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Abstract
This paper proposes a methodology to segment near-tubular fiber bundles from diffusion weighted
magnetic resonance images (DW-MRI). Segmentation is simplified by locally reorienting diffusion
information based on large-scale fiber bundle geometry. Segmentation is achieved through simple
global statistical modeling of diffusion orientation. Utilizing a modification of a recent segmentation
approach by Bresson et al. allows for a convex optimization formulation of the segmentation problem,
combining orientation statistics and spatial regularization. The approach compares favorably with
segmentation by full-brain streamline tractography.

1 Introduction
Diffusion weighted (DW) magnetic resonance imaging (MRI) allows for in-vivo
measurements of water diffusion in tissues such as the human brain. While brain white matter
appears uniform in structural MRI, DW-MRI measurements can provide estimates of
macroscopic fiber bundle direction as well as indicate changes in tissue properties. However,
the relation between DW-MRI signal and white matter ultra-structure is only known partially.
For example, the manner in which axonal organization and geometry relate to a measured
diffusion profile in general remains an open question. Axonal organization is likely a major
factor for diffusion anisotropy [Beaulieu (2002)], with axonal myelinization having a
modulating (though not dominant) effect on water diffusion. Fiber bundle direction correlates
with the major diffusion direction in fiber bundle areas comprised of large numbers of
approximately unidirectional axons [Bihan (2003)]. This allows for the estimation of distinct
fiber bundles from DW-MRI measurements.
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A variety of approaches to extract white matter bundles from diffusion weighted images exist.
They may be classified into streamline-based approaches and voxel-based approaches (see
Figure 1 for an overview of the approaches). The streamline-based approaches utilize
streamline tractography to come up with bundle segmentations. For example, this can be direct
voxelization of the streamlines, voxelization preceded by streamline clustering [O’Donnell and
Westin (2007)], or stochastic tractography [Behrens et al. (2003);Friman et al. (2006)]. Voxel-
based approaches aim at extracting white matter bundles directly from the voxel data without
using streamline tractography. Approaches include voxel-based clustering [Wiegell et al.
(2003)], surface-evolution using global statistics [Lenglet et al. (2006);Wang and Vemuri
(2005)] or local similarity terms [Jonasson et al. (2005)], optimal connectivity methods [Jeong
et al. (2007);Fletcher et al. (2007)], region-growing [Melonakos et al. (2007)], hidden Markov
measure fields [McGraw et al. (2006)] and fuzzy segmentation [Awate et al. (2007)].

Though a large number of segmentation approaches exist, none of them can claim truly
universal applicability. The use of one method over another is typically based on some of the
following considerations:

1. Usability: How difficult is it to obtain robust, reliable results for large population
studies? How much user intervention is required?

2. Focus of analysis: Should all major fiber bundles in the brain be investigated, or only
a specific one?

3. Measure of interest: Are global measurements of interest or does locality play a role?
Is it important to obtain an accurate segmentation of the bundle or does a consistent
segmentation of a bundle core suffice?

4. Data quality: What is the resolution of the data and how noisy is it?

This paper proposes a segmentation approach based on reorienting the diffusion measurements.
Reorientation information is derived from large-scale fiber bundle geometry. This facilitates
region-based bundle segmentation with global statistics. However, it also presupposes a robust
method to compute an estimation of the geometry information. We propose in this work a
method for the segmentation of near-tubular fiber bundles only (whose large-scale geometry
can be approximated by a one-dimensional space curve with locally varying, approximately
circular, cross-sections) and can thus utilize optimal path methods or simple streamlining to
obtain the geometry information. Extensions to sheet-like fiber bundles are conceivable. While
the proposed approach is restricted to segmentations that conform to the imposed geometry
information, it is computationally efficient, is simple, allows for reliable optimization, is robust
to local noise effects, and relies only on a small number of parameters.

Briefly summarizing the remainder of this paper, in Section 2, we give an overview of the
system. Section 3 introduces the local coordinate system used for the reorientation of diffusion
information. Section 4 describes how to extend the local coordinate system to the complete
image volume. The reorientation of diffusion data is described in Section 5. Sections 6 and 7
describe the statistical modeling of fiber bundle direction and its use for bundle segmentation
respectively. Results are given in Section 8. Section 9 concludes the paper with a discussion
of the approach, and an outlook on possible future work.

2 System Overview
This section summarizes the key steps of the proposed segmentation approach. The overall
goal of the method is to be able to segment near-tubular fiber bundles from diffusion weighted
images. Segmentation requires a suitable similarity measure for voxel grouping into object
foreground and object background. While a multitude of segmentation methods for diffusion
weighted images exists (see Section 1) arguably the methods used in practice are based on
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streamlining: direct voxelization of streamlining results, clustering of streamlines, or stochastic
tractography (see Figure 2 for a depiction of the principle of segmentation through streamline
tractography). This is surprising, because (i) streamlining approaches are sensitive to noise and
(ii) volumetric segmentation algorithms (resulting in grid-based voxel classifications)
developed outside the area of diffusion weighted imaging have either not been applied to DW-
MRI or only with limited success. Edge-based and region-based surface evolutions, graph cuts,
and region growing are examples of such volumetric segmentation approaches. A major
impediment to their adoption for DWI segmentation is the nature of DWI data. DWI data is (i)
vector-valued (tensor-valued if diffusion tensors are computed), is (ii) axial (identifying
antipodal directions), typically has (iii) low signal to noise ratio and is of relatively low
resolution, and is (iv) spatially non-stationary (i.e., large scale orientation changes are expected
to occur within individual fiber bundles).

Figure 3 illustrates diffusion tensors changing direction along a fiber bundle and the same set
of diffusion tensors when realigned relative to a representative fiber tract. This realignment
process is at the core of the approach proposed in this paper. Realignment simplifies the original
problem by making it spatially stationary. Segmentation methods for vector-valued images can
then be employed for fiber bundle segmentation. Note that standard streamline tractography
usually incorporates a weak, implicit form of spatial realignment by disallowing orientation
changes considered too drastic.

The proposed approach is:

1. Find a representative fiber tract (e.g., by streamlining, by an optimal path approach,
or through atlas warping of a predefined representative fiber tract).

2. For every candidate point in the image volume, find the closest point on the
representative fiber tract.

3. Regard the candidate point as part of the fiber bundle if its diffusion information is
similar to the diffusion information at the closest point.

4. Create a spatially consistent segmentation based on the similarities of 3).

The key questions are, what is meant by “closest,” “similar,” and “spatially consistent.” The
direct approach to measure closeness is to look at Euclidean distance. Euclidean distance
typically does not yield unique point to point correspondences. Section 4 thus proposes a
method based on frame diffusion. Since the focus of this paper is the segmentation of near-
tubular fiber bundles, the overall fiber bundle geometry can be approximately described by the
space curve given by a representative fiber tract. The (regularized) Frenet frame of the space
curve can then be used as a local coordinate frame and as the basis for frame diffusion; see
Section 3.

Many probabilistic and deterministic similarity measures have been proposed for diffusion
weighted imaging (in particular, for diffusion tensor imaging; see for example [Lenglet et al.
(2006); Jonasson et al. (2005)]). One of the simplest measures of diffusion similarity is to
measure angular deviations of the major directions of diffusion. This is in line with streamline
tractography which typically uses only the principal diffusion direction for streamline
propagation 1 and will be used in a probabilistic formulation in this paper as discussed in
Section 6. To obtain spatial consistency, which cannot be achieved by local segmentation
decisions based on directional statistics and reorientation of diffusion measurements alone,
regularization is necessary. Section 7 describes the proposed segmentation approach based on
a slight modification of the convex optimization formulation by [Bresson et al. (2007)].

1Tensor derived measures other than principal diffusion direction are typically only used as tract termination criteria.
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3 The Regularized Axial Frenet Frame
To parameterize near-tubular fiber bundles, a suitable coordinate system is necessary. For
space-curves, the Frenet frame can be used. Given a parameterized curve (p): [0, 1] ↦ ℝ3,
such that  ≠ 0,  ≠ 0 (i.e., without singular points of order 0 and 1 [do Carmo (1976)]) the
Frenet frame is given by

 is the unit tangent vector,  and ℬ are the normal and the binormal, κ and τ denote
curvature and torsion respectively, and s denotes arc-length. See Figure 4 for a depiction of
the Frenet frame. Computing  from  is immediate. Computing  yields ℬ =  ×  and thus
the desired local coordinate frame.

In this paper the space curve is given by a representative fiber tract. For the experiments of
Section 8 streamline tractography was used to compute the representative fiber. For a more
robust approach, streamlining should be replaced by an optimal path method [Pichon et al.
(2005)]. In what follows, a known representative fiber tract is assumed.

Since the Frenet frame is based on differential properties of the space curve it is sensitive to
noise. Instead of using the Frenet frame directly, the frame diffusion is instead based on a
regularized version of the Frenet frame as discussed in Appendix A.1. Figure 5 shows a
progressively more regularized Frenet frame. Note that for the reorientation of diffusion
information (see Section 5) the Frenet axes can be flipped. All computations in this paper
identify antipodal directions; derivatives are computed by prealigning all vector-valued
quantities locally before derivative computation.

4 Frame Diffusion
Instead of declaring a point in space to correspond to its closest point (measured by Euclidean
distance) on the representative tract, here, correspondence is established implicitly through a
diffusion process. This allows for smoother correspondences avoiding orientation jumps which
occur at shock points for the Euclidean distance map. Since orientation is the quantity of
interest, the orientation information is diffused away from the representative tract. Tschumperle
and Deriche [Tschumperle et al. (2001)] regularize diffusion tensor fields by evolutions on
frame fields. This can be used to define the diffusion of the frame field off the reference tract.
Formally,

(1)

where  = { , , ℬa} is the set of the axes implied by the regularized Frenet frame,  denotes
the boundary condition given by the Frenet-frame-implied axes on the tract, x ∈ ℝ3 denotes

spatial position, θ artificial evolution time, and  the spatial Laplacian operator.
The frame diffusion problem (1) can be solved [Tschumperle et al. (2001)] by evolving a set
of three coupled vector diffusions:
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which may be rewritten [Tschumperle et al. (2001)] as the rotations

where R =  × Δ  +  × Δ  + ℬ × Δℬ and  = { , , ℬa} is given by identifying antipodal
directions. While the statistics used for the segmentation in Section 7 only use directional
information, diffusing the complete frame information specifies a local rotation. This allows
for easy extension of the methodology to formulations using for example the full tensor
information or orientation distribution functions. Figure 6 shows two 2D examples of frame
diffusion. The resulting diffused frame field is smoother. Interestingly, the partial half-circle
example shows that, to a limited extent, frame diffusion can be used to fill in missing
information. This is a useful feature in case it is not possible to obtain one connected
representative fiber tract.

5 Frame Reorientation
The diffused frames can be used to reorient diffusion measurements locally to a canonical
frame M2. This reorientation can be applied to any representation of diffusion information,
e.g., the diffusion tensor, orientation distribution functions, etc. For clarity, reorientation is
explained here for the case of diffusion tensors T. Given the diffused frame { , , ℬ} and the
associated rotation matrix F = [ , , ℬ] a tensor T is reoriented by applying the relative rotation
MFT, i.e., by

The tensor reorientation yields tight tensor statistics while allowing a segmentation algorithm
to apply spatial regularizations in the original space. It greatly simplifies computations by
avoiding an explicit warping to straighten a curved fiber bundle.

6 Orientation Statistics
To segment fiber bundles of interest requires a connection between the diffusion weighted
images and the macroscopic geometric orientation of the underlying axon bundles. How
diffusion measurements relate to fiber structure and geometry is not completely clear.
However, a common assumption is that the major direction of diffusion aligns with the main
fiber direction 3. We now describe the probabilistic modeling of fiber bundle orientations.

2See Section 6 for a way to determine the canonical frame automatically
3For complicated fiber arrangements, such as fiber crossings, multiple “main” directions may emerge. This paper concentrates on one
main fiber direction as derived for example from the diffusion tensor model.

Niethammer et al. Page 5

Neuroimage. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



6.1 Watson Distribution
The Watson distribution is one of the simplest distributions for directional random variables
[Watson (1965); Bingham (1974); Mardia (1975)]. It is radially symmetric around a mean
direction μ, with a spread controlled by the concentration parameter k.

The Watson distribution on the unit sphere S2 has probability density

where μ is the mean direction vector, k the concentration parameter 4, q ∈ S2 is a direction
represented as a column vector, and 1F1(·; ··) denotes the confluent hypergeometric function.
The Watson distribution is bipolar for k > 0, with maxima at ±μ and uniform for k = 0. To
model the interior of a fiber bundle, μ is set to the tangential direction of the canonical frame
M. Reorienting diffusion information results in a tight Watson distribution with large
concentration parameter k. The statistics outside the fiber bundle are modeled using the uniform
distribution, since no preferred direction can be assumed in general in the fiber exterior.

Noting that cos θ = μTd, for fixed μ and k, the critical angle (pw(d|μ, k) = pw(d|·, 0) where the
voxel probability for the interior and the exterior of the fiber bundle are equal) is the solution
of the following equation:

The critical angle has the following limiting cases

illustrating the fact that larger values for the concentration parameter k enforce stricter
classification for interior voxels. The critical angle for k → 0 corresponds to the maximal angle
dispersion [Schwartzman et al. (2008)]. It shows that voxels with directions deviating by more
than 54.74° from the mean direction μ cannot be classified as belonging to the interior using
the probabilistic modeling proposed 5. This is not a practical limitation for reoriented diffusion
data which is expected to have (and has in practice; see Section 8) a large concentration k by
design.

Figure 7 illustrates the relation between concentration parameter k and the critical angle θ.
Figure 8 shows some sample Watson distributions. While it is possible to use more complicated
probability distributions (e.g., the Bingham distribution, or distributions on the diffusion tensor
directly) to model a fiber tract orientation distribution, the Watson distributions chosen (in
conjunction with the reorientation scheme) have the advantage of modeling the interior and
the exterior of the fiber bundle with only one free parameter, the concentration k, greatly

4To avoid ambiguities the concentration is denoted as k; κ denotes curvature in this paper.
5More expressive distributions, for example the Bingham distribution, can get around this limitation for non-radially symmetric fiber
direction distributions, if radial symmetry is not enforced. The price to pay is more parameters to estimate.
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simplifying the estimation task and allowing for an easy interpretation of the estimated
probability distribution.

6.2 Parameter estimation for the Watson distribution
The distribution parameters k and μ are easy to estimate. Given a set of N points qi ∈ S2 (written
as column vectors and representing spatial directions), the maximum likelihood estimate of
μ is the major eigenvector of the sample covariance [Schwartzman et al. (2008)]

and 1 − λ1 (with λ1 the largest eigenvalue of C) is the maximum likelihood estimate of .
Estimation of μ is performed only as a means of estimating the canonical frame direction and
computed only on the representative tract. It is assumed fixed throughout the segmentation
process described in Section 7. Only the concentration parameter k is estimated during bundle
segmentation. For increased estimation robustness, robust estimators for the concentration
parameter k may be used [Fisher (1982); Kimber (1985)] to account for cases where orientation
measurements are either incorrect or cannot be reliably determined (as for example for isotropic
tensors).

Estimating μ and k allows for

1. parameter-adaptive segmentations and

2. the estimation of a preferred reoriented coordinate-system direction, assuring that the
main direction of diffusion is preserved on average after reorientation.

7 Segmentation
We now integrate the diffusion data reorientation method and the statistical modeling described
in Section 6 within a probabilistic version of the Chan-Vese [Chan and Vese (2001)]
segmentation framework [Cremers et al. (2007)] using the probability distributions of Section
6.

7.1 Optimization Problem
The Chan-Vese segmentation approach [Chan and Vese (2001)] is a piecewise-constant
approximation formulation, minimizing the energy

(2)

where f(·) denotes image intensities, c1 and c2 are the intensity estimates for the interior and
the exterior of the segmentation respectively, Ω is the computational domain, Ωi is the interior
domain, and s indicates arc-length. The Chan-Vese energy has the probabilistic formulation

(3)
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which reduces to Equation 2 (with a rescaling of λ) for 
with . Thus the Chan-Vese optimization problem 2 can be interpreted as finding the best
two-phase segmentation assuming Gaussian probability distributions of equal variance interior
and exterior to the sought for segmentation.

In the probabilistic formulation f(·) denotes an image feature (here, direction), p1 and p2 are
the likelihoods for the interior and the exterior of the segmentation respectively. Choosing

constitutes the segmentation approach. See Section 6.1 for a discussion of this choice.

7.2 Numerical Solution
According to a slight modification of the solution approach in [Bresson et al. (2007)], the
probabilistic Chan-Vese energy minimization problem 3 (on log-likelihood functions instead
of image intensities) can be recast as the minimization of

(4)

where

The boundary is recovered as Ωi = {x: u(x) > ξ}, ξ ∈ [0, 1]. Equation 4 can be solved efficiently
through a dual formulation of the total-variation norm [Bresson et al. (2007)]:

1. Solve for u keeping v fixed:

(5)

2. Solve for v keeping u fixed:

(6)

3. Repeat until convergence.

Equation 6 has the solution v = min{max{u(x) − θλr1(x, p1, p2), 0}, 1} and Equation 5 can be
solved using a fixed-point iteration
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To enforce segmenting a bundle containing the representative tract set

The segmented fiber bundle is defined as the set of voxels with  which are contained in
the connected component containing the voxels of the representative tract. This is also the
volume which is used throughout the evolution to update the estimation of the concentration
k of the fiber bundle’s Watson distribution.

8 Results
This section gives results for the proposed segmentation approach. Synthetic examples are
discussed in Section 8.1. Section 8.2 presents results for a real DW-MRI of the brain and
compares them to segmentation results obtained through streamline tractography based on the
major eigenvectors of the diffusion tensors and Runge-Kutta numerical integration.

8.1 Synthetic example
A synthetic tensor example was generated. Tensors are assumed of uniform shape with
eigenvalues (1.5, 0.5, 0.5)e − 3 oriented along a circular path to model a fiber bundle. Tensors
oriented orthogonally to the circular path model the outside. Diffusion weighted images were
generated using the Stejskal Tanner equation , where Sk denotes the diffusion
weighted image acquired by applying a gradient direction gk with b-value b, and T the diffusion
tensor. Parameters were S0 = 1000, b = 1000 with 46 gradient directions distributed on the unit
sphere using an electric repulsion model and enforcing icosahedral symmetry. Rician noise of
σ = 70 was introduced to the baseline image S0 (non-diffusion weighted) and the diffusion
weighted images Sk. Figure 9 shows the original data and the resulting segmentation on the top
row (with the streamline indicating the computed representative tract) and the reoriented data
with associated segmentation on the bottom row. For this synthetic example, reorientation
results in an almost perfectly uniform tensor distribution on the inside and the outside of the
simulated fiber bundle. Consequently, while the proposed approach fails at segmenting the
original data, it segments the reoriented data well. Note, that the failure to segment the original
data is not merely a result of the segmentation method employed. Any segmentation relying
purely on region-based statistics will either have to include some of the background in its bundle
segmentation or will severely under-segment the bundle itself, since background and
foreground are not clearly separable based on global statistics. While including edge-based
terms may improve the segmentation of the original data, regional terms will be of limited use
and will locally counteract the edge influence requiring a delicate balance between region-
based and edge-based energies to faithfully segment the simulated fiber bundle.

8.2 Real example
The real example was computed for the cingulum bundle using a 3T DW-MRI upsampled to
isotropic resolution (0.93 mm3) with 8 baseline images and 51 gradient directions distributed
on the sphere by electric repulsion (b=586). The representative tract was computed using
streamline tractography.
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Figure 10 shows color by orientation representations for a sagittal slice through the brain with
the cingulum bundle (mainly in green) before and after reorientation. The reoriented image
shows a consistently green cingulum bundle, whereas in the original image the cingulum bundle
is colored blue when wrapping posteriorly around the corpus callosum, indicating a change of
orientation from anterior-posterior to superior-inferior. This result demonstrates the beneficial
effect of reorientation on the real data set (effectively removing large-scale geometry effects),
which allows for fiber bundle segmentation with a global statistical model. Example
segmentation results of the proposed approach are shown for the reoriented and the original
data. Algorithm parameters were set to θ = 0.01, λ = 0.5, dmax = 10 mm. The concentration
parameter was set to k = 100 and converged to k = 19.5 throughout the evolution for the
reoriented dataset. The surface models generated from the computed segmentations show that
the segmentation for the reoriented data approximates the cingulum bundle more faithfully.

Finally, to demonstrate the strength of the reorientation approach, Figure 11 gives an example
for the cingulum bundle segmentation at a posterior slice of the cingulum bundle where the
cingulum bundle wraps around the corpus callosum. While in the reoriented case the
segmentation is successful and the direction of the cingulum bundle is uniform (green), the
segmentation on the original data fails in this part of the fiber bundle.

To compare the proposed methods to alternative segmentation approaches, the cingulum
bundle was segmented using a region of interest based approach (the same regions of interest
used to generate the representative fiber tract for reorientation). Two small axial regions of
interest were defined for the cingulum bundle (superiorly to the corpus callosum). Streamline
tractography with voxelization, full brain streamline tractography with voxelization, as well
as segmentation on the original and reoriented data using the proposed approach was
performed. Figure 12 illustrates segmentation results for these methods for coronal slices in
the superior part of the cingulum bundle (where the cingulum bundle is not strongly curved).
As expected streamline tractography and full brain streamline tractography mainly capture the
interior of the fiber bundle, with full brain tractography performing qualitatively better than
standard region of interest based streamline tractography (streamlines were seeded one per
voxel in the regions of interest). The proposed segmentation approach captures the cingulum
bundle well for the reoriented and for the original data, showing the utility of segmenting in
orientation space. However, the reoriented segmentation results are better where the cingulum
bundle curves strongly, as shown in Figure 11.

9 Conclusion and Discussion
This paper proposed a new segmentation method for near-tubular fiber bundles. It is based on
reorientation of diffusion measurements resulting in more uniform data distributions inside the
fiber bundle of interest. Segmentation is performed by an efficient convex approximation of
the probabilistic Chan-Vese energy using region-based directional statistics. The approach
compares favorably to streamline approaches for bundle segmentation.

Extensions to sheet-like structures are conceivable, where the representative tract would be
replaced by a representative sheet [Yushkevich et al. (2007); Smith et al. (2006)] (using the
major diffusion direction combined with the normal to the medial sheet to define a frame for
reorientation). Population studies could be performed by either performing segmentation in
atlas space, or by using an atlas defined representative tract and subject-specific bundle
segmentations. Integrating the segmentation scheme into an approach such as tract based
spatial statistics (TBSS) [Smith et al. (2006)] would be an interesting future research direction.

Since resolving individual axons fibers is beyond today’s measurement technology, brain
connectivity cannot be measured directly. However, the macroscopic effect of large collections
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of axons can at least give estimations of major fiber pathways in the brain. Consequentially,
fiber bundle segmentation algorithms need to strike a balance between data fidelity and
segmentation consistency across a number of subjects. While the proposed algorithm imposes
geometric constraints on the segmentation by adhering (in a probabilistic sense) to a given
large-scale model of fiber geometry, the geometry constraints allow it to be relatively
insensitive to local measurement noise.
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A Derivations

A.1 Regularized Frenet Frame
One needs to require that the curvature κ be non-vanishing, in order for the normal vector 
to be uniquely defined through  = κ  for a space curve without singular points of order 0.
Intuitively, this means that for straight line segments (and inflection points) the normal and the
binormal vectors are not uniquely defined. While for practical purposes the curvature is not
expected to vanish frequently, it cannot be guaranteed. To be able to define a suitable frame
at locations where κ = 0 the solution to the Frenet equations can be replaced by the following
(regularized) minimization problem
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(A.1)

A solution can be obtained using calculus of variations following Tschumperle [Tschumperle
and Deriche (2002)]. Problem A.1 can be reformulated as the unconstrained minimization of

where λ is the Lagrangian multiplier. The first Gateaux variation is then

evaluating to

Assuming Neumann boundary conditions for Q and using the constraint QTQ − 1 = 0 simplifies
the variation to

which needs to vanish for a candidate minimizer and any perturbation. Thus

But then [Tschumperle and Deriche (2002)]

and the resulting gradient descent flow is
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Solving the minimization problem requires the computation of derivatives with respect to arc-

length. The tangential vector is . The quantities Qss, κ, and  can all be expressed in
terms of the parametrization p. First note that

Thus

and

In practice a cubic smoothing spline is used to represent the parametric form of the space curve
.
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Fig. 1.
Approaches for fiber bundle segmentation. Fiber bundle segmentation may be performed
directly on voxel data or through streamline tractography with subsequent selection of the fibers
of interest (either through region of interest specification or automatic clustering). Atlas
information may be used to incorporate prior information into the segmentation process or to
facilitate segmentation through atlas registration itself.
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Fig. 2.
Principle of a simple segmentation by streamline tractography. Streamlines are seeded either
in a region of interest or globally. Only streamlines passing through one or multiple regions of
interest are kept. The voxels traversed by streamlines constitute the volumetric fiber bundle
segmentation.
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Fig. 3.
Tensor reorientation concept. The spatially varying tensor orientation can largely be removed
by reorientation with respect to a representative fiber tract (blue).
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Fig. 4.
The Frenet frame. A frame { , , ℬ} consisting of the tangent, the normal, and the binormal
to  can uniquely be assigned to every point for a non-singular space curve through the Frenet
equations.
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Fig. 5.
Regularization of the Frenet frame with tangential direction fixed helps obtaining smoothly
varying frames from noisy data on a space curve.
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Fig. 6.
Frame diffusion results in smooth frame fields and consequentially in smooth reorientations.
Initializations show frames based on closest Euclidean distance point correspondences,
resulting in frame discontinuities. The diffused results are obtained through frame diffusion
from the initializations.
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Fig. 7.
Critical angle θ vs. concentration k.

Niethammer et al. Page 21

Neuroimage. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 8.
Watson distributions projected along direction μ onto the unit disk for a sample of concentration
parameters k.
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Fig. 9.
Segmentation of a synthetic example. Reorienting diffusion information based on the
representative streamline (top left) result in almost uniform tensor distributions interior and
exterior to the fiber bundle. While segmentation for the original data is difficult and leads to
unsatisfactory results, segmentation of the reoriented data is much easier leading to a faithful
segmentation with the proposed approach. For both segmentations, k = 10, θ = 0.01, λ = 0.7.
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Fig. 10.
Sagittal slice of the cingulum bundle, before and after tensor reorientation. The cingulum
bundle appears more uniform in direction (green) after reorientation. Reorientation greatly
improves the segmentation result of the proposed approach.
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Fig. 11.
Effect of reorientation on orientation and segmentation, depicted for a posterior coronal slice.
Reorientation results in a consistent orientation of the cingulum bundle changing from blue to
green, indicating a directional change from inferior-superior to posterior-anterior. While
segmentation using the proposed approach fails for the original data it succeeds after
reorientation.
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Fig. 12.
Superior coronal slices: Original data; results for streamline (S) and full brain streamline (FBS)
tractography, for the proposed segmentation on original data (O) and on reoriented data (RO).
Only the proposed approach segments up to the perceived bundle boundary in orientation space.
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