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ABSTRACT 
 

REBEKAH CORLEW: Experience-dependent regulation of presynaptic 
NMDA receptors (preNMDARs) and their role in neurotransmission and 

synaptic plasticity 
(Under the direction of Benjamin D. Philpot) 

 

Many aspects of synaptic development, plasticity, and neurotransmission 

are critically influenced by NMDA-type glutamate receptors (NMDARs).  

Moreover, dysfunction of NMDARs has been implicated in a broad array of 

neurological disorders, including schizophrenia, stroke, epilepsy, and neuropathic 

pain.  Though NMDARs are classically thought to be postsynaptic, recent 

evidence demonstrates that presynaptic NMDARs (preNMDARs) also exist and 

have critical roles in synapse function and plasticity.  One of the most fascinating 

areas of research for postsynaptic NMDARs is how they are modified with 

development and experience and how their changing roles in synaptic 

transmission and synaptic plasticity change with sensory driven activity.  Only a 

small number of studies have suggested that preNMDARs are modified with 

experience and a mechanism for this change has been speculative at best.  Also 

highly speculative is the question of how preNMDARs are able to function 

tonically.  In this dissertation I hope to satisfy both queries with one solution.  I 

will attempt to explain how preNMDARs are tonically active and how this can 

explain their developmental and possibly experience-dependent modifications. 
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Chapter 1 reviews the current knowledge of the role of preNMDARs in synaptic 

transmission and plasticity, in the neocortex, and a discussion of the prevalence, 

function, and development of these receptors.  Chapter 2 provides the first 

evidence of developmental control of preNMDAR expression, function, and role 

in synaptic plasticity.  Chapter 3 answers the most perplexing question that 

plagues the study of preNMDARs “how do they overcome their Mg2+ block to be 

tonically active?”  Here, evidence is presented that preNMDARs contain the 

novel subunit NR3A which is substantially less Mg2+  sensitive allowing 

preNMDARs to be tonically active.  Thus, the developmental loss of NR3A would 

cause the preNMDAR to loose its tonic activity though not its ability to enhance 

spontaneous release in Mg2+ free solution.  Chapter 4 suggests that preNMDARs 

may not be subject only to developmental control but may also be modified by 

experience.  Chapter 5 explores how altered visual experience modifies 

preNMDARs at different points in development.  Chapter 6 discusses how these 

findings will contribute to the study of preNMDARs, clinical outcomes of this 

research, and possible future directions. 
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Chapter 1: 

Presynaptic NMDA Receptors: Newly Appreciated Roles in Cortical 

Synaptic Function and Plasticity 

This chapter was published with Daniel J. Brasier, Daniel E. Feldman, and 

Benjamin D. Philpot  in The Neuroscientist  (2008) Dec; 14(6): 609-25 

  
1.1 Overview 

NMDA-type receptors (NMDARs) are ionotropic glutamate receptors that 

act as non-specific cation channels which are permeable to sodium, calcium, and 

potassium.  These receptors are hetero-tetrameric transmembrane proteins 

which contain two NR1 (NMDA receptor 1) and two NR2 or NR3 subunits 

(Dingledine et al., 1999).  NMDARs exhibit a voltage-dependent block by 

extracellular magnesium, causing them to be outwardly rectifying; however, this 

block varies in strength depending on the type of NR2 or NR3 subunit(s) 

expressed (Monyer et al., 1992; Cull-Candy et al., 2001; Sasaki et al., 2002) 

NMDARs were first discovered as postsynaptic receptors at glutamatergic 

synapses, and have since been shown to be involved in many aspects of 

synaptic transmission, dendritic integration, synaptic and neuronal maturation, 

and plasticity throughout the brain.  Given the diverse roles of NMDARs, it is not 

surprising that NMDAR dysfunction is thought to contribute to neurological and 

psychiatric disorders, including neurodegenerative conditions, stroke, epilepsy, 



neuropathic pain, and schizophrenia (Meldrum, 1994; Cull-Candy et al., 2001; 

Kristiansen et al., 2007; Lau and Zukin, 2007) .  As a result, NMDARs are targets 

for many therapeutic drugs (Chen and Lipton, 2006).  Recently, NMDARs have 

joined the list of ionotropic receptors that can also function presynaptically (briefly 

discussed below).  Presynaptic NMDARs (preNMDARs) may be molecularly and 

pharmacologically distinct from classical postsynaptic NMDARs.  PreNMDARs 

share some functions with postsynaptic NMDARs such as involvement in long-

term synaptic depression (LTD) (although by a distinct mechanism than 

postsynaptic NMDARs).  PreNMDARs also have some novel functions such as 

regulation of presynaptic release probability and short-term plasticity.  It is 

possible that some of the cellular- and network-level functions previously 

attributed to postsynaptic NMDARs are, in fact, mediated by preNMDARs. 

 Here we summarize the growing understanding of cortical preNMDARs.  

In an effort to elucidate the possible mechanisms by which preNMDARs 

modulate synaptic function, we briefly compare cortical preNMDAR activity with 

preNMDAR function at other central synapses (see Table 1.1 and How do 

preNMDARs regulate release?).  We argue that without knowing the specific 

contribution of preNMDARs versus postsynaptic NMDARs to neurotransmission 

and plasticity, it is impossible to understand NMDAR regulation of cortical 

development, or to rationally design pharmacotherapies for NMDAR-related 

diseases.  Specific involvement of preNMDAR in diseases is now being 

considered, including in epilepsy (Yang et al., 2006) and fetal alcohol spectrum 

disorder (Valenzuela et al., 2008). 
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1.2 Synapse regulation by presynaptic ligand-gated ion channels 

 Many neurotransmitters activate presynaptic receptors that modulate 

presynaptic function.  Some of these presynaptic receptors are metabotropic 

receptors (e.g., GABAB receptors and mGluRs) that can modulate 

neurotransmitter release via second messenger systems, affect presynaptic 

voltage-sensitive calcium channels (VSCCs), and/or directly alter the release 

machinery itself.  Other presynaptic receptors are ligand-gated ion channels, 

including GABAA receptors, glycine receptors, kainate receptors, and most 

recently, NMDARs (MacDermott et al., 1999; Khakh and Henderson, 2000; 

Engelman and MacDermott, 2004; Pinheiro and Mulle, 2008).  Particularly well 

characterized among these are the presynaptic kainate receptors, which are 

present at several synapse classes in neocortex and hippocampus (Contractor et 

al., 2001; Lauri et al., 2006; Sun and Dobrunz, 2006; Pinheiro et al., 2007) and 

the presynaptic glycine receptors, which are present at the Calyx of Held in the 

auditory brainstem (Turecek and Trussell, 2001; Trussell, 2002; Awatramani et 

al., 2005).  Activation of presynaptic ionotropic receptors generally enhances 

synaptic release, while presynaptic metabotropic receptors typically decrease 

release probability (Vitten and Isaacson, 2001; Pinheiro and Mulle, 2008), 

although this trend is not universal (Casado et al., 2000; Casado et al., 2002; 

Bardoni et al., 2004).  Heterogeneity in presynaptic receptor expression across 

synapses, including preNMDAR expression, contributes to the diversity of 

synapse function and plasticity in the central nervous system (CNS).  
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1.3 Tools for identifying preNMDARs 

 While postsynaptic NMDARs were first observed in 1963 (Curtis and 

Watkins, 1963), the possibility that preNMDARs exist and that they can regulate 

synaptic transmission has arisen relatively recently.  There are likely several 

reasons for the lag in the identification of preNMDARs.  First, preNMDARs 

appear to be less prevalent than postsynaptic NMDARs.  Second, preNMDAR 

functions appear to be most pronounced during a small window of early 

development.  Third, and perhaps most significant, recent technological 

advances have allowed for the selective blockade of postsynaptic NMDARs 

allowing physiological effects of preNMDARs to be measured.   

How have preNMDARs been identified thus far?  Two general approaches 

for detecting the presence / function of preNMDARs have been used.  The most 

common approach has been measuring the electrophysiological effect of 

blocking preNMDARs on spontaneous neurotransmitter release frequency.  If 

preNMDARs on terminals function to increase spontaneous release frequency 

onto a postsynaptic cell, then blocking those receptors should transiently 

decrease the frequency of these events, recorded as miniature excitatory 

postsynaptic currents (mEPSCs).  Provided that postsynaptic NMDARs are first 

blocked, the subsequent effects can be attributed to preNMDARs (Berretta and 

Jones, 1996; Woodhall et al., 2001; Sjostrom et al., 2003; Bender et al., 2006a; 

Corlew et al., 2007; Brasier and Feldman, 2008) (Fig. 1.1A & B).  This technique 

has been by widely used and accepted for the detection of preNMDARs that 

affect the frequency of spontaneous release.  However, there are two major 
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Figure 1.1 Physiological and anatomical methods to detect preNMDARs. 
(A) Schematic of mEPSC recording paradigm (Corlew 2007). (B) Example 
(reproduced with permission from Beretta and Jones 1996) to illustrate the 
approach.  After first blocking postsynaptic NMDARs, subsequent bath 
application of the NMDAR antagonist of D-APV (2-amino-5 phosphonopentanoic 
acid) reduces the frequency of sEPSCs measured in L2 entorhinal cortex 
neurons. (C & D) Example of anatomical evidence for preNMDARs in L2/3 of the 
rodent neocortex suggested by postembedding immunogold for an antibody that 
recognizes both NR2A and NR2B. (Figure is courtesy R. Weinberg, University of 
North Carolina.)  Presynaptic labeling with 10 nm gold particles is indicated by 
arrowheads. 
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criticisms to using this approach.  Although postsynaptic NMDARs can be ruled 

out, the relevant NMDARs are only presumed to be presynaptic, but could in fact 

be located on another non-postsynaptic structure.  Given the rapid change in 

spontaneous release, however, the most parsimonious explanation is that they 

are located on presynaptic terminals.  The second criticism is that even if 

preNMDARs affect spontaneous release, they may not necessarily play a role in 

action potential-evoked release.  To test this, some groups have begun looking at 

changes in the rate of short-term synaptic depression (or facilitation) to a train of 

stimuli as a read-out of evoked release probability, because the rate of short-term 

synaptic depression is, typically, inversely related to release probability.  To 

assess a preNMDAR role in evoked transmitter release, postsynaptic NMDARs 

can first be blocked, and then changes in the rate of synaptic depression at a 

specific class of synapses can be measured in response to NMDAR application.  

As above, the postsynaptic NMDARs are first blocked so any change in the rate 

of synaptic depression is likely due to preNMDARs (Fig. 1.2). 

In addition to electrophysiological approaches, immuno-peroxidase and 

immunogold electron microscopy (EM) has been used to identify preNMDARs.  

Immuno-peroxidase staining is a very sensitive assay in which an enzymatic 

reaction increases the size of the reporter signal for maximum detection (Fig. 

1.8B), and several studies have used this approach to positively identify 

preNMDARs (Aoki et al., 1994; DeBiasi et al., 1996; Charton et al., 1999).   
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Figure 1.2 PreNMDARs enhance action potential-evoked neurotransmission. 
Evidence that preNMDARs modulate evoked transmitter release between pairs 
of L5 pyramidal neurons in primary visual cortex. (A) With postsynaptic NMDARs 
blocked by voltage-clamping the postsynaptic neuron at -90mV, preNMDAR 
blockade decreases EPSC amplitude and short-term synaptic depression.  
Sample recording showing averaged responses before (a) and during (b) 
application of APV.  (B) APV wash-in reversibly decreased responses to 30 Hz 
spiking between pairs of L5 neurons recorded in voltage-clamp at -90 mV.  
Reproduced with permission from Sjöström and others (2003).   
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Unfortunately the increase in signal with the immuno-peroxidase EM 

approach comes at the cost of precise subcellular localization within the 

presynaptic terminal.  A more precise localization method is to use gold particles 

for a secondary antibody (Fig. 1.1C, D).  Few studies have examined the putative 

expression of preNMDARs using immunogold electron microscopy (Aoki et al., 

2003), but evidence is accumulating that preNMDARs have a precise localization 

to presynaptic membranes, where they are well-positioned to alter 

neurotransmitter release (Jourdain et al., 2007).  The relatively limited 

identification of preNMDARs could be due to several factors, including a low 

prevalence of preNMDARs compared to postsynaptic NMDARs, age- or region-

specific expression of preNMDARs (discussed below), or to the simple fact that 

very few studies have bothered to examine the possibility that preNMDARs exist. 

 

1.4 Physiological evidence for preNMDARs in cerebral cortex 

Physiological evidence that preNMDARs regulate spontaneous synaptic 

transmission has been found at a wide array of cortical synapses.  The first 

evidence was at glutamatergic synapses in layer 2 (L2) of entorhinal cortex, 

where bath application of the NMDAR antagonist APV decreased the frequency 

of spontaneous mEPSCs, even when postsynaptic NMDARs had been 

previously blocked intracellularly.  This suggested that preNMDARs normally act 

to enhance spontaneous neurotransmitter release (Berretta and Jones, 1996) 

(Fig. 1.1B).  Subsequently, NMDAR agonists were shown to enhance mEPSC 

frequency in both L2 and L5 of entorhinal cortex.  This effect was blocked by the 
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NR2B subunit-specific antagonist ifenprodil, suggesting that the relevant 

preNMDARs contain NR2B (Woodhall et al., 2001).  Similar effects of 

preNMDARs were subsequently observed at excitatory synapses in L2/3, L4, and 

L5 of the rodent V1 (Sjostrom et al., 2003; Corlew et al., 2007; Li and Han, 2007; 

Li et al., 2008), CA1 of the hippocampus (Mameli et al., 2005), dentate gyrus 

(Jourdain et al., 2007), entorhinal cortex (Yang et al., 2006), and in L2/3 of S1 

(Bender et al., 2006b; Brasier and Feldman, 2008).  In addition to the 

aforementioned studies in the neocortex and hippocampus, there is also 

compelling evidence for preNMDARs function in the spinal cord (Liu et al., 1997; 

Bardoni et al., 2004), the cerebellum (Glitsch and Marty, 1999; Casado et al., 

2000; Casado et al., 2002; Duguid and Smart, 2004) reviewed in (Duguid and 

Sjostrom, 2006), and amygdala (Humeau et al., 2003).  Therefore, there is an 

abundance of evidence that preNMDARs function widely throughout the central 

nervous system and may qualify as a general mechanism of modulating 

spontaneous neurotransmitter release. 

In addition to affecting spontaneous release, it is now clear that 

preNMDARs also modulate evoked (action potential-driven) transmitter release.  

For example, blockade of presumptive preNMDARs decreases unitary synaptic 

responses between L5 pyramidal cells in V1 (Sjostrom et al., 2003) (Fig. 1.2) and 

at synapses between L4 and L2/3 pyramids (L4-L2/3 synapses) in S1 (Bender et 

al., 2006b; Brasier and Feldman, 2008).  Paired pulse facilitation (PPF) increases 

and coefficient of variation (CV)-2 decreases during this effect, reflecting 

decreased presynaptic release probability.  These experiments were performed 
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with postsynaptic NMDARs blocked, indicating that the relevant NMDARs that 

regulate evoked release are non-postsynaptic, presumably preNMDARs.  

PreNMDAR modulation of evoked release is only evident during high-frequency 

burst stimulation in L5 of primary visual cortex, but occurs with sparse stimulation 

(two action potentials at 33 ms inter-spike interval) at L4-L2/3 synapses in S1 

(Sjostrom et al., 2003; Brasier and Feldman, 2008).  These data indicate that 

preNMDARs are active during conditions of modest synaptic activity in acute 

slices, and this endogenous activation of preNMDARs helps to maintain higher 

probabilities of evoked neurotransmitter release, compared to release probability 

when preNMDARs are blocked.  Thus, preNMDARs enhance the probability of 

both spontaneous and evoked neurotransmitter release. 

 

1.5 Anatomical evidence for presynaptic NMDARs in cerebral cortex 

The physiological findings described above indicate that non-postsynaptic, 

presumably presynaptic, NMDARs exist, which influence transmitter release.  

While presynaptic localization of NMDARs is the simplest explanation for the 

effects on presynaptic transmitter release, it remains possible that the relevant 

receptors are actually on another nearby neuron or glial cell, which signals to the 

presynaptic terminal via an unknown mechanism.  Thus, an important line of 

evidence indicating that putative preNMDARs are actually localized on 

presynaptic terminals comes from electron microscopy (EM) studies indicating 

that NMDAR subunits are physically present at cortical presynaptic terminals 

(Fig. 1.1C, D).  In 1994, Aoki and colleagues observed immuno-peroxidase 
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labeling of the NMDAR subunit NR1 in axons and presynaptic terminals in V1 

from postnatal day (P) 30 rats (Aoki et al., 1994).  Sparse labeling for the NR2B 

subunit has also been observed in presynaptic terminals from neocortex of 5-6 

month-old rats (DeBiasi et al., 1996; Charton et al., 1999).  Using immunogold 

labeling, NMDAR protein has also been found in presynaptic terminals of the 

hippocampal dentate gyrus (Jourdain et al., 2007).  Together these studies 

confirm the presence of NMDAR protein at presynaptic cortical terminals.  In 

addition to the neocortex (Aoki et al., 1994; DeBiasi et al., 1996; Charton et al., 

1999; Fujisawa and Aoki, 2003; Corlew et al., 2007) and hippocampus (Siegel et 

al., 1994; Charton et al., 1999; Jourdain et al., 2007), preNMDARs have also 

been observed using EM in the spinal cord (Liu et al., 1994; Lu et al., 2005) and 

amygdale (Farb et al., 1995; Pickel et al., 2006). 

 In EM studies, NMDAR immuno-staining in presynaptic terminals is often 

sparse, and substantially less intense than postsynaptic staining.  This suggests 

a relatively low number of preNMDARs, at least in rats > P25, when most EM 

studies have been performed.  (See Developmental regulation of preNMDARs, 

below, for evidence that preNMDAR expression is substantially higher in young 

animals.)  Another reason for sparse staining may be selective expression of 

preNMDARs at specific classes of excitatory terminals.  Consistent with this idea, 

physiological evidence reveals functional preNMDARs at ascending L4-L2/3 

synapses onto L2/3 pyramidal cells in S1, but not at horizontal, L2/3-L2/3 

synapses onto the same postsynaptic neurons, or on local L4-L4 synapses made  
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Figure 1.3 Synapse-specific expression of preNMDARs.  PreNMDARs are 
located on layer (L) 4-L2/3 synapses, but not on L2/3-L2/3 synapses or on L4-L4 
synapses in the rodent somatosensory cortex. (A) Recording set-up for these 
experiments.  Top: Representative experiment testing the effect of D-APV on 
AMPA-EPSCs evoked on the L2/3 cross-columnar pathway (L2/3-L2/3) and on 
L4-L2/3 inputs to the same postsynaptic cell. Amplitude of the first AMPA-EPSC 
on each pathway.  Insets: Pairs of AMPA-EPSCs before (black) and during (grey) 
D-APV application. Bottom: Mean effect of D-APV on first AMPA-EPSC 
amplitude for L2/3-L2/3 inputs (triangles) and simultaneously measured L4-L2/3 
inputs (circles). Bars represent population means (* = p < 0.05). (B) Differential 
interference contrast image of example synaptically coupled L4 excitatory cells, 
with regular-spiking pattern for these cells. Postsynaptic EPSCs elicited by a pair 
of presynaptic spikes before (black) and after (grey) 50µM D-APV application for 
the regular-spiking pair above. Lack of effect of D-APV on amplitude of the first 
uEPSC for one representative cell pair.  Mean effect of D-APV application on first 
uEPSC amplitude.  Reproduced with permission from Brasier and Feldman 2008. 

13 



by the same presynaptic neurons (Brasier and Feldman, 2008) (Fig. 1.3).  This 

input- and target-specific expression of preNMDARs parallels synapse-specific  

expression of other presynaptic metabotropic and ionotropic receptors (Scanziani 

et al., 1998; Sun and Dobrunz, 2006) and may be a general mechanism for 

establishing synapse-selective release properties.  The molecular mechanisms 

by which preNMDARs and other presynaptic receptors are targeted to a specific 

subset of terminals are not known, and there appear to be differences in 

preNMDAR expression between cortical regions (Corlew et al., 2007; Brasier and 

Feldman, 2008). 

 

1.6 How do preNMDARs regulate release? 

NMDARs generate depolarization and are permanent to calcium, either of 

which could enhance synaptic release probability via calcium-mediated signaling 

pathways.  Which of these pathways is most relevant, and what downstream 

signaling events lead to modulation of release, are not known.  Many potential 

mechanisms exist, and it is even possible that preNMDARs signal through an 

unknown, non-voltage dependent, non-calcium dependent mechanism.  Here we 

consider several broad signaling motifs that may be involved in preNMDAR-

mediated enhancement of transmitter release (Fig. 1.4).   

Direct depolarization of the terminal.  PreNMDARs may act by causing 

depolarization of the presynaptic terminal.  For example, at the Calyx of Held, 

activation of presynaptic ionotropic glycine receptors causes subthreshold 

depolarization of the terminal, which results in modest calcium influx through  

14 



 

Figure 1.4 Schematic of possible mechanisms for preNMDAR-enhancement 
of neurotransmitter release.  There are three potential signals (green) 
emanating directly from the preNMDAR that could modulate release: direct Ca2+ 
entry, depolarization leading to the opening of VSCCs, and current-independent 
effects.  The two ultimate mechanisms (blue) for expression of increased release 
are direct triggering of release by Ca2+ signals, or indirect signaling that changes 
the probability of release.  Signaling to one of these ends could be carried out 
directly by Ca2+, or by several different intermediates (red): an amplified Ca2+ 
signal through calcium-induced calcium release (CICR), kinases/phosphatases 
that alter future Ca2+ entry, or increased Ca2+ -sensitivity of release machinery. 
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 VSCCs, which in turn increases the probability of release to a subsequent action 

potential (Awatramani et al., 2005).  Such depolarization of the  

presynaptic terminal may be a general mechanism by which presynaptic 

ionotropic receptors, including preNMDARs, enhance release probability 

(Engelman and MacDermott, 2004).   

Calcium influx through preNMDARs.  Calcium influx through preNMDARs, 

rather than depolarization, could be the initial trigger for modulation of release.  

Recently, preNMDAR enhancement of spontaneous miniature inhibitory post-

synaptic current (mIPSC) frequency at synapses onto cerebellar Purkinje cells 

has been shown to be independent of VSCCs, consistent with a direct effect of 

calcium through preNMDARs (Glitsch, 2008).  However, whether cortical 

preNMDARs act independent of VSCCs remains unknown. 

The end result of either preNMDAR-mediated depolarization of the 

terminal or direct calcium entry would be an increase in presynaptic Ca2+.  This 

Ca2+ may then act directly on release machinery, for example by activating 

synaptotagmin and triggering vesicle fusion.  Alternatively, Ca2+ may act to 

increase release probability via one of several more indirect pathways.  First, 

Ca2+ may enhance the function of other calcium sources to facilitate subsequent 

transmitter release.  For example, increasing the association of presynaptic 

vesicle proteins with VSCCs could prime transmitter-containing vesicles so that 

subsequent VSCC activation more efficiently triggers transmitter release (Kim 

and Catterall, 1997; Catterall, 1998).  Second, the Ca2+ signal could act by 

partially saturating endogenous calcium buffers, which can lead to an increase in 
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free calcium when VSCCs open during a subsequent action potential (Felmy et 

al., 2003).  Third, many protein kinases and phosphatases depend on calcium 

and could be activated by preNMDARs to modify function of various presynaptic 

ion channels or biochemical pathways, even including modifications of the 

release machinery itself.  In support of this idea, postsynaptic NR2B-containing 

NMDARs have been found to closely associate with calcium/calmodulin-

dependent protein kinase II (Strack et al., 2000); if such association exists for 

preNMDARs, calcium-dependent kinase activity would be even more plausible.  

Indeed, preNMDARs at the cerebellar parallel fiber to Purkinje synapse have 

been proposed to activate presynaptic nitric oxide (NO) synthase and trigger an 

anterograde NO signal which controls LTD at this synapse (Casado et al., 2000; 

Casado et al., 2002) although whether the relevant NMDARs are truly 

presynaptic has been questioned (Shin and Linden, 2005).  Finally, indirect 

signaling may occur through Ca2+ release from internal stores.  Evidence for this 

pathway is found in presynaptic inhibitory terminals onto cerebellar Purkinje cells, 

where calcium influx through preNMDARs triggers calcium-induced calcium 

release (CICR) via presynaptic ryanodine receptors, resulting in depolarization-

induced potentiation of inhibition (Duguid and Smart, 2004).  For a summary of 

preNMDAR action in the central nervous system (see Table 1.1). 

 The dizzying array of possible mechanisms by which preNMDARs might 

alter neurotransmission at different central synapses highlights the diverse roles 

they could play.  Which putative mechanisms are involved in their function at 

different synapses is likely to be an important question over the next few years.  
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Whether similar mechanisms act at different synapses or whether each class of 

preNMDAR-expressing synapse has a unique set of mechanisms that underlie 

the enhancement of transmitter release is a crucial question to understanding the 

general principles that regulate synaptic transmission. 

 

1.7 Endogenous activation of preNMDARs 

To conduct ionic current, most NMDAR subtypes require glutamate 

binding, binding of glycine (or D-serine) at the glycine site, and depolarization to 

relieve voltage-dependent magnesium block.  How these requirements are met 

for preNMDARs is not yet clear.  The first issue is what is the source of glutamate 

that activates preNMDARs?  Cortical preNMDARs contain the NR2B subunit 

(Woodhall et al., 2001; Sjostrom et al., 2003; Yang et al., 2006; Brasier and 

Feldman, 2008; Li et al., 2008), which confers high affinity for glutamate (Laurie 

and Seeburg, 1994; Priestley et al., 1995).  This opens the possibility that low 

ambient levels of glutamate might tonically activate cortical preNMDARs.  Such 

tonic activation has been observed for postsynaptic NMDARs in slice 

preparations (Sah et al., 1989; Cavelier and Attwell, 2005; Le Meur et al., 2007), 

but see (Herman and Jahr, 2007).  Tonic activation of preNMDARs by ambient 

glutamate is indicated by studies in which NMDAR antagonists decreased 

mEPSC frequency in slices in which all action potential (AP) activity was blocked 

by tetrodotoxin TTX (Berretta and Jones, 1996; Woodhall et al., 2001; Sjostrom 

et al., 2003; Corlew et al., 2007; Li and Han, 2007; Li et al., 2008).  These 

findings demonstrate that ambient glutamate, present in slices without action 
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potential-evoked release, is sufficient to functionally activate preNMDARs.  

Notably, the ability of preNMDARs to modify mEPSC frequency is apparent at 

physiological temperatures, but is absent at room temperature unless glutamate 

concentration is enhanced by high-frequency synaptic activity or blockade of 

excitatory amino acid transporters (Cavelier and Attwell, 2005; Bender et al., 

2006b; Brasier and Feldman, 2008).  Importantly, preNMDAR enhancement of 

release is not saturated by ambient glutamate because application of NMDAR 

agonists enhances mEPSC frequency (Woodhall et al., 2001; Brasier and 

Feldman, 2008).  These data suggest that activity-dependent changes in local 

glutamate concentration might dynamically regulate preNMDAR activation, and 

therefore release probability. 

 The cellular source of glutamate for preNMDARs remains unclear.  

PreNMDARs only contribute to evoked release at L5 pyramidal cell synapses 

when the presynaptic cell fires bursts, suggesting that preNMDARs act as 

autoreceptors for glutamate that builds up with release from the presynaptic 

terminal (Sjostrom et al., 2003).  As such, preNMDARs may help maintain a high 

release probability in the face of continuous firing.  Presynaptic kainate receptors 

act in a similar autocrine fashion to depolarize terminals and enhance transmitter 

release (Sun and Dobrunz, 2006).  Unlike presynaptic kainate receptors, whose 

effect on release gradually increases with subsequent spikes within a burst, 

preNMDARs affect transmitter release even during the first action potential in a 

burst (Sjostrom et al., 2003).  This difference may owe to the comparatively low 

affinity for glutamate of presynaptic kainate receptors versus NR2B-containing 
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NMDARs (Pinheiro et al., 2007).  Glutamate for preNMDAR activation can also 

arise from postsynaptic dendritic release of glutamate, which allows preNMDARs 

to modulate GABAergic synapses in the cerebellum (Duguid and Smart, 2004). 

 Glia may also play a key role in dynamically regulating glutamate 

concentration for preNMDAR activation.  Astrocytes have recently been shown to 

contain glutamate vesicles which undergo exocytosis when stimulated by 

prostaglandins, tumor necrosis factor-alpha, or mGluR agonists (Bezzi et al., 

1998; Bezzi et al., 2001; Bezzi et al., 2004).  In the hippocampal perforant path to 

granule cell synapse, whole-cell stimulation of synaptically associated astrocytes 

increases mEPSC frequency (Jourdain et al., 2007) (Fig 1.5A).  This effect was 

prevented when astrocytic exocytosis was blocked or when preNMDARs were 

blocked with NR2B-selective antagonists.  Furthermore, immuno EM revealed 

NR2B-containing preNMDARs in the extrasynaptic portion of excitatory perforant 

path terminals, closely apposed to the vesicles of synaptically associated 

astrocytes (Jourdain et al., 2007) (Fig. 1.5B).  These findings strongly suggest 

that dynamic glial release of glutamate contributes to activation of preNMDARs.  

It will be vital to test whether other preNMDARs (including in neocortex) are 

regulated by a similar mechanism.  

 A second issue is whether preNMDARs are functionally regulated by 

availability of glycine or other ligands at the glycine binding site.  Glycine binding 

is required for preNMDAR function, because blockade of the glycine binding site 

fully prevents the effects of preNMDARs on mEPSCs in primary visual cortex.   
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Figure 1.5 Glutamate released from astrocytes can regulate 
neurotransmitter release.  (A) Electrical stimulation (stim) of an astrocyte (AST) 
increases miniature excitatory synaptic currents recorded in a granule cell (GC) 
in the dentate gyrus of the hippocampus.  (B) Electron micrographs showing 
NR2B gold particles in extrasynaptic membranes (arrows) of nerve terminals 
(Ter) making asymmetric synapses with dendritic spines (Sp) in the dentate 
molecular layer and an associated astrocytic process (Ast). Inset shows at higher 
magnification NR2B particles apposed to an astrocytic process that contains 
synaptic like microvesicles (arrowheads). Scale bars, 100 nm.  Reproduced with 
permission from Jourdain and others (2007). 
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However, exogenous application of D-serine (a selective agonist for the glycine 

site) does not enhance mEPSC frequency (Awobuluyi et al., 2007).  Thus, unlike 

the postsynaptic NMDAR, the glycine site on preNMDARs may be saturated 

under physiological conditions, which may be due in part to the relatively high 

affinity NR2B-containing and possibly NR3A-containing NMDARs have for 

glycine (Kew et al., 1998).  In addition to glycine and D-serine, preNMDAR 

function is modulated by other amino acids.  Taurine, an endogenous analogue 

of glycine, has been found to increase the preNMDAR-mediated enhancement of 

Schaffer collateral fiber volley amplitude without affecting the postsynaptic 

NMDAR-mediated enhancement of field EPSC slope (Suarez and Solis, 2006). 

 A third issue is the source of depolarization for preNMDAR activation.  The 

fact that preNMDAR blockade alters mEPSC frequency when spikes are blocked 

by TTX (Berretta and Jones, 1996; Sjostrom et al., 2003; Corlew et al., 2007; Li 

and Han, 2007; Brasier and Feldman, 2008; Li et al., 2008) indicates that 

preNMDARs actively enhance release even when depolarization from sodium 

spikes is absent.  This could indicate that (i) resting potential in terminals is 

sufficiently depolarized to partially relieve Mg2+ block of preNMDARs, (ii) 

preNMDARs may exhibit less voltage-dependence than classical postsynaptic 

NMDARs, or (iii) preNMDAR modulation of release may not require current flow.  

Although a relatively depolarized resting potential is a possibility because the 

presynaptic terminal is a small, high input resistance compartment that would be 

readily depolarized by small local excitatory currents, this idea is speculative and, 

at least in the Calyx of Held terminals where it can be measured, the resting 
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membrane potential is close to -80mV (Duguid and Smart, 2004; Awatramani et 

al., 2005).  It is possible that preNMDARs lack a voltage-activated component, as 

this has been observed in some receptor subtypes.  In particular, heteromeric 

NMDAR channels containing the obligatory NR1 subunit with either NR2C, 

NR2D, NR3A, or NR3B subunits (perhaps in addition to NR2B subunits) would 

be expected to exhibit less basal magnesium block compared to postsynaptic 

NMDARs composed primarily of NR1 with NR2A and/or NR2B (Monyer et al., 

1992; Cull-Candy et al., 2001; Sasaki et al., 2002).  Notably, preNMDARs in CA1 

hippocampus of very young (<P5) rats have been suggested to contain NR2D 

subunits (Mameli et al., 2005).  Thus, determining the molecular composition of 

preNMDARs will be crucially important to understanding their voltage 

dependence and their function under physiological conditions. 

 The function of preNMDARs might also be subject to neuromodulation.  In 

hippocampal slices from <P5 rats, the excitatory neurosteroid pregnenolone 

sulfate increases mEPSCs frequency.  This effect is blocked by bath application 

of NMDAR antagonists, including the NR2C/NR2D-selective antagonist PPDA, 

but not by selective blockade of postsynaptic NMDARs.  An endogenous 

pregnenolone sulfate-like neurosteroid was found to be released by postsynaptic 

depolarization and to enhance preNMDAR function (Mameli et al., 2005), raising 

the possibility that preNMDARs may be an important site of neuromodulatory 

control of release probability and network excitability.  
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1.8 Role in LTD 

NMDARs are required for many forms of synaptic plasticity, including long-

term potentiation (LTP) and depression (LTD) (Bliss and Collingridge, 1993; 

Collingridge and Bliss, 1995; Malenka and Bear, 2004).  While postsynaptic 

NMDARs are well established to trigger induction of classical forms of LTP and 

LTD, as best defined at CA3-CA1 excitatory synapses in hippocampus, recent 

studies indicate that preNMDARs, rather than postsynaptic NMDARs, mediate at 

least one prominent form of plasticity, spike timing-dependent LTD (tLTD), at 

some synapses.   

 Spike timing-dependent plasticity (STDP) is a physiologically realistic form 

of bidirectional synaptic plasticity in which LTP or LTD is induced in response to 

the precise timing between presynaptic spikes (and the excitatory postsynaptic 

potentials (EPSPs) they elicit) and postsynaptic spikes (Magee and Johnston, 

1997; Markram et al., 1997; Dan and Poo, 2006).  Spike timing-dependent LTP 

(tLTP) is induced when presynaptic spikes precede postsynaptic spikes by < 20 

ms, while tLTD is induced when presynaptic spikes follow postsynaptic spikes by 

up to 20-50 ms.  STDP occurs throughout the neocortex (Egger et al., 1999; 

Feldman, 2000; Sjöström et al., 2001; Froemke and Dan, 2002) and has 

functional properties that may underlie development, plasticity, and competition 

within sensory maps.  In particular, tLTD may underlie deprivation- and 

experience-induced weakening of sensory responses during receptive field 

plasticity (Sjöström et al., 2001; Allen et al., 2003; Celikel et al., 2004; Dan and 

Poo, 2006). 
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 NMDAR activation is necessary for most forms of cortical STDP.  At 

several synapses in young rodents, including L4-L2/3 synapses in 

somatosensory and visual cortex, and synapses between L5 pyramidal neurons 

in visual cortex, the induction of tLTD has been found to specifically require 

preNMDARs, but not postsynaptic NMDARs (Sjostrom et al., 2003; Bender et al., 

2006b; Corlew et al., 2007; Rodriguez-Moreno and Paulsen, 2008) (Fig. 1.6).  

This was elegantly shown at unitary L4-L2/3 synapses in mouse S1, using dual 

whole-cell recordings of synaptically connected L4 and L2/3 neurons.  

Postsynaptic or presynaptic NMDA receptors were selectively blocked by internal 

application of the NMDAR pore blocker MK-801 into the pre- or postsynaptic 

neuron.  tLTD was completely blocked by presynaptic MK-801, but was 

unaffected by postsynaptic MK-801.  This indicates that LTD involved 

presynaptic, but not postsynaptic, NMDARs, and rules out the possibility that glial 

NMDARs are required in tLTD  (Rodriguez-Moreno and Paulsen, 2008).   

 PreNMDAR-dependent tLTD requires postsynaptic calcium elevation and, 

in the S1 at least, activation of postsynaptic group I mGluRs, and is expressed as 

a reduction in the probability of neurotransmitter release, implicating a retrograde 

signal (Bender et al., 2006b; Nevian and Sakmann, 2006).  This retrograde signal 

involves the well-established endocannabinoid retrograde signaling pathway, 

which mediates many forms of short- and long-term synaptic plasticity 

(Chevaleyre et al., 2006), because postsynaptic synthesis of endocannabinoids 

and activation of presynaptic cannabinoid type 1 (CB1) receptors are required for 

tLTD (Sjostrom et al., 2003; Bender et al., 2006b).   
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Figure 1.6 Induction of long-term depression (LTD) requires preNMDARs. (A & B) 
Extracellularly evoked L4–L2/3 excitatory postsynaptic currents (EPSPs) in 
somatosensory cortex (S1). (A) In L4–L2/3 S1 connections, robust timing-dependent 
LTD can be induced in control experiments (closed circles) by repetitively pairing 
postsynaptic action potentials followed closely by EPSPs (pairing indicated by gray bar). 
LTD is observed even when postsynaptic NMDARs are blocked with iMK-801 (open 
circles), but not when APV (2-amino-5-phosphonopentanoic acid) is bath applied (not 
shown). (B) Bath-applying the endocannabinoid agonist AEA (arachidonyl ethanolamide) 
induces a lasting LTD at L4–L2/3 synapses (indicated by a reduction of EPSP slope, 
normalized to baseline). Prior blockade of pre- and postsynaptic NMDARs with bath-
applied D-APV blocks this AEA-induced LTD (no reduction in EPSP slope from 
baseline), whereas postsynaptic NMDAR blockade with MK-801 does not block AEA-
induced LTD (not shown). (C–H), Synaptically coupled L4–L2/3 excitatory pairs in the 
S1. (C) iMK-801 (gray) completely blocks induction of timing-dependent long-term 
potentiation (tLTP), while control (no iMK-801) neurons (black) exhibit normal LTP. Inset, 
EPSP before (1) and 30 min after (2) the LTP pairing protocol. (D) Postsynaptic MK-801 
did not block tLTD. (E) Summary of (C & D). (F) During paired recordings, presynaptic 
MK-801 did not block the induction of tLTP. (G) Presynaptic MK-801 completely blocks 
tLTD. (H) Summary of (F & G). Control tLTP refers to values obtained using extracellular 
stimulation. (E & H) The numbers of slices are shown in parentheses. All error bars are 
S.E.M. * = p < 0.05, ** = p < 0.01. Reproduced with permission from (A & B) Bender 
(2006), and (C & H) Rodríguez-Moreno and Paulsen (2008). 
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Thus, tLTD at these synapses involves both preNMDAR and CB1 signaling 

(Sjostrom et al., 2003; Bender et al., 2006b; Nevian and Sakmann, 2006). 

Such CB1- and preNMDAR-dependent, presynaptically expressed tLTD is 

common in neocortex, at least during early postnatal development (Corlew et al., 

2007), but is not universal (Froemke et al., 2005).  Currently, there is no 

explanation for why some forms of LTD are preNMDAR-dependent while others 

are postsynaptic NMDAR-dependent.  In addition to tLTD, it is tempting to 

speculate that more forms of preNMDAR-dependent plasticity exist, but have not 

been discovered due to assumptions (based on analogy to CA3-CA1 synapses in 

hippocampus) that postsynaptic NMDARs generally mediate plasticity.  The 

prevalence of multiple, distinct forms of LTD throughout the brain, including 

preNMDAR-CB1 LTD, and the recent discovery of preNMDAR-dependent LTP in 

the amygdale (Humeau et al., 2003), indicate that plasticity at CA3-CA1 

synapses may not be canonical and underscore the need to test specifically for 

pre- versus post-synaptic NMDAR involvement in specific forms of synaptic 

plasticity.  

 

1.9 Role of preNMDARs in CB1/preNMDAR-dependent LTD 

How might preNMDARs contribute to tLTD?  Coincidence detection for 

STDP, and for Hebbian plasticity generally, is widely posited to be performed by 

postsynaptic NMDARs (Dan and Poo, 2006).  In one standard STDP model, 

presynaptically released glutamate strongly activates postsynaptic NMDAR 

currents when release is rapidly followed by depolarization from postsynaptic 
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spikes, leading to calcium influx that is supralinear compared to glutamate 

release or postsynaptic spikes alone.  This supralinear calcium is thought to drive 

LTP induction.  In contrast, post-leading-pre spike order drives sublinear calcium 

influx, leading to LTD (Shouval and Perrone, 1995; Koester and Sakmann, 

1998). While this model may hold at synapses that exhibit postsynaptic NMDAR-

dependent STDP, calcium from postsynaptic NMDARs is not required to drive 

tLTD at synapses which exhibit preNMDAR/CB1-dependent tLTD (Sjostrom et 

al., 2003; Bender et al., 2006b; Duguid and Sjostrom, 2006; Corlew et al., 2007; 

Corlew et al., 2008).  Thus, at these synapses, postsynaptic NMDARs cannot 

perform coincidence detection for tLTD, and the induction of tLTD must involve 

separate coincidence detection mechanisms than those for tLTP (Bender et al., 

2006b; Nevian and Sakmann, 2006).  Induction of tLTD at these synapses may 

involve preNMDARs and CB1 receptors (Sjostrom et al., 2003; Duguid and 

Sjostrom, 2006). 

Whether and how preNMDARs contribute to coincidence detection for 

preNMDAR-dependent, CB1-dependent tLTD is debated.  In one hypothesis, 

presynaptic spikes provide glutamate and depolarization to activate preNMDARs, 

postsynaptic spikes evoke endocannabinoid release to activate CB1 receptors, 

and coincident activation of preNMDARs and CB1 receptors triggers tLTD 

(Sjostrom et al., 2003; Duguid and Sjostrom, 2006) (Fig. 1.7A). Consistent with 

this model, exogenous cannabinoid agonists induce tLTD at synapses between 

L5 pyramidal cells in visual cortex, and this effect is blocked when preNMDARs  
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Figure 1.7 Two models showing preNMDAR involvement in the coincidence 
detection of spike timing-dependent LTD.  (A) It has been proposed in L5 of 
visual cortex (Sjostrom et al., 2003) that postsynaptic action potentials trigger the 
release of endocannabinoids in a mechanism similar to short-term depression 
caused during depolarization-induced suppression of inhibition.  When 
presynaptic activity follows this cannabinoid release in a short time window, it 
coincidently activates preNMDARs and presynaptic CB1 receptors to trigger LTD 
induction.  Reproduced with permission from Sjöström and others (2003).  (B) 
Schematic for a possible postsynaptic coincidence detector for CB1-mediated 
tLTD. Black, pathway for mGluR-dependent cannabinoid synthesis. Red, 
pathway for VSCC- and calcium-dependent cannabinoid synthesis. Purple, 
potential synergistic pathways that increase cannabinoid production in response 
to appropriately timed pre- and postsynaptic spikes. Presynaptic NMDARs play a 
modulatory role in LTD in this hypothesis.  Schematic based on data in Bender 
and others 2006. 
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are blocked by APV, indicating that coincident activation of CB1 receptors and 

preNMDARs is required for this form of synapse weakening.  Also consistent with 

this model, prolonging the half-life of endogenously released cannabinoids 

broadens the timing window for tLTD within the STDP rule (Sjostrom et al., 

2003).  However, a potential difficulty with this model is that endocannabinoid 

synthesis, release, and retrograde signaling must occur with ~10 ms precision, 

which may be faster than possible for endocannabinoid signaling (Heinbockel et 

al., 2005).  Another difficulty is that, at least at L4-L2/3 synapses in S1, tLTD can 

be induced even when preNMDARs are blocked during post-leading-pre spike 

pairing, indicating that these receptors do not participate in coincidence detection 

for tLTD (Bender et al., 2006a). 

 An alternative hypothesis is that preNMDARs do not contribute to 

millisecond-scale coincidence detection of pre- and postsynaptic activity during 

tLTD induction, but rather act on a slower time scale to modulate tLTD induction.  

In this model, rapid coincidence detection for tLTD occurs through a separate, 

postsynaptic mechanism.  One such mechanism is suggested by findings at L4-

L2/3 synapses in S1, where tLTD requires postsynaptic VSCCs and group I 

mGluRs, both of which are upstream of endocannabinoid synthesis (Bender et 

al., 2006b) (Fig. 1.7B).  Calcium and mGluR activation are known to drive 

endocannabinoid synthesis, and joint activation of these pathways greatly 

facilitates endocannabinoid synthesis and cannabinoid-dependent plasticity 

(Hashimotodani et al., 2005; Chevaleyre et al., 2006).  According to this model, 

presynaptic spikes provide glutamate to activate mGluRs, postsynaptic spikes 
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drive calcium entry through VSCCs, and appropriately timed, near-coincident 

activation of these two pathways leads to synergistic endocannabinoid synthesis 

and release.  The retrograde endocannabinoid signal then instructs the 

presynaptic terminal to express LTD.  While acute blockade of preNMDARs 

during post-pre spike pairing does not block tLTD at this synapse, persistent 

blockade of preNMDARs for many minutes prior to pairing does block tLTD 

(Bender et al., 2006b).  This suggests that preNMDAR activity is required on long 

time scales for tLTD induction, but not for rapid coincidence detection during 

pairing.  This model does not predict strong synapse specificity for tLTD, since 

post-pre pairing at one synapse would generate cannabinoid signals that could 

diffuse retrogradely to neighboring synapses and drive heterosynaptic LTD.  In 

contrast, the model proposed by Sjöström et al. (2003) predicts that only those 

presynaptic terminals which are active within milliseconds of postsynaptic 

activation would experience coincident activation of preNMDARs and CB1 

receptors, and would undergo LTD.  Future studies need to distinguish between 

these distinct tLTD models. 

 

1.10 Developmental regulation of preNMDARs role in neurotransmission 

and plasticity 

Despite the large body of evidence reviewed above, preNMDARs are not 

found at all synapses, in all brain areas, in all studies.  Some explanation is 

offered by a growing body of evidence indicating that the function of preNMDARs 

decreases dramatically over development.  One of the first suggestions that 
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preNMDARs are regulated over development came from a study in the CA1 

region of the hippocampus, where the neuromodulatory effects of pregnenolone 

sulfate on preNMDARs was observed only during a brief window of postnatal 

rodent development (<P5) (Mameli et al., 2005).  While this effect might arise at 

any point along the neuromodulatory pathway, it was hypothesized that the loss 

of function arose from a decline in preNMDAR function due to a developmental 

loss of NR2D-containing preNMDARs.  The presence of NR2D permits NMDARs 

to function at hyperpolarized potentials and, thus, could account for the ability of 

preNMDARs to be tonically active in the absence of strong depolarization 

(Mameli et al., 2005).  The developmental loss of NR2D might then increase 

voltage-dependence of preNMDARs, effectively disabling their function.  In 

support of this interpretation, while preNMDARs may facilitate tonic transmitter 

release at the CA3-CA1 synapse only in young (<P5) mice (Mameli et al., 2005) 

they may continue to alter evoked transmitter release at older ages (Suarez et 

al., 2005; Suarez and Solis, 2006).  Thus, with a change in the subunit 

composition of preNMDARs, their ability to participate in spontaneous and 

evoked transmitter release might change.   

Several studies now indicate that preNMDAR function attenuates with 

development, although the developmental timing of this attenuation varies in 

different regions of the brain.  For example, unlike the early loss of preNMDAR 

function observed in the hippocampus (Mameli et al., 2005), preNMDAR function 

in entorhinal cortex L5 pyramidal neurons is not lost until late in development 

(Yang et al., 2006).  Specifically, preNMDARs enhance the frequency of 
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spontaneous excitatory postsynaptic currents (sEPSCs) at 5 weeks of age in the 

entorhinal cortex, but this effect is absent by 5 months (Yang et al., 2006).  

Although the time course for the developmental loss of preNMDARs is different 

between the hippocampus and entorhinal cortex, a change in preNMDAR subunit 

composition may underlie the loss of preNMDAR function in both regions 

(Mameli et al., 2005; Yang et al., 2006).  To examine this possibility in the 

entorhinal cortex, the investigators took advantage of the observation that 

preNMDARs, but not postsynaptic NMDARs, are thought to contain the NR2B 

subunit in L5 pyramidal neurons at 5 weeks of age.  Accordingly, the NR2B 

agonist Ro25-6981 could effectively reduce the frequency of sEPSCs at 5 weeks 

of age but not at 5 months of age, indicating that NR2B-containing preNMDARs 

were no longer contributing to the spontaneous release probability.   

A profound developmental reduction in preNMDAR functions has been 

observed in V1 (Corlew et al., 2007), suggesting that this might be a general 

feature of preNMDAR expression.  In the mouse primary visual cortex, the ability 

of preNMDARs to enhance spontaneous release probability onto cells in L2/3, 

L4, and L5 is completely lost at 3 weeks of age (Fig. 1.8).  Consistent with this 

observation, there is a dramatic reduction in the anatomical expression of 

terminals containing preNMDARs; while roughly 60% of presynaptic terminals 

contain the obligatory NMDAR subunit NR1 in L2/3 asymmetric (excitatory) 

synapses at P16, only 30% do so at P27.  This will be explored further in Chapter 

2.  While there are several possible explanations for the total loss of preNMDAR  
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Figure 1.8 Evidence for a developmental reduction in preNMDAR functions.  
(A) D,L-APV (or D-APV where indicated) strongly reduced AMPAR-mediated 
mEPSC frequency from baseline in L2/3, L4, and L5 pyramidal cells in the visual 
cortex of mice at P7-20 but not older mice.  Sample sizes are given within the 
bars.  (B) Immuno-electon microscopy for the obligatory NR1 subunit of the 
NMDAR reveals a developmental decrease in presynaptic, but not postsynaptic, 
NR1.  Electron micrograph in L2/3 of visual cortex of a (B1) P16 mouse, 
demonstrating an NR1-positive terminal (t+) forming a synapse onto a NR1 
positive spine (s+) and (B2) from a P27 mouse, demonstrating an unlabeled 
terminal (t-) forming a synapse onto a labeled dendrite (d+). Scale bar 250 nm. 
(C) Scatter plot from four mice (2 at each age) quantifying the selective loss of 
presynaptic, but not postsynaptic, NR1 over development.  Reproduced with 
permission from Corlew and others (2007). 
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functions in spontaneous release without the complete loss of expression at P27, 

one parsimonious explanation is that the reduction in preNMDAR expression is  

also coupled to a change in preNMDAR subunit composition.  Such an 

observation would be consistent with the mechanisms suggested for the 

developmental loss of preNMDARs in entorhinal cortex and hippocampus.  

Moreover, a role for preNMDARs in supporting evoked neurotransmitter release 

in the adult neocortex has not been tested to date. 

What is the physiological outcome of a developmental decrease in 

preNMDARs?  Neurotransmitter release probability decreases significantly during 

early development, causing some synapses to switch with age from displaying a 

depressing response with pairs or bursts of stimulation to a facilitating response 

(Bolshakov and Siegelbaum, 1995; Choi and Lovinger, 1997; Pouzat and 

Hestrin, 1997; Reyes and Sakmann, 1999; Dekay et al., 2006).  The timing for 

these observed changes in presynaptic function coincides roughly with the 

developmental decrease in preNMDAR function in the hippocampus (Mameli et 

al., 2005), entorhinal cortex  (Yang et al., 2006), and visual cortex (Corlew et al., 

2007).  Therefore, a reduction in preNMDAR function might contribute to a 

developmental decrease in release probability, which may be a general property 

of early circuit formation.  Synaptic terminals may require a high release 

probability to facilitate synapse formation during early synaptogenesis (Rumpel et 

al., 2004).  When synaptic connections become more stable, the need for that 

high release probability may decrease as connections can be strengthened and 

weakened by changes on the postsynaptic side.   
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As presynaptic and postsynaptic receptor properties change with 

development, synaptic plasticity mechanisms may be forced to adapt to these 

changes (Yasuda et al., 2003; Frenkel and Bear, 2004; Nosyreva and Huber, 

2005; Yashiro et al., 2005; He et al., 2006; Jo et al., 2006).  The mechanisms of 

synaptic plasticity cannot be studied without reference to development: even the 

pre- versus postsynaptic locus induction and expression of LTP and LTD can 

vary with development (Nosyreva and Huber, 2005; Corlew et al., 2007; Crozier 

et al., 2007).  As preNMDARs are lost during development of the L4-L2/3 

pathway in visual cortex, there is a developmental switch from the involvement of 

preNMDARs to postsynaptic NMDARs in LTD (Corlew et al., 2007).  Thus, while 

preNMDARs can contribute to the properties of neurotransmission and act as 

coincidence detectors for tLTD induction during early life, the role of postsynaptic 

NMDARs in tLTD increases as that of preNMDARs diminishes. 

 

1.11 Activity-dependent and disease-induced changes in preNMDARs 

While postsynaptic NMDAR expression and function are sensitive to 

experience-driven changes in neural activity levels (Carmignoto and Vicini, 1992; 

Hestrin, 1992; Monyer et al., 1994; Philpot et al., 2001a), it was only recently that 

similar activity dependence has been observed for preNMDARs.  For example, in 

cultured cerebellar GABAergic neurons, where preNMDARs may act as 

heteroreceptors for glutamate to increase GABA release, the developmental loss 

of preNMDARs can be accelerated by treatment with NMDA (Fiszman et al., 

2005).  While there may be several mechanisms that underlie this activity-
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dependent change in preNMDAR function, it is possible that changes in activity 

levels may alter the subunit composition of preNMDARs and/or their expression 

at the synapse (due to differential receptor trafficking).  In support of this idea, 

pharmacological blockade of NMDARs in vivo rapidly increases the presence of 

presynaptic NR2A subunits, and decreases that of NR2B subunits, in both 

postsynaptic spines and presynaptic terminals of adult rat visual cortex (Aoki et 

al., 1994; Fujisawa and Aoki, 2003).  The time scale (<30 min) of these changes 

suggest an activity-dependent modification in preNMDAR trafficking, and 

changes in activity levels may uniquely alter the trafficking of the various NMDAR 

subtypes.   

If modulating activity in vivo similarly alters expression and function of 

preNMDARs, then changes in preNMDAR function could occur during, or 

contribute to, neurological disorders such as epilepsy that involve large-scale 

changes in network activity and excitation.  Chronic changes in neural activity 

levels in epileptic patients have been shown to affect NMDAR function and 

expression (Dalby and Mody, 2001; Avanzini and Franceschetti, 2003; Morimoto 

et al., 2004).  However, few studies have considered the possibility that 

preNMDARs may be affected.  One recent study in rodents indicates that 

epileptic activity could affect the function of preNMDARs.  Specifically, 

preNMDARs were reinstated, or their normal developmental down-regulation 

prevented, in the adult entorhinal cortex following 2-4 weeks of lithium-

pilocarpine treatment to induce seizures (Yang et al., 2006).  In these mice, the 

recurrent seizure activity recovered a high frequency of sEPSCs that could be  
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Figure 1.9 Developmental and activity-dependent regulation of preNMDAR 
functions.  Presynaptic NR2B-containing receptors enhance spontaneous 
release in the entorhinal cortex of young rats and epileptic adults, but not in 
normal adults. (A-C) Voltage-clamp recordings of sEPSCs in a layer 5 neurons in 
a slice from (A) a 4-week-old rat, (B) a 5-month-old rat, and (C) and a 5-month-
old epileptic rat.  Blockade of NR2B receptors with Ro 25-6981 decreases the 
frequency of sEPSCs only in young and epileptic rats.  Postsynaptic NMDARs 
are blocked by intracellular MK-801. (D-F) Corresponding pooled data for inter-
event interval of the sEPSCs from control and Ro 25-6981 recordings.  
Reproduced with permission from Yang and others (2006). 
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decreased by the NR2B-specific antagonist Ro 25-6981.  Littermate controls with 

no seizures had no increase in sEPSCs, and the frequency of sEPSCs in these 

control mice was not affected by Ro 25- 6981 application (Yang et al., 2006) (Fig. 

1.9).  These data indicate that the ability of preNMDARs to enhance spontaneous 

transmitter release was enhanced in a seizure model, although it has not yet 

been determined whether this increase was causal to, or a consequence of, 

increased neural activity.  In support of the idea that preNMDARs may be 

involved in some forms of epilepsy, it is interesting to note that gabapentin, a 

drug prescribed to treat epilepsy, may act to decrease neurotransmitter release 

via preNMDARs (Suarez et al., 2005).   
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Chapter 2: 

Developmental switch in the contribution of presynaptic NMDA receptors  

(preNMDARs) to long-term depression (tLTD) 

This chapter was published with Yun Wang, Haben Ghermazien, Alev Erisir, 

and Benjamin D. Philpot in The Journal of Neuroscience Sep 12; 

27(37):9835-45 

2.1  Introduction  

NMDA receptor (NMDAR) activation is required for many forms of learning 

and memory as well as sensory system receptive field plasticity, yet the relative 

contribution of pre- and postsynaptic NMDARs over cortical development 

remains unknown.  Here we demonstrate a rapid developmental loss of 

functional presynaptic NMDARs (preNMDARs) in the neocortex.  PreNMDARs 

enhance neurotransmitter release at synapses onto visual cortex pyramidal cells 

in young mice (< postnatal day 20; P20), but they have no apparent effect after 

the onset of the critical period for receptive field plasticity (>P21).  Immuno-

electron microscopy revealed that the loss of preNMDAR function is due in part 

to a 50% reduction in the prevalence of preNMDARs.  Coincident with the 

observed loss of preNMDAR function, there is an abrupt change in the 

mechanisms of timing-dependent long-term depression (tLTD).  Induction of tLTD 

before the onset of the critical period requires activation of pre but not 

postsynaptic NMDARs, while the induction of tLTD in older mice requires 



activation of postsynaptic NMDARs though the requirement of pre NMDARs at 

this stage is unknown.  By demonstrating that both pre- and postsynaptic 

NMDARs contribute to the induction of synaptic plasticity, and that their relative 

roles shift over development, our findings define a novel, and perhaps general, 

property of synaptic plasticity in emerging cortical circuits. 

Synaptic connections in sensory cortices such as the primary visual cortex 

are initially sculpted in an experience-independent manner, allowing rough 

cortical maps and receptive field properties to emerge in the absence of sensory 

experience (Rakic, 1977; Mower et al., 1985; Stryker and Harris, 1986; Horton 

and Hocking, 1996; Crowley and Katz, 1999; Feller and Scanziani, 2005).  This is 

followed by a relatively brief “critical period” of postnatal life where receptive field 

properties are additionally refined in an experience-dependent manner (Fox and 

Zahs, 1994; Berardi et al., 2000; Sengpiel and Kind, 2002; Hensch, 2004).  

Activation of the NMDA-type glutamate receptors (NMDARs) is required for many 

experience-dependent forms of plasticity as well as some forms of activity-

dependent plasticity that do not rely on sensory experience (Bear and 

Rittenhouse, 1999; Iwasato et al., 2000; Malenka and Bear, 2004).  Thus, an 

important goal is to establish the precise role of NMDARs in key forms of cortical 

plasticity, and whether this changes over development.   

 NMDARs were traditionally thought to exert their influences 

postsynaptically, and their presynaptic existence has been largely ignored.  A 

surprising finding is that NMDARs are anatomically expressed presynaptically 

(Aoki et al., 1994; Charton et al., 1999) and these presynaptic receptors are 
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involved in both neurotransmission and plasticity (Berretta and Jones, 1996; 

Woodhall et al., 2001; Casado et al., 2002; Humeau et al., 2003; Bardoni et al., 

2004; Duguid and Smart, 2004; Mameli et al., 2005; Duguid and Sjöström, 2006; 

Lien et al., 2006; Yang et al., 2006).  For example, tLTD between layer (L) 5 

pyramidal cells in the visual cortex requires the simultaneous activation of 

preNMDARs and cannabinoid receptors (Sjöström et al., 2003).  This tLTD is 

expressed presynaptically as a reduction in the probability of neurotransmitter 

release.  PreNMDARs are also involved in the induction of tLTD at L2/3 in barrel 

cortex and visual cortex of young rodents (Bender et al., 2006b; Li and Han, 

2006).  While growing evidence suggests an important role for preNMDARs early 

in development (Lien et al., 2006), it remains unknown whether preNMDARs are 

regulated in a laminar or developmental fashion. 

Here we examined the laminar and developmental profile of preNMDAR 

function in the visual cortex, a well-studied model for sensory map plasticity (Fox 

and Zahs, 1994; Katz and Shatz, 1996; Bear and Rittenhouse, 1999; Berardi et 

al., 2000; Sengpiel and Kind, 2002; Hensch, 2004; Taha and Stryker, 2005; 

Hofer et al., 2006b).  We demonstrate that while preNMDARs function to 

enhance spontaneous neurotransmission onto pyramidal neurons in L2/3, L4, 

and L5 early in development, there is an abrupt loss of this function at the onset 

of the critical period.  Furthermore, pre- but not postsynaptic NMDARs are 

required for the induction of tLTD at the L4-L2/3 synapse during the pre-critical 

period.  At the onset of the critical period, however, a dramatic loss of 
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preNMDARs appears to trigger the emergence of a postsynaptic requirement of 

NMDARs for tLTD though a remaining presynaptic requirement was not tested. 

 

2.2 Materials and Methods 

Subjects.  C57BL/6 mice were purchased from Charles River laboratories and 

used between P7 and P84.  Mice were maintained on a 12:12 light:dark cycle 

and fed ad libitum.  All experiments were performed under the animal care 

guidelines for Tufts University School of Medicine, the University of Virginia, and 

the University of North Carolina at Chapel Hill.  

Cortical slice preparation:  Mice were anesthetized with pentobarbital sodium (40 

mg/kg, i.p.) and decapitated upon disappearance of corneal reflexes.  Brains 

were rapidly removed and immersed in ice-cold dissection buffer (composition in 

mM: 87 NaCl, 2.5 KCl, 1.25 NaH2PO4, 25 NaHCO3, 75 sucrose, 10 dextrose, 1.3 

ascorbic acid, 7 MgCl2, and 0.5 CaCl2) bubbled with 95% O2 and 5% CO2.  The 

visual cortex was rapidly dissected and 350 µM coronal slices were prepared 

using a vibrating microtome (Leica VT100S).  Slices were allowed to recover for 

20 min in a submersion chamber at 35°C filled with warmed ACSF (124 mM 

NaCl, 3 mM KCl, 1.25 mM Na2PO4, 26 mM NaHCO3, 1 mM MgCl2, 2 mM CaCl2, 

and 20 mM D-glucose, saturated with 95% O2, 5% CO2; ~315 mOsm and pH 

~7.25) and then kept at room temperature until use.  For recordings, visual cortex 

slices were placed in a submersion chamber, maintained at 30°C, and perfused 

with oxygenated ACSF. 
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Voltage-clamp recordings.  Patch pipettes were pulled from thick-walled 

borosilicate glass with open tip resistances of 3-6 MΩ when filled with one of  two 

internal solutions either containing (in mM) 102 cesium gluconate, 5 TEA-

chloride, 3.7 NaCl, 20 HEPES, 0.3 sodium guanosine triphosphate, 4 magnesium 

adenosine triphosphate, 0.2 EGTA, 10 BAPTA, and 5 QX-314 chloride (Alomone 

Labs, Jerusalem, Israel) or containing 20 KCl, 100 (K)Gluconate, 10 HEPES, 4 

(Mg)ATP, 0.3 (Na)GTP, 10 (Na)Phosphocreatine with pH adjusted to 7.25 and 

osmolarity adjusted to ~300 mOsm with sucrose or ddH2O.  Cells were voltage-

clamped in the whole-cell configuration using a patch-clamp amplifier (Multiclamp 

700A; Molecular Devices), and data were acquired and analyzed using pCLAMP 

9.2 software (Molecular Devices).  For current-voltage (I-V) curves, voltage was 

adjusted for the 16mV junction potential, which was empirically determined for 

the internal solution.  Changes in series resistance were monitored throughout 

the experiment by giving a test pulse and measuring the amplitude of the 

capacitive current.  Only cells with series resistance < 30 MΩ were included for 

analysis.  No series resistance compensation was applied.  Input resistance was 

monitored throughout the experiment by measuring the amplitude of the steady-

state current, filtered at 2 kHz, evoked from a test pulse.  Only cells with <30% 

change in Rinput, Rseries, and Iholding, or <100 pA change for Iholding were included for 

analysis.  EPSCs were evoked from a stimulating electrode (two-conductor 

cluster electrodes with 75 µM tip separation, FHC Inc., Bowdoin, ME.).  NMDAR 

currents were pharmacologically isolated by modifying the standard ACSF to 
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contain 4 mM Mg2+, 4 mM Ca2+, 1 µM glycine, 50 µM picrotoxin, and 40 µM 

DNQX or 20 µM CNQX. 

mEPSC recordings  Excitatory miniature excitatory postsynaptic currents 

(mEPSCs) were recorded in the presence of blockers for voltage-gated sodium 

channels (tetrodotoxin, TTX; 200 nM) and GABAA receptors (picrotoxin; 50 µM) 

as well as 1 µM glycine.  We recorded AMPA receptor-mediated mEPSCs at 

negative holding potentials (-80 mV) to block the postsynaptic NMDAR currents, 

and measured mEPSC amplitude and frequency before, during, and after bath 

application of the NMDAR antagonist D-APV (50µM) or D,L-APV (100 µM).  

Comparisons were made for (1) the last 4 minutes of a 10 minute baseline 

period, (2) the last 4 minutes of an 8-10 minute window following application of 

100 µM D,L-APV, and (3) the last 4 minutes following drug washout lasting 15-20 

minutes.  We also performed experiments of the same duration without drug 

application as a demonstration of the stability of the recordings.  Events were 

identified by their rapid rise time (<3 ms), and were detected using an automatic 

template detection program (pCLAMP, Molecular Devices) (Clements and 

Bekkers, 1997).  The detection threshold remained constant for the duration of 

each experiment.  All events were manually verified, and only events with a 

monotonic rise time and exponential decay were included in the analysis.  

Normalized frequency and amplitudes were used for mEPSC data analysis.  

Over 150 events, with an average of ~700 events, were analyzed for each data 

point for each cell. 
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tLTD induction and short-term plasticity  The internal recording solutions used for 

these experiments consisted of (in mM): 100 (K)Gluconate, 20 KCl, 4 (Mg)ATP, 

10 phosphocreatine, 0.3 GTP, 10 Hepes, with pH adjusted to 7.25 and osmolarity 

adjusted to 290-295 mOsm.  Some solutions also contained 0.4% biocytin and/or 

MK-801 (0.5-1 mM).  Picrotoxin (50 µM) was included in the bath solution for a 

subset of recordings.  In the younger age group experiments recorded in the 

presence or absence of picrotoxin were combined, as they yielded similar results, 

consistent with previous observations that the properties of spike timing-

dependent plasticity are similar with and without the blockade of inhibition 

(Feldman, 2000; Froemke and Dan, 2002).  In the P23-30 age group however, 

tLTD could only be induced in the presence of picrotoxin to block inhibition.  

Therefore, at this age group experiments with and without picrotoxin were kept 

separate.  L2/3 pyramidal cells were recorded in current-clamp, and weak 

stimulation was delivered to L4, which makes a particularly strong and vertically 

organized projection to L2/3 (Burkhalter, 1989).  Extracellular stimulation 

produced a monophasic and fixed latency response, which we interpreted as 

predominately consisting as coming from L4 or other vertical inputs.  We feel that 

it is unlikely that we are activating local axon collaterals, as we never evoked 

antidromic action potentials at the low stimulation intensities used in these 

studies.  Baseline stimulation was delivered once every 15-18 seconds.  After a 

10-15 minute stable baseline, action potential (AP) and excitatory postsynaptic 

potential (EPSP) pairings were delivered 75-100 times (@ ~0.2Hz) with a 

postsynaptic action potential produced by brief (<5 ms) depolarization followed 5-
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25 ms later by an EPSP evoked by L4 stimulation.  After pairing, and in a few 

instances after an additional 5 minute period without stimulation, stimulation was 

delivered for 30 minutes at baseline frequencies.  Short-term plasticity (i.e. the 

rate of synaptic depression) was compared before and after pairing by 

stimulating 6 pulses at 30 Hz.   

Synaptic depression analysis   A change in the amount of synaptic depression 

between the baseline responses and the responses after the induction of tLTD 

was quantified using a short-term depression (STD) index described by Sjöström 

et al. (2003).  The change in the amount of synaptic depression observed in a 

train of six EPSPs evoked at 30 Hz was compared between the average 

responses in the first 10 minutes (baseline) and the last 10 minutes (post-

induction).  Net amplitudes for each EPSP were used.  The STD index is equal to 

the ratio (post-induction/baseline) of EPSP1 – the average ratios of EPSP2-6, all 

normalized to the ratio of EPSP1. 

Electron microscopy (EM)  Mice were given an overdose of Nembutal, and 

perfused transcardially with heparinized Tyrode solution for 3 minutes, followed 

by a mixture of 4% paraformaldehyde and 0.5% gluteraldehyde, for 15 minutes.  

Fixatives were dissolved in 0.1M phosphate buffer (PB) at pH 7.4.  After 

perfusions, brains were kept within the skull and postfixed overnight in the same 

fixative.  A vibrating microtome was used to cut 60 µM sections coronally through 

the visual cortex.  Sections were treated with 1% NaBH4 to terminate the cross-

linking actions of the fixatives, and stored free-floating at 4°C in 0.01M phosphate 

buffered saline (PBS) containing 0.05% sodium azide.  To prepare slices for pre-
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embedding immunocytochemistry, sections were rinsed and treated in 1% bovine 

serum albumin (BSA) in PBS for 30 minutes, and they were incubated in a 1 

µg/ml dilution of polyclonal rabbit anti-NR1 (Chemicon, CA) in PBS with 1% BSA 

and 0.05% NaN3, for three days at room temperature.  The sections were then 

rinsed and incubated in a biotinylated goat anti-rabbit (Vector Labs, CA) for 2 

hours, followed by 2 hours incubation in HRP-conjugated avidin-biotin complex 

(ABC; Vector Labs, CA).  Immunoreactivity was visualized using 

diaminobenzidine (DAB; 0.05%) and H2O2 (0.001%).  Deletion of primary 

antibodies eliminated all specific staining discernible at the EM level. 

 Immunostained sections were fixed with 2% glutaraldehyde in PB for 10 

minutes, followed by 1% osmium tetroxide for 1 hour.  Sections were then 

dehydrated in a series of alcohols, infiltrated with liquid resin (Embed 812, EMS, 

PA), and placed between two sheets of clear acetate (Aclar; Ted Pella, CA).  The 

resin was allowed to polymerize overnight at 60°C.  Sections were drawn with the 

aid of camera lucida, and the areas to be analyzed by EM were cut and placed 

on flat surfaces of Beem capsule caps.  These capsules then were filled with 

resin and left in a 60°C oven, until the resin in the capsule polymerized.  

Trapezoids that contained a strip of cortex from the pial surface to the white 

matter were prepared, and ultrathin sections were cut using an ultramicrotome 

(Leica UMC).  Ultrathin sections were oriented near-parallel to the surface of 

vibratome sections, maximizing the area of tissue-EPON interface where most of 

the antibody penetration can be expected and allowing reliable laminar analysis.  

Sections were examined on a JEOL JEM1010 microscope. 
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 To determine cortical layer borders on the resin-embedded sections, 

capsule-embedded sections were drawn using camera lucida, and certain 

landmarks, such as the border of cell-sparse layer 1, and the position of tissue 

within the resin block, were marked.  The drawings from each block were then 

compared to ultrathin sections obtained from those blocks, and the position of 

L2/3 was determined within the resin trapezoid.  For quantitative EM analysis, the 

synapse was used as the main counting unit.  From each immunostained brain, 

at least 50 adjacent but non-overlapping images were captured at 10,000X 

magnification, using a 16Mpixel CCD camera (SIA).  The images were examined 

at 35- 60,000X final magnification using Image-Pro Express software.  

Systematic sweeps were used to locate synapses on each image.  Then, the 

experimenter judged if the pre- or postsynaptic elements of the synapse 

contained any label, and evaluated the type of synaptic contact (symmetric or 

asymmetric).  A second experimenter who was blinded to the experimental 

conditions reevaluated the images to confirm the quantitative analysis. 

 Identification of synapses and the DAB label was performed with the 

following considerations.  A synaptic terminal was identified by the presence of at 

least one synaptic vesicle in contact with a plasma membrane, at least three or 

more vesicles within the same profile, and the parallel alignment of the 

postsynaptic plasma membrane with that of the terminal.  A postsynaptic density 

was deemed DAB positive, if it contained an accumulation of black DAB 

chromagen at the postsynaptic membrane.  The chromagen accumulation was  

darker and irregularly shaped in contrast to the unlabeled postsynaptic densities.  
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The criterion to classify a presynaptic terminal as DAB positive was the presence 

of any discernible black DAB accumulation anywhere in the terminal. Typically, 

DAB accumulation either uniformly filled the terminal, or appeared as patches of 

label attached to the presynaptic membrane or nonsynaptic membranes.  From 

the counts of synapses that are unlabeled or displayed labeling in the 

presynaptic terminal, or at the postsynaptic density, we calculated (1) the 

prevalence of presynaptic labeling (N presynaptic label x100 / N all synapses), 

(2) the prevalence of postsynaptic labeling (N postsynaptic label x 100 / N all 

synapses), and (3) the ratio of presynaptic / postsynaptic label.  The number of 

synapses that were encountered in each brain ranged from 159-420.  The 

difference in the number of synapses examined from each brain was an outcome 

of the presence of different number of synapses within a predetermined number 

of images captured from each brain.  Every synapse from all images was 

included in the analysis. Two brains each at P16 and P27 were analyzed.  The 

experimenter analyzing the data was blind to both the age of the animal and to 

the expected outcome. 

Pharmacological agents purchased from Sigma (St. Louis, MO). 

Statistics  Means are reported as ±S.E.M, unless specified otherwise.  The 

nonparametric Kruskal-Wallis test was used to determine statistical significance 

of cumulative probability histograms.  Student’s t tests for were used at the p < 

0.05 significance level, except where significance was corrected to p < 0.0045 for 

multiple comparisons using the Bonferroni-Dunn method (Fig. 2.3).  
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2.3    Results 

2.3.1 Postsynaptic hyperpolarization or MK-801 block postsynaptic NMDARs 

 To probe for the presence of functional presynaptic NMDARs 

(preNMDARs) in visual cortical pyramidal cells, we used an established protocol 

in slices from mice aged P7-P84 (Berretta and Jones, 1996; Sjöström et al., 

2003; Bender et al., 2006b; Yang et al., 2006).  In this strategy, postsynaptic 

NMDARs are first blocked with strong hyperpolarization.  Then, the subsequent 

effects of bath applying the NMDAR antagonist D,L-APV (100 µM) are measured 

to reveal the effect that the remaining, presumably presynaptic, NMDARs have 

on spontaneous neurotransmitter release (Fig. 2.1A).  To validate this approach, 

we first pharmacologically isolated NMDAR-mediated EPSCs and examined the 

current-voltage (I-V) relationship at the L4-L2/3 synapse.  L4 stimulation was 

adjusted to evoke ~100 pA response at +40 mV.  The synaptically evoked 

NMDAR currents exhibited strong rectification generated from Mg2+ block (Mayer 

et al., 1984; Nowak et al., 1984), showing that <4% of the current remained at -

80 mV compared to what would be expected from a linear I-V relationship (Fig. 

2.1B).  Although strong hyperpolarization clearly blocks evoked NMDAR 

currents, we also wanted to verify that it blocked NMDAR currents driven by 

spontaneous neurotransmitter release.  Our findings demonstrate that D,L-APV 

has no effect on the amplitude or kinetics of mEPSCs recorded at -80 mV in the 

presence of TTX (200 nM) (Fig. 2.1C), suggesting that the NMDAR component of 

the mEPSCs was either absent or so small that is was below the detection level.  

To demonstrate that functional postsynaptic NMDARs can be detected in  
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Figure 2.1 Postsynaptic NMDAR function can be blocked with hyperpolarization or 
MK-801 in the postsynaptic recording pipette (iMK-801).  (A) Model explaining t 
experimental protocol for detecting functional preNMDARs.  After blocking postsynaptic 
NMDARs with hyperpolarization, the role of preNMDARs on synaptic transmission can 
be tested by blocking the remaining preNMDARs with bath application of D,L-APV.  (B) 
Normalized current-voltage (I-V) relationship at the L4→L2/3 synapse of 
pharmacologically isolated NMDAR-mediated excitatory postsynaptic currents (EPSCs).  
L4 stimulation was adjusted to evoke a ~100 pA response at +40 mV.  Dotted line is a fit 
to the linear portion of the I-V relationship.  Note the strong block of NMDAR currents by 
hyperpolarization (n=11, average age of animals ~P24).  (C) Top: D,L-APV blocks the 
NMDAR component of mEPSCs recorded at -60 mV in 0.1 mM Mg2+.  Bottom: D,L-APV 
has no postsynaptic effect on the amplitude or kinetics of mEPSCs recorded at -80 mV 
in 1 mM Mg2+, suggesting that the mEPSC currents are mediated by AMPA receptors 
and that the NMDAR component is non-existent.  (D) Synaptic input-output (I-O) 
relationship for L2/3 cells recorded with (open circles) and without (filled circles) iMK-
801.  Inset: traces for control and iMK-801 I-O curves.  Note that iMK-801 blocks more 
than 96% of the NMDAR current evoked at 20 µA, which is our average stimulation 
intensity.  (E)  Synaptic I-V relationship for the same cells shown in (D) showing that, 
with iMK-801 and a stimulation of 30 µA, the NMDAR current is completely blocked 
(n=4) compared to control (n=5) at -65mV corrected for a junction potential measured at 
16mV.  Inset: traces for the I-V recordings.   
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mEPSC recordings in the absence of Mg2+ block, we showed that D,L-APV 

blocked a long duration current recorded at -60 mV in low Mg2+ (0.1mM)(Fig. 

2.1C).  These observations demonstrate that hyperpolarization is an effective 

means for blocking postsynaptic NMDAR currents.   

 Postsynaptic NMDARs can also be blocked by including 0.5-1 mM MK-

801 in the postsynaptic recording pipette (iMK-801) (Berretta and Jones, 1996; 

Bender et al., 2006b).  Notably, the postsynaptic block of NMDARs with iMK-801 

does not act by spillover into the extracellular medium (see (Bender et al., 2006b) 

and results in Fig. 2.5).  By examining the input output (I-O) relationship of L2/3 

cells recorded at +40 mV with and without iMK-801, we demonstrate that iMK-

801 blocks more than 96% of the NMDAR current evoked at 20 µA, which was 

our average stimulation intensity for further experiments utilizing this technique.  

On average we evoked 38±12.8 pA responses under control conditions (n=6) but 

only 1.4±1.8 pA responses with iMK-801 (n=7; p=0.0076), similar to the >90% 

block of NMDAR currents that has been observed previously using iMK-801 

(Berretta and Jones, 1996; Bender et al., 2006b).  With iMK-801 and using a 

stimulation intensity of 30 µA, the NMDAR current measured at -65mV is 

completely blocked (0.22±5.42 pA; n=4) compared to control (-35.13±22.78 pA; 

n=5) (Fig. 2.1E). 
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2.3.2 PreNMDARs facilitate spontaneous neurotransmitter release in the 

visual cortex of young mice (<P20) but not older mice (>P21) 

 To probe for functional preNMDARs in L2/3 at P16, we first blocked 

postsynaptic NMDARs with hyperpolarization to -80 mV.  We then measured the 

effects of bath applying D,L-APV on the frequency and amplitude of mEPSCs 

recorded in TTX.  mEPSCs are evoked by spontaneous neurotransmitter 

release, and their frequency typically depends on presynaptic properties, whilst 

their amplitude depends on postsynaptic properties.  Under these conditions, 

D,L-APV reversibly attenuated the frequency of mEPSCs in L2/3 pyramidal cells 

(Fig. 2.2A-C ; p=0.002, Kruskal-Wallis test), without affecting their amplitude or 

kinetics (Fig. 2.1C and 2.2C).  Notably, control cells recorded for the same 

duration, but without D,L-APV application, showed no change in mEPSC 

frequency or amplitude (Fig. 2.2D).  In a subset of experiments D-APV was used 

to confirm that the decrease in frequency was due to a block of NMDARs and not 

an effect of L-APV on mGluRs (Thoreson and Ulphani, 1995; Lieske and 

Ramirez, 2006).  Taken together these observations indicate that preNMDARs 

tonically enhance the frequency of spontaneous release in young animals.

 The observation of preNMDARs in L2/3 visual cortex of young mice 

prompted us to establish whether there are laminar or developmental differences 

in their function.  We chose to assay preNMDARs in 4 age groups: before eye-

opening (P7-P11), after eye-opening (P13-P20), during the peak of the critical 

period for ocular dominance plasticity (P21-P27)(Gordon and Stryker, 1996), and 

in adulthood (P74-P84).  We found that the reduction in mEPSC frequency by  
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Figure 2.2 PreNMDARs tonically increase the probability of 
neurotransmitter release onto L2/3 pyramidal cells in the mouse visual 
cortex.  (A) Example recording from a L2/3 pyramidal cell from a P16 mouse 
demonstrating that 100 µM D,L-APV reversibly reduces mEPSC frequency.  
Events are indicated by “∗”.  (B) Example experiment demonstrating that the 
reduction in mEPSC frequency by D,L-APV is reversible.  (C) Cumulative 
probability histograms from a L2/3 pyramidal cell at P16 demonstrating D,L-APV 
application reversibly increases mEPSC inter-event interval without affecting 
amplitude.  (D) Representative data from a single cell demonstrating that neither 
inter-event interval nor amplitude changed in the absence of D,L-APV treatment.  
The control cell was recorded for the same duration as experiments in which D,L-
APV was applied.  
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D,L-APV was not limited to L2/3 at P16, as D,L-APV similarly reduced mEPSC 

frequency in L2/3, L4, and L5 in mice from P7-11 and P13-P20 (Fig. 2.3A and 

Table 2.1; p’s < 0.0045, paired t-tests with a Bonferroni correction for 11 separate 

tests).  However, there was a striking absence of an effect by D,L-APV in L2/3 

and L5 in older mice (P21-P27 and P74-P84; Fig. 2.3A and Table 2.1; p’s > 

0.05), arguing that functional preNMDARs are lost.  Several lines of evidence 

indicate that the reduction in mEPSC frequency in young mice was due to a 

presynaptic change in neurotransmitter release and was not mediated by a 

postsynaptic mechanism (e.g. rundown or reduced postsynaptic AMPA receptor 

number).  (1) The reduction in mEPSC frequency by D,L-APV was reversible 

(Fig. 2.2B, 2.3B; frequency in D or D,L-APV = 75.3 ± 5.0 % baseline, p=0.0003; 

frequency after D,L-APV washout = 99.6 ± 5.0 % baseline, p=0.93 n=15).  (2) We 

did not observe a significant reduction in mEPSC frequency in control cells that 

were recorded for a similar duration (Fig. 2.3B).  (3) There was no significant 

change in mEPSC amplitude or kinetics by D,L-APV application in all lamina at 

all ages studied (Fig. 2.2D, Fig. 2.3C,D; Table 2.1).  Collectively, our data show 

that there is a developmental loss in the ability of preNMDARs to facilitate 

neurotransmitter release in the visual cortex of young mice. 
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Figure 2.3 Developmental loss of functional preNMDARs in visual cortex.  
(A) Averaged data demonstrating that D,L-APV strongly reduced mEPSC 
frequency in L2/3, L4, and L5 pyramidal cells in mice aged P7-P11 and P13-P20, 
suggesting the presence of functional preNMDARs.  D,L-APV had no effect in 
L2/3, L4, or L5 cells in mice aged P21-P27 or P74-P84.  D-APV was used in a 
subset of experiments at P13-20 in layer 2/3 and showed the same effect on 
mEPSC frequency.  (B) The reduction in mEPSC frequency was reversed with 
washout of either D,L-APV or D-APV.  No significant rundown in mEPSC 
frequency was observed in control cells not exposed to D,L-APV but recorded for 
a similar duration.  (C & D) No significant changes in mEPSC amplitude were 
observed in any of the groups.  “*” in (A & B) indicate significance of p<0.0045 
corrected for multiple tests using the Bonferroni-Dunn method, and sample sizes 
are given within the bars.  The mEPSC frequency and amplitude in (A-B) were 
normalized to the averaged baseline values before D,L-APV application.  
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2.3.3 Developmental reduction in presynaptic / postsynaptic NR1 

 One parsimonious explanation for the developmental loss of preNMDAR 

function is that fewer synapses contain preNMDARs in older mice.  To test this, 

we used EM to examine the pre- and postsynaptic prevalence of asymmetric 

(excitatory) synapses in L2/3 containing the NR1 subunit, which is obligatory for 

NMDAR function (Fig. 2.4).  We examined a total of 1073 synapses from two 

brains each at P16 and P27 (Table 2.2).  While the percent of synapses 

containing NR1 at the postsynaptic density was similar in P16 and P27 brains 

(77% and 75% at P16, and 84% and 75% at P27), there was a 50% 

developmental reduction in NR1 at presynaptic sites (Fig. 2.4E).  Specifically, a 

majority (>60%) of presynaptic terminals contained NR1 in each of two brains at 

P16 (n=240 and 420 synapses examined), while only a minority (<31%) of the 

presynaptic sites were labeled in two P27 brains (n=254 and 159 synapses 

examined).  The same data revealed approximately a 50% developmental 

reduction in the ratio of pre- versus postsynaptic localization of NR1 (Table 2.2).  

Because the prevalence of postsynaptic NR1 was unchanged during 

development, it is unlikely that the developmental reduction in presynaptic NR1 

could be due to differences in either the quality of the perfusions or age-

dependent differences of antibody penetration into the tissue.  Thus, the 

anatomical reduction in preNMDARs is consistent with our physiological data 

demonstrating a dramatic developmental loss of functional preNMDARs in 

facilitating spontaneous neurotransmitter release over this time course, 

suggestive of a causal relationship. 
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Figure 2.4 The presence of presynaptic NR1 is down-regulated with 
development.  (A) Electron micrograph in L2/3 of a P16 mouse demonstrating 
an NR1 positive terminal (t+) making a synapse with a spine that is also NR1 
positive (s+).  An NR1 negative presynaptic terminal (t-) making an asymmetric 
synapse onto an NR1 negative spine (s-) is present in the same field. Scale bar = 
250 nanometers, applies to (A-D).  Arrows indicate aggregations of DAB in 
presynaptic terminals.  (B) In a section from L2/3 of another P16 mouse, a 
diffusely labeled terminal (t+) is seen forming a synapse onto a spine (s+) that 
contains NR1 label at the postsynaptic density.  (C) At P27, most synapses 
exhibit postsynaptic, but not presynaptic, NR1.  An unlabeled terminal (t-) forms a 
synapse onto a labeled dendrite (d+).  (D)  In a section from another P27 mouse 
an NR1 positive terminal (t+) makes a synapse onto an NR1 positive spine (s+).  
(C) Scatter plot from 4 mice (two at each age) quantifying the selective loss of 
presynaptic, but not postsynaptic, NR1 over development.  Note that 30% of 
terminals still contain NR1 at P27.  
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2.3.4 Developmental switch in the role of pre- and postsynaptic NMDARs 

in tLTD  

What is the functional significance of this developmental loss of 

preNMDARs to synaptic plasticity during development?  PreNMDARs in young 

rodents have been implicated in tLTD (Sjöström et al., 2003; Bender et al., 

2006b), a form of synaptic plasticity thought to be important for the acquisition of 

receptive field properties (Dan and Poo, 2006).  Thus, we predicted that the 

developmental loss of preNMDARs in L2/3 would either abolish the ability to 

induce tLTD or that there would be a different induction mechanism for tLTD later 

in development.  To test these possibilities, we used a standard tLTD induction 

protocol by repeatedly pairing a postsynaptic action potential (AP) in a L2/3 

pyramidal cell closely followed (5-25 ms) by an excitatory postsynaptic potential 

(EPSP) evoked by L4 stimulation.  In young mice (P13-P17), AP-EPSP pairings 

produced strong tLTD (Fig. 2.5A, B; 43.6 ± 5.6 % baseline slope, n=13, p<0.007).  

Similarly, robust tLTD could be induced when the NMDAR antagonist MK-801 

was included in the recording electrode to block postsynaptic NMDARs (Berretta 

and Jones, 1996; Bender et al., 2006b) (Fig. 2.5C; 36.2 ± 9.1 % baseline, n=9, 

p=0.017).  However, bath application of D,L-APV prevented  induction of 

significant tLTD in young mice (Fig. 2.5D; 95.3±9.0 % baseline, n=13, p=0.80), 

suggesting that the synaptic weakening relied on activation of pre- and not 

postsynaptic NMDARs.  Notably, these data also serve as an additional control 

showing that iMK-801 is not acting by spillover into the extrasynaptic medium, 

otherwise iMK-801 would have blocked tLTD in a manner similar to D,L-APV.   
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Figure 2.5 PreNMDARs are required for tLTD at L4-L2/3 synapses in young 
(<P20) mice.  (A) Example of tLTD induced at L4-L2/3 synapses by AP-EPSP 
pairings in a P13 mouse.  (B) Averaged data from control cells demonstrating the 
strong depression in EPSP slope (43.6 ± 5.6 % baseline slope, n=13, p<0.007) 
induced with AP-EPSP pairings.  (C) Strong tLTD could be induced with AP-
EPSP pairings even when postsynaptic NMDARs were blocked by inclusion of 
MK-801 in the internal recording solution (iMK-801) (36.2 ± 9.1 % baseline, n=9, 
p<0.018).  This suggests that postsynaptic NMDARs are not required for tLTD 
induction in these young mice.  (D)  Induction of tLTD was prevented by bath 
application of the NMDAR antagonist D,L-APV (95.3±9.4 % baseline, n=13, 
p>0.798), arguing that preNMDARs are required for the induction of tLTD.  
Because the inclusion of picrotoxin in the recording ACSF had no effect on the 
induction of tLTD at this early stage each condition contains experiments with 
and without picrotoxin. 
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To determine if the tLTD in young mice was expressed as a presynaptic 

reduction in neurotransmitter release, we analyzed synaptic depression in a high-

frequency stimulus train of 6 pulses at 30Hz before and after tLTD induction.  

The short-term depression (STD) index was used as a measure of changes in 

synaptic depression (see Methods).  In the STD index, a negative number  

indicates that a manipulation reduces the rate of short-term depression.  

Because higher rates of short-term depression are generally associated with a 

higher initial probability of neurotransmitter release, a negative STD index 

indicates that a manipulation is likely to have lowered the probability of 

neurotransmitter release.  By analyzing the STD index on the same cells shown 

in Fig. 2.5, we observed that the rate of synaptic depression during stimulation 

was reduced after AP-EPSP pairings under control conditions (Fig. 2.6A, B;  STD 

index= -0.30±0.11, n=13) and when the recording electrode contained MK-801 

(Fig. 2.6C; STD index= -0.24±0.09, n=9).  When AP-EPSP pairings were made 

during the bath application of D,L-APV to block all NMDARs, there was no  

change in the STD index (Fig. 2.6D; STD index= -0.005±0.09, n=13).  Therefore, 

in young mice, the induction of tLTD in L2/3 requires the activation of 

preNMDARs to reduce the probability of neurotransmitter release.   

 In contrast to the failure of iMK-801 to block tLTD in younger mice, 

postsynaptic blockade of NMDARs with iMK-801 in older mice (P23-30) 

prevented the induction of tLTD in L2/3 pyramidal cells (Fig. 2.7B; n=7 p=0.79).  

Notably, in control conditions, AP-EPSP pairings significantly reduced synaptic 

strength in the visual cortex of these older mice (Fig. 2.7A; 67.7 ± 7.0 % baseline,  
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Figure 2.6 Analysis of synaptic depression indicates that tLTD induction in 
P13-17 mice is expressed as a decrease in release probability.  (A) Sample 
waveform of 6 pulses evoked by 30 Hz stimulation before and after AP-EPSP 
pairings.  This example recording was made with iMK-801.  (B) In the control 
conditions the rate of synaptic depression at L4→L2/3 connections was reduced 
after tLTD produced by AP-EPSP pairings, (STD index= -0.30±0.11, n=13), 
suggesting the pairing protocol caused a lasting reduction in neurotransmitter 
release.  The STD index was used here as a measure of synaptic depression 
(see Methods).  (C) AP-EPSP pairing induction of tLTD made with iMK-801 also 
produced a reduction in the rate of synaptic depression (STD index= -0.24±0.09, 
n=9), indicating that the pairing-induced reduction in neurotransmitter release did 
not require activation of postsynaptic NMDARs.  (D) There was no significant 
change in synaptic depression when tLTD is blocked by bath application of D,L-
APV (STD index= -0.005±0.09, n=13).  While there was no difference between 
the STD index for control and iMK-801 experiments p=0.7,  the STD index for 
these experiments combined were different from the STD index of the APV 
experiments (p <0.03) suggesting a role for presynaptic NMDARs in the tLTD.  
Data are from the same cells in Figure 2.5. 
 

64 



 

 

 

 

 

 

 

 
Figure 2.7 Postsynaptic NMDARs are required for tLTD induction in critical 
period mice (P23-30).  (A) Example of tLTD induced at L4→L2/3 synapses by 
AP-EPSP pairings in a P13 mouse. (B) In P23-P30 mice, AP-EPSP pairings 
induced a small degree of tLTD (67.7 ± 7.1 % baseline; n=5, p=0.02).  (C) No 
tLTD was induced when postsynaptic NMDARs were blocked by iMK-801 (n=7, 
p> 0.79), suggesting that the activation of postsynaptic NMDARs is required for 
the full expression of the depression.  (D) No tLTD was induced when inhibition 
(no picrotoxin in the recording ACSF) (95.7 ± 21.0 % baseline; n=8, p=0.30). 
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n=5, p=0.018).  Collectively, these data demonstrate that tLTD can be induced in 

the L4-L2/3 pathway in the visual cortex of mice aged P23-30, but the induction 

at this older age requires postsynaptic NMDARs.  These results however, do not 

rule out the possibility that preNMDARs are also required for tLTD at this stage. 

Interestingly, we found another developmental shift in the capacity for 

tLTD induction that depended on the presence of intact inhibition in the slice.  We  

had initially found that, in the P13-20 animals, tLTD induced either in the 

presence of intact inhibition, or with inhibition blocked in the entire slice by  

including 50µM picrotoxin in the ACSF.  Because the amount and nature of the 

tLTD did not differ between the two conditions and they were combined.  In the 

older group however, we found that blocking inhibition with picrotoxin was 

required for tLTD induction as LTD could not be induced in the absence of 

picrotoxin (Fig. 2.7D; 95.7 ± 21.0 % baseline, n=8, p=0.30).    

To determine if the tLTD in older mice was also expressed as a presynaptic 

reduction in neurotransmitter release, we analyzed the STD index and observed 

that the rate of synaptic depression during stimulation was decreased after AP-

EPSP pairings under control conditions (Fig. 2.6A, B;  STD index= -0.72±0.42, 

n=11).  4 of these experiments showed an increase in STD while 7 showed a 

decrease.  Therefore, in older mice, the induction of tLTD in L2/3 requires the 

activation of postsynaptic NMDARs and is expressed at least in part by a 

decrease in neurotransmitter release.  Though a change in STD index after tLTD 

induction suggests a presynaptic tLTD mechanism we can not rule out the 

possibility that the tLTD is being simultaneously expressed postsynaptically.   

66 



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8 Analysis of synaptic depression indicates that tLTD induction in 
P26-28 mice is expressed as a decrease in release probability.  (A) Sample 
waveform of 6 pulses evoked by 30 Hz stimulation before and after AP-EPSP 
pairings.  (B) The rate of synaptic depression at L4→L2/3 connections was 
reduced after tLTD produced by AP-EPSP pairings, (STD index= -0.72±0.42, 
n=11). The STD index was used here as a measure of synaptic depression (see 
Methods). 

67 



2.4 Discussion 

 A vast area of neuroscience research is dedicated to the study of 

NMDAR-mediated synaptic plasticity (Malenka and Bear, 2004).  To date, most  

research has concentrated on the role of postsynaptic NMDARs, while the role 

and even the very existence of presynaptic NMDARs (preNMDARs) have been 

controversial or largely ignored.  This disregard may be in large part due to the 

unanswered question “how are preNMDARs tonically activated?“.  This question 

has two major parts.  The first part relates to the source of glutamate and has 

been recently explored by several labs.  Jourdain et al 2007 showed that 

preNMDARs in the hippocampus are activated by vesicular release of glutamate 

from juxtaposed astrocytes.  Le Meur et al 2007 recorded tonic NMDA current in 

hippocampal cells mediated by ambient interstitial glutamate released from glia.  

The other part of this question relates to the necessity for removal of Mg2+ block 

for NMDAR activation, and has been less explored, but there are two popular 

possibilities.  One possibility is, as suggested by Jourdain et al 2007, that the 

high input resistance of presynaptic terminals might allow for the voltage 

dependent removal of Mg2+ with very small excitatory currents.  The second 

possibility, which will be explored further in Chapter 3, is that the preNMDARs 

contain subunits that are less sensitive to the voltage dependent block by Mg2+.  

The NMDAR subunits NR2C, D, and NR3A, all show less voltage sensitivity and 

are expressed in visual cortex.   

Regardless of these unanswered questions, the role of preNMDARs is 

important to consider, as studies in different cell types, pathways, brain regions, 
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species, and ages have found varying roles for presynaptic and postsynaptic 

NMDARs in synaptic plasticity (for example, see (Sjöström et al., 2003; Malenka 

and Bear, 2004; Froemke et al., 2005; Bender et al., 2006b; Duguid and 

Sjöström, 2006)).  Our study focused on the function of preNMDARs and their 

putative role in LTD, specifically within the developing mouse visual cortex.  Our 

data make four key observations demonstrating that the role of preNMDARs in 

synaptic transmission and plasticity is highly age-dependent.  (1) PreNMDARs 

are present and contribute to the spike timing-dependent induction of LTD in the 

neocortex of young animals.  This is consistent with the observations that there 

appears to be little or no need for postsynaptic NMDARs in the induction of tLTD 

for pyramidal neurons in L5 (Sjöström et al., 2003) or L2/3 (present study).  (2) 

The tLTD induced in young animals is at least in part expressed as a presynaptic 

reduction in neurotransmitter release although an additional postsynaptic 

contribution to expression was not ruled out.  (3) The tonic function of 

preNMDARs is lost in development, at least in the assays used here.  (4) The 

developmental loss of preNMDARs may be compensated for by the emergence 

of a postsynaptic role for NMDARs in the induction of tLTD although it can’t be 

ruled out that there remains a role for preNMDARs at this stage as well.  Our 

data thus highlight the changing functions of preNMDARs over development and 

provide the first evidence for a developmental switch in the involvement of 

NMDARs in timing-dependent plasticity. 

The loss of functional preNMDARs has a clear mechanistic importance for 

the induction of tLTD, but what is the cellular basis of this loss?  An obvious 
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possibility, which we tested, is that the prevalence of preNMDARs decreases 

with development.  Here we show the first anatomical data to indicate both that 

NMDARs are present presynaptically at the majority of synapses in L2/3 early in 

development (P16) and that their prevalence is reduced to 50% over the next ten 

days.  The developmental decrease in preNMDAR prevalence correlates 

temporally with a loss in their contribution to neurotransmitter release, suggesting 

a causal relationship.  However, there may be additional contributing factors to 

the loss of preNMDAR function, as our anatomical data also indicate that 

preNMDARs remain at approximately 30% of the synapses even when we no 

longer observe their effect on mEPSC frequency.  At least five possibilities exist 

for why we observe a complete loss of functional preNMDARs in these older 

mice despite our anatomical evidence that preNMDARs remain at a small subset 

of synapses.  First, the number of NMDARs remaining at individual boutons may 

be below a threshold needed to have a measurable impact on neurotransmitter 

release.  Second, preNMDARs may undergo a developmental change in their 

subunit composition rendering them less effective.  Because functional 

preNMDARs in both the visual cortex (Sjöström et al., 2003) and the entorhinal 

cortex (Woodhall et al., 2001) are thought to contain NR2B subunits, the 

developmental increase in the relative expression of NR2A to NR2B NMDAR 

subunits in the visual cortex (Nase et al., 1999; Quinlan et al., 1999a; Quinlan et 

al., 1999b) may contribute to the loss of preNMDAR function.  Third, the inputs 

that maintain preNMDARs later in development may not often participate in the 

spontaneous release of neurotransmitter.  Fourth, preNMDARs may become 
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functionally uncoupled during development from the neurotransmitter release 

machinery.  A final possibility is that the remaining preNMDARs may lose their 

efficacy due to a developmental reduction in a co-factor that is necessary for 

them to exert their influences.  For example, coincident activation of preNMDARs 

and endocannabinoid receptors is necessary for the induction of tLTD between 

L5 cells of young mice (Sjöström et al., 2003), thus a change in endocannabinoid 

function could alter preNMDAR function.  Although we did not observe a 

functional role for preNMDARs at later stages of development, one may become 

apparent in assays other than the ones used in this study. 

Our data add to recent literature suggesting that preNMDARs are 

regulated in a developmental and activity-dependent manner (Mameli et al., 

2005; Yang et al., 2006).  For example, the neurosteroid pregnenolone increases 

the probability of glutamate release through preNMDARs in the CA3→CA1 

hippocampal synapse, and this effect is thought to be lost at P5 due to a 

decrease in NR2D-containing NMDARs (Mameli et al., 2005).  A similar but much 

more gradual reduction in preNMDAR function occurs in layer 5 of the rat 

entorhinal cortex, where their function is pronounced at ~5 weeks of age and only 

modest at ~5 months of age (Yang et al., 2006).  Notably, in the entorhinal 

cortex, preNMDAR function can also be regulated in an activity-dependent 

manner, as the induction of seizures in adults restores juvenile levels of 

preNMDAR function (Yang et al., 2006).  The combined data demonstrate that 

preNMDAR function can be bidirectionally regulated to alter neurotransmitter 

release.  The developmental loss of preNMDARs may be a general feature of 
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neural development, and the time course for this loss could be highly dependent 

on brain region.  We also stress that there may be important differences between 

species and that this study was performed in mice.  Further studies are needed 

to explore these possibilities.   

Why might a mechanistic switch in the induction of synaptic plasticity be 

important for emerging cortical circuits?  We and others (Nosyreva and Huber, 

2005) suggest that it may be beneficial to modify synaptic strength by altering the 

presynaptic probably of release at a time of early circuit formation when 

postsynaptic sites neither contain many AMPA receptors nor are stabilized.  

However, when postsynaptic AMPA receptor numbers increase and cortical 

circuits are being stabilized via the experience-dependent weakening or 

elimination of synapses, this may be performed more effectively through a 

postsynaptic mechanism.  Consistent with this idea, there is a developmental 

loss of preNMDARs in the visual cortex coincident with (1) the developmental 

loss of AMPA receptor “silent synapses” (Rumpel et al., 2004) and (2) the onset 

of the critical period for deprivation-induced loss of inputs (Gordon and Stryker, 

1996).  Analogous developmental changes in presynaptic mechanisms occur in 

other receptor systems, as a presynaptic role for kainate receptors in 

neurotransmitter release has been observed only in the first postnatal week of 

rodent hippocampus and cortex development (Kidd and Isaac, 1999; Lauri et al., 

2006).  Moreover, a presynaptic to postsynaptic switch in the involvement of 

metabotropic glutamate receptors has been observed to occur over the first few 

weeks of postnatal development in the hippocampus, and this underlies a 
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developmental switch in the pre- versus postsynaptic expression of metabotropic 

glutamate receptor-mediated LTD (Nosyreva and Huber, 2005).  Thus, a 

common theme during brain development may be that plasticity mechanisms are 

more likely to affect presynaptic release in emerging cortical circuits when there 

is a high signal to noise ratio, but as synapses become stabilized, it becomes 

more efficacious to alter synaptic strength via postsynaptic mechanisms.  In 

addition to changing the properties of synaptic plasticity, the developmental loss 

of the ability of preNMDARs to support neurotransmitter release may also help 

explain the general observation that synapses switch from depressing to 

facilitating during development in many brain regions (Pouzat and Hestrin, 1997; 

Reyes and Sakmann, 1999). 

 Our findings add to a growing body of literature that the properties of 

synaptic plasticity must be studied within a developmental context (Yasuda et al., 

2003; Frenkel and Bear, 2004; Nosyreva and Huber, 2005; Yashiro et al., 2005; 

He et al., 2006; Jo et al., 2006).  Our data also raise the exciting possibility that 

preNMDARs might regulate plasticity during a pre-critical period early in 

development but that postsynaptic NMDARs may be critically involved in 

experience-dependent synaptic plasticity later in development.  Given the 

observations that preNMDARs exist early in development in the hippocampus 

(Mameli et al., 2005), entorhinal cortex (Woodhall et al., 2001; Yang et al., 2006), 

and visual cortex (present study) but not at later stages of maturation, we 

suggest that the development loss of preNMDAR function may be an important 

and general property of early circuit formation.   
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Chapter 3: 

PreNMDARs contain the novel NMDAR subunit NR3A 

This chapter is a modified version of a manuscript being prepared for 

submission and is the joint effort of Larsen R. and Corlew R. 

3.1 Introduction 

The NMDA-type glutamate receptor (NMDAR) is critical for many forms of 

experience-dependent plasticity (Kirkwood and Bear, 1994; Katz and Shatz, 

1996) and the proper development of the brain (Iwasato et al., 2000; Perez-

Otano and Ehlers, 2005).  In the visual cortex, NMDAR activation is required for 

neurons to acquire normal ocular-dominance and orientation selectivity (Roberts 

et al., 1998; Ramoa et al., 2001).  A general assumption has been that NMDARs 

influence the experience-dependent development of these stimulus-selective 

properties via a postsynaptic mechanism.  (Kirkwood and Bear, 1994; Katz and 

Shatz, 1996).  There is now evidence that NMDARs can also powerfully alter the 

presynaptic release of neurotransmitter through both short-term and long-lasting 

synaptic modifications (Sjostrom et al., 2003; Bender et al., 2006b; Duguid and 

Sjostrom, 2006; Corlew et al., 2007; Corlew et al., 2008; Rodriguez-Moreno and 

Paulsen, 2008; Banerjee et al., 2009).  We have recently demonstrated that 

presynaptically-acting NMDARs (preNMDARs) both enhance the spontaneous 

release of neurotransmitter and are required to induce timing-dependent long- 



term depression of synaptic strength (tLTD) in the visual cortex of young mice 

(Corlew et al., 2007; Corlew et al., 2008).  Despite the role of preNMDARs in 

these important aspects of synaptic function and plasticity, little is known about 

how preNMDARs function or why their functional influences diminish with age.    

One particularly intriguing feature of preNMDARs is their tonic activity 

(Berretta and Jones, 1996), suggesting that preNMDARs can influence neuronal 

communication on a moment-to-moment basis.  Because the NMDAR ionophore 

is typically blocked by magnesium (Mg2+) at hyperpolarized potentials, it remains 

unknown how preNMDARs can be spontaneously active. Several possibilities 

exist to explain the tonic activity of preNMDARs.  First, given the high input 

resistance of the synaptic terminal, local depolarization of the presynaptic 

terminal may be sufficient to relieve the magnesium block (Jourdain et al., 2007; 

Corlew et al., 2008).  However, this idea is speculative and is tempered by 

studies in which presynaptic terminal membrane potentials have been measured 

in the Calyx of Held, where the resting membrane potential is close to -80mV 

(Duguid and Smart, 2004; Awatramani et al., 2005).  Second, it is conceivable 

that the binding of glutamate and glycine to preNMDARs can influence 

neurotransmitter release in the absence of ion flow.  Currently, there is little 

evidence for this idea.  Third, preNMDARs may lack block by Mg2+ at 

hyperpolarized potentials, allowing them to be tonically active (Mameli et al., 

2005; Rodriguez-Moreno and Paulsen, 2008).  This possibility seems promising 

because NMDARs are composed of the obligatory NR1 subunit in combination 

with NR2A-D and/or NR3A-B subunits.  While most NMDARs in the neocortex 
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are composed of NR2A and NR2B, which are strongly blocked by Mg2+, 

NMDARs which contain NR2C, NR2D, NR3A, or NR3B subunits exhibit less 

basal Mg2+ block (Burnashev et al., 1992; Cull-Candy et al., 2001; Sasaki et al., 

2002).   

 Here we tested the composition of preNMDARs onto layer (L) 2/3 

pyramidal cells in the juvenile mouse primary visual cortex (V1).  We 

demonstrate that the NR3A subunit is required for the ability of preNMDARs to 

enhance neurotransmitter release.  We also show that the requirement for NR3A 

to affect spontaneous release relies on the Mg2+ insensitivity of the receptor, as 

preNMDAR functions can be restored in low Mg2+ conditions.  Because the 

developmental loss of NR3A coincides with the loss of preNMDAR functions, we 

also tested whether the low Mg2+ condition could restore tonic activity of 

preNMDARs in older mice (Ciabarra et al., 1995; Corlew et al., 2007; Corlew et 

al., 2008).  These data demonstrate an essential role for NR3A-containing 

NMDARs in supporting a novel form of neurotransmitter release in the 

developing visual cortex. 

 

3.2 Materials and Methods 

Subjects  Mice were obtained and housed as described in Chapter 2, with the 

exception that both NR2A KO and NR3A KO mice were used, as well as their 

wild-type controls.  NR2A KO mice were generously supplied by S. Nakanishi 

(Kyoto, Japan, (Kadotani et al., 1996)), but re-derived on a C57BL/6 background 
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by Charles River Laboratories.  NR3A KO mice were generously provided by 

Stuart Lipton. 

Cortical slice preparation  Cortical slice preparation was identical to methods 

described in Chapters 2 and 4 (Yashiro et al., 2005; Corlew et al., 2007). 

Voltage-clamp recordings  Voltage-clamp recordings and mEPSC analysis were 

performed in an identical fashion as in Chapter 2, except that all recordings were 

performed with MK-801 in the postsynaptic recording pipette to block all 

postsynaptic NMDARs. 

 

3.3 Results 

3.3.1 NR2B-containing preNMDARs enhance spontaneous 

neurotransmitter release i 

NR2B-containing preNMDARs are required to enhance spontaneous 

neurotransmitter release in several regions of the brain (Woodhall et al., 2001; 

Brasier and Feldman, 2008), including the visual cortex (Li et al., 2008).  

Accordingly, we confirmed this in L2/3 cells of juvenile mouse visual cortex.   As 

described in Chapter 2 (Corlew et al., 2007), we used a common method to 

measure spontaneous release probability: analyzing the effect of blocking 

preNMDARs on the frequency of miniature excitatory postsynaptic currents 

(mEPSCs).  By including the NMDAR blocker MK-801 in the postsynaptic 

recording pipette, we first block all postsynaptic NMDARs in the recorded cell for 

the entire length of the experiment.  Including MK-801 in the postsynaptic 

recording pipette has been shown to block nearly all of the NMDAR currents in 
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the postsynaptic cell, but does not leak out to measurably affect any other cells 

(Bender et al., 2006b; Corlew et al., 2007; Brasier and Feldman, 2008).  Action 

potential-evoked activity is blocked with 200nm tetrodotoxin TTX during the 

recording, so that only action potential-independent spontaneous release of 

single vesicles is measured.  The GABAA receptor antagonist picrotoxin (50µm) 

is also included to block mIPSCs and possible shunting inhibition on mEPSCs.  

After a steady 10 min baseline is recorded, the NR2B specific antagonist 

ifenprodil (3µM) is bath-applied to block all NR2B-containing NMDARs in the 

slice.  Because the postsynaptic NMDARs were already blocked, a change in 

frequency of mEPSCs indicates a change in spontaneous release probability due 

to blocking of the preNMDARs.  Amplitude of the mEPSCs was analyzed to 

insure that there is no postsynaptic effect of Ifenprodil.  Ifenprodil reliably reduced 

the frequency but not the amplitude of mEPSCs in L2/3 pyramidal cells in young 

(postnatal day (P) 13-18) mouse V1 (83.8 ± 4.1%, n = 12, p < 0.02) (Fig 3.1) (R. 

Larsen unpublished data).  To ensure that there was no decrease in mEPSC 

frequency over time, recordings with ifenprodil were interleaved with control 

experiments in which normal ACSF was added to the bath instead of ACSF-

containing ifenprodil.  Indeed, the decrease in mEPSC frequency was due to the 

application of ifenprodil, as control recordings showed no decrease in mEPSC 

frequency (107.4 ± 11.9%, n = 7) and the normalized values of the change with 

ACSF / ifenprodil application was also significant (p < 0.04).  This confirms that 

the NR2B NMDAR subunit is required for the function of preNMDARs to enhance 

spontaneous neurotransmitter release. 
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Figure 3.1 NR2B-containing preNMDARs enhance spontaneous 
neurotransmitter release. (A-B) Sample voltage-clamp recordings of AMPAR-
mediated mEPSCs from L2/3 pyramidal cells during baseline and drug 
application periods (control (A), or the selective NR2B-containing NMDAR 
antagonist ifenprodil (B)).  mEPSC events are indicated by “∗”. (C-D) Amplitude 
and inter-event interval cumulative probability histograms from the above cells 
during baseline and control/ifenprodil application.  (E) Combined data comparing 
the normalized amplitude and frequency changes during the control (white) and 
ifenprodil (black) recordings.  Bars illustrate the average with S.E.M. while 
individual experiments are plotted as points within the bars. In this and 
subsequent figures, sample sizes are given within the bars.  * = p < 0.05.   
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3.3.2 PreNMDARs do not require the NR2A subunit 

Several studies have tested the requirement of the NR2A subunit in the 

action of preNMDARs on spontaneous release (Li et al., 2008) and evoked 

release (Chamberlain et al., 2008; Li et al., 2009), as well as the preNMDARs  

role in tLTD (Banerjee et al., 2009).  Here we use a genetic approach to show 

definitively that preNMDARs do not require the NR2A subunit to enhance 

spontaneous neurotransmitter release in mouse V1.  We used the same methods 

as described above except that the general NMDAR antagonist APV is used as 

in Chapter 2 (Corlew et al., 2007) instead of ifenprodil and mice are NR2A 

knockout (NR2A KO) and NR2A wild type (WT).  In WT mice, we show the 

expected decrease in mEPSC frequency with APV application (80.0 ± 4.9%, n = 

7, p < 0.03) (R. Larsen and R. Corlew unpublished data) (Fig. 3.2A, C).  This 

decrease is similar to that normally seen with APV application at this age (Corlew 

et al., 2007). In the NR2A KO mice, mEPSC frequency decreases to the same 

degree as in the wild type (83.5 ± 6.3%, n = 7, p < 0.05) (Fig. 3.2B, D, E), 

indicating that the absence of NR2A has no detrimental effect on preNMDARs.   

Therefore preNMDARs do not require the NR2A subunit. 

 

3.3.3 NR3A-containing preNMDARs enhance spontaneous 

neurotransmitter release 

We previously showed that, while the function of preNMDARs is down-

regulated with development at around P20, the expression of NMDARs only 

decreases by 50%, at least for NR1 (Corlew et al., 2007).  Therefore,  
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Figure 3.2 The NR2A subunit is not required for the ability of preNMDARs 
to promote neurotransmitter release. (A-B) Sample voltage-clamp recordings 
from L2/3 pyramidal cells during baseline and APV application periods in WT (A) 
and NR2A KO (B) mice.  Events are indicated by “∗”. (C-D) Amplitude and inter-
event interval cumulative probability histograms from the above cells during 
baseline and APV application.  (E) Combined data comparing the normalized 
amplitude and frequency changes during the APV recordings in WT (white) and 
NR2AKO (black) mice.  Bars illustrate the average with S.E.M. and individual 
experiments are plotted as points within the bars. * = p < 0.05.   
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preNMDARs are present later in development (~P26) but unable to enhance 

neurotransmitter release probability.  This decrease in function, but not 

expression, could be due to the developmental down-regulation of a subunit that 

is less Mg2+ sensitive than either NR2A or NR2B. The developmental expression  

profile of the Mg2+ insensitive receptor should match that of the developmental 

loss of function that we have previously reported for the preNMDAR (Corlew et 

al., 2007).  NR3A is a novel NMDAR subunit whose expression in the cortex 

follows this same developmental decrease (Corlew et al., 2007).  We have also 

confirmed this developmental profile in the visual cortex.  In wild type C57B6 

mice, NR3A protein is high until P16, when it starts to decline and is at extremely 

low levels by P26 (M. Henson unpublished data).  The inclusion of NR3A may 

allow the preNMDAR to act tonically by removing its Mg2+ block.  We tested the 

preNMDARs requirement for the NR3A subunit by using the same mEPSC assay 

used above to test for the NR2A subunit.  We recorded the frequency of 

mEPSCs in L2/3 pyramidal cells in V1 of NR3A KO and WT mice while blocking 

postsynaptic NMDARs.  When APV was applied, mEPSC frequency, but not 

amplitude, decreased in the WT animals (73.1 ± 5.9%, n = 8, p < 0.007) (Fig. 

3.3A, C, E).  This decrease did not occur in the NR3A KO animals (99.9 ± 8.8%, 

n = 10) (Fig. 3.3B, D, E) and the normalized values were different between the 

WT and NR3A animals (p < 0.03) (Fig 3.3E).  Therefore, preNMDARs onto L2/3 

pyramidal cells in mouse V1 require the NR3A subunit in order to tonically 

enhance spontaneous neurotransmitter release. 
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Figure 3.3 The NR3A subunit is required for the ability of preNMDARs to 
enhance spontaneous neurotransmitter release. (A-B) Sample voltage-clamp 
recordings from L2/3 pyramidal cells during baseline and drug application periods 
in WT (A) and NR3A KO (B) mice.  Events are indicated by “∗”. (C-D) Amplitude 
and inter-event interval cumulative probability histograms from the above cells 
during APV application.  (E) Combined data comparing the normalized frequency 
change during the APV recordings in WT (white) and NR3AKO (black) mice. 
Bars illustrate the average with S.E.M. and individual experiments are plotted as 
points with in the bars. * = p < 0.05.   
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3.3.4 Mg2+ insensitivity of the NR3A subunit allows the preNMDAR to be 

tonically active 

If, later in development, and in the NR3A KO mouse, preNMDARs are in 

fact present without the NR3A subunit they may still be able to enhance 

spontaneous neurotransmitter release when the Mg2+ is absent from the 

recording solution.  We tested for this Mg2+ free enhancement, first in the 

NR3AKO mouse.  We again recorded the effect of blocking preNMDAR with APV 

in NR3AKO mice, but this time used ACSF free of Mg2+.  As a control, we 

measured mEPSC frequency for the same duration without adding APV, thus 

ensuring that there is no decrease in mEPSC frequency over time in Mg2+-free 

ACSF (107.9 ± 11.7%, n = 13) (Fig. 3.4A, C).  APV application, however, did 

decrease mEPSC frequency in Mg2+ free ACSF (85.3 ± 8.6%, n = 12, p < 0.05) 

(Fig. 3.4B, D).  For comparison, recordings of NR3A KO mice in regular (1mM) 

Mg2+ +APV  are re-plotted in Fig. 3.4E from figure 3.3E (99.9 ± 8.8%, n = 10).  

Therefore, while NR3A is not required for the ability of the preNMDAR to 

enhance the probability of neurotransmitter release, it is required for its tonic 

activation. 

 

3.3.5 Developmental loss of the NR3A subunit leaves the preNMDAR 

functional but Mg2+ sensitive 

These findings suggest that the previously reported developmental 

decrease in preNMDARs may not be due to a complete loss of the receptor, but  
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Figure 3.4 Low Mg2+ recovers the ability of preNMDARs to enhance 
neurotransmitter release in the absence of NR3A.  (A-B) Sample voltage-
clamp recordings in Mg2+ free ACSF from L2/3 pyramidal cells in NR3A KO mice 
during baseline and drug application periods (control (A), APV (B)).  Events are 
indicated by “∗”. (C-D) Amplitude and inter-event interval cumulative probability 
histograms from the above cells during control/APV application.  (E) Combined 
data comparing the normalized amplitude and frequency changes during the 
control (C) and APV (D) recordings in NR3AKO mice. Bars illustrate the average 
with S.E.M. and individual experiments are plotted as points with in the bars. * = 
p < 0.05.   
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Figure 3.5 Low Mg2+ recovers the ability of preNMDARs to enhance 
neurotransmitter release in older mice.  (A) Sample voltage-clamp recording 
in normal Mg2+ (1mM) ACSF from L2/3 pyramidal cells in P26? mouse during 
baseline and APV application periods. (A-B) Recordings in Mg2+ free ACSF from 
L2/3 pyramidal cells in P23-30 mice during baseline and APV application periods 
(control (A), APV (B)).  Events are indicated by “∗”. (C-D) Amplitude and inter-
event interval cumulative probability histograms from the above cells comparing 
baseline and control/APV periods.  (E) Combined data comparing the normalized 
amplitude and frequency changes during the control + APV, Low Mg2+ – APV, 
and Low Mg2+ +APV. Bars illustrate the average with S.E.M. and individual 
experiments are plotted as points with in the bars * p < 0.05.   
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only a loss of the tonic activation of the preNMDAR.  We hypothesized that the 

loss of this tonic activation is due to the developmental loss of NR3A.  To test this 

possibility, we replicated the measurements that we made previously in older 

mice (P23-30) but used Mg2+  free solution.  We first recorded the effect of APV 

application in L2/3 pyramidal cells in V1 of P23-30 mice in regular (1mM) Mg2+.  

We again show that at this age APV has no effect on either the amplitude or the  

frequency of mEPSCs (108.7 ± 9.3%, n = 9) (Fig. 3.5A, D, G).  We then 

confirmed that the frequency and amplitude of mEPSCs is stable for the length of 

a control experiment in Mg2+ -free ACSF but no APV (101.5 ± 5.0%, n = 6) (Fig 

3.5B, E, G).  Finally, we showed that adding APV in Mg2+-free ACSF revealed the 

ability of preNMDARs to enhance spontaneous release at this older age; mEPSC 

frequency decreased significantly from baseline (81.7 ± 6.6%, n = 9, p < 0.03) 

(Fig. 3.5C, F, G), and normalized values for APV application were significantly 

different from Low Mg2+ –APV (p < 0.05) and regular Mg2+ +APV ( p < 0.03) 

(Fig.3.5G).  

 

3.4 Discussion 

Here we have resolved a question that has plagued the study of 

preNMDARs since their discovery.  How are preNMDARs tonically active despite 

their Mg2+ block?  After confirming many previous results that show that 

preNMDARs require the NR2B subunit, we identified another required subunit.  

We first suspected the NR3A subunit as a likely candidate for inclusion in the 

preNMDAR because it is dramatically less Mg2+ sensitive than the NR2 subunits 
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and its developmental expression pattern in the neocortex follows the same 

developmental profile as the preNMDAR.  We have previously reported that 

preNMDARs are tonically active to increase spontaneous neurotransmitter 

release in the visual cortex during the first 3 weeks—but not after the fourth 

postnatal week—in a mouse.  The NR3A subunit is similarly expressed in the 

neocortex at high levels only during the first three weeks and then drops off 

dramatically.  The loss of one subunit, and not the whole preNMDAR, reconciles 

anatomical data that suggest that the preNMDAR is only slightly down-regulated 

during development while the function of the receptor is completely lost (Corlew 

et al., 2007). 

 

3.4.1 NR2B-containg preNMDARs enhance spontaneous glutamate release 

There is both anatomical and functional evidence that preNMDARs are 

composed of at least one NR2B subunit.  Anatomical evidence indicates that 

NR2B subunits are expressed in the neocortex (Fujisawa and Aoki, 2003), spinal 

cord (Boyce et al., 1999), and hippocampes (Jourdain et al., 2007).  There is also 

compelling functional evidence that preNMDARs contain the NR2B subunit in the 

visual and somatosensory cortecies (Sjostrom et al., 2003 ; Bender et al., 2006a; 

Brasier and Feldman, 2008 ; Li et al., 2009), entorhinal cortex (Yang et al., 2006), 

and cerebellum (Chamberlain et al., 2008).  NR2B containing preNMDARs are 

required for enhancing spontaneous (Sjostrom et al., 2003; Li et al., 2008) and 

evoked (Sjostrom et al., 2003; Li et al., 2009) neurotransmitter release, and 

induction of synaptic plasticity (Banerjee et al., 2009).  Here we confirm that 
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NR2B-containing preNMDARs in L2/3 pyramidal cells in V1 of young mice (P13-

18) are tonically activated to enhance spontaneous glutamate release. 

Because of the seemingly ubiquitous requirement for NR2B in 

preNMDARs it is tempting to ascribe the unique properties of the preNMDAR to 

the inclusion of NR2B.  For example, there are suggestions that preNMDARs are 

insensitive to Mg2+ block because NR2B-containing NMDARs are slightly less 

Mg2+ sensitive compared to NR2A (Corlew et al., 2008).  The developmental 

profile of preNMDARs has also been suggested to be caused by the 

developmental down-regulation of the NR2B subunit (Yang et al., 2006).  But 

NR2B is a less than satisfying explanation because the NR2B subunit is only 

slightly less Mg2+ sensitive than the NR2A subunit (Monyer et al., 1992). 

Additionally, NR2B’s developmental down-regulation has a very shallow decline 

that does not correlate with the developmental loss of function that has been 

reported for preNMDARs (Corlew et al., 2007).  Nevertheless we do show that 

preNMDARs require NR2B though it is likely not responsible for their tonic 

activation.   

 

3.4.2 NR2A subunit does not enhance spontaneous glutamate release 

Though there is much evidence for a requirement for NR2B in 

preNMDARs enhancement for evoked and spontaneous release, as well as a 

role in plasticity, there is very little evidence of a requirement for NR2A.  There 

are a few anatomical reports of NR2A expression in presynaptic terminals of rat 

neocortex and cerebellum (DeBiasi et al., 1996; Aoki et al., 2003; Duguid and 
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Smart, 2004).  And two studies also suggest that NR2A containing preNMDARs 

enhance evoked release on Shaffer collateral axons in the hippocampus (Mallon 

et al., 2004; Suarez and Solis, 2006).   However, the drug that was used to test 

this, NVP-AAM077, has since been shown to be highly non-specific in rodent 

brain (Neyton and Paoletti, 2006) and it has not been tested for a possible action 

on NR3A containing NMDARs.  In our mEPSC assay, we were unable to show a 

requirement for the NR2A subunit.  This is the first time that this has been 

confirmed by using a genetic modification to knock out NR2A subunits.  Previous 

studies have shown the lack of NR2A containing preNMDARs using specific 

NR2A antagonists NVP-AAM077 and Zn2+.  The two functional studies (Mallon et 

al., 2004; Suarez and Solis, 2006) that show a role for NR2A in evoked release 

may reflect a difference between brain regions, or there may be a difference in 

the roles of preNMDARs depending on their subunit configuration.  The reported 

NR2A requirement in preNMDARs has been suggested to involve preNMDARs 

located in axons and activated to enhance excitability (Mallon et al., 2004; 

Suarez and Solis, 2006).  Furthermore, there may be differences in timeline of 

expression as the studies showing NR2B containing preNMDARs are primarily in 

very young animals (Sjostrom et al., 2003; Yang et al., 2006; Corlew et al., 2007; 

Corlew et al., 2008) and the evidence for NR2A is shown in older animals (Mallon 

et al., 2004; Suarez and Solis, 2006).  Our results show that in L2/3 pyramidal 

cells in V1 of young mice the NR2A subunit is not required for enhancement of 

spontaneous glutamate release.   
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3.4.3 Other possible subunits 

NR2D subunit activation has recently been suggested to be required for 

the induction of preNMDAR-mediated tLTD in the L4 → L2/3 synapse in rodent 

barrel cortex (Banerjee et al., 2009).  We attempted to determine whether NR2D 

might also be required for the preNMDARs’ enhancement of spontaneous 

release.  We used UBP141 (the most specific antagonist for NR2D/2C available) 

and the one that was used in Banerjee et. al 2009 (Banerjee et al., 2009).  

Unfortunately, we found that UBP141 not only decreased mEPSC frequency in 

our recordings, but also significantly decreased the amplitude (R. Larsen 

unpublished) suggesting a block of AMPAR-mediated currents.  We further 

tested UBP141 on AMPAR-mediated currents and found that, indeed, UBP141 

does partially block AMPAR currents (R. Larsen unpublished).   It is possible that 

the decrease in mEPSC frequency is due to a decrease in amplitude.  Therefore, 

we are unable to test for its presence in preNMDARs by this assay.  Perhaps 

future anatomical analysis would be instructive.  However, our previous findings 

that both NR2B and NR3A are required for the activation of preNMDARs make it 

unlikely that NR2D is also involved.  Another possibility is that there are two 

different populations of preNMDARs with different subunit compositions.  One 

report in barrel cortex suggests that preNMDARs contain the NR2B subunit in the 

L2/3-L2/3 connection while in the L4-L2/3 connection, preNMDARs contain 

NR2D (Rodriguez-Moreno and Paulsen, 2008).   Our data would suggest that all 

preNMDARs require NR3A but the other subunit could be NR2B or another 

subunit.  In order to test this, we can record evoked activity in the L4-L2/3 
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connection and in the L2/3-L2/3 connection and use ifenprodil to selectively block 

NR2B containing receptors.  We can analyze the probability of release, as in 

Chapter 2, by looking at the synaptic depression before and after ifenprodil is 

added.  If there are two separate populations of preNMDARs, then we would 

expect to see a decrease in synaptic depression with ifenprodil application in one 

of the pathways, but not the other.  We have already tested the requirement for 

NR3A in preNMDARs enhancement of evoked activity in the L4-L2/3 synapse in 

V1 of young mice. (R. Larsen and R. Corlew unpublished).   While application of 

APV increases paired pulse facilitation in WT mice (indicating preNMDARs which 

contribute to glutamate release probability), it does not change paired pulse 

facilitation in NR3A KO mice (R. Larsen and R. Corlew unpublished).  Therefore, 

the NR3A subunit is required for preNMDARs’ mediated enhancement of 

spontaneous and evoked glutamate in the young visual cortex at least in the L4-

L2/3  synapse. 

 

3.4.4 PreNMDARs are NR1/NR3A/NR2B tri-heteromeres 

The culmination of the ifenprodil experiments and the NR3A KO 

experiments lead us to conclude that preNMDARs are tri-heteromeric receptors 

containing NR2B, NR3A and NR1 subunits.  This hypothesis is consistent with 

findings that NR3A typically co-immunoprecipitates with NR1 and NR2 subunits 

(Perez-Otano et al., 2001). Importantly, ifenprodil (which blocks preNMDAR 

functions) antagonizes both NR1/NR2B diheteromers and NR1/NR2B/NR3A 

triheteromeric receptors (Smothers and Woodward, 2003).  While NR3A slightly 
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reduces the permeability of NMDARs (Perez-Otano et al., 2001), these receptors 

lack block by Mg2+ (Sasaki et al., 2002), which allows them to be activated by 

glutamate in the absence of strong depolarizations.  The developmental profile of 

NR3A perfectly matches the time-course for the loss of preNMDARs.    

Furthermore, because NR3A-containing NMDARs have a high glycine affinity 

(Nilsson et al., 2007), the observation that preNMDARs contain NR3A could 

explain why presynaptic, but not post-synaptic, NMDARs are saturated by 

glycine at rest (Li and Han, 2006).  One study came to the conclusion that 

preNMDARs are unlikely to contain NR3A because D-serine enhanced mEPSC 

frequency (Li and Han, 2006), but this conclusion was based the authors’ 

erroneous belief that D-serine was an antagonist of NR3A-containing NMDARs.  

However, a recent study convincingly demonstrated that D-serine is an agonist of 

NR3A-containing NMDARs (Yao and Mayer, 2006), so the re-interpretation of 

these studies provides further evidence that preNMDARs may contain NR3A. 

 

3.4.5 Maturity quiets the receptor but does not completely remove it 

We show that without the NR3A subunit in a NR3A KO, preNMDARs can 

still affect spontaneous release if the Mg2+ is withheld from the recording solution.  

These data also explain the developmental loss of the functional receptor.  While 

the preNMDAR appears to be completely lost with development, anatomical 

evidence suggests that the receptor is still present, though to a lesser degree.  

The presence of the receptor in the older animal was also confirmed.  At a time 

when NR3A subunit is at extremely low levels in the visual cortex, the 
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preNMDAR appears to be non-functional. However, its activity can be restored 

with the exclusion of Mg2+ from the ACSF.  The function of this “quiet” receptor in 

the adult is unknown.  The Mg2+ sensitive receptor might function much more like 

the classic coincidence detector, representing an important, long-term modulator 

in the presynaptic terminal (Bender et al., 2006b). 
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Chapter 4: 

Visual deprivation modifies both presynaptic glutamate release and 

composition of pre/perisynaptic/extrasynaptic NMDA receptors in adult 

visual cortex. 

This chapter was published with Koji Yashiro and Dr. Benjamin D. Philpot 

in The Journal of Neuroscience (2005) Vol. 25(50, pp:11684 –11692 

 

4.1 Introduction 

  Use-dependent modifications of synapses have been well described in the 

developing visual cortex, but the ability for experience to modify synapses in the 

adult visual cortex is poorly understood.  We have found that 10 days of late-

onset visual deprivation (LOVD) modifies both pre- and postsynaptic elements at 

the layer (L) 4 to 2/3 connection in the visual cortex of adult mice, and these 

changes differ from those observed in juveniles.  While dark-rearing (DR) in 

juvenile mice modifies the subunit composition and increases the current 

duration of synaptic NMDA receptors (NMDARs), no such effect is observed at 

synapses between L4 and L2/3 pyramidal neurons in adult mice.  Surprisingly, 

LOVD in adult mice enhances the temporal summation of NMDAR-mediated 

currents induced by bursts of high-frequency stimulation.  The enhanced 

temporal summation of NMDAR-mediated currents in deprived cortex could not 



be explained by a reduction in the rate of synaptic depression, because our data 

indicate that LOVD actually increases the rate of synaptic depression.  

Biochemical and electrophysiological evidence instead suggest that the 

enhanced temporal summation in adult mice could be accounted for by a change 

in the molecular composition of NMDARs at peri-/extrasynaptic sites.  Our data 

demonstrate that the experience-dependent modifications observed in the adult 

visual cortex are different from those observed during development.  These 

differences may help explain the unique consequences of sensory deprivation on 

plasticity in the developing versus mature cortex. 

Sensory experience modifies cortical circuitry by inducing use-dependent 

changes in synapses (Katz and Shatz, 1996), and these modifications are 

generally thought to be more dramatic in developing animals than in adults.  

Monocular deprivation has been a well-studied model for critical period plasticity 

since the pioneering studies of Wiesel and Hubel (Wiesel and Hubel, 1963).  

Their finding that cortical neurons lose responsiveness to the deprived eye only if 

the deprivation begins early in life has led to the assumption that the adult cortex 

lacks the capacity for experience-dependent modifications.   

    There is a growing consensus, however, that the adult cortex maintains 

greater plasticity than originally thought (Buonomano and Merzenich, 1998; 

Gilbert, 1998; Tagawa et al., 2005).  For example, monocular deprivation shifts 

the ocular dominance of neurons in the primary visual cortex of adult mice, 

although the manner of the shift differs from that observed in juveniles (Sawtell et 

al., 2003; Frenkel and Bear, 2004; Lickey et al., 2004).  In juvenile mice, 
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monocular deprivation causes a rapid reduction of the deprived eye response 

recorded in the contralateral cortex, followed by a potentiation of the responses 

driven by the non-deprived eye in the ipsilateral cortex.  In contrast, monocular 

deprivation in adult mice fails to cause a loss of the deprived eye response, 

although a delayed potentiation of the responses driven by the non-deprived eye 

is still observed.  The basis for the different consequences of sensory deprivation 

in young and mature animals is poorly understood, and we suggest that key 

differences may lie in the mechanisms that control the properties of synaptic 

plasticity. 

  The ocular dominance plasticity observed in both juvenile and adult mice 

requires activation of NMDARs.  NMDARs are required for many forms of 

synaptic plasticity (Malenka and Bear, 2004), and changes in the receptor’s 

attributes are likely to influence the properties of synaptic plasticity.  The NMDAR 

complex consists of the obligatory NR1 subunit in combination with NR2A-D and 

NR3A-B subunits that confer distinct receptor properties (Monyer et al., 1992; 

McBain and Mayer, 1994; Perez-Otano and Ehlers, 2004).  NR1, NR2A, and 

NR2B subunits predominate in the postnatal visual cortex, and during 

development the ratio of NR2A- to NR2B-containing NMDARs increases 

(Quinlan et al., 1999a; Quinlan et al., 1999b; Roberts and Ramoa, 1999).  

Because NR2A-containing NMDARs possess shorter current durations than 

NR2B-containing receptors, NMDAR-mediated current durations shorten over 

development (Carmignoto and Vicini, 1992; Hestrin, 1992; Monyer et al., 1992; 

Priestley et al., 1995; Flint et al., 1997; Vicini et al., 1998).  The developmental 
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increase in NR2A in the visual cortex is experience-dependent, as dark-rearing 

delays the increase in NR2A in the visual cortex (Nase et al., 1999; Quinlan et 

al., 1999a).   Given the age-dependent differences in the synaptic consequences 

of sensory deprivation, we examined whether visual deprivation uniquely affects 

NMDAR composition and function in the visual cortex of juvenile and adult mice.  

Our results indicate that intracortical synapses of adult mice are highly plastic but 

undergo use-dependent modifications in a unique manner compared to juveniles.  

 

4.2 Materials and Methods 

Animals  C57BL/6 mice (Charles River, MA) of both genders between postnatal 

(P) day 21-27 or P74-84 were used.   These ages represent periods during and 

after the classically defined critical period for ocular dominance plasticity in mice 

(Gordon et al., 1996).  Normally reared (NR) mice were raised on a 12:12 

light:dark cycle, whereas dark-reared (DR) mice were raised in complete 

darkness from P2.  Late-onset visual deprivation (LOVD) was achieved by 

placing animals into a completely dark room for ~10 days starting at ~P68. 

Slice Preparation was identical to Chapter 2 (Corlew et al., 2007). 

Voltage-clamp recordings  Electrophysiology was performed as in Chapter 2 

(Corlew et al., 2007) except for the following additions.  To pharmacologically 

isolate NMDAR-mediated currents, ACSF modified to contain (in mM): 124 NaCl, 

3 KCl, 1.25 NaH2PO4, 26 NaHCO3, 20 glucose, 4 MgCl2, 4 CaCl2, 0.001 glycine, 

0.05 picrotoxin, and 0.02 CNQX or DNQX.  CNQX/DNQX was omitted when 

recording AMPA receptor (AMPAR)-mediated currents.  Internal solution 
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contained (in mM) 102 cesium gluconate, 5 TEA-chloride, 3.7 NaCl, 20 HEPES, 

0.3 sodium guanosine triphosphate, 4 magnesium adenosine triphosphate, 0.2 

EGTA, 10 BAPTA, and 5 QX-314 chloride (Alomone Labs, Israel), with pH 

adjusted to 7.2 and osmolarity adjusted to ~300 mmol/kg by addition of sucrose.  

For voltage-clamp recordings, recorded series resistance averaged 21.8 ± 0.9 

MΩ and no series resistance compensation was applied.  Input resistances 

recorded at +40 mV did not differ between deprived and control groups at P21-27 

(110.4 ± 6.0 MΩ) or at P74-84 (92.3 ± 5.4 MΩ).  Excitatory postsynaptic currents 

(EPSCs) were evoked from a stimulating electrode (concentric bipolar; 200 µM 

tip separation) placed in layer 4, and stimulation was given for 200 µs every 

15 sec. To describe the deactivation kinetics of NMDAR-mediated currents 

recorded at +40 mV, 30-60 evoked NMDAR EPSCs were averaged, and the 

current decays were described using the following formula: I(t) = Ifexp(-t/τf) + 

Isexp(-t/ τs), where I is the current amplitude, t is time, If and Is are the peak 

amplitudes of the fast and slow components, respectively, and τf and τs are their 

respective time constants.  A nonlinear regression in pCLAMP software was 

used to fit double exponentials to decay curves.  The weighted time constant (τw) 

was used for quantification purposes and was calculated as: τw = τf *(If/(If + Is)) + 

τs *(Is/(If + Is)).  To examine functional changes in the short-term depression of 

AMPAR-mediated currents recorded at -70 mV, 11 pulses at 40 Hz were given 

every 6 sec.  The time constant of AMPAR EPSC depression was obtained by 

fitting the following single exponential formula: Inet(t) = Kexp(-t/τd) + PL, where Inet 

is the normalized net current amplitude, τd is the time constant of the synaptic 
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depression, PL is the normalized steady-state EPSC amplitude, and K + PL = 1.  

To measure the kinetics of MK-801 blockade, isolated NMDAR EPSCs were first 

measured at +40 mV and stimulation intensity was adjusted to evoke ~100 pA 

response.  MK-801 (40 µM) was added to the bath and responses were evoked 

every 15 sec until the NMDAR-mediated response was abolished.  The time 

constant of MK-801 blockade (τblock) was calculated using the following formula: 

I(t) = I1exp(-t/τblock), where I is the current amplitude, I1 is the amplitude of the first 

pulse, and t is time. 

Biochemical fractions  Each of the biochemical fractions was prepared using 

visual or frontal cortices pooled from 3-5 brains with a procedure modified from 

Cho and colleagues (Aramori and Nakanishi, 1992).  Comparisons were made 

from fractions run in parallel to minimize variability among preparations.  

Samples were homogenized in HEPES-buffered sucrose (4 mM HEPES, 0.32 M 

sucrose, pH 7.4) using a motor-driven dounce homogenizer.  Post-nuclear 

supernatant (PNS) fractions were prepared by centrifuging the homogenates 

twice at 1,000 x g for 10 min to eliminate nuclei.  The PNS fractions were 

centrifuged at 10,000 x g for 20 min yielding crude synaptic pellets, which were 

then suspended in HEPES-buffered sucrose and centrifuged.  The resulting 

pellets were lysed in a hypoosmotic buffer (4 mM HEPES, pH 7.4) using the 

motor-driven dounce homogenizer and mixed constantly for 30 min.  The lysates 

were centrifuged at 25,000 x g for 20 min and pellets were suspended in HEPES-

buffered sucrose to obtain lysed synaptosomal membrane (LSM) fractions.  The 

LSM fractions were subjected to density centrifugation (150,000 x g, 2 hrs) using 
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a gradient consisting of 0.8 M, 1.0 M, and 1.2 M sucrose in 4 mM HEPES (pH 

7.4).  Synaptic plasma membrane fractions were collected at the 1.0-1.2 M 

interface, diluted with 4 mM HEPES, and pelleted (150,000 x g, 30 min).  These 

pellets were resuspended in 50 mM HEPES (pH 7.4) containing 0.5% Triton X-

100, rotated for 15 min, and centrifuged at 32,000 x g for 20 min.  The resulting 

pellets were resuspended in the 0.5% Triton-containing buffer, rotated for 15 min, 

and centrifuged at 200,000 x g for 20 min to obtain postsynaptic density (PSD) 

fractions, which were suspended in 50 mM HEPES containing 0.2% SDS.  

Complete protease inhibitor cocktail tablets (Roche, Germany), pepstatin 10 

µg/ml, and phosphatase inhibitor cocktail 1 & 2 (Sigma, MO) were added to all 

buffers.  The above procedures were carried out on ice or in a cold room and the 

fractions were stored at -80oC.  Protein concentrations were measured using 

Coomassie Plus reagent (Pierce, IL).  

Immunoblot analysis PNS, LSM, and PSD fractions (10 µg) were resolved by 

7.5% SDS-PAGE (Ready Gels, Bio-Rad, PA) and transferred to nitrocellulose 

membranes.  Both blotting and imaging with the Odyssey imaging system (LI-

COR, NE) were carried out following the manufacturer’s protocols.  Primary 

antibodies were anti-NR2A rabbit antibody (1:500, sc-9056, Santa Cruz, CA), 

anti-NR2B goat antibody (1:20,000, sc-1469, Santa Cruz, CA), anti-PSD-95 

monoclonal antibody (1:500, MAB1596, Chemicon, CA), and anti-β-tubulin 

monoclonal antibody (1:3000, MAB3408, Chemicon, CA).  The employed 

secondary antibodies were Alexa Fluor 680-labeled anti-goat IgG antibody 

(1:5,000, Molecular Probes, OR), Alexa Fluor 680-labeled anti-mouse IgG 
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antibody (1:5,000, Molecular Probes, OR), and IRDye 800-labeled anti-rabbit IgG 

antibody (1:3,000, Rockland, PA).  

Statistics  Data are expressed as means ± SEM.  ANOVA or t-tests were used to 

test for statistical significance, which was placed at p < 0.05.  

 

4.3 Results 

4.3.1 Visual deprivation lengthens the decay kinetics of synaptic NMDAR-

mediated currents in developing but not adult mice 

 We first determined whether visual deprivation affects NMDARs in the 

visual cortex of juvenile mice in a manner similar to that observed in rats.  

Previous studies demonstrated that dark-rearing (DR) or 5 days of visual 

deprivation in juvenile rats decreases the relative expression of NR2A- to NR2B-

containing NMDARs, resulting in longer NMDAR-mediated currents (Carmignoto 

and Vicini, 1992; Flint et al., 1997; Philpot et al., 2001a).  We found that a similar 

process occurs in mice.  Pharmacologically isolated NMDAR-mediated currents 

evoked by stimulating L4 were measured in layer 2/3 pyramidal neurons in 

primary visual cortical slices.  DR until P21-27 significantly increased the duration 

of NMDAR-mediated currents compared to normally-reared (NR) mice (Fig. 4.1; 

DR, τw = 130.7 ± 6.5 ms, n = 21 cells; NR, τw = 82.1 ± 7.6 ms, n = 16 cells; p < 

0.00003).  These data suggest that DR in juvenile mice modifies the composition 

and function of synaptic NMDARs, as has been observed in rats. 
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Figure 4.1 Visual deprivation in adult mice fails to modify NMDAR EPSCs 
evoked by single pulses.  Scatter plot of the weighted time constants (τw) of 
NMDAR-mediated EPSCs recorded from L2/3 pyramidal cells after stimulating L4 
in the visual cortex of DR and NR juvenile mice as well as LOVD and NR adult 
mice.  Small circles represent individual data points and larger circles represent 
means (±S.E.M.).  NMDAR-mediated currents are significantly longer in the 
visual cortex of DR juvenile mice compared to NR.  LOVD in adult mice does not 
alter NMDAR-mediated current duration.  Normalized traces are representative of 
pharmacologically isolated NMDAR EPSCs recorded at +40 mV, and an overlay 
of the traces (top) is included as a basis for comparisons.  *p < 0.05. 
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To determine whether experience-dependent modifications in synaptic 

NMDARs could be elicited outside a critical period of development, we examined 

the consequences of 10 days of late-onset visual deprivation (LOVD) in the  

visual cortex of adult mice.  Unlike juvenile rodents, we failed to observe a 

change in NMDAR EPSC decay kinetics between LOVD and NR adult mice (Fig. 

4.1; LOVD, τw = 90.5 ± 9.3 ms, n = 13 cells; NR, τw = 87.3 ± 9.8 ms, n = 16 cells; 

p = 0.82).  These data indicate that, in adult mice, visual deprivation does not 

change the function of NMDARs driven by a single synaptic activation of L4-2/3. 

 

4.3.2 Visual deprivation enhances the temporal summation of NMDAR 

EPSCs in adults  

 We have previously demonstrated in juvenile rodents that the temporal 

summation of NMDAR-mediated currents is tightly correlated with the duration of 

individual EPSCs; the longer the NMDAR currents, the greater the magnitude of 

temporal summation (Philpot et al., 2001a).  Because of the similar duration of 

NMDAR EPSCs in visual cortical pyramidal cells from LOVD and NR adult mice, 

we expected that the temporal summation of NMDAR-mediated currents would 

be nearly identical between the groups.  To test this possibility, we delivered 

bursts of 40 Hz stimulation (11 pulses) to L4 and measured the response in L2/3 

pyramidal cells in LOVD and NR cortices (LOVD: n = 15 cells; NR: n = 22 cells).  

We adjusted stimulus intensity to obtain ~100 pA response on the first pulse 

(LOVD = 113.5 ± 13.1 pA; NR = 103.4  ±  7.6 pA; p = 0.48).  Surprisingly, we 

observed that LOVD greatly enhanced the temporal summation of NMDAR-  
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Figure 4.2 Visual deprivation in adult mice alters the temporal summation 
of NMDAR EPSCs evoked by burst stimulation in the visual cortex.  (A) Plot 
of the normalized and averaged amplitudes of NMDAR EPSCs evoked at 40 Hz 
in the adult visual cortex at a holding potential of +40 mV.  Representative traces 
of pharmacologically isolated NMDAR EPSCs in response to 40 Hz stimulus 
trains are shown (dark trace = response from pyramidal neuron in LOVD mice; 
light trace = response from pyramidal neuron in NR mice).  Stimulus artifacts 
were blanked for clarity.  (B) Same as in A, but recordings were made at a 
holding potential of -70 mV in ACSF containing nominal magnesium (0.1 mM 
MgCl2). 
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mediated currents in the adult visual cortex (Fig. 4.2A: amplitude of the 11th 

pulse/1st pulse; LOVD = 1.33 ± 0.15; NR = 0.96 ± 0.005; p < 0.02).  The LOVD-

induced enhancement of temporal summation was also significant when 

quantified by averaging the charge transfer (integral) of the normalized currents 

(LOVD = 354.7 ± 32.1 arbitrary units = a.u.; NR = 259.4 ± 14.0 a.u.; p< 0.005).   

To determine whether the experience-dependent differences in temporal 

summation arose from recording at a depolarized voltage (+40 mV), we repeated 

the experiment in nominal magnesium (0.1 mM) while clamping cells at -70 mV.  

The deprivation-induced enhancement of temporal summation was also 

observed when postsynaptic cells were clamped at the hyperpolarized 

membrane potential (Fig. 4.2B: amplitude of the 11th pulse/1st pulse: LOVD = 

1.41 ± 0.15, n = 16 cells; NR = 0.76 ± 0.08, n = 12 cells; p < 0.003; Normalized 

charge transfer: LOVD = 397.4 ± 36.3 a.u.; NR = 266.5 ± 27.3 a.u.; p < 0.02).  

This observation suggests that the effects on temporal summation are unlikely to 

be due to an experience-dependent change in an intrinsic membrane current that 

has voltage-sensitive properties.   

 Thus, even though visual deprivation did not alter synaptic NMDAR-

mediated currents evoked by a single stimulation, visual deprivation nevertheless 

enhanced the temporal summation of NMDAR-mediated currents.  The 

enhanced temporal summation could be explained by a change in (1) 

presynaptic neurotransmitter release or (2) a population of peri-/extrasynaptic 

NMDARs that is activated with bursts of stimulation.   
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4.3.3 Visual deprivation increases the release probability of glutamate in 

adult mice  

 The temporal summation of NMDAR-mediated currents is determined by 

both the postsynaptic summation of currents and the properties of presynaptic 

neurotransmitter release (e.g. the rate of synaptic depression or facilitation) 

(Zucker and Regehr, 2002).  We initially hypothesized that the enhanced 

temporal summation of NMDAR-mediated currents could be due to a reduction in 

the rate of synaptic depression.  Because AMPAR-mediated currents are much 

faster than NMDAR-mediated currents, there is little, if any, temporal summation 

of AMPAR EPSCs at frequencies ≤ 40 Hz.  Thus, short-term plasticity of 

AMPAR-mediated currents is a good measure of changes in presynaptic 

neurotransmitter release.  We examined the short-term plasticity of AMPAR-

mediated EPSCs recorded at -70 mV in L2/3 pyramidal cells by giving 11 pulses 

of 40 Hz stimulation to layer 4.  Contrary to our initial hypothesis, our data 

indicated that the rate of synaptic depression was significantly increased in the 

visual cortex of the LOVD mice (Fig. 4.3: τd ; LOVD =  64.9 ± 10.3 ms, n = 18 

cells; NR = 129.5 ± 18.2 ms, n  = 23 cells;  p < 0.007).  The normalized steady-

state AMPAR EPSC amplitudes were unchanged by visual experience (LOVD = 

0.187 ± 0033; NR = 0.130 ± 0.026; p = 0.17).  These data suggest that visual 

deprivation increases the initial probability of neurotransmitter release and limits 

the relative amount of neurotransmitter available for subsequent release.  Thus, 

the enhanced temporal summation of NMDAR-mediated currents in the cortex of 

deprived mice cannot be explained by a reduction in the rate of short-term  
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Figure 4.3 Visual deprivation increases the rate of synaptic depression in 
adult mice.  Plot of the AMPAR EPSC amplitudes in response to a brief 40 Hz 
stimulation train.  Responses were normalized to the first pulse.  Traces are 
representative AMPAR EPSCs recorded at -70 mV in cells from LOVD (dark 
trace) and NR (light trace) mice.  Stimulus artifacts were blanked for clarity.   
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synaptic depression.  Because of the novel and unexpected observation that 

LOVD increases the rate of synaptic depression in the visual cortex of adult mice, 

we wanted to use an independent assay to verify that deprivation increases the 

probability of neurotransmitter release.  We took advantage of the 

pharmacological properties of MK-801, an irreversible open-channel NMDAR 

blocker, to examine neurotransmitter release in NR and LOVD adult mice.  The 

rate of block of NMDAR-mediated currents by MK-801 is an indicator of the 

probability of neurotransmitter release; the higher the probability of release, the 

faster the rate of block by MK-801 (Hessler et al., 1993).  Consistent with the 

increased rate of synaptic depression of AMPAR-mediated currents, we 

observed that LOVD significantly accelerated the rate at which MK-801 blocks 

pharmacologically isolated NMDAR EPSCs (Fig. 4.4: τblock ; LOVD = 9.30 ± 0.63 

ms, n = 4 cells; NR = 20.00 ± 3.16 ms, n = 7 cells; p < 0.04).  These results 

confirm that LOVD increases the probability of release in L4-2/3 synapses.  

Although the enhanced temporal summation of NMDAR EPSCs in adult mice 

cannot be explained by an increase in the rate of synaptic depression, it is 

possible that the increased probability of release could facilitate the spillover of 

glutamate to peri-/extrasynaptic sites (see Discussion).  

 

4.3.4 Visual deprivation differentially reduces the NR2A/B ratio in 

biochemical fractions from the visual cortex of juvenile and adult mice 

Our data suggest that the change in the rate of synaptic depression could 

not account for the enhanced temporal summation of NMDAR-mediated currents  
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Figure 4.4 Visual deprivation increases the rate of neurotransmitter release 
in adult mice.  Plot of the normalized amplitude of NMDAR EPSCs in response 
to repetitive stimulation in the presence of MK-801.  Note that NMDAR EPSC 
blockade by MK-801 occurs faster in pyramidal cells from LOVD than NR adult 
mice.   
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in pyramidal cells of LOVD adult mice.  We therefore decided to evaluate 

possible changes in postsynaptic NMDAR subunit composition.  We have 

previously used the synaptoneurosome preparation to show that there is a 

correlation between the functional properties of NMDARs observed 

electrophysiologically and the subunit expression of NMDARs observed 

biochemically (Quinlan et al., 1999a; Quinlan et al., 1999b; Philpot et al., 2001b).  

The synaptoneurosome preparation, however, cannot distinguish protein 

expression in the postsynaptic density (PSD) from expression in other 

compartments near the synapse.  Moreover, it was difficult to detect small 

changes in NMDAR composition with our previously employed chemiluminescent 

immunoblot techniques.   

 To overcome the limitations of our previously techniques, we produced 

enriched biochemical fractions that allowed us to differentiate proteins in the PSD 

from other compartments.  We then analyzed these fractions using a novel 

immunoblotting technique using fluorescent secondary antibodies to NR2A and 

NR2B subunits (see Methods and Fig. 4.5).  This method allowed us to achieve a 

highly quantitative measurement of the NR2A/B ratio due to the elimination of 

several sources of error.  (1) The Odyssey infrared system operates within a very 

large linear range for quantification, thus errors from working within the small 

linear range using traditional immunoblots were eliminated.  (2) The dual 

fluorescent labeling of NR2A and NR2B allowed us to compare band intensities 

within the same gel lane, eliminating errors introduced by variations in sample 

loading onto SDS-PAGE gels.  (3) Membrane stripping was unnecessary, so no  
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Figure 4.5 Visual deprivation in juvenile mice alters the NR2A/B ratio in the 
postsynaptic density (PSD), but only in post-nuclear supernatant (PNS) and 
lysed synaptic membrane (LSM) fractions in adult mice.  (A) Biochemical 
fractionation progressively enriches NR2A, NR2B, and PSD-95 and eliminates a 
non-synaptic protein, β-tubulin, in visual cortical samples from LOVD and NR 
adult mice.  10 µg samples were loaded into each gel lane.  (B) Quantification of 
NR2A and NR2B band intensities, which were normalized to the value at 12.5 µg.  
The inset is a representative NR2A/B immunoblot of a PSD fraction.  1 to 12 µg 
samples were loaded into each gel lane and results from three blots were 
averaged. (C) NR2A/B ratios were measured in PNS, LSM, and PSD fractions of 
visual cortices of deprived and control from both juvenile and adult mice.  The 
values (means ± S.E.M.) are normalized to average control values.  *p < 0.05.  
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error was introduced by incomplete stripping or overstripping.  (4) NR2A and 

NR2B migrate through the SDS-PAGE gel to almost the same distance due to 

their similar molecular weights, eliminating errors introduced by differential 

transfer of the proteins from the gel to the nitrocellulose membrane.  Although the 

technique still has the limitation that it is difficult to determine whether differences 

in the NR2A/B ratio are due to changes in NR2A, NR2B, or both, the advantages 

of the technique allowed us to detect modest differences in the ratio of NR2A/B 

with high precision and little variability.  

 We first examined NR2A/B expression in the visual cortex from DR and 

NR juvenile mice (n of each group = 6 pools of 5 mice each).  To evaluate 

changes in NR2A/B expression, we examined three biochemical fractions: 1) the 

post-nuclear supernatant (PNS) fraction, containing both cytoplasmic and cell 

membrane contents, 2) the lysed synaptosomal membrane (LSM) fractions, 

which contained both synaptic and extrasynaptic components of the plasma 

membrane, and 3) the highly enriched postsynaptic density (PSD).  Consistent 

with previous findings using synaptoneurosome preparations in rats (Quinlan et 

al., 1999a), we found that the NR2A/B ratios were significantly lower in the PNS, 

LSM, and PSD visual cortical fractions of DR juvenile mice compared to NR (Fig. 

4.5C: PNS, p < 0.03; LSM, p < 0.0006; PSD, p < 0.02).  To determine the effects 

of LOVD in adults, we compared the NR2A/B ratios in NR and LOVD adult mice 

(n of each group = 12 pools of 3-5 mice each).  In contrast to what we observed 

in the visual cortex of DR juvenile mice, LOVD in adults failed to modify the 

composition of NMDARs within the highly enriched PSD (Fig. 4.5A,C: p = 0.22).  
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However, LOVD in adults significantly lowered the NR2A/B ratio in the PNS and 

LSM visual cortical fractions compared to the NR (Fig. 4.5C: PNS, p < 0.006; 

LSM, p < 0.002).  In both juvenile and adult mice, the change in NMDAR subunit 

composition in NR and deprived mice did not appear to be the result of a general 

stress response, because no change in the NR2A/B ratio in the PNS, LSM, and 

PSD preparations were observed in frontal cortices of deprived mice compared 

to controls (p-values in all fractions from both juveniles and adults > 0.1, n = 6 

pools of tissues for each of the six groups).  These data indicate that LOVD in 

adults might alter the composition of NMDARs located at pre/peri-/extrasynaptic 

sites but not postsynaptic sites.   

 

4.3.5 Visual deprivation does not alter the temporal summation of NMDAR-

mediated currents evoked by minimal stimulation  

 Because high-frequency stimulation can additively facilitate diffusion of 

glutamate at synapses and induce activation of peri-/extrasynaptic NMDARs that 

are not activated by a single pulse (Lozovaya et al., 2004; Scimemi et al., 2004), 

we reasoned that the enhanced temporal summation of NMDAR-mediated 

currents in LOVD mice could be a consequence of glutamate spillover onto a 

modified population of peri-/extrasynaptic NMDARs.  Previous studies 

demonstrate that glutamate spillover increases with EPSC size (Scimemi et al., 

2004).  That is, spillover is more likely to occur with an increase in the number of 

simultaneously activated synapses.   
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 If synaptic spillover contributes to the deprivation-induced enhancement of 

NMDAR temporal summation, then we reasoned that we would be less likely to 

observe the effect when activating a lower density of synapses.  To test this 

possibility, we examined the temporal summation of NMDAR EPSCs elicited by 

minimal stimulation.  The assumption in these studies is that minimal stimulation 

activates one or a small number of afferents.  In this experiment, stimulus 

intensity was adjusted to elicit a response to the 1st pulse ~50 % of the time.  We 

then delivered 11 pulses at 40 Hz and analyzed only traces where there was a 

response to the first pulse (1st peak amplitude; LOVD = 14.1  ± 1.0, n = 14 cells; 

NR = 15.6  ± 1.6, n = 16 cells; p = 0.46).  With this minimal stimulation protocol, 

temporal summation of NMDA EPSCs in LOVD and NR mice were almost 

identical as measured by the amplitude of the 11th pulse (Fig. 4.6: Amplitude of 

11th pulse/1st pulse; LOVD = 1.15 ± 0.14; NR = 1.12 ± 0.12;  p = 0.90) or by the 

normalized charge transfer (LOVD = 283.1 ± 25.7 a.u.; NR = 288.9 ± 30.3 a.u.: p 

= 0.89).  These data indicate that a critical number of synapses must be 

activated, reflected by EPSC amplitude, to observe the deprivation-induced 

enhanced temporal summation.  The data are consistent with the idea that the 

coordinated release of glutamate above a certain threshold of activated synapses 

can produce glutamate spillover sufficient to reach an extrasynaptic population of 

NMDARs that is modified by visual deprivation.   
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Figure 4.6 Minimal stimulation fails to reveal deprivation-induced 
differences in the temporal summation of NMDAR-mediated currents.  Plot 
of the temporal summation of NMDAR EPSCs in LOVD and NR mice evoked by 
minimal stimulation at 40 Hz.   
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4.3.6 The NR2B-selective antagonist ifenprodil blocks the enhanced 

temporal summation of NMDAR EPSCs in deprived visual cortex of adult 

mice 

 The above data indicated that neither a change in the rate of synaptic 

depression nor a change in a voltage-sensitive membrane property could 

account for the enhanced temporal summation of NMDAR-mediated currents in 

the cortex of LOVD mice.  However, the data also indicated that (1) LOVD in 

adult mice alters the complement of pre-/peri-/extrasynaptic NMDARs without 

significantly changing the postsynaptic NMDARs, and (2) a critical threshold of 

synaptic activation was required to observe the deprivation-induced 

enhancement of temporal summation.  These observations are consistent with 

LOVD altering a population of peri-/extrasynaptic NMDARs that are activated by 

glutamate spillover occurring with coordinated bursts of stimulation.  Previous 

studies suggest that NR2B-containing NMDARs can detect glutamate spillover 

(Scimemi et al., 2004), likely due to their high affinity for glutamate (Priestley et 

al., 1995).  We used the NR2B-specific antagonist ifenprodil to determine 

whether the deprivation-induced enhancement of NMDAR temporal summation 

was mediated through activation of NR2B-containing receptors.  Ifenprodil 

blocked the enhanced temporal summation of NMDAR EPSCs in LOVD mice 

(Fig. 4.7A: amplitude of 11th pulse/1st pulse; LOVD = 0.84 ± 0.07, n = 6 cells; NR 

= 0.85 ± 0.06, n = 8 cells;  p = 0.98).  While ifenprodil dramatically reduced the 

temporal summation of NMDAR-mediated currents in the visual cortex of LOVD  
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Figure 4.7 The enhanced temporal summation of NMDAR EPSCs in 
deprived adult cortex can be blocked by acute administration of ifenprodil, 
an NR2B specific NMDAR antagonist.  (A) Temporal summation of NMDAR 
EPSCs in LOVD and NR mice in the presence of ifenprodil.  (B) The average 
charge transfer taken from the normalized responses of the eleven pulses 
evoked at 40 Hz stimulation in the presence or absence of ifenprodil.  ANOVA 
with post hoc analyses: *p < 0.05. 
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mice, the drug had no noticeable consequence in NR mice (Fig. 4.7B).  These 

observations support our hypothesis that LOVD can increase the relative  

complement of NR2B-containing NMDARs at pre-/peri-/extrasynaptic sites but 

not synaptic sites.  An idea consistent with our data is that these peri-

/extrasynaptic NMDARs could be activated by glutamate spillover triggered by 

consecutive pulses, thus helping to explain why we observed a deprivation- 

induced enhancement of NMDAR-mediated temporal summation as quickly as 

the second pulse in a train of stimulation (Fig. 4.2). 

 

4.4 Discussion  

 We demonstrate that a brief period (10 days) of late-onset visual 

deprivation (LOVD) enhances NMDAR-mediated transmission in the L4 → 2/3 

visual cortical synapse by presynaptically increasing the probability of 

neurotransmitter release and by increasing the relative expression of NR2B-

containing NMDARs at pre-/peri-/extrasynaptic sites.  These results provide 

evidence that the history of sensory experience modifies synapses in the mature 

visual cortex outside of the critical period of receptive field plasticity and that 

these modifications differ between juvenile and adult animals. 

 Accumulating evidence indicates that the adult visual cortex is more 

plastic than previously thought, and our data show that one synaptic basis for 

adult plasticity is a change in the short-term dynamics of excitatory synaptic 

responses.  The observed deprivation-induced increase in the rate of 

neurotransmitter release is likely a compensatory mechanism to maintain 
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synaptic drive in the absence of visually evoked activity.  This increase in release 

is reminiscent of what has been observed in culture systems following 

manipulations that reduce presynaptic activity (Chavis and Westbrook, 2001) or 

postsynaptic excitability (Murthy et al., 2001).  The deprivation-induced increase 

in release probability in the adult cortex enhances the likelihood that peri-

/extrasynaptic NMDARs may be activated by glutamate spillover (Kullmann et al., 

1996), and future studies will need to investigate whether this spillover could be 

augmented by a decrease in glutamate reuptake (Kim et al., 2005).  

Nonetheless, our data are consistent with the idea that visual deprivation 

increases a peri-/extrasynaptic population of ifenprodil-sensitive NMDARs that 

can be activated by glutamate spillover during bursts of high-frequency 

stimulation. 

 In addition to age-dependent differences in the presynaptic consequences 

of visual deprivation, our data demonstrate that there are also unique 

postsynaptic consequences to visual deprivation.  Deprivation in juvenile animals 

decreases the NR2A/NR2B ratio at synaptic sites, but LOVD in adults only 

modifies pre-/peri-/extrasynaptic NMDARs.  There is a precedent in the literature 

that NR2A-containing NMDARs are trafficked to synaptic sites, whereas NR2B-

containing NMDARs are preferentially trafficked to peri-/extrasynaptic sites.  For 

example, NMDARs appear to be eliminated from the central portion of the 

synapse in the superior colliculus of mice lacking the NR2A subunit (Townsend 

et al., 2003).  One possibility is that NR2A is trafficked selectively to the synapse, 

but NR2B-containing NMDARs might be prevented from remaining in the 
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synapse once “slot” proteins for anchoring NR2A-containing NMDARs, such as 

PSD-95, have been delivered to the synapse (Yoshii et al., 2003).  In support of 

this, manipulations of visual experience in developing mice are known to 

bidirectionally regulate the expression of synaptic NR2A in the visual cortex 

(Quinlan et al., 1999a).  If, on the other hand, visual experience preferentially 

modifies NR2B but not NR2A levels in the adult cortex, then changes in NR2B-

containing NMDARs might be detected only at peri/extrasynaptic sites because 

NR2A-containing NMDARs are entrenched in the central portion of the synapse.  

Our data provide evidence that this may indeed be the case, as we observe that 

the NR2B-selective antagonist ifenprodil eliminates the enhanced temporal 

summation of NMDAR-mediated currents in the visual cortex of deprived mice.  

In addition, detailed quantitative measurements of NR2A and NR2B levels 

suggest that LOVD increases NR2B levels rather than decreasing NR2A (E. 

Quinlan, personal communications). 

 We suggest that an increase in peri-/extrasynaptic NR2B-containing 

NMDARs postsynaptically could account for the deprivation-induced increase in 

the temporal summation of NMDAR currents.  This conclusion is supported by 

three observations.  (1) The deprivation-induced enhancement of temporal 

summation is only observed in conditions that favor glutamate spillover; the effect 

is not observed with minimal stimulation but is observed with stronger stimulation 

intensities.  (2) Biochemical data indicate there is an increase in the relative 

proportion of NR2B-containing NMDARs at pre/extrasynaptic but not 

postsynaptic sites.  (3)  The NR2B-containing NMDAR antagonist ifenprodil 
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blocks the deprivation-induced enhancement of NMDAR EPSC temporal 

summation.   

 A possible complication to our interpretation of the data is that presynaptic 

NR2B-containing NMDARs are known to exist (Aoki et al., 1994) and to enhance 

neurotransmitter release in the visual cortex (Sjostrom et al., 2003).  The 

deprivation-induced elevation in NR2B proteins within the lysed synaptic 

membrane fraction (Fig. 4.5) could be explained by an increase in presynaptic 

NMDARs, contributing to the observed increase in neurotransmitter release 

following deprivation.  However, an increase in presynaptic NR2B-containing 

NMDARs is unlikely to account for the deprivation-induced enhancement of 

NMDAR-mediated temporal summation.  If an increase in relative NR2B levels 

were restricted to presynaptic sites, we should have observed a similar trend in 

the short-term dynamics of AMPAR- and NMDAR-mediated currents following 

deprivation (Fig. 4.2 and 4.3).  Specifically, an increase in release by presynaptic 

NR2B-containing NMDARs with deprivation would be expected to decrease the 

temporal summation of NMDAR-mediated currents in deprived mice, which was 

not what we observed.  Hence, the most parsimonious explanation for our data is 

that visual deprivation in adult mice increases the relative population of NR2B-

containing NMDARs at pre-/peri-/extrasynaptic sites. While future research is 

needed to address the physiological importance of the experience-dependent 

changes in glutamatergic synaptic transmission in the adult visual cortex, some 

clues may be provided by the very different consequences of monocular 

deprivation on ocular dominance in juvenile and adult mice (Sawtell et al., 2003; 
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Frenkel and Bear, 2004).  Because visual cortex responses in rodents are largely 

driven by the contralateral eye, monocular deprivation essentially eliminates 

visual activity in the contralateral cortex except for a minor input driven by the 

ipsilateral eye.  In juvenile mice, monocular deprivation leads to a rapid 

depression of the contralateral deprived-eye inputs, followed by a deprivation-

enabled strengthening of the weak ipsilateral inputs from the non-deprived eye.  

The delayed strengthening of the previously weak inputs might be a 

consequence of lowering the threshold for synaptic potentiation by increasing the 

relative expression of NR2B-containing NMDARs in deprived cortex (Quinlan et 

al., 1999a; Quinlan et al., 1999b; Philpot et al., 2001a).  In contrast to what has 

been observed in juvenile mice, the synapses in the mature cortex are normally 

stable and relatively resistant to modifications.  One possibility is that the limited 

plasticity in the adult visual cortex is a consequence of low expression levels of 

NMDARs, especially the NR2B-containing NMDARs.  Although monocular 

deprivation in the mature cortex fails to depress the inputs driven by the deprived 

eye, this manipulation can cause a delayed strengthening of the weak ipsilateral 

eye inputs.  Perhaps the increase in the relative expression of NR2B subtypes at 

peri-/extrasynaptic sites, coupled with an increase in neurotransmitter release 

that can ensure their activation, provides a synaptic milieu that is permissive for 

the strengthening of normally weak responses.   

 The dependence of long-term potentiation and depression on the subunit 

composition of the NMDAR is heavily debated (Liu et al., 2004; Massey et al., 

2004), but a number of recent studies indicate that NR2A- and NR2B-containing 
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NMDARs can both contribute to the induction of long-term depression and 

potentiation (Hendricson et al., 2002; Berberich et al., 2005; Heinbockel et al., 

2005; Toyoda et al., 2005; Weitlauf et al., 2005).  An intriguing possibility is that, 

under certain conditions, an increase in the relative expression of NR2B-

containing NMDARs in the adult visual cortex can reinstate some aspects of 

synaptic plasticity that are normally lost during development.  In support of this 

hypothesis, 10 days of LOVD in adult mice increases NR2B expression and 

simultaneously reinstates the ability to observe rapid ocular dominance shifts 

following monocular deprivation (E. Quinlan, personal observations).   

In summary, our data provide direct evidence that sensory experience 

differentially modifies synaptic transmission in the cortex of juvenile and mature 

animals.  These differences may provide a synaptic basis for why sensory 

deprivation has unique manifestations across development (modeled in Fig. 4.8) 
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Chapter 5:  

Experience-dependent expression and function of preNMDARs 

 

5.1 Introduction 

In the sensory cortices of the immature brain, activity shapes the 

development of the neuronal circuitry (Fox and Wong, 2005; Tropea et al., 2009).  

This process determines how the brain will process sensory information for a 

whole lifetime, making correct sensory experience crucial for proper 

development.  If appropriate sensory input is blocked, there can be devastating 

consequences on brain function.  In humans, incorrect aligning of the eyes 

(termed strabismus) or childhood cataracts can cause Amblyopia, a condition 

that can leave afflicted patients cortically blind for the rest of their lives.  Lack of 

proper stimulation can also cause learning disabilities and language disorders 

(Hall, 1998; Innocenti, 2007).  It is commonly thought that there are critical 

periods in which sensory information must direct normal development, and that 

after these periods little can be done to correct for deficiencies.  However, the 

neuroscience community has recently been changing its view on critical periods 

(Morishita and Hensch, 2008).  Although there are sensitive periods where 

sensory information is particularly influential for changing brain function, it is now 

thought that the brain remains plastic throughout life.  While the synaptic 

plasticity mechanisms may change with development, the ability to change is still 



available.  Clinical examples of this type of adult experience-dependent plasticity 

(Birnbaum, 1997; Simmers and Gray, 1999; Fronius et al., 2004) and a  growing 

number of animal model studies (Sawtell et al., 2003; Yashiro et al., 2005; He et 

al., 2006; Hofer et al., 2006a, b; Sale et al., 2007) show that a remarkable 

amount of plasticity can be attained in the adult brain using short periods of 

visual deprivation. 

An important affector of experience-dependent synaptic plasticity is the 

NMDA type glutamate receptor (NMDAR) (Kopp et al., 2007; Philpot et al., 2007; 

Yashiro and Philpot, 2008).  Postsynaptic NMDARs have been thoroughly 

studied for their involvement in experience-dependent plasticity.  However, we 

have recently found that preNMDARs are also present early in the developing 

visual cortex, where they enhance neurotransmitter release and support long-

term depression (LTD) (Berretta and Jones, 1996; Sjostrom et al., 2003; Bender 

et al., 2006b; Corlew et al., 2007; Brasier and Feldman, 2008; Corlew et al., 

2008).  It is possible that, like their postsynaptic counterparts, preNMDARs may 

be themselves modified by sensory experience and key players in experience-

dependent synaptic plasticity. 

Here we investigated whether an altered visual environment could alter 

the function and expression of preNMDAR during development and adulthood.  

We explored three models for an altered visual environment:  1) We 

demonstrated that visual deprivation by dark rearing (DR) prevents the normal 

down-regulation of the preNMDARs’ expression and function.  2) However, visual 

enrichment also produced the same prevention of the normal loss of the 
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receptor.  We found that the effect of enrichment lasted well into adulthood, 

confirming that visual enrichment not only delays but also completely prevents 

the loss of this receptor.  3) Finally, we showed that the function of this receptor 

and its role in plasticity may be plastic well into adulthood.  A short treatment of 

late-onset visual deprivation (LOVD) in adulthood was sufficient to rejuvenate 

both preNMDARs that had been lost with development and tLTD, a type of 

plasticity shown to require preNMDARs. 

 

5.2 Materials and Methods 

Subjects. C57BL/6 mice were purchased from Charles River Laboratories 

(Wilmington, MA) and used between postnatal day 7 (P7) and P90. 

Mice were maintained on a 12h light/dark cycle (except when housed in the dark 

room) and fed ad libitum. Animals were either raised with a 4-inch length of 3-

inch diameter PVC tube in their cage (tube-reared (TR)), or with no tube 

(normally-reared (NR)).  No other enrichment was provided.  Dark-reared 

animals were never raised with tubes.  All experiments were performed under the 

animal care guidelines for the University of North Carolina at Chapel Hill. 

Cortical slice preparation  Prepared with identical methods as described in 

Chapters 2 and 4 (Yashiro et al., 2005; Corlew et al., 2007) 

Voltage-clamp recordings  Voltage clamp recordings and mEPSC analysis was 

done in an identical fashion as in Chapter 2 except that all recordings were 

performed with (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-
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imine male ate (MK-801) (0.5–1mM) (MK801) in the postsynaptic recording 

pipette to block all postsynaptic NMDARs. 

tLTD induction and short-term plasticity  The internal recording solutions used for 

these experiments consisted of the following (in mM): 100 (K)gluconate, 20 KCl, 

4 (Mg)ATP, 10 phosphocreatine, 0.3 GTP, and 10 HEPES, with pH adjusted to 

7.25 and osmolarity adjusted to 290–295 mOsm. Extracellular stimulation 

produced a monophasic and fixed latency response, which we interpreted as 

predominantly coming from L4 or other vertical inputs.  We feel that it is unlikely 

that we are activating local axon collaterals, because we never evoked 

antidromic action potentials (APs) at the low stimulation intensities used in these 

studies. Baseline stimulation was delivered once every 15s. After a 10–15 min 

stable baseline, AP and EPSP pairings were delivered 100 times (at~0.2Hz) with 

a postsynaptic action potential produced by brief (< 5ms) depolarization followed 

5–25ms later by an EPSP evoked by L4 stimulation.  After pairing, stimulation 

was delivered for 30 min at baseline frequencies.  

Electron microscopy   Mice were given an overdose of Nembutal and perfused 

transcardially with 0.9% saline solution for 1 min, followed by a mixture of 2% 

paraformaldehyde (dissolved in 0.1 M phosphate buffer at pH 7.4 and 2% 

gluteraldehyde [electron microscope (EM) grade; Electron Microscopy Science 

Hatfield, PA]) for 15 min. After perfusion, brains were postfixed at 4 ºC for 48 

hours in the same fixative.  A vibrating microtome was used to cut 200µm 

sections coronally through the visual cortex.  Pieces were then isolated from 

slices containing L2/3 of V1.  Further processing, preparation, and 
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immunohistochemistry, was performed by Kristen Phend in the laboratory of 

Richard Weinberg.  Briefly, these L2/3 V1 pieces were cyroprotected in 30% 

glycerol, and quick frozen.  Freeze substitution was carried out in a Leica 

Electron Microscopy Automatic Freeze Substitution System and then pieces 

were embedded in Lowicryl HM-20.  Sections were cut at  ~100  nm  with  an 

ultramicrotome and collected on uncoated nickel grids.   Postembedding 

Immunocytochemistry was performed by Phend K. (Phend et al., 1995; Kharazia 

and Weinberg, 1999).  Briefly, grids were incubated overnight at 37°C in the 

polyclonal primary antibody NR1 (1:100).  This antibody recognizes the most 

common splice variants of the C-terminal of the obligatory NR1 NMDAR subunit.  

Grids were rinsed and incubated in anti-rabbit IgG conjugated to 10-nm gold 

particles (Ted Pella, 1:15) for 1 hour, then dried, counterstained 1% with uranyl 

acetate and Sato’s lead (Sato, 1968) and analyzed.  Electron microscopy data 

collection and quantitative analysis was performed with a Philips Tecnai electron 

microscope (Hillsboro,  OR)  at  80  kV with a magnification of 10,000–40,000 

and images were acquired with a Gatan 12-bit 1024 x 1024 CCD camera 

(Pleasanton, CA).  Scoring and image acquisition was done in a blind fashion 

whenever possible.  Random grid squares were chosen and scored online or 

images were taken for post hoc measuring.  Synapses were analyzed if they 

were asymmetric, had well defined membranes, postsynaptic densities and 

presynaptic terminals with synaptic vesicles.  To analyze the developmental 

decrease in preNMDAR expression and the delay in this decrease by DR, 

synapses were scored online for presynaptic labeling, postsynaptic labeling, or 
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no labeling.  Three animals were used for each condition, and two grids were 

used for each animal.  30-48 synapses were recorded from each grid (~250 

synapses for each condition).  Synapses were counted if they could be identified 

as excitatory synapses, having clear presynaptic terminals, postsynaptic spines, 

and an obvious cleft.  Synapses were considered labeled if a gold particle lay 

<20nm from either the pre- or postsynaptic membrane, and only particles that lay 

within the PSD or active zone were considered for this analysis.  For the analysis 

of the tube-reared (TR) animals, the same requirements were used, but images 

were taken on a Gatan 12-bit 024 x 1024 CCD camera (Pleasanton, CA) to aid in 

properly measuring the distance of gold particles to the membranes.  Post hoc 

measurements were made using Image J software.  Thus, the two studies can 

not be combined but only compared. 

 

5.3 Results 

5.3.1 Both DR and TR prevent the loss of functional preNMDARs 

We have previously shown a developmental loss of functional 

preNMDARs at the fourth postnatal week in mouse visual cortex (Corlew et al., 

2007).  We now show that this decline is not strictly developmental, but instead 

depends on the visual experience of the animal.  Many animal rearing protocols 

now require the inclusion of some type of enrichment.  At the University of North 

Carolina at Chapel Hill, the enrichment object is a 4-inch length of 3-inch 

diameter PVC tube (Fig. 5.1).  Animals raised with tubes in their cages can climb 

on top of the tube to access the top of the cage and then invert themselves to  
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Figure 5.1 Both visual deprivation and environmental enrichment prevent 
the loss of functional preNMDARs. (A & B) Example of PVC “enrichment” tube 
provided to each animal cage in the tube reared (TR) condition.  Animals are 
P30.  (C) Combined data from voltage-clamp recordings of AMPAR-mediated 
mEPSCs.   Normalized amplitude and frequency changes during APV 
application.  Cells from normally-reared (NR) P23-31 mice show no decrease in 
mEPSC frequency when APV is applied (101.3 ± 5.2%, n = 16), whereas cells 
from both TR (86.0 ± 5.1%, n = 13, p < 0.03) and dark-reared (DR) animals (76.4 
± 4.9%, n = 13, p < 0.002) show a significant decreases in mEPSC frequency 
and their normalized values are both significantly different from the NR animals 
(TR p < 0.05, DR p < 0.002).  Bars illustrate the average with S.E.M., sample 
sizes are given within the bars.  * = p < 0.05.   
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climb on the wire lid of the cage.  The animals can also use the tube as a shelter 

that may deprive them of light.  We raised animals in three different conditions to 

determine if visual experience could influence the loss of functional preNMDARs.  

Normally-reared (NR) animals were reared on a 12:12 light dark 

cycle and were not given any enrichment.   Tube-reared (TR) animals were given 

a PVC tube in their cage during their entire life beginning prenatally. Finally, dark- 

reared (DR) animals were placed in a completely dark room shortly after birth 

with no enrichment (Yashiro et al., 2005).  These DR animals were exposed to 

less than 2 min of light during euthanization and dissection to remove the brain. 

To probe for functional preNMDARs, we used an established method 

(Berretta and Jones, 1996; Sjostrom et al., 2003; Bender et al., 2006b; Yang et 

al., 2006; Corlew et al., 2007).  PreNMDARs have been shown to increase the 

frequency of miniature excitatory postsynaptic potentials (mEPSCs).  The 

method involves recording the frequency of mEPSCs while blocking postsynaptic 

NMDARs by including (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-

5,10-imine maleate (MK-801) (0.5–1mM) in the postsynaptic recording pipette 

and continually hyperpolarizing the cell to maintain Mg2+  block.  Throughout the 

recording, 200nM  tetrodotoxin (TTX) is included in the bath to block action 

potential-mediated release, and picrotoxin (50 µM) is included to block GABAAR-

mediated miniature inhibitory postsynaptic currents (mIPSCs).  After a baseline 

recording is made, the NMDAR antagonist APV (50µm) is applied to determine 

its effect on mEPSC frequency. 
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As expected from previous findings (Corlew et al., 2007), NR animals 

between the ages of postnatal day (P) 23-31 did not show functional 

preNMDARs by this assay.  When APV was applied there was no change in the 

frequency of mEPSCs (101.3 ± 5.2% n = 16) (Fig. 5.1C).  The bar graphs 

represent the average of many recordings from L2/3 pyramidal cells in primary 

visual cortex (V1) of P23-31 mice.   In TR animals of the same age, however, 

APV did decrease mEPSC frequency (86.0 ± 5.1%, n = 13).  This decrease was 

significant when comparing baseline frequency to frequency in APV (p < 0.03).   

There was also a significant difference between the normalized change during 

APV application of NR and TR animals (p < 0.05).  This prevention of the 

developmental loss of functional preNMDARs was not unique to TR animals.  DR 

animals also showed a decrease in frequency with APV application (76.4 ± 4.9%, 

n = 13) (Fig. 5.1C).  This decrease was significant when comparing baseline to 

APV (p < 0.002) and when comparing normalized values of NR and DR (p < 

0.002).  There was no change in amplitude of mEPSCs in any of the recordings, 

confirming that postsynaptic NMDARs are not contributing to our measurements.  

These data indicate that the loss of preNMDAR function with development is not 

strictly developmentally controlled, but can be prevented by altering the animals’ 

visual environment with either enrichment or deprivation. 

 

5.3.2 Both DR and TR delay the anatomical loss of preNMDARs.   

We showed previously, by pre-imbedding immuno-electron microscopy, 

that a developmental loss of functional preNMDARs coincided with a 
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developmental decrease in the ratio of synapses that contain preNMDARs and 

synapses that contain postsynaptic NMDARs.  Using an antibody against NR1, 

the obligatory NMDAR subunit, we showed that while the percentage of 

postsynaptic spines with NR1 stayed constant, the percentage of presynaptic 

terminals that contain NR1 decreased by half from P16 to P27 (Corlew et al., 

2007).  We now show that this decrease, like the loss of functional preNMDARs, 

depends on visual experience.  Here we use a post-imbedding immunogold 

technique to label NR1.  This technique has the advantage of being able to 

localize the labeled receptor within a small proximity to the gold secondary 

particle.  Thus, we were able to focus our analysis on receptors that are likely to 

be inserted into the membrane of presynaptic terminals and postsynaptic spines.    

 In a micrograph of an excitatory synapse in L2/3 in V1 of a P16 mouse, 

immunogold particles were determined to be “presynaptic” if they were located 

<20nm from the presynaptic membrane (Fig. 5.2B).  For this analysis we 

concentrated on receptors that were associated with the postsynaptic PSD or the 

presynaptic active zone. In an excitatory synapse in L2/3 in V1 of a P26 mouse 

(Fig. 5.2C) a gold particle lies <20nm from the postsynaptic membrane and within 

the postsynaptic density (PSD).  We confirmed our previous developmental 

findings using this technique.  From P14 to P26 there is a >50% decrease in the 

ratio of synapses with presynaptic NR1 and synapses with postsynaptic NR1 

(P14; 1.17± 0.16, n = 3 animals, P26; 0.51± 0.03% n = 3 animals, p < 0.02) (Fig. 

5.2A).  We also showed that visual deprivation prevents this decrease.  Although 

DR animals at P26 show a small and non-significant decrease in the pre/post  
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Figure 5.2 Both visual deprivation and environmental enrichment decrease 
the anatomical down-regulation of preNMDARs. (A) In normally reared (NR) 
mice there is a significant decrease in the ratio of synapses with presynaptic, to 
synapses with postsynaptic immunogold label for NR1 from high at P14 (1.17 ± 
0.16, n = 3) to low at P26 (0.51 ± 0.03, n = 3) (p < 0.017).  This decrease is 
lessened when animals are dark-reared (DR) (0.67 ± 0.03, n = 3) (p < 0.05), and 
there is a significant difference between NR and DR P26 mice (p < 0.02). Bars 
illustrate the average ratio for three animals in each condition with S.E.M.  * = p < 
0.05. Approximately 85 synapses were analyzed for each animal. (B & C) 
Micrographs of excitatory synapses in L2/3 of primary visual cortex (V1) from a 
TR P30 mouse.  Arrows indicate immunogold labeling of NR1 subunit on the 
membrane of the (B) presynaptic terminal and (C) postsynaptic spine.   (D)  
Raising animals with environmental enrichment provided by a 4 inch section of 3 
inch diameter PVC tube prevents the decrease in pre/postsynaptic labeling. 
There is no difference in the ratio of pre/postsynaptic labeling from P14 (0.48 ± 
0.05, n = 3) to P26 (0.60 ± 0.13, n = 3) (p < 0.65). 
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ratio from the NR P14 animals, the decrease is not as great as in the NR P26 

mice.  In fact, when comparing the DR and NR P26 animals, the pre/post ratio of 

DR animals was significantly larger than the pre/post ratio of NR than the 

pre/post ratio of NR animals (DR 0.67 ± 0.03% n = 3 animals, p < 0.02). 

A different set of animals were TR to determine if the developmental 

decline would be affected by an enriched environment.  Although the tissue and 

grids were prepared in the same fashion and the same antibodies were used at 

the same concentrations, this study was not done simultaneously with the above 

NR/DR study (Fig. 5.2A).  As a result, while the two developmental timelines can 

be compared, the data could not be combined into the same figure.  Here we 

showed that there is no decrease in the ratio of pre/postsynaptically labeled 

synapses between P16 and P26 in TR animals (P16 0.6 ± 0.13, n = 3 animals, 

P26 0.48 ± 0.05, n = 3 animals, p < 0.65) (Fig. 5.2D).  Therefore, the 

developmental decrease that we have now shown twice does not appear if the 

animals are TR.  This is consistent with the functional evidence that preNMDARs 

are maintained with maturity in a visually altered environment. 

 

5.3.3 Does TR prevent or simply delay the loss of preNMDARs? 

We raised mice to adulthood in three different conditions (Fig. 5.3A).  

Normally reared (NR) animals were maintained until ~P73-83 with a standard 

12:12 light dark cycle and were not provided any enrichment in their cage.  Tube 

reared (TR) animals were also raised with a12:12 light dark cycle until ~P73-83 

but were provided a 4-inch length of 3-inch diameter PVC tubing in their cage.   
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Figure 5.3 A short period of late-onset visual deprivation in adulthood is 
sufficient to bring back function of the preNMDARs lost during 
development.  (A) Schematic of the three different rearing conditions.  Normally 
Reared (NR) mice were maintained until P73-83 on a 12:12 light:dark cycle.  
Late-onset visually deprived (LOVD) animals were reared normally until ~P63-73 
and then moved to a darkroom for 10 days.  Tube reared (TR) animals were 
raised on a 12:12 dark cycle but were provided a PVC tube for “enrichment”.  (B) 
Combined data from voltage-clamp recordings of AMPAR-mediated mEPSCs.   
Normalized amplitude and frequency changes during APV application.  Cells 
from NR P73-83 mice show no decrease in mEPSC frequency when APV is 
applied (111.9 ± 3.0%, n = 9), whereas cells from both TR (80.0 ± 9.0%, n = 8), 
and LOVD (65.6 ± 6.8%, n = 13, p = 0.001) animals show a decrease in mEPSC 
frequency and their normalized values are both significantly different from the NR 
animals (TR p < 0.03, DR p < 0.0005).  Bars illustrate the average with S.E.M., 
sample sizes are given within the bars.  * = p < 0.05.   
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This tubing provided both a climbing structure to access the wire top of the cage 

as well as a shelter to block much of the light from ceiling lights. Finally, late-

onset visually deprived (LOVD) animals were maintained as NR animals with

no enrichment until ~P63-73 and then placed in a completely darkened room for 

10 days.  At the end of 10 days animals were exposed to less than 2 min of light 

during the euthanization and dissection periods in order to minimize possible 

recovery.  To probe for functional preNMDARs, we again used the standard 

method of recording AMPAR-mediated mEPSCs.  First, we recorded a baseline 

period while blocking postsynaptic NMDARs and then applied APV to block the 

preNMDARs.  Here we have plotted the amplitude and frequency of mEPSCs 

during the APV application periods, each normalized to the preceding baseline 

periods.  Again, recordings were made from pyramidal cells in L2/3 of V1 in P73-

83 animals, TTX and picrotoxin were included in the bath, and MK801 was 

included in the postsynaptic recording pipette.  As expected, NR animals showed 

no change in mEPSC frequency with APV application (111.9 ± 3.0%, n = 9) (Fig. 

5.3B), agreeing with our previous results that preNMDARs are not functional in 

late adulthood (Corlew et al., 2007).  When P73-83 animals were TR, however, 

APV application decreased mEPSC frequency (80.0 ± 9.0%, n = 8), making it 

significantly different from NR animals (p < 0.03).  No conditions showed a 

change in amplitude with APV application, confirming that the effect is on 

preNMDARs.  This maintenance of the preNMDARs late into adulthood with an 

altered visual environment suggests one of two possibilities: either the effect of 

TR during early life has a profound and lasting effect, completely preventing the 
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loss of functional preNMDARs; or the function of preNMDARs is continually 

plastic, remaining sensitive to visual experience throughout development and into 

adulthood.   

5.3.4 LOVD restores preNMDAR function  

If either enrichment, or deprivation throughout life, are capable of 

preventing the developmental loss of preNMDARs, what effect might a short 

period of deprivation have on the function of the receptor?  Here we used adult 

mice raised normally until P63-73 and then placed in the dark for 10 days to 

determine if the effect of DR from birth could be replicated with only a short 

period of LOVD in adulthood (Fig. 5.3A).  LOVD animals showed a decrease in 

mEPSC frequency with APV (65.6 ± 6.8%, n = 13) similar to both the TR animals 

and to the adolescent DR animals.  The change from baseline was significant (p 

= 0.001), as was the difference between the normalized values of NR and LOVD 

animals (p < 0.001).  Thus, the function of the receptor remains plastic and 

sensitive of experience well into adulthood. 

 

5.3.5 LOVD brings back tLTD induction capability 

Early in development, induction of timing-dependent long term depression 

(tLTD) between excitatory L4-L2/3 synapses in the rodent neocortex relies on 

activation of preNMDARs (Sjostrom et al., 2003; Bender et al., 2006b; Corlew et 

al., 2007; Corlew et al., 2008; Rodriguez-Moreno and Paulsen, 2008).  In V1, this 

reliance on preNMDARs may be isolated to a short period at the beginning of 

visual system development <P20 (Corlew et al., 2007; Corlew et al., 2008; 
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Rodriguez-Moreno and Paulsen, 2008) when preNMDARs are functional.  What 

has not been clear is if this period is strictly developmentally controlled, or if 

experience can alter preNMDAR function and make this plasticity accessible at 

more mature ages.  There has long been evidence that the expression and 

function of postsynaptic NMDARs and their role in synaptic plasticity is altered 

with sensory experience.  We have now presented evidence that the function of 

preNMDARs also changes with altered sensory experience during adolescence 

and even late into adulthood.  In fact, very short periods (10 days) of LOVD are 

sufficient to restore preNMDAR function (Fig 5.3B).  Therefore, we hypothesize 

that this LOVD may restore preNMDAR mediated tLTD (preNMDAR-tLTD). We 

used a standard tLTD induction protocol by repeatedly pairing a postsynaptic AP 

in a L2/3 pyramidal cell closely followed (5–25ms) by an EPSP evoked by L4 

stimulation (Corlew et al., 2007).  This protocol induces a robust preNMDAR- 

tLTD in young mice and a modest postsynaptically mediated tLTD in adolescent 

mice (Corlew et al., 2007).  When we used this protocol on NR (P73-83) mice, 

we could not elicit tLTD even when we doubled the induction protocol from 75 

AP-EPSC pairings to 150 pairings (Fig. 5.4A).  However, when animals were 

given 10 days of LOVD, robust tLTD was induced with the same protocol (Fig. 

5.4B).  This effect is coincident with the reemergence of functional preNMDAR in 

LOVD animals.  Further, this tLTD required preNMDARs in young animals 

(Corlew et al., 2007) when preNMDARs were also functional.   
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Figure 5.4  LOVD in adulthood brings back tLTD lost during development.  
(A) Our standard AP-EPSP pairing protocol fails to induce tLTD in normal adult 
mice. (B) After 10 days of LOVD the same protocol induces tLTD.   
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5.4 Discussion 

In a previous study, we showed that LOVD in adult mice could both alter 

the presynaptic release probability and increase the relative expression of NR2B 

at presynaptic and/or extrasynaptic sites (Yashiro et al., 2005).  Both of these 

findings suggested that LOVD increased the expression and function of 

preNMDARs. Here we now provide evidence that further supports the idea that 

an altered visual environment influences preNMDAR expression and function. 

We show that two seemingly different alterations in visual environment had the 

same effect on an important aspect of visual system development.  Both visual 

deprivation and enrichment prevented the down-regulation of preNMDAR 

function and partially prevented the loss of the preNMDAR anatomically.  

Additionally, a third manipulation, LOVD in adult mice, had the effect of bringing 

back both the function of the preNMDAR and a type of tLTD that has been shown 

to rely on preNMDARs when they are present in the very young animal (Sjostrom 

et al., 2003; Bender et al., 2006b; Corlew et al., 2007; Rodriguez-Moreno and 

Paulsen, 2008; Banerjee et al., 2009). 

We demonstrated that visual deprivation by dark rearing (DR) prevents 

both preNMDARs’ normal developmental decrease in expression and loss of 

function.  However, it needs to be determined whether the maintenance of  

preNMDAR function is due simply to continued tonic activity (and Mg2+ 

insensitivity) of the receptor.  As suggested in Chapter 3, tonic activity of the 

preNMDAR may rely on the inclusion of NR3A and it is possible that DR prevents 

the loss of this subunit.  This is an enticing possibility considering the anatomical 
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evidence that we provide here.  We have shown in the past (Corlew et al., 2007) 

and show again here there is only a 50% reduction in the pre/post synaptic NR1 

expression ratio with development, but there is a complete loss of function of the 

preNMDAR.  With DR there is only a small, though significant, increase in the  

pre/post ratio with DR compared to NR.  However, the physiology data in DR 

animals shows a complete recovery of the preNMDAR function back to juvenile 

levels.  This could be explained by an isolated anatomical loss of NR3A 

containing receptors with normal development (and selective maintenance with 

DR).  This would explain the seemingly small anatomical change in relation to the 

large change seen in the functioning of the receptor.   

The restoration (or preservation) of preNMDARs with visual deprivation 

may increase  the rate of neurotransmitter release and thereby act as a 

compensatory mechanism for maintaining synaptic drive in the absence of 

visually evoked activity. This increased release resembles findings in culture 

systems after manipulations that reduce presynaptic activity (Chavis and 

Westbrook, 2001) or postsynaptic excitability (Murthy et al., 2001). PreNMDAR 

subunit trafficking has also been altered in vivo by activation or blockade of 

NMDARs.  There is an increase in the trafficking of NR2B subunits to presynaptic 

terminals with NMDAR blockade and an increase in the presynaptic trafficking of 

NR2A with activation of NMDARS (Aoki et al., 2003; Fujisawa and Aoki, 2003).   

This interpretation is somewhat complicated by the finding that visual 

enrichment also produces the same effect--increasing the function and 

expression of the preNMDAR.  The effect of enrichment has normally been 
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associated with an acceleration of development (Bartoletti et al., 2004; Cancedda 

et al., 2004; Sale et al., 2004; Guzzetta et al., 2009).  Here we possibly have a 

prevention of normal development.  One possibility suggests that the 

developmental decrease was never “normal” in the first place.  Admittedly, 

rearing conditions in an animal housing facility would never be considered normal 

compared to the animal’s natural habitat.  One group suggested that the “non-

enriched” or “standard” cages are so deprived that rodents sustain impaired brain 

development, stereotypies, and an anxious behavior profile.  Maternal care is 

also impaired (Bartoletti et al., 2004; Cancedda et al., 2004; Sale et al., 2004; 

Wolfer et al., 2004) with less licking behavior and less physical contact.  The 

authors of one study suggest that this lack of maternal care directly inhibits 

normal development of the visual system.  One week after birth, levels of BDNF 

in the visual cortex were lower in pups raised in a “standard” cage compared to 

pups raised with enrichment.  Visual acuity was also impaired in the standard 

pups compared to their enriched counterparts, and this impairment lasted for up 

to a year after birth.  Learning abilities measured by behavioral tasks were also 

higher for the enriched pups (Bartoletti et al., 2004; Cancedda et al., 2004; Sale 

et al., 2004).  Therefore, the environmental enrichment primarily caused a 

change in maternal behavior affecting the pups’ development.  This was further 

supported by study showing that body massage increases and accelerates visual 

acuity in human infants and rat pups (Guzzetta et al., 2009).   

While providing one means to interpret our findings, this explanation 

cannot account for the fact that LOVD produces the same increase in 
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preNMDARs as DR and TR.  If the enrichment provided by the PVC tubes has 

the same consequence as deprivation, it would require a revaluation of the 

current understanding of enrichment.   

One possibility is that all three conditions provide varying amounts of 

visual deprivation.  The TR condition may be a mild form of visual deprivation, an 

explanation that seems likely considering that the effect seen in TR animals is 

slightly less than that seen in the DR and LOVD animals.  The PVC tubes do 

block some light when animals are inside the tube, and animals provided with 

them, seem to spend a substantial amount of time clustering in the tubes with 

other pups, a behavior which would further block light.  To determine if the PVC 

tubes are providing visual enrichment or light deprivation, the same experiments 

should be performed with clear tubes that do not block any of the light.  If the 

clear tubes cause the same increase in preNMDARs as the PVC tubes, it can be 

concluded that the effect is not a form of deprivation and must be attributed to 

maternal care, visual enrichment, lowered stress level, or some other, unknown 

cause.  Whatever the nature of the PVC tube treatment, we found that the effect 

of TR lasted well into adulthood, confirming that TR not only delays but also 

completely prevents the loss of this receptor.   

Finally, we show that the function of this receptor and its role in plasticity 

may be modified by experience well into adulthood.  A short treatment of LOVD 

in adulthood was sufficient to rejuvenate both preNMDARs function and tLTD, a 

type of plasticity shown to require preNMDARs.  
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Therefore TR, DR and LOVD add to the growing list of environmental 

manipulations that are able to influence the development of the visual system.  

When parsed out and understood more thoroughly, they may prove useful in 

clinical settings.  In some cases of cortical blindness in humans (amblyopia), 

periods of visual deprivation cause recovery of normal vision in adults (Birnbaum, 

1997; Simmers and Gray, 1999).  Our findings could account for the molecular 

mechanisms behind these clinical observations.  With a better understanding of 

these mechanisms we will know how to orchestrate plasticity in the adult cortex 

and reverse conditions such as amblyopia that were once thought to be 

permanent. 
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Chapter 6: 

General discussion 

 

This body of work represents three major contributions to the study of 

preNMDARs: 1) preNMDARs are down-regulated during development, 2) 

preNMDARs require the NR3A subunit, and 3) function and expression of 

preNMDARs is experience-dependent.   I will briefly discuss how each finding 

has, or will make, an impact to the study of preNMDARs, and then suggest how 

the culmination of this work might impact the understanding and/or treatment of 

neurological disorders. 

 

6.1 PreNMDARs are down-regulated with development. 

Since the initial reports indicating that presynaptic NMDARs enhance 

synaptic transmission and plasticity (Berretta and Jones, 1996; Sjostrom et al., 

2003; Bender et al., 2006b), the developmental expression of these receptors 

has remained unknown.    Interestingly, two studies seemed to suggest that 

these receptors may be developmentally regulated. In the first report, 

preNMDARs in the hippocampus were shown to be modulated by prenenalone 

sulfate and that this modulation is ineffective after P5 (Mameli et al., 2005) (see 

Introduction: Developmental regulation of preNMDARs role in neurotransmission 



and plasticity).  The second report indicated that preNMDARs in the entorhinal 

cortex required the NR2B subunit until 5 weeks of age but not after 5 months 

(Yang et al., 2006).  Both of these studies suggested a developmental change in 

preNMDARs, but neither showed a loss of function or decrease in expression of 

preNMDARs.  Our work, described in Chapter 2, was the first to show a 

functional and anatomical decrease in preNMDARs with development.  

Furthermore, we provided evidence that the mechanisms underlying tLTD, switch 

with development, from depending upon preNMDARs (preNMDAR-tLTD) to 

depending on postsynaptic NMDARs after the first three weeks postnatal.  This 

developmental change has since been replicated in rodent primary 

somatosensory cortex (S1). Rodriguez-Moreno et. al. (2008) showed that 

including the NMDAR antagonist MK801 in the presynaptic recording pipette, 

significantly disrupted tLTD in young animals (P6-14) (Rodriguez-Moreno and 

Paulsen, 2008).  In another publication by the same group, Banerje e et. al. 2009 

were able to induce robust preNMDAR-tLTD in the L4-2/3 connection in rat S1 

only until the fourth postnatal week—after which time induction of preNMDAR-

tLTD was not possible (Banerjee et al., 2009). 

Between these reports, there are clear differences in the in the timeline of 

developmental down-regulation of the preNMDAR: P5 for hippocampus (Mameli 

et al., 2005), 5 months for entorhinal cortex (Yang et al., 2006), and~P20 for 

sensory cortices (Corlew et al., 2007; Rodriguez-Moreno and Paulsen, 2008; 

Banerjee et al., 2009). These differences have three possible explanations:  1) 

The differences in developmental profile for preNMDARs may be due to 
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differences between brain regions.  2) The developmental changes in the 

hippocampus and entorhinal studies may be (as suggested above) due not to a 

change in the expression or function of preNMDARs, but to a change in their 

modulation.  Thus the receptor may have the same developmental profile as 

reported for sensory cortices, but its modulation by pregnenolone and NR2B 

antagonists may be developmentally regulated.  3) Finally, the differences may 

also be explained by experience-dependent modifications due to different rearing 

conditions (discussed further below).  The actual nature of the developmental 

expression in different brain regions can be easily tested (see future directions). 

Another interpretation of the developmental differences in preNMDAR 

function that we observed is a combination of poor space-clamp and expanding 

neuronal morphology.  Space-clamp errors can be a considerable problem when 

attempting to accurately measure very small currents in distal spines (Simkus 

and Stricker, 2002).  Because patch-clamp electrodes provide only a spatial point 

source of current they can not uniformly control the voltage at different parts of a 

branching, twisting cell.  The quality of the voltage-clamp in a neuron degrades 

with distance from the soma where the electrode is placed (Spruston et al., 

1993). Therefore the error in measurement of synaptic currents also degrades 

substantially as a function of distance from the soma.  With a rapid decrease in 

amplitude of already small mEPSCs, events originating even a small distance 

from the soma, would not be distinguishable above noise in the recording and 

would thus not be reflected in the frequency measurements.  Thus, all synapses 

in the mEPSC assay must be located very close to the soma.  As neurons grow 
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in size the population of synapses that are subject to this analysis also change as 

synapses that were originally close enough to the soma now move too distal to 

be recorded.  Therefore, it is conceivable that preNMDARs are present on a 

subpopulation of synapses close enough to be measured in early development 

but then grow out of range due to neurons expanding morphology.   If so, 

preNMDARs could be tonically functioning at older ages but on synapses that are 

too distal to be adequately space-clamped.  I have provided several pieces of 

evidence that argue against this possibility.  First, it is unlikely that the short 

period of visual deprivation LOVD, that reinitiates tonic functioning preNMDARs 

is dramatic and long enough to cause a major “shrinking” of neuronal morphology 

back to the infantile state.  A more likely explanation is that the receptors on 

synapses within the recordable distance are being modified.  Further evidence is 

provided by the low Mg2+ experiments where tonic functional preNMDARs are 

detected in adults by withholding Mg2+ from the extracellular recording solution.  

This experiment suggest that functional preNMDARs are present on synapses 

within the recordable distance in the adult animals but are not tonically active due 

to Mg2+ block in standard recording solution.  Therefore, errors introduced by 

poor space-clamp do not seem to negate the interpretation of the developmental 

change in preNMDARs. 
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6.2 PreNMDARs require 3A 

Despite evidence suggesting a significant role of preNMDARs in synaptic 

function, the exact mechanisms by which they can remain tonically active, 

despite Mg2+ block,  has yet to be resolved (Glitsch and Marty, 1999; Duguid and 

Sjostrom, 2006; Corlew et al., 2008). It was previously suggested that the 

presynaptic terminal may be constantly depolarized thereby removing the Mg2+ 

block. (Jourdain et al., 2007). Others have suggested that preNMDARs are 

insensitive to Mg2+ block due to their subunit composition.  For example, the 

NR2B subunit, which is required for preNMDAR activation, has been suggested 

to confer Mg2+ insensitivity.  There has been further suggestion that the decline 

of preNMDARs function is due to the developmental decrease in NR2B 

expression (Yang et al., 2006).  However, as discussed in Chapter 3, the NR2B 

subunit is only slightly less Mg2+ sensitive than the NR2A subunit (Monyer et al., 

1992) and it’s developmental down-regulation is not coincident with the loss of 

preNMDARs (Corlew et al., 2007).  Despite evidence that NR2B subunits 

mediate preNMDAR function, the hypothesis that they convey Mg2+ insensitivity 

to the preNMDAR has yet to be tested. 

Our work is the first to directly confront the question of how preNMDARs 

are tonically active to enhance spontaneous neurotransmitter release and why 

this is lost with development.  Here we provide evidence that NR3A, not NR2B, 

endows preNMDARs with receptor properties which would enable them to 

remain tonically active and enhance synaptic transmission.    In Chapter 3, I 

explain that the inclusion of the NR3A subunit in the preNMDAR makes these 
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receptors Mg2+ insensitive and, thus, potentially tonically active.   I further explain 

that the precipitous developmental down-regulation of the NR3A subunit in the 

fourth postnatal week causes a loss of the tonic preNMDAR function.  However, 

the preNMDAR is not totally lost at these older ages and is able to enhance 

spontaneous transmitter release when Mg2+ is removed from the recording 

solution.  Because the pre/post ratio of NMDARs has been shown to decrease 

only 50%, anatomical data supports the hypothesis that only a subset of 

preNMDARs (presumably the ones that contain NR3A) are being down-regulated 

(Corlew et al., 2007).  Therefore, it is possible that the 3A subunit, and not the 

whole preNMDAR, is down-regulated with maturity.  When NR3A is down-

regulated (or absent as in the NR3AKO), the remaining preNMDARs are likely 

composed of NR2B and 2A subunits, continuing to increase spontaneous 

neurotransmitter release in Mg2+ free solution.  Although they seem not to be 

tonically active to increase spontaneous neurotransmitter release, it is possible 

that these “NR3A free” preNMDARs may have some unidentified role in action 

potential-dependent synaptic transmission or plasticity. 

With the discovery that preNMDARs contain this novel subunit, we now 

must re-evaluate our understanding of the preNMDAR.  Almost everything we 

know about NMDARs has been from the study of what we thought were 

postsynaptic NMDARs composed of NR2 subunits.  But the NR3A subunit differs 

from NR2 subunits in its permeability, binding partners, subcellular location, as 

well as its regulation and role in plasticity (Roberts et al. 2009 in press).  Thus, 

the inclusion of NR3A may cause the preNMDAR to be very different from its 
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postsynaptic counterpart.  This difference could be advantageous for the study of 

preNMDARs, and for the treatment of neurological disorders with which they are 

associated (discussed further below). 

 

6.3 Function and expression of preNMDARs is experience-dependent  

6.3.1  Experience-dependent plasticity is possible in adults 

Our inquiry into the experience-dependence of the preNMDARs was 

initiated by our more general developmental study of the effect of visual 

experience on NMDARs.  I would like to first discuss these findings before 

becoming more specific to preNMDARs.  In these studies, we were able to 

induce changes in both neurotransmitter release probability, and NMDAR subunit 

composition, in V1 of adult visual cortex with a short period of late-onset visual 

deprivation (LOVD).  This finding adds to the growing body of evidence that the 

adult sensory cortex is more plastic than classically thought. 

The idea that previously plastic synaptic connections grow rigid in 

adulthood began with the work of Hubel and Wiesel.  They showed that after a 

short period of monocular deprivation (MD), responsiveness of the cat visual 

cortex shifted toward the non-deprived eye (Wiesel and Hubel, 1963) (ocular 

dominance (OD) shift).  Because adult cats showed no OD shift with MD, they 

hypothesized that this plasticity was only possible during a short period early in 

visual system development. Rodents were also found to have this “critical period” 

for OD plasticity (Gordon and Stryker, 1996).  However, recent studies make it 

clear that adult brains can still undergo experience-dependent plasticity.  
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Although the experience parameters and molecular mechanisms might be 

slightly different at different ages, adult sensory cortex is still remarkably plastic.  

Ocular dominance shifts were achieved in adults using a variety of recording and 

deprivation methods (Sawtell et al., 2003; Tagawa et al., 2005; Hofer et al., 

2006a, b).   

One proposed mechanism for the experience-dependence of sensory 

cortices is changes in NMDARs.  Visual experience has been shown to alter the 

composition of NMDARs in the visual cortex; specifically, deprived cortex shows 

a lower ratio of NR2A- to NR2B-containing NMDARs (Quinlan et al., 1999a; 

Quinlan et al., 1999b; Roberts and Ramoa, 1999; Kanold et al., 2009). This 

change in the ratio alters NMRA- mediated current kinetics and presumably shifts 

the inducibility of plasticity (termed metaplasticity) (Abraham and Bear, 1996; 

Philpot et al., 2007; Yashiro and Philpot, 2008).  We showed that in V1 of LOVD 

mice the L4-2/3 synapse displayed a higher probability of release than NR mice 

and the NR2B/2A ratio was higher at presynaptic and extrasynaptic sites than 

NR mice.  This change in NMDARs with deprivation may be the metaplastic 

event that allows for the reemergence of OD plasticity that has been reported 

(Sawtell et al., 2003; Tagawa et al., 2005; Hofer et al., 2006a, b). 

 

6.3.2  Function and expression of preNMDARs is experience 

dependent 

The findings discussed in Chapter 4 are explained most parsimoniously by 

a change in preNMDARs.  However, it is possible that the increase in probability 
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of release in the L4-2/3 pathway, and the increase in the NR2B/2A ratio at 

presynaptic / extrasynaptic sites with LOVD, were independent.  Certainly there 

are many ways that a presynaptic terminal can be modified to increase 

neurotransmitter release other than preNMDARs.  Alterations in release 

machinery, VSCCs, other ligand gated channels such as presynaptic Kainate or 

AMPARs, and changes in presynaptic inhibition, are just some of these possible 

modifications.  Additionally, the biochemical fractionization technique that was 

used is unable to differentiate between presynaptic proteins and extrasynaptic 

proteins. Thus, the term peri-/extrasynaptic NMDARs was used but it is possible 

that only extrasynaptic NMDARs were changed with this manipulation.  However, 

we tested the possibility that these two changes were due to a single change, 

preNMDARs.  Indeed, in chapter 5 we found that preNMDAR function, although 

lost in development, is restored with LOVD. 

This finding lead us to ask whether preNMDARs could only be modified 

with LOVD, or if other more traditional types of visual manipulation could alter the 

developmental down-regulation of preNMDARs’ function and expression.  We 

found that DR until P26 also prevented the normal decrease in preNMDAR 

function and expression. 

More support for the experience model, rather than the developmental 

model, is provided by the timing of the normal “developmental” decrease.  It is 

interesting that in NR mice, preNMDARs are down-regulated in the visual cortex 

just a week after eye opening (exposed to light for a week) (Chapter 2).  This was 

previously interpreted as a genetic program to provide a presynaptic type of 
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plasticity at a time when postsynaptic plasticity would be less effective due to 

weaker postsynaptic responses (Corlew et al., 2007).  This might still be the 

case, but these findings make it more probable that the system is more dynamic 

and interactive than a simple developmental program.  It is interesting that it also 

took only 10 days for the receptor to be re-expressed and functional, late in 

adulthood after it had long since gone quiet (Chapter 4, 5 (Yashiro et al., 2005)).  

We might suspect that the expression of the receptor is not developmentally 

regulated at all, but is modified solely by sensory experience.  When both the 

visual environment and synaptic connections in the visual cortex are stable, there 

is no need for this type of plasticity.  As a result, the receptor goes quiet, possibly 

by removal of NR3A.  With an enriched environment, however, the animal is in a 

position to continually alter its view of the world and can constantly make use of 

one more type of plasticity.  If the animal is raised in the dark, or placed into the 

dark, the system can also regain plasticity, making it ready to alter its visual 

processing when it is again brought into the light. 

 

6.4 “Experience” is more than just “deprivation” 

In our study, three seemingly different alterations in visual environment all 

had the same effect on the function/expression of the preNMDARs.  DR from 

birth, LOVD in adulthood, and raising the animals with enrichment (TR), all 

increased the function and expression of preNMDARs or prevented their 

developmental down-regulation. In the entorhinal cortex, one group found that 

preNMDARs can be up-regulated in adult rats after induction of epileptic-like 
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seizures (Yang et al., 2006).  It will be interesting to parse the common effect on 

the brain of seizure, visual deprivation, and visual enrichment.  Alternatively, 

these conditions may have little in common other than a similar outcome for this 

one assay.   However, visual deprivation and enrichment have both been shown 

to reinstate OD plasticity (He et al., 2006; Sale et al., 2007).  Thus, as in our 

studies, two seemingly opposite manipulations—deprivation and enrichment—

produce similar or identical synaptic changes.  One possible explanation is that 

both enrichment and deprivation alter cortical inhibition in the adult, leading to the 

changes in plasticity as well as changes in preNMDAR expression  (He et al., 

2004; Sale et al., 2007) (discussed further below)  

At the very least, these findings should give caution to investigators that 

try to extrapolate findings from studies in mice.  Subtle environmental differences 

between mice reared in different animal research facilities could dramatically 

alter seemingly basic developmental properties such as the composition or 

localization of NMDARs.  Differences observed between studies could be 

explained by differences in rearing conditions, which we have shown influence 

preNMDAR function. Thus, discrepancies in the timeline of developmental down-

regulation seen in the entorhinal cortex could be due to differences in housing 

conditions. In the entorhinal cortex, it has been reported that preNMDARs are 

tonically active as late as 5 weeks of age and are absent by 5 months (Yang et 

al., 2006).  We have now shown that V1 of TR mice maintains active 

preNMDARs past 5 weeks.  We did not test for preNMDARs as late as 5 months.  

Our “adult” mice were less than 3 months old, but it is possible that with TR, 
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preNMDARs tonic activity is eventually down-regulated.  It may be that NR 

causes an early decrease in the expression of preNMDARs, and closes the door 

for preNMDAR-mediated plasticity.  Rearing conditions that provide more 

stimulation may keep preNMDARs tonically active longer and possibly maintain 

preNMDAR-mediated tLTD.  This difference may give us insight into the 

importance of early experiences and stimulation of human infants for normal 

neurological development.  

 

6.5 PreNMDARs and Disease 

NMDARs have a known role in the etiologies of many serious neurological 

disorders including Huntington's, Parkinson's, stroke, schizophrenia, epilepsy, 

and neuropathic pain (Liu et al., 1997; Heresco-Levy and Javitt, 1998; Gogas, 

2006; Missale et al., 2006; Visser and Schug, 2006; Fan and Raymond, 2007). 

Until recently NMDARs were assumed to act postsynaptically, so the contribution 

of preNMDARs to these disorders has not been explored.  It is now clear that 

preNMDARs may have an important role in synaptic transmission and plasticity, 

especially during very early development when many such neuropathologies are 

forming.  Therefore more research is necessary to investigate a possible role for 

preNMDARs in these disorders. 

  Epilepsy is one disorder in which a role for preNMDARs is now being 

investigated.  It is already known that chronic changes in neural activity levels in 

epileptic patients have been shown to affect NMDAR receptor function and 

expression (Dalby and Mody, 2001; Avanzini and Franceschetti, 2003; Morimoto 
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et al., 2004).  Though these NMDARs were assumed to be postsynaptic, one 

report in rodents indicates that epileptic activity could affect the function of 

preNMDARs. Specifically, preNMDARs were reinstated in the adult entorhinal 

cortex following 2-4 weeks of lithium-pilocarpine treatment to induce seizures 

(Yang et al., 2006).  Though it is not clear whether this increase was causal to, or 

a consequence of, increased neural activity, preNMDARs clearly played a role.  

Gabapentin, a drug prescribed to treat epilepsy, has been shown to decrease 

neurotransmitter release via preNMDARs, providing further evidence that 

preNMDARs may be involved in some forms of epilepsy (Suarez et al., 2005).  

We must now consider that the therapeutic value or deleterious off-target effects 

of many global NMDAR antagonists being used to treat neurological disorders, 

may be due to their action on preNMDARs (Suarez et al., 2005).  Better 

pharmacological therapies for disorders involving NMDAR dysfunction may be 

revealed by selectively targeting pre- versus post-synaptic NMDARs.  Therefore, 

we now need a better understanding of the differences between preNMDARs 

and postsynaptic NMDARs.  It is crucial to understand the differences in when, 

where, and how each NMDAR affects synaptic communication, plasticity, and 

neural network function.  

 

6.6 Targeting NR3A to treat disease 

  Although genetic and pharmacological manipulations of NMDARs can 

alleviate symptoms of neurological disorders, there are also off-target effects due 

to ubiquitous NMDAR expression.  Additionally, the therapeutic benefits are often 
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outweighed by the harmful side effects.  Even targeting specific subunits, until 

now, has proved non-specific because the targeted subunits, most often NR2B, 

are also ubiquitously expressed (reviewed in Henson et al., in preparation). 

  However, accumulating research on NR3A provides exciting hope for 

treatment of a long list of neuropathologies.  There is evidence that the NR3A 

subunit might be directly involved in schizophrenia, white matter injury, 

Huntington’s, Parkinson’s, and Alzheimer’s diseases, as well as chronic alcohol 

exposure, and neuropathic pain (reviewed in Henson et al., in preparation).  In 

addition, targeting the NR3A subunit could provide a possible treatment for acute 

brain injuries caused by stroke, epilepsy, and trauma (reviewed in Henson et al., 

in preparation).  Thus, the development of specific agonists and antagonists of 

NR3A may be of therapeutic value.  Even in disorders where the direct 

involvement of NR3A has not yet been shown, manipulation of NR3A could have 

a therapeutic effect by compensating for genetic abnormalities.  Mental 

retardations such as Fragile X, Rett, and Down Syndromes, are known to change 

the density of synaptic spines, and genetic manipulations of NR3A also 

dramatically affect spine density (reviewed in Henson et al., in preparation).  In 

NR3A KO mice spine density is dramatically increased while NR3A OE mice 

show decreases in spine density (Das et al., 1998).  In these developmental 

disorders, such manipulations of NR3A could be used to compensate for 

whatever initial abnormality caused changes to the spines.  

  The novel qualities of NR3A may prove beneficial as a target for treating 

neurological disorders. Because NR3A has a unique quality—playing an 
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important role early in development but going away in maturity—NR3A may have 

very limited action in the adult brain.  This limitation offers the possibility that 

specific actions can be modulated in the adult brain (reviewed in Henson et al., in 

preparation).  However, if the NR3A subunit is largely absent in the normal adult 

brain, it ceases to be a target. If the NR3A subunit could be reintroduced into the 

adult brain, it may have limited actions in a brain that has not relied on NR3A 

since infancy.  As a consequence, the problem of excessive action on NMDARs 

is minimized, an excess that previously made NMDAR manipulation unsuitable 

for broad treatments.  Additionally, if the role of NR3A is specific to presynaptic 

function, manipulation of this subunit may have fewer consequences than an 

approach that affects NMDARs throughout the postsynaptic, extrasynaptic, and 

somatodendritic domains. 

 

6.7 Activity dependent regulation of preNMDARs (subunit specific?) 

It may be possible to harness the brain’s own activity-dependent 

regulation to reintroduce a receptor, or subunit of a receptor, into specific cortical 

regions and selectively treat or prevent neurological disorders.  Our data 

suggests that it may be the NR3A subunit, and not the whole preNMDAR, that is 

highly experience-dependent.  The developmental down-regulation of NR3A 

causes a loss of the tonically active preNMDAR.  This developmental decrease in 

NR3A is correlated with a very small decrease in preNMDAR expression.     

Conversely, with visual deprivation or enrichment, preNMDARs remain functional, 

there is an equally small increase in preNMDAR expression (suggesting a small 
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population of preNMDARs are increased), and tLTD is restored.  It is likely then, 

that the up-regulation of the NR3A subunit in preNMDARs is the change that 

makes the receptors functional again with visual deprivation or enrichment.   If 

this is the case, then the reemergence of preNMDARs and tLTD that we see with 

LOVD could all be caused by the “reinsertion” of NR3A into the preNMDARs.  

This could easily be tested in the NR3A KO and NR3A overexpressing animals 

and, if true, opens the door to many exciting possibilities (see future directions 

Experience dependence of NR3A).   

The instances of reemergence of plasticity in adulthood with short periods 

of sensory deprivation are growing, and it will be simple to test for a role for 

NR3A in these instances.   It may be that the brain has provided its own method 

for genetic manipulation and that our awareness of this method will allow us to 

access it and utilize it for the treatment and prevention of disorders.  With 

evidence that visual deprivation, enrichment, or an epileptically caused increase 

in activity can all increase the function of preNMDARs, there might be several 

possible “therapies” that would alter NR3A-containing preNMDARs (see future 

directions Reintroducing NR3A in adult brain to treat neurological disorders).  

Exposure to weak magnetic fields is one non- invasive and non-pharmacological 

treatment that has been shown to alter NR3A mRNA levels (reviewed in Henson 

et al., in preparation).  

 

 

6.8 Visual experience preNMDARs and inhibition 
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In Chapter 4 we show both the reemergence of functional preNMDARs, 

and the restoration of tLTD in adult V1 with LOVD.  One explanation for the 

restoration of the tLTD is that preNMDARs are lost with development, and with 

deprivation, they reemerge and are able to function both in spontaneous 

neurotransmitter release and in tLTD mechanisms.  This seems likely because of 

the high experience-dependence of the receptor, and because the receptor’s 

function and role in tLTD are tied at other developmental time points.  An 

alternate explanation however, is that the reemergence of tLTD is related to a 

change in inhibition in the deprived animal.   In Chapter 2 I briefly discuss the 

relationship of inhibition and tLTD.  In young animals (P13-17), the presence or 

absence of picrotoxin to block GABARs, did not affect our ability to induce 

preNMDAR-mediated tLTD (Fig. 2.5).  It is commonly accepted that inhibition 

does not affect plasticity mechanisms at this age(Feldman, 2000; Froemke and 

Dan, 2002), presumably because inhibitory drive and inhibitory connections are 

less developed.  However, in older animals (P23-30), postsynaptic NMDAR-

mediated tLTD was prevented when inhibition was intact (Fig. 2.7D).  There are 

two explanations for this age difference.  1) Inhibition is able to block the 

induction of postsynaptic and presynaptic tLTD, but it is not sufficiently developed 

in young mice.   2)  Inhibition only blocks tLTD that relies on postsynaptic 

NMDARs.  

More experiments are needed to clarify the mechanism of deprivation-

restored tLTD in adult animals.  All of the tLTD experiments in adult animals were 

performed with inhibition intact.  Therefore, it was not surprising LTD could not be 
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induced in the NR adult animals (Fig. 5.4A), because LTD was also not induced 

at P23-30 when inhibition was left intact (Fig. 2.7D).  What was surprising 

though, was that we were able to induce robust tLTD in LOVD animals (Fig. 

5.4B).  This finding would lead us to two probable explanations. 1) LOVD 

restores preNMDAR-tLTD.   2) LOVD reduces inhibition to “pre-critical period” 

levels so that postsynaptic LTD can be induced.  Although such a change in 

inhibition seems extreme, visual deprivation has been shown to induce large 

changes in both GABAR expression and maturation of inhibitory cells.  In a study 

by Kreczko et al 2009, the number of somatic GAD65-puncta on individual layer 

2/3 pyramidal neurons was reduced in DR mice, but increased back to normal 

levels with light exposure (Kreczko et al., 2009).  In another study by Wahle 

2009, DR was shown to alter the maturation of potassium channel (Kv 3.1b/3.2) 

expression in a subset of inhibitory cells, causing deficits in inhibition.  Changes 

in inhibition have been shown to affect experience-dependent plasticity.  In a 

landmark finding Hensch et al. (1998) showed that GAD65KO mice do not show 

an OD shift with MD during the critical period.  Further, local infusion of 

diazepam, a use-dependent GABA agonist, restored the OD shift with MD at any 

age in these mice (Hensch et al., 1998).   Environmental enrichment also alters 

OD plasticity in adults by reducing inhibition (Sale et al., 2007).   

Because of our evidence that preNMDARs are being restored with LOVD 

(Chapter 4 & 5), it may be that both inhibition and preNMDARs expression are 

being altered with visual deprivation and that both contribute to the restored 

preNMDAR-tLTD.  A recent paper suggests that changes in OD plasticity with 

164 



dark-rearing could be due to changes in NMDAR composition down-stream of 

changes in inhibition.  The NR2B/NR2A ratio was higher in V1 of GAD65KO mice 

but this was reversed with benzodiazepine application (Kanold et al., 2009).  

 

6.9 Future directions 

More direct studies of preNMDAR function are needed 

Although there is now a large number of studies analyzing preNMDARs 

there is still skepticism about whether they actually exist.  This skepticism is due 

to the indirect nature of all functional studies to date.  Future studies will need to 

more directly test for the presence of functional preNMDARs.  Until recently, no 

method has existed to selectively activate, block, or eliminate preNMDARs 

without simultaneously affecting postsynaptic NMDARs in the same way.  Today, 

there should be methods for achieving these aims in order to directly measure 

preNMDAR functions.  One possibility would be to selectively block the 

expression of NMDARs in a subset of cells using, for example, viral expression of 

siRNAs or modern genetic approaches (Zong et al., 2005; Miskevich et al., 2006; 

Muzumdar et al., 2007).  As such, synaptic functions at synapses with and 

without preNMDARs can be compared directly using paired electrophysiological 

recordings.  Global application of NMDAR antagonists would then only be 

expected to alter presynaptic functions in pathways where preNMDAR functions 

were not down-regulated.  In combination with pharmacological manipulations, 

we will then be able to compare, in a single slice, the role of preNMDARs in 

synaptic transmission at the level of contacts between single cells.  If we want to 
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record from neurons in which the endogenous populations of receptors have not 

been altered, an alternative approach would be to selectively activate 

preNMDARs by glutamate uncaging.  With this method, one could, for example, 

selectively uncage glutamate and simultaneously observe Ca2+ increases in the 

presynaptic terminal. 

Visual deprivation and inhibition 

We are now carrying out a line of research that will definitively answer 

whether the restoration of tLTD in LOVD animals is due solely to a change in 

inhibition or in some part due to preNMDAR re-expression.  Experiments to 

induce tLTD in NR and LOVD animals are being done with, and without, intact 

inhibition.  Recordings are also made with postsynaptic NMDARs blocked with 

MK801 in the postsynaptic recording pipette or with all of the NMDARs blocked 

with APV in the bath.  These experiments will tell us whether preNMDAR-tLTD is 

restored in the adult animals with LOVD.  If the result of these experiments 

suggests a change in inhibition, that line of research could also be explored.  It is 

likely, based on previous work discussed above, that visual deprivation has an 

impact on inhibition.   

TR: visual deprivation or enrichment? 

We showed that rearing mice with PVC tubes in their cages prevents the 

normal decrease in preNMDAR expression and function.  In order to determine 

whether the effect of the tubes is due to a mild form of visual deprivation, or to 

environmental enrichment, the opaque tubes need to be replaced with clear 

tubes that do not block out light.  If there is still no developmental decrease in 
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preNMDARs in TR animals when the tubes are clear, then we can rule out visual 

deprivation.   

Experience dependence of NR3A 

Our evidence strongly suggests that the developmental decline in the 

NR3A subunit causes the loss of functional preNMDARs.  It is likely that the 

experience-dependence of the preNMDAR function and expression also depends 

on the NR3A subunit.  In order to test this, we should replicate the EM 

experiments using an antibody for NR3A.  If presynaptic NR3A is highly 

experience-dependent, then DR animals should maintain NR3A in preNMDARs, 

while NR mice loose NR3A. 

Are preNMDARs and / or NR3A experience-dependent in other brain regions? 

It will also be instructive to determine whether expression of preNMDARs 

and NR3A in other brain regions is sensitive to altered experience.  Can 

preNMDARs, or presynaptic NR3A, be modulated in S1 with whisker 

deprivation?  Can socialization affect the expression of preNMDARs or NR3A in 

the frontal cortex?  Can fear conditioning or manipulations that affect 

hippocampal memory affect preNMDARs in the amygdale or hippocampus?   

Is the role of NR3A evolutionarily conserved? 

If indeed, enrichment is capable of preventing the developmental down-

regulation of the receptor, we are left to assume that the maintenance of the 

receptor is not the pathological state but the healthy state.  Therefore, there is 

presumably a role for these receptors throughout development and into 

adulthood at least in normal mice.  In order to use this to inform us on the human 
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condition, we need to determine what role NR3A plays in the human brain, or at 

the very least, determine if these findings are evolutionarily conserved among 

rodents, carnivores, and non-human primates.  One piece of evidence that 

suggests an evolutionarily conserved mechanism is that preNMDARs have been 

shown to be present in non-mammalian systems.  In the avian midbrain 

preNMDARs are required for tLTD (Penzo and Pena, 2009).  And in the 

zebrafish, NMJ preNMDARs increase spontaneous acetylcholine release (Todd 

et al., 2004).  

Reintroducing NR3A in adult brain to treat neurological disorders 

If presynaptic NR3A expression in the adult brain is highly experience 

dependent, then periods of altered sensory experience may provide therapy to 

NMDAR associated neurological disorders.  This could be easily tested in mice 

by breading NR3A KO or NR3A OE mice with mouse models for neurological 

disorders and then providing visual deprivation to test whether an increase in 

NR3A expression modifies the symptoms of the disorder.  Environmental 

enrichment may also prove effective for reintroducing NR3A into adult brain to 

treat neurological disorders.  Environmental enrichment has already been shown 

to reduce symptoms and disease progression in models of Huntington’s and 

Alzheimer’s, ischemia and traumatic insults (Lazarov et al., 2005; 

Nithianantharajah and Hannan, 2006).   

 

 

References 

168 



 

Abraham WC, Bear MF (1996) Metaplasticity: the plasticity of synaptic plasticity. 
Trends Neurosci 19:126-130. 

 
Allen CB, Celikel T, Feldman DE (2003) Long-term depression induced by 

sensory deprivation during cortical map plasticity in vivo. Nat Neurosci 
6:291-299. 

 
Aoki C, Venkatesan C, Go CG, Mong JA, Dawson TM (1994) Cellular and 

subcellular localization of NMDA-R1 subunit immunoreactivity in the visual 
cortex of adult and neonatal rats. J Neurosci 14:5202-5222. 

 
Aoki C, Fujisawa S, Mahadomrongkul V, Shah PJ, Nader K, Erisir A (2003) 

NMDA receptor blockade in intact adult cortex increases trafficking of 
NR2A subunits into spines, postsynaptic densities, and axon terminals. 
Brain Res 963:139-149. 

 
Aramori I, Nakanishi S (1992) Signal transduction and pharmacological 

characteristics of a metabotropic glutamate receptor, mGluR1, in 
transfected CHO cells. Neuron 8:757-765. 

 
Avanzini G, Franceschetti S (2003) Cellular biology of epileptogenesis. Lancet 

Neurol 2:33-42. 
 
Awatramani GB, Price GD, Trussell LO (2005) Modulation of transmitter release 

by presynaptic resting potential and background calcium levels. Neuron 
48:109-121. 

 
Awobuluyi M, Yang J, Ye Y, Chatterton JE, Godzik A, Lipton SA, Zhang D (2007) 

Subunit-specific roles of glycine-binding domains in activation of NR1/NR3 
N-methyl-D-aspartate receptors. Mol Pharmacol 71:112-122. 

 
Banerjee A, Meredith RM, Rodriguez-Moreno A, Mierau SB, Auberson YP, 

Paulsen O (2009) Double Dissociation of Spike Timing-Dependent 
Potentiation and Depression by Subunit-Preferring NMDA Receptor 
Antagonists in Mouse Barrel Cortex. Cereb Cortex. 

 
Bardoni R, Torsney C, Tong CK, Prandini M, MacDermott AB (2004) Presynaptic 

NMDA receptors modulate glutamate release from primary sensory 
neurons in rat spinal cord dorsal horn. J Neurosci 24:2774-2781. 

 
Bartoletti A, Medini P, Berardi N, Maffei L (2004) Environmental enrichment 

prevents effects of dark-rearing in the rat visual cortex. Nat Neurosci 
7:215-216. 

 

169 



Bear MF, Rittenhouse CD (1999) Molecular basis for induction of ocular 
dominance plasticity. J Neurobiol 41:83-91. 

 
Bender KJ, Allen CB, Bender VA, Feldman DE (2006a) Synaptic basis for 

whisker deprivation-induced synaptic depression in rat somatosensory 
cortex. J Neurosci 26:4155-4165. 

 
Bender VA, Bender KJ, Brasier DJ, Feldman DE (2006b) Two coincidence 

detectors for spike timing-dependent plasticity in somatosensory cortex. J 
Neurosci 26:4166-4177. 

 
Berardi N, Pizzorusso T, Maffei L (2000) Critical periods during sensory 

development. Curr Opin Neurobiol 10:138-145. 
 
Berberich S, Punnakkal P, Jensen V, Pawlak V, Seeburg PH, Hvalby O, Kohr G 

(2005) Lack of NMDA receptor subtype selectivity for hippocampal long-
term potentiation. J Neurosci 25:6907-6910. 

Berretta N, Jones RS (1996) Tonic facilitation of glutamate release by 
presynaptic N-methyl-D-aspartate autoreceptors in the entorhinal cortex. 
Neuroscience 75:339-344. 

 
Bezzi P, Gundersen V, Galbete JL, Seifert G, Steinhauser C, Pilati E, Volterra A 

(2004) Astrocytes contain a vesicular compartment that is competent for 
regulated exocytosis of glutamate. Nat Neurosci 7:613-620. 

 
Bezzi P, Carmignoto G, Pasti L, Vesce S, Rossi D, Rizzini BL, Pozzan T, Volterra 

A (1998) Prostaglandins stimulate calcium-dependent glutamate release 
in astrocytes. Nature 391:281-285. 

 
Bezzi P, Domercq M, Brambilla L, Galli R, Schols D, De Clercq E, Vescovi A, 

Bagetta G, Kollias G, Meldolesi J, Volterra A (2001) CXCR4-activated 
astrocyte glutamate release via TNFalpha: amplification by microglia 
triggers neurotoxicity. Nat Neurosci 4:702-710. 

 
Birnbaum MH (1997) Full-scope optometry: quality eye and vision care. J Am 

Optom Assoc 68:73-75. 
 
Bliss TVP, Collingridge GL (1993) A synaptic model of memory: long-term 

potentiation in the hippocampus. Nature 361:31-39. 
 
Bolshakov VY, Siegelbaum SA (1995) Regulation of hippocampal transmiter 

release during development and long-term potentiation. Science 
269:1730-1734. 

 
Boyce S, Wyatt A, Webb JK, O'Donnell R, Mason G, Rigby M, Sirinathsinghji D, 

Hill RG, Rupniak NM (1999) Selective NMDA NR2B antagonists induce 

170 



antinociception without motor dysfunction: correlation with restricted 
localisation of NR2B subunit in dorsal horn. Neuropharmacology 38:611-
623. 

 
Brasier DJ, Feldman DE (2008) Synapse-specific expression of functional 

presynaptic NMDA receptors in rat somatosensory cortex. J Neurosci 
28:2199-2211. 

 
Buonomano DV, Merzenich MM (1998) Cortical plasticity: from synapses to 

maps. Annu Rev Neurosci 21:149-186. 
 
Burkhalter A (1989) Intrinsic connections of rat primary visual cortex: laminar 

organization of axonal projections. J Comp Neurol 279:171-186. 
 
Burnashev N, Monyer H, Seeburg PH, Sakmann B (1992) Divalent ion 

permeability of AMPA receptor channels is dominated by the edited form 
of a single subunit. Neuron 8:189-198. 

 
Cancedda L, Putignano E, Sale A, Viegi A, Berardi N, Maffei L (2004) 

Acceleration of visual system development by environmental enrichment. 
J Neurosci 24:4840-4848. 

 
Carmignoto G, Vicini S (1992) Activity-dependent decrease in NMDA receptor 

responses during development of the visual cortex. Science 258:1007-
1011. 

 
Casado M, Dieudonne S, Ascher P (2000) Presynaptic N-methyl-D-aspartate 

receptors at the parallel fiber-Purkinje cell synapse. Proc Natl Acad Sci U 
S A 97:11593-11597. 

 
Casado M, Isope P, Ascher P (2002) Involvement of presynaptic N-methyl-D-

aspartate receptors in cerebellar long-term depression. Neuron 33:123-
130. 

 
Catterall WA (1998) Structure and function of neuronal Ca2+ channels and their 

role in neurotransmitter release. Cell Calcium 24:307-323. 
 
Cavelier P, Attwell D (2005) Tonic release of glutamate by a DIDS-sensitive 

mechanism in rat hippocampal slices. J Physiol 564:397-410. 
Celikel T, Szostak VA, Feldman DE (2004) Modulation of spike timing by sensory 

deprivation during induction of cortical map plasticity. Nat Neurosci 7:534-
541. 

 
Chamberlain SE, Yang J, Jones RS (2008) The role of NMDA receptor subtypes 

in short-term plasticity in the rat entorhinal cortex. Neural Plast 
2008:872456. 

171 



 
Charton JP, Herkert M, Becker CM, Schroder H (1999) Cellular and subcellular 

localization of the 2B-subunit of the NMDA receptor in the adult rat 
telencephalon. Brain Res 816:609-617. 

 
Chavis P, Westbrook G (2001) Integrins mediate functional pre- and postsynaptic 

maturation at a hippocampal synapse. Nature 411:317-321. 
 
Chen HS, Lipton SA (2006) The chemical biology of clinically tolerated NMDA 

receptor antagonists. J Neurochem 97:1611-1626. 
 
Chevaleyre V, Takahashi KA, Castillo PE (2006) Endocannabinoid-mediated 

synaptic plasticity in the CNS. Annu Rev Neurosci 29:37-76. 
 
Choi S, Lovinger DM (1997) Decreased probability of neurotransmitter release 

underlies striatal long-term depression and postnatal development of 
corticostriatal synapses. Proc Natl Acad Sci U S A 94:2665-2670. 

 
Ciabarra AM, Sullivan JM, Gahn LG, Pecht G, Heinemann S, Sevarino KA (1995) 

Cloning and characterization of chi-1: a developmentally regulated 
member of a novel class of the ionotropic glutamate receptor family. J 
Neurosci 15:6498-6508. 

 
Clements JD, Bekkers JM (1997) Detection of spontaneous synaptic events with 

an optimally scaled template. Biophys J 73:220-229. 
 
Collingridge GL, Bliss TV (1995) Memories of NMDA receptors and LTP. Trends 

Neurosci 18:54-56. 
 
Contractor QQ, Dubian MK, Boujemla M, Contractor TQ (2001) Endoscopic 

therapy after laparoscopic cholecystectomy. J Clin Gastroenterol 33:218-
221. 

 
Corlew R, Brasier DJ, Feldman DE, Philpot BD (2008) Presynaptic NMDA 

receptors: newly appreciated roles in cortical synaptic function and 
plasticity. Neuroscientist 14:609-625. 

 
Corlew R, Wang Y, Ghermazien H, Erisir A, Philpot BD (2007) Developmental 

switch in the contribution of presynaptic and postsynaptic NMDA receptors 
to long-term depression. J Neurosci 27:9835-9845. 

 
Crowley JC, Katz LC (1999) Development of ocular dominance columns in the 

absence of retinal input. Nat Neurosci 2:1125-1130. 
 

172 



Crozier RA, Wang Y, Liu CH, Bear MF (2007) Deprivation-induced synaptic 
depression by distinct mechanisms in different layers of mouse visual 
cortex. Proc Natl Acad Sci U S A 104:1383-1388. 

 
Cull-Candy S, Brickley S, Farrant M (2001) NMDA receptor subunits: diversity, 

development and disease. Curr Opin Neurobiol 11:327-335. 
 
Curtis DR, Watkins JC (1963) Acidic amino acids with strong excitatory actions 

on mammalian neurones. J Physiol 166:1-14. 
 
Dalby NO, Mody I (2001) The process of epileptogenesis: a pathophysiological 

approach. Curr Opin Neurol 14:187-192. 
 
Dan Y, Poo MM (2006) Spike timing-dependent plasticity: from synapse to 

perception. Physiol Rev 86:1033-1048. 
 
Das S, Sasaki YF, Rothe T, Premkumar LS, Takasu M, Crandall JE, Dikkes P, 

Conner DA, Rayudu PV, Cheung W, Chen HS, Lipton SA, Nakanishi N 
(1998) Increased NMDA current and spine density in mice lacking the 
NMDA receptor subunit NR3A. Nature 393:377-381. 

 
DeBiasi S, Minelli A, Melone M, Conti F (1996) Presynaptic NMDA receptors in 

the neocortex are both auto- and heteroreceptors. Neuroreport 7:2773-
2776. 

 
Dekay JG, Chang TC, Mills N, Speed HE, Dobrunz LE (2006) Responses of 

excitatory hippocampal synapses to natural stimulus patterns reveal a 
decrease in short-term facilitation and increase in short-term depression 
during postnatal development. Hippocampus 16:66-79. 

 
Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor 

ion channels. Pharmacol Rev 51:7-61. 
 
Duguid I, Sjöström PJ (2006) Novel presynaptic mechanisms for coincidence 

detection in synaptic plasticity. Curr Opin Neurobiol 16:312-322. 
 
Duguid I, Sjostrom PJ (2006) Novel presynaptic mechanisms for coincidence 

detection in synaptic plasticity. Curr Opin Neurobiol 16:312-322. 
 
Duguid IC, Smart TG (2004) Retrograde activation of presynaptic NMDA 

receptors enhances GABA release at cerebellar interneuron-Purkinje cell 
synapses. Nat Neurosci 7:525-533. 

 
Egger V, Feldmeyer D, Sakmann B (1999) Coincidence detection and changes 

of synaptic efficacy in spiny stellate neurons in rat barrel cortex. Nat 
Neurosci 2:1098-1105. 

173 



 
Engelman HS, MacDermott AB (2004) Presynaptic ionotropic receptors and 

control of transmitter release. Nat Rev Neurosci 5:135-145. 
 
Fan MM, Raymond LA (2007) N-methyl-D-aspartate (NMDA) receptor function 

and excitotoxicity in Huntington's disease. Prog Neurobiol 81:272-293. 
 
Farb CR, Aoki C, Ledoux JE (1995) Differential localization of NMDA and AMPA 

receptor subunits in the lateral and basal nuclei of the amygdala: a light 
and electron microscopic study. J Comp Neurol 362:86-108. 

 
Feldman DE (2000) Timing-based LTP and LTD at vertical inputs to layer II/III 

pyramidal cells in rat barrel cortex. Neuron 27:45-56. 
 
Feller MB, Scanziani M (2005) A precritical period for plasticity in visual cortex. 

Curr Opin Neurobiol 15:94-100. 
 
Felmy F, Neher E, Schneggenburger R (2003) The timing of phasic transmitter 

release is Ca2+-dependent and lacks a direct influence of presynaptic 
membrane potential. Proc Natl Acad Sci U S A 100:15200-15205. 

 
Fiszman ML, Barberis A, Lu C, Fu Z, Erdelyi F, Szabo G, Vicini S (2005) NMDA 

receptors increase the size of GABAergic terminals and enhance GABA 
release. J Neurosci 25:2024-2031. 

 
Flint AC, Maisch US, Weishaupt JH, Kriegstein AR, Monyer H (1997) NR2A 

subunit expression shortens NMDA receptor synaptic currents in 
developing neocortex. J Neurosci 17:2469-2476. 

 
Fox K, Zahs K (1994) Critical period control in sensory cortex. Curr Opin 

Neurobiol 4:112-119. 
 
Fox K, Wong RO (2005) A comparison of experience-dependent plasticity in the 

visual and somatosensory systems. Neuron 48:465-477. 
 
Frenkel MY, Bear MF (2004) How monocular deprivation shifts ocular dominance 

in visual cortex of young mice. Neuron 44:917-923. 
Froemke RC, Dan Y (2002) Spike-timing-dependent synaptic modification 

induced by natural spike trains. Nature 416:433-438. 
 
Froemke RC, Poo MM, Dan Y (2005) Spike-timing-dependent synaptic plasticity 

depends on dendritic location. Nature 434:221-225. 
 
Fronius M, Cirina L, Cordey A, Ohrloff C (2004) Visual improvement during 

psychophysical training in an adult amblyopic eye following visual loss in 
the contralateral eye. Graefes Arch Clin Exp Ophthalmol. 

174 



 
Fujisawa S, Aoki C (2003) In vivo blockade of N-methyl-D-aspartate receptors 

induces rapid trafficking of NR2B subunits away from synapses and out of 
spines and terminals in adult cortex. Neuroscience 121:51-63. 

 
Gilbert CD (1998) Adult cortical dynamics. Physiol Rev 78:467-485. 
 
Glitsch M, Marty A (1999) Presynaptic effects of NMDA in cerebellar Purkinje 

cells and interneurons. J Neurosci 19:511-519. 
 
Glitsch MD (2008) Calcium influx through N-methyl-d-aspartate receptors triggers 

GABA release at interneuron-Purkinje cell synapse in rat cerebellum. 
Neuroscience 151:403-409. 

 
Gogas KR (2006) Glutamate-based therapeutic approaches: NR2B receptor 

antagonists. Curr Opin Pharmacol 6:68-74. 
 
Gordon JA, Stryker MP (1996) Experience-dependent plasticity of binocular 

responses in the primary visual cortex of the mouse. J Neurosci 16:3274-
3286. 

 
Gordon JA, Cioffi D, Silva AJ, Stryker MP (1996) Deficient plasticity in the 

primary visual cortex of a-calcium/calmodulin-dependent protein kinase II 
mutant mice. Neuron 17:491-499. 

 
Guzzetta A, Baldini S, Bancale A, Baroncelli L, Ciucci F, Ghirri P, Putignano E, 

Sale A, Viegi A, Berardi N, Boldrini A, Cioni G, Maffei L (2009) Massage 
accelerates brain development and the maturation of visual function. J 
Neurosci 29:6042-6051. 

 
Hall FS (1998) Social deprivation of neonatal, adolescent, and adult rats has 

distinct neurochemical and behavioral consequences. Crit Rev Neurobiol 
12:129-162. 

 
Hashimotodani Y, Ohno-Shosaku T, Tsubokawa H, Ogata H, Emoto K, Maejima 

T, Araishi K, Shin HS, Kano M (2005) Phospholipase Cbeta serves as a 
coincidence detector through its Ca2+ dependency for triggering 
retrograde endocannabinoid signal. Neuron 45:257-268. 

 
He HY, Rasmusson DD, Quinlan EM (2004) Progressive elevations in AMPA and 

GABAA receptor levels in deafferented somatosensory cortex. J 
Neurochem 90:1186-1193. 

 
He HY, Hodos W, Quinlan EM (2006) Visual deprivation reactivates rapid ocular 

dominance plasticity in adult visual cortex. J Neurosci 26:2951-2955. 
 

175 



Heinbockel T, Brager DH, Reich CG, Zhao J, Muralidharan S, Alger BE, Kao JP 
(2005) Endocannabinoid signaling dynamics probed with optical tools. J 
Neurosci 25:9449-9459. 

 
Hendricson AW, Miao CL, Lippmann MJ, Morrisett RA (2002) Ifenprodil and 

ethanol enhance NMDA receptor-dependent long-term depression. J 
Pharmacol Exp Ther 301:938-944. 

 
Hensch TK (2004) Critical period regulation. Annu Rev Neurosci 27:549-579. 
 
Hensch TK, Fagiolini M, Mataga N, Stryker MP, Baekkeskov S, Kash SF (1998) 

Local GABA circuit control of experience-dependent plasticity in 
developing visual cortex. Science 282:1504-1508. 

 
Heresco-Levy U, Javitt DC (1998) The role of N-methyl-D-aspartate (NMDA) 

receptor-mediated neurotransmission in the pathophysiology and 
therapeutics of psychiatric syndromes. Eur Neuropsychopharmacol 8:141-
152. 

 
Herman MA, Jahr CE (2007) Extracellular glutamate concentration in 

hippocampal slice. J Neurosci 27:9736-9741. 
 
Hessler NA, Shirke AM, Malinow R (1993) The probability of transmitter release 

at a mammalian central synapse. Nature 366:569-572. 
 
Hestrin S (1992) Developmental regulation of NMDA receptor-mediated synaptic 

currents at a central synapse. Nature 357:686-689. 
 
Hofer SB, Mrsic-Flogel TD, Bonhoeffer T, Hubener M (2006a) Prior experience 

enhances plasticity in adult visual cortex. Nat Neurosci 9:127-132. 
 
Hofer SB, Mrsic-Flogel TD, Bonhoeffer T, Hubener M (2006b) Lifelong learning: 

ocular dominance plasticity in mouse visual cortex. Curr Opin Neurobiol 
16:451-459. 

 
Horton JC, Hocking DR (1996) An adult-like pattern of ocular dominance 

columns in striate cortex of newborn monkeys prior to visual experience. J 
Neurosci 16:1791-1807. 

 
Humeau Y, Shaban H, Bissiere S, Luthi A (2003) Presynaptic induction of 

heterosynaptic associative plasticity in the mammalian brain. Nature 
426:841-845. 

 
Innocenti GM (2007) Subcortical regulation of cortical development: some effects 

of early, selective deprivations. Prog Brain Res 164:23-37. 
 

176 



Iwasato T, Datwani A, Wolf AM, Nishiyama H, Taguchi Y, Tonegawa S, Knopfel 
T, Erzurumlu RS, Itohara S (2000) Cortex-restricted disruption of 
NMDAR1 impairs neuronal patterns in the barrel cortex. Nature 406:726-
731. 

 
Jo J, Ball SM, Seok H, Oh SB, Massey PV, Molnar E, Bashir ZI, Cho K (2006) 

Experience-dependent modification of mechanisms of long-term 
depression. Nat Neurosci 9:170-172. 

 
Jourdain P, Bergersen LH, Bhaukaurally K, Bezzi P, Santello M, Domercq M, 

Matute C, Tonello F, Gundersen V, Volterra A (2007) Glutamate 
exocytosis from astrocytes controls synaptic strength. Nat Neurosci 
10:331-339. 

 
Kadotani H, Hirano T, Masugi M, Nakamura K, Nakao K, Katsuki M, Nakanishi S 

(1996) Motor discoordination results from combined gene disruption of the 
NMDA receptor NR2A and NR2C subunits, but not from single disruption 
of the NR2A or NR2C subunit. J Neurosci 16:7859-7867. 

 
Kanold PO, Kim YA, GrandPre T, Shatz CJ (2009) Co-regulation of ocular 

dominance plasticity and NMDA receptor subunit expression in glutamic 
acid decarboxylase-65 knock-out mice. J Physiol 587:2857-2867. 

 
 
Katz LC, Shatz CJ (1996) Synaptic activity and the construction of cortical 

circuits. Science 274:1133-1138. 
 
Kew JN, Richards JG, Mutel V, Kemp JA (1998) Developmental changes in 

NMDA receptor glycine affinity and ifenprodil sensitivity reveal three 
distinct populations of NMDA receptors in individual rat cortical neurons. J 
Neurosci 18:1935-1943. 

 
Khakh BS, Henderson G (2000) Modulation of fast synaptic transmission by 

presynaptic ligand-gated cation channels. J Auton Nerv Syst 81:110-121. 
Kharazia VN, Weinberg RJ (1999) Immunogold localization of AMPA and NMDA 

receptors in somatic sensory cortex of albino rat. J Comp Neurol 412:292-
302. 

 
Kidd FL, Isaac JT (1999) Developmental and activity-dependent regulation of 

kainate receptors at thalamocortical synapses. Nature 400:569-573. 
 
Kim DK, Catterall WA (1997) Ca2+-dependent and -independent interactions of 

the isoforms of the alpha1A subunit of brain Ca2+ channels with 
presynaptic SNARE proteins. Proc Natl Acad Sci U S A 94:14782-14786. 

 

177 



Kim MJ, Dunah AW, Wang YT, Sheng M (2005) Differential roles of NR2A- and 
NR2B-containing NMDA receptors in Ras-ERK signaling and AMPA 
receptor trafficking. Neuron 46:745-760. 

 
Kirkwood A, Bear MF (1994) Homosynaptic long-term depression in the visual 

cortex. J Neurosci 14:3404-3412. 
 
Koester HJ, Sakmann B (1998) Calcium dynamics in single spines during 

coincident pre- and postsynaptic activity depend on relative timing of back-
propagating action potentials and subthreshold excitatory postsynaptic 
potentials. Proc Natl Acad Sci U S A 95:9596-9601. 

 
Kopp C, Longordo F, Luthi A (2007) Experience-dependent changes in NMDA 

receptor composition at mature central synapses. Neuropharmacology 
53:1-9. 

 
Kreczko A, Goel A, Song L, Lee HK (2009) Visual deprivation decreases somatic 

GAD65 puncta number on layer 2/3 pyramidal neurons in mouse visual 
cortex. Neural Plast 2009:415135. 

 
Kristiansen LV, Huerta I, Beneyto M, Meador-Woodruff JH (2007) NMDA 

receptors and schizophrenia. Curr Opin Pharmacol 7:48-55. 
 
Kullmann DM, Erdemli G, Asztely F (1996) LTP of AMPA and NMDA receptor-

mediated signals: evidence for presynaptic expression and extrasynaptic 
glutamate spill-over. Neuron 17:461-474. 

 
Lau CG, Zukin RS (2007) NMDA receptor trafficking in synaptic plasticity and 

neuropsychiatric disorders. Nat Rev Neurosci 8:413-426. 
 
Lauri SE, Vesikansa A, Segerstrale M, Collingridge GL, Isaac JT, Taira T (2006) 

Functional maturation of CA1 synapses involves activity-dependent loss of 
tonic kainate receptor-mediated inhibition of glutamate release. Neuron 
50:415-429. 

 
Laurie DJ, Seeburg PH (1994) Ligand affinities at recombinant N-methyl-D-

aspartate receptors depend on subunit composition. Eur J Pharmacol 
268:335-345. 

 
Lazarov O, Robinson J, Tang YP, Hairston IS, Korade-Mirnics Z, Lee VM, Hersh 

LB, Sapolsky RM, Mirnics K, Sisodia SS (2005) Environmental enrichment 
reduces Abeta levels and amyloid deposition in transgenic mice. Cell 
120:701-713. 

 

178 



Le Meur K, Galante M, Angulo MC, Audinat E (2007) Tonic activation of NMDA 
receptors by ambient glutamate of non-synaptic origin in the rat 
hippocampus. J Physiol 580:373-383. 

 
Li YH, Han TZ (2006) Glycine binding sites of presynaptic NMDA receptors may 

tonically regulate glutamate release in the rat visual cortex. J 
Neurophysiol. 

 
Li YH, Han TZ (2007) Glycine binding sites of presynaptic NMDA receptors may 

tonically regulate glutamate release in the rat visual cortex. J Neurophysiol 
97:817-823. 

 
Li YH, Han TZ, Meng K (2008) Tonic facilitation of glutamate release by glycine 

binding sites on presynaptic NR2B-containing NMDA autoreceptors in the 
rat visual cortex. Neurosci Lett 432:212-216. 

 
Li YH, Wang J, Zhang G (2009) Presynaptic NR2B-containing NMDA 

autoreceptors mediate gluta-matergic synaptic transmission in the rat 
visual cortex. Curr Neurovasc Res 6:104-109. 

 
Lickey ME, Pham TA, Gordon B (2004) Swept contrast visual evoked potentials 

and their plasticity following monocular deprivation in mice. Vision Res 
44:3381-3387. 

 
Lien CC, Mu Y, Vargas-Caballero M, Poo MM (2006) Visual stimuli-induced LTD 

of GABAergic synapses mediated by presynaptic NMDA receptors. Nat 
Neurosci 9:372-380. 

 
Lieske SP, Ramirez JM (2006) Pattern-specific synaptic mechanisms in a 

multifunctional network. II. Intrinsic modulation by metabotropic glutamate 
receptors. J Neurophysiol 95:1334-1344. 

 
Liu H, Mantyh PW, Basbaum AI (1997) NMDA-receptor regulation of substance 

P release from primary afferent nociceptors. Nature 386:721-724. 
 
Liu H, Wang H, Sheng M, Jan LY, Jan YN, Basbaum AI (1994) Evidence for 

presynaptic N-methyl-D-aspartate autoreceptors in the spinal cord dorsal 
horn. Proc Natl Acad Sci U S A 91:8383-8387. 

 
Liu L, Wong TP, Pozza MF, Lingenhoehl K, Wang Y, Sheng M, Auberson YP, 

Wang YT (2004) Role of NMDA receptor subtypes in governing the 
direction of hippocampal synaptic plasticity. Science 304:1021-1024. 

 
Lozovaya NA, Grebenyuk SE, Tsintsadze T, Feng B, Monaghan DT, Krishtal OA 

(2004) Extrasynaptic NR2B and NR2D subunits of NMDA receptors shape 
'superslow' afterburst EPSC in rat hippocampus. J Physiol 558:451-463. 

179 



 
Lu CR, Willcockson HH, Phend KD, Lucifora S, Darstein M, Valtschanoff JG, 

Rustioni A (2005) Ionotropic glutamate receptors are expressed in 
GABAergic terminals in the rat superficial dorsal horn. J Comp Neurol 
486:169-178. 

 
MacDermott AB, Role LW, Siegelbaum SA (1999) Presynaptic ionotropic 

receptors and the control of transmitter release. Annu Rev Neurosci 
22:443-485. 

 
Magee JC, Johnston D (1997) A synaptically controlled, associative signal for 

Hebbian plasticity in hippocampal neurons. Science 275:209-213. 
 
Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. 

Neuron 44:5-21. 
 
Mallon AP, Auberson YP, Stone TW (2004) Selective subunit antagonists 

suggest an inhibitory relationship between NR2B and NR2A-subunit 
containing N-methyl-D: -aspartate receptors in hippocampal slices. Exp 
Brain Res 162:374-383. 

 
Mameli M, Carta M, Partridge LD, Valenzuela CF (2005) Neurosteroid-induced 

plasticity of immature synapses via retrograde modulation of presynaptic 
NMDA receptors. J Neurosci 25:2285-2294. 

 
Markram H, Lubke J, Frotscher M, Sakmann B (1997) Regulation of synaptic 

efficacy by coincidence of postsynaptic APs and EPSPs. Science 
275:213-215. 

 
Massey PV, Johnson BE, Moult PR, Auberson YP, Brown MW, Molnar E, 

Collingridge GL, Bashir ZI (2004) Differential roles of NR2A and NR2B-
containing NMDA receptors in cortical long-term potentiation and long-
term depression. J Neurosci 24:7821-7828. 

 
Mayer MC, Westbrook GL, Guthrie PB (1984) Voltage dependent block by 

magnesium of NMDA responses in spinal cord neurones. Nature 309:261-
267. 

 
McBain CJ, Mayer ML (1994) N-methyl-D-aspartic acid receptor structure and 

function. Physiol Rev 74:723-760. 
 
Meldrum BS (1994) The role of glutamate in epilepsy and other CNS disorders. 

Neurology 44:S14-23. 
 

180 



Miskevich F, Doench JG, Townsend MT, Sharp PA, Constantine-Paton M (2006) 
RNA interference of Xenopus NMDAR NR1 in vitro and in vivo. J Neurosci 
Methods 152:65-73. 

 
Missale C, Fiorentini C, Busi C, Collo G, Spano PF (2006) The NMDA/D1 

receptor complex as a new target in drug development. Curr Top Med 
Chem 6:801-808. 

 
Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH (1994) 

Developmental and regional expression in the rat brain and functional 
properties of four NMDA receptors. Neuron 12:529-540. 

 
Monyer H, Sprengel R, Schoepfer R, Herb A, Higuchi M, Lomeli H, Burnashev N, 

Sakmann B, Seeburg PH (1992) Heteromeric NMDA receptors: Molecular 
and functional distinction of subtypes. Science 256:1217-1221. 

 
Morimoto K, Fahnestock M, Racine RJ (2004) Kindling and status epilepticus 

models of epilepsy: rewiring the brain. Prog Neurobiol 73:1-60. 
 
Morishita H, Hensch TK (2008) Critical period revisited: impact on vision. Curr 

Opin Neurobiol 18:101-107. 
 
Mower GD, Caplan CJ, Christen WG, Duffy FH (1985) Dark rearing prolongs 

physiological but not anatomical plasticity of the cat visual cortex. J Comp 
Neurol 235:448-466. 

 
Murthy VN, Schikorski T, Stevens CF, Zhu Y (2001) Inactivity produces 

increases in neurotransmitter release and synapse size. Neuron 32:673-
682. 

 
Muzumdar MD, Luo L, Zong H (2007) Modeling sporadic loss of heterozygosity in 

mice by using mosaic analysis with double markers (MADM). Proc Natl 
Acad Sci U S A 104:4495-4500. 

 
Nase G, Weishaupt J, Stern P, Singer W, Monyer H (1999) Genetic and 

epigenetic regulation of NMDA receptor expression in the rat visual cortex. 
Eur J Neurosci 11:4320-4326. 

 
Nevian T, Sakmann B (2006) Spine Ca2+ signaling in spike-timing-dependent 

plasticity. J Neurosci 26:11001-11013. 
 
Neyton J, Paoletti P (2006) Relating NMDA receptor function to receptor subunit 

composition: limitations of the pharmacological approach. J Neurosci 
26:1331-1333. 

 

181 



Nilsson A, Duan J, Mo-Boquist LL, Benedikz E, Sundstrom E (2007) 
Characterisation of the human NMDA receptor subunit NR3A glycine 
binding site. Neuropharmacology 52:1151-1159. 

 
Nithianantharajah J, Hannan AJ (2006) Enriched environments, experience-

dependent plasticity and disorders of the nervous system. Nat Rev 
Neurosci 7:697-709. 

Nosyreva ED, Huber KM (2005) Developmental switch in synaptic mechanisms 
of hippocampal metabotropic glutamate receptor-dependent long-term 
depression. J Neurosci 25:2992-3001. 

 
Nowak L, Bregostovski P, Ascher P, Herbert A, Prochiantz A (1984) Magnesium 

gates glutamate-activated channels in mouse central neurones. Nature 
307:462-465. 

 
Penzo MA, Pena JL (2009) Endocannabinoid-mediated long-term depression in 

the avian midbrain expressed presynaptically and postsynaptically. J 
Neurosci 29:4131-4139. 

 
Perez-Otano I, Ehlers MD (2004) Learning from NMDA Receptor Trafficking: 

Clues to the Development and Maturation of Glutamatergic Synapses. 
Neurosignals 13:175-189. 

 
Perez-Otano I, Ehlers MD (2005) Homeostatic plasticity and NMDA receptor 

trafficking. Trends Neurosci 28:229-238. 
 
Perez-Otano I, Schulteis CT, Contractor A, Lipton SA, Trimmer JS, Sucher NJ, 

Heinemann SF (2001) Assembly with the NR1 subunit is required for 
surface expression of NR3A-containing NMDA receptors. J Neurosci 
21:1228-1237. 

 
Phend KD, Rustioni A, Weinberg RJ (1995) An osmium-free method of epon 

embedment that preserves both ultrastructure and antigenicity for post-
embedding immunocytochemistry. J Histochem Cytochem 43:283-292. 

 
Philpot BD, Cho KK, Bear MF (2007) Obligatory Role of NR2A for Metaplasticity 

in Visual Cortex. Neuron 53:495-502. 
 
Philpot BD, Sekhar AK, Shouval HZ, Bear MF (2001a) Visual experience and 

deprivation bidirectionally modify the composition and function of NMDA 
receptors in visual cortex. Neuron 29:157-169. 

 
Philpot BD, Weisberg MP, Ramos MS, Sawtell NB, Tang YP, Tsien JZ, Bear MF 

(2001b) Effect of transgenic overexpression of NR2B on NMDA receptor 
function and synaptic plasticity in visual cortex. Neuropharmacology 
41:762-770. 

182 



 
Pickel VM, Colago EE, Mania I, Molosh AI, Rainnie DG (2006) Dopamine D1 

receptors co-distribute with N-methyl-D-aspartic acid type-1 subunits and 
modulate synaptically-evoked N-methyl-D-aspartic acid currents in rat 
basolateral amygdala. Neuroscience 142:671-690. 

 
Pinheiro PS, Mulle C (2008) Presynaptic glutamate receptors: physiological 

functions and mechanisms of action. Nat Rev Neurosci 9:423-436. 
 
Pinheiro PS, Perrais D, Coussen F, Barhanin J, Bettler B, Mann JR, Malva JO, 

Heinemann SF, Mulle C (2007) GluR7 is an essential subunit of 
presynaptic kainate autoreceptors at hippocampal mossy fiber synapses. 
Proc Natl Acad Sci U S A 104:12181-12186. 

 
Pouzat C, Hestrin S (1997) Developmental regulation of basket/stellate cell--

>Purkinje cell synapses in the cerebellum. J Neurosci 17:9104-9112. 
 
Priestley T, Laughton P, Myers J, Le Bourdelles B, Kerby J, Whiting PJ (1995) 

Pharmacological properties of recombinant human N-methyl-D-aspartate 
receptors comprising NR1a/NR2A and NR1a/NR2B subunit assemblies 
expressed in permanently transfected mouse fibroblast cells. Mol 
Pharmacol 48:841-848. 

 
Quinlan EM, Olstein DH, Bear MF (1999a) Bidirectional, experience-dependent 

regulation of N-methyl-D-aspartate receptor subunit composition in the rat 
visual cortex during postnatal development. Proc Natl Acad Sci USA 
96:12876-12880. 

Quinlan EM, Philpot BD, Huganir RL, Bear MF (1999b) Rapid, experience-
dependent expression of synaptic NMDA receptors in visual cortex in vivo. 
Nat Neurosci 2:352-357. 

 
Rakic P (1977) Prenatal development of the visual system in rhesus monkey. 

Philos Trans R Soc Lond B Biol Sci 278:245-260. 
 
Ramoa AS, Mower AF, Liao D, Jafri SI (2001) Suppression of cortical NMDA 

receptor function prevents development of orientation selectivity in the 
primary visual cortex. J Neurosci 21:4299-4309. 

 
Reyes A, Sakmann B (1999) Developmental switch in the short-term modification 

of unitary EPSPs evoked in layer 2/3 and layer 5 pyramidal neurons of rat 
neocortex. J Neurosci 19:3827-3835. 

 
Roberts EB, Ramoa AS (1999) Enhanced NR2A subunit expression and 

decreased NMDA receptor decay time at the onset of ocular dominance 
plasticity in the ferret. J Neurophysiol 81:2587-2591. 

 

183 



Roberts EB, Meredith MA, Ramoa AS (1998) Suppression of NMDA receptor 
function using antisense DNA blocks ocular dominance plasticity while 
preserving visual responses. J Neurophysiol 80:1021-1032. 

 
Rodriguez-Moreno A, Paulsen O (2008) Spike timing-dependent long-term 

depression requires presynaptic NMDA receptors. Nat Neurosci 11:744-
745. 

 
Rumpel S, Kattenstroth G, Gottmann K (2004) Silent synapses in the immature 

visual cortex: layer-specific developmental regulation. J Neurophysiol 
91:1097-1101. 

 
Sah P, Hestrin S, Nicoll RA (1989) Tonic activation of NMDA receptors by 

ambient glutamate enhances excitability of neurons. Science 246:815-
818. 

 
Sale A, Putignano E, Cancedda L, Landi S, Cirulli F, Berardi N, Maffei L (2004) 

Enriched environment and acceleration of visual system development. 
Neuropharmacology 47:649-660. 

 
Sale A, Maya Vetencourt JF, Medini P, Cenni MC, Baroncelli L, De Pasquale R, 

Maffei L (2007) Environmental enrichment in adulthood promotes 
amblyopia recovery through a reduction of intracortical inhibition. Nat 
Neurosci 10:679-681. 

 
Sasaki YF, Rothe T, Premkumar LS, Das S, Cui J, Talantova MV, Wong HK, 

Gong X, Chan SF, Zhang D, Nakanishi N, Sucher NJ, Lipton SA (2002) 
Characterization and comparison of the NR3A subunit of the NMDA 
receptor in recombinant systems and primary cortical neurons. J 
Neurophysiol 87:2052-2063. 

 
Sawtell NB, Frenkel MY, Philpot BD, Nakazawa K, Tonegawa S, Bear MF (2003) 

NMDA receptor-dependent ocular dominance plasticity in adult visual 
cortex. Neuron 38:977-985. 

 
Scanziani M, Gahwiler BH, Charpak S (1998) Target cell-specific modulation of 

transmitter release at terminals from a single axon. Proc Natl Acad Sci U 
S A 95:12004-12009. 

 
Scimemi A, Fine A, Kullmann DM, Rusakov DA (2004) NR2B-containing 

receptors mediate cross talk among hippocampal synapses. J Neurosci 
24:4767-4777. 

 
Sengpiel F, Kind PC (2002) The role of activity in development of the visual 

system. Curr Biol 12:R818-826. 
 

184 



Shin JH, Linden DJ (2005) An NMDA receptor/nitric oxide cascade is involved in 
cerebellar LTD but is not localized to the parallel fiber terminal. J 
Neurophysiol 94:4281-4289. 

 
Shouval H, Perrone M (1995) Post-Hebbian Learning Rules. In: The Handbook of 

Brain Theory and Neural Networks (Arbib M, ed), p 1118. Cambridge, 
Massachusetts: MIT Press. 

 
Siegel SJ, Brose N, Janssen WG, Gasic GP, Jahn R, Heinemann SF, Morrison 

JH (1994) Regional, cellular, and ultrastructural distribution of N-methyl-D-
aspartate receptor subunit 1 in monkey hippocampus. Proc Natl Acad Sci 
U S A 91:564-568. 

 
Simkus CR, Stricker C (2002) Properties of mEPSCs recorded in layer II 

neurones of rat barrel cortex. J Physiol 545:509-520. 
 
Simmers AJ, Gray LS (1999) Improvement of visual function in an adult 

amblyope. Optom Vis Sci 76:82-87. 
 
Sjostrom PJ, Turrigiano GG, Nelson S (2003) Neocortical LTD via Coincident 

Activation of Presynaptic NMDA and Cannabinoid Receptors. Neuron 
39:641-654. 

 
Sjöström PJ, Turrigiano GG, Nelson SB (2001) Rate, timing, and cooperativity 

jointly determine cortical synaptic plasticity. Neuron 32:1149-1164. 
 
Sjöström PJ, Turrigiano GG, Nelson SB (2003) Neocortical LTD via coincident 

activation of presynaptic NMDA and cannabinoid receptors. Neuron 
39:641-654. 

 
Smothers CT, Woodward JJ (2003) Effect of the NR3 subunit on ethanol 

inhibition of recombinant NMDA receptors. Brain Res 987:117-121. 
 
Spruston N, Jaffe DB, Williams SH, Johnston D (1993) Voltage- and space-

clamp errors associated with the measurement of electrotonically remote 
synaptic events. J Neurophysiol 70:781-802. 

 
Strack S, McNeill RB, Colbran RJ (2000) Mechanism and regulation of 

calcium/calmodulin-dependent protein kinase II targeting to the NR2B 
subunit of the N-methyl-D-aspartate receptor. J Biol Chem 275:23798-
23806. 

 
Stryker MP, Harris WA (1986) Binocular impulse blockade prevents the formation 

of ocular dominance columns in cat visual cortex. J Neurosci 6:2117-2133. 
 

185 



Suarez LM, Solis JM (2006) Taurine potentiates presynaptic NMDA receptors in 
hippocampal Schaffer collateral axons. Eur J Neurosci 24:405-418. 

 
Suarez LM, Suarez F, Del Olmo N, Ruiz M, Gonzalez-Escalada JR, Solis JM 

(2005) Presynaptic NMDA autoreceptors facilitate axon excitability: a new 
molecular target for the anticonvulsant gabapentin. Eur J Neurosci 21:197-
209. 

 
Sun HY, Dobrunz LE (2006) Presynaptic kainate receptor activation is a novel 

mechanism for target cell-specific short-term facilitation at Schaffer 
collateral synapses. J Neurosci 26:10796-10807. 

 
Tagawa Y, Kanold PO, Majdan M, Shatz CJ (2005) Multiple periods of functional 

ocular dominance plasticity in mouse visual cortex. Nat Neurosci 8:380-
388. 

 
Taha SA, Stryker MP (2005) Molecular substrates of plasticity in the developing 

visual cortex. Prog Brain Res 147:103-114. 
 
Thoreson WB, Ulphani JS (1995) Pharmacology of selective and non-selective 

metabotropic glutamate receptor agonists at L-AP4 receptors in retinal ON 
bipolar cells. Brain Res 676:93-102. 

 
Todd KJ, Slatter CA, Ali DW (2004) Activation of ionotropic glutamate receptors 

on peripheral axons of primary motoneurons mediates transmitter release 
at the zebrafish NMJ. J Neurophysiol 91:828-840. 

Townsend M, Yoshii A, Mishina M, Constantine-Paton M (2003) Developmental 
loss of miniature N-methyl-D-aspartate receptor currents in NR2A 
knockout mice. Proc Natl Acad Sci U S A 100:1340-1345. 

 
Toyoda H, Zhao MG, Zhuo M (2005) Roles of NMDA receptor NR2A and NR2B 

subtypes for long-term depression in the anterior cingulate cortex. Eur J 
Neurosci 22:485-494. 

 
Tropea D, Van Wart A, Sur M (2009) Molecular mechanisms of experience-

dependent plasticity in visual cortex. Philos Trans R Soc Lond B Biol Sci 
364:341-355. 

 
Trussell LO (2002) Modulation of transmitter release at giant synapses of the 

auditory system. Curr Opin Neurobiol 12:400-404. 
 
Turecek R, Trussell LO (2001) Presynaptic glycine receptors enhance transmitter 

release at a mammalian central synapse. Nature 411:587-590. 
 

186 



Valenzuela CF, Partridge LD, Mameli M, Meyer DA (2008) Modulation of 
glutamatergic transmission by sulfated steroids: role in fetal alcohol 
spectrum disorder. Brain Res Rev 57:506-519. 

 
Vicini S, Wang JF, Li JH, Zhu WJ, Wang YH, Luo JH, Wolfe BB, Grayson DR 

(1998) Functional and pharmacological differences between recombinant 
N-methyl-D-aspartate receptors. J Neurophysiol 79:555-566. 

 
Visser E, Schug SA (2006) The role of ketamine in pain management. Biomed 

Pharmacother 60:341-348. 
 
Vitten H, Isaacson JS (2001) Synaptic transmission: exciting times for 

presynaptic receptors. Curr Biol 11:R695-697. 
 
Weitlauf C, Honse Y, Auberson YP, Mishina M, Lovinger DM, Winder DG (2005) 

Activation of NR2A-containing NMDA receptors is not obligatory for NMDA 
receptor-dependent long-term potentiation. J Neurosci 25:8386-8390. 

 
Wiesel TN, Hubel DH (1963) Single cell responses in striate cortex of kittens 

deprived of vision in one eye. J Neurophysiol 26:1003-1017. 
 
Wolfer DP, Litvin O, Morf S, Nitsch RM, Lipp HP, Wurbel H (2004) Laboratory 

animal welfare: cage enrichment and mouse behaviour. Nature 432:821-
822. 

 
Woodhall G, Evans DI, Cunningham MO, Jones RS (2001) NR2B-containing 

NMDA autoreceptors at synapses on entorhinal cortical neurons. J 
Neurophysiol 86:1644-1651. 

Yang J, Woodhall GL, Jones RS (2006) Tonic facilitation of glutamate release by 
presynaptic NR2B-containing NMDA receptors is increased in the 
entorhinal cortex of chronically epileptic rats. J Neurosci 26:406-410. 

 
Yao Y, Mayer ML (2006) Characterization of a soluble ligand binding domain of 

the NMDA receptor regulatory subunit NR3A. J Neurosci 26:4559-4566. 
 
Yashiro K, Philpot BD (2008) Regulation of NMDA receptor subunit expression 

and its implications for LTD, LTP, and metaplasticity. Neuropharmacology 
55:1081-1094. 

 
Yashiro K, Corlew R, Philpot BD (2005) Visual deprivation modifies both 

presynaptic glutamate release and the composition of 
perisynaptic/extrasynaptic NMDA receptors in adult visual cortex. J 
Neurosci 25:11684-11692. 

 
Yasuda H, Barth AL, Stellwagen D, Malenka RC (2003) A developmental switch 

in the signaling cascades for LTP induction. Nat Neurosci 6:15-16. 

187 



Yoshii A, Sheng MH, Constantine-Paton M (2003) Eye opening induces a rapid 
dendritic localization of PSD-95 in central visual neurons. Proc Natl Acad 
Sci U S A 100:1334-1339. 

 
Zong H, Espinosa JS, Su HH, Muzumdar MD, Luo L (2005) Mosaic analysis with 

double markers in mice. Cell 121:479-492. 
 
Zucker RS, Regehr WG (2002) Short-term synaptic plasticity. Annu Rev Physiol 

64:355-405. 
 
 

188 


