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ABSTRACT 
Ming Yu: The Importance of ERBB Receptor Tyrosine Kinase Signaling in  

Colorectal Cancer Implications for EGFR-Targeted Therapies 
 

(Under the direction of Dr. David W. Threadgill) 
 

Colorectal cancer (CRC) is one of the leading causes of cancer-related death in the 

United States. Our current understanding of the molecular pathways associated with this 

malignancy has led to the development of novel molecule targeted therapies, exemplified 

by small molecule inhibitors and monoclonal antibodies targeting the epidermal growth 

factor receptor (EGFR/ERBB1). EGFR is a member of the ERBB family of receptor 

tyrosine kinases consisting of EGFR(ERBB1), ERBB2, ERBB3 and ERBB4. They are 

transmembrane receptors to elicit cellular signaling pathways in response to extracellular 

stimuli. Upon ligand binding, ERBB family receptors dimerize to phosphorylate the 

cytoplasmic kinase domain, resulting in activation of complex downstream signaling 

cascades, among which the RAS/MEK/MAPK pathway delivers pro-proliferative signals 

and the PI3K/ATK/mTOR cascade act as a pro-survival pathway. The ERBB family 

members play a pivotal role in many aspects of cellular biology. As such, misregulation or 

dysfunction of ERBB receptors has been implicated in many disease states, in particular 

cancers of epithelial tissues, making the ERBB pathways valuable targets for 

pharmacological inhibition in cancer treatment. For EGFR-targeted therapies, although 

preclinical and early clinical studies presented encouraging results, the large-scale clinical 

trials clearly demonstrate that the majority of patients do not respond. This discrepancy 
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demonstrates that little is known about the mechanisms underlying tumor response to 

EGFR-targeted therapies. In this study, by using ApcMin mouse models of familial CRC, we 

generated mice with Egfr deletion exclusively in the intestinal epithelium and 

demonstrated that although EGFR signaling is critical for establishment of most intestinal 

tumor, tumors can arise independent of EGFR activity. Moreover, we identified gene 

expression signatures of EGFR-independent tumors and provided evidence for ERBB3 

activity in mediating compensatory pathways. Consequently, we further established the 

importance of ERBB3 pathway during intestinal tumorigenesis with both ApcMin mouse 

models of familial CRC and azoxymethane (AOM) model of sporadic CRC. Finally, by 

utilizing mice harboring a hypomorphic Egfr allele on four different strain backgrounds, 

we demonstrated the strong background modulation of tumor response to EGFR inhibition. 

These studies may advance understanding of ERBB biology during intestinal 

tumorigenesis and help design better therapies in combination with EGFR-targeted agents.
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1.1 Introduction to colorectal cancer 

Colorectal cancer (CRC) is one of the most commonly diagnosed malignancies in 

industrialized countries. The incidence of CRC in the US during 2007 will be 

approximately 153,760 cases (Jemal et al., 2007). Over the past decade, CRC death rates 

have decreased slightly due to progress made in early detection, diagnosis and treatment 

(Figure 1-1). Nonetheless, CRC remains the second leading cause of cancer-related deaths 

in the U.S., accounting for 52,180 deaths in 2007 (Jemal et al., 2007).  

The risk factors associated with CRC can be categorized into non-genetic and 

genetic risk factors. Among the non-genetic factors are age (by the age 70, about 50% of 

the Western population will develop adenomatous polyps), a Western style diet (high 

fat/low fiber), a sedentary life style, obesity and incidences of inflammatory bowel disease. 

Although several genes that contribute to familial cases of CRC are known, only a few 

susceptibility genes have been identified for sporadic CRC; the fact that individuals with a 

family history of CRC are more likely to develop CRC strongly indicates the existence of 

genetic risk factors. 

1.1.1 Genetic predisposition to CRC 

CRC cases with known causative mutations, classified as ‘familial CRC’, account 

for about 20% of CRC. The most common inherited forms of CRC are familial 

adenomatous polyposis (FAP) and hereditary non-polyposis CRC (HNPCC). The roles of 

genetic defects underlying these two conditions have been well characterized. In contrast, 

our understanding of low-penetrance mutations that contribute to the remaining familial 

CRC and the majority of CRC that arise sporadically is still evolving. Identifying these 
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low-penetrance mutations would help to identify genetically predisposed individuals with 

an elevated risk for CRC in order for early preventive or therapeutic intervention. 

The Familial adenomatous polyposis (FAP).  

FAP accounts for less than 1% of CRC cases. FAP patients develop hundreds to 

thousands of polyps as early as adolescence making these patients at a high risk for 

developing CRC. The molecular mechanism causing FAP is a germline mutation in the 

APC (adenomatous polyposis coli) gene (Groden et al., 1991; Nishisho et al., 1991). The 

APC gene is a tumor suppressor gene in that it is a negative regulator of the WNT-

signaling pathway through its role in the destruction of β-catenin (Munemitsu et al., 1995; 

Rubinfeld et al., 1995). In cells loosing the remaining wildtype APC, β-catenin is no longer 

degraded, causing its accumulation and translocation into the nucleus where it functions as 

a transcription co-activator with the T-cell factor (TCF) and lymphoid enhancer factor 

(LEF) family of transcription factors (Behrens et al., 1996; Molenaar et al., 1996). In APC 

mutant cells, the β-catenin/TCF/LEF complex activates the transcription of genes that are 

involved in cellular transformation, including p16INK4a, c-MYC, and cyclin D1 (Korinek et 

al., 1997; Morin et al., 1997). In APC mutant colonocytes, excess cytosolic β-catenin also 

forms complexes with E-cadherin, leading to enhanced cell-cell adhesion. These tight 

cellular junctions likely slow the migration of colonocytes to the tip of villus where they 

normally undergo anoikis. Thus APC mutant colonocytes linger within the crypts, 

contributing to the broadening of the proliferative zone (Nathke et al., 1996; Wong et al., 

1996). With the accumulation of other mutations, such as in KRAS, CRC is initiated 

(Dlugosz et al., 1997).  

Hereditary non-polyposis colorectal cancer (HNPCC) 
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HNPCC, also known as Lynch Syndrome, predisposes individuals to CRC in 

addition to cancers in other organs such as stomach, ovaries, small bowel, endometrium, 

uroepithelial epithelium, and the brain (Lynch et al., 1977). HNPCC accounts for 3 to 6% 

of all CRC cases (Lynch and de la Chapelle, 1999; Peltomaki et al., 2001). Affected 

individuals develop one or several polyps. These polyps have a higher frequency of 

progressing to malignancy because of germline mutations in DNA mismatch repair 

(MMR) genes including MSH2, MLH1, PMS1, PMS2, which underlie 90% of Lynch 

Syndrome cases. Deficiency in the MMR system leads to a high frequency of DNA 

replication errors and changes in short repeated DNA sequences, a condition known as 

microsatelite instability. 

The sporadic CRC 

The majority of CRC cases are believed to arise sporadically. However, genetic 

factors still contribute to sporadic CRC. Several low-penetrance alleles in sporadic CRC 

have been identified, including the I1307K mutation in the APC gene, the TGFBR1*6Ala 

allele, HRAS1*VNTR and BLM*Ash (Kondo and Issa, 2004). Risk factors such as age and 

diet could modulate the onset of CRC in these genetically predisposed individuals, 

possibly through epigenetic changes.  

1.1.2 Molecular complexity of CRC 

Understanding the molecular complexity of CRC is required to improve prevention 

and treatment. The development of CRC is generally thought of as a well defined sequence 

of events involving a complex series of genetic and epigenetic alterations, resulting in 

distinct pathological changes - from aberrant crypt focus (ACF) or hyperplasia to benign 

adenoma, carcinoma and finally metastasis (Kinzler and Vogelstein, 1996)(Figure 1-2). 
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This cumulative multi-stage process usually occurs over many years. In individuals with 

inherited mutations, the time course of initiation and/or progression to malignancy can be 

significantly shorter. For example, FAP patients have a much higher rate of initiation from 

normal epithelium to benign polyps, although the progression rate to carcinoma is not 

altered. Conversely, in HNPCC patients the initiation step appears unchanged compared to 

sporadic cancers, but once initiated the progression from polyps into malignancy is much 

sooner.  

Recently, gene expression profiling of 100 human CRC adenomas revealed that 

human colon cancers exhibit gene expression patterns strikingly similar to those of 

embryonic colon development (Kaiser et al., 2007), highlighting the notion that cancer and 

normal embryonic development share common gene regulatory networks.  

Distinct from classical genetic alterations, epigenetic abnormalities also contribute 

to CRC carcinogenesis. Abnormal genome-wide hypomethylation is particularly frequent 

in CRC, associated with over-expression of proto-oncogenes (Issa, 2000; Kondo and Issa, 

2004). In contrast to genome-wide hypomethylation, focal hypermethylation can result in 

transcriptional silencing of tumor suppressor genes (Feinberg and Tycko, 2004; Greger et 

al., 1989). Indeed, promoter hypermethylation in CRC have been reported for important 

tumor suppressor genes including APC, LKB1, p16INK4a, hMLH1, and TIMP3 (Kondo and 

Issa, 2004).   

1.1.3 Mouse models of human CRC 

Over the last two decades, many mouse models have been generated that accurately 

recapitulate aspects of the underlying molecular pathogenesis as well as the cellular and 

tissue distribution of human CRC. Mice harboring individual causative mutations are 
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frequently intercrossed to more closely mimic the accumulation of genetic mutations 

occurring during malignant transformation in human CRC. These mouse models have been 

utilized as an important experimental tool for studying CRC.  

Mouse models for hereditary CRC 

ApcMin. FAP patients, harboring a germ-line mutation in APC, develop hundreds of 

intestinal adenomas.  A nonsense mutation in the orthologous gene in mice is referred to as 

the multiple intestinal neoplasia allele of Apc (ApcMin) (Moser et al., 1990). ApcMin mice 

develop tens to hundreds of intestinal tumors, depending on the mouse strain harboring the 

mutation (Dietrich et al., 1993; Shoemaker et al., 1998). Several genetic modifier loci 

including Mom1 have been identified. These modifiers affect both tumor latency and 

multiplicity (Dietrich et al., 1993; Moser et al., 1992). Despite the fact that FAP patients 

primarily have colonic lesions while the ApcMin mice develop predominantly intestinal 

tumors, the ApcMin mouse model best recapitulates the molecular alternations occurring 

during CRC initiation, thus it is extensively used for testing CRC prevention and therapy. 

Mutations in MMR genes. Germline mutations in the mismatch repair (MMR) 

genes, including MLH1, MSH2, PMS1, and PMS2, cause Lynch syndrome in humans. 

Mice with targeted mutations in each of the known MMR genes have been generated 

(Prolla et al., 1998). Deficiency in MMR genes leads to microsatelite instability in these 

mice. While mice that are haploinsufficient for a MMR gene do not develop noticeable 

phenotypes, nullizygous mice display a reduced life span due to spontaneous 

tumorigenesis usually in lymph nodes, but relatively few in the intestinal tract. These mice, 

however, are genetically susceptible to CRC upon exposure to mutagens like N-methyl-N-

nitrosourea (Qin et al., 2000). MMR deficiency also accelerates intestinal tumorigenesis in 



 7 

ApcMin mice (Reitmair et al., 1996). 

   Mutations in TGFB signaling. Transforming growth factor beta (TGFB), exerts 

growth inhibitory effects in epithelial cells. The TGFB signal acts through the 

TGFB1/TGFB2 serine/threonin receptor complex. A series of related intracellular SMAD 

proteins, SMAD2/3/4, are responsible for transmitting a signal from the activated TGFB 

receptors into nucleus. Mutations in TGFB signaling contribute to both familial and 

sporadic CRC. About 50% of juvenile polyposis, a less common form of hereditary CRC, 

is caused by SMAD4 mutations. Mice lacking Tgfbr2 are embryonically lethal, precluding 

its use to test the role of Tgfbr2 in HNPCC (Oshima et al., 1996). Additionally, mice 

nullizygous for Tgfbr1 die early due to massive multi-organ inflammatory disease 

(Kulkarni et al., 1993; Shull et al., 1992), demonstrating the immuno-regulatory nature of 

TGFB. When Tgfbr1-/- is transferred onto an immuno-deficient Rag2-/- background, the 

compound mutant Tgfbr1-/- Rag2-/- mice live to adulthood and rapidly develop colonic 

carcinoma (Engle et al., 1999).  

The targeted null mutation in Smad4 is embryonic lethal (Sirard et al., 1998). 

However, mice harboring one copy of a targeted null allele of Smad4 do not develop 

intestinal polyps, but do show enhanced tumorigenesis in combination with heterozygosity 

for ApcMin (Takaku et al., 1998). Interestingly, although SMAD3 mutations have not been 

detected in human CRC, mice deficient in Smad3 on a 129Sv/J background display colonic 

cancers similar to late stage human CRC, including adenocarcinoma and metastatic disease 

(Zhu et al., 1998). Moreover, when Smad3-deficient mice are bred to an Apcmin 

background, the compound genetic defects exhibit a synergistic effect on tumorigenesis, 

particularly in the distal part of colon (Sodir et al., 2006). It is of note that the reported 
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carcinomas developed in Smad3 deficient mice are highly influenced by the endogenous 

gut microflora in susceptible strains (Maggio-Price et al., 2006), highlighting the notion 

that inflammation plays an important role in carcinogenesis, especially through TGFB 

signaling. 

  Azoxymethane (AOM) models for sporadic CRC. AOM is a procarcinogen that 

can be metabolized in vivo into a colon-specific carcinogen. Administration of AOM in 

mice produces adenocarcinoma in situ within the colon, mimicking cancer distribution in 

human CRC. More importantly, AOM-induced tumors in mice exhibit remarkable 

similarity in initiation, progression, distribution and histology with sporadic CRC in 

humans (Wang et al., 1998). Also, mutations that occur in sporadic CRC, including Apc, 

Kras2, Tgfb1 and β-catenin, have been detected in AOM-induced tumors (Shivapurkar et 

al., 1994; Vivona et al., 1993). Thus, this model has been used extensively in studying 

sporadic CRC. 

Cross-species and cross-model gene expression comparisons of 100 human 

colorectal cancer samples and 39 colonic tumors from ApcMin, AOM-induced, Smad3-/-, 

Tgfr1-/-Rag2-/- mouse models have revealed the molecular characteristics for each model 

(Kaiser et al., 2007). Unsupervised clustering separated the four mouse models into two 

distinct classes based on their global gene expression patterns: ApcMin and AOM-induced 

vs. Smad3-/-and Tgfr1-/- Rag2-/- tumors. Nuclear β-catenin-positive ApcMin /AOM tumors 

display up-regulation of genes associated with increased canonical WNT signaling. In 

contrast, Smad3-/- and Tgfr1-/- Rag2-/- tumors lack activation of canonical WNT signaling, 

but they exhibit up-regulation of genes associated with inflammatory responses. 

Furthermore, this comprehensive, comparative molecular analysis has revealed that the 
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four mouse models of CRC are similar to human CRC tumors, although ApcMin/AOM are 

more similar than the Smad3-/- and Tgfr1-/- Rag2-/- tumors at a transcriptional level. Thus, 

ApcMin and AOM-induced models are perhaps more relevant to human CRC.  

1.1.4 Management of CRC 

Over the past decade, remarkable progress has been made in the management of 

CRC. Consequently, treatment of CRC has evolved into multi-modality therapeutic 

approaches to both primary and metastatic malignancies. For patients who have resectable 

CRC, surgery is the treatment of choice. However, up to a third of patients have locally 

advanced or metastatic forms of CRC at the time of diagnosis, which precludes a surgical 

cure. Even in patients that undergo apparently curative resection, many still develop 

advanced, non-resectable CRC that requires systemic treatment. The cornerstone of 

systemic treatment for CRC is 5-fluorouracil (5-FU), which was developed in 1957. It is a 

fluorinated pyrimidine that acts primarily through inhibition of thymidylate synthetase, the 

rate-limiting enzyme in pyrimidine nucleotide synthesis. Chemotherapy with 5-FU 

improves median survival from five to 11 months compared to the best supportive care 

(Varadhachary and Hoff, 2005). For the subsequent 40 years, chemotherapy with 5-FU 

was the only option for patients with non-resectable CRC. In the past decade, two 

chemotherapy drugs, irinotecan and oxaliplatin, have been included in the standard care 

regimen for improved survival of patients with metastatic CRC. Irinotecan is a 

topoisomerase I inhibitor, and oxaliplatin is a platinum-based chemotherapy drug. Today, 

the median survival time of patients with CRC has doubled from 10 months with 5-FU 

alone to 20 months with 5-FU plus these newer cytotoxic agents.  
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Despite the improvement using these cytotoxic chemotherapeutic drugs for CRC, 

many patients develop a progressive disease that is resistant to chemotherapy. In these 

‘chemo-refractory’ patients, no effective chemotherapeutic treatment is available. Also, the 

severe chemotherapy-related cytotoxicities, although rare, affect patient’s life quality. 

Fortunately, advances in understanding tumor biology have revolutionized drug design. A 

number of molecule-targeted drugs are now being evaluated in clinical trials and some 

have reached the market. These drugs specifically target altered pathways in tumor cells, 

potentially achieving anti-tumor efficacy with lower toxicity resulting in higher tolerance. 

Examples are therapies targeting the epidermal growth factor receptor (EGFR). Anti-

EGFR therapies have achieved clinical activity in about 10% of patients with metastatic 

CRC that are resistant to chemotherapy (Chong and Cunningham, 2005), with limited 

toxicities. Combinations of newer targeted agents with traditional chemotherapies are 

being evaluated currently in clinical trials. 

1.2 The ERBB family of receptor tyrosine kinases and colorectal cancer 

1.2.1 Introduction to the ERBB family of receptor tyrosine kinases 

The ERBB family of receptor tyrosine kinases consist of four closely related 

members: the epidermal growth factor receptor (EGFR or ERBB1), ERBB2, ERBB3 and 

ERBB4 (Gullick and Srinivasan, 1998) (Figure 1-3A). They are ligand-induced receptor 

tyrosine kinases composed of three essential domains: the extracellular ligand-binding 

domain, a transmembrane domain and a cytoplasmic domain with intrinsic tyrosine kinase 

activity (Wells, 1999) . Activation of ERBB receptors is controlled spatially and 

temporarily by the stimulation of EGF-related ligands, in an autocrine or paracrine manner 

(Beerli and Hynes, 1996). Upon ligand binding, they undergo homo- or heterodimerization 
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(Weiss et al., 1997). The activated receptors recruit and phosphorylate downstream effecter 

proteins activating a cascade of intracellular signaling pathways. Depending on the ligand, 

the receptor dimers formed, the pathways being recruited, and concurrent molecular events 

within the cell, the biological output can regulate many cellular activities including 

proliferation, migration, adhesion, differentiation and survival (Olayioye et al., 2001; 

Salomon et al., 1995) (Figure 1-3B). The activated receptor complexes are endocytosed 

and are either directed to endosomal compartments for degradation (Levkowitz et al., 

1998; Waterman et al., 1998), or recycled back to the cell surface (Waterman et al., 1998).  

The complexity of signaling by ERBB receptors stems from their interdependence 

and complementation. Each receptor has a unique spectrum of ligand specificity. Of the 

four ERBB members, ERBB2 and ERBB3 are functionally non-autonomous: ERBB2 does 

not have a recognized ligand, while ERBB3 lacks intrinsic kinase activity. ERBB2 is a 

preferred binding partner for other ERBBs. The EGFR and ERBB2 heterodimer not only 

displays a reduced internalization rate, prolonged signaling power and biological potency 

(Lenferink et al., 1998), but also has an expanded signal diversity (Graus-Porta et al., 

1997). ERBB3 is the only member in the family that contains multiple PI3K binding sites. 

Once trans-phosphorylated, ERBB3 can bind directly to PI3K and activate the PI3K-AKT 

pathway. Although functionally incomplete on their own, the heterodimer between ERBB2 

and ERBB3 is not only completely functional, but has the most potency of the ERBB 

family with respect to signaling.  

Activated ERBB family members stimulate a variety of intracellular signaling 

pathways, of which the mitogen-activated protein kinase (MAPK) and the 

phosphatidylinositol 3-kinase (PI3K)-AKT pathways are of most significance (Yarden and 
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Sliwkowski, 2001). Additionally, the signal transducer and activator of transcription 

(STAT), protein kinase C and phospholipase D pathways (Citri et al., 2003) are also 

important and are known to mediate anti-apoptotic signaling in various cell types (Garcia, 

2001). Examples of important effecter proteins include the intracellular tyrosine kinase 

SRC (Biscardi et al., 1999; Tice et al., 1999) and the mammalian target of rapamycin 

(mTOR), a serine-threonine kinase activated downstream of PI3K-AKT (Bjornsti and 

Houghton, 2004).  

To add another layer of complexity, the ERBB family members are also involved 

in a broader signaling network by active ‘cross-talk’ with other receptor classes. For 

example, the G-protein coupled receptor protein (GPCR) can transactivate EGFR by 

increasing the availability of EGF-related ligands (Carpenter, 2000; Prenzel et al., 1999). 

Another important example is the binding of growth hormone to its receptor can also lead 

to EGFR phosphorylation through Janus tyrosine kinase (JNK) (Yamauchi et al., 1998). 

These examples demonstrate that exposure of cells to non-EGF related peptides can also 

activate EGFR-mediated signaling pathways. 

1.2.2 ERBB family members in intestinal development and homeostasis 

Normal signaling through ERBB family members is essential in almost every tissue 

of the body, including skin, brain, lungs and the GI tract. This ERBB-mediated signaling is 

required during embryonic development and is then used throughout life for the maturation 

and maintenance of most organ systems (Miettinen et al., 1995; Sibilia et al., 1998; 

Threadgill et al., 1995). Among the four ERBB members, EGFR and its cognate ligands 

are most relevant in intestinal development. It has been shown that EGF stimulation leads 

to accelerated lung and intestinal maturation before birth and in newborn animals (Vinter-
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Jensen, 1999). Additionally, it was demonstrated that EGFR hyperstimulation in TGFΑ 

overexpressing transgenic mice (Acra et al., 1998) or injection of EGF in adult mice 

(Dyduch, 1990), leads to increased intestinal epithelial proliferation and an increase in the 

dimension of the crypt/villi unit. Interestingly, although EGFR deficiency in mice caused 

defects in proliferation and differentiation in epithelial compartments of the lungs and the 

skin, no abnormalities were observed in the intestinal epithelium in mutant pups until 

weaning (Sibilia and Wagner, 1995; Threadgill et al., 1995), suggesting the presence of 

compensatory pathways supporting intestinal epithelium development in surviving Egfr-/- 

pups. 

Signaling through EGFR is critical for intestinal adaptation following small bowel 

resection. Elevated post-resection EGFR expression was detected within the crypt and 

muscularis compartments in the small bowel (Knott et al., 2003). EGFR regulates intestinal 

adaptation to resection by mediating enterocyte proliferation, a process that requires 

MAPK-dependent p21Waf1/Cip1 expression (Sheng et al., 2006). In addition, EGFR 

activation prevents resection-induced enterocyte apoptosis by modulating the proapoptotic 

protein BAX in a p38MAPK-dependent manner(Sheng et al., 2007). Consistent with these 

observations, EGF administration in mice, associated with increased EGFR mRNA and 

protein, augments intestinal adaptation following resection (Helmrath et al., 1998). In 

contrast, adaptation following resection is impaired in mice with reduced EGFR kinase 

activity (Helmrath et al., 1997). 

1.2.3 Deregulation of ERBB family member signaling in CRC 

Overexpression of one or more ERBB receptors has been found in the majority of 

carcinomas, with amplification of ERBB2 in 20-30% of metastatic breast cancers. 
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Abnormal activation of the ERBB family members has been documented in many other 

types of human epithelial cancers, including lung, skin, breast, prostate gland, head/neck 

and colorectal cancers. In CRC, the role of EGFR has been extensively studied and EGFR 

has been viewed as an attractive drug target for CRC treatment. Other ERBB family 

members, particularly ERBB2 and ERBB3, have been also implicated in CRC. The role of 

ERBB4 has not yet been elucidated. The advances in understanding of ERBB biology 

together with the growing knowledge of the complex functional interactions among ERBB 

members should allow the design of better ERBB-targeted drugs. 

EGFR  

EGFR over-expression has been detected in 70-80% of metastatic CRC (Messa et 

al., 1998; Porebska et al., 2000). CRC tumors with aberrant EGFR signaling present with 

advanced disease stages and poor prognosis (Mayer et al., 1993). Blocking EGFR in colon 

cancer cell lines achieved anti-tumor activity by inhibiting EGFR-mediated signaling 

pathways including PI3K-AKT, MAPK and SRC, resulting in increased cell cycle arrest, 

decreased proliferation and increased apoptosis (Moyer et al., 1997; Wu et al., 1995; Wu 

et al., 1996). In addition, a synergistic anti-tumor effect was observed when an EGFR 

blockade was combined with the chemotherapeutic agent irinotecan in colon cancer cells 

grown as xenografts in nude mice (Prewett et al., 2002). These combined therapies 

effectively controlled tumor growth and led to extensive tumor necrosis, decreased tumor 

cell proliferation, increased tumor cell apoptosis, and a marked decrease in tumor 

vasculature. These results suggest that an EGFR blockade could overcome cellular 

resistance to irinotecan, and this combined therapy approach might be effective for 

patients with chemo-refractory CRC.  
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ERBB2 

Similar to EGFR, ERBB2 is also frequently overexpressed in CRC when compared 

to normal adjacent colon tissue, though the actual frequency varies with detection 

technology (Gill et al., 2002; Nathason et al., 2003). It also has been demonstrated that 

ERBB2 stimulates proliferation in colon epithelial cells (Nowak et al., 1997); inhibition of 

ERBB2 causes regression of EGFR-dependent cancer cells grown as xenografts in athymic 

mice (Kuwada et al., 2004). A recent study reported somatic mutations in the ERBB2 

kinase domain detected in gastric, breast and colorectal carcinomas from Asian patients 

(Lee et al., 2006). However, anti-ERBB2 therapies have been employed primarily in breast 

cancers, which have the greatest degree of overexpression of ERBB2 compared to other 

common epithelial tumors; few studies have examined the therapeutic potential of ERBB2 

inhibition in CRC. Since EGFR and ERBB2 are preferred heterodimerization partners and 

deliver a strong mitogenic signal, targeting ERBB2 and EGFR simultaneously in colon 

cancers might be a more effective approach than targeting a single receptor. In in vitro 

studies, inhibition of EGFR by small molecule inhibitors led to increased activation of 

ERBB2 in colon cancer cells, suggesting the compensatory regulation within ERBB family 

members in response to EGFR inhibition (Learn et al., 2006). Targeting both the EGFR 

and ERBB2 had additive effects on cell proliferation inhibition, apoptosis induction and 

tumor inhibition, demonstrating a cooperation of EGFR and ERBB2 in colon cancer cells 

(Kuwada et al., 2004). In 2007, the US Food and Drug Administration (FDA) approved the 

dual EGFR/ERBB2 inhibitor lapatinib (Tykerb, GSK) to be used in combination with 

capectabine (Xeloda), for patients with advanced metastatic breast cancer that is ERBB2 

positive. Its efficacy in CRC warrants further study. 
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ERBB3 

Overexpression of ERBB3, often accompanied with EGFR or ERBB2 

overexpression, has been frequently detected in a variety of cancers, including breast 

(Naidu et al., 1998), gastric (Kobayashi et al., 2003), ovarian (Rajkumar et al., 1996), 

pancreatic (Friess et al., 1999) and colorectal cancers (Ciardiello et al., 1991; Maurer et al., 

1998). Indeed, the ERBB3/PI3K/AKT axis contributes to gefitinib sensitivity in NSCLC 

cells (Engelman et al., 2005). Recently, it was demonstrated that ERBB3-dependent 

activation of PI3K/AKT, driven by amplification of the MET proto-oncogene, underlies 

the acquired resistance to gefitinib in a subset of NSCLC patients (Engelman et al., 2007). 

Additionally, ERBB3-dependent signaling, through ERBB2-ERBB3 heterodimers, has 

been shown to contribute to the enhanced invasiveness of mammary tumor cells (Xue et 

al., 2006). Altogether, it has become increasing clear that in cancers driven by EGFR or 

ERBB2 signaling, as seen in breast cancer and NSCLC cells, ERBB3 mainly functions as a 

signaling partner /substrate for EGFR or ERBB2 and mediates resistance to inhibitors of 

EGFR and ERBB2 in cancer cells. To date, little is known about the role of ERBB3 in 

colorectal cancer. 

Cancer research over the past decades has uncovered some of the crucial 

downstream pathways mediated through ERBB family members in CRC cells. In an over-

simplistic way, ERBB signals can be roughly divided into two categories: the pro-

proliferative axis consisting of the RAS-RAF-MEK (mitogen-activated and extracellular 

signal regulated kinase kinase)-MAPK pathway and the pro-survival axis comprising the 

PI3K-mTOR-AKT pathway. Although these pathways are probably controlled by many 

RTK outputs, aberrant signaling in ERBB family members results in alterations in activity 
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of these downstream effecters, accounting for increased proliferation, increased protein 

synthesis and decreased apoptosis in cancer cells.  

1.2.4 Therapeutic targeting of ERBB family members in CRC 

In vivo pharmaceutical studies that target EGFR in the ApcMin mouse model of CRC 

have produced conflicting results. In one study, EGFR inhibition by small molecule kinase 

inhibitors EKI-785 and EKB-569 achieved a significant reduction in polyp number 

(Torrance et al., 2000). In contrast, Ritland et al. observed no effect on polyp number by 

using CFPQA, an irreversible EGFR kinase inhibitor (Ritland et al., 2000). The first 

genetic evidence to confirm the validity of EGFR as a drug target for CRC came from 

ApcMin tumors formed on an Egfrwa2 background (Roberts et al., 2002); the receptor 

encoded by Egfrwa2 has an impaired kinase activity due to a Val743 -> Gly substitution in 

the kinase domain (Luetteke et al., 1994). The reduced EGFR activity caused by the 

Egfrwa2 allele dramatically inhibited tumor multiplicity by up to 90%.  Interestingly, the 

ApcMin tumors that did arise in Egfrwa2 homozygous mice were indistinguishable in size, 

expansion, and pathological progression compared to those tumors arising in mice with 

wildtype activity levels of EGFR, suggesting that some tumors can grow independently of 

EGFR.  

Based on promising preclinical results, EGFR-targeted therapies are now in 

advanced clinical development and several have been licensed to treat cancer patients in 

combination with other therapies (Hynes and Lane, 2005). Indeed, two classes of agents 

targeting EGFR, small molecule tyrosine kinase inhibitors (TKIs) that target the tyrosine 

kinase domain and monoclonal antibodies (mAb) that target the extracellular ligand-

binding domain, have received regulatory approval as cancer treatments. Since the ligand-
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receptor interaction is the first step in initiating further signaling cascades, blocking the 

ligand-binding domain with mAb inhibits ERBB signaling and results in receptor 

internalization. In addition, some mAbs also elicit host immune responses, referred to as 

‘antibody-dependent cell-mediated cytotoxicity’, to kill tumor cells bound with the 

antibody. Alternatively, ERBB TKIs inhibit ERBB kinase activity by binding to the 

intracellular kinase domain and preventing ATP binding.  

Cetuximab (Erbitux, Imclone) was the first chimeric human/mouse IgG1 mAb 

targeting EGFR that received approval from the FDA for patients with metastasized CRC 

who failed to respond to conventional chemotherapy. Subsequently, panitumumab 

(Vectibix, Amgen), a fully human IgG2 anti-EGFR mAb, was approved for patients with 

CRC that progressed following standard chemotherapy. Both cetuximab and panitumumab 

demonstrated a positive effect in about 10% of patients with chemotherapy-refractory 

metastatic CRC (Cunningham et al., 2004; Hecht, 2004; Saltz, 2004). It should be noted 

that although EGFR expression was initially the criteria to select patients who would 

potentially benefit from cetuximab, it was subsequently found not to correlate with patient 

response to the drug. Interestingly, accumulating evidence suggests that the development 

of a skin rash, a common side effect with EGFR mAb, could be a good indicator of 

favorable response and survival (Galizia et al., 2007). However, the molecular mechanisms 

underlying these clinical responses to EGFR-targeted therapy have not been completely 

elucidated. 

As opposed to EGFR mAb, the performance of EGFR TKIs in CRC treatment has 

been less consistent. Gefitinib (Iressa, AstraZeneca), an orally dosed EGFR TKI, was first 

approved for marketing in 2003 to treat NSCLC. Although Gefitinib exhibited anti-tumor 
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activity against human CRC cell lines growing as xenografts (Bianco et al., 2002), large-

scale multinational phase III clinical trials demonstrated no survival benefits when 

gefitinib was used in combination with chemotherapy (Gatzemeier et al., 2004; Giaccone 

et al., 2004; Herbst et al., 2004). However, another reversible TKI, Erlotinib (Tarceva; 

OSI) has demonstrated its efficacy and safety in patients with metastatic CRC in a phase II 

trial (Townsley et al., 2006). Ongoing clinical trials are further evaluating its use as a 

single agent or in combination with conventional chemotherapy in CRC treatment. Due to 

the interdependence within different ERBBs, newer generations of TKIs are being 

developed to target multiple ERBB family members, such as dual- or pan-ERBB 

inhibitors. In particular, lapatinib (Tykerb, GSK), the dual EGFR/ERBB2 inhibitor, has 

been approved for use against ERBB2-positive breast cancers.  

An understanding of the molecular basis for sensitivity or resistance to EGFR 

inhibition would help predict how tumor cells respond to the activities of anti-EGFR 

agents. So far, the presence of somatic mutations in EGFR that may be associated with 

resistance to EGFR-targeted therapy has only been identified in a sub-population of non-

small cell lung cancer patients (Paez et al., 2004; Pao et al., 2004). Moreover, the presence 

of KRAS mutations, arising frequently in smokers, has been linked with resistance to 

EGFR inhibitors in lung cancer patients (Pao et al., 2005). In other types of cancers such as 

CRC, little is known about the molecular mechanisms underlying response to EGFR-

targeted therapies. It is likely that many factors are involved, including a lack of relevance 

of the EGFR signaling pathways to tumor growth, inherent molecular heterogeneity of 

tumors, and/or genetic heterogeneity of patients. Using the ApcMin mouse model of CRC 

and the hypomorphic Egfrwa2 allele, previous studies have shown that a subset of intestinal 
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polyps arise on a background with reduced EGFR activity (Roberts et al., 2002). These 

polyps develop despite a greatly reduced level of active receptor, and the size, expansion, 

and pathological progression of these polyps appear identical to those with wildtype 

EGFR. These results support the concept that CRC can be EGFR independent, i.e. tumors 

do not respond to EGFR inhibition due to lack of relevance of EGFR-mediated signaling 

or compensatory activation of other pathways for tumor growth.  
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Figure 1-1 The colorectal cancer death rates in the United States, 1990 to 2003. 

The source of data is from Jemal et al., 2007.White bar represents Year 1993 and white bar 
represnts Year 2003. 
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Figure 1-2 The molecular pathogenesis of colorectal cancer (adapted from (Kinzler and Vogelstein, 
1996)). 
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Figure 1-3 Conserved molecular structure and signaling cascades of the ERBB family members. 
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Abstract 

The epidermal growth factor receptor (EGFR) has been intensely pursued as a 

therapeutic target for colorectal cancer (CRC) due to its aberrant activity in tumor tissues. 

However, large-scale clinical trials have achieved limited success, suggesting greater 

complexity of EGFR biology than previous anticipated. Using the ApcMin mouse model of 

CRC, we previously showed that a subset of intestinal polyps arise on a background with 

reduced EGFR activity; the size, expansion, and pathological progression of these polyps 

appear EGFR-independent. Therefore, we hypothesize that although normal EGFR 

signaling is critical for establishment of most intestinal tumors, tumors can grow 

independent of EGFR activity. To test this hypothesis, we generated mice with cre-

mediated intestinal epithelia-specific Egfr deletion. BrdU incorporation studies indicate 

that inactivation of EGFR does not decrease proliferation in the intestinal epithelium. We 

observed a 57.5% reduction in total polyp number in 3-month-old Egfrtm1Dwt/tm1Dwt, Vil-Cre, 

ApcMin mice compared to wild-type Egfr littermates (46.2 ± 25.7, versus 108.8 ± 61.2; p(one-

sided) = 0.006). Interestingly, polyps forming in Egfrtm1Dwt/tm1Dwt, Vil-Cre mice were slightly 

larger than those forming in the controls (1.08 ± 0.57 mm versus 1.04 ± 0.56 mm; p(one-sided) 

= 0.04), suggesting that absence of EGFR signaling does not affect the growth of tumors. 

Microarray gene expression profiles of these EGFR-independent tumors were analyzed by 

Significance Analysis of Microarray software and revealed distinctive molecular features 

that partition tumors based on EGFR status. These signatures are marked by up-regulation 

of components in cell cycle regulations and RAS-MAPK pathway, correlating well with 

dramatic increase in p42/44 MAPK activity and proliferation index seen in EGFR-

independent tumors. Meanwhile, the protein level of ERBB2 and ERBB3 is elevated in 
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these tumors, correlating with increased Akt phosphorylation and impaired caspase-3 

activity. These studies define a subset of tumors that grow independent of EGFR and 

demonstrate that this tumor subtype is likely to be constitutive of EGFR wild type tumors. 

Thus, the identification of molecular characteristics of EGFR-independent tumors provides 

a novel mechanism of tumor resistance to EGFR inhibition, and might help to identify 

which tumors will respond to this therapy and provide compelling rational to explore the 

combinatorial therapies of EGFR inhibitors with another drug that target RAS-MAPK 

pathway. 
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2.1 Introduction 

The epidermal growth factor receptor (EGFR) is the prototypical ligand-induced 

receptor tyrosine kinase (RTK) that belongs to the highly conserved ERBB family (Yarden 

and Sliwkowski, 2001). It was the first RTK to be targeted for anti-cancer therapies (Masui 

et al., 1984; Sato et al., 1983; Zirvi, 1983). Upon ligand binding, EGFR homo- or hetero-

dimerizes with other ERBB family members (Weiss et al., 1997). Activated EGFR then 

initiates a complex signal transduction network, which includes the Ras/mitogen-activated 

protein kinase (MAPK) and the phosphatidylinositol 3-kinase (PI3K)-AKT pathways 

among others (Yarden and Sliwkowski, 2001).  

Accumulated evidence implicates the importance of EGFR in the development of 

human epithelial neoplasms (Hynes and Lane, 2005). This receptor was initially found to 

be overexpressed  in squamous cell carcinomas and glioblastomas (Derynck, 1992; 

Libermann et al., 1985). Overexpression or hyperactivation of EGFR has been found to be 

associated with tumor progression and poor prognosis in a variety of epithelial 

malignancies such as lung, breast, head and neck and gastrointestinal tract cancers 

(Salomon et al., 1995; Nicholson et al., 2001; Sharma et al., 2007). Due to these aberrant 

alterations in EGFR-mediated signaling pathways EGFR was proposed as a plausible 

target for selective anti-cancer therapy. Subsequently, numerous EGFR-targeting agents 

have been developed for cancer treatment. These agents have achieved anti-tumor effects 

in cancer cell lines and xenografts in nude mice by inhibiting EGFR phosphorylation and 

down-regulating EGFR-mediated signaling pathways, including PI3K-AKT, MAPK and 

SRC. The down-regulation of these pathways via EGFR inhibition results in increased cell 
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cycle arrest, decreased cell proliferation and increased apoptosis (Moyer et al., 1997; Wu et 

al., 1995; Wu et al., 1996). Due to the promising results from preclinical and early clinical 

trials, two classes of EGFR-targeting agents, small molecule tyrosine kinase inhibitors  that 

target the tyrosine kinase domain and anti-EGFR monoclonal antibodies (mAb) that target 

the extracellular ligand-domain of EGFR, received regulatory approval as cancer 

treatments..However, the large-scale multinational phase III clinical trials demonstrated no 

survival benefits for patients with metastatic colorectal cancer when the TKI gefitinib 

(Iressa, AstraZeneca) were used in combination with chemotherapy (Gatzemeier et al., 

2004; Giaccone et al., 2004; Herbst and Sandler, 2004). In addition, the chimeric IgG1 

antibody cetuximab (Erbitux, IMC-C225; ImClone) and human IgG2 antibody 

panitumumab demonstrated a positive effect in only 10% of patients with chemotherapy-

refractory metastatic CRC (Cunningham et al., 2004; Hecht, 2004; Saltz, 2004). The 

molecular mechanisms underlying these clinical responses to EGFR-targeted therapy have 

not been elucidated.  

An understanding of the molecular basis for sensitivity or resistance to EGFR 

inhibition is essential to improve response rates and to identify those cancers likely to 

respond to anti-EGFR therapies. The presence of somatic mutations in the EGFR 

associated with sensitivity to EGFR-targeted therapies has only been detected in a sub-

population of patients non-small cell lung cancer (PMID: 15118125 and 15118073) (Paez 

et al., 2004; Pao et al., 2004). Moreover, the presence of KrRAS mutations, arising 

frequently in smokers, has been linked with resistance to EGFR inhibitors in lung cancers 

(Pao et al., 2005). In other types of cancers such as CRC, little is known about the 

molecular mechanisms underlying the response to EGFR-targeted therapies. It is likely that 
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many factors including a lack of dependency on the EGFR signaling pathway by CRCs, 

inherent molecular heterogeneity of cancers, and/or genetic heterogeneity of patients are 

involved. Using the ApcMin mouse model of CRC and the hypomorphic Egfrwa2 allele, we 

previously showed that polyp development is greatly reduced, but that a subset of intestinal 

polyps still arise on a background with reduced EGFR activity (Roberts et al., 2002; 

Torrance et al., 2000). The growth and pathological progression of polyps with impaired 

EGFR signaling appear identical to those with wild-type levels of EGFR. These results 

suggest that CRCs can arise independently of EGFR.  

To test the hypothesis that tumors can grow independently of EGFR, we generated 

ApcMin mice specifically lacking EGFR in the intestinal epithelium using a conditional Egfr 

allele (Egfrtm1Dwt). In the present study, we demonstrate that ApcMin mice deficient for 

EGFR in the intestinal epithelium have an equivalent reduction in the number of intestinal 

adenomas as observed with the Egfrwa2 allele on the ApcMin background. Similarly, the size 

of the tumors that grow in the absence of EGFR is not impaired. Using these genetically 

distinct tumors, we show that tumors have an EGFR-dependent gene expression signature 

that reflects the activation status of compensatory pathways regulating cell proliferation 

and apoptosis. Our results define a subset of tumors that grow independently of EGFR and 

a putative biomarker for response to EGFR inhibitor therapy.  

2.2 Materials and Methods 

Mice. C57BL/6J (B6)- ApcMin mice were obtained from The Jackson Laboratory (Bar 

Harbor, ME). Cre transgenic mice, B6;D2-Tg(Vil-cre)20Syr (MMHCC, 01XE7) were 

obtained from NCI-Frederick and maintained on C57BL/6J background as hemizygous. 
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Mice were fed Purina Mills Lab Diet 5058 under specific-pathogen-free conditions in an 

American Association for the Accreditation of Lab Animal Care–approved facility. Mice 

were euthanized by CO2 asphyxiation for tissue collection.  

Genotyping. Mice were genotyped for the ApcMin allele as previously described (Roberts 

RB et al., 2002). Cre transgenic mice were determined using PCR with cre-S1, 5'-

gtgatgaggttcgcaagaac-3' and cre-AS1, 5'-agcattgctgtcacttggtc-3' primers which brings a 

278-bp PCR product. Mice were genotyped for the Egfrtm1Dmt allele as previously described 

(Lee et al., 2007). 

Tissue collection. The small intestine and colon were removed from each mouse. The 

small intestine was cut into thirds. Each segment were gently flushed with PBS to remove 

fecal material, cut longitudinally, and splayed flat. Representative tumors were scored 

before cutting in half under the dissecting microscope. One half were used for RNA 

extraction and array experiment; another half were fixed in 10% neutral buffered formalin 

at 4 °C overnight for histological analysis, or snap-frozen for use in cryo-sectioning. 

Macroadenoma counts. The tumor number and diameter were obtained for the entire 

length of the small intestine and colon, with a dissecting microscope and in-scope 

micrometer at 5x magnification. The smallest tumors that can be counted are 

approximately 0.3 mm in diameter. Tumor scoring was performed without knowledge of 

genotype by the investigator. Changes in tumor growth rate were recorded grossly as 

tumor size. In addition to tumor size, tumors were carefully scored based on number and 

location along the gastro-intestinal (GI) tract. 

Histology and Immunohistochemistry: Intestinal tissues or colon samples were rolled 

into a jellyroll before fixing in 10% neutral buffered formalin. The processed tissues were 



 31 

embedded in paraffin and sectioned (7 µm). Every 50 µm, sections were taken and stained 

with H&E.  

Immunohistochemical procedures were performed as described (Park et al., 2005). 

Colon tumors were rapidly dissected, fixed in 4% paraformaldehyde, and embedded in 

paraffin before cutting ten µm thick sections.  Antigen-retrieval was performed by boiling 

for 20 min in citrate buffer, pH 6.0.  Sections were treated with 0.3% hydrogen peroxide in 

PBS for 30 min, washed in PBS, blocked in PBS plus 3% goat serum and 0.1% Triton X-

100, and then incubated with primary antibodies and HRP-conjugated goat anti-rabbit 

secondary antibody (Sigma, St. Louis, MO). Antigen-antibody complexes were detected 

with DAB peroxidase substrate kit (Vector Laboratories, Burlingame, CA) according to the 

manufacturer’s protocol.   

Microarray experiments. Total RNA was isolated from individual tumors or normal 

epithelial tissue using Trizol (Invitrogen) according to the manufacturer's protocol. Isolated 

RNA was quantified using OD260 nm measurements in a DU 800 spectrophotometer 

(Beckman Coulter). RNA sample integrity and concentration was verified using the RNA 

Nano 6000 Chip Assay on a BioAnalyzer 2100 (Agilent). 

RNA labeling was carried out using the Low RNA Input Fluorescent Linear 

Amplification Kit (Agilent). Two hundred and fifty nanograms of RNA isolated from cell 

lines or 250 ng reference RNA was incubated with 0.7 µL T7 promoter primer at 65°C for 

10 min. For the mouse arrays, a total RNA reference pool isolated from C57BL/6J 

embryos was used. The reactions were incubated on ice for 5 min. cDNA was synthesized 

using 5 × First Strand Buffer, 0.1 M dithiothreitol, dNTP mix, RNase OUT, and MMLV-

RT at 40°C for 120 min and the reaction stopped at 65°C for 15 min. The reactions were 
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placed on ice for 5 min, tap spun, and 1mM of cyanine 3-CTP or cyanine 5-CTP (Perkin 

Elmer) was added to the reactions for the reference and cell lines, respectively. Fluorescent 

cRNA was synthesized using 4 × transcription buffer, 0.1 M dithiothreitol, NTP mix, 50% 

PEG, RNase OUT, inorganic pyrophosphatase, and T7 RNA polymerase at 40°C for 120 

min. The labeled cRNA was purified using an RNeasy Kit (Qiagen). cRNA was quantified 

using a DU 800 spectrophotometer (Beckman-Coulter), and 1 µg of labeled reference and 

1 µg of labeled sample were combined with 30 µL control target solution, 9 µL 25 × 

fragmentation buffer, and 225 µL 2 × hybridization buffer before loading onto 

hybridization chambers containing the appropriate microarray. Agilent 21K mouse oligo 

arrays (Agilent) were used for tumor and normal tissue samples. The slides were incubated 

in a Rotisserie hybridization oven at 60°C for 17 h before the microarrays were washed 

and scanned using a microarray scanner (Agilent). 

Data analysis. Data from the microarrays were extracted using Feature Extraction 

Software (Agilent) and uploaded into GeneSpring (Agilent). The data were normalized 

first by Lowess and then centered around the 'untreated' samples before filtering using the 

default minimum expression level of 0.1. Filtered gene lists were exported for statistical 

analysis using Significance Analysis of Microarrays (SAM) software (Stanford). Lists of 

differentially expressed genes for each tumor genotype were generated using a two-class 

unpaired comparison at a false discovery rate (FDR) of 5 %.  

Quantitative real time PCR (qRT-PCR). Genes with significant changes in expression 

between wa2 tumors and wt tumors, based on ANOVA analysis, were confirmed by qRT-

PCR. cDNA were synthesized from total RNA from each tumor using the High Capacity 

cDNA Archive Kit (Applied Biosystems, Foster City, CA). PCR reactions were set up in 
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96-well MicroAmp Reaction Plates (Applied Biosystems), using cDNA template in 

Taqman Universal PCR Master Mix and 6-FAM labeled primer-probe sets for genes of 

interest (Applied Biosystems). Reactions were run on a Strategene MX3000P machine 

with analysis software. Threshold cycles (Ct) for each target gene will be determined by an 

in-program algorithm, assigning a fluorescence baseline based on readings prior to 

exponential amplification. Analysis of relative gene expression data will be calculated 

using the ∆∆Ct method (Livak and Schmittgen, 2001), with appropriate endogenous 

controls.  

Western blotting. An extract of harvested tissues was prepared by homogenization in 10 

volumes (10 ml/g) of homogenization buffer (20 mM Tris-HCl [pH 7.4], 150 mM NaCl, 

0.1% Triton X-100, 1 mM phenylmethylsulfonyl fluoride, 1 µg/ml of leupeptin, 1 µg/ml of 

aprotinin). The concentration of cleared lysate was measured by Bradford assay (Biorad) 

and equal amounts of protein lysate were loaded onto a 6% acrylamide gel, 

electrophoresed, and transferred to a polyvinylidenedifluoride membrane (Bio-Rad). The 

membrane was incubated in blocking solution containing 5% nonfat dried milk in TBST 

(10 mM Tris-HCl [pH 7.4], 150 mM NaCl, 0.05% Tween 20) for 1 h at room temperature 

and subsequently incubated with anti (Transduction Laboratories), anti EGFR #1001 

(Santa Cruz), anti phosphorylated p42/44 MAPK and anti phosphorylated Akt (cell 

signaling technology) and anti Akt antibody (Cell signaling) per ml in TBS (10 mM Tris-

HCl [pH 7.4], 150 mM NaCl) at 4°C overnight. Following incubation with primary 

antibody, the membrane was washed four times in TBST and then incubated in blocking 

solution containing goat anti-rabbit immunoglobulin conjugated with horseradish 

peroxidase for 1 hr at room temperature. The membrane was further washed four times in 
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TBST, and specific protein complexes were visualized with the enhanced 

chemiluminescence system (Amersham-Pharmacia). 

Statistics. The nonparametric Mann–Whitney U test was used to analyze tumor data. 

Student t test was used to analyze other comparisons. One-sided P values are given. 

2.3 Results 

2.3.1 EGFR is dispensable for normal proliferation and histological 

organization of the intestinal epithelium. 

A constitutional deletion of Egfr results is pre- or post-natal lethality in mice 

depending upon the strain (Sibilia and Wagner, 1995; Threadgill et al., 1995; Strunk  et al., 

2004). To overcome this limitation, a conditional knockout allele for Egfr was generated 

(Egfrtm1Dwt) by flanking exon 3 with loxP sites (Lee T-C, manuscript in preparation). This 

allele was used to generate mice with the Egfr gene exclusively deleted in the intestinal 

epithelium by crossing Egfrtm1Dwt mice with mice carrying Tg(Vil-Cre)20Syr that expresses 

CRE from the Villin promoter in the small intestine and colon. The resulting Vil-Cre, 

Egfrtm1Dwt mice did not exhibit overt phenotypes when compared to their Egfr wildtype 

littermates (Figure 2-1A). Moreover, these mice displayed a normal epithelium structure 

(data not shown).  

To evaluate the requirement of EGFR signaling for proliferation of the intestinal 

epithelium, proliferating cells were analyzed using BrdU incorporation at three months of 

age. Unexpectedly, Vil-Cre, Egfrtm1Dwt mice had a slight increase in the number of BrdU-

positive nuclei when compared to their Egfr wildtype littermates, although this difference 
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was not statistically significant (Figure 2-1B). These results show that deletion of Egfr in 

this intestinal epithelium does not affect basal cell proliferation rates.  

2.3.2 Intestinal adenoma in the ApcMin model can arise independently of 

EGFR activity 

Using the ApcMin mouse model of human colorectal cancer, we and others 

previously showed that a subset of intestinal polyps arise in the context of reduced or 

pharmacologically inhibited EGFR activity (Roberts et al., 2002; Torrance et al., 2000): 

the size, growth and pathological progression of polyps with reduced EGFR activity may 

be due to stochastic variation in residual EGFR activity or may be EGFR-independent.  To 

distinguish these possibilities, we generated ApcMin mice with intestinal epithelium 

deficient for EGFR (Figure 2-2A). 

At three months of age, tissue-specific deletion of EGFR (Vil-Cre, Egfrtm1Dwt, 

ApcMin) displayed a 57.5% reduction in total polyp number compared to Egfr wildtype 

littermates (46.2 ± 25.7, versus 108.8 ± 61.2; P(one-sided) = 0.006) (Figure 2-2B). This 

EGFR-dependent reduction in the number of small intestinal polyps was observed in the 

proximal and middle regions of small intestine (Figure 2-2C). No difference was observed 

in polyp number between Vil-Cre, Egfrtm1Dwt/+ and Egfr+/+ mice. Similar to the original 

Egfrwa2 studies, the size of polyps that developed in Vil-Cre, Egfrtm1Dwt mice were not 

smaller than those in wildtype Egfr mice, and were even slightly larger than polyps that 

developed in corresponding littermate controls (1.08 ± 0.57 mm versus 1.04 ± 0.56 mm; 

P(one-sided) = 0.04) mirroring the slight elevation in basal epithelium rates in the absence of 

EGFR (Figure 2-2D). Additionally, histological analysis of polyps from Vil-Cre, 
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Egfrtm1Dwt, ApcMin and Egfr+, ApcMin mice did not reveal any difference in morphology or 

pathological progression (data not shown).  

To confirm that the Egfrtm1Dwt allele underwent CRE-mediated recombination in 

polyps derived from intestinal epithelium of Vil-Cre, Egfrtm1Dwt, ApcMin mice, DNA was 

isolated from epithelial cells that had been dissected from individual polyps by laser-

capture-microdissection (LCM). PCR genotyping confirmed that only the recombined 

Egfrtm1Dwt allele (EgfrΔ) was detectable in individual ApcMin polyps from Vil-Cre, Egfrtm1Dwt 

mice (Figure 2-2E). The EgfrΔ allele is functionally null, since western blot analysis 

showed that tumors from Vil-Cre, Egfrtm1Dwt, ApcMin mice produce no detectable EGFR 

protein (Figure 2-2F), while a normal 170 kD EGFR protein can be detected in 

corresponding Egfr wildtype control tumors. 

2.3.3 EGFR-independent tumors have a distinct gene expression signature  

To determine whether EGFR-independent tumors have a distinct gene expression 

signature, we analyzed RNA from epithelia from wildtype mice, tumors from ApcMin mice 

with wildtype Egfr, and tumors from ApcMin mice with either reduced EGFR activity 

(Egfrwa2) or deficient for EGFR (Vil-Cre, Egfrtm1Dwt). Normalization of the data to the 

average of the wildtype, non- ApcMin epithelial samples yielded 17,990 differentially 

expressed genes. Hierarchical clustering with the 17,990 genes using a correlation-based 

centroid-linkage algorithm demonstrated a significant distinction between tumors and 

normal epithelial tissue (Figure 2-3A). Interestingly, tumors with wildtype Egfr were 

highly heterogeneous in their global gene expression patterns and did not cluster by Egfr 

genotype.  
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Significance Analysis of Microarray (SAM) was used to identify differences 

between Egfr wildtype and mutant/deficient ApcMin tumors. This analysis revealed that 103 

genes display statistically significant changes in their mean expression level based upon 

Egfr genotype, with a false discovery rate of 10%.  Hierarchical clustering of the 103 genes 

partitioned the tumors samples into two primary groups, those with wildtype Egfr and 

those that are deficient or mutant for Egfr (Figure 2-3B).  

Based on the SAM analysis, the top genes out of these 103 genes that were 

differentially expressed based upon Egfr genotype were also subjected to hierarchical 

clustering (Figure 2-3C). Interestingly, three genes in the RAS-MAPK pathways (Arhgap4, 

Arhgef1, Map4k2) were significantly upregulated in EGFR-independent tumors, 

suggesting that these tumors have elevated levels of components in RAS-MAPK pathway, 

potentially compensating for the loss of the upstream EGFR signal. Additionally, genes 

that are known to play an important role in cell cycle progression (E2f2, Ccnd3 and Cdc6) 

show higher levels of expression in EGFR-deficient tumors. 

2.3.4 EGFR-independent tumors increased MAPK activity and proliferation 

To confirm the gene expression profiling results, the activity of p42/44 MAPK was 

evaluated by immunohistochemistry (IHC). Tumors from ApcMin mice labeled with the 

anti-p42/44 MAPK antibody displayed p42/44 MAPK immuno-reactivity in the nucleus 

and cytoplasm of adenomas as well as the proliferative compartment of normal crypts. In 

tumors from Egfr+, ApcMin mice, the p42/44 MAPK immuno-reactivity was limited to a 

few cells localized within the tumor (Figure 2-4 A-B).  In contrast, tumors from the Vil-

Cre, Egfrtm1Dwt, ApcMin mice showed strong p42/44 MAPK immunoreactivity throughout 

the tumor (Figure 2-4 C-D). In agreement with the increase in p42/44 MAPK activity by 
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IHC, the proliferation index quantified by Ki67 IHC showed that the numbers of 

proliferating cells were significantly increased in tumors in Vil-Cre, Egfrtm1Dwt, ApcMin mice 

(Figure 2-5 A-E), consistent with basal differences in proliferation measured by analysis of 

BrdU incorporation.  

2.3.5 Reorganization in ERBB family function and elevated anti-apoptotic 

signaling in EGFR-independent tumors  

To investigate whether lack of EGFR in tumors would lead to altered protein level 

of other ERBB family members such as ERBB2 and ERBB3, western blot analysis was 

performed on protein samples extracted from individual tumors from the Vil-Cre, 

Egfrtm1Dwt, ApcMin mice and littermate controls (Figure 2-6). Whereas no detectable EGFR 

protein was present in tumors from the Vil-Cre, Egfrtm1Dwt, ApcMin mice, the protein level of 

ERBB2 and ERBB3 was elevated compared to tumors from EGFR wildtype control mice. 

The AKT-kinase is known to lie downstream of ERBB3 and regulates an anti-apoptotic 

pathway in epithelial cells (Song et al., 2005). Activation of AKT-kinase as detected by 

phospho-AKT antibody was increased in EGFR-deficient tumors. Consequently, activity 

of caspase-3, a critical executioner of apoptosis, was dramatically decreased in EGFR-

deficient tumors as detected by cleaved caspase-3 antibody. These results indicate that 

absence of EGFR results in elevated ERBB2 and ERBB3 protein levels, which may 

contribute to the increased phospho-AKT level and decreased caspase-3 activity. 

2.3.6 EGFR ligands show elevated expression in EGFR-independent tumors 

To investigate the dynamics in expression of EGFR ligands in EGFR-independent 

tumors, real-time PCR analysis was performed on tumors with different Egfr genotypes. 

Tumors lacking EGFR showed an overall elevation in EGFR ligand mRNA level (Figure 
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2-7). In particular, the Ereg (epiregulin), Epgn (epigen), and Tgfa (transforming growth 

factor-alpha) were expressed at significantly higher levels in tumors from Vil-Cre, 

Egfrtm1Dwt, ApcMin mice than those with wildtype Egfr, whereas Btc (betacellulin), Egf 

(epidermal growth factor), Dtr (diphtheria toxin receptor/heparin-binding Egf), Areg 

(amphiregulin) were expressed at levels similar to those in the wildtype Egfr tumors.  

2.4 Discussion 

The fact that majority of colon cancer patients do not respond to anti-EGFR 

therapeutics, despite promising pre-clinical data, is a major hindrance to the success of 

these agents.  Previous reports using genetic and pharmacological inhibition to reduce but 

not eliminate EGFR activity were inconclusive as to whether colon tumors can arise and 

grow independently of EGFR activity since the studies could not distinguish EGFR-

independence from variable residual EGFR activity. In the current studies, we took 

advantage of a conditional knockout allele of Egfr to prove that a subset of colon tumors 

does arise independently of EGFR signaling. Our genetic approach demonstrates that 

despite having far fewer polyps than ApcMin mice with a widetype Egfr, ApcMin mice with 

intestinal-epithelia specific Egfr deletion do develop polyps and these polyps grow in an 

EGFR-independent manner. The absence of EGFR in these polyps exerts little or no 

suppression on their growth and may even enhance tumor growth. Therefore, some tumors 

are likely not to respond to EGFR inhibition since they do not rely on EGFR for survival or 

proliferation. In contrast, targeting EGFR would be most effective for those cancers that 

are dependent upon EGFR signaling. Although mechanistically different, diffferential 

response to EGFR inhibition is well documented in NSCLC where patients harboring 
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EGFR activating mutations exhibit dramatic clinical responses to Gefitinib (Lynch et al., 

2004; Paez et al., 2004; Pao et al., 2004).  

EGFR-independent polyps must rely on alternative signaling pathways for their 

growth and survival. However, given the diversity and complexity of the EGFR signaling 

network, it is not likely that the level of EGFR expression itself is an appropriate marker 

for EGFR-independence. More likely, a host of molecular alterations contribute to growth 

in the absence of EGFR, including changes in the level of activating ligands, ERBB family 

members or effectors of downstream signaling cascades. To generate a molecular 

biomarker for EGFR-status, we utilized global gene expression analysis. Although less 

targeted, expression profiling can identify at the transcriptional level differences in gene 

expression associated with EGFR-status and potentially identify compensatory pathways 

responsible for EGFR-independent tumor growth.  When expression profiles from ApcMin 

tumors with epithelial deletion of Egfr were compared by hierarchical clustering with those 

tumors containing wildtype Egfr, two out of seven Egfr wildtype tumors clustered among 

the tumors with epithelial deletion of EGFR. One explanation for this result is that a subset 

of tumors in the Egfr wildtype tumor population share more similarity in global gene 

expression patterns with Egfr mutant tumors because the EGFR status is constitutional and 

present before selection by loss or inhibition of EGFR. Subsequently SAM was used to 

identify a list of genes that show statistically significant differential gene expression 

between EGFR-dependent and independent tumors. Among the top upregulated genes 

were E2f2, Ccnd3 and Cdc6, important positive regulators of cell cycle progression. Of 

particular interest is that several components in the RAS-MAPK pathway were upregulated 

in the EGFR-independent tumors, including Arhgap4, Map4k2 and Arhgef1. IHC analysis 
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revealed a dramatic increase in p42/44 MAPK activity in EGFR-independent tumors, 

supporting functional upregulation of the MAPK pathway. Consistent with activation of 

the MAPK proliferation pathway, the level of Ki-67 staining was elevated indicating a 

higher proliferation index in the Egfr mutant tumors. This observation was also consistent 

with the fact that EGFR-independnet tumors are slightly larger than those with normal 

EGFR activity. Taken together, the discovery of elevated RAS-MAPK pathway 

components and MAPK activity suggests that an alternative transmembrane signal 

compensates for loss of EGFR in EGFR-independent tumors.  Constitutive activation of 

RAS/MAPK is proposed to be the molecular basis for acquired resistance to gefitinib in 

ERBB2-overexpressing human gastric cancer cell lines derived from liver metastasis  

(Yokoyama et al., 2006). Another recent study in metastatic CRC patients has shown that 

patients with dysregulated MAPK pathway, via an activating Kras mutation, are more 

resistant to Cetuximab treatment (Khambata-Ford et al., 2007).  

Considering that activating Kras mutations have not been reported in ApcMin tumors 

and the intimate cross-talk within EGFR/ERBB family members, it remains to be 

determined what the up-stream transmembrane signal is that compensates for loss of 

EGFR and activation of the downstream MAPK pathway. The elevated protein level of 

ERBB2 and ERBB3 in EGFR-independent tumors strongly indicates that the ERBB2/3 

heterodimer may mediate compensatory pathways. Indeed, the ERBB2/3 heterodimer 

could also contribute to EGFR-independent tumor growth by mediating pro-survival 

signals, as phospho-AKT level is increased in EGFR-independent tumors while the 

caspase-3 activity is dramatically impaired. Consistent with this notion, ERBB3 has been 

shown to mediate sensitivity to EGFR inhibition in pancreatic and colorectal cancer cells 
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(Buck et al., 2006). Our findings may have important clinical implications for CRC 

patients who do not respond to EGFR-targeted therapies. Out results suggest that EGFR 

inhibition, either by small molecular inhibitors or by monoclonal antibodies, may be 

ineffective in the subset of EGFR-independent tumors that exhibit activation of the MAPK 

pathway. Also, ERBB3 could be used as a biomarker to predict clinical responsiveness of 

patients to anti-EGFR therapy. Furthermore, combining inhibitors to important 

downstream effecters such as MAPK or AKT with anti-EGFR therapeutics should be 

considered to achieve better efficacy. 
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Figure 2-1 Inactivation of Egfr in the intestinal epithelium does not decrease the proliferation of the 
epithelial cells. 
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Figure 2-1. Inactivation of Egfr in the intestinal epithelium does not decrease the 

proliferation of the epithelial cells. (A) An example of a three-month-old Vil-cre, Egfrtm1Dwt 

mouse showing no overt phenotypes compared to its control littermate. Control: Egfr+ 

mouse; test: Vil-cre, Egfrtm1Dwt mouse (B) The number of BrdU positive cells/crypt does 

not alter in the small and large intestines of three-month-old Vil-cre, Egfrtm1Dwt mice 

compared to its control littermate. The black bar represents the control animals; the white 

bar represents the Vil-cre, Egfrtm1Dwt mice. D: duodenum; J: jejum; I: iliem; C: colon. Error 

bar: ± SD. 
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Figure 2-2 EGFR-independent intestinal adenoma growth in ApcMin mice  
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Figure 2-2. EGFR-independent intestinal adenoma growth in ApcMin mice. A. Breeding 

scheme used to generate intestine epithelia-specific Egfr deletion in ApcMin mice. (B) 

Macroadenoma multiplicity in ApcMin mice of different Egfr genotype. Each dot represents 

the polyp number in each 3-month-old mice, (nwt=14, ndeficient=10). (C) The reduction of 

multiplicity along the small intestinal tract. (D) Macroadenoma size in ApcMin mice of 

different Egfr genotype.  Each point in represents the size of individual polyps. (E) PCR 

genotyping of representative ApcMin tumors. PCR amplicons display the generation of the 

EgfrΔ allele in tumors by Villin-cre-mediated excision of Egfrtm1Dwt. The sizes of the PCR 

products for the EgfrΔ, Egfr+ and Egfrtm1Dwt alleles are 234 bp, 800 bp and 1024 bp, 

respectively. M, 1-kb DNA ladder (F) Western blot analysis of EGFR protein levels in 

individual tumors of different genotypes. * p < 0.05; ** p < 0.01; *** p < 0.001, Mann-

Whitney U test 
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 IL2-inducible T-cell kinase (Itk),  [NM_010583] 0.0

 lectin, mannose-binding 2 (Lman2),  [NM_025828] 6.7

 Rho GTPase activating protein 4 (Arhgap4),  [NM_138630] 6.7

 2'-5' oligoadenylate synthetase 2 (Oas2),  [NM_145227] 6.7

 E2F transcription factor 2 (E2f2),  [NM_177733] 6.7

 kallikrein 9 (Klk9),  [NM_010116] 6.7

 kallikrein 21 (Klk21),  [NM_010642] 9.2

 nephronectin (Npnt),  [NM_033525] 0.0

 phytanoyl-CoA hydroxylase interacting protein (Phyhip),  [NM_145981] 0.0

 protein tyrosine phosphatase, receptor type, N polypeptide 2 (Ptprn2),  [NM_011215] 9.2

 protein tyrosine phosphatase, non-receptor type 14 (Ptpn14),  [NM_008976] 9.2

 SWI/SNF related,,  [NM_011416] 6.7

 Atpase, class VI, type 11C (Atp11c),  [NM_001001798] 6.7

 stress-induced phosphoprotein 1 (Stip1),  [NM_016737] 6.7

 cell division cycle 6 homolog (S. cerevisiae) (Cdc6), transcript variant 1,  [NM_011799] 9.2

 mitogen activated protein kinase kinase kinase kinase 2 (Map4k2),  [NM_009006] 6.7

 Rho guanine nucleotide exchange factor (GEF) 1 (Arhgef1),  [NM_008488] 6.7

 cyclin D3 (Ccnd3),  [NM_007632] 9.2

 nicalin homolog (zebrafish) (Ncln),  [NM_134009] 6.7

 FSHD region gene 1 (Frg1),  [NM_013522] 6.7

 dishevelled associated activator of morphogenesis 2 (Daam2),  [NM_001008231] 10.1

 yippee-like 5 (Drosophila) (Ypel5),  [NM_027166] 10.1

 cytochrome P450, family 2, subfamily c, polypeptide 55 (Cyp2c55),  [NM_028089] 10.1

 RIKEN cDNA 2410005O16 gene (2410005O16Rik),  [NM_025476] 10.1

 leptin receptor overlapping transcript-like 1 (Leprotl1),  [NM_026609] 10.1

 adult male testis cDNA, RIKEN full-length enriched library, clone:4930423F13 10.1

 chemokine binding protein 2 (Ccbp2),  [NM_021609] 10.1

 adult male small intestine cDNA, clone:2010208A07 product 10.1

 8 days embryo whole body cDNA,  clone:5730507C01 product 10.1

 chemokine (C-C motif) receptor 1-like 1 (Ccr1l1),  [NM_007718] 10.1

 RIKEN cDNA 4833405L16 gene (4833405L16Rik),  [NM_177197] 10.1

 retinaldehyde binding protein 1 (Rlbp1),  [NM_020599] 10.1

 RIKEN cDNA 4933417K05 gene (4933417K05Rik),  [NM_175488] 10.1

 chemokine (C-X-C motif) ligand 7 (Cxcl7),  [NM_023785] 10.1

PREDICTED:  stefin A2 (Stfa2),  [XM_487424] 10.1

 stefin A1 (Stfa1),  [NM_001001332] 10.1

PREDICTED: filamin A interacting protein 1 [],  sequence [XM_486240] 10.1

PREDICTED:  similar to rbm3 (LOC433432),  [XM_485004] 10.1

PREDICTED: similar to KIAA1917 protein [],  sequence [XM_126776] 10.1

 expressed sequence AI851790 (AI851790),  [NM_182807] 10.1

  

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 2-3 Hierarchical clustering of gene expression patterns from ApcMin tumors 
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Figure 2-3. Hierarchical clustering of gene expression patterns from ApcMin tumors. A. 

Global gene expression patterns analyzed by clustering 17,990 transcripts. Hierarchical 

clustering of (B) the 103 genes identified by SAM that are differentially expressed between 

Egfr mutant and Egfr wildtype tumors and (C) the 40 most differentially expressed genes. 

Blue block (N): samples of intestinal epithelia from EGFR wildtype mice; green block (T-

IND): samples of EGFR-independent intestinal tumors; grey block (T-D): samples of 

EGFR-dependent intestinal tumors. 
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Figure 2-4 IHC analysis of MAPK activity in EGFR-independent ApcMin tumors 

D C 

B A 



 52 

Figure 2-4 IHC analysis of MAPK activity in EGFR-independent ApcMin tumors. 

Representative immunoreactivity of phospho-42/44 MAPK of ApcMin adenomas with 

wildtype Egfr at (A) 100x and (B) 400x showing variable staining. Polyps from Villin-cre, 

Egfrtm1Dwt, ApcMin mice display an increased level of phospho 42/44 MAPK 

immunoreactivity at (C) 100x and (D) 400x.   
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Figure 2-5 Analysis of proliferation index in EGFR-independent ApcMin tumors 
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Figure 2-5 Analysis of proliferation index in EGFR-independent ApcMin tumors. Anti-Ki67 

immunofluorescence (green) in a representative polyp section from a 3-month-old Villin-

cre, Egfrtm1Dwt, Apcmin (A) and Egfr wildtype control (B) mice.  DAPI (blue) was used for 

nuclear contrast (C-D). 200x magnification. E. Quantification of proliferation index. *, P 

< 0.05, student t test. 
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Figure 2-6 Reorganization in ERBB family function and elevated anti-apoptotic signaling in EGFR-
independent tumors. 
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Figure 2-6 Reorganization in ERBB family function and elevated anti-apoptotic signaling 

in EGFR-independent tumors. Representative western blots showing level of total EGFR, 

total ERBB2 and ERBB3, phospho-AKT, cleaved caspase3 and loading control of two 

individual EGFR wildtype and EGFR-independent tumors.  
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Figure 2-7 EGFR ligands gene expression in EGFR-independent ApcMin tumors 
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Figure 2-7 EGFR ligands gene expression in EGFR-independent ApcMin tumors. 

Quantitative real time PCR analysis of the expression of EGFR ligands amphiregulin 

(Areg), epigen (Epgn), epiregulin (Ereg), betacellulin (Btc), diphtheria toxin receptor (Dtr), 

epidermal growth factor (Egf) and transforming growth factor-alpha (Tgfa). Bars, SE. 

Significantly different gene expression in Egfr mutant versus Egfr wildtype tumors.**= P 

< 0.001; *= P < 0.05, student t test. Black bar: Egfr+ ApcMin tumors; grey bar: EGFR- 

independent ApcMin tumors 

 



Chapter 3 The importance of ERBB3 signaling during intestinal 

tumorigenesis  
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Abstract 

The role of ERBB3 during intestinal tumorigenesis has been under-appreciated, 

probably due to its defective kinase activity. In this study, we generated mice with CRE-

mediated intestinal epithelia-specific Erbb3 deletion to examine the impact of ERBB 

deficiency on the ApcMin mouse model of Familial Adenomatous Polyposis (FAP). We 

observed a 88.5% reduction in total polyp number in 3-month-old ApcMin, Vil-Cre, Erbb3floxΔ 

mice compared to wild-type Erbb3 littermates (10.6 ± 6.8, versus 91.9 ± 76.0; p(one-sided) < 

0.00001). Perhaps more importantly, polyps forming in Vil-Cre, Erbb3floxΔ mice were 

significantly smaller than those forming in the controls (0.62 ± 0.48 mm versus 0.94 ± 0.45 

mm; p(one-sided) < 0.0001), suggesting that normal levels of ERBB3 signaling is essential for 

tumor growth in ApcMin mice. While the proliferation rate as measured by Ki67 staining in 

ERBB3-deficient polyps was comparable to polyps with wild-type ERBB3, an increase in 

TUNEL-positive cells were observed in polyps from ApcMin, Vil-Cre, Erbb3floxΔ mice, 

indicating that ERBB3-dependent signaling prevents apoptosis in ApcMin polyps. 

Consistently, the ERBB3-deficient polyps display reduced immunoreactivity for 

phosphorylation of S6, a downstream mediator of the PI3K/AKT/mTOR pathway, but the 

phosphorylation level of p42/44 MAPK was comparable to polyps with wildtype ERBB3 

activity. In azoxymethane (AOM) model of sporadic colorectal cancer, a significant decrease 

in tumor susceptibility was observed in ERBB3-deficient mice (p(one-sided) < 0.05), compared 

to the wild-type ERBB3 controls. However, there was no difference in the size of AOM-

induced colonic tumors between two groups (3.65 ± 1.6 vs. 3.58 ± 1.1; p = 0.92). These 

results suggest that ERBB3 also contributes to colonic tumors induced by the carcinogen 

AOM, but probably through a different mechanism depending on tumor location. Taken 
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together, this study reveals the importance of ERBB3-mediated PI3K/AKT/mTOR in 

intestinal tumorigenesis, thus provides a valuable target for therapeutic intervention.  

3.1 Introduction 

ERBB3 belongs to the ERBB family of receptor tyrosine kinases (RTK), which 

includes EGFR (epidermal growth factor receptor – ERBB1), ERBB2 and ERBB4 (reviewed 

in (Yarden and Sliwkowski, 2001)). ERBB3 shares structural domains with other ERBB 

family members, consisting of an extracellular ligand-binding domain, a transmembrane 

domain and an intracellular tyrosine kinase domain. Unlike other ERBB receptors, ERBB3 

lacks intrinsic kinase activity and cannot auto-phosphorylate (Guy et al., 1994). Upon 

binding to a ligand, ERBB3 can be trans-activated on cytoplasmic tyrosine residues by 

forming heterodimers with other ERBB family members, of which ERBB2 is the preferred 

partner (Yarden, 2001) Tyrosine-phosphorylated ERBB3 becomes a docking site for 

downstream adaptor proteins, leading to subsequent activation of intracellular signaling 

cascades. Most notably, tyrosine-phosphorylated ERBB3 has the highest binding affinity for 

PI3K among ERBB receptors due to the nine binding docking sites for the p85 subunit of 

PI3K (Soltoff et al., 1994; Kim et al., 1994). Consequently, activation of ERBB3 frequently 

results in strong activation of the AKT signaling, a critical oncogenic stimulus whose 

aberrant activity is implicated in a wide range of cancers (reviewed in (Luo et al., 2003)).  

The ERBB family members play an important role in cancer biology. In particular, 

EGFR and ERBB2 have been actively pursued as anti-cancer targets due to their aberrant 

activation in many human malignancies (reviewed in (Hynes and Lane, 2005)). In contrast, 

the function of ERBB3 has been less appreciated due to its defective kinase activity. 

Nonetheless, accumulating evidence has implicated that ERBB3 plays a critical role in 
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cancer. Overexpression of ERBB3 often accompanies EGFR or ERBB2 overexpression and 

has been frequently detected in a variety of cancers, including breast cancers (Naidu et al., 

1998), colorectal cancer (Ciardiello et al., 1991; Maurer et al., 1998), gastric cancer 

(Kobayashi et al., 2003), ovarian cancer (Rajkumar et al., 1996) and pancreatic cancer (Friess 

et al., 1999). In ERBB2-driven tumors, ERBB3 functions as an intimate signaling partner 

that promotes the transforming potency of ERBB2, usually by activating the PI3K/AKT 

pathway (Holbro et al., 2003; Siegel et al., 1999; Soltoff et al., 1994). Recently it was 

discovered that ERBB3 couples EGFR to the PI3K/AKT pathway in non-small cell lung 

cancer (NSCLC) cells that are sensitive to the EGFR inhibitor like gefitinib (Engelman et al., 

2005). Consistent with a role in EGFR blockade resistance, ERBB3-dependent activation of 

PI3K/AKT, driven by amplification of the MET proto-oncogene, underlies the acquired 

resistance to inhibitors of EGFR in a subset of NSCLC patients (Engelman et al., 2007). 

Additionally, ERBB3-dependent signaling, through ERBB2-ERBB3 heterodimers, has been 

shown to contribute to the enhanced invasiveness of mammary tumor cells (Xue et al., 2006). 

Altogether, it has become increasing clear that in cancers driven by EGFR or ERBB2 

signaling, as seen in breast cancer and NSCLC, ERBB3 mainly functions as a signaling 

partner /substrate of EGFR or ERBB2 and mediates resistance to inhibitors of EGFR and 

ERBB2 in cancer cells. Very little, however, is known about the role of ERBB3 in other 

cancers like those developing in the colon. 

Mice with constitutional deficiency of ERBB3 die perinatally due to profound 

neuronal and cardiac defects (Erickson et al., 1997; Riethmacher et al., 1997). To investigate 

the role of ERBB3-dependent signaling during intestinal tumorigenesis, we generated a 

conditional Erbb3 allele and ablated ERBB3 specifically in the intestinal epithelium. We 
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show that ERBB3-dependent signaling has a critical role in tumor development in two mouse 

models of human colon cancer, the Apcmin mouse model of spontaneous intestinal 

tumorigenesis and the azoxymethane (AOM) mouse model of sporadic intestinal (colonic) 

tumorigenesis. In both mouse models, ERBB3 deficiency dramatically reduced tumor 

multiplicity. Unlike EGFR (Roberts et al., 2002), ERBB3-dependent signaling pathways 

regulate intestinal tumor growth; ERBB3-deficient ApcMin polyps display a significant 

reduction in size that is due to increased tumor cell apoptosis. Furthermore, we demonstrate 

that ERBB3 contributes to tumor survival via the AKT pathway since the phosphorylation of 

ribosomal protein S6, a downstream target of the PI3K/AKT/mTOR pathway, is dramatically 

reduced. Overall, these results establish the importance of ERBB3-dependent signaling 

pathway in intestinal tumorigenesis.  

3.2 Materials and methods 

C57BL/6J (B6)-ApcMin mice were obtained from The Jackson Laboratory (Bar Harbor, ME). 

Cre transgenic mice, B6;D2-Tg(Vil-cre)20Syr (MMHCC, 01XE7) were obtained from NCI-

Frederick and maintained on C57BL/6J background as a hemizygous. Mice were fed Purina 

Mills Lab Diet 5058 under specific-pathogen-free conditions in an American Association for 

the Accreditation of Lab Animal Care–approved facility. Mice were euthanized by CO2 

asphyxiation for tissue collection.  

Genotyping. Mice with Erbb3Δ allele or Erbb3flox allele were crossed to Cre transgenic lines 

to get Erbb3Δ/+.CreTg/+ or Erbb3flox/+.CreTg/+ mice. These mice were further backcrossed to 

Erbb3Δ/+ or Erbb3flox/+ mice to get conditionally targeted Erbb3 (Erbb3floxΔ) mice. The 

genotype of each mouse was determined by PCR using mErbb3-S1 and mErbb3-AS1 for 

Erbb3. These primers give a 354-bp for the endogenous Erbb3 allele, a 235-bp for the 
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Erbb3Δ allele, a 488-bp for the Erbb3flox allele, and 193-bp PCR product specific for the 

Erbb3floxΔ allele, respectively. Mice were genotyped for the ApcMin allele as previously 

described (Roberts RB et al., 2002). Cre transgenic mice were determined using PCR with 

cre-S1, 5'-gtgatgaggttcgcaagaac-3' and cre-AS1, 5'-agcattgctgtcacttggtc-3' primers which 

brings a 278-bp PCR product.  

Tissue collection. The small intestine and colon were removed from each mouse. The small 

intestine was cut into thirds. Each segment were gently flushed with PBS to remove fecal 

material, cut longitudinally, and splayed flat. Representative tumors were scored before 

cutting in half under the dissecting microscope. One half were used for RNA extraction and 

array experiment; another half were fixed in 10% neutral buffered formalin at 4 °C overnight 

for histological analysis, or snap-frozen for use in cryo-sectioning. 

Macroadenoma counts. The tumor number and diameter were obtained for the entire length 

of the small intestine and colon, with a dissecting microscope and in-scope micrometer at 5x 

magnification. The smallest tumors that can be counted are approximately 0.3 mm in 

diameter. Tumor scoring was performed without knowledge of genotype by the investigator. 

Changes in tumor growth rate were recorded grossly as tumor size. In addition to tumor size, 

tumors were carefully scored based on number and location along the gastro-intestinal (GI) 

tract. 

Histology and Immunohistochemistry: Intestinal tissues or colon samples were rolled into 

a jelly-roll before fixing in 10% neutral buffered formalin. The processed tissues were 

embedded in paraffin and sectioned (7 µm). Every 50 µm, sections were taken and stained 

with H&E.  
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Immunohistochemical procedures were performed as described (Park et al., 2005). Colon 

tumors were rapidly dissected, fixed in 4% paraformaldehyde, and embedded in paraffin 

before cutting ten µm thick sections.  Antigen-retrieval was performed by boiling for 20 min 

in citrate buffer, pH 6.0.  Sections were treated with 0.3% hydrogen peroxide in PBS for 30 

min, washed in PBS, blocked in PBS plus 3% goat serum and 0.1% Triton X-100, and then 

incubated with primary antibodies and HRP-conjugated goat anti-rabbit secondary antibody 

(Sigma, St. Louis, MO). Antigen-antibody complexes were detected with DAB peroxidase 

substrate kit (Vector Laboratories, Burlingame, CA) according to the manufacturer’s 

protocol. The primary antibodies are anti-beta-catenin (Santa Cruz), rabbit polyclonal 

phospho-S6 Ribosomal Protein (Ser235/236) antibody (Cell Signaling #2211), polyclonal 

rabbit phospho-p44/42 MAP Kinase (Thr202/Tyr204) antibody (Cell Signaling, Danvers, 

Massachusetts).  

Apoptosis and proliferation. The apoptotic cells were detected using an ApopTag In Situ 

Apoptosis Detection Kit (Chemicon). The assay was performed according to the 

manufacturer’s manual. After deparaffinization, the tissues sections were incubated in 

proteinase K for 15 min. at room temperature. The sections were then incubated with 

terminal deoxynucleotidyl transferase (TdT) enzyme at 37oC for one hour, washed in three 

changes of PBS and incubated with anti-digoxignenin conjugate in a humidified chamber at 

room temperature for 30 minutes. The color was developed by incubating the sections with 

peroxidase substrate and then counterstained with haematoxylin for 30 seconds. For detection 

of proliferative cells, Ki-67 antibody (1: 50; Novocastra) was used. The assay was performed 

following the manufacturer’s protocols. The scoring of apoptotic and proliferative cells was 

done at x 400. A positive control slide of rat mammary glands provided by the manufacturer 
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was used as positive control for the In Situ apoptosis detection assay. For the Ki-67 staining, 

small intestinal crypt cells were used as an internal positive control. 

Statistics. The nonparametric Mann–Whitney U test was used to analyze tumor counts. One-

sided P values are given. 

3.3 Results 

3.3.1 ApcMin intestinal tumor development is dependent upon ERBB3 

To examine the potential role of ERBB3 signaling during intestinal tumorigenesis, we 

generated ApcMin mice with wildtype or intestinal epithelium specific deletion of ERBB3 

(Figure 3-1A). At three months of age, all ApcMin mice examined (n=16 ERBB3 wildtype, n= 

14 ERBB3 deficient) developed visible polyps (> 0.3mm in diameter) in the small intestine 

regardless of Erbb3 genotype. However, the number of macroadenomas in the small 

intestines of ApcMin, Vil-cre, Erbb3floxΔ mice was reduced dramatically compared with that in 

ApcMin controls (10.6 ± 6.8 vs. 91.9 ± 76.0; p < 0.00001; Figure 3-1B). This ERBB3-

dependent reduction in the number of small intestine polyps was observed in all regions of 

the small intestine, with the greatest effect in the proximal and middle part of the small 

intestine (Figure 3-1C). Whereas half of the ApcMin control mice developed at least one colon 

polyp, no colon polyps were observed in any of the ApcMin, Vil-cre, Erbb3floxΔ mice (Figure 3-

1D). Altogether, these results demonstrate that epithelial-specific ERBB3 signaling is 

important during intestinal tumorigenesis in ApcMin mice.  

 To assess the importance of ERBB3 on tumor growth, the size of the residual polyps 

in ApcMin, Vil-cre, Erbb3floxΔ mice was compared with those in ApcMin control mice (Figure 3-

1E). Polyps forming in ApcMin mice lacking intestinal epithelial expression of ERBB3 were 

significantly smaller than those forming in ApcMin control mice (average size 0.62 ± 0.48 vs. 
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0.94 ± 0.45; p< 0.0001; Figure 3-1E), suggesting that normal levels of ERBB3 signaling is 

essential for tumor growth in ApcMin mice. While only 60 % of the polyps in age-matched 

control mice were small, 87.0 % of the polyps in ApcMin, Vil-cre, Erbb3floxΔ mice were less 

than 1mm in diameter (Figure 3-1F). Similarly, the fraction of middle-sized polyps between 

1 and 2 mm in diameter was also reduced in ApcMin, Vil-cre, Erbb3floxΔ mice compared to 

age-matched controls (9.3 % vs. 38.2 %). Interestingly, a few large intestinal polyps (greater 

than 2 mm in diameter) were present on the ERBB3-deficient background, suggesting that 

their growth might be ERBB3-independent. Histological analysis of size-matched polyps did 

not reveal morphological differences related to Erbb3 genotype.  

3.3.2 ERBB3 signaling prevents apoptosis in ApcMin polyps  

The proliferative and apoptotic rates within ApcMin tumors was measured to determine 

the cellular mechanism responsible for reduced tumor size in the absence of ERBB3 in the 

intestinal epithelium. Staining with the proliferation marker Ki67 showed the proliferating 

cells in normal intestinal tissue are confined to the proliferative zone of the crypts, which was 

expanded in tumors, identified by nuclear accumulation of β-catenin, in ApcMin mice 

irrespective of Erbb3 genotype (Figure 3-2 A-F). Conversely, the apoptotic rate of tumors as 

measured by TUNEL was significantly different based upon Erbb3 genotype. An increase in 

the number of TUNEL-positive cells was observed in tumors from ApcMin, Vil-cre, Erbb3floxΔ 

mice compared tumors from ApcMin control mice (Figure 3-2 G-J). These results suggest that 

reduced tumor growth caused by epithelial deletion of Erbb3 is due to an elevated level of 

cell death, indicating ERBB3 provides a survival signal for intestinal tumor cells. 

3.3.3 ERBB3-dependent signaling is mediated by mTOR/S6. 
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To investigate the molecular mechanism of ERBB3-dependent tumor cell survival, 

the activity of downstream signaling effectors in size-matched polyps from ApcMin, Vil-cre, 

Erbb3floxΔ and ApcMin control mice was examined (Figure 3-3). In ApcMin control mice, strong 

cytoplasmic immunoreactivity in non-transformed normal epithelial cells surrounding polyps 

as well as within polyps was observed for phosphorylation of ribosomal protein S6 (pS6), a 

downstream mediator of the PI3K/AKT/mTOR pathway (Figure 3-3A). However, in size-

matched polyps from ApcMin, Vil-cre, Erbb3floxΔ mice, the pS6 immunoreactivity was 

significantly reduced (Figure 3-3B). In contrast, immunoreactivity for p42/44 MAPK, which 

is associated with proliferation signal in epithelial cells, was comparable between Erbb3 

genotypes (Figure 3-3 C-D) . These results demonstrate that while signaling through p42/44 

MAPK is not effected by ERBB3 deletion, signaling via S6 is significantly reduced in the 

absence of ERBB3.  

3.3.4 ERBB3 is required in a subset of colonic tumors. 

To confirm results obtained using the ApcMin model, which predominantly develops 

small intestinal tumors, the dependency on ERBB3 signaling was also investigated in the 

azoxymethane  (AOM) model. Similar to the ApcMin model, a significant decrease in tumor 

multiplicity was observed in the absence of ERBB3 in the intestinal epithelium (Figure 3-4). 

ERBB3 wildtype mice were highly susceptible to AOM treatment: 73% of AOM treated 

mice developed one or more colonic polyp, with an average of 4.7 polyps per mouse. 

Conversely, only 30% of Vil-cre, Erbb3floxΔ mice treated with AOM developed colonic 

polyps, with an average of 2 polyps per mouse (p < 0.05). In contrast to the size-effect on 

residual polyps observed in the ApcMin mouse model, there is no significant difference in the 

size of AOM-induced colonic tumors between two groups (3.65 ± 1.6 vs. 3.58 ± 1.1; p = 
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0.92). These findings suggest that ERBB3 signaling contributes to intestinal and colonic 

tumors irrespective of the model, but a different mechanism may mediate ERBB3-

independent tumor growth depending on tumor location. 

3.4 Discussion 

Although ERBB3 lacks intrinsic kinase activity, circumstantial evidence has 

accumulated suggesting that activation of ERBB3-dependent pathways can modulate tumor 

phenotypes (Kobayashi et al., 2003; Xue et al., 2006). By generating an intestinal-specific 

deletion of Erbb3, we were able to examine intestinal polyp development in a genetic 

environment deficient for ERBB3 activity. In the ApcMin mouse model of familial 

adenomatous polyposis (FAP), ERBB3 deficiency had a profound effect on polyp number, 

reducing the mean tumor number by 88.5%. Furthermore, there was a complete absence of 

polyps in the colons from ApcMin, Vil-Cre, Erbb3floxΔ mice. This robust anti-tumor activity of 

Erbb3 deletion was confirmed in the AOM mouse model of colon cancer. ERBB3-deficiency 

significantly reduced the average size of remaining ApcMin polyps. Such size-reduction effect 

has not been observed when EGFR activity was reduced (Roberts et al., 2002), highlighting 

the unique role of ERBB3-dependent signaling in regulating tumor growth. To our 

knowledge, we provide the first direct evidence that the kinase-dead ERBB3 is pivotal for 

regulating tumor growth in vivo.  

While the extent of proliferation in ApcMin polyps lacking ERBB3 was comparable in 

those with wildtype ERBB3, a higher number of apoptotic cells were detected in the ERBB3-

deficient polyps from ApcMin mice, demonstrating an important role for ERBB3 in tumor cell 

survival. Consistent with a lack of effect on cell proliferation, ERBB3-deficient polyps, have 

normal levels of p42/44 MAPK activation, which is the predominant mitogenic signal. In 
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contrast, p70S6 kinase (S6K) activity, assayed by ribosomal protein S6 phosphorylation, is 

reduced in ERBB3-deficient polyps. S6K is a target of the mammalian target of rapamycin 

(mTOR). The mTOR/S6K pathway is associated with cell survival through regulation of cell 

cycle arrest and apoptosis (reviewed in (Asnaghi et al., 2004)). Therefore, our results indicate 

that ERBB3 signaling contributes to tumor growth by prevention of apoptosis via activation 

of mTOR/S6K. ERBB3 can couple EGFR to the PI3K/AKT upon growth factor stimulation 

(Kim et al., 1994; Soltoff et al., 1994) and PI3K/AKT lies upstream of mTOR/S6K. 

Therefore, the requirement of the ERBB3 signaling pathway in intestinal tumor progression 

could result from its unique role of linking EGFR signaling to PI3K/AKT, thus activating the 

mTOR/S6K pathway to promote cell survival. EGFR also activate PI3K/AKT through 

association with the adaptor protein GAB1 in ApcMin polyps (Moran et al., 2004). It is 

possible that PI3K/AKT is activated by EGFR via two mechanisms, association with GAB1 

and coupling with ERBB3.  Our results suggest that ERBB3 activation of PI3K/AKT is the 

major mechanism in ApcMin polyps.  

Unlike the small intestinal polyps in the ApcMin model, epithelial-specific deletion of 

ERBB3 in the AOM did not result in tumor size reduction, although the tumors were much 

fewer in number. This difference could be due in part to the fact that ApcMin mice develop 

polyps by loss of APC, while in the AOM model, tumors are induced by stabilization of β-

catenin. However, recent gene expression profiling shows that these two models are highly 

similar (Kaiser et al., 2007), suggesting that the difference in the route of tumor initiation in 

the ApcMin and AOM models likely does not contribute to molecular differences resulting in 

ERBB3 sensitivity. An alternative possibility is that a subset of colonic tumors can grow 

independently of ERBB3, similar to what we have previously observed for EGFR (Roberts et 



 71 

al., 2002). Since Apcmin mice lacking ERBB3 in the intestinal epithelium did not develop 

colonic tumors, they either lack the ERBB3-independent class or this class is infrequent in 

the ApcMin model as opposed to the AOM model. 

In this study, we observed a profound ERBB3-dependnent reduction in polyp 

multiplicity and size. This robust anti-tumor activity of targeting ERBB3 may result from its 

unique link to PI3K/AKT and its downstream effecter mTOR. Furthermore, as ERBB3 

partners with EGFR/ERBB2 and delivers essential signals, a lack of ERBB3 would abolish 

EGFR/ERBB3 and ERBB2/3 heteromiders simultaneously, which may contribute to the anti-

tumor effects. Consequently, targeting ERBB3 and disrupting heterodimer formation, or 

using antibodies that inhibit ERBB3 heterodimerization with other ERBBs, may be more 

efficient than targeting individual receptors. Our findings also suggest that inhibition of the 

mTOR/S6 pathway, the major downstream effecter of ERBB3-dependent signaling, may be 

effective in treating intestinal cancers.  

Our study highlights the importance of regulators of intestinal tumor progression that 

are dependent on the ERBB3 signaling pathway. It will be important to determine whether 

ERBB3-dependent signaling also contributes to tumorigenesis in other cancers such as breast 

cancer, NSCLC and prostate cancer, where PI3K/AKT is strongly implicated. For this 

purpose, the conditional ERBB3 targeted allele used in this study would be an ideal tool and 

our findings illustrate the value of using mouse models to study human diseases.  
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Figure 3-1 Effects of ERBB3-deficiency on ApcMin tumor development 
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Figure 3-1 Effects of ERBB3-deficiency on ApcMin tumor development. (A) Breeding scheme 

to generate intestine epithelia-specific Erbb3 deletion. (B) Intestinal macroadenoma 

multiplicity in ApcMin mice. Each dot represents polyp number in single 3-month-old Erbb3 

wt (n= 16) and mutant (n =14) mice. (C) Frequency of intestinal polyps stratified by small 

intestine region. (D) Colonic polyp multiplicity in ApcMin mice. (E) Intestinal macroadenoma 

size analysis. Each dot represents a single polyp. (F) Size range of tumors in ApcMin mice. 

***, P < 0.0001; ****, P < 0.00001; Mann-Whitney U test. 
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Figure 3-2 Proliferation and apoptosis in ApcMin polyps from 3-month-old ERBB3 wildtype and deficient 
mice 
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Figure 3-2 Proliferation and apoptosis in ApcMin polyps from ERBB3 wildtype and deficient 

mice (A-B) Diamidino-phenylindole (DAPI) staining, (C-D) beta-catenin immunostaining 

(E-F) Ki-67 immunostaining and (G-H) TUNEL labeling with DAPI counter-staining of size 

matched intestinal polyps from 3-month-old ERBB3 wildtype and ERBB3 deficient mice. 
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Figure 3-3  Pathway analysis in ERBB3-deficient ApcMin polyps 
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Figure 3-3 Pathway analysis in ERBB3-deficient ApcMin polyps. (A-B) Immunostaining of 

phosphorylated ribosomal protein S6 (pS6) in intestinal polyps from 3-month-old Erbb3 

wildtype and  deficient mice. (C-D) Immunostaining of p42/44 MAPK in intestinal polyps 

from 3-month-old Erbb3 wildtype and  deficient mice.
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Figure 3-4 Effect of ERBB3-deficiency on AOM-induced colonic tumor development 
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Figure 3-4 Effect of ERBB3-deficiency on AOM-induced colonic tumor development. 

Colonic polyp multiplicity (A) and size (B) in azoxymethane-treated Erbb3 wildtype (n=22) 

and mutant (n=10) mice. *, P < 0.05; Mann-Whitney U test. 

 



Chapter 4 Genetic background effect on ApcMin tumor response to 

EGFR inhibition 

 



Abstract 

The ApcMin polyps forming in the hypomorphic Egfrwa2 mice appear to grow 

independently of EGFR (Roberts et al., 2002). To examine the effects of genetic 

background on EGFR-independent tumor growth, we generated F1 hybrids by 

intercrossing ApcMin  allele on C57BL/6J with Egfrwa2 allele on four congenic inbred 

strains: B6, BTBR/J, A/J and 129S1/SvImJ (129). There was significant strain-specific 

variation in tumor multiplicity and size, suggesting that BTBR/J, A/J and 129 contain 

modifiers that reduce tumor number and size. More importantly, the reduction in tumor 

number in ApcMin, Egfrwa2/wa2 mice relative to ApcMin mice carrying a wild-type Egfr allele 

varied with different genetic background. While the B6.A F1 and B6.129 F1 backgrounds 

exhibited 70% reduction in EGFR-dependent tumor growth, the C57BL/6J and B6.BTBR 

F1 backgrounds supported 50% of EGFR-independent tumor growth. These results have 

implication for understanding the genetic heterogeneity in tumor response to EGFR-

targeted therapies in human patients.  
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4.1 Introduction 

Studies into the factors contributing to colorectal cancer (CRC) have demonstrated 

that genetics  greatly affects an individual’s susceptibility to this disease (reviewed in 

(Kinzler and Vogelstein, 1996)). Familial adenomatous polyposis (FAP), resulting from a 

germline mutation in the adenomatous polyposis coli (APC) tumor suppressor gene 

(Fearnhead et al., 2001), is one of the most well characterized familial causes of CRC. 

Individuals with FAP develop hundreds to thousands of colonic polyps and have a high 

risk of developing CRC if left untreated. Variation in polyp number is thought to be 

modulated by the site of the mutation in the APC gene, environmental factors, and the 

effects of unknown genetic modifiers (Crabtree et al., 2002). Understanding the genetic 

complexity underlying susceptibility to CRC should lead to better prevention, diagnosis 

and treatment.  

A nonsense mutation at codon 850 in the mouse homolog of the APC gene, referred 

to as the multiple intestinal neoplasia allele of Apc (ApcMin), predisposes mice to intestinal 

tumorigenesis (Moser et al., 1990; Su et al., 1992). Despite the fact that the colon is 

primarily affected in FAP patients as opposed to the small intestine in ApcMin mice, the 

ApcMin model recapitulates the molecular initiating events occurring in FAP patients and 

has been used extensively as a model of human CRC. The number of polyps that arise in 

ApcMin mice is greatly influenced by genetic background (Dietrich et al., 1993; Moser et 

al., 1992). Quantitative trait analysis (QTL) identified ‘modifier of Min’ 1 (Mom1) on 

chromosome 4 as a major modifier of the ApcMin phenotype (Dietrich et al., 1993); Mom1 

affects both tumor multiplicity and size in a semi-dominant fashion (Gould et al., 1996).  
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Inbred strains carrying the Mom1 sensitive allele (Mom1s), including C57BL/6J (B6), 

BTBR/J (BTBR), A/J and 129S1/SvImJ (129), are more susceptible to polyp formation 

caused by the ApcMin mutation, whereas inbred strains carrying the Mom1 resistant allele 

(Mom1r), including AKR/J, BALB/cJ, C3H/HeJ and SWR/J, are relatively resistant to 

polyp formation. The Mom1 locus is estimated to account for about 50% of the genetic 

variation in polyp number among genetically different ApcMin/+ mice (Dietrich et al., 1993), 

indicating that other modifiers also exist. Since the discovery of Mom1, at least four 

additional Mom loci have been identified by QTL analysis (reviewed in Table 1). Along 

with the identification of Mom loci, other non-polymorphic genetic modifiers have been 

recognized by transferring mutations of interest onto a ApcMin/+ background (reviewed in 

Table 1). Modifier genes identified using the ApcMin mouse model should provide insights 

into the hereditary factors that influence CRC susceptibility and severity in humans.  

EGFR-targeted therapies, such as small-molecule-inhibitors and monoclonal 

antibodies, are now approved for use in metastatic CRC patients or are in advanced clinical 

trials for other uses. These clinical trials clearly demonstrate that the responses of CRC 

patients to EGFR-targeted therapies exhibit extensive variation, with some patients 

responding well, while the majority failing to display any benefit. With the exception of 

lung cancer, where an activating mutation in EGFR is associated with a dramatic response 

to anti-EGFR therapy, the mechanisms underlying the response to EGFR inhibitors is 

currently unknown. A important observation in clinical studies is the lack of association 

between expression of EGFR as determined by immunohistochemistry, and clinical benefit 

from anti-EGFR therapy. Interestingly, there is a striking correlation between the 

development of a skin rash, the prototypical toxicity of EGFR inhibitors, and therapeutic 
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response (Cohen et al., 2003; Janne, 2003). The underlying mechanistic explanations are 

currently unknown. 

A possible reason for the varied outcomes may be due to the pharmacological 

properties of EGFR-inhibiting drugs, with higher plasma concentrations corresponding to 

better patient response. However, the actual relationship between plasma drug level and 

clinical outcome has not been established in clinical studies. It is more likely that genetic 

differences among individuals contribute to the different responses observed with anti-

EGFR drugs. Gene expression profiling of 100 human colorectal adenomas has revealed 

that human colon tumors exhibit extensive molecular heterogeneity (Kaiser et al., 2007). 

These results suggest that although the development of CRC undergoes similar 

morphological changes (Kinzler and Vogelstein, 1996) and tumors share similar 

histopathological characteristics, the genetic and genomic events leading to malignancy are 

distinct for each tumor. Therefore, we hypothesized that genetic heterogeneity affects the 

response to anti-cancer therapeutic agents, and that genetic modifiers may be a source of 

the variability among patient responses to EGFR-targeted drugs. 

To genetically model the effects of EGFR inhibition during CRC treatment, our lab 

has used mice homozygous for the Egfrwa2 hypomorphic allele. The Egfrwa2 produces a 

receptor with a reduced kinase activity due to a substitution of a glycine for a valine 

residue near the amino terminus of the tyrosine kinase domain. Egfrwa2-encoded receptors 

have up to a 90% reduction in kinase activity depending on the assay used (Fowler et al., 

1995; Luetteke et al., 1994). Historically the Egfrwa2 allele was maintained on a B6EiC3H 

mixed background (Luetteke et al., 1993). In our laboratory, it has been bred to congenicity 

on several genetic backgrounds including C57BL/6J (B6), 129S1/SvImJ (129), A/J (A), 
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and BTBR/J (BTBR). The F1 hybrids are better at supporting pup survival to adulthood, 

allowing for detailed phenotypic analysis in these adult mice. Recent studies have shown 

that genetic background affects the development of aortic stenosis and cardiac function in 

Egfrwa2/wa2 adult mice (Barrick et al., 2007). The 129 background dominantly protects 

against calcific aortic stenosis in Egfrwa2 mice, while the B6-Egfrwa2/wa2 mice are more 

susceptible and Egfrwa2 homozygotes on the B6.129 F1 background have a mild 

phenotype. 

Since strain-based variation in phenotypes associated with reduced or absent EGFR 

activity are well established, we hypothesized that EGFR-dependent ApcMin/+ tumor growth 

would also vary by genetic background. Therefore, to identify potential strain-specific 

differences in EGFR-dependent ApcMin/+ tumor growth, we took advantage of the 

availability of four congenic Egfrwa2 strains and crossed them with B6-ApcMin/+, Egfrwa2 

mice. In this way, we generated ApcMin/+, Egfrwa2/wa2 F1 hybrids to compare tumor response 

from EGFR inhibition on multiple genetic backgrounds including B6, B6.BTBR F1, B6.A 

F1, and B6.129 F1. We found that genetic background modifies tumor multiplicity and 

size, confirming that genetic background modifiers influence tumor phenotypes. More 

importantly, strain-specific variability in tumor multiplicity associated with reduced EGFR 

activity was observed, demonstrating that genetic background affects response to EGFR 

inhibition in ApcMin/+ mice. 

4.2 Materials and methods 

Mice. C57BL/6J (B6)-ApcMin mice were obtained from The Jackson Laboratory (Bar 

Harbor, ME). Mice of the stock B6EiC3h-a/A-Egfrwa2Wnt3avt were obtained from The 

Jackson Laboratory (Bar Harbor, ME). The Egfrwa2 allele was backcrossed to the inbred 
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strains 129S1/SvImJ, BTBR/J, A/J, and C57BL/6J as previous described (Roberts, 2003). 

Mice were fed Purina Mills Lab Diet 5058 under specific-pathogen-free conditions in an 

American Association for the Accreditation of Lab Animal Care–approved facility. Mice 

were euthanized by CO2 asphyxiation for tissue collection.  

Genotyping. Mice were genotyped for the ApcMin and Egfrwa2 as previously described 

(Roberts et al., 2002; Roberts, 2003).  

Tissue collection. The small intestine and colon were removed from each mouse. The 

small intestine was cut into thirds. Each segment were gently flushed with PBS to remove 

fecal material, cut longitudinally, and splayed flat. Representative tumors were scored 

before cutting in half under the dissecting microscope. One half were used for RNA 

extraction and array experiment; another half were fixed in 10% neutral buffered formalin 

at 4 °C overnight for histological analysis, or snap-frozen for use in cryo-sectioning. 

Macroadenoma counts. The tumor number and diameter were obtained for the entire 

length of the small intestine and colon, with a dissecting microscope and in-scope 

micrometer at 5x magnification. The smallest tumors that can be counted are 

approximately 0.3 mm in diameter. Tumor scoring was performed without knowledge of 

genotype by the investigator. Changes in tumor growth rate were recorded grossly as 

tumor size. In addition to tumor size, tumors were carefully scored based on number and 

location along the gastro-intestinal (GI) tract. 

Histology and Immunohistochemistry: Intestinal tissues or colon samples were rolled 

into a jelly-roll before fixing in 10% neutral buffered formalin. The processed tissues were 

embedded in paraffin and sectioned (7 µm). Every 50 µm, sections were taken and stained 

with H&E.  
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Statistics. The nonparametric Mann–Whitney U test was used to analyze all comparisons. 

One-sided P values are given. 

4.3 Results 

4.3.1 Tumor multiplicity and size in ApcMin/+ mice on different backgrounds 

To examine the effects of genetic background on EGFR-dependent tumor growth, 

intercrosses between B6-ApcMin/+, Egfrwa2/+ and three Egfrwa2/+ congenic strains was 

established (Figure 4-1). Female Egfrwa2/+ mice from B6, BTBR, A, and 129 strains were 

crossed with male B6-ApcMin/+, Egfrwa2/+ mice. Litters were primarily produced from 

crosses in which ApcMin/+ was carried by males since ApcMin/+ females had fewer and 

smaller litters than the Apc+/+ females (unpublished observations, data not shown). 

The resulting F1-ApcMin/+ progeny homozygous for Egfrwa2 exhibited wavy coats 

and, along with ApcMin/+, Egfrwa2/+ or Egfr+/+ littermate controls, were scored for tumors 

along the entire intestinal tract at three-months of age. The distribution of tumor number in 

the small intestines among F1 hybrids with at least one wildtype Egfr allele was 

significantly shifted to few tumors compared to the parental B6 background (Figure 4-2). 

A comparison of polyp numbers from all B6 mice and F1 hybrids revealed the influence of 

BTBR, A and 129 backgrounds on polyp number (Table 2; Figure 4-3A). The average total 

tumor number for the F1 hybrids was 125.8/mouse for B6.BTBR F1- ApcMin/+ mice, which 

is significantly less that that for B6-ApcMin/+ mice (mean = 208.0 polyps/mouse, p < 0.005). 

B6.A F1 mice had a further reduction in tumor number, developing on average 62.3 

polyps/mouse (Figure 4-3A, p < 0.0001). Of the four genetic backgrounds examined, the 

B6.129 F1 background was the most resistant to polyp formation. These mice developed 
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on average 33.4 polyps (p < 0.0001). In contrast to the B6-ApcMin/+ mice that developed an 

average 1.6 colonic polyps, none of the F1-ApcMin/+ mice developed any colonic polyps 

(Table 2). Consistent with previous reports (Roberts et al., 2002), there was no difference 

in tumor number between mice carrying one or two wildtype Egfr alleles.  

The sizes of polyps were estimated by measuring their maximum diameter. The 

average diameter decreased from 1.19 mm in B6-ApcMin/+ mice to 1.03 mm in B6.A F1-

ApcMin/+ mice, with a further decrease to 0.87 mm in B6.BTBR F1-ApcMin/+ mice. 

Consistent with resistance in tumor number, B6.129 F1 mice displayed the smallest 

average polyp diameter among all four groups, averaging 0.74 mm in diameter (Table 3, 

Figure 4-3B).  

Taken together, these results suggest the existence of tumor resistance alleles 

carried by BTBR, A and 129 that can modify the B6-ApcMin/+ phenotype, resulting in a 

significant decrease in both the number and size of tumors. Although fewer in number and 

smaller in size, the polyps present in the F1 mice were histologically similar to polyps in 

B6-ApcMin/+ mice (data not shown).  

4.3.2 Tumor multiplicity in ApcMin/+, Egfrwa2/wa2 mice is modified by genetic 

background.  

Previous studies have shown that homozygosity for the Egfrwa2 allele has a 

profound effect on tumor multiplicity in adult animals on a mixed genetic background 

(Roberts et al., 2002). Consistent across all backgrounds, ApcMin/+ mice homozygous for 

the Egfrwa2 allele developed significantly fewer polyps than their respective ApcMin/+ 

littermate controls (Table 4, Figure 4-4A). Previous studies suggested that the growth of 

the residual polyps present on the Egfrwa2/wa2 background is not dependent on EGFR 
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activity (Roberts et al., 2002). On the B6 background, the polyp number decreased from 

208.0 polyps/mouse in wildtype Egfr controls to 93.4 polyp/mouse in Egfrwa2 homozygous 

mice, representing a 48% reduction in polyp number (Table 4, Figure 4-4B). A similar 

reduction was observed on the B6.BTBR F1 background, where Egfrwa2 homozygous 

ApcMin/+ animals developed an average of 75.8 polyps, compared to 125.8 polyps in 

Egfrwa2/+ or Egfr+/+ controls. On the B6.A F1 background, EGFR-independent tumor 

growth was significantly less pronounced, with Egfrwa2 homozygous mice developing an 

average of 21.4 polyps, or a 67.7% reduction compared to the 62.3 polyps in Egfrwa2/+ or 

Egfr+/+ littermate controls. On the B6.129 F1 background, Egfrwa2/wa2 mice developed a 

small number of polyps (5.9 ± 4.85) when compared to the 33.4 polyps that developed in 

wildtype Egfr controls. This resulted in a significantly higher 75.2% reduction in tumor 

number. Overall, EGFR-independent polyp growth is highly influenced by strain 

background. The B6 and B6.BTBR F1 backgrounds are more resistant to reduced EGFR 

activity, supporting about 50% of tumors being EGFR-independent,. Conversely, the B6.A 

F1 and B6.129 F1 backgrounds are more sensitive to EGFR inhibition, exhibiting an 

approximate 70% reduction in EGFR-dependent tumors, which represents about 30% 

EGFR-independent tumors. 

4.4 Discussion 

Mouse models of human cancer are powerful tools for studying cancer 

pathogenesis and susceptibility, as exemplified in the ApcMin mouse model. This model has 

an advantage over other experimental models of CRC, such as cancer cells grown as 

xenografts in nude mice, in that the phenotypes of ApcMin tumors closely resemble many 

important aspects of the initiation and early progression of human colonic tumors. First, 
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the initiation of ApcMin tumors is caused by the loss of APC expression, which molecularly 

recapitulates the most common initiation event seen in human CRC. Second, ApcMin mice 

develop numerous countable intestinal neoplasms, similar to the numerous polyps that 

develop in FAP patients. Third, the colorectal tumor phenotype in FAP patients is modified 

by known and unknown genetic factors, a trait that is mirrored in ApcMin mice. Among the 

genetic modifiers that have been localized, at least four specific ‘modifiers of min’ (Mom) 

have been characterized using inbred mouse strains that modulate the ApcMin phenotype 

(reviewed in Table 1). Inbred mouse stains can carry multiple Mom loci, with the ApcMin 

tumor phenotype being a net result of modification by all loci, in addition to non-genetic, 

environment factors. For example, the B6 strain is known to harbor both the Mom1s 

enhancer and the Mom7 suppressor alleles (Dietrich et al., 1993; Kwong et al., 2007); the 

dominant polyp-suppressing Mom7 allele is counteracted at least in part by the polyp-

enhancing Mom1s allele. Thus 100% of ApcMin/+ mice on a B6 background develop 

numerous intestinal polyps by two-to-three months of age. This phenotype contrasts 

sharply with the AKR background, where 75% of ApcMin/+ mice are tumor free at six 

months of age (Dietrich et al., 1993). The effect of the recessive, tumor enhancing Mom7 

allele in AKR is offset by the effect of the potent tumor-resistant Mom1r allele in the same 

mouse (Dietrich et al., 1993; Kwong et al., 2007). Thus, a full characterization of the 

ApcMin phenotype in different inbred mouse strains requires further analysis to identify 

novel Mom loci.  

In our study, we provide evidence for the modification of intestinal tumor 

phenotypes in B6-ApcMin/+ mice by alleles from BTBR, A and 129. In F1 hybrids carrying 

ApcMin/+, alleles coming from BTBR, A or 129 strains confer a suppression of polyp 
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multiplicity and size when compared to B6-ApcMin/+. The effect of polyp resistance varied 

among the backgrounds, indicating an array of alleles within the BTBR, A and 129 

genomes affect polyp development. Previous studies have shown that all four strains 

harbor the tumor-enhancing Mom1s allele. Therefore, our observed decrease in tumor 

number on the three F1 backgrounds, when compared to B6, is not likely due to the Mom1 

genotype. Additionally, the observed decrease in the F1 hybrids is probably not a result of 

the Mom3 or Mom7 alleles, since neither exerts tumor-enhancing effects on BTBR, A or 

129 backgrounds. To determine whether the decrease in polyp number is the result of the 

tumor-resistant effects of Mom2 requires further analysis. Alternatively, since previous 

studies have shown that mutations in Dnmt1 (DNA methyltransferase) and Mmp7 (matrix 

metalloproteinase matrilysin) can influence polyp number and size in ApcMin mice 

(Cormier and Dove, 2000; Wilson et al., 1997), differences in the Dnmt1 and Mmp7 genes 

may contribute to tumor phenotype. Undoubtedly other unidentified modifier genes also 

play a significant role in ApcMin-mediated tumor development.  

The F1 hybrids used in our studies arose from a cross where parental strains were 

congenic for the Egfrwa2 allele on chromosome 11. Although we have not observed any 

differences in phenotypes between Egfrwa2/+ and Egfr+/+mice, it is possible that the size of 

the Egfrwa2 congenic region derived from the B6EiC3H mixed background could confound 

our results. Though unlikely, there may be ApcMin modifiers flanking the Egfrwa2 locus that 

are ultimately responsible for the effects we observed. Irrespectively, differences in the 

sizes of the congenic intervals would not alter the conclusions since strain-dependent 

modifiers would still be the cause of the background-dependent tumor effects of EGFR 

inhibition. 
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B6-ApcMin mice maintained in our colony develop a relatively high number of 

intestinal polyps compared with published studies. The tumor number in B6-ApcMin mice is 

commonly reported as 60-100 polyps/mouse at three-months of age, while we observe an 

average of 208.0 polyps/mouse. However, such discrepancies in tumor number could not 

have affected the validity of our results since we performed all analyses with littermate 

controls. A high tumor number in our ApcMin mice may reflect differences in 

environmental factors. For example, differences in the pathogen-free status and the gut 

microbiota may contribute to variation in polyp multiplicity. Variation in tumor number in 

B6-ApcMin mice has been reported in previous studies (Haines et al., 2005; Silverman et al., 

2002; Song et al., 2000). For example, Song et al. (2000) reported that B6-ApcMin mice 

developed an average of 24.4 polyps at three-months of age, while Silverman et al. (2002) 

reported an average number of 89.9 polyps in three-month old B6-ApcMin mice. 

Interestingly, Mom3 was identified as a novel modifier closely linked to ApcMin that results 

in a dramatic increase in polyp number (range 289-494 polyps/mouse) and a shorter life 

span (less than three-months of old) (Haines et al., 2005). Thus, another possible 

explanation  for the increase in poly number within our colony is the presence of polyp-

promoting mutations in our B6-ApcMin colony. This can be tested by crossing our B6-

ApcMin mice with B6 mice from other sources. 

A significant interest exists in defining factors that could be used to identify 

patients more likely to respond to EGFR-targeted therapeutics, so that treatments can be 

delivered to the appropriate subjects. Our studies were designed to provide a preliminary 

glimpse into the genetic complexity of this trait. Phenotypes of Egfrwa2 homozygotes 

represent the result of reduced EGFR activity in vivo, and when crossed to the ApcMin 
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mouse model of CRC, the resulting mice are an excellent model to experimentally examine 

potential causes underlying the variable response of human CRC patients to EGFR-

targeted therapies. Previous data showing modification of ApcMin tumorigenesis by the 

Egfrwa2 allele was reported for a B6EiC3H mixed background (Roberts et al., 2002).  

Although a mixed genetic background creates genetic heterogeneity that is relevant to an 

outbred human population, the random segregation of the mixed backgrounds produce 

excessive experimental variation, which can confound phenotypic analysis. To reveal the 

existence of potential modifiers that can modulate interactions between ApcMin and Egfrwa2, 

we took advantage of the availability of four congenic Egfrwa2 strains by crossing with 

ApcMin mice. In this way, we generated ApcMin, Egfrwa2/wa2 F1 hybrid mice that developed 

significantly fewer polyps when compared to their ApcMin littermates with normal EGFR 

activity, which was consistent with previously published results (Roberts et al., 2002).  

Indeed, by using congenic Egfrwa2 strains, our studies partitioned potential genetic 

background effects influencing tumor response to reduced EGFR activity; on the B6 and 

B6.BTBR F1 backgrounds a higher percentage of tumors survive with reduced EGFR 

activity than on the B6.A F1 and B6.129 F1 backgrounds. Our results strongly indicate that 

genetic differences influence the relative frequency of EGFR-independent versus 

dependent tumors. The background-associated variation in ApcMin, Egfrwa2 tumor 

phenotype closely resembles the variation in response to EGFR-targeted therapies 

observed in human patients. Being genotypically identical, each F1 hybrid population 

produces a more homogenous phenotype, which can be compared with responses to EGFR 

inhibition in a subset of patients. By changing the F1 hybrid background it is possible to 

improve our view and to dissect the variable responses seen in CRC patients.  
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Our studies represent an initial attempt to dissect the genetic complexity underlying 

variable response to EGFR-targeted therapies in heterogeneous human patients. This 

information will contribute to better patient selection, leading to improvements in the 

efficacy of cancer therapeutics. 
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Table 4-1 Genetic modifiers of ApcMin/+ mice 

Name 

(location) 

Modifier effect Mode of action Candidate genes References 

Mom1 

 

Reduces small intestinal 
adenoma size and 

number 

Control the net growth 
rate of tumors 

The secretory type 
II nonpancreatic 

phospholipase A2 
(Pla2g2a) gene 

Dietrich et al., 
1993; Gould et al., 
1996; MacPhee et 

al. 1995; Cormier et 
al. 1997, 2000 

Dnmt1 Suppress tumor 
multiplicity and growth 

rate 

Genomic 
hypomethylation 
associated with 

genomic instability 

DNA 
methyltransfer-ase 

gene 

Laird et al., 1995; 
Cormier and Dove, 

2000 

Mmp7-/- Suppress tumor 
multiplicity and size 

Not determined The matrilysin 
locus 

Wilson et al., 1997 

Blm-/- Increase tumor number Stimulate inter-
homolog recombination 

Bloom syndrome 
helicase (BLM) 

Luo et al., 2000; 
Goss et al., 2002; 
Suzuki et al., 2006 

Mlh1-/-, Msh2-

/- or Pms2-/- 
Increase tumor 

multiplicity 
Control tumor initiation DNA mismatch 

repair gene 
Shoemaker et al., 
2000; Reitmair et 
al., 1996; Baker et 

al., 1998 

Mom2 Mom2R is polyp 
resistant in both small 
and large intestine by 

90% 

NA The Atp5a1 gene Silverman et al., 
2002; Baran et al., 

2007 

Egfrwa2 Reduce tumor 
multiplicity 

Affect tumor 
establishment 

The epidermal 
growth factor 

receptor 

Roberts et al., 2002 

Rb(7/18)9Lub 
(Rb9) 

Reduce tumor 
multiplicity 

Suppress homologous 
somatic recombination 

on chromosome 18 

Robertsonian 
translocation 

Haigis and Dove, 
2003 

Mom3 Increase polyp numbers Possibly modify the 
frequency of wild-type 
allele loss at Apc: mice 

with severe disease 
showed elevated rates 

of loss 

NA Haines et al., 2005 

Mom7 >5 alleles in inbred 
strains 

Possibly affect tumor 
initiation by affecting 
somatic recombination 

NA Kwong et al., 2007 
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Table 4-2 Comparisons of average number of polyps in Apcmin/+, Egfrwa2/+ or Egfr+/+ mice on four 
different backgrounds 

 
 

 

 

 

 

 

B6 served as controls. P-values are shown from comparisons between B6 and F1 hybrids, 

using the non-parametric Mann-Whitney rank sum test.  

      Average number of polyps ± SD 

Background No. of mice Small intestine p-value Colon Total 

B6 9 206.6 ± 64.6 NA 1.6 ± 1.0 198.3 ± 66.9 

B6.BTBR F1 12 125.8 ± 34.6 < 0.005 0 125.8 ± 34.6 

B6.A F1 7 62.29 ± 27.1 < 0.0001 0 62.29 ± 27.1 

B6.129 F1 14 33.4 ± 26.4 < 0.0001 0 33.4 ± 26.4 
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Table 4-3 Comparisons of average size of polyps in Apcmin/+, Egfrwa2/+ or Egfr+/+ mice on four different 
backgrounds 

B6 served as controls. P-values are shown from comparisons between B6 and F1 hybrids, 

using the non-parametric Mann-Whitney rank sum test.  

Background No. of polyps Avg polyp size ± SD p-value 

B6 1365 1.185 ± 0.53 NA 

B6.BTBR F1 1021 0.8728 ± 0.42 < 0.0001 

B6.A F1 374 1.025 ± 0.42 < 0.0001 

B6.129 F1 406 0.7367 ± 0.38 < 0.0001  



 99 

Table 4-4 Comparisons of average number of polyps between Apcmin/+, Egfrwa2/wa2 and Apcmin/+, Egfr+/+ 
mice on four different backgrounds 
 

 Average number of polyps ± SD 

Background Egfrwa2/wa2 Egfrwa2/+, or Egfr+/+ p value  

B6 93.38 ± 45.39 208 ± 64.5 < 0.05  

No of mice 8 9   

B6.BTBR F1 75.8 ± 50.77 125.8 ± 34.6 < 0.05  

No. of mice 15 12   

B6.A F1 21.43 ± 20.19 62.29 ± 27.1 < 0.05  

No of mice 7 7   

B6.129 F1 5.93 ± 4.85 33.4 ± 26.4 < 0.005  

No of mice 15 14   

P-values are shown from comparisons between Apcmin/+, Egfrwa2/wa2 and Apcmin/+, Egfr+/+ 

mice on each different background, using the non-parametric Mann-Whitney rank sum 

test.  
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Figure 4-1Breeding scheme to generate ApcMin/+, Egfrwa2/wa2 and ApcMin/+, Egfrwa2/+ or Egfr+/+ mice on 
four different genetic backgrounds. 
 

 
 
 

B6-Egfrwa2/+ X  B6-ApcMin/+ 
 
 

Egfrwa2/+ on  B6 
  129 
                     BTBR 
                      A 
 
 
  

B6-ApcMin/+, Egfrwa2/+ X 

A 

F1 hybrids 

GENOTYPES  CLASS 
ApcMin, Egfrwa2/wa2  test 

ApcMin, Egfr+/+  or Egfrwa2/+       control 
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Figure 4-1 Breeding scheme to generate ApcMin/+, Egfrwa2/wa2 and ApcMin/+, Egfrwa2/+ or 

Egfr+/+ mice on four different genetic backgrounds. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 102 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-2 Poly number distribution in ApcMin/+ mice on different genetic backgrounds 
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Figure 4-2 Poly number distribution in ApcMin/+ mice on different genetic backgrounds. 

The polyp number in the entire small intestine and colon was determined in three-month 

old ApcMin/+ mice on (A) B6, (B) B6.BTBR F1, (C) B6.A F1 and (D) B6.129 F1 

backgrounds. Black column area represents male progeny and white column area 

represents female progeny. The Y-axis shows the number of mice within each strain 

background and the X-axis shows the number of polyps within each mouse.  
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Figure 4-3 Effect of strain background on polyp number and size in ApcMin/+ mice 
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Figure 4-3 Effect of strain background on polyp number and size in ApcMin/+ mice. The 

horizontal bar indicates the position of the mean for each group. The scatter plot in (A) 

shows the distribution of the polyp number in ApcMin/+ mice. Each dot represents the polyp 

number from a single three-month old mouse. The scatter plot in (B) shows the sizes of the 

polyps from ApcMin/+ mice.  
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Figure 4-4 Effect of strain background on EGFR-independent tumor growth in ApcMin/+ mice 
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Figure 4-4 Effect of strain background on EGFR-independent tumor growth in ApcMin/+ 

mice. (A) Comparison of the mean tumor number in three-month old ApcMin/+, Egfrwa2/wa2 

mice versus littermate controls. Grey columns represent Egfrwa2/wa2 mice and white 

columns represent wildtype Egfr littermate controls. (B) Percentage of the reduction in 

tumor number when comparing ApcMin/+, Egfrwa2/wa2 mice versus littermate controls. White 

columns, B6; checkered columns, B6.BTBR F1; horizontal stripe columns, B6.A F1; 

vertical stripe columns, B6.129 F1. (* p < 0.05, ** p < 0.005, Mann-Whitney rank sum 

test)



 108 

Chapter 5 Conclusions and future directions
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The ERBB family of receptor tyrosine kinases consist of four closely related 

members: epidermal growth factor receptor (EGFR or ERBB1), ERBB2, ERBB3 and 

ERBB4. Signaling through ERBB family members modulates many aspects of cellular 

activity, including proliferation, differentiation, migration, apoptosis and survival (Yarden 

and Sliwkowski, 2001). As such, it is required for proper development, maintenance and 

repair of most organ systems, including skin, brain, lungs and the GI tract. Conversely, 

dysfunction in ERBB signaling is associated with a number of disease states. For 

examples, defective EGFR activity causes intrauterine growth retardation or delayed 

embryonic development while hyperactivity of EGFR and other ERBB family members 

are implicated in a variety of epithelial malignancies derived from epithelial tissues, 

including CRC. Given the proposed roles of EGFR in tumor development, a number of 

small molecule and antibody-based therapies targeting EGFR have been developed as 

therapeutic agents. Although preclinical and early clinical studies with the EGFR-targeted 

therapies were encouraging, large-scale clinical trials clearly demonstrate that the majority 

of patients do not respond. This discrepancy demonstrates that little is known about the 

mechanisms underlying tumor response to EGFR-targeted therapies. In the work presented 

in this dissertation, we used a multi-faceted approach towards identifying an anti-EGFR 

therapy response signature in CRC to indicate directions for combinatorial and targeted 

therapies for tumors resistant to EGFR inhibitors. We also established the importance of 

ERBB3 in intestinal tumorigenesis and suggest that a major role of ERBB3 is to mediate 

EGFR-independent tumor growth. Lastly, since one of the greatest challenges in 

optimizing the use of EGFR-targeted therapies is posed by patient genetic heterogeneity in 
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patients, we began an investigation into how genetic background affects tumor response to 

EGFR inhibition.  

The epithelial lining of the small and large intestine constantly undergo self-

renewal. Signaling pathways including hedgehog (HH), TGFB, fibroblast growth factor 

(FGF) and WNT are required spatiotemporally during intestinal development (Fukuda and 

Yasugi, 2002; Sancho et al., 2003; Sancho et al., 2004; Wells, 1999). The role of ERBB 

family members in intestinal development and homeostasis is intriguing based on the 

analysis of mutant mice. On genetic backgrounds that support survival of Egfr nullizygous 

mice to three weeks of age, the intestinal epithelium of surviving neonates remains intact 

with a proliferative compartments in the crypts, despite severe abnormalities in other 

epithelial tissues such as skin (Sibilia and Wagner, 1995; Threadgill et al., 1995). 

Similarly, mice homozygous for the hypomorphic Egfrwa2 allele manifest gastrointestinal 

phenotypes only upon exogenous stimulus (Egger et al., 2000; Helmrath et al., 1997). In 

mice with humanized EGFR, hEGFRKI, no phenotype in GI tract was reported, although 

they display several abnormalities in other epithelial tissues like skin and hair (Sibilia et 

al., 2003). In our study, inactivation of EGFR specifically in intestinal epithelial cells did 

not affect crypt architecture. Indeed, the proliferation rate was even enhanced in mutant 

mice. These results indicate the tissue-specific requirement for EGFR and suggest that 

EGFR is dispensable during intestinal development. Similarly, ERBB3 inactivation in 

intestinal epithelium did not lead to dramatic perturbation of the epithelia of the small 

intestine: no proliferation or apoptosis defect was observed in Erbb3 mutant mice. 

However, the minor architectural abnormalities such as the bifurcated villi phenotype in 
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ERBB3 deficient mice indicate that ERBB3-dependent signaling is involved in intestinal 

epithelial proliferation and differentiation.  

Our efforts towards identifying an anti-EGFR therapy response signature in CRC 

are particularly timely and clinically relevant, in that recent reports of completed large-

scale clinical trials clearly demonstrate a less than ideal response to EGFR blockade with 

antibodies or small molecule inhibitors. Identifying biomarkers for tumors that are 

sensitive or resistant to anti-EGFR therapies is critical to select for patients who would 

benefit most from this targeted therapy. Using mouse models as genetic tools and 

pharmacological agents, previous studies showed that a subset of intestinal tumors arose 

despite impaired EGFR activity suggesting an EGFR-independent mechanism (Roberts et 

al., 2002; Torrance et al., 2000). However, the EGFR-independent status of some tumors 

could not be shown definitely in those studies due to the residual kinase activity. In this 

study, we employed a conditional Egfr allele (Egfrtm1Dwt) enabling the generation of ApcMin 

mice with intestinal-epithelia specific Egfr deletion. We clearly demonstrate that a subset 

of ApcMin polyps grow in an EGFR-independent manner. The absence of EGFR in these 

polyps exerts little or no suppression on their growth. Indeed, the growth of these EGFR 

deficient tumors may even be enhanced. A molecular biomarker for this subset of EGFR-

independent tumors was revealed by global gene expression profiling analysis, followed by 

IHC. The signature is marked by up-regulation of components in cell cycle regulation and 

RAS-MAPK pathway genes, correlating well with a dramatic increase in p42/44 MAPK 

activity and proliferation index in EGFR-independent tumors (Figure 5-1). Ultimately, our 

goal is to probe a human CRC database with these EGFR-independent signatures to 

determine whether these mouse model-derived signatures are present in human samples.  
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Our results have important implications for EGFR-targeted therapies. Our findings 

suggest that EGFR inhibitors, either reversible or irreversible, may not be effective in a 

subset of EGFR-independent tumors that show hyperactivation of RAS/MAPK. 

Determining whether tumors are EGFR-dependent or independent will have an effect on 

our ability to make wiser clinical decisions regarding who should be given EGFR TKIs. 

Furthermore, combination therapies with MAPK inhibitors should be considered for 

EGFR-independent tumors. Additionally, it is important to determine upstream-receptor(s) 

that activate the RAS-MAPK pathway in the absence of EGFR to identify additional 

targets for combinatorial therapy. Of particular interest is the heterodimer formed by 

ERBB2/ERBB3, considering the tight co-regulation and inter-dependence within the 

ERBB family. Indeed, this idea is supported by the fact that ERBB2 and ERBB3 protein 

levels are increased in EGFR-deficient tumors. Alternatively, EGFR compensatory 

pathways could be mediated by other signals such as the insulin growth factor (IGF) 

related receptors. The IGF network is important for carcinogenesis (Samani et al., 2007). 

In particular, the IGF1 and IGF2 system is implicated in CRC (Chang et al., 2002; Slattery 

et al., 2004). In addition, the IGF1 system and ERBB pathways share downstream 

signaling mediators including RAS-MAPK and PI3K-AKT that result in cell proliferation 

and survival. Perhaps more importantly, the intimate cross-talk between IGF1 network and 

ERBB family members has been well documented (Morgillo et al., 2006; Ornskov et al., 

2006). To test these hypotheses, cell culture experiments could be set up using the pre-

neoplastic murine cell line IMCE (ApcMin/+) or human colon cancer cell lines (Caco-2, HT-

116, or HT-29). Identification of the compensatory pathways activated in EGFR inhibitor 

resistant clones generated by exposing cells to increasing concentrations of drug or by 
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transfecting cells with a dominant-negative Egfr construct (Murillas et al., 1995), could be 

used to validate our results. For human colon cancer cell lines, the recently available 

human phospho-receptor tyrosine kinase (RTK) array (R&D Systems) would allow 

comparison of how inactivation of EGFR would affect phosphorylation of other RTKs. 

Elucidation of the role for EGFR during intestinal tumorigenesis should be 

continued. One hypothesis is that the mode of EGFR action in non-transformed epithelial 

cells contributes to tumor growth. This hypothesis can be tested by histological analysis of 

the non-transformed epithelial layer enveloping the tumor in the ApcMin mice with an 

intestinal-epithelial specific Egfr deletion. Similarly, the temporal requirements for EGFR 

activity during CRC development could be addressed by using inducible CRE recombinase 

under control of the Villin promoter. Also, we have developed a B6-Egfrflox congenic line 

(> N10), which allows future studies to be carried on the B6 congenic background.  

The role of ERBB3 in cancer biology has been under-appreciated, partly due to its 

defective intrinsic kinase activity. In this study, we established the importance of ERBB3-

depdendent signaling in intestinal tumorigenesis by using a conditional knock out allele of 

Erbb3. Unexpectedly, deletion of Erbb3 caused a more dramatic suppression effect on 

both tumor multiplicity and growth in ApcMin mouse model. These results highlight the 

critical role of ERBB3, potentially by mediating the PI3K-AKT-MTOR pathway. 

Interestingly, although the majority of residual polyps forming on the ERBB3-deficent 

background have a reduced size in comparison to those on a wildtype Erbb3 background, a 

few large intestinal polyps, greater than 2 mm in diameter, were present. The proliferation 

rates, the level of p42/44 MAPK activation and the level of S6K activity are comparable in 

those with wildtype Erbb3. Determination of their sensitivity to EGFR inhibitors would be 
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revealing, since ERBB3 has been proposed as a biomarker to predict sensitivity to EGFR 

inhibitors in NSCLC, pancreatic, and colon cancer cell lines (Buck et al., 2006; Engelman 

et al., 2005). Microarray-based gene expression profiling of ERBB3-independent tumors 

would also reveal their molecular characteristics in comparison to EGFR-independent 

tumors. Consequently, elucidation of additional aspects of ERBB3 biology during 

intestinal tumorigenesis should be continued. For example, microadenoma analysis would 

reveal if ERBB3-dependent signaling affects tumor initiation.  Also, the spatio-temporal 

requirements for ERBB3 during tumor development and progression could be analyzed 

using appropriate CRE lines. ERBB3 is also required in a subset of colonic tumors induced 

by the carcinogen AOM. Since AOM tumors exhibit molecular alterations and 

morphological variation, detailed analysis of AOM colonic tumors from an ERBB3-

deficient environment could reveal the nature of histopathology and pathway disruption in 

ERBB3-independent colonic tumors. Finally, all of the ERBB3-based methodologies used 

to study intestinal tumors could be applied to models of tumors in other tissues, such as 

lung and brain, where the ERBB3 activity is strongly implicated.  

Finally, the studies presented here with different Egfrwa2 congenic lines demonstrate 

the strong background modulation of tumor response to EGFR inhibition. To initiate 

mapping experiments to identify novel modifiers of this trait, F2 offspring of ApcMin, 

Egfrwa2/wa2 mice involving B6, BTBR, A and 129 backgrounds should be produced. The 

examination of genetic background effect in tumor phenotype presented in this thesis 

serves as an initial attempt to understand the genetic components of variability in tumor 

response to ERBB targeted therapies (Jimeno and Hidalgo, 2006; Li et al., 2006). 

Advances in understanding the genetic complexity of tumor response to EGFR targeted 
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therapies should allow application of individual tailored therapy to improve the efficacy of 

targeted therapies. 
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Figure 5-1 EGFR in intestinal tumor cells− to be there or not to be there? 
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Figure 5-1. EGFR in intestinal tumor cells−to be there or not to be there? Proposed 

mechanism for proliferation and survival in EGFR-dependent /-independent intestinal 

tumors. (A) In EGFR-dependent tumors, EGFR appears to have two major functions 

during tumor development, provides a mitogenic signal by activating the RAS-MAPK 

pathway and a survival signal by activating the PI3K/AKT/mTOR through 

heterodimerization with ERBB3. Therefore, these tumors are more likely to respond to 

EGFR-inhibition by small molecule inhibitors (such as Erlotinib) or monoclonal antibodies 

(such as Cetuximab). (B) In a subset of tumors lacking EGFR, the RAS-MAPK 

components are hyper-activated, probably as a compensatory pathway for loss of EGFR. 

The activation of RAS-MAPK is likely due to an alternative signal possibly involving 

other growth factors like insulin-like growth factor-I receptor or ERBB2/3 heterodimers. 

The ERBB2/3 heterodimer is likely responsible for activating the PI3K/AKT/mTOR 

pathway, highlighting the importance of ERBB3 in promoting development of both types 

of tumors. These EGFR-independent mechanisms render tumors resistant to EGFR-

targeted therapeutics. In patients that harbor both types of tumors, combining Erlotinib or 

Cetuximab with another drug that targets IGF1R, MAPK, AKT or mTOR may lead to 

improvements in the efficacy of targeted therapies.  

 

 



 118 

REFERENCES 

Acra, S. A., Bulus, N., Bogatcheva, G., Coffey, R. J., and Barnard, J. A. (1998). Increased 
intestinal epithelial proliferation in metallothioneine-transforming growth factor alpha 
transgenic mice. Regul Pept 74, 105-112. 

Asnaghi, L., Calastretti, A., Bevilacqua, A., D'Agnano, I., Gatti, G., Canti, G., Delia, D., 
Capaccioli, S., and Nicolin, A. (2004). Bcl-2 phosphorylation and apoptosis activated by 
damaged microtubules require mTOR and are regulated by Akt. Oncogene 23, 5781-5791. 

Barrick, C. J., Rojas, M., Schoonhoven, R., Smyth, S. S., and Threadgill, D. W. (2007). 
Cardiac response to pressure overload in 129S1/SvImJ and C57BL/6J mice: temporal- and 
background-dependent development of concentric left ventricular hypertrophy. Am J 
Physiol Heart Circ Physiol 292, H2119-2130. 

Beerli, R. R., and Hynes, N. E. (1996). Epidermal growth factor-related peptides activate 
distinct subsets of ErbB receptors and differ in their biological activities. J Biol Chem 271, 
6071-6076. 

Behrens, J., von Kries, J. P., Kuhl, M., Bruhn, L., Wedlich, D., Grosschedl, R., and 
Birchmeier, W. (1996). Functional interaction of beta-catenin with the transcription factor 
LEF-1. Nature 382, 638-642. 

Biscardi, J. S., Maa, M. C., Tice, D. A., Cox, M. E., Leu, T. H., and Parsons, S. J. (1999). 
c-Src-mediated phosphorylation of the epidermal growth factor receptor on Tyr845 and 
Tyr1101 is associated with modulation of receptor function. J Biol Chem 274, 8335-8343. 

Bjornsti, M. A., and Houghton, P. J. (2004). The TOR pathway: a target for cancer 
therapy. Nat Rev Cancer 4, 335-348. 

Buck, E., Eyzaguirre, A., Brown, E., Petti, F., McCormack, S., Haley, J. D., Iwata, K. K., 
Gibson, N. W., and Griffin, G. (2006). Rapamycin synergizes with the epidermal growth 
factor receptor inhibitor erlotinib in non-small-cell lung, pancreatic, colon, and breast 
tumors. Mol Cancer Ther 5, 2676-2684. 

Carpenter, G. (2000). EGF receptor transactivation mediated by the proteolytic production 
of EGF-like agonists. Sci STKE 2000, PE1. 



 119 

Chang, Q., Li, Y., White, M. F., Fletcher, J. A., and Xiao, S. (2002). Constitutive 
activation of insulin receptor substrate 1 is a frequent event in human tumors: therapeutic 
implications. Cancer Res 62, 6035-6038. 

Ciardiello, F., Kim, N., Saeki, T., Dono, R., Persico, M. G., Plowman, G. D., Garrigues, J., 
Radke, S., Todaro, G. J., and Salomon, D. S. (1991). Differential expression of epidermal 
growth factor-related proteins in human colorectal tumors. Proc Natl Acad Sci U S A 88, 
7792-7796. 

Citri, A., Skaria, K. B., and Yarden, Y. (2003). The deaf and the dumb: the biology of 
ErbB-2 and ErbB-3. Exp Cell Res 284, 54-65. 

Cohen, E. E., Rosen, F., Stadler, W. M., Recant, W., Stenson, K., Huo, D., and Vokes, E. 
E. (2003). Phase II trial of ZD1839 in recurrent or metastatic squamous cell carcinoma of 
the head and neck. J Clin Oncol 21, 1980-1987. 

Cormier, R. T., and Dove, W. F. (2000). Dnmt1N/+ reduces the net growth rate and 
multiplicity of intestinal adenomas in C57BL/6-multiple intestinal neoplasia (Min)/+ mice 
independently of p53 but demonstrates strong synergy with the modifier of Min 1(AKR) 
resistance allele. Cancer Res 60, 3965-3970. 

Crabtree, M. D., Tomlinson, I. P., Hodgson, S. V., Neale, K., Phillips, R. K., and Houlston, 
R. S. (2002). Explaining variation in familial adenomatous polyposis: relationship between 
genotype and phenotype and evidence for modifier genes. Gut 51, 420-423. 

Cunningham, D., Humblet, Y., Siena, S., Khayat, D., Bleiberg, H., Santoro, A., Bets, D., 
Mueser, M., Harstrick, A., Verslype, C., et al. (2004). Cetuximab monotherapy and 
cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J 
Med 351, 337-345. 

Dietrich, W. F., Lander, E. S., Smith, J. S., Moser, A. R., Gould, K. A., Luongo, C., 
Borenstein, N., and Dove, W. (1993). Genetic identification of Mom-1, a major modifier 
locus affecting Min-induced intestinal neoplasia in the mouse. Cell 75, 631-639. 

Dlugosz, A. A., Hansen, L., Cheng, C., Alexander, N., Denning, M. F., Threadgill, D. W., 
Magnuson, T., Coffey, R. J., Jr., and Yuspa, S. H. (1997). Targeted disruption of the 
epidermal growth factor receptor impairs growth of squamous papillomas expressing the v-
ras(Ha) oncogene but does not block in vitro keratinocyte responses to oncogenic ras. 
Cancer Res 57, 3180-3188. 



 120 

Dyduch, A. (1990). Proliferative effects of epidermal growth factor on the intestinal 
epithelium of mice. Rom J Morphol Embryol 36, 141-143. 

Egger, B., Buchler, M. W., Lakshmanan, J., Moore, P., and Eysselein, V. E. (2000). Mice 
harboring a defective epidermal growth factor receptor (waved-2) have an increased 
susceptibility to acute dextran sulfate-induced colitis. Scand J Gastroenterol 35, 1181-
1187. 

Engelman, J. A., Janne, P. A., Mermel, C., Pearlberg, J., Mukohara, T., Fleet, C., 
Cichowski, K., Johnson, B. E., and Cantley, L. C. (2005). ErbB-3 mediates 
phosphoinositide 3-kinase activity in gefitinib-sensitive non-small cell lung cancer cell 
lines. Proc Natl Acad Sci U S A 102, 3788-3793. 

Engelman, J. A., Zejnullahu, K., Mitsudomi, T., Song, Y., Hyland, C., Park, J. O., 
Lindeman, N., Gale, C. M., Zhao, X., Christensen, J., et al. (2007). MET amplification 
leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316, 
1039-1043. 

Engle, S. J., Hoying, J. B., Boivin, G. P., Ormsby, I., Gartside, P. S., and Doetschman, T. 
(1999). Transforming growth factor beta1 suppresses nonmetastatic colon cancer at an 
early stage of tumorigenesis. Cancer Res 59, 3379-3386. 

Erickson, S. L., O'Shea, K. S., Ghaboosi, N., Loverro, L., Frantz, G., Bauer, M., Lu, L. H., 
and Moore, M. W. (1997). ErbB3 is required for normal cerebellar and cardiac 
development: a comparison with ErbB2-and heregulin-deficient mice. Development 124, 
4999-5011. 

Fearnhead, N. S., Britton, M. P., and Bodmer, W. F. (2001). The ABC of APC. Hum Mol 
Genet 10, 721-733. 

Feinberg, A. P., Gehrke, C. W., Kuo, K. C., and Ehrlich, M. (1988). Reduced genomic 5-
methylcytosine content in human colonic neoplasia. Cancer Res 48, 1159-1161. 

Feinberg, A. P., and Tycko, B. (2004). The history of cancer epigenetics. Nat Rev Cancer 
4, 143-153. 

Feinberg, A. P., and Vogelstein, B. (1983). Hypomethylation distinguishes genes of some 
human cancers from their normal counterparts. Nature 301, 89-92. 



 121 

Fowler, K. J., Walker, F., Alexander, W., Hibbs, M. L., Nice, E. C., Bohmer, R. M., Mann, 
G. B., Thumwood, C., Maglitto, R., Danks, J. A., and et al. (1995). A mutation in the 
epidermal growth factor receptor in waved-2 mice has a profound effect on receptor 
biochemistry that results in impaired lactation. Proc Natl Acad Sci U S A 92, 1465-1469. 

Friess, H., Guo, X. Z., Nan, B. C., Kleeff, O., and Buchler, M. W. (1999). Growth factors 
and cytokines in pancreatic carcinogenesis. Ann N Y Acad Sci 880, 110-121. 

Fujita, T., Matsui, M., Takaku, K., Uetake, H., Ichikawa, W., Taketo, M. M., and Sugihara, 
K. (1998). Size- and invasion-dependent increase in cyclooxygenase 2 levels in human 
colorectal carcinomas. Cancer Res 58, 4823-4826. 

Fukuda, K., and Yasugi, S. (2002). Versatile roles for sonic hedgehog in gut development. 
J Gastroenterol 37, 239-246. 

Gatzemeier, U., Groth, G., Butts, C., Van Zandwijk, N., Shepherd, F., Ardizzoni, A., 
Barton, C., Ghahramani, P., and Hirsh, V. (2004). Randomized phase II trial of 
gemcitabine-cisplatin with or without trastuzumab in HER2-positive non-small-cell lung 
cancer. Ann Oncol 15, 19-27. 

Giaccone, G., Gonzalez-Larriba, J. L., van Oosterom, A. T., Alfonso, R., Smit, E. F., 
Martens, M., Peters, G. J., van der Vijgh, W. J., Smith, R., Averbuch, S., and Fandi, A. 
(2004). Combination therapy with gefitinib, an epidermal growth factor receptor tyrosine 
kinase inhibitor, gemcitabine and cisplatin in patients with advanced solid tumors. Ann 
Oncol 15, 831-838. 

Gloria, L., Cravo, M., Pinto, A., de Sousa, L. S., Chaves, P., Leitao, C. N., Quina, M., 
Mira, F. C., and Soares, J. (1996). DNA hypomethylation and proliferative activity are 
increased in the rectal mucosa of patients with long-standing ulcerative colitis. Cancer 78, 
2300-2306. 

Gould, K. A., Dietrich, W. F., Borenstein, N., Lander, E. S., and Dove, W. F. (1996). 
Mom1 is a semi-dominant modifier of intestinal adenoma size and multiplicity in Min/+ 
mice. Genetics 144, 1769-1776. 

Graus-Porta, D., Beerli, R. R., Daly, J. M., and Hynes, N. E. (1997). ErbB-2, the preferred 
heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. Embo J 
16, 1647-1655. 



 122 

Greger, V., Passarge, E., Hopping, W., Messmer, E., and Horsthemke, B. (1989). 
Epigenetic changes may contribute to the formation and spontaneous regression of 
retinoblastoma. Hum Genet 83, 155-158. 

Groden, J., Thliveris, A., Samowitz, W., Carlson, M., Gelbert, L., Albertsen, H., Joslyn, 
G., Stevens, J., Spirio, L., Robertson, M., and et al. (1991). Identification and 
characterization of the familial adenomatous polyposis coli gene. Cell 66, 589-600. 

Gullick, W. J., and Srinivasan, R. (1998). The type 1 growth factor receptor family: new 
ligands and receptors and their role in breast cancer. Breast Cancer Res Treat 52, 43-53. 

Guy, P. M., Platko, J. V., Cantley, L. C., Cerione, R. A., and Carraway, K. L., 3rd (1994). 
Insect cell-expressed p180erbB3 possesses an impaired tyrosine kinase activity. Proc Natl 
Acad Sci U S A 91, 8132-8136. 

Haines, J., Johnson, V., Pack, K., Suraweera, N., Slijepcevic, P., Cabuy, E., Coster, M., 
Ilyas, M., Wilding, J., Sieber, O., et al. (2005). Genetic basis of variation in adenoma 
multiplicity in ApcMin/+ Mom1S mice. Proc Natl Acad Sci U S A 102, 2868-2873. 

Hecht, J. R. (2004). Improved imaging and the clinician: the role of positron emission 
tomography in the management of colorectal cancer. Mol Imaging Biol 6, 208-213. 

Helmrath, M. A., Erwin, C. R., and Warner, B. W. (1997). A defective EGF-receptor in 
waved-2 mice attenuates intestinal adaptation. J Surg Res 69, 76-80. 

Helmrath, M. A., Shin, C. E., Erwin, C. R., and Warner, B. W. (1998). Intestinal 
adaptation is enhanced by epidermal growth factor independent of increased ileal 
epidermal growth factor receptor expression. J Pediatr Surg 33, 980-984; discussion 984-
985. 

Herbst, R. S., Giaccone, G., Schiller, J. H., Natale, R. B., Miller, V., Manegold, C., 
Scagliotti, G., Rosell, R., Oliff, I., Reeves, J. A., et al. (2004). Gefitinib in combination 
with paclitaxel and carboplatin in advanced non-small-cell lung cancer: a phase III trial--
INTACT 2. J Clin Oncol 22, 785-794. 

Holbro, T., Beerli, R. R., Maurer, F., Koziczak, M., Barbas, C. F., 3rd, and Hynes, N. E. 
(2003). The ErbB2/ErbB3 heterodimer functions as an oncogenic unit: ErbB2 requires 
ErbB3 to drive breast tumor cell proliferation. Proc Natl Acad Sci U S A 100, 8933-8938. 



 123 

Hynes, N. E., and Lane, H. A. (2005). ERBB receptors and cancer: the complexity of 
targeted inhibitors. Nat Rev Cancer 5, 341-354. 

Issa, J. P. (2000). CpG-island methylation in aging and cancer. Curr Top Microbiol 
Immunol 249, 101-118. 

Janne, P. A. (2003). The role of epidermal growth factor receptor in advanced non-small 
cell lung carcinoma. Ann Med 35, 450-457. 

Jemal, A., Siegel, R., Ward, E., Murray, T., Xu, J., and Thun, M. J. (2007). Cancer 
statistics, 2007. CA Cancer J Clin 57, 43-66. 

Jimeno, A., and Hidalgo, M. (2006). Pharmacogenomics of epidermal growth factor 
receptor (EGFR) tyrosine kinase inhibitors. Biochim Biophys Acta 1766, 217-229. 

Khambata-Ford, S., Garrett, C. R., Meropol, N. J., Basik, M., Harbison, C. T., Wu, S., 
Wong, T. W., Huang, X., Takimoto, C. H., Godwin, A. K., et al. (2007). Expression of 
epiregulin and amphiregulin and K-ras mutation status predict disease control in metastatic 
colorectal cancer patients treated with cetuximab. J Clin Oncol 25, 3230-3237. 

Kim, H. H., Sierke, S. L., and Koland, J. G. (1994). Epidermal growth factor-dependent 
association of phosphatidylinositol 3-kinase with the erbB3 gene product. J Biol Chem 
269, 24747-24755. 

Kinzler, K. W., and Vogelstein, B. (1996). Lessons from hereditary colorectal cancer. Cell 
87, 159-170. 

Kirschenbaum, A., Liu, X., Yao, S., and Levine, A. C. (2001). The role of cyclooxygenase-
2 in prostate cancer. Urology 58, 127-131. 

Knott, A. W., Erwin, C. R., Profitt, S. A., Juno, R. J., and Warner, B. W. (2003). 
Localization of postresection EGF receptor expression using laser capture microdissection. 
J Pediatr Surg 38, 440-445. 

Kobayashi, M., Iwamatsu, A., Shinohara-Kanda, A., Ihara, S., and Fukui, Y. (2003). 
Activation of ErbB3-PI3-kinase pathway is correlated with malignant phenotypes of 
adenocarcinomas. Oncogene 22, 1294-1301. 



 124 

Kondo, Y., and Issa, J. P. (2004). Epigenetic changes in colorectal cancer. Cancer 
Metastasis Rev 23, 29-39. 

Korinek, V., Barker, N., Morin, P. J., van Wichen, D., de Weger, R., Kinzler, K. W., 
Vogelstein, B., and Clevers, H. (1997). Constitutive transcriptional activation by a beta-
catenin-Tcf complex in APC-/- colon carcinoma. Science 275, 1784-1787. 

Krysan, K., Reckamp, K. L., Dalwadi, H., Sharma, S., Rozengurt, E., Dohadwala, M., and 
Dubinett, S. M. (2005). Prostaglandin E2 activates mitogen-activated protein kinase/Erk 
pathway signaling and cell proliferation in non-small cell lung cancer cells in an epidermal 
growth factor receptor-independent manner. Cancer Res 65, 6275-6281. 

Kulkarni, A. B., Huh, C. G., Becker, D., Geiser, A., Lyght, M., Flanders, K. C., Roberts, 
A. B., Sporn, M. B., Ward, J. M., and Karlsson, S. (1993). Transforming growth factor 
beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc 
Natl Acad Sci U S A 90, 770-774. 

Kutchera, W., Jones, D. A., Matsunami, N., Groden, J., McIntyre, T. M., Zimmerman, G. 
A., White, R. L., and Prescott, S. M. (1996). Prostaglandin H synthase 2 is expressed 
abnormally in human colon cancer: evidence for a transcriptional effect. Proc Natl Acad 
Sci U S A 93, 4816-4820. 

Kuwada, S. K., Scaife, C. L., Kuang, J., Li, X., Wong, R. F., Florell, S. R., Coffey, R. J., 
Jr., and Gray, P. D. (2004). Effects of trastuzumab on epidermal growth factor receptor-
dependent and -independent human colon cancer cells. Int J Cancer 109, 291-301. 

Kwong, L. N., Shedlovsky, A., Biehl, B. S., Clipson, L., Pasch, C. A., and Dove, W. F. 
(2007). Identification of Mom7, a novel modifier of Apc(Min/+) on mouse chromosome 
18. Genetics 176, 1237-1244. 

Learn, P. A., Krishnegowda, N., Talamantez, J., and Kahlenberg, M. S. (2006). 
Compensatory increases in Her-2/neu activation in response to EGFR tyrosine kinase 
inhibition in colon cancer cell lines. J Surg Res 136, 227-231. 

Lee, J. W., Soung, Y. H., Seo, S. H., Kim, S. Y., Park, C. H., Wang, Y. P., Park, K., Nam, 
S. W., Park, W. S., Kim, S. H., et al. (2006). Somatic mutations of ERBB2 kinase domain 
in gastric, colorectal, and breast carcinomas. Clin Cancer Res 12, 57-61. 



 125 

Lenferink, A. E., Pinkas-Kramarski, R., van de Poll, M. L., van Vugt, M. J., Klapper, L. 
N., Tzahar, E., Waterman, H., Sela, M., van Zoelen, E. J., and Yarden, Y. (1998). 
Differential endocytic routing of homo- and hetero-dimeric ErbB tyrosine kinases confers 
signaling superiority to receptor heterodimers. Embo J 17, 3385-3397. 

Levkowitz, G., Waterman, H., Zamir, E., Kam, Z., Oved, S., Langdon, W. Y., Beguinot, 
L., Geiger, B., and Yarden, Y. (1998). c-Cbl/Sli-1 regulates endocytic sorting and 
ubiquitination of the epidermal growth factor receptor. Genes Dev 12, 3663-3674. 

Li, J., Karlsson, M. O., Brahmer, J., Spitz, A., Zhao, M., Hidalgo, M., and Baker, S. D. 
(2006). CYP3A phenotyping approach to predict systemic exposure to EGFR tyrosine 
kinase inhibitors. J Natl Cancer Inst 98, 1714-1723. 

Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using 
real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402-408. 

Luetteke, N. C., Phillips, H. K., Qiu, T. H., Copeland, N. G., Earp, H. S., Jenkins, N. A., 
and Lee, D. C. (1994). The mouse waved-2 phenotype results from a point mutation in the 
EGF receptor tyrosine kinase. Genes Dev 8, 399-413. 

Luo, J., Manning, B. D., and Cantley, L. C. (2003). Targeting the PI3K-Akt pathway in 
human cancer: rationale and promise. Cancer Cell 4, 257-262. 

Lynch, H. T., and de la Chapelle, A. (1999). Genetic susceptibility to non-polyposis 
colorectal cancer. J Med Genet 36, 801-818. 

Lynch, H. T., Guirgis, H. A., Lynch, P. M., Lynch, J. F., and Harris, R. E. (1977). Familial 
cancer syndromes: a survey. Cancer 39, 1867-1881. 

Lynch, T. J., Bell, D. W., Sordella, R., Gurubhagavatula, S., Okimoto, R. A., Brannigan, 
B. W., Harris, P. L., Haserlat, S. M., Supko, J. G., Haluska, F. G., et al. (2004). Activating 
mutations in the epidermal growth factor receptor underlying responsiveness of non-small-
cell lung cancer to gefitinib. N Engl J Med 350, 2129-2139. 

Maggio-Price, L., Treuting, P., Zeng, W., Tsang, M., Bielefeldt-Ohmann, H., and Iritani, 
B. M. (2006). Helicobacter infection is required for inflammation and colon cancer in 
SMAD3-deficient mice. Cancer Res 66, 828-838. 



 126 

Masui, H., Kawamoto, T., Sato, J. D., Wolf, B., Sato, G., and Mendelsohn, J. (1984). 
Growth inhibition of human tumor cells in athymic mice by anti-epidermal growth factor 
receptor monoclonal antibodies. Cancer Res 44, 1002-1007. 

Maurer, C. A., Friess, H., Kretschmann, B., Zimmermann, A., Stauffer, A., Baer, H. U., 
Korc, M., and Buchler, M. W. (1998). Increased expression of erbB3 in colorectal cancer 
is associated with concomitant increase in the level of erbB2. Hum Pathol 29, 771-777. 

Mayer, A., Takimoto, M., Fritz, E., Schellander, G., Kofler, K., and Ludwig, H. (1993). 
The prognostic significance of proliferating cell nuclear antigen, epidermal growth factor 
receptor, and mdr gene expression in colorectal cancer. Cancer 71, 2454-2460. 

Messa, C., Russo, F., Caruso, M. G., and Di Leo, A. (1998). EGF, TGF-alpha, and EGF-R 
in human colorectal adenocarcinoma. Acta Oncol 37, 285-289. 

Miettinen, P. J., Berger, J. E., Meneses, J., Phung, Y., Pedersen, R. A., Werb, Z., and 
Derynck, R. (1995). Epithelial immaturity and multiorgan failure in mice lacking 
epidermal growth factor receptor. Nature 376, 337-341. 

Molenaar, M., van de Wetering, M., Oosterwegel, M., Peterson-Maduro, J., Godsave, S., 
Korinek, V., Roose, J., Destree, O., and Clevers, H. (1996). XTcf-3 transcription factor 
mediates beta-catenin-induced axis formation in Xenopus embryos. Cell 86, 391-399. 

Moran, A. E., Hunt, D. H., Javid, S. H., Redston, M., Carothers, A. M., and Bertagnolli, M. 
M. (2004). Apc deficiency is associated with increased Egfr activity in the intestinal 
enterocytes and adenomas of C57BL/6J-Min/+ mice. J Biol Chem 279, 43261-43272. 

Morgillo, F., Woo, J. K., Kim, E. S., Hong, W. K., and Lee, H. Y. (2006). 
Heterodimerization of insulin-like growth factor receptor/epidermal growth factor receptor 
and induction of survivin expression counteract the antitumor action of erlotinib. Cancer 
Res 66, 10100-10111. 

Morin, P. J., Sparks, A. B., Korinek, V., Barker, N., Clevers, H., Vogelstein, B., and 
Kinzler, K. W. (1997). Activation of beta-catenin-Tcf signaling in colon cancer by 
mutations in beta-catenin or APC. Science 275, 1787-1790. 

Moser, A. R., Dove, W. F., Roth, K. A., and Gordon, J. I. (1992). The Min (multiple 
intestinal neoplasia) mutation: its effect on gut epithelial cell differentiation and interaction 
with a modifier system. J Cell Biol 116, 1517-1526. 



 127 

Moser, A. R., Pitot, H. C., and Dove, W. F. (1990). A dominant mutation that predisposes 
to multiple intestinal neoplasia in the mouse. Science 247, 322-324. 

Moyer, J. D., Barbacci, E. G., Iwata, K. K., Arnold, L., Boman, B., Cunningham, A., 
DiOrio, C., Doty, J., Morin, M. J., Moyer, M. P., et al. (1997). Induction of apoptosis and 
cell cycle arrest by CP-358,774, an inhibitor of epidermal growth factor receptor tyrosine 
kinase. Cancer Res 57, 4838-4848. 

Munemitsu, S., Albert, I., Souza, B., Rubinfeld, B., and Polakis, P. (1995). Regulation of 
intracellular beta-catenin levels by the adenomatous polyposis coli (APC) tumor-
suppressor protein. Proc Natl Acad Sci U S A 92, 3046-3050. 

Murillas, R., Larcher, F., Conti, C. J., Santos, M., Ullrich, A., and Jorcano, J. L. (1995). 
Expression of a dominant negative mutant of epidermal growth factor receptor in the 
epidermis of transgenic mice elicits striking alterations in hair follicle development and 
skin structure. Embo J 14, 5216-5223. 

Naidu, R., Yadav, M., Nair, S., and Kutty, M. K. (1998). Expression of c-erbB3 protein in 
primary breast carcinomas. Br J Cancer 78, 1385-1390. 

Nathke, I. S., Adams, C. L., Polakis, P., Sellin, J. H., and Nelson, W. J. (1996). The 
adenomatous polyposis coli tumor suppressor protein localizes to plasma membrane sites 
involved in active cell migration. J Cell Biol 134, 165-179. 

Nishisho, I., Nakamura, Y., Miyoshi, Y., Miki, Y., Ando, H., Horii, A., Koyama, K., 
Utsunomiya, J., Baba, S., and Hedge, P. (1991). Mutations of chromosome 5q21 genes in 
FAP and colorectal cancer patients. Science 253, 665-669. 

Olayioye, M. A., Badache, A., Daly, J. M., and Hynes, N. E. (2001). An essential role for 
Src kinase in ErbB receptor signaling through the MAPK pathway. Exp Cell Res 267, 81-
87. 

Ornskov, D., Nexo, E., and Sorensen, B. S. (2006). Insulin-induced proliferation of bladder 
cancer cells is mediated through activation of the epidermal growth factor system. Febs J 
273, 5479-5489. 

Oshima, M., Oshima, H., and Taketo, M. M. (1996). TGF-beta receptor type II deficiency 
results in defects of yolk sac hematopoiesis and vasculogenesis. Dev Biol 179, 297-302. 



 128 

Paez, J. G., Janne, P. A., Lee, J. C., Tracy, S., Greulich, H., Gabriel, S., Herman, P., Kaye, 
F. J., Lindeman, N., Boggon, T. J., et al. (2004). EGFR mutations in lung cancer: 
correlation with clinical response to gefitinib therapy. Science 304, 1497-1500. 

Pao, W., Miller, V. A., Politi, K. A., Riely, G. J., Somwar, R., Zakowski, M. F., Kris, M. 
G., and Varmus, H. (2005). Acquired resistance of lung adenocarcinomas to gefitinib or 
erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2, 
e73. 

Pao, W., Miller, V. A., Venkatraman, E., and Kris, M. G. (2004). Predicting sensitivity of 
non-small-cell lung cancer to gefitinib: is there a role for P-Akt? J Natl Cancer Inst 96, 
1117-1119. 

Park, Y. K., Franklin, J. L., Settle, S. H., Levy, S. E., Chung, E., Jeyakumar, L. H., Shyr, 
Y., Washington, M. K., Whitehead, R. H., Aronow, B. J., and Coffey, R. J. (2005). Gene 
expression profile analysis of mouse colon embryonic development. Genesis 41, 1-12. 

Peltomaki, P., Gao, X., and Mecklin, J. P. (2001). Genotype and phenotype in hereditary 
nonpolyposis colon cancer: a study of families with different vs. shared predisposing 
mutations. Fam Cancer 1, 9-15. 

Porebska, I., Harlozinska, A., and Bojarowski, T. (2000). Expression of the tyrosine kinase 
activity growth factor receptors (EGFR, ERB B2, ERB B3) in colorectal adenocarcinomas 
and adenomas. Tumour Biol 21, 105-115. 

Prenzel, N., Zwick, E., Daub, H., Leserer, M., Abraham, R., Wallasch, C., and Ullrich, A. 
(1999). EGF receptor transactivation by G-protein-coupled receptors requires 
metalloproteinase cleavage of proHB-EGF. Nature 402, 884-888. 

Prewett, M. C., Hooper, A. T., Bassi, R., Ellis, L. M., Waksal, H. W., and Hicklin, D. J. 
(2002). Enhanced antitumor activity of anti-epidermal growth factor receptor monoclonal 
antibody IMC-C225 in combination with irinotecan (CPT-11) against human colorectal 
tumor xenografts. Clin Cancer Res 8, 994-1003. 

Prolla, T. A., Baker, S. M., Harris, A. C., Tsao, J. L., Yao, X., Bronner, C. E., Zheng, B., 
Gordon, M., Reneker, J., Arnheim, N., et al. (1998). Tumour susceptibility and 
spontaneous mutation in mice deficient in Mlh1, Pms1 and Pms2 DNA mismatch repair. 
Nat Genet 18, 276-279. 



 129 

Qin, X., Shibata, D., and Gerson, S. L. (2000). Heterozygous DNA mismatch repair gene 
PMS2-knockout mice are susceptible to intestinal tumor induction with N-methyl-N-
nitrosourea. Carcinogenesis 21, 833-838. 

Qu, G. Z., Grundy, P. E., Narayan, A., and Ehrlich, M. (1999). Frequent hypomethylation 
in Wilms tumors of pericentromeric DNA in chromosomes 1 and 16. Cancer Genet 
Cytogenet 109, 34-39. 

Rajkumar, T., Stamp, G. W., Hughes, C. M., and Gullick, W. J. (1996). c-erbB3 protein 
expression in ovarian cancer. Clin Mol Pathol 49, M199-M202. 

Reitmair, A. H., Cai, J. C., Bjerknes, M., Redston, M., Cheng, H., Pind, M. T., Hay, K., 
Mitri, A., Bapat, B. V., Mak, T. W., and Gallinger, S. (1996). MSH2 deficiency 
contributes to accelerated APC-mediated intestinal tumorigenesis. Cancer Res 56, 2922-
2926. 

Riethmacher, D., Sonnenberg-Riethmacher, E., Brinkmann, V., Yamaai, T., Lewin, G. R., 
and Birchmeier, C. (1997). Severe neuropathies in mice with targeted mutations in the 
ErbB3 receptor. Nature 389, 725-730. 

Roberts, R. B., Min, L., Washington, M. K., Olsen, S. J., Settle, S. H., Coffey, R. J., and 
Threadgill, D. W. (2002). Importance of epidermal growth factor receptor signaling in 
establishment of adenomas and maintenance of carcinomas during intestinal 
tumorigenesis. Proc Natl Acad Sci U S A 99, 1521-1526. 

Rubinfeld, B., Souza, B., Albert, I., Munemitsu, S., and Polakis, P. (1995). The APC 
protein and E-cadherin form similar but independent complexes with alpha-catenin, beta-
catenin, and plakoglobin. J Biol Chem 270, 5549-5555. 

Salomon, D. S., Brandt, R., Ciardiello, F., and Normanno, N. (1995). Epidermal growth 
factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 
19, 183-232. 

Saltz, L. B. (2004). Palliative management of rectal cancer: the roles of chemotherapy and 
radiation therapy. J Gastrointest Surg 8, 274-276. 

Sancho, E., Batlle, E., and Clevers, H. (2003). Live and let die in the intestinal epithelium. 
Curr Opin Cell Biol 15, 763-770. 



 130 

Sancho, E., Batlle, E., and Clevers, H. (2004). Signaling pathways in intestinal 
development and cancer. Annu Rev Cell Dev Biol 20, 695-723. 

Sato, J. D., Kawamoto, T., Le, A. D., Mendelsohn, J., Polikoff, J., and Sato, G. H. (1983). 
Biological effects in vitro of monoclonal antibodies to human epidermal growth factor 
receptors. Mol Biol Med 1, 511-529. 

Sheng, G., Bernabe, K. Q., Guo, J., and Warner, B. W. (2006). Epidermal growth factor 
receptor-mediated proliferation of enterocytes requires p21waf1/cip1 expression. 
Gastroenterology 131, 153-164. 

Sheng, G., Guo, J., and Warner, B. W. (2007). Epidermal growth factor receptor signaling 
modulates apoptosis via p38alpha MAPK-dependent activation of Bax in intestinal 
epithelial cells. Am J Physiol Gastrointest Liver Physiol 293, G599-606. 

Sheng, H., Shao, J., and Dubois, R. N. (2001). K-Ras-mediated increase in cyclooxygenase 
2 mRNA stability involves activation of the protein kinase B1. Cancer Res 61, 2670-2675. 

Shivapurkar, N., Tang, Z., Ferreira, A., Nasim, S., Garett, C., and Alabaster, O. (1994). 
Sequential analysis of K-ras mutations in aberrant crypt foci and colonic tumors induced 
by azoxymethane in Fischer-344 rats on high-risk diet. Carcinogenesis 15, 775-778. 

Shoemaker, A. R., Moser, A. R., Midgley, C. A., Clipson, L., Newton, M. A., and Dove, 
W. F. (1998). A resistant genetic background leading to incomplete penetrance of intestinal 
neoplasia and reduced loss of heterozygosity in ApcMin/+ mice. Proc Natl Acad Sci U S A 
95, 10826-10831. 

Shull, M. M., Ormsby, I., Kier, A. B., Pawlowski, S., Diebold, R. J., Yin, M., Allen, R., 
Sidman, C., Proetzel, G., Calvin, D., and et al. (1992). Targeted disruption of the mouse 
transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 
359, 693-699. 

Sibilia, M., Steinbach, J. P., Stingl, L., Aguzzi, A., and Wagner, E. F. (1998). A strain-
independent postnatal neurodegeneration in mice lacking the EGF receptor. Embo J 17, 
719-731. 

Sibilia, M., Wagner, B., Hoebertz, A., Elliott, C., Marino, S., Jochum, W., and Wagner, E. 
F. (2003). Mice humanised for the EGF receptor display hypomorphic phenotypes in skin, 
bone and heart. Development 130, 4515-4525. 



 131 

Sibilia, M., and Wagner, E. F. (1995). Strain-dependent epithelial defects in mice lacking 
the EGF receptor. Science 269, 234-238. 

Siegel, P. M., Ryan, E. D., Cardiff, R. D., and Muller, W. J. (1999). Elevated expression of 
activated forms of Neu/ErbB-2 and ErbB-3 are involved in the induction of mammary 
tumors in transgenic mice: implications for human breast cancer. Embo J 18, 2149-2164. 

Silverman, K. A., Koratkar, R., Siracusa, L. D., and Buchberg, A. M. (2002). Identification 
of the modifier of Min 2 (Mom2) locus, a new mutation that influences Apc-induced 
intestinal neoplasia. Genome Res 12, 88-97. 

Slattery, M. L., Samowitz, W., Curtin, K., Ma, K. N., Hoffman, M., Caan, B., and 
Neuhausen, S. (2004). Associations among IRS1, IRS2, IGF1, and IGFBP3 genetic 
polymorphisms and colorectal cancer. Cancer Epidemiol Biomarkers Prev 13, 1206-1214. 

Sodir, N. M., Chen, X., Park, R., Nickel, A. E., Conti, P. S., Moats, R., Bading, J. R., 
Shibata, D., and Laird, P. W. (2006). Smad3 deficiency promotes tumorigenesis in the 
distal colon of ApcMin/+ mice. Cancer Res 66, 8430-8438. 

Soltoff, S. P., Carraway, K. L., 3rd, Prigent, S. A., Gullick, W. G., and Cantley, L. C. 
(1994). ErbB3 is involved in activation of phosphatidylinositol 3-kinase by epidermal 
growth factor. Mol Cell Biol 14, 3550-3558. 

Song, J., Medline, A., Mason, J. B., Gallinger, S., and Kim, Y. I. (2000). Effects of dietary 
folate on intestinal tumorigenesis in the apcMin mouse. Cancer Res 60, 5434-5440. 

Su, L. K., Kinzler, K. W., Vogelstein, B., Preisinger, A. C., Moser, A. R., Luongo, C., 
Gould, K. A., and Dove, W. F. (1992). Multiple intestinal neoplasia caused by a mutation 
in the murine homolog of the APC gene. Science 256, 668-670. 

Takaku, K., Oshima, M., Miyoshi, H., Matsui, M., Seldin, M. F., and Taketo, M. M. 
(1998). Intestinal tumorigenesis in compound mutant mice of both Dpc4 (Smad4) and Apc 
genes. Cell 92, 645-656. 

Threadgill, D. W., Dlugosz, A. A., Hansen, L. A., Tennenbaum, T., Lichti, U., Yee, D., 
LaMantia, C., Mourton, T., Herrup, K., Harris, R. C., and et al. (1995). Targeted disruption 
of mouse EGF receptor: effect of genetic background on mutant phenotype. Science 269, 
230-234. 



 132 

Tice, D. A., Biscardi, J. S., Nickles, A. L., and Parsons, S. J. (1999). Mechanism of 
biological synergy between cellular Src and epidermal growth factor receptor. Proc Natl 
Acad Sci U S A 96, 1415-1420. 

Torrance, C. J., Jackson, P. E., Montgomery, E., Kinzler, K. W., Vogelstein, B., Wissner, 
A., Nunes, M., Frost, P., and Discafani, C. M. (2000). Combinatorial chemoprevention of 
intestinal neoplasia. Nat Med 6, 1024-1028. 

Townsley, C. A., Major, P., Siu, L. L., Dancey, J., Chen, E., Pond, G. R., Nicklee, T., Ho, 
J., Hedley, D., Tsao, M., et al. (2006). Phase II study of erlotinib (OSI-774) in patients 
with metastatic colorectal cancer. Br J Cancer 94, 1136-1143. 

Tsujii, M., and DuBois, R. N. (1995). Alterations in cellular adhesion and apoptosis in 
epithelial cells overexpressing prostaglandin endoperoxide synthase 2. Cell 83, 493-501. 

Vinter-Jensen, L. (1999). Pharmacological effects of epidermal growth factor (EGF) with 
focus on the urinary and gastrointestinal tracts. APMIS Suppl 93, 1-42. 

Vivona, A. A., Shpitz, B., Medline, A., Bruce, W. R., Hay, K., Ward, M. A., Stern, H. S., 
and Gallinger, S. (1993). K-ras mutations in aberrant crypt foci, adenomas and 
adenocarcinomas during azoxymethane-induced colon carcinogenesis. Carcinogenesis 14, 
1777-1781. 

Wang, Q. S., Papanikolaou, A., Sabourin, C. L., and Rosenberg, D. W. (1998). Altered 
expression of cyclin D1 and cyclin-dependent kinase 4 in azoxymethane-induced mouse 
colon tumorigenesis. Carcinogenesis 19, 2001-2006. 

Waterman, H., Sabanai, I., Geiger, B., and Yarden, Y. (1998). Alternative intracellular 
routing of ErbB receptors may determine signaling potency. J Biol Chem 273, 13819-
13827. 

Weiss, F. U., Daub, H., and Ullrich, A. (1997). Novel mechanisms of RTK signal 
generation. Curr Opin Genet Dev 7, 80-86. 

Wells, A. (1999). EGF receptor. Int J Biochem Cell Biol 31, 637-643. 

Wilson, C. L., Heppner, K. J., Labosky, P. A., Hogan, B. L., and Matrisian, L. M. (1997). 
Intestinal tumorigenesis is suppressed in mice lacking the metalloproteinase matrilysin. 
Proc Natl Acad Sci U S A 94, 1402-1407. 



 133 

Wolff, H., Saukkonen, K., Anttila, S., Karjalainen, A., Vainio, H., and Ristimaki, A. 
(1998). Expression of cyclooxygenase-2 in human lung carcinoma. Cancer Res 58, 4997-
5001. 

Wong, M. H., Hermiston, M. L., Syder, A. J., and Gordon, J. I. (1996). Forced expression 
of the tumor suppressor adenomatosis polyposis coli protein induces disordered cell 
migration in the intestinal epithelium. Proc Natl Acad Sci U S A 93, 9588-9593. 

Wu, X., Fan, Z., Masui, H., Rosen, N., and Mendelsohn, J. (1995). Apoptosis induced by 
an anti-epidermal growth factor receptor monoclonal antibody in a human colorectal 
carcinoma cell line and its delay by insulin. J Clin Invest 95, 1897-1905. 

Wu, X., Rubin, M., Fan, Z., DeBlasio, T., Soos, T., Koff, A., and Mendelsohn, J. (1996). 
Involvement of p27KIP1 in G1 arrest mediated by an anti-epidermal growth factor receptor 
monoclonal antibody. Oncogene 12, 1397-1403. 

Xue, C., Wyckoff, J., Liang, F., Sidani, M., Violini, S., Tsai, K. L., Zhang, Z. Y., Sahai, E., 
Condeelis, J., and Segall, J. E. (2006). Epidermal growth factor receptor overexpression 
results in increased tumor cell motility in vivo coordinately with enhanced intravasation 
and metastasis. Cancer Res 66, 192-197. 

Yamauchi, T., Kaburagi, Y., Ueki, K., Tsuji, Y., Stark, G. R., Kerr, I. M., Tsushima, T., 
Akanuma, Y., Komuro, I., Tobe, K., et al. (1998). Growth hormone and prolactin stimulate 
tyrosine phosphorylation of insulin receptor substrate-1, -2, and -3, their association with 
p85 phosphatidylinositol 3-kinase (PI3-kinase), and concomitantly PI3-kinase activation 
via JAK2 kinase. J Biol Chem 273, 15719-15726. 

Yarden, Y., and Sliwkowski, M. X. (2001). Untangling the ErbB signalling network. Nat 
Rev Mol Cell Biol 2, 127-137. 

Yokoyama, H., Ikehara, Y., Kodera, Y., Ikehara, S., Yatabe, Y., Mochizuki, Y., Koike, M., 
Fujiwara, M., Nakao, A., Tatematsu, M., and Nakanishi, H. (2006). Molecular basis for 
sensitivity and acquired resistance to gefitinib in HER2-overexpressing human gastric 
cancer cell lines derived from liver metastasis. Br J Cancer 95, 1504-1513. 

Zhu, Y., Richardson, J. A., Parada, L. F., and Graff, J. M. (1998). Smad3 mutant mice 
develop metastatic colorectal cancer. Cell 94, 703-714. 
 
 
 


