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ABSTRACT

KELLEY D. WEKHEYE: Statistical Methods For Repeated Measures In
Experimental Gingivitis With Adjustment For Left Truncation Due to

Lower Detection Limits
(Under the direction of John S. Preisser)

In the characterization of biomarkers measured repeatedly over time, there is a need

to summarize the information contained in the multivariate data. In experimental gin-

givitis (EG), for example, biomarker levels change when the benefits of toothbrushing

are withheld during an induction phase, then restored during a resolution phase. The

pattern of change over time of biomarker levels associated with gingivitis could reflect

change in various directions; therefore, the statistical methodology utilized should con-

sider this possibility. As such, area under the curve (AUC) can be implemented as

a summary measure for estimating change in biomarker levels. Parametric statistical

models for repeated measures analysis are useful for characterizing the nature of that

change over time, particularly as they easily accommodate both truncated and missing

data. In EG studies, left truncation results when a biomarker level falls below the

lower limit of detection. We propose two parametric approaches to provide direct esti-

mation of the trends in biomarkers over time while implementing adjustments for left

truncation. The focus is on estimation and hypothesis testing for AUC.

The first paper derives a piecewise linear random-effects regression model fit to 3

biomarkers representing varying degrees of missingness due to lower detection limits

using 2 ad hoc (naive) approaches for handling non-detect values and a likelihood

approach accounting for left censoring (Lyles, Lyles and Taylor, 2000). These naive

approaches replace non-detect biomarker values by the limit of detection and half that
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limit, which may result in bias, while the maximum likelihood method gives valid results

when dropouts are missing at random.

The second paper outlines AUC methodology for repeated measures biomarker data

by using a nonlinear “Gamma Curve” mixed model with adjustment for left truncation

based on a maximum likelihood approach in comparison to the ad hoc approaches

outlined in the first paper.

The third paper presents a simulation study that includes methods from the first

two papers as well as Wilcoxon Sign Rank test methods from Preisser, Sen, and Offen-

bacher (2011). The simulation design, motivated by EG studies, focuses on properties

of hypothesis tests (size and power) in the presence of left truncation and/or miss-

ing data to evaluate whether the parametric methods are reliable for small sample

sizes or whether larger samples are needed to reliably use the methods. Evidence for

recommending certain sample sizes for EG studies and an evaluation of whether the

nonparametric method is robust to left truncation and crude single imputation methods

are also provided.

The proposed methodology is illustrated using longitudinal data from an EG study

whereby the benefits of toothbrushing are temporarily withheld, then restored (Offen-

bacher et al, 2010).
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CHAPTER 1: INTRODUCTION

In the progression of periodontal disease, molecular mediators of inflammation are

often measured at multiple locations and taken repeatedly over time. The diagnosis of

periodontal disease can be monitored through the concentration of microbial and host

products in the gingival crevicular fluid (GCF). Specifically, in studies of experimental

gingivitis experimental gingivitis (EG), samples of GCF are collected at multiple sites

over time to assess changes in biofilm overgrowth and oral inflammation, potentially

aiding in early recognition of periodontal disease susceptibility.

In research involving repeated measures of biomarker levels, there is a need to

derive measurements that summarize the information contained in the multivariate

data. Additionally, because the pattern of change over time could reflect change in many

directions, the statistical methodology utilized should accommodate this possibility.

As such, area-under-the curve (AUC) can be implemented as a summary measure for

estimating change in biomarker levels. Parametric statistical methods for repeated

measures analysis are often employed to determine whether outcomes exhibit change

in their levels over time as well as to characterize the nature of that change. However,

the performance characteristics of the statistical approaches have not been adequately

assessed in these settings with respect to estimation of AUC and hypothesis testing,

particularly in the presence of left truncation and missing data.

In the assessment of change over time, missing data can be a common occurrence

when data are measured over multiple periods of time. For longitudinal studies involv-

ing repeated measures analysis, there can be many reasons for missing data, including



nonresponse, subject dropout, or as is often times the case in the measurement of

biomarker data, missingness due to assay detection limits. Missing values, as well as

outliers, can have a profound influence on statistical results, including estimation of

summary measures of change and hypothesis testing. If the missingness mechanism is

missing at random (MAR), i.e., the probability that a response is observed can only

depend on the values of those other factors which have been observed, there are well de-

veloped computational methods for handling missing data under this assumption (Little

and Rubin, 1987). Hughes (1999) described an EM algorithm for maximum likelihood

estimation of a linear mixed effects model for estimating trends in CD4 counts over

time in HIV-positive subjects, accounting for left and/or right censoring. Lyles et al.

(2000) developed a likelihood method that addresses missing data due to left truncation

as well as an extension to additionally accommodate informative dropout. Thiebaut

and Jacqmin-Gadda (2004) applied a maximum likelihood approach for left-censored

data based on a Marquardt algorithm (Marquardt, 1963) in HIV research. In reference

to pharmacokinetic data with measurements below the quantification limit, Fang et al.

(2011) developed a maximum likelihood method to estimate AUC and the ratio of two

AUCs (i.e., relative exposure).

In dental research, because studies of inflammatory mediators tend to involve only

a small to moderate number of subjects, parametric methods, which are particularly

sensitive to outliers and deviations from Gaussian assumptions, may not be the pre-

ferred approach to analyze such data. Alternatively, nonparametric methods have been

utilized in some settings due to the reliance on fewer assumptions and presumed greater

robustness over their parametric counterparts. For the analysis of biomarker data in

experimental gingivitis, most recently, a nonparametric multiple hypothesis testing ap-

proach was advocated for the analysis of repeated measures (Preisser et al., 2011) using

AUC summary measures to assess the change over time in biomarker levels. Conse-
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quently, a method to identify biomarkers using univariate and multivariate Wilcoxon

signed rank tests for a set of four summary measures based upon AUC has been pre-

viously described (Preisser et al., 2011). A limitation of this approach is that it is a

hypothesis testing approach; therefore, it does not provide estimation of the location

(mean or median) response pattern over time. However, nonparametric procedures may

improve many of the problems encountered with parametric methods and are more flex-

ible in dealing with situations in which the number of biomarkers exceeds the number

of subjects.

The purpose of this dissertation is to study statistical methods applicable to EG

data. We propose to develop parametric mixed models accounting for left truncation

under MAR using the estimation methods that are easy to implement. The parametric

models will be fit to log-transformed data for 3 biomarkers representing varying de-

grees of truncation due to lower detection limits using 2 ad hoc (naive) approaches for

handling non-detect values and a likelihood approach accounting for left censoring and

outcomes missing at random (“ML1”) from Lyles et al. (2000). The focus will be on

providing direct estimation of the trends in biomarkers over time, calculations of AUC

based on the associated parameters from Preisser et al. (2011), and hypothesis testing

for AUC summaries in a study of EG. The proposed methodology will be illustrated

using longitudinal data from an EG study previously conducted (Offenbacher et al.,

2010).
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CHAPTER 2: LITERATURE REVIEW

2.1 Overview of Gingivitis

Periodontitis is a chronic disease which results in destruction of the periodontal lig-

ament and alveolar bone supporting a tooth, and which may eventually lead to tooth

loss (DeRouen et al., 1995). Gingivitis, the mildest form of periodontal disease and a

condition that can advance to periodontitis if left untreated, is often caused by inad-

equate oral hygiene, which leads to plaque buildup (American Academy of Periodon-

tology 2010). The reversible process of gingivitis can be resolved with plaque removal

from the tooth surface (Salvi et al., 2010). The inflammatory host response, a core

component of periodontal disease, is thought to be the immediate cause of periodontal

breakdown (Deinzer et al., 2007). Experimental Gingivitis (EG), first developed by Loe

et al. (1965), is recognized as a well-controlled condition for the clinical investigation

of gingivitis. In this study design, gingivitis is induced in healthy patients by stopping

oral hygiene practices (Deinzer et al., 2007; Loe et al., 1965). Typically EG study de-

signs involve a hygiene phase (ie, establishment of gingival health), an induction phase

(i.e., neglect of gingival health), and a resolution phase (ie, re-establishment of gingi-

val health). Many researchers have focused their attention on employing this study

design to realize a better understanding of the host’s immune response to periodontal

pathogens (Deinzer et al., 2007). Therefore, the experimental gingivitis framework is

a well-utilized analytical structure for elucidating the inflammatory response to undis-

turbed dental biofilm accumulation.

Characterization of chronic gingivitis is traditionally based on the presence of bleed-



ing, oedema, redness, and an increased flow of GCF (Salvi et al., 2010). The GCF is

a serum transudate that is enriched with microbial and host products that arise as

a result of the current inflammatory dynamics of the host-biofilm interaction (Offen-

bacher et al., 2010). The biochemical analysis of the fluid offers a non-invasive means of

assessing the host response in periodontal disease. The active phase of the periodontal

disease process can be assessed by the components of gingival fluid (Subrahmanyam

and Sangeetha, 2003). Because it contains elevated levels of a vast array of biochemi-

cal factors, gingival crevicular fluid is a more attractive clinical marker of periodontal

disease activity over more traditional methods. As such, some studies have shown that

chronic gingivitis is associated with higher levels of inflammatory mediators as identi-

fied in GCF (Offenbacher et al., 2007). We will review the design and analysis issues

in the experimental gingivitis studies using GCF as a means of assessing periodontal

status.

2.2 Overview of the Experimental Gingivitis Study

Preisser et al. (2011) describe a study based on data previously published by Of-

fenbacher et al. (2010) in which thirty-one inflammatory mediators within each GCF

sample, including cytokines, matrixmetalloproteinases (MMPs) and adipokines were

studied in 22 subjects to evaluate the changes in the GCF composition over time. The

study recruited and enrolled subjects with naturally occurring gingivitis, defined as

bleeding upon probing present, typically in at least 10% of dental sites, as these sub-

jects were more likely to develop experimental gingivitis in the course of the study. The

course of the experiment included a 1-week hygiene phase, a 3-week induction phase

using two stents and a 4-week resolution phase. Gingivitis was induced by withholding

tooth brushing by the use of intraoral acrylic stents that cover selected teeth in each

arch during tooth brushing to induce local gingival inflammation. Mediator levels were
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determined from the laboratory analysis of GCF. At the end of the induction phase,

stents were removed and hygiene on all teeth was restored to resolve inflammation.

Gingival crevicular fluid was collected from the same oral sites at the beginning of the

hygiene phase (or Day -7, one week prior to baseline), weekly during the induction

phase (Day 0 or baseline), Day 7, 14, 21 (end of the induction phase/baseline for the

resolution phase), and biweekly during the resolution phase at Day 35 and 49. At the

final time point, baseline levels were expected to be restored for all biomarkers.

At each time point, gingival crevicular fluid was collected from eight dental sites

from the stent teeth and the volume of fluid collected from each sample was recorded.

The average of the two concentration measurements from each site was considered the

measurement for the particular site and time point. The goal of the experiment was

to identify new candidate biomarkers that were sensitive to poor oral health care as

identified by their patterns of change during induction and resolution of gingivitis. The

data have been previously analyzed using parametric linear mixed modeling (Offen-

bacher et al., 2010). Although not specified, the analysis treated left truncated values

as zeros. Furthermore, no adjustments were made for multiple hypothesis testing.

2.3 Review of Design and Analysis Methods in Experimental Gingivitis
Studies

In review of statistical analysis methods used in the EG studies, fourteen studies

measuring clinical parameters, microbiological parameters, and biomarker concentra-

tions in GCF during experimental gingivitis were evaluated. As our focus is on the

characterization of biomarkers within GCF, the clinical and microbiological profiles are

not described. The sample size ranged from 10 to 50 subjects, with the majority of

studies recruiting approximately 20 subjects to serve as internal controls in the analyses

or to be divided into independent groups for analysis. One to 2 weeks prior to study
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initiation, subjects received professional tooth cleaning and were given oral hygiene

instructions in order to maintain perfect gingival health through the Baseline (Day

0) visit. Following this standard hygiene phase, at specified teeth, subjects abstained

from oral hygiene ranging from a period of 4 to 28 days. The most frequent timeframes

for this no-hygiene, gingivitis phase were a period of 21 or 28 days. The length of

the resolution phase was not indicated in most study designs; however, when it was

specified, the timeframe for oral hygiene restoration was 28 days. Gingival crevicular

fluid was usually sampled from mesiobuccal, mesiopalatal, distopalatal, and distobuccal

sites. For most studies, crevicular fluid samples were collected weekly only during the

EG period and analyzed for measurement of 2-3 biomarkers, on average, within each

sample. Although the number of biomarkers studied ranged from 1 to 33, the most

consistently measured biomarkers were interleukin cytokines IL-1β , IL-1α , and IL-1ra.

Although gingivitis occurs over time as a steady-state inflammatory response, only

approximately one-half of studies used a repeated measures analysis of variance (ANOVA)

approach (Deinzer et al., 2004, 2007; Johnson et al., 1997; Waschul et al., 2003), with

few studies examining the rate of increase by calculating AUC (Jepsen et al., 2003;

Preisser et al., 2011; Salvi et al., 2010). Most studies that took a nonparametric ap-

proach to the analysis used a Wilcoxon-signed rank test for intra-subject comparisons

and Mann-Whitney U-test or Wilcoxon rank-sum test to assess between-group differ-

ences (Giannopoulou et al., 2003; Konradsson et al., 2007; Konradsson and van Dijken,

2005; Staab et al., 2009; Tsalikis, 2010). Studies not using repeated measures analy-

sis instead used paired t-tests to assess mean within group changes from baseline to

each timepoint or 2-sample t-tests to assess between-group differences in mean levels

at each timepoint (Konradsson et al., 2007; Salvi et al., 2010). Few studies mentioned

using a log-transformation, or any other form of transformation, before analyzing the

data. Additionally, most studies mentioned above did not mention or address the assay
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lower limit of detection (LOD) and how values below the limit were handled in the

analysis. Studies that did mention the LOD did not indicate how values left-censored

due to being below the detection limit were addressed, if at all (Deinzer et al., 2007;

Johnson et al., 1997; Konradsson et al., 2007). One study that examined the rate of

development of gingivitis from Baseline to the end of induction phase dichotomized

AUC at the mean and used a binary logistic regression analysis to identify a model

to explain progression and severity of gingivitis. Another study used univariate and

multivariate Wilcoxon-signed rank tests based on 4 AUC summary measures to assess

the change over time in biomarker levels Preisser et al. (2011). To show increasing

trend in biomarkers, one study used the large sample approximation Friedman test.

The studies that used a parametric repeated measures approach used an ANOVA

model. Three studies used ANOVA to identify significant main effects and significant

interactions with time. In these studies, to assess temporal stability of biomarkers,

results were reported as Greenhouse-Geisser corrected values along with degrees of

freedom, e and h2 as indicators of effect size. These adjustments were made to correct

for potential violations of sphericity. Studies not using repeated measures analysis

instead used paired t-tests to assess mean within group changes from baseline to each

timepoint or 2-sample t-tests to assess between-group differences in mean levels at each

timepoint. Few studies mentioned using a log-transformation, or any other form of

transformation, before analyzing the data.

Although majority of the studies assessed GCF mediator levels at multiple time-

points, few studies took into account the multiple testing problems. Studies that did

address this issue used the Bonferonni method. One study further indicated choice of

control of family-wise error rate (FWER) or false discovery rate (FDR). Additionally,

only 2 studies mentioned and addressed the assay lower limt of detection (LOD) and

how values below the limit were handled in the analysis. Other studies that mentioned
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the LOD did not indicate how values left-censored due to being below the detection

limit were addressed, if at all. Overall, there still remain statistical issues that need to

be considered when analyzing biomarker data in periodontal disease and uniformity in

such analyses addressed.

2.4 Linear Mixed Models

Consider the matrix form of the linear model

y = Xβ + ε (2.1)

where y is the response vector; X is the regression parameter design matrix, β is

the vector of regression coefficients, and ε ∼ N(0, σ2) is the vector of errors. In this

model, the relationship is described between a response variable and covariates that

are measured at the same points in time as the response. Longitudinal studies are

often employed to investigate the progression of a characteristic over time by taking

repeated measurements within an observational unit. In some cases, the characteristic

studied may exhibit differences at baseline as well as over time. If a characteristic varies

linearly over time with intercept and/or slope varying between observational units, it

may be more appropriate to model characteristic patterns from repeated measures using

a random coefficients model (RCM). The RCM model is a two-stage model in which

the mean response is modelled as a combination of fixed (population) and random

(subject-specific) effects. The general form of the model can be expressed as

yi = Xiβ + Zibi + εi (2.2)

bi ∼ N(0,D)

εi ∼ N(0, σ2)
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where

• yi is the ni x 1 vector of observations with E(yi) = Xiβ

• Xi is the ni x p design matrix for the fixed effects

• β the p x 1 vector of regression coefficients

• Zi the ni x q design matrix for the random effects

• bi is the q x 1 vector of i.i.d random effect coefficients

• εi is the ni x 1 vector of i.i.d random error terms

Random coefficients models are commonly used in analysis of data in which a

subject-specific linear relationship is assumed between the response variable and time.

In situations in which there are curvilinear effects in the response, polynomial models

could be used to describe nonlinear relationships, for example, in the progression of

disease. Visual review of EG biomarker levels indicate that the levels of GCF can vary

widely within subjects. The nonlinear relationship of GCF levels with time indicates

that a model using polynomials of times may be considered to fully characterize disease

profiles.

2.5 Methods For Left Truncated Data

One of the most commonly used and easily implemented methods reported in envi-

ronmental scientific literature to deal with values below detection limits is to substitute

a fraction of the detection limit for each nondetect. Nondetects are values known only

to be somewhere between zero and the laboratory assay’s detection limits. In essence,

this method replaces a single, unknown value with a single value for the specified data.

Any substitution of a constant fraction of reporting limits is thought to distort estimates
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of the standard deviation, thereby negatively affecting all (parametric) hypothesis tests

using that statistic, as well as obscure patterns and trends in the data (Helsel, 2006).

As such, substituted values using a fraction anywhere between 0 and 0.99 times the

detection limit are considered to be incorrect, possibly leading to inaccurate interpre-

tation of the study results (Helsel, 2006). Based on simulation studies, Lubin et al.

(2004) found that imputing one-half the detection limit for nondetect values can be bi-

ased if the percentage of measurements below the detection limit is greater than 10%.

Survival and reliability analysis methods used for analyzing data without substituting

values has been suggested as a better approach. For environmental data, survival anal-

ysis has been shown as a better method over traditional substitution of values such

as one-half the detection (Baccarelli et al., 2005; Helsel, 2006). Thompson and Nelson

(2003) extended the work of Aitken (1981) by developing a maximum likelihood (ML)

approach to Type I left- and interval-censored data. Through simulation studies, they

confirmed the bias in the simple substitution approach, where censored observations

are replaced by the midpoint of their censoring interval, and illustrated the effect of

increased censoring level on power to detect significant relationships. Although slow in

progression, the effect on power with increasing censoring was shown to be substantial

(Thompson and Nelson, 2003).

Lubin et al. (2004) reviewed other strategies for handling data with detection lim-

its. The small percentage of values below the detection limit requirement for using

substitution methods led to a single-impute “fill-in” approach in which the form of the

distribution is characterized, parameters are estimated, and randomly sampled values

below the detection limit are assigned from the estimated distribution (Helsel (1990);

Moschandreas et al. (001a,b)). Although the randomly-assigned values are from an ap-

propriate distribution, this approach produces biased variance estimates when at least

30% of data are below the detection limit. Tobit regression and multiple imputation
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were offered as two unbiased approaches. Although it requires a large amount of data, if

values are needed for measurements below the detection limit, multiple imputation was

determined to be the optimal approach in the presence of nonignorable data unless the

proportion of missingness was substantial. When interest is in regression parameters,

tobit regression is suitable (Little and Rubin, 1987).

Several estimation procedures for Type I censored data have been developed for

normal and lognormal populations (Cohen, 1950, 1959; Gilliom and Helsel, 1986; Gleit,

1985; Persson and Rootzen, 1977; Schneider, 1986). In the presence of potential out-

liers, Singh and Nocerino (2002) evaluated classical and robust parameter estimating

procedures (Cohen, 1959; Dempster et al., 1977; Persson and Rootzen, 1977) in terms

of bias and mean square error (MSE). Maximum likelihood estimation (MLE) uses

both the uncensored observations and the proportion of data below one or more detec-

tion limits to compute statistics for the entire dataset in which the distribution of the

data is known. Cohen’s method (Cohen’s MLE) is an adaptation of the MLE method

which uses a lookup table to calculate estimates of the mean and standard deviation by

adjusting the statistics of the uncensored observations as a function of the amount of

censoring in the data. Dempster et al. (1977) expectation maximization (EM) method

is an iterative approach that uses a conditional expectation maximizing function to

replace non-detect values by the conditional expected value. Gilliom and Helsel (1986);

Hashimoto and Trussell (1983); Helsel (1990) used ordinary least squares (OLS) regres-

sion to extrapolate non-detects from the regression model.

The performance of these methods (including restricted MLE [RMLE] and unbiased

MLE [UMLE] methods depend on sample size, percentage of censoring, and the detec-

tion limit value. Based on simulations, the UMLE method may be used for large sample

sizes (i.e., at least 15 observations) if the percentage of censoring is less than 30%. The

RMLE and Cohen’s MLE methods provided similar estimates and bias and MSE results
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that were stable and in close agreement for all sample sizes and censoring proportions.

However, because of it’s simplicity, for population parameter estimation, the RMLE

was recommended for large censoring intensities (i.e., greater than 30% or larger sam-

ple sizes. Substitution methods, including the EM method, should be avoided when

the sample size exceeds 10 observations. In the presence of outliers, the OLS regression

method based on log-transformed data gives unreliable results due to the distortion of

the outliers. In this case, Singh (1993) proposed influence function (PROP) function

is recommended for the population parameter estimation.

For longitudinal studies involving repeated measures analysis, Lyles et al. (2000)

developed a likelihood method that addresses missing data due to left censoring and

informative dropout, simultaneously. Under this missingness mechanism, traditional

longitudinal data analysis methods, such as generalized estimating equations (Liang

and Zeger, 1986) and random effects linear models (Laird and Ware, 1982) can pro-

duce biased population average intercept and slope estimates (Lyles et al., 2000). The

method proposed by Lyles et al. (2000) is a combination of a likelihood-based adapta-

tion of the EM algorithm (Hughes, 1999) and a combined log-normal (dropout process)

and linear random-effects (repeated measures response) model (Schluchter, 1992). The

approach directly works with the likelihood functions to derive standard errors based

on the observed information matrix.

Lyles et al. (2000) also reviewed a linear random effects model proposed by Schluchter

(1992) for repeated measures with left-truncated data valid under MAR dropout that

is easy to program with standard statistical packages (e.g., SAS PROC NLMIXED).

2.6 Area-Under-the-Curve Principle

For the re-analysis of the biomarker data of Offenbacher et al. (2010), all biomarker

data are transformed to the log scale (base 10). Let Lijt be the log GCF level of the j th
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biomarker for the i th subject at the t th time point, for t = 0, . . . , 5, corresponding to

Days 0, 7, 14, 21, 35 and 49, respectively. Ideally, each biomarker should fit into one of

the three categories: (a) positively sensitive positively sensitive (PS) biomarker - Lij0 ,

Lij1 , Lij2 , and Lij3 are expected to increase over time during the induction (stent)

phase from Lij0 to Lij3 and decrease from Lij3 to Lij5 during the resolution (non-stent)

phase; (b) negatively sensitive (NS) biomarker - decreasing trend during induction

followed by a increasing trend during the resolution phase; (c) asymmetrically sensitive

(AS) biomarker - levels not only return to baseline after Day 21, but temporarily elevate

above baseline; and (d) insensitive (IS) biomarkers - the GCF levels remain constant

over the six time periods. Change over time for some biomarkers may not be consistent

with one of these patterns.

Because there are multiple directions for the change in biomarker levels, Preisser

et al. (2011) determined that the statistical methodology employed in the analysis

should allow for detecting change away from the null in any of the directions. The AUC

approximates the average change between two observed time points of the biomarker

levels. For the j th biomarker level from the i th subject, define the change from baseline

to time t as Yijt = Lijt − Lij0. Using week as the unit of time, let the summaries of

AUC be denoted as follows (Preisser et al., 2011):

Aij = (Yij1 + 2Yij2 + Yij3)/2 = area between week 1 and week 3

Bij = Yij3 + Yij4 = area between week 3 and week 5

Cij = Yij1/2 = area between week 0 and week 1

Dij = Yij4 + Yij5 = area between week 5 and week 7

Next, four variates of interest to be assessed in the statistical analysis are defined as

14



follows:

Xij1 = Cij − 1
2
Dij =

1

2
(Yij1 − Yij4 − Yij5) (2.3)

Xij2 = Aij −Bij =
1

2
(Yij1 + 2Yij2 − Yij3 − 2Yij4)

Xij3 = Yij2

Xij4 = Yij4 − Yij5

Xij1 and Xij2 are defined to examine whether the rate of induction is the same as

the rate of resolution; rejection of the null hypothesis would point to asymmetry. The

statistic Xij3 examines the rate of induction between Days 0 and 14. The statistic Xij4

examines the rate of resolution between Day 35 and Day 49. These four variates describe

a biomarker’s pattern of change over time and could result in increased statistical power

for the alternative statistical hypotheses. Preisser et al. (2011) use univariate and

multivariate Wilcoxon signed rank tests to assess whether the medians of the variates

Xij1 , . . . Xij4 differ from zero.

With respect to experimental gingivitis, the interpretation of X1 ,X2 ,X3 , and X4

as reflecting symmetry or asymmetry has potential implications relating to the biology

of the system. They provide potential insight to discriminate whether there are differ-

ences in the homeostatic mechanisms which regulate the steady-state levels of different

biomarkers (Preisser et al. (2011)).

2.7 Univariate and Multivariate Hypothesis Testing Based on Wilcoxon
Signed Rank Statistics

A nonparametric statistical analysis was used to assess the pattern of response

from Day 0 to Day 49 based on subject-level AUC summary measures. Exact p-values

from the permutation distribution of univariate and multivariate Wilcoxon signed rank
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tests were generated. Let k = 1, 2, 3, 4 index the variate. For each biomarker j =

1, . . . , J(J = 31), a four-variate Wilcoxon Signed Rank Test to Xij = (Xij1, Xij2, Xij3, Xij4)
′

was developed to examine the four variates simultaneously for departure from their

null median values of 0. Alternatively, univariate tests are defined corresponding to

the Xijk, four such tests for each biomarker resulting in 124 total p-values. Using all

available data, the univariate Wilcoxon Signed Rank tests individually examine the

median of Xjk for departure from zero. Details of the procedure have been previously

described (Preisser et al., 2011). The p-values were evaluated for statistical significance,

taking into account multiplicity addressed by controlling FWER (Hochberg, 1988) and

FDR (Benjamini and Hochberg, 1995). Given both methods, there were only small

differences among the experimental gingivitis data for multivariate tests. The primary

motivation for the analysis presented was that analysis of ranks provided tests less sen-

sitive to outliers and Gaussian distribution assumptions than provided by parametric

analysis.

Because not all subjects had complete data, three types of imputation were carried

to increase the amount of usable information. For biomarker levels below the lower

detection limited (recorded as zero in the data), the log biomarker response level Lijt

was imputed as the log base 10 applied to half the lower detection limit plus 1. Im-

putation by substitution was carried out by replacing missing Day 0 data with Day -7

(or Day 49 data since biomarker levels are expected to return to baseline at the end of

the resolution phase if Day -7 was missing). Imputation by linear interpolation from

previous and next visits were performed sequentially for biomarker levels missing at

Days 7, 35, 21, and 14. The latter two methods used only within-subject information

for imputations.

In the study of experimental gingivitis, an attractive feature of the nonparametric

approach is its ability to assess a large number of biomarkers relative to the number of
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subjects. Limitations of the approach include its inability to provide direction estima-

tion of the patterns of change over time and the use of within-subject imputations for

selected missing data.

2.8 Methods for Multiple Hypothesis Testing

Many different methods have been used to address issues in multiple testing. An

independent test that can be applied to dependent tests is the simple sequentially

rejective multiple test procedure (Holm, 1979). This procedure works by rejecting

hypotheses one at a time. Secondary (intersection) hypotheses are rejected when any

of the included basic (individual) hypotheses are rejected. Beginning with the smallest

p-value, compare the p-value to α/(n-i+1) until H(n−i+1) cannot be rejected. Reject

hypotheses one at a time until no further rejections can be made. The smallest p-

value P(1) is examined and if P(1) ≤ α/n then H(1) is rejected and the process

continues with the next p-value P(2) , compared with α/(n-1). If H(2) is not rejected,

then the process is stopped and the remaining hypotheses H(2) , H(3) , ..., H(n) are

accepted. The generalized sequentially rejective Bonferroni test process for rejecting

the hypotheses is similar to the procedure previously described. The statistics are

compared against α/
∑
ci , i=1, 2, ..., n); the number of the ordered test, ci positive

constants. However, the most relevant hypotheses are chosen a suitable test statistic

(for which the one-dimensional distribution is either exactly or approximately known) is

assigned to each hypothesis. Direct the power towards the most important hypotheses

by choosing proper positive constants (c1 , c2 , ..., cn ), greater for the more important

hypotheses. This method has an advantage over the Bonferroni procedure in that it

provides higher power (depending on the alternative hypothesis).

The Bonferroni procedure defines n p-values, P1 , ..., Pn , corresponding to n statis-

tics for testing hypotheses H1 , ...,Hn . The null hypothesis, H0 =H1 , ..., Hn is rejected
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if any p-value < α/n. If a specific Hi is rejected when Pi ≤ α/n, then the bonfer-

roni inequality, pr{
⋃n
i=1 (Pi ≤ α/n)} ≤ α ensures the probability of rejecting at least

one hypothesis when all are true is no greater than α . The procedure is used when

conducting multiple tests of significance to set an upper bound on the FWER. The

advantages of this procedure are that it is simple to use, no distributional assumptions

are needed, and it enables individual alternative hypotheses to be identified. However,

it is conservative and less powerful if multiple highly correlated tests are undertaken.

Simes (1986) improved the Bonferroni method by defining n ordered p-values for testing

hypotheses H0 ={ H(1) ,..., H(n) } . The null hypothesis is rejected if P(i) ≤ iα/n for

any i=1,...,n. The test has level α under H0 when p-values are independent. This

method provides advantageous over the Bonferroni procedure due to the lower type II

error rate for a given nominal significance level and higher power when test statistics are

highly correlated and several alternative hypotheses are correct. Although it is mostly

beneficial for independent tests for the null hypothesis, all procedures based upon the

Simes inequality have the assumption that the result derived under independence is a

conservative procedure for dependent tests (Kang, 2007).

Hochberg’s procedure (Hochberg, 1988) is a method that provides strong control of

the FWER. It begins with the largest p-value and compares the p-value to α/(n-i+1)

until H(n−i+1) can be rejected. The hypothesis corresponding to the rejection along

with all hypotheses with smaller or equal p-values are rejected. The largest p-value

P(n) is examined and if P(n) ≤ α then all hypotheses are rejected. If not, then H(n)

cannot be rejected and the process continues to compare P(n−1) with 1
2
α . If smaller,

then all H(i) ( i=n-1, ..., 1) are rejected. If not, then H(n−1) cannot be rejected and the

process continues to compare P(n−2) with 1
3
α , etc. according to P(i) ≤ α/(n-i+1).

Again, this procedure only applies to independent tests; however, it is applicable to

dependent tests through justification provided by Sen (2008).
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For controlling the FDR, Benjamini and Hochberg (1995) procedure tests H1 , H2 ,

..., Hn based on ordered p-values P(1) ≤ P(2) ≤ ... ≤ P(n) . H(i) is the hypothesis

corresponding to P(i) , the ith ordered p-value. Let k be the largest i for which P(i) ≤
i
n

q*, then reject all H(i) , i=1,...,k and the FDR is controlled at q*. Start by comparing

the largest p-value with i
n

q*, if smaller all hypotheses are rejected. If larger, proceed

to the smaller p -values until one satisfies the condition. All hypotheses having p-values

less than or equal to the condition are rejected. If all null are true, FDR is equivalent to

FWER. Control of FDR implies control of FWER in the weak sense. When the number

of true hypotheses (n0 ) < number of null hypotheses (n), FDR < FWER. A procedure

that controls the FWER also controls FDR. Although designed for independent tests,

this procedure can be applied to dependent tests through justification provided by Sen

(2008).

2.9 Summary and Proposed Research

In many periodontal research studies, there is often interest in identifying molecu-

lar mediators of inflammation via repeated measures analysis that can be induced to

significant change over time as well as characterize the direction of the change. In the

presence of potential outliers, nonparametric methods are preferred over parametric

methods due to the reliance on fewer assumptions and presumed greater robustness

over their parametric counterparts. For the analysis of biomarker data in experimental

gingivitis, most recently, a nonparametric multiple hypothesis testing approach was

advocated for the analysis of repeated measures Preisser et al. (2011) using AUC sum-

mary measures to assess the change over time in biomarker levels. Though this method

has the advantage of being able to assess a large number of biomarkers relative to the

number of subjects, it is unclear how to handle missing data in this context, partic-

ularly left truncation of observations due to a lower detection limit. For this setting,
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it may be beneficial to use a parametric method that addresses limitations associated

with parametric approaches, including the missingness process, as well as assumptions

about the nature of left truncation of observations due to a lower detection limit. The

most common strategy for measurement data with detection limits is substitution of

the value below the limit with a fraction of the limit (i.e., 0.5). Though this strategy is

simplistic and easy to implement, it often distorts results (Hughes, 1999; Lubin et al.,

2004) and can provide biased estimation, particularly if a large percentage of the data

are left-truncated (Fang et al., 2011).

In addition to the missingness issue due to assay detection limitations, in experi-

mental gingivitis, the multiple hypothesis testing problem warrants further investiga-

tion. Current procedures for the multiplicity problem include controlling the FWER

and FDR. Although they are commonly used techniques, their restrictions on the de-

pendency of p-values, for example, a possibility in the multiple biomarkers studied

in experimental gingivitis studies, could pose a problem for their use in this setting.

Modifications of the Hochberg (1988) and Benjamini and Hochberg (1995) procedures

based on the Chen-Stein Theorem (Chen, 1975) to the experimental gingivitis data and

similar problems warrant investigation.

We propose to illustrate two parametric approaches to provide direct estimation of

the trends in biomarkers over time based on AUC computations and describe how to

estimate the associated parameters (Preisser et al., 2011). The outline of the remaining

sections of this proposal are as follows. In Chapter 3, we derive a piecewise model based

on a linear random-effects regression model as a parametric form of the model described

in Preisser et al. (2011). The parametric model will be fit to log-transformed data for 3

biomarkers, MMP7, MMP3, and MIP-1β , representing varying degrees of missingness

due to lower detection limits using 2 ad hoc (naive) approaches for handling non-detect

values and a likelihood approach accounting for left censoring (“ML1”) from Lyles et al.
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(2000). These naive approaches, named “Naive1” and “Naive2”, replace non-detect

GCF values by the limit of detection and half that limit, respectively. In Section 3.4, we

present the results comparing MLEs from “Naive1”, “Naive2”, and “ML1” approaches

of the 3 biomarkers, separately.

In Chapter 4, we derive a gamma curve-like nonlinear mixed model with adjust-

ment for left truncation based on the ad hoc approaches outlined in Chapter 3. In

Chapter 5, we propose to compare approaches for hypothesis testing (size and power)

in the presence of left truncation and/or missing data in a simulation study to evaluate

whether the parametric methods are reliable for small sample sizes or whether larger

samples are needed to reliably use the methods. Evidence for recommending certain

sample sizes for EG studies and an evaluation of whether the nonparametric method

is robust to left truncation and crude single imputation methods is also provided. In

Chapter 6, we discuss future research for the investigation of nonparametric multiple

hypothesis testing approaches in Preisser et al. (2011) and more methods for handling

missing data. We plan to use the EG study (Offenbacher et al., 2010; Preisser et al.,

2011) to illustrate our methods.
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CHAPTER 3: PIECEWISE LINEAR MIXED MODEL

3.1 Background and Introduction

In the characterization of biomarkers measured repeatedly over time, there is a need

to summarize the information contained in the multivariate data. In experimental gin-

givitis (EG), for example, biomarker levels change when the benefits of toothbrushing

are withheld during an induction phase, then restored during a resolution phase. The

pattern of change over time of biomarker levels associated with gingivitis could demon-

strate changes in different directions and kinetics of responses mirroring the underly-

ing dynamics of the biological response; therefore, the statistical methodology utilized

should consider this possibility. As such, area under the curve (AUC) can be imple-

mented as a summary measure for estimating change in biomarker levels. Parametric

statistical models for repeated measures analysis are useful for characterizing the na-

ture of that change over time, particularly as they easily accommodate both truncated

and missing data. In EG studies, left truncation results when a biomarker level falls

below the lower limit of detection. This article introduces a piecewise linear mixed

model to provide direct estimation of AUC based on the trends in biomarkers over

time while implementing adjustments for left truncation. Estimation and hypothesis

testing results for area under the “line” curve are reported for three biomarkers.

In review of statistical analysis methods used in the EG studies, although gingivitis

occurs over time as a steady-state inflammatory response, only approximately one-half

of studies use a repeated measures ANOVA approach (Deinzer et al., 2004, 2007; John-

son et al., 1997; Waschul et al., 2003), with few studies examining the rate of increase by



calculating AUC (Jepsen et al., 2003; Preisser et al., 2011; Salvi et al., 2010). Most stud-

ies that took a nonparametric approach to the analysis used a Wilcoxon-signed rank

test for intra-subject comparisons and Mann-Whitney U-test or Wilcoxon rank-sum

test to assess between-group differences (Giannopoulou et al., 2003; Konradsson et al.,

2007; Konradsson and van Dijken, 2005; Staab et al., 2009; Tsalikis, 2010). Studies

not using repeated measures analysis instead used paired t-tests to assess mean within

group changes from baseline to each timepoint or 2-sample t-tests to assess between-

group differences in mean levels at each timepoint (Konradsson et al., 2007; Salvi et al.,

2010). Few studies mentioned using a log-transformation, or any other form of transfor-

mation, before analyzing the data. Additionally, most studies mentioned above did not

touch on or address the assay LOD and how values below the limit were handled in the

analysis. Studies that did mention the LOD did not indicate how values left-censored

due to being below the detection limit were addressed, if at all (Deinzer et al., 2007;

Johnson et al., 1997; Konradsson et al., 2007).

For the analysis of biomarker data in experimental gingivitis, most recently, a non-

parametric multiple hypothesis testing approach was advocated for the analysis of re-

peated measures (Preisser et al., 2011) using AUC summary measures to assess the

change over time in biomarker levels. Though this method has the advantage of being

able to assess a large number of biomarkers relative to the number of subjects, it is

unclear how to handle missing data in this context, particularly left truncation of ob-

servations due to a lower detection limit. The most common strategy for measurement

data with detection limits is substitution of the value below the limit with a fraction of

the limit (e.g., 0.5). Though this strategy is simplistic and easy to implement, it often

distorts results (Hughes, 1999; Lubin et al., 2004) and can provide biased estimation,

particularly if a large percentage of the data are left-truncated (Fang et al., 2011).

In the assessment of change over time, missing data can be a common occurrence
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when data are measured over multiple periods of time. For longitudinal studies involv-

ing repeated measures analysis, there can be many reasons for missing data, including

nonresponse, subject dropout or, as is often times the case in the measurement of

biomarker data, missingness due to assay detection limits. Missing values can have a

profound influence on statistical results, including estimation of summary measures of

change and hypothesis testing. If the missingness mechanism is MAR, i.e., the proba-

bility that a response is observed can only depend on the values of those other factors

which have been observed, there are well developed computational methods for han-

dling missing data under this assumption (Little and Rubin, 1987). Hughes (1999)

described an EM algorithm for maximum likelihood estimation of a linear mixed ef-

fects model for estimating trends in CD4 counts over time in HIV-positive subjects,

accounting for left and/or right censoring. Lyles et al. (2000) developed a likelihood

method that addresses missing data due to left truncation as well as an extension to

additionally accommodate informative dropout. Thiebaut and Jacqmin-Gadda (2004)

applied a maximum likelihood approach for left-censored data based on a Marquardt

algorithm (Marquardt, 1963) in HIV research. In reference to pharmacokinetic data

with measurements below the quantification limit, Fang et al. (2011) developed a max-

imum likelihood method to estimate AUC and the ratio of two AUCs (i.e., relative

exposure).

The challenge in using parametric procedures is that the validity of standard para-

metric models depends on certain underlying conditions being met, particularly for

smaller sample sizes. These conditions include assumptions regarding the form of the

mean model (including uncertainty pertaining to the transformation of the response)

and the missingness process, as well as assumptions about the nature of left truncation

of observations due to a lower detection limit (Preisser et al., 2011). Thus, we need

new methods to fit a parametric model, while examining the form of the mean model
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and missingness due to left truncation. For the parametric approach, we illustrate our

methods under the framework of a random-effects model. Currently the most utilized

ad hoc approaches for handling of missingness due to levels below the detectable thresh-

old include substitution of all such values by some fraction of the limit. Parametric

approaches using a survival analysis framework have been implemented as an ideal ap-

proach over simple substitution methods to address the missingness (Helsel, 2006). For

repeated-measures problems, procedures for fitting linear mixed effects models to data

include maximum likelihood methods. This paper proposes to develop a parametric

model under framework (2.2) using the ad hoc approaches for handling left truncation

due to lower detection limit, “Naive1” and “Naive2”, from Lyles et al. (2000). Addi-

tionally, we apply Lyles et al. (2000) likelihood method accounting for left censoring

(“ML1”). We will consider piecewise linear regression for fitting this model. The focus

will be on providing direct estimation of the trends in biomarkers over time, calculations

of AUC based on the associated parameters from Preisser et al. (2011), and hypothesis

testing for AUC summaries in a study of experimental gingivitis.

3.2 Piecewise Linear Mixed Model

Previously, we mentioned that a limitation of using a nonparametric hypothesis

testing approach is its inability to provide direct estimation of the patterns of change

over time (Preisser et al., 2011). An important question in the identification of candi-

date biomarkers in experimental gingivitis is the nature of changes in trend patterns.

Experimental gingivitis biomarker levels are typically expected to follow one of four

patterns involving a directional change at a particular value (Figure 1). Experimental

gingivitis biomarker levels have been described as occurring in phases, where there are

distinctly different biomarker characteristics associated with GCF levels under differ-

ent phases of change. For instance, for a positively sensitive biomarker, the levels are
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expected to increase during the induction phase to a critical value and decrease during

the resolution phase. The beginning of the resolution phase is thought to occur at or

near the time when stents are discontinued and hygiene on all teeth is reinstituted to

resolve inflammation.

Figure 1: Typical biomarker patterns of change over time for experimental gingivitis.
Letters A, B, C, and D denote a partition of AUC for which summary measures of
change can be estimated.

Piecewise linear regression can be applied to describe these trend data as it is

a form of regression that allows multiple linear segments to be fit to the data for

a set of pre-specified change points. To fix ideas, the change points are set to the

measurement occasions assumed to be at 0, 1, 2, 3, 5, and 7 weeks as in, for example,

Offenbacher et al. (2010). As an illustrative example of one commonly used piecewise

regression model, suppose we have a two-segment linear regression model. Let (xi , yi ),
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i = 1,. . . ,n denote n pairs of observations. We assume that the xi are ordered such

that x1 ≤ x2 ≤ . . . ≤ xn . Suppose (xi , yi ) is a sequence of independent observations

satisfying the following model:

yi = β0 + β1xi1 + β2(xi1 − t)xi2 + εi (3.1)

where

• yi is the log GCF level for subject i

• xi1 = xi is the time, in weeks, for subject i

• xi2 is a dummy variable (0, if xi ≤ t and 1, if xi>t )

and the independent error terms εi ∼N(0, σ2 ).

The corresponding linear regression functions are of the form

yi1 = a1 + b1xi, xi ≤ t (3.2)

= β0 + β1xi

yi2 = a2 + b2xi, xi > t

= β0 + β1xi + β2(xi − t)

= (β0 − β2t) + (β1 + β2)xi

where a1 = β0 and a2 = β0 − β2t and b1 = β1 and b2 = β1 + β2 are the intercepts

and slopes of the linear segments, respectively. For continuous models, the regression

function is continuous at the change point t , satisfying the following:

a1 + b1t = a2 + b2t (3.3)
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Equation (3.3) is equivalent to β0 + β1t = (β0 − β2t) + (β1 + β2)t , which shows

that (3.1) is continuous. Given what is understood about the nature of experimental

gingivitis, we assume the function should be continuous. A piecewise linear regression

model is defined to describe the biomarker pattern of change over the six timepoints

to coincide with summary indices of change associated with experimental gingivitis

described below. Let Yik be the GCF level of each biomarker (on the log base 10

scale for the application considered in this section) for the i th subject at the k th time

point, for k = 0, . . . , 5 , which are ti0 = 0, ti1 = 1, ti2 = 2, ti3 = 3, ti4 = 5, ti5 = 7 weeks.

Expanding the continuous two-phase model previously described to a continuous five-

phase model with random intercept, the general form of the model (extending (2.2))

can be written as

Yik = Z′iβ + b0i + εik (3.4)

where b0i ∼ N(0, σ2
b ) are subject-specific random intercepts and εik ∼ N(0, σ2)

are random errors, with b0i , i = 1, . . . , n and εik : i = 1, . . . , n ; k = 0, . . . , 5

mutually independent. We assume that Zi is a vector of explanatory variables that

are functions of time, including the intercept. An alternative covariance structure for

Yi = (Yi0, Yi1, . . . , Yi5)
′ is given by a random slopes model

Yik = Z′iβ + b1itik + εik (3.5)

where b1i ∼ N(0, σ2
s) and εik ∼ N(0, σ2) are mutually independent. As in model (2.2),

where both random intercept and slope coefficients are introduced, in practice, a model

could contain both terms; however, because most EG studies are of small sample size,

these studies would not likely allow estimation of more than 2 variance components.

In model (3.4), β = (β0, β1, β2, β3, β4, β5)
′ and Zi = (Zi0, Zi1, Zi2, Zi3, Zi4, Zi5)

′ is de-
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fined to give conjoined piecewise linear segments. To parameterize the model, define

for k = 0, 1, 2, 3, 4, 5 :

zi0 = 1

zi1 = tik

zi2 = ( tik - 1)I( tik>1)

zi3 = ( tik - 2)I( tik>2)

zi4 = ( tik - 3)I( tik>3)

zi5 = ( tik - 5)I( tik>5)

While covariates other than those that are functions of time are not considered in this

dissertation, they could be easily added. The relationship between the zi and yi values

can be described by the following six linear regression functions in terms of model β s:

Yi0 = β0 + b0i + εi0 (3.6)

Yi1 = β0 + β1 + b0i + εi1

Yi2 = β0 + 2β1 + β2 + b0i + εi2

Yi3 = β0 + 3β1 + 2β2 + β3 + b0i + εi3

Yi4 = β0 + 5β1 + 4β2 + 3β3 + 2β4 + b0i + εi4

Yi5 = β0 + 7β1 + 6β2 + 5β3 + 4β4 + 2β5 + b0i + εi5

Next, using the definitions in Section 2.6, the summaries of AUC (with baseline adjust-
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ment) can be estimated in terms of β s as follows:

E(Ai)= E(Yi1 + 2Yi2 + Yi3)/2− 2β0 =
1

2
(8β1 + 4β2 + β3) (3.7)

E(Bi)= E(Yi3 + Yi4)− 2β0 = 8β1 + 6β2 + 4β3 + 2β4

E(Ci)= E[(Yi0 + Yi1)/2]− β0 =
1

2
β1

E(Di)= E(Yi4 + Yi5)− 2β0 = 12β1 + 10β2 + 8β3 + 6β4 + 2β5

Four summary indices of change in equation (2.3) of Section 2.6 can now be defined in

terms of β s as follows:

E(Xi1)= E(Ci −
1

2
Di) =

1

2
E[Yi1 − Yi4 − Yi5] (3.8)

= −11

2
β1 − 5β2 − 4β3 − 3β4 − β5

E(Xi2)= E(Ai −Bi) =
1

2
E(Yi1 + 2Yi2 − Yi3 − 2Yi4)

= −4β1 − 4β2 −
7

2
β3 − 2β4

E(Xi3)= E(Yi2) = 2β1 + β2

E(Xi4)= E(Yi4 − Yi5) = −2β1 − 2β2 − 2β3 − 2β4 − 2β5

where Xi1 and Xi2 examine whether the rate of induction is the same as the rate

of resolution. Xi3 examines the rate of induction between Week 0 and Week 2. Xi4

examines the rate of resolution between Week 5 and Week 7. The statistical analysis of

these variates addressing left truncation is performed based on the likelihood methods

outlined in the next section.

3.3 Maximum Likelihood Estimation in the Presence of Left Truncation

In experimental gingivitis, GCF is collected at the beginning of the hygiene phase,

the beginning of the induction phase, during and at the end of the induction phase,
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and during the resolution phase. A limitation of using laboratory assays is that the

biomarkers levels below the detection limit, as confirmed by internal controls, are not

quantifiable. While many methods have been proposed to address the censored data,

substitution methods are among the most popular. For “Naive1” and “Naive2” meth-

ods, GCF measurements are replaced by the limit of detection and half the limit of

detection, respectively. For “ML1”, for a biomarker, let the limit of detection be de-

noted by d . For Yi = (Yi0, Yi1, . . . , Yini
) , let ni1 represent the number of detectable

GCF values and ni − ni1 represent the non-detectable GCF values (ni1 ∈ {0, . . . , ni} )

(Lyles et al., 2000). The likelihood function for the parameter vector Ω = (β , σ2
b , σ2 ),

with an asterisk to denote that Yi may include one or more non-detectable values, is

L(Ω; Y) =
l∏

i=1

f ∗(Yik; Ω), (3.9)

where f ∗(Yik; Ω) =
∫∞
−∞ f

∗(Y|b0i )f ( b0i ) d b0i

As indicated in Lyles et al. (2000), a detectable value contributes f(Yik|b0i ) and a non-

detectable value contributes the Bernoulli probability Fy(d|b0i ), Fy is the cumulative

distribution function. The complete-data likelihood can be written as

L(Ω; Y) =
n∏
i=1

[∫ ∞
−∞

{
ni1∏
k=1

f(Yik|b0i)

}{
ni∏

k=ni1+1

FY (d|b0i)

}
f(b0i)db0i

]
(3.10)

The procedure treating all values as detectable (ni1 = ni ) is used for “Naive1” and

“Naive2” methods, which is based on the standard log-likelihood function for a mixed

model. The SAS NLMIXED procedure can be used to fit this maximum likelihood

function (Thiebaut and Jacqmin-Gadda, 2004). The code for fitting this maximum

likelihood function to the biomarker data is provided in Appendix A. Maximum likeli-

hood estimation by adaptive Gauss-Hermite quadrature is used to estimate Ω .
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3.4 Example

(Preisser et al., 2011) describe a study based on data previously published by Offen-

bacher et al. (2010) in which thirty-one inflammatory mediators within each gingival

crevicular fluid (GCF) sample, including cytokines, matrix-metalloproteinases (MMPs)

and adipokines were studied in 22 subjects to evaluate the changes in the GCF com-

position over time. The study recruited and enrolled subjects with naturally occurring

gingivitis, defined as bleeding upon probing present, typically in at least 10% of den-

tal sites, as these subjects were more likely to develop experimental gingivitis in the

course of the study. The course of the experiment included a 1-week hygiene phase,

a 3-week induction phase using two stents and a 4-week resolution phase. Gingival

crevicular fluid was collected from the same oral sites at the beginning of the hygiene

phase (or Day -7, one week prior to baseline), weekly during the induction phase (Day

0 or baseline), Day 7, 14, 21 (end of the induction phase/baseline for the resolution

phase), and biweekly during the resolution phase at Day 35 and 49. At the final time

point, baseline levels are often restored. However, some biomarkers may not have their

expression levels restored to baseline levels.

At specified time points, gingival crevicular fluid from the stent teeth was collected

from each sample. Gingival crevicular fluid is collected at multiple dental sites and

fluid levels measured by use of different assays corresponding to different biomarkers.

For each biomarker, the average of two concentration measurements was considered the

measurement for the particular site and time point. The goal of the experiment was

to identify new candidate biomarkers that were sensitive to poor oral health care as

identified by their regulation patterns during induction and resolution of gingivitis as

related to changes in clinical signs of disease. The data have been previously analyzed

using parametric linear mixed modeling (Offenbacher et al., 2010) with zeros inserted

for left-truncated values.
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The extent of missingness or truncation for the three representative biomarkers

chosen for this analysis, MMP7, MMP3, and MIP-1β , ranged from 16 (12.12%) to 36

(27.27%) observations. Approximately 1% to 12% of these missing values were due to

the values being below the biomarker’s detection limit. Table 1 outlines the level of

missingness by biomarker.

Table 1: Amount of missingness across biomarkers

Biomarker Left Truncated Other Total Missing Observed Total

MMP7 1 (0.76%) 15 (11.36%) 16 (12.12%) 116 (87.88%) 132

MIP-1β 16 (12.12%) 20 (15.15%) 36 (27.27%) 96 (72.73%) 132

MMP3 2 (1.52%) 15 (11.36%) 17 (12.88%) 115 (87.12%) 132

All Biomarkers 19 (4.80%) 50 (12.63%) 69 (17.42%) 327 (82.58%) 396

3.5 Results

3.5.1 Regression Estimates

Figure 2 presents the subject-level best linear unbiased predictions and population-

averaged biomarker levels using the piecewise linear mixed model (and “ML1” to ac-

count for left censoring). The Model in equation (3.4) is fitted to the experimental

gingivitis study data using the 2 ad hoc approaches (“Naive1” and “Naive2”). A

standard linear mixed model procedure is used to obtain the MLEs and associated

standard errors under the following assumption. The minimum detection limits for the

4 biomarkers in nanograms per millilitre on the log scale are as follows: MMP7: 1.470,

MMP3: 0.415, and MIP-1β : -0.143. Next, the nonlinear mixed model procedure from

Section 3.3 is used to obtain the MLEs and associated standard errors for the ML ap-

proach accounting for left censoring (“ML1”). Table 2 presents the ML estimates and

associated standard errors from the piecewise linear regression model in equations (3.4)
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and (3.6) for the 3 biomarkers based on the 3 missing data handling methods. Table 3

presents results from naive methods using the NLMIXED procedure. The NLMIXED

results suggest that using maximum likelihood estimation by adaptive Gauss-Hermite

quadrature for comparing the 3 methods would lead to marginally larger standard

errors for the 2 naive approaches.

Figure 2: Subject-level best linear unbiased predictions and population-averaged
biomarker levels over time for MMP7 (upper left), MIP-1β (upper right), and MMP3
(lower center) based on the piecewise linear mixed model.

For each biomarker, Figure 3 shows the population-averaged estimated curves for

the three methods. For MMP7 and MMP3, the 3 methods show similar patterns

over time, which is not surprising since these two biomarkers had the lowest rates of

left truncated data. With MIP-1β , “ML1” population-averaged biomarker levels were
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higher from the beginning of the induction phase through the end of the resolution

phase. During this same timeframe, “Naive1” estimates were similar to the “ML1”

estimates. However, the “Naive2” estimates were different during the induction phase

through the end of the resolution phase, with an apparent greater decreasing trend in

levels during the induction phase and a greater increasing trend in levels during the

first 2 weeks of the resolution phase.

Figure 3: Population-averaged biomarker levels over time for MMP7 (upper left), MIP-
1β (upper right), and MMP3 (lower center) for the three ad hoc methods based on
the piecewise linear mixed model.

35



Table 2: Results from experimental gingivitis study using a piecewise linear mixed
model: comparing ML estimates from ad hoc approaches with ML estimates from an
approach accounting for non-detectable values

Estimates (SEs)

Biomarker Method β0 β1 β2 β3 β4 β5 σ2
b σ2

MMP7 Naive1† 2.370 0.268 -0.434 0.057 0.149 -0.077 0.120 0.070
(0.095) (0.092) (0.163) (0.150) (0.110) (0.072) (0.040) (0.010)

Naive2∗ 2.355 0.284 -0.450 0.058 0.149 -0.078 0.124 0.072
(0.096) (0.093) (0.165) (0.152) (0.111) (0.073) (0.041) (0.010)

ML1� 2.362 0.276 -0.442 0.058 0.149 -0.077 0.122 0.071
(0.096) (0.092) (0.164) (0.151) (0.110) (0.073) (0.041) (0.010)

MIP-1β Naive1† 1.812 -0.960 0.923 -0.0040 0.404 -0.357 0.125 0.190
(0.135) (0.161) (0.275) (0.246) (0.179) (0.126) (0.050) (0.028)

Naive2∗ 1.819 -1.027 0.993 -0.044 0.483 -0.399 0.159 0.255
(0.155) (0.186) (0.318) (0.285) (0.207) (0.146) (0.064) (0.038)

ML1� 1.818 -1.019 0.985 -0.048 0.490 -0.402 0.156 0.252
(0.154) (0.188) (0.322) (0.290) (0.213) (0.147) (0.063) (0.042)

MMP3 Naive1† 1.962 -0.622 0.865 -0.229 0.301 -0.414 0.043 0.179
(0.105) (0.146) (0.259) (0.239) (0.175) (0.116) (0.024) (0.026)

Naive2∗ 1.962 -0.641 0.889 -0.219 0.284 -0.412 0.048 0.187
(0.108) (0.149) (0.265) (0.244) (0.179) (0.118) (0.026) (0.027)

ML1� 1.962 -0.633 0.879 -0.222 0.291 -0.413 0.046 0.184
(0.107) (0.148) (0.264) (0.243) (0.178) (0.117) (0.026) (0.027)

† Substituting non-detectable values by the detection limit.
∗ Substituting non-detectable values by half the detection limit.
� Accounting for non-detectable values via (3.10).
SAS PROC MIXED with ML option was used for the naive methods.

36



Table 3: Results from experimental gingivitis study using a piecewise linear mixed
model fit in PROC NLMIXED: comparing ML estimates from ad hoc approaches with
ML estimates from an approach accounting for non-detectable values

Estimates (SEs)

Biomarker Method β0 β1 β2 β3 β4 β5 σ2
b σ2

MMP7 Naive1† 2.370 0.268 -0.434 0.057 0.149 -0.077 0.120 0.070
(0.095) (0.092) (0.163) (0.150) (0.110) (0.072) (0.040) (0.010)

Naive2∗ 2.355 0.284 -0.450 0.058 0.149 -0.078 0.124 0.072
(0.096) (0.093) (0.165) (0.152) (0.111) (0.073) (0.041) (0.010)

ML1� 2.362 0.276 -0.442 0.058 0.149 -0.077 0.122 0.071
(0.096) (0.092) (0.164) (0.151) (0.110) (0.073) (0.041) (0.010)

MIP-1β Naive1† 1.812 -0.960 0.923 -0.0040 0.404 -0.357 0.125 0.190
(0.135) (0.161) (0.275) (0.246) (0.179) (0.127) (0.050) (0.028)

Naive2∗ 1.819 -1.027 0.993 -0.044 0.483 -0.399 0.159 0.255
(0.155) (0.187) (0.318) (0.285) (0.207) (0.147) (0.064) (0.038)

ML1� 1.818 -1.019 0.985 -0.048 0.490 -0.402 0.156 0.252
(0.154) (0.188) (0.322) (0.290) (0.213) (0.147) (0.063) (0.042)

MMP3 Naive1† 1.962 -0.622 0.865 -0.229 0.301 -0.414 0.043 0.179
(0.105) (0.146) (0.259) (0.239) (0.175) (0.116) (0.024) (0.026)

Naive2∗ 1.962 -0.641 0.889 -0.219 0.284 -0.412 0.048 0.187
(0.108) (0.149) (0.265) (0.244) (0.179) (0.118) (0.026) (0.027)

ML1� 1.962 -0.633 0.879 -0.222 0.291 -0.413 0.046 0.184
(0.107) (0.148) (0.264) (0.243) (0.178) (0.117) (0.026) (0.027)

† Substituting non-detectable values by the detection limit.
∗ Substituting non-detectable values by half the detection limit.
� Accounting for non-detectable values via (3.10).

3.5.2 Estimates, SEs, and 95% Confidence Intervals of Area-Under-the-
Curve (A, B, C, and D)

For the summary measures of AUC, let θ1 = E(Ri) where Ri = (Ai, Bi, Ci, Di) ,

i = 1, . . . , n, are i.i.d . Then, based on equation (3.7), θ1 = Cβ where
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β = (β1, β2, β3, β4, β5)
′ and

C =



4 2 1
2

0 0

8 6 4 2 0

1
2

0 0 0 0

12 10 8 6 2



For the piecewise linear mixed regression model described in equations (3.4) and (3.6),

the maximum likelihood estimation described in Section 3.4 is used to obtain β̂ and

V̂β = V̂ ar(β̂) so that V̂ ar(θ̂1) = CV̂βC
′ . Estimation of V̂ ar(θ̂1) is carried out using

the SAS Version 9.2 IML procedure (SAS, Inc., Cary, North Carolina). The procedure

treating all values as detectable (ni1 = ni ) is used for “Naive1” and “Naive2” methods,

reducing to the standard estimation approach (Laird and Ware, 1982). Table 4 presents

the estimates, standard errors, and 95% confidence intervals (CIs) of AUC from the

piecewise linear mixed model for the 3 biomarkers based on ad hoc and “ML1” data

handling methods. For MMP7, the rates of induction and resolution from the “ML1”

method fell within the range of the estimated rates for both naive methods, with lower

estimated rates for “Naive1” and higher estimated rates for “Naive2”. Similar results

were seen for both MMP3 and MIP-1β .
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Table 4: Estimates (SEs), and 95% CIs of AUC from experimental gingivitis study using
piecewise linear mixed model: comparisons of ad hoc approaches with an approach
accounting for non-detectable values

Estimates (SEs) and 95% CIs

Biomarker Method A B C D

MMP7 Naive1† 0.233 0.068 0.134 0.075
(0.141) (0.146) (0.046) (0.146)

(-0.047, 0.512) (-0.222, 0.357) (0.043, 0.225) (-0.215, 0.364)
Naive2∗ 0.264 0.098 0.142 0.105

(0.143) (0.148) (0.046) (0.148)
(-0.020, 0.547) (-0.195, 0.392) (0.050, 0.234) (-0.188, 0.398)

ML1� 0.249 0.084 0.138 0.090
(0.142) (0.147) (0.046) (0.147)

(-0.047, 0.545) (-0.222, 0.390) (0.042, 0.234) (-0.216, 0.340)

MIP-1β Naive1† -1.993 -1.344 -0.480 -0.603
(0.256) (0.263) (0.080) (0.263)

(-2.502, -1.485) (-1.866, -0.822) (-0.640, -0.320) (-1.125, -0.081)
Naive2∗ -2.143 -1.466 -0.513 -0.642

(0.296) (0.304) (0.093) (0.304)
(-2.732, -1.554) (-2.070, -0.861) (-0.699, -0.328) (-1.247, -0.038)

ML1� -2.131 -1.457 -0.510 -0.630
(0.297) (0.304) (0.094) (0.303)

(-2.418, -1.427) (-1.795, -0.779) (-0.620, -0.308) (-1.092, -0.076)

MMP3 Naive1† -0.871 -0.098 -0.311 0.333
(0.224) (0.232) (0.073) (0.232)

(-1.316, -0.425) (-0.559, 0.364) (-0.456, -0.166) (-0.129, 0.794)
Naive2∗ -0.896 -0.100 -0.321 0.330

(0.229) (0.237) (0.074) (0.237)
(-1.351, -0.440) (-0.572, 0.371) (-0.469, -0.173) (-0.141, 0.801)

ML1� -0.886 -0.099 -0.317 0.331
(0.228) (0.236) (0.074) (0.235)

(-1.359, -0.412) (-0.589, 0.391) (-0.470, -0.163) (-0.159, 0.821)

† Substituting all non-detectable values by the detection limit.
∗ Substituting all non-detectable values by half the detection limit.
� Accounting for non-detectable values via (3.10).
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3.5.3 Estimates and Standard Errors of Summary Indices of Change (X1,
X2, X3, and X4) and P-values

For the summary indices of change, let θ2 = E(Xi) where Xi = (Xi1, Xi2, Xi3, Xi4) ,

i = 1, . . . , n, are i.i.d . Then θ2 = Dβ and

D =



−11
2
−5 −4 −3 −1

−4 −4 −7
2
−2 0

2 1 0 0 0

−2 −2 −2 −2 −2


For each biomarker, univariate tests are defined corresponding to the 4 variates,

Xi1 , Xi2 , Xi3 , Xi4 , for each method of handling missing data. The univariate testing

approach applies the univariate χ2 test to each of the measures for the 3 biomarkers

studied under the 4 variates for addressing missingness due to left truncation resulting in

12 p -values. A univariate test for the j th element of θ1 , H0 : θ1j = 0 vs. H1 : θ1j 6= 0

is

Tj =
(Cjβ̂)2

CjV̂βC ′j
(3.11)

where Cj is the j th row of C . T has an asymptotic χ2
1 distribution. A multivariate

test of θ1 , H0 : θ1 = 0 vs. H1 : θ1 6= 0 is

T = (Cβ̂)′[CV̂βC
′]−1(Cβ̂) (3.12)

has an asymptotic χ2
4 distribution. Testing for θ2 is performed analogously.

Table 5 reports the p -values for univariate and multivariate tests. For MMP3, tests

for X1 , X2 , and X3 using “ML1” were statistically significant at α = 0.05. For this

biomarker, this suggests suppression of mediator levels during the first two weeks of the

40



induction phase and asymmetry around the end of the induction phase/beginning of

the resolution phase (Week 3). Similar results were seen for the ad hoc approaches. X4

was not significant suggesting similarity of mediator levels during the last two weeks

of the resolution phase, perhaps, resolution by Week 5. All multivariate test p -values

were significant at the 0.05 level. For MMP7, X2 achieved statistical significance for

“ML1” at α = 0.10 suggesting asymmetry between the rate of induction and the

rate of resolution during the first two weeks of the resolution phase. None of the

multivariate test p -values were significant at the 0.05 level. For MIP-1β , X2 and X3

were significant for “ML1” suggesting asymmetry about Week 3, and suppression of

biomarker levels within the first two weeks of induction. Similar results were seen for

the ad hoc approaches. All of the multivariate test p -values were significant at the

0.05 level.
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Table 5: Estimates (SEs) of summary indices of change and p-values from experi-
mental gingivitis study using piecewise regression: comparing significance from ad hoc
approaches with significance from ML approach accounting for non-detectable values

Estimates (SEs) and P-values

Biomarker Method X1 X2 X3 X4 MV T
MMP7 Naive1† 0.097 0.165 0.102 0.074

(0.063) (0.096) (0.085) (0.083)
0.123 0.087 0.228 0.373 0.147

Naive2∗ 0.089 0.165 0.117 0.074
(0.063) (0.097) (0.086) (0.084)
0.159 0.090 0.170 0.378 0.147

ML1� 0.093 0.165 0.110 0.074
(0.063) (0.097) (0.085) (0.084)
0.141 0.088 0.197 0.376 0.147

MIP-1β Naive1† -0.178 -0.649 -0.996 -0.014
(0.107) (0.165) (0.149) (0.143)
0.096 0.0001 <0.0001 0.923 <0.0001

Naive2∗ -0.192 -0.678 -1.061 -0.012
(0.124) (0.191) (0.173) (0.165)
0.121 0.0004 <0.0001 0.940 <0.0001

ML1� -0.195 -0.675 -1.054 -0.012
(0.124) (0.193) (0.174) (0.165)
0.117 0.0004 <0.0001 0.943 <0.0001

MMP3 Naive1† -0.477 -0.773 -0.378 0.199
(0.099) (0.153) (0.135) (0.133)
<0.0001 <0.0001 0.005 0.133 <0.0001

Naive2∗ -0.486 -0.796 -0.393 0.197
(0.101) (0.156) (0.138) (0.136)
<0.0001 <0.0001 0.004 0.146 <0.0001

ML1� -0.482 -0.787 -0.387 0.198
(0.101) (0.156) (0.137) (0.135)
<0.0001 <0.0001 0.005 0.142 <0.0001

† Substituting all non-detectable values by the detection limit.
∗ Substituting all non-detectable values by half the detection limit.
� Accounting for non-detectable values via (3.10).

3.6 Discussion and Conclusion

This paper has presented a piecewise linear mixed model to provide direct estima-

tion of AUC based on the trends in biomarkers over time. The method was illustrated

using data from an experimentatl gingivitis study. Our objective was two-fold: (1)
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to outline current methods in the experimental gingivitis literature for analyzing re-

peated measures biomarker data and motivate an easy to implement parametric model

that provides estimation of change in biomarker levels and (2) to present a maximum

likelihood methodology for addressing left truncation while illustrating the potential

negative effect on population level estimates and hypothesis testing when simple impu-

tations methods are used to correct left censoring. Lee and Kong (2011) have proposed

median regression for longitudinal left-censored biomarker data subject to a detection

limit. However, their approach based on weighted estimating equations may not be

broadly accessible to analysts. For this setting, it may be beneficial to use a well-

established parametric method that addresses the missingness process, as well as as-

sumptions about the nature of left truncation of observations due to a lower detection

limit. The general approach in this article could be extended to modeling piecewise

polynomial (e.g., quadratic and cubic) curves (Edwards et al., 2006)

Although the proposed methodology was motivated by trends in repeated measures

experimental gingivitis data, the approach can be applied to other areas with a similar

longitudinal setup and multiple outcomes. Additionally, the likelihood framework pre-

sented in this article can be extended to more fixed and random effects; however, special

consideration should be given for studies of small sample size like the experimental gin-

givitis study when introducing more than two random effects. For the naive methods,

SAS PROC MIXED with ML option was used. For small sample sizes, the restricted

ML option with finite-sample correction (i.e., Kenward-Roger method) for computing

denominator degrees of freedom may be a better option; however, it would lead to larger

variance component estimates and larger standard errors for the parameter estimates

and variance components.

In conclusion, the examples presented here illustrate the potential for using a para-

metric statistical model for analyzing AUC as a summary measure for estimating change
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in biomarker levels. However, emphasis is placed on the importance of using an appro-

priate means of taking into account left truncation in order to avoid inaccurate results

for population parameter estimates and hypothesis tests based on linear mixed models.

Mild distortion of results was illustrated (Figure 3) for one biomarker (MIP-1β ) for

which 12% of the data were left truncated. Consistent with earlier studies, a larger

percentage of left truncated values are required for naive data imputation methods

to fundamentally alter conclusions with respect to the theoretically superior “ML1”

method. Specifically, Lubin et al. (2004) report very small bias when the percent-

age of measurements below detection limits is small (5-10%); however, they reported

distortion in inferences when 30% of more of the data are below detection limits. In

conclusion, using the maximum likelihood procedure discussed in this dissertation can

provide a uniform means of analyzing biomarker data in periodontal disease to identify

changes as a function of time and for handling left truncation.
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CHAPTER 4: NONLINEAR GAMMA-LIKE MIXED MODEL

4.1 Background and Introduction

In the characterization of biomarkers measured repeatedly over time, there is a

need to summarize the information contained in the multivariate data. In experimen-

tal gingivitis, for example, biomarker levels change when the benefits of toothbrushing

are withheld during an induction phase, then restored during a resolution phase. The

pattern of change over time of biomarker levels associated with gingivitis could re-

flect change in various directions; therefore, the statistical methodology utilized should

consider this possibility. As such, AUC can be implemented as a summary measure

for estimating change in biomarker levels. Parametric statistical models for repeated

measures analysis are useful for characterizing the nature of that change over time, par-

ticularly as they easily accommodate both truncated and missing data. In EG studies,

left truncation results when a biomarker level falls below the lower limit of detection.

This article introduces a gamma curve-like non-linear mixed model to provide direct

estimation of AUC based on the trends in biomarkers over time while implementing

adjustments for left truncation. Estimation and hypothesis testing results for AUC are

reported for three biomarkers.

In periodontal research, there is often interest in identifying molecular mediators of

inflammation that can be induced to significant change over time as well as quantify

the magnitude of the change within an experimental repeated measures study. Dental

researchers often employ experimental gingivitis (EG) to realize a better understanding

of the hosts immune response to periodontal pathogens (Deinzer et al., 2007). As such,



EG is widely used for elucidating the inflammatory response to undisturbed dental

biofilm accumulation in a well-controlled pretest-posttest experimental design frame-

work. The course of EG includes a hygiene phase, an induction phase, and resolution

phase. Gingivitis is induced by withholding tooth brushing by the use of intraoral

acrylic stents that cover selected teeth in each arch during tooth brushing to induce lo-

cal gingival inflammation. Mediator levels are determined from the laboratory analysis

of GCF as a means of assessing periodontal status. At the end of the induction phase,

stents are removed and hygiene on all teeth is restored to resolve inflammation.

In review of statistical analysis methods used in the EG studies, although gingivitis

occurs over time as a steady-state inflammatory response, only approximately one-half

of studies use a repeated measures ANOVA approach (Deinzer et al., 2004, 2007; John-

son et al., 1997; Waschul et al., 2003), with few studies examining the rate of increase by

calculating AUC (Jepsen et al., 2003; Preisser et al., 2011; Salvi et al., 2010). Most stud-

ies that took a nonparametric approach to the analysis used a Wilcoxon-signed rank

test for intra-subject comparisons and Mann-Whitney U-test or Wilcoxon rank-sum

test to assess between-group differences (Giannopoulou et al., 2003; Konradsson et al.,

2007; Konradsson and van Dijken, 2005; Staab et al., 2009; Tsalikis, 2010). Studies

not using repeated measures analysis instead used paired t-tests to assess mean within

group changes from baseline to each timepoint or 2-sample t-tests to assess between-

group differences in mean levels at each timepoint (Konradsson et al., 2007; Salvi et al.,

2010). Few studies mentioned using a log-transformation, or any other form of transfor-

mation, before analyzing the data. Additionally, most studies mentioned above did not

touch on or address the assay LOD and how values below the limit were handled in the

analysis. Studies that did mention the LOD did not indicate how values left-censored

due to being below the detection limit were addressed, if at all (Deinzer et al., 2007;

Johnson et al., 1997; Konradsson et al., 2007).
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For the analysis of biomarker data in experimental gingivitis, most recently, a non-

parametric multiple hypothesis testing approach was advocated for the analysis of re-

peated measures (Preisser et al., 2011) using AUC summary measures to assess the

change over time in biomarker levels. Though this method has the advantage of being

able to assess a large number of biomarkers relative to the number of subjects, it is

unclear how to handle missing data in this context, particularly left truncation of ob-

servations due to a lower detection limit. The most common strategy for measurement

data with detection limits is substitution of the value below the limit with a fraction of

the limit (e.g., 0.5). Though this strategy is simplistic and easy to implement, it often

distorts results (Hughes, 1999; Lubin et al., 2004) and can provide biased estimation,

particularly if a large percentage of the data are left-truncated (Fang et al., 2011).

In the assessment of change over time, missing data can be a common occurrence

when data are measured over multiple periods of time. For longitudinal studies involv-

ing repeated measures analysis, there can be many reasons for missing data, including

nonresponse, subject dropout or, as is often times the case in the measurement of

biomarker data, missingness due to assay detection limits. Missing values can have a

profound influence on statistical results, including estimation of summary measures of

change and hypothesis testing. If the missingness mechanism is MAR, i.e., the proba-

bility that a response is observed can only depend on the values of those other factors

which have been observed, there are well developed computational methods for han-

dling missing data under this assumption (Little and Rubin, 1987). Hughes (1999)

described an EM algorithm for maximum likelihood estimation of a linear mixed ef-

fects model for estimating trends in CD4 counts over time in HIV-positive subjects,

accounting for left and/or right censoring. (Lyles et al., 2000) developed a likelihood

method that addresses missing data due to left truncation as well as an extension to

additionally accommodate informative dropout. Thiebaut and Jacqmin-Gadda (2004)
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applied a maximum likelihood approach for left-censored data based on a Marquardt

algorithm (Marquardt, 1963) in HIV research. In reference to pharmacokinetic data

with measurements below the quantification limit, Fang et al. (2011) developed a max-

imum likelihood method to estimate AUC and the ratio of two AUCs (i.e., relative

exposure).

In Chapter 3, we illustrate use of a piecewise linear mixed model adjusting for left

truncation as a parametric approach in the analysis of experimental gingivitis biomarker

data. The disadvantage of using a parametric model is the assumptions placed on the

form of the mean model and the missingness mechanism, including missing data due

to the lower detection limit (Preisser et al., 2011). For this parametric approach, we

illustrate our methods under the framework of a random-effects model. Currently the

most utilized ad hoc approaches for handling of missingness due to levels below the

detectable threshold include substituting the values by some fraction of the detection

limit. Parametric approaches using a survival analysis framework have been imple-

mented as an ideal approach over simple substitution methods to address the miss-

ingness (Helsel, 2006). For repeated-measures problems, procedures for fitting linear

mixed effects models to data include maximum likelihood methods.

This paper presents a smooth nonlinear gamma curve-like (i.e., expected response

takes the form of a gamma density function) mixed model accounting for left truncation

under MAR using estimation methods that are easy to implement. A parametric model

is fit to log-transformed data for 3 biomarkers representing varying degrees of truncation

due to lower detection limits using 2 ad hoc (naive) approaches for handling non-

detect values and a likelihood approach accounting for left censoring and outcomes

missing at random (“ML1”) from Lyles et al. (2000). The focus will be on providing

direct estimation of the trends in biomarkers over time based on AUC computations

and hypothesis testing for AUC to assess biomarker changes over time in a study of
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experimental gingivitis.

4.2 Gamma Curve-Like Nonlinear Mixed Model

Experimental gingivitis biomarker levels are typically expected to follow one of

two general patterns involving directional temporal changes (Figure 4). Experimental

gingivitis biomarker levels have been described as occurring in phases, where there are

distinctly different biomarker characteristics associated with GCF levels under different

phases of change. For instance, for a positively sensitive (PS) biomarker, the levels are

expected to increase during the induction phase to a critical value and decrease during

the resolution phase (Figure 5). The beginning of the resolution phase is thought to

occur at or near the time when stents are discontinued and hygiene on all teeth is

reinstituted to resolve inflammation. A negatively sensitive (NS) biomarker has the

opposite pattern. A gamma density function can be applied to describe these data

trend as it provides a smooth fit to a set of pre-specified change points. To fix ideas,

the change points are set to the measurement occasions assumed to be at 0, 1, 2, 3, 5,

and 7 weeks as in, for example, Offenbacher et al. (2010).

Figure 4: Typical biomarker patterns of change over time for experimental gingivitis.
Letters A, B, C, and D denote a partition of AUC for which summary measures of
change can be estimated.
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Figure 5: Patterns of change over time for positively sensitive biomarker with variation
in intercept (β0 ), shape (β1 ), scale (β2 ), and location shift (θ1 ) parameters. Panel a:
β0 =0.04, 0.07, 0.10; β1 = 5.00; β2 = 1.00; θ1 = 2.0. Panel b: β0 =0.10; β1 = 5.00;
β2 = 1.00; θ1 = 1.0, 2.0, 3.0. Panel c (solid line): β0 =0.10; β1 = 4.00, 4.50, 5.00; β2
= 1.00; θ1 = 2.0. Panel c (dashed line): β0 =0.10; β1 = 5.00; β2 = 1.00, 1.20, 1.40; θ1
= 2.0. Panel d: β0 =0.089, 0.10, 0.116; β1 = 8.19, 5.00, 3.66; β2 = 2.047, 1.00, 0.61;
θ1 = 2.0.

Given what is understood about the nature of experimental gingivitis, we assume the

function should be contiguous. A gamma curve-like mixed model is defined to describe

the biomarker pattern of change over the six timepoints to coincide with summary

indices of change associated with experimental gingivitis described below. Let Yit , t

= 0, . . . , Ti - 1, be repeated measures for subjects i = 1, . . . , n for a fixed set of T ≥

max(Ti ) measurement times (with possibly missing visits that are missing at random).

Yit is the GCF level of each biomarker (on the log base 10 scale for the application

considered in this chapter). A nonlinear repeated measures model for Yit , the i -th
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individual’s response at time t , follows a gamma-type curve of the form

Yit = β0(t+ θ1)
β1e−β2(t+θ1) + bi + εit, t = 0, . . . T − 1 (4.1)

where β0 > 0, θ1 > 0, β1 and β2 are unrestricted, and where bi ∼ N(0,σ2
b ) for

i = 1, . . . , n subjects and εit ∼ N(0,σ2
e ) for t = 0, . . . , Ti are mutually independent

random variables. The expected response at time t is

E(Yt) = β0(t+ θ1)
β1e−β2(t+θ1)

= θ0(t+ θ1)
β1e−β2t, t = 0, . . . T − 1 (4.2)

where θ0 = β0e
−β2θ1 . In the absence of fixed effects covariates, the subscript i is

dropped. For t = 0, E(Y0 ) = θ0θ
β1
1 > 0, showing that θ1 > 0 with β0 > 0 implies a

positive-valued intercept. For a PS biomarker, the shape parameter β1 > 0 and scale

parameter β2 > 0. For a NS biomarker, β1 < 0 and β2 < 0. Regardless of the pattern

of change, the location-shift parameter θ1 alters the values of the intercept, while not

affecting the shape nor scale of the curve. Figure 5 gives examples from the family of

curves given by equation (4.2), illustrating the role of each parameter in the model,

and the effects of combinations of parameters. For example, Figure 5c illustrates that

the extrema, in this case the maximum point on the curve, occurs at (β1 /β2 ) - θ1 .

Consider the Gamma (β1 ,β2 ) distribution function,

f(u) =
ββ1+1
2 uβ1e−β2u

Γ(β1 + 1)
, u > 0, β1 > 0, β2 > 0 (4.3)

which takes the form of equation (4.2) assuming θ1 is a known constant, such as a ,

and with α0 = ββ1+1
2 /Γ(β1 + 1) in place of β0 . We are interested in the area under

the curve given in equation (4.2) between two points t1 and t2 (for t1 < t2 ) above
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the horizontal line extending out from the intercept given by

AUC(t1, t2) =

{∫ t2

t1

β0(t+ a)β1e−β2(t+a)dt

}
− θ0aβ1 [t2 − t1] (4.4)

for a PS marker, and

AUC(t1, t2) = θ0a
β1 [t2 − t1]−

{∫ t2

t1

β0(t+ a)β1e−β2(t+a)dt

}
(4.5)

for a NS marker. Letting u = t + a and rearranging terms to express the area as a

scaled difference between two Gamma cdfs gives

AUC(t1, t2) =

{∫ t2+a

t1+a

β0u
β1e−β2udu

}
− θ0aβ1 [t2 − t1]

=

{
β0
α0

∫ t2+a

t1+a

α0u
β1e−β2udu

}
− θ0aβ1 [t2 − t1]

=
β0
α0

[∫ t2+a

0

α0u
β1e−β2udu−

∫ t1+a

0

α0u
β1e−β2udu

]
− θ0aβ1 [t2 − t1](4.6)

Next, define

E(Ai) = AUC(1, 3) (4.7)

E(Bi) = AUC(3, 5)

E(Ci) = AUC(0, 1)

E(Di) = AUC(5, 7)

where Ai and Ci correspond to areas under the curve during the induction phase and

Bi and Di correspond to the resolution phase.
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Four summary indices of change can now be defined as follows:

E(Xi1)= E(Ci −
1

2
Di) = AUC(0, 1)− 1

2
AUC(5, 7) (4.8)

E(Xi2)= E(Ai −Bi) = AUC(1, 3)− AUC(3, 5)

E(Xi3)= E(Yi2) = β0(2 + θ1)
β1e−β2(2+θ1)

E(Xi4)= E(Yi4 − Yi5) = β0(4 + θ1)
β1e−β2(4+θ1) − β0(5 + θ1)

β1e−β2(5+θ1)

where Xi1 and Xi2 examine whether the rate of induction is the same as the rate of

resolution, Xi3 examines the rate of induction between Week 0 and Week 2, and Xi4

examines the rate of resolution between Week 5 and Week 7 ((Preisser et al., 2011)).

The statistical analysis of these variates addressing left truncation is performed based

on the likelihood methods outlined in the next section.

4.3 Maximum Likelihood Estimation in the Presence of Left Truncation

In experimental gingivitis, GCF is collected at the beginning of the hygiene phase,

the beginning of the induction phase, during and at the end of the induction phase,

and during the resolution phase. Let Yi = (Yi0, Yi1, . . . , Yini
) . For model (4.1), the

likelihood function for the parameter vector Ω = (β , σ2
b , σ2

e ) is

L(Ω; Y) =
l∏

i=1

f(Yik; Ω), (4.9)

where f(Yik; Ω) =
∫∞
−∞ f(Y|b0i )f ( b0i ) d b0i , f ( b0i ) and f(Y|b0i ) are the probabil-

ity density functions for the random effects and responses given the random effects,

respectively.

A limitation of using laboratory assays is that the biomarkers levels below the

detection limit are not quantifiable. While many methods have been proposed to ad-
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dress the censored data, substitution methods are among the most popular. For a

biomarker, let the limit of detection be denoted by d . For “Naive1” and “Naive2”

methods, GCF measurements are replaced by d and d/2, respectively. As indicated

in Lyles et al. (2000), a detectable value contributes f(Yik|b0i ) and a non-detectable

value contributes the Bernoulli probability Fy(d|b0i ), Fy is the cumulative distribu-

tion function. Let ni1 represent the number of detectable GCF values and ni − ni1

represent the non-detectable GCF values (ni1 = 0, . . . , ni ) (Lyles et al., 2000). The

complete-data likelihood can be written as

L(Ω; Y) =
n∏
i=1

[∫ ∞
−∞

{
ni1∏
k=1

f(Yik|b0i)

}{
ni∏

k=ni1+1

FY (d|b0i)

}
f(b0i)db0i

]
(4.10)

The SAS NLMIXED procedure can be used to fit this maximum likelihood function

(Thiebaut and Jacqmin-Gadda, 2004). The code for fitting this maximum likelihood

function to the biomarker data is provided in Appendix B. Maximum likelihood esti-

mation by adaptive Gauss-Hermite quadrature is used to estimate Ω .

4.4 Example

Preisser et al. (2011) describe a study based on data previously published by Offen-

bacher et al. (2010) in which thirty-one inflammatory mediators within each gingival

crevicular fluid (GCF) sample, including cytokines, MMPs and adipokines were studied

in 22 subjects to evaluate the changes in the GCF composition over time. The study

recruited and enrolled subjects with naturally occurring gingivitis, defined as bleeding

upon probing present, typically in at least 10% of dental sites, as these subjects were

more likely to develop experimental gingivitis in the course of the study. The course of

the experiment included a 1-week hygiene phase, a 3-week induction phase using two

stents and a 4-week resolution phase. Gingival crevicular fluid was collected from the
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same oral sites at the beginning of the hygiene phase (or Day -7, one week prior to

baseline), weekly during the induction phase (Day 0 or baseline), Day 7, 14, 21 (end

of the induction phase/baseline for the resolution phase), and biweekly during the res-

olution phase at Day 35 and 49. At the final time point, baseline levels were expected

to be restored for all biomarkers.

Gingival crevicular fluid is collected at multiple dental sites and fluid levels mea-

sured by use of different assays corresponding to different biomarkers. At specified time

points, gingival crevicular fluid from the stent teeth was collected from each sample.

For each biomarker, the average of two concentration measurements was considered the

measurement for the particular site and time point. The goal of the experiment was to

identify new candidate biomarkers that were sensitive to poor oral health care as identi-

fied by their patterns of change during induction and resolution of gingivitis. The data

have been previously analyzed using parametric linear mixed modeling (Offenbacher

et al., 2010) with zeros inserted for left-truncated values.

The extent of missingness or truncation for the three representative biomarkers

chosen for this analysis, MMP7, MMP3, and MIP-1β , ranged from 16 (12.12%) to 36

(27.27%) observations. Approximately 1% to 12% of these missing values were due to

the values being below the biomarker’s detection limit. Table 6 outlines the level of

missingness by biomarker.

Table 6: Amount of missingness across biomarkers

Biomarker Left Truncated Other Total Missing Observed Total

MMP7 1 (0.76%) 15 (11.36%) 16 (12.12%) 116 (87.88%) 132

MMP3 2 (1.52%) 15 (11.36%) 17 (12.88%) 115 (87.12%) 132

MIP-1β 16 (12.12%) 20 (15.15%) 36 (27.27%) 96 (72.73%) 132

All Biomarkers 25 (4.73%) 65 (12.31%) 90 (17.05%) 438 (82.95%) 528
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4.5 Results

4.5.1 Regression Estimates

Figure 6 presents the subject-level best linear unbiased predictions and population-

averaged biomarker levels using the gamma curve-like mixed model (and “ML1” to

account for left censoring). The MMP-7 population-averaged biomarker levels show

increasing trends from the beginning of the induction phase until a peak at Week 1.

After the peak, the levels decrease to a near constant rate through the end of the

resolution phase. In contrast, the average biomarker levels for MMP-3 decrease from

Week 0 through Week 1, then steadily increase through the end of the resolution phase.

A similar trend was seen with the MIP-1β biomarker levels.

The model in equation (4.1) is fitted to the experimental gingivitis study data

using the 2 ad hoc approaches (“Naive1” and “Naive2”). A nonlinear mixed model

procedure is used to obtain the MLEs and associated standard errors under the following

assumption. The minimum detection limits for the 3 biomarkers in nanograms per

millilitre on the log scale are as follows: MMP7: 1.470, MMP3: 0.415, and MIP-1β : -

0.143. Next, the nonlinear mixed model procedure from Section 2.2 is used to obtain the

MLEs and associated standard errors for the ML approach accounting for left censoring

(“ML1”). Table 7 presents the ML estimates and associated standard errors from the

gamma curve-like mixed model in equation (4.1) for the 3 biomarkers based on the 3

missing data handling methods.

For each biomarker, Figure 7 shows the population-averaged estimated curves and

95% pointwise confidence bands about the mean curve constructed based on the delta

method for variance estimation for the three methods. For MMP7, the 3 methods

show similar mean patterns and confidence bands over time. A similar result was seen

with the MMP3 population-averaged biomarker levels over time. For MIP-1β , “ML1”
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population-averaged biomarker levels were lower from the beginning of the induction

phase through the end of the resolution phase. The “ML1” population-averaged con-

fidence band width fell within the band widths of both ad hoc approaches from the

beginning of the induction phase through the end of the resolution phase. During

this same timeframe, “Naive2” biomarker levels and confidence band were similar to

“ML1”. However, corresponding estimates for “Naive1” were different during the in-

duction phase through the end of the resolution phase, with a higher biomarker level

and more narrow confidence band width during the induction phase through the end

of the resolution phase. Of all the biomarkers, MIP-1β had the more varied band

widths between the different methods, likely due to having the largest percentage of

missingness due to the LOD leading to higher variability.
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Figure 6: Subject-level best linear unbiased predictions and population-averaged
biomarker levels over time for MMP7 (upper left), MIP-1β (upper right), and MMP3
(lower center) based on the gamma curve-like mixed model.
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Table 7: Results from experimental gingivitis study using a nonlinear gamma curve-
like mixed model: comparing ML estimates from ad hoc approaches with ML estimates
from an approach accounting for non-detectable values

Estimates (SEs)

Biomarker Method β0 β1 β2 θ1 σ2
b σ2

e

MMP7 Naive1† 1.618 0.195 0.200 0.174 0.121 0.071
(0.401) (0.136) (0.109) (0.093) (0.040) (0.010)

Naive2∗ 1.598 0.205 0.206 0.178 0.124 0.073
(0.408) (0.143) (0.113) (0.096) (0.041) (0.011)

ML1� 1.607 0.201 0.203 0.176 0.122 0.072
(0.405) (0.140) (0.111) (0.095) (0.041) (0.010)

MIP-1β Naive1† 0.972 -0.544 -0.364 0.365 0.115 0.219
(0.495) (0.122) (0.232) (0.484) (0.048) (0.033)

Naive2∗ 0.872 -0.580 -0.384 0.333 0.145 0.292
(0.823) (0.240) (0.429) (0.864) (0.062) (0.043)

ML1� 0.902 -0.597 -0.397 0.352 0.143 0.291
(0.746) (0.214) (0.381) (0.721) (0.061) (0.048)

MMP3 Naive1† 2.108 -0.291 -0.263 0.154 0.043 0.209
(1.044) (0.311) (0.225) (0.185) (0.026) (0.031)

Naive2∗ 2.104 -0.299 -0.268 0.156 0.048 0.218
(1.062) (0.320) (0.230) (0.188) (0.028) (0.032)

ML1� 2.100 -0.294 -0.265 0.154 0.046 0.215
(1.054) (0.317) (0.228) (0.187) (0.028) (0.032)

† Substituting non-detectable values by the detection limit.
∗ Substituting non-detectable values by half the detection limit.
� Accounting for non-detectable values via (4.10).
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Figure 7: Population-averaged biomarker levels with 95% pointwise confidence bands
over time for MMP7 (upper left), MIP-1β (upper right), and MMP3 (lower center)
for the three ad hoc methods (“Naive1” [orange], “Naive2” [turquoise], and “ML1”
[black]) based on the nonlinear gamma curve-like mixed model.

4.5.2 Estimates, Standard Errors, and 95% Confidence Intervals of Area-
Under-the-Curve (A, B, C, and D)

For the summary measures of AUC, let θ1 = E(Ri) where Ri = (Ai, Bi, Ci, Di) ,

i = 1, . . . , n, are i.i.d . Then, based on equation (4.6), θ1 is estimated by two incom-

plete intervals that can be computed by SAS with the function

“CDF(‘GAMMA’,u , b ,lambda)” where b = β1 + 1, lambda = 1/β2 , and u = t2 + a

and u = t1 + a , respectively.

For the nonlinear gamma mixed model described in equation (4.1), the maximum
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likelihood estimation described in Section 4.4 is used to obtain β̂ and V̂β = V̂ ar(β̂) .

Estimation of V̂ ar(θ̂1) is carried out using bootstrapping resampling methods.

Table 8 presents the estimates, standard errors, and 95% CIs of AUC from the non-

linear gamma curve-like mixed model for the 3 biomarkers based on ad hoc and “ML1”

data handling methods. The confidence intervals were estimated using bootstrap sam-

pling methods. The 25th and the 975th items from 1000 resampled AUCs compose the

95% CI for the AUC. For MMP7, the rates of induction and resolution from the “ML1”

method fell within the range of the estimated rates for both naive methods, with lower

estimated rates for “Naive1” and higher estimated rates for “Naive2”. Similar results

were seen for both MMP3. For MIP-1β , the rates were lower than both naive methods.
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Table 8: Estimates (SEs), and 95% CIs of AUC from experimental gingivitis study
using a nonlinear gamma curve-like mixed model: comparisons of ad hoc approaches
with an approach accounting for non-detectable values

Estimates (SEs) and 95% CIs

Biomarker Method A B C D

MMP7 Naive1† 0.204 0.039 0.171 0.027
(0.108) (0.081) (0.057) (0.059)

(-0.001, 0.410) (-0.123, 0.187) (0.065, 0.287) (-0.090, 0.136)
Naive2∗ 0.216 0.051 0.174 0.041

(0.109) (0.081) (0.057) (0.058)
(0.008, 0.422) (-0.111, 0.198) (0.067, 0.289) (-0.074, 0.149)

ML1� 0.210 0.045 0.173 0.034
(0.108) (0.081) (0.057) (0.059)

(0.003, 0.416) (-0.116, 0.193) (0.065, 0.288) (-0.081, 0.143)

MIP-1β Naive1† -1.847 -1.472 -0.479 -0.813
(0.148) (0.119) (0.070) (0.097)

(-2.016, -1.686) (-1.573, -1.355) (-0.555, -0.399) (-0.874, -0.747)
Naive2∗ -1.957 -1.589 -0.527 -0.864

(0.157) (0.125) (0.074) (0.100)
(-2.131, -1.767) (-1.702, -1.460) (-0.608, -0.440) (-0.929, -0.795)

ML1� -2.004 -1.617 -0.536 -0.864
(0.153) (0.121) (0.073) (0.096)

(-2.173, -1.821) (-1.725, -1.495) (-0.616, -0.451) (-0.924, -0.799)

MMP3 Naive1† -0.616 -0.298 -0.344 0.222
(0.044) (0.032) (0.023) (0.022)

(-0.690, -0.520) (-0.355, -0.230) (-0.386, -0.295) (0.179, 0.268)
Naive2∗ -0.625 -0.302 -0.347 0.218

(0.047) (0.034) (0.024) (0.023)
(-0.704, -0.523) (-0.363, -0.229) (-0.392, -0.294) (0.174, 0.267)

ML1� -0.621 -0.303 -0.345 0.215
(0.046) (0.034) (0.024) (0.023)

(-0.698, -0.521) (-0.363, -0.232) (-0.389, -0.293) (0.171, 0.264)

† Substituting all non-detectable values by the detection limit.
∗ Substituting all non-detectable values by half the detection limit.
� Accounting for non-detectable values via (4.10).
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4.5.3 Estimates and Standard Errors of Summary Indices of Change (X1,
X2, X3, and X4) and P-values

For the summary indices of change, let θ2 = E(Xi) where Xi = (Xi1, Xi2, Xi3, Xi4) ,

i = 1, . . . , n, are i.i.d . For each biomarker and for a method of handling missing data

due to left truncation, univariate tests are defined corresponding to the 4 variates, Xi1 ,

Xi2 , Xi3 , Xi4 .

A univariate test for the j th element of θ1 , H0 : θ1j = 0 vs. H1 : θ1j 6= 0 is

Tj =

(
θ̂1j

se(θ̂1j)

)2

(4.11)

where se(θ̂1j) is the estimated bootstrapped standard error. T has an asymptotic

χ2
1 distribution. Also, the overall test of any change is H0 : β1 = β2 = 0. For the

overall test, the NLMIXED procedure constructs an approximate F test using the

delta method (Cox, 1998).

Table 9 reports the p -values for univariate tests and overall test. For MMP3, tests

for X1 , X2 , X3 , and X4 using “ML1” were statistically significant at α = 0.05. For

this biomarker, this suggests suppression of mediator levels during the first two weeks of

the induction phase and asymmetry around the end of the induction phase/beginning

of the resolution phase (Week 3), and during the last two weeks of the resolution phase.

Similar results were seen for the ad hoc approaches. For MMP7, X1 and X3 were sta-

tistically significant at α = 0.05. Similar results were seen for the ad hoc approaches.

For MIP-1β , X2 and X3 were significant for “ML” suggesting asymmetry about Week

3, and suppression of biomarker levels within the first two weeks of induction. Similar

results were seen for the ad hoc approaches.
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Table 9: Estimates (SEs) of summary indices of change and p-values from experimental
gingivitis study using a nonlinear gamma curve-like model: comparing significance from
ad hoc approaches with significance from ML approach accounting for non-detectable
values

Estimates (SEs) and P-values

Biomarker Method X1 X2 X3 X4 Overall P∗
MMP7 Naive1† 0.158 0.165 1.218 0.136 <0.0001

(0.064) (0.137) (0.140) (0.105)
0.014 0.227 <0.0001 0.194

Naive2∗ 0.154 0.165 1.196 0.136 <0.0001
(0.064) (0.137) (0.140) (0.103)
0.017 0.229 <0.0001 0.189

ML1� 0.156 0.165 1.207 0.136 <0.0001
(0.064) (0.137) (0.140) (0.104)
0.015 0.228 <0.0001 0.192

MIP-1β Naive1† -0.072 -0.376 0.656 0.098 <0.0001
(0.043) (0.098) (0.120) (0.082)
0.092 0.0001 <0.0001 0.229

Naive2∗ -0.095 -0.368 0.582 0.090 <0.0001
(0.046) (0.108) (0.121) (0.080)
0.040 0.0006 <0.0001 0.262

ML1� -0.104 -0.387 0.591 0.092 <0.0001
(0.045) (0.104) (0.118) (0.077)
0.020 0.0002 <0.0001 0.231

MMP3 Naive1† -0.456 -0.318 1.496 0.194 0.002
(0.025) (0.055) (0.133) (0.093)
<0.0001 <0.0001 <0.0001 0.038

Naive2∗ -0.456 -0.323 1.484 0.195 0.002
(0.027) (0.058) (0.133) (0.093)
<0.0001 <0.0001 <0.0001 0.035

ML1� -0.453 -0.318 1.487 0.194 0.002
(0.026) (0.057) (0.133) (0.093)
<0.0001 <0.0001 <0.0001 0.037

† Substituting all non-detectable values by the detection limit.
∗ Substituting all non-detectable values by half the detection limit.
� Accounting for non-detectable values via (4.10).
∗ β1 = β2 = 0.
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4.6 Discussion and Conclusion

We have presented a nonlinear gamma curve-like mixed model to provide direct

estimation of AUC based on the trends in biomarkers over time. The method was illus-

trated using data from an experimental gingivitis study. Our objective was two-fold:

(1) to outline current methods in the experimental gingivitis literature for analyzing

repeated measures biomarker data and motivate a biologically plausible parametric

model that provides estimation of change in biomarker levels via a smooth function

and (2) to present a maximum likelihood methodology for addressing left truncation

while illustrating the potential negative effect on population level estimates and hy-

pothesis testing when simple imputations methods are used to correct left censoring.

The maximum likelihood approach suggested here provides a straightforward way for

analysts to evaluate longitudinal data with missing observations due to left truncation.

Although the proposed methodology was motivated by trends in repeated measures

experimental gingivitis data, the approach can be applied to other areas with a simi-

lar longitudinal setup and multiple outcomes. Additionally, the likelihood framework

presented in this article can be extended to more fixed and random effects; however,

special consideration should be given for studies of small sample size like the experi-

mental gingivitis study when introducing more than two random effects.

In conclusion, the examples presented here illustrate the potential for using a smooth

gamma curve-like parametric statistical model as a potential biologically plausible

model for analyzing AUC as a summary measure for estimating change in biomarker

levels. However, emphasis is placed on the importance of using an appropriate means of

taking into account left truncation in order to avoid inaccurate interpretation of results

from population parameters, random effects, and hypothesis tests. Overall, using the

maximum likelihood procedure can provide a uniform means of analyzing biomarker

data in periodontal disease and other conditions.
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CHAPTER 5: COMPARISON OF STATISTICAL METHODS

5.1 Background and Introduction

In periodontal research, repeated measures analysis is sometimes used to identify

molecular mediators of inflammation that can be induced to significant change over

time. In Experimental Gingivitis (EG), for example, biomarker levels change when the

benefits of toothbrushing are withheld during an induction phase, then restored during

a resolution phase. The pattern of change over time of biomarker levels associated with

gingivitis can be varied. The statistical methodology utilized to detect that change

should address left-truncation, which occurs in EG studies when a biomarker level falls

below its lower limit of detection. Parametric repeated measures models are useful for

characterizing the nature of change over time, particularly as they easily accommodate

both truncated and missing biomarker data. In the presence of outliers and/or highly

skewed data, however, nonparametric methods may be preferred due to their robustness

and reliance on fewer assumptions. In this article, a simulation study was performed

to compare parametric and nonparametric hypothesis testing methods for detection

of any overall biomarker level change in hypothetical EG studies with six repeated

measures and n=20, 30 or 50 subjects. For mild left-truncation (10%), the correctly

specified mixed effects model that explicitly accounts for left-truncation maintained the

nominal Type I error for all sample sizes; for severe left-truncation (25%), it maintained

the nominal Type I error only for n=50. In comparison, a multivariate Wilxocon

signed-rank (WSR) permutation test, directed at a set of area-under-the-curve indices

summarizing change, maintained the nominal Type I error for n=30 and n=50 under



mild or severe left-truncation. It also suffered a maximum power loss of only 7%

relative to the parametric test for n=20 and had similar power for n=30 and n=50.

Nonparametric methods are generally recommended for EG studies.

In periodontal research, there is often interest in identifying molecular mediators of

inflammation that can be induced to significant change over time as well as quantify

the magnitude of the change within an experimental repeated measures study. Dental

researchers often employ experimental gingivitis (EG) to realize a better understanding

of the hosts immune response to periodontal pathogens (Deinzer et al., 2007). As such,

EG is widely used for elucidating the inflammatory response to undisturbed dental

biofilm accumulation in a well-controlled pretest-posttest experimental design frame-

work. The course of EG includes a hygiene phase, an induction phase, and resolution

phase. Gingivitis is induced by withholding tooth brushing by the use of intraoral

acrylic stents that cover selected teeth in each arch during tooth brushing to induce

local gingival inflammation. Mediator levels are determined from the laboratory anal-

ysis of gingival crevicular fluid (GCF) as a means of assessing periodontal status. At

the end of the induction phase, stents are removed and hygiene on all teeth is restored

to resolve inflammation.

In review of statistical analysis methods used in the EG studies, although gingivitis

occurs over time as a steady-state inflammatory response, only approximately one-half

of studies use a repeated measures ANOVA approach (Deinzer et al., 2004, 2007; John-

son et al., 1997; Waschul et al., 2003), with few studies examining the rate of increase by

calculating AUC (Jepsen et al., 2003; Preisser et al., 2011; Salvi et al., 2010). Most stud-

ies that took a nonparametric approach to the analysis used a Wilcoxon-signed rank

test for intra-subject comparisons and Mann-Whitney U-test or Wilcoxon rank-sum

test to assess between-group differences (Giannopoulou et al., 2003; Konradsson et al.,

2007; Konradsson and van Dijken, 2005; Staab et al., 2009; Tsalikis, 2010). Studies
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not using repeated measures analysis instead used paired t-tests to assess mean within

group changes from baseline to each timepoint or 2-sample t-tests to assess between-

group differences in mean levels at each timepoint (Konradsson et al., 2007; Salvi et al.,

2010). Few studies mentioned using a log-transformation, or any other form of transfor-

mation, before analyzing the data. Additionally, most studies mentioned above did not

touch on or address the assay lower limit of detection (LOD) and how values below the

limit were handled in the analysis. Studies that did mention the LOD did not indicate

how values left-censored due to being below the detection limit were addressed, if at

all (Deinzer et al., 2007; Johnson et al., 1997; Konradsson et al., 2007).

In the assessment of change over time, missing data can be a common occurrence

when data are measured over multiple periods of time. For longitudinal studies involv-

ing repeated measures analysis, there can be many reasons for missing data, including

nonresponse, subject dropout or, as is often times the case in the measurement of

biomarker data, missingness due to assay detection limits. Missing values can have

a profound influence on statistical results, including estimation of summary measures

of change and hypothesis testing. If the missingness mechanism is missing at random

(MAR), i.e., the probability that a response is observed can only depend on the values of

those other factors which have been observed, there are well developed computational

methods for handling missing data under this assumption (Little and Rubin, 1987).

Hughes (1999) described an EM algorithm for maximum likelihood estimation of a lin-

ear mixed effects model for estimating trends in CD4 counts over time in HIV-positive

subjects, accounting for left and/or right censoring. Lyles et al. (2000) developed a

likelihood method that addresses missing data due to left truncation as well as an ex-

tension to accommodate informative dropout. Thiebaut and Jacqmin-Gadda (2004)

applied a maximum likelihood approach for left-censored data based on a Marquardt

algorithm (Marquardt, 1963) in HIV research. In reference to pharmacokinetic data
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with measurements below the quantification limit, Fang et al. (2011) developed a max-

imum likelihood method to estimate AUC and the ratio of two AUCs (i.e., relative

exposure).

In papers 1 and 2, we illustrate use of a piecewise linear mixed model and a nonlinear

gamma-curve-like mixed model, respectively, adjusting for left truncation as paramet-

ric approaches in the analysis of experimental gingivitis biomarker data. An advantage

of the parametric approaches is that they can be easily used to provide estimation of

trends in biomarker levels over time while accommodating missing or truncated data.

However, because nonparametric methods have weaker assumptions and are less sen-

sitive to outliers, they may be preferred over their parametric counterparts. For the

analysis of biomarker data in experimental gingivitis, recently, a nonparametric mul-

tiple hypothesis testing approach was advocated for the analysis of repeated measures

(Preisser et al., 2011) using AUC summary measures to assess the change over time in

biomarker levels. Though this method has the advantage of being able to assess a large

number of biomarkers relative to the number of subjects, it is unclear how to handle

missing data in this context, particularly left truncation of observations due to a lower

detection limit. It has been suggested by Preisser et al. (2011) that permutation tests

alleviate many problems encountered when deterministic imputation methods are uti-

lized; however, further evaluation is needed. The primary motivation for nonparametric

analyses is that analysis of ranks provide tests less sensitive to outliers and Gaussian

distribution assumptions than provided by parametric analysis.

This paper compares parametric mixed models accounting for left truncation under

MAR with nonparametric multivariate analysis methods. The methods are applied to

log-transformed data simulated from the “true” model with 2 different levels of trun-

cation due to lower detection limits. The focus will be on evaluating size of test based

on the “true” model and evaluating power based on testing for any change in small
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or large-sized experimental gingivitis studies. An evaluation of whether the nonpara-

metric method is robust to left truncation and crude single imputation methods is also

provided.

5.2 Statistical Methods

5.2.1 Piecewise Linear Mixed Model

Experimental gingivitis biomarker levels generally follow one of four patterns in-

volving a directional change at a particular point. Experimental gingivitis biomarker

levels have been described as occurring in phases, where there are distinctly different

biomarker characteristics associated with GCF levels under different phases of change.

As an example, for a positively sensitive biomarker, the levels are expected to increase

during the induction phase to a critical value and decrease during the resolution phase.

The beginning of the resolution phase is thought to occur at or near the time when

stents are discontinued and hygiene on all teeth is reinstituted to resolve inflammation.

Piecewise linear regression is applied to describe these trend data as it is a form of

regression that allows multiple linear segments to be fit to the data for a set of pre-

specified change points. The change points are set to the measurement occasions at 0,

1, 2, 3, 5, and 7 weeks as in, for example, Offenbacher et al. (2010).

Given what is understood about the nature of experimental gingivitis, we assume the

function should be contiguous. A piecewise linear regression model is defined to describe

the biomarker pattern of change over the six timepoints to coincide with summary

indices of change associated with experimental gingivitis described below. Let Yik be

the GCF level of each biomarker (on the log base 10 scale for the application considered

in this article) for the i th subject at the k th time point, for k = 0, . . . , 5 , which are

ti0 = 0, ti1 = 1, ti2 = 2, ti3 = 3, ti4 = 5, ti5 = 7 weeks. The general form of the model
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can be written as

Yik = Z′iβ + b0i + εik (5.1)

where b0i ∼ N(0, σ2
b ) are subject-specific random intercepts and εik ∼ N(0, σ2) are

random errors, with b0i , i = 1, . . . , n and εik : i = 1, . . . , n ; k = 0, . . . , 5 mutually

independent. We assume that Zi is a vector of explanatory variables that are functions

of time, including an intercept. In principle, we could introduce a model with multiple

variance components; however, because most EG studies are of small sample size, these

studies would not likely allow estimation of more than 2 variance components.

In model (3.4), β = (β0, β1, β2, β3, β4, β5)
′ and Zi = (Zi0, Zi1, Zi2, Zi3, Zi4, Zi5)

′ is

defined to give conjoined piecewise linear segments. To parameterize the model, define

for k = 0, 1, 2, 3, 4, 5 :

zi0 = 1

zi1 = tik

zi2 = ( tik - 1)I( tik>1)

zi3 = ( tik - 2)I( tik>2)

zi4 = ( tik - 3)I( tik>3)

zi5 = ( tik - 5)I( tik>5)

The summaries of AUC (with baseline adjustment) can be estimated in terms of β s in
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the following manner:

E(Ai)= E(Yi1 + 2Yi2 + Yi3)/2− 2β0 =
1

2
(8β1 + 4β2 + β3) (5.2)

E(Bi)= E(Yi3 + Yi4)− 2β0 = 8β1 + 6β2 + 4β3 + 2β4

E(Ci)= E[(Yi0 + Yi1)/2]− β0 =
1

2
β1

E(Di)= E(Yi4 + Yi5)− 2β0 = 12β1 + 10β2 + 8β3 + 6β4 + 2β5

Four summary indices of change can now be defined as follows:

E(Xi1)= E(Ci −
1

2
Di) =

1

2
E[Yi1 − Yi4 − Yi5] (5.3)

= −11

2
β1 − 5β2 − 4β3 − 3β4 − β5

E(Xi2)= E(Ai −Bi) =
1

2
E(Yi1 + 2Yi2 − Yi3 − 2Yi4)

= −4β1 − 4β2 −
7

2
β3 − 2β4

E(Xi3)= E(Yi2) = 2β1 + β2

E(Xi4)= E(Yi4 − Yi5) = −2β1 − 2β2 − 2β3 − 2β4 − 2β5

The statistical analysis of these variates addressing left truncation is performed

based on the likelihood methods outlined in Section 5.3.3.

5.2.2 Gamma Curve-Like Mixed Model

Typical biomarker levels follow one of several trends, where 2 of the general patterns

involve a directional temporal change. A gamma density function is applied to describe

these data trend as it provides a smooth fit to a set of pre-specified change points.

A gamma curve-like mixed model is defined to describe the biomarker pattern of change

over the six timepoints to coincide with summary indices of change associated with

experimental gingivitis described below. Let Yit , t = 0, . . . , Ti - 1, be repeated
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measures for subjects i = 1, . . . , n for a fixed set of T ≥ max(Ti ) measurement

times (with possibly missing visits that are missing at random). Yit is the GCF level of

each biomarker (on the log base 10 scale for the application considered in this article).

A nonlinear repeated measures model for positive-valued Yit , the i -th individual’s

response at time t , follows a gamma-type curve of the form

Yit = β0(t+ θ1)
β1e−β2(t+θ1) + bi + εit, t = 0, . . . T − 1 (5.4)

where β0 > 0, θ1 > 0, β1 and β2 are unrestricted, and where bi ∼ N(0,σ2
b ) for

i = 1, . . . , n subjects and εit ∼ N(0,σ2
e ) for t = 0, . . . , Ti are mutually independent

random variables. The expected response at time t is

E(Yt) = β0(t+ θ1)
β1e−β2(t+θ1)

= θ0(t+ θ1)
β1e−β2t, t = 0, . . . T − 1 (5.5)

where θ0 = β0e
−β2θ1 . In the absence of fixed effects covariates, the subscript i is

dropped. For a PS biomarker, the shape parameter β1 > 0 and scale parameter β2 >

0. For a NS biomarker, β1 < 0 and β2 < 0.

Consider the Gamma (β1 ,β2 ) distribution function,

f(u) =
ββ1+1
2 uβ1e−β2u

Γ(β1 + 1)
, u > 0, β1 > 0, β2 > 0 (5.6)

which takes the form of equation (5.5) assuming θ1 is a known constant, such as a ,

and with α0 = ββ1+1
2 /Γ(β1 + 1) in place of β0 . We are interested in the area under

the curve given in equation (5.5) between two points t1 and t2 (for t1 < t2 ) above
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the horizontal line extending out from the intercept given by

AUC(t1, t2) =

{∫ t2

t1

β0(t+ a)β1e−β2(t+a)dt

}
− θ0aβ1 [t2 − t1] (5.7)

for a PS biomarker, and

AUC(t1, t2) = θ0a
β1 [t2 − t1]−

{∫ t2

t1

β0(t+ a)β1e−β2(t+a)dt

}
(5.8)

for a NS biomarker. Letting u = t + a and rearranging terms to express the area as

a scaled difference between two Gamma cdfs gives

AUC(t1, t2) =

{∫ t2+a

t1+a

β0u
β1e−β2udu

}
− θ0aβ1 [t2 − t1]

=

{
β0
α0

∫ t2+a

t1+a

α0u
β1e−β2udu

}
− θ0aβ1 [t2 − t1]

=
β0
α0

[∫ t2+a

0

α0u
β1e−β2udu−

∫ t1+a

0

α0u
β1e−β2udu

]
− θ0aβ1 [t2 − t1](5.9)

Next, define E(Ai) = AUC(1, 3) , E(Bi) = AUC(3, 5) , E(Ci) = AUC(0, 1) , and

E(Di) = AUC(5, 7) where Ai and Ci correspond to areas under the curve during the

induction phase and Bi and Di correspond to the resolution phase.

The rationale for the choice of a gamma-like model was two-fold. Firstly, for the

biomarker analysis, a smooth model is more biologically plausible for analyzing AUC

as a summary measure for estimating change in biomarker levels. Secondly, this model

would allow us to assess the maximum likelihood approach for evaluating longitudinal

data with missing observations due to left truncation.
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5.2.3 Maximum Likelihood Estimation in the Presence of Left Truncation

In experimental gingivitis, GCF is collected at the beginning of the hygiene phase,

the beginning of the induction phase, during and at the end of the induction phase,

and during the resolution phase. Let Yi = (Yi0, Yi1, . . . , Yini
) . For model (5.4), let

β = (β0 , β1 , β2 , θ1 ). For models ( 5.1, 5.4), the likelihood function for the parameter

vector Ω = (β , σ2
b , σ2

e ) is

L(Ω; Y) =
l∏

i=1

f(Yik; Ω), (5.10)

where f(Yik; Ω) =
∫∞
−∞ f(Y|b0i )f ( b0i ) d b0i , f ( b0i ) and f(Y|b0i ) are the probabil-

ity density functions for the random effects and responses given the random effects,

respectively.

A limitation of using laboratory assays is that the biomarkers levels below the de-

tection limit are not quantifiable. While many methods have been proposed to address

the censored data, substitution methods are among the most popular. For a biomarker,

let the limit of detection be denoted by d . For 2 ad hoc (naive) approaches for handling

non-detect values “Naive1” and “Naive2”, GCF measurements are replaced by d and

d/2, respectively. Alternatively, as indicated in Lyles et al. (2000), a detectable value

contributes f(Yik|b0i ) and a non-detectable value contributes the Bernoulli probability

Fy(d|b0i ), Fy being the cumulative distribution function. Let ni1 represent the num-

ber of detectable GCF values and ni − ni1 represent the non-detectable GCF values

(ni1 = 0, . . . , ni ) (Lyles et al., 2000). The complete-data likelihood can be written as

L(Ω; Y) =
n∏
i=1

[∫ ∞
−∞

{
ni1∏
k=1

f(Yik|b0i)

}{
ni∏

k=ni1+1

FY (d|b0i)

}
f(b0i)db0i

]
(5.11)

Maximum likelihood estimation by adaptive Gauss-Hermite quadrature is used to es-
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timate Ω .

5.2.4 Hypothesis Testing

For the piecewise model, the maximum likelihood estimation previously described is

used to obtain β̂ and V̂β = V̂ ar(β̂) . Estimation is carried out using the SAS Version

9.2 IML procedure (SAS, Inc., Cary, North Carolina). For the summary indices of

change, let θ2 = E(Xi) where Xi = (Xi1, Xi2, Xi3, Xi4) , i = 1, . . . , n, are i.i.d . Then

θ2 = Dβ and

D =



−11
2
−5 −4 −3 −1

−4 −4 −7
2
−2 0

2 1 0 0 0

−2 −2 −2 −2 −2


A multivariate test of θ2 , H0 : θ2 = 0 vs. H1 : θ2 6= 0 is

T = (Dβ̂)′[DV̂βD
′]−1(Dβ̂) (5.12)

has an asymptotic χ2
4 distribution.

For the nonlinear gamma mixed model, define β(G) = (β1, β2) . The maximum

likelihood estimation previously described is used to obtain β̂(G) and Var( β̂(G) ). The

overall test of any change is H0 : β1 = β2 = 0. For the overall test, the NLMIXED

procedure constructs an approximate F test using the delta method (Cox, 1998).

For the nonparametric analysis, a four-variate Wilcoxon Signed Rank Test was

developed to examine the four variates Xij = (Xij1, Xij2, Xij3, Xij4)
′ simultaneously for

departure from their null median values of 0. Details of the asymptotic and permutation

hypothesis testing procedures have been previously described (Preisser et al., 2011).
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5.3 Simulation Studies

We conducted simulations to assess performance of six statistical methods. The

primary goal was to test the ability of each method to achieve advertised size of test

and power based on the “true” model and various scenarios for the number of data

points. Ultimately we are interested in evaluating how the six methods perform in the

presence of left truncated values; therefore, we created simulated datasets based on two

different values for the lower limits of detection. Therefore, the scope of the simulation

was limited in testing and evaluating missingness due to left truncation.

The continuous outcomes Yit , representing the gingival crevicular fluid level of a

biomarker (on the log base 10 scale) were generated based on specifying model pa-

rameters β = (β0, β1, β2, θ1)
′ , randomly generating subject-specific random intercepts

( b0i ) and random errors ( εit ) at time t , and forcing simulated outcomes below the

detection limit to be left censored. We assumed the nonlinear gamma curve-like mixed

model in equation (5.4) to describe a biomarker’s pattern of change over time with

b0i ∼iid N(0, 0.1) and εit ∼iid N(0, 0.3) . The following values were assigned as param-

eter coefficients: β0 = 1.6; β1 = 0.4; β2 = 0.2 ; and θ1 = 0.2 . Data were considered

left-truncated if Yit < d , where d (in nanograms per millilitre on the log scale) was

assigned as 0.272 and 0.687, respectively such that (1) 10% and (2) 25% of the data

were left-truncated. To assess power, data were generated from the “true” model un-

der alternative β 6= 0. For size of test, the data were generated under H0 model

Yik = β0 + b0i + εik .

The following models and procedures for addressing left-truncation were compared:

a. Piecewise linear regression with random intercept and left-truncated data replaced

by half the limit of detection (“Naive2”)[PW Naive2], Yik = Z′iβ + b0i + εik

b. Piecewise linear regression with random intercept and maximum likelihood for
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left-truncated data [PW ML1]

c. Gamma-curve-like nonlinear model with random intercept and left-truncated data

replaced by d/2 [Gamma Naive2]

d. Gamma-curve-like nonlinear model with random intercept and maximum likeli-

hood for left-truncated data [Gamma ML1]

e. Wilcoxon signed-rank test (Preisser et al., 2011), asymptotic [WSR Asy]

f. Wilcoxon signed-rank test (Preisser et al., 2011), permutation [WSR Perm].

For any record where the result of the test was rejected at α = 0.05, a value of 1

was be assigned; else 0 was assigned. Size or power was the proportion of results

with value of 1.

Size and power of tests were evaluated for the null hypothesis of no change in mean

(or median) response versus the alternative hypothesis of any change. For the piecewise

models, the multivariate test of any change tests H0 : E(X1) = E(X2) = E(X3) =

E(X4) = 0, χ2
4 . For the gamma models, the overall test of any change tests H0 : β1

= β2 = 0, χ2
2 . For the Wilcoxon signed-rank tests, the test of any change tests H0 :

med(X1) = med(X2) = med(X3) = med(X4) (all medians simultaneously equal 0),

χ2
4 . For each scenario, the simulations were run 1000 times on increasing sample sizes

of N=20, 30, and 50.

5.4 Simulation Results

The simulation results (Table 10, 11, and 12 showed that all six methods performed

better with increasing sample sizes. At N = 20, the Gamma-curve-like nonlinear model

using ML methods (“ML1”) to address left-truncated, size of test achieved the expected

α when no more than 10% of the data were below the detection limit. Moreover, this
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method did outperform both the piecewise and WSR approaches, which failed to achieve

the advertised size of test. The piecewise methods had greater power than the other

methods; however, these results must be interpreted with caution given the fact that

the piewcewise models are misspecified models. At N ≥ 30, when no more than 10%

of the data were missing due to the detection limit, the nominal test was achieved

and power was high for the Gamma-curve-like nonlinear model using ML methods.

The results from the percentage of measurements below the detection limit being 25%

showed deflated test size in the simple substitution approach for Gamma Naive2, where

left-truncated observations are replaced by the half the detection limit, and illustrated

the effect of increased missingness due to values being below the detection limit on

power. The effect on the power is consistent with previous simulation studies that

showed the significant effect of increased censoring level on decreasing power to detect

significant relationships (Thompson and Nelson, 2003). It is noteworthy that both WSR

approaches performed well at N ≥ 30, with the permutation test method displaying

slightly decreased power relative to the asymptotic approach. Based on these results,

it can be inferred that when the sample size is large (N ≥ 30), permutation tests

do alleviate many problems encountered when deterministic imputation methods are

utilized as suggested by Preisser et al. (2011).
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5.5 Discussion

We compared six methods for hypothesis testing while accounting for left truncation.

Our simulation results suggest that the Gamma-curve-like nonlinear model with random

intercept and maximum likelihood for left-truncated data works well in small sample

sizes (N ≥ 20) if the percentage of measurements below the detection limit is greater

than 10%. These results further indicate that Gamma method performs reasonably well

in moderate to large sample size (say N ≥ 30) if the censoring is increased. However, the

results for the Gamma ML method are based on a correctly assumed model; the results

may not be as favorable under a misspecified model includsing deviations from the fixed

effects or random effects structure. Finally, the WSR (particularly the permutation

test) approaches worked satisfactorily well with sample sizes exceeding 30 regardless of

the level of censoring.

This research is relevant for the following reasons. Periodontal research studies often

have interest in identifying molecular mediators of inflammation via repeated measures

analysis that can be induced to significant change over time. Although nonparametric

methods are preferred over parametric methods, it is unclear how to handle missing

data in this context, particularly left truncation of observations due to a lower detection

limit. For this setting, it may be beneficial to use a parametric method that addresses

limitations associated with parametric approaches, including the missingness process,

as well as assumptions about the nature of left truncation of observations due to a

lower detection limit. However, in order to use parametric methods for research, it

is important to examine whether the properties of the model underlying hypothesis

testing are supported.

The results from the gamma-curve-like nonlinear model using maximum likelihood

suggest that this method may be a good parametric approach for analyzing experimen-

tal gingivitis data when interest is in mean (or median) response over time in biomarker
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levels and characterizing the direction of the change. The simulations suggest that this

method is reliable for small sample sizes (N=20) when the level of truncation is no

more than 10%. Otherwise, larger samples are needed to reliably use the method to

achieve adequate power to detect the changes in biomarker levels. In the case of the

nonparametric methods, the permutation test performed well under some level of trun-

cation with larger samples. The implication for applications is that, in the presence of

truncation, with small sample sizes, this method may have some power loss relative to

parametric methods to detect the change in a given biomarker. Thus, when designing

experimental gingivitis studies using these analytic methods, consideration should be

given to sample size and power issues if left censoring in the data is probable.

In summary, this study shows that both parametric and nonparametric methods can

be reliably used to analyze biomarker levels in experimental gingivitis data. However,

as demonstrated by our simulations, the appropriateness of the approach does vary

depending on the sample size and the appropriateness of model and distributional

assumptions.
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CHAPTER 6: FUTURE RESEARCH

6.1 Alternative Models

In this research, the gamma-curve-like mixed effects model was considered the cor-

rectly specified model. One future area of research could be to evaluate size of test and

power based on other models for data generation. One possible model could be Fang

et al. (2011) PK model. An alternative could be a piecewise polynomial regression

model (Edwards et al., 2006). Further, a gamma-curve-like model with multiplicative

error structure could be considered as well.

6.2 Multiple Hypothesis Testing

Regardless of the statistical methodology used in analysis of periodontal research

studies, these studies often require a number of outcomes to be examined and many

hypotheses to be tested. Such testing involving multiple outcome measures may in-

crease the risk of Type I errors when multiple simultaneous hypotheses are tested

at individual-level (uncorrected) α -levels. One popular approach to this multiplicity

for confirmatory analysis is control of the family-wise error rate (FWER) Hochberg

(1988). Defined as the probability that at least one true null hypothesis is rejected

when any of the null hypotheses hold, the FWER can be conservative when there

are many hypotheses tested. Alternatively, the false discovery rate (FDR), defined by

Benjamini and Hochberg (1995) as the expected proportion of Type I error among

the number of rejections, is the preferred approach when the aims of a study are ex-



ploratory. Although the FDR procedure is better suited than the FWER procedures

for an experimental gingivitis study with a large number of biomarkers and tests (e.g.,

Offenbacher et al. (2010)), an improved procedure which gives attention to the patterns

of dependency among tests is needed to compare the multiple hypothesis testing proce-

dures in experimental gingivitis and to determine whether adjustments to Hochbergs or

Benjamini-Hochbergs multiple hypothesis testing procedures lead to improved inference

for problems in similar settings.

86



APPENDIX A: SAS CODE FOR PIECEWISE MODEL

PROC NLMIXED is used to fit maximum likelihood to the biomarker data in the
presence of left truncation.

proc nlmixed data=data cov;
parms b0=b0 b1=b1 b2=b2 b3=b3 b4=b4 b5=b5 sigsqerr=sigsqerr sigsqb=sigsqb ;
eta = b0i + b0 + b1*time + b2*x1 + b3*x2 + b4*x3 + b5*x4;
if (d ne 0) then f = (1 / sqrt(2*constant(’PI’)*sigsqerr)) * exp(-0.5*((y -eta)**2)/sigsqerr);
else if (d = 0) then f = CDF(’NORMAL’, d , eta, sqrt(sigsqerr));
ll = log(f);
model y ∼ general(ll);
random b0i ∼ normal(0, sigsqb) subject=subject ;
run;

The initial parameters (parms) are estimated from a repeated measures model using
PROC MIXED.
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APPENDIX B: SAS CODE FOR GAMMA-CURVE-LIKE MODEL

PROC NLMIXED is used to fit maximum likelihood to the biomarker data in the
presence of left truncation.

proc nlmixed data=data cov;
parms b0= b0 b1= b1 b2= b2 theta1= theta1 sigsqerr=sigsqerr sigsqb=sigsqb ;
f1 = (time+theta1)**b1;
f2 = exp(-b2*(time+theta1));
eta = b0*f1*f2;
if (d ne 0) then f = (1 / sqrt(2*constant(’PI’)*sigsqerr)) * exp(-0.5*((y -eta)**2)/sigsqerr);
else if (d = 0) then f = CDF(’NORMAL’, d , eta, sqrt(sigsqerr));
ll = log(f);
model y ∼ general(ll);
random b0i ∼ normal(0, sigsqb) subject=subject ;
run;
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