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ABSTRACT 

RAMÓN DC ALATORRE:  Integrating Engineered Wetlands with Crop Irrigation: An 
Evaluation of Chemical Uptake 

(Under the direction of Dr. Howard Weinberg) 

 

The potential for ELISAs (Enzyme Linked Immunosorbant Assays) to track the fate 

of micropollutants in crops grown through irrigation with wastewater from a decentralized, 

engineered wetland-type reclamation system, was realized in a controlled greenhouse study. 

Caffeine was observed within sweet potato tissue between 0 and 9 ng/g when irrigated with 

tap water and between 16 and 21ng/g when irrigated with reclaimed (unmodified and spiked 

with elevated levels of chemical) wastewater sources, indicating uptake of between 2 and 

10% of the total estimated mass applied.  Analysis of a sweet potato from a local grocery 

store detected caffeine between 6 and 8ng/g.  Triclosan was only observed within the sweet 

potato tissue of crops grown with the wastewater spiked with elevated levels of the chemical 

and, even then, only between 4 and 11ng/g, indicating less than 2% uptake of the estimated 

mass applied.  The results indicate limited uptake of the target compounds. 
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CHAPTER 1: BACKGROUND INTRODUCTION AND LITERATURE REVIEW 

1.1  Anthropogenic Influence on Water Sources 

The occurrence of anthropogenic influence on the constituency of surface water is 

unquestioned.  The extent and significance of that influence are constantly evolving areas of 

study.  Indeed, tens of millions of organic and inorganic substances have been indexed by 

American Chemical Society’s Chemical Abstracts Service (CAS) in their CAS registry.  As 

of March 2012 over 65 million are indexed, with more than 63 million being commercially 

available.  Less than 300,000 of these are currently inventoried or regulated.  For reference, 

consider that in 2004 C. G. Daughton reported that the CAS registry had nearly 23 million 

indexed chemicals and that only 7 million were commercially available (Daughton 2004).  

Daughton went on to point out that the “universe” of potential organic and inorganic 

chemicals (those existing that have yet to be identified and those that could be synthesized) is 

astoundingly large to the point of being essentially limitless. 

Anthropogenic chemicals, whether synthesized or naturally occurring, may enter 

waterways from countless point sources (including commercial, industrial, and municipal 

waste releases) as well as nonpoint sources (highly dispersed which largely enter waterways 

through runoff).  Indeed, with the ever growing volume of research, and the constant 

development and improvement of analytical techniques, it is hardly surprising that the 

perception of water purity has had to be reassessed.  An incomplete glance at the acronymic 

wealth of research topics involving the anthropogenic influence on water content include: 
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ECs (emerging contaminants), PPCPs (pharmaceuticals and personal care products), 

POPs (persistent organic pollutants), PBTs (persistent bioaccumulative toxins), EDCs 

(endocrine disrupting compounds), DBPs (disinfection byproducts), BACs (biologically 

active compounds) and many more.  Admittedly there is some overlap between many of 

these research areas, with some classifications being intentionally broad and others seeking 

to narrow their scope.  Still, the fact remains that the more and deeper we look, the more 

apparent the anthropogenic influence on our water. 

1.1.1 PPCPs & EDCs:  Their Presence in the Environment and Their 

Repercussions 

Endocrine disrupting compounds (EDCs) have been defined as “exogenous agents(s) 

that interfere with the synthesis, storage/release, transport, metabolism, binding, action or 

elimination of natural blood-borne hormones responsible for the regulation of homeostasis 

and regulation of developmental processes” (Cooper & Kavlock, 1997).  The consequences 

of exposure to EDCs will be further outlined below.  Pharmaceuticals are compounds that 

have been expressly designed to have some biological effect on their target when consumed 

or applied and many pharmaceuticals can be sub classified specifically as EDCs.  Numerous 

non-pharmaceutical personal care products as well as compounds present in commercial, 

industrial and biological wastes are also known to be endocrine disrupting. 

Pharmaceuticals that are incompletely metabolized by their intended target are 

subsequently excreted, and typically enter a waste stream that is ultimately bound for release 

into an aquatic system.  In the event that the treatment processes between excretion and 

release are insufficient to degrade or deactivate the pharmaceuticals, they can enter into these 

water sources in a still biologically active and often (depending on the design of the 

pharmaceutical) endocrine disrupting state  (Calderón-Preciado et al. 2011; Snyder et al. 
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2003; Focazio et al. 2008).  The same fate (release into aquatic environments in a still active 

state) has been observed for many other PPCPs and EDCs that enter various waste streams as 

waste treatment processes are not optimized for their removal (Westerhoff et al. 2005; 

Thomas and Foster 2005; Kim et al 2007).  Many PPCPs and EDCs have been detected in 

surface and irrigation waters at trace concentrations (µg/L and ng/L) for more than 10 years 

(Ternes et al 1998; Kolpin et al. 2002; Moldovan 2006; Loos et al. 2009). 

The repercussions of PPCPs and EDCs in water sources are layered.  Their 

introduction to the aquatic environment can significantly impact individual organisms as well 

as having broader ecosystem ramifications (Segner et al. 2003, Munoz; Thorpe et a. 2003; 

Kidd et al. 2007; Oetken et al. 2004; Mills and Chichester 2005).  Mills and Chichester 

Review of Evidence is particularly insightful.  On the individual species level, fish can be 

exposed to EDCs in water by a number of routes including aquatic respiration and 

osmoregulation.  Disruption of the endocrine system by EDCs manifests itself by hindering 

normal development and reproduction.  The impacts can be multigenerational, as progeny of 

exposed parents can also suffer developmental and reproductive issues.  There are 

considerable concerns over bioaccumulation and transfer of these compounds through the 

food chain as developmental and reproductive anomalies have been cited from invertebrates, 

to fish, reptiles, birds, mammals and humans (Cooper and Kavlock 1997).  Segner et al. 

(2003) point out that little attention has been given to understanding the effect of EDCs on 

invertebrates, a sobering insight given that invertebrates constitute 95% of all living species 

and play an essential role in the health of ecosystems. 

Beyond the concerns attributable to aquatic species and broader ecosystems, PPCPs 

and EDCs in water sources can have very direct human health impacts as well.  Water 
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sources with PPCPs and EDCs may be used for recreation, irrigation, and drinking water, all 

of which represent potential routes of exposure to humans.  Westerhoff et al. (2005) showed 

that the degree of removal of PPCPs and EDCs during drinking water treatment is largely 

dependent on the processes being used.  Conventional treatment using coagulation and 

chlorine had low removal of many PPCPs and EDCs.  More advanced treatment processes 

proved capable of increasing the removal of many compounds, yet others had low removal 

rates regardless the treatment process.  Additionally, it should be emphasized that 

disinfection processes during drinking water treatment have the potential to transform 

compounds and that “removal” of PPCPs and EDCs does not necessarily ensure deactivation.  

Perhaps the conclusion to be made then is that if PPCPs and EDCs are present in source 

water (as they are known to be), then water treatment processes are not presently capable of 

removing or deactivating all PPCPs and EDCs and chronic low dose exposure to some of 

these compounds in our drinking water is a likely reality.  Additional studies on the fate of 

PPCPs and EDCs in simulated drinking water processes, pilot and at scale plants (Esplugas et 

al. 2007; Boyd et al. 2003; Tunkanen et al 2007) also demonstrate differences in removal 

performance based on the treatment process utilized but ultimately conclude that complete 

removal of PPCPs is not achieved.  

1.2  Water Reclamation and Reuse:  A “Keeping the Horse Before the Cart” Solution 

Much energy has and should continue to be devoted to developing advanced drinking 

and waste water technologies to achieve better treatment performance of anthropogenic 

waste from a holistic perspective, beyond even just the lens of PPCPs and EDCs.  While 

technology and engineering certainly have their place in addressing water quality concerns, 

progressive management strategies may also prove to be an effective component in what is 
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surely going to need to be a diverse portfolio of solutions.  Water reclamation and reuse is a 

management strategy that may contribute to the portfolio and also has benefits that go 

beyond water quality implications. 

Redirecting treated waste water for productive non-potable use diverts PPCPs, EDCs 

and other anthropogenic wastes from water sources and sensitive ecosystems.  Diversion by 

means of water reclamation can thus circumvent the environmental and human health issues 

associated with direct release of these compounds into aquatic environments.  In contrast to 

engineering technological solutions to solve the multi-faceted issues associated with waste 

release into aquatic sources, diversion strategies lessen the extent of the initial problem.  The 

U.S. Environmental Protection Agency (U.S. EPA) recognizes water reclamation and reuse 

as having a number of benefits including:  decreasing diversion of freshwater from sensitive 

ecosystems, diversion of waste from sensitive ecosystems, decreasing discharge to sensitive 

water bodies, creating or enhancing wetland and riparian habitats, and reducing and 

preventing pollution (EPA 2009). 

1.3  Additional Benefits Attributable to Water Reclamation and Reuse 

1.3.1  Water Quantity:  Primary and Secondary Benefits 

In October 2011 the United Nations Department of Economic and Social Affairs 

(UNDESA) estimated that the global population had reached 7 billion.  It only took 12 years 

to make the increase from 6 to 7 billion.  Additionally the UNDESA reported that as of 2010 

more people live in urban areas than rural.  With urbanization and rural migration projected 

to continue, geographic population densities are increasing and putting greater demand on 

local natural resources including fresh water.  Indeed, a paleo perspective of the droughts of 

the 20th century and beyond (Woodhouse et al. 2003) indicate that these drought events are of 
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only moderate historical severity (see the National Oceanic and Atmospheric Administration 

and National Climate Data Center paleoclimatology website at www.ncdc.noaa.gov/paleo) 

and that droughts of similar severity should be anticipated several times per century.  Yet the 

environmental and social impacts of these historically unremarkable droughts have been 

increasingly detrimental as increasing population and population densities have exacerbated 

their effects. 

Incorporating water reclamation and reuse into the water management and supply 

portfolio could ease the local burdens of providing water during times of natural scarcity.  

Reclamation and reuse allows for less withdrawal from water sources for non-potable 

productivity.  Reclamation and reuse systems might draw comparisons to introducing or 

increasing reservoir capacity in terms of providing a buffer against variability.  In fact many 

large scale projects incorporate significant storage capacity (see PUB projects in Singapore at 

www.pub.gov.sg), but even with non-centralized system designs the distributed storage can 

provide some buffer against variability.   

As with any practice that eases the burdens associated with water quantity issues, 

water reclamation and reuse could potentially be ascribed a number of secondary benefits, 

not least of which are conflict prevention and self-sufficiency.  An often reiterated phrase 

among scientists and politicians alike is that “the next great war will be over water.”  Taking 

note of the heated domestic disputes that have arisen over water within the contiguous 

borders of the United States, it does not seem inconceivable that escalated conflict across 

international borders could arise especially given the exacerbated effects of drought being 

experienced as a result of the aforementioned increasing population densities.  Indeed the list 

of events that could be referenced to demonstrate the growing link between water and 
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international dispute is astounding.  One of particular relevance, however, because of its 

connection to water reclamation is that of Singapore.   

Singapore is a country with a population of 5.1 million in a land area of just 637.5 

km2 (CIA World Factbook, 2011).  Historically Singapore has imported the great majority of 

its water supply from neighboring country Malaysia.  This dependence on water supply from 

Malaysia has proven to be an expensive and politically vulnerable position for Singapore as 

Malaysia has been willing to use the threat of turning off the tap during unrelated political 

dealings.  Singapore’s Public Utility Board (PUB) has initiated a strategy to become self-

sufficient in its water supply by 2060 that includes developing a reclamation system as a 

cornerstone of its water supply portfolio (NEWater) which will capable of providing 50% of 

its total water supply.  In achieving self-sufficiency in water supply, Singapore will greatly 

strengthen its political position with Malaysia and the potential for conflict will be greatly 

reduced.  As of 2011, PUB reports that the percentage of water imported from Malaysia is 

down to just 40% of supply and that the five NEWater plants in operation are providing 30%.   

1.3.2  Economic Benefits 

Developing water reclamation as a component of the water supply portfolio could 

create local jobs in communities.  Water reclamation and reuse can be pursued from 

centralized government and municipal planning and from independent water reclamation 

service businesses, with job creation being inherent in either model.  Indeed, entrepreneurial 

businesses already design, install and maintain decentralized on-site water reclamation 

systems.  On-site systems of various design and scope can be implemented in business 

buildings, schools, homes, subdivisions, communities etc.  Considering that over 25% of the 

U.S population is served by septic systems (over 40% of new developments and over 48% in 
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North Carolina) (EPA 2012), decentralized on-site water reclamation services represent great 

entrepreneurial opportunity and job creation potential. 

1.3.2.1  Green Infrastructure and the Green Economy 

Water reclamation for non-potable reuse needn’t be of an energy or chemically 

intensive design.  Green infrastructure designs utilizing natural processes have been 

implemented that meet high water quality standards for non-potable reuse (North Carolina 

Administrative Code section 15A provides regulations for Biological Oxygen Demand, Total 

Suspended Solids, ammonia, fecal coliform and turbidity).  Engineered wetlands, sand 

filtration, vegetative contact, retention ponds, and other designs create environments that 

expose waste water to a host of degradative microbes, processes and conditions within 

aerobic, anaerobic and hypoxic environs.  The ability of green infrastructure designs to meet 

non-potable reuse standards further increases the entrepreneurial and job creation potential of 

water reclamation services.  

1.3.3  Developing World Applications 

Water quality and quantity solutions that are simple, cheap and capable of utilizing 

local resources and talent are highly desirable in a developing world context.  Water 

reclamation can satisfy all of these traits, especially considering the performance of green 

infrastructure and decentralized on-site system designs outlined above.  The opportunity for 

incorporating reclamation philosophy and systems into the portfolio of water services in the 

developing world, as well as in more remote communities in developed nations, is another 

area of potential inertia.   
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1.3.4  Water Reclamation and Irrigation:  Proceed with Caution? 

In the United States, agriculture accounts for an estimated 80% of consumptive water 

use (USDA), up to 90% in the western states, and thus the temptation to utilize reclaimed 

water for irrigation in order to achieve the aforementioned health/environmental/social 

benefits is great.  Indeed, the use of recycled water for agricultural irrigation is gaining 

momentum in the United States and around the world.  According to the 2009 Municipal 

California Wastewater Recycling Survey (EPA), 29% of their total volume of recycled water, 

approximately 210,000 acre feet (AF), was applied to agricultural irrigation.  By 2020, 

California intends to double their current water recycling capacity.  As of 2006, 82% of 

Australia’s recycled water, approximately 343,000 AF, was used for agricultural irrigation 

(lwa.gov.au).  The levels of treatment required for agricultural irrigation using reclaimed 

water in these developed nations vary from un-disinfected secondary treatment (biological) 

to disinfected tertiary treatment (chemical) depending on crop type and irrigation delivery 

system. 

Irrigation with recycled water diverts large volumes of treated waste water from 

aquatic ecosystems and the terrestrial application could provide an opportunity for natural 

degradation processes (photo/microbial) to deactivate/eliminate/transform or otherwise 

degrade contaminants.  Irrigation also provides the opportunity for plant uptake of these 

contaminants, and indeed PPCPs and EDCs have been observed in plant tissues available for 

consumption (i.e. not grown in laboratory setting) (Calderón-Preciado et al. 2009 and 2011, 

Hu et al. 2010.).  This represents a pathway that that could again expose humans to these 

contaminants, relegating one of the major benefits associated with water reclamation.  Still, 

the current practices of waste water treatment and release into aquatic ecosystems has 
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rendered surface and irrigation water contaminated with PPCPs and EDCs, and thus 

irrigation from these sources would likewise represent an opportunity for plant uptake and 

human exposure to these contaminants from plant tissues.  Nonetheless, as compared to 

reclaimed water, surface water is expected to be less concentrated with PPCPs, EDCs and 

other contaminants such that critical consideration and research should be given to the 

practice of crop irrigation with this less dilute water source. 

1.4  Crop Analysis   

1.4.1 Presence of Anthropogenic Chemicals Including PPCPs and EDCs in 

Plants 

The majority of research on PPCPs and EDCs in the environment has been focused 

on water and sewer sludge matrices (Calderón-Preciado et al. 2009).  Analysis of plant 

matrices has mostly focused on pesticide residues and a number of hydrophobic 

contaminants.  In a ten year study by the United States Department of Agriculture (USDA) 

found one or more detectable pesticide residues on 65% of the approximately 65,000 fruit 

and vegetable samples analyzed, all of which came from various points in the food 

distribution network and were intended for consumption (Punzi et al. 2005).  A number of 

studies have focused on the uptake potential of PPCPs and EDCs by plants under various 

laboratory conditions (Migliore et al. 2003; Kumar et al. 2005; Kong et al. 2007; Herklotz et 

al. 2010; Karnjanopiboonwong et al. 2011; Wu et al. 2010; Shenker et al. 2011), but until 

recently few studies have been conducted on field-grown crops or grocery bound produce, 

and certainly none in similar scope to the pesticide studies.  A method for determining 

organic pollutants in leafy vegetables reported finding ibuprofen in a lettuce sample from a 

local market (Calderon et al. 2008).  Another method for quantifying mammalian steroid 

hormones in plants reported detecting 4 endogenous steroids in plants grown under 
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standardized and field conditions (Simersky et al 2009).  In 2010, 10 antibiotics were 

detected within the tissues of 4 different organic vegetable bases grown under field 

conditions in China (Hu et al. 2010).  More recently, five PPCPs (including caffeine, 

ibuprofen and naproxen) were identified in alfalfa and apple leaves grown under field 

conditions in Spain (Calderón-Preciado et al. 2011). 

1.4.2  Techniques 

In order to analyze crops for the presence of PPCPs, EDCs, pesticides and other 

organic pollutants, at a minimum an extraction and quantification technique are required.  

Extraction techniques for the compounds in fruit and vegetable tissues have included (and are 

often used in combination) the following processes:  accelerated solvent/pressurized 

solvent/fluid extraction (Calderón-Preciado et al. 2009), pressurized liquid extraction 

(Herklotz et al 2010; Wu et al. 2010), microwave assisted extraction(Pylypiw et al. 1997), 

matrix solid phase dispersion (Fang et al. 2009), immunoaffinity chromatography solid phase 

extraction (Simersky et al. 2009), salt assisted liquid liquid extractions such as the Quick 

Easy Cheap Effective Rugged and Safe (QuEChERS) method (Anastassiades et al. 2003), 

solid phase microextraction (Rodriguez et al. 2003), stir-bar-sorptive extraction (Garcia et al. 

2005) as well as many others.  Separation and quantification techniques are typically gas or 

liquid chromatography methods in line with a number of different detection techniques 

including mass spectrometry (MS), but other analytical methods have included capillary 

electrophoresis (CE) and the Enzyme Linked Immunosorbent Assay (ELISA) (Watanabe et 

al. 2004 and 2006).  Each method or combination of methods has their advantages and 

disadvantages, and overall the sensitivities of many of these methods allow for the analysis 
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of residues and compounds at µg/g and ng/g levels assuming high levels of analyte recovery 

are achievable.   

1.4.2.1  ELISAs vs. Chromatography:  Speed vs. Multiresidue Analysis 

Perhaps the most significant comparison to be made when considering the 

quantification methods above is between the ELISAs and the group of chromatographic 

methods.  ELISAs are bioassays that utilize antibodies that have been engineered with 

binding sites with shape and chemical properties specific to a target compound.  As such, 

ELISAs are very specific, a characteristic that can be a boon in many analytical situations.  

ELISAs are sensitive, often with limits of detection (LODs) of parts per billion (µg/L) to 

parts per trillion (ng/L).  ELISAs are commercially available, affordable, and have high 

throughput capabilities (hundreds of samples can be analyzed in a few hours).  They are 

robust and perform well in complex matrices; some have been used to analyze water, urine 

and saliva samples with only filtration and dilution required for sample preparation.  While 

most are designed to analyze aqueous samples, some have shown tolerances for up to 10%-

20% solvent content including acetonitrile and methanol.  Watanabe et al. (2004 and 2006) 

used ELISAs specifically designed for the pesticides imidacloprid and acetamiprid to analyze 

dilute vegetable extracts. 

Like ELISAs, chromatography methods coupled with detection techniques can also 

be very sensitive.  Unlike ELISAs, they are especially powerful for multiresidue analysis: 

rather than looking for a single specific pesticide in an extract as would be the case in an 

ELISA analysis, these techniques can analyze an extract for a myriad of pesticides and other 

compounds acquired during extraction.  When mass spectrometry (MS) and tandem MS/MS 

techniques are used, the identification of compounds detected within an extract are 
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considered confirmed.  By comparison, while ELISAs are designed to be very specific, 

almost all have some cross reactivity with compounds of similar structure and positive results 

are not considered to be as absolute as MS methods.   

The analytical power gained by chromatography + detection techniques comes at 

considerable time and expense.  While ELISAs can be used to analyze hundreds (if not 

thousands) of samples in a matter of hours, the same time may be required to analyze just 

two or three consecutive samples on a chromatography + detection instrument.  Even with 

robotic autosamplers available to inject samples 24/7, the sample throughput cannot compare 

to that of ELISAs.  Additionally the cost of the instrumentation and maintenance of 

chromatographic columns and detectors are orders of magnitude higher than commercially 

available ELISA kits. 

1.4.3  Benefits of Thinking Faster/Cheaper:  Screening and Public Health   

The tradeoffs outlined above provide a framework for considering the best use of the 

methods available.  ELISAs are sensitive, robust, and have throughput capabilities that 

chromatography MS techniques cannot approach.  Chromatography MS methods are 

sensitive, confirmatory techniques with multiresidue capabilities the ELISAs are incapable 

of.  ELISAs cost far less but their specificity gives them limited scope.   

The combination of cost efficiency, sensitivity, and speed positions ELISAs ideally 

for screening analysis of large sample volumes, though its specificity necessitates careful 

consideration as to how to maximize the value of single compound analysis.  ELISAs 

developed to analyze indicator species, compounds that if detected might be indicative of the 

presence of a wider class of compounds, could be used to maximize their screening value.  

High throughput indicator species’ screening methods provide an important public health 
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service as they allow for the analysis of a quantity of samples that otherwise could not be 

accomplished, flagging individual samples for additional analysis.  The slower, more 

expensive, more expansive and more powerful chromatography MS techniques may be more 

efficiently used for confirmation and follow up of indicator species screening or for samples 

whose origins merit immediate multiresidue analysis. 

1.4.3.1  QuEChERS: An Ideal Extraction Method for Screening Analysis 

In order to draw further comment on the advantages and disadvantages of some of the 

previously listed extraction techniques (and with the concept of high throughput screening in 

mind) the group of techniques will be considered in comparison to the highly prolific 

QuEChERS method (Anastassiades and Lehotay 2003).  The benefits of QuEChERS, an 

acronym which stands for Quick, Easy, Cheap, Effective, Rugged and Safe can be derived 

from its name.  The speed and cost effectiveness of this multiresidue technique arise from 

many aspects of the method.  After thorough sample comminution, target analytes are 

extracted by a relatively simple solvent partitioning which relies on the use of salts to 

separate aqueous and organic phases, a method sometimes referred to salting-out liquid-

liquid extraction (SALLE).  This is a much less intensive process in terms of time, chemicals, 

and instrumentation than many of the previously listed techniques.  The organic phase is then 

cleaned by a process coined dispersive solid phase extraction (dSPE) which adds bulk 

adsorbent directly to the extract and vortexes it rather than passing the extract over cartridges 

or relying on other specialized equipment or instrumentation inherent in the more intensive 

methods.  By comparison to other techniques, QuEChERS extracts may be considered less 

“clean,” yet they are often sufficient for placement directly onto LC or GC instruments 



15 
 

without further cleanup and have achieved sensitivities for pesticide analysis (ng/g) similar to 

the more intensive methods.   

After initial sample comminution, the only instruments required to complete the 

extraction are a vortex and centrifuge and the only chemicals required are a very modest 

amount of solvent (much less used than many other methods), salts and bulk adsorbents.  The 

method is very fast, capable of processing tissue homogenates into finished extracts in under 

an hour.  Many aspects of the technique can and have been automated.  In the field of 

pesticide analysis of crop tissues, QuEChERS has gained considerable attention and 

momentum (it is now an official AOAC method (2007.01)).   

1.4.3.2  QuEChERS + ELISAs: Screening Match Made in Heaven? 

While the QuEChERS extraction method allows for quick sample processing, the 

extracts can only be analyzed as quickly as the analytical instrumentation allows.  As 

discussed in Section 1.4.2.1, chromatography MS methods are powerful multiresidue 

techniques, but lack in sample throughput.  Additionally, while in practice QuEChERS 

extracts have been put directly onto these instruments, especially for instruments that have 

selective detection abilities (Majors 2009), the polar solvent used can lead to relatively rapid 

column degradation and many co-extracted contaminants can result in vapor overload of the 

insert liner due to the high thermal expansion coefficient (Cunha et al 2010). 

The concept of pairing QuEChERS extracts with ELISA bioassays thus becomes 

particularly intriguing.  Lost is the multiresidue analysis inherent in GC and LC analysis due 

to the specificity of the ELISA method.  Gained is significant sample throughput.  If the 

methods are found to be compatible, hundreds of rapidly processed QuEChERS extracts 

could be analyzed in a matter of hours rather than days/weeks/months.  While the 
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QuEChERS extracts will require dilution for ELISA analysis (a minimum 10 fold dilution 

expected), the high sensitivity of the bioassays would still allow for detection of target 

compounds within the plant tissues at the µg/g and ng/g level. 

1.4.4  Chemical Indicators 

If using single compound ELISAs to screen crop tissues for waste water contaminants 

including PPCPs and EDCs, the choice of what compounds to focus on becomes significant.  

Are there chemicals that might be analyzed by an ELISA that might be indicative of 

exposure and uptake of a wider class of PPCP and EDC compounds?  Fortunately the fields 

of water and waste water research provide a good starting point.  A 10 year study of 139 U.S. 

streams by Kolpin et al. (2002) narrowed the universe of organic waste contaminants 

choosing to focus on 95 specific compounds because they are “expected to enter the 

environment through common wastewater pathways, are used in significant quantities, may 

have human or environmental implications, are representative or potential indicators of 

certain classes of compounds or sources and/or can be accurately measured in environmental 

samples using available technologies.”  Looking at the most frequently observed compounds 

and comparing them to commercially available ELISA kits, caffeine, triclosan and 

nonlyphenol rise to the top as three of the compounds identified most frequently (70.6%, 

57.6% and 50.6% detection frequency) that are considered to be PPCPs or EDCs.  The 

following table (Table 1) of relevant chemical properties for the proposed chemical 

indicators will be referred to often in the sections that follow: 
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Compound pKa
Solubility (mg/L) 

at 20°C
logKow logKoc

Caffeine 10.4 21600 -0.07 1.85-3.89

Estradiol 10.2 13 4.01 3.58-3.90
Triclosan 7.9 10 4.76 3.99-4.30

pKa, solubility and logKow values from 

http://toxnet.nlm.nih.gov and (Ying et al. 2005)

logKoc values from (Karnjanapiboowong 2010) and varied 
depending on soil composition

 

Table 1:  Relevant Chemical Properties of Proposed Indicators 

1.4.4.1  Proposed Indicator: Caffeine 

Caffeine, while not specifically an EDC, is occasionally classified as a 

pharmaceutical and is ubiquitous in wastewater effluents.  Indeed, since 2002 many studies 

have proposed the use of caffeine as an indicator of exposure to other organic waste water 

contaminants because it is so frequently detected (Buerge et al. 2003; Chen et al. 2002; 

Glassmeyer et al. 2005).  Caffeine is highly soluble (Table 1) and has been shown in the 

higher tissues (xylem and fruit) of tomato and soybean plants (Dettenmaier et al. 2009) as 

well as apples leaves and alfalfa (Calderón-Preciado 2011).  Additionally, it can be 

accurately measured in water samples at low concentrations (µg/L) with ELISA methods. 

1.4.4.2  Proposed Indicator: Triclosan 

Triclosan is a widely used antimicrobial found in soaps, toothpastes, and deodorants 

among other products (Sabaliunas et al. 2003).  It is relatively hydrophobic (see Table 1) and 

has been found to sorb onto soils and waste water treatment plant sludges (Thomas et al. 

2005; Wu et al. 2010).  As a persistent antiseptic found in the environment, triclosan has 

been suspected for contributing to observed antibiotic resistance (Jones et al. 2004).  While 

not yet reported in the crop tissues of any field grown crops, laboratory experiments have 
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shown uptake by soybeans (Wu et al. 2010) and pinto beans (Karnjanapiboonwong et al. 

2011) with significant bioconcentration factors observed. 

1.4.4.3  Proposed Indicator: Estradiol 

17-β estradiol (E2) is a sex hormone endogenously produced by all mammalian 

species that has been detected in waters sources worldwide (Ying et al. 2002) especially near 

animal operations and agricultural fields that have been applied with biosolids (Peterson et al. 

1998; Casey et al. 2003), an especially relevant point of consideration when considering E2 

as an indicator since biosolid application may provide an addition means of exposure for 

uptake.  E2 is the most potent steroid estrogen hormone and is, in fact, the compound against 

which all other steroids and EDCs are measured in terms of estrogenicity.  Commercial 

ELISA kits for E2 are extremely sensitive with limits of detection for water samples at the 

low ng/L concentrations.   

1.4.5  Potential for Crop Uptake and Translocation 

There are many factors influencing whether, and how much, a chemical contaminant 

is likely to be removed from water and into plant tissues, and they are not well understood.  

Assuming the compounds are taken up by the plant, the rate of uptake appears to be 

influenced by transpiration rate, contaminant concentration in water and soil, soil 

composition, and uptake efficiency, a factor which varies by plant type, leaf area, nutrients, 

soil moisture, temperature, wind conditions and relative humidity (Kamath et al 2004). 

Many studies have been attempted to develop models that predict whether 

compounds will be taken up by crops based on their chemical properties.  For a long time the 

Briggs model (Briggs et al. 1982) has been used to make predictions based on a chemical’s 

octanol-water partition coefficient (Kow) relating it to a plants transpiration stream 
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concentration factor (TSCF), an indirect measure of uptake efficiency (See Figure 1).  TSCF 

measures the ratio between the concentration of a chemical in the xylem to that in the 

solution used by the roots, and is used to describe the relative ability of an organic chemical 

to be passively transported from root to shoot (Dettenmaeir et al. 2009).  A TSCF value of 

one therefore indicates that the compound is taken up from the roots and into the xylem as 

passively as water, while a TSCF of zero indicates a complete lack of uptake.  The Briggs 

model was specifically based on the TSCF values measured for a number of pesticides in 

nutrient solution for young barley plants.  The model proposes a bell shaped relationship 

between Log Kow and TSCF, suggesting that moderately hydrophobic compounds are most 

likely to be uptaken and transported through the plant, strongly hydrophobic compounds may 

be sorbed strongly onto soils making them unavailable for uptake and hydrophilic 

compounds would not cross lipophilic root membranes efficiently.  

 

Figure 1:  Briggs and Burken Bell-Shaped Models Comparing Log Kow vs. TSCF 

 In 1998 Burken et al. performed a similar experiment to Briggs et al. using a variety 

of 12 organic compounds rather than just pesticides, measuring the uptake by poplar trees 

and coming up with very similar results (Burken et al 1998).  The Burken model actually 
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shifts the bell curve to the right slightly suggesting even less uptake of hydrophilic 

compounds than Briggs (Figure 1)  

Many studies, however, have reported uptake of hydrophilic compounds (including 

caffeine) within plant tissues, and in 2009 Dettenmaier et al. proposed a drastically different 

model (see Figure 2) for nonionizable, polar, highly water soluble compounds based on 

uptake experiments within tomato and soybeans (Dettenmaier et al. 2009).  Their sigmoidal 

model suggests that these compounds will actually be uptaken by plants more efficiently than 

any other compounds based on Log Kow, though the exact methods of how these compounds 

cross the membranes of the plants are not well understood. 

 

Figure 2:  Dettenmaier Sigmoidal Model vs. Burken and Briggs Bell Shaped Models relating Log Kow 

and TSCF with proposed indicators Caffeine, Estradiol and Triclosan 

While it may be tempting to scrutinize the cogency of each model, consider the 

following compilation of TSCF vs. Log Kow values from 30 publications (Figure 3) as seen 

in the Dettenmaier (2009) paper and recall all the factors (plant type, leaf area, nutrients etc.) 

that can influence TSCF: 
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Figure 3:  Compilation of Log Kow vs. TSCF from 30 publications reproduced from (Dettenmaier et al. 

2009) 

 Adding further complexity to the study of compounds within crops, some chemicals 

can be actively transported (i.e. Nitrogen Phosphorus Potassium) and have TSCF values 

greater than one as seen in Figure 3 (Dettenmaier et al. 2009).  Chemicals can also enter 

plants via transport across the lipophilic cell walls of leaves, fruits, stems, and seeds as well 

as their roots (Menn 1978).  Indeed, in addition to efficiency considerations that can be 

associated with drip irrigation, it also circumvents direct transport across leaves and fruit as a 

potential route of exposure, especially for crops in which these tissues represent the edible 

portion.   

As with uptake and entry of chemicals into plants, translocation of compounds within 

crop tissues also appears to lack consistency and varies from plant to plant, compound to 

compound (Mattina et al. 2000).  Once inside a plant, several phytolytic and hydrolytic 

enzymes may act upon compounds causing them to degrade or transform (Menn 1978).  If 

compounds survive enzymatic action, and even if they do not, they or their metabolites may 

be transported short intercellular distances through plasmadesmata, or long systemic 

distances through the vascular tissues (xylem and phloem).  Transport through the living 

phloem is considered symplastic; through the nonliving xylem apoplastic.  The variability of 
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both uptake and translocation of specific chemicals within individual crops indicate that 

analysis of the entire plant will be most informative.  The potential for enzymatic and 

microbial action upon chemicals in soil/crop systems further complicates compound specific 

analysis, and indeed mass balance of non-radio-labeled compounds is unlikely.  Thus there 

are clear benefits to selecting indicator compounds such as caffeine and triclosan which have 

an already established precedence for crop uptake, transport, and detection in their 

undegraded form. 

1.4.6 Summary of Proposed Indicators for Crop Uptake of Waste Water 

Contaminants 

Together, caffeine, triclosan, and estradiol span the range of relevant Log Kow values 

for crop uptake while representing a combination of synthetic and naturally occurring 

compounds commonly detected in waste water effluents.  Additionally, and not 

insignificantly, commercially available ELISA kits have been developed for these three 

compounds with very good sensitivities.  Indeed, if found to be compatible with QuEChERS 

extracts after a 10 fold dilution, the minimum expected for solvent compatibility, the 

sensitivities of commercially available ELISA kits could potentially allow for detection of 

indicator compounds within crop tissues at the ng/g and pg/g level.   

1.5  Objectives of the Research 

There are two main objectives within this project.  The first is to investigate the 

pairing of the QuEChERS extraction method with commercially available ELISAs as a 

potential highly sensitive screening method of crop tissues for indicator species of waste 

water micro-contaminants including PPCPs and EDCs.  The second is to irrigate select crops 

with reclaimed water from an on-site green-infrastructure waste water treatment system and 
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investigate the potential human health or bioremediation ramifications as measured by the 

uptake of certain indicator species.  Analysis of individual crop tissues, in particular the 

edible portion, is expected to show either growth with or without significant contaminant 

uptake.  If the latter is observed, irrigation of the crop with reclaimed water for human 

consumption may be recommended.  If the former is observed, significant contaminant 

uptake, a remediative rather than consumptive endpoint may prove a more appropriate 

recommendation.  Indeed, identification of a crop with significant contaminate uptake 

potential could be applied to future green-infrastructure system designs for more efficient 

treatment using natural media.  

 

   



 

CHAPTER 2:  EXPERIMENTAL SKETCH, MATERIAL AND METHODS 

2.1  Field Study Experimental Sketch 

With the aforementioned background and objectives in mind, the following 

experimental sketch was developed (with the specific elements described in detail in the 

sections that follow): 

In a greenhouse, sweet potatoes and lettuce were grown using an automated irrigation 

system to deliver known volumes of water onto the crops daily.  The automated system 

pumped water from reservoirs stocked with one of three characterized water sources: a) 

reclaimed water from a local green infrastructure waste water reclamation system; b) 

reclaimed water with the target analytes spiked in to elevate their concentrations; c) tap 

water.  In addition to the various irrigation sources, crops were grown in both sand and soil.  

At the end of the growing season, the various tissues and growing matrices within each 

treatment group were analyzed for the target analytes using methods described in section 2.5.  

2.1.1  The Two Crops 

The crops chosen for this proposed experiment were Covington sweet potatoes and Paris 

Island lettuce.  These crops were chosen because a) the edible component of sweet potatoes 

and lettuce are distinctly different plant tissues and b) both have significant prevalence in 

American and North Carolina agriculture.  According to the Agricultural Marketing Resource 

Center (www.agmrc.org), in 2010, North Carolina was the top producer of sweet potatoes in 



25 

the country and lettuce was the leading crop in terms of production value in the United 

States.   

2.1.2  The Three Waters 

Because of the numerous environmental and social benefits water reclamation has the 

potential to positively influence, this field study was particularly keen on investigating the 

use of reclaimed waste water for crop irrigation.  Fortunately, we had the support of a local 

North Carolina entrepreneur of on-site green infrastructure systems for waste water treatment 

and reclamation, Dr. Halford House, who assisted in providing reclaimed waste water from 

an onsite treatment system (described in section 2.3) for use in this experiment.  This water 

was collected and stored within a plastic reservoir kept inside a modified refrigeration unit 

(see section 2.3.2.2).  Two other reservoirs were also stored within the refrigeration unit.  

One was also filled with reclaimed water, however it was spiked with a cocktail of the target 

compounds designed to raise the concentration within the reservoir by approximately 10µg/L 

at the time the spike was delivered.  The purpose of this reservoir is to guarantee that a 

certain concentration of the target analytes is being applied to some of the crops and to 

maximize the likelihood that the analytes will be observed at some point during the crop and 

soil analysis.  The third reservoir was filled with tap water, an “applied world control” in the 

sense that it is the same water that home gardeners and irrigations from municipal systems 

would use to grow fruits and vegetables for personal consumption.   

2.1.3  The Two Growing Matrices 

Each individual plant was grown in one of two growing media: initially sterilized sand or 

sterilized soil.  Both were available for use at the Method Road Greenhouse head houses.  As 
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“soil” is a wildly variable, heterogeneous, globally, regionally and locally inconsistent 

product, it was determined that growing crops in any single “soil” could lead to an 

incomplete understanding of the research questions.  Factors that vary from soil to soil, in 

particular the sorptive properties and organic matter content, could greatly affect the 

availability of the compounds for plant uptake.  Sand represents a minimum organic matter 

matrix and could foster an environment with minimum sorption and greater compound 

availability for the crops.  Nevertheless, as crops are invariably grown in soil of some 

constituency, it was determined that the sterilized soil made available would also be used in 

the experiment.   

2.2  Materials 

2.2.1  Laboratory Materials 

2.2.1.1  Chemicals 

Acetonitrile (ACN, HPLC grade), hexane (GC Resolv), sodium sulfate anhydrous 

(Na2SO4, granular), methanol (MeOH, Certified ACS), and nitric acid were purchased from 

Fisher Scientific (Pittsburgh, PA).  N,O-bis(trimethylsilyl) trifluoroacetamide + 

trimethylchlorosilane (BSTFA + 1% TMCS), and hexachlorobenzene (HCB) neat standard 

were purchased from Supelco (Bellefonte, PA).  Neat Standards of 17β-Estradiol (E2), 17α-

ethinyl estradiol (EE2), Estriol (E3) were purchased from Sigma Aldrich (St. Louis, MO).  

Caffeine neat standard (anhydrous, 99%) was purchased from Fluka (St. Louis, MO).  

Technical grade nonylphenol (NP, mixture of isomers, 99% pure though the isomers are 

uncharacterized) was purchased from Acros Organics (Geel, Belgium).  Triclosan neat 

standard (>96% purity) was purchased from TCI America (Portland, OR).  Magnesium 

sulfate (MgSO4, anhydrous 99.5%) was purchased from Alfa Aesar (Ward Hill, MA).  
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Primary Secondary Amine (PSA, Bondesil-PSA) was donated by Agilient Technologies 

(Santa Clara, CA).  Laboratory Grade Water (LGW) was prepared in-house from a Pure 

Water Solutions system (Hillsborough, NC), which filters chloraminated tap water to 1µm, 

removes residual disinfectant, reduces total organic carbon to less than 0.2 mg/L as C with an 

activated carbon resin, and removes ions to 18 MΩ with mixed bed ion-exchange resins. 

Stock solutions were prepared in ACN for caffeine, triclosan, E2, EE2 and E3 at 

500mg/L by weighing the standards onto Fisherbrand plastic weigh boats using a Fisher 

Scientific Balance (accu124D dual range).  The weigh boat was rinsed into a volumetric flask 

with ACN and filled to the mark.  The nonylphenol stock solutions were prepared using a 

micropipette to deliver a predetermined volume of NP mixture into a volumetric flask of 

ACN and filling to the mark.  Stock solutions were stored in amber vials for 4-6 months in a 

freezer set at -15°C.  Working solutions of the standards were prepared by dilution of stock 

solutions and stored for 1-2 months in amber vials stored in the -15°C freezer.  (Refer to 

Appendix A for the specific stock and working solutions created and referenced). 

2.2.1.2  Other Laboratory Materials Used 

• Waring Commercial Blender (Model) (Stamford, CT);  

• Sieves:  USA Standard Test Sieves No. 10 (2mm) and No. 18 (1mm) (Newark Wire 

Cloth Company);  

• Micropipettes:  Gilson Pipetman 10-100µL.  Fisherbrand Finnpipete 100-1000µL.  

Lab Systems Finnpipette Digital Multichannel 50-300uL;  

• Micropipette tips:  Fisherbrand non-sterilized natural color specialized 

standardization pipet tips 1-250µL;  
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• Disposable volumetric pipettes:  Fisherbrand 5mL borosilicate disposable pipettes 

with 1/10mL demarcations.   

• Vortex:  Thermolyne Maxi-Mix Type 16700 Mixer 

• Centrifuge:  Beckman Coulter Allegra 6 centrifuge with GH-3.8 Swining Bucket 

Rotor.  

• Heating Block and Evaporating Unit:  VWR Standard Heatblock and Pierce Chemical 

Company Model 18780 Reacti-Vap Evaporating Unit. 

• Nitrogen gas (UHP) Airgas National Welders (Charlotte, NC).   

• Amber GC Vials, Caps, Inserts:  2mL Amber GC vials (Laboratory Supply 

Distributors Corp, Millsville, NJ), 11mm seal caps with red faced silicone septa 

(Supelco), 250µL flat bottom inserts (Laboratory Supply Distributors Corp) 

• Syringes and syringe filters:  10µL glass syringes #701 (Hamilton Co), and 4mm 

Nylon syringe filters 0.45µm (National Scientific) 

• Furnace:  Thermolyne 48000 Furnace (used to dry Na2SO4 and MgSO4) 

• Scales:  Fisher Scientific Balance (accu124D dual range), Sartorius Basic and 

Sartorius MC210P  

• Refrigerated Storage Units:  Thermmax Walk in refrigerator set at 4°C (used to store 

greenhouse samples until processing) and GE Freezer set at -15°C (used to store 

extracts until analysis). 

• Abraxis Kits LLC Microtiter Plate ELISA Kits:  Caffeine, Triclosan, and 17-Beta 

Estradiol ELISA kits (Warminster, PA) 

• Molecular Devices Emax Precision Microplate Reader and Softmax Pro 3.1.2 

software (Sunnyvale, CA) 
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• GraphPad Prism 5 software package (La Jolla, CA) 

2.2.1.3  Cleaning Procedures 

All glassware was soaked in a bath of Alconox detergent (Research Products 

International Corp, Mt. Prospect, IL) for 24 hours, rinsed with LGW, soaked in a 10% nitric 

acid bath for  at least 12 hours, and rinsed with LGW rinse (3x).  Volumetric glassware was 

then rinsed a 3x wash with MeOH and set to dry for at least 12 hours.  Non-volumetric 

glassware was placed in an oven at 110°C for at least 24 hours.  Plastic caps and Teflon 

coated septa were soaked in a bath of Alconox detergent for 24 hours, rinsed with LGW (3x) 

and MeOH (3x) and set to dry for at least 12 hours.  Metal implements were soaked in a bath 

of Alconox detergent for 24 hours, rinsed with LGW (3x) and placed in an oven at 110°C for 

at least 24 hours.  The Warring Commercial Blender used for homogenization was filled with 

an Alconox solution and run on the high setting for 1-2 minutes, rinsed with LGW (3x) and 

MeOH (3x). 

 

2.2.2  Field Materials 

• 66L clear plastic Sterilite ® (Townsend, MA) bins, used as reservoirs, were 

purchased from Target. 

• One Directional Check Valves (PVC Schedule 40 valves), and mechanical timer 

(Utilitech Indoor 2 outlet mechanical timer) were purchased from Lowe’s Home 

Improvement. 

• Two and give gallon high-density polyethylene (HDPE) buckets with Leaktite brank 

lids were purchased from Home Depot. 

• Plastic Nursery Pots (2 and 3 gallon) from Grower’s Solution (Cookeville, TN). 
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• Irrigation Lines (½ inch and ¼ inch black poly tubing); Pressure Regulated Emitters 

(5-gallon-per-hour PC Drip Emitter with Anti-Drip Mechanism); T-Connectors (¼ 

inch barbed tee); PVC/Mesh Filter Unit (Compression ¾ inch FHT Swivel Adapter 

with Screen) were purchased from The Drip Store (Vista, CA). 

• Access Valves (¼ inch barbed in-line flow control valves Model DD-FCV250) were 

purchased from Irrigation Direct, Inc. (Livermore, CA). 

• Dayton 1/6HP Submersible polypropylene dewatering and utility pumps (Model 

3YU54) were purchased from Dayton Electric Manufacturing Co. (Niles, IL). 

• Chest Freezer: Frigidaire Model FFC15C4CW0 with 15 cubic foot capacity (Augusta 

GA),  

• ChronTrol® Table Top unit Model DC-4 FZBN (San Diego, CA), plastic hand 

syphon and tygon tubing (1/2 inch) to lengthen syphon, all available in-house. 

• Phytotron Nutrient Solution provided by North Carolina State University (NCSU). 

• Sterilized Sand/Soil (made available from NCSU headhouses). 
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2.3  Site Descriptions 

2.3.1 Source of Reclaimed Waste Water:  Jordan Lake Business Center on-site 

Integrated Water Strategies (IWS) Water Reclamation System in 

Chatham County, NC 

 

Figure 4:  Jordan Lake Business Center IWS water reclamation system.  * Indicates the sampling 

location. 

A schematic of this system is shown in Figure 4, and the water collection site 

highlighted.  Waste from the Business Center first enters a traditional septic tank where 

settling and anaerobic decomposition can take place.  Effluent is then gravity fed to a pump 

tank which applies the water in timed batch loads to a series of aerobic vegetative sand filters 

(VSF) and anaerobic wetlands, exposing the water to multiple routes of treatment within the 

various conditions of each system component.  Aerobic microbial treatment in the sand and 
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root zones of the VSF filters degrades or deactivates suspended solids, pathogenic bacteria 

and viruses while the constructed wetlands provide an environment for further anaerobic 

treatment and denitrification.  After passing through the constructed wetland environments, 

water is held in a collection tank until it is pumped to an onsite greenhouse and additional 

planter boxes.  After passing through the greenhouse, water is collected in a retention tank 

where it is chlorinated and held for reuse in the toilets of the Business Center.  The system 

was designed for use by about 60 people or 900gallons per day (gpd).  Usage was not closely 

monitored during the period of collection, however during previous studies performed on this 

system it was found that it was typically between 500-700gpd (Chalew 2006).  As shown in 

Figure 4, water was collected from this system after it had passed through the greenhouse but 

before it was chlorinated.  Collected water was transported in Alconox detergent washed, 

five gallon HDPE buckets with snap on Leaktite brand lids. 

2.3.2  Method Road Greenhouse 

Crops were grown in a greenhouse complex managed by North Carolina State 

University in Raleigh, NC.  The following sections describe the physical set-up within the 

greenhouse and the experimental growing conditions. 
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2.3.2.1  Physical Layout and Treatment Group Blocking 

 

Figure 5:  Physical layout of greenhouse experiment and blocking setup.  SP = Sweet Potato.  L = Lettuce.  

SA = Sand.  SO= Soil.  Tap = Irrigated from Tap Water reservoir.  Field = Irrigated with IWS treated 

water as collected from field site.  Spike = Irrigated with IWS water with additional spike of target 

analytes. 

The allotted space within the greenhouse consisted of two growing tables (~4ft x 

16ft).  Plastic nursery pots (2 gallon for lettuce, 3 gallon for sweet potato) were arranged on 

the tables as seen in Figure 5.  For practicality in creating an automated irrigation system 

(described below) treatments were blocked on the tables as seen in Figure 5.  Pots were filled 

with either sterilized sand or sterilized soil, both of which were made available at the head 

houses of the Method Road Greenhouse complex.  Pots were filled to approximately the 

same level, but effort was not taken to be exact.  Irrigation was not going to result in the 

entire soil column being wetted; soil samples to be analyzed at the end of the growing season 
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were to be column samples nearest the plant and emitter (expected to have greatest exposure 

to irrigation water) and not a representative sample of the entire pot. 

2.3.2.2  Reservoir Storage  

A chest freezer was brought to the Method Road greenhouse in order to store the 

treatment reservoirs while keeping the water inside moderately temperature regulated and 

shielded from sunlight.  A homemade scaffolding system was constructed from pressure-

treated 2x4s in order to hold three covered 66L plastic Sterilite reservoirs within the freezer.  

The freezer could not be run constantly as even the most modest settings proved to be 

sufficient to turn water into blocks of ice.  As such, the freezer was placed on a Utilitech 

mechanical plug-in basic timer to run only during the warmest hours of the day.  

Temperature readings, using a mercury thermometer, over the study period showed water 

temperatures ranging from 10C to 20C. 

2.3.2.3  Automated Irrigation System 

The following is a description of the automated system constructed for a single reservoir.  

Each of the three reservoirs within the chest freezer was outfitted with one of the following: 

 

Figure 6:  Reservoir pump system 
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As seen in Figure 6, a 1/6 HP Dayton Portable submersible utility pump was placed 

into each reservoir.  A one way directional flow check valve was fitted to the outlet of each 

pump to protect the pump from any backpressure.  A PVC mesh filter unit with a ½ inch 

pressure fit coupling was attached to each check valve.  One end of an approximately 30 ft 

length of ½ inch black PVC irrigation tubing was fit into the pressure fitting of the filter unit 

and looped around the pots on an entire table as depicted in Figure 7.  An adjustable PVC 

ball valve was attached to the end of the ½ inch irrigation tubing and placed back into the 

reservoir from which it originated, thus creating an adjustable pressurized loop for the main 

irrigation trunk line.   

 

Figure 7:  Main irrigation trunk lines: Pressurized loops originating from and returning to a single 

reservoir. 

In order to access the water flowing through the trunkline (see Figure 8), ¼ inch 

barbed PVC irrigation ball valves were used (access valves).  To these access valves, loops 
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of ¼ inch irrigation tubing were constructed (access loops), each with 5 barbed T-connectors 

within the loop in order to create 5 emitter lines from each access loop.  The end of each 

emitter line was fit with an internally pressure regulated (0.5gph) emitter which was 

anchored to a treatment pot by a twist tie attached to a plastic anchor placed in the soil.   

The pumps were turned on automatically using a ChronTrol® unit capable of exact 

programming down to the second.  Initial tests of the system were run to determine the rate 

of flow from the emitters(0.06 mL/sec), and that flow rate was used to determine the amount 

of time the pumps would be turned on to achieve the desired delivery volume.  The flow rate 

from the emitters was tested monthly without any change.   

 

Figure 8:  Irrigation access loops from main trunk line. 
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2.4  Field Methods 

2.4.1  Collection of Water from Field Site   

Refer to section 2.3.1 Source of Reclaimed Waste Water:  Jordan Lake Business 

Center on-site Integrated Water Strategies (IWS) Water Reclamation System in Chatham 

County, NC 

2.4.2  Filling the Reservoirs 

An access hole was cut into the lid of each reservoir.  When not being used, this 

access hold was covered by a plastic cap.  To fill each reservoir, lengths of tygon tubing were 

connected to a hand syphon which was used to transfer treatment water from five gallon 

HDPE buckets (see section 2.3.1 Source of Reclaimed Waste Water:  Jordan Lake 

Business Center on-site Integrated Water Strategies (IWS) Water Reclamation System in 

Chatham County, NC into the reservoirs within the freezer unit. Time between collection at 

the IWS site and transfer into the reservoirs was about an hour.  The tap water reservoir and 

the IWS field reservoir were transferred non-volumetrically (the reservoirs were simply filled 

to near capacity).  To fill the IWS spike reservoir, a 5 gallon HDPE bucket was marked at the 

15L volume level.  The bucket was filled to the mark, and then spiked with a premade “spike 

bomb” which had been created in the lab the day before.  This “spike bomb” was made by 

delivering known volumes of the stock solutions made in ACN into a 40mL amber vial that 

was mostly filled with LGW.  The volumes of stock solution added to the vial were designed 

such that the addition of the entire “spike bomb” would increase the concentration of each 

analyte within the newly added water (either 30L or 45L added each time) by 10µg/L.  This 

“spike bomb” was added to the first 15L aliquot transferred.  Subsequent 15L volumes were 
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measured into the same bucket before transfer into the reservoirs.  The syphon was washed 

between the transfers of each treatment water into its reservoir by passing approximately 2 

gallons of an Alconox+tap water solution through it, followed by approximately 2 gallons of 

tap water alone.  All buckets were washed after each transfer with an Alconox+tap water 

solution followed by a rinsing with tap water.   

2.4.3  Collecting Water Samples from Reservoirs 

Prior to the addition of new water into the reservoirs, water samples were collected 

from each reservoir in 1L amber glassware and taken back to the UNC laboratory for various 

analyses.  Samples were stored in a 4°C walk in refrigeration unit when not being analyzed.  

Reservoir samples were stored between a few days and a few weeks before being discarded.   

2.4.4  Covington Sweet Potatoes:  Planting, Irrigation Summary and Harvest 

Covington sweet potato cuttings were generously provided by Jared Driscoll of 

NCSU and planted in 3 gallons pots on April 29th 2011.  The plants were irrigated from an 

automated system (described in section) on a dynamic schedule that varied depending on the 

perceived needs of the plants.  The amount of treatment water delivered throughout the 

growing period was tracked rigorously.  When the sweet potatoes were harvested on October 

3 2011, each plant had received 35.1L of water from their respective treatment reservoirs 

over the entire growing period.  Plants were harvested in their entirety.  Potatoes from each 

pot were weighed on site using a Sartorius Basic balance, wrapped in aluminum foil and 

stored in gallon sized Ziploc bags.  Stems and leaves from each plant were coiled and 

weighed on site and stored in Ziploc bags.  An approximately 400 gram column of field 

moist soil was taken from each pot, with efforts being taken to collect soil from all depths of 



39 
 

the soil column and nearest to the cavities left behind by the harvested potatoes.  Moist soil 

samples were weighed on site, wrapped in foil and stored in Ziploc bags.  All samples 

(Potatoes, Stems/Leaves, Sand/Soil) were taken to the UNC laboratory and stored in a 4°C 

walk in refrigerator until further processing. 

2.4.5  Parris Island Lettuce:  Planting, Irrigation Summary and Harvest 

Parris Island Lettuce seeds obtained from Lowes were planted in 2 gallon pots (5 

seeds per pot) of either sand or soil on October 4, 2011.  The plants were irrigated from the 

automated system (described in detail in section 2.3.2.3) with each plant receiving 145mL of 

treatment water per day.  When the lettuce plants were harvested on December 1, 2011, each 

plant had received 8.265L of treatment water.  Plants were harvested in their entirety.  Leaves 

and roots were weighed as a bundle on site, wrapped in foil and stored in Ziploc bags.  An 

approximately 400g column of field moist soil was taken from each pot, with efforts being 

taken to collect soil from all depths of the soil column and nearest to the cavities left behind 

by the harvested roots.  Moist soil samples were weighed on site, wrapped in foil and stored 

in Ziploc bags.  All samples were taken to the UNC laboratory and stored in a 4°C walk in 

refrigerator until further processing. 

2.5  Laboratory Methods 

2.5.1  Homogenization and Sample Preparation for Extraction:  

2.5.1.1  Sweet Potatoes 

The following describes the homogenization/extraction performed on a single 

treatment group (e.g. Potato tissue, grown in sand, irrigated with tap water).  Recall there 

were 5 pots per treatment group.   
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All sweet potatoes were rinsed thoroughly with LGW and set to dry for 

approximately 1 hour.  The collective mass of the sweet potatoes from each pot were 

weighed and recorded.  A knife was used to cut transverse samples of all the sweet potatoes 

from a single pot until 50g had been accumulated.  This 50g sample was placed into a 

Waring Commercial Blender.  This process was repeated for the sweet potatoes originating 

from each of the 5 pots in the treatment group, resulting in a total of 250g of sweet potato 

being placed into the blender.  It was found that a 6:4 mass/mass ratio of sweet potato to 

LGW resulted in sufficient liquid for the blender to create homogenous slurry, and thus 

166mL LGW was also added to the blender.  After slurry was achieved, the blender was left 

to run on the highest setting for 1-2 minutes.  10 gram homogenated samples were then 

transferred from the blender into 7 clear 40mL glass vials using metal spatulas.  The vials 

were sealed with plastic caps that had been fit with Teflon lined septum.  Homogenates of 4 

of the 7 sample vials were spiked with a working solution of the 6 target analytes 

(concentration of each analyte within working solution approximately 35-40ug/mL) made up 

in ACN for the purposes of running spike-recovery experiments (Figure 9).  Two spike levels 

were performed in duplicate (A1, A2, and B1, B2) with the B spikes twice the concentration 

of the A spikes.  The remaining 3 homogenates were left unspiked.  All 7 vials were vortexed 

for 1 minutes using a Thermolyne Maxi-Mix, and left for 12-24 hours to allow the added 

analytes to incorporate into the homogenate.   
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Figure 9:  Preparation of homogenates for extractions and homogenate spikes. 

2.5.1.2  Sweet Potato Leaves 

The leaves from each plant in a treatment group were separated from the stems, 

rinsed thoroughly with LGW, shaken vigorously, pat down with Kimwipes and set to air dry 

for approximately 30 minutes.  After this initial drying, leaves were weighed to determine 

their fresh weight.  A single treatment (tap irrigated grown in sand) was processed fresh, with 

all leaves added to the Waring Commercial Blender.  LGW was added until slurry was 

achieved, the volume added recorded.  10 gram samples were then transferred from the 

blender into 7 clear 40mL glass vials using metal spatulas, and the remaining preparation of 

these homogenates for extraction carried out in the same manner as described sweet potato 

samples in section 2.5.1.1  Sweet Potatoes 

All remaining leaf treatments groups were dried more rigorously and processed dry 

rather than fresh.  After rinsing and recording fresh weights, leaves were covered and left to 

air dry 2-5 days.  Dry leaves were weighed and typically found to have lost approximately 

80% of their mass.  Dry leaves were added to the Waring Commercial Blender and 

pulverized into a fine dust.  Depending on the mass available, 2-5g of dry leaf dust was 
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transferred from the blender into clear 40mL glass vials using metal spatulas.  The remaining 

preparation of these homogenates for extraction was carried out in the same manner as 

described for the sweet potato samples in section 2.5.1.1. 

2.5.1.3  Lettuce Leaves 

It was determined that the mass of leaves from the treatment group grown in sand and 

irrigated with tap water was insufficient to be able to achieve a homogenate. 

The leaves from each lettuce plant were separated from the roots, rinsed thoroughly 

with LGW and set to air dry for 30 minutes.  After the initial drying, all leaves from all 

treatments were weighed to determine their fresh weights.  Leaves were left to dry for 5-8 

days and were found to have lost approximately 90% of their fresh weight mass.  Dried and 

weighed leaves were added to the Waring Commercial Blender and pulverized to a fine dust.  

Depending on the mass available, 0.5-0.9g dry leaf dust was transferred from the blender into 

clear 40mL glass vials using metal spatulas.  The remaining preparation of these 

homogenates for extraction was carried out in the same manner as described for the sweet 

potato samples in section 2.5.1.1  Sweet Potatoes 

For two treatments (IWS field irrigated, sand and soil grown), it was determined that 

pulverization of the dry leaf material in the blender was unsatisfactory.  LGW had to be 

added to these samples to create a slurry.  The amount of LGW added to each was recorded.  

10-12g of slurry was transferred from the blender into clear 40mL glass vials using metal 

spatulas.  The remaining preparation of these homogenates for extraction was done in the 

same manner as described for the sweet potato samples in section 2.5.1.1  Sweet Potatoes 
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2.5.1.4  Sand and Soil Samples 

The foil containing sand samples was opened and a metal spatula used to spread out 

the field moist samples.  The samples were covered with a large Kimwipe and left to air dry 

overnight.  Dried sand samples were sieved through a No 10. (2mm) sieve, and 100g sieved 

sand from each sample within the treatment group added to the Waring Commercial Blender 

(500g per treatment group).  The blender was shaken vigorously and then run on high for 1-2 

minutes.  10 gram samples were transferred from the blender into clear 40mL Pyrex vials 

using metal spatulas.   

Soil was prepared in the same way as sand, but dried soil was passed through a stack 

of two sieves, first through a No. 10 (2mm) and then through No. 18 (1mm). The remaining 

preparation of both sand and soil homogenates for extraction was done in the same manner as 

described for in section 2.5.1.1  Sweet Potatoes   

2.5.2  Sample Extractions, Fractions, Concentration and Storage 

The extraction method used is based on the QuEChERS method developed by 

Michelangelo Anastassiades in (2002) for the analysis of pesticide residues in crops.  Figure 

10 below summarizes how samples were processed with detailed sections to follow. 
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Figure 10:  Extraction of sample homogenates; Homogenate and extract spikes for recovery experiments; 

ELISA fractions and concentration of GC fractions. 
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2.5.2.1  Sweet Potatoes  

10 mL ACN was added to each vial of homogenate (note in Figure 10, this initial 

volume is referred to as “XmL”).  The vials were vortexed approximately 30 seconds and left 

to sit 2-6 hours to allow the solvent time to percolate through the homogenate.  4g Na2SO4 

(+/- %) and 2g MgSO4 were added to each vial.  After addition of the MgSO4, the vials were 

noticeably warm to the touch.  The vials were vortexed for 1 minute, and placed into a 

Beckman Coulter Allegra 6 centrifuge with GH-3.8 Swinger Bucket Rotor at 2000rpm for 10 

minutes.  A Pasteur pipette was used to transfer the upper solvent layer into a 15mL conical 

vial.  It was found that of the 10mL ACN added to each vial, approximately 8mL were 

recovered at this junction, the remaining being inaccessible within the wetted homogenate 

tissue.  200mg PSA (+/-5%) and 1200mg MgSO4 were added to the conical vials for a scaled 

up* dispersive solid phase extraction (dSPE) (*Note: A typical QuEChERS extraction only 

processes a 1mL sample with 25mg PSA and 125mg MgSO4, but a larger volume of cleaned 

sample was desired in order to pursue subsequent sample concentration).  The conical vials 

were vortexted for 30 seconds and placed into the centrifuge at 2000rpm for 10 minutes.  The 

remaining solvent of the dSPE extracts was transferred to fresh 15 mL conical vials and the 

volume measured using disposable Fisherbrand 5mL borosilicate volumetric pipettes with 

1/10mL demarcations.  Of the three extracts corresponding to the unspiked homogenates, the 

volumes of two were split further into a 3mL fraction and a remainder fraction (in Figure 10, 

the “Y mL” and “Remainder”).  The two 3mL fractions were spiked (labeled C and D 

“extract spike”) with working solution of the analyte mix such that the C spike would match 

the concentration of the original A homogenate spike in 10mL ACN and the D spike would 

match the original B homogenate spike in 10mL ACN.  A comparison of the A and C spiked 
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extracts (as well as a comparison of the B and D spiked extracts) should give an indication of 

the recovery efficiency of the extraction method.  0.5mL of each extract was transferred to 

labeled amber GC vials and stored in a freezer, this fraction being destined for analysis by 

the ELISA kits.  The remaining volume of each extract (typically between 2-6mL) was 

placed on a heating block set to 50ºC, and a gentle stream of nitrogen gas was used to blow 

the samples down to dryness.  After cooling to room temperature, 200µL of ACN was added 

to each conical vial and vortexed for 1 minute to reconstitute the sample.  A Pasteur pipette 

was used to transfer the entire volume of each reconstituted sample into 250µL flat bottom 

glass inserts within an amber GC vial, this fraction being destined for analysis on the GC-ion 

trap-MS.  For an example of the full workup of the homogenates from a single treatment 

group, including the volumes of the homogenate and extract spikes, refer to Table 2:  Full 

workup of the 7 homogenates into the 9 final treatment extracts for of the treatment group 

P:S:SA:.  The same extensive details for the sample preparation and extraction for the matrix 

samples from each group are available in the Z and Y series Supporting Materials (part of an 

electronic labbook on file at UNC, not included in thesis). 
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Table 2:  Full workup of the 7 homogenates into the 9 final treatment extracts for of the treatment group P:S:SA:P 

 

Table 3:  Working solution #2 and the resulting spike boost to the A,B,C,D samples of P:S:SA:P

Working Solution Used: #2

Treatment Group:  Sweet Potato Tissue, Spike IWS Irrigated,Sand Grown:  P:S:SA:P

Initial 

Sample 

Designation

Mass (g) 

Homogenate

Volume 

Working 

Solution 

Spiked (uL)

Volume 

ACN (mL) 

added

Post 

Extraction 

Sample 

Designation

Volume 

(mL) After 

Extraction

Volume 

Working 

Solution 

Spiked 

(uL)

Volume 

(mL) stored 

for ELISA

Volume 

(mL) 

remaining 

before 

blowdown

Final 

Volume 

(uL) after 

blowdown

Blowdown 

Concentration

P:S:SA:P1 10.03 0 10 P:S:SA:P1 2.35 0.5 1.85 200 9.25

10 P:S:SA:P1+C 3.00 18 0.5 2.5 200 12.5

P:S:SA:P2 10.01 0 10 P:S:SA:P2 2.55 0.5 2.05 200 10.25

10 P:S:SA:P2+D 3.00 36 0.5 2.5 200 12.5

P:S:SA:P3 10 0 10 P:S:SA:P3 6.60 0.5 6.1 200 30.5

P:S:SA:P+A1 10.03 60 10 P:S:SA:P+A1 5.30 0.5 4.8 200 24

P:S:SA:P+A2 10.08 60 10 P:S:SA:P+A2 5.25 0.5 4.75 200 23.75

P:S:SA:P+B1 10.04 120 10 P:S:SA:P+B1 5.15 0.5 4.65 200 23.25

P:S:SA:P+B2 10.01 120 10 P:S:SA:P+B2 5.60 0.5 5.1 200 25.5

Analyte

Concentration 

in Working 

(ug/uL)

Concentration 

[ug/L] in A/C 

Samples

Concentration 

in B/D 

Samples

E2 0.0387 232 464

Caffeine 0.0357 214 428

EE2 0.0370 222 444

E3 0.0418 251 502

Triclosan 0.0360 216 432

Nonlyphenol 0.0327 196 393

Working Solution #2
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2.5.2.2  Sweet Potato and Lettuce Leaves 

The wet homogenates were extracted exactly as described in section 2.5.2.1  Sweet 

Potatoes 

The dry homogenates were extracted exactly as described in section 2.5.2.1  Sweet 

Potatoeswith two exceptions: a) that the initial volume of ACN added (XmL in Figure 10) to 

the pulverized leaves was 15mL or 20mL depending on the amount of leaf mass and b) 

500mg MgSO4 was used during dSPE rather than 1200mg.  The larger volumes was chosen 

in order to ensure sufficient volume would be available to achieve similar concentration 

factors in the GC fraction when blown down and reconstituted.  The reduced MgSO4 was due 

to the fact that the dried samples had less water within them.  The initial homogenate spikes 

(A&B) and final extract spikes (C&D) were appropriately adjusted to reflect the initial ACN 

volume added. 

2.5.2.3  Sand/Soil 

The sand and soil homogenates were extracted exactly as described in 2.5.2.1  Sweet 

Potatoeswith two exceptions: a) that the initial volume of ACN added (XmL in Figure 10) to 

the sand and soil samples was 15mL and b) 500mg MgSO4 was used during dSPE rather than 

1200mg. The larger volume was chosen in order to ensure sufficient volume would be 

available to achieve similar concentration factors in the GC fraction when blown down and 

reconstituted.  The reduced MgSO4 was due to the fact that the sand/soil samples had less 

water within them than fresh crop samples.  The initial homogenate spikes (A&B) and final 

extract spike (C&D) were appropriately adjusted to reflect the initial ACN volume added. 
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2.5.3 Analytical Instrumentation, Software and the Abraxis Enzyme Linked 

Immunosorbent Assay (ELISA) kits: 

2.5.3.1  Gas Chromatography  

Gas chromatographic analysis was performed on a Varian 3800 gas chromatograph 

with a Saturn 2000 ion trap mass spectrometer (Santa Clara, CA), and an HP5890 GC Series 

II (Palo Alto, CA) with an electron capture detector (ECD). The analytical column used on 

the Varian 3800 GC was a Zebron Phenomenex ZB5-ms, 30m x0.25mm with 0.25µm film 

thickness (Torrance, CA).  The GC column used on the HP5890 was a Zebron Phenomenex 

ZB1-ms, 30m x 0.25mm with 1.0µm film thickness.  The Helium (UHP) carrier gas, 

Nitrogen (UHP) and Carbon Dioxide (USP) used with these instruments were purchased 

from Airgas National Welders (Charlotte, NC).   

2.5.3.1.1  Ion Trap Mass Spectrometry 

Stored plant tissue and soil extracts (section 2.5.2  Sample Extractions, Fractions, 

Concentration and Storage) were filtered through a 0.45µm nylon syringe filter (4mm, 

National Scientific, Rockwood, TN).  1µL filtered extracts were injected manually through a 

Varian 1079 injection port fitted with a deactivated glass SPI liner (Restek, Bellefonte, PA) 

using a 10µL glass syringe (#701, Hamilton Co., Reno, NV).  The injection port was held at 

60ºC for 0.1 minute and then brought up to 250ºC at a rate of 100ºC/min for the remainder of 

the sample run.  The carrier gas was UHP Helium set at a constant flow rate of 1.5mL/min.   

The oven program started at 90ºC, was held for 1 minute, then ramped up to 150ºC at 

a rate of 15ºC/min, held for 15 minutes, then ramped up to 200ºC at a rate of 5ºC/min, held 5 

minutes, then ramped up to 290ºC at a rate of 15ºC, held for 6 minutes.  Total run time was 

47 minutes.   
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The ion trap filament was turned on and off multiple times during the 47 minute 

sample run in order to protect the filament.  When the ion trap was on, it was set to run in EI 

mode with axial modulation voltage set at 4.0v, emission current at 10µamps, and automatic 

gain control (AGC) on.  After a 7 minute solvent delay (filament off),  the filament was 

turned on (caffeine scan) and set to scan a range from mass-to-charge ratio (m/z) of 40 to 300 

until minute 24.  From minute 24 to minute 28, the filament was turned off.  At minute 28 

filament was turned on (triclosan scan) and set to scan a range from m/z of 100 to 515 until 

minute 30.50.  From minute 30.50 to minute 38 filament was turned off.  At minute 38 

filament was turned on (hormone scan) and set to scan a range from m/z 70 to 515 until 

minute 43.  From minute 43 to minute 47, the filament was turned off.  Data were analyzed 

using Varian MS Workstation software v. 6.4.1.   

2.5.3.1.2  Electron Capture Detection  

A Hewlett Packard 7673 autosampler injected 1µL samples of extract through an 

injector port fitted with split/splitless injector sleeve, containing deactivated glass wool of 

4mm inner diameter. The injector port of the HP5890 GC was held at a constant temperature 

of 250ºC.  The carrier gas was UHP Helium set at a flow rate of 1.0-1.5mL/min.   

The oven program started at 90ºC, was held for 1 minute, then ramped up to 150ºC at 

a rate of 15ºC/min, held for 15 minutes, then ramped up to 200ºC at a rate of 5ºC/min, held 5 

minutes, then ramped up to 290ºC at a rate of 15ºC, held for 6 minutes.  Total run time was 

47 minutes.  The ECD detector was on turned on after a 5 minute solvent delay and left on 

during the entire sample run.  The ECD was set at a constant temperature of 300ºC. 
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2.5.3.2  Abraxis Enzyme Linked Immunosorbent Assay (ELISA) Method 

Direct competitive ELISA kits for caffeine, triclosan and estradiol were donated by 

Abraxis Kits LLC (Warminster, PA). Samples were analyzed according to the instructions 

included in the test kits. Briefly, 50µL of standard or extract (diluted with LGW as needed) 

were placed into the wells of a disposable microtiter plate which are coated by immobilized 

(second) antibodies.  50µL of a primary antibody solution (engineered with binding sites 

specific to the compound of interest) were added to the wells and the samples given 30 

minutes for any target analytes present to bind to the antibodies.  50µL of an analyte+enzyme 

conjugate solution were then added to each well.  The conjugate used is horseradish 

peroxidase (HRP) that has been chemically bound to the target analyte.  Since this conjugate 

contains the analyte of interest it will also attach to the binding sites of the primary antibody 

solution.  The samples and conjugate were left to incubate at room temperature for a 

specified time during which they compete for the analyte specific binding sites of the primary 

antibody solution.  The greater the concentration of analyte in the sample, the fewer sites 

available for the HRP-conjugate.  During this incubation period, the primary antibodies are 

also bound to the immobilized (second) antibodies on the walls of the wells.  The wells were 

then washed and a patented color solution added.  The color solution reacts with any HRP 

that was immobilized on the wells during the competitive incubation period, resulting in a 

blue color development proportional to the amount of HRP present.  Therefore, greater color 

development corresponds to more HRP-conjugate on the wells, which correlates to less 

analyte being present in the sample of interest.  A stopping solution of dilute sulfuric acid 

was added after a specified time to quench the color development reaction and change the 

complex from blue to yellow.  The quenched wells were analyzed within 15 minutes at 
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450nm using a Molecular Devices Emax Precision Microplate Reader and Softmax Pro 3.1.2 

software (Sunnyvale, CA).  The reported detection limit of the Abraxis ELISA kits in water 

samples are 0.15 µg/L (caffeine), 0.02 µg/L (triclosan), and 2.7 ng/L (estradiol). 

2.5.3.3  Additional Software 

Absorbance values from the standards and samples were input to the GraphPad Prism 

5 software package (La Jolla, CA) for analysis using the Sigmoidal Dose Respose Variable 

Slope regression fit as described by Abraxis in the instructions included in the test kits.  

Whenever possible, 99% confidence intervals of the interpolated sample values were 

extracted from the GraphPad Prism 5 software.  

2.6  Supplemental Methods Section 

The following describe additional methods that were used during the investigation 

that ultimately were not included in the final extraction and concentration of crop tissues and 

growing matrices from the greenhouse experiment.  They are presented here for reference as 

they are referred to within the Results and Discussion section. 

2.6.1 Glassware Silinization Method:  Used to prepare conical vials prior to 

derivatization 

Using a Pasteur pipette to coat the side walls, glass conical vials were rinsed with 5% 

dimethyldichlorosilane in toluene.  The vials were then rinsed successively with toluene 

(three times), methanol (two times), and lab grade water (two times).  The tops of the vials 

were then covered in foil and placed in an oven at 150°C until dry.  Vials were allowed to 

cool prior to placing sample extracts within for blow-down and derivatization. 



 

53 
 

2.6.2  Derivatization Method A 

Dry extracts were reconstituted with 50µL of BSTFA (+1% TMCS) plus 50µL 

pyridine.  The vials containing reconstituted extracts were capped with PTFE-lined septum, 

vortexed for 30 seconds to reconstitute residual sample from the sides of the vials, and heated 

for 35 minutes at 65°C on a VWR Standard Heatblock.  The samples were allowed to cool, 

and then quenched with 100µL LGW, followed by 100-200µL Hexane.  The samples were 

again capped and vortexed, and allowed 30 minutes to rest prior to transferring the topmost 

(hexane) layer into amber GC vials for storage and analysis.  During some initial method 

development investigations, it was observed that neither caffeine nor nonylphenol were being 

detected in the final hexane extract upon derivatization with this method.  As a result, 

additional derivatization methods were investigated, though this method was used for some 

of the initial compatibility and recovery experiments described in the Results and Discussion 

Chapter 3.   

2.6.3  Derivatization Method B:  Acetonitrile Reconstitution 

Dry extracts were reconstituted first in 200µL of ACN, followed by 50µL of BSTFA 

(+1% TMCS) plus 50µL pyridine.  The vials containing reconstituted extracts were capped 

with PTFE-lined septum, vortexed for 30 seconds to reconstitute residual sample from the 

sides of the vials, and heated for 35 minutes at 65°C on a VWR Standard Heatblock.  The 

samples were allowed to cool, and then quenched with 100µL LGW, followed by 100-200µL 

Hexane.  The samples were again capped and vortexed, and allowed 30 minutes to rest prior 

to transferring the topmost (hexane) layer into amber GC vials for storage and analysis.  

Using this method, nonylphenol was observed within the final hexane extract on the GC-MS, 
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however the concentration required within the extract for detection appeared be between 3-

10mg/L.  Caffeine continued to be absent in the final hexane extract.   

 

  



 

 

CHAPTER 3: RESULTS AND DISCUSSION 

3.1  Method Compatibility and Extraction Efficiency 

One of the primary objectives of the project was to investigate the use of commercial 

ELISA kits in the analysis of complicated, solvent based, crop extracts obtained by the 

QuEChERS extraction method.  A number of investigations were performed to determine a) 

the ability of the ELISA kits to analyze the complex extracts from each matrix 

(Compatibility) and b) the ability of the extraction method to recover each analyte from the 

various matrices of interest (Extraction Efficiency). 

3.1.1  Strategies Utilized 

The most rigorous method compatibility investigations were primarily performed by 

spiking the analytes of interest into finished QuEChERS extracts (standard addition or 

“extract-spiked samples”) and comparing the ELISA kit responses for these extract-spiked 

samples to the responses observed for unspiked-homogenate extracts (see sections 3.2.2 and 

3.3.3).  All ELISA responses were quantified using a standard calibration curve run on the 

day of analysis.  If the response of the extract-spiked sample was found to be elevated above 

the response of the unspiked-homogenate extract by the magnitude expected from the spike 

delivered, the conclusion could be made that the ELISA kit was capable of detecting and 

quantifying the analyte of interest within the complex extract.  If the response observed for 

the extract-spiked samples above the unspiked-homogenate extract did not correspond to the 

expected analyte concentration from the spike delivered, (i.e. the ELISA could not 
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differentiate between unspiked-homogenate extracts and extract-spiked samples), then the 

determination was made that, as currently prepared and tested, the extracts were not 

compatible with the ELISA kits.   

Extraction efficiency investigations were performed by spiking the analytes of 

interest directly onto the homogenates of plant tissues or growing matrices prior to extraction 

and quantifying the difference in responses, based on the ELISA calibration curve, between 

the homogenate-spiked and unspiked-homogenate extracts.  The difference observed was 

compared to the difference expected, based on the spike delivered, and the ratio of these 

values (observed/expected) was deemed the recovery or extraction efficiency.  In some of the 

initial investigations described in the sections that follow, homogenate-spiked extracts were 

also used as a surrogate compatibility investigation: so long as the ELISA was capable of 

differentiating between unspiked-homogenate extracts and homogenate-spiked extracts, the 

conclusion was made that on some basic level, the ELISA was capable of analyzing the crop 

tissue extracts. 

The final technique utilized to provide additional merit to the ELISA responses 

observed was the practice of performing serial dilutions; the concept being that the response 

observed for an extract 10 fold dilute should indicate a concentration twice that of the same 

extract 20 fold dilute.  If an extract, dilute at multiple levels, gave responses consistent with 

the dilution level, then, baring other compatibility issues, the responses were considered to be 

verified.  Responses that were not consistent with their dilution level led to the conclusion 

that the analysis was experiencing compatibility complications as performed. 
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3.2  A Chronological Evolution Investigating Method Compatibility  

3.2.1  Phase 1 Investigation:  Grocery Store Sweet Potato Tissue  

The first investigation of method compatibility and extraction efficiency was 

performed on sweet potatoes obtained from the local grocery store.  The sweet potatoes were 

rinsed thoroughly with lab grade water (LGW), and then 255.18g potato tissue was 

homogenized with 25mL LGW using a Waring commercial blender, and split into nine 5g 

samples.  Onto these homogenates, analytically large concentration spikes (between 0 and 

20µg/g) were applied using mixtures of stock and working solutions of the target compounds 

dissolved in acetonitrile (Table 4).  While few studies have reported observing caffeine in 

crops within the food distribution system, Calderón-Preciado et al. (2011) observed caffeine 

in alfalfa and apple tree leaves, (irrigated under field conditions with a variable river-water 

and reclaimed waste water mixture) at concentrations between 21-55ng/g and 0.1-110ng/g 

respectively.  Thus most of the spikes delivered onto the sweet potato homogenates during 

this investigation were orders of magnitude higher than expected in environmental samples.   

Sample Letter Triclosan Caffeine Estradiol

A 20.01 20.02 19.99

B 10.01 10.00 10.01

C 4.01 4.00 4.01

D 2.01 2.01 2.01

E 1.00 1.01 0.99

F 0.50 0.50 0.50

G 0.10 0.10 0.10

H 2.50E-02 4.99E-03 2.50E-02

K 0 0 0

Concentration from spike 

(µg/g) per sample

 

Table 4:  Concentration (µg/g) of spikes delivered onto sweet potato homogenates 
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The benefit of using these high spike levels is that large dilution factors of the final 

extracts were required to drop the concentration of the analytes within the extract into the 

quantitation range of the ELISA kits (see Table 5).  For this first investigation, large dilutions 

were desired as they were expected to provide extracts that represented the “best case 

scenario”.  These highly dilute extracts would contain the potentially confounding matrix 

components, but at a minimum concentration.  Also during this initial investigation, extracts 

of sweet potato homogenate were placed onto the GC-ECD and GC-MS to obtain 

complimentary analysis to the ELISA findings.  

ELISA Kit Analyte Quantitation Range

Caffeine 0.175-5.0 µg/L

Triclosan 0.05-2.5 µg/L

Estradiol 2.7-25 ng/L  

Table 5:  Quantitation ranges for each ELISA kit investigated 

3.2.1.1  ELISA Analysis of Grocery Store Sweet Potato Extracts 

The QuEChERS extraction procedure was performed outlined in section 2.5.2.1, with 

the caveat that since 5g samples were being extracted instead of 10g, all volumes and masses 

were appropriately scaled down.  Thus, the 5g samples were extracted with 5mL acetonitrile, 

and a 10µg/g analyte spike (as was performed for sample B) would be expected to result in 

an extract with concentration 10mg/L if full analyte recovery was observed.   

Concentration values reported in the tables that follow (and in Appendix B.2) were 

interpolated from standard curves run on the day of analysis using the software package 

GraphPad Prism5 to create a variable slope calibration curve, as per ELISA kit protocol, 

based on the absorbance responses given by 5 or 6 standard calibration solutions run in 

duplicate (calibration solutions provided with the ELISA kits).  Figure 11demonstrates the 

calibration curve created in this manner for triclosan during this Phase 1 investigation.   
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Figure 11:  Triclosan calibration curve for phase 1 experiment 

After creating the variable slope calibration curve, the software package was further 

utilized to interpolate the concentration of the sweet potato homogenate-extracts, from their 

absorbance responses, based on the calibration curve.  The software package was also used to 

obtain 99% confidence intervals (CI) for the concentration of extracts.  Table 6 demonstrates 

the utilization of the 99% confidence interval interpolation of extract concentrations using the 

responses of the standard calibration solutions used to make the triclosan calibration curve.   

Standard

Curve Fit 

(µg/L)

Upper 99% 

CI Bound 

(µg/L)

Lower 99% 

CI Bound 

(µg/L)

Expected concentration 

(µg/L) from calibration 

solution

Std0 0

Std1 0.051 0.068 0.050

std2 0.099 0.124 0.079 0.100

std3 0.249 0.290 0.210 0.250

std4 0.512 0.613 0.438 0.500

std5 0.961 1.218 0.768 1.000

Std6 2.583 1.692 2.500

 

Table 6:  Interpolated concentration of triclosan standards based on their response on the calibration 

curve with upper and lower bounds for the 99% Confidence Intervals (CI).  Empty plots indicate that the 

value could not be reported within the quantitation range of the ELISA kit (see Table 5) 

Table 7 shows the responses of the triclosan ELISA kit to extracts of sweet potato 

homogenate (refer to Appendix B.2 for caffeine and estradiol).  Referring to Table 4, recall 

the (K) sample is an extract from an unspiked-homogenate.  The (A) and (B) extracts had 
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triclosan spiked onto the homogenate at concentrations of approximately 20µg/g and 10µg/g 

respectively. 

Fit Upper Lower Fit Upper Lower Fit Upper Lower

K 0 10 0.00 0.00 0.00 0 0 0

B 10.01 25000 0.35 0.37 0.34 8.86 9.31 8.42 89% 93% 84%

B 10.01 10000 0.62 0.66 0.58 6.15 6.57 5.78 62% 66% 58%

A 20.01 8000 1.94 2.43 1.67 15.48 19.46 13.40 77% 97% 67%

Sample

Spike (µg/g) 

onto 

homogneate Dilution

Triclosan in dilute extract 

(µg/L) from ELISA 

calibration curve

Triclosan concentration 

recovered from homogenate 

(µg/g)

Spike Recovery (%)

 

Table 7:  ELISA response to extracted grocery store sweet potato homogenates for triclosan 

There are a number of noteworthy items to outline within Table 7.  First, at 10 fold 

dilution, the minimum extract dilution required since the ELISA kits have a reported 

tolerance for acetonitrile of 10%, the unspiked-homogenate extract (K) gave a response 

below the limit of detection (LOD) of the ELISA kit.  This suggests that at 10 fold dilutions 

and greater, the matrix components within the QuEChERS extract of sweet potato tissue will 

not result in false positive responses for the triclosan ELISA kit.  Thus any responses 

observed within the quantitation range in other samples would be indicative of triclosan 

present and not confounding matrix components.   

Also seen in Table 7, the responses of the ELISA to two different dilutions of the 

extract from homogenate spiked with10µg/g (B) indicate that the concentration recovered 

from (B) (when considering the upper and lower 99% CI) was between 5.78 and 9.31µg/g.  

This suggests recovery of the triclosan spike between 58% and 93% (extraction efficiency), 

while also demonstrating the ability of the ELISA kit to detect triclosan within highly dilute 

QuEChERS extracts (compatibility).  Analysis of the (A) extract demonstrates similar 

method compatibility and suggests extraction efficiency between 67% and 97%.  Notice was 

taken that the more diluted (B) extract gave a response suggesting a greater concentration 

within the original extract than was suggested by the less diluted (B) extract.  Potential 
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homogenate-spiked extracts suggested extraction efficiency rates between 60% and 220% for 

caffeine, 53% and 96% for estradiol. 

The responses of the caffeine ELISA kit to the 10 fold dilute extract of unspiked-

homogenate sample (K) suggested that the concentration of caffeine within the extract was 

between 0.55 and 0.72µg/L (Appendix B.2).  As such, it was expected that a 50 fold dilution, 

as was used for confirmatory analysis, would drop the extract concentration concerns that the 

matrix components may be inhibiting the ELISA, resulting in muted or false negative 

responses, will be investigated by spiking triclosan directly into finished extracts (standard 

addition, see strategies section 3.1.1) in the analyses presented in the Phase 2 and Phase 3 

compatibility sections (3.2.2 and 3.2.3). 

Similar ELISA analysis was performed on extracts of homogenates spiked with 

caffeine and estradiol (Appendix B.2).  Responses of the ELISAs to highly diluted extracts 

also demonstrated a basic degree of method compatibility as the ELISA kits responses to 

below the range of detection (0.175µg/L; refer to Table 5).  Indeed, a 50 fold confirmatory 

dilution of the (K) sample gave a response indicating that the concentration of caffeine within 

the extract was below the LOD.  At the time of Phase 1 analysis it was determined that 

further investigation would need to be designed near the 10 fold dilution range prior to being 

able to propose conclusions about the concentration of caffeine within the sweet potato 

tissue.  Upon completing the Phase 2 and Phase 3 investigations (sections 3.2.2 and 3.2.3) 

these results were re-evaluated with the knowledge that sweet potato extracts diluted 10 fold 

can be analyzed with the caffeine ELISA with minimum concern for confounding matrix 

effects, and that recovery of caffeine from sweet potato homogenates appears to be greater 

than 90%.  Thus, though only a single analysis, without a duplicate or confirmatory second 
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dilution within the quantitation range of the ELISA kit, was performed on the extract of 

unspiked-sweet potato homogenate (K), the response observed indicates a caffeine 

concentration within the sweet potato tissue between 5.5 and 7.2ng/g (Appendix B.2).   

While few studies have reported observing caffeine in crops within the food 

distribution system, Calderón-Preciado et al. (2011) observed caffeine in alfalfa and apple 

tree leaves, (irrigated under field conditions with a variable river-water and reclaimed waste 

water mixture) at concentrations between 21-55ng/g and 0.1-110ng/g respectively.  As 

discussed in section 1.4.4.1, Dettenmaier et al (2009) demonstrated that caffeine was 

efficiently uptaken and translocated within the xylem and fruit of tomato and soy bean plants.  

And while the origin and growing conditions of the grocery store sweet potato are unknown, 

given the prevalence of caffeine in surface water (refer to section 1.4.4) it is clear that the 

crop exposure to caffeine through irrigation should not be unexpected.   

Also seen in Appendix B.2, 10 fold and 30 fold dilutions of the extract of unspiked-

homogenate (K) gave responses within the quantitation range of the estradiol ELISA kit that 

were consistent with their dilution level.  This finding, in tandem with the 53 to 97% 

recovery of the extract of the homogenate spiked with 0.100µg/g estradiol (Appendix B.2) 

supported the initial conclusion that there may be estradiol present within the sweet potato 

tissue.  As with caffeine, it was determined that further investigation would need to be 

designed near the 10 fold extract dilution range to investigate the performance of the 

estradiol ELISA kit when analyzing more concentrated extracts.  Upon completion of the 

Phase 2 and Phase 3 compatibility experiments (sections 3.2.2 and 3.2.3) it was determined 

that the response of the estradiol ELISA kit to sweet potato tissue extracts, when diluted 



 

63 
 

between 10 to 80 fold, could not be conclusively attributed to estradiol as the matrix 

components within the extracts appear to be confounding.   

3.2.1.2  GC-ECD Analysis of Grocery Store Sweet Potato Extracts 

The same acetonitrile QuEChERS extracts of spiked sweet potato homogenates 

(Table 4) were injected, undilute, onto the GC-ECD and analyzed using the temperature 

program described in section 2.5.3.1.2 in order to perform complementary analysis for 

triclosan.  The GC-ECD instrument response to triclosan in the extracts (area under the 

chromatographic peaks) increased with good linearity when plotted against the homogenate 

spike level, indicating that QuEChERS was extracting the triclosan spiked onto the 

homogenates, and doing so with consistency relative to the spike level (Figure 12 and 

Appendix B.3).  Only triclosan was analyzed with the GC-ECD as neither caffeine nor 

estradiol possess sufficient electronegativity to be analyzed with the ECD detector without 

derivatization.   
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Figure 12:  GC-ECD triclosan peak response (Peak Area) vs. homogenate spike concentration (µg/g) 

The ECD could detect significant differences between the extract of unspiked-

homogenate (K) and all extracts of homogenate-spiked samples with at least 100µg/g 
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triclosan (A-G).  The response for the extract of unspiked-homogenate (K) was actually 

observed to be slightly greater than response for the extract of the homogenate spiked with 

5ng/g (H).  This indicated that the method was not sufficiently sensitive (or that extract 

matrix components were sufficiently confounding) to differentiate between the extract of an 

unspiked sample and an extract expected to have additional concentration of approximately 

5µg/L (Appenidix P1.3).  As the ELISA kit indicated that the 10 fold dilute extract of 

unspiked-homogenate (K) was below the LOD of 0.05µg/L (0.5µg/L in the original extract), 

it does not appear that the GC-ECD has the sensitivity to confirm or refute the ELISA results. 

Because the calibration curve was built from homogenate-spiked samples only (i.e. 

no standard addition spikes into finished extracts), the extraction efficiency could not be 

determined, however the linearity observed indicated consistent efficiency.   

3.2.1.3  Ion Trap GC-MS Analysis of Grocery Store Sweet Potato 

Extracts 

The same acetonitrile QuEChERS extracts of the unspiked homogenate (K) and 

greatest spiked homogenate, 20µg/g (A) were injected directly onto the GC-Ion Trap-MS, in 

electron impact mode, for analysis using the program described in section 2.5.3.1.1.  This 

continued investigation was of particular interest since the initial ELISA tests were 

suggestive of the presence of caffeine and estradiol in the sweet potato.  Additionally, the 

below detection response for triclosan in the extract of unspiked-homogenate, using both the 

ELISA and GC-ECD, merited further investigation.  

First however, a neat mixture of caffeine and triclosan in acetonitrile as well as a neat 

solution of derivatized estradiol (Mix A and DN_E2; see Appendix A.2 for sample 

preparation and section 2.6.2 for derivatization Method A) were analyzed to determine the 
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compound elution times and instrument detection limits (see Figure 13, Figure 14, and Figure 

15). 

 

Figure 13:  Triclosan chromatogram of neat solution (Mix A) in acetonitrile 

 

 

Figure 14:  Caffeine chromatogram of neat solution (Mix A) in acetonitrile 
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Figure 15:  Derivatized estradiol chromatogram of neat solution (DN_E2) in hexane 

The concentration of the target analytes in each sample and the signal to noise ratio 

(S/N) observed under the analyte peaks are reported in Table 8.  The apparent Instrument 

Detection Limit (IDL) was then determined by setting the detection limit criteria as S/N = 10, 

and assuming a linear relationship between concentration and S/N:   

10/IDL = (S/N)/(concentration of neat sample) 

For example, to determine the IDL for caffeine based on the neat Mix A sample, solve: 

10/IDL = (1249)/(17.952mg/L) 

IDL=0.144mg/L 

 

Table 8:  GC-Ion Trap-MS responses and apparent Instrument Detection Limit (IDL) to neat solutions of 

caffeine and triclosan in acetonitrile and derivatized estradiol in hexane. 

The remaining volume of the same (K) and (A) sweet potato extracts, the same that 

had been previously analyzed using the ELISA kits and GC-ECD, were filtered through a 

Sample* Compound

Derivatized 

(Y/N)

Concentration 

(mg/L)

S/N

 Instrument 

Dection Limit IDL 

(mg/L)

Mix A Caffeine N 17.952 1249 0.144

Mix A Triclosan N 20.336 5381 0.038

DN_E2 Estradiol Y 4.344 6808 0.006

*See Appendix G2
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0.45µm nylon syringe filter, and 1µL injected onto the GC-Ion Trap-MS using the same 

program conditions (refer to section 2.5.3.1.1).  No chromatographic peaks were observed at 

the target elution times for triclosan or caffeine in the (K) sample.  The signal to noise 

response for the caffeine and estradiol peaks of the (A) extract are given in the first two rows 

Table 9.  The apparent Practical Detection Limit (PDL) for reported in Table 9 was 

determined by setting the detection limit criteria as S/N=10, and assuming a linear 

relationship between concentration and S/N.  The PDL represents the minimum 

concentration (µg/g) that must be present within the sweet potato in order to give a 

quantifiable signal 

10/PDL = (S/N)/(concentration of homogenate spike) 

For example, to determine the PDL for caffeine based on the (A) extract sample, solve: 

10/PDL = (195)/(20.02µg/g) 

PDL=1.026µg/g 

Sweet 

Potato 

Extract

Compound

Homogenate 

Spike Delivered 

(µg/g)

Derivatized 

(Y/N)

Concentration After 

Derivatization (µg/g)

S/N 

 Practical Detection 

Limit (µg/g)

A Caffeine 20.02 N N/A 195 1.026

A Triclosan 20.01 N N/A 3167 0.063

A Triclosan 20.01 Y 33.351 2507 0.133

A Estradiol 19.99 Y 33.318 2250 0.148

C Triclosan 4.01 Y 4.674 701 0.067

C Estradiol 4.01 Y 4.683 396 0.118  

Table 9:  GC-Ion Trap-MS responses to filtered acetonitrile QuEChERS extracts of sweet potato and 

derivatized extracts with apparent Practical Detection Limit (PDL) reported for each target compound  

Using this criterion, it appeared that the PDL was about 1µg/g for caffeine and 60ng/g 

for triclosan (Table 9).  The suggested concentration of caffeine in the sweet potato from 

ELISA analysis was approximately 6-8 ng/g (Appendix B.2), which is between 2 and 3 

orders of magnitude below the PDL for the GC-Ion-Trap-MS.  Recall that the quantitation 
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range for the triclosan ELISA (which indicated that the unspiked-homogenate extract was 

below the LOD) is 0.05-2.5µg/L (Table 5).  Taking into account the 10 fold minimum 

dilution required for ELISA analysis, the concentration within an original sweet potato 

extract would need to be between 0.5-25µg/L.  As a consequence of the ratio of solvent to 

homogenate used during extraction (1mL acetonitrile per gram homogenate) the required 

triclosan concentration within the potato tissue of 0.5-25ng/g.  The minimum value of this 

range, 0.5ng/g, is 2 orders of magnitude below the PDL for the GC-Ion-Trap-MS.  As such, it 

was determined that the extracts would require a greater degree of cleanup and/or 

concentration in order to confirm or refute the results of the ELISA analysis for both caffeine 

and triclosan within the (K) sample.   

During the early stages of this project, it was anticipated that the extracts would 

require derivatization in order to observe the steroid hormones on the Ion Trap.  As such, 

500µL of the extract of the homogenate spiked with ~20µg/g (A), and 350µL of the extract 

of homogenate spiked with ~4µg/g (C) (refer to Table 4) were derivatized as described in 

section 2.6.2 (Method A) into a final volume of 300µL hexane.  Thus each sample was 

concentrated, as indicated in the fifth column of Table 9.  The derivatized extracts were 

filtered through a 0.45µm nylon syringe filter and analyzed with the GC-Ion-Trap-MS.  The 

responses observed and apparent PDL for each compound are reported in Table 9.   

Caffeine was not observed in the derivatized samples.  The PDL for triclosan was 

approximately the same in the derivatized and underivatized samples and continues to 

demonstrate the need for greater clean-up and/or concentration to confirm or refute ELISA 

analysis.  The apparent PDL observed for estradiol (118-148ng/g) is between three and four 

orders of magnitude less sensitive than the potential quantitation range of the estradiol 
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ELISA kit as the quantitation range of 2.7-25ng/L (Table 5) translates to a concentration 

required concentration within the potato tissue between 27-250pg/g (after taking into 

consideration the same solvent/homogenate ratio and the 10 fold minimum dilution 

previously described). 

3.2.1.4  Conclusions of Initial Analysis of Grocery Sweet Potato Extracts  

Caffeine was the only compound observed in the extract of unspiked grocery sweet 

potato homogenate, at a concentration between 6-8ng/g.  While the estradiol ELISA 

indicated  analyte recovery and method compatibility for highly dilute samples, analysis of 

crop tissue extracts 10 fold dilute were ultimately determined to be confounding for the 

estradiol ELISA kit (section 3.2.3), and thus the responses for the extract of the unspiked 

homogenate were deemed unreliable.  Given the practical detection limits calculated for all 

compounds using the GC-Ion-Trap-MS, significant extract clean-up and/or concentration 

(between two and three orders of magnitude) would be required to achieve the same 

sensitivity that appears possible for ELISA kits. 

3.2.2 Phase 2 Investigation:  Analysis of Extracts of Sweet Potato Leaf Tissue 

from an Agricultural Field Site  

Having observed the ELISA kits compatibility in detecting the target analytes within 

highly dilute sweet potato tissue extracts (section 3.2.1), the purpose of this investigation was 

to test ELISA compatibility with extracts from another matrix of interest; sweet potato 

leaves.  Additionally, it was determined that the performance of the ELISA kits needed to be 

further investigated near the 10 fold minimum required dilution, as it is expected that 

environmental levels of the target analytes will.  

Sweet potato leaves were obtained from an agricultural field site (courtesy Extension 

agents at North Carolina State University),homogenized with equal weight LGW water 
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(determined necessary to achieve uniform slurry), and split into ten 5 gram samples (see 

Table 10) each of which were spiked with triclosan, caffeine, and estradiol in acetonitrile (see 

Appendix C.1 for detailed spike information).  The homogenates were vortexed, centrifuged 

and allowed to sit for 36 hours as described in section 2.5.1.1.  The QuEChERS extraction 

method was then performed as described in section 2.5.2.1 using 5mL acetonitrile with 2g 

Na2SO4 and 1g MgSO4.  For the even numbered samples (refer to Table 10), 1mL of extract 

was further cleaned  by dispersive solid phase extraction (dSPE)using 25mg PSA and 150mg 

MgSO4.  As dSPE is largely designed for the removal of fatty acids within crop extracts, co-

extractants that can interfere with ionization efficiency and the ability of analytical detectors 

to detect target compounds, the utility of this additional step for ELISA analysis was not well 

known.  Therefore an additional investigation within this experiment was to analyze the odd 

numbered extracts without dSPE cleanup to investigate whether coextracted matrix 

components impaired analyte response by the ELISA kits.  All extracts were dilute 

volumetrically (150µL in 2mL), and analyzed with the ELISA kits.  Ultimately it was 

determined that dSPE was of benefit for ELISA analysis (reasons outlined below). 

  

Table 10:  Phase 2 sample designations and concentration of compounds spiked onto homogenates:  Even 

numbered extracts were cleaned with dSPE, odd numbered were not. 

 Four replicate dilutions (150µL in 2mL) of the final extract of the unspiked-leaf 

homogenate processed without dSPE (Sample 1) were prepared (Table 11).  One of these 

Caffeine 

(ng/g)

Triclosan 

(ng/g)

Estradiol 

(pg/g)

Sample 2 0 0 0

Sample 4 5.01E+01 1.26E+01 2.50E+02

Sample 6 2.51E+01 1.26E+01 2.50E+02

Sample 8 5.01E+01 1.26E+01 1.26E+02

Sample 10 2.51E+01 1.26E+01 1.26E+02

Concentration spiked onto 

homogenate

Caffeine 

(ng/g)

Triclosan 

(ng/g)

Estradiol 

(pg/g)

Sample 1 0 0 0

Sample 3 5.01E+01 2.50E+01 2.50E+02

Sample 5 2.51E+01 2.50E+01 2.50E+02

Sample 7 5.01E+01 2.50E+01 1.26E+02

Sample 9 2.51E+01 2.50E+01 1.26E+02

Concentration spiked onto 

homogenate
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replicates was analyzed without further preparation.  The other three replicates were spiked 

using working solutions B1.2 (refer to Appendix A.3) of the target analytes in acetonitrile, 

the method of standard addition, to investigate whether coextracted matrix components 

present in un-cleaned extracts (no dSPE) impaired ELISA response.  Having not undergone 

dSPE, Sample 1 represented a worst case (most complex matrix) extract composition and 

was expected to provide the greatest challenge to method compatibility. 

Sample 1 Caffeine Triclosan Estradiol
Caffeine 

(µg/L)

Triclosan 

(µg/L)

Estradiol 

(ng/L)

+A 10 15 30 5.33E+01 1.61E+00 1.73E+01

+B 40 10 10 2.13E+02 1.07E+00 5.77E+00

+C 20 20 20 1.07E+02 2.15E+00 1.15E+01

*Refer to Appendix G3

Volume(µL) Working 

Solutions (B1.2) spiked into 

2 mL dilute extract*

Concentration Contribution 

Delivered from Spike

 

Table 11:  Standard addition spikes delivered into the extract of unspiked-leaf homogenate (Sample 1) 

3.2.2.1  Standard Addition:  Caffeine Analysis 

As seen in Table 12, the ELISA appears capable of detecting caffeine that has been 

spiked directly into the dilute extract of unspiked sweet potato leaf homogenate, even within 

the complex Sample 1 extract that had not been processed with additional dSPE cleanup.  

While the responses above the unspiked sample (fit) were a little lower than expected from 

the spike delivered (73-85%), the 99% CI range encompassed the value of the expected 

spike.   
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 Spike Delivered 

into Extract (µg/L)

Fit Upper Lower Fit Upper Lower Fit Upper Lower

0 3.25 3.69 2.82

1.07 4.17 4.95 3.65 0.91 1.25 0.83 86% 117% 78%

1.07 4.04 4.73 3.54 0.79 1.03 0.72 74% 97% 67%

2.13 4.81 4.19 1.56 1.37 73% 64%

4.26 High

4.26 High

 Caffeine Concentration (µg/L) 

from ELISA Calibration Curve

Concentration (µg/L) above 

Background

% Response Expected Above 

Background

 

Table 12:  ELISA responses for caffeine in spiked extracts of sweet potato leaves processed without dSPE  

It is also worth noting that the working solutions used to deliver the spikes was not 

independently tested in LGW for quality control.  The working solutions used (Appendix 

A.3) to deliver spikes into the extract are not the same as the standard calibration solutions 

provided with the ELISA kits used to create the calibration curve.  Without verifying the 

concentration of the working solution, it is difficult to assess whether there is some matrix 

interference preventing the ELISA from observing the full standard addition spike delivered, 

or if perhaps the working solution used was somewhat more dilute than anticipated.  It is 

recommend that the working solutions used to make spikes, either onto homogenate or into 

extracts, be dilute in LGW and analyzed on the ELISA with the rest of the samples, as done 

in Phase 3 analysis (Section 3.2.3).   

3.2.2.2  Standard Addition: Triclosan Analysis 

The responses of the Triclosan ELISA kit to standard addition spikes directly into 

dilute extracts of unspiked-sweet potato leaf homogenate worked up without dSPE were 

118% to 149% the expected response (Appendix C.2).  This demonstrating the ability of the 

ELISA kit to detect triclosan within the complex matrix.  As mentioned prior (section 

3.2.2.1), it is worth noting that the working solution used to make the spikes was not 

independently tested in LGW samples for quality control. 
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3.2.2.3  Standard Addition: Estradiol Analysis 

The response of the estradiol ELISA kit for the extract of unspiked-sweet potato 

homogenate without dSPE cleanup was above the ELISA kit upper limit of quantification of 

25ng/L.  As a result, it was expected, and observed, that all extract-spikes would be out of 

range for analysis (Appendix C.2).   

3.2.2.4  Homogenate Spike Recovery from Sweet Potato Leaves   

The ELISA analysis of the sweet potato leaf extracts with homogenate spikes 

continued to demonstrate that a) the QuEChERS extract method was capable of recovering 

the target analytes from sweet potato leaf homogenates and b) the ELISA kits were capable 

of analyzing and differentiating concentration differences in QuEChERS extracts dilute near 

the 10 fold minimum (150µL in 2mL)..  For the samples extracted using the full QuEChERS 

extraction method (with dSPE), comparison of the responses of the extract from the 

unspiked-homogenate to the responses of the extracts from spiked-homogenates reveals 

recovery of the homogenate spikes of was approximately 20% for triclosan (Appendix C.3), 

40-50% for caffeine (Table 13), and 50-90% for estradiol (Appendix C.3).   

Fit Upper Lower Fit Upper Lower Fit Upper Lower Fit Upper Lower

0 0.66 0.77 0.56 13.33 8.8E+00 1.0E+01 7.4E+00

5.01E+01 2.26 2.60 1.96 13.33 3.0E+01 3.5E+01 2.6E+01 2.1E+01 2.4E+01 1.9E+01 42% 49% 37%

2.51E+01 1.61 1.85 1.41 13.33 2.1E+01 2.5E+01 1.9E+01 1.3E+01 1.4E+01 1.1E+01 50% 57% 46%

5.01E+01 2.19 2.53 1.90 13.33 2.9E+01 3.4E+01 2.5E+01 2.0E+01 2.3E+01 1.8E+01 41% 47% 36%

2.51E+01 1.48 1.70 1.31 13.33 2.0E+01 2.3E+01 1.7E+01 1.1E+01 1.2E+01 1.0E+01 44% 49% 40%

Caffeine recovered from 

homogenate (ng/g)

Caffeine recovered from 

homogenate (ng/g) above 

unspiked sample

% Recovery 

Caffeine concentration 

(ng/g) spiked onto 

homogenate

Dilution 

Factor

Caffeine Concentration 

(µg/L) in Diluted Extract 

from Calibration Curve

 

Table 13:  ELISA analysis of caffeine spiked sweet potato leaf homogenates with dSPE  

For the samples extracted without dSPE, comparison of the responses of the extract 

from the unspiked-homogenate to the responses of the extracts from spiked-homogenates 
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reveals recovery of the homogenate spikes was approximately 12-35% for triclosan 

(Appendix C.4), and 22%-49% for caffeine (Table 14).   

Fit Upper Lower Fit Upper Lower Fit Upper Lower Fit Upper Lower

0 3.25 3.69 2.82 13.33 4.3E+01 4.9E+01 3.8E+01

5.01E+01 4.68 4.09 13.33 6.2E+01 5.5E+01 1.9E+01 1.7E+01 38% 34%

2.51E+01 3.99 4.65 3.49 13.33 5.3E+01 6.2E+01 4.7E+01 9.8E+00 1.3E+01 9.0E+00 39% 50% 36%

5.01E+01 4.08 4.80 3.58 13.33 5.4E+01 6.4E+01 4.8E+01 1.1E+01 1.5E+01 1.0E+01 22% 29% 20%

2.51E+01 4.17 4.96 3.66 13.33 5.6E+01 6.6E+01 4.9E+01 1.2E+01 1.7E+01 1.1E+01 49% 67% 45%

Caffeine concentration 

(ng/g) spiked onto 

homogenate

Dilution 

Factor

Caffeine Concentration 

(µg/L) in Diluted Extract 

from Calibration Curve

Caffeine recovered from 

homogenate (ng/g)

Caffeine recovered from 

homogenate (ng/g) above 

unspiked sample

% Recovery 

 

Table 14: ELISA analysis of caffeine spiked sweet potato leaf homogenates without dSPE. 

Thus the recovery of analytes spiked onto leaf homogenate were not significantly 

different for extracts that underwent dSPE and those that did not: using the student t-test to 

compare the (fit) recovery rates observed for compounds with and without dSPE (null 

hypothesis is that the mean recovery rate is the same), the p-values returned p = 0.29 for 

caffeine; p=0.14 for triclosan (Appendix C.5).  The weakness of this analysis is the number 

of samples in each group available for comparison; however it does provide some input 

beyond the eye test to indicate that neither triclosan nor caffeine appears to be appreciably 

lost during dSPE. 

The recovery rate for estradiol without dSPE could not be calculated in the same 

manner due to the high response observed in the unspiked extract (Appendix C.4).  However, 

as the homogenate-spiked extracts without dSPE cleanup gave responses within the 

quantitation range of the estradiol ELISA, it appears that the response observed in the 

unspiked sample may be an artifact.  Instead, the matrix contribution for all the non-dSPE 

cleaned samples was estimated using a paired-t-test to obtain the mean and 99%CI bounds 

for the response elevation of the homogenate-spiked extracts (no-dSPE) above the 
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homogenate-spiked extracts with dSPE (Appendix C.5).  Using this estimate for the 

background contribution, the recovery rate (fit) for estradiol was found to range from 56-97% 

(Appendix C.4) and was not found to be significantly different than extracts cleaned with 

dSPE (p=0.88) (Appendix C.5). 

3.2.2.5  Extraction with and without dSPE and Determination of 

Compound 

 Concentration within Sweet Potato Leaves 

Section 3.2.2.4 demonstrated that the recovery of analyte spikes onto sweet potato 

leaf homogenate were not significantly lower for the extracts cleaned via dSPE than those 

that were not (i.e. compounds are not lost during dSPE).  Since the target compounds are not 

lost during dSPE, the extracts of identically spiked homogenates should give the same 

ELISA response with or without dSPE; if they do not (as was observed), then the matrix 

components within the uncleaned extracts must be assumed to be confounding.   

no-dSPE 

Sample

dSPE 

Sample

Caffeine concentration 

(ng/g) spiked onto 

homogenate

Response 

Difference (ng/g)  

(no-dSPE less dSPE) 

Sample 1 Sample 2 0 4.3E+01 8.8E+00 3.5E+01

Sample 3 Sample 4 5.01E+01 6.2E+01 3.0E+01 3.2E+01

Sample 5 Sample 6 2.51E+01 5.3E+01 2.1E+01 3.2E+01

Sample 7 Sample 8 5.01E+01 5.4E+01 2.9E+01 2.5E+01

Sample 9 Sample 10 2.51E+01 5.6E+01 2.0E+01 3.6E+01

3.1E+01

3.5E+01

Caffeine 

"Recovered" from 

homogenate (ng/g) 

no-dSPE

Caffeine Recovered 

from homogenate 

(ng/g) with dSPE

Average Response Difference

Difference Unspiked Samples  

Table 15:  Determining the difference in caffeine ELISA response for extracts without dSPE cleanup vs. 

those with dSPE 

Table 15 shows the caffeine ELISA responses of identically spiked homogenates with 

and without dSPE.  The response (fit) of the spiked extracts that did not undergo dSPE are 

significantly greater (p=0.0007 when performing a paired t-test) than those that did with a 

mean difference 31.3 +/- 7.0 (Appendix C.5).  Since the recovery rate (response above the 
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appropriate unspiked sample) with and without dSPE are not significantly different (section 

3.2.2.4) this observed difference is expected to arise from confounding matrix components in 

the uncleaned extract (i.e. caffeine ELISA responses for the extracts without dSPE are 

giving, on average, a false response indicative of 32ng/g).  The difference between the 

unspiked samples (35ng/g) confirms these findings and the concentration of 8.8ng/g observed 

in the unspiked sample with dSPE is expected to be the actual concentration within the 

homogenate.  Given the 1:1 ratio of leaves to LGW in the homogenate, this represents 

17.6ng/g within the leaves.  As mentioned in section 3.2.1.1, while few studies have reported 

observing caffeine in crops within the food distribution system, Calderón-Preciado et al. 

(2011) observed caffeine in alfalfa and apple tree leaves, (irrigated under field conditions 

with a variable river-water and reclaimed waste water mixture) at concentrations between 21-

55ng/g and 0.1-110ng/g respectively.   

The same observation (similar recovery rates, with significantly elevated responses 

for the samples without dSPE) can be made for extracts analyzed for triclosan (Appendix 

C.5).  Indeed, the response (fit) of the spiked extracts that did not undergo dSPE are 

significantly greater (p=0.006 for unpaired t-test) than those that did with a mean difference 

of 4.2ng/g +/- 2.2 (Appendix C.5).  Given that the response (fit) of the unspiked sample for 

the extract that did not undergo dSPE was 5.5ng/g (Appendix C.4) it was determined that the 

response was likely an artifact of confounding matrix components and that the below 

measureable detection response observed for the sample cleaned with dSPE is more likely.   

For estradiol, the response (fit) of the spiked extracts that did not undergo dSPE are 

significantly greater (p= 0.005 for paired t-test) than those that did with mean difference and 

95% confidence 85pg/g +/- 38 (Appendix C.5).  The response of the unspiked sample that 
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did undergo dSPE was below the LOD for the estradiol ELISA and expected to be a more 

accurate reflection of the estradiol concentration within the leaves. 

In summary, the recovery rate observed (dSPE vs. no-dSPE) was not significantly 

different (p>0.05) for any of compounds (section 3.2.2.4), indicating that the analytes are not 

significantly lost during dSPE.  At the same time, the response of the homogenate-spiked 

samples for the extracts that did not undergo dSPE were all significantly higher than the 

response than those that did.  This indicates the presence of confounding matrix components 

within the uncleaned samples, and that samples without dSPE cleanup are likely to give an 

inaccurately large estimation of the concentration of compounds within any sample.  Thus it 

was determined that dSPE should be utilized in the preparation of extracts for ELISA 

analysis. 

3.2.3 Phase 3: Analysis of All Greenhouse Experimental Matrices Near 

Environmental Concentrations 

In the months following the Phase 1 and Phase 2 initial investigations, numerous ELISAs 

were run on a variety of samples and many lessons learned.  These lessons influenced the 

design of the final method compatibility and subsequent matrix extraction efficiency 

experiments.  The following summarize some of the lessons learned and their design 

implications for the final compatibility and efficiency experiments: 

• It was determined that serial dilutions of environmental samples should be at tight 

intervals (10 fold 20 fold 40 fold) rather than wide (10 fold 100 fold 1000 fold) since 

the apparent concentration of the unspiked homogenate extracts, once dilute 10 fold, 

do not appear to be an order of magnitude above the lower LOD for the ELISA kits. 

(i.e. 100 fold dilutions almost always drop the concentration out of range and 

confirmatory analysis is not accomplished).   
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• It was determined that the spikes onto the homogenates and into the extracts should 

be designed at a level such that 10 fold and 20 fold serial dilutions would likewise be 

in range of the ELISA quantitation range (Table 5).  Spikes requiring greater sample 

dilution eliminate the ability to determine the analyte concentration in the original 

sample behind the spikes delivered, and make it impossible to compare spiked 

samples to unspiked samples.  Additionally large dilutions greatly magnify the effect 

of the 99% confidence intervals (CI) when using the requisite dilution correction 

factors to determine the concentration range of the undilute samples (i.e. if the 99% 

CI range for the dilute sample analyzed is 0.5 to 0.6 µg/L, this translates to a still 

relatively narrow 5-6 µg/L in the undilute extract for a designed 10 fold dilution, but 

a wide 500-600µg/L in the undilute extract for a designed 1000 fold dilution). 

• It was determined that the working solutions used to spike onto the homogenates and 

into the final extracts should be diluted in LGW and analyzed with the ELISAs as a 

measure of quality control.   

• It was observed that the calibration curves not only shift up and down but also change 

shape from day to day, kit to kit. Hence the greatest amount of data is achieved when 

running full duplicate standard curves on the day of analysis.  While trends can be 

investigated between samples run on the same day using partial standard curves, 

inter-day comparisons of sample responses can only be satisfactorily complete for 

samples analyzed in tandem with full calibration curves.   

3.2.3.1  Sample Preparation and Extraction 

With these lessons in mind, fresh extractions were performed on duplicate samples of 

four previously homogenized and stored lettuce leaf and sweet potato tissue homogenates as 
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well as “virgin” (non-irrigated) sand (VSA) and soil (VSO) samples from the sterilized bins 

at the Method Road Greenhouse.  The sweet potato and lettuce homogenates analyzed were 

irrigated during the greenhouse experiment, with the four homogenates analyzed being a) 

lettuce grown in soil irrigated with tap water (L:G:SO:L), b) lettuce grown in soil irrigated 

with spiked-reclaimed water (L:S:SO:L), c) sweet potato grown in soil irrigate with tap water 

(P:G:SO:P) and d) sweet potato grown in soil irrigated with spiked-reclaimed water 

(P:S:SO:P).  Refer to section 3.4 for information on the growing conditions, irrigation, 

estimated analyte exposure and ELISA analysis for all greenhouse samples.  Though some 

analysis will be provided on the mass of analytes present in the four unspiked homogenates, 

the current section (3.2.3) will focus primarily on the ability of the ELISA kits to accurately 

quantify analytes spiked directly into the extract, as well as the recovery of analytes spiked 

onto homogenates.   

Homogenate mass (g) 

of each duplicate 

sample

Volume (µL) working 

#5 applied to 

homogenate-spiked 

sample

Volume (mL) of 

acetonitrile used 

for extraction

VSO 10.00 75 15

VSA 10.00 75 15

L:G:SO:L 0.82 50 10

L:S:SO:L 0.99 50 10

P:G:SO:P 10.00 50 10

P:S:SO:P 10.00 50 10  

Table 16:  Homogenate masses, volume of working solution spiked onto homogenates, and volume of 

acetonitrile used to perform each Phase 3 extraction  

The mass of each duplicate homogenate extracted is shown in Table 16.  One 

homogenate from the duplicate samples was spiked with a given volume of working solution 

#5 in acetonitrile designed such that there were 5µL applied for every 1mL ACN used to 

extract the homogenate (Table 16).  The homogenates were vortexed, and allowed to sit for 
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36 hours to allow the spikes to incorporate and for the solvent to evaporate.  Acetonitrile was 

added to each homogenate and the homogenate-solvent mixture vortexed and allowed to sit 

for 4 hours to allow the solvent to act upon the homogenate matrices.  4g of Na2SO4 and 2g 

MgSO4 were added to each sample, which were subsequently vortexed and centrifuged as 

described in section 2.5.2.  Dispersive solid phase extraction (dSPE) was then performed on 

4mL of each extract with 100mg PSA and either 250mg or 600mg MgSO4 (depending on 

whether the homogenate was a wet or dry sample).  This is consistent with the method 

described in section 2.5.2, however since less total volume was needed since samples were 

only being prepared for ELISA analysis, only 4mL (as opposed to 8mL) were cleaned via 

dSPE and thus the mass of PSA and MgSO4 used are half that described in the 2.5.2  At this 

junction, approximately 1mL of the unspiked and homogenate spiked extracts were 

transferred into amber GC vials and stored.  Exactly 2mL of the each unspiked homogenate 

extract were measured into fresh conical vials, and 10µL of working solution #5 were spiked 

into each. These standard addition extract-spiked samples were likewise transferred to amber 

GC vials and stored.   

3.2.3.2  Analysis of Working Solution #5 

As a quality control measure, working solution #5 in acetonitrile (Appendix A.4), the 

solution used to spike into the extracts and onto the homogenates, was spiked into lab grade 

water (LGW) and serially diluted (Appendix D.3) in order to confirm the concentration of 

each analyte within the solution.  The responses of the serial dilutions were multiplied by 

their dilution factor to determine the concentration in the working solution, and the average 

undiluted extract values (fit) were identified as demonstrated in Table 17.   
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Fit Upper Lower

Working Solution # 5 in LGW 2000 5858 4660 6418 3344 23.3

Working Solution # 5 in LGW 4000 5858 4655 6375 3542 23.3

Working Solution # 5 in LGW 8000 5858 5638 7514 3905 28.2

Average (fit) Caffeine Concentration (µg/L) of working solution used for spiking 4985

Concentration (µg/L) expected from 10µL spiked into 2mL extracts 24.9 +/-7.0

Sample Dilution

Expected Caffeine 

Concenration in 

Working Solution 

(Appendix G1.2) 

(µg/L)

Caffeine Concentration (µg/L) 

and 99% CI for Original Working 

Solution #5 

Concentration (µg/L) 

(fit) expected in 2 mL 

extract with 10µL 

spiked in

 

Table 17:  ELISA analysis of caffeine in Working Solution #5 (solution used to deliver homogenate-spikes 

and extract-spikes) 

As the standard addition spikes into extracts of all homogenates was performed by 

delivering 10µL into 2mL of the extract of unspiked-homogenate, the expected concentration 

from this delivered spike was calculated for each dilution (last column in Table 17).  The 

variability between the responses expected and responses observed in during the analysis of 

working solution #5 emphasizes the importance of the practice of analyzing the neat working 

solution used to deliver homogenate and extract spikes.  Analysis of working solution #5 for 

all compounds can be seen in Appendix D.3. 

3.2.3.3  Caffeine ELISA Compatibility and Recovery Analysis of 

QuEChERS Crop and Soil Extracts 

Standard Addition Compatibility Analysis 

The caffeine ELISA responses to serial dilutions of the extracts of a) unspiked sweet 

potato homogenate and b) the same homogenate extract with a standard addition spike 

delivered into a known volume (“Extract Spiked”) are provided in Table 18. 
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Fit Upper Lower Fit Upper Lower

P:G:SO:P (Fresh Extraction)

Extract Spiked 10 24.9 +/-7.0 28.8 40.6 20.0 24.3 33.5 16.7

Extract Spiked 20 24.9 +/-7.0 31.3 43.9 23.7 26.8 36.8 20.4

Extract Spiked 40 24.9 +/-7.0 44.5 60.5 33.7 39.9 53.4 30.3

Extract Spiked 80 24.9 +/-7.0 34.4 50.3 21.6 29.9 43.2 18.2

Unspiked Homogeante Extract 10 0.0 5.1 7.2 3.4

Unspiked Homogeante Extract 20 0.0 3.9 7.0 No Detect

Concentration (µg/L) and 99% CI 

range of original extract LESS 

average unspiked resposneMatrix and sample prepartion Dilution

Expected caffeine 

concentration  (µg/L) 

from 10µL spike into 

2mL original extract

Concentration (µg/L) and 99% CI 

range of original extract

 

Table 18:  Caffeine ELISA analysis of extract-spiked and unspiked homogenate extracts of sweet potato 

tissue (P:G:SO:P) compared to expected responses from spike delivered 

The concentration increase observed for extracts with standard addition -spikes above 

the extracts of unspiked sweet potato homogenate appear in the last three columns Table 18.  

Comparing the (fit) values for these standard addition concentration responses to the 

expected concentration from the standard addition spike, the responses observed appear to be 

indistinguishable from the responses expected (i.e. the ELISA is capable of detecting known 

concentrations of caffeine within the complex sweet potato extract).  A t-test was run in R to 

compare the responses (fit) for the concentration observed in the standard addition sample 

above the unspiked extract (Table 18) with the values calculated as the expected value for 

10µL working solution #5 within a 2mL extract in section 3.2.3.1 (i.e. last column in Table 

17) .  The p-value obtained of 0.23 (Figure 16) suggests that the responses observed in the 

sweet potato extract are not significantly different than the responses expected after analysis 

of working solution #5 in LGW.   
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Figure 16:  Student t-test comparing the concentration responses of the extract-spiked P:G:SO:P above 

background(refer to Table 18) to the expected responses from the analysis of working solution #5 (refer 

to Table 17)  

The weakness of this analysis is the small number of samples available for 

comparative analysis; however it does provide some insight beyond the eye test.  The same 

analysis was done on standard addition soil extracts and lettuce leaf extracts (Appendix D.4) 

with p-values 0.60 and 0.11 respectively. Conclusion:  The matrix components within 

QuEChERS extracts of sweet potato, lettuce, and soil, dilute 10 fold and beyond, do not 

significantly impair the caffeine ELISA kits ability to detect and accurately quantify caffeine 

within the extracts.   

Homogenate Spike Recovery Analysis 

The responses of the homogenate-spiked samples above unspiked homogenate 

extracts indicated 90-104% recovery of caffeine from the sweet potato homogenate (Table 19 

and Appendix D.7).  For lettuce samples, this analysis suggested 19-42% recovery 

(Appendix D.7).  Recovery from soil was approximately 31%, while recovery from sand was 

between 63-75% (Appendix D.7).  While recovery efficiency appears to be variable 
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depending on the matrix, extraction optimization was not pursued and improved efficiency is 

expected to be possible.   

mass (ng) 

spiked onto 

homogenate

Dilution Fit Upper Lower Fit Upper Lower Fit Upper Lower Fit Upper Lower Fit Upper Lower

10 5.1 7.2 3.4 51 72 34 8.8 8.6 8.0 807 795 736

20 3.9 7.0 39 70 6.7 8.4 619 776

249 10 30.5 45.8 21.1 305 458 211 104% 155% 71%

249 20 27.0 37.6 20.7 270 376 207 90% 122% 69%

P:G:SO:P (Sweet 

Potato) matrix

Caffeine Concentration and 

99%CI (µg/L)  within Original 

Extract

Mass Recovered 

(ng) within extract 

% Recovery *

Concentration 

(ng/g) within 

potato matrix                     

(% Recovery 

Adjusted )

Mass (ng) per plant 

within treatment 

group

 

Table 19:  Spike recovery analysis and concentration of caffeine within sweet potato tissue irrigate with 

tap water (P:G:SO:P). 

Unspiked Homogenate Extract Analysis 

No measureable caffeine was observed in the newly extracted virgin sand, soil or in 

lettuce irrigated with either tap water or spiked reclaimed water (Appendix D.7).  These 

results are important as they indicate that the matrix components do not yield false positives, 

and detectable responses that might be observed in other samples are likely to be due to 

presence of caffeine.  Caffeine was observed in sweet potato samples (Table 19 and 

Appendix D.7), with serial dilutions giving responses consistent with their dilution level and 

indicating a concentration of approximately 6.7-8.8ng/g within the homogenate of tap water 

irrigated potato tissue or approximately 600-800ng (Table 19) within the total potato tissue of 

each plant within the treatment group (after taking into account the potato:LGW ratio within 

the homogenate and the average sweet potato mass of the plants within the P:G:SO:P 

treatment group).  This compares similarly to the analysis of grocery store potato from Phase 

1 (5.0-6.6ng/g) (Section 3.2.1.1).  The concentration observed in potato tissue irrigated with 

spiked-reclaimed water irrigated was between 5.2-10.6ng/g, indicating the presence of 
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approximately 1050 and 2150ng within the total potato tissue of each plant within the 

treatment group (Appendix D.7).  Further analysis of the caffeine concentration within the 

crop tissues and growing matrices from the greenhouse experiment are provided in section 

3.4.   

3.2.3.4  Triclosan ELISA Compatibility and Recovery Analysis of  

  QuEChERS Crop and Soil Extracts 

Standard Addition Compatibility Analysis 

The triclosan ELISA responses to serial dilutions of the extracts of a) unspiked sweet 

potato homogenate and b) the same homogenate extract with a standard addition spike 

delivered into a known volume (“Extract Spiked”) are provided in Table 20. 

Fit Upper Lower

P:G:SO:P (Fresh Extraction)

Extract Spiked 10 15.7 +/- 5.7 21.7 16.6

Extract Spiked 20 15.7 +/- 5.7 20.1 26.0 15.7

Extract Spiked 40 15.7 +/- 5.7 22.2 28.1 18.1

Extract Spiked 80 15.7 +/- 5.7 17.3 21.6 13.2

Homogenate Only 10 0.0 No Detect No Detect No Detect

Homogenate Only 20 0.0 No Detect No Detect No Detect

Matrix and sample prepartion Dilution

Expected triclosan 

concentration  (µg/L) 

from 10µL spike into 

2mL original extract

Concentration (µg/L) and 99% CI 

range of original extract

 
 

Table 20:  Triclosan ELISA analysis of extract-spiked and unspiked homogenate extracts of sweet potato 

tissue (P:G:SO:P) compared to expected responses from spike delivered 

The triclosan concentration observed in the standard addition samples above the 

concentration observed for extracts of unspiked sweet potato homogenate (last three columns 

Table 20) appear similar to, albeit not completely indistinguishable from, the expected 

responses from spiking a 2mL sample with 10µL working solution #5 based on the analysis 

of the working solution described in section 3.2.3.1 (Appendix D.3).  A t-test was run in R to 

compare the four responses (fit) for the concentration observed in the standard addition 

samples (Table 20) with the three expected concentration values calculated for spiking 10µL 
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working solution #5 within a 2mL extract (Appendix D.3).  The p-value obtained of 0.052 

(Appendix D.5) suggest that the responses observed in the sweet potato extract may be 

slightly greater than expected after analysis of working solution #5 in LGW (perhaps some 

slight matrix enhancement).  However given the overlap of confidence interval ranges for the 

concentrations observed and expected (Table 20), and the small number of samples available 

for comparison, perhaps that the most suitable conclusion is that the ELISA is clearly capable 

of detecting triclosan within the complex QuEChERS extract of sweet potato homogenate, 

and that quantification using confidence intervals is the most appropriate strategy.   

The same analysis was performed for the responses of extract-spiked soil samples and 

extract spiked lettuce samples (Appendix D.5) with p-values 0.13 and 0.31 respectively. The 

results observed for soil were indicative of a possible matrix inhibition.  However, as was the 

case for the sweet potato homogenate extracts, due to the overlap of confidence intervals for 

the concentrations observed and expected, as well as the limited sample size, the most 

appropriate conclusion is that the ELISA is clearly capable of detecting triclosan within the 

complex QuEChERS extracts of soil and lettuce leaf homogenates, and that quantification 

using confidence intervals is the most suitable strategy.   

Homogenate Spike Recovery Analysis 

The responses of the homogenate-spiked samples above unspiked homogenate 

extracts indicated 83-103% recovery of triclosan from the sweet potato homogenate (Table 

21 and Appendix D.8).  For lettuce samples, this analysis indicated 32-47% recovery 

(Appendix D.8).  Recovery from soil was approximately 27%, while recovery from sand was 

approximately 35% (Appendix D.8). 
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mass (ng) 

spiked onto 

homogenate

Dilution Fit Upper Lower Fit Upper Lower Fit Upper Lower

10

20

157 10 16.2 22.0 12.4 162 220 124 103% 140% 79%

157 20 13.1 16.8 10.6 131 168 106 83% 107% 67%

P:G:SO:P (Sweet 

Potato) matrix

Triclosan 

Concentration and 

99%CI (µg/L)  within 

Original Extract

Mass Recovered 

(ng) within extract 

% Recovery 

 

Table 21: Spike recovery analysis and concentration of triclosan within sweet potato tissue irrigate with 

tap water (P:G:SO:P). 

Unspiked Homogenate Extract Analysis 

No measureable triclosan was observed in the newly extracted virgin sand, virgin soil, 

in lettuce irrigated with either tap water or spiked reclaimed water, or in sweet potato tissue 

irrigated with tap water (Appendix D.8).  These results are important as they indicate that the 

matrix components do not yield false positives, and detectable responses that might be 

observed in other samples are likely to be due to presence of triclosan.  Triclosan was 

observed in sweet potato samples irrigate with spiked-reclaimed water (Appendix D.8), with 

serial dilutions giving responses consistent with their dilution level and indicating a 

concentration of approximately 3.3-3.9ng/g within the sweet potato tissue resulting in a total 

mass between 650-800ng (Appendix D.8) within the total potato tissue of each plant within 

the treatment group (after taking into account the average sweet potato mass of the plants 

within the P:S:SO:P treatment group).  During the Phase 1 analysis (Section 3.2.1.1), no 

measureable triclosan was observed in the grocery store sweet potato.  Further analysis of the 

triclosan concentration within the crop tissues and growing matrices from the greenhouse 

experiment are provided in section 3.4.   
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3.2.3.5  Estradiol ELISA Compatibility and Recovery Analysis of  

  QuEChERS Crop and Soil Extracts 

Sweet Potato Tissue and Lettuce Leaf Tissue 

Significant responses were observed in the unspiked homogenate extracts of both 

lettuce and sweet potato, regardless the irrigation source, for the estradiol ELISA kit.  The 

extract-spiked sample of sweet potato homogenate were “significantly” larger than the 

unspiked homogenate extracts (p=0.03) however the elevation observed was only 10-20% the 

expected value from the spike delivered (Table 22).   

Fit Upper Lower

P:G:SO:P (Fresh Extraction)

Extract Spiked 10 421 +/- 95 153 127

Extract Spiked 20 421 +/- 95 156 195 125

Extract Spiked 40 421 +/- 95 196 252

Extract Spiked 80 421 +/- 95 No Detect No Detect No Detect

Homogenate Only 10 0.0 84 105 68

Homogenate Only 20 0.0 107 137 70

Matrix and sample 

prepartion

Dilution

Expected estradiol 

concentration  (ng/L) 

from 10µL spike into 

2mL original extract

Concentration (ng/L) and 99% CI 

range of original extract

 

Table 22:  Estradiol ELISA analysis of extract-spiked sweet potato homogenate extracts and unspiked-

homogenate extracts, demonstrating the much lower than expected responses within the spiked extracts. 

The responses of the extract-spiked samples of lettuce homogenate were 

indistinguishable from the responses of the unspiked homogenate extracts (Table 23).   

Fit Upper Lower

 L:G:SO:L (Fresh Extraction)

Extract Spiked 10 421 +/- 95 336

Extract Spiked 20 421 +/- 95 303 356 251

Extract Spiked 40 421 +/- 95 425 520 348

Extract Spiked 80 421 +/- 95 314 423

Homogenate Only 10 0.0 300 245

Homogenate Only 20 0.0 297 349 246

Matrix and sample 

prepartion

Dilution

Expected estradiol 

concentration  (ng/L) 

from 10µL spike into 

2mL original extract

Concentration (ng/L) and 99% CI 

range of original extract

 

Table 23: Estradiol ELISA analysis of extract-spiked lettuce leaf homogenate extracts and unspiked-

homogenate extracts demonstrating the indistinguishable responses. 
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The much lower than expected response of the extract-spiked samples appeared to 

indicate that the ELISA was not well suited for differentiating the presence of estradiol 

within the extract matrix as prepared, and the responses observed in any extracts including 

the original unspiked sample are suspect without further analysis.   

Homogenate-spiked extracts of sweet potato gave similar responses as the extract-

spiked samples (10-20% of the expected response above unspiked homogenate extracts) 

(Appendix D.9) seeming to indicate that the ELISA may be capable of extracting estradiol 

from potato homogenate, however until the confounding matrix effects can be resolved 

nothing further can be concluded.  Homogenate-spiked extracts of lettuce leaf tissue were 

again indistinguishable from the unspiked extract (Appendix D.9). 

It was determined that further method investigation would need to be complete prior 

to utilizing the estradiol ELISA kit to analyze extracts from crop tissues.  While estradiol 

analysis was run on a number of unspiked crop extracts, at this time no conclusions will be 

asserted concerning the estradiol concentration within crop extracts from the greenhouse 

experiment.  Considering that some of the analysis from the Phase 1 and 2 investigations 

with more dilute extracts did not indicate such clear incompatibility, it may be that further 

dilution or sample clean-up is required to be able to use the estradiol ELISA kit to analyze 

crop extracts. 

Sand and Soil 

No measureable estradiol was detected in the virgin sand or soil extracts.  Standard 

addition was performed into a finished soil extract and ELISA analysis performed (Table 24).  
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Fit Upper Lower

Virgin Soil (VSO)

Extract Spiked 10 421 +/- 95 134 159 110

Extract Spiked 20 421 +/- 95 No Detect No Detect No Detect

Extract Spiked 40 421 +/- 95 429 524 351

Extract Spiked 80 421 +/- 95 506 638 385

Homogenate Only 10 0.0 No Detect No Detect No Detect

Homogenate Only 20 0.0 No Detect No Detect No Detect

Matrix and sample 

prepartion

Dilution

Expected estradiol 

concentration  (ng/L) 

from 10µL spike into 

2mL original extract

Concentration (ng/L) and 99% CI 

range of original extract

 

Table 24: Estradiol ELISA analysis of extract-spiked soil homogenate extracts and unspiked-homogenate 

extracts  

The ELISA responses to standard addition spiked extracts sample dilute 40 fold and 

80 fold were consistent with the expected response from the spike delivered.  When 10 fold 

and 20 fold dilute, the response of the ELISA to the standard addition spiked extracts seemed 

to give a muted response, perhaps indicating that the estradiol ELISA requires a dilution 

above 20 fold to accurately quantify QuEChERS extracts of soil.  Additional soil extracts 

(from greenhouse experiment samples) were spiked with working solution, dilute 10 fold, 

and analyzed on the same day of analysis (Appendix D.12) and the results showed similar 

muted responses (20-45% the expected from the spike delivered) at 10 fold dilution.  

Analysis of a homogenate spiked sample 10 fold dilute indicated approximately 50% 

recovery (Appendix D.9), though given the apparent muted response at 10 fold dilution, this 

recovery rate is likely to be conservative.   

3.3  Implications of Method Compatibility Investigations for the Analysis of  

       Greenhouse Irrigated Samples: 

3.3.1  Estradiol 

As prepared, none of the crop tissue extracts can be satisfactorily analyzed with the 

estradiol ELISA kits with 10 fold and 20 fold dilutions (section 3.2.3.4).  The kits are 

incapable of adequately distinguishing between unspiked homogenate extracts and extract 
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spiked samples at these dilutions.  Future investigation might consider dilutions of greater 

magnitude or further sample clean up prior to analysis.  Sand and soil extracts dilute 10 fold 

may give muted responses (perhaps larger dilution required for the estradiol ELISA kit), 

however, there is little concern about false positive responses at this time.   

3.3.2  Caffeine and Triclosan 

Sweet Potato Tissue 

Recovery of caffeine and triclosan from sweet potato homogenates appears to be 

almost complete (90% and better).  Analysis of extracts with the caffeine and triclosan 

ELISA kits demonstrate little complication at dilutions between 10 fold and 100 fold. 

Extracts of sweet potato tissue irrigated with tap water did not give measurable responses 

during triclosan analysis, while extracts of sweet potato irrigated with spiked-reclaimed water 

indicated a triclosan concentration of 3.3-3.9ng/g within the potato tissue.  Extracts of the 

same potato tissues indicated a caffeine concentration between 6.7-8.8ng/g for tap irrigated 

tissue, 5.2-10.6ng/g for spiked-reclaimed water irrigated tissue.   

Lettuce Leaves 

Experiments demonstrate recovery of caffeine to be between 19 and 42% (see section 

3.2.3.2), recovery of triclosan between 32-47% (section 3.2.3.3).  Analysis of extracts with 

the caffeine and triclosan ELISA kits demonstrate little complication at dilutions between 10 

fold and 100 fold with no detectable responses observed for unspiked homogenate samples, 

minimizing the concern of false positive responses.  Therefore the responses of samples are 

likely to underestimate the amount of caffeine and triclosan present in lettuce leaves.  While 
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responses within the quantitation range of the ELISA may be adjusted to reflect the recovery 

rate, the practical limit of detection is less sensitive due to the recovery observed.   

Sweet Potato Leaves 

Recovery of caffeine appears to be between 40-50% (section 3.2.2.4).  Recovery of 

triclosan appears to be at best 20%.  Analysis of extracts with the caffeine and triclosan 

ELISA kits demonstrate little complication at dilutions between 10 fold and 100 fold, with no 

measurable levels of analyte present in the leaves, minimizing the concern of false positive 

responses.  As with lettuce leaves, it is likely then that the response of the ELISA is likely to 

underestimate the amount of both caffeine and triclosan present and the practical detection 

limit will be negatively influenced Extracts within quantitation range could be adjusted to 

reflect the recovery observed. 

Sand 

Recovery of caffeine was observed between 63% and 75% (section 3.2.3.2).  

Recovery of triclosan was between approximately 35% (section 3.2.3.3). Analysis of extracts 

with the caffeine and triclosan ELISA kits demonstrate little complication at dilutions 

between 10 fold and 100 fold, with no responses observed for unspiked “virgin” sand 

samples minimizing the concern of false positive responses. It is likely then that the response 

of the ELISA is likely to underestimate the amount of both caffeine and triclosan present and 

the practical detection limit will be negatively influenced.  Extracts within quantitation range 

could be adjusted to reflect the recovery observed. 
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Soil 

Recovery of caffeine was approximately 31% (section 3.2.3.2), while recovery of 

triclosan about 27% (section 3.2.3.2).  Analysis of extracts with the caffeine and triclosan 

ELISA kits demonstrate little complication at dilutions between 10 fold and 100 fold with nil 

responses observed for background only samples minimizing the concern of false positive 

responses.  It is likely then that the response of the ELISA is likely to underestimate the 

amount of both caffeine and triclosan present and the practical detection limit will be 

negatively influenced.  Extracts within quantitation range could be adjusted to reflect the 

recovery observed. 

3.4  Analysis of Greenhouse Samples 

3.4.1  Reservoir Analysis 

The contents of the reservoirs were analyzed on a number of occasions (See 

Appendix E).  As expected, there was variability in the constituency of the reclaimed water 

collected form the reclaimed water from the Integrated Water Strategies system at the Jordan 

Lake Business Center.  Unfortunately the contents of the reservoirs could not be analyzed as 

regularly as would have been ideal and, thus while the volume of water applied to each plant 

is known (35.1L for each sweet potato plant, 8.3L for each lettuce plant; Supporting Material 

Z1, part of an electronic labbook available on file at UNC), the mass of each analyte applied 

within these volumes cannot be well estimated.  It was observed, however, that samples 

collected from the spiked-reclaimed water reservoir one to two weeks after the spike was 

delivered, still had elevated levels of each compound as compared to the unspiked reservoir.  

The amount of elevation observed also varied and was not always as large as expected from 

the spike administered (designed to increase the concentration of each analyte within the 
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reservoir by 10µg/L).  This observation is not entirely surprising, however, for even though 

the reservoirs were shielded from light and moderately temperature-controlled within the 

refrigeration unit, they were not expected to provide a highly stable, degradation-resistant 

environment.  Despite these limitations, an extremely crude estimate for the mass of each 

analyte applied to the sweet potato and lettuce plants is provided in Table 25.  These 

estimates are based on the average responses for the reservoir samples shown in Appendix E. 

Irrigation Source
Caffeine 

(µg)

Triclosan 

(µg)

Estradiol 

(ng)

Caffeine 

(µg)

Triclosan 

(µg)

Estradiol 

(ng)

Tap Water 3.6E+00 3.1E+00 0.0E+00 8.5E-01 7.4E-01 0.0E+00

IWS Reclaimed 1.7E+01 2.8E+01 2.4E+02 4.0E+00 6.7E+00 5.7E+01

Spiked IWS Reclaimed 1.5E+02 1.2E+02 2.7E+04 3.5E+01 2.8E+01 6.5E+03

Estimated Mass Delivered to 

Sweet Potatoes (35.1L)

Estimated Mass Delivered to 

Lettuce (8.3L)

 

Table 25:  Estimated mass of target analytes delivered to sweet potato and lettuce based on limited 

reservoir analysis (Appendix E) and volume applied. 

Additionally, with crop and soil samples only being taken at the end of the growing 

seasons, there was considerable time and opportunity for degradation processes to occur 

within the plant-soil system prior to harvest and before extraction.  As a result of these 

limitations, mass balance was not pursued as a goal in this study.  Rather, the extracts from 

the crop tissues and growing matrices were compared across treatment groups using the 

methods developed to determine whether significant differences in the matrix concentration 

and total analyte mass accounted for within each matrix were observable. 

3.4.2  Crop Tissue and Growing Matrices Analysis 

Extraction of crop and growing matrices, and storage of matrix extracts, were 

performed in the months following the crop harvests in the fall of 2011 (refer to Supporting 

Materials series X and Y for all details available, part of electronic labbook on file at UNC, 

including schedule, for the extraction of each matrix).  Analysis of stored extracts was 
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performed on multiple occasions during the fall of 2011 and spring of 2012, with the 

strengths, weaknesses and results from all analysis presented below. 

3.4.2.1  Fall 2011 Trend and “Concentration” Approach 

Having limited supplies, and not knowing what to expect for analyte concentrations 

within each matrix, it was determined that preliminary ELISA analysis would be run without 

full duplicate standard curves in order to investigate appropriate dilution factors and 

determine trends between extracts (i.e. is extract X more or less concentrated than extract Y).  

Therefore, only the nil, highest and lowest analyte calibration solutions were analyzed by the 

ELISA kits in tandem with the experimental samples; and the responses of the experimental 

extracts judged on the basis of being between/above/below the quantification range of each 

ELISA kit.  As a result of this, extracts of matrix homogenates processed for ELISA analysis 

can only be compared to other samples processed by the ELISA kit on the same day (i.e. 

without the full calibration curve we cannot make observations that definitely compare 

samples from one day to the next).   

ELISA analysis was complete in this manner (three calibration points rather than a 

full calibration curve) on three days in the fall of 2011: November 28, November 29, and 

December 23.  All “concentrations” associated with the fall 2011 findings (described in 

sections 3.5 and 3.6, and shown in and in the Z Appendices) were approximated by 

comparing the nil, high and low standards analyzed to the suite of full calibration curves run 

during the entire research period, and plugging the absorbance responses for the samples into 

the curve that most closely matched.  These “concentrations” then are not presented as hard 

values, but provide numerical approximations to give a slightly more thorough scrutiny to the 

trends observed. 
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To emphasize of the limitations of this strategy, consider the following example from 

the analysis of triclosan run on November 29, 2011.  The response of the nil, low and high 

calibration points on this day were equally well matched to either the full calibration curve 

from an analysis run on June 6, 2011 or the calibration curve run on March 8, 2012 (Figure 

17). 

 

Figure 17:  Triclosan ELISA full calibration curves from June 6, 2011 and Mach 8, 2012 and high/low 

calibration points from November 29, 2011. 

Using the three calibration point strategy, one or both of these curves would have 

been used to estimate the concentration of triclosan within samples run on November 29, 

2011.  Figure 17 demonstrates how the calibration curves from different ELISA kits, run on 

different days, even with nearly identical absorbance values for the highest and lowest 

calibration points, will exhibit different shapes within the quantitation range.  As a 

consequence of the different shapes, concentration estimates returned by the two curves for a 

sample within the quantitation range can vary significantly.  For example, the absorbance 

value for the calibration solution #4 used to make the full calibration curve on June 6, 2011 

(with known concentration 0.5µg/L) was 0.53.  A sample with this absorbance on March 8, 

2012, based on the calibration curve, would be expected to have a concentration of 

approximately 0.75µg/L, a relative percent difference of 40%.  Also seen in Figure 17, the 
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lowest concentration calibration solution (furthest most left) on November 29, 2011, had a 

lower absorbance value than either best matching curve; yet for the highest concentration 

calibration solution (furthest most right) on November 29, 2011 had the greatest absorbance 

value of all three curves.  Thus it would be expected that had a full calibration curve been 

created on November 29, 2011, it would cross over the calibration curves from June 6, 2011 

and March 8, 2012 at some unknown absorbance values “X.”  Thus, the June and March 

calibration curves will overestimate the concentration within a sample from November with 

absorbance values greater than “X,” and will underestimate the concentration from a 

November sample with absorbance values less than “X.”  Ultimately, without knowing the 

shape of the kit-specific calibration curve between the high and low calibration points, 

concentration estimates using “best matching” curves are made very tentatively.   

3.4.2.2  Spring 2012 Trend Approach 

In spring 2012, as method validation studies were being further investigated (see 

Phase 3 investigations, section 3.2.3) stored extracts from the greenhouse experiment 

(extractions executed in the fall/winter of 2011) were also analyzed.  These extracts have the 

benefit of having been run in tandem with full duplicate standard curves, however by the 

time the extracts were analyzed, many had been in storage for 3-5 months and the stability of 

the extracts is not well known.  Some samples were run both in the fall and in the spring, and 

while the concentration values cannot truly be compared apples to apples (recall the fall 

samples were not run in tandem with full calibration curves) it appears that most of these 

extracts gave responses of similar magnitude during both fall and spring analysis.  For a few 

of these extracts, however, when analyzed in the fall of 2011 the analyte concentration 

appeared to be within the quantitation range of some ELISA kits (albeit very near the LOD), 
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but when analyzed in the spring of 2012 the same extracts gave responses below the LOD, 

indicating that stability may be an issue.   

All of the tables referring to the analysis of experimental crops grown in the 

greenhouse use a 4 unit coding separated by colons to refer to the samples.  Use of the key in 

Table 26 will facilitate an understanding of the origin of the samples being referenced in the 

subsequent text: 

Crop Irrigation Source
Growing 

Matrix

Matrix 

Extracted and 

Replicate #

(P)  Sweet 
Potato

(G)  Greenhouse tap (SA) Sand (P#) Potato

(L)  Lettuce
(F)  Field composition 
reclaimed IWS water

(SO) Soil (L#) Leaves

(S)  Spiked-reclaimed IWS 
water

(S#) Sand/Soil
 

Table 26:  Coding used to identify sample extracts from the greenhouse experiments. 

 

Example:  P:G:SO:P1 => Sweet Potato Crop, Greenhouse Tap Irrigated, Grown in Soil, 

Potato Tissue Extracted, Replicate #1.  Recall that during extraction, replicate extracts were 

prepared from each homogenate.  (Refer to Z and Y Series Appendices) 

3.5  Fate and Transport of Caffeine 

3.5.1  Fall 2011 Trend and “Concentration” Analysis:  Caffeine 

3.5.1.1  November 28, 2011 

On November 28, 2011, three potato tissue extracts were analyzed by the caffeine 

ELISA kit after 10 fold dilution, with results from this analysis presented in Table 27.  The 

extracts analyzed were of sweet potato tissue a) grown in soil, irrigated with spiked-

reclaimed water; P:S:SO:P, b) grown in sand, irrigated with spiked-reclaimed water; 
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P:S:SA:P, and c) grown in sand, irrigated with tap water; P:G:SA:P.  No replicate samples 

were run for any of the extracts.  All samples gave responses in range of the ELISA 

(responses between the high and low standard run in tandem).  The responses of the nil, low 

and high standard were best matched to the full calibration curve from an analysis run on 

July 13, 2011, in order to estimate the concentration within the extracts. 

Sample*

Best Fit 

"concentration" 

estimate [µg/L]ᵠ 

in extract

Average 

recovery rate 

from matrix 

during 

Caffeine concentration 

(ng/g) in original matrix 

(% Recovery Adjusted)

Total mass of caffeine per plant 

(µg/plant) within the designated 

matrix  (concentration x average 

matrix mass of treatment group*)

Nov 28 2011

P:S:SO:P1 6 95% 10.4 2.1

P:S:SA:P1 13 95% 22.7 4.9

P:G:SA:P1** 18 95% 31.5 1.4

Nov 29 2011

P:G:SA:P1** 8.1 95% 14.2 0.6

P:G:SA:L1*** 17.1 45% 148.4 0.5

P:G:SA:S1 45 70% 95.5 29

Decemeber 23 2011

P:S:SO:P1 3.9 95% 6.8 1.4

P:S:SO:L1 13.0 45% 23.4 1.2

P:S:SO:S1 1.3 30% 6.7 2.7

P:F:SO:P1 5.4 95% 9.3 1.4

P:F:SO:L1 5.1 45% 11.6 0.3

P:F:SO:S1 1.3 30% 6.7 2.7

P:G:SO:P1 1.0 95% 1.7 0.2

P:G:SO:L1 7.6 45% 19.8 0.4

P:G:SO:S1 1.7 30% 8.5 3.4

 * Refer to X and Y Series Appendices

**Did NOT undergo dSPE cleanup

***Only sweet potato leaf sample homogenized wet

ᵠ Note that full standard curve not run on day of analysis, all values in the table are estimated from other 

standard curves based on matching the high and low standard calibration solutions analyzed

 

Table 27:  Fall 2011 ELISA trend and “concentration” analysis of caffeine within greenhouse grown 

sweet potato tissues and growing matrices.   

 Somewhat unexpectedly, the highest concentration sample was observed for the tap 

water irrigated sample (Table 27).  However, upon review of the lab book, it was realized 

that these (P:G:SA:P) samples, (the first extractions executed from the greenhouse samples 

after harvest), mistakenly did not undergo dSPE while all other extracts did.  The Phase 2 

Investigation (section 3.2.2) demonstrated that dSPE was critical for analysis using the 



 

100 
 

ELISA kits, and that extracts of identically spiked-homogenates without dSPE cleanup 

consistently gave higher responses than those with dSPE, despite having indistinguishable 

recovery rates.  Thus the high concentration observed for the tap irrigated sample is likely an 

artifact of the lack of dSPE cleanup.   

The caffeine “concentration” estimated for the sweet potatoes irrigated with spiked-

reclaimed water were between 10 and 23ng/g, with a greater concentration observed within 

the tissue of sweet potatoes grown in sand than in soil (Table 27).  Note that all matrix 

concentration values were adjusted to reflect the average recovery rate observed during 

compatibility investigations (~95% for caffeine from sweet potato homogenate).  These 

apparent “concentrations” are two to four fold higher than the grocery store sweet potato 

tissue analyzed during the Phase 1 Investigations (section 3.2.1) which was between 6 and 

8ng/g.  When taking into account the average potato mass per plant within each treatment 

group (average mass of potatoes per plant in P:S:SA:P treatment group ~215g; average mass 

of potatoes per plant in P:S:SO:P treatment group ~202g, refer to the X series Appendices), 

the total mass of caffeine accounted for, per plant, within the potato tissues irrigated with 

spiked-reclaimed water was between 2.1 and 4.9µg (last column in Table 27).   

3.5.1.2  November 29, 2011 

On November 29, 2011, the “full system,” (potato, leaf, growing matrix) of the sweet 

potato treatment group grown in sand and irrigated with tap water was analyzed with the 

caffeine ELISA kit.  No replicate samples were run for any of the extracts.  All extracts gave 

responses in range of the ELISA kit (responses between the high and low standard run in 

tandem).  The response of the nil, low and high standard were best matched to the full 
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calibration curve from an analysis run on June 6, 2011 in order to estimate the concentration 

within the extracts.  Results from this day are presented in Table 27. 

As previously reported (section 3.5.1.1), the potato tissue from this treatment group 

did not undergo dSPE and the magnitude of the response is expected to be an artifact of 

matrix components within the uncleaned extract.  Despite this expected overestimation for 

caffeine within this potato tissue extract, the approximate total mass of caffeine accounted for 

within the leaf tissue (~0.5µg) compared to total mass within potato tissue (0.6µg), indicates 

significant translocation of caffeine through the sweet potato plant.  This is consistent with 

Dettenmaier et al (2009) which assigned caffeine an average transpiration stream 

concentration factor (refer to section 1.4.5) of 0.83, indicating a high potential for uptake and 

translocation.  In total, no more than 1µg caffeine appears to accounted for in the combined 

plant tissues of the tap irrigated plants.   

The response of the sand sample was unexpectedly high, indicating the presence of 

more caffeine within the sand sample taken (29µg estimated) than was estimated to have 

been delivered in aggregate for this treatment group in section 3.4.1 (less than 5µg expected).  

Indeed, considering that 35.1L irrigation water was delivered to each sweet potato plant, the 

average caffeine concentration within the tap water would have had to have been greater than 

0.8µg/L to deliver 29µg over the entire growing period (suspending degradation).  

Unfortunately, serial dilution and/or duplicate samples were not run on this extract to provide 

confirmation analysis of this response. 

3.5.1.3  December 23, 2011 

 On December 23, 2011, the “full systems” (potato, leaf, growing matrix) of all 

treatment groups grown in soil were analyzed with the caffeine ELISA kits.  Serial dilutions 
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(10 fold, 100 fold, 1000 fold) were run for all samples, however the only samples that gave 

responses in range of the ELISA kit were those 10 fold dilute.  Indeed, this observation was 

the influence for designing the Phase 3 Investigation (section 3.2.3) using the serial dilution 

strategy of 10 fold, 20 fold, 40 fold.  The response of the nil, low and high calibration 

solutions were best matched to the full calibration curve from an analysis run on September 

8, 2011 in order to estimate the concentration within the extracts.  As previously observed, 

the leaves were the most concentrated tissue (Table 27), indicating significant translocation 

potential.  The total mass of caffeine per gram edible tissue appears to be 3 to 5 times greater 

in the samples irrigated with reclaimed waters than with tap water.  Even so, no more than 

2µg caffeine appears to be present within the edible tissues of any plant regardless the 

irrigation source.   

The responses of soil extracts 10 fold dilute were all very near the LOD with no 

differentiation observed between extracts of samples from different irrigation source.  The 

most likely explanation for the lack of differentiation is that the time lag between collecting 

the soil samples during the sweet potato harvest and extracting from them was approximately 

4 weeks, allowing significant time for degradation.  Indeed, Bradley et al. (2006) observed 

that 50-90% of radio-labeled caffeine within stream sediments (under oxic conditions) had 

been mineralized within 2 days.  Considering their proximity to the LOD and the time lag 

between sample collection and extraction, it seems probable that these positive responses 

were artifacts.   

3.5.2  Spring 2012 Trend and Concentration Analysis 

Caffeine was not observed within any of the soil extracts analyzed, regardless the 

irrigation treatment (Table 28).  This finding gives further merit to the hypotheses presented 
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in section 3.5.1.3 that the positive responses near the LOD observed on December 23, 2011, 

may have been artifacts and that the caffeine applied to the soil samples from the irrigation 

sources appears to have degraded prior to extraction.  .The extracts of sweet potato leaf 

continue to be of greater concentration than the extracts of sweet potato, continuing to 

indicate translocation of caffeine through the sweet potato plant.  The concentration within 

the sweet potato leaves were approximately 34ng/g, 38ng/g, and 42 ng/g for the plants 

irrigate with tap, reclaimed water and spiked-reclaimed water respectively.  Taking into 

consideration the aggregate leaf mass within each treatment group, these concentrations 

indicate a total caffeine mass accounting, per plant, of 0.6µg, 1.1µg and 2.1µg within the 

leaves (Table 28). 

Sample*

Best (fit) 

concentration  

[µg/L] in extract 

based on ELISA 

calibration curve

Average recovery 

rate from matrix 

during 

compatability 

investigations

Caffeine concentration 

(ng/g) in original matrix 

(% Recovery Adjusted)

Total mass of caffeine per plant 

(µg/plant) within the 

designated matrix  

(concentration x average matrix 

mass of treatment group*)

January

P:S:SO:P1 9 95% 16 3.2

P:S:SO:L2 23 45% 42 2.1

P:S:SO:S2 0 30% 0 0

P:F:SO:P2 12 95% 21 3.2

P:F:SO:L1 17 45% 38 1.1

P:G:SO:P1 0 95% 0 0

P:G:SO:L1 13 45% 34 0.6

L:S:SO:L2 0 30% 0 0

February

P:S:SO:P4 4.0 95% 7 1.4

P:S:SO:S3 0 30% 0 0

P:F:SO:S2 0 30% 0 0

P:G:SO:P4 5.0 95% 9 0.8

P:G:SO:S2 0 30% 0 0

L:S:SO:L1 0 30% 0 0

L:S:SO:L4 0 30% 0 0

L:F:SO:L1 2.0 30% 11 0.4

L:F:SO:S1 0 30% 0 0

L:G:SO:L4 0 30% 0 0

L:G:SO:S2 0 30% 0 0

 *(Refer to X and Y series Appendices)  

Table 28:  Spring 2012 ELISA trend and concentration analysis of caffeine within greenhouse grown 

sweet potato tissue, lettuce leaves, and soil 
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Combining the mass recovered within the potato and leaf tissues, the total caffeine 

mass accounted for, per plant, is approximately 0.6-1.4µg/plant for the tap irrigated, 4-

5µg/plant for the reclaimed water irrigated, and 5-6µg/plant for the spiked-reclaimed water 

irrigated.  Recalling the estimates from section 3.4.1, it was expected that the sweet potato 

plants within the treatment groups were exposed to approximately 3.6, 17 and 150µg of 

caffeine; nearly an order of magnitude increase in caffeine exposure per group.  Thus the 

sweet potato plants irrigated with reclaimed water may have as much as 30% of the estimated 

caffeine applied within their plant tissues.  The spiked-reclaimed water irrigated sweet potato 

plants appeared to account for less than 5% the estimated caffeine applied within their plant 

tissues.  Thus while the caffeine concentration was clearly higher in the plants irrigated with 

reclaimed water sources than tap water, it appears that the practical uptake of caffeine by 

sweet potatoes is limited given the similar mass accounting within the sweet potato plants 

irrigated with reclaimed water and spiked-reclaimed water.   

It appears the uptake of caffeine into the leaves of lettuce is minimal (Table 28).  The 

ELISA responses suggested the presence of caffeine in only one lettuce sample, namely that 

grown with reclaimed water.  The response of this extract when 10 fold dilute (0.2µg/L) was 

very near the LOD (0.175µg/L), and though a 20 fold dilution of this extract was analyzed, it 

could not confirm the response as the extract predictably fell below the quantitation range.  A 

duplicate analysis of this sample could not be run.  Adding further suspicion to this response 

is that caffeine was not detected in the extract of lettuce irrigated with spiked-reclaimed 

water.   
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3.6  Fate and transport of triclosan 

3.6.1  Fall Trend and “Concentration” Analysis:  Triclosan 

3.6.1.1  November 28, 2011 

On November 28, 2011, three potato tissue extracts were analyzed by the triclosan 

ELISA kit after 10 fold dilution (Table 29).  The extracts were from sweet potato plants a) 

grown in soil, irrigated with spiked-reclaimed water; P:S:SO:P, b) grown in sand, irrigated 

with spiked-reclaimed water; P:S:SA:P, and c) grown in sand, irrigated with tap water; 

P:G:SA:P  No replicate samples were run for any of the extracts.  The responses of the nil, 

low and high standard were best matched to the full calibration curve from an analysis run on 

July 13, 2011, in order to estimate the concentration within the extracts.   

Sample*

Best Fit 

"concentration" 

estimate [µg/L]ᵠ 

in extract

Average recovery rate 

from matrix during 

compatability 

investigations

Triclosan 

concentration (ng/g) 

in original matrix (% 

Recovery Adjusted)

Total mass of triclosan per plant 

(µg/plant) within the designated 

matrix  (concentration x average 

matrix mass of treatment 

group*)

Nov 28th

P:S:SO:P1 0.65 90% 1.19 0.2

P:S:SA:P1 0 90% 0.0 0.0

P:G:SA:P1 0 90% 0.00 0

Nov 29th

P:G:SA:P1 0 90% 0.00 0

P:G:SA:L1 0 20% 0.00 0

P:G:SA:S1 0 35% 0.00 0

Decemeber 23

P:S:SO:P1 4.2 90% 7.7 1.6

P:S:SO:L1 0 20% 0.00 0

P:S:SO:S1 12.7 30% 63 2.5E+01

P:F:SO:P1 0 90% 0.00 0

P:F:SO:L1 0 20% 0.00 0

P:F:SO:S1 0 30% 0 0

 *(Refer to X and Y series Appendices)

ᵠ Note that full standard curve not run on day of analysis, all values in the table are estimated from other standard 

curves based on matching the high and low standard calibration solutions analyzed  

Table 29:  Fall 2011 ELISA trend and “concentration” analysis of triclosan within greenhouse grown 

sweet potato tissues and growing matrices. 
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The only extract that gave a response in range of the ELISA (response between the 

high and low calibration point run on the day of analysis) was of the sample irrigated with 

spiked-reclaimed water and grown in soil.  Therefore it appears that greater uptake of 

triclosan is achieved for potatoes grown in soil than in sand..  The triclosan concentration 

within the potato tissue was estimated to be about 1ng/g, which would give an accounting of  

approximately 0.2µg total triclosan within the aggregate potato tissue of each plant within the 

treatment group.  This is less than1% of the estimated 120µg applied (section 3.4.1) to each 

plant in the treatment group.  During the Phase 1 investigation of grocery store sweet potato 

(section 3.2.1) no triclosan was observed within the potato tissue.  The Phase 3 investigation 

(section 3.2.3) also observed triclosan within the potato tissue irrigated with spiked-

reclaimed water at a concentration between 3.3 and 3.9ng/g.   

3.6.1.2  November 29, 2011 

On November 29, 2011, the “full system,” (potato, leaf, growing matrix) of the sweet 

potato treatment group grown in sand and irrigated with tap water was analyzed with the 

triclosan ELISA kit.  No replicate samples were run for any of the extracts.  The responses of 

the nil, low and high standard were best matched to the full calibration curves from analyses 

run on either June 6, 2011, or March 8, 2012 (see Figure 17 in section 3.4.2.1) in order to 

estimate the concentration within the extracts.  None of extracts gave responses within the 

quantitation range of the ELISA kit (responses between the high and low standard run in 

tandem).  Given the low mass estimated to have been delivered from the tap water reservoir 

(section 3.4.1), the below detection responses were expected for the extracts of this treatment 

group and, importantly, suggest that any positive responses observed in other samples are 

indicative of triclosan present and are not a result of confounding matrix influences. 
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3.6.1.3  December 23, 2011 

On December 23, 2011, the “full systems” (potato, leaf, growing matrix) of all 

treatment groups grown in soil were analyzed with the triclosan ELISA kits.  Serial dilutions 

(10 fold, 100 fold, 1000 fold) were run for all samples.  The responses of the nil, low and 

high standard were best matched to the full calibration curves from an analysis run on June 6, 

2011, in order to estimate the concentration within the extracts.  The only samples that gave 

responses within the quantitation range of the ELISA kit were of the extracts of sweet potato 

tissue and soil irrigated with spiked-reclaimed water (Table 29).  The concentration estimated 

within the potato tissue (7ng/g) was consistent with the Phase 3 investigation of 3.3-3.9ng/g 

(section 3.2.3) and indicated a total mass accounting of less than 2µg per plant within the 

treatment group.  This represents approximately 1% of the 120µg estimated to have been 

applied to each plant within the treatment group (section 3.4.1).   

No triclosan was observed in the extracts of sweet potato leaf homogenate, indicating 

that triclosan may not be translocated significantly within the sweet potato plant.  Triclosan 

was estimated to be present at a concentration of 63ng/g within the soil that was irrigated 

with spiked-reclaimed water (after a 30% recovery rate adjustment).  This concentration was 

applied to the 400g soil samples collected from each pot during the sweet potato harvest in 

order to arrive at the 25µg total mass accounted for in Table 29.  This represents 

approximately 20% the total estimated mass applied to each plant within the treatment group.  

Overall, these results suggest significant sorption of triclosan onto soil with limited uptake by 

the sweet potato plants.   
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3.6.2  Spring 2012 Trend and Concentration Analysis:  Triclosan 

Sand and Soil 

The only soil samples which gave a positive response for triclosan were those 

irrigated with spiked-reclaimed water (Table 30 and Table 31).  The triclosan concentration 

within the soils ranged from 7.5-99ng/g, with the concentration observed falling during each 

consecutive ELISA analysis, potentially indicating stability issues during extract storage.  

Nevertheless, from these concentrations, it was determined that the mass accounted for 

within the soil of each plant irrigate with spiked-reclaimed water was between 5% and 25% 

the total mass estimated to have been applied (section 3.4.1).  None of the sand samples 

indicate the presence of triclosan.  Given that the recovery of triclosan for sand and soil was 

found to be similar (section 3.2.3), it appears that triclosan applied to sand was no longer 

present for extraction.  Within soil however, triclosan appears to have greater stability, 

perhaps as a result of sorption to available organic matter, and remains available for 

extraction.   
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Sample*

Best (fit) 

concentration  

[µg/L] in extract 

based on ELISA 

calibration curve

Average recovery 

rate from matrix 

during 

compatability 

investigations

Triclosan concentration 

(ng/g) in original matrix 

(% Recovery Adjusted)

Total mass of triclosan per plant 

(µg/plant) within the 

designated matrix  

(concentration x average matrix 

mass of treatment group*)

January

P:S:SO:P1 5.8 90% 11 2.1

P:S:SO:L2 1.8 20% 7.3 0.4

P:S:SO:S2 20 30% 99 40

P:F:SO:P2 0 90% 0 0

P:F:SO:L1 0 20% 0 0

P:G:SO:P1 0 90% 0 0

P:G:SO:L1 0 20% 0 0

L:S:SO:L2 0 40% 0 0

February

P:S:SO:P4 2.2 90% 4.1 0.8

P:S:SO:S3 4.5 30% 22 8.9

P:F:SO:S2 0 30% 0 0

P:G:SO:P4 0 90% 0 0

P:G:SO:S2 0 30% 0 0

L:S:SO:L1 0 40% 0 0

L:S:SO:L4 0 40% 0 0

L:F:SO:L1 0 40% 0 0

L:F:SO:S1 0 30% 0 0

L:G:SO:L4 0 40% 0 0

L:G:SO:S2 0 30% 0 0

 *(Refer to X and Y series Appendices)  

Table 30: Spring 2012 ELISA trend and concentration analysis of triclosan within greenhouse grown 

sweet potato tissues, lettuce leaves, and growing matrices. 

Sweet Potato Tissue 

None of the extracts of sweet potato irrigated with tap water gave ELISA responses 

indicating the presence of triclosan (Table 30 and Table 31).  Extracts from sweet potato 

tissue grown with spiked-reclaimed water consistently gave responses indicating that the 

concentration within the tissue was between 4 and 11ng/g, accounting for approximately 1-

2µg total triclosan per plant within the potato tissue.  A single sample of sweet potato tissue 

irrigate with unspiked-reclaimed water gave response indicating the presence of triclosan 

near the LOD (P:F:SO:P3 in Table 31).  The concentration indicated for this sample was 

approximately 2ng/g, and accounted for less than 0.5µg triclosan per plant within the edible 

tissue.   
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Sample*

Best (fit) 

concentration  

[µg/L] in extract 

based on ELISA 

calibration curve

Average recovery 

rate from matrix 

during 

compatability 

investigations

Triclosan concentration 

(ng/g) in original matrix 

(% Recovery Adjusted)

Total mass of triclosan per plant 

(µg/plant) within the 

designated matrix  

(concentration x average matrix 

mass of treatment group*)

March

P:S:SO:L3 0 0 0

P:F:SO:P3 1.0 90% 1.8 0.3

P:F:SO:L3 0 0 0

P:G:SO:P2 0 0 0

P:S:SA:P2 2.1 90% 3.9 0.8

P:S:SA:L1 0 0 0

P:S:SA:S1 0 0 0

P:F:SA:P1 0 0 0

P:F:SA:L1 0 0 0

P:F:SA:S1 0 0 0

L:S:SO:S2 1.5 30% 7.5 3.0

L:S:SA:L1 0 0 0

L:S:SA:S1 0 0 0

L:F:SA:L2 0 0 0

L:F:SA:S1 0 0 0

 *(Refer to X and Y series Appendices)  

Table 31:  Spring 2012 ELISA trend and concentration analysis of triclosan within greenhouse grown 

sweet potato tissues, lettuce leaves, and growing matrices (Continued) 

Sweet Potato Leaves 

Triclosan was observed in a single sweet potato leaf extract, namely that from the 

treatment group irrigated with spiked-reclaimed water (Table 30).  The indicated 

concentration within the leaf tissue was approximately 7ng/g.  The total triclosan mass 

accounted for per plant within the leaf tissue is less than 0.5µg; less than 1% the estimated 

mass applied to each plant within the treatment group (section 3.4.1).  A replicate extract 

from the leaves of this treatment group (Table 29) did not corroborate these findings. 

Lettuce Leaves 

Triclosan was not observed in any of the lettuce extracts regardless of irrigation 

source (Table 30 and Table 31).  It appears therefore that uptake of triclosan by lettuce is 

minimal.   
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3.7  Fate and Transport of Estradiol 

Crop Tissues 

Analysis of 10 fold and 20 fold dilute extracts of sweet potato tissue, sweet potato 

leaf tissue, and lettuce leaf tissue, frequently gave responses within the quantitation range of 

estradiol ELISA kit over the entire study period.  However, because of the complications 

described in in the Phase 3 investigation sections 3.2.3.4 and 3.5.1, (namely significant 

matrix confounding observed during the analysis of unspiked-homogenate extracts into 

which working solution was then spiked directly), it was determined that further method 

investigation would need to be complete prior to asserting any conclusions for the analysis of 

crop matrix samples from the greenhouse experiment.   

Sand and Soil 

 Estradiol ELISA analysis of soil extracts appeared to have fewer complications than 

plant tissue extracts.  Analysis of virgin sand and soils during method compatibility analysis 

(section 3.2.3), indicated that false positive responses due to matrix components within the 

soil extracts did not appear to be an issue.  Indeed, muted responses for soil extracts 10 fold 

and 20 fold dilute appeared to be more a more likely concern than false positive responses.  

Analysis of a single, homogenate-spiked soil sample, diluted at the potentially muted 10 fold 

level, indicated approximately 50% recovery (section 3.2.3.4).   

 Table 32 summarizing the estradiol ELISA analyses of soil samples from the 

greenhouse experiment.  Only two greenhouse soil extracts gave responses indicating the 

presence of estradiol; the soil from the sweet potato treatment group irrigated with spiked-
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reclaimed water, and the soil from the lettuce treatment group irrigated with unspiked 

reclaimed water (Table 32).  All other samples gave responses below detection. 

Sample*

Best (fit) 

concentration  

[ng/L] in extract 

based on ELISA 

calibration curve

Average recovery 

rate from matrix 

during 

compatability 

investigations

Estradiol concentration 

(pg/g) in original matrix 

(% Recovery Adjusted)

Total mass of estradiol per plant 

(ng/plant) within the 

designated matrix  

(concentration x average matrix 

mass of treatment group*)

February

P:S:SO:S3 454 50% 1342 537

P:F:SO:S2 0 50% 0 0

P:G:SO:S2 0 50% 0 0

L:F:SO:S1 41.5 50% 124 50

L:G:SO:S2 0 50% 0 0

March

P:S:SA:S1 0 40% 0 0

P:F:SA:S1 0 40% 0 0

P:G:SA:S2 0 40% 0 0

L:S:SO:S2 0 40% 0 0

 *(Refer to X and Y series Appendices)  

Table 32:  Spring 2012 ELISA trend and concentration analysis of estradiol within greenhouse irrigated 

growing matrices  

 The response of the sample irrigated with spiked-reclaimed water was approximately 

10 fold larger than the sample irrigated with unspiked-reclaimed water, indicating a 

concentration of approximately 1300pg/g and 120pg/g respectively.  Applying these 

concentrations to the 400g soil samples collected at the time of the crop harvests, this 

accounts for 500ng and 50ng estradiol; this mass accounts for less than 2% the estimated 

mass applied from spiked irrigation source section 3.4.1.   

 

  



 

 
 

CHAPTER 4:  CONCLUSIONS AND RECOMMENDATIONS  

4.1  Method Compatibility 

The Phase 1-3 investigations (section 3.2) provided progressively more rigorous insight 

into the methodological compatibility of analyzing acetonitrile-based QuEChERS extracts of 

crop tissues and growing matrices using proprietary ELISA kits.  In Phase 1 (section 3.2.1), 

analytically large spikes of the target analytes were applied to homogenate of grocery store sweet 

potato, allowing for large dilutions of the final crop extracts, thereby minimizing the effect of 

any potentially confounding matrix interferences on the assay.  The results from Phase 1 

demonstrated that a) the QuEChERS method was capable of extracting the target compounds and 

b) the ELISA kits for all compounds tested were capable of detecting their respective compounds 

within the highly dilute extracts.  The former was confirmed by both ELISA and GC analysis.  

Practical detection limits (the lowest analyte concentration in the homogenate from which a 

linear calibration can be obtained) for using the GC-Ion-Trap-MS to analyze the QuEChERS 

extracts as prepared, without any additional clean up, were calculated for each compound as 

shown in Table 33.  It was determined in later investigations that caffeine and triclosan were 

recovered from sweet potato homogenate with better than 90% efficiency, and thus additional 

extract clean-up and/or concentration would be required to improve upon these values. 

Compound
 Practical Detection 

Limit (µg/g)

Caffeine 1.026

Triclosan 0.063

Estradiol 0.118  

Table 33:  Practical Detection Limits for GC-Ion-Trap-MS 
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Comparing the practical detection limits calculated for the GC-MS to those using the 

ELISA kits (Table 34) it was clear that the ELISA approach is far more sensitive with less 

sample preparation. Even though the values shown in Table 34 assume 100% analyte 

recovery from the homogenate, these values are 5-6 orders of magnitude lower and 

demonstrate the viable application of ELISAs to measuring trace chemical uptake in crops. A 

demonstration of this was the finding of 6-8ng/g caffeine in store-purchased sweet potato. 

This would not have been detected using the GC/MS method.  

Compound
 ELISA Quantitation 

Range

Potential 

Detection Limit 

Caffeine 0.175-5.0 µg/L 1.75 ng/g

Triclosan 0.05-2.5 µg/L 0.5 ng/g

Estradiol 2.7-25 ng/L 27 pg/g  

Table 34:  Potential Detection Limits of ELISA kits  

 The Phase 2 analysis (section 3.2.2) considered sweet potato leaf extracts at a more 

environmentally relevant dilution level (i.e. one that would assure that the extracted analytes 

would be detectable by the assay).  Results from this analysis demonstrated the benefit of 

using dispersive solid phase extraction (dSPE) for preparing extracts for ELISA analysis.  

Extracts from identically spiked homogenates were prepared with and without dSPE, with 

similar recoveries observed.  This demonstrated that the compounds were not appreciably 

lost during dSPE.  Direct comparison of the extracts prepared with and without dSPE, 

however, consistently showed that the samples prepared without dSPE reported a 

significantly higher concentration.  As compounds are not lost during dSPE, it was clear that 

the elevated responses in the extracts prepared without dSPE were the result of confounding 

matrix components within the uncleaned extract. 

During the Phase 2 investigation analytes were spiked into extracts of an unspiked 

homogenate prepared without dSPE and clearly demonstrated that the caffeine and triclosan 
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ELISA kits were capable of detecting and quantifying the added compound concentration 

within the complex matrix.  Estradiol concentrations were outside the detection range and 

due to limited availability of the kits the methodology could not be re-evaluated during this 

phase of the study.  

The Phase 3 analysis (section 3.2.3) was the most rigorous method compatibility 

analysis and was performed using standard addition, spike recovery, and serial dilution of 

extracts from all matrices of interest alongside those of the various standards employed in the 

study.  The caffeine and triclosan ELISA kits were found to be highly compatible with 10 

fold and 20 fold diluted QuEChERS extracts from all matrices tested.  As a concluding 

example of this, consider a final standard addition caffeine ELISA analysis, this time for 

extracts of the virgin (non-irrigated) soil. 

Fit Upper Lower

Unspiked Homogenate Extract 10 0 No Detect No Detect No Detect

Unspiked Homogenate Extract 20 0 No Detect No Detect No Detect

Extract Spiked 10 24.9 +/-7.0 23.2 32.0 16.7

Extract Spiked 20 24.9 +/-7.0 21.6 29.3 16.3

Extract Spiked 40 24.9 +/-7.0 26.3 35.3 18.0

Extract Spiked 80 24.9 +/-7.0 37.3 53.5 24.1

Matrix and sample preparation

Dilution    

(x-fold)

Expected caffeine 

concentration  (µg/L) 

from 10µL spike into 

2mL  extract

Concentration (µg/L) and 99% CI 

range of original extract

 

Table 35:  Caffeine ELISA analysis of extract-spiked and unspiked homogenate extracts of virgin (non-

irrigated) soil (VSO) compared to expected responses from spike delivered 

Table 35 shows the ELISA analysis of the extract of unspiked homogenate, 

unmodified (white) and with 10µL of working solution (~4.99mg/L) spiked into 2mL of the 

finished extract (grey).  These two samples were then serially diluted as shown in Table 35, 

resulting in a total of six independent ELISA outputs.  The resulting concentration for each 

dilute extract (not shown) was multiplied by the sample dilution factor (column 2) in order to 

arrive at the best fit concentration and 99% confidence interval (Upper/Lower), within the 
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original extract.  As seen in Table 35 no caffeine was detected within the extract of the 

unspiked soil.  The concentration observed within the spiked extract was consistent with the 

expected concentration due to the spike delivered.  Indeed, though the number of samples 

available for comparative analysis is small, a t-test comparing the four (fit) responses in 

Table 35 to the 3 (fit) responses from the analysis of the working solution (Appendix D.3) 

returns a p-value of 0.60 (Appendix D.4), indicating that the expected and observed 

responses for the soil extracts are indistinguishable.   

During the Phase 3 investigations, analysis of spiked extracts from crop tissue using 

the estradiol ELISA kit proved confounded at extract dilutions between 10 and 80 fold 

(section 3.2.3.4).  While the concentrations reported for the sweet potato spiked extracts were 

elevated compared to those unspiked, the increase observed was only 10-20% of the expected 

value.  For extracts of lettuce leaves, the spiked extracts were completely indistinguishable 

from those unspiked.  It was determined that further investigation would be required for the 

estradiol ELISA kit and that interpretation would have to be suspended for all 10-80 fold 

dilutions of crop tissue extracts (such as seen in Phase 1).  Analysis of soils using the 

estradiol ELISA kit proved more successful. 

Extraction efficiency of the compounds was found to be variable depending on the 

matrix, and future work would benefit from an optimization of the matrix homogenization 

and QuEChERS extraction parameters.  In particular, the homogenization of leaf tissue was 

inconsistently executed during this experiment as unforeseen complications challenged the 

anticipated homogenization technique and improvisations had to be made in real time.  

Complications encountered included a) the effects of storage on the leaf tissue prior to 

sample homogenization (wilting and drying) and b) the limited aggregate leaf mass available 
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for some treatment groups.  Standardizing and optimizing the homogenization of crop tissues 

should be thoroughly vetted with these considerations in mind prior to processing 

experimental samples.  The best extraction efficiencies (greater than 90%) were observed for 

both caffeine and triclosan from sweet potato tissue homogenates, and this may a function of 

the more satisfactorily complete homogenization obtained with this matrix. 

4.2  Fate and Transport 

Caffeine 

As discussed in section 1.4.5, crop uptake and translocation of organic compounds is 

complex and prediction based on physiochemical properties is difficult at present.  During 

pressure chamber experiments, Dettenmaier et al. (2009) found that caffeine was uptaken and 

translocated by soybean and tomato plants.  In fact these findings led, in part, to the 

development of a new model relating the Log Kow for certain compounds to the transpiration 

stream concentration factor (Figure 2).   

Analyses of sweet potato tissues in the current experiment appears to demonstrate that 

uptake of caffeine does occur, though is perhaps limited, as crops irrigated with reclaimed 

water and spiked-reclaimed water had a very similar total mass of caffeine within their 

aggregate tissues (4-6µg) despite the estimation that the crops irrigated with the spiked water 

source had been exposed to an order of magnitude greater caffeine mass (~17µg and ~150µg 

estimated application).  Sweet potatoes irrigated with tap water as well as those purchased 

from the local grocery store also indicated the presence of caffeine at low ng/g concentrations 

(~0-8ng/g) within the edible potato tissue.  While those irrigated with reclaimed water 

sources indicated higher caffeine concentrations (~16-21ng/g), the total masses indicated by 

these concentrations represent less than 20% (unmodified composition) and less than 2% 
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(spiked composition) of the total aggregate mass estimated to have been applied during 

irrigation, indicating limited uptake when greater concentrations are applied.  While the 

concentration differences observed within tissues of plants irrigated with different water 

sources are not especially stark, the fact that differentiation was observed is encouraging for 

the application of the analytical method.  In terms of crop growth, as compared to irrigating 

with a tap water source, it does not appear that irrigating with wastewater treated through 

engineered wetlands processes will result in a significant increase in caffeine uptake (and 

perhaps other compounds with similar uptake tendencies) within the edible portion of sweet 

potato plants. 

Analysis of sweet potato leaves from an independent agricultural field site with 

unknown irrigation practices (Phase 2) did not indicate the presence of measurable caffeine 

within the leaf tissue.  Note that there was a significant mass of fresh leaf tissue available for 

homogenization during this investigation, and the wet slurry created with a 1:1 ratio of lab 

grade water was more satisfying than for than many of the greenhouse samples. 

Analysis of sweet potato leaves from the greenhouse investigation suggested caffeine 

within the leaf tissue from all treatment groups.  Indeed, the concentration reported within the 

leaf tissue was greater than that in the potato tissue, perhaps indicating the potential for 

translocation through the plant once uptaken.  This would be consistent with the pressure 

chamber experiments performed by Dettenmaier et al. (2009) which demonstrated uptake and 

translocation of caffeine in both soybean and tomato plants.  While the leaves irrigated with 

spiked reclaimed water did appear to be the most concentrated of any treatment group, the 

differentiation between the three groups was not especially pronounced.  Additionally, the 

aggregate mass accounted for within the leaf tissue of the plants irrigated with the spiked 
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water source (~ 2µg) continued to demonstrate limited uptake of caffeine.  As previously 

mentioned, there is some concern over the homogenization improvisation that was required 

for leaf samples.   

Caffeine was not found in any of the soil extracts of unmodified samples taken during 

either the sweet potato or lettuce harvests.  The most likely explanation is that the time 

between ceasing irrigation, collecting the soil samples, and performing the extractions 

(approximately 4 weeks with storage in a 4°C refrigerator) was sufficient to allow microbial 

degradation.  Indeed, Bradley et al. (2006) observed that 50-90% of radio-labeled caffeine 

within stream sediments (under oxic conditions) had been mineralized within two days by 

indigenous microbial populations.  Topp et al (2005) also observed rapid indigenous 

microbial degradation of caffeine in agricultural soils.  Both research groups ultimately 

questioned the utility of caffeine as a marker of long term contamination within soils because 

of its rapid biodegradation.  

Triclosan  

Triclosan was not found in either the grocery store sweet potato or the sweet potato 

leaves from the independent agricultural field site (Phase 1 and 2, section 3.2.1 and 3.2.2).  

From the greenhouse experiment, the only sweet potato tissue extracts with triclosan present 

(between 4 and 11ng/g) were those irrigated with spiked reclaimed water (section 3.6) 

representing less than 2% of the aggregate mass estimated to have been applied.  Triclosan 

was observed in a single sweet potato leaf extract (irrigated with spiked-reclaimed water) 

near the LOD.  Analysis of a replicate extract of the same homogenate was below the LOD 

and could not confirm this finding.  Triclosan was not observed in any lettuce samples.  

Though the homogenization concerns previously mentioned for leaves should not be 
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overlooked, the uptake and translocation of triclosan appears to be limited for both sweet 

potato and lettuce. 

The only soil extract found to have triclosan present were from those irrigated with 

spiked-reclaimed water at concentration between 7.5 and 99ng/g, accounting for between 5% 

and 25% of the estimated mass applied.  Given the reported Log Koc values (Table 1) 

between 3.99 and 4.30 for various soil compositions (Karnjanapiboowong 2010) and Log 

Kow value of 4.76, it was anticipated that triclosan would preferentially adsorb to soil and 

have limited bioavailability to the crops, and the analyses of crop tissue and soil extracts in 

this experiment correlated with these expectations.  

Estradiol 

As prepared, crop tissue extracts were found to be confounded at the dilution range 

investigated (section 3.2.3).  As a consequence, only the extracts of sand and soil were 

considered for drawing conclusions.  The soil extracts found to have estradiol present were 

those where crops had been irrigated with reclaimed (120pg/g) and spiked (~1300pg/g) 

reclaimed water sources.  This indicated recovery of less than 2% the mass estimated to have 

been applied to the spiked irrigation source.  With reported Log Koc values (Table 1) 

between 3.58 and 3.90 for various soil compositions (Karnjanapiboowong 2011) and Log 

Kow of 4.01 it was expected that estradiol would preferentially adsorb onto soils.  Thus, the 

low concentrations observed are likely due to microbial degradation prior to extraction.  

Indeed, Ying et al. (2005) observed that estradiol had a half-life of approximately 3 days in 

aerobic soils and that both estradiol and its primary metabolite estrone were greater than 90% 

degraded within non sterile soils after 15 days. 
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4.3  Final Comments 

This research demonstrated compatibility between proprietary ELISA kits and 

complex acetonitrile based extracts of crop tissues and soils.  While extraction efficiency 

improvements can be expected, the demonstrated compatibility suggests that ELISAs are 

well suited for providing high throughput screening analysis of chemicals within crops and 

soils at low ng/g concentration levels.  Uptake of caffeine and triclosan, two prominent 

indicators of wastewater contamination, appears to be limited for sweet potato and lettuce, 

suggesting that irrigation of edible crops with reclaimed water sources is unlikely to result in 

significantly elevated public exposure if such crops are consumed.  Future work would 

benefit from expanding the net of target chemicals investigated as well as interdisciplinary 

research to more thoroughly vet the most appropriate choices of indicator compounds for 

efficient screening analyses. 
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APPENDIX A:   

STOCK AND WORKING SOLUTIONS 

A.1: Stock solutions in acetonitrile (used to make working solutions) 

Date Made Compound Mass Weighed (g)
Volume 

Acetonitrile (mL)

Concnetration 

(µg/mL)

2/10/2011 E2 0.01629 25 651.6

2/18/2011 Caffeine 0.01122 25 448.8

5/2/2011 EE2 0.00903 25 361.2

2/18/2011 E3 0.01234 25 493.6

2/18/2011 Triclosan 0.01271 25 508.4

5/2/2011 Nonlyphenol 13µL of 0.940g/mL 25 488.8  

Table 36:  Stock solutions (Batch "A") of target compounds in acetonitrile 

 

Date Made Compound Mass Weighed (g)
Volume 

Acetonitrile (mL)

Concnetration 

(µg/mL)

8/5/2011 E2 0.02885 50 577

8/5/2011 Caffeine 0.02663 50 532.6

8/5/2011 EE2 0.02763 50 552.6

8/5/2011 E3 0.031209 100 312.09

8/5/2011 Triclosan 0.02687 50 537.4

8/5/2011 Nonlyphenol 26µL of 0.940g/mL 50 488.8  

Table 37:  Stock solutions (Batch "B") in acetonitrile 
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A.2: Working solutions used for Phase 1 investigation 

Concentration Dilution Strategy Dilution Execution 

Triclosan

Stock A: (µg/µL) 0.5084

Working TricA: (µg/µL) 2.034E-02 1:25 of stock A 200µL in 5mL

Working TricB:(µg/µL) 2.034E-03 1:10 of working A 1mL in 10mL

Caffeine

Stock A:   (µg/µL) 0.4488

Working CaffA:(µg/µL) 1.795E-02 1:25 of stock A 200µL in 5mL

Working CaffB: (µg/µL) 1.795E-04 1:100 of Working A 100µL in 10mL

Estradiol

Stock A: (µg/µL) 0.6516

Working E2A (µg/µL) 1.303E-02 1:50 of stock A 100µL in 5mL

Working E2B (ng/µL) 1.303E-03 1:10000 of working A 10µ in 100mL  

Table 38:  Phase 1 working solutions in acetonitrile (used to spike onto homogenates) 

 

Compound
Concentration 

(µg/L)
Dilution Strategy Dilution Execution 

Triclosan 17.952 1:25 Stock A Triclosan 200µL into 5mL 

Caffeine 20.336 1:25 Stock A Caffeine 200µL into 5mL  

Table 39:  Phase 1 GC-MS neat solution "Mix A" in acetonitrile 

 

Sample Name Compound

Volume Stock 

A (µL) dried

Volume 

Hexane Final 

(µL)

Concentration 

Der. Stock 

(mg/L)

Dilution*

Final 

Concentration 

(mg/L)

DN_E2 E2 20 300 43.44 10 4.344

DN_Caff Caffeine 30 300 44.88 10 4.488

DN_EE2 EE2 40 300 48.16 10 4.816

DN_E3 E3 30 300 49.36 10 4.936

DN_Non Nonlyphenol 30 300 48.88 10 4.888

*20µL in 200µL hexane  

Table 40:  Derivatized neat samples (using derivatization method A) in silinized glassware 
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A.3:  Working solutions for Phase 2 investigation 

 

Working Solution 

Designation

Concentration 

Stock (µg/µL)

Dilution to make 

working

Concentration 

Working 

(µg/µL)

Dilution Execution

Caffeine B1.1 0.5326 50 1.065E-02 200µL in 10mL

Triclosan B1.1 0.5374 100 5.374E-03 100µL in 10mL

Estradiol B1.1 0.5770 10000 5.770E-05 10µL in 100mL  

Table 41:  Phase 2 working solutions for spiking onto homogenates of sweet potato leaf 

 

Working Solution 

Designation

Concentration 

Stock (µg/µL)

Dilution to make 

working

Concentration 

Working 

(µg/µL)

Dilution Execution

Caffeine B1.2 0.5326 2500 2.130E-04 20µL in 50mL

Triclosan B1.2 0.5374 2500 2.150E-04 20µL in 50mL

Estradiol B1.2 0.5770 500000 1.154E-06
Serial 25µL in 25mL; 

50µL in 25mL  

Table 42:  Phase 2 working solutions for spiking into QuEChERS extracts of sweet potato leaf 
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A.4:  Working solution #5 for Phase 3 analysis 

Stock B Compound
Volume 

Stock B (µL)

Volume 

Acetonitrile (mL)

Concentration  

(µg/mL)

Concentration 

[µg/µL)

E2 0.5 10 2.885E-02 2.885E-05

Caffeine 110 10 5.859E+00 5.859E-03

Triclosan 55 10 2.956E+00 2.956E-03

Nonlyphenol 800 10 3.910E+01 3.910E-02  

Table 43:  Working solution (#5) for delivering homogenate-spikes and spikes into QuEChERS extracts 

of Phase 3 Investigation (made on 2/6/2012) 
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A.5:  Working solutions in acetonitrile for homogenate-spikes and spikes into 

          QuEChERS extracts of greenhouse samples 

Stock B Compound
Volume 

Stock B (µL)

Volume 

Acetonitrile (mL)

Concentration  

(µg/mL)

Concentration 

[µg/µL)

E2 50 5 5.770E+00 5.770E-03

Caffeine 50 5 5.326E+00 5.326E-03

EE2 50 5 5.526E+00 5.526E-03

E3 100 5 6.242E+00 6.242E-03

Triclosan 50 5 5.374E+00 5.374E-03

Nonlyphenol 50 5 4.888E+00 4.888E-03  
Table 44:  Greenhouse samples extraction working solution (#1) for delivering homogenate-spikes and 

spikes into QuEChERS extracts (made on 10/6/2011) 

Stock B Compound
Volume 

Stock B (µL)

Volume 

Acetonitrile (mL)

Concentration  

(µg/mL)

Concentration 

[µg/µL)

E2 335 5 3.866E+01 3.866E-02

Caffeine 335 5 3.568E+01 3.568E-02

EE2 335 5 3.702E+01 3.702E-02

E3 670 5 4.182E+01 4.182E-02

Triclosan 335 5 3.601E+01 3.601E-02

Nonlyphenol 335 5 3.275E+01 3.275E-02  
Table 45:  Greenhouse samples extraction working solution (#2) for delivering homogenate-spikes and 

spikes into QuEChERS extracts (made on 10/9/2011) 

Stock B Compound
Volume 

Stock B (µL)

Volume 

Acetonitrile (mL)

Concentration  

(µg/mL)

Concentration 

[µg/µL)

E2 665 10 3.837E+01 3.837E-02

Caffeine 665 10 3.542E+01 3.542E-02

EE2 665 10 3.675E+01 3.675E-02

E3 1330 10 4.151E+01 4.151E-02

Triclosan 665 10 3.574E+01 3.574E-02

Nonlyphenol 665 10 3.251E+01 3.251E-02  
Table 46:  Greenhouse samples extraction working solution (#3) for delivering homogenate-spikes and 

spikes into QuEChERS extracts (made on 10/26/2011) 

Stock B Compound
Volume 

Stock B (µL)

Volume 

Acetonitrile (mL)

Concentration  

(µg/mL)

Concentration 

[µg/µL)

E2 665 10 3.837E+01 3.837E-02

Caffeine 665 10 3.542E+01 3.542E-02

EE2 665 10 3.675E+01 3.675E-02

E3 1330 10 4.151E+01 4.151E-02

Triclosan 665 10 3.574E+01 3.574E-02

Nonlyphenol 665 10 3.251E+01 3.251E-02  
Table 47:  Greenhouse samples extraction working solution (#4) for delivering homogenate-spikes and 

spikes into QuEChERS extracts (Made on 12/1/2011) 
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Sample Letter Triclosan Caffeine Estradiol Triclosan Caffeine Estradiol Triclosan Caffeine Estradiol

A Stock A Stock A Stock A 196.8 223 153.4 20.01 20.02 19.99

B Stock A Stock A Stock A 98.4 111.4 76.8 10.01 10.00 10.01

C Stock A Stock A Stock A 39.4 44.6 30.8 4.01 4.00 4.01

D Stock A Stock A Stock A 19.8 22.4 15.4 2.01 2.01 2.01

E Stock A Stock A Stock A 9.8 11.2 7.6 1.00 1.01 0.99

F Working TricA Working CaffA Working E2A 123 139.2 191.8 0.50 0.50 0.50

G Working TricA Working CaffA Working E2A 24.6 27.8 38.4 0.10 0.10 0.10

H Working TricB Working CaffB Working E2B 61.5 139 95.9 2.50E-02 4.99E-03 2.50E-02

K None None None 0 0 0 0 0 0

Spiking Solution Used (See Appendix G2) Volume spike delivered (µL)

Concentration from spike 

(µg/g) per sample

 

Table 48:  Execution of homogenate spikes onto sweet potato homogenate and concentration of samples created 
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Fit Upper Lower Fit Upper Lower Fit Upper Lower

K 0 10 0.63 0.72 0.55 6.3 7.2 5.5

K* 0 50 0.0 0.0 0.0

F 0.500 1000 1.06 1.17 0.95 1.06 1.17 0.95 210% 233% 189%

F 0.500 250 1.68 1.89 1.51 0.42 0.47 0.38 83% 93% 74%

F* 0.500 250 1.87 2.31 1.49 0.47 0.58 0.37 92% 114% 73%

F 0.500 100 3.02 3.40 2.65 0.30 0.34 0.26 59% 67% 52%

D 2.011 1000 4.45 3.87 4.45 0.00 3.87 221% 192%

*Samples were run separately with two calibration points that showed a best match the Aug 8th Calibration Curve 

Sample

Spike (µg/g) onto 

homogneate Dilution

Caffeine in Dilute Extract 

(µg/L) from ELISA 

Calibration Curve

Caffeine recovered from 

homogenate (ng/g for K) 

(µg/g for F and D)

Spike Recovery (%)

 

Table 49:  Caffeine ELISA responses and recovery of spikes onto grocery store sweet potato homogenates 

 

Fit Upper Lower Fit Upper Lower Fit Upper Lower

K 0 10 0.00 0.00 0.00 0 0 0

B 10.01 25000 0.35 0.37 0.34 8.86 9.31 8.42 89% 93% 84%

B 10.01 10000 0.62 0.66 0.58 6.15 6.57 5.78 62% 66% 58%

A 20.01 8000 1.94 2.43 1.67 15.48 19.46 13.40 77% 97% 67%

Sample

Spike (µg/g) onto 

homogneate Dilution

Triclosan in Dilute Extract 

(µg/L) from ELISA 

Calibration Curve

Triclosan recovered from 

homogenate (µg/g)

Spike Recovery (%)

 

Table 50:  Triclosan ELISA responses and recovery of spikes onto grocery store sweet potato homogenates 
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Fit Upper Lower Fit Upper Lower Fit Upper Lower

K 0 10 15.82 21.74 11.84 0.16 0.22 0.12

K* 0 10 12.64 16.92 9.79 0.13 0.17 0.10

K* 0 30 5.12 8.86 0.15 0.27

G 0.100 10000 9.59 13.84 0.10 0.14 96% 138%

G 0.100 4000 13.37 18.98 9.24 0.05 0.08 0.04 53% 76% 37%

*Samples in grey were run separately with two calibration points that showed a best match the Sept 8th Calibration Curve 

Spike Recovery (%)

Sample

Spike (µg/g) onto 

homogneate Dilution

Estradiol in Dilute Extract 

(ng/L)

Estradiol recovered from 

homogenate (ng/g for K) 

(µg/g for G)

 

Table 51:  Estrdiol ELISA responses and recovery of spikes onto grocery store sweet potato homogenates 
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B.3:  Phase 1 investigation; GC-ECD retention time and peak area response to  

         QuEChERS extracts of sweet potato, homogenates spiked with known  

         masses of triclosan 

 

Sample Letter 

Assigned

Triclosan spike 

(µg/g)

A 20.01

B 10.01

C 4.006

D 2.013

E 0.996

F 0.500

G 0.100

H 2.50E-02

K 0  
Table 52:  Triclosan spike delivered (µg/g) onto 

homogenates of sweet potato samples (taken 

from Table 48) 

 

 

Sample Letter 

Assigned 

Retention Time Peak Area

A 43.879 2093812

B 43.880 1224810.5

C 43.881 657438

D 43.882 316458.438

E 43.879 7892.18555

F 43.882 113413.219

G 43.880 31679.6738

H 43.881 8832.63965

K 43.872 12047.7275  

Table 53: GC-ECD retention time and peak 

area responses for QuEChERS extracts of sweet 

potato with known triclosan spikes delivered 

onto homogenate prior to extraction 
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Figure 18:  Triclosan spike applied to homogenate vs. GC-ECD peak area response 
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B.4:  Phase 1 investigation; GC-ECD peak area responses to neat solutions of 

          triclosan in acetonitrile 

 

Dilution of Working TricA* Concentration (mg/L) Retention Time Peak Area

None 2.034E+01 43.881 1582548.75

1 in 5 4.067E+00 43.875 118923.5

1 in 10 2.034E+00 43.876 57040.10547

1 in 20 1.017E+00 43.876 33685.57813

1 in 40 5.084E-01 43.877 20538.51758

1 in 200 1.017E-01 43.878 5022.739258

*Refer to Table 38  

Table 54:  Retention time and peak area of neat solutions of triclosan in acetonitrile 
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Figure 19:  Concentration of neat solutions of triclosan in acetonitrile vs. GC-ECD peak area response 
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B.5:  Phase 1 investigation; GC-Ion-Trap-MS signal to noise responses to neat  

         standards of target compounds and determination of instrument detection  

         limits (IDL) 

 

Sample* Compound

Derivatized 

(Y/N)

Concentration 

(mg/L)

S/N

 Instrument 

Dection Limit IDL 

(mg/L)

Mix A Caffeine N 1.795E+01 1249 0.144

Mix A Triclosan N 2.034E+01 5381 0.038

DN_E2 Estradiol Y 4.344E+00 6808 0.006

*See Table 39  

Table 55:  GC-Ion-Trap-MS signal to noise responses for target compounds within neat standards in 

acetonitrile (Mix A) and hexane (DN_2) 
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B.6:  Phase 1 investigation; GC-Ion-Trap-MS signal to noise responses to  

         homogenate spiked sweet potato samples and determination of practical 

         detection limits (PDL) 

 

Sweet 

Potato 

Extract

Compound

Homogenate 

Spike Delivered 

(µg/g)

Derivatized 

(Y/N)

Concentration After 

Derivatization (µg/g)

S/N 

 Practical Detection 

Limit (µg/g)

A Caffeine 20.02 N N/A 195 1.026

A Triclosan 20.01 N N/A 3167 0.063

A Triclosan 20.01 Y 33.351 2507 0.133

A Estradiol 19.99 Y 33.318 2250 0.148

C Triclosan 4.01 Y 4.674 701 0.067

C Estradiol 4.01 Y 4.683 396 0.118  

Table 56:  GC-Ion-Trap-MS signal to noise responses for target compounds within extracts of 

homogenate spiked sweet potato.  Derivatized samples were prepared using derivatization Method A 

(500uL sample A and 350uL sample C blown to dryness and made up in a final volume of 300uL hexane) 

 

 
Figure 20:  GC-Ion-Trap-MS chromatogram and response to caffeine within extract of homogenate-

spiked sweet potato sample A (20.02µg/g):  Not Derivatized. 
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Figure 21:  GC-Ion-Trap-MS chromatogram and response to triclosan within extract of homogenate-

spiked sweet potato sample A (20.01µg/g):  Not Derivatized. 
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Figure 22:  GC-Ion-Trap-MS chromatogram and response to triclosan within extract of homogenate-

spiked sweet potato sample A (20.01µg/g):  Derivatized. 
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Figure 23:  GC-Ion-Trap-MS chromatogram and response to estradiol within extract of homogenate-

spiked sweet potato sample A (19.99µg/g):  Derivatized. 
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Figure 24:  GC-Ion-Trap-MS chromatogram and response to triclosan within extract of homogenate-

spiked sweet potato sample C (4.01µg/g):  Derivatized. 
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Figure 25:  GC-Ion-Trap-MS chromatogram and response to estradiol within extract of homogenate-

spiked sweet potato sample C (4.01µg/g):  Derivatized. 
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APPENDIX C: 

PHASE 2 INVESTIGATION 

C.1:  Phase 2 investigation; homogenate and extract preparation and execution 

Sample 1 Caffeine Triclosan Estradiol
Caffeine 

(µg/L)

Triclosan 

(µg/L)

Estradiol 

(ng/L)

+A 10 15 30 5.33E+01 1.61E+00 1.73E+01

+B 40 10 10 2.13E+02 1.07E+00 5.77E+00

+C 20 20 20 1.07E+02 2.15E+00 1.15E+01

*Refer to Appendix A.3

Volume(µL) Working 

Solutions (B1.2) spiked into 

2 mL dilute extract*

Concentration Contribution 

Delivered from Spike

 
Table 57:  Execution of standard addition spikes into unspiked-homogenate extract without dSPE clean 

up (Sample 1) 

Sample 

Designation

Caffeine Triclosan Estradiol Caffeine Triclosan Estradiol Caffeine Triclosan Estradiol

Sample 2 0 0 0 N/A N/A N/A

Sample 4 23.5 11.7 21.7 2.50E-01 6.29E-02 1.25E-03 5.01E+01 1.26E+01 2.50E+02

Sample 6 11.8 11.7 21.7 1.26E-01 6.29E-02 1.25E-03 2.51E+01 1.26E+01 2.50E+02

Sample 8 23.5 11.7 10.9 2.50E-01 6.29E-02 6.29E-04 5.01E+01 1.26E+01 1.26E+02

Sample 10 11.8 11.7 10.9 1.26E-01 6.29E-02 6.29E-04 2.51E+01 1.26E+01 1.26E+02

*Refer to Appendix A.3

Volume(µL) Working 

Solutions (B1.1)* spiked 

onto 5 gram homogenates

Mass Spiked (µg) onto 5 

gram homogenates

Concentration (ng/g) Spiked 

onto Homogenate

 
Table 58:  Execution of spikes onto sweet potato leaf homogenates for samples that DID undergo dSPE 

Sample 

Designation

Caffeine Triclosan Estradiol Caffeine Triclosan Estradiol Caffeine Triclosan Estradiol

Sample 1 0 0 0 N/A N/A N/A

Sample 3 23.5 23.3 21.7 2.50E-01 1.25E-01 1.25E-03 5.01E+01 2.50E+01 2.50E+02

Sample 5 11.8 23.3 21.7 1.26E-01 1.25E-01 1.25E-03 2.51E+01 2.50E+01 2.50E+02

Sample 7 23.5 23.3 10.9 2.50E-01 1.25E-01 6.29E-04 5.01E+01 2.50E+01 1.26E+02

Sample 9 11.8 23.3 10.9 1.26E-01 1.25E-01 6.29E-04 2.51E+01 2.50E+01 1.26E+02

*Refer to Appendix A.3

Volume(µL) Working 

Solutions (B1.1)* spiked 

onto 5 gram homogenates

Mass Spiked (µg) onto 5 

gram homogenates

Concentration (ng/g) Spiked 

onto Homogenate

 

Table 59:  Execution of spikes onto sweet potato leaf homogenates for samples that DID NOT undergo 

dSPE 
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 Spike Delivered 

into Extract (µg/L)

Fit Upper Lower Fit Upper Lower Fit Upper Lower

0 3.25 3.69 2.82

1.07 4.17 4.95 3.65 0.91 1.25 0.83 86% 117% 78%

1.07 4.04 4.73 3.54 0.79 1.03 0.72 74% 97% 67%

2.13 4.81 4.19 1.56 1.37 73% 64%

4.26 High

4.26 High

 Caffeine Concentration (µg/L) 

from ELISA Calibration Curve

Concentration (µg/L) above 

Background

% Response Expected Above 

Background

 
Table 60:  Caffeine ELISA Responses to Standard Addition Spikes into QuEChERS Extracts of Sweet Potato Leaves 

 Spike Delivered 

into Extract (µg/L)

Fit Upper Lower Fit Upper Lower Fit Upper Lower

0 0.41 0.56 0.31

1.07 2.02 1.59 1.60 1.28 149% 119%

1.61 2.33 1.39 1.91 1.08 119% 67%

2.15 2.94 1.93 2.53 1.62 118% 76%

 Triclosan Concentration (µg/L) 

from ELISA Calibration Curve

Concentration (µg/L) above 

Background

% Response Expected Above 

Background

 
Table 61:  Triclosan ELISA Responses to Standard Addition Spikes into QuEChERS Extracts of Sweet Potato Leaves 

 Spike Delivered 

into Extract (µg/L)

Fit Upper Lower Fit Upper Lower Fit Upper Lower

0 30.17 16.07

5.77 High

11.54 High

17.31 High

 Estradiol Concentration (ng/L) 

from ELISA Calibration Curve

Concentration (µg/L) above 

Background

% Response Expected Above 

Background

 
Table 62:  Estradiol ELISA Responses to Standard Addition Spikes into QuEChERS Extracts of Sweet Potato Leaves 
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Fit Upper Lower Fit Upper Lower Fit Upper Lower Fit Upper Lower

0 0.66 0.77 0.56 13.33 8.8E+00 1.0E+01 7.4E+00

5.01E+01 2.26 2.60 1.96 13.33 3.0E+01 3.5E+01 2.6E+01 2.1E+01 2.4E+01 1.9E+01 42% 49% 37%

2.51E+01 1.61 1.85 1.41 13.33 2.1E+01 2.5E+01 1.9E+01 1.3E+01 1.4E+01 1.1E+01 50% 57% 46%

5.01E+01 2.19 2.53 1.90 13.33 2.9E+01 3.4E+01 2.5E+01 2.0E+01 2.3E+01 1.8E+01 41% 47% 36%

2.51E+01 1.48 1.70 1.31 13.33 2.0E+01 2.3E+01 1.7E+01 1.1E+01 1.2E+01 1.0E+01 44% 49% 40%

Caffeine concentration 

(ng/g) spiked onto 

homogenate

Dilution 

Factor

Caffeine Concentration 

(µg/L) in Diluted Extract 

from Calibration Curve

Caffeine recovered from 

homogenate (ng/g)

Caffeine recovered from 

homogenate (ng/g) above 

unspiked sample

% Recovery 

 
Table 63:  Caffeine ELISA Responses and Recovery of Homogenate Spikes onto Sweet Potato Leaves with dSPE cleanup 

Fit Upper Lower Fit Upper Lower Fit Upper Lower Fit Upper Lower

0 13.33

1.26E+01 0.19 0.26 0.13 13.33 2.5E+00 3.5E+00 1.7E+00 2.5E+00 3.5E+00 1.7E+00 20% 28% 14%

1.26E+01 0.18 0.25 0.12 13.33 2.3E+00 3.3E+00 1.6E+00 2.3E+00 3.3E+00 1.6E+00 19% 26% 13%

1.26E+01 0.09 0.14 0.06 13.33 1.2E+00 1.9E+00 8.1E-01 1.2E+00 1.9E+00 8.1E-01 10% 15% 6%

1.26E+01 0.19 0.26 0.13 13.33 2.5E+00 3.5E+00 1.7E+00 2.5E+00 3.5E+00 1.7E+00 20% 28% 14%

Triclosan Concentration 

(µg/L) in Diluted Extract 

from Calibration Curve

Triclosan recovered from 

homogenate (ng/g)

Triclosan recovered from 

homogenate (ng/g) above 

unspiked sample

% Recovery 

Triclosan concentration 

(ng/g) spiked onto 

homogenate

Dilution 

Factor

 
Table 64:  Triclosan ELISA Responses and Recovery of Homogenate Spikes onto Sweet Potato Leaves with dSPE cleanup 

Fit Upper Lower Fit Upper Lower Fit Upper Lower Fit Upper Lower

0 13.33

2.50E+02 11.02 14.68 8.30 13.33 1.5E+02 2.0E+02 1.1E+02 1.5E+02 2.0E+02 1.1E+02 59% 78% 44%

2.50E+02 9.83 13.01 7.17 13.33 1.3E+02 1.7E+02 9.6E+01 1.3E+02 1.7E+02 9.6E+01 52% 69% 38%

1.26E+02 7.57 10.45 13.33 1.0E+02 1.4E+02 1.0E+02 1.4E+02 0.0E+00 80% 111%

1.26E+02 8.48 11.33 5.69 13.33 1.1E+02 1.5E+02 7.6E+01 1.1E+02 1.5E+02 7.6E+01 90% 120% 60%

Estradiol concentration 

(pg/g) spiked onto 

homogenate

Estradiol Concentration 

(ng/L) in Diluted Extract 

from Calibration Curve

Estradiol recovered from 

homogenate (pg/g)

Estradiol recovered from 

homogenate (pg/g) above 

unspiked sample

% Recovery 

Dilution 

Factor

 
Table 65:  Estradiol ELISA Responses and Recovery of Homogenate Spikes onto Sweet Potato Leaves with dSPE cleanup 
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Fit Upper Lower Fit Upper Lower Fit Upper Lower Fit Upper Lower

0 3.25 3.69 2.82 13.33 4.3E+01 4.9E+01 3.8E+01

5.01E+01 4.68 4.09 13.33 6.2E+01 5.5E+01 1.9E+01 1.7E+01 38% 34%

2.51E+01 3.99 4.65 3.49 13.33 5.3E+01 6.2E+01 4.7E+01 9.8E+00 1.3E+01 9.0E+00 39% 50% 36%

5.01E+01 4.08 4.80 3.58 13.33 5.4E+01 6.4E+01 4.8E+01 1.1E+01 1.5E+01 1.0E+01 22% 29% 20%

2.51E+01 4.17 4.96 3.66 13.33 5.6E+01 6.6E+01 4.9E+01 1.2E+01 1.7E+01 1.1E+01 49% 67% 45%

Caffeine concentration 

(ng/g) spiked onto 

homogenate

Dilution 

Factor

Caffeine Concentration 

(µg/L) in Diluted Extract 

from Calibration Curve

Caffeine recovered from 

homogenate (ng/g)

Caffeine recovered from 

homogenate (ng/g) above 

unspiked sample

% Recovery 

 
Table 66:  Caffeine ELISA responses and recovery of homogenate spikes onto sweet potato leaves without dSPE cleanup 

 

Triclosan concentration 

(ng/g) spiked onto 

homogenate

Dilution 

Factor

Fit Upper Lower Fit Upper Lower Fit Upper Lower Fit Upper Lower

0 0.41 0.56 0.31 13.33 5.5E+00 7.5E+00 4.1E+00

2.50E+01 1.00 1.43 0.72 13.33 1.3E+01 1.9E+01 9.6E+00 7.9E+00 1.2E+01 5.4E+00 31% 22%

2.50E+01 1.11 1.57 0.78 13.33 1.5E+01 2.1E+01 1.0E+01 9.2E+00 1.4E+01 6.3E+00 37% 54% 25%

2.50E+01 0.64 0.90 0.48 13.33 8.5E+00 1.2E+01 6.4E+00 2.9E+00 4.5E+00 2.2E+00 12% 18% 9%

2.50E+01 1.06 1.50 0.75 13.33 1.4E+01 2.0E+01 1.0E+01 8.6E+00 1.3E+01 5.9E+00 34% 50% 23%

Triclosan Concentration 

(µg/L) in Diluted Extract 

from Calibration Curve

Triclosan recovered from 

homogenate (ng/g)

Triclosan recovered from 

homogenate (ng/g) above 

unspiked sample

% Recovery 

 
Table 67:  Triclosan ELISA responses and recovery of homogenate spikes onto sweet potato leaves without dSPE cleanup 
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Estradiol concentration 

(pg/g) spiked onto 

homogenate

Dilution 

Factor

Fit Upper Lower Fit Upper Lower Fit Upper Lower Fit Upper Lower

0 30.17 16.07 13.33 4.0E+02 0.0E+00 2.1E+02

2.50E+02 18.27 13.10 13.33 2.4E+02 0.0E+00 1.7E+02 -1.6E+02 0.0E+00 -4.0E+01 -63% -16%

2.50E+02 17.19 12.63 13.33 2.3E+02 0.0E+00 1.7E+02 -1.7E+02 0.0E+00 -4.6E+01 -69% -18%

1.26E+02 11.61 15.50 8.86 13.33 1.5E+02 2.1E+02 1.2E+02 -2.5E+02 2.1E+02 -9.6E+01 -197% 164% -76%

1.26E+02 15.49 11.78 13.33 2.1E+02 0.0E+00 1.6E+02 -2.0E+02 0.0E+00 -5.7E+01 -156% -45%

Estradiol recovered from 

homogenate (pg/g) above 

unspiked sample

% Recovery 

Estradiol Concentration 

(ng/L) in Diluted Extract 

from Calibration Curve

Estradiol recovered from 

homogenate (pg/g)

 

Table 68:  Estradiol ELISA responses and recovery of homogenate spikes onto sweet potato leaves without dSPE cleanup (Background left AS READ) 

 

Estradiol concentration 

(pg/g) spiked onto 

homogenate

Dilution 

Factor

Fit Upper Lower Fit Upper Lower Fit Upper Lower Fit Upper Lower

0 13.33 8.5E+01 1.6E+02 1.5E+01

2.50E+02 18.27 13.10 13.33 2.4E+02 1.7E+02 1.6E+02 -1.6E+02 1.6E+02 63% 64%

2.50E+02 17.19 12.63 13.33 2.3E+02 1.7E+02 1.4E+02 -1.6E+02 1.5E+02 58% 61%

1.26E+02 11.61 15.50 8.86 13.33 1.5E+02 2.1E+02 1.2E+02 7.0E+01 5.2E+01 1.0E+02 56% 41% 82%

1.26E+02 15.49 11.78 13.33 2.1E+02 1.6E+02 1.2E+02 -1.6E+02 1.4E+02 97% 113%

Estradiol Concentration 

(ng/L) in Diluted Extract 

from Calibration Curve

Estradiol recovered from 

homogenate (pg/g)*

Estradiol recovered from 

homogenate (pg/g) above 

unspiked sample

% Recovery 

Removed

 

Table 69:  Estradiol ELISA responses and recovery of homogenate spikes onto sweet potato leaves without dSPE cleanup (Background estimate from 

Figure 28 in Appendix C.5) 
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C.5:  Phase 2 investigation; determining the impact of dSPE on ELISA response 

 

no-dSPE 

Sample

dSPE 

Sample

Caffeine concentration 

(ng/g) spiked onto 

homogenate

Response 

Difference (ng/g)  

(no-dSPE less dSPE) 

Fit Fit 

Sample 1 Sample 2 0 4.3E+01 8.8E+00 3.5E+01

Sample 3 Sample 4 5.01E+01 6.2E+01 3.0E+01 3.2E+01

Sample 5 Sample 6 2.51E+01 5.3E+01 2.1E+01 3.2E+01

Sample 7 Sample 8 5.01E+01 5.4E+01 2.9E+01 2.5E+01

Sample 9 Sample 10 2.51E+01 5.6E+01 2.0E+01 3.6E+01

3.1E+01

3.5E+01

Caffeine 

"Recovered" from 

homogenate (ng/g) 

no-dSPE

Caffeine Recovered 

from homogenate 

(ng/g) with dSPE

Average Response Difference

Difference Unspiked Samples  

Table 70:  Determining the difference in caffeine ELISA response for extracts without dSPE cleanup vs. 

those with dSPE 

 

 

Figure 26:  Paired t-test run in R, testing null hypothesis that the caffeine ELISA response with dSPE 

(light grey column Table 70) is equal to the response without dSPE (dark grey column in Table 70); also 

given 95% confidence intervals for the true difference 
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Triclosan concentration 

(ng/g) spiked onto 

homogenate (no-dSPE)

Triclosan concentration 

(ng/g) spiked onto 

homogenate with dSPE

Triclosan 

"recovered" from 

homogenate (ng/g) 

no-dSPE

Normalized 

Triclosan recovered 

from homogenate 

(ng/g) no-dSPE

Triclosan recovered 

from homogenate 

(ng/g) with dSPE

Difference (ng/g)  

(normalized no-

dSPE less dSPE)

Fit Fit Fit 

0 0 5.5E+00 5.5E+00 0.00E+00 5.5E+00

2.50E+01 1.26E+01 1.3E+01 6.7E+00 2.5E+00 4.2E+00

2.50E+01 1.26E+01 1.5E+01 7.4E+00 2.3E+00 5.0E+00

2.50E+01 1.26E+01 8.5E+00 4.2E+00 1.2E+00 3.0E+00

2.50E+01 1.26E+01 1.4E+01 7.1E+00 2.5E+00 4.5E+00

4.2E+00

5.5E+00Difference Unspiked Samples

Average Response Difference

 

Table 71:  Determining the difference in triclosan ELISA response for extracts without dSPE cleanup vs. 

those with dSPE 

 

 

Figure 27:  Two sample t-test run in R, testing null hypothesis that the triclosan ELISA response with 

dSPE (light grey column Table 71) is equal to the response without dSPE (dark grey column in Table 71); 

also given 95% confidence intervals for the true difference 

 

no-dSPE Sample dSPE Sample

Estradiol 

concentration (pg/g) 

spiked onto 

homogenate

Estradiol 

"recovered" from 

homogenate 

(pg/g) no-dSPE

Estradiol 

recovered from 

homogenate 

(pg/g) with dSPE

Concentration 

Difference 

(pg/g)  (no dSPE 

less dSPE) 

Fit Fit 

Sample 1 Sample 2 0.00E+00 4.02E+02 0.00E+00

Sample 3 Sample 4 2.50E+02 2.44E+02 1.5E+02 9.67E+01

Sample 5 Sample 6 2.50E+02 2.29E+02 1.3E+02 9.81E+01

Sample 7 Sample 8 1.26E+02 1.55E+02 1.0E+02 5.39E+01

Sample 9 Sample 10 1.26E+02 2.07E+02 1.1E+02 9.34E+01

8.6E+01

4.0E+02

Average Response Difference

Difference Unspiked Samples  

Table 72:  Determining the difference in estradiol ELISA response for extracts without dSPE cleanup vs. 

those with dSPE 
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Figure 28:  Paired t-test run in R, testing null hypothesis that the estradiol ELISA response with dSPE 

(light grey column Table 72) is equal to the response without dSPE (dark grey column in Table 72); also 

given 99% confidence intervals for the true difference* 

*Mean and 99%CI from t-test put into estradiol Table 69 in Appendix C.4 

 

Figure 29:  Paired t-test run in R, testing null hypothesis that the estradiol ELISA response with dSPE 

(light grey column Table 72) is equal to the response without dSPE (dark grey column in Table 72); also 

given 95% confidence intervals for the true difference** 

**95% confidence intervals for mean difference reported in main text section 3.2.2.5 
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From Appendix C.4 From Appendix C.3

no.dsp.recovery dsp.recovery

38% 42%

39% 50%

22% 41%

49% 44%

31% 20%

37% 19%

12% 10%

34% 20%

63% 59%

58% 52%

56% 80%

97% 90%

Caffeine

Triclosan

Estradiol

 

Table 73:  Collated recovery rates from sweet potato leaf homogenate (with and without dSPE) for all 

target analytes 

 

Figure 30:  T-test comparing the percent recovery caffeine dSPE vs. no dSPE (see Table 73) 

 

 

Figure 31:  T-test comparing the percent recovery triclosan dSPE vs. no dSPE (see Table 73) 
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Figure 32:  T-test comparing the percent recovery estradiol dSPE vs. no dSPE (see Table 73) 

 



 

149 
 

APPENDIX D:   

PHASE 3 INVESTIGATION 

D.1:  Phase 3 investigation; sample designation, preparation, and execution of  

          extractions from matrices 

Homogenate mass 

(g) of each 

duplicate sample

Volume (µL) working 

#5 applied to 

homogenate-spiked 

Volume (mL) of acetonitrile used for 

extraction

VSO 10.00 75 15

VSA 10.00 75 15

L:G:SO:L Extra 0.82 50 10

L:S:SO:L Extra 0.99 50 10

P:G:SO:P Extra 10.00 50 10

P:S:SO:P Extra 10.00 50 10

ELISA label given 

(See Appendix D2)
Extract Preparation Preparation Done

Virgin Sand 

Samples (VSO)

VSO D Extract Spiked (10µL working #5 into 2mL)

VSO C Unspiked

VSO H Homogenate Spiked (75µL working #5 onto 10.00g)

Virgin Sand 

Samples (VSA)

VSA D Extract Spiked (10µL working #5 into 2mL)

VSA C Unspiked

VSA H Homogenate Spiked (75µL working #5 onto 10.00g)

L:G:SO:L Extra 

(Consumed) 

LGL D Extract Spiked (10µL working #5into 2mL)

LGL C Unspiked

LGL H Homogenate Spiked (50µL working #5 onto .82g or "9.65g")

L:S:SO:L Extra 

(Consumed)

LSL D Extract Spiked (10µL working #5 into 2mL)

LSL C Unspiked

LSL H Homogenate Spiked (50µL working #5 onto 0.99g or "24.8g")

P:S:SO:P Extra 

(Consumed) 

SP D Extract Spiked (10µL working #5 into 2mL)

SP C Unspiked

SP H Homogenate Spiked (50µL working #5 onto 10g)

P:G:SO:P Extra 

(Consumed) 
GP D Extract Spiked (10µL working #5 into 2mL)

GP C Unspiked

GP H Homogenate Spiked (50µL working #5 onto 10g)  
Table 74:  Phase 3 investigation; sample designation, preparation, and execution of extractions from 

matrices 
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D.2:  Phase 3 investigation; extract dilutions and designations for ELISA  

          analysis 

C = Unspiked

H = Homogenate spiked

D = Extract spiked

ELISA 

Sample 

Designation

Input Sample (Refer 

to Appendix D1 and 

Key above)

Glassware 

volume (mL)

Input 

volume 

(mL)

Dilution of 

Original 

Extract

A1 VSO D 2 0.2 10

A2 A1 2 1 20

A3 A2 2 1 40

A4 A3 2 1 80

B1 LGL D 2 0.2 10

B2 B1 2 1 20

B3 B2 2 1 40

B4 B3 2 1 80

C1 GP D 2 0.2 10

C2 C1 2 1 20

C3 C2 2 1 40

C4 C3 2 1 80

D1 VSO C 2 0.2 10

D2 D1 2 1 20

F1 VSO H 2 0.2 10

F2 F1 2 1 20

H1 VSA C 2 0.2 10

H2 H1 2 1 20

J1 VSA H 2 0.2 10

J2 J1 2 1 20

L1 LGL C 2 0.2 10

L2 L1 2 1 20

N1 LGL H 2 0.2 10

N2 N1 2 1 20

P1 LSL C 2 0.2 10

P2 P1 2 1 20

R1 LSL H 2 0.2 10

R2 R1 2 1 20

T1 GP C 2 0.2 10

T2 T1 2 1 20

Input Sample Key

 

Table 75:  Phase 3 investigation; extract dilutions and designations for ELISA analysis 
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ELISA 

Sample 

Designation

Input Sample (Refer 

to Appendix D1 and 

Key above)

Glassware 

volume (mL)

Input 

volume 

(mL)

Dilution of 

Original 

Extract

V1 GP H 2 0.2 10

V2 V1 2 1 20

X1 SP C 2 0.2 10

X2 X1 2 1 20

Z1 SP H 2 0.2 10

Z2 Z1 2 1 20

BB1 L:G:SO:S 2 0.2 10

BB2 BB1 2 1 20

BB3 BB2+1µL working #5 2 1 40

CC1 P:G:SO:S 2 0.2 10

CC2 CC1 2 1 20

CC3 CC2+1µL working #5 2 1 40

DD1 P:F:SO:S 2 0.2 10

DD2 DD1 2 1 20

DD3 DD2+1µL working #5 2 1 40

EE1 L:F:SO:L 2 0.2 10

EE2 EE1 2 1 20

EE3 EE2+1µL working #5 2 1 40

FF1 L:F:SO:S 2 0.2 10

FF2 FF1 2 1 20

FF3 FF2+1µL working #5 2 1 40

GG1 L:S:SO:L 2 0.2 10

GG2 GG1 2 1 20

GG3 GG2+1µL working #5 2 1 40

HH1 P:S:SO:S 2 0.2 10

HH2 HH1 2 1 20

HH3 HH2+1µL working #5 2 1 40

LGW1 Working #5 2 1µL 2000

LGW2 LGW1 2 1 4000

LGW3 LGW2 2 1 8000

Previously stored extracts also analyzed (refer to labbook)

 
Table 75 (Continued):  Phase 3 investigation; extract dilutions and designations for ELISA analysis 
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D.3:  Phase 3 investigation; ELISA analysis of working solution #5 used to spike  

          onto homogenates and into finished extracts 

 

Fit Upper Lower Fit Upper Lower

Working Solution # 5 in LGW 2000 5858 4660 6418 3344 23.3 32.1 16.7

Working Solution # 5 in LGW 4000 5858 4655 6375 3542 23.3 31.9 17.7

Working Solution # 5 in LGW 8000 5858 5638 7514 3905 28.2 37.6 19.5

Average 4985 6769 3597 24.9 33.8 18.0

Average (fit) Caffeine Concentration (µg/L) of working solution used for spiking 4985

Concentration (µg/L) expected from 10µL spiked into 2mL extracts 24.9 +8.9 -6.9

Concentration (µg/L) 

expected in 2 mL extract 

with 10µL #5 spiked in 

(GraphPad)

Sample Dilution

Expected Caffeine 

Concenration in 

Working Solution 

(Appendix A2) 

(µg/L)

Caffeine Concentration (µg/L) 

and 99% CI for Original Working 

Solution #5 

 

Table 76:  ELISA analysis of caffeine within dilutions of working solution #5; and determining the 

concentration bump that should be observed upon adding a 10µL spike of #5 into a 2mL sample 

 

 

Figure 33:  Using a one sample t-test in R to determine if the differences observed in the normalized 

dilutions of working solution #5 (10µL spike in 2mL sample) are statistically significant, and determining 

the 95% confidence interval of the concentration bump that should be observed upon adding a 10µL 

spike of #5 into a 2mL sample: Caffeine. 
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Fit Upper Lower Fit Upper Lower

Working Solution # 5 in LGW 2000 2956 2656 3439 2038 13.3 17.2 10.2

Working Solution # 5 in LGW 4000 2956 3576 4627 2810 17.9 23.1 14.0

Working Solution # 5 in LGW 8000 2956 3202 3947 2606 16.0 19.7 13.0

Average 3145 4004 2484 15.7 20.0 12.4

Average (fit) triclosan concentration (µg/L) of working solution used for spiking 3145

Concentration (µg/L) expected from 10µL spiked into 2mL extracts 15.7 +4.3 -3.3

Base Sample Dilution

Expected Triclosan 

Concenration in 

Working Solution 

(Appendix A2) 

(µg/L)

Triclsoan Concentration (µg/L) 

and 99% CI for Original Working 

Solution #5 

Concentration (µg/L) 

expected in 2 mL extract 

with 10µL #5 spiked in 

(GraphPad)

 
Table 77:  ELISA analysis of triclosan within dilutions of working solution #5; and determining the 

concentration bump that should be observed upon adding a 10µL spike of #5 into a 2mL sample 

 
Figure 34:  Using a one sample t-test in R to determine if the differences observed in the normalized  

dilutions of working solution #5 (10µL spike in 2mL sample) are statistically significant, and determining 

the 95% confidence interval of the concentration bump that should be observed upon adding a 10µL 

spike of #5 into a 2mL sample: Triclosan. 

Fit Upper Lower Fit Upper Lower

Working Solution # 5 in LGW 2000 28850 High

Working Solution # 5 in LGW 4000 28850 84116 72146 421 361

Working Solution # 5 in LGW 8000 28850 84407 103211 68967 422 516 345

Average 84262 103211 70557 421 516 353

Average (fit) estradiol concentration (ng/L) of working solution used for spiking 84262

Concentration (ng/L) expected from 10µL spiked into 2mL extracts 421 +95 -69

Concentration (µg/L) 

expected in 2 mL extract 

with 10µL #5 spiked in 

(GraphPad)

Base Sample Dilution

Expected Estradiol 

Concenration in 

Working Solution 

(Appendix A2) 

(ng/L)

Estradiol Concentration (µg/L) 

and 99% CI for Original Working 

Solution #5 

 
Table 78:  ELISA analysis of estradiol within dilutions of working solution #5; and determining the 

concentration bump that should be observed upon adding a 10µL spike of #5 into a 2mL sample 
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D.4:  Phase 3 investigation; caffeine ELISA analysis of extract-spiked samples 

          and unspiked homogenate extracts 

 

Fit Upper Lower

Virgin Soil (VSO)

Extract Spiked 10 24.9 +/-7.0 23.2 32.0 16.7

Extract Spiked 20 24.9 +/-7.0 21.6 29.3 16.3

Extract Spiked 40 24.9 +/-7.0 26.3 35.3 18.0

Extract Spiked 80 24.9 +/-7.0 37.3 53.5 24.1

Unspiked Homogeante Extract 10 0.0 No Detect No Detect No Detect

Unspiked Homogeante Extract 20 0.0 No Detect No Detect No Detect

*From Appendix D.3

Matrix and sample prepartion Dilution

Expected caffeine 

concentration  (µg/L) 

from 10µL spike into 

2mL original extract*

Concentration (µg/L) and 99% CI 

range of original extract

 

Table 79:  Caffeine ELISA analysis of extracts of Virgin Soil samples (VSO) 

 

 

Figure 35:  Two sample t-test run in R, testing the null hypothesis that there is no significant difference 

between the caffeine concentration observed in the VSO extract spikes samples (Table 79) and the 

expected values based on the analysis of working solution #5 (Table 76) 
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Fit Upper Lower

L:G:SO:L (Fresh Extraction)

Extract Spiked 10 24.9 +/-7.0 27.1 37.5 19.0

Extract Spiked 20 24.9 +/-7.0 25.8 35.8 19.7

Extract Spiked 40 24.9 +/-7.0 35.1 46.6 25.5

Extract Spiked 80 24.9 +/-7.0 35.0 50.9 22.1

Unspiked Homogeante Extract 10 0.0 No Detect No Detect No Detect

Unspiked Homogeante Extract 20 0.0 No Detect No Detect No Detect

*From Appendix D.3

Matrix and sample prepartion Dilution

Expected caffeine 

concentration  (µg/L) 

from 10µL spike into 

2mL original extract*

Concentration (µg/L) and 99% CI 

range of original extract

 

Table 80:  Caffeine ELISA analysis of extracts of lettuce eaf samples  (grown in soil, irrigate with tap 

water) 

 

 

Figure 36:  Two sample t-test run in R, testing the null hypothesis that there is no significant difference 

between the caffeine concentration observed in the L:G:SO:L extract spikes samples (Table 80) and the 

expected values based on the analysis of working solution #5 (Table 76). 
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Fit Upper Lower Fit Upper Lower

P:G:SO:P (Fresh Extraction)

Extract Spiked 10 24.9 +/-7.0 28.8 40.6 20.0 24.3 33.5 16.7

Extract Spiked 20 24.9 +/-7.0 31.3 43.9 23.7 26.8 36.8 20.4

Extract Spiked 40 24.9 +/-7.0 44.5 60.5 33.7 39.9 53.4 30.3

Extract Spiked 80 24.9 +/-7.0 34.4 50.3 21.6 29.9 43.2 18.2

Unspiked Homogeante Extract 10 0.0 5.1 7.2 3.4

Unspiked Homogeante Extract 20 0.0 3.9 7.0 No Detect

*From Appendix D.3

Concentration (µg/L) and 99% CI 

range of original extract LESS 

average unspiked resposneMatrix and sample prepartion Dilution

Expected caffeine 

concentration  (µg/L) 

from 10µL spike into 

2mL original extract

Concentration (µg/L) and 99% CI 

range of original extract

 
Table 81:  Caffeine ELISA analysis of extracts of sweet potato tissue (grown in soil, irrigate with tap water) 

 

Figure 37:  Two sample t-test run in R, testing the null hypothesis that there is no significant difference between the caffeine concentration observed in 

the P:G:SO:P extract spikes samples (Table 81) and the expected values based on the analysis of working solution #5 (Table 76). 
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D.5:  Phase 3 investigation; Triclosan ELISA analysis of extract-spiked samples  

          and unspiked homogenate extracts 

 

Fit Upper Lower

Virgin Soil (VSO)

Extract Spiked 10 15.7 +/- 5.7 11.9 15.3 9.2

Extract Spiked 20 15.7 +/- 5.7 11.6 14.8 9.5

Extract Spiked 40 15.7 +/- 5.7 14.4 17.6 11.6

Extract Spiked 80 15.7 +/- 5.7 12.7 16.3 9.6

Homogenate Only 10 0.0 No Detect No Detect No Detect

Homogenate Only 20 0.0 No Detect No Detect No Detect

*From Appendix D.3

Expected triclosan 

concentration  (µg/L) 

from 10µL spike into 

2mL original extract*

Concentration (µg/L) and 99% CI 

range of original extract
Matrix and sample prepartion Dilution

 

Table 82:  Triclosan ELISA analysis of extracts of Virgin Soil samples (VSO) 

 

 

Figure 38:  Two sample t-test run in R, testing the null hypothesis that there is no significant difference 

between the triclosan concentration observed in the VSO extract spikes samples (Table 82) and the 

expected values based on the analysis of working solution #5 (Table 77).  
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Fit Upper Lower

 L:G:SO:L (Fresh Extraction)

Extract Spiked 10 15.7 +/- 5.7 12.9 16.7 9.9

Extract Spiked 20 15.7 +/- 5.7 21.7 28.0 16.8

Extract Spiked 40 15.7 +/- 5.7 24.3 31.1 19.7

Extract Spiked 80 15.7 +/- 5.7 17.0 21.3 13.1

Homogenate Only 10 0.0 No Detect No Detect No Detect

Homogenate Only 20 0.0 No Detect No Detect No Detect

*From Appendix D.3

Matrix and sample prepartion Dilution

Expected triclosan 

concentration  (µg/L) 

from 10µL spike into 

2mL original extract*

Concentration (µg/L) and 99% CI 

range of original extract

 

Table 83:  Triclosan ELISA analysis of extracts of lettuce leaf samples (grown in soil, irrigate with tap 

water) 

 

 

Figure 39:  Two sample t-test run in R, testing the null hypothesis that there is no significant difference 

between the triclosan concentration observed in the L:G:SO:L extract spikes samples (Table 83) and the 

expected values based on the analysis of working solution #5 (Table 77). 
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Fit Upper Lower

P:G:SO:P (Fresh Extraction)

Extract Spiked 10 15.7 +/- 5.7 21.7 16.6

Extract Spiked 20 15.7 +/- 5.7 20.1 26.0 15.7

Extract Spiked 40 15.7 +/- 5.7 22.2 28.1 18.1

Extract Spiked 80 15.7 +/- 5.7 17.3 21.6 13.2

Homogenate Only 10 0.0 No Detect No Detect No Detect

Homogenate Only 20 0.0 No Detect No Detect No Detect

*From Appendix D.3

Matrix and sample prepartion Dilution

Expected triclosan 

concentration  (µg/L) 

from 10µL spike into 

2mL original extract*

Concentration (µg/L) and 99% CI 

range of original extract

 

Table 84:  Triclosan ELISA analysis of extracts of sweet potato samples (grown in soil, irrigate with tap 

water) 

 

 

Figure 40:  Two sample t-test run in R, testing the null hypothesis that there is no significant difference 

between the triclosan concentration observed in the P:G:SO:P extract spikes samples (Table 84) and the 

expected values based on the analysis of working solution #5 (Table 77). 
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D.6:  Phase 3 investigation; estradiol ELISA analysis of extract-spiked samples  

          and unspiked homogenate extracts 

 

Fit Upper Lower

Virgin Soil (VSO)

Extract Spiked 10 421 +/- 95 134 159 110

Extract Spiked 20 421 +/- 95 No Detect No Detect No Detect

Extract Spiked 40 421 +/- 95 429 524 351

Extract Spiked 80 421 +/- 95 506 638 385

Homogenate Only 10 0.0 No Detect No Detect No Detect

Homogenate Only 20 0.0 No Detect No Detect No Detect

*From Appendix D.3

Matrix and sample 

prepartion

Dilution

Expected estradiol 

concentration  (ng/L) 

from 10µL spike into 

2mL original extract*

Concentration (ng/L) and 99% CI 

range of original extract

 

Table 85:  Estradiol ELISA analysis of extracts of Virgin Soil samples (VSO) 

 

 

Figure 41:  Two sample t-test run in R, testing the null hypothesis that there is no significant difference 

between the estradiol concentration observed in the VSO extract spikes samples (Table 85) and the 

expected values based on the analysis of working solution #5 (Table 78). 
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Fit Upper Lower

 L:G:SO:L (Fresh Extraction)

Extract Spiked 10 421 +/- 95 336

Extract Spiked 20 421 +/- 95 303 356 251

Extract Spiked 40 421 +/- 95 425 520 348

Extract Spiked 80 421 +/- 95 314 423

Homogenate Only 10 0.0 300 245

Homogenate Only 20 0.0 297 349 246

*From Appendix D.3

Matrix and sample 

prepartion

Dilution

Expected estradiol 

concentration  (ng/L) 

from 10µL spike into 

2mL original extract*

Concentration (ng/L) and 99% CI 

range of original extract

 

Table 86:  Estradiol ELISA analysis of extracts of lettuce leaf samples (grown in soil, irrigate with tap 

water) 

 

 

Figure 42:  Two sample t-test run in R, testing the null hypothesis that there is no significant difference 

between the estradiol concentration observed in the L:G:SO:L extract spikes samples (Table 86) and the 

spiked lettuce extracts (Table 86). 

 

 



 

162 
 

Fit Upper Lower

P:G:SO:P (Fresh Extraction)

Extract Spiked 10 421 +/- 95 153 127

Extract Spiked 20 421 +/- 95 156 195 125

Extract Spiked 40 421 +/- 95 196 252

Extract Spiked 80 421 +/- 95 No Detect No Detect No Detect

Homogenate Only 10 0.0 84 105 68

Homogenate Only 20 0.0 107 137 70

*From Appendix D.3

Concentration (ng/L) and 99% CI 

range of original extract

Matrix and sample 

prepartion

Dilution

Expected estradiol 

concentration  (ng/L) 

from 10µL spike into 

2mL original extract*

 

Table 87:  Estradiol ELISA analysis of extracts of sweet potato samples (grown in soil, irrigate with tap 

water) 

 

 

Figure 43:  Two sample t-test run in R, testing the null hypothesis that there is no significant difference 

between the estradiol concentration observed in the P:G:SO:P extract spikes samples (Table 87) and the 

unspiked sweet potato extracts (Table 87). 
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D.7:  Phase 3 investigation; caffeine ELISA homogenate spike-recovery analysis 

mass (ng) 

spiked onto 

homogenate

Dilution Fit Upper Lower Fit Upper Lower Fit Upper Lower

0 10

0 20

374 10 7.9 10.5 5.6 119 158 84 32% 42% 23%

374 20 7.8 11.6 4.5 116 175 67 31% 47% 18%

Virgin Soil (VSO) matrix % Recovery

Caffeine Concentration and 

99%CI (µg/L)  within Original 

Extract

Mass Recovered (ng) within 

extract 

 

Table 88:  Homogenate spike recovery analysis from virgin soil matrix (note blank cells indicate an 

outside detection response from the ELISA or that the GraphPad algorithm could not create an 

upper/lower 99% confidence interval range value) 

 

ng spiked onto 

homogenate

Dilution Fit Upper Lower Fit Upper Lower Fit Upper Lower

0 10

0 20

374 10 15.8 22.1 12.0 236 332 179 63% 89% 48%

374 20 18.6 24.7 13.6 279 371 204 75% 99% 55%

Mass Recovered (ng) within 

extract 

% Recovery

Caffeine Concentration and 

99%CI (µg/L)  within Original 

Extract

Virgin Sand (VSA) matrix

 

Table 89:  Homogenate spike recovery analysis from virgin sand matrix (note blank cells indicate an 

outside detection response from the ELISA or that the GraphPad algorithm could not create an 

upper/lower 99% confidence interval range value) 

 

mass (ng) 

spiked onto 

homogenate

Dilution Fit Upper Lower Fit Upper Lower Fit Upper Lower

0 10

0 20

249 10 4.8 6.9 3.2 48.4 68.8 31.5 19% 28% 13%

249 20 7.2 11.0 71.6 109.6 29% 44%

L:G:SO:L (Lettuce Leaf) 

matrix

Mass Recovered (ng) within 

extract 

% Recovery

Caffeine Concentration and 

99%CI (µg/L)  within Original 

Extract

 

Table 90:  Homogenate spike recovery analysis from lettuce leaf matrix (note blank cells indicate an 

outside detection response from the ELISA or that the GraphPad algorithm could not create an 

upper/lower 99% confidence interval range value) 
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mass (ng) 

spiked onto 

homogenate

Dilution Fit Upper Lower Fit Upper Lower Fit Upper Lower

0 10

0 20

249 10 9.3 12.4 6.8 92.9 123.7 68.1 37% 50% 27%

249 20 10.5 14.7 7.0 105.4 147.2 69.9 42% 59% 28%

L:S:SO:L (Lettuce Leaf) 

matrix

Mass Recovered (ng) within 

extract 

Caffeine Concentration and 

99%CI (µg/L)  within Original 

Extract

% Recovery

 

Table 91:  Homogenate spike recovery analysis from lettuce leaf matrix (note blank cells indicate an 

outside detecion response from the ELISA or that the GraphPad algorithm could not create an 

upper/lower 99% confidence interval range value) 
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mass (ng) 

spiked onto 

homogenate

Dilution Fit Upper Lower Fit Upper Lower Fit Upper Lower Fit Upper Lower Fit Upper Lower

0 10 5.1 7.2 3.4 51 72 34 8.8 8.6 8.0 807 795 736

0 20 3.9 7.0 39 70 6.7 8.4 619 776

249 10 30.5 45.8 21.1 305 458 211 104% 155% 71%

249 20 27.0 37.6 20.7 270 376 207 90% 122% 69%

*(Mass recovered spike-mass recovered unspiked)/mass spiked

P:G:SO:P (Sweet 

Potato) matrix

Caffeine Concentration and 

99%CI (µg/L)  within Original 

Extract

Mass Recovered 

(ng) within extract 

% Recovery *

Concentration (ng/g) 

within potato matrix                     

(% Recovery Adjusted )

Mass (ng) per plant 

within treatment 

group

 

Table 92:  Homogenate spike recovery analysis from sweet potato matrix, grown in soil, irrigate with tap water (note blank cells indicate an outside 

detection response from the ELISA or that the GraphPad algorithm could not create an upper/lower 99% confidence interval range value) 

mass (ng) 

spiked onto 

homogenate

Dilution Fit Upper Lower Fit Upper Lower Fit Upper Lower Fit Upper Lower Fit Upper Lower

0 10 2.8 4.5 28 45 5.2 6.3 1049 1279

0 20 4.4 7.6 44 76 8.2 10.6 1662 2150

249 10 22.2 30.7 16.1 222 307 161 75% 99% 64%

249 20 29.0 40.6 22.1 290 406 221 102% 139% 89%

*(Mass recovered spike-mass recovered unspiked)/mass spiked

Mass (ng) per plant 

within treatment 

group

P:S:SO:P (Sweet 

Potato) matrix

Caffeine Concentration and 

99%CI (µg/L)  within Original 

Extract

Mass Recovered 

(ng) within extract 

% Recovery *

Concentration (ng/g) 

within potato matrix                     

(% Recovery Adjusted )

 

Table 93:  Homogenate spike recovery analysis from sweet potato matrix, grown in soil, irrigate with spiked-reclaimed water (note blank cells indicate 

an outside detecion response from the ELISA or that the GraphPad algorithm could not create an upper/lower 99% confidence interval range value)  
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D.8:  Phase 3 investigation; triclosan ELISA homogenate spike-recovery analysis 

mass (ng) 

spiked onto 

homogenate

Dilution Fit Upper Lower Fit Upper Lower Fit Upper Lower

0 10

0 20

236 10 4.1 5.1 3.4 62 77 51 26% 32% 21%

236 20 4.2 5.2 3.2 63 79 48 27% 33% 20%

Triclosan 

Concentration and 

99%CI (µg/L)  within 

Original Extract

Mass Recovered 

(ng) within extract 

% Recovery

Virgin Soil (VSO) 

matrix

 

Table 94:  Homogenate spike recovery analysis from virgin soil (VSO) (note blank cells indicate an 

outside detection response from the ELISA or that the GraphPad algorithm could not create an 

upper/lower 99% confidence interval range value) 

 

ng spiked 

onto 

homogenate

Dilution Fit Upper Lower Fit Upper Lower Fit Upper Lower

10

20

236 10 5.5 7.0 4.5 83 105 68 35% 45% 29%

236 20 5.4 6.6 4.2 81 99 63 34% 42% 27%

Virgin Sand (VSA) 

matrix

Triclosan 

Concentration and 

99%CI (µg/L)  within 

Original Extract

Mass Recovered 

(ng) within extract 

% Recovery

 

Table 95:  Homogenate spike recovery analysis from virgin sand (VSA) (note blank cells indicate an 

outside detection response from the ELISA or that the GraphPad algorithm could not create an 

upper/lower 99% confidence interval range value) 
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mass (ng) 

spiked onto 

homogenate

Dilution Fit Upper Lower Fit Upper Lower Fit Upper Lower

0 10

0 20

157 10 6.0 7.7 4.9 60.3 77.1 48.9 38% 49% 31%

157 20 7.3 9.0 5.9 73.2 89.8 59.2 47% 57% 38%

Mass Recovered 

(ng) within extract 

% Recovery

L:G:SO:L (Lettuce 

Leaf) matrix

Triclosan 

Concentration and 

99%CI (µg/L)  within 

Original Extract

 

Table 96:  Homogenate spike recovery analysis from lettuce leaf matrix, grown in soil, irrigate with tap 

water (note blank cells indicate an outside detection response from the ELISA or that the GraphPad 

algorithm could not create an upper/lower 99% confidence interval range value) 

 

mass (ng) 

spiked onto 

homogenate

Dilution Fit Upper Lower Fit Upper Lower Fit Upper Lower

0 10

0 20

157 10 5.0 6.3 4.1 50.2 63.1 41.1 32% 40% 26%

157 20 7.1 8.7 5.7 70.9 86.8 57.1 45% 55% 36%

L:S:SO:L (Lettuce 

Leaf) matrix

Triclosan 

Concentration and 

99%CI (µg/L)  within 

Original Extract

Mass Recovered 

(ng) within extract 

% Recovery

 

Table 97:  Homogenate spike recovery analysis from lettuce leaf matrix, grown in soil, irrigate with 

spiked reclaimed water (note blank cells indicate an outside detection response from the ELISA or that 

the GraphPad algorithm could not create an upper/lower 99% confidence interval range value) 
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mass (ng) 

spiked onto 

homogenate

Dilution Fit Upper Lower Fit Upper Lower Fit Upper Lower Fit Upper Lower Fit Upper Lower

0 10

0 20

157 10 16.2 22.0 12.4 162 220 124 103% 140% 79%

157 20 13.1 16.8 10.6 131 168 106 83% 107% 67%

*(Mass recovered spike-mass recovered unspiked)/mass spiked

Triclosan 

Concentration and 

99%CI (µg/L)  within 

Original Extract

Mass Recovered 

(ng) within extract 

% Recovery 

Concentration (ng/g) 

within potato matrix                     

(% Recovery Adjusted )

Mass (ng) per plant 

within treatment 

group

P:G:SO:P (Sweet 

Potato) matrix

 
Table 98:  Homogenate spike recovery analysis from sweet potato tissue, grown in soil, irrigate with tap water (note blank cells indicate an outside 

detection response from the ELISA or that the GraphPad algorithm could not create an upper/lower 99% confidence interval range value) 

mass (ng) 

spiked onto 

homogenate

Dilution Fit Upper Lower Fit Upper Lower Fit Upper Lower Fit Upper Lower Fit Upper Lower

0 10 2.2 2.7 1.7 22 27 17 3.9 3.8 3.3 783 772 674

0 20 2.1 2.8 1.7 21 28 17 3.8 3.9 3.3 760 797 659

157 10 17.4 13.3 174 133 97% 85%

157 20 16.7 21.6 13.2 167 216 132 93% 120% 84%

*(Mass recovered spike-mass recovered unspiked)/mass spiked

Concentration (ng/g) 

within matrix                     

(% Recovery Adjusted )

P:S:SO:P (Sweet 

Potato) matrix

Triclosan 

Concentration and 

99%CI (µg/L)  within 

Original Extract

Mass Recovered 

(ng) within extract 

% Recovery *

Mass (ng) per plant 

within treatment 

group

 
Table 99:  Homogenate spike recovery analysis from sweet potato tissue, grown in soil, irrigate with spiked reclaimed water (note blank cells indicate an 

outside detection response from the ELISA or that the GraphPad algorithm could not create an upper/lower 99% confidence interval range value) 
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D.9:  Phase 3 investigation; estradiol ELISA homogenate spike-recovery analysis 

 

pg spiked 

onto 

homogenate

Dilution Fit Upper Lower Fit Upper Lower Fit Upper Lower

0 10

0 20

6320 10 234.2 200.5 3512 3008 56% 48%

6320 20

Estradiol 

Concentration (ng/L) 

and 99%CI Original 

Extract

Mass Recovered (pg) within 

extract 
% Recovery

Virgin Soil (VSO) 

matrix

 

Table 100:  Homogenate spike recovery analysis from Virgin Soil (VSO) (note blank cells indicate an 

outside detection response from the ELISA or that the GraphPad algorithm could not create an 

upper/lower 99% confidence interval range value) 

pg spiked 

onto 

homogenate

Dilution Fit Upper Lower Fit Upper Lower Fit Upper Lower

10

20

6320 10 64 81 49 959 1209 733 15% 19% 12%

6320 20 130 164 100 1953 2461 1506 31% 39% 24%

Virgin Sand (VSA) 

matrix

Estradiol 

Concentration (ng/L) 

and 99%CI Original 

Extract

Mass Recovered (pg) within 

extract 

% Recovery

 

Table 101:  Homogenate spike recovery analysis from Virgin Sand (VSA) (note blank cells indicate an 

outside detection response from the ELISA or that the GraphPad algorithm could not create an 

upper/lower 99% confidence interval range value) 

pg spiked 

onto 

homogenate

Dilution Fit Upper Lower Fit Upper Lower Fit Upper Lower

10 300 245 3005 2449

20 297 349 246 2967 3492 2457

4213 10 268 225 2676 2247 -7% -83% -5%

4213 20 280 331 231 2797 3310 2306 -4% -4% -3%

Estradiol 

Concentration (ng/L) 

and 99%CI Original 

Extract

Mass Recovered (pg) within 

extract 

% Recovery

L:G:SO:L (Lettuce 

Leaf) matrix

 

Table 102:  Homogenate spike recovery analysis from lettuce leaf, grown in soil, irrigate with tap water 

(note blank cells indicate an outside detection response from the ELISA or that the GraphPad algorithm 

could not create an upper/lower 99% confidence interval range value) 
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pg spiked 

onto 

homogenate

Dilution Fit Upper Lower Fit Upper Lower Fit Upper Lower

10 56 71 39 563 714 391

20 93 120 928 1204

4213 10 92 114 75 916 1135 747 4% 4% 8%

4213 20 118 149 85 1176 1488 852 10% 13% 11%

L:S:SO:L (Lettuce 

Leaf) matrix

Mass Recovered (pg) within 

extract 

% Recovery

Estradiol 

Concentration (ng/L) 

and 99%CI Original 

Extract

 
Table 103:  Homogenate spike recovery analysis from lettuce leaf, grown in soil, irrigate with spiked-

reclaimed water (note blank cells indicate an outside detection response from the ELISA or that the 

GraphPad algorithm could not create an upper/lower 99% confidence interval range value) 

pg spiked 

onto 

homogenate

Dilution Fit Upper Lower Fit Upper Lower Fit Upper Lower

0 10 84 105 68 840 1047 682

0 20 107 137 70 1072 1365 697

4213 10 168 197 141 1681 1973 1410 17% 18% 17%

4213 20 190 235 155 1903 2351 1553 22% 27% 20%

Estradiol 

Concentration (ng/L) 

and 99%CI Original 

Extract

Mass Recovered (pg) within 

original extract 

% Recovery 

P:G:SO:P (Sweet 

Potato) matrix

 
Table 104:  Homogenate spike recovery analysis from sweet potato matrix, grown in soil, irrigate with 

tap water (note blank cells indicate an outside detection response from the ELISA or that the GraphPad 

algorithm could not create an upper/lower 99% confidence interval range value) 

pg spiked 

onto 

homogenate

Dilution Fit Upper Lower Fit Upper Lower Fit Upper Lower

0 10 108 131 88 1075 1312 879

0 20 99 127 988 1270

4213 10 145 171 119 1446 1706 1195 10% 10% 7%

4213 20 162 203 131 1622 2027 1314 14% 17% 10%

Mass Recovered (pg) within 

original extract 

% Recovery 

Estradiol 

Concentration (ng/L) 

and 99%CI Original 

Extract

P:S:SO:P (Sweet 

Potato) matrix

 
Table 105:  Homogenate spike recovery analysis from sweet potato matrix, grown in soil, irrigate with 

spiked-reclaimed water (note blank cells indicate an outside detection response from the ELISA or that 

the GraphPad algorithm could not create an upper/lower 99% confidence interval range value) 
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D.10:  Phase 3 investigation; caffeine ELISA analysis of stored extracts 

ELISA 

Sample 

Designation

Fall Extract 

Designation*

Dilution

Expected 

Concentration 

(µg/L) from 

spike 

delivered

 % expected 

response of 

extract-spiked 

(fit) above 

unspiked

Fit Upper Lower
BB1 L:G:SO:S 10

BB2 20

BB3 + 1µL #5 10 24.9 +/-7.0 17.9 25.0 13.4 72%

CC1 P:G:SO:S 10

CC2 20

CC3 + 1µL #5 10 24.9 +/-7.0 19.3 26.9 14.3 78%

DD1 P:F:SO:S 10

DD2 20

DD3 + 1µL #5 10 24.9 +/-7.0 21.1 29.2 15.4 85%

EE1 L:F:SO:L 10 2.0 3.5

EE2 20

EE3 + 1µL #5 10 24.9 +/-7.0 17.9 25.1 13.4 72%

FF1 L:F:SO:S 10

FF2 20

FF3 + 1µL #5 10 24.9 +/-7.0 20.7 28.8 15.2 83%

GG1 L:S:SO:L 10

GG2 20

GG3 + 1µL #5 10 24.9 +/-7.0 18.5 25.9 13.8 74%

HH1 P:S:SO:S 10

HH2 20

HH3 + 1µL #5 10 24.9 +/-7.0 14.6 20.4 11.1 58%

Original Extract 

Concentration  

(µg/L) and 99%CI 

Range

*Note:  All "+ 1µL #5" are extracts dilute 10 fold (200µL in 2mL) into which 1µL 

working #5 was spiked in after the dilution  

Table 106:  Phase 3 investigation; caffeine ELISA analysis of stored extracts 
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D.11:  Phase 3 investigation; triclosan ELISA analysis of stored extracts 

ELISA 

Sample 

Designation

Fall Extract 

Designation*

Dilution

Expected 

Concentration 

(µg/L) from 

spike 

delivered

 % expected 

response of 

extract-spiked 

(fit) above 

unspiked

Fit Upper Lower

BB1 L:G:SO:S 10

BB2 20

BB3 + 1µL #5 10 15.7 +/- 5.7 9.2 11.9 7.2 58%

CC1 P:G:SO:S 10 0.7 0.9

CC2 20

CC3 + 1µL #5 10 15.7 +/- 5.7 11.2 14.4 8.7 71%

DD1 P:F:SO:S 10

DD2 20

DD3 + 1µL #5 10 15.7 +/- 5.7 8.2 10.6 6.5 52%

EE1 L:F:SO:L 10

EE2 20

EE3 + 1µL #5 10 15.7 +/- 5.7 8.6 11.1 6.8 55%

FF1 L:F:SO:S 10

FF2 20

FF3 + 1µL #5 10 15.7 +/- 5.7 10.0 12.9 7.8 64%

GG1 L:S:SO:L 10

GG2 20

GG3 + 1µL #5 10 15.7 +/- 5.7 9.0 11.7 7.1 57%

HH1 P:S:SO:S 10 4.4 5.4 3.6

HH2 20 4.6 5.7 3.6

HH3 + 1µL #5 10 15.7 +/- 5.7 15.2 20.2 11.7 68%

Original Extract 

Concentration  (µg/L) 

and 99%CI Range

*Note:  All "+ 1µL #5" are extracts dilute 10 fold (200µL in 2mL) into which 1µL 

working #5 was spiked in after the dilution  

Table 107:  Phase 3 investigation; triclosan ELISA analysis of stored extracts 
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D.12:  Phase 3 investigation; estradiol ELISA analysis of stored extracts 

ELISA 

Sample 

Designation

Fall Extract 

Designation*

Dilution

Expected 

Concentration 

(ng/L) from 

spike 

delivered

 % expected 

response of 

extract-spiked 

(fit) above 

unspiked

Fit Upper Lower

BB1 L:G:SO:S 10

BB2 20

BB3 + 1µL #5 10 421 129 154 106 31%

CC1 P:G:SO:S 10

CC2 20

CC3 + 1µL #5 10 421 189 227 160 45%

DD1 P:F:SO:S 10

DD2 20 57 86

DD3 + 1µL #5 10 421 150 177 124 36%

EE1 L:F:SO:L 10 90 112 73

EE2 20 133 168 104

EE3 + 1µL #5 10 421 135 160 111 11%

FF1 L:F:SO:S 10 42 55

FF2 20

FF3 + 1µL #5 10 421 125 150 102 20%

GG1 L:S:SO:L 10 58 73 41

GG2 20 90 117

GG3 + 1µL #5 10 421 123 148 101 15%

HH1 P:S:SO:S 10 Above Detection

HH2 20 454 390

HH3 + 1µL #5 10 421 Above Detection

Original Extract 

Concentration (ng/L) 

and 99%CI Range

*Note:  All "+ 1µL #5" are extracts dilute 10 fold (200µL in 2mL) into which 1µL 

working #5 was spiked in after the dilution  

Table 108:  Phase 3 investigation; estradiol ELISA analysis of stored extracts 
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APPENDIX E:   

ANALYSIS OF RESERVOIRS 

 

Date Tested
Date 

Collected

Caffeine 

(µg/L)

Triclosan 

(µg/L)

Estradiol 

(ng/L)

26-Jan 4-Nov - - NT

26-Jan 1-Dec - 0.162 NT

8-Aug 21-Jul 0.315 0.108 -

8-Aug 29-Jul 0.302 0.091 -

8-Aug 5-Aug - 0.078 -

13-Jul 11-Jul - 0.095 -

6-Jun 5-Jun NT NT NT

1.0E-01 8.9E-02 0.0E+00

3.6E+00 3.1E+00 0.0E+00

8.5E-01 7.4E-01 0.0E+00

Estimate Mass Delivered to 

Sweet Potatoes (35.1L)

Estimate Mass Delivered to 

Lettuce (8.3L)

Estimate Average 

Concentration

 
Table 109:  Concentration of target analytes observed 

in tap water reservoir 

 

 

#

-

NT Not tested

Sample tested 

exceeded the upper 

limit of quantitation
Tested but below below 

the LOD

Key

 

 

 

Date Tested
Date 

Collected

Caffeine 

(µg/L)

Triclosan 

(µg/L)

Estradiol 

(ng/L)

26-Jan 4-Nov - 0.73 NT

26-Jan 1-Dec - 0.8 NT

8-Aug 21-Jul 0.375 0.064 2.7

8-Aug 29-Jul 0.748 0.107 -

8-Aug 5-Aug 1.28 2.5 25

13-Jul 11-Jul - 0.56 -

6-Jun 5-Jun 1 0.85 NT

4.9E-01 8.0E-01 6.9E+00

1.7E+01 2.8E+01 2.4E+02

4.0E+00 6.7E+00 5.7E+01

Estimate Average 

Concentration

Estimate Mass Delivered 

to Sweet Potatoes (35.1L)

Estimate Mass Delivered 

to Lettuce (8.3L)  

Table 110:  Concentration of target analytes observed in reclaimed water  reservoir 
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Date Tested
Date 

Collected

Caffeine 

(µg/L)

Triclosan 

(µg/L)

Estradiol 

(ng/L)

26-Jan 4-Nov - 9.24 NT

26-Jan 1-Dec - 3.36 NT

8-Aug 21-Jul 7.07 0.646 -

8-Aug 29-Jul 6.568 0.417 -

8-Aug 5-Aug - 5.66 3100

13-Jul 11-Jul 5 1.06 25

6-Jun 5-Jun 11 3 NT

4.2E+00 3.3E+00 7.8E+02

1.5E+02 1.2E+02 2.7E+04

3.5E+01 2.8E+01 6.5E+03

Estimate Average 

Concentration

Estimate Mass Delivered 

to Sweet Potatoes (35.1L)

Estimate Mass Delivered 

to Lettuce (8.3L)  

Table 111:  Concentration of target analytes observed in spiked-reclaimed water reservoir 
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