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ABSTRACT 

 

Static and Dynamic Insights into the Function of the Human Nuclear Xenobiotic 
Receptor PXR  

 (Under the direction of Matthew R. Redinbo)  
 
 

The nuclear xenobiotic receptor PXR is a highly promiscuous protein that binds to a 

spectrum of structurally distinct endogenous compounds and clinical drugs and regulates the 

genes that express a variety of metabolizing and transport enzymes. An examination of the 

mobile regions novel to the nuclear receptor ligand binding domain fold elucidate their role 

in PXR’s ability to respond to a variety of small and large agonists.   

Unpredictable PXR activation can mediate a number of drug-drug interactions that 

can lead to decreases in therapeutic efficacy and multi-drug resistance. We show that 

colupulone from hops induces the expression of numerous drug metabolism and excretion 

genes in a PXR dependent manner. The 2.8 Å crystal structure of colupulone in complex 

with the ligand binding domain of PXR elucidated the hydrophobic and hydrogen bonding 

contacts involved in colupulone binding. Docking of other bitter acids onto the colupulone 

structure indicates a similar binding conformation for the other analogues.  

From static methods, we investigated the molecular dynamics of the monomer and 

dimer form of PXR bound to the retinoid X receptor to determine how differences in motion 

affect their differential ability to bind to coactivator. Simulations data reveal highly coherent
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motions for the dimer especially in the activation function (AF) domain, but only weak 

correlated or uncorrelated motion for the monomer. Simulations of active forms of other 

nuclear receptors also show highly correlated motion between the helices in the AF-region. 

Coherence in the AF-region may be a defining characteristic of functionally active nuclear 

receptors.  

We explored PXR inhibition strategies using ketoconazole. We show through a 

number of mutations at the AF-surface of the PXR ligand-binding domain that ketoconazole 

may be interacting with specific residues in the AF-region. We also show initial 

developments in designing a high throughput screening method for testing out inhibitors 

using fluorescence polarization.  

Overall, this research represents static and dynamic insights into PXR function that 

can be used to develop strategies to improve the clinical efficacy of drugs and reduce 

unfavorable drug-drug interactions. 
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1.0 ABSTRACT  

The nuclear receptor PXR plays a key but structurally enigmatic role in human 

biology.  This ligand-regulated transcription factor responds to a diverse array of chemically-

distinct ligands, including many endogenous compounds and clinical drugs, and regulates the 

expression of a critical set of protective gene products involved in xenobiotic and endobiotic 

metabolism.  The structural basis of this receptor’s remarkable and unique promiscuity is just 

now coming into focus.  We examine the importance of mobile regions novel to the nuclear 

receptor ligand binding domain fold in PXR’s ability to respond to a variety of small and 

large agonists.  We also review the functional roles played by PXR in numerous biological 

pathways, and outline emerging areas for the future examination of this key nuclear 

xenobiotic receptor.  
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1.1 INTRODUCTION  

The nuclear pregnane X receptor (PXR; NR1I2, also known as SXR and PAR; (1-3) 

is a member of the nuclear receptor (NR) family of ligand-dependent transcriptional factors 

and a key regulator of genes involved in xenobiotic and endobiotic metabolism. PXR was 

assigned the role of detecting endogenous pregnanes by Kliewer et al.(4), but has 

subsequently been adopted as a central xenobiotic receptor that responds to many clinical 

drugs.  PXR functions as a heterodimer with RXRα and binds to a variety of response 

elements (direct repeats DR-3, DR-4, and DR-5, and everted repeats ER-6 and ER-8) in the 

promoter regions of target genes.   Its moderate basal activity and up-regulation of 

transcriptional events are mediated by recruitment of coactivators of the p160 family (e.g., 

SRC, GRIP); similarly, its repression of gene expression involves physical contacts with 

transcriptional corepressors.  We review recent advances in our understanding of PXR 

function and structure, and present some key challenges for future studies of this nuclear 

xenobiotic receptor. 
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1.2 PXR FUNCTION 

1.2.1 PXR in Xenobiotic Detection  

The cytochromes P450 (CYP450s) are heme-containing mono-oxygenases involved 

in endobiotic and xenobiotic clearance, including the elimination of therapeutic drugs (5). 

PXR is expressed predominantly in the liver and is activated by a variety of structurally-

distinct ligands that are known to induce the expression of CYP450 genes central to drug 

metabolism. These compounds include phenobarbital, rifampicin, dexamethasone, nifedipine, 

taxol, and hyperforin, the active agent of the herbal remedy St. John’s wort (3, 4, 6). Phase I 

drug metabolism genes regulated by PXR include several CYP450s (e.g., CYP3A4, 

CYP2B6, CYP2C8, CYP2C9, and CYP2C19), carboxylesterases, and dehydrogenases, as 

well as enzymes involved in heme production and the P450 reaction cycle (4, 6-13). Indeed, 

PXR has been termed the master regulator of the expression of CYP3A4, which metabolizes 

more than 50% of human drugs.  PXR also controls the expression of the Phase II drug 

metabolism genes encoding UDP-glucoronosyltransferases and glutathione-S-transferases 

(GSTs), (14-18), and Phase III drug efflux pumps like MDR1 and MRP2 (7, 19-21).  Thus, 

PXR is an important and efficient regulator of the expression of genes involved in all phases 

of drug metabolism and excretion. 

PXR is also activated by a variety of endogenous ligands, including pregnanes, bile 

acids, hormones, and dietary vitamins (1, 4). In response to bile acids and oxysterols, PXR 

regulates the expression of genes involved in bile acid metabolism and transport, including 

CYP7A, Organic Anion Transporting Polypeptide 2 (OATP2), and 3-hydroxy-3-

methylglutaryl-CoA (HMG-CoA) synthases (22-24). These data, and subsequent studies in 
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animal models of cholestatic liver disease, have established that PXR plays a critical role in 

cholesterol homeostasis and in protecting tissues from potentially toxic endobiotics (25, 26). 

 

1.2.2 Species-specific Activation  

Like most members of the nuclear receptor superfamily, PXR contains a DNA 

binding domain (DBD) connected by a presumably flexible hinge region to a ligand binding 

domain (LBD), which contains the ligand-dependent activation function (AF-2) region.  

Unlike most nuclear receptors, however, the LBDs of PXRs from different species exhibit 

significant sequence divergence.  For example, mammalian isoforms of PXR share < 80% 

sequence identity within their LBDs compared to >90% within their DBD domains.  

Although each of these PXRs is promiscuous in terms of ligand binding (responding to 

compounds of varying size, shape and chemical composition), each is also relatively specific 

to certain regions of chemical space.  This feature of PXR activation has been termed 

“directed promiscuity”(27).   

Kocarak et al. first noted striking interspecies differences in cytochrome P450 gene 

expression in response to known CYP3A inducers, such as the antiglucocorticoid 

pregnenolone 16-α-carbonitrile (PCN) and the macrolide antibiotic rifampicin (28, 29). In-

cell trans-species gene transfer studies later determined that the differential CYP3A gene 

expression found in rats, rabbits and humans was not derived from differences in CYP3A 

sequence, but rather from some other factor (30, 31). After the initial cloning and 

characterization of mouse and human PXR, it was found that both forms of the receptor were 

not only activated by many of the compounds known to regulate CYP3A gene expression, 

but also that they could also bind to response elements in the promoter regions of several 
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CYP3A genes. The mouse form of PXR was strongly activated by both PCN and 

dexamethasone (4), while human PXR was efficiently activated by dexamethasone, 

rifampicin, and RU486, another antiglucocorticoid (3, 6).   

Subsequent transient-transfection experiments established that the regulation of these 

genes was dependent upon the activation of PXR, and that the activation profiles of the 

various forms of PXR were remarkably different (31).  For example, rabbit PXR could be 

activated by rifampicin to induce CYP3A gene expression while rat PXR could not.  

Additionally, equal concentrations of PCN could effectively activate rat PXR, but not the 

rabbit form (31).  Jones et al. expanded these profiles to include human and mouse PXR 

through the use of a novel binding assay.  Rifampicin and SR12813, a cholesterol-lowering 

drug, were found to effectively activate human and rabbit PXR but not rat and mouse forms.  

PCN was found to potently activate mouse as well as rat PXR but have little effect on the 

human and rabbit forms (32).  These data correlated well with the patterns of CYP3A gene 

expression in the liver and intestinal tissues of the various species, proving that the receptor 

has clearly diverged functionally through the process of evolution.  Indeed, several studies 

have identified individual residues in the LBD that confer species-specific transcriptional 

activation to the PXRs (27, 33, 34). 

 

1.2.3 Cross –talk with other Nuclear Receptors  

PXR overlaps functionally with constitutive androstane receptor (CAR) in terms of 

ligand binding and gene activation.  It was noted in 1990 that the treatment of rat hepatocytes 

with phenobarbital caused distinct expression patterns for the cytochrome P450 isoforms 

CYP2B and CYP3A (29). It was subsequently shown that both PXR and CAR could both be 
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activated by phenobarbital, and that the effects of phenobarbital on CYP gene expression 

were mediated by several different nuclear receptors (6).  PXR became established as a 

central regulator of CYP3A genes (1, 3, 4), while CAR was found to respond to 

phenobarbital response elements located on CYP2B genes  (35-37).  In 2000, Moore et al. 

showed that both receptors could be activated by some of the same xenobiotic and endobiotic 

compounds, including rifampicin and phenobarbital (38). It was then demonstrated that CAR 

and PXR cross-talk extended to DNA binding, with the finding that PXR could up-regulate 

CYP2B gene products using the same response element employed by CAR, and vice versa 

for CAR’s up-regulation of CYP3A gene products (8).  Thus, PXR and CAR work in concert 

by binding to the same ligands and DNA response elements to control target gene expression.  

Recent studies have established that PXR, CAR and FOXO1, a forkhead transcription factor, 

function together to regulate the expression of a variety of target genes central to drug 

metabolism and gluconeogenesis (39).   

 

1.2.4 Subcellular Localization  

Studies to determine the subcellular localization of PXR have provided conflicting 

results. Two groups have reported that human PXR is consistently localized in the nucleus, 

regardless of the addition of ligand.  In one such study, Kawana et al. used transient 

expression in HeLa cells to show that PXR was localized in the nucleus in the absence of 

ligand (40).  They also identified a nuclear localization signal (NLS) in the DNA binding 

domain of PXR.  Removal of the DBD resulted in solely cytoplasmic localization, and 

mutation of the putative NLS resulted in PXR localization in both the cytoplasm and the 

nucleus.  These results are consistent with immunostaining assays that found human PXR to 



 
8

be exclusively located in the nucleus both with and without ligand (41).  Other studies, 

however, have provided evidence to the contrary.  PXR from mouse liver was found to be 

localized in the cytoplasm and translocated to the nucleus only upon addition of PCN or 

other agonists (40, 42).  The discrepancies in these findings may be linked to differences in 

the type of PXR employed (human vs. mouse) or in the in vivo vs. in vitro nature of the 

experiments. Such results may also indicate that subcellular trafficking is an important 

regulatory process that tunes the function of this nuclear xenobiotic receptor. 

 

1.2.5 Ligand Binding   

The PXRs from a variety of species are all promiscuous and can bind to a variety of 

chemically- and structurally-distinct xenobiotic and endobiotic compounds.  As measured by 

scintillation binding assays (32) and coactivator receptor ligand assays (CARLA, a ligand-

dependent coregulator recruitment assay) (43), PXR is activated by the direct binding of 

ligands within the receptor’s ligand binding cavity (2).  PXR agonists include natural and 

synthetic steroids such as 5β-pregnane-3,20-dione and  estradiol (32),  and xenobiotics like 

the cholesterol drugs lovastatin and SR12813 (6, 32), the anti-cancer drugs tamoxifen and 

taxol (7, 44), the antibiotic rifampicin (1, 6), and the active agent of St. John’s Wort, 

hyperforin (45, 46).  These ligands vary widely in shape and chemical features, and range in 

mass from 250 to greater than 800 Da.  Clearly, PXR has a binding promiscuity unlike that of 

any other member of the nuclear receptor superfamily (2). Crystallographic studies of PXR 

have revealed a novel insert in the ligand binding domain along with a large and conformable 

binding pocket (13, 27, 47).  These structures offer valuable insight into both the promiscuity 

and specificity of the receptor, as discussed below. 
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1.2.6 Heterodimerization with RXR  

Like many other nuclear receptors, PXR controls transcriptional events as a 

heterodimer with RXRα.  PXR is known to bind to at least four distinct DNA response 

elements, including both direct and everted repeats. Several other receptors that form 

heterodimers with RXRα also utilize both DR and ER response elements, including CAR, 

the vitamin D receptor (VDR), and the thyroid hormone receptor (TR) (48, 49).  Thus, 

because the LBDs of RXRα and these partner receptors are expected to form only one type 

of heterodimer (50), the linkers connecting the DBDs and LBDs of these receptors must be 

flexible in order to bind to distinctly oriented DNA response elements.  It is also possible that 

alternative DNA binding modes may influence coregulator recruitment and transcriptional 

activity in a ligand- and/or tissue-specific manner, providing another level of regulation of 

PXR action (51).  

 

1.2.7 Coregulator Binding   

PXR was initially found to interact with the steroid receptor coactivator 1 (SRC-1; 

also known as NCoA-1) (4), a member of the p160 family of coactivators that bind in a 

ligand-dependent manner to nuclear receptors using Leu-X-X-Leu-Leu repeats (where X is 

any amino acid) (52-56).  Crystal structures of several nuclear receptor LBDs in complex 

with coactivator fragments have revealed that binding of ligand induces a conformational 

change in the AF2 region at the C-terminus of the nuclear receptor LBD to create a 

coactivator binding cleft (47, 50, 57-59).  This interaction will be studied in further detail 

later in this review (60).  Other members of the p160 coactivator family known to interact 
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with PXR include TIF-2/GRIP-1/NCoA-2 (61) and p/CIP/ACTR/AIB1/TRAM1/RAC3 (24). 

Binding of a coactivator protein results in the recruitment of basal transcription factors, such 

as CBP (CREB-binding protein)/p300 (53, 62), as well as histone acetyltransferases (HATs) 

that remodel chromatin to enhance transcription (63, 64). SRC-1 also recruits CARM-1, an 

arginine methyltransferase that methlyates histone H3 to loosen chromatin for transcription 

(65, 66). Other coactivators known to interact functionally with PXR include the receptor 

interacting protein RIP140 (67, 68), Suppressor for Gal 1 (SUG-1) (67), PPAR binding 

protein (PBP) (69), and the peroxisome proliferator activating receptor (PGC-1α) (70).  

Several transcriptional corepressors that down-regulate gene expression have also been found 

to bind PXR.  Among these are the Silencing Mediator of Retinoid Thyroid Receptor 

(SMRT) (7), nuclear receptor corepressor (NCoR) (7, 69, 71), and, most recently, the small 

heterodimer partner (SHP) (72).  Unraveling the structural basis of the recruitment of 

coregulators to NR-DNA complexes remains a critical area for future study. 

 

1.3 MOBILITY IN PXR STRUCTURE 

Several crystal structures of the LBD of PXR have been determined in the unliganded 

(apo) state and in complexes activating ligands and fragments of transcriptional coregulators. 

Published structures include the PXR LBD bound to the cholesterol-lowering drug SR12813, 

both in the presence and absence of SRC-1 peptide, in complex with hyperforin, the 

psychoactive agent found in the herbal antidepressant St. John’s Wort, and in complex with 

the macrolide antibiotic rifampicin (13, 27, 47, 73-75) (Table 1.1). The overall fold of PXR 

consists of a three-layered α-helical sandwich (α1-α3 / α4-α5-α8-α9 / α7-α10) that encloses 

a large, conformable binding pocket (Figure 1.1).  A five-stranded anti-parallel β-sheet (β2, 
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β3, β4, β1 and β1’) lies adjacent to the ligand binding pocket. This extended β-sheet is 

unique to PXR, as NR LBDs typically contain only two- or three-stranded β-sheets (57, 76-

79). The PXR LBD ends with a short helix (αAF) critical to the AF-2 region of the receptor 

that contacts transcriptional coregulators (27). 

The α-helical portion of PXR is similar in structure to the NR LBDs described 

previously, with root-mean-square deviations in Cα positions of 1.8-2.9 Å (80-82).  Where 

PXR deviates most significantly in structure, and what likely contributes critically to its 

promiscuous ability to respond to chemically-distinct ligands, is at the bottom of the LBD as 

shown in Figure 1.1.  The PXRs contain an insert of ~60 residues that is unique in the NR 

superfamily.  This insert, amino acids 177-228 in human PXR, contains not only the β1-β1’ 

regions that extend the PXR β-sheet to five strands, but also a novel α2 that folds along the 

underside of the expansive PXR ligand binding pocket (73). A portion of this sequence insert 

(residues 178-191) has been disordered in the PXR LBD structures examined to date (13, 27, 

47, 73, 75). Thus, the PXRs line their ligand binding pockets with novel secondary structural 

elements, including α2 and β1-β1’, many of which are structurally flexible (Figure 1.2).  

The conformability of key regions of the PXR LBD is critical to the ability of the 

receptor to bind to compounds of varying size and shape. The recent structure of PXR in 

complex with the large macrolide antibiotic rifampicin has provided a direct observation of 

the importance of flexibility in receptor ligand binding.  When the apo (unliganded) structure 

of the PXR LBD was first reported in 2001, it was noted that the receptor’s binding pocket, 

while large, was not large enough to accommodate the established PXR agonist rifampicin 

(27).  The subsequent determination of the PXR-rifampicin complex structure reveals that 

three regions of the LBD become disordered to create the space necessary for this 823 Da 
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agonist to bind. These regions are the flexible loop formed by residues 229-235, a mobile 

hydrophobic loop from residues 309-321, and the ~192-210 stretch that is a bona fide helix in 

some structures, but a partially ordered pseudohelix in others (Figure 1.3).  Each of these 

regions (indicated in yellow in Figure 1.3) is highly mobile and exhibits no clear electron 

density in this 2.8 Å resolution crystal structure of the PXR-LBD in complex with rifampicin. 

Similarly, the piperidino group on rifampicin expected to lie next to the ~192-210 loop also 

lacked clear electron density (73).  These observations show that PXR can bind effectively to 

ligands and up-regulate gene expression even when a significant portion of its ligand binding 

pocket is unstructured.  These results also establish that the mobility of regions of PXR that 

are novel in the NR family is vital to the promiscuous ligand binding character of this 

xenobiotic receptor.  

Residues 309-321 were traced as a loop in the apo and in the SR12813 complexes 

(27), but adopt an α-helical structure in complexes with hyperforin, rifampicin, and SR12813 

with the SRC-1 coactivator peptide (13, 47, 73). This helix, designated α6, is different from 

α6’s found in other nuclear receptors, which are positioned at the bottom of the ligand 

binding cavity in the same region where the ~192-210 residues are located in PXR. Residues 

229-235 support the position of the 192-210 region, and their flexibility mirrors that of the 

longer region nearby. The stretch from about 192 through 210 was pseudohelical in the initial 

apo and SR12813-bound structures, but folded into α2 in the structures of PXR bound to 

hyperforin and the combination of SR12813 and the SRC-1 peptide.  This region of the 

receptor directly contacts bound ligands and changes its position to conform to specific 

ligands; thus, this novel structural motif is central to the ligand binding promiscuity exhibited 

by the PXRs.  
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Even when they are not disordered, these regions of the PXR LBD are mobile and 

have been observed to change position to enhance contacts with distinctly shaped ligands. 

Between the apo and rifampicin-bound structures, for example, the α6, 229-235 and 204-210 

regions of the receptor exhibit main-chain shifts of 1.5 Å, 3.2 Å, and 4.5 Å, respectively, and 

side chain displacements of up to 7 Å (Figure 1.4).  This conformability allows the ligand 

binding pocket of PXR to expand from 1280 Å3 in volume in the SR12813 complex to more 

than 1600 Å3 in others structures (13, 27, 47, 73).  

In addition to mobility that enhances allows the pocket to accommodate a variety of 

ligands, PXR’s α2 may have another function. It is not clear how ligands enter and exit the 

ligand binding pocket of this promiscuous receptor. In the peroxisome proliferator-activating 

receptors (PPARs) (50, 57), the putative ligand entrance path occurs in a region blocked by 

α6 in PXR. The flexible and untethered α2 may function as a trap-door in PXR, dropping out 

of the way so that ligands can enter the binding pocket. In some PXR structures, a solvent 

accessible channel of up to 3 Å wide and 9 Å long is present in the area adjacent to α2 (13, 

27, 47). Thus, the sequence motif that contains α2 appears to plays a dual role in receptor 

function: conforming to distinct ligand shapes to enhance promiscuity, and providing a 

dynamic entry and exit pathway for ligand binding and dissociation.  

There are six amino acid side chains that are consistently involved in ligand binding 

in all PXR LBD structures determined to date: three polar residues (Ser-247, Gln-285 and 

His-407) and three hydrophobic residues (Met-243, Trp-299 and Phe-420) (Figure 1.4) (13, 

27, 47, 73). The directed promiscuity exhibited by the different species of PXR may partly be 

attributed to changes in these binding residues. For example, the residues Gln-285, His-407 

and Met-243 are not conserved in mouse PXR. This receptor shows a lesser degree of 
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promiscuity, and shows no or minimal activity with SR12813, hyperforin or rifampicin 

(Table 1.1). A similar trend is seen in zebra fish PXR. Alignments of mammalian PXRs 

(Figure 1.2) reveal that the highest degree of sequence identity occurs between the human 

and rhesus receptor (96%); notably, the same six binding residues are conserved, and both 

receptors respond largely to the same pool of compounds (83).  Differences in diet were 

originally thought to be the driving force for PXR’s directed promiscuity.  It has recently 

been hypothesized, however, that bile acids served as the key evolutionary ligands that drove 

the receptor’s increasing degree of promiscuity over time (84).  

NR LBDs typically contain AF-2 regions that bind to LxxLL motifs in transcriptional 

coactivators, and I/LxxI/VI motifs in corepressors (85).  The structure of the human PXR 

LBD has been determined in complex with the second LxxLL motif of the coactivator SRC-1 

bound to the receptor’s AF-2 region. The LxxLL motif forms an α-helix, with a second short 

helix kinked perpendicular to the first (Figure 1.5). The leucines in the LxxLL motif pack via 

hydrophobic contacts against the surface of PXR in a groove formed by α3, α4 and αAF. A 

“charge clamp” involving PXR residues Lys-259 and Glu-427 stabilizes the weak helix 

dipole at the C- and N-termini, respectively, of the LxxLL motif (47, 57).  Charged residues 

are conserved in these positions in NR LBDs, and are receptor-coactivator interactions.  

The structure of the PXR LBD in complex with the SR12813 ligand alone revealed 

three distinct binding modes for this small agonist within the receptor’s pocket.  A 

subsequent structure with PXR in complex with both SR12813 and a fragment of SRC-1, 

however, revealed only a single, distinct orientation of the ligand. This observation suggests 

that the PXR LBD “breathes”, allowing small ligands to sample multiple binding modes. In 
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the presence of a bound coactivator fragment, however, this sampling motion is restricted, 

resulting in stabilization of the ligand into a single conformation (47).  

Numerous single-site mutations have been introduced into the PXR LBD with 

varying effects on basal transcriptional activity. Some of these mutations lead to variant 

receptors that exhibit increased basal activation, including H407N, S247W, W299A, and 

R410A (73). In the S247W mutation, the replacement of serine with a bulky tryptophan 

residue is expected to fill the pocket to mimic ligand binding. This may stabilize coactivator 

interactions and increase basal transcriptional activity. The structural basis for the effects of 

other mutations, however, is less clear.  For example, H407N and W299A may impact 

receptor activity by impairing corepressor binding or by improving coactivator binding. 

Conversely, the mutation of charged residues (R410N, D205A, E321A, and R413A) may 

facilitate increased corepressor or decreased coactivator binding, causing the partial or 

complete loss of basal activation.   

 

1.4 AREAS FOR FUTURE STUDY 

In just a few years, PXR has moved from an orphan receptor to an adopted central 

xenobiotic sensor and a putative drug target. We now face new challenges to deepen our 

understanding of PXR’s basic functions in human biology, as well as and how the receptor 

might be harnessed in a clinical setting.  The role that distinct ligands play in PXR’s 

regulation of tissue- and coregulator-specific transcription events is emerging as a key area of 

study for this xenobiotic receptor (86).  In addition, the potential impact of sites of 

phosphorylation on the action and stability of this and other nuclear receptors warrants 

detailed attention (69), as does the pursuit of structures of full-length PXR-RXR 
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heterodimers on DNA.  Finally, because PXR is upregulated in certain human cancers (87, 

88), the search for selective PXR modulators (SPRMs) might provide novel therapeutic tools 

for the treatment of neoplastic and metabolic diseases.   
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1.6 TABLE LEGENDS 

Table 1.1  Comparison of human and mouse EC50 values and the key residues contacted in 

the crystal structures of PXR in complex with three structurally and chemically disparate 

ligands: SR12813, hyperforin, and rifampicin. 

 

1.7 FIGURE LEGENDS  

Figure 1.1.  Structure of the PXR LBD (blue) in complex with the small agonist SR12813 

(red) and a fragment of the SRC-1 transcriptional coactivator (cyan) (47). The 60-residue 

sequence insert novel to the PXRs and central to the receptor’s promiscuity is highlighted in 

magenta. 

Figure 1.2.  Sequence alignment of the PXR LBDs from various species.  Secondary 

structural elements of human PXR are indicated.  Residues lining the binding pocket are 

denoted by a caret; residues lining the pocket determined to be important to species-specific 

activation are indicated by an asterisk.  The dotted line identifies residues that are disordered 

in all the PXR LBD crystal structures determined to date.  Shaded areas indicate regions 

observed to be disordered in the PXR-rifampicin complex structure. 

Figure 1.3. Close-up of the PXR-LBD bound to the large macrolide antibiotic rifampicin 

(green and red) (73). Regions of the structure disordered in this complex are highlighted in 

yellow.  The same regions are observed to be mobile in other PXR-LBD structures, and to 

conform to the presence of distinct ligands and bound coactivator fragments. 
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Figure 1.4.  Schematic representation of the ligand binding pocket of human PXR, with 

residues that remain static in structure in bold and those that exhibit <1 Å shifts in position in 

italics.  The side chains of residues that move >1 Å in position are shown, along with the 

magnitude of maximal shifts observed upon ligand binding.  Note that four of the seven 

residues that exhibit a high degree of ligand-induced structural flexibility are part of the 

sequence insert novel to the PXRs. 

Figure 1.5.  An LxxLL motif of the human coactivator SRC-1 (residues 682-296; magenta) 

bound to the AF-2 region of PXR (white) via a combination of non-polar and electrostatic 

contacts. 
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Table 1. 1 Comparison of human and mouse EC50 values and the key residues contacted in the crystal 

structures of PXR in complex with three structurally and chemically disparate ligands: SR12813, 

hyperforin, and rifampicin. 
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Figure 1. 1Structure of the PXR LBD  in complex with the small agonist 

SR12813 (red) and a fragment of the SRC-1 transcriptional coactivator. 
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Figure 1. 2 Sequence alignment of the PXR LBDs from various species. 
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Figure 1. 3  Close-up of the PXR-LBD bound to the large macrolide 

antibiotic rifampicin 
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Figure 1. 4Schematic representation of the ligand binding pocket of human PXR 
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Figure 1. 5 The LxxLL motif of the human coactivator SRC-1 bound to the AF-2 region of PXR  via 

a combination of non-polar and electrostatic contacts 
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2.0 ABSTRACT 

The nuclear xenobiotic receptor PXR is is a highly promiscuous protein that binds to 

a spectrum of of structurally distinct therapeutics. It has a key role in the transcriptional 

regulations of genes encoding for xenobiotic metabolism enzymes. Hops extracts are used for 

the alleviation of menopausal symptoms and as an alternative to hormone replacement 

therapy. Like other herbal therapies, hops mediate a number of harmful drug-drug and herb-

drug interactions by activating PXR. In this study, we show that hops extracts induce the 

expression of numerous drug metabolism and excretion genes and compare its activity with 

other herbal treatments. Furthermore, we identify the β-bitter acid colupulone as a bioactive 

component that binds to and activates PXR. We present the 2.8 Å crystal structure of 

colupulone in complex with the ligand binding domain of human PXR. Colupulone binding 

is stabilized by several Van der Waals interactions and hydrogen bonding contacts, including 

a water-mediated interaction. A comparison with the binding pocket contacts for the 

structurally similar ligand hyperforin indicates distinct molecular contacts between PXR and 

colupulone. Docking of other α and β bitter acids onto the colupulone structure indicate a 

similar binding conformation for the other analogues. Taken together, these results represent 

an initial platform for structure based drug design. 
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2.1 INTRODUCTION  

 

Nuclear receptors have a canonical structure of three modular domains, a DNA 

binding domain, a flexible hinge region and a ligand binding domain (LBD). The ligand 

binding domain also contains a coregulator binding groove called the activation function 

region (AF-2). The pregnane X receptor (PXR), a member of the nuclear receptor 

superfamily of proteins, modulates the expression of genes involved in the metabolism and 

clearance of a wide array of structurally diverse endogenous and exogenous compounds. 

Upon ligand activation and coactivator recruitment, the expression of drug metabolism 

proteins is upregulated, including the cytochrome P450 family of proteins, Gluthathione S 

Transferase, UDP-glucuronosyltransferases, sulfotransferases and the Multidrug Resistance 

(MDR1) efflux pumps.  

PXR is a highly promiscuous protein that binds to a spectrum of  structurally distinct 

compounds. Promiscuity is ideal for xenobiotic clearance, but can also result in unfavorable 

drug-drug interactions. PXR-LBD has been reported to bind to drugs such as phenobarbital 

(1, 2), dexamethasone (3), avasimibe (4, 5) and hyperforin, the bioactive compound in the 

herbal anti-depressant St. John’s wort  (6).  PXR activation by these compounds has been 

shown to potentate the expression of drug metabolism enzymes, resulting in decreased 

plasma drug concentrations of concomitantly prescribed medications, with other harmful side 

effects.  Hyperforin, for instance, has been shown to reduce the 

concentration and, hence, efficacy of contraceptives, immunosuppressants, HIV protease 

inhibitors, and cancer drugs (7),(8-10),(11) with potentially life endangering consequences. 
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Despite the presence of over 1500 botanicals on the market, herbal formulations are 

not subject to FDA approval, and there is often a lack of clinical data regarding efficacy and 

even less available information about potential side effects (12). The flowers of the hops 

plant (Humulus lupulus) were historically used as a preservative and flavoring agent in beer. 

Currently, hops extracts are marketed as a source of phytoestrogens for the alleviation of 

menopausal symptoms and as an alternative to hormone replacement therapy (13-16). 

Estrogen replacement therapy has been shown to significantly increase the risk of developing 

breast and endometrial cancer (17). In addition to plant fiber and proteins, hops contain a 

number of small molecules including volatile oils, flavonoids, and primarily, bitter acids, 

which comprise 12-15% of all components (18). Bitter acids have exhibited anti-tumor 

properties in a variety of ways: inhibition tumor transition from dormant to malignant states, 

induction of myelogenous leukemia cell differentiation, and inhibition of tumor promotion 

(19).  

Bitter resins can be classified as α-acids (represented by the parent compound 

humulone) or β-acids (represented by the parent compound lupulone) (Figure 2.1A,B). One 

of these β-acids, colupulone, has been shown to have antibacterial properties and to inhibit 

tumor cell proliferation (20). Most significantly, colupulone was determined to stimulate 

expression of hepatic CYP3A enzymes in rats and mice (21) Transgenic mouse studies have 

established PXR to be the master regulator of the ligand inducible expression of the CYP3A 

family of enzymes (22-25).  

In this study, we show that hops extracts, including purified colupulone, activate the 

expression of drug metabolism enzymes through activation of PXR. We also report the 
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crystal structure of the PXR-colupulone complex, and use that structural data to understand 

the activation of PXR by both α and β hops bitter acids.  

2.2 METHODS 

2.2.1 Colupulone, herbs and preparation of herbal extracts.  

Colupulone was a gift from KALCEK, Inc. (Kalamazoo, MI).  St. John’s wort and 

gugulipid were purchased from General Nutrition Companies, Inc. (Pittsburgh, PA), and 

hops was purchased from Nature’s Way Products, Inc. (Springville, UT).  Lyophilized hops 

and gugulipid were removed from their gelatin capsules and St. John’s wort tablets were 

ground into a fine powder with a mortar and pestle prior to extraction.  Herbs were extracted 

by vortexing for 2 min in the presence of ethanol (1 g of herbal product/10 ml).  A 1 ml 

aliquot of the mixture was transferred into a microcentrifuge tube and centrifuged for 15 min 

at 1500 rpm to remove the particulate material. The supernatant was transferred to a fresh 

microfuge tube and recentrifuged for 15 min at 1500 rpm.  The resulting ethanol extracts 

were dried, weighed and the residue redissolved in DMSO for assays.   

 

2.2.2 Human hepatocytes.  

Human primary hepatocytes were obtained from the Liver Tissue Procurement and 

Distribution System (LTPADS) as attached cells in 6-well plates in Human Hepatocyte 

Maintenance Medium (Cambrex Bio Science Walkersville Inc., Walkersville, MD) 

supplemented with 100 nM dexamethasone, 100 nM insulin, 100 U/mL penicillin G and 100 

µg/mL streptomycin.  Twelve hours after changing the culture medium to serum-free 

William’s E medium, cells were treated with herbs, colupulone, rifampicin or vehicle (0.1%  

DMSO) for 24 hr. 
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2.2.3 RNA Preparation and Real Time Quantitative PCR Analysis.   

Total RNA was isolated using Trizol reagent (Invitrogen) according to the 

manufacturer’s instructions.  Real-time quantitative PCR (RTQ-PCR) was performed using 

an ABI PRISM 7000 Sequence Detection System instrument and software (Applied 

Biosystems, Inc., Foster City, CA).  Samples were assayed in triplicate 25-µl reactions using 

25 ng of RNA per reaction.  Primers were designed using Primer Express Version 2.0.0 

(Applied Biosystems) and synthesized by Integrated DNA Technologies (Coralville, IA).  All 

primers and probes were entered into the NCBI Blast program to ensure specificity.  Fold 

induction values were calculated by subtracting the mean threshold cycle number for each 

treatment group from the mean threshold cycle number for the vehicle group and raising 2 to 

the power of this difference.  RTQ-PCR primers: CYP2B6, forward 

AAGCGGATTTGTCTTGGTGAA, reverse TGGAGGATGGTGGTGAAGAAG; CYP3A4 forward 

CAGGAGGAAATTGATGCAGTTTT, reverse GTCAAGATACTCCATCTGTAGCACAGT; 

MDR1 forward GTCCCAGGAGCCCATCCT, reverse CCCGGCTGTTGTCTCCAT. 

 

2.2.4 Cell-based reporter assays.   

Transfection assays were performed in CV-1 cells plated in 96-well plates at a density 

of 20,000 cells/well in Dulbecco’s modified Eagle’s medium high glucose medium 

supplemented with 10% charcoal/dextran treated fetal bovine serum (HyClone, Logan, UT).  

Transfection mixes included 5 ng of receptor expression vector, 20 ng of reporter plasmid, 12 

ng of β-actin secreted placental alkaline phosphatase as an internal control, and 43 ng of 

carrier plasmid.  Human PXR expression plasmids and the CYP3A4/XREM-luciferase 

reporter, containing the enhancer and promoter of CYP3A4 driving luciferase expression, 
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were used as described previously (6).  Transfections were performed with LipofectAMINE 

(Life Technologies, Inc.) according to the manufacturer’s instructions.  Luciferase activity 

was normalized to secreted placental alkaline phosphatase expression. 

 

2.2.5 Protein Expression and Purification.  

PXR LBD (residues 140-434) was expressed in the N-terminal His-tagged expression 

vector, pRSET-A (Invitrogen).  Residue Cys-284 was mutated using the QuikChange 

mutagenesis kit (Stratagene) to prevent formation of covalent complexes in the presence of 

DTT. An 88 residue (residues 623-710) construct of the human SRC-1 gene in the 

pACYC184 vector was co-transformed with the PXR/pRSET-A plasmid into BL21(DE3) 

E.coli cells. 15 L. of cell culture in LB broth supplemented with ampicillin and 

chloramphenicol were inoculated with PXR/SRC-1 and grown overnight at 22 oC. Harvested 

cells were centrifuged (20 minutes, 3500 g, 4 oC) and the resulting pellet was resuspended in 

nickel buffer A (50 mM Tris-Cl pH7.8, 250 mM NaCl, 50 mM Imidazole pH 7.5 and 5% 

Glycerol).  Cells were sonicated on ice for 20 minutes and spun down at 20,000 g for 90 

minutes at 4oC. The supernatant was loaded onto a 50 mL nickel column (ProBond- 

Invitrogen). The column was washed with 200 mL each of nickel buffer A and nickel buffer 

B (50 mM Tris-Cl pH7.8, 250 mM NaCl, 75 mM Imidazole pH 7.5, 5% Glycerol). On 

column buffer exchange was done by washing the column with Nickel Buffer C (50 mM 

Tris-Cl pH7.8, 75 mM Imidazole, 5% Glycerol and 50 mM NaCl) to prepare the sample for 

running on an ion-exchange column. Protein was eluted off using nickel buffer D (50 mM 

Tris-Cl pH7.8, 250 mM Imidazole, 5% Glycerol and 50 mM NaCl). Column fractions were 

pooled and immediately loaded onto a SP-cation exchange column (BioRad) pre-
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equilibriated with SP buffer A (50 mM Tris-Cl pH7.8, 50 mM NaCl, 5mM DTT, 2.5 mM 

EDTA pH 8.0 and 5% Glycerol). The protein sample was washed with 200 mL of SP buffer 

A and eluted with SP buffer B (50 mM Tris-Cl pH7.8, 400 mM NaCl, 5mM DTT, 2.5 mM 

EDTA pH 8.0 and 5% Glycerol). Pooled fractions were diluted to double the volume using a 

no salt buffer and subsequently concentrated to 10 mg/ml using the Centri-prep 30K units 

(Amicon) in the presence of 25-fold molar excess colupulone and 2-fold molar excess SRC-1 

peptide.    

 

2.2.6 Crystallization, Data Collection, Processing, Model Building and 

Refinement.  

PXR-LBD was crystallized using hanging-drop vapor diffusion methods at room 

temperature against a crystallant containing 50 mM Imidazole at pH 8.0, 10% (v/v) 

sopropanol  and 50 mM DTT.  Crystals were cryoprotected by serial dipping into 15 %, 25 % 

and 35 % ethylene glycol. Data collection was conducted at SER-CAT at the Advanced 

Photon Source in Argonne National Labs. Diffraction data was were indexed, scaled and 

integrated using HKL2000(26). Using the apo structure of PXR-LBD (PDB ID: 1ILG) as a 

search model, molecular replacement was conducted with MolRep module of CCP4 (27, 28). 

Clear molecular replacement solutions were obtained in the spacegroup of P43212. The 

structure was built using a combination of O (29) and WinCoot 3.1 (30) and maps were 

refined using CNS (31) and CCP4 (32). Figures were created using Pymol (33).  

 

2.2.7 Calculation of Tanimoto Coefficients.  
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Tanimoto coefficients are a statistical measure of how structurally similar two 

molecules are using the equation, Tc = AB / ( A + B - AB ), where Tc is the Tanimoto score 

(ranging between 0, low similarity and 1, high similarity), AB are the number of structural 

descriptors found in molecules A and B, A are the structural descriptors found in molecule A, 

B are the structural descriptors found in molecule B.  The different structural descriptors 

refer to element counts, types of ring system, atom pairing, atom environment (nearest 

neighbors), etc(34). 

 

2.3 RESULTS 

2.3.1 Hops extracts induce expression of drug clearance proteins.  

We sought to determine the effects of hops on metabolic gene regulation in hepatic 

tissues using RTQ-PCR methods (Figure 2.2).  The extracts of St. John’s wort and 

rifampicin, a standard PXR activator, were used as positive controls. Hyperforin from St 

John’s wort has been shown to have nanomolar affinity for PXR. RTQ-PCR methods 

indicate that hops extracts increase mRNA levels for CYP3A4, CYP2B6 and MDR1 in a 

concentration-dependent manner. Hops raised transcriptional activty close to levels exhibited 

by rifampicin at 100 µL hops extracts. Comparison of hops and St. John’s wort results 

indicate that both herbal extracts affect CYP3A4, CYP2B6 and MDR1 levels. Activation of 

CYP3A4 is especially significant because it is the most abundant of all the cytochrome 

P450s, clearing over half of all prescription drugs.  

Transient transfection data were generated to verify that hops-induced CYP3A4 

expression was potentiated by PXR (Figure 2.3). Gugulipid, an herbal extract from the 

guggul tree (Commiphora mukul) that is believed to treat hyperlipidemia (35), was used as a 
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secondary control. Its biotransformation has been linked to CYP3A4 oxidation, in both 

rodent and human hepatocytes, through a PXR regulated pathway (35).  At moderate extract 

volumes (1.0 µL), hops shows higher CYP3A4 activation than St. John’s wort, but lower 

than gugulipid.  However, St. John’s wort and gugulipid both exhibit higher reporter activity 

than hops at high volume (10 µL). Hops activates PXR above basal levels at all tested 

concentrations (Figure 2.3A).   

 

2.3.2 Isolated Colupulone activates PXR regulated gene expression.   

Colupulone, known to activate the transcription of CYP3A family of enzymes in 

mice, was hypothesized to trigger a similar response in human hepatic cells by binding to 

PXR(21). Cotransfection data from CV-1 cells (Figure 2.3B) validated this, showing dose-

dependent transcriptional activation 2.0-2.5 fold above basal levels with only nanomolar (3-

10 nM) concentrations of colupulone. Addition of 30 nM colupulone drops activation levels, 

likely due to cell death. Indeed, α- and β-acids have been shown to activate the death receptor 

Fas, causing apoptosis(19) . Reporter activity values with colupulone, however, do not 

approach those of hops extracts alone suggesting that other compounds (i.e. other bitter 

acids) may be binding to PXR to induce protein expression. Overall, the transient 

transfection data identifies that colupulone activates PXR.  

 

2.3.3 PXR-Colupulone Structure Shows Conserved Structural Features.  

The crystal structure of PXR-LBD in complex with colupulone was determined using 

molecular replacement (Figure 2.4). Evaluation of the structure indicates that it maintains the 

canonical nuclear receptor ligand binding fold with a seven membered α-helical sandwhich 
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arranged in three layers (α1/ α3, α4/α5/α8 and α7/ α8).  The ligand binding domain of PXR 

owes its promiscuous nature to two unique structural features: an extended β-sheet region 

and a novel helix-loop insert (residues 177-205) that becomes highly disordered in the 

presence of large ligands such as the macrolide antibiotic rifampicin(6, 36). The PXR-

colupulone structure contains this atypical five-stranded anti-parallel β-sheet. The β-strands 

(β1/β1’) also function as a distinct homodimerization interface(37). Typically, nuclear 

receptors heterodimerize or homodimerize by a packing interface formed by α9/α10. PXR 

still utilizes the same heterodimerization surface to bind to RXR, but homodimerizes through 

intercalating aromatic residues (W223/Y225) called a tryptophan zipper or “trp-zip”(37, 38). 

All structural features previously observed are conserved in PXR-colupulone. Additionally, 

the activation function region maintains a conformation consistent with the agonist bound 

form for nuclear receptors, wherein the αAF helix remains immobilized against the groove 

formed by α 3,α3’ and α4. In the antagonist-bound conformation, the αAF helix has been 

proposed to move into a position above or below the AF-2 binding groove, thereby 

preventing coactivator recruitment(39).  

There is a higher degree of structural disorder in the PXR-colupuloe complex relative 

to other reported PXR structures. Aside from the disordered loop region missing from all 

PXR structures to date, we could not trace pseudo helix 2 (residues 177-209). However, most 

of the structural features necessary for ligand binding, such as the β-sheets flanking the main 

wall of the pocket, are present. Structural deviations between colupulone and previously 

solved structures are small, with RMSDs ranging from 0.27-0.54 Å over Cα positions. The 

structure of PXR complexed to rifampicin also had missing regions, for example, the main 

floor of the ligand binding pocket formed by helix 2 was absent from that structure. 
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However, many of the important contacts (e.g. His407, Ser247, Trp299) could still be 

identified and provided sufficient information to explain mutations that increased or 

decreased rifampicin efficacy (36).  

 

2.3.4 Colupulone Binding is Stabilized by Key Residues.  

 Initial difference density maps indicated the presence of colupulone in the ligand 

binding domain. Once colupulone was placed, a simulated annealing omit map was 

generated. Docking of the main cyclic skeleton of colupulone into electron density in the 

ligand binding cavity revealed proper positioning of the other molecular features (i.e. 

isoprene units extending off of the ring). The ligand electron density reveals a water 

molecule forming hydrogen bonds with a hydroxyl group coming off of the ring (Figure 2.5).   

Several residues stabilize colupulone in the ligand binding pocket. Thirteen 

hydrophobic residues (Met425, Met323, Phe281, Phe288, Trp299, Tyr306, Val211, Leu209, 

Met243, Ala244, Phe420, Ile414, Leu411) and  two polar residues (Arg 410, His327) form 

packing interactions with the carbon atoms of the ligand. Linking α10 and α7 is a salt bridge 

formed by Arg410 with Glu321, which is consistent with previously solved structures. The 

salt bridge may act as gating residues to prevent ligand exit. Van der Waals contacts between 

colupulone and αAF residues, Met425 and Phe420, act to stabilize the AF-2 region in an 

agonist bound conformation. There exists a direct hydrogen bonding contact between one of 

the colupulone hydroxyl groups and His407. The water molecule fitted in the density 

mediates a hydrogen bond between another colupulone hydroxyl group on the ring structure 

and Gln285 (Figure 2.6).  
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2.3.5 Analysis of Ligand Pocket and Ligand Similarity Validates PXR-

Colupulone Structures. 

To further expand on the ligand pocket analysis, we compared the PXR-colupulone 

pocket, not just with the identities of the residues contacted by ligands in previous structures, 

but also with the degree of similarity between the ligands. To facilitate this analysis, we 

calculated the Tanimoto coefficients for colupulone compared to a structurally distinct ligand 

such as rifampicin, and a structurally similar one such as hyperforin. Rifampicin and 

colupulone, two structurally diverse ligands,  have a Tanimoto coefficient or Tc = 0.20(40). 

A comparison of the colupulone ligand binding pocket with those in complex with 

rifampicin, which exhibits the largest number of molecular contacts (27 residues in the ligand 

binding pocket), shows fewer (8-10 residues) ligand-receptor interactions for colupulone.  

Interestingly, hyperforin, which shows high structural similarity (Tc = 0.80) with 

colupulone(40), has a ligand binding pocket that more closely resembles that of rifampicin 

(Tc = 0.16) (40) Hyperforin contacts the same residues as colupulone, but requires further 

stabilization provided by eight additional hydrophobic amino acids (Leu240, Leu329, 

Leu206, Cys284, Met250, Met246, Phe251 and Leu324) that are also found in the rifampicin 

structure. Thus, although residues in the colupulone pocket have been found to contact other 

ligands in previous crystal structures, it is difficult to predict, even with similar chemical 

structures, the exact combination of residues that interact with a given substrate. Given the 

reliance of in silico ligand docking methods on the exact identity and conformation of the 

ligand binding pocket and compounded by the numerous conformers ligands can exhibit, 

correct predictions for structure based drug development remain a difficult task for highly 
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promiscuous proteins such as PXR. Crystallography remains the most accurate method for 

determining ligand-receptor interactions. 

 

2.3.6 Superposition of Other Bitter Acids Indicates Similar Contacts.  

Our transient transfection data indicated that, while colupulone contributed to 

metabolic gene expression, it did not account for all of the activation. We hypothesized that 

the other bitter acids contributed to the transcriptional induction and subsequently 

superimposed the other α- and β- bitter acids found in hops onto the PXR-colupulone 

structure to determine if the other bitter acids could bind in a similar manner (Figure 2.7A,B). 

RMSDs ranged from 0.54 – 0.79 Å, not surprising given the isostructural nature of these 

compounds with colupulone (Figure 2.1A,B). Hyperforin on the other hand, has a different 

molecular scaffold and was non-superimposable.  Analysis of the docked α- and β- bitter 

acids indicate the same binding conformtion and nearly the exact same residues contacted as 

in the colupulone structure. For example, docking of the heaviest and most substituted 

member of the bitter acids family, lupulone (414.5 Da), shows no new polar or non-polar 

contacts (Figure 2.7B). In the less substituted α- acids, only a single interaction with His-327 

is lost (Figure 2.7A). Additionally, the isoprene unit located across from the keto-oxygen the 

packs against the mobile section (bfactor ≥ 70 Å) of the ligand binding pocket (Leu209, 

Val211, Tyr306). Overall, this provides a structural framework for understanding the 

molecular interactions of other bitter acids with PXR. 
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2.4 DISCUSSION 

The rising use of herbal remedies and supplements together with prescribed 

medications increases the risk of potentially dangerous drug-herb interactions. Toxicity 

arising from drug-herb interactions could even be fatal, depending on a number of factors 

associated with the patients, herbs and drugs. Altered drug clearance due to changes in 

CYP450 expression profiles have been observed for anticoagulants (warfarin, aspirin and 

phenprocoumon), sedatives and antidepressants (midazolam, alprazolam and amitriptyline), 

oral contraceptives, anti-HIV agents (indinavir, ritonavir and saquinavir), cardiovascular drug 

(digoxin), immunosuppressants (cyclosporine and tacrolimus) and anticancer drugs (imatinib 

and irinotecan) (41). Herbal medicine can also affect laboratory test results, causing falsely 

elevated or falsely lowered drug levels interfering with proper diagnosis(42).  Presently, the 

rate of consumption of herbals among patients is generally unknown, with many physicians 

completely unaware of their patients’ usage of such herbal remedies.  A recent study at one 

hospital found 25% of patients consuming some form of herbal or dietary supplement, with 

all reported drug-herbal interactions completely missed by attending physicians(43). 

Identification of compounds in herbs and investigation into the molecular details by which 

adverse interactions can occur are key to decreasing toxic drug-herb interactions(41).  

 To this end, we investigated the ability of ethanolic extracts of hops to induce gene 

expression in primary human hepatocytes using RTQ-PCR methods. We found that hops 

extracts activated the expression of various drug metabolism and clearance genes, 

specifically of Phase I oxidation (CYP3A4, CYP2B6) and Phase III excretion proteins 

(MDR1). The gene activation profile exhibited by hops extracts was similar to St. John’s 
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wort, an established mediator of herb-drug interactions that decreases the bioavailability of 

prescription drugs such as contraceptives, HIV-medications and immunosuppressants, 

causing widespread concern over its unregulated use among patients(7);(8-10);(11). It also 

reflected the increased activity seen in rifampicin, a standard PXR activator. We determined 

through transient transfection assays that the metabolic protein expression was through PXR-

mediated gene activation, similar to St. John’s wort and gugulipid, another confirmed inducer 

of CYP450 expression resulting from PXR agonism (35).  We hypothesized that activation 

was due to the β- bitter acid colupulone, which elicited CYP3A expression in rodents(21). 

Transfection assays confirmed colupulone to be a PXR agonist at nanomolar levels, although 

it did not account for all of PXR’s response to hops extracts.  

 We then elucidated the structure of colupulone in complex with PXR to 2.8Å 

resolution, which is sufficient to glean structural information such as hydrogen bonds and 

Van der Waal interactions. The overall structure closely resembled previously solved crystal 

structures, such as those bound to rifampicin, which also showed highly disordered regions 

between residues 177-209. Using the structure we were able to determine the specific 

contacts required for colupulone binding. We compared the residues in the ligand binding 

pocket with those in the PXR-hyperforin structure, a substrate with a high degree of 

structural similarity with colupulone. We demonstrated that high structural similarity 

between drugs does not necessarily translate into equivalent ligand contacts. Previous studies 

have emphasized the importance of accurately identifying ligand-receptor contacts as PXR 

exhibits differential effects to similar ligands. For example, F288A mutation in the pocket 

resulted in a doubled affinity for hyperforin but halved SR12813 binding, even if both 

ligands have a mass of ~500 Da(6). Many existing ligand docking methods used to predict 
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ligand-receptor interactions assume a rigid pocket, which can be problematic when dealing 

with highly promiscuous and conformable proteins such as PXR (44).    

 Molecular details of receptor-drug interactions elucidated through crystallographic 

methods remain the most precise way to incorporate structural information into the early 

stages of drug development. In the case of the crystal structure of PXR bound to colupulone, 

we have uncovered the specific contacts involved in nuclear receptor mediated 

transcriptional induction and applied knowledge of the conformation of colupulone within 

the binding pocket to dock structures of other members of the α- and β- bitter acids family. 

This permits us to expand our structural predictions for improved drug design to include the 

other bitter resins. Thus, our results represent an initial framework for structure-based drug 

design to produce better therapeutics with minimized toxicity arising from PXR mediated 

drug-herb interactions.  
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2.6 TABLE LEGENDS 

Table 1. Data collection and refinement statistics. 

 

2.7 FIGURE LEGENDS 

Figure 2.1. Hops contain several bitter acids, some of which are chemical analogs of 

colupulone. The α-acids are distinguished from colupulon and β-acids by the substitution of 

a hydroxyl group for the (R/S)-isoprene at the 2-position. The variability within each family 

of bitter acids is derived mainly from substitutions at the carbonyl carbon marked R.   

Figure 2.2.  RTQ-PCR of primary human hepatocytes following the induction of 

CYP3A4, CYP2B6 and MDR1 in response to drug treatment. PXR induction by St. 

John’s wort and hops extracts upregulates CYP3A4, CYP2B6 and MDR1 expression.   

Figure 2.3 Transfection assays show that colupulone in hops extracts upregulate human 

PXR expression in CV-1 cells.  

A: Transfection assays show hops extracts upregulate human PXR expression in CV-1 cells 

close to St. John’s wort (SJW) levels. Induction levels were compared to the known PXR 

agonist Rifampicin. Concentrations of the drug vehicle, DMSO, were held constant in each 

experiment, and vehicle only failed to induce CYP3A4, CYP2B6 or MDR1. 

B: Transfection assays identify colupulone, a major bioactive component of hops extract, as 

PXR inducer of transcriptional activation.  

Figure 2.4. Overall structure of the PXR colupulone complex. Structure maintains 

canonical nuclear receptor α-helical sandwich fold with the additional β-strands (β1 and β1’) 

and conformable helical region (α2) that endows it with broad spectrum specificity. 

Colupulone is rendered in cyan spheres.  
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Figure 2.5.  Stereoveiw of colupulone in 2.8Å simulated annealing omit map density 

contoured at 1Å clearly shows structural features of the ligand.  

Figure 2.6. Stereoview of residues in the ligand binding pocket (distance ≤ 4.5 Å). 

Binding is stabilized by water molecule and H-bonding by His407. Unlike previous 

structures, binding conformation shows no contact with Ser247 and Phe420.  

Figure 2.7. Superimposition of α and β-acids onto colupulone structure provide insights 

on binding mode of other bitter acids.   

A: α-acids overlayed onto colupulone structure. 

B: β-acids overlayed onto colupulone structure.  

 

 

 

 

 

 

 

  



 
55

Table 2. 1 Data collection and refinement statistics.

1100  ((66..33)) RReedduunnddaannccyy

9999..77%% ((9977..66%%)) CCoommpplleetteenneessss

1199..88  ((22..88)) II  // σ 
1100..55%% ((4433..55%%)) RRssyymm 

5500--22..88  ÅÅ RReessoolluuttiioonn  ((ÅÅ))

9900..99,, 9900..99,,  8855..44         aa,,  bb,,  cc  ((ÅÅ))

CCeellll  ddiimmeennssiioonnss  
PP4433221122 SSppaaccee  ggrroouupp

DDaattaa  ccoolllleeccttiioonn

RR..mm..ss..  ddeevviiaattiioonnss

11..22         BBoonndd  aanngglleess ((°°))
00..000088         BBoonndd  lleennggtthhss ((ÅÅ))

4444..44         WWaatteerr 
4488..11         PPrrootteeiinn 

BB--ffaaccttoorr  ((ÅÅ22 ))

88887700 ((11116666)) NNoo..  rreefflleeccttiioonnss

RRwwoorrkk  //    
RRffrreeee 

5500--22..88  ÅÅ RReessoolluuttiioonn  ((ÅÅ))

RReeffiinneemmeenntt 

2244..22%% ((3344..00%%))//  
2288..44%%  ((3388..77%%))   

Values in parenthesis are in the highest shell 
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Figure 2. 1 Hops contain several bitter acids, some of which are chemical 

analogs of colupulone

RR--ggrroouuppCCoommppoouunndd  

CCHH22  ((CCHH33))22  CCoohhuummuulloonnee  

CCHH((CCHH33))  CCHH22CCHH33  AAddhhuummuulloonnee  

CCHH22CCHH((CCHH33))22  HHuummuulloonnee  

αα−−AAcciiddss  

RR--ggrroouuppCCoommppoouunndd

CCHH22  ((CCHH33))22  CCoolluuppuulloonnee  
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CCHH22CCHH((CCHH33))22  LLuuppuulloonnee  

ββ−−AAcciiddss  
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Figure 2. 2 RTQ-PCR of primary human hepatocytes following the 

induction of CYP3A4, CYP2B6 and MDR1 in response to drug 

treatment. 
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Figure 2. 3 Transfection assays show that colupulone in hops extracts upregulate 

human PXR expression in CV-1 cells.  

0 

2 

4 

6 

0.1 1.0 10 0.1 1.0 10 0.1 1.0 10 

SJW hops gugulipid 
veh rif

R
ep

or
te

r a
ct

iv
ity

 
(fo

ld
 a

ct
iv

at
io

n)
 

0 

2 

4 

6 

0.1 1.0 100.1 1.0 10 0.1 1.0 100.1 1.0 10 0.1 1.0 10 0.1 1.0 10 

SJW hops gugulipid 
veh rif

µL extract

0 

3 

4 

5 

6 

7 

8 

9 

10 

1 3 10 30 rif HOPS vehicle 

colupulone (nM) 

0 
1 

2 

R
ep

or
te

r a
ct

iv
ity

 
(fo

ld
 a

ct
iv

at
io

n)
 

A 

B 

µL extract 

PXR Agonists (nM) 



 
59

Figure 2. 4 Overall structure of the PXR colupulone complex. 
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Figure 2. 5 Stereoview of colupulone in 2.8Å |2Fobs-Fcalc| omit map 

density contoured at 1Å clearly shows structural features of the ligand. 
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Figure 2. 6 Stereoview of Residues in the ligand binding pocket (distance ≤ 4.5 Å).
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Figure 2. 7 Superimposition of α and β-acids onto colupulone structure provide insights on binding mode 

of other bitter acids.   
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3.0 ABSTRACT 

The molecular dynamics simulations of the monomer and dimer form of the human 

pregnane X receptor (PXR) ligand binding domain bound to retinoid X receptor RXR are 

compared to determine how differences in motion affect their differential ability to be 

activated by steroid receptor coactivator 1 (SRC-1). Principal component analysis (PCA) and 

correlated/anticorrelated motion analysis reveal highly coherent motions for the dimer form 

especially in the activation function-2 (AF-2) domain, but only weak correlated or 

uncorrelated motion for the monomer. This allows the dimer to move in discrete domains, 

while the monomer moves as small disjointed regions. Simulations of PPARγ, RXR and ERα 

dimer also show highly correlated motion between the helices in the activation function 

region (AF-region) but not for simulations of the biologically inactive mutant PPARγ P467L. 

Our studies indicate that coherence in the AF-region may be a defining characteristic of 

functionally active nuclear receptors.  
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3.1 INTRODUCTION 

The nuclear receptors (NR) superfamily of ligand-regulated transcription factors 

control the expression of genes essential to metabolism, development and systemic 

homeostasis (1-3). NRs are modular proteins that typically contain highly conserved DNA 

binding domains  that target specific response elements, flexible and variable hinge regions, 

and C-terminal ligand binding domains (LBD) containing the ligand binding pocket (4). A 

shallow activation function-2 (AF-2) groove on the surface of the LBD is formed by helices 

3, 3’, 4 and 12, that interacts with LxxLL-containing transcriptional coactivators in the 

presence of agonist ligands and distinct leucine-rich corepressor motifs in the presence of 

antagonists or no ligand (4, 5).  

The human pregnane X receptor (PXR) controls the expression of a wide range of 

gene products involved in xenobiotic metabolism and endobiotic homeostasis (6-8).  It is 

unusual in the NR superfamily in several respects.  First, it responds promiscuously to 

ligands of varying shapes and sizes, from small lipophilic phenobarbital (232 Da) to the large 

macrolide antibiotic rifampicin (823 Da); in contrast, most NRs are highly specific for their 

cognate ligands (9-11).  Second, the PXRs of known sequence contain a 50- to 60-residue 

insert that folds into a novel β-turn-β motif and mediates a unique homodimer interface 

observed in human PXR (12).   All NR LBDs fold into a three-layer α-helical sandwich in 

which α10 forms standard homodimerization (e.g., for steroid receptors like the 
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estrogen receptor) or heterodimerization interactions with the retinoid X receptor (RXR; e.g., 

for orphan receptors like PXR) (2, 13, 14) (See inset of Figure 3.3A). The PXR LBD 

contains a unique second oligomerization interface at  the novel β-turn-β motif in which 

intercalating tryptophan and tyrosine residues (W223/Y225) lock across the dimer to form an 

aromatic zipper (4, 5, 12) (Figure 3.1A). It has been shown that this dimer interface is 

essential to PXR function, and that the specific disruption of homodimerization eliminates 

the ability of the receptor to interact with transcriptional coactivators like SRC-1, but does 

not impact PXR’s subcellular localization or its association with DNA, RXR, or activating 

ligands (12).   

The novel homodimer interface in PXR is located ~35 Å from the AF-2 site of 

coactivator binding (Figure 3.1A), we therefore, hypothesize that dynamic long-range 

rearrangements are essential for PXR function.  We performed molecular dynamics (MD) 

simulations to uncover these long-range motions.  We find that the structural stability 

imparted by the PXR homodimer generates an AF-2 surface that moves as a unit in its active 

orientation and in a highly coherent fashion that becomes even more correlated upon 

heterotetramerization with RXR, the proposed functional form of the receptor (12) (Figure 

3.3A).  We show that active forms of both steroid and orphan nuclear receptors exhibit the 

same correlated motion in their AF-2 surfaces, but that inactive monomeric or mutant NR 

LBDs do not.  These results expand on previous MD, nuclear magnetic resonance (NMR) 

and time resolved fluorescence resonance energy transfer data  (13, 15-18) and establish that 

the NR LBD provides a scaffold for long-range interactions that impact the structure and 

dynamics of a key protein-protein interaction surface.  

 



 
67

3.2 METHODS  

Ten nanosecond molecular dynamics trajectories were run on the PXR ligand binding 

domain monomer and dimer alone, in complexes with the ligand SR12813 or a fragment of 

the coactivator SRC-1, and in complexes with both ligand and coactivator. Ten nanosecond 

trajectories were also run on the heterodimer and heterotetramer of the LBDs of PXR and the 

retinoid X receptor (RXR), as well as on the LBDs of the peroxisome proliferator-activated 

receptor-gamma (PPARγ), retinoid X receptor (RXR) and the estrogen receptor (ER).  

All structures were obtained from the protein databank (www.rcsb.org).  The PXR-

RXR heterodimer and heterotetramer models were generated as described  (12).  All MD 

simulations were carried out with a 2 fs time step using the parm03 force field. The 

SANDER package from Amber 8.0 was used for the PXR monomer and dimer simulations; 

all other production runs employed the PMEMD module from Amber 9.0 with frames 

recorded every 0.4 psec. Ligand input files were generated with ANTECHAMBER using the 

gaff force field to determine charges. Topology and parameter files were created using the 

LEaP program. An explicit solvent model with TIP3P water molecules and an octahedral 

periodic boundary box was used. Electrostatic interactions were calculated using the particle-

mesh Ewald algorithm. The SANDER package was used for 5000 steps of minimization. 

NVT heating was performed for 20 psec from 100 to 300 K, followed by 100 psec NPT to 

increase density and equilibrate to 1 atm. NVT heating from 200 to 300 K  was applied to the 

system for 20 psec, before beginning the 10 ns production run at NPT. 

Simulations were analyzed using the PTRAJ package in Amber. Root-mean-square 

deviation (RMSD) of the backbone atoms were calculated for each set of trajectories to 

determine proper equilibration using the initial conformation as reference. Quasiharmonic 
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PCA analysis was employed for each trajectory using PTRAJ. PCA or essential dynamics is 

a statistical method for simplifying multidimensional data sets to lower dimensions for 

analysis. The first principal eigenvectors for each trajectory, having the largest eigenvalue, 

were then identified as these represent the most relevant descriptors of global protein motion 

(accounting for 40-75% of motion in PXR simulations).  The correlation analysis was 

performed on the equilibrium MD trajectories as described in Sharma et al. (19). The pair-

wise correlation coefficient is computed between the α carbon of individual residues and the 

value ranges from –1 to +1. The larger the absolute value of the pair-wise coefficient, the 

more coherently the two residues moves.  To cluster the correlated residues, an un-weighted 

graph is built where each node corresponds to the residues and residue pairs with correlation 

coefficient larger than a cutoff value are joined with edge. The set of residues with edges 

inter-connected forms a distinct cluster.  

 

3.3 RESULTS 

3.3.1 Equilibration of MD Simulations   

Ten molecular dynamics simulations lasting 10 nanoseconds each were performed for 

different states of the PXR ligand binding domain (LBD), and an additional four 10 ns 

simulations were run for other nuclear receptor LBDs (two for ER, and one each for PPARγ 

and RXR). Trajectories equilibrated properly and generated stable production runs.  RMSDs 

examined against initial structures reveal that equilibrium was achieved in each trajectory 

after <2 ns (Supplementary Figures 3.1-3.2).  The PXR LBD apo (unliganded) monomer and 

dimer trajectories, for example, exhibited moderate average RMSDs of 3.8 ± 0.19 Å and 3.8 

± 0.38 Å, respectively, for the remaining 2-10 ns of their simulations. Overall, the ten PXR 
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LBD trajectories deviated from their initial structure by RMSD values of 2-4.5 Å, while the 

four other NR LBD trajectories exhibited values of 2-3 Å.   Loop regions that were built-in 

showed high atomic positional fluctuations (Supplementary Figure 3.3A,B) and were highly 

mobile, consistent with temperature factors of crystal structures.   

 

3.3.2 Highly Correlated PXR Dimer Motions   

The first evidence that the PXR LBD monomer and dimer exhibited distinct global 

motions came from analyses of  the atomic positional fluctuations during each trajectory.  

For example, the apo PXR LBD monomer exhibited a relatively rigid core (e.g., mean APF 

value of 34.8 Å for helices 1, 3, 4, 5, 8, 9), and significant motion only in the β1-β1’ and αAF 

regions (Supplementary Figure 3.3A).  In contrast, in the apo PXR LBD dimer simulation, 

the rigidity in the core only remains for α5, while α9 and regions of helices 1-4 and 10 

exhibit a high degree of motion (mean APF value of 82.6 Å) (Supplementary Figure 3.3B). A 

similar relationship was observed between each corresponding pair of PXR LBD monomer 

and dimer simulation (e.g., liganded monomer vs. dimer; data not shown).  Thus, the PXR 

LBD dimer exhibits a high degree of global motion relative to the monomer.   

We next examined the correlated nature of the motions observed in the PXR LBD 

trajectories (Figure 3.1B; Supplementary Figures 3.4A-D). Correlation plots indicate that the 

PXR LBD dimer is both more mobile than the monomer, and that the motions exhibited are 

highly correlated (red) and anticorrelated (blue).  Only moderate peaks of correlated and 

anticorrelated motions are observed in each of the PXR monomer runs; in contrast, several 

significant peaks are evident in each of the corresponding PXR dimer runs     (Figure 3.1B; 

Supplementary Figures 3.4A-D).  They are also consistent in both monomers of the PXR 
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LBD dimer, as shown in Supplementary Figure 3.4E. In general, the distributions of the 

correlation values for the PXR LBD monomer simulations can be fitted by Gaussian function 

(R2 ≥ 0.99), while those for the PXR LBD dimer simulations are distinctly non-Gaussian and 

display multiple peaks that range between -0.6 and 0.6 (Supplementary Figure 3.5).  Taken 

together, these data establish that the PXR LBD homodimer, which is the active form of the 

receptor, exhibits a remarkably high degree of correlated and anticorrelated motion relative 

to the inactive PXR LBD monomer. 

 

3.3.3 Distinct Domains of PXR Motion   

Based on clustering (see methods), the regions of correlation and anticorrelation 

observed in the MD trajectories, two major domains of motions were identified for the PXR 

LBD dimer using a cutoff of 0.75 (Figure 3.2A).  Domain 1 contains α-helices 1, 3’, 4, 8, 9, 

and αAF, as well as portions of helices 3, 5, 10 (magenta, Figure 3.2A). Domain 2 is 

composed of β-strand 1-4, as well as α2 and the remaining portions of helices 3, 5, and 10 

(pink, Figure 3.2A). We next employed PCA to examine the first principal modes of motion 

for each Cα position in the PXR LBD homodimer (describing 40% of all motions).  The 

vectors describing these primary motions for each residue were then compared both within 

each domain of motion, and between the two domains.  Domains 1 and 2 exhibit strong 

intradomain correlated motions; the average angles between the vectors for each residue are 

54.8 ± 35.3 and 36.1 ± 21.1 degrees for domain 1 and domain 2, respectively (Figure 3.2B).  

The motions of the two domains were also anticorrelated with each other; when the vectors 

describing the motion of residues in Domain 1 were compared to those of Domain 2, the 

average angle between the vectors was 141.5 ± 21.0 (Figure 3.2B).  The PXR LBD 
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monomer, in contrast, exhibited no distinct domains of motion; attempts to cluster motions 

(cutoff 0.75) in this trajectory yielded only seven small groupings (Supplementary Figure 

3.6A).  In addition, when the Domain 1 and Domain 2 clustering identified for the PXR LBD 

dimer was applied to the monomer, no apparent regions of correlation and anticorrelation 

were observed (Supplementary Figure 3.6C).  Thus, the active PXR LBD homodimer, but 

not the inactive monomer, contains two identifiable domains of motion that exhibit a high 

correlated intradomain movement, and distinctly anticorrelated interdomain movements.  

 

3.3.4 Motions in PXR-RXR Complexes   

Like many former orphan receptors, PXR functions as a heterodimer with the retinoid 

X receptor. As described previously, the RXR LBD is predicted based on several RXR-NR 

LBD complex crystal structures to bind to the PXR LBD using a surface distinct from the 

PXR LBD homodimer interface (Figure 3.3A).  We next examined the nature of the 

correlated and anticorrelated motions in the10 ns MD simulations of the apo PXR-RXR LBD 

heterodimer and heterotetramer. Similar to what was observed in the absence of RXR, the 

PXR LBD in the heterotetramer exhibited significantly higher levels of overall motion than 

the PXR LBD in the heterodimer (Figure 3.3B).  In addition, PXR moves in a highly 

correlated fashion in the heterotetramer complex relative to the heterodimer complex (Figure 

3.1A, 3.3B). The distribution of correlation values for PXR in the heterodimer complex with 

RXR can be approximated by a Gaussian centered close to zero; in contrast, for PXR in the 

heterotetramer complex, the distribution is distinctly non-Gaussian and peaks at a correlation 

value above 0.4 (Supplementary Figure 3.5). Thus, PXR-RXR heterotetramerization 

significantly increases the correlated motion of the PXR LBD.  
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We next clustered the correlated and anticorrelated regions observed in the MD 

trajectory of the PXR-RXR heterotetramer, using a cutoff of 0.88.  Two distinct domains of 

motions were identified for the PXR LBD dimer within this heterotetramer, Domains 1’ and 

2’ (Figure 3.3C).  Domain 1’ corresponds to one PXR LBD and half of the other, with 

Domain 2’ comprising the other half of the second PXR LBD in the homodimer within the 

heterotetramer, and corresponding to a portion of Domain 1 described for the PXR 

homodimer simulations (Figure 3.2A, 3.3C). Vectors describing the first principal mode of 

motion (describing 75% of tetramer motion) for each Cα position were identified by PCA 

analysis and were compared both within each domain and between the two domains.  Similar 

to that observed above for the PXR homodimer, domains 1’ and 2’ exhibit remarkably 

defined intradomain correlated motions; the average angles between the vectors for each 

residue are 48.1 ± 33.1 and 51.4 ± 34.6 degrees for domain 1’ and domain 2’, respectively 

(Figure 3.3D).  The PXR LBD in the PXR-RXR heterodimer, in contrast, exhibited no 

apparent domains of motion.  When the same clustering algorithm was applied to this LBD, 

only six small clusters were identified (Supplementary Figure 3.6B).  In addition, when the 

Domain 1’ and Domain 2’ clustering identified for PXR in the heterotetramer was applied to 

the heterodimer, no evident regions of correlation and anticorrelation were observed 

(Supplementary Figure 3.6D).  These results establish that when the active PXR homodimer 

is placed within a PXR-RXR heterotetramer, the PXR LBD exhibits a dramatic increase in its 

degree of correlated motion relative to that observed in the PXR-RXR heterodimer complex.    
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3.3.5 Highly Coherent PXR AF-2 Motions  

We next hypothesized that the AF-2 domains of active receptors would move together 

as a correlated unit. To test this hypothesis, vectors describing the primary modes of motion 

derived from PCA analysis for each Cα position were examined.  In most cases, a single 

average vector was determined to describe the motion of each α-helix during the simulation.  

The exceptions were α3 and α10, which each exhibited distinct motions at their termini; in 

these cases, two average vectors were employed.  The PXR LBD monomer from the PXR-

RXR heterodimer simulation exhibits only small, disjointed motions (Figure 3.4A).  For 

example, a ~0.80 Å root mean square deviation about the average structure in the N-terminal 

end of α3 is not accompanied by equivalent motions of the same magnitude or direction in 

other helices in the LBD (Figure 3.4A).  This lack of coherence extends to the AF-2 motif; 

helices 3, 3’, 4 and AF move separately from one another (Figure 3.4A inset).  For example, 

α4 moves to the right in Figure 3.4A, while α3 and α3’ move back.  A similar pattern of 

moderate and anticorrelated motion is observed in the PXR LBD monomer simulations 

(Supplementary Figure 3.7A,B).   

In contrast, the PXR LBD in the PXR-RXR heterotetramer simulation exhibits highly 

correlated motions (Figure 3.4B).  Most of the helices in this trajectory move as a single unit 

and in one direction.  For example, α-helices 1, 5, and 9 each fluctuate as a rigid body about 

the average structure by 0.35 Å.  This coherence extends to the AF-2 motif, as helices 3, 3’, 4 

and AF all fluctuate by ~ 0.33 Å and in the same direction (to the lower left as shown in 

Figure 3.4B).  Interestingly, highly coherent motion is observed in the PXR homodimer 

simulation as well, although the direction of the motions is distinct (Supplementary Figure 
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3.12).  In that trajectory, most of the helical motions are in the opposite direction to that 

observed in the heterotetramer; for example, the helices in the AF-2 motif deviate together by 

~0.86 Å to the upper right.  In both cases, however, when the PXR LBD exists as a 

homodimer, its AF-2 surface exhibits highly correlated motions that maintain the active 

conformation of the receptor.  

The angles between the helical motion vectors were then examined for AF-2 motifs 

of four PXR trajectories: the PXR monomer and PXR-RXR heterotetramer, which are 

expected to be inactive conformations of the receptor, and the PXR homodimer and PXR 

heterotetramer, which are expected to represent active conformations (Supplementary Table 

3.1).  Dot products between two helical motion vectors describe the angle between these 

vectors; thus, if two helices in the AF-2 motif are moving together, the angle between them is 

small.  The average angles between vectors describing AF-2 helices in the PXR monomer 

and PXR-RXR heterodimer simulations were 124.3° and 104.1°, respectively 

(Supplementary Table 3.1).  In contrast, the average angles for the same vectors in the PXR 

homodimer and PXR heterotetramer simulations were 34.5° and 19.3°, respectively 

(Supplementary Table 3.1).  These data clearly indicate that the PXR homodimer generates 

highly coherent motions in the AF-2 domain of the receptor.  Interestingly, the correlated 

motion in PXR heterotetramer is translated into correlated motion in the AF-2 domain of the 

RXR bound to it. Likewise, the uncorrelated motion in PXR heterodimer induces 

uncorrelated motion in the AF-2 region of RXR.  This observation helps to explain why this 

form of PXR is transcriptionally active and capable of binding to coactivator LxxLL motifs, 

while monomeric PXR is inactive and is incapable of binding to the same motifs.  
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3.3.6 AF-2 Coherence in Other Nuclear Receptors   

Most nuclear receptor LBDs form dimers using their α9-α10 surfaces, as shown for 

the PXR-RXR complex in Figure 3.3A. We next hypothesized that the correlated motions 

observed in the PXR AF-2 motif for the unique active homodimeric form of that receptor, 

would also be observed in other nuclear receptor LBDs that function as standard homo- or 

heterodimers.  To test this hypothesis, we performed 10 ns MD trajectories on the following 

nuclear receptor LBDs:  the human peroxisome proliferator-activator receptor-gamma 

(PPARγ); the inactive PPARγ mutant P467L and the estrogen receptor-alpha (ERα) 

monomer and homodimer.  As stated above, each of these trajectories was stable and 

exhibited 2-3 Å RMSDs with starting structures through the course of the simulations 

(Supplementary Figure 3.2).  Moderate levels of correlation (red) and anticorrelation (blue) 

were evident in each trajectory, closer to the levels observed for the PXR monomer rather 

than the highly mobile PXR homodimer forms (Supplementary Figures 3.9A-C).  Indeed, 

both the ER LBD monomer and dimer simulations were conducted to compare their results 

with that of PXR.  While the ER dimer exhibits more correlated motions than the monomer, 

it does not approach the levels observed for the unique PXR homodimer. These observations 

are confirmed in examining the ranges of correlation values in these simulations; while a 

moderate increase in correlation values are observed for the ER dimer, all distributions 

remain close to zero (Supplementary Figure 3.8).  

In spite of their relatively limited overall motion, the NR LBD simulations conducted 

on ER and PPAR reveal coherent AF-2 domain motions similar to those seen for the active 

forms of PXR.  The first principal motions (describing ~25% of all motions) of helices 3, 3’, 

4 and AF can be described by vectors that tend to move in the same direction for each of 
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these trajectories (Figures 5C,E).  For example, ~0.30 Å motion of AF-2 domain helices in a 

direction perpendicular to the plane of the page (as shown in Figure 3.5A) are evident for 

PPAR; similarly, ~0.32 Å fluctuations forward and to the right are observed for ER (Figure 

3.5C,D).  The dot products between the vectors that describe these AF-2 motions for PPAR 

and ER are 30.6° and 48.3°, respectively (Supplementary Table 3.3). The inactive PPAR 

mutant however, exhibits motion in opposing directions (Figure 3.5B). Thus, a coherent 

motion appears to be a consistent feature in the AF-2 motifs of steroid and orphan receptor 

ligand binding domains.  

 

3.4 DISCUSSION 

We present the first study of the motions of the human nuclear xenobiotic receptor 

PXR, mediated by its unique dimerization interface and we show that coherent movements 

observed in homodimeric and heterotetrameric PXR apply to other orphan and steroid 

receptors as well. To date, little was known about the effects that quaternary structure would 

have on nuclear receptor dynamics, neither via the canonical α9/α10 dimerization motif nor 

via PXR's unique β-strand aromatic zipper interface. Comparing our results for the various 

oligomeric forms of PXR, RXR, PPAR and ER establish that distinct dynamic signatures 

exist in the active forms of the receptors relative to the inactive forms. The application of 

principal component analysis and correlated motion plots, a first for the analysis of nuclear 

receptor motion, reveal that dimerization via the novel PXR Trp-zip interface generates a 

high degree of correlation and anticorrelation in the dimer relative to the monomer. The 

clustering of correlated secondary structural elements identified hinge- and screw-type 

motions in the PXR dimer. This concerted global motion was then observed to be 
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communicated to the AF-2 motif of the receptor, which we show moves as a coherent 

structural unit and in the active conformation. Thus, we propose a model for PXR dynamics, 

wherein activity relates to correlated motion of α 3, 3', 4 and αAF.  We further show that the 

same coherent motion exists in the AF-2 domain of the active forms of RXR, PPARγ and 

ER.  

Unlike previous studies that focus only on the ligand or how particular residues affect 

αAF, we look at motions collectively on various levels: globally, to elucidate the movements 

of the PXR LBD as subdomains, seen through clustering methods, and locally, by looking at 

helical elements (or sections of secondary structural elements as in the case of α’s10 and 3) 

and examining how these units move relative to one other (fluctuations of 0.5-2 Å in the first 

principal eigenvector). Our results expand on results elucidated by initial detailed MD 

investigations of NR LBDs.  For example, dynamics studies on ERα (20) showed that the 

addition of coactivator peptide and ligand to apo ERα lead to increased αAF motion in 

unspecified directions.  Similarly, studies on AR P892A and P892L substitutions used 

biochemical assays and MD simulations to show increased flexibilty and distortion of the 

αAF (21). We present evidence that the AF-2 domain helices of ER and other NR LBDs 

move together in the same direction by 0.25-1.0 Å. Indeed, our data, like dynamics studies 

exploring ligand exit pathways, does not contradict the "mouse trap" model of nuclear 

receptor function. One may postulate that the uncorrelated motion between the helices in the 

AF-2 domain of observed for inactive receptors (e.g., PXR monomer, the PPARγ P467L 

mutant) may represent the initial transition towards the αAF position required for corepressor 

binding (22).  
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Our results are also in agreement with various limited proteolysis (13), fluorescence 

polarization (17) and NMR(15, 23) studies that examined the stabilization of global and local 

motions of ERα (17) and PPARγ (13) upon ligand binding. Of particular note are TR-FP 

studies by Kallenberger and Schwabe (17) on the human P467L PPARγ mutant that causes 

insulin resistance and early onset hypertension). This mutation was found to weaken 

immobilization of αAF against main body of the receptor. In our molecular dynamics 

simulations, wild type PPARγ exhibited a strong degree of correlated AF-2 motion while the 

PPARγ P467L mutant showed uncorrelated motion in its AF-2 domain (Figure 3.5A,B). This 

is the first model of nuclear receptor dynamics that relates changes in concerted motion to a 

mutation causing a disease state.  

While nuclear receptors are well-established targets for small molecule modulators that treat 

a wide range of conditions, current drugs function as agonists and antagonists that act via the 

ligand binding pocket.  However, in recent years data has emerged that nuclear receptor 

LBDs can be antagonists by compounds that act by blocking coregulator binding to the AF-2 

surface. For example, TR antagonists discovered by high-throughput screening were found to 

act at the AF-2 site of that receptor (24, 25).  In addition, the azole family of antifungal 

compounds has recently been shown to antagonize the action of human PXR via the AF-2 

domain (26, 27).   The dynamics data presented here further elucidate the nature of motions 

essential for AF-2 function and may lead to the improved design or development of 

therapeutics targeted specifically to that site or to other locations on the LBD expected to 

impact productive AF-2 motion.  
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3.6 FIGURE LEGENDS 

Figure 3.1.  Correlated motion plots show striking differences between monomer and 

dimer. (A) Crystal structure of the PXR homodimer with bound SR12813 and SRC-1 

coactivator peptide (PDBID: 1NRL). Dimerization interface contains a tryptophan zipper 

(Trp-zip) which is highlighted in yellow. SR12813 ligand in cyan is shown in space filling. 

SRC-1 peptide (orange) interacts with αAF of PXR (green). Coactivator binding occurs via a 

charge clamp between residues Lys259 and Glu427 (light pink) in the AF2-region (formed 

by α3, α3’, α4 and αAF) and is stabilized by a Lys277 (light pink) that caps the αAF (inset).   

(B) Correlation/anti-correlation against secondary structure plots for PXR with both 

coactivator and ligand (SR12813). 

Figure 3.2. PXR dimer shows concerted motion within two distinct domains.  

(A) Clustering of residues moving as a unit based on correlated motion data (Figure 3.1B, 

cutoff 0.75) in dimeric. Dimer moves in two domains, domain1 (magenta) and domain 2 

(light pink). Monomer shows small, disparate clusters. (B) The first principal mode of motion 

of apo PXR dimer was analyzed based on the distribution of angle θ, the angle between the 

vectors of two CA residues. The dimer is highly correlated.    

Figure 3.3. RXR binding expands correlated region. 

(A) PXR functions as a heterotetramer with its binding partner, RXR (yellow) INSET: Other 

receptors function as homodimers (such as ER) or heterodimers with RXR (such as PPAR).  

(B) Correlation/anti-correlation against secondary structure plots for PXR+RXR monomer 

and heterotetramer show consistently show distinct motion patterns. (C) Clustering of 

residues moving as a unit based on correlated motion data (Figure 3.3A, cutoff 0.88) in 

PXR+RXR heterotetramer. Tetramer shows a redistribution of correlated areas, denoted as 
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domain 1’ (magenta) and domain 2’ (light pink). (D) θ Angle values in the tetramer for 

domain 1’ and domain 2’ indicate increased correlation.  

Figure 3.4. Correlated motion between α3, α3’, α4 and αAF, may be required for 

coactivator binding.  (A) Comparison of the first principal mode of motion between 

PXR+RXR heterodimer and (B) PXR+RXR heterotetramer. Arrows indicate direction and 

relative magnitude of average eigenvectors. Coherent motion of the AF2 region (inset) 

allows for SRC-1 binding in the dimeric form while divergent motion in the monomeric form 

may preclude this. Motions have been exaggerated for visualization.  

Figure 3.5. Model of correlated motion in AF-2 region can be extended to other NR.  

(A) Coupled motions in PXR in the heterotetramer is translated into concerted motions in 

RXR’s AF-2 region. (B) The AF-2 domain in RXR in the heterodimer adopts the disjointed 

motions of monomeric PXR. (C,E) Simulations of other active nuclear receptors (PPARγ 

+RXR and ERα dimer) further validate the need for coherent motion for coactivator binding. 

(D,F) Inactive mutant PPARγ P46L and ERα monomer have uncorrelated or weakly 

correlated AF-2 regions. 
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Figure 3. 1 Correlated motion plots show striking differences between 

monomer and dimer A 

B 



 
84

Figure 3. 2 PXR dimer shows concerted motion within two distinct domains

A 

B 
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Figure 3. 3  RXR binding expands correlated region.   
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Figure 3. 4 Correlated motion between α3, α3’, α4 and αAF, may be required 

for coactivator binding 
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Figure 3. 5 Model of correlated motion in AF-2 region can be extended to other 

NR. A B 
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3.7 SUPPLEMENTARY TABLE LEGENDS  

 
Supplementary Table 3.1. θ angle analysis of CA eigenvectors for the lowest frequency 

first principal mode of motion of various PXR states.  

Supplementary Table 3.2. θ angle analysis of CA eigenvectors for the lowest frequency 

first principal mode of motion of other nuclear receptors.  

 

3.8 SUPPLEMENTARY FIGURE LEGENDS 

Supplementary Figure 3.1. RMSD against initial structure of the various oligomeric 

states of PXR with and without ligand and SRC-1. RMSDs indicate stable simulations and 

equilibrated trajectory. 

Supplementary Figure 3.2. RMSD against initial structure of PPARγ P467L, PPARγ 

+RXR and ERα Monomer and Dimer. RMSDs indicate stable simulations and equilibrated 

trajectory. 

Supplementary Figure 3.3. (A) Averaged Structures for Apo PXR Monomer and (B) 

Dimer with residues colored by APFs.  Both indicate that the missing loop regions are 

highly mobile, which is consistent with starting crystal structures.  

Supplementary Figure 3.4. Correlation/anti-correlation against secondary structure 

plots for (A) apo monomer and dimer, (B) with SRC-1 only, (C) with SR12813 ligand 

only, (D) PXR+RXR heterodimer and PXR+RXR heterotetramer.   Plots illustrate 

distinct motion patterns between dimeric forms and monomeric forms in the presence of 

SRC-1, SR12813 and RXR. (E) Correlation/anti-correlation against secondary structure plots 

for apo PXR dimer protomer A against protomer B.  
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Supplementary Figure 3.5. Comparison of the distribution of residues at each 

correlation value for all PXR states. 

Supplementary Figure 3.6. Clustering of residues based on correlated motion data for 

(A) monomer and (B) heterodimer (cutoff 0.75 for monomer, 0.88 for heterodimer). 

Both forms show small, disparate clusters. (C,D) Analysis of first principal mode of motion 

based on the distribution of angle θ, the angle between the vectors of two CA residues shows 

a Gaussian distribution, indicating uncorrelated motion. 

Supplementary Figure 3.7. Comparison of the first principal mode of motion between 

(A) PXR Monomer and (B) PXR Dimer. Arrows indicate direction and relative magnitude 

of eigenvectors for representative CA atoms chosen to describe motion (larger arrows mean 

larger magnitude of motion). Focusing on the AF2 region more clearly illustrates how 

coherent motion of the AF2 region allows for SRC-1 binding in the dimeric form while 

divergent motion in the monomeric form may preclude coactivator binding. Motions have 

been exaggerated for better visualization. 

Supplementary Figure 3.8. Comparison of the distribution of residues at each 

correlation value for RXR from the PXR-RXR heterodimer, RXR from the PXR-RXR 

heterotetramer, PPARγ P467L +RXR, PPARγ + RXR and ERα Monomer and Dimer. 

Supplementary Figure 3.9. Correlation/anti-correlation vs. secondary structure for (A) 

ERα monomer and dimer, (B) PPARγ P467L+RXR (top half) and PPARγ + RXR 

(bottom half), (C) RXR from PXR-RXR heterodimer and RXR from PXR-RXR 

heterotetramer all show modes of communication that are distinct from PXR.   
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Supplementary Table 3. 1 θ angle analysis of CA eigenvectors for the lowest 

frequency first principal mode of motion of various PXR states. 
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Supplementary Table 3. 2 θ angle analysis of CA eigenvectors for the lowest 

frequency first principal mode of motion of other nuclear receptors
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Supplementary Figure 3. 1 RMSD against initial structure of the various 

oligomeric states of PXR with and without ligand and SRC-1. 

 



 

 
94

 

Supplementary Figure 3. 2 RMSD against initial structure of PPARγ P467L, 
PPARγ +RXR and ERα Monomer and Dimer. 
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Supplementary Figure 3. 3 Averaged Structures for Apo PXR Monomer and 

Dimer with residues colored by APFs 
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Supplementary Figure 3. 4 Correlation/anti-correlation against secondary 

structure plots for apo monomer and dimer, with SRC-1 only, with SR12813 

ligand only, PXR+RXR heterodimer and PXR+RXR heterotetramer. 
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Supplementary Figure 3. 5 Comparison of the distribution of residues at each 

correlation value for all PXR states. 
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Supplementary Figure 3. 6 Clustering of residues based on correlated 

motion data for monomer and heterodimer 
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Supplementary Figure 3. 7 Comparison of the first principal mode of motion 

between PXR Monomer and PXR Dimer 
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Supplementary Figure 3. 8 Comparison of the distribution of residues at each 

correlation value for RXR from the PXR-RXR heterodimer, RXR from the 

PXR-RXR heterotetramer, PPARγ P467L +RXR, PPARγ + RXR and ERα 

Monomer and Dimer. 
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Supplementary Figure 3. 9 Correlation/anti-correlation vs. secondary structure 

for  ERα monomer and dimer, PPARγ P467L+RXR and PPARγ + RXR, RXR 

from PXR-RXR heterodimer and RXR from PXR-RXR heterotetramer all show 

modes of communication that are distinct from PXR. 
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4.0 ABSTRACT 

 
Variations in biotransformation and clearance of clinical drugs can cause 

toxicities, decreases in efficacy and even chemotherapeutic resistance. The orphan 

nuclear receptor, pregnane X-receptor (PXR), regulates the expression of metabolizing 

and transport enzymes and represents an important target for inhibition. An orthogonal 

strategy for PXR inhibition involves the use of the azole family of compounds, 

represented by the anti-fungal drug, ketoconazole. We show through a number of 

mutations at the AF-2 surface of the human PXR ligand-binding domain that 

ketoconazole interacts with specific residues outside the ligand-binding pocket. We also 

show initial developments in designing a high throughput screening method for testing 

out these inhibitors. These results facilitate new strategies for developing inhibitors that 

can improve the clinical efficacy of drugs and reduce unfavorable drug-drug interactions.  
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4.1 INTRODUCTION 

 

Variation in drug metabolic rates due to differences in individual body make-up 

or negative drug-drug interactions are primary causes for toxicities of many prescribed 

therapeutics. For example, the non-uniform biotransformation and elimination of micro-

tubule binding anticancer agents (i.e. paclitaxel, docetaxel) results in their decreased 

effectiveness (1-3).  Additionally, drug resistance in tumor cells has been reported for a 

number of chemotherapeutics due to the increased extrusion of these compounds, causing 

a reduced accumulation of cytotoxic agents in target cells (4).  

The genes responsible for altered drug-serum levels and increased excretion of 

drugs are largely regulated by the human pregnane X receptor (hPXR), a highly 

promiscuous nuclear receptor that regulates genes in a ligand dependent manner. PXR 

controls the transcription of the cytochrome P450 family of proteins (i.e. CYP3A4), and 

the multidrug-resistance gene (MDR1), which are involved in the metabolism and 

elimination of a wide spectrum of endogenous and exogenous compounds. The MDR1 

gene expresses P-glycoproteins (PGPs) that potentate drug efflux from cells. Attempts 

have been made to circumvent these PXR mediated side effects by chemical 

modifications aimed to decreased drug affinity for the receptor or by altering PGP 

activity to reduce drug resistance. However, these chemical alterations can lead to 
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decreased solubility or activity of these drugs, and studies on changing PGP activity have 

had limited outcomes (5-7).  

An orthogonal approach to inhibiting PXR mediated drug clearance is to target 

coregulator recruitment. One family of compounds which are known to decrease 

coregulator affinity for PXR is the azoles group, used primarily for their anti-fungal 

properties(8). Extensive studies by Wang and Mani et al. have shown that high doses of 

ketoconazole, a prototypical member for the azole family, inactivate PXR and related 

orphan nuclear receptors by limiting the binding of the transcriptional steroid receptor 

coactivator 1 (SRC-1).  These include the constitutive androstane receptor (CAR), the 

liver X receptor (LXR) and the farnesoid X receptor (FXR) while leaving the activity of 

steroid receptors such as the estrogen receptor (ER) and peroxisome proliferator-

activating receptor gamma (PPARγ) unchanged. The feasibility of using ketoconazole 

inhibition has been confirmed in vivo in hepatocytes, colon cancer (9) and osteosarcoma 

cell lines(10).  

PXR inhibition of ketoconazole analogs such as enilconazole, fluconazole, 

miconazole and oxiconazole have been evaluated, and represent a compound set for 

developing structure activity relationships (SAR) (9),(11).  In this study we show the 

preliminary development of high throughput fluorescence polarization methods. 

Additionally, a series of mutations were designed to retain ligand binding and 

transcriptional activity, but lacking ketoconazole inhibitory effects. These mutants 

indicate that inhibitor binding to the activation function (AF-2) groove is critical for 

inactivating the receptor and provide molecular clues as to the mechanism of 

ketoconazole action.  
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4.2 METHODS 

4.2.1 Transient transfection assays 

Cells were split onto 24-well plates at densities of  2 to 8 x 104 cells per well the 

day before transfection. Transfections were done using the LipofectAMINE reagent 

(Invitrogen) according to the manufacturer's instructions and as previously described 

(11). The CYP3A4 luciferase reporter plasmid (-10466 to +53) and PAR-2 in pcDNA3.1 

was obtained from Dr. Jonas Uppenberg (Biovitrum, Stockholm, Sweden). Gal4DB-

hPXR- LBD, pCMX-hPXR, and Tk-M H100x4-Luc were provided by Dr. Ronald Evans 

(Salk Institute, La Jolla, CA). Ketoconazole, and rifampicin was obtained from Sigma 

Chemical Co. (St. Louis, MO). All drugs were dissolved in 100% DMSO and stored at -

20 oC. The final concentration of DMSO was less than 0.2% in all experiments. 

4.2.2 Protein Expression and Purification 

The hPXR-LBD, residues (residues 140-434), were cloned into the pMALCH10T 

vector C-terminal to a cassette containing maltose-binding protein (MBP), a His6-tag, and 

a TEV protease cleavage site. The pMALCH10T vectors were a gift from J. Tesmer 

(University of Texas at Austin). The fusion protein was grown in BL21(DE3) cells at 37 

oC, induced with a final concentration of 0.1 mM IPTG and then expressed overnight at      

22 oC. Crude extract was initially purified using affinity (Nickel Probond) and elution 

fractions were pooled. Protein was subsequently concentrated and further purified using 

size exclusion chromatography (Amersham, Biosciences) to remove soluble aggregates. 

SDS PAGE gels were run after each column to confirm presence of proteins. Mutations 
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were introduced using standard QuikChange (Stratagene) methods and were confirmed 

by sequencing.  

4.2.3 Fluorescence Polarization Assays 

The fluorescently labeled SHP peptide (sequence: SRPAILYALLSSSLK) was 

synthesized by SynPep (sequence). PXR-LBD was expressed and purified as previously 

outlined. All assays used PXR with uncleaved MBP tag to avoid protein instability before 

ligand and coregulator binding. Fluorescence polarization (FP) binding assays monitored 

the formation of MBP-hPXR-SHP peptide at increasing protein concentration in order to 

determine the Kd for PXR-SHP binding. SHP peptide was covalently bound to 

fluorescein and its concentration was kept constant at 10 nM. The increase in polarization 

was measured in 150 mM sodium chloride, 50 mM HEPES (pH 7.8), 50 µM SR12813, a 

known activator of PXR, and 5% (v/v) glycerol using an SPEX Fluorolog-3 Research 

spectrofluorimeter (Horiba LTD.). Each data point consists of 3-6 replicates. Data were 

fit with Sigma Plot (Systat Software, Inc.) using a simple single site ligand-binding 

model assuming a one to one binding of hPXR-MBP to SHP. Mutants were generated 

using Quick-Change mutagenesis (Stratagene) and were over-expressed and purified 

using the same protocol as wild type. No interaction between the SHP peptide and MBP 

was detected in the control experiments (Figure 4.1). 

Inhibition assays were also done by monitoring the decrease in fluorescence 

polarization of MBP-hPXR-SHP peptide at increasing inhibitor concentrations. Inhibitors 

were purchased from Fisher or Sigma-Aldrich. Assays were run in the same buffers 

described previously, but with the hPXR-MBP concentration maintained at 2µM. Stock 

solutions of ligands (0.25 – 1.0 M) were initially made using chloroform or DMSO. 
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Dilutions were then made to obtain the required concentration in the reaction buffer. 

Solutions were sonicated to ensure proper mixing and prepared samples were allowed to 

sit for 2 hours before data was collected to allow inhibitor to bind to the protein. Each 

data point was replicated 3-6 times using the SPEX Fluorolog-3 Research 

spectrofluorimeter (Horiba LTD). Data were fit with Sigma Plot (Systat Software, Inc.) 

using the one site competition of a ligand for receptor binding equation which gives the 

EC50 for PXR-Ketoconazole binding of the AF-2 region in the presence of SHP peptide.  

4.3 RESULTS 

4.3.1 Ketoconazole binds hPXR outside the ligand binding pocket. 

 Previous studies by Huang H. and Mani et al. showed that ketoconazole 

inhibited ligand activated hPXR by disrupting the interaction of ligand hPXR with SRC-

1. It was also determined that ketoconazole did not affect the DNA binding or 

heterodimerization of hPXR with RXR. Concentrations used to disrupt coregulator 

binding were insufficient to inhibit ligand binding. Based on these results, two 

mechanisms for ketoconazole inhibition were proposed. In the first model, ketoconazole 

binding is preceded by agonist and coactivator binding. Subsequently, ketoconazole binds 

to hPXR at a site distinct from the ligand binding pocket and allosterically modifies 

hPXR structure such that SRC-1 affinity for the AF-2 region is significantly decreased so 

that it is unable to bind to it. In the second model, ketoconazole initially binds to distinct 

site(s) on hPXR, which are induced upon binding of an agonist to the receptor, thereby 

directly preventing the binding of SRC-1 to the receptor (Figure 4.2). 

We hypothesized that ketoconazole impacts PXR transcriptional regulation by 

binding at the AF-2 surface rather than in the ligand binding pocket.  To test this 
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hypothesis, several single- and double-mutations were generated in the AF-2 region of 

PXR (Figure 4.3).  Residues were replaced with corresponding amino acids from steroid 

receptors (e.g., ERα) that are not antagonized by ketoconazole. In each case, the single-

mutants lead to a loss of PXR activity, apparently by introducing structural distortions in 

the AF-2 surface of the receptor (Figure 4.2, 4.3). A280W appears to generate a clash 

with L428 of αAF, which would shift the position of this terminal α-helix (Figure 4.2, 

4.3) and prevent coactivator binding. The replacement of P268 with the non-proline 

residue H may similarly disrupt the AF-2 surface by reducing the rigidity of the loop 

between α3’ and α4, thus altering the position of α4.  T248E appears to introduce a clash 

with T422, which would likely shift αAF (up as shown in Figure 4.2, 4.3) and lead to a 

loss in coactivator binding.  Finally, replacement of K277 with Q would eliminate the 

capping of the electronegative helix dipole of αAF by the lysine, which may be critical to 

the proper positioning of αAF.  The corresponding helix in the steroid receptor is 1-2 

turns longer, and thus cannot be capped by the equivalent side chain.  

Significantly, however, the double-mutant T248E/K277Q form of PXR is active 

but is not susceptible to antagonism by ketoconazole (Figure 4.3).  The recovery of 

receptor activity is likely due a synergistic combination of effects: T248E shifts the αAF 

up and perhaps stabilizes the electropositive N-terminal helix dipole (Figure 4.2), but the 

shorter K277Q residue can accommodate the shift in αAF position to create an AF-2 

surface capable of coactivator binding (although not to wild-type levels; see Figure 4.2, 

4.3).  Structural considerations also suggest that the elimination of K277 may be 

responsible for the loss of ketoconazole antagonism.  Note that this residue is located 

close to the side chain of H697 in the NR box 2 of human SRC-1 (Figure 4.2).  
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Ketoconazole contains an imidazole ring that may mimic this histidine side chain and 

compete for coactivator binding. Similarly, other members of the azole family shown to 

inhibit PXR contain this conserved imidazole (Figure 4.4)(9).  This observation may 

explain why the antagonism of PXR is agonist-dependent: the ordering of the AF-2 

surface, and critically K277, enhanced by ligand binding is necessary for ketoconazole 

binding.  A lysine is conserved in this position in all the NRs susceptible to ketoconazole 

antagonism (PXR, CAR, FXR, LXR), but is replaced by a non-lysine in nuclear receptors 

that do not respond to this compound (e.g., Q in ERα).  Taken together, these data 

suggest that the AF-2 surface is the likely binding site for ketoconazole.  

4.3.2 Fluorescence polarization assays provide proof of concept for use as a 

high throughput screening method. 

In vitro fluorescence polarization assays provide further validation of existing in 

vivo data (11).  All assays were run in the presence of SR12813, a known activator of 

PXR with nanomolar affinity and high water solubility. This was required as previous 

studies gave evidence of agonist dependent inhibition of PXR (11). This may suggest that 

the αAF may need to be in the “active” or agonist bound conformation. Additionally, 

ketoconazole does bind to the ligand binding pocket, albeit at micromolar concentrations. 

To circumvent these effects in the assays, SR12813 was present in large, saturating 

concentrations (50 µM). Fluorescently labelled SRC-1 peptide was initially used, 

however this gave highly irregular results (high polarization values at very low 

concentrations), possibly due to poor quality peptide. Fluorescently labeled small 

heterodimeric protein (SHP) peptide was used instead. These had been independently 

confirmed through control experiments with LRH-1 protein to give more reliable results 
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(data not shown). SHP has been shown to act as a corepressor by binding to PXR through 

the AF-2 domain.  

Initial results show micromolar affinity of SHP for MBP-hPXR-LBD in the 

presence of SR12813 (Kd = 1.6 µM ± 0.82). Controls with MBP protein alone indicate no 

interaction with SHP (Figure 4.5). Using the resulting Kd, inhibition experiments were 

designed by setting protein concentration 2 µM. At the Kd, the change in signal due to 

inhibition is maximized. SHP peptide (10nM) and SR12813 (50 µM) were retained at 

their respective concentrations but ketoconazole concentration was varied. Analysis of 

resulting logarithmic concentration plots provided an EC50 range of 28-47 µM. The 

Cheng-Prusoff equation was then used to obtain the Ki: Ki = EC50/(1+[SHP-FL]/Kd), 

giving the range 28-47 µM. This was in fairly good agreement with values from 

scintillation proximity assays of 55.3 µM (11). Overall, these results show as proof of 

principle the feasibility of using fluorescence polarization assays as a high-throughput 

method for future compound screening.  

4.4 DISCUSSION 

Our mutational analyses establish that ketoconazole inhibition is a direct effect of 

binding to residues located outside of the ligand binding pocket of PXR. These residues 

are likely to be located in the AF-2 region, which mediate coactivator binding.  

Preliminary structure activity relationships (SAR) models with ketoconazole analogues 

suggest that the azole ring may be central to their inhibitory activity. Evaluation of the 

PXR SRC-1 structure suggests that the azole may be replacing a hydrogen bonding 

interaction with the histidine residue on the coactivator. To facilitate more extensive 

pharmacophore modeling, fluorescence polarization methods were successfully evaluated 
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for use for future compound screening. Subsequent drug development requires high 

throughput screening methods to determine activities of large databases of compounds. 

The end goal is to develop less toxic inhibitors that can be used at more clinically 

achievable concentrations.  

These results expand on initial studies by our collaborators to develop a novel 

strategy to inhibit orphan nuclear receptor activation by small molecule targeting of 

regions outside of the ligand binding pocket. More specifically, the unfavorable drug-

drug or herb-drug interactions mediated by PXR can be circumvented. Additionally, 

these represent initial steps towards addressing the problem of cellular toxicity and multi-

drug resistance facing many chemotherapeutics caused by increased expression of 

transport proteins. PXR plays a key role in the expression of these metabolic and drug 

efflux genes that result in lowered drug efficacies.  

4.5 FUTURE WORK 
 

To truly facilitate accurate predictions for structure based drug design, we would 

like to continue efforts to crystallize PXR with ketoconazole and its other analogues. 

Previous experiments with ketoconazole in the presence and absence of agonist yielded 

only apo crystals (data not shown). Additionally, further optimization of FP assays should 

be done with freshly synthesized fluorescently labeled coactivator peptide. We 

recommend utilizing a different box 2 sequence from the PXR+SRC-1 crystal structure to 

circumvent the highly irregular results we experienced. 
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4.7 FIGURE LEGENDS 

Figure 4.1. MBP alone does not bind fluorescently labeled SHP peptide.  

Figure 4.2. Possible models describing the effect of ketoconazole on NR-mediated 

gene transcription.  

(A) Ketoconazole is predicted to minimally affect unliganded (basally repressed) orphan 

or adopted NRs. However, upon binding of a ligand (or xenobiotic) that activates the 

receptor, ketoconazole acts to allosterically inhibit NR activation by binding to a surface 

on the receptor distinct from ligand binding, DNA binding or dimerization domains.  

(B) Ketoconazole binds to distinct sites on hPXR, which are facilitated by ligand 

(agonist) binding to the receptor, and it directly prevents binding of SRC-1 to the 

receptor. 

Figure 4.3. Ketoconazole does not abrogate ligand-activated mutant hPXR.  

Transient transfection assays in NIH3T3 cells to study the effect of ketoconazole on 

ligand-activated hPXR and its mutants. Cells were cotransfected with pCMV-hPXR.2, 

CYP3A4 luciferase reporter plasmid (10466 to +53), and pSV-h-galactosidase control 

vector for 24 h. Subsequently, the cells were treated with drug(s) as indicated. All 

transfections were normalized for transfection efficiency using pSV-h-galactosidase in 

the presence or absence of drug(s) as indicated (refer to Methods).The cells were 

harvested in equal aliquots at 24 h for luciferase and h-galactosidase assays (for details, 

Methods). All experiments were done at least thrice in triplicates. Columns, mean; bars, 

SE.  
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Figure 4.4. Close-up of the AF-2 surface of human PXR, as observed in the crystal 

structure of the LBD of this receptor bound to the NR box motif of SRC-1.  

Cyan, mutations examined; magenta, wild-type residues. Red, hydrogen bonding or polar 

interactions; gray, van der Waals clashes. 

Figure 4.5. Structure of Ketoconazole and other members of the azole family shown 

to inhibit hPXR.  

All members contain the imidazole ring (red box) which may mimic the histidine ring 

found on SRC-1 coactivator and may mediate replacement of the coregulator in the AF-2 

region.   

Figure 4.6. SHP peptide binds with micromolar affinity to MBP-hPXR. Fluorescence 

polarization binding assay data in the presence of 50 µM SR12813 results in a Kd
  of 1.6 

µM.  

Figure 4.7. Ketoconazole inhibition of SHP peptide binding using FP inhibition 

assays in the presence of determine an EC50 range of 28-47 µM in the presence of 10 

nM fluorescently labeled peptide, 2 µM MBP-hPXR and 50 µM SR12813. Fitting of 

resulting values into the Cheng-Prusoff equation gives a Ki of 28-47 µM. 
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Figure 4. 1 MBP alone does not bind fluorescently labeled SHP peptide.  
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Figure 4. 2 Possible models describing the effect of ketoconazole on NR-mediated gene 

transcription.
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Figure 4. 3 Ketoconazole does not abrogate ligand-activated mutant hPXR.
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Figure 4. 4 Close-up of the AF-2 surface of human PXR, as observed in the crystal structure of 

the LBD of this receptor bound to the NR box motif of SRC-1.
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Figure 4. 5 Structure of Ketoconazole and other members of the azole family shown to inhibit 

hPXR.
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FP SHP Binding Assay for PXR+ MBP
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Figure 4. 6 SHP peptide binds with micromolar affinity to MBP-hPXR. 

Kd 1.6 µM ± 0.82 

Bmax 5.9 ± 0.72 
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FP Competition Assay of SHP vs Ketoconazole for PXR+MBP
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Figure 4. 7  Ketoconazole inhibition of SHP peptide binding using FP inhibition assays in the 

presence of determine an EC50 range of 28-47 µM in the presence of 10 nM fluorescently labeled 

peptide, 2 µM MBP-hPXR and 50 µM SR12813. 
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