI

)−3/2
aRH, with H1 being the

Hubble parameter at aI , the scale factor at the beginning
of the code evolution.

As mentioned above, TkdS, the kinetic decoupling tem-
perature in a standard RD background, is defined by:

γ(TkdS) = HRD(TkdS) =

√
8π3

90m2
PL

g∗(TkdS)T 4
kdS (2)

with mPL =
√

1/G the Planck mass and γ being the
elastic scattering momentum transfer rate between lep-
tons and the dark matter. The dark matter remains ki-
netically coupled to the radiation while γ > H. The mo-
mentum transfer rate scales as T 4+n

L , with TL the lepton
temperature and n = 2 in the case of p-wave scattering.

By choosing TkdS, we can then compute the momentum
transfer rate as a function of temperature:

γ(T ) = γ(TkdS)

(
TL
TkdS

)6

(3)

When the radiation is at a particular temperature dur-
ing the EMDE, the additional contribution to the total
energy density from the scalar field increases the expan-
sion rate, since H ∝ √ρ. When compared to a radiation-
dominated Universe at the same temperature, the expan-
sion rate of the Universe in an EMDE is faster, H > HRD.
Therefore, if a standard, radiation-dominated Universe
exhibits dark matter-radiation kinetic decoupling at TkdS

such that HRD(TkdS) = γ(TkdS), then for the Universe
in an EMDE, H(TkdS) > γ(TkdS). Therefore, the dark
matter must kinetically decouple at a higher tempera-
ture in an EMDE compared to the standard, radiation-
dominated case. Ref. [20] finds that the kinetic decou-
pling temperature in an EMDE is Tkd ≈ T 2

kdS/TRH for
TkdS > TRH. We are particularly interested in the case
where the dark matter decouples from the plasma dur-
ing the EMDE such that the two are not coupled at re-
heating, with TkdS > TRH. The radiation perturbations
exhibit damped oscillations once the Universe becomes
radiation-dominated, and this would also suppress the
dark matter perturbations if the two remained kineti-
cally coupled after reheating. In the case of TkdS > TRH,
the kinetic decoupling temperature is defined as the so-
lution to γ(Tkd) = H(Tkd). In Subsec. II F, we will dis-
cuss the implications of an intermediate state between
the totally decoupled and fully coupled state termed
“quasi-decoupling” [21] and its implications for calcu-
lating kcut/kRH. The remainder of our parameters are
expressed in terms of k/kRH, TRH and TkdS.

B. Background Evolution

The KDEMDE code uses a three-fluid model for re-
heating [5]:

dρφ
dt

+ 3Hρφ = −Γφρφ (4)

dρr
dt

+ 4Hρr = Γφρφ (5)

dρχ
dt

+ 3Hρχ = 0 (6)

Here, φ denotes the scalar field, r denotes radiation,
and χ denotes the dark matter. The rate of radiation
production is governed by Γφ, the rate of energy trans-
fer from the scalar field to radiation. While solving this
three-fluid system in Eqs. (4)-(6), the initial time tI is
chosen so that a(tI) ≡ aI = 1 and H1 ≡ H(aI). The
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scale factor a is the integration parameter, and we move
forward with the following dimensionless quantities: ρ̃i =
ρi/ρcrit,1, for i ∈ {φ, r, χ} and ρcrit,1 ≡ 3m2

PLH
2
1/(8π) is

the critical energy density at aI . In order to reduce nu-
merical instability, the a scaling is absorbed into each
of the energy densities so that the quantities become:
ρ̄φ ≡ ρ̃φa

3, ρ̄r ≡ ρ̃ra
4, and ρ̄χ ≡ ρ̃χa

3. We can then
rewrite Eqs. (4)-(6) as:

dρ̄φ
da

+
Γφ

H(a)a
ρ̄φ = 0 (7)

dρ̄r
da
− Γφ
H(a)

ρ̄φ = 0 (8)

dρ̄χ
da

= 0 (9)

The dark matter temperature, Tχ, obeys the following
differential equation:

a
dTχ
da

+ 2Tχ = −2Υ(a)(Tχ − TL) (10)

with Υ(a) ≡ γ(T (a))/H(a), and γ defined in Eq. (3).
The lepton temperature can be found by solving ρr =
π2

30 g∗(TL)T 4
L. We absorb the scaling for the dark matter

temperature with T̄χ ≡ Tχa2. Thus, Eq. (10) becomes:

T̄ ′χ = −2aΥ(a)(T̄χa
−2 − TL) (11)

C. Perturbation Evolution

With the background ODEs in place, we now introduce
the system of coupled ODEs from Ref. [15] necessary to
study the evolution of the phase space density f of each
perturbation mode k:

dfnl
da

+ (2n+ l)

[
Υ(a)

a
+

R(a)

H(a)a2

]
fnl − 2n

R(a)

H(a)a2
fn−1,l

+
kcχ

H(a)a2

√
TL
TkdS

{(
l + 1

2l + 1

)
×
[
(n+ l + 3

2 )

× fn,l+1 − nfn−1,l+1

]
+ l

2l+1 ( fn+1,l−1 − fn,l−1)

}
= δl0

[
− 3

dΦ

da
An − 2(−dΦ

da
+

Υ

a
F∗(ρ̃r)

δr
4

TL
Tχ

)Bn
]

+ δl1
2k

3H(a)a2cχ

√
TkdS

TL
(−Φ + Υ

H(a)a

k2
θr)An

(12)

where Φ represents the gravitational potential, θr is the
radiation perturbation velocity, and both δl0 and δl1
are Kronecker delta functions. The radiation and scalar

field perturbations follow ODEs that are omitted in this
manuscript, but can be found in the appendix of Ref.
[5]. To study the dark matter perturbations, we can
now employ Eq. (12), noting that we have already made
the necessary changes of variables in accordance with our
scaling-absorbed terms. In Eq. (12), we use several ad-
ditional functions, defined as follows:

R(a) ≡ d

dτ
ln(aT

1/2
L ),

An(a) ≡
(

1− Tχ
TL

)n
,

Bn(a) ≡ n
(Tχ
TL

)(
1− Tχ

TL

)n−1

,

F∗(ρ̃R) ≡
(

1 +
1

4

d ln g∗
d lnTL

)−1

.

(13)

We can eliminate τ by rewriting R(a) as:

R(a) = H(a)a

[
1 +

1

2TL

dTL
dρ̃r

(
− 4ρ̃r +

Γφ
H(a)

ρ̃φ

)]
(14)

Lastly, we can use dTL
dρ̃r

= 1
4
TL
ρ̃r
F∗(ρ̃r) to get:

R

H(a)a2
=

1

a

[
1 + F∗(ρ̃r)

(
Γφ

8H(a)

ρ̃φ
ρ̃r
− 1

2

)]
(15)

As previously mentioned, fnl is the dark matter phase
space density, with the density perturbation δχ = f00.
While we are only interested in δχ = f00, the evolution
of this density depends on infinite expansions in n and l.
The expansion in n is a result of the decomposition of the
momentum dependence of the dark matter phase space
density into eigenfunctions of the Fokker-Planck opera-
tor. These eigenfunctions contain a generalized Laguerre
polynomial with index n. The expansion in l is a result
of a spherical harmonic in the expanded eigenfunctions.
Typically a spherical harmonic includes a second index
m, but due to the rotational symmetry of dark matter-
lepton scattering, we are only concerned with the m = 0
term in the spherical harmonic expansion.

We now have a full model of dark matter perturba-
tion evolution that we can explore via numerical calcula-
tions. In the simulation code, we will primarily operate
under the condition of constant g∗, which is the param-
eter of relativistic degrees of freedom that changes with
the plasma temperature.

Two separate versions of KDEMDE are employed in
order to separately address the two cases of k/kRH > 1
and k/kRH < 1. In both versions, the initial scale fac-
tor is set to aI = 1. For k/kRH > 1, horizon en-
try is fixed at aHOR = 100, and reheating occurs at
aRH = aHOR(k/kRH)2. Since this version handles only
k/kRH > 1, namely the modes that enter the horizon
before reheating, we have guaranteed that aRH > aHOR.
Lastly, we set the final scale factor of evolution af =
nfaRH, with nf varying from 100 to 1000, such that
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FIG. 2. Comparison between two versions of EMDE code for
k/kRH ≈ 1, where both versions should function properly. At
higher cχ, free-streaming suppression becomes noticeable at
late times. The rapid decay is due to radiation coupling, as
this test case is for TRH > TkdS, and δr → 0 at reheating [5].

the mode can evolve sufficiently long for us to observe
free-streaming effects and study the time evolution of the
modes.

In this case of k/kRH < 1, the user selects the aRH

value. The scale factor at horizon entry aHOR can then
be found by solving k = aHORH(aHOR). It is impor-
tant to note that these modes enter the horizon after
reheating, namely aHOR > aRH. This code also evolves
the perturbation until afin = nfaRH. As a consistency
check, we verify that the results of the two versions of the
code agree in the limit of k/kRH ≈ 1. We evolve a mode
out to low af = 100aRH, with the density evolutions seen
in Figure 2.

A third version of the code was written that evolves
perturbation modes in the absence of an EMDE, assum-
ing only radiation domination. We use this version of the
code to verify the functionality of KDEMDE for the case
of a mode with k/kRH < 1. This mode should be unaf-
fected by the EMDE since reheating occurs before this
mode enters the horizon. Figure 3 demonstrates that
KDEMDE does indeed correctly model the evolution of
a perturbation mode in the absence of an EMDE. With
these consistency checks in place, we can begin testing
the evolution limits of KDEMDE.

D. Truncation Analysis

The system of ODEs that govern the evolution of the
perturbed dark matter phase-space density is infinite and
thus must be truncated in order to numerically solve for
f00. Since we cannot numerically evolve an infinite num-

FIG. 3. For a mode that enters the horizon after the EMDE
has ended with k/kRH ≈ 0.001, the perturbation evolution
from a code that assumes strict radiation-domination agrees
with KDEMDE. Notice the free-streaming suppression at
higher values of cχ.

ber of ODEs, we must choose some Nmax and Lmax above
which we truncate the expansions in n and l. As seen in
the boxed terms in Eq. (12), truncation error will ini-
tially be present in the fNmax,l and fn,Lmax

terms for all
n ≤ Nmax and l ≤ Lmax. As the perturbation modes
evolve, this error will make its way down the n, l ladders
until it begins to dominate in the f00 mode. This means
that the truncation error can prohibit accurate pertur-
bation evolution to high af . The first boxed term in Eq.
(12) is proportional to kcχ, so we will not be able to suc-
cessfully evolve out to as high of an af for larger cχ and
k.

In order to generate a matter power spectrum at zi =
2000 for our EMDE simulations, we will need to know
the ratio kcut/kRH evaluated today. Since GADGET-2 does
not have the capability of simulating the random ther-
mal motions of individual dark matter particles in or-
der to evolve the free-streaming cut-off scale, the input
power spectrum for the simulations must use the value of
kcut/kRH evaluated today, rather than evaluated at the
redshift where the simulation begins.

However, in order to calculate kcut/kRH today, we find
that the evolution from matter-radiation equality to to-
day is trivial. We primarily focus on evaluating kcut/kRH

up to matter-radiation equality, adding in the evolution
up until today at the end. All of our numerical data
from KDEMDE is in the time period between reheating
and matter-radiation equality, so the subsequent model
design and fitting focuses on correctly matching the be-
havior in that time period. To find the scale factor at
matter-radiation equality aeq as a function of the reheat
temperature, we employ the “conservation of entropy”
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FIG. 4. Example of truncation error in the perturbation mode
for several values of Nmax. The code begins to break down
at a ≈ 103aRH in this case, but for high k/kRH the error
dominates much earlier.

equation from cosmology:

g∗,eqa
3
eqT

3
eq = g∗,RHa

3
RHT

3
RH (16)

In much of our analysis of the perturbation evolutions,
we will focus our interests on TRH = 5 GeV. The tem-
perature at aeq was approximately 0.75 eV. Lastly, the
g∗ factor at aeq is 3.91 and at a reheating temperature of
5 GeV, g∗ = 85.6. Thus we expect that in terms of the
reheat scale factor set by the code,

aeq = 1.9× 1010aRH. (17)

Unfortunately, this is substantially further out than the
code is able to successfully evolve a perturbation mode.
By studying the results of KDEMDE for various config-
urations of TRH, TkdS, and cχ out to af between 100 and
1000, we will be able to construct an analytical model
of kcut/kRH that agrees with the numerics and predicts
out to a0. This discussion will be the focus of Subsection
II F.

We are interested in determining the Nmax and Lmax

that is necessary to evolve a mode k/kRH out to a partic-
ular af . We expect that these values of Nmax and Lmax

will be sensitive to the particular truncation scheme em-
ployed. As a first pass, we define our truncated terms
such that:

1. Set both fn,l+1 = 0 and fn−1,l+1 = 0 when l =
Lmax

2. Set fn+1,l−1 = 0 when n = Nmax

The effects of truncation can be seen quite clearly in
Figure 4. For a perturbation mode that enters only
briefly before reheating (k/kRH = 5) with a moderately

FIG. 5. Evolution and breakdown of various values of k/kRH

at high cχ = 0.5. For the modes with k/kRH ≥ 1, the ini-
tial increase in δ(t) occurs due to horizon entry. Note the
logarithmic growth after horizon entry as expected.

high particle speed (cχ = 0.5), we see that the truncation
error begins to dominate the f00 term at around 103aRH,
which allows the mode to evolve sufficiently long for our
necessary analysis. Unfortunately, for higher k/kRH, it
becomes much more difficult to reach 103aRH success-
fully. By increasing Nmax, we are capable of pushing out
to further values of af before the error begins to domi-
nate. Unfortunately, as Nmax is increased, we begin to
see diminishing returns in successful af . The point where
continuing to increase Nmax becomes computationally in-
tractable for analysis of a large parameter space in tem-
perature, cχ, and k/kRH is around Nmax ≈ 2000. We
note that the code requires a much lower value of Lmax,
on the order of 10. For low values of k/kRH, increasing
Lmax past approximately 15 provides no increase in suc-
cessful af . This dependence on Nmax and Lmax seems to
reverse at high k/kRH, which will be discussed below.

As mentioned above, the truncation terms in Eq. (12)
are proportional to kcχ. Because of this, we expect that
the truncation error will begin to dominate earlier at
higher k/kRH. To confirm this expectation, we plot the
perturbation evolution for several orders of magnitude of
k/kRH in Figure 5. Since the truncation error should in-
crease with cχ as well, we deliberately use a high cχ = 0.5
so that we study the worst-case scenario, namely the low-
est possible af out to which the code can successfully
evolve for a given k/kRH. For k/kRH = 102, we see that
the truncation error begins to dominate at an unfortu-
nately low af ≈ 10aRH. In order to study kcut/kRH, we
will need the code to successfully evolve out to approxi-
mately af = 1000aRH and up to k/kRH ≈ 100. Thank-
fully, for the majority of the parameter space that we are
interested in, cχ is substantially less than 0.5.

As noted above, the perturbation evolution is signifi-
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FIG. 6. At high values of k/kRH, increasing Lmax results
in successful evolution out to higher af . Here, we are using
Nmax = 1500. We test high cχ = 0.5 to probe the upper
extreme of speeds that we will eventually study.

cantly more sensitive to Nmax for low k/kRH, which can
be seen in Figure 4. However, for ln(k/kRH) ≈ 1 to 2, we
find that increasing Lmax affords an appreciable increase
in successful evolution time for large k/kRH modes. This
can be seen in Figure 6, where going from Lmax = 5 to
Lmax = 30 gains half an order of magnitude of successful
evolution for a k/kRH = 100 mode.

Ultimately, we were unable to find truncation schemes
that allow for successful evolution out to high af for ar-
bitrarily high cχ and k/kRH. However, our truncation
tests were predominantly for the case of cχ = 0.5, and
we will show below that we will generally be interested in
lower values of cχ. In our discussion of transfer functions,
we find that even with the basic truncation schemes em-
ployed above, we manage to evolve the necessary modes
out to a range of af between 100 and 1000. For high
values of k/kRH and cχ, we simply increase the values of
Nmax and Lmax until the mode can successfully evolve
out to the af of interest.

E. Transfer Functions

We now introduce the notion of a transfer function.
Fig. 5 shows the perturbation δχ as a function of scale
factor for multiple k/kRH. Suppose that we choose a
fixed time af and want to know the values of δχ for each
k/kRH. This is the transfer function, defined as

T (k) =
δχ(k)

δ0

∣∣∣
af
, (18)

with δ0 the initial perturbation amplitude at some fixed
ai. KDEMDE defines all initial perturbations to have

FIG. 7. Transfer function at 100aRH for cχ = 0.1, and
TkdS/TRH = 2. The standard transfer function corresponds to
the expected evolution at 100aRH in the absence of an EMDE.
The post-reheating prediction attempts to match the growth
of modes which enter the horizon before the EMDE ends.
The difference between this predicted slope and the one seen
in the transfer function is likely due to plasma interactions
while still coupled at k/kRH > kkd/kRH ≈ 30. The Gaussian
fit is found using Eq. (21).

δ0 = 1. We begin at af = 100aRH and observe the trans-
fer function for several orders of magnitude of k/kRH

in Fig. 7. The transfer function is calculated using
KDEMDE by evolving many modes between 10−3 <
k/kRH < 102. The transfer function T (k) relates the
matter power spectrum P (k) to the primordial power

spectrum generated during inflation P̃ (k) by

P (k) = T (k)2P̃ (k) (19)

Fig. 7 demonstrates a significant boost due to the EMDE
for k > kRH and k < kcut. Here, kcut approximately cor-
responds to the peak of the transfer function, although we
will define it more rigorously below. Unfortunately, this
power spectrum is only evaluated out to af = 100aRH,
otherwise the large gap between kcut and kRH for a tem-
perature ratio as low as TkdS/TRH = 2 would be quite
compelling. However, our matter power spectrum is only
concerned with kcut/kRH at a0. We expect that kcut/kRH

will decrease logarithmically with a, a result that will be
confirmed in Subsec. II F with our analytic model.

The post-reheating amplitudes of modes that enter
during the EMDE with k > kRH are expected to agree
with the following equation from Ref. [11]:

δχ,PR(k > kRH) =
2

3

(k/kRH

0.86

)2[
1 + ln

(a/aRH

1.29

)]
. (20)

This is the curve labeled “Post-Reheating Prediction” in
Fig. 7. Interestingly, the slope of the curve in Eq. (20)
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does not quite agree with the results of the numerical sim-
ulations, as seen in Fig. 7. The lower slope found in the
numerical computations is due to interactions between
the plasma and the dark matter that are not modeled in
Eq. (20).

We now describe our technique for determining the
kcut value for a given transfer function. In the absence of
free-streaming, the post-reheating transfer function for
modes with k > kRH obeys Eq. (20). However, due to
free-streaming, modes above the free-streaming cut-off
scale are suppressed. We multiply a Gaussian with Eq.
(20) to model the peak of the transfer function, with the
form:

δχ,Gauss(k > kRH) = δχ,PR(k)e−k
2/(2k2cut) (21)

A demonstration of this fitting can be seen in Fig. 7. It
is important to note that the value of kcut determined
by the fit is not the peak of the transfer function, but
rather the optimal kcut such that Eq. (21) best fits the
numerical results from KDEMDE. In order to generate
the fit, we use the curve fit routine from the SciPy
package for Python. We only use data for k/kRH ≥ 10
for the fit.

After reheating, the Universe becomes radiation-
dominated and δχ exhibits logarithmic growth after hori-
zon entry for each mode. Ref. [22] provides an equa-
tion that describes the transfer function for a radiation-
dominated Universe with no free-streaming:

δχ,RD(k) =
10

9
Φ0

[
A ln

(
B

a

aHOR

)]
(22)

with A = 9.11, B = 0.594 and in KDEMDE, Φ0 = 1.0.
For each mode, the scale factor at horizon entry aHOR

is defined as the solution to k = aHORH(aHOR). This is
the curve labeled “Standard Transfer Function” in Fig.
7.

The values of mχ/TRH that provide the best oppor-
tunity for a detectable boost in the dark matter anni-
hilation rate are in the range of mχ/TRH ≈ 100 − 200
[11]. We need mχ/TRH > 100 such that the dark mat-
ter abundance freezes out during the EMDE, rather than
exponentially declining until some later point during ra-
diation domination. We would like mχ/TRH < 200 such
that the annihilation cross section does not become so
low as to push annihilation signatures well below the de-
tection threshold for the foreseeable future. For a given
TkdS and TRH, we can determine the optimum cχ value
to probe this mχ/TRH range by relating cχ to this ratio
as such:

mχ/TRH =
1

c2χ

2TkdS

TRH
(23)

The majority of the work thus far has been done with
the temperatures TkdS = 10 GeV and TRH = 5 GeV, and
thus this optimal range of mχ/TRH ratios corresponds
to c = 0.14 to c = 0.2. For each temperature ratio, we

FIG. 8. Transfer function at cχ = 0.18 for two different sets
of TRH and TkdS, both of which have TkdS/TRH = 3. The
transfer function is agnostic to the actual temperatures, only
caring about the ratio.

will have to modulate the values of cχ to fit the desir-
able mχ/TRH accordingly. Figure 8 demonstrates that
only the ratio of the temperatures affects the transfer
function, and ultimately kcut/kRH, rather than the in-
dividual values of TRH and TkdS. We will use transfer
functions to explore TkdS/TRH ratios between 2 and 6.
Above this, KDEMDE struggles to successfully evolve to
high enough af to generate transfer functions. We will
construct our analytical model of kcut/kRH and nail down
its dependence on TkdS/TRH, cχ, and af in Subsec. II F,
comparing to all transfer function data available.

F. Analytical Model of Free-Streaming Cut-off

We seek to build an analytical model that can accu-
rately predict kcut/kRH for general cχ and TkdS/TRH.

Here we provide a derivation of a general form for kcut
kRH

.
Afterward, we fit the model against our numerical results
and discover a remarkable simplification. This simplified
model is used to predict the kcut/kRH at a0. Ultimately,
we will determine the minimum TkdS/TRH that will pro-
vide sufficiently high kcut/kRH to generate significant an-
nihilation boosts.

At kinetic decoupling, the dark matter particles begin
to free stream. The physical size of the free-streaming
horizon lfs =

∫
vχdt. It is important not to confuse

vχ with cχ. Here, vχ is the true physical dark matter
particle speed. Defined in terms of the comoving distance
λ, we have that lfs = aλ. We define the comoving free-
streaming horizon λfs such that:

λfs ≡
∫
dλ =

∫ af

akd

vχdt

a
=

∫ af

akd

vχ
da

a2H
(24)
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We integrate from decoupling to af , where we choose
af in terms of aRH. We will eventually be interested in
af = a0, namely the scale factor today. The last step
in the equation above comes from the fact that dt =
da

da/dt = da
Ha . The free-streaming horizon λfs corresponds

to a fourth of the free-streaming cut-off wavelength λcut.
Therefore, the free-streaming cut-off wavenumber can be
defined in terms of the horizon:

kcut =
2π

λcut
=

2π

4λfs
≈ 1

λfs
(25)

In our model, we begin by employing a piecewise func-
tional form for H(a) and vχ(a). Using the relationship
that kRH = aRHH(aRH) = aRHHRH, we have:

H(a) =

bHHRH

(
a
aHt

)−3/2

a ≤ aHt

bHHRH

(
a
aHt

)−2

a > aHt

(26)

with aHt = 1.0872aRH corresponding to the Hubble tran-
sition point and bH = 0.882 being a fit parameter. Here,
H ∝ a−3/2 before the Hubble transition because the Uni-
verse is still in a phase of matter domination, whereas
H ∝ a−2 after the transition because the Universe has
transitioned to the radiation dominated era. We define
the dark matter velocity using another piecewise form:

vχ(a) =


bv
√

Tkd

mχ

(
akd
a

)9/16

a ≤ av

bv
√

Tkd

mχ

(
akd
av

)9/16(
av
a

)
a > av.

(27)

The velocity vχ ∝
√
Tχ, and Ref. [21] shows that before

the dark matter fully decouples from the radiation, it
is in a quasi-decoupled state where Tχ ∝ a−9/8. The
dark matter becomes fully decoupled at av, after which
Tχ ∝ a−2. Here, av and bv are fit parameters yet to be
determined. We initially demand that av > aHt which
yields three separate pieces for our integral of λfs, namely
the cases where a < aHt, aHt < a < av, and a > av.
Recalling that cχ controls our value of mχ, we can rewrite

our equations for vχ in terms of cχ =
√

2TkdS/mχ. We

also need the relationship Tkd = r
T 2
kdS

TRH
where for constant

g∗ as in KDEMDE we have that r =
√

5/2.

We will also need akd, the scale factor at kinetic de-
coupling during the EMDE. This is found with:

aRH

akd
=
( Tkd

TRH

)8/3[2

5

g∗,RH

g∗,kd

]−2/3

(28)

Once again, we employ constant g∗, and thus g∗,RH =
g∗,kd. We can now express akd, Tkd, and mχ in terms of
our preferred parameters TkdS, TRH, and cχ. The integral
in Eq. (24) is thus split into the three piecewise terms
and evaluated. We multiply a factor of kRH onto both

FIG. 9. Using temperatures TkdS = 10 GeV and TRH = 5 GeV
at af = 100aRH, this figure demonstrates the c−1

χ dependence
of kcut/kRH. The model from Eq. (29) is fit to the data points
from transfer function fits of KDEMDE evolutions. The fit
values were av = 1.57aRH and bv = 0.64.

sides and find:

kRH

kcut
= kRHλfs =

bv
bH

cχ√
2r

( TRH

TkdS

)5/2(2

5

)3/8(aRH

aHt

) 25
16

×

[
16

((aHt

akd

) 1
16 − 1

)
+

16

7

(( av
aHt

) 7
16 − 1

)

+
( av
aHt

) 7
16

ln
(af
av

)]
(29)

We now have all quantities in Eq. (29) defined except
for av and bv. Note that the quantity that we are inter-
ested in kcut/kRH is simply the inverse of Eq. (29). This
equation shows two important parameter dependences
for kcut/kRH. Firstly, kcut/kRH ∝ c−1

χ . As cχ increases,
kcut should become smaller because the dark matter will
be able to travel a greater distance in the age of the Uni-
verse. Therefore, larger spatial mode perturbations will
be flattened out. This c−1

χ dependence is confirmed with
numerical transfer functions from KDEMDE. Secondly,
kcut/kRH ∝ (TkdS/TRH)5/2, so an increase in the temper-
ature ratio will greatly increase kcut/kRH.

As a first-pass test of our model, we treat av and bv
as fit parameters. Holding TkdS/TRH fixed, we plot the
numerically-determined kcut values from the KDEMDE
transfer function fits as a function of cχ in Fig. 9. Using
these data points, we employ a curve-fitting routine to
determine the optimum av and bv that best predicts the
kcut/kRH for all cχ values at a particular temperature ra-
tio. As demonstrated in the figure, this method is fairly
successful at af = 100aRH for this particular tempera-
ture ratio TkdS/TRH = 2. However, when the values of
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av and bv from the initial fit are then used to predict the
kcut/kRH for TkdS/TRH = 3 to 5, the model does a poor
job of reproducing the numerical results, being off by as
much as 25% at af = 100aRH. Since we are trying to pre-
dict out to substantially further times, it is important to
have fit parameters that provide a model that agrees to
high precision with our numerical results at low af . For
example, av/aRH = 1.573 as fit from the TkdS/TRH = 2
data, but av/aRH = 1.223 as fit from the TkdS/TRH = 3
data, introducing a serious discrepancy when attempting
to predict kcut/kRH for a specific temperature ratio when
using fit parameters found from another temperature ra-
tio’s numerical results. The conclusion is that av and
bv must depend on temperature. Therefore, we seek to
capture this temperature dependence in our model such
that the fit parameter values are consistent across differ-
ent temperature ratios.

In deriving a model for av and bv, we utilize two key
constraints. Since the temperature of the dark matter
particle is Tχ ∼ v2

χmχ, we can use constraints on the dark
matter temperature to determine vχ up to a constant,
and then solve for bv. Ref. [23] provides an analytical
model of the dark matter temperature:

TAχ (s) = Tγs
λesΓ(1− λ, s) (30)

with s = 2
αβ (akda )αβ , λ = 2−α

αβ , and α = 3/8, β = 4+n−ν.

Here, n = 2 for p-wave scattering and ν = 4 in an EMDE.
Γ(1 − λ, s) is the incomplete Γ-function. The general
form of Eq. (28) allows us to solve for the background
radiation temperature Tγ :

Tγ
TRH

=
[( a

aRH

)(5

2

)2/3]−3/8

(31)

under the use of constant g∗. Since the dark matter tem-
perature is Tχ ∼ v2

χmχ, we can write Tχ in terms of vχ
from Eq. (27):

Tχ(a) =

b
2
vTkd

(
akd
a

)9/8

a ≤ av

b2vTkd

(
akd
av

)9/8(
av
a

)2

a > av

(32)

Numerical comparison between the analytical tempera-
ture and the true dark matter temperature show that,
for a � aRH, the analytical model of the dark matter
temperature TAχ should relate to the true dark matter
temperature Tχ by:

Tχ(a)(a/aRH)2

TAχ (aRH)
≈ 1.37 (33)

At early times, for a < 0.1aRH, the analytical tem-
perature model is effectively exact, and thus we set
Tχ(a) = TAχ (a) for a ≤ 0.1aRH. We solve the model
temperature from Eq. (32) at a < av for bv:

bv =

√
Tχ(a)

Tkd

(
a

akd

)9/16

(34)

Note that since Tχ ∝ a−9/8 before reheating, bv as de-
fined this way is in fact a constant. Since bv is indeed a
constant, and Tχ(a) = TAχ (a) for a ≤ 0.1aRH, we can sub-

stitute Tχ(a) for TAχ (a) and evaluate bv at a = 0.1aRH,
finding that

bv =

(
TAχ (0.1aRH)

Tkd

)1/2(
0.1aRH

akd

)
, (35)

where akd comes from Eq. (28). We introduce a new
prefactor d2

v to the definition of Tχ(a) in Eq. (32) to
assuage the ambiguity from Tχ ∼ v2

χmχ. With the above
form for bv and the addition of the new dv parameter, we
can now solve Tχ at a > av for av, using the constraint
from Eq. (33) to replace Tχ(a) for a� aRH, finding:

av =

[
1.37TAχ (aRH)a2

RH

d2
vb

2
vTkda

9/8
kd

]8/7

. (36)

We can now combine all of this for our final model,
which only depends on our temperatures, cχ, and our fit
parameter dv:

kcut

kRH
=

[
bvdv
bH

cχ√
2r

( TRH

TkdS

)5/2(2

5

)3/8(aRH

aHt

) 25
16

×

{
16

((aHt

akd

) 1
16 − 1

)
+

16

7

(( av
aHt

) 7
16 − 1

)

+
( av
aHt

) 7
16

ln
(af
av

) }]−1

(37)

Using transfer function data for af = 100aRH at fixed
TkdS/TRH, we fit the model to determine dv. At the same
temperature ratio, we then use the completed model
with the dv fit at af = 100aRH to predict kcut/kRH at
af = 200aRH, 500aRH, and 1000aRH compared to those
from KDEMDE. This allows us to draw an interesting
conclusion: using only the dv fit from the KDEMDE data
at af = 100aRH across many values of cχ, we find that as
af increases, the difference between our model and the
numerical KDEMDE value of kcut/kRH decreases. This
is remarkable, as it implies that were we to evolve per-
turbation modes out to a0 using KDEMDE, the model
would be able to accurately predict the free-streaming
cut-off mode. The late-time constraint on the tempera-
tures from Eq. (33) is accounted for in av and ensures
that we accurately capture the temperature evolution at
late times. This is important because the integral to
calculate λfs is dominated by the contribution from late
times, which is encoded in the boxed, logarithmic term
in Eq. (37).

Unfortunately, the values of dv from fits of the
kcut/kRH vs. cχ relationship do not agree across differ-
ent temperature ratios. Note that av depends on both
bv and dv. While fitting data from KDEMDE for dv,
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TABLE I. Comparison between the fit parameter dv for the
two different functional forms of bv. The column labeled
“Early dv” shows fit values of dv with bv defined in Eq. (35).
The column labeled “Late dv” shows fit values of dv with
bv as defined in Eq. (39). The fits were made against the
kcut/kRH vs. cχ relationship data from KDEMDE taken at
af = 100aRH. The reduced fluctuation in dv for the late-time
dependent bv of Eq. (39) demonstrates that this form of bv
matches the temperature dependence better.

TkdS/TRH Early dv Late dv
2 1.350 1.024
3 1.259 1.035
4 1.268 1.066

we find that the model fits best for dv values that push
av/aRH to high values upwards of 40. The large av/aRH

ratio indicates that the model is artificially suppressing
the first two additive terms in Eq. (37) in favor of the
third, boxed term of our piecewise integral of λfs. This
suggests that the post-reheating behavior dominates the
calculation of kcut/kRH. This motivates us to make a re-
markable simplification to the model. Since the late-time
behavior dominates the calculation of kcut/kRH, the first
two terms in Eq. (37) become negligible compared to
the third term as af increases. Therefore, we choose to
simply drop the first two terms. We set av = aRH and
consider the model:

kcut

kRH
=

[
bvdv
bH

cχ√
2r

( TRH

TkdS

)5/2(2

5

)3/8(aRH

aHt

) 25
16×

{(aRH

aHt

) 7
16

ln
( af
aRH

)}]−1 (38)

where dv now functions as the overall normalization pa-
rameter and we express bv in terms of av = aRH by solv-
ing Eq. (36) for bv:

bv =

√
1.37TAχ (aRH)a2

RH

a
7/8
RHTkda

9/8
kd

(39)

This formulation of bv incorporates our late-time con-
straint from Eq. (33). With the simplified model in Eq.
(38), we can go back to fitting data in the kcut/kRH vs. cχ
relationship such as in Fig. 9. With av = aRH and only
one free parameter dv, we can now compare the two dif-
ferent definitions of bv in Eqs. (35) and (39). We fit the
simplified model to the kcut/kRH vs. cχ data for multiple
temperature ratios and display the fitting parameters in
Table I.

Table I shows a strong improvement of the model by
using the one-part integral and bv defined in Eq. (39).
The reduced fluctuation in the near-unity fitting param-
eter with this definition of bv shows that the functional
form of bv better captures the temperature dependence
at late times than that of Eq. (35). As demonstration of
the predictive power of the model under this new for-
mulation, in Figure 10 we look at the time evolution

FIG. 10. For fixed cχ = 0.1, we use the analytical model
in Eq. (38) with bv as defined in Eq. (39) to predict the
time evolution of kcut/kRH. For several temperature ratios,
we compare this time evolution to that found via KDEMDE
for the corresponding sets of parameters. The ratios are ex-
trapolated out to aeq ∼ 1010aRH.

of kcut/kRH for several temperature ratios and compare
to the time evolution from KDEMDE. This figure high-
lights the expected logarithmic decrease of kcut/kRH with
af . When assessing temperature ratios greater than 4,
we have no data from KDEMDE to make a fit for dv.
Fortunately, as demonstrated by the “Late dv” column
of Table I, the fit parameter is nearly constant across
temperature ratios. For this reason, predictions made
for TkdS/TRH > 4 can be made using the dv fit from
TkdS/TRH = 4 with minimal loss in accuracy due to fluc-
tuations in dv.

Since we have completed our model fitting by consid-
ering af � aeq, we can now incorporate the final term in
the model that is evaluated from aeq to a0. Once matter
domination begins, the Hubble rate becomes:

H(a) = bH

(kRH

aRH

)(aHt

aeq

)2(aeq

a

)3/2

a ≥ aeq. (40)

However, the dark matter velocity remains unchanged
from Eq. (27). We evaluate the integral in Eq. (24)
as previously done out to aeq, with the simplified model
in Eq. (38). However, we now add an additional term
resulting from the evaluation of the integral from aeq to
a0, such that kcut/kRH evaluated today is:

kcut

kRH
=

[
bvdv
bH

cχ√
2r

( TRH

TkdS

)5/2(2

5

)3/8(aRH

aHt

) 25
16×

{(aRH

aHt

) 7
16

ln
( aeq

aRH

)
+ 2
(aRH

aHt

)7/16(
1−

√
aeq

a0

)}]−1

.

(41)
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The contribution to this calculation from the period be-
tween matter-radiation equality and today is dwarfed by
the contribution between reheating and matter-radiation
equality. Now that we are comfortable with our model,
we can determine the temperature at cχ parameters that
will provide this sufficiently high kcut/kRH at a0. In or-
der to generate a dark matter annihilation boost suffi-
cient to overcome the reduced annihilation cross section,
we need at least kcut/kRH ≈ 20 [11]. Figure 11 shows
the parameter space of the temperature ratio and cχ
that have kcut/kRH ≥ 20 at a0. Dark matter particles
with mχ/TRH in the range 100 to 200 are most capa-
ble of having their annihilation rate boosted above the
current minimum sensitivity threshold of missions such
as the Fermi Gamma-Ray Telescope. Since dark matter
typically freezes out before it kinetically decouples, we
must also demand that the freeze-out temperature Tf be
greater than Tkd. According to Ref. [11], dark matter
typically freezes out when mχ ∼ 10T . This demands
that Tf/TRH ∼ 0.1mχ/TRH.

Unfortunately, TkdS/TRH = 6 is the lowest tempera-
ture ratio that gives kcut/kRH ≈ 20 at a0 for mχ/TRH ≤
200. In this case, Tkd ≈ 9TkdS ≈ 54TRH. For our up-
per bound mχ/TRH = 200, we have that Tf/TRH ≈ 20.
Clearly, Tkd > Tf, which is not consistent with the stan-
dard theories of dark matter formation. The other possi-
ble scenario that would provide kcut/kRH ≈ 20 at a0 with
a lower temperature ratio that remains consistent with
standard theories would require that mχ/TRH � 200,
resulting in heavy suppression of the annihiliation cross
section that would push dark matter annihiliations be-
low the observable threshold for any mission in the near
future [11]. We are interested in studying the sce-
nario where the EMDE could have potential constrain-
ing power on the dark matter particle, and thus we
will choose our parameters to be TkdS/TRH = 6 and
cχ = 0.245. With these parameters, we can generate a
matter power spectra with the necessary kcut/kRH = 20,
to be done in the next section.

III. COSMOLOGICAL SIMULATIONS

In this section, we study the evolution of a universe
that undergoes an EMDE with kcut/kRH = 20. We start
out by generating the matter power spectrum for this
universe that represents the enhanced perturbations on
modes kRH < k < kcut. This power spectrum will be
transformed into initial condition data for the GADGET-2
cosmological N-body simulator code [13]. We run the
simulation at multiple scales in order to study a larger
range of masses and confirm convergence between the
simulations. The N-body simulator returns only the
phase-space data of all particles in the code. This parti-
cle data is piped through the Rockstar [16] halo finder to
determine the location and radius of all gravitationally-
bound structures in the simulation. We employ the con-
vention that the halo radius is that which makes the av-

FIG. 11. Using the model of kcut/kRH from Eq. (38) and
the converged bv = 1.770 from Eq. (39), we find the maxi-
mum value of cχ for each temperature ratio that will provide
a kcut/kRH ≥ 20 at a0. This is compared to the desired pa-
rameter space of 100 ≤ mχ/TRH ≤ 200. Note that for a
given temperature ratio, a lower cχ corresponds to a higher
mχ/TRH.

erage halo density ρhalo = 200ρc, where ρc is the critical
density of the universe.

With these halo catalogs collected, we can determine
some macroscopic statistics about the halo populations
from the simulation. The halo mass function describes
the number density of dark matter halos per mass inter-
val dn/d lnM . We compare these results to the Press-
Schecter [18] and Sheth-Tormen [17] formalisms.

We then briefly discuss the total bound matter fraction
in the simulation as a function of redshift z. As time
progresses, we expect that the total amount of matter
bound into structure will increase. This can be verified
by generating a halo catalog for each simulation snapshot
and determining the total mass in structure compared to
the total mass simulated in the box. Similarly, we look
at the total fraction of matter bound in substructure per
halo as a function of host halo mass.

We then proceed to study the microscopic properties
of the simulations, namely the individual microhalos.
We employ visualization routines from the MayaVi [24]
Python module to verify the halo center identification
accuracy of the halo catalogs. The Rockstar halo finder
keeps track of the halo structure hierarchy, identifying
subhalos of each host halo. This tree-level hierarchy rep-
resents the merger history of the microhalos. With this
hierarchy, we visually study the levels of substructure
present in the largest host halos from the simulations.
Afterward, we shift our focus to the density profile, a
function that describes the density as a function of ra-
dius with respect to the halo center. Using the particle
data from a halo, we can calculate the numerical density
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profile and fit it against the generalized Navarro-Frenk-
White (NFW) profile [19]. To calculate the halo boost
factor of each halo as in Eq. (1), we use the NFW profile
for a standard reference halo in a process described in
Subsection III E. We conclude this section with all the
necessary groundwork laid to calculate the boost factor
of every halo in the simulation and continue forward by
analyzing the statistical properties of these boosts.

Many of the aforementioned processes are repeated for
an identical universe that still has a free-streaming cut-
off scale but lacks an EMDE. See the “Only FS cut-off”
curve in Fig. 12. These “standard” simulations serve
as a useful control to demonstrate the boost due to the
EMDE in the EMDE simulations.

A. Power Spectra and Simulation Parameters

With an enhanced region of wavenumber-space now
determined such that kcut/kRH = 20, we create a power
spectrum for a universe that undergoes an EMDE and re-
heats at TRH = 30 MeV. This power spectrum is related
to the transfer function of each individual mode accord-
ing to Eq. (19), where the primordial power spectrum

P̃ (k) comes from observations of the cosmic microwave
background. The other component of the power spec-
trum, the transfer function Tzi(k), is calculated using
the collisionless Boltzmann equation by determining the
density perturbation of each wavenumber at the start-
ing redshift of the simulation, as in Subsec. II E. This
power spectrum is used as the input to the UniGrid
routine, which randomly generates density perturbations
δχ(~x, zi) that obey the statistical properties demanded by
the power spectrum. Here, the zi simply indicates that
the perturbations are at the initial redshift where the N-
body simulation begins the evolution. This δχ(~x, zi) data
is then piped through Delta2Particles, which generates
the initial coordinate and momentum data for all the par-
ticles in the simulation. The GADGET-2 N-body simulator
takes this initial particle configuration and simulates the
gravitational evolution up until a desired final redshift.
Throughout this work, we use the cosmological parame-
ters h = 0.678, Ωm = 0.309, Ωb = 0.049, and ΩΛ = 0.691
in accordance with the 2015 results from Planck [12].

In order to study the evolution of microhalos with an
N-body simulation, we must be diligent to ensure that
the mass resolution of the simulation is sufficient to re-
solve the microhalos. The EMDE only alters structure
on mass scales below the reheat mass MRH, which is the
mass enclosed in the Hubble radius at reheating. The
Hubble radius R = 1/(aH), and k ≈ R−1 up to order
unity. Therefore, the mass enclosed in the Hubble radius
at reheating is

MRH =
4

3
πρmR

3
RH =

4

3
πρmk

−3
RH. (42)

Since kRH is a comoving quantity, ρm is simply the matter
density today. A convenient expression for the reheat

FIG. 12. The matter power spectrum at z = 500: the solid
curve extrapolates results from the Planck 2015 mission [12];
the dash-dotted curve uses the same data from Planck but
contains a free-streaming cutoff with kcut/kRH = 20 in a uni-
verse with reheating at TRH = 30 MeV; the dotted curve is
the power spectrum of a universe with an EMDE, where the
enhanced region rises above the standard power spectrum for
modes bounded by kRH and kcut.

mass in terms of the reheat temperature is:

MRH = 32.7M⊕

(10 MeV

TRH

)3(g∗s[TRH]

10.75

)( 10.75

g∗[TRH]

)3/2

.

(43)
The two key simulation parameters that determine the

individual particle mass are the particle count and the
box size. The number of CPU hours required to complete
a simulation roughly scales with the particle count, and
for this reason we choose Npart = 10243 particles such
that each simulation takes on the order of 104 CPU hours.
We select small box sizes of (30 pc/h)3, (60 pc/h)3, and
(120 pc/h)3. These simulation configurations result in
particle masses of 2.16×10−12 M�/h, 1.73×10−11 M�/h,
and 1.38×10−10 M�/h, respectively. The combination of
large particle count and small box size allows us to probe
a rather low mass regime. We briefly note that we also
employ an even smaller 1 (pc/h)3 simulation exclusively
to study high resolution density profiles. See Subsection
III E for our discussion on this topic.

The Rockstar halo finder only catalogs halos above a
certain minimum particle count, which we select to be
100 particles. Therefore, our 30 pc/h simulation has a
minimum halo mass of 2.16 × 10−10 M�/h. Referring
back to Eq. (43), we see that for a reheat temperature
of TRH = 30 MeV, the reheat mass is MRH = 3.5 ×
10−6 M�, or approximately one Earth-mass. For this
same reheat temperature, the smallest microhalos that
can form will be at the free-streaming cut-off mass limit,
Mcut = 4 × 10−10 M�. This is clear from Eq. (42),
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considering kcut/kRH = 20, the cut-off mass is a factor of
203 smaller than the reheat mass.

This low reheat temperature was chosen so that we
could resolve microhalos in the mass regime Mcut < M <
MRH for our given simulation parameters. A higher re-
heat temperature will push the microhalo formation to
increasingly small mass regimes that are more inaccessi-
ble to an N-body simulator. However, it is important to
recall from Section II that only the ratio TkdS/TRH af-
fects the transfer function and thus the power spectrum.
The primordial microhalos will form at approximately
the same redshift regardless of the reheat temperature,
with formation time only depending on kcut/kRH. For a
fixed ratio of kcut/kRH, the first microhalos to form will
all have approximately the same density, whereas the size
of the microhalo clumps will depend on TRH. Ref. [11]
demonstrates that regardless of reheat temperature, the
differential bound mass fraction df/d lnM remains fixed
relative to the reheat mass. With this fixed relative dif-
ferential bound mass fraction and the consideration that
all primordial microhalos form at the same density, we
expect the annihilation boost to not be sensitive to TRH.
Therefore, the following results are general to higher re-
heat temperatures.

In order to capture the formation of low-mass micro-
halos in the simulation, the EMDE simulations begin
at a zi = 2000. Since this redshift is fairly near the
point of matter-radiation equality, effects due to radia-
tion are still significant. Unfortunately, GADGET-2 does
not presently have radiation physics incorporated, and
thus we are unable to model the effects due to radiation.
To mitigate this, the input power spectra are generated
for z = 500, where radiation effects are negligible, and
integrated back to zi = 2000 assuming only that the Uni-
verse is entirely matter-dominated. This way, when the
simulation evolves from a redshift of 2000 to 500, the
power spectrum will be accurate at z = 500, and the re-
maining evolution of the simulation can continue forward
without the need for radiation physics. The simulations
that evolve without an EMDE but with a free-streaming
cut-off begin at zi = 500. The N-body simulator evolves
the code up to zf = 30 and takes 10 snapshots of the
particle data along the way at equally-spaced intervals in
scale factor. These snapshots will be used to study the
total bound mass fraction in Subsection III C.

B. Halo Mass Functions

The majority of our subsequent analysis focuses on the
final snapshot data from GADGET-2 at zf = 30. This
particle data is sent through Rockstar to find all ha-
los of particle count greater than 100. We are inter-
ested in verifying the microhalo populations of our sim-
ulations against established theory. The Press-Schecter
mass function [18] is an analytical formalism that pre-
dicts the number density of halos as a function of mass

interval, defined as:

dn

d lnM
=

√
2

π

ρmδc
Mσ(M, zf )

exp
[
− δ2

c

2σ(M, zf )

]∣∣∣ d lnσ

d lnM

∣∣∣
(44)

where δc = 1.686 for z & 2 is the critical linear over-
density, ρm is the matter density of the Universe today,
and σ(M, zf ) is the rms density perturbation in a sphere
that contains a mass M :

σ2(M, z) =

∫
d3k

(2π)3
[D(k, z)T (k)]2Pp(k)F 2(kR) (45)

where D(k, z) is the scale-dependent growth function [5],
T (k) is the transfer function, Pp(k) is the power spectrum
of super-horizon density perturbations during radiation
domination, and

F (kR) = exp
[
− k2(αR)2

2

]
× 2[sin(kR)− (kR) cos(kR)]

(kR)3

(46)
with α = 0.0001 and R = [3M/(4πρm)]1/3 (Refs. [11]
and [5]).

A similar model of the halo mass function was con-
structed by Sheth & Tormen [17]:

dn

d lnM
= 0.3222× ρm

M

∣∣∣ d lnσ

d lnM

∣∣∣√ 2√
2π

×
[
1 +

(√2σ(M, zf )

δ2
c

)0.3] δc
σ(M, zf )

exp
[
−
√

2δ2
c

4σ2

] (47)

In order to calculate the mass functions from the nu-
merical data, we extract from the Rockstar halo catalog
an array of the masses of all host halos, namely only
the ones that have no parent halo in the substructure
tree. Then, the halos are binned by mass using an adap-
tive binning routine so that for a simulation with Nh,tot

hosts, the minimum number of halos in a bin is

Nmin = 10.54 ln(Nh,tot)− 40.36. (48)

The bins are automatically widened by small δ lnM in
order to satisfy the requirement. In Figure 13, we plot
the numerical mass functions from all of the 10243 parti-
cle simulations and compare them to the Press-Schecter
and Sheth-Tormen mass functions. The benefit to run-
ning identical simulations at increasing box sizes be-
comes clear: the small box simulations probe the smallest
mass regimes whereas the larger box simulations probe
larger mass regimes. The figure demonstrates conver-
gence between the simulations, indicated by the overlap
of the mass functions for the (30 pc/h)3, (60 pc/h)3, and
(120 pc/h)3 simulations. We compare the simulations
that evolved with an enhanced power spectrum due to the
EMDE with identical simulations that were not enhanced
by an EMDE. The increased halo number density in the
mass regime M < MRH is quite noticeable for the EMDE
simulations. Above the reheat mass, we see the mass
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FIG. 13. Comparison between mass functions from numerical simulations and the predictions made by the Press-Schecter (Eq.
(44)) and Sheth-Tormen (Eq. (47)) mass functions. The numerical data is taken at zf = 30 for six different 10243 particle
simulations. The three numerical curves that are of larger magnitude in dn/d lnM correspond to the EMDE simulations,
whereas the lower magnitude curves correspond to the standard simulation without an EMDE. The vertical lines correspond
to the minimum halo size of 100 particles for the corresponding simulation. Note that the standard and EMDE mass functions
are nearly converged at the reheat mass MRH = 3.5× 10−6 M�. The enhanced level of structure formation due to the EMDE
is clear from the large difference in dn/d lnM between Mcut < M < MRH.

functions begin to converge such that the EMDE plays no
role in higher mass structure formation, and this is indeed
confirmed by the numerical mass functions. The figure
also demonstrates that the simulation results are reason-
able, as the mass functions are in fairly good agreement
with the analytical predictions. We find that the Press-
Schecter mass function is a better predictor of microhalo
number density in the EMDE simulation, whereas the
Sheth-Tormen mass function is a more accurate model of
the microhalo number density for a universe that evolves
in the absence of an EMDE. The Press-Schecter mass
function considers spherical collapse of dark matter ha-
los whereas the Sheth-Tormen mass function considers
elliptical collapse. The stronger agreement between the
Press-Schecter mass function and the results from the
EMDE simulation suggests that structure collapse could
be more spherical for EMDE-generated microhalos. We
now shift our attention to subhalo mass statistics and
the evolution of the total bound matter fraction with
redshift.

C. Bound Matter Fraction and Substructure Mass
Fraction

For a given halo, its substructure mass fraction fs is
defined as the total amount of mass bound in subhalos

relative to the total mass in the host halo:

fs =

∑
iMsub,i

Mhost
(49)

where i runs over all subhalos, Msub,i is the mass of a
particular subhalo, and Mhost is the total mass of the
host halo. We are interested in the statistical properties
of this quantity as a function of host halo mass.

In Figure 14, we study the substructure mass frac-
tion across several redshifts and compare the result at
zf = 30 between the EMDE simulation and the standard
radiation-dominated simulation. As expected, there are
substantially more total host halos in the EMDE simu-
lation at zf than there are in the standard simulation.
In fact, the difference is about a factor of 42, with ap-
proximately 106,000 hosts in the EMDE simulation and
only 2,500 in the standard simulation. This is readily
apparent from the aforementioned halo mass functions.
As the EMDE simulation evolves, we can see that higher
mass host halos begin to contain substructure. At high
redshift, the majority of halos have fs = 0. We also see
that the total number of substructure-less host halos de-
creases as time increases. In particular, at z = 186, over
96% of halos contain no substructure. By zf = 30, only
85% of halos contain no substructure. This indicates that
as the halos evolve, they begin to merge and form larger,
substructure-rich host halos. Interestingly, the number
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(a) Redshift evolution of the substructure mass fraction for a universe that undergoes an EMDE. At z = 186, over 96% of halos
contain no substructure. By z = 114, only 91% of halos contain no substructure.

(b) On left: continued redshift evolution of EMDE simulation. By z = 30, 85% of halos contain no substructure. On right: When
contrasted against a simulation that undergoes standard radiation domination, only 71% of halos contain no substructure at z = 30.

However, hosts are substantially more abundant in the EMDE simulation by a factor of 42.

FIG. 14. Substructure mass fractions for a 10243 particle, 60 (pc/h)3 box simulation. The first three images depict redshift
evolution and the final image compares the results at zf = 30 between the standard simulation and the EMDE simulation. The
green curve represents the minimum possible fraction that one single 100 particle subhalo can contribute to the total host halo
mass. Fractions greater than 1 are possible due to Rockstar’s subhalo identification technique: only the center of a subhalo
must be within the host halo R200 radius.

of total host halos increases temporarily and then begins
to decrease after the sub-reheat mass halos stop form-
ing and begin to merge. At z = 186, there were 76,000
hosts, which increases up to 140,000 by z = 114. How-
ever, these microhalos begin to merge and by zf = 30
there are only 106,000 host halos. We expect that this
trend would continue if lower redshifts were probed. The
general trend from Fig. 14 is that as the more massive
halos begin to form, they do so by merging with smaller
halos. At first glance, the data in Fig. 14 appears quite

dense and could be masking a trend. However, after in-
spection with a Hess diagram, we report that there is no
trend for fs versus Mhost. Unfortunately, the simulation
resolution limits our ability to fully study this relation-
ship. In order for Rockstar to identify a subhalo within
a host halo, the subhalo itself must contain at least 100
particles. The curves in Fig. 14 track the value of fs for
a given host halo mass that corresponds to the host con-
taining one subhalo with the minimum of 100 particles.
It is quite possible that some of the low-mass halos could
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FIG. 15. The differential bound fraction given by Eq. (50) at zf = 30. On left: df/d lnM from the EMDE simulations.
On right: df/d lnM from the standard simulations. Note the large boost in df/d lnM due to the EMDE as compared to the
standard simulation.

have substructure that is not resolved by the simulation.
If a higher resolution was used, it may be possible to fur-
ther explore the fs − Mhost relationship in search of a
trend.

We now introduce the differential bound fraction of
dark matter. Recall that the halo mass function is
dn/d lnM and describes the dark matter number den-
sity as a function of mass bin. The differential bound
fraction describes the fraction of the total dark matter
that is bound into a particular mass bin. We denote this
quantity df/d lnM and it follows directly from the mass
function:

df

d lnM
=

dn

d lnM
Vbox

M

Mbox
(50)

with Mbox = NsimMp. Here, Mp is the mass of a particle
and Nsim = 10243 particles in the simulation. Note that
dn

d lnM Vbox = dN
d lnM , the differential halo count per mass

bin. Clearly, the factor of M/Mbox transforms this quan-
tity into a mass fraction, with M located at the center
of each corresponding mass bin. Since we have already
calculated our mass functions dn/d lnM in Subsec. III B,
it is simple to calculate df/d lnM . In Fig. 15, we plot
the differential bound fraction for both the EMDE and
standard simulations. This result is consistent with pre-
dictions from Press-Schecter [18]. The differential bound
fraction of a universe that evolved with an EMDE peaks
at approximately M/MRH ≈ 10−2 at z = 30. We also
see that, as expected, df/d lnM is substantially lower for
the standard simulation. Note that the level of disagree-
ment between the three different box sizes is in fact quite
small and only due to resolution effects. When compared
with the great convergence seen between the various mass
functions of Fig. 13, we point out that the mass functions
were plotted in logarithmic space, whereas df/d lnM is
only in linear space. Therefore, any lack of convergence
due to resolution in the mass functions is obscured where

it is otherwise apparent in df/d lnM . Nonetheless, we are
satisfied with the level of convergence demonstrated.

Of particular interest is the integral of df/d lnM up
to the reheat mass, namely the total bound fraction in
sub-reheat mass halos:

ftot(zf ) =

∫ lnMRH

lnMcut

df

d lnM

∣∣∣
zf
d lnM. (51)

We are interested in the total bound fraction as a func-
tion of redshift. Rather than numerically integrate the
df/d lnM curves from Fig. 15, ftot can be calculated
directly from the Rockstar halo catalogs with:

ftot =

∑M<MRH

i Mhost,i

Mbox
(52)

where i runs over all host halos with mass below the re-
heat mass as identified by Rockstar and Mhost,i is the
mass of each host. Analytical models of an EMDE pre-
dict that the fraction of dark matter bound in microhalos
may increase by several orders of magnitude for a reheat
temperature as low as TRH = 30 MeV when compared
to structure formation in the absence of an EMDE [11].
Figure 16 demonstrates the redshift evolution of ftot for
both a universe that experiences an EMDE and a stan-
dard universe. As predicted, the fraction of dark matter
that is bound in microhalos is substantially higher due to
an EMDE at nearly 70% at zf = 30. Ideally, we wish to
calculate ftot at lower redshifts. This is unfortunately not
possible since our simulation stops at zf = 30. We expect
to see that as redshift decreases, the total matter fraction
bound into microhalos will decrease as microhalos begin
to merge into larger hosts of mass greater than MRH and
many microhalos are destroyed by tidal stripping. With
these macroscopic properties of our simulations verified,
we continue onwards to study individual microhalos and
their substructure.
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FIG. 16. Comparison between the fraction of matter bound
into microhalos for a standard radiation-dominated universe
and a universe that experiences an EMDE. Simulation pa-
rameters: (60 pc/h)3 box, 10243 particles.

D. Halo Visualization and Substructure Analysis

In this subsection, we use visualization tools from the
MayaVi Python module to visualize the evolution and
structure of individual halos in our simulations. We also
utilize the substructure tree data from the halo catalogs
to identify substructure.

We expect that primordial microhalos will begin form-
ing by a redshift z ≈ 200 as a consequence of an EMDE.
To confirm this, we visualize the evolution of a large host
halo in Figure 17. We begin by selecting the largest host
halo at zf = 30 in the EMDE simulation. We use the
halo center coordinates and radius to collect all particles
from the Rockstar particle data files. These particles are
then binned into a three-dimensional mesh. The particle
counts inside each bin are representative of the density at
that point in the halo. We then sum the bin counts along
one axis to collapse the data into a two-dimensional array.
This array is visualized as a heatmap using MayaVi. Since
we are interested in the halo evolution, we repeat the pre-
ceding procedure for each GADGET-2 snapshot, continuing
to use the location and size of the final host halo. The
density of each heatmap is set on the same scale such
that the most dense point of the final host halo from the
EMDE simulation sets the scale maximum. As demon-
strated by Figure 17, microhalos are indeed already be-
ginning to form by z = 186.

We are also interested in seeing the difference between
the formation of a host halo in a universe with an EMDE
and a standard radiation-dominated universe. Using the
same location and radius of the host halo from the EMDE
simulation, we collect snapshots of the formation of the
analogous host halo in the standard radiation-dominated

simulation. Figure 17 demonstrates that no substantial
structure formation begins until redshift z ≈ 50 in the
absence of an EMDE.

The Rockstar halo catalog contains host halo informa-
tion for each halo entry. An example of the tree structure
used to store this information can be seen in Fig. 18. The
data structure used is a one-dimensional array. For each
halo, the number stored in this array corresponds to the
halo ID of the parent. For host halos, a −1 is stored to
indicate that the halo is indeed a host. In order to find
all subhalos of a particular host halo, one must recur-
sively traverse all the way down each branch of the tree.
Namely, one must first find all of the first-level subhalos
of the host. Then, for each subhalo, one finds all sub-
subhalos. This continues until the bottom of the tree is
reached. It is important to note that we employ a 100
particle minimum for Rockstar to identify structure. In
particular, this rule applies to all levels of structure. The
smallest size a subhalo can be is 100 particles. In Fig. 19,
we use MayaVi to plot the Rockstar-identified locations
of all substructure for a large host halo on top of the
two-dimensional projection of the host halo density. The
host halo is one of the largest from its EMDE simulation
and demonstrates the substructure abundance that will
contribute to the annihilation boost factors. Since the
annihilation rate scales with density squared, the abun-
dance of subhalos will cause a significant boost factor, to
be computed in Section IV.

The Cartesian particle binning technique used in this
subsection will be revisited in Subsection IV B, as it will
also be used for numerical integration of J-factors. In
the next subsection, we will utilize radial binning of par-
ticles to calculate density profiles. The density profile
is quite sensitive to proper halo center identification by
Rockstar. We demonstrate in the next subsection that
we occasionally must re-calibrate the halo center to the
most dense region in order to properly calculate density
profiles.

E. Density Profiles

Another tool that we use to verify that our simulations
agree with established literature is the density profile. In
this subsection, we discuss the technique to numerically
calculate density profiles of microhalos in our simulations.
With this tool in place, we use the numerical density
profile to fit a generalized NFW profile [19] of the form

ρ(r) =
ρs

( r
Rs

)γ(1 + r
Rs

)3−γ (53)

where Rs, ρs and γ are fit parameters. We will constrain
γ to be positive, as a negative γ indicates a density which
increases with radius. In the standard NFW profile, γ is
set to unity. The NFW profile describes a nearly univer-
sal functional form for dark matter halo density profiles.
We define the concentration of a halo c = R200/Rs, where
R200 is the halo radius from Rockstar and Rs is based on
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FIG. 17. A comparison of the evolution of a microhalo in a universe that undergoes an EMDE against the same microhalo in
a standard radiation-dominated universe. In each of the two columns, the standard halo is on the left and the EMDE halo is
on the right. The evolution begins at z = 500 in the top left and ends at z = 30 in the bottom right. Note the abundance of
substructure in the EMDE halo. The same density color scale is maintained throughout all images.
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Host Halo ID 1

Subhalo ID 2

Subsubhalo ID 3 Subsubhalo ID 4

Subhalo ID 5

FIG. 18. Example diagram for substructure tree. In the tree
array, index 1 would contain a −1, indicating that halo 1 is a
host halo. Indices 2 and 5 would both contain a 1, indicating
that halo 1 is the parent halo of halos 2 and 3. Indices 3 and
4 would both contain a 2, indicating that halo 2 is the parent
halo of halos 3 and 4.

FIG. 19. Visual demonstration of substructure levels as iden-
tified by Rockstar for a large host halo from a 5123 particle,
(30 pc/h)3 simulation of a universe that undergoes an EMDE.
Levels of substructure closest to the host in the substructure
tree are indicated by dark colors, whereas generations of sub-
structure more distant from the host are indicated by bright
colors.

the NFW profile fit. As a second NFW fit constraint, we
will demand that c ≥ 1, because a scale radius Rs > R200

is unphysical.
The ρs of the NFW profile can be found by defining

the integral of the profile out to R200 to be equal to M200,
thus:

M200 =
4

3
πR3

200fχρ200 =

∫ R200

0

ρs
r
Rs

(1 + r
Rs

)2
4πr2dr,

(54)
where fχ = ρχ/ρm is the dark matter fraction, ρ200 =
200ρc. After computing the integral and replacing radii
in favor of the concentration, we find ρs in terms of the
halo concentration:

ρs = fχ
ρ200

3

c3

ln(1 + c)− c/(1 + c)
. (55)

Thus, the NFW profile can be defined in terms of the

FIG. 20. Inaccurate centering of host halo by Rockstar. The
center of the image is the location that Rockstar identified
to be the host halo center whereas by eye the true center
should be a bit below and to the right of the image center.
Simulation specs: 5123 particles, (60 pc/h)3 box, standard
radiation-dominated universe.

halo mass M200 and concentration c or in terms of the
halo scale radius Rs and scale density ρs. We will now
discuss difficulties in determining a mass-concentration
relationship due to the resolution limit of our simulations.

Modern cosmological simulations predict that the den-
sity profile of small microhalos just above the cut-off scale
are rather cuspy, dropping off as ρ ∝ r−γ near the halo’s
center, with 1.3 < γ < 1.5 (Refs. [25, 26]). Larger
microhalos often have γ ≈ 1, which corresponds to the
standard NFW profile [25, 26]. To fit an NFW profile, we
must first accurately identify the central density peak of
the halo. This central peak is defined to have r = 0.
Unfortunately, Rockstar occasionally misidentifies the
“center” of the halo, as seen in Figure 20. Our solution
to this improper centering is as follows:

1. Begin by collecting halo particle data about the
center and within the R200 radius as identified by
Rockstar.

2. Bin the halo particles into a coarse-grained mesh.

3. Determine the bin with the largest number of par-
ticles.

4. Using the scale factor between the bin size and the
comoving distance, find the location of the center
of this bin with respect to the original halo center.

5. Collect particle data about this new center from
the simulation snapshot.

We employ the method above for manually centering
some halos in our calculation of density profiles. We note
that this step is only necessary for density profile calcu-
lations. In our calculation of J-factors in Subsec. IV B,
we will not manually center halos. Since the reference
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FIG. 21. On left: Visualization of high-resolution host halo from (1 pc/h)3 box, 5123 particle simulation. This is the largest
halo in the simulation at z = 100 with Mh = 7.9 × 10−9 M�/h. On right: Density profile of the same halo. The numerical
density profile is generated from halo particle data. Note that the Poisson error bars are extremely small due to the use of
a high-resolution simulation. The fit NFW comes from a numerical fit of Eq. (53) using the SciPy curve fit routine. The
reference curve corresponds to an NFW profile with c = 2.0, γ = 1, and ρs according to Eq. (55).

integral, discussed in the next section, comes from a the-
oretically predicted NFW profile rather than a fit and the
J-factor is just a numerical integral of density squared in
Cartesian space, centering is not necessary for the calcu-
lation of boost factors.

In order to verify the halo formation in our simulations,
we turn to the (1 pc/h)3 box simulation. This simula-
tion evolves until zf = 100 and allows us to study the
first generation of microhalos at a high resolution. After
generating a halo catalog, we find the largest host halo in
the simulation in order to calculate a high-resolution den-
sity profile and compare its NFW fit to predictions. To
generate our numerical density profile, we take the halo
particle data and translate their coordinates such that
the origin corresponds to the halo center. We then cre-
ate 100 bins that represent logarithmically-spaced three-
dimensional annuli. The halo particles are then binned
into these annuli based on their distance from the center.
To calculate the density of each annulus ρ(ri), we have:

ρ(ri) = Np,iMp/
(4

3
π(r3

i − r3
i−1)

)
(56)

where Np,i is the number of particles in a given annulus,
Mp is the mass of a particle, and ri is the radius of a given
annulus. We define the innermost bin to have a radius
corresponding to the softening length of the simulation.
In this case, the softening length is defined as

rsoft =
1

30

rbox
3
√
Nsim

(57)

where rbox is the comoving length of a side of the sim-

ulation box and Nsim is the total number of particles in
the simulation. This corresponds roughly to 1/30 of the
inter-particle spacing. We also demand that there be no
less than 100 particles in the center annulus, and employ
a routine which joins the innermost bins together until
this condition is satisfied. The error on each bin is from
Poisson noise, and thus for a bin with N particles, the
error is σ =

√
N . Since we need substantially more than

100 particles to generate a good density profile, we are
resolution limited to only the larger halos in our simula-
tion for density profile calculations. An initial intention
of this work was to produce a mass-concentration rela-
tion for microhalos analogous to the galaxy-mass halo
mass-concentration relation of Ref. [27]. In order to suc-
cessfully calculate this relationship, one would need con-
siderably higher resolution such that even halos on the
order of Mcut contain multiple thousands of particles.

The largest halo in the (1 pc/h)3 box simulation has a
mass of 7.9 × 10−9 M�/h, an order of magnitude above
the cut-off mass. In Figure 21, we compare the numeri-
cal density profile of this halo to its NFW fit. Note that
the visualization shows a halo with a smooth, centrally-
peaked density. In agreement with Refs. [25] and [26],
we find that the small microhalos just above the cut-off
mass do indeed have quite cuspy density profiles. In the
case of the halo in Fig. 21, we find a γ ≈ 1.3. Refs. [25]
and [26] also demonstrate that microhalos that form in
the absence of an EMDE typically have concentrations
between 2 and 3 at a redshift of z ∼ 30. Refs. [8–10]
find that the concentration of halos scales with forma-
tion redshift, c ∝ (1 + zf ), and our preliminary results
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indicate that the microhalos that are EMDE-generated
do indeed have higher concentrations due to earlier for-
mation. Our highest resolution halo has a concentration
of c = 6.4 at z = 100, consistent with these expectations.
In the absence of an EMDE, the earliest microhalos form
no earlier than a redshift of 60, with concentrations be-
tween 2 and 3 at z∼30. The concentration of a particular
halo also increases as it evolves. Since Rs is expected to
be roughly constant, and R200 scales as (1 + z)−1, we
have that c ∝ (1 + z)−1 [8, 9]. This means that we
should expect even higher concentrations at our redshift
of interest, zf = 30.

We conduct the same analysis as above on the other
top ten most massive halos from the (1 pc/h)3 simula-
tion. These halos fall in the mass range of just above
Mcut to approximately 10Mcut. We find that for all of
these halos, 1 < γ < 1.4 and the concentrations fall in
the range 2.5 < c < 12, with the majority of the concen-
trations being above 4. This indicates that the EMDE-
generated microhalos do indeed form earlier, resulting in
increased halo concentrations at later times when com-
pared to microhalos that form in a standard radiation-
dominated universe. However, to complete this analysis
we would need a more statistically complete sample of
halos just above the cut-off mass. In order to do this, we
would need to increase both the box size and the parti-
cle count. Unfortunately, this pushes outside our current
range of computational resources. For now, we conclude
our study of density profiles, moving on to calculating
microhalo boost factors.

IV. BOOST FACTORS

In this section, we study the dark matter annihilation
boost that is a result of the additional substructure for-
mation due to an EMDE. In order to calculate the total
boost factor as a function of galaxy host halo mass, we
must first study the relationship between the boost fac-
tors of individual microhalos and their masses, denoted
Bs(Mmh). We denote the total boost 1+B to correspond
to the dark matter annihilation boost in a galaxy-mass
host halo due to its substructure, which includes micro-
halos, whereas Bs corresponds to the annihilation boost
in individual microhalos due to their substructure. The
microhalos of interest that will be used to numerically
determine Bs(Mmh) correspond to the host microhalos
identified by Rockstar from our simulations. Recall that
the boost factor for a microhalo is defined as

1 +Bs =
J∫

ρ2
χ4πr2dr

(58)

where J represents the numerical integral of density
squared over a particular microhalo and the denominator
corresponds to a “reference integral” that we will discuss
in Subsec. IV A. In order to calculate Bs(Mmh), we
must determine the boost factor for every microhalo in
a given simulation. We discuss the resulting function in

Subsec. IV C. Before this is possible, however, we must
first determine the optimum manner to calculate the indi-
vidual J-factors. We employ a simple three-dimensional
Cartesian binning routine to determine J . Since each
microhalo consists of a different number of particles from
GADGET-2 with a large range of R200 radii, this numerical
integral must use an optimized resolution to accurately
calculate the J-factor. This optimized resolution keeps
contributions to the integral from Poisson noise to a min-
imum while still resolving individual contributions from
microhalo substructure. In Subsec. IV B, we discuss the
steps taken to determine the appropriate resolution as a
function of microhalo particle count.

With our optimized bin function determined, we move
on to calculating the boost factor of all microhalos in
Subsec. IV C. With these boosts calculated, we employ
the same mass binning technique used for the halo mass
functions in Subsec. III B to bin the calculated boosts as
a function of mass. The boost statistics in each bin are
then used to determine a functional form for Bs(Mmh)
with remarkably small error bars. Kernel density estima-
tion (KDE) is employed to generate a boost distribution
for each mass bin, and samples are drawn from this dis-
tribution in an attempt to accurately reflect the number
of microhalos in a given mass regime in a galaxy-mass
host halo. We discuss the computational limits that pro-
hibit drawing an equivalent number of samples to the
dN/d lnM in each mass bin. Fortunately, we verify that
convergence of each bin-averaged boost occurs at signif-
icantly lower sample sizes, mitigating the computational
limits. We compare the Bs(Mmh) calculated from each
simulation box size to verify convergence of simulation
results.

To determine the total boost factor of a galaxy-mass
halo 1 + B, we employ the analytical prediction from
Ref. [11] with one key modification. The total fraction
of dark matter bound into microhalos with M < MRH at
zf is defined by Eq. (51). This factor plays significantly
into the total boost factor prediction of Ref. [11]. Our
technique for determining 1 + B will employ the same
prediction except for the replacement of ftot(zf ) with a
boosted quantity btot(zf ) that functions as a weighted av-
erage of the microhalo boost factors with weighting from
the differential bound fraction. This btot(zf ) is defined
as

btot(zf ) =

∫ lnMRH

lnMcut

[1 +Bs(M)]
df

d lnM

∣∣∣
zf
d lnM. (59)

The calculation of this factor will be discussed in Subsec.
IV D. With btot calculated, we introduce the full form of
1 + B from Ref. [11] and look at the mass dependence
on the total boost. We finish off this section by dis-
cussing the observational implications of the calculated
total boost factors.
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FIG. 22. On left: Visualization of substructure-dense host halo from (30 pc/h)3 box, 5123 particle simulation. This halo has
Mh = 1.6 × 10−6 M�/h at zf = 30, just below the reheat mass. On right: Density profile of the same halo. The same
procedures are followed as in Fig. 21. Note the substructure bumps in the density profile at larger radii.

A. Reference Integrals

We now discuss the reference integral. Recall the def-
inition of the boost factor from Eq. (1). The J-factor
corresponds to the integral of the density squared across
the volume of the halo of interest. This density is de-
termined based on the particles from GADGET-2. The
denominator of the boost factor is the reference integral.
This integral is still a volume integral of density squared,
but here the density is determined from a smooth, refer-
ence NFW profile. One practice that is often used is to
remove all subhalo particle data from the host halo and
fit an NFW profile to the smooth host halo profile in the
absence of substructure. This smooth NFW is then used
as the reference profile. However, for EMDE-generated
host halos, a large fraction of the particles are bound
into subhalos. By removing the substructure, we are left
with very little to calculate an NFW profile from, and
therefore this is an unreliable method of computing ref-
erence integrals. Instead, we will use a functional form
for ρs and fix γ and c. In order to be consistent with
the boost factor calculations of Ref. [11] in our compar-
isons, we will adopt a standard microhalo concentration
of c = 2 for the reference profiles. This choice is moti-
vated by Refs. [25, 26], which find that in the absence
of an EMDE, simulated microhalos typically have a con-
centration of approximately 2 at zf = 30.

By using a fixed concentration, the boost factor de-
scribes the boost in dark matter annihilation relative to
a standard microhalo that forms in the absence of an
EMDE. The NFW parameter Rs can be found directly
with a fixed c = 2, such that Rs = R200/c, with R200

from Rockstar. The preliminary analysis that suggests

that an EMDE causes microhalos to form at higher red-
shifts, thus having higher concentrations at a given later
time compared to a microhalo that forms later in the
absence of an EMDE, also implies that the boost fac-
tors should be larger than if the EMDE halos still had
concentrations of 2 to 3 at zf = 30. This is because the
power law transition occurs deeper into the halo for halos
with higher concentrations, thus increasing the difference
between the numerical density profile and the reference
profile. This can be readily seen in Fig. 21, where the
reference curve is substantially lower at most radii than
the numerical density profile. We also set γ = 1 for all
reference NFW profiles. Since many of the microhalos
in the larger box simulations are substantially above the
cut-off mass, γ = 1 is more appropriate than γ > 1.3.
By zf = 30, the larger halos will have undergone multi-
ple mergers, and this is thought to soften out the density
profile in standard scenarios [26]. With fixed c = 2, ρs
can be calculated by Eq. (55). With these parameters
as defined, we can calculate our reference curves. The
reference curve in Fig. 21 demonstrates the correspond-
ing reference NFW profile for our large halo from the
(1 pc/h)3 simulation.

With the reference curve determined, we briefly study
a large, substructure-dense microhalo from a (30 pc/h)3

simulation in Fig. 22. This halo is just below the reheat
mass at M = 1.6×10−6 M�/h. Contrary to the expecta-
tion that γ ≈ 1 for a large microhalo in the standard case
[26], Fig. 22 suggests that an EMDE may result in mi-
crohalos with more cuspy profiles than their counterparts
that form in a standard scenario. Clearly, this halo has
formed by collecting abundant amounts of substructure
throughout its evolution. Note that the numerical den-
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sity profile has several “bumps” in it at larger radii that
correspond to rather large subhalos. These bumps push
the numerical density profile above the smooth fit NFW.
When calculating J-factors, the square of the density is
integrated. Therefore, these bumps in the density profile
will become even more pronounced in the J-factor inte-
gration, ultimately leading to higher boost factors. In
the next subsection, we discuss the necessary optimiza-
tion in resolution such that substructure is resolved in
the J-factor integral without artificially inflating the re-
sult due to Poisson noise.

B. J-Factor Resolution

Recall that the J-factor is the integral of density
squared over the entire volume of a microhalo. Our
method for calculating J is as follows. For each host mi-
crohalo identified by Rockstar, we collect the Cartesian
coordinates of all particles within R200. These particles
are then binned into a three-dimensional mesh with nj
bins per dimension and total volume of (2R200)3. We
use the same number of bins in each dimension because
dark matter halos are triaxial but roughly spherical. The
focus of this subsection will be to determine nj(Nhalo),
with Nhalo being the total number of particles in a host
microhalo and all of its substructure. With these parti-
cles binned, we can then simply sum up the contributions
from each individual bin. With Mp the mass of one par-
ticle and Vbin = (2R200)3/n3

j , the density of bin ikl is
ρikl = Np,iklMp/Vbin. Therefore, the J-factor is thus:

J =

nj∑
i=1

nj∑
k=1

nj∑
l=1

(Np,iklMp

Vbin

)2

Vbin (60)

with Vbin the volume element in the sum.
From this form, it is clear that it is imperative that

substructure is adequately resolved in order to calculate
J correctly. Were we to set nj = 1 and just calculate the
integral of the average density squared, none of the high-
density substructure would be resolved to contribute to
J . On the other hand, as nj → ∞, a point will be
reached where every particle is assigned to its own bin
and thus Np,ikl = 1 or 0 and J = NhaloM

2
p/Vbin. There-

fore, we expect that J will increase without bound as
nj increases, because Vbin decreases with increasing nj .
Figure 23 shows the J-factor for a particular halo as a
function of nj . Note that there appears to be an inflection
point after which J begins to increase at an accelerated
rate as Vbin continues to increase. This inflection point
is present across a variety of halos. In fact, we could de-
fine our optimized nj such that it is where the inflection
point is located for a cubic fit polynomial to the J − nj
plot. However, as we will show below, it is more reason-
able to constrain nj based on arguments related to error
contributions rather than this inflection point.

The monotonic increase of J with increasing nj demon-
strates the need to optimize nj based on the number of

FIG. 23. J vs. nj for an approximately 10,000 particle halo
from a (30 pc/h)3 EMDE simulation. Note the inflection
point at nj ≈ 40, whereas Eq. (65) uses an nj = 25. A
fit of the post-inflection point data up to nj = 200 shows that
J ∝ n1.8

j , indicating that the decreasing bin size is not yet the
dominant reason for increasing J . In the case of high nj , we
expect J ∝ n3

j .

particles in the halo. We want to determine a resolu-
tion that accurately resolves substructure without Pois-
son noise domination. We test two separate constraints
on nj , both of which are motivated by minimizing the
total contribution to J from Poisson noise. Firstly, we
determine the analytical form of the Poisson noise and
find the value of nj that keeps the error below a certain
fraction of the total J . In the case of our tests, we choose
an upper bound of 10% Poisson error compared to J . We
then employ a second constraint: we find the value of nj
such that greater than 80% of J comes from nonempty
bins with greater than 10 particles. The more strict of
these two constraints sets our upper bound on nj .

The Poisson error on a bin with N particles inside of it
is σ =

√
N . To study how the Poisson error contributes

to the J-factor, we consider the case of a halo with an
average bin occupation of N = Nhalo/n

3
j . If the halo

had a uniform density in all bins, the J factor would be
J = n3

jM
2
pN

2/Vbin. However, with a standard deviation
from Poisson noise, we can write the bin occupation as
N ±
√
N . Consider J to be the sum over all of these bins

with random Poisson noise:

J =

nj∑
i,k,l

VbinM
2
p

(Np,ikl

Vbin
±
√
Np,ikl

Vbin

)2

=

nj∑
i,k,l

VbinM
2
p

[N2
p,ikl

V 2
bin

±
2Np,ikl

√
Np,ikl

V 2
bin

+
Np,ikl

V 2
bin

]
(61)
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and by averaging across all n3
j bins, the ± 2Np,ikl

√
Np,ikl

V 2
bin

term vanishes so that

〈J〉 =
M2
p

Vbin

nj∑
i,k,l

(
N2

p,ikl +Np,ikl

)
≈
M2
pn

3
j

Vbin

(
N2 +N

)
.

(62)
This shows that the error in the calculation of the J factor
can be found approximately by calculating the integral
of the density whereas J is the integral of the density
squared. In practice, this means that to determine the
relative error fraction we simply compare the sum across
all bins of the particle counts in each bin to the sum
across all bins of the square of the particle counts in each
bin.

In this calculation, we only consider bins with Np,ikl ≥
10, because Poisson error

√
N does not apply well in

the limit of small counts. Therefore, we only compute
the sums of density and density squared across bins with
Np,ikl ≥ 10:

fe =

∑nj
i,k,lNp,ikl∑nj
i,k,lN

2
p,ikl

∣∣∣
Np,ikl≥10

≤ 0.1 . (63)

Clearly, fe increases with nj . Our first constraint de-
mands that nj be below the point that makes fe = 0.1.

We now employ a second constraint and then deter-
mine which of the two is more conservative. We note
that by choosing the more conservative, lower nj , we can
only under-approximate the J-factor. Because of these
under-approximations, our results for global 1+B in Sub-
sec. IV D can be treated as lower bounds. In our second
constraint, we demand that the total contribution to J
from cells with Np,ikl ≥ 10 make up at least 80% of the
total J . For this, we calculate:

fN≥10 =

∑nj
i,k,lN

2
p,ikl|Np,ikl≥10∑nj
i,k,lN

2
p,ikl

≥ 0.8. (64)

Clearly, fN≥10 will decrease as nj increases.
As a test to determine which constraint we will want

to look at across a broad range of halos, we test sev-
eral halos from the (30 pc/h)3 EMDE simulation. These
tests are conducted as follows: for each halo, the quanti-
ties fN≥10 and fe are calculated for an array of nj values.
We then find the the highest value of nj such that neither
of the constraints is violated. The second constraint, as
given by Eq. (64), is much more conservative. For exam-
ple, a 719 particle halo has nj = 23 when fN≥10 ≈ 0.8.
However, fe ≈ 0.03 at this nj . Similar results are found
for a wide variety of halo masses up to nearly 200,000
particles. In particular, regardless of the nj such that
fN≥10 ≈ 0.8, it is always the case that fe . 0.05. For
this reason, we choose the more conservative constraint
that fN≥10 ≥ 0.8. Using this constraint, we calculate
the maximum nj for several thousand halos from the
simulation across a spread of mass regimes. We note
that since a 10243 particle EMDE simulation contains ap-
proximately 100,000 host halos, computing the optimum

FIG. 24. Maximum nj that does not violate the constraint
of Eq. (64) for GADGET-2 halos across full range of particle
counts. The cubic fit function is described by Eq. (65).

nj by repeatedly calculating J for different nj would be
computationally intractable to be done across the entire
dataset. In Fig 24, we plot the numerically calculated
maximum nj above the given constraint for these halos.
We then fit a cubic to the data in log-log space to define
a relationship between nj and Nhalo. This relationship
will be employed in the next subsection to calculate the
J factors and ultimately Bs(Mmh):

log10(nj) =0.01836 log10(Nhalo)3 − 0.298091 log10(Nhalo)2

+ 1.856971 log10(Nhalo)− 1.925952 .

(65)

With our functional form for nj(Nhalo) determined, we
want to study the effect on J from averaging out the
central density cusp of the halo. Recall the NFW profile
from Eq. (53). As r → 0, δ → ∞. It is likely that
the N-body simulation is not able to fully capture the
maximum density of the cusp at the center. Even if there
were enough particles to capture a good halo cusp, our
numerical integral of J smooths out the central peak of
the density profile. We now calculate the contribution
to J from the central bin, where r = 0 is contained,
assuming two different cases. In the first case, we assume
J can indeed resolve the NFW density ρ exactly. In the
second case, we calculate the contribution to J with the
mean density of the bin ρ̄, calling this value J̄ .

Suppose a bin length Rp. For r � Rs, ρnfw(r) ≈
ρs
r/Rs

= ρsRs/r ∝ r−1. Since J =
∫ Rs

0
4πr2ρ2

nfw(r)dr, the

full J factor contribution from the central bin is

J = 4πρ2
sR

2
sRp. (66)

In order to calculate the mean density of the central bin,
we need to determine the total mass enclosed within the
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central bin using ρnfw:

M =

∫
ρdV =

∫ Rp

0

4πr2 ρsRs
r

dr = 2πρsRsR
2
p. (67)

With this, the mean density of the central pixel is ρ̄ =
M/Vp = 3

2ρsRs/Rp. With this mean density, the J factor
contribution from the central bin is

J̄ =

∫ Rp

0

4πr2ρ̄2dr =

∫ Rp

0

4πr2
(3ρsRs

2Rp

)2

dr = 3πρ2
sR

2
sRp

(68)
Interestingly, the value of Rp drops out and we find that
J/J̄ = 4/3. Therefore, since we calculate the central
bin using ρ̄ in our numerical integral of J , we are at
most missing a factor of 1/3 of the central pixel’s con-
tribution to the total J . Provided that the resolution
is high enough for the central bin to contribute a rela-
tively small amount, such as less than 5% of the total,
the numerical approximation of the central bin will not
make a significant difference on our results. For low nj ,
the central bin contributes a significant portion of the to-
tal J-factor. For this reason, we explicitly use only odd
nj so as to not split the central bin into 8 smaller bins,
thus reducing the contribution from the density squared
of the central peak and decreasing the J-factor. When
calculating J-factors, we employ Eq. (65) such that nj is
rounded down to the nearest odd integer. We now have
all the necessary pieces to calculate Bs(Mmh). Using
reference integrals from Subsec. III E and the J-factor
calculation technique and resolution function from this
subsection, we now proceed to calculate the substructure
boost-mass relationship in the following subsection.

C. Substructure Boost-Mass Relationship Bs(Mmh)

With all the necessary tools in place, we proceed to cal-
culate the boost factor of every host microhalo identified
in our simulations. The process is fairly simple. For each
host, we numerically calculate J using the procedure in
Subsec. IV B. We then calculate the reference integral
defined in Subsec. III E based on the halo parameters.
Using Eq. (1), we divide J by the reference integral to
get 1 +Bs. This process is iterated over all host halos in
the Rockstar halo catalogs for each of the EMDE and
standard simulations. The information stored is Bs and
Mmh for each microhalo. To begin our analysis, we study
the 30 (pc/h)3 EMDE simulation in Fig. 25. In this fig-
ure, there are approximately 100,000 host halos, each of
which have a boost factor Bs calculated. Note that we
are plotting Bs rather than 1 + Bs. Therefore, on the
logarithmic scale, the lower Bs correspond to halos that
are nearly substructure-less whose J agrees very closely
with the reference integral.

In order to calculate statistics on this data and con-
struct a function Bs(Mmh), we bin the halos according
to the same mass bins that were used for the mass func-
tions from Subsec. III B. Within these mass bins, we

can study the distributions of Bs. We demonstrate these
distributions for several mass bins in Fig. 25. For each
bin, we calculate the median and quartiles. As demon-
strated by the median and quartile curves in the figure,
the data is fairly tight with little room between the inner
quartiles.

This Bs(Mmh) function describes the boost statistics
from the simulation. In these calculations, we are lim-
ited to the number of halo samples that are present in
our Rockstar catalogs. To determine the total boost in
a galaxy-mass host halo today, we need to know the total
number of microhalos that have survived in the host halo
as a function of mass. We can then use these microhalo
number statistics alongside our Bs(Mmh) distributions in
each mass bin to calculate representative means and un-
certainties of the microhalo boost in each mass bin. The
number density of microhalos within a halo is determined
by the differential bound fraction at zf from Eq. (50):

dnmh

d lnMf
= s(r)

ρhalo(r)

Mf

df

d lnMf

∣∣∣
z=zf

(69)

where Mf is the mass of the microhalo at high red-
shift, namely zf = 30. Here, ρhalo(r) is the spherically-
averaged present-day density of the host halo as a func-
tion of the distance from the center and s(r) is the “sur-
vival fraction” as a function of distance from the center,
namely the fraction of microhalos present at zf that sur-
vive to the present day [11]. To transform from microhalo
number density to total microhalo counts per mass bin,
we simply integrate Eq. (69) over the volume of the halo
Vhalo while holding s(r) = 1. Therefore, the total number
of halos in the host halo per mass bin is:

dNmh

d lnMf
=
Mhalo

Mf

df

d lnMf

∣∣∣
z=zf

. (70)

We need to understand the distribution of boost fac-
tors within each mass bin in order to draw dNmh

d lnMf
sam-

ples from this distribution and calculate the statistics
on the boost-mass relationship of all microhalos within
a galaxy-mass host. We would like to fit a distribution
function to the boost distributions within each mass bin.
However, as indicated by Fig. 25, the distribution shape
changes with the mass bin. Rather than fit a Gaussian or
Poisson distribution, we employ a kernel density estima-
tion (KDE) from the scikit-learn module for Python
[28]. This is known as a nonparametric distribution fit-
ting technique. We use a Gaussian kernel and optimize
the bandwidth with 2-fold cross-validation. Ultimately,
the KDE routine creates a distribution for each mass bin
that agrees well with the data, as seen by the KDE curves
in Fig. 25. Assuming that the boost distributions from
our numerical calculations of GADGET-2 halos are repre-
sentative of true microhalo populations within each mass
bin of interest for a galaxy-mass host halo, we can then
sample from the corresponding KDE distributions a total
of dNmh

d lnMf
times per bin.

At this point, we run into a computational challenge:
for each of the approximately 30 mass bins, for a 106 M�
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FIG. 25. Top: Calculated boost-mass relationship for the microhalos from the (30 pc/h)3 EMDE simulation. The median and
quartile lines illustrate a tight relationship with little scatter. The mean is determined by sampling from the KDE of each mass
bin. Ideally, we would make dN/d lnMf samples per mass bin, but the number converges much earlier. The error bars on the
mean Bs in each bin across multiple trials are negligible, as explained in the text. Bottom: Each of the three distributions
corresponds to the boosts within a particular mass bin, indicated by the vertical dashed lines in the upper plot, from left to
right. The KDEs were calculated using 2-fold cross validation to determine the optimum bandwidth.

dSph galaxy, dNmh

d lnMf
is on the order of 1010 to 1012. We

need to draw this many samples from the KDE boost
distribution for each bin. This is computationally in-
tractable, but also unnecessary. Since we are only inter-
ested in the mean and standard deviation of the boost
in each mass bin from this large number of samples, we
can study the convergence of the mean as a function of
samples from the distribution. In Fig. 26, we look at
the convergence of Bs in a particular mass bin as a func-
tion of the number of samples. Clearly, the average value
of Bs has converged to the second decimal place by 106

samples drawn from the KDE distribution. Therefore,
we do not need to sample dNmh

d lnMf
boosts per bin. We se-

lect Nkde = 106 as the number of samples taken from the
KDE.

We now have an average boost for each mass bin us-
ing the above procedure. In the next subsection we use
these averages to define our Bs(Mmh) in the calculation
of btot(zf ). To understand the error on btot(zf ), we need
to calculate it for multiple trials. In particular, one trial
consists of sampling Nkde samples from each mass bin to
calculate an average boost, defining Bs(Mmh), and then

calculating btot(zf ). As a test, we iterate the first half of
this procedure Ntrials = 104 times to look at the distri-
bution of average boosts for the same mass bin that we
used to test convergence. Fig. 26 demonstrates that for
104 trials, each of which has its own calculated average
boost for the mass bin from 106 KDE samples, the stan-
dard deviation of average Bs values is around σ = 0.01
with means ranging from 1 to upwards of 20 depending
on the mass bin. In Fig. 25, we plot the mean Bs in each
mass bin across Ntrials, each of which consist of Nkde sam-
ples. The standard deviations of all of the Bs averages
are shown as error bars on the plot that are significantly
smaller than the width of the mean line.

We conclude the error analysis with an important note:
as Nkde increases towards dNmh

d lnMf
, the average Bs over

Ntrials distinct trials converges. Our conclusion is that
when calculating Bs in a mass bin for a galaxy-mass
host halo, there is no significant scatter in this boost
when compared to other host halos. This is ultimately
because the boost distributions in each bin from the ha-
los in our Rockstar catalog have tight inner quartiles,
and if we were to sample dNmh

d lnMf
halos from each bin, the
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FIG. 26. On left: Demonstration of convergence of the average Bs in a mass bin centered at log10(M/M�) = −6.8. By 106

samples from the KDE, the average has converged to the second decimal place. On right: With Nkde = 106, we calculate the
average Bs in the same mass bin a total of Ntrials = 104 times and look at the distribution of the averages. The error bar
on this distribution is approximately σ = 0.01. These different values of average Bs will be used to calculate btot in the next
subsection.

average for this set of samples is going to consistently
lie almost exactly at the peak of the KDE distribution.
Across multiple trials of calculating the average Bs in a
particular mass bin, we find negligible variance. However,
this does not imply that the calculation of the Bs(Mmh)
relationship and ultimately the total galaxy-mass boost
factor has no uncertainty. Rather, the uncertainty is pri-
marily attributed to our selection of a resolution nj for
the calculation of each J-factor that ultimately made the
mass bin distributions that we are sampling from. This
uncertainty is difficult to quantify, so we continue for-
ward without directly considering the error from Bs in
our later calculations. An analysis of the error due to
J-factor resolutions is left to future work.

Thus far, all of our analysis of Bs has been conducted
only with the (30 pc/h)3 EMDE simulation. We would
like to check for consistency between the various box sizes
and compare the overall Bs(Mmh) functions between the
EMDE and standard simulations. We conduct all of the
same analysis as described above across all of the sim-
ulations and report the results in Fig. 27. The key re-
sults are as follows. We find that the average boosts for
all mass bins are larger for smaller simulation box sizes.
This is expected, as the smaller box size simulations have
smaller particle masses. More high-density substructure
can be resolved for any given host microhalo as parti-
cle mass decreases, and thus the J-factor will increase
as more substructure is integrated over. Since the mini-
mum halo mass in our (30 pc/h)3 box is below the free-
streaming cut-off mass, it is likely that this simulation
has captured nearly all of the substructure boost. How-
ever, further convergence testing should be considered,
as a higher resolution simulation with lower particle mass
may uncover additional boost due to larger nj resolving

more substructure. We expect that as the resolution in-
creases, the average Bs(Mmh) in each mass bin should
converge. Because the (30 pc/h)3 box is the smallest
simulation and has the highest resolution, we will study
the results of only this simulation in the following subsec-
tion when calculating the total galaxy-mass boost factor.
Fortunately, the (30 pc/h)3 box has a fairly high resolu-
tion while also still allowing for halo formation up to the
reheat mass scale, allowing us to probe the full range of
microhalo boost factors for microhalos between Mcut and
MRH. Since the boosts in each mass bin increase as we
increase our resolution, we expect that all results in the
following subsection correspond to lower bounds.

Fig. 27 also shows boost factors of the microhalos
from the standard simulations. Due to the use of a refer-
ence integral based on analytic predictions with a smooth
NFW profile and the fact that there is still some sub-
structure in the absence of an EMDE, we get nonzero
boosts in the standard simulation as well. This shows
that there is still some substructure in larger host halos
even in the absence of an EMDE, with Bs leveling out
at a value around 3 for high mass microhalos. With our
Bs(Mmh) relationship completed, we move onwards to
the next subsection, where we calculate the galaxy-mass
boost factor 1 +B.

D. Total Boost 1 +B

Up to this point, all of our boost calculations have
been made for microhalos at a fairly high redshift zf =
30. The cosmological simulations help provide a better
understanding of the fraction of microhalos that survive
from their formation redshift at z ≈ 100−200 up until the
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FIG. 27. On left: Boost-mass relationship for all microhalos from Rockstar catalogs in the 30, 60, and 120 (pc/h)3 box EMDE
simulations. The curves correspond to the means from KDE samples for each respective simulation. The inconsistencies between
the simulation averages is due to additional substructure resolution in smaller box sizes. On right: Boost-mass relationship for
all microhalos in the corresponding standard simulations and their associated averages from KDE samples.

end of our simulation zf . The abundance of primordial
microhalos as substructure in sub-reheat mass hosts at
zf demonstrates a boost Bs on the order of 10 for the
largest of microhalos. We would like to use all of this
information to determine the total boost of a galaxy-
mass host halo today (z = 0). We follow the analytical
prediction made by Ref. [11], which calculates the total
boost factor of a host halo today by splitting the J-factor
into three separate contributions.

The first contribution to the total J-factor is from the
microhalos that have survived up to today. The pri-
mary mechanism by which microhalos are destroyed is
tidal stripping. Ref. [29] demonstrates that a subhalo
with an NFW profile scale radius rs is completely de-
stroyed if its tidal radius rt is less than twice its scale
radius. We now adopt the notation that r corresponds
to a microhalo-associated radius while R corresponds to
a host-associated radius. Ref. [11] finds that for all host
halo masses, rt/rs > 2 for all microhalos at position

within the host halo R > Rmin ≡
√
Rs/(100kpc) kpc,

where Rs is the NFW scale radius of the host.
In the analytic predictions, Ref. [11] calculates the

J-factor of an individual microhalo Jcl by truncating the
density profile at r = rs to account for partial tidal strip-
ping and neglects the negligible reduction due to a con-
stant density core:

Jcl(M, z) = [1 +Bs(M)]
7

6
πρ2

sr
3
s

= f2
χ

M

3
ρ200(z)c(z, zf)

3 7[1 +Bs(M)]

24[ln(1 + c)− c/(1 + c)]2
,

(71)

where zf is the formation redshift for a microhalo with
mass M ≈ M200(z). Recall that ρ200(z) = 200ρc(z),

where ρc(z) is the critical density at redshift z. Also re-
call that the concentration c(z, zf ) = r200/rs, which we
set equal to 2 for all microhalos because Refs. [25, 26]
find that simulated microhalos typically have a concen-
tration of approximately 2 at z = 30 in the absence of an
EMDE. Lastly, we incorporate the [1 +Bs(M)] factor to
account for the substructure boost in individual microha-
los found from our simulations. The possible reduction in
ρs due to stripping is neglected because we assume that
the microhalos form with a high enough central density
to remain tightly bound once their outer layers are tidally
stripped, rather than begin to relax to a lower ρs.

The individual microhalo J-factors will be evaluated at
the same redshift as the microhalo mass function. Our
simulations end at zf = 30, and this is the redshift that
the mass function is evaluated. Since the concentration
c ∝ (1+zf ), a halo that forms at a higher redshift should
have a higher concentration, thus increasing Jcl. In Ref.
[11], microhalos are treated as if they formed shortly be-
fore the calculation of the bound matter fraction ftot(zf ),
thus providing a lower bound on the boost factor. Since
the bound matter fraction increases monotonically with
time, as shown in Fig. 16, choosing a large value for
zf ignores contributions to the total microhalo J-factor
from later-forming microhalos. However, choosing a low
zf and continuing to use c = 2 for the microhalos ne-
glects the fact that many of the microhalos formed earlier
and have higher concentrations and increased substruc-
ture, both of which contribute to the J-factor. The nu-
merical simulations provide information about the halo
populations at zf = 30, which allows us to incorporate
the contributions from both later-forming microhalos and
substructure that becomes present in earlier-forming mi-
crohalos into the total microhalo J-factor.
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The total contribution to the host halo J-factor from
microhalos is the sum over all the individual microhalo
Jcl factors within the host. This is found by integrating
the host halo density with the radius-dependent survival
rate s(r) multiplied by the total fraction bound into mi-
crohalos to get the total mass of microhalos in the host.
This puts a lower bound on Jmicro to be:

Jmicro &
(7/72)ρ200(zf )c3f2

χ

[ln(1 + c)− c/(1 + c)]2

∫ R

0

s(r′)ρhalo(r′)d3r′

×
∫ lnMRH

0

[1 +Bs(M)]
df

d lnM

∣∣∣
zf
d lnM.

(72)

The reference curves used to calculate Bs(M) demands
that we take c = 2 for the microhalos at zf . We note
that ρ200(zf ) ∝ (1 + zf )3. Thus, in an analytical pre-
diction of the total boost, Jmicro dramatically increases
for earlier nonzero ftot(zf ). In this work, we do not
need to optimize for zf due to uncertainty in halo for-
mation time and microhalo evolution. By incorporating
1 +Bs(Mmh) into our calculation, we are accounting for
additional substructure formation for host halos below
the reheat mass that will increase the overall subhalo
boosts in the galaxy-mass host halo. Doing this, we now
include a differential bound fraction-averaged boost pa-
rameter btot(zf ) as defined in Eq. (59) that is present in
our calculation of Jmicro in Eq. (72). This quantity is
calculated by summing

btot(zf ) =
∑
i

[1 +Bs(Mi)]
df

d lnMi
∆(lnMi) (73)

where the sum runs over all mass bins centered at lnMi

with bin widths ∆(lnMi). For the (30 pc/h)3 EMDE
simulation, we find a btot(zf ) = 23.7. We compare this
to the calculation for the (30 pc/h)3 standard simulation
as a control, finding a btot(zf ) = 0.14.

As discussed above, the microhalos outside of Rmin are
expected to survive destruction due to tidal stripping.
Therefore, the microhalo survival rate s(r′) is fixed to 0
inside Rmin and 1 outside Rmin. With all this accounted
for, Eq. (72) simplifies to

Jmicro & 4f2
χρ200(zf )btot(zf )Mhalo(r > Rmin). (74)

with Mhalo(r > Rmin) the mass of the host halo contained
outside of Rmin, found by integrating an NFW profile
for the host from Rmin to R200. For the NFW parame-
ters, ρs is found from Eq. (55) according to the mass-
concentration relation from Ref. [27] and Rs is found
with Rs = R200/ch.

The dominant contribution to the total boost factor is
Jmicro. However, we must also consider the contributions
from the host halo and its subhalos with M > MRH.
We introduce fs(r), the fraction of dark matter that is

not contained in microhalos today as a function of ra-
dius from the center of the host halo. This is different
from ftot(zf ), which describes the total fraction of dark
matter that is bound into microhalos as a function of red-
shift. Clearly, we have that fs(r < Rmin) = 1, since all
microhalos within Rmin are destroyed. Microhalos with
a concentration of 1.5 that are tidally stripped to rs will
retain around 60% of their original mass [11], with the
mass loss increasing with concentration. Thus, we set
fs(r > Rmin) = 1 − 0.6ftot(zf ) and assume constant fs
for r > Rmin and r < Rmin. We can then write the
total host halo boost factor as a sum of the individual
contributions:

J = Jmicro+Jhalo(r < Rmin)+f2
s [Jhalo−Jhalo(r < Rmin)],

(75)
where the f2

s comes from the fact that J-factors are in-
tegrals of density squared. Jhalo is the volume integral of
density squared multipled by a factor of [1 +Bstd(Mh)],
with Bstd(Mh) the boost-mass relationship for large host
halos that form in the absence of an EMDE from Ref.
[27]:

Jhalo = [1 +Bstd(Mh)]4π

∫ ∞
0

r2ρ̄2
χ(r)dr

= [1 +Bstd(Mh)]
f2
χMhρ200c

3
h

9[ln(1 + ch)− ch/(1 + ch)]2
.

(76)

once again with ch from the mass-concentration relation
from Ref. [27], which correctly matches the concentra-
tions of simulated halos in the mass range from 10−5 M�
to 1015 M�.

Since microhalos are destroyed within r < Rmin and
subhalos with M > MMH are less dense than EMDE-
generated microhalos, we expect them to not survive
within Rmin either. Therefore, the J-factor contribution
from the host halo within Rmin is simply the contribution
from the smooth NFW profile of the host:

Jhalo(r < Rmin) = 4π

∫ Rmin

0

r2ρ̄2
χ(r)dr

=
f2
χMhρ200c

3
h

3[ln(1 + ch)− ch/(1 + ch)]2
J
(Rmin

Rs

)
(77)

where

J ≡ y3 + 3y2 + 3y

3(y + 1)3
. (78)

Here, the J function comes about from only evaluating
the integral in Eq. (77) out to Rmin rather than to infin-
ity. We now find the total boost factor generated by an
EMDE of a galaxy-mass host halo by substituting all of
the necessary equations into Eq. (75) and dividing by the
reference integral 4π

∫∞
0
r2ρ̄2

χ(r)dr using a smooth NFW
profile for the host halo:
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FIG. 28. The total boost factor and relative boost factor generated by an EMDE with kcut/kRH = 20. On left: the boost factor
as calculated in Eq. (79) with btot(zf = 30) determined from Bs(Mmh) from the (30 pc/h)3 EMDE simulation. The curve is
compared to an evaluation at zf = 400 with btot = ftot = 0.05 without a Bs(Mmh) but assuming that halos formed as early as
zf = 400 survive, as done in Ref. [11]. On right: The same boost factors as in the left plot divided by the boost factor from
standard subhalos with masses above 10−12 M� [27]. In these figures, we assume that the EMDE-generated microhalos are

destroyed within Rmin =
√
Rs/(100 kpc) kpc.

1 +B & 36btot(zf )
[ρ200(zf )

ρ200

][Mh(r > Rmin)

Mh

] [ln(1 + ch)− ch/(1 + ch)]2

c3h
+ [1 +Bstd(Mh)]f2

s + 3J
(Rmin

Rs

)
(1− f2

s )

(79)

Figure 28 demonstrates 1+B as a function of the host
halo mass Mh compared against the relative boost from
an EMDE defined as (1+B)/(1+Bstd). Here, Bstd from
Ref. [27] was evaluated for the boost factor from subha-
los with masses larger than 10−6 M� and mass function
dN/dm ∝ m−2 multiplied by a factor of 5/2 to match
their boost factor results down to a minimum subhalo
mass of 10−12 M�. We do this so that the standard
boost factors Bstd account for all subhalos down to the
free-streaming cut-off scale in the absence of an EMDE.

We see that the boost factor is significantly dominated
by the first term in Eq. (79), with EMDE-generated
microhalos being the primary contributor to the boost
factor, as expected. Ref. [11] chose an optimistic sce-
nario for kcut/kRH = 20 at zf = 400 with ftot(zf ) = 0.05
as predicted by the Press-Schecter mass function. Here,
the majority of the boost factor is due to the high den-
sity that these primordial microhalos form at, but this
configuration does not account for additional formation
of microhalos at later times as well as the potential de-
struction of a fraction of the primordial microhalo popu-
lation. Unfortunately, it seems that the more accurate
boost based on our microhalo boost-mass relationship
from the cosmological simulations is around a factor of
5 lower than this optimistic boost prediction. Note also
that although the more massive host halos have signif-
icantly higher boost factors, the relative boost from an

EMDE is nearly independent of mass, as shown in the
right panel of Fig. 28.

As a final verification, we calculate the relative boost
with parameters from the 30 (pc/h)3 standard simu-
lation, namely btot(zf ) = 0.11 and ftot(zf ) = 0.025.
We find that the relative boost is nearly constant at
(1 +B)/(1 +Bstd) = 4.7, demonstrating that the boost-
mass relationship from Ref. [27] is consistent with
the total boost factor as determined with the standard
Bs(Mmh) from our simulations encoded into btot(zf ). It
is not surprising that we find (1 +B)/(1 +Bstd) > 1 for
our standard simulations, as the reference curves used to
calculate btot(zf ) assume a fixed c = 2 for the microhalos,
whereas 1 +Bstd uses a concentration-mass relationship.
Therefore, contributions to the boost in our calculated
1 +B can be attributed to both substructure and micro-
halos that have concentrations c > 2 with higher smooth
densities than their reference curves, whereas boost in
1 +Bstd only comes from substructure.

V. SUMMARY AND DISCUSSION

An EMDE is a general prediction of inflation and high-
energy theories. The scalar fields or transient parti-
cles typically dominate the cosmic energy density until
a rather low reheat temperature on the order of a few
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hundred GeV. The delayed reheating due to an EMDE
significantly modifies the relationship between dark mat-
ter particle properties and the observed relic abundance
[30]. The fact that dark matter density perturbations
grow linearly with the scale factor during an EMDE has
been established for both thermal [11] and non-thermal
[5] production mechanisms. Microhalos could potentially
provide a powerful probe of the early Universe because
they form as the result of these enhanced density per-
turbations that enter the cosmological horizon before re-
heating.

The enhancement due to the EMDE is dependent on
the ratio between the free-streaming cut-off scale and the
reheating scale kcut/kRH. The EMDE causes the dark
matter annihilation cross-section to decrease, and so we
must consider 100 < mχ/TRH < 200 to avoid a cross-
section that is suppressed too heavily for a substruc-
ture boost to overcome while also keeping dark matter
freeze-out during the EMDE. Our analytic model con-
structed based off of the time evolution of Eq. (12)
shows that in order to get kcut/kRH = 20, a ratio po-
tentially high enough to produce observable annihilation
signatures, the ratio between the temperatures at stan-
dard kinetic decoupling and reheating TkdS/TRH & 6
in order to remain within 100 < mχ/TRH < 200, as
indicated by Fig. 11. In most models, dark mat-
ter freezes out before it kinetically decouples, and with
Tf/TRH ≈ 20 and Tkd/TRH ≈ 54 for our minimum tem-
perature ratio TkdS/TRH & 6, the outlook is certainly less
than optimistic for detection. Lower temperature ratios
that provide kcut/kRH & 20 are possible, but only for
mχ/TRH > 200, as seen in Fig. 11. Unfortunately, these
configurations reduce the annihilation cross section by
more than an annihilation boost due to microhalo sub-
structure could possibly compensate.

Moving forward with a kcut/kRH = 20, we have de-
termined the fate of the earliest forming microhalos via
cosmological simulations. Using GADGET-2 N-body sim-
ulations driven by EMDE-enhanced power spectra, we
studied the halo mass functions dn/d lnM , the differen-
tial bound-mass fraction df/d lnM , and the total bound
fraction ftot of the simulated dark matter structure. We
simulated the evolution of multiple box sizes for conver-
gence testing and compared the results of each to stan-
dard simulations with power spectra generated with a
free-streaming cut-off and the onset of radiation domina-
tion immediately after inflation. We studied the numeri-
cal density profiles of several microhalos and constructed
a smooth reference integral based off of the NFW profile.

With the simulation particle data and dark matter halo
catalogs generated by Rockstar, we move forward to cal-
culate the dark matter annihilation boost in individual

microhalos from the simulation. This is achieved by nu-
merically integrating the density squared of the micro-
halo in the J-factor and dividing this quantity by the
reference integral. After optimizing the resolution of the
J-factor integration routine to scale with the number of
particles in a given halo, we calculated the boost factor
for all host microhalos in each of our simulations stud-
ied the microhalo boost-mass relationship Bs(Mmh). The
boosts were partitioned into mass bins and the statistics
of each bin were studied. We found very little variance
in the boosts for each mass bin, concluding that the ma-
jority of the uncertainty in our calculations lies in our
J-factor integration resolution. We demonstrate in Fig.
23 that the J-factor grows monotonically with resolution,
and we used a fairly conservative resolution in order to
place a lower-bound on the total boost factor.

Finally, we calculated the total boost factor for a
galaxy-mass host halo based on analytical predictions
from Ref. [11]. We compared the total boost factor cal-
culated with a differential bound fraction-averaged boost
factor btot(zf ) based off of our simulations to the boost
factor assuming a total bound fraction of ftot(zf ) = 0.05
at zf = 400. The total boost factor based on our simula-
tion results is a factor of 5 lower than the prediction for
halos that form at zf = 400 and are not destroyed. It is
likely that either the microhalos in our simulation have
lower densities than previously expected or that more
microhalos are destroyed due to tidal stripping than only
those within the calculated Rmin of their host halo.

In a future work, we will complete this analysis by
calculating the annihilation detection outlook consider-
ing the newly found total boost factors. Ref. [11] finds
that a large boost factor of 1 + B & 20, 000 is sufficient
to compensate for a lowered cross-section, bringing the
annihilation rate above current observational thresholds.
If an EMDE did indeed boost the dark matter annihila-
tion rate by this factor, detection of annihilation signa-
tures could be possible with missions such as the Fermi
Gammay-Ray Telescope [14]. If higher resolution sim-
ulations demonstrate an increased boost factor due to
additional resolved substructure, it is possible that dSph
galaxies may indeed have a high enough boost factor for
annihilation to be observed. This would only require ap-
proximately a factor of 5 increase for 106 M� dSph galax-
ies. It is also possible that our conservative resolutions in
the J-factor calculations cause us to underestimate the
boost factors by a significant margin. If the total boost
factors are indeed fairly accurate as reported and not just
strong lower bounds, the next generation of γ-ray tele-
scopes could potentially provide the necessary increase
in sensitivity to constrain EMDE scenarios.
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