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Abstract. The spectral decomposition of the path space of the vertex model asso-

ciated to the vector representation of the quantized affine algebra Uq(ŝln) is studied.
We give a one-to-one correspondence between the spin configurations and the semi-
standard tableaux of skew Young diagrams. As a result we obtain a formula of the
characters for the degeneracy of the spectrum in terms of skew Schur functions. We
conjecture that our result describes the sln-module contents of the Yangian Y (sln)-

module structures of the level 1 integrable modules of the affine Lie algebra ŝln.
An analogous result is obtained also for a vertex model associated to the quantized

twisted affine algebra Uq(A
(2)
2n ), where Y (Bn) characters appear for the degeneracy

of the spectrum. The relation to the spectrum of the Haldane-Shastry and the
Polychronakos models are also discussed.
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2 SKEW YOUNG DIAGRAM METHOD

1. Introduction

The corner transfer matrix (CTM) has been attracting much attention in the recent
study of integrable lattice models based on the Yang-Baxter equation [3]. The CTM
acts on the space of paths, which is often identified with the semi-infinite tensor
product of a finite-dimensional quantum group module. It is well known that the
trace of the CTM of a vertex model associated to the quantized affine algebra Uq(ĝ)
is related to affine Lie algebra characters. We call this correspondence the DJKMO
(Date-Jimbo-Kuniba-Miwa-Okado) correspondence.

In [2] a fine structure of the CTM spectrum, called the spectral decomposition, is

studied in the Uq(ŝl2) vertex models. The idea behind it is as follows: The logarithmic
derivative of the CTM is regarded as the energy operator, or the Hamiltonian, of the
path space. As a nature of an integrable system, we expect that there exists a family
of commuting operators (the integrals of motion) which act on the path space and
commute with the Hamiltonian. The spectral decomposition is the simultaneous
diagonalization of these integrals of motion. The degeneracy of the spectrum, then,
reflects the non-abelian symmetry which commutes with these integrals of motion.

In the meanwhile, the action of the Yangian algebra Y (sl2) is defined on the level

1 integrable modules of the untwisted affine Lie algebra ŝl2 in [11], and their Y (sl2)-
module structures are determined [6]. It turns out that the degeneracy of the spectrum

of the CTM Hamiltonian in the Uq(ŝl2) vertex model exactly describes the Y (sl2)-
module structure of the level 1 integrable modules [2].

We believe this coincidence is a universal phenomena. Namely, we expect that a
similar coincidence occurs between the spectrum of the commutant of the non-abelian,
probably some quantum group, symmetry of a conformal field theory and the CTM
spectrum in the corresponding lattice model.

Motivated by this expectation, in this paper we study the spectral decomposition
of the vertex model of the vector representation of the Uq(ŝln). The counter part

of the DJKMO correspondence is the level 1 integrable modules of ŝln. The action
of the Yangian Y (sln) on these modules is defined in [22], but the Y (sln)-module
structure is not fully studied yet (however, see [5] for a related result). In this paper
we determine the characters of the degeneracy of the spectrum, and show that they are
the characters of irreducible Y (sln)-modules as expected. Therefore, we conjecture
that our spectral decomposition exactly describes the Y (sln)-module structure of the
level 1 integrable modules at the character level.

Conceptually, the spectral decomposition in the sln case is formulated just as in
the case of sl2. However, due to the complexity of the irreducible modules of Y (sln)
for n ≥ 3, the incidence matrix technique used in [2] is not very efficient. A key
to overcome this difficulty is the observation that there exists a natural one-to-one
correspondence between the paths of the vertex model and the semi-standard tableaux
of certain skew Young diagrams. The appearance of the skew Young diagrams is not
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quite unexpected, because they label a family of Y (sln)-modules, called the tame
modules in [20]. Thanks to this correspondence, we can express the characters of the
degeneracy of the spectrum in terms of the skew Schur functions. This enables us to
identify them as irreducible Y (sln) characters.

It is possible to extend our analysis for a vertex model associated to the quantized

twisted affine algebra Uq(A
(2)
2n ). The characters of the degeneracy of the spectrum are

analogues of the skew Schur functions. They are conjectured in [18] to be irreducible
Y (Bn) characters.

The content of the paper is as follows: In section 2 we review the DJKMO corre-
spondence for the vertex model in the sln case. In section 3 we formulate the spectral
decomposition of the model. In section 4 some properties of skew Young diagrams and
skew Schur functions are given. In section 5 we describe the correspondence between
the configurations of the vertex model and the semi-standard tableaux, and determine
the characters of the degeneracy of the spectrum. In section 6 the identifications with
irreducible Y (gln) and Y (sln) characters are given. In section 7 we discuss the relation
with the spectrum of other type of spin models, such as the Haldane-Shastry model

and the Polychronakos model. In section 8 an analogous result for an Uq(A
(2)
2n ) vertex

model is presented. In Appendix A the equality between the skew Schur functions
and the Rogers-Szegö polynomials is proved. In Appendix B a new combinatorial
description of the Kostka-Foulkes polynomials is given. In Appendix C we describe

the level 1 character of A
(2)
2n .

2. DJKMO correspondence

We review the correspondence between the CTM spectrum of the vertex models of
the vector representation of Uq(ŝln) and the affine Lie algebra characters of ŝln [8].

For given two infinite sequences, ~a = (a1, a2, . . . ) and ~b = (b1, b2, . . . ), of any kind

of objects ai, bi, we write ~a ≈ ~b if ai 6= bi only for finitely many i. We often use a
shorthand notation ~a = (a1, . . . , ak, (ak+1, . . . , ak+m)

∞) for such a periodic sequence
as ~a = (a1, . . . , ak, ak+1, . . . , ak+m, ak+1, . . . , ak+m, . . . ).

Let Λ1, . . . ,Λn−1 be the fundamental weights of the Lie algebra sln, and let

ǫi = Λi − Λi−1 (2.1)

for i = 1, . . . , n with Λ0 = Λn = 0. Then B(Λ1) = {ǫ1, . . . , ǫn} is the set of all the
weights of the irreducible representation (vector representation) of sln whose highest
weight is Λ1. We give a total ordering in B(Λ1) as ǫ1 ≺ ǫ2 ≺ · · · ≺ ǫn.

We define the local energy function H : B(Λ1)×B(Λ1)→ {0, 1} as

H(ǫi, ǫj) =




0 if ǫi ≺ ǫj ,

1 if ǫi � ǫj .
(2.2)
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The function H will play an essential role in our study. It is the logarithm of the
R-matrix associated to the vector representation of Uq(ŝln) in the limit q → 0.

An infinite sequence ~s = (si), si ∈ B(Λ1), is called a spin configuration if it has a
form

~s = (s1, . . . , sm, (ǫ1, ǫ2, . . . , ǫn)
∞),

where s1, . . . , sm is an arbitrary finite sequence. Equivalently, ~s is a spin configuration
if ~s ≈ ~s(k) for some k = 0, . . . , n− 1, where

~s(k) = (ǫ1, ǫ2, . . . , ǫk, (ǫ1, ǫ2, . . . , ǫn)
∞). (2.3)

The set of all the spin configurations S has a natural decomposition

S =
n−1⊔

k=0

S(k), S(k) = {~s | ~s ≈ ~s(k)}. (2.4)

For ~s = (si) ∈ S
(k) we define its energy E(~s) and sln-weight wt(~s) as

E(~s) =
∞∑

i=1

i
{
H(si, si+1)−H(s

(k)
i , s

(k)
i+1)

}
, (2.5a)

wt(~s) = Λk +
∞∑

i=1

(
si − s

(k)
i

)
. (2.5b)

Proposition 2.1. Let ~s = (s1, . . . , sm, (ǫ1, . . . , ǫn)
∞) be any element of S(k). Then

wt(~s) =
m∑

i=1

si.

Proof. Since m ≡ k modulo n,
∑m

i=1 s
(k)
i = Λk. Thus

m∑

i=1

si = Λk +
m∑

i=1

(si − s
(k)
i ) = Λk +

∞∑

i=1

(si − s
(k)
i ) = wt(~s).

There is a remarkable connection between the partition function of S(k) and an
affine Lie algebra character.

Theorem 2.2 (DJKMO correspondence [8, 15]). For k = 0, 1, . . . , n − 1, let L(Λk)

be the level 1 integrable module of the untwisted affine Lie algebra ŝln whose highest
weight is the kth fundamental weight Λk of ŝln. Then the following equality holds:

chL(Λk) = q∆k−c/24
∑

~s∈S(k)

qE(~s)ewt(~s) (2.6a)

= q∆k−c/24
∑

~s∈S(n−k)

qE(~s)e−wt(~s), (2.6b)
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where chL(Λk), ∆k = k(n − k)/2n, and c = n − 1 are the (normalized) character,
the conformal dimension, and the Virasoro central charge of L(Λk), respectively [13].
In (2.6b) S(n) = S(0).

Remark . Often spin configurations are described by an alternative notion, paths. An
infinite sequence ~p = (pi) of ŝln-weights is called a path if it satisfies the conditions:
(i) pi+1 − pi ∈ B(Λ1), (ii) ~p = (p1, . . . , pm, (Λ0,Λ1, . . . ,Λn−1)

∞). It is clear that the
map ~p = (pi) 7→ ~s = (pi+1 − pi) is a bijection from the set of all the paths P to S.
By this identification our spin configurations are also called paths in some literature.
The sln-weight of a path ~p = (pi) is defined as wt(~p) = p1. Then, under the bijection
~p 7→ ~s, wt(~p) = −wt(~s) holds. It is this context where (2.6b) is proved in [8]. The
expression (2.6a) follows from (2.6b) by the Dynkin diagram automorphism αi ↔ αn−i

of sln.

3. Spectral decomposition

We introduce the local energy map h : S → {0, 1}N such that

h : ~s = (si) 7→ ~h = (hi), hi = H(si, si+1). (3.1)

Each number hi is called the ith local energy of ~s. We call the image Sp = h(S) the
spectrum of S. Let Sp(k) = h(S(k)). Then we have the decomposition Sp =

⊔n−1
k=0 Sp

(k).

The element of Sp(k) is characterized as follows.

Proposition 3.1. An element ~h = (hi) ∈ {0, 1}
N belongs to Sp(k) if and only if it

satisfies the conditions,

(i) hi + hi+1 + · · ·+ hi+n−1 ≥ 1 for any i. (3.2a)

(ii) ~h ≈ ~h(k), where ~h(k) := h(~s(k)) = (0, . . . , 0, 1︸ ︷︷ ︸
k

, (0, . . . , 0, 1︸ ︷︷ ︸
n

)∞).
(3.2b)

One can paraphrase the condition (3.2a) as “There are at most n− 1 consecutive

0’s in ~h”. Here we prove only the necessity of the conditions. The sufficiency will be
proved after Prop. 5.1 in section 5.

Proof. Let us assume hi = hi+1 = · · · = hi+n−2 = 0. Then we have si ≺ si+1 ≺ · · · ≺
si+n−1, from which si+n−1 = ǫn follows. Therefore, hi+n−1 = H(si+n−1, si+n) = 1
regardless of the value of si+n.

The condition (ii) is an immediate consequence of (2.3).

Any element ~h of Sp(k) is uniquely written in the form

[m1, . . . , mr] := (0, . . . , 0, 1︸ ︷︷ ︸
m1

, . . . , 0, . . . , 0, 1︸ ︷︷ ︸
mr

, (0, . . . , 0, 1︸ ︷︷ ︸
n

)∞), 1 ≤ mi ≤ n, mr 6= n.
(3.3)
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Obviously

Sp(k) = {[m1, . . . , mr] | r ≥ 0, 1 ≤ mi ≤ n, mr 6= n,
r∑

i=1

mi ≡ k mod n}.

The surjection h : S(k) → Sp(k) induces the decomposition of S(k),

S(k) =
⊔

~h∈Sp(k)

S~h, S~h = h−1(~h). (3.4)

We call this decomposition the spectral decomposition of S(k).

Let us introduce the character of the degeneracy of the spectrum at ~h,

chS~h = q∆k−c/24
∑

~s∈S~h

qE(~s)ewt(~s)

= q∆k−c/24+
∑∞

i=1
i(hi−h

(k)
i )χ~h, χ~h =

∑

~s∈S~h

ewt(~s).
(3.5)

As is standard in the character theory of sln, we regard χ~h = χ~h(x) as a function of
the variables x1 = eǫ1, x2 = eǫ2, . . . , xn = eǫn with the relation x1x2 · · ·xn = 1. Due
to Theorem 2.2, the character of L(Λk) is decomposed as

chL(Λk)(q, x) = q∆k−c/24
∑

~h∈Sp(k)

q
∑∞

i=1
i(hi−h

(k)
i )χ~h(x). (3.6)

The main purpose of the paper is to calculate the characters χ~h and to show that
they are irreducible characters of Y (sln). To do it, we make use of a hidden relation
between spin configurations and skew Young diagrams.

4. Skew diagrams and skew Schur functions

Let us recall the definitions of a skew diagram, a semi-standard tableau, and the
skew Schur function. We basically follow the definitions and notations of [19].

A partition λ = (λ1, λ2, . . . , λm) is a non-increasing sequence of non-negative inte-
gers, λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0. We let |λ| =

∑m
i=1 λi. The length l(λ) of λ is the

number of the non-zero elements in λ. As usual, a partition λ is represented by a
(Young) diagram, which is denoted by the same symbol λ. We conveniently identify
the partitions (λ1, . . . , λm), (λ1, . . . , λm, 0), (λ1, . . . , λm, 0, 0), etc. The conjugate of a
partition λ is a partition λ′ whose diagram is the transpose of the diagram of λ along
the main diagonal. For example, if λ = (4, 3, 2), then its conjugate is λ′ = (3, 3, 2, 1).

For a pair of partitions λ and µ, we write λ ⊃ µ if λi ≥ µi for any i. If λ ⊃ µ,
the diagram µ is naturally embedded inside the diagram λ. Then the skew (Young)
diagram λ/µ (denoted by λ−µ in [19]) is obtained by subtracting the diagram µ from
the diagram λ. For example, if λ = (5, 4, 4, 1) and µ = (4, 3, 2, 0), then λ/µ looks as
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✻

❄
m1

✻

❄

m2

✻
❄
mr

Figure 1. A border strip 〈m1, . . . , mr〉.

follows:

We set |λ/µ| = |λ| − |µ|.
We say λ/µ is a skew diagram of rank n if the length of any column of λ/µ does

not exceed n. Two boxes in a skew diagram are adjacent if they share a common side.
A skew diagram λ/µ is connected if, for any pair of boxes a and a′ in λ/µ, there exits
a series of boxes b1 = a, b2, . . . , bj = a′ in λ/µ such that bi and bi+1 are adjacent. A
skew diagram is called a border strip if it is connected, and contains no 2 × 2 block
of boxes. Let 〈m1, . . . , mr〉 denote the border strip of r columns such that the length
of ith column (from the right) is mi (Fig. 1).

For a skew diagram λ/µ, we now define the skew Schur function sλ/µ. In each box
of a given skew diagram λ/µ, let us inscribe one of the numbers 1, 2, . . . , n. We call
such an arrangement of numbers a semi-standard tableau T of shape λ/µ, if it satisfies
the following condition: Let a and b be the inscribed numbers in any pair of adjacent
boxes. Then,

(i) a < b if b is lower-adjacent to a. (4.1a)

(ii) a ≥ b if b is left-adjacent to a. (4.1b)

The sln-weight of a semi-standard tableau T is defined as

wt′(T ) =
n∑

a=1

ma · ǫa, (4.2)

where ma is the number counting how many a’s are in T , and ǫa is given in (2.1).

Definition 4.1. The skew Schur function sλ/µ is defined as

sλ/µ(x) =
∑

T∈SST(λ/µ)

ewt′(T ), xi = eǫi, (4.3)
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where SST(λ/µ) is the set of all the semi-standard tableaux of shape λ/µ.

The following proposition is well-known. See section 5 of [19] for a proof.

Proposition 4.1. The skew Schur function sλ/µ is also expressed as

sλ/µ(x) = det(eλ′
i−µ′

j−i+j(x))1≤i,j≤r, (4.4)

where r ≥ l(λ′), and em = em(x) is the mth elementary symmetric polynomial of
variables x1, . . . , xn for m = 0, . . . , n, and em = 0 for other m.

We impose the relation x1x2 · · ·xn = 1 throughout the paper. Then em is the
character of the mth fundamental representation of sln with the highest weight Λm

for m = 1, . . . , n− 1.
The following properties of sλ/µ follow either from (4.3) or from (4.4):

(i) If λ/µ is not a skew diagram of rank n, then sλ/µ = 0.
(ii) When µ = (0), the expression (4.4) reduces to the Jacobi-Trudi formula of the

ordinary Schur function sλ.
(iii) Let cλµν , |λ| = |µ| + |ν|, be the Littlewood-Richardson coefficient, i.e., sµsν =∑

λ c
λ
µνsλ. Then, sλ/µ =

∑
ν c

λ
µνsν .

The conjugate s∗λ/µ of the skew Schur function sλ/µ is defined as

s∗λ/µ = det(en−λ′
i
+µ′

j
+i−j)1≤i,j≤r (4.5)

=
∑

T∈SST(λ/µ)

e−wt′(T ). (4.6)

It is also possible to express s∗λ/µ as a skew Schur function. Suppose λ/µ is of rank

n with µ = (µ1, . . . , µm). Then we have a new pair

µ̃ = (λ1, . . . , λ1︸ ︷︷ ︸
n

, µ1, . . . , µm) ⊃ λ,

and the compliment of λ/µ, (λ/µ)c := µ̃/λ, is also a skew diagram of rank n. The
picture below illustrates the example of n = 4, λ = (5, 4, 3, 1), µ = (3, 2):

λ/µ→ ← (λ/µ)c

Proposition 4.2. Let λ/µ be a skew diagram of rank n. Then

s∗λ/µ = s(λ/µ)c .

Proof. s(λ/µ)c = det(en+µ′
i−λ′

j−i+j) = det(en−λ′
i+µ′

j+i−j) = s∗λ/µ.
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a1
a2a3a4

a5a6
q

q
q

n1
2
...

n1

q
q

q

Figure 2. A semi-standard tableau T̃ of shape κ̃(~h) for ~h =
(0, 1, 1, 0, 1, . . . , (0, . . . , 0, 1)∞).

5. Correspondence between spin configurations and semi-standard

tableaux

We proceed to calculate the character χ~h of (3.5) using the language of skew dia-
grams and tableaux.

For a given ~h ∈ Sp, we associate a skew diagram κ̃(~h) of infinite-size in the following
procedure:

1. Write the first box.
2. Attach the second box under (resp. left to) the first box if h1 = 0 (resp. h1 = 1).
3. Similarly attach the i+ 1th box under (resp. left to) the ith box if hi = 0 (resp.

hi = 1) for i = 2, 3, . . .

Then κ̃(~h) has the following properties.

(i) It is a border strip.

(ii) It is of rank n, i.e., the length of any column of κ̃(~h) does not exceed n, due to
(3.2a).

(iii) Due to (3.2b), it has a periodic tail which consists of length-n columns.

Equivalently, for ~h = [m1, . . . , mr], κ̃(~h) is the border strip 〈m1, . . . , mr, n, n, . . . 〉.

A semi-standard tableau T̃ of shape κ̃(~h) is an arrangement of numbers 1, . . . , n in

the boxes of κ̃(~h) obeying the conditions (4.1a) and (4.1b), just in the same way as in
the finite-size case. See Fig. 2. Notice that the arrangements in the length-n columns
are uniquely determined, or “frozen”, because of the semi-standard condition (4.1a).

Since κ̃(~h) is a border strip, one can give a total ordering of the boxes in it from the
right to the left and from the top to the bottom in the unique way. Let

(ai) = (a1, a2, . . . , (1, 2, . . . , n)
∞).
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be the sequence of the content of T̃ along the total ordering of the boxes. Now we

have a natural map ϕ̃ from the set of the semi-standard tableaux of shape κ̃(~h) to
the set of the spin configurations S defined by

ϕ̃(T̃ ) := (ǫai) = (ǫa1 , ǫa2 , . . . , (ǫ1, ǫ2, . . . , ǫn)
∞). (5.1)

A key observation of this paper is

Proposition 5.1. The map ϕ̃ gives a one-to-one correspondence between the semi-

standard tableaux of shape κ̃(~h) and the spin configurations in S~h.

Proof. A necessary and sufficient condition for a sequence (a1, a2, . . . ), ai ∈ {1, . . . , n}

to be the sequence of the content of a semi-standard tableau of shape κ̃(~h) is

ai+1 > ai, (resp. ai+1 ≤ ai)⇐⇒ hi = 0, (resp. hi = 1). (5.2)

This is an immediate consequence of the construction of κ̃(~h) and (4.1a,b). On the
other hand (5.2) is also a necessary and sufficient condition for a sequence (ǫa1 , ǫa2 , . . . )
to belong to S~h because of (2.2), (3.1), and (3.4).

The first application of Prop. 5.1 is to prove the sufficiency part of Prop. 3.1.

Proof. By Prop. 5.1 we have only to show that there exists at least one semi-standard

tableau of shape κ̃(~h) for any ~h. In fact, for a given ~h, a semi-standard tableau of

shape κ̃(~h) is obtained by filling the boxes by 1, 2, 3, . . . from the top to the bottom
in each column. This completes the proof of Prop. 3.1.

For our purpose it is convenient to define a “finite part” κ(~h) of the infinite diagram

κ̃(~h) by cutting off its periodic tail. Namely, for ~h = [m1, . . . , mr] we define κ(~h) =

〈m1, . . . , mr〉. (For ~h = ~h(0), κ(~h(0)) is the empty diagram ∅.) It is clear that the map

κ : ~h 7→ κ(~h) is injective, and we get the following description of the space of the
spectrum Sp in terms of border strips.

Theorem 5.2. The space Sp is parametrized by the border strips of rank n such that
the lengths of their leftmost columns are less than n.

The following lemma is obvious.

Lemma 5.3. There is a one-to-one correspondence between the semi-standard tabl-

eaux of shape κ̃(~h) and the ones of shape κ(~h). The correspondence is given by the

restriction of a semi-standard tableau of shape κ̃(~h) on κ(~h).

Combining the bijection in Lemma 5.3 with the bijection ϕ̃ of (5.1), we obtain a
bijection

ϕ : SST(κ(~h))→ S~h.



SKEW YOUNG DIAGRAM METHOD 11

Proposition 5.4. The bijection ϕ : SST(κ(~h)) → S~h is weight-preserving, i.e., for

any T ∈ SST(κ(~h)), wt(ϕ(T )) = wt′(T ) holds.

Proof. Let (a1, . . . , am) be the content of T aligned along our total order of the boxes

in κ(~h). Then ϕ(T ) = (ǫa1 , . . . , ǫam , (ǫ1, . . . , ǫn)
∞). From Prop. 2.1 and (4.2), we have

wt(ϕ(T )) =
∑m

i=1 ǫai = wt′(T ).

Now we state the first half of our main theorem.

Theorem 5.5. (i) The character χ~h of S~h is equal to the skew Schur function sκ(~h).

(ii) Let ~h = [m1, . . . , mr] ∈ Sp. Then

sκ(~h) = s〈m1,...,mr〉 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

emr emr+mr−1 · · · emr+···+m1

1 emr−1

0 1

0
...

. . .
. . .

0 1 em2 em2+m1

0 1 em1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (5.3)

(iii) The character of the level 1 integrable module L(Λk) of ŝln decomposes as

chL(Λk)(q, x) = q−
1
24

c
∑

κ∈BS
|κ|≡kmodn

q
1
2n

|κ|(n−|κ|)+t(κ)sκ(x) (5.4a)

= q−
1
24

c
∑

κ∈BS
|κ|≡n−kmodn

q
1
2n

|κ|(n−|κ|)+t(κ)sκc(x) , (5.4b)

where BS is the set of all the border strips κ = 〈m1, . . . , mr〉 of rank n with mr < n,
and t(κ) =

∑r−1
i=1 (r − i)mi.

Proof. The property (i) is an immediate consequence of Prop. 5.4. To show (ii), notice
that the skew diagram 〈m1, . . . , mr〉 is represented as λ/µ with a pair λ ⊃ µ such
that

λ′
i = m1 + · · ·+mr+1−i − r + i, µ′

i = m1 + · · ·+mr−i − r + i.

Substituting them into (4.4) we obtain the formula (5.3). The property (iii) follows

from (3.6), Prop. 4.2, the property (i), and the fact that for ~h = [m1, . . . , mr] ∈ Sp(k)

∆k +
∞∑

i=1

i(hi − h
(k)
i ) =

1

2n
m(n−m) +

r−1∑

i=1

(r − i)mi, m =
r∑

i=1

mi.

Two expressions (5.4a) and (5.4b) differ from each other when n ≥ 3.
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6. Yangian characters

In this section we show, based on the result of [20], that the characters χ~h = sκ(~h)
are irreducible characters of the Yangian algebras Y (gln) and Y (sln).

The Yangian of gln, Y (gln), is an algebra generated by tij(r), i, j = 1, . . . , n, r ∈ Z≥0

with the relations

[tij(r), tkl(s− 1)]− [tij(r − 1), tkl(s)] = tkj(s− 1)til(r − 1)− tkj(r − 1)til(s− 1),

where tij(−1) = δij1, tij(−2) = 0. The elements tij(0) generate the universal envelop-
ing algebra of gln. Therefore sln acts on Y (gln)-modules.

Consider a pair of partitions λ ⊃ µ with λ = (λ1, . . . , λN+n), µ = (µ1, . . . , µN),
N ≥ 1. Let Vλ be the irreducible glN+n-module associated to λ, Vµ be the irreducible
glN -module associated to µ, and Vλ,µ be the space of the multiplicity of Vµ in Vλ under
the standard embedding glN ⊂ glN+n. There is an irreducible action of Y (gln) on the
space Vλ,µ, having a remarkable property (A module with such property is called a
tame module [20]):

Proposition 6.1 ([7, 20]). A maximal commutative subalgebra of Y (gln), called the
Gelfand-Zetlin (GZ) algebra, acts on Vλ,µ in a semi-simple way. Furthermore, a basis
diagonalizing the GZ algebra is labeled by the GZ schemes of Vλ,µ.

A GZ scheme \Λ/ of Vλ,µ is an array of integers λmi,

\Λ/ =

λn1 λn2 · · · λn,N+n

λn−1,1 · · · λn−1,N+n−1

· · ·

λ01 · · · λ0N

=

λ1 λ2 · · · λN+n

λn−1,1 · · · λn−1,N+n−1

· · ·

µ1 · · · µN

satisfying the condition λmi ≥ λm−1,i ≥ λm,i+1. The sln-weight of the basis vector
labeled by \Λ/ is

n∑

m=1

{
N+m∑

i=1

λmi −
N+m−1∑

i=1

λm−1,i

}
ǫm.

Lemma 6.2. There is a weight-preserving, one-to-one correspondence between the
GZ schemes of Vλ,µ and the semi-standard tableaux of shape λ/µ.

The correspondence is described as follows. For a given GZ scheme \Λ/, we have
a sequence of partitions,

λ(0) = µ ⊂ λ(1) ⊂ λ(2) ⊂ · · · ⊂ λ(n) = λ, λ(m) = (λm1, λm2, . . . , λm,N+m).
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A semi-standard tableau of shape λ/µ is obtained by inscribing the number m in
λ(m)/λ(m−1), which is a part of the diagram λ/µ. For example,

5 4 4 1 0 0

5 4 4 0 0

4 4 2 0

4 3 2

7→

2
1
22

3

It is easy to check that this map is bijective and weight-preserving.
It follows from Prop. 6.1 and Lemma 6.2 that the sln-character of Vλ,µ is equal to

sλ/µ. In particular, we have

Theorem 6.3. The character χ~h = sκ(~h) is the sln-character of the irreducible Y (gln)-

module Vλ,µ with λ/µ = κ(~h).

The Yangian of sln, Y (sln), is generated by x±
ik, hik, i = 1, . . . , n− 1, k ∈ Z≥0 with

the relations

[hik, hjl] = 0, [hi0, x
±
jl] = ±Aijx

±
jl, [x+

ik, x
−
jl] = δijhik+l,

[hik+1, x
±
jl]− [hik, x

±
jl+1] = ±

1

2
Aij(hikx

±
jl + x±

jlhik),

[x±
ik+1, x

±
jl]− [x±

ik, x
±
jl+1] = ±

1

2
Aij(x

±
ikx

±
jl + x±

jlx
±
ik),

∑

σ:permutation

[
x±
ikσ(1)

,
[
x±
ikσ(2)

, . . . ,
[
x±
ikσ(1−Aij)

, x±
jl

]
. . .
]]

= 0,

where Aij is the Cartan matrix of sln. An irreducible finite-dimensional module
of Y (sln) is characterized by n − 1 monic polynomials (the Drinfel’d polynomi-
als), P1(u), . . . , Pn−1(u). The polynomial Pi(u) describes the action of hi(u) = 1 +∑∞

k=0 hiku
−k−1 on a highest weight vector v as hi(u)v = (Pi(u+ 1)/Pi(u))v [9].

Proposition 6.4 ([20]). There is a one-parameter family of irreducible Y (sln)-module
structures on Vλ,µ with a parameter b ∈ C, whose Drinfel’d polynomials are [20]1

Pi(u) =
λ1∏

j=1

λ′
j
−µ′

j
=i

(
u+

1

2
(λ′

j + µ′
j)− j +

1

2
+ b

)
. (6.1)

These Y (sln)-module structures on Vλ,µ are the ones induced by a one-parameter
family of embeddings of Y (sln) into Y (gln). There is a simple pictorial interpretation
of the zeros of Pi(u) as shown in Fig. 3.

As a corollary of Prop. 6.4, we obtain the second half of our main theorem:

1The Drinfel’d polynomials here are the one in [9]. The convention in [20] is slightly different.
Their Pi(u) is equal to (−1)degPiPi(−u− n/4 + i/2) here.
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x = b

−3− b

− b

3
2
− b

4− b

Figure 3. An example: λ = (5, 4, 4, 1), µ = (4, 3, 2, 0). The Drinfel’d
polynomials are P1(u) = (u+3+ b)(u+ b)(u−4+ b), P2(u) = u− 3

2
+ b,

and Pi(u) = 1 for i ≥ 3. The zeros of Pi(u) are identified with the
intersections of the line x = b and the diagonal lines passing through
the middle points of the columns of length i.

Theorem 6.5. The character χ~h = sκ(~h) is the sln-character of the one-parameter

family of the irreducible Y (sln)-modules whose Drinfel’d polynomials are given by

(6.1) with λ/µ = κ(~h).

We have shown that the characters χ~h of the degeneracy of the spectrum are
irreducible Y (sln) characters. Furthermore, the Y (sln)-module structure of L(Λk)
partially studied in [22] agrees with (5.4a). Based on these strong evidences, we
conjecture that

Conjecture 6.6. The decomposition (5.4a) describes the Y (sln)-module structure on
L(Λk) of [22].

7. The relation with the spectrum in other spin models

7.1. The Haldane-Shastry model. The sln Haldane-Shastry (HS) model is a lat-
tice model with the Hamiltonian

HHS =
∑

1≤j 6=k≤N

xjxk

(xj − xk)(xk − xj)
(Pjk − 1), xj = e2π

√
−1j/N

acting on the vector space V ⊗N , V = Cn, where Pjk exchanges the jth and kth
components of V ⊗N . There is an action of Y (sln) on V ⊗N which commutes with the
Hamiltonian HHS [11]. By this action the space V ⊗N decomposes as [5]

V ⊗N ≃
⊕

d∈MN

Wd, (7.1)
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where Wd are certain irreducible Y (sln) modules described below. MN is the set of
the binary sequences d = (d1, . . . , dN−1), di ∈ {0, 1}, such that there are at most
n − 1 consecutive 1’s. The eigenvalue of HHS on the eigenspace Wd is given by∑N−1

i=1 idi(idi −N).
We notice that the condition for d ∈MN turns into (3.2a) through the identification

hi = 1− di.
2 For a given d ∈ MN , let

~hd = (1− d1, 1− d2, . . . , 1− dN−1, 1, (0, . . . , 0, 1︸ ︷︷ ︸
n

)∞) ∈ Sp.

We translate the description of the Y (sln)-module structure of Wd in [5] into our
language as follows:

Proposition 7.1 ([5]). As a Y (sln)-module, the eigenspace Wd is isomorphic to the
irreducible module whose Drinfel’d polynomials are given by (6.1), where in (6.1) λ1

and b are certain constants independent of d, and λ/µ = κ(~hd).

Comparing Prop. 7.1 with Prop. 6.4 and Theorem 6.5, we obtain the following
proposition, which answers the questions of the sln-module content of Wd and its
factorizability asked in [5, 10, 11, 12].

Proposition 7.2. Let ~hd = [m1, . . . , mr]. Then
(i) chWd = s〈m1,...,mr〉.
(ii) s〈m1,...,mr〉 = s〈m1,...,mi〉s〈mi+1,...,mr〉 if mi +mi+1 ≥ n+ 1.

Proof. We only need to prove the property (ii), which follows from (5.3).

7.2. The Polychronakos model. There is another relevant spin model, called the
Polychronakos model. The sln Polychronakos model has the Hamiltonian

HP =
∑

1≤j<k≤N

1

(xj − xk)2
(Pjk − 1) + EN , (7.2)

EN =
n− 1

2n
N2 −

N(n−N)

2n
, (7.3)

acting on V ⊗N , V = Cn, where x1, . . . , xN are the zeros of the Hermite polynomial of
degree N , and N ≡ N mod n, 0 ≤ N ≤ n − 1. The constant EN is added to make
the ground state energy zero. Define the partition function of the Polychronakos
model

ZP
N(q, x) = trV ⊗N qHP

n−1∏

i=1

x
hi+···+hn−1

i , (7.4)

2This intriguing relation between the spectrum of the HS model and the vertex model was first
indicated by Bernard [4] in the sl2 case.
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where hi’s are the standard basis of the Cartan subalgebra of sln. It is shown in [21]
that

ZP
N(q, x) = qENHN(q

−1, x), (7.5)

where HN(q, x) is a generalization of the Rogers-Szegö polynomial [1],

HN(q, x) =
∑

ki∈Z≥0
k1+···+kn=N

(q)N
(q)k1(q)k2 · · · (q)kn

xk1
1 · · ·x

kn
n , (q)k =

k∏

i=1

(1− qi).
(7.6)

Again there is an action of Y (sln) on V ⊗N , which commutes with HP [12]. Based
on a numerical study, it was conjectured in [12] that

1. As a Y (sln)-module, the spin space V ⊗N decomposes exactly in the same way as
in (7.1).

2. The eigenvalue Ed of HP on Wd is

Ed = −
N−1∑

i=1

idi + EN . (7.7)

Let us introduce the sets,

SpN = {~h ∈ Sp(N) | hi = h
(N)
i for i ≥ N}, (7.8)

SN = {~s ∈ S(N) | si = s
(N)
i for i ≥ N + 1}. (7.9)

Lemma 7.3. Let N be a positive integer. Then

(i) The map d 7→ ~hd is a bijection from MN to SpN .
(ii) h−1(SpN) = SN .
(iii) For any d ∈MN and ~s ∈ S~hd

, Ed = E(~s).

(iv) The sln-character of Wd is sκ(~hd)
= χ~hd

.

We define

Zvertex
N (q, x) =

∑

~s∈SN

qE(~s)ewt(~s), (7.10)

Then Lemma 7.3 and the above conjecture of [12] claims the identification,

ZP
N = Zvertex

N . (7.11)

This exact equivalence of two spectra is intriguing, because the Hamiltonian for Zvertex
N

is of nearest-neighborhood type, whileHP is not. In fact, the following theorem proves
(7.11) directly, thereby providing a further support for the conjecture of [12].

Theorem 7.4. For any nonnegative integer N , we have
∑

~h∈SpN

q
∑∞

i=1
i(hi−h

(N)
i

)sκ(~h)(x) = qENHN(q
−1, x).
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A proof of Theorem 7.4 is given in Appendix A.
As a corollary of Theorem 7.4 we get an expression

q∆k−c/24
∑

~s∈S(k)

qE(~s)ewt(~s) = lim
N→∞

N≡k mod n

q∆k−c/24+ENHN(q
−1, x). (7.12)

The right hand side of (7.12) converges to (cf. [12, 21])

1

η(q)n−1

∑

ki∈Z− k
n

k1+···+kn=0

q
1
2
k21+···+ 1

2
k2nxk1

1 · · ·x
kn
n , η(q) = q

1
24 (q)∞,

which is equal to

1

η(q)n−1

∑

γ∈⊕n−1
i=1 Zαi

q
1
2
|Λk+γ|2eΛk+γ, (7.13)

where αi’s, |αi|
2 = 2, are the simple roots of sln. The series (7.13) is a well-known ex-

pression of chL(Λk) [13]. Therefore we have obtained an alternative proof of Theorem
2.2.

As another corollary of Theorem 7.4, a new combinatorial description of the Kostka-
Foulkes polynomials is obtained. See Appendix B.

8. Vertex model of Uq(A
(2)
2n )

One can apply the skew diagram method also to a vertex model associated to the

quantized twisted affine algebra Uq(A
(2)
2n ) [17] with an appropriate modification. We

expect that the underlying algebra for the degeneracy is the Yangian of Bn, Y (Bn).

In contrast with the standard textbook [13], we regard A
(2)
2n as an affinization of

the Lie algebra Bn rather than Cn. Their Dynkin diagrams are depicted in Fig. 4.
Let Λi (i = 1, . . . , n) be the fundamental weights of Bn, and let ǫ±i = ±(Λi − Λi−1)
for i = 1, . . . , n − 1, ǫ±n = ±(2Λn − Λn−1), and ǫ0 = 0. Then B(Λ1) = {ǫ1 ≺ · · · ≺
ǫn ≺ ǫ0 ≺ ǫ−n ≺ · · · ≺ ǫ−1} is the set of all the weights of the vector representation of
Bn with a total ordering ≺. The local energy function H : B(Λ1)× B(Λ1) → {0, 1}
is defined as

H(s, s′) =




0 if s ≺ s′ or (s, s′) = (ǫ0, ǫ0),

1 if s � s′ and (s, s′) 6= (ǫ0, ǫ0).
(8.1)

A sequence ~s = (si), si ∈ B(Λ1), is a spin configuration if ~s ≈ ((ǫ0)
∞). Let S be the

set of all the spin configurations. For each ~s ∈ S we define

E(~s) =
∞∑

i=1

iH(si, si+1), wt(~s) = −Λn +
∞∑

i=1

si. (8.2)
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❍❍✟✟ ❍❍✟✟❢ ❢ ❢ ❢ ❢ ❢

0 1 2 n

Figure 4. The Dynkin diagram of A
(2)
2n . The Dynkin diagram of Bn

is obtained by removing the node 0.

Theorem 8.1 ([15]). Let chL(Λn) be the unnormalized character of the (unique)

level 1 integrable module of A
(2)
2n . Then

chL(Λn)(q, x) =
∑

~s∈S
qE(~s)ewt(~s), eǫ±i = x±1

i , eǫ0 = 1. (8.3)

See Appendix C for the explicit expression of chL(Λn)(q, x).

The local energy map h : ~s 7→ ~h = (hi), hi = H(si, si+1), has the image h(S) = Sp,

where Sp = {~h | ~h ≈ ((0)∞)}. Any element ~h ∈ Sp is written in the form

[m1, . . . , mr] := (0, . . . , 0, 1︸ ︷︷ ︸
m1

, . . . , 0, . . . , 0, 1︸ ︷︷ ︸
mr

, (0)∞), mi ≥ 1.

We set S~h = h−1(~h) for ~h ∈ Sp, and define χ~h(x) =
∑

~s∈S~h
ewt(~s).

For each ~h ∈ Sp, we associate a skew diagram κ̃(~h) of infinite-size, following the

procedures 1–3 in the beginning of section 5. Namely, if ~h = [m1, . . . , mr], then κ̃(~h)
is a border strip with r + 1 columns, 〈m1, . . . , mr,∞〉. Also we define a border strip

κ(~h) = 〈m1, . . . , mr, 2n〉 as a “finite part” of κ̃(~h).
An analogue of the semi-standard condition suited for Y (Bn) is introduced in [18]

to characterize the spectrum of the row-to-row transfer matrices with a wide class
of auxiliary spaces. We find that the notion in [18] are quite adequate also for the
description of χ~h. Let J = {1 ≺ · · · ≺ n ≺ 0 ≺ −n ≺ · · · ≺ −1}. We inscribe the
numbers from J in each box of a skew diagram λ/µ. We call such an arrangement an
admissible tableau of shape λ/µ if it satisfies the following condition: Let a and b be
the inscribed numbers in any pair of adjacent boxes. Then,

(i) a ≺ b or (a, b) = (0, 0) if b is lower-adjacent to a. (8.4a)

(ii) a � b and (a, b) 6= (0, 0) if b is left-adjacent to a. (8.4b)

Let AT(λ/µ) be the set of all the admissible tableaux of shape λ/µ. Since the con-
dition (8.4a,b) is just in coordinate with (8.1), there is a natural bijection between

S~h and AT(κ̃(~h)) as in section 5. However, the set AT(κ(~h)) is larger than AT(κ̃(~h)).

Therefore we introduce a further constraint on the elements in AT(κ(~h)). An admis-

sible tableau of shape κ(~h) is L(eft)-admissible if the content of the bottom n boxes
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in the leftmost column is frozen to the sequence −n,−n + 1, . . . ,−1.3 We write the

set of all the L-admissible tableaux of shape κ(~h) as LAT(κ(~h)). Then

Lemma 8.2. There is a bijection from AT(κ̃(~h)) to LAT(κ(~h)).

The correspondence is a natural one: For T̃ ∈ AT(κ̃(~h)), let (a1, . . . , am, (0)
∞) be

its content, where am−n+1, . . . , am are in the top n boxes in the leftmost column.
Then, (a1, . . . , am,−n, . . . ,−1) gives the content of the corresponding tableau T ∈

LAT(κ(~h)). Combining the two bijections, we obtain a bijection ϕ : LAT(κ(~h))→ S~h.

For an L-admissible tableau T ∈ LAT(κ(~h)) with the content (a1, . . . , am,−n, . . . ,−1),
its weight is defined as wt′(T ) =

∑m
i=1 ǫai+

1
2

∑n
i=1 ǫ−i =

∑m
i=1 ǫai−Λn, where, following

[18], we multiply the factor 1
2
on the weights corresponding to the bottom n boxes

in the leftmost column of κ(~h). Comparing it with (8.2), we see that the bijection

ϕ : LAT(κ(~h))→ S~h is weight-preserving. Therefore we have

Theorem 8.3. (i) The character χ~h of S~h is equal to

sL
κ(~h)

:=
∑

T∈LAT(κ(~h))

ewt′(T ).

(ii) Let ~h = [m1, . . . , mr] ∈ Sp. Then

sL
κ(~h)

= sL〈m1,...,mr ,2n〉 = σ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
1 tmr tmr+mr−1 tmr+···+m1

0 1 tmr−1

0 1
...

. . .
1 tm2 tm2+m1

0 1 tm1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where σ is ch VΛn
, tm is 0 for m < 0, ch (VΛm

⊕ VΛm−2
⊕ · · · ) for 0 ≤ m ≤ n− 1, and

σ2 − t2n−1−m for m ≥ n, and VΛj
is the jth fundamental representation of Bn.

(iii) The character of the level 1 integrable module L(Λn) of A
(2)
2n decomposes as

chL(Λn)(q, x) =
∑

κ∈BS

qt(κ)sLκ(x), (8.5)

where BS is the set of all the border strips κ = 〈m1, . . . , mr〉 with mr = 2n, and
t(κ) =

∑r−1
i=1 (r − i)mi.

Proof. (i) and (iii) are due to the bijection ϕ and Theorem 8.1. (ii) is a special case
of Theorem 4.1 in [18], which is an analogue of Prop. 4.1 for sLλ/µ.

3 The definition of the L-admissibility here is the simplified one especially for a border strip with
the length of the last column 2n. See [18] for the definition for a general L-hatched skew diagram.
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It was conjectured in [18] that sL
κ(~h)

is the Bn-character of a certain irreducible

Y (Bn)-module. Therefore it is natural to conjecture that

Conjecture 8.4. There is a canonical action of Y (Bn) on the level 1 integrable mod-

ule L(Λn) of A
(2)
2n . The decomposition (8.5) describes its Y (Bn)-module structure on

L(Λn).

9. Conclusion

In this paper we exhibit intimate relationships among the spectral decomposition
of the vertex models, skew diagrams and the associated Schur functions, irreducible
characters of the Yangians, Yangian module structures in conformal field theory,
spectra of spin models with the inverse-square interaction, and so on. We believe
that further study of this interrelation will enlighten our understanding of the common
integrable structure behind these models.

It is also interesting to investigate other vertex models. For example, for the
symmetric fusion models of Uq(ŝln), which correspond to the higher level integrable

modules of ŝln, it is possible to extend our skew diagram approach. Even though
conceptually it is quite analogous to the level 1 case, some complexity enters, espe-
cially for n ≥ 3. Notable changes are, firstly, skew diagrams of non-border strips are
necessary to describe the spectrum, and secondly, the characters of non-tame modules
appear as the characters of the degeneracy of the spectrum. We hope to give a full
report on it in a future publication.

At the very last stage of the preparation of the manuscript, the preprint “The
ŜU(n)1 WZWmodels, spinon decomposition and Yangian structure” by P. Bouwknegt
and K. Schoutens (hep-th/9607064) appeared, where the authors obtain a partially
overlapping result to ours.
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Appendix A. A proof of Theorem 7.4

In this appendix we give a proof of Theorem 7.4.

Any element of ~h ∈ SpN is uniquely written as

~h = (0, . . . , 0, 1︸ ︷︷ ︸
m1

, 0, . . . , 0, 1︸ ︷︷ ︸
m2

, . . . , 0, . . . , 0, 1︸ ︷︷ ︸
mr

, (0, . . . , 0, 1︸ ︷︷ ︸
n

)∞)

http://arxiv.org/abs/hep-th/9607064
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for an integer r (= the number of 1’s in the first N elements of ~h) and the integers

1 ≤ mi ≤ n such that m1 + m2 + · · · + mr = N . For such an ~h ∈ SN we associate
a border strip 〈m1, . . . , mr〉. If mr 6= n, the border strip 〈m1, . . . , mr〉 is equal to

κ(~h). If mr = n, however, 〈m1, . . . , mr〉 has a few more length-n columns than κ(~h)
on its tail such that the size of 〈m1, . . . , mr〉 is always N . In either case, we have

sκ(~h) = s〈m1,...,mr〉 thanks to the specialization x1 · · ·xn = 1. Furthermore, for ~h ∈ SpN

it holds that
∞∑

i=1

i(hi − h
(N)
i ) =

N−1∑

i=1

i(hi − 1) + EN =
N∑

i=1

i(hi − 1) + EN .

Thus Theorem 7.4 is equivalent to

Theorem A.1.
N∑

r=1

∑

1≤mi≤n

m1+···+mr=N

q
1
2
N(N+1)−

∑r

i=1
(m1+···+mi)s〈m1,...,mr〉(x) = HN(q, x).

(A.1)

Remark . Theorem A.1 is true without assuming the relation x1 · · ·xn = 1 as we
show below.

We write the left hand side of (A.1) as FN (q, x) (F0(q, x) = 1 by definition).

Example .

F0(q, x) = 1, H0(q, x) = 1,

F1(q, x) = s (x), H1(q, x) =
n∑

i=1

xi,

F2(q, x) = qs (x) + s (x), H2(q, x) =
n∑

i=1

x2
i + (1 + q)

∑

1≤i<j≤n

xixj.

Following [12], we consider the recursion relation for FN(q, x) and HN(q, x). Let

G(q, x, t) =
1

(tx1; q)∞(tx2; q)∞ · · · (txn; q)∞
, (a; q)∞ =

∞∏

j=0

(1− aqj).

Lemma A.2 ([1]). The function G(q, x, t) is the generating function of HN(q, x):

G(q, x, t) =
∞∑

N=0

HN(q, x)

(q)N
tN .

Proof. It easily follows from the identity [1]

1

(t; q)∞
=

∞∑

N=0

1

(q)N
tN .
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Lemma A.3 ([1, 12]). The functions HN(q, x) satisfy the following recursion rela-
tion: For any N ≥ 1,

HN(q, x) =
n∑

i=1

(−1)i+1 (q)N−1

(q)N−i

ei(x)HN−i(q, x) = 0, (A.2)

where ei(x) is the ith elementary symmetric function of x1, . . . , xn, and HN(q, x) = 0
for N < 0.

Proof. Consider the identity,

G(q, x, qt) =

(
n∏

i=1

(1− txi)

)
G(q, x, t) =

(
n∑

i=0

(−1)iei(x)t
i

)
G(q, x, t).

Comparing the coefficients of tN of the both sides, and using Lemma A.2, we have

qN

(q)N
HN(q, x) =

n∑

i=0

(−1)iei(x)
HN−i(q, x)

(q)N−i

,

from which the lemma follows.

The recursion relation (A.2), together with the initial condition H0(q, x) = 1,
uniquely determines HN(q, x). In the rest of the appendix we show FN(q, x) also
satisfies (A.2). We recall

s〈m1,...,mr〉 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

emr emr+mr−1 · · · emr+···+m1

1 emr−1

0 1

0
...

. . .
. . .

0 1 em2 em2+m1

0 1 em1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Expanding the determinant along the first row, we have

Lemma A.4.

s〈m1,...,mr〉 =
r∑

i=1

(−1)i+1emr+···+mr−i+1
s〈m1,...,mr−i〉. (A.3)

Substituting (A.3) into FN(q, x), we have



SKEW YOUNG DIAGRAM METHOD 23

Lemma A.5. The functions FN(q, x) satisfy the following recursion relation: For
any N ≥ 1,

FN (q, x) =
N∑

m=1

AN,m(q)em(x)FN−m(q, x), (A.4)

AN,m(q) =
m∑

j=1

∑

1≤ki≤n

k1+···+kj=m

(−1)j+1qcN,m(k1,...,kj), (A.5)

cN,m(k1, . . . , kj) =
1

2
N(N + 1)−

1

2
(N −m)(N −m+ 1)

−
j∑

i=1

(N −m+ k1 + · · ·+ ki)

= N(m− j)−
1

2
m2 −

1

2
m+

j∑

i=1

iki, (A.6)

where FN (q, x) = 0 for N < 0.

In the right hand side of (A.4) we can replace the summation
∑N

m=1 by
∑n

m=1

because em(x) = 0 for m > n. To complete the proof of Theorem A.1, we have only
to show that

Lemma A.6. For 1 ≤ m ≤ min(n,N),

AN,m(q) = (−1)m+1 (q)N−1

(q)N−m
. (A.7)

Proof. For any N ≥ 1, AN,1(q) = qcN,1(1) = 1. Below we show

AN,m(q) = −(1− qN−1)AN−1,m−1(q), (A.8)

for 2 ≤ m ≤ N . From these, the lemma follows.
Consider

AN,m(q) =
m∑

j=1

∑

ki≥1
k1+···+kj=m

(−1)j+1qcN,m(k1,...,kj) (A.9)

for 2 ≤ m ≤ N . Notice that we have dropped the upper inequality ki ≤ n in the
summation, because it is automatically satisfied under the assumption m ≤ n. Let

Im = {(k1, . . . , kj) | j, ki ≥ 1, k1 + · · ·+ kj = m}

be the set of all the ordered partitions of m. Then Im is the disjoint union of I(1)m and
I(2)m , where

I(1)m = {(k1, . . . , kj, 1) | (k1, . . . , kj) ∈ Im−1},

I(2)m = {(k1, . . . , kj + 1) | (k1, . . . , kj) ∈ Im−1}.
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Let us perform the summation in (A.9) over I(1)m and I(2)m , separately. The contri-
bution from I(1)m is

m−1∑

j=1

∑

(k1,...,kj)∈Im−1

(−1)j+2qcN,m(k1,...,kj ,1)

=−
m−1∑

j=1

∑

(k1,...,kj)∈Im−1

(−1)j+1qcN−1,m−1(k1,...,kj) = −AN−1,m−1(q).

The contribution from I(2)m is

m−1∑

j=1

∑

(k1,...,kj)∈Im−1

(−1)j+1qcN,m(k1,...,kj+1)

=
m−1∑

j=1

∑

(k1,...,kj)∈Im−1

(−1)j+1qcN−1,m−1(k1,...,kj)+N−1 = qN−1AN−1,m−1(q).

Putting the both together, we get (A.8).

Appendix B. A new combinatorial formula for Kostka-Foulkes

polynomials

As another corollary of Theorem 7.4, or Theorem A.1, we get a new formula for
the Kostka-Foulkes polynomials in terms of the Littlewood-Richardson tableaux of
border strips. See [16, 19] for further information of the material discussed here. For
a border strip κ = 〈m1, . . . , mr〉 we define t(κ) as

t(κ) =
r−1∑

i=1

(r − i)mi.

Further, for a partition λ, we denote by C(κ, λ) the number of the semi-standard
tableaux that form lattice permutations (cf. [19]) and are of shape κ and content
λ. The number C(κ = µ/ν, λ) has an interpretation as cµνλ = MultVλ

(Vµ,ν), i.e.,
the multiplicity of the irreducible representation Vλ of sln in the restriction of the
representation Vµ,ν of Y (sln) to sln.

Proposition B.1. Let λ be a partition, then
∑

κ

qt(κ)C(κ, λ) = Kλ,(1|λ|)(q), (B.1)

where the summation is taken over all the border strips κ of rank n with |κ| = |λ|.

Proof. Theorem A.1 can be rewritten as

∑

κ:border strip
|κ|=N

qt(κ)sκ(x) =
∑

ki∈Z≥0
k1+···+kn=N

q
∑n

i=1
1
2
ki(ki−1) (q)N

(q)k1 · · · (q)kn
xk1
1 · · ·x

kn
n .
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On the other hand, the degree-N part of Corollary 6 of [16] reads as

∑

λ:Young diagram
|λ|=N

Kλ,(1|λ|)(q)sλ(x) =
∑

ki∈Z≥0
k1+···+kn=N

q
∑n

i=1
1
2
ki(ki−1) (q)N

(q)k1 · · · (q)kn
xk1
1 · · ·x

kn
n .

Equate the left hand sides of two equalities, and expand sκ(x) as
∑

λ C(κ, λ)sλ(x),
where |λ| = |κ| in the summation. Using the independence of sλ’s, we have (B.1).

Example . Let λ = (3, 2, 1). Then it is known [19] that

K(3,2,1),(16)(q) = q4(1 + q)2(1 + q2)(1 + q3).

On the other hand, there exist 14 border strips which give non-zero contribution to
the left hand side of (B.1) with the following tableaux:

11
21

2
3
4

1
1 21

2
3
5

11

1
2

2
3

5

1
1

1
2

2
3
6

1
1

1
2

2
3

6

1
1

1

2
2
3
7

1

11
2

2
3

7

111
22

3

7

1

1
1

2

2
3

8

111
2

2 3

8

11
1 22
3

8

11
1 2

2 3

9

11

1
22

3

9

11

1
2

2 3

10

1
11 2

2 3

10

1
1

1
2

2 3

11

where the number t(κ) is attached below each diagram. Hence the left hand side of
(B.1) is

q4(1 + 2q + 2q2 + 3q3 + 3q4 + 2q5 + 2q6 + q7) = K(3,2,1),(16)(q).

In the same spirit we define the branching function bΛk

λ (q) of L(Λk) (as an sln-
module) as

chL(Λk)(q, x) =
∑

λ:Young diagram
l(λ)<n, |λ|≡kmodn

bΛk

λ (q)sλ(x).

Then from (5.4a) we have

Proposition B.2.

bΛk

λ (q) = q−
c
24

∑

κ∈BS
|κ|≥|λ|, |κ|≡kmodn

q
1
2n

|κ|(n−|κ|)+t(κ)C

(
κ, λ+

((
|κ| − |λ|

n

)n))
.

We are going to prove an analogue of (B.1) for the Kostka-Foulkes polynomials
Kλ,(ℓN )(q) (which should correspond to the Y (sln)-module structure on L(ℓΛ0)) in a
separate publication.
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Appendix C. The character of the level 1 integrable module of A
(2)
2n

In this appendix we describe the function chL(Λn)(q, x) in Theorem 8.1.4

Let α0, . . . , αn be the simple roots of A
(2)
2n with the label in Fig. 4. We have the null

root δ = α0 + 2(α1 + · · ·αn). Let {ǫ1, . . . , ǫn} be the orthonormal basis of the dual of
the Cartan subalgebra of Bn with

α0 = δ − 2ǫ1, α1 = ǫ1 − ǫ2, . . . , αn−1 = ǫn−1 − ǫn, αn = ǫn.
(C.1)

On the other hand, let α′
i = αn−i, which favors the subalgebra Cn. (Below the prime

symbol ′ indicates that we are in the Cn picture.) Let {ǫ′1, . . . , ǫ
′
n} be the orthonormal

basis of the dual of the Cartan subalgebra of Cn with

α′
0 =

1

2
δ − ǫ′1, α′

1 = ǫ′1 − ǫ′2, . . . , α′
n−1 = ǫ′n−1 − ǫ′n, α′

n = 2ǫ′n.
(C.2)

Comparing (C.1) and (C.2), we have the relation ǫi + ǫ′n+1−i =
1
2
δ.

The unnormalized character of L(Λ′
0) is given by [14]

chL(Λ′
0) = Θ/

∞∏

j=1

(1− e−jδ)n, Θ =
∑

γ′∈M ′

eΛ
′
0+γ′− 1

2
|γ′|2δ, M ′ =

n⊕

i=1

Zǫ′i.

The fundamental weight Λ′
0 in the Cn picture is related to Λn in the Bn picture as

Λ′
0 = Λn + b0δ with a certain constant b0. Thus e−b0δchL(Λ′

0) is the unnormalized
character of L(Λn). After the substitution of Λ′

0 = Λn+
1
2
Λ0+b0δ and ǫ′i =

1
2
δ−ǫn+1−i,

e−b0δΘ is expressed as

e−b0δΘ = e
1
2
|Λn|2δ ∑

γ∈M
e

1
2
Λ0+Λn+γ− 1

2
|Λn+γ|2δ, M =

n⊕

i=1

Zǫi,

where Λn = 1
2
(ǫ1 + · · ·+ ǫn). Finally, by setting e−δ = q and eΛ0 = 1, we have

chL(Λn)(q, x) =
q−

1
2
|Λn|2

(q)n∞

∑

γ∈M
q

1
2
|Λn+γ|2eΛn+γ, eǫi = xi,

which is the left hand side of (8.3).
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