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ABSTRACT
AARON D. BLOCK: Adaptive Multiprocessor Real-Time Systems

(Under the direction of James H. Anderson)

Over the past few years, as multicore technology has become cost-effective, multiproces-

sor systems have become increasingly prevalent. The growing availability of such systems has

spurred the development of computationally-intensive applications for which single-processor

designs are insufficient. Many such applications have timing constraints; such timing con-

straints are often not static, but may change in response to both external and internal stimuli.

Examples of such applications include tracking systems and many multimedia applications.

Motivated by these observations, this dissertation proposes several different adaptive schedul-

ing algorithms that are capable of guaranteeing flexible timing constraints on multiprocessor

platforms.

Under traditional task models (e.g., periodic, sporadic, etc.), the schedulability of a system

is based on each task’s worst-case execution time (WCET), which defines the maximum

amount of time that each of its jobs can execute. The disadvantage of using WCETs is

that systems may be deemed unschedulable even if they would function correctly most of the

time when deployed. Adaptive real-time scheduling algorithms allow the timing constraints

of applications to be adjusted based upon runtime conditions, instead of always using fixed

timing constraints based upon WCETs. While there is a substantial body of prior work on

scheduling applications with static timing constraints on multiprocessor systems, prior to

this dissertation, no adaptive multiprocessor scheduling approach existed that is capable of

ensuring bounded “error” (where error is measured by comparison to an ideal allocation).

In this dissertation, this limitation is addressed by proposing five different multiprocessor

scheduling algorithms that allow a task’s timing constraints to change at runtime. The five

proposed adaptive algorithms are based on different non-adaptive multiprocessor scheduling

algorithms that place different restrictions on task migrations and preemptions. The relative

iii



advantages of these algorithms are compared by simulating both the Whisper human tracking

system and the Virtual Exposure Camera (VEC), both of which were developed at The Uni-

versity of North Carolina at Chapel Hill. In addition, a feedback-based adaptive framework is

proposed that not only allows timing constraints to adapt at runtime, but also detects which

adaptions are needed. An implementation of this adaptive framework on a real-time multi-

processor testbed is discussed and its performance is evaluated by using the core operations

of both Whisper and VEC. From this dissertation, it can be concluded that feedback and

optimization techniques can be used to determine at runtime which adaptions are needed.

Moreover, the accuracy of an adaptive algorithm can be improved by allowing more frequent

task migrations and preemptions; however, this accuracy comes at the expense of higher

migration and preemption costs, which impacts average-case performance. Thus, there is a

tradeoff between accuracy and average-case performance that depends on the frequency of

task migrations/preemptions and their cost.
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CHAPTER 1

INTRODUCTION

The goal of this dissertation is to extend research on multiprocessor real-time systems in order

to enable such systems to adapt tasks’ processor shares—a process called reweighting—in re-

sponse to both external and internal stimuli. The particular focus of this work is on adaptive

systems that are deployed in environments in which tasks may frequently require significant

share changes. Such environments are commonplace in computationally-intensive multimedia

applications. Prior to the research in this dissertation, no multiprocessor reweighting algo-

rithms had been proposed that could change task shares with bounded overhead. In this

dissertation, we extend prior work on uniprocessor and multiprocessor systems to construct

reweighting algorithms with minimal overhead for several different types of multiprocessor

systems. Furthermore, we examine how feedback and optimization techniques can be use to

determine, at run time, which reweighting events are needed. Finally, we evaluate the pro-

posed adaptive scheduling algorithms by using two multimedia applications developed at The

University of North Carolina at Chapel Hill: the Whisper human tracking system (Vallidis,

2002) and the Virtual Exposure Camera (VEC) night vision system (Bennett and McMillan,

2005).

To motivate the need for adaptive real-time scheduling, we begin this chapter with a brief

overview of Whisper and VEC. Next, we discuss the core real-time concepts that are relevant

to this dissertation. We then review prior work on adaptive real-time systems and state

the thesis of this dissertation. We conclude this chapter by summarizing this dissertation’s

contributions and providing an outline for the remainder of the dissertation.



1.1 Applications

Brief descriptions of Whisper and VEC are provided below; more detailed descriptions will be

given later in Chapter 7, where our experimental results are given. Before discussing Whisper

and VEC, it is important to point out that, since each is a multimedia application, both

must ensure certain timing constraints to provide an acceptable user experience and thus are

examples of real-time application. One of the questions we will answer in this dissertation is

how the timing constraints of real-time applications can be changed at run time while still

providing an acceptable quality-of-service (QoS).

1.1.1 Whisper

As mentioned above, Whisper performs full-body tracking in virtual environments (Vallidis,

2002). Whisper tracks users via an array of wall- and ceiling-mounted microphones that

detect signals (i.e., white noise) emitted from speakers attached to each user’s hands, feet,

and head. Specifically, by calculating the time-shift in the signal for each microphone-speaker

pair, Whisper is able to triangulate each speaker’s position. The amount of time required to

calculate the distance between a microphone-speaker pair is indirectly related to the signal-

to-noise ratio. As the distance between a microphone-speaker pair increases, the signal-to-

noise ratio decreases, which increases the amount of time required to calculate this distance.

Also, other factors, like ambient noise, further degrade the signal-to-noise ratio causing total

computation time to increase. Because the computational cost associated with calculating

the distance between a microphone speaker-pair can change at run time, the tasks comprising

Whisper must be scheduled using algorithms that either allow task parameters to adapt or

allow task shares to be defined based on worst-case scenarios. Unfortunately, provisioning the

system based on worst-case scenarios may not be a viable option because there exist scenarios

for which no reasonable computational platform can correctly track a user (e.g., a room with

a 100dB of ambient noise). While using adaptive techniques reduces the resources required

to correctly track a user (relative to over-provisioning), the workload is still intensive enough

to necessitate a multiprocessor system.
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1.1.2 Virtual Exposure Camera

The second application considered in this dissertation is the VEC video-enhancement sys-

tem (Bennett and McMillan, 2005).1 VEC is capable of improving the quality of an under-

exposed video feed so that objects that are indistinguishable from the background become

clear and in full color. In VEC, darker objects require more computation to correct. Thus, as

dark objects move in the video, the processor shares of the tasks assigned to process different

areas of the video will change. Like all multimedia applications, to create an acceptable user

experience, VEC must update the corrected image at a regular rate. VEC will eventually

be deployed in a full-color night vision system, so tasks will need to change shares as fast

as a user’s head can turn. In the planned configuration, a multicore platform consisting of

approximately ten processing cores will be used.

1.2 Real-Time Systems

The distinguishing characteristic of a real-time system is the need to satisfy timing constraints.

The timing constraints of recurrent applications (e.g., Whisper and VEC) can be represented

using the sporadic task model . In this model, each piece of sequential recurrent code is called

a task . Each invocation of such a task is called a job. We denote the ith task of a set of tasks T

as Ti (where tasks are ordered by some arbitrary method), and denote the jth job of the task

Ti as T j
i (where jobs are ordered by the sequence in which they are invoked). Associated with

a sporadic task is a worst-case execution time (WCET), denoted e(Ti), and a period , denoted

p(Ti). The WCET denotes the maximum amount of time any job of the task requires; the

period denotes the minimum separation between consecutive job invocations and defines a

relative “deadline” for each job. The time at which a job is invoked is called its release time,

denoted r(T j
i ), and the (absolute) time by which a job must complete is called its deadline,

denoted d(T j
i ). The weight of a task Ti, denoted wt(Ti), is the fraction of a process it requires

to be correctly scheduled and is defined as e(Ti)/p(Ti). For shorthand, we will use Ti:(e, p)

to denote a task Ti with a WCET of e and a period of p.

1In prior work (Block and Anderson, 2006; Block et al., 2008a; Block et al., 2008b), we referred to VEC
as ASTA, which stands for Adaptive Saptio-Temporal Accumulation Filter ; however, VEC is more technically
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Figure 1.1: A one-processor example with three sporadic tasks.

The release and deadline of the job T j
i of a sporadic task Ti can be specified as

r(T 1
i ) = θ(T 1

i )

r(T j
i ) = d(T j−1

i ) + θ(T j
i ), j > 1

d(T j
i ) = r(T j

i ) + p(Ti), j ≥ 1

where θ(T j
i ) ≥ 0 for j ≥ 1. θ(T j

i ) denotes the sporadic separation between job releases. If

θ(T j+1
i ) = 0, then T j+1

i is released at T j
i ’s deadline.

Example (Figure 1.1). Consider the example in Figure 1.1, which depicts a one-processor

system with three tasks: T1:(2, 7), which has a sporadic separation of one time unit between

T 1
1 and T 2

1 ; T2:(1, 7/3); and T3:(4, 14). The grey boxes denote the time at which the associated

job is scheduled. Down arrows denote a job release. Up arrows denote a job deadline. Up-

and-down arrows denote that a job’s deadline and its successor’s release occur at the same

time. Similar notation will be used in later figures.

The actual execution time of job T j
j , denoted Ae(T j

i ), is the amount of time for which T j
i

is scheduled; this value is upper-bounded by e(Ti). Depending on the scenario, this value may

or may not be known before the job finishes execution. To facilitate further discussion, a few

additional terms need to be defined.

Definition 1.1 (Window, Active, and Inactive). If T j
i is a job in the task system T ,

then the window of T j
i defined as the range [r(T j

i ), d(T j
i )). Furthermore, the job T j

i is active

correct.
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at time t iff t is in T j
i ’s window (i.e., t ∈ [r(T j

i ), d(T j
i ))), and inactive otherwise. We use

ACT(t) to denote the set of active jobs at time t.

For example, in Figure 1.1, T 1
1 is active over the range [1, 7) and is inactive at every other

time.

Definition 1.2 (Completed). If S is a schedule of the task system T , then a job T j
i ∈ T

is said to have completed by time t in S iff T j
i has executed for Ae(Ti) time units by t in

S. Similarly, a task Ti is said to be complete at time t iff at time t every job of Ti that was

released by t has completed.

For example, in Figure 1.1, T 1
1 is complete at and after time 4. Also, at time 10/3, T2 is

complete since both T 1
2 and T 2

2 are complete by time 10/3.

Definition 1.3 (Pending and Ready). For an arbitrary scheduling algorithm A, if S is a

schedule of the task system T under A, then a job T j
i is said to be pending at time t in S if

r(T j
i ) ≤ t and T j

i is incomplete at t in S. Note that a job can be both pending and inactive,

if it misses its deadline. A pending job T j
i is said to be ready at time t in S if all prior jobs

of task Ti have completed by t. A job T j
i can be pending but not ready if T j−1

i is incomplete

at r(T j
i ). (Such a scenario may occur in some multiprocessor algorithms.)

For example, in Figure 1.1, T 1
1 is pending until time 4, and T 1

3 is pending until time 11.

Let A be an arbitrary scheduling algorithm, τ be an arbitrary task system, and S denote

schedule of τ generated by A. Then, we use A(S, T j
i , t1, t2) denote the total time allocated

to T j
i in S in [t1, t2). Similarly, we use A(S, Ti, t1, t2) and A(S, τ , t1, t2), respectively, to

denote the total time allocated to all jobs of Ti in S and all tasks of τ in S, over the interval

[t1, t2). We say that the value of A(S, T j
i , 0, t) is the amount that T j

i has executed by t. For

example in Figure 1.1, A(S, T 1
1 , 0, 2) = 1 and A(S , T 1

1 , 1, 4) = 2.

Depending on the consequences of missing a deadline, real-time systems can be classified

as either “hard” or “soft.” A system is a hard real-time (HRT) system if missing any deadline

implies that the system fails. In contrast, in a soft real-time (SRT) system, deadlines may be

missed. Examples of HRT systems include avionics and automotive applications. Examples

of SRT systems include multimedia and virtual-reality applications. While SRT systems may

5



miss an occasional deadline, it is still possible for such systems to “fail;” however, there is no

single notion of a “correct” SRT system. Some possible notions of SRT correctness include:

bounded deadline tardiness (i.e., all jobs complete within some bound of their deadline) (Devi

and Anderson, 2008); a specified percentage of deadlines must be met (Lu et al., 2002); and

m out of every k consecutive jobs of each task complete before their deadline (Hamadoui and

Ramanathan, 1995). In this dissertation, we are primarily concerned with HRT systems and

SRT systems with bounded deadline tardiness. For HRT systems, we say that a given task set

is schedulable if it is possible to guarantee that no single task will miss its deadline; otherwise

we say that it is unschedulable. Similarly, for SRT systems, we say that a given task set is

schedulable if it is possible to guarantee that every task has bounded deadline tardiness, and

is unschedulable otherwise. Moreover, for many types of system, we can determine if a given

task set is schedulable using a scheduability test , i.e., a set of conditions that, when satisfied

by the task set, imply that it is schedulable.

1.2.1 Uniprocessor Systems

The weight of a task can be used to define an ideal schedule, in which, at each instant,

each task is allocated a fraction of a processor equal to its weight. While the ideal schedule

represents the most equitable allocation of resources possible, it is infeasible to implement

since it requires tasks to be preempted and swapped at arbitrarily small intervals. For a

uniprocessor system, a more realistic scheduling algorithm is the earliest-deadline-first (EDF)

algorithm, which schedules jobs based on their deadlines, with earlier deadlines having higher

priority. On a uniprocessor system, EDF can guarantee that every job completes before its

deadline if the total weight of all tasks is at most one, the total available utilization.

Example (Figure 1.2). Figure 1.2 depicts a one-processor example of an ideal and EDF

schedule of a system with four tasks: T1:(1, 2); T2:(2, 8); T3:(1, 8); and T4:(1, 8) T1. The

numbers in each box denote the fraction of the processor consumed by the associated task.

Insets (a) through (c) depict, respectively, an ideal schedule, an EDF schedule, and the actual

and ideal allocations for T1.
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Figure 1.2: A one-processor example of an (a) ideal and (b) EDF schedule, and (c) T1’s
allocation in both.

1.2.2 Multiprocessor Partitioned Scheduling

Most multiprocessor scheduling algorithms can be classified as either partitioned or global .

Under partitioned algorithms, each task is permanently assigned to a specific processor and

each processor independently schedules its assigned tasks using a uniprocessor scheduling al-

gorithm. Alternatively, under global algorithms, a task may migrate among processors. The

advantage of partitioned approaches over global approaches is that they have lower migra-

tion/preemption costs. This is because, under partitioned approaches, tasks maintain cache

affinity for longer durations of time due to fewer task migrations than in global approaches.

The disadvantage of partitioned approaches is that such systems have inferior scheduability

conditions when compared to global approaches (as we shall see).

This section discusses the specifics of two partitioned scheduling algorithms: preemptive

and nonpreemptive partitioned EDF (abbreviated as PEDF and NP-PEDF, respectively). Un-

der PEDF and NP-PEDF each processor is scheduled independently using the EDF scheduling

algorithm. The difference between them is that, under PEDF, a job can be preempted, and

under NP-PEDF, a job cannot be preempted.

Example (Figure 1.3). Consider the example in Figure 1.3, which depicts a two-processor

system with six tasks.: T1:(3, 12); T2:(1, 6); T3:(3, 6); T4:(1, 4); T5:(1, 4); and T6:(5, 12). Tasks

T1, T3, and T5 are assigned to Processor 1, and tasks T2, T4, and T6 are assigned to Processor

2. Inset (a) depicts a PEDF schedule, and (b) depicts an NP-PEDF schedule.
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Figure 1.3: Two-processor (a) PEDF and (b) NP-PEDF schedules.

Notice that, since T5 is assigned to Processor 1, Processor 2 is idle over the range [10, 11)

even though T5 has work to be completed. Also note that the difference between Figure 1.3(a)

and Figure 1.3(b) is that in Figure 1.3(b) once a job begins executing it continues to do so

until it completes. This behavior is illustrated by T 1
6 , which has a contiguous execution in

Figure 1.3(b) but not in Figure 1.3(a).

Before continuing, there is one subtlety that must be discussed. Throughout this dis-

sertation, whenever we discuss partitioned scheduling algorithms, we will make a distinction

between the guaranteed weight of a task and the desired weight of a task (given by e(Ti)/p(Ti)).

This distinction is important because under partitioned algorithms, it is possible for a pro-

cessor to be over-allocated, i.e., the processor is assigned tasks with a total weight exceeding

one. When a processor is over-allocated, there are two options: reject one or more tasks; or

reduce the shares of the tasks on that processor. For example, in a two-processor system with

three tasks each of weight 2/3 (depicted in Figure 1.4), either one of the three tasks must be

rejected or the shares of the tasks on the over-allocated processor must be reduced. Both of

these options guarantee that the shares of tasks do not overutilize either of the processors

even though the weights do. While both variants have their relative advantages, for adaptive

systems, the latter option is likely a better option. (A thorough discussion of this is issue given

in Section 4.2.) It is important to note that for the majority of the algorithms considered in
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this dissertation, a task’s guaranteed weight equals its desired weight. Thus, for brevity, we

will only use the terms “desired weight” and “guaranteed weight” when discussing algorithms

where the two may differ.

1.2.3 Restricted Global Multiprocessor Scheduling

In global scheduling algorithms, tasks are scheduled from a single priority queue and may mi-

grate among processors. Global algorithms can be further classified as either restricted and

unrestricted . A scheduling algorithm is considered to be restricted if the scheduling priority

of each job (for any given schedule) does not change once it has been released. A scheduling

algorithm is considered to be unrestricted if there exists a schedule in which some job changes

its priority after it is released. In this section, we discuss two restricted global scheduling

algorithms, preemptive global-EDF (GEDF) and non-preemptive global-EDF (NP-GEDF); unre-

stricted algorithms are considered in Section 1.2.4. Under both GEDF and NP-GEDF, tasks

are scheduled from a single priority queue on an EDF basis. As with partitioned algorithms,

the only difference between GEDF and NP-GEDF is that jobs can be preempted in GEDF and

cannot be preempted in NP-GEDF.

Example (Figure 1.5). Consider the example in Figure 1.5, which pertains to a two-

processor system with five tasks: T1:(2, 7); T2:(1, 7); T3:(1, 7); T4:(3, 7); and T5:(3, 7). Inset

(a) depicts a GEDF schedule and inset (b) depicts an NP-GEDF schedule. In (a), T 1
5 misses a

deadline by one time unit at time 7, and T 2
5 misses a deadline by one time unit at time 14.

In (b), T 2
5 misses a deadline by two time unit at time 14.

Since tasks are not assigned to processors for prolonged periods of time in these algorithms,
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Figure 1.5: Two-processor (a) GEDF and (b) NP-GEDF schedules.

it is not possible for a processor to be over-allocated in the long term, provided that total

utilization is at most m, the number of processors. However, short-term over-allocations that

cause deadline misses are possible. Nonetheless, as shown by Devi and Anderson (Devi and

Anderson, 2008), such misses are only by bounded amounts. The amount of time by which

a job misses its deadline is called its tardiness. For example, in Figure 1.5(a), T 1
5 misses a

deadline at time 7, and in both Figure 1.5(a) and Figure 1.5(b), T 2
5 misses a deadline at time

14. As shown in (Devi and Anderson, 2008), under GEDF, the maximal tardiness of any job

of task a Ti is bounded by a formula given shortly; however, before presenting their equation,

we briefly introduce a few needed terms. Let emin denote the minimum execution time of any

task in the system τ . Define WT(τ) as

WT(τ) =
∑

Ti∈τ
wt(Ti).

Additionally, let maxe(k) and maxwt(k) denote, respectively, the kth largest execution time

and weight of any task. Finally, let the value Γ denote

Γ =











WT(τ) − 1, WT(τ) is integral

⌊WT(τ )⌋, otherwise.

Using these terms, the maximal tardiness (as given in (Devi and Anderson, 2008)) for any
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job of a task Ti is given as
∑Γ

k=1 maxe(k) − emin

m −∑Γ−1
k=1 maxwt(k)

+ e(Ti), (1.1)

provided WT(τ) ≤ m, where m is the number of processors. Since tasks cannot be preempted

in NP-GEDF, its tardiness bound is slightly larger than (1.1). (See (Devi and Anderson, 2008)

for details.)

1.2.4 Unrestricted Global Multiprocessor Scheduling

The final multiprocessor scheduling algorithm we consider in this dissertation is the unre-

stricted global Pfair algorithm PD2 (Srinivasan and Anderson, 2005). PD2 schedules a task

by breaking it into a sequence in which of subtasks, each of which represents one time unit

of execution. Each such time unit is called a quantum. The jth subtask of the task Ti is

denoted as T
[j]
i , where subtasks are ordered by the sequence in which they are invoked. Asso-

ciated with each subtask is a pseudo-release and pseudo-deadline (often called “release” and

“deadline” for brevity), which are defined as

r(T
[1]
i ) = θ(T

[1]
i )

r(T
[j]
i ) = d(T

[j−1]
i ) +

⌊

j − 1

wt(Ti)

⌋

−
⌈

j − 1

wt(Ti)

⌉

+ θ(T j
i ), j > 1

d(T
[j]
i ) = r(T

[j]
i ) −

⌊

j − 1

wt(Ti)

⌋

+

⌈

j

wt(Ti)

⌉

, j ≥ 1

where θ(T
[j]
i ) ≥ 0 for j ≥ 1. θ(T

[j]
i ) denotes the “sporadic” separation between subtask

releases (such separations are called “intra-sporadic”). PD2 schedules subtasks on an earliest-

pseudo-deadline-first basis with two tie-breaking rules, which are used in the event of a dead-

line tie. (A more thorough discussion of PD2 can be found in Chapter 5.) Since tasks in PD2

are scheduled one quantum at a time, a task’s execution time is assumed to be a multiple of

the quantum size (and must be rounded up if this is not the case) and the scheduling of a

task depends only on its weight. The main advantage of PD2 over all other aforementioned

algorithms is that PD2 is the only algorithm that can guarantee that every job is scheduled

before its deadline and no processor is over-allocated provided total utilization is at most

the number of processors. However, since tasks are scheduled on a per-quantum basis, it is
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Figure 1.6: A two-processor system scheduled by PD2.

possible that a task will be preempted and migrated every quantum, which can cause tasks to

incur large migration/preemption costs. Another disadvantage of PD2 is that task execution

times must be rounded up, which can cause the system to be underutilized. For example, if

a task has an execution time of 3.1 and a period of 4, then its weight would be 4/4 = 1, since

the execution time of 3.1 would be rounded up to one.

Example (Figure 1.6). Figure 1.6 shows a PD2 schedule for the task system consider earlier

in Figure 1.5.

Notice that, in this schedule, tasks are scheduled one quantum at a time. As a result,

tasks may be preempted at the end of every quantum and may migrate nearly as frequently.

Also note that a subtask (unlike a job) may be released before the deadline of its successor.

Finally, notice that, in this schedule, every task is scheduled before its deadline and that tasks

with the same weight (but different periods) receives allocations at the same rate, e.g., T3

and T4 receive approximately one allocation in any 7/3-quantum interval.

1.2.5 Impact of Migrations and Preemptions

Given these five algorithms, it is obvious that in the absence of migration and preemption

costs, PD2 should be the preferred algorithm since it is the only algorithm that can both

guarantee that every job completes before its deadline and that the share of every task equals

its weight. However, for many applications, migration and preemption costs may be sub-
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stantial. Recently, our research group (Calandrino et al., 2006) constructed a multiprocessor

testbed, called LITMUSRT, to compare different real-time scheduling algorithms. We then

used this testbed to implement all of the aforementioned algorithms (except NP-PEDF) on a

four-processor system (with 2.7 GHz processors) in an effort to assess the impact of migration

and preemption costs. In our work, we varied the weight of tasks being scheduled and the

amount of cache used by each task. (Migrations and preemptions cause a loss of cache affinity,

and as a result, if a task utilizes a larger fraction of the cache, then that task has both higher

migration and preemption costs.)

Our experiments assessed the performance of each algorithm as measured by the number

of processors that would be required to schedule a number of randomly generated task sets

with a maximal utilization of four. These experiments showed the following:

• The HRT performance of PEDF and GEDF improve (relative to the other algorithms) as

migration and preemption costs increase and/or the weights of tasks decrease. However,

PEDF always has better HRT performance than GEDF.

• The performance of PD2 improves (relative to the other algorithms) as migration and

preemption costs decrease and/or the weights of the tasks increase.

• PD2 has virtually the same performance in both HRT and SRT systems.

• PEDF has virtually the same performance in both HRT and SRT systems.

• Both GEDF and NP-GEDF always perform better than any other algorithm for SRT sys-

tems. Furthermore, NP-GEDF has slightly better performance than GEDF. (The HRT

performance of NP-GEDF was not considered since there does not exist a scheduability

test for it that would return meaningful results.)

The reason why the performance of PEDF is adversely impacted by increasing task weights is

that, if tasks have higher weights, then it is harder to produce a valid partitioning. Similarly,

for GEDF, as task weights increase, it becomes more likely that a job will be tardy. As a

result, additional processing capacity is needed to prevent such a scenario. The performance

of PD2 is positively impacted by increasing task weights because PD2 is more likely to schedule
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tasks with larger weights in consecutive quanta, thus reducing the number of migrations and

preemptions. GEDF and NP-GEDF perform well for SRT systems because even though these

algorithms can cause tasks to miss deadlines, they incur relatively little migration/preemption

cost. Moreover, since tasks are not partitioned under GEDF and NP-GEDF, the performance

(in terms of the required number of processors to guarantee bounded tardiness) does not

substantially degrade as task weights increase. Given these results, it is easy to see that

there there does not exist a single “best” multiprocessor scheduling algorithm, and the choice

of which algorithm depends on the scenario in which it will be used. The theoretical and

empirical results from this section are summarized in Tables. 1.1 and 1.2, respectively.

1.2.6 Research Needed

Under traditional task models (e.g., the sporadic model), the scheduability of a system is

based on each task’s WCET. The disadvantage of using WCETs is that a system may be

deemed unschedulable even if it would function correctly most (or possibly all) of the time

when deployed. Adaptive real-time scheduling algorithms allow per-task processor shares

to be adjusted based upon run time conditions, instead of always using constant share al-

locations based upon WCETs. Prior to the research in the dissertation, for multiprocessor

systems, one approach for reweighting a task had been proposed, as we will discuss in Sec-

tion 2.1 (Srinivasan and Anderson, 2005); however, this approach only allows tasks to reweight

at job boundaries. By delaying a task’s reweighting request until its next job boundary, the

system may “drift” from its “ideal” allocation by an arbitrarily large amount. As a result, for

applications like Whisper and VEC, where timing constraints are continually changing, such

delays may cause unacceptably poor performance. In this dissertation, we remedy this short-

coming by proposing a set of rules that allow tasks to reweight without causing unbounded

drift, and an adaptive framework that determines at run time which adaptions are needed.

14



Scheme Desired = Guaranteed Weight Guaranteed Deadlines
PEDF No Yes

NP-PEDF No No
GEDF Yes No

NP-GEDF Yes No
PD2 Yes Yes

Scheme Migrations Preemptions
PEDF Never At Job Completions and Releases

NP-PEDF Never Never
GEDF At Job Completions and Releases At Job Completions and Releases

NP-GEDF In Between Jobs Never
PD2 Every Quantum Every Quantum

Table 1.1: Summary of algorithms and their properties. Note that deadlines can be guaranteed
under PEDF only at the expense of allowing guaranteed weights to be less than desired weights.

Scheme Light Tasks Heavy Tasks
(Hard) (Hard) (Hard)
PEDF Best Poor
GEDF Good Worst

NP-GEDF N/A N/A
PD2 Worst Best

Scheme High Mig./Preemp. Costs Low Mig./Preemp. Costs
(Hard) (Hard) (Hard)
PEDF Best Poor
GEDF Good Worst

NP-GEDF N/A N/A
PD2 Worst Excellent

Scheme Soft-Real Time
(All cases)

PEDF Same as hard
GEDF Excellent

NP-GEDF Best
PD2 Same as hard

Table 1.2: Empirical performance of the algorithms under different conditions. Heavy tasks
have a weight of at least 1/2, and light tasks have a weight less than 1/2. (Results are relative
to other algorithms.)
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1.3 Adaptivity

This section provides a review of prior work on adaptive uniprocessor real-time schemes in

which tasks are reweighted based on external and internal stimuli.

1.3.1 Leave/join Reweighting

Under leave/join reweighting (Srinivasan and Anderson, 2005), a task’s weight is changed at

job boundaries by forcing it to leave with its old weight and rejoin with its new weight.

Example (Figure 1.7). Consider the example Figure 1.7, which depicts a one-processor

system with three tasks: T1:(1, 2) that leaves at time 2; T2, which has an initial weight of 1/4,

an execution cost of 1, and “initiates” a weight increase at time 2 to a weight of 3/4, which is

enacted by leave/join reweighting at T 1
2 ’s deadline (i.e., time 4); and T3:(2, 8). (a) illustrates

the EDF schedule and (b) illustrates the ideal and actual allocations to task T2.

Notice that, even though T2 “initiates” its change at time 2 and capacity exists for T2 to

increase its weight, this weight change cannot be “enacted” until its deadline. This illustrates

that the primary drawback to leave/join reweighting is that a task can only change its weight

at job boundaries. As a result, over the time range [2, 4), T2 behaves as though it is a task

of weight 1/4, even though in the ideal system (which can instantly enact weight changes) T2

would behave as a task of weight 3/4, is depicted in Figure 1.7(b). As a result, T2’s allocation

in the actual schedule “drifts” from its allocation in the ideal schedule by one time unit.

(Briefly, drift is the difference between a task’s ideal and actual allocations caused by a single

reweighting event.) Moreover, since leave/join reweighting cannot enact a reweighting event

until a job boundary, it is possible that a task can incur an arbitrarily large amount of drift

for one reweighting event. Section 1.5.3 provides a more detailed discussion concerning drift.

1.3.2 Rate-Based Earliest Deadline

Under rate-based earliest-deadline (RBED) scheduling (Brandt et al., 2003), which was pro-

posed for uniprocessor systems, tasks are scheduled on an EDF basis and can change their
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Figure 1.7: The (a) EDF schedule and the (b) ideal and actual allocations to T2 in a one-
processor example of leave/join reweighting.

weights and periods via two different rules based on whether the execution time or period is

changed. While these rules are more responsive than leave/join reweighting, it is still possible

for a task to incur an arbitrarily large amount of drift under RBED. In Chapter 2, we will

review this work in detail.

1.3.3 Proportional Share Scheduling

Under proportional share scheduling (Stoica et al., 1996), the guaranteed weight of each task

is determined as a function of its desired weight and the desired weight of all other tasks.

Specifically, the guaranteed weight of the task Ti at time t is defined as

Gwt(Ti, t) =
wt(Ti)

WT(τ , t)
, (1.2)

where WT(τ , t) is the total desired weight of all active tasks in the system τ at time t. For

example, consider a one-processor system that consists of four tasks: T1 that has a desired

weight of 1/2; T2 that has a desired weight of 1/4; T3 that has a desired weight of 1/4; and

T4 that has a desired weight of 1/8. If, at some time t1 all four tasks are active, then the

guaranteed weight for each task would be 1/(1/2 + 1/4 + 1/4 + 1/8) = 8/9 of its desired

weight. So, the desired weight of T1 would be 4/9. Alternatively, if at some time, t2, only

T1 and T2 were active, then the guaranteed weight of each would be 4/3 of its desired weight

for each task. So, the guaranteed weight of T1 would be 2/3. It is worthwhile to note

that proportional share algorithms cannot change the weight of only one task in a system
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without using leave/join techniques. In Section 2.3, we will review one of the more popular

proportional share scheduling algorithms.

1.3.4 Adaptive Feedback-Based Frameworks

In adaptive feedback-based scheduling algorithms, the execution time of each job is unknown

until it is complete. As a result, in these systems, each task’s weight is defined as a function

of its estimated execution time, which is calculated for a job by using the actual execution

times of the task’s prior jobs. Moreover, a user can fine-tune a feedback-based system to

achieve desired behaviors.

Lu et al. (Lu et al., 2000) were the first to propose such a scheduling algorithm, which

was directed at uniprocessor systems.2 Under their algorithm, called FC-EDF2, each task

has multiple versions (called service levels), each of which has a different level of QoS and

a different nominal processor share, representing the fraction of a processor the task will

require on average if it executes at that service level. A task can only execute at one service

level at a time. In order to control the system, FC-EDF2 monitors the system’s utilization

and miss-ratio, i.e., the fraction of jobs with missed deadlines. In order to minimize the

miss-ratio while maximizing utilization, FC-EDF2 adjusts the set of scheduled tasks and their

service levels. More recently, Lu et al. extended this work to create a comprehensive feedback

scheduling framework (Lu et al., 2002) that more explicitly incorporates the value to the

system associated with each service level. This framework is the basis for the approach we

propose in this paper. One drawback of FC-EDF2 is that, because only the utilization and the

system-wide miss-ratio are monitored, the system cannot identify whether an individual task

has an actual execution time that deviates substantially from its estimated execution time.

Thus, the system can only respond to differences between the actual and estimated execution

times of tasks by changing the entire system instead of only a few tasks.

Alternatively, Abeni et al. have proposed a uniprocessor feedback algorithm in which each

task has its own feedback-controller rather than one controller for the entire system (Abeni

2Specifically, the first correct feedback algorithm was proposed in (Lu et al., 2000). The original system,
FC-EDF, proposed in (Lu et al., 1999) could not satisfy its design specification because it was possible for the
controller to become saturated, thus rendering it unable to correctly adjust the system.
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et al., 2002). In order to attempt to maintain an accurate processor share for each task, their

algorithm monitors, for each task , the difference between the estimated and actual execution

times of each job. Once the system has calculated a new estimated execution time for a future

job, it adjusts the task’s weight. More recently, Cucinotta et al. extended this approach to

provide stochastic guarantees concerning per-task processor shares (Cucinotta et al., 2004).

One drawback of their approach is that it ignores the possibility that some tasks are more

important than others.

In addition to general-purpose real-time scheduling algorithms, feedback-based scheduling

has become increasingly important for managing control tasks, i.e., tasks that control external

devices. In work by Mart́ı et al. (Marti et al., 2004), an approach is proposed that is similar

to that of Abeni et al., except that in (Marti et al., 2004), each period of each task has an

associated “importance value” that denotes the task’s value to the system in that period.

By using importance values, Mart́ı et al. determined the optimal period for each task via

standard linear programming techniques. One limitation of this approach is that it cannot

adjust the amount of time for which a task executes, like other approaches (e.g., like that of

Lu et al. (Lu et al., 2002)).

1.4 Thesis Statement

There are two major limitations of prior work on adaptive uniprocessor systems. First,

there does not exist a set of metrics for comparing different reweighting algorithms. Second,

existing methods for changing the weights of tasks (i.e., leave/join reweighting and RBED)

may give rise to an unacceptably long delay after initiating a weight change before it is

enacted. For multiprocessor systems, the limitations are even more severe since the only

method for changing the weight of a task is to use leave/join reweighting. Moreover, for

multiprocessor systems, there is an inherent tradeoff, which must be explored, between the

level of migration/preemption and the “accuracy” of the adaptive protocol. Also, there is

no global feedback-based adaptive framework, which would be necessary for implementing

applications like Whisper and VEC. The main thesis of this dissertation, which attempts to

resolves these issues, is the following.
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Multiprocessor real-time scheduling algorithms can be made more adaptive by al-

lowing tasks to reweight between job releases. Feedback and optimization techniques

can be used to determine at run time which reweighting events are needed. The

accuracy of such an algorithm can be improved by allowing more frequent task mi-

grations and preemptions; however, this accuracy comes at the expense of higher

migration and preemption costs, which impacts average-case performance. Thus,

there is a tradeoff between accuracy and average-case performance that will be

dependent on the frequency of task migrations/preemptions and their cost.

1.5 Contributions

In this section, we briefly discuss the contributions of this dissertation.

1.5.1 Adaptable Task Model and Reweighting Algorithms

The first contribution we discuss in the dissertation is the adaptable task model (originally

proposed in (Block et al., 2008b)). This model is an extension of the sporadic task model,

where the weight of each task T , wt(T , t), is a function of time t, and a task’s execution

time can vary between job releases. A task T changes weight or reweights at time t + 1 if

wt(T , t) 6= wt(T , t + 1). If a task T changes weight at a time tc between the release and the

deadline of some job T j
i , then the following two actions may occur:

(i) If T j
i has not been scheduled by tc, then T j

i may be “halted” at tc.

(ii) r(T j+1
i ) may be redefined to be less than d(T j

i ).

In the sporadic model defined earlier, every job’s deadline is at or before its successor’s release.

As we will discuss in Section 1.5.2, the reason why the above two actions may occur is that

the value of r(T j+1
i ) may change as a result of a reweighting event. The reweighting rules we

present later in this section state the conditions under which the above actions may occur

and the number of time units before d(T j
i ) that job T j+1

i can be released.

As has already been discussed, when a task reweights, there can be a difference between

when it initiates the change and when the change is enacted. The time at which the change
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is initiated is a user-defined time; the time at which the change is enacted is dictated by a

set of conditions that differ slightly for each type of multiprocessor reweighting algorithm.

Furthermore, the release and deadline of a job of an adaptable task is defined based on the

weight of the task when it was released.

1.5.2 Reweighting Rules.

The second major contribution of this dissertation is the construction of reweighting rules

for PEDF, NP-PEDF, GEDF, NP-GEDF, and PD2. (The reweighting rules for PEDF, and

by extension for NP-PEDF, were proposed by Block and Anderson in (Block and Anderson,

2006); the reweighting rules for GEDF and NP-GEDF were proposed by Block et al. in (Block

et al., 2008b); and the reweighting rules for PD2 were proposed by Block et al. in (Block et al.,

2008a).) In all five reweighting algorithms, tasks change weight via one of two rules that are

based on whether a task’s active job is over- or under-allocated relative to an ideal schedule.

• If a task is under-allocated , then the change is enacted by immediately halting the active

job and releasing a new job with the remaining execution time.

• If a task is over-allocated , then one of two actions occurs: (i) if the task increases its

weight, then the change is enacted by immediately halting the active job and releasing

the next job when the task’s “ideal” allocation equals its “actual” allocation; (ii) if the

task decreases its weight, then the active job immediately halts and when the task’s

“ideal” allocation equals its “actual” allocation, the change is enacted and the next job

is released.

When a T j
i is halted at time t, T j

i is not scheduled after time t.

Example (Figure 1.8). Consider the examples depicted in Figure 1.8. Insets (a) and (b)

pertain to a one-processor system with: T1:(1, 2), which leaves the system at time 2; T2:(1, 6);

and T3, with an execution cost of 3 and an initial weight of 1/6 that increases to 4/6 at time 2.

Since the first jobs of T2 and T3 have the same deadline, we can arbitrarily choose which job

has a higher scheduling priority. Inset (a) depicts the case where T2 has higher priority, and

as a result, T3 is “under-allocated” relative to the ideal system when it reweights at time 2.
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Thus, when T3 reweights, its current job “halts” and its next job is immediately released.

Inset (b) depicts the case where T3 has higher priority, and as a result, T3 is “over-allocated”

relative to the ideal system, when it reweights at time 2. Thus, when T3 reweights, its current

job “halts” and its next job is not released until the difference between T3’s ideal and actual

allocations is zero (at time 3). The dotted lines denote the interval of the first job of T3 that

has been changed by the reweighting event. Inset (c) depicts the ideal allocation of T3 as a

function of time. Notice that, at time 2, when T3 increases its weight from 1/6 to 4/6, the

ideal allocation rate increases from 1/6 to 4/6, and that at time 3, T3’s total ideal allocation

equals 1. Inset (d) depicts a one-processor system with four tasks: T1:(1, 2), which joins

the system at time 1.5; T2:(1, 6); T3:(1, 6); and T4, which has an initial weight of 4/6 that

decreases to 1/6 at time 1. Since T4 is over-allocated at time 1 and decreases its weight, its

weight change is enacted when its ideal allocation equals its actual allocation (at time 1.5).

Inset (e) depicts ideal allocation for T4.

One important property of the above reweighting rules is that reweighting events are task-

independent . That is, if a task Ti changes its weight, then only the releases and deadlines of

jobs of Ti change. As a result of this independence, a task can only increase its weight at time

t if enough capacity for the reweighting event is available. For example, if a two-processor

task system has three tasks each of weight 0.6, then none of these tasks can initiate a weight

increase to 0.9 (since this would cause the system load to be 2.1), unless one of the other

two tasks first decreases its weight or leaves the system. (If reweighting events were not

task-independent, then it would be possible for a proportional-share scheduling algorithm to

increase the weight of a task at the expense of the shares of other tasks in the system.)

1.5.3 Evaluating Algorithms

The next contribution of this dissertation is a comparison of the reweighting algorithm for dif-

ferent multiprocessor scheduling frameworks. In order to evaluate the reweighting algorithms,

we use three different metrics: overload , tardiness, and drift . Overload is the maximal amount

that a single processor is overutilized (assuming that the system is not overutilized). Tardiness

is the maximal amount by which a task can miss a deadline. Drift is the maximal amount of
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Figure 1.8: Several one-processor systems scheduled by EDF using our reweighting rules.
(a) Increasing the weight of a task (T3) when it is under-allocated. (b) Increasing the weight
of a task (T3) when it is over-allocated. (c) T3’s ideal allocation. (d) Decreasing the weight
of a task (T4). (e) T4’s ideal allocation.
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Scheme Tardiness Drift Overload
PD2 03 2 0

PEDF 1 emax(Ti) W

NP-PEDF e(T j
i ) +emax(Ti)+1 emax(Ti) W

GEDF κ(m − 1) + emax(Ti) emax(Ti) 0
NP-GEDF κ(m) + emax(Ti) emax(Ti) 0

Table 1.3: Summary of worst-case results for reweighting systems.

computation time a task “loses” between the initiation and enaction of a reweighting event.

A comparison of the adaptable scheduling algorithms considered in this dissertation is given

in Table 1.3. In this table, emax(Ti) denotes the maximum execution time of any job of task

Ti; wtmax(Ti) denotes the maximal weight of task Ti at any time; and W denotes the maxi-

mal weight of the (m · ⌊1/X⌋ + 1)st heaviest task (by maximal weight) in τ , where m is the

number of processors, τ is the set of all tasks, and X is the maximal weight of the heaviest

task. In addition,

κ(ℓ) =

∑

Tz∈E(ℓ) emax(Tz)

m −∑Tz∈X (T )ℓ−1 W(Tz)
+ emax(Ti).

where E(ℓ) is the set of ℓ tasks in τ with the highest maximal execution time and X (ℓ− 1) is

the set of ℓ − 1 tasks in τ of largest maximal weight.

Overload. As mentioned above, overload is the maximal amount that a single processor

is overutilized. For example, in Figure 1.4(b), the system is not overutilized (it has two

processors and its utilization is two), yet one processor is overloaded by 1/3. Hence, overload

is 1/3. Assuming that any reasonable allocation decreasing partitioning algorithm (i.e., tasks

are sorted decreasing by weight before being assigned to processors) is used, no processor

can be overutilized by more than the weight of the lightest task assigned to it (Lopez et al.,

2004). More specifically, for partitioned algorithms, no processor is overutilized by more than

W , where W is the weight of of the
(

m · ⌊ 1
X ⌋ + 1

)st
heaviest task and X is the weight of the

heaviest task (Block and Anderson, 2006). (In Figure 1.4, T1 is the
(

m · ⌊ 1
X ⌋ + 1

)st
heaviest

task.) Thus, for partitioned algorithms, the overload error is W . As discussed in Section 1.4,

under global scheduling algorithms, no single processor can be overutilized. Hence, for global

scheduling algorithms, overload is zero.
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Tardiness. Recall that one of the advantages for both PEDF and PD2 is that both of these

algorithms have zero tardiness (but, for PEDF, this requires allowing guaranteed weights to

be less than desired weights). GEDF has a maximal tardiness that is at most the value given

in (1.1). For the adaptive variants of these algorithms, the tardiness for both PEDF and PD2

is still zero, whereas the tardiness bound for GEDF must be modified to include dynamic

weights and execution times. Specifically, in Chapter 3, we establish that tardiness under

adaptive GEDF is at most
∑Γ(t)

k=1 maxe(k)

m −∑Γ(t)−1
k=1 maxwt(k)

+ e(T j
i ), (1.3)

provided that, for all t, WT(τ , t) ≤ m, where WT(τ , t) =
∑

Ti∈τ wt(Ti, t), and maxe(k) and

maxwt(k) are, respectively, the kth largest maximal execution time and weight of any task,

and

Γ(t) =











WT(τ , t) − 1, WT(τ , t) is integral

⌊WT(τ , t)⌋, otherwise.

Note that, because NP-PEDF and NP-GEDF are non-preemptive, their tardiness bounds are

slightly larger than those for PEDF (which is zero) and GEDF, respectively.

Drift. For most non-adaptive real-time scheduling algorithms, the difference between a

task’s actual and ideal allocation lies within some bounded range centered at zero. For

example, under a uniprocessor EDF schedule of a sporadic system, this difference lies within

(−e(Ti), e(Ti)). When a weight change occurs, the same bounds are maintained except that

they may be centered at a different value. For example, in Figure 1.8(b), the range is originally

(−1, 1) for task T3, but after the reweighting event, it is (−4/6, 8/6). This lost allocation is

called drift. Given this loss (barring further reweighting events), Ti’s drift will not change.

In general, a task’s drift per reweighting event will be non-negative if it increases its weight,

or non-positive if it decreases its weight. For GEDF, NP-GEDF, PEDF, and NP-PEDF the

maximal absolute value of the drift for T j
i is at most the maximal execution time of Ti (Block

and Anderson, 2006; Block et al., 2008b). (For the remainder of this dissertation, we will use

3A tardiness of 0 is only guaranteed to hold for a given task Ti with an execution cost of a and a weight of
b/c only if there exists some integer n such that b · n = a; otherwise the tardiness of a task may be up to one
quantum.
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the term absolute drift to refer to the absolute value of the drift.) Under PD2 the maximal

absolute drift is 2 (Block et al., 2008a).

There is one subtle issue with the reweighting rules given in Section 1.5.2 that is important

to mention. When designing the above rules, one of the guiding principals was that the

reweighting rules be task-independent. As a result, when a task’s weight decreases, if the

active job is over-allocated and decreases its weight, then the capacity gained by decreasing

the weight cannot be “released” until at or after the time at which the ideal allocation for

the task equals its actual allocation. For example, in Figure 1.8(d), the capacity created by

decreasing T4’s weight from 4/6 to 1/6 is not “released” until the time at which T4’s actual

allocation equals its ideal allocation at time 1.5. This occurs even though T4 decrease its

weight at time 1. If such a delay did not exist, then a task could artificially increase its

weight by continually decreasing and increasing its weight.

Example (Figure 1.9). Consider the example Figure 1.9, which depicts a one-processor

system with six tasks: T1:(8, 10) and T2, ..., T6 each of which has an execution cost of one,

an initial weight of 1/5, initiates a weight decrease to a weight of 0 immediately after being

scheduled, and joins the system as soon capacity is available. Since the tasks in the set T2, ...,

T6 continually decrease and increase their weights, over the range [0, 10), these tasks receive

one-half of the available capacity, even though they should only receive one-fifth. As a result,

T 1
1 misses its deadline by three time units. This example can be easily extended (by decreasing

task weights) to construct scenarios with arbitrarily large tardiness. Since the capacity from

a weight decrease cannot be released until ideal and actual allocations match, when a task

decreases its weight there might exist an arbitrarily long length of time before the capacity

is released. The problem with this delay is that, not only does it cause constant positive

drift, but it may also cause a reweighting event initiation to be delayed for an arbitrarily long

period of time. However, for any reweighting algorithm that both ensures bounded tardiness

and uses task-independent reweighting, this delay is unavoidable.
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Figure 1.10: The AGEDF system.

1.5.4 AGEDF

The multiprocessor reweighting algorithms we have developed require that the desired weights

be provided. Desired weights can be determined using feedback-based techniques that use

run time conditions. It is desirable that weight adjustments be enacted in a way that at-

tempts to maximize overall QoS. Moreover, the allocation scheme should not “over-react” in

adjusting weights when transient overloads occur. While there has been extensive work on

adaptive feedback-based frameworks for uniprocessor systems (Abeni et al., 2002; Cucinotta

et al., 2004; Lu et al., 2000; Lu et al., 1999), there has been relatively little work on multi-

processor feedback-based adaptive frameworks and the work that has been done has focused

on non-preemptive systems where worst-case execution times, best-case execution times, and

deadlines are static (Al-Omari et al., 2003; Sahoo et al., 2002).

In this dissertation, we remedy the shortcomings of prior adaptive multiprocessor real-time

systems by presenting an adaptive GEDF framework called AGEDF (depicted in Figure 1.10),

which consists of three components: a predictor , which uses feedback techniques to estimate

the processor shares of future jobs; an optimizer , which uses the estimated processor shares
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of tasks to determine a new set of service levels; and several reweighting rules, which change

the service levels to match those determined by the optimizer. To the best of our knowledge,

this is the first such adaptive global framework for multiprocessor systems to be proposed.

The reason why we constructed such a framework for GEDF and not for any of the other

algorithms is because the feedback techniques used in this framework are best suited for SRT

systems, and, as we discussed in Section 1.2.5, GEDF-based algorithms have superior SRT

scheduability compared to PEDF- and PD2-based algorithms.

1.5.5 AGEDF Implementation

As mentioned above, our research group developed a testbed called LITMUSRT that allows

different multiprocessor scheduling algorithms to be linked as plug-in components (Calandrino

et al., 2006). As a final contribution, we implemented AGEDF as a LITMUSRT plug-in. Our

implementation of AGEDF consists of both a user-space library and kernel support added to

LITMUSRT. In this section, we briefly discuss both parts.

Because LITMUSRT was designed for sporadic tasks provisioned using WCETs, several

modifications were needed to support adaptable sporadic tasks. These included: adjusting

the internal structure of a task to allow each task to have multiple service levels; disabling the

enforcement of WCETs to allow tasks to overrun their expected allocation; and modifying

LITMUSRT to allow task statistics such as actual execution times to be gathered.

After making these changes, we implemented AGEDF by changing the GEDF scheduling

algorithm (which had already been implemented in LITMUSRT) in two ways. First, we

introduced a system call to query the kernel in order for a task to determine its current service

level. Second, we implemented the feedback, optimization, and reweighting components in

kernel space.

After modifying LITMUSRT, we then evaluated its performance by using the core opera-

tions of both Whisper and VEC (correlation computations and bilateral filters, respectively).

In this evaluation, AGEDF proved to be an extensible scheduling framework that can be easily

configured to support different optimization criteria. Moreover, it exhibited good performance

in scenarios in which the use of a non-adaptive GEDF algorithm would result in significant
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system over-utilization.

1.6 Organization

The organization of this dissertation is as follows. In Chapter 2, we review prior work on

adaptive, real-time, and multimedia systems. In Chapters 3, 4, and 5, we define and prove

the reweighting rules for GEDF, PEDF, and PD2, respectively. In Chapter 6, we define the

adaptable framework AGEDF. In Chapter 7, we discuss the implementation of AGEDF un-

der LITMUSRT and present an experimental evaluation of AGEDF. Finally, we conclude in

Chapter 8.
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CHAPTER 2

PRIOR WORK

In this chapter, we review in detail prior work on adaptive real-time systems and feedback-

control theory. As mentioned in Chapter 1, the adaptive framework we propose consists of

two components: one that changes the parameters of running tasks (e.g., periods and weights)

and one that determines such parameters. In Sections 2.1–2.2, we review three approaches for

changing the periods and weights of running tasks. In Section 2.4, we review feedback-control

theory, which is used for determining task execution times in both Lu et al.’s Feedback-Control

Real-Time Scheduling (FCS) framework (Lu et al., 2002), which we cover in Section 2.5, and

Abeni et al.’s Adaptive Reservation-Based Scheduler (Abeni et al., 2002), which we cover in

Section 2.6.

2.1 Leave/Join Reweighting

As was mentioned in Section 1.3.1, under leave/join reweighting (Srinivasan and Anderson,

2005), a task’s weight is changed at job boundaries by forcing it to leave with its old weight

and rejoin with its new weight.

Example (Figure 2.1). Consider the example in Figure 2.1, which depicts a one-processor

system with three tasks: T1:(1, 2), which leaves at time 2; T2, which has an initial weight

of 1/4, an execution cost of 1, and “initiates” a weight increase at time 2 to a weight of

3/4, which is enacted by leave/join reweighting at T 1
2 ’s deadline (i.e., time 4); and T3:(2, 8).

(This is the same system that was depicted in Figure 2.1, but has been repeated here to

improve readability.) Inset (a) illustrates the EDF schedule and inset (b) illustrates the ideal

and actual allocations to task T2. Notice that, even though T2 initiates its change at time 2

and capacity exists for T2 to increase its weight, this weight change cannot be enacted until
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Figure 2.1: The (a) EDF schedule and (b) ideal and actual allocations to T2 in a one-processor
example of leave/join reweighting.

its deadline. This illustrates that the primary drawback of leave/join reweighting is that a

task can only change its weight at job boundaries. As a result, T2’s allocation in the actual

schedule drifts from its allocations in the ideal schedule by one quantum.

Since leave/join reweighting cannot enact a reweighting event until a job boundary, it is

possible that a task can incur an arbitrarily large amount of drift for one reweighting event.

2.2 Rate-Based Earliest Deadline

Under rate-based earliest-deadline (RBED) scheduling (Brandt et al., 2003), tasks are sched-

uled on a uniprocessor on an EDF basis and can change their weights and periods via four

different rules. Specifically, under RBED, if a task Ti changes its weight or period at time t,

then the active job T j
i of Ti at t is modified as follows, where x denotes the amount of time

for which T j
i has been scheduled before t:

1. Ti increases its period to P . T j
i ’s deadline and period are immediately increased

in accordance with the new period. Moreover, if T j
i ’s deadline is increased to time D,

then the execution time of T j
i is increased by wt(Ti) · (D − d(T j

i )).

2. Ti decreases its period to P . If x ≥ wt(Ti) · (t− r(T j
i )), then T j

i ’s deadline is changed

to r(T j
i ) + max(x/wt(Ti), P ); otherwise, T j

i ’s deadline is unchanged. Moreover, if T j
i ’s

deadline is decreased to time D, then T j
i ’s execution time is reduced by wt(Ti) ·(d(T j

i )−
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D). Regardless of the value to which T j
i ’s deadline was changed, Ti’s period is changed

to P . (Thus, d(T j+1
i ) − r(T j+1

i ) = P .)

3. Ti increases its weight from Ow to Nw. If Nw−Ow is at most the amount of spare

utilization (i.e., the total utilization of all other tasks at most 1 + Ow − Nw), then Ti

can increase its weight. If Ti increases its weight, then T j
i ’s execution time increases by

(d(T j
i ) − t) · (Nw − Ow).

4. Ti decreases its weight from Ow to Nw. Ti can decrease its weight to Nw only if

Nw ≥ Ow− x

t−r(T j
i )

. Moreover, if Ti’s weight is decreased at time t, then T j
i ’s execution

time is reduced by (Ow − Nw) · (d(T j
i ) − t).

Intuitively, these rules seek to prevent a task from artificially increasing its allocations by

repeatedly changing its weight and/or period. (Notice that in Rule 2, r(T j
i )+x/wt(Ti) ≤ d(T j

i )

since x ≤ e(T j
i ) and d(T j

i ) = r(T j
i ) + e(T j

i )/wt(Ti).)

Example (Figure 2.2). Rules 1 through 4 are illustrated in Figure 2.2 via the following

examples (each involving three tasks executing on one processor):

(a) T1, T2, and T3 all have an initial weight of 1/3 and period of 3. At time 1, T1 increases

its period to 5 via Rule 1. As a result, T 1
1 ’s execution time increases from 1 to 5/3.

(b) T1, T2, and T3 all have an initial weight of 1/3 and period of 6. At time 1, T1 decreases

its period to 3 via Rule 2. As a result, T 1
1 ’s execution time decreases from 2 to 1.

(c) T1 has an initial weight of 1/6 and period of 3. T2 and T3 both have an initial weight of

1/3 and period of 3. At time 1, T1 increases its weight to 1/3 via Rule 3. As a result,

T 1
1 ’s execution time increases from 1/2 to 5/6.

(d) T1, T2, and T3 all have an initial weight of 1/3 and period of 6. At time 3, T1 decreases

its weight to 0 via Rule 4. As a result, T 1
1 ’s execution time decreases from 2 to 0.

The primary drawback to RBED is that a task cannot decrease its period if it is under-

allocated relative to the ideal schedule (i.e., x < wt(Ti)·(t−r(T j
i ))). Thus, if an under-allocated

task wants to decrease its period, it may be forced to wait until its deadline. Moreover, if
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a task decreases its period in order to increase its weight (one of only two ways for a task

to change its weight), then the task can incur an arbitrarily large amount of drift for one

reweighting event.

2.3 Earliest Eligible Virtual Deadline First

As mentioned in Section 1.3.3, under proportional share scheduling (Stoica et al., 1996), the

guaranteed weight of a task Ti at time t is defined as

Gwt(Ti, t) =
wt(Ti)

WT(τ , t)
, (2.1)

where wt(Ti) is the desired weight of Ti and WT(τ , t) is the total desired weight of all tasks

in the system τ at time t.1

One of the preferred algorithms for proportional share scheduling on uniprocessors is the

earliest-eligible-virtual-deadline-first (EEVDF) algorithm, proposed by Stoica et al. (Stoica

et al., 1996). Under EEVDF, task releases and deadlines are defined based on an additional

notion of time called virtual time. Virtual time, unlike “real time,” scales with the processor

1In the literature on proportional share scheduling, weights can be arbitrary positive values; however in
this dissertation, we will continue to view weights as desired processor shares.
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load (i.e., as the processor load increases, virtual time slows down, and as the processor load

decreases, virtual time speeds up). Intuitively, virtual time acts as a scaling factor for the

system that allows task weights to be changed with minimal overhead. Specifically, the virtual

time of the system τ at real time t is

vt(τ, t) =

∫ t

0

1

WT(τ , u)
du. (2.2)

EEVDF utilizes the notion of virtual time by assigning each job both a virtual deadline

and virtual release, which are defined as

vr(T j
i ) = (j − 1) · e(Ti)

wt(Ti)
+ Θ(T j

i )

vd(T j
i ) = vr(T j

i ) +
e(Ti)

wt(Ti)
,

respectively, where j > 0 and Θ(T j+1
i ) ≥ Θ(T j

i ) ≥ 0. Θ(T j
i ) is similar to the notion of a

sporadic separation considered earlier except that it is measured in the virtual-time domain.

Furthermore, under EEVDF, each task is scheduled on an EDF basis using virtual deadlines.

Since virtual time scales with the system load and all deadlines are defined in terms of virtual

time, the (real) time deadline of each job scales with the processor load so that no task misses

its deadline.

Example (Figure 2.3). Consider the example in Figure 2.3, which depicts a one-processor

system scheduled by EEVDF with six tasks, each of which has an execution time of one: T1,

which has a desired weight of 1/2, is initially in the system, and leaves at (real) time 2; T2

and T3, both of which have a desired weight of 1/4 and are initially in the system; T4, which

has a desired weight of 1/2 and joins the system at (real) time 3; and T5 and T6, both of

which have a desired weight of 1/2 and join the system at (real) time 5. Inset (a) shows

the mapping of virtual time to (real) time, and inset (b) shows the EEVDF schedule. In this

example, the system is fully utilized over the (real) time ranges [0, 2) and [3, 5), and as a

result, virtual time and (real) time progress at the same rate. Also, the system is under-

utilized over the (real) time range [2, 3), and as a result, virtual time progresses faster than
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Figure 2.3: A one-processor system scheduled by EEVDF. (a) The mapping of virtual time
to real time. The total desired weight of active tasks for each time range [t, t + 1) is labeled
across the top axis. (b) The EEVDF schedule.
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(real) time. Finally, the system is over-utilized over the (real) time range [5, 9), and as a

result, virtual time progresses slower than real time.

One final note: while EEVDF can change the guaranteed weights of all tasks proportionally

with minimal overhead, it cannot change the guaranteed (or desired) weights of tasks inde-

pendently of each other without using leave/join reweighting. For example, in Figure 2.3(b),

the only way to increase T2’s share to 1/2 is to decrease the processor load so that wt(T2)

accounts for half the processor load. Such a scenario occurs in the example over the (real)

time range [2, 3).

2.4 Feedback-Control Theory

Feedback systems use the previous states of a system in order to predict and control the future

behavior of the system. In this section, we describe the basics of feedback-control theory. The

review presented in this section is taken from (Nise, 2004) and (Smith, 1997).

2.4.1 Basics of Feedback Theory

We begin by introducing some of the central definitions and terminology of feedback-control

theory. Most feedback systems consist of the following components, as labeled in Figure 2.4:

the reference input value, the output value, the actuator , the error , the plant , and the con-

troller . The reference input value is the objective value for the system, while the output

value is computed by the system. The actuator calculates the error by subtracting the output

from the reference input value. The plant is the system we wish to control. The controller

modifies the reference input value to change the behavior of the output. Depending on how

frequently the system is sampled , i.e., the output of the system is fed back to the actuator,

the system is classified as either an analog or a discrete system. Specifically, if the system

is sampled continually, then it is an analog system; otherwise, it is a discrete system. Since

we employ feedback techniques only at job completions (i.e., at a discrete set of times), we

are only considered with discrete feedback-controlled systems, in this dissertation. In discrete

feedback-controlled systems, the behavior of the plant and controller are specified as differ-

ence equations, i.e., for either a plant or a controller, if x(k) is the output and e(k) is the
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Figure 2.4: A simple feedback-control loop.

input, then x(k) is of the form

x(k) = bne(k) + bn−1e(k − 1) + ... + boe(k − n) − an−1x(k − 1) − ... − aox(k − n),

for some value of n, where ai and bi are constants and x(k) and e(k) are real-valued discrete

functions of time k. Since x(k) and e(k) are functions of time, we say that they are in the

time domain. Notice that difference equations are linear. One of the requirements for using

feedback techniques is that there is a linear relationship between the input and the output.

The performance of a feedback system is measured in terms of transient response, steady-

state error , and stability . The transient response of a system is the initial response of the

system to a change in reference input value, as depicted in Figure 2.5. The steady-state error

denotes the difference between the output and the reference input value of the system as time

increases (also depicted in Figure 2.5). A system is considered to be stable if every bounded

reference input value causes the system’s steady-state error to be bounded. For feedback

systems, it is crucially important that the system be stable.

While the behavior of a system is often defined in the time domain, when analyzing a

feedback system, it is often helpful to transform the formulas that define the plant to the

frequency domain, i.e., as a function of frequencies. In order to make this transformation, we

use the z-transform, which is defined as

F (z) =

∞
∑

k=0

f(k)z−k, (2.3)

for the function f(k) in the time domain. For the function f(k), the convention is to write the
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Figure 2.5: An example of an over-damped, under-damped, and critically-damped feedback
system responding to a step input.

z-transformed function as F (z), where z is a complex variable. A more detailed discussion of

the z-transform can be found in (Nise, 2004).

By taking the z-transform of the plant (or controller), we get its transfer function, which

relates the input of the plant (or controller) to its output. More specifically, if i(k) is the

input of a plant (or controller) and p(k) is its output, then the transfer function for the

plant (or controller) is given by P (z)
I(z) , where I(z) is the z-transform of i(k) and P (z) is the

z-transform of p(k). For example, consider the system depicted in Figure 2.6 in which the

difference equation for the controller is

c(k + 1) = a1 · e(k) + a2

j=k−1
∑

j=1

e(j),

and the plant is

m(k) = b · c(k).

In this example, the transfer function for the controller is given as

C(z)

E(z)
=

a1

(

z − a1−a2
a1

)

z(z − 1)
,
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Figure 2.6: An example feedback-control loop, where the controller is defined as c(k + 1) =

a1e(k) + a2
∑j=k−1

j=0 e(j) and the plant is defined as m(k) = b · c(k).

and the transfer function for the plant is given as

M(z)

C(z)
= b.

By combining the transfer function of the plant and the controller, we get the open-loop

transfer function, which is so called because it ignores the feedback loop. In Figure 2.6, the

open-loop transfer function is given by

G(z) =
M(z)

E(z)
=

M(z)

C(z)

C(z)

E(z)
= b

a1

(

z − a1−a2
a1

)

z(z − 1)
.

The open-loop zeroes of a system are the values of z such that the numerator of the open-loop

transfer function equals zero. Similarly, the open-loop poles of a system are the values of

z such that the denominator of the open-loop transfer function equals zero. In the system

depicted in Figure 2.6, the open-loop zero is a1−a2
a1

and the open-loop poles are 0 and 1.

The closed-loop transfer function, which incorporates both the behavior of the controller

and feedback loop, is given by

H(z) =
G(z)

1 + G(z)
, (2.4)

where G(z) is the open-loop transfer function. In Figure 2.6, the closed-loop transfer function

is

H(z) =
G(z)

1 + G(z)
=

ba1

(

z − a1−a2
a1

)

z2 + (ba1 − 1)z − b(a1 − a2)
.

The closed-loop zeroes of the system are the values of z such that the numerator of the

closed-loop transfer function equals zero. Similarly, the closed-loop poles of the system are

the values of z such that the denominator of the closed-loop transfer function equals zero. In
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our previous example, the closed-loop zero is a1−a2
a1

and the closed-loop poles are

(1 − ba1) ±
√

(ba1 − 1)2 + 4b(a1 − a2)

2
.

2.4.2 Feedback Characteristics

In this section, we describe how to determine the stability, transient response, and steady-

state error for feedback systems. For the remainder of this section, we use R(P), and θ(P) to

denote, respectively, the radius and angle (in radians) of the pole P in polar-complex form,

and we use Pm to denote the closed-loop pole that is farthest from the origin.

Stability. Recall from Section 2.4.1 that a system is stable if every bounded reference input

value causes the system’s steady-state error to be bounded. The test for stability is based on

the location of the closed-loop poles in the complex plane: a system is stable if all closed-loop

poles are within the unit circle in the complex plane, i.e., Pm < 1. A system is unstable if

any closed-loop pole is outside the unit circle, i.e., Pm > 1. A system is marginally stable, in

which case the output neither converges nor diverges, if at least one pole is on the unit circle

and no pole is outside of the unit circle, i.e., Pm = 1. Thus, in the system from Figure 2.6,

if a1 = 2 and a2 = 1, then system is stable if b ∈ (0, 2/3), the system is marginally stable if

b = 0 or b = 2/3, and the system is unstable if b > 2/3 or b < 0.

Transient response. Two of the most important types of feedback systems are first- and

second-order systems. A feedback system is considered to be a first-order system if it has one

closed-loop pole and a system is considered to be a second-order system if has two closed-loop

poles. These two types of systems are important because both have a set of simple formulas for

determining their transient response. (Higher-order systems often have a transient response

that is too complex to determine without approximation.)

The transient response of a system is usually evaluated by examining the behavior of the

output when the system incurs a step input , i.e., the reference input value suddenly increases

to a given value. Since feedback systems use previous results to predict future results, a step

reference input value represents the worst-case scenario—a sudden change from one value to
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another. For a first-order system, the transient response is characterized by its settling time

(i.e., the time it takes for the output to attain and stay within 2% of its steady-state value)

and whether the output “overshoots” its final value. For example, such a scenario is depicted

by the curve labeled under-damped in Figure 2.5. For a second-order system, the transient

response is characterized by its settling time and whether it is under-damped , over-damped ,

or critically-damped (all three are depicted in Figure 2.5.) The settling time (where time is

measured in terms of samples) of the system is given by the standard formula

⌈ −4

ln (R(Pm))

⌉

.

(This formula has a ceiling because time is discrete.)

For first-order systems, the output overshoots its final value if Pm < 0. For first-order

systems, it is typically undesirable for the output to overshoot its final value. (This is not

the case for second-order systems since for second-order systems overshooting may be the

only way to achieve the specified settling time. For most first-order systems, it is possible to

achieve a desired settling time without overshooting the output.)

If a second-order system is over-damped, then the output will never overshoot the reference

input value for a step input. If a second-order system is under-damped, then the output will

overshoot the reference input value for a step input. For under-damped systems, the percent

overshoot is an additional characteristic of transient response. If a second-order system is

critically-damped, then the settling time is as small as possible without causing the output

to overshoot the reference input value. Whether a system is under-, over-, or critically-

damped depends on the location of the closed loop poles. If both poles are unique, real, and

positive, then the system is over-damped. If both poles have the same radius, are real, and

are positive, then the system is critically-damped. Otherwise, the system is under-damped.

For under-damped systems, the percent overshoot is given by

e−(ζπ/
√

1−ζ2) · 100, (2.5)
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where ζ is a value called the damping ratio and is given by

ζ =
−ln (R(Pm))

√

θ(Pm)2 + ln2 (R(Pm))

For example, in the system from Figure 2.6, if a1 = 2 and a2 = 1, then the system is under-

damped for any value of b ∈ (0, 2/3). Alternatively, if b = 1, a1 ≈ 0.102, and a2 ≈ 0.3035,

then the system is critically-damped and has a settling time of 6 time units. Finally, if b = 1,

a1 = 1.4008, and a2 = 1.60238, then the system is under-damped, the settling time is 5 time

units, and the percent overshoot is approximately 10.3%.

Steady-state error. Finally, we turn our attention to steady-state error. The steady-state

error of a system is measured based on the system’s response to a step and/or a ramp input .

The ramp input simulates a reference input value that constantly increases by a rate of T per

time unit. The steady-state error for a system is determined by using the final value theorem,

which states that if E(z) is the z-transform of a system’s error, then the steady state error is

given by

lim
z→1

z − 1

z
E(z). (2.6)

Since E(z) can be defined as

E(z) = R(z) − M(z), (2.7)

where R(z) is the reference input value and M(z) is the output, and M(z) can be defined as

M(z) = E(z)G(z),

where G(z) is the open-loop transfer function, we get

E(z) =
R(z)

1 + G(z)
. (2.8)

Since the z-transform of the step input is given by R(z) = z
z−1 , from (2.6) and (2.8), we
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can derive the steady-state error of a system in response to a step input as

lim
z→1

1

1 + G(z)
. (2.9)

Since the z-transform of the ramp input is given by R(z) = zT
(z−1)2

, from (2.6) and (2.8), we

can derive the steady-state error of a system in response to a ramp input as

T
limz→1(z − 1)G(z)

. (2.10)

The value to which the (z−1) term is raised in the denominator of the open-loop transfer

function, G(z), is called the system type, and it is used to quickly determine if the steady-

state error is zero, some non-zero constant, or ∞. Specifically, if G(z) has a system type of

zero (i.e., it has no (z − 1) terms in its denominator), then the system has a steady-state

error of some constant value for the step input and ∞ for any ramp input. If G(z) has a

system type of one (i.e., it has one (z − 1) term in its denominator), then the system has a

steady-state error of 0 for the step input and a constant for any ramp input. Finally, if G(z)

has a system type of two (i.e., it has two (z − 1) terms in its denominator), then the system

has a steady-state error of 0 for any step or ramp input.

For example, in the system depicted in Figure 2.6, since there is one (z − 1) term in the

denominator of G(z), the system type is one. Thus, it has a steady-state error of zero for

a step input and a constant steady-state error for any ramp input. Specifically, if b = 0.5,

a1 = 2 and a2 = 1, then the steady-state error for the ramp response is 2T . Alternatively,

if b = 1, a1 ≈ 0.102, and a2 ≈ 0.3035, then the steady-state error for the ramp input is

approximately 3.295T . Finally, if b = 1, a1 = 1.4008, and a2 = 1.60238, then the steady-state

error is approximately 0.624T .

2.4.3 Controllers

As mentioned above, the purpose of a controller is to improve the system response. There

are three main types of of controllers: proportional-integral (PI) controllers; proportional-

derivative (PD) controllers; and proportional-integral-derivative (PID) controllers. PI con-
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trollers improve the steady-state error of the system by increasing the system-type. Time-

domain definitions of such controllers are of the form

c(k + 1) = a · e(k) + b

j=k−1
∑

j=1

e(j),

and the z-transform of such a controller is

G(z) =
C(z)

E(z)
=

a
(

z − a−b
a

)

z(z − 1)
.

PD Controllers improve the transient response of the system by an additional closed-loop

zero. Time-domain definitions of such controllers are of the form

c(k + 1) = a · e(k) + b(e(k) − e(k − 1)),

and the z-transform of such a controller is

G(z) =
C(z)

E(z)
=

(a + b)z − b

z2
.

PID Controllers improve the transient response and the steady-state error of the system

by combining both PI and PD techniques. Such controllers are of the form

c(k + 1) = a · e(k) + b(e(k) − e(k − 1)) + d

j=k−1
∑

j=1

e(k),

and the z-transform of such a controller is

G(z) =
C(z)

E(z)
=

(a + b)z2 + (d − a − 2b)z + b

z2(z − 1)
.

The problem with PID controllers is that such controllers can easily increase the system

beyond a second-order system. As a result, such systems are substantially more difficult to

design for a specific transient response than PI or PD controllers.
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Figure 2.7: A feedback-control loop with a disturbance.

2.4.4 Disturbance

In addition to controlling a system based on its reference input value, a feedback system

can be designed to handle disturbances, which represent an additional (typically unwanted)

source of input to the system. For example, if we were constructing a feedback-controlled

cruise control system, then the reference input value would be the car’s desired speed and the

disturbance would be the slope of the road. The typical model for a feedback system with

a disturbance is shown in Figure 2.7. For such a system, the output of the system, M(z), is

given by

M(z) = E(z)G1(z)G2(z) + D(z)G2(z), (2.11)

where E(z) is the z-transform of the error, G1(z) and G2(z) are the transfer functions for

either a plant or a controller, and D(z) is the z-transform of the disturbance.

When constructing a system that may have a disturbance, the primary design character-

istic of interest is the steady-state error in response to a step input by the disturbance. Thus,

just as in Section 2.4.2, to solve for the steady state error, we need to find a transfer function

that relates D(z) to E(z). Recall from (2.7) that

E(z) = M(z) − R(z). (2.12)

By substituting (2.12) into (2.11), we get

E(z) =
1

1 + G1(z)G2(z)
R(z) − G2(z)

1 + G1(z)G2(z)
D(z), (2.13)
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which defines the relationship between E(z) and both the reference input value, R(z), and

the disturbance, D(z). By applying the final value theorem to (2.13), we can obtain the

steady-state error of this system as

lim
z→1

z − 1

z

(

1

1 + G1(z)G2(z)
R(z) − G2(z)

1 + G1(z)G2(z)
D(z)

)

. (2.14)

By isolating the disturbance term from (2.14) and substituting the transfer function for a

step input into D(z), i.e., D(z) = z
z−1 we obtain that the steady-state error for a step input

in the disturbance is

lim
z→1

(

− 1
1

G2(z) + G1(z)

)

. (2.15)

2.4.5 Feedback Theory For a Predictor

It is worthwhile to note that while feedback-based techniques are primarily used to control

the behavior of a plant for which the (reference) input is known, another viable use for such

techniques is to predict future values of a changing and unknown input. The design of such a

system is exactly the same as the typical feedback system, except that the feedback loop does

not directly impact the behavior of the system. (Thus, the plant and the controller can be

one-in-the-same.) In such a system, the transient response describes the initial accuracy of

predictions after there has been a change in the input, and the steady-state error describes

the difference between the predicted and actual values as system time increases.

By using feedback-based techniques in the construction of the predictor, instead of using a

simpler approach, such as setting the current value to equal the previous value, the predictor

both produces values that are less susceptible to ephemeral fluctuations in the workload and

is capable of closely tracking trends in the value (i.e., such systems have a bounded steady

state error for the ramp input).

2.5 The FCS Framework

In this section, we review the uniprocessor Feedback-Control Real-Time Scheduling (FCS)

framework proposed in (Lu et al., 2002). (The FC-EDF and FC-EDF2 algorithms proposed
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in (Lu et al., 1999) and (Lu et al., 2000) and mentioned in Chapter 1 are subsets of this

framework.) As was mentioned in Chapter 1, in the FCS framework, unlike in most work on

real-time feedback scheduling algorithms, it is assumed that the execution time of a job is

unknown until it is complete. Given this limitation, the FCS framework has two objectives.

First, maintain the total system utilization at some user-defined value, us. Second, if the

system has a utilization greater than one, then maintain the miss-ratio (i.e., the fraction of

jobs with a missed deadline) at some user-defined value, ms. In order to construct such a

system, the FCS framework assumes a task model in which each task has multiple versions

(called service levels), each of which has a period, an estimated execution time, which repre-

sents the amount of time the task will require on average if it executes at that service level,

and a QoS value, which represents the value to system if the task finishes before its deadline

while executing at that service level.2 Throughout this section, we will use p(Ti, k), e(Ti, k),

and v(Ti, k) to denote, respectively, the period, estimated execution time, and QoS value for

the kth service level of Ti, where service levels are ordered increasingly by estimated weight ,

which is defined as e(Ti, k)/p(Ti, k). A task can only execute at one service level at a time.

Without loss of generality, we assume that for any task Ti, service level 0 is defined such that

p(Ti, 0) = 0, e(Ti, 0) = 0, and v(Ti, 0) = 0.

2.5.1 The FCS Framework’s Architecture

The major components of the FCS framework are depicted in Figure 2.8. At a high level,

these components function as follows.

• At each instant , the pending job with the smallest deadline is scheduled.3

• After a sampling period of length t time units, where t is a user-defined value, several

actions occur. First, the monitor calculates in the last t time units both the fraction of

jobs that missed their deadlines (i.e., the miss-ratio) and the fraction of time that the

processor was scheduled (i.e., the utilization). Next, the controller calculates the change

2The FCS framework can be used for aperiodic tasks; however, since the focus of this dissertation is on
periodic/sporadic systems, we focus exclusively on this aspect of the FCS framework.

3The FCS framework can be extended to work with non-EDF based approaches; however, since those are
beyond the focus of this dissertation, we do not discuss such extensions here.
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Figure 2.8: The design of the FCS.

in the total estimated utilization that is required to maintain the actual utilization at us

or the miss-ratio at ms. Finally, the QoS actuator changes the set of running tasks and

the service levels of running tasks to match the total estimated utilization as calculated

by the controller.

It is important to note that in the FCS framework, the miss-ratio and the actual utilization

are always calculated over the previous t time units.

2.5.2 Feedback in the Controller and QoS Actuator

The heart of the FCS framework is the controller and the QoS actuator, which use feedback

techniques in order to determine the required change to the estimated utilization. In order to

calculate this change, two different feedback loops are used: one loop determines the change in

the estimated utilization that would maintain the actual utilization at us, and the other loop

determines the change in the estimated utilization that would maintain the miss-ratio at ms.

The actual change in the estimated utilization is calculated by dynamically switching between

the values produced by these two loops. In this section, we describe these two feedback loops.

Before continuing, there is one subtle issues that must be discussed. As was mentioned

in Section 2.4.1, the relationship between the input and output for a plant or a controller

must be linear. Unfortunately, for the loop that monitors the miss-ratio, the relationship

between the estimated utilization (again, the input) and the miss-ratio (the output) is non-

linear. Moreover, for the loop that monitors the actual utilization, the relationship between
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the estimated utilization (the input to the plant/controller) and the actual utilization (the

output to the plant/controller) cannot be determined exactly. As a result, Lu et al. use a

linear estimation in both the utilization and miss-ratio feedback loops.

Utilization feedback loop. Before presenting difference equations for the utilization feed-

back loop, depicted in Figure 2.9(a), we introduce a few definitions. Let the value a(k) denote

the fraction of time the processor was busy over the kth sampling period, i.e., a(k) equals the

fraction of time the processor was busy over the time range [(k − 1) · q, k · q). Let Ew(k) de-

note the total estimated utilization of all tasks in the kth sampling period. Let Gu to denote

the maximum value of a(k)/Ew(k) for any value of k. As mentioned above, the relationship

between the estimated utilization, Ew(k), and the actual utilization, a(k), cannot be deter-

mined exactly. As a result, the plant in the utilization feedback loop defines a relationship

between the estimated utilization and the worst-case estimated utilization, which is denoted

as u(k). Specifically, the difference equation for the plant is defined as

u(k) = GuEw(k), if GuEw(k) ≤ 1 (2.16)

u(k) = 1, if GuEw(k) > 1. (2.17)

Notice that this system is linear so long as it is not saturated , i.e., as long as GuEw(k) < 1.

Also note that in the absence of saturation, (2.16) can be rewritten as

u(k) = u(k − 1) + Gucu(k − 1), (2.18)

where cu(k) = Ew(k + 1)− Ew(k). Thus, in the absence of saturation, the open-loop transfer

function for the utilization of the system can be written as

Pu(z) =
U(z)

Cu(z)
=

Gu

(z − 1)
. (2.19)

The controller defines a relationship between the error of the system, which is defined

as ǫu(k) = us − u(k), and the change in estimated utilization, cu(k). Thus, the difference
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equation for the controller is given as

cu(k) = Kpuǫu(k), (2.20)

where Kpu is a tunable parameter The open-loop transfer function for (2.20) is given by

Hu(z) = Kpu. (2.21)

Notice that this is a proportional controller (i.e., a P Controller). Lu et al. do not include an

integral controller in their design because the formulation of the plant already has a system-

type of one. Additionally, a derivative controller is not necessary since its primary purpose is

to introudce an additional variable for controlling the transient response of the system, and

for the types of inputs that Lu et al. are concerned with the system has a sufficient number

of variables that control the system’s behavior.

From (2.19) and (2.21), we can derive an open-loop transfer function for the plant and

controller combined as

Qu(z) = Hu(z)Pu(z) =
KpuGu

(z − 1)
, (2.22)

and the closed-loop transfer function as

Yu(z) =
Qu(z)

1 + Qu(z)
=

KpuGu

z − (1 − KpuGu)
. (2.23)

Miss-ratio feedback loop. As mentioned above, the exact relationship between the esti-

mated utilization, Ew(k), and the miss-ratio, m(k), in sampling period k is nonlinear. As a

result, Lu et al. approximate the relationship between the two by using the derivative of this

relationship around the vicinity of ms. (The notion of “around the vicinity of ms” is loosely

defined by Lu et al., as we will discuss in Section 2.5.3.) Specifically, the plant is defined as

m(k) = 0, if GuEw(k) ≤ 1 (2.24)

m(k) = m(k − 1) + GmGucm(k − 1), if GuEw(k) > 1, (2.25)
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where cm(k) = Ew(k + 1) − Ew(k) and Gm is the maximum value of

dm(k)

d(GuEw(k))
,

around the vicinity of ms. Lu et al. suggest deriving both dm(k)
d(GuEw(k)) and Gm experimentally.

Notice that, in the absence of saturation, i.e., as long as m(k) > 0 holds, the plant is linear,

and as a result, its open-loop transfer function is given by

Pm(z) =
M(z)

Cm(z)
=

GmGu

(z − 1)
. (2.26)

Just as before, the controller defines a relationship between the error of the system, which

is defined as ǫm(k) = ms − m(k), and the change in estimated utilization, cm(k). Thus, the

difference equation for the controller is given as

cm(k) = Kpmǫu(k), (2.27)

where Kpm is a tunable parameter. The open-loop transfer function for (2.27) is given by

Hm(z) = Kpm. (2.28)

Just as before, this is also a proportional controller (i.e., a P controller).

From (2.26) and (2.28), we can derive an open-loop transfer function for the plant and

controller combined as

Qm(z) = Hm(z)Pm(z) =
KpmGmGu

(z − 1)
, (2.29)

and the closed-loop transfer function as

Ym(z) =
Qm(z)

1 + Qm(z)
=

KpmGmGu

z − (1 − KpmGmGu)
. (2.30)
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Figure 2.9: The feedback loops for the FCS framework. (a) The feedback loop for controlling
the utilization. (b) The feedback loop for controlling the miss ratio.

Stability, steady-state error, and transient response. By using the analysis in Sec-

tion 2.4.2, it is not difficult to show that the utilization feedback loop is stable iff

0 < Kpu <
2

Gu

,

and the miss-ratio feedback loop is stable iff

0 < Kpm <
2

GmGu

.

Additionally, since it can be shown that both the systems described by (2.22) and (2.29)

have a system type of one, the steady-state error for a step input in the reference input value

is zero. (Lu et al. are not concerned with ramp inputs, although that could also be easily

derived from the analysis presented in Section 2.4.2.)

Finally, since the systems described by (2.23) and (2.30) are first-order system, the uti-

lization feedback loop does not overshoot its final value so long as

0 < Kpu ≤ 1

Gu

,
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and the miss-ratio feedback loop does not overshoot its final value so long as

0 < Kpm ≤ 1

GmGu

.

Additionally, the settling time (where time is measured by the number of sampling periods)

for the utilization feedback loop is

⌈ −4

ln (1 − KpuGu)

⌉

,

and the settling time time for the miss-ratio feedback loop is

⌈ −4

ln (1 − KpmGmGu)

⌉

.

Loop switching. As we previously discussed, one of the complications with controlling the

miss ratio and the utilization is that it is possible for both of these variables to saturate.

(Recall that the utilization saturates at 1 and the miss ratio saturates at 0%.) When one

of these variable becomes saturated, it is no longer possible to use that variable to control

the system in any meaningful way. To resolve this issue, Lu et al. switch between using the

miss-ratio and utilization feedback loops. (Unfortunately, as we will discuss in Section 2.5.4,

Lu et al. do not discuss how to handle the scenario when both the miss-ratio and utilization

are saturated.) Specifically, the estimated utilization for sampling period k + 1 is defined by

Ew(k + 1) = Ew(k) + min (cu(k), cm(k))) . (2.31)

By combining the two controllers in such a fashion, it is possible to set a nominal desired

utilization us at which deadlines should not be missed, and set an acceptable value of ms that

can be handled in overloaded scenarios.

Changing the system load. The QoS actuator changes the system load via a two-step pro-

cess. First, the service levels are determined. Second, the service-level changes are enacted by

leave/join reweighting. Since we have already discussed leave/join reweighting in Section 2.1,
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for the remainder of this section, we discuss the highest-value-density first (HVDF) algorithm

that is used to determine the service levels of tasks. The value-density of the service level

k > 0 of Ti is defined as

v(Ti, k)p(Ti, k)

e(Ti, k)
.

The HVDF algorithm determines the service levels for tasks as follows. First, the highest

value-density is calculated for each task. Second, tasks are ordered by highest value-density

service level from largest to smallest. Next, each task is assigned, in order, its highest value-

density service level until the total estimated utilization of all tasks reaches a user-defined

utilization threshold, which can be any value in the range [0, 1].

Example. As an example, suppose that the utilization threshold is 0.51, and there are three

tasks in the system each with three service levels and for any task Ti and service level k > 0,

p(Ti, k) = 100 (recall that for service level 0, p(Ti, 0) = 0, e(Ti, 0) = 0, and v(Ti, 0) = 0).

For T1, e(T1, 1) = 20, v(T1, 1) = 0.5, e(T1, 2) = 30, and v(T1, 2) = 0.6. For T2, e(T2, 1) = 20,

v(T2, 1) = 0.2, e(T2, 2) = 30, and v(T2, 2) = 0.5. For T3, e(T3, 1) = 20, v(T3, 1) = 0.2,

e(T3, 2) = 30, and v(T3, 2) = 0.6. The service levels with the highest value-densities in this

example are service level 1 of T1 (a value density of 2.5), service level 2 of T2 (a value density

of 1.6̄), and service level 2 of T3 (a value density of 2). Thus, according the HVDF, T1 is first

assigned service level 1. Next, T3 is assigned service level 2. Finally, since no other service

levels with a positive weight can be assigned without exceeding the desired estimated weight

of 0.51, T2 is assigned service level 0.

2.5.3 Assumptions of the FCS Framework

Feedback systems are typically designed for specific scenarios. For this reason, most feedback

algorithms are based on assumptions about the behavior of the system. In this section, we

discuss the major assumptions made in the FCS framework.

Assumption 1. Each service level has an expected execution time that represents the

“average-case” case. In Whisper such an assumption would require that there be an average
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signal-to-noise ratio for every microphone speaker pair. This is probably a valid assumption

for a wide range of applications; however, it is not difficult to conceive of applications that

are deployed in highly-variable environments for which this assumption does not hold.

Assumption 2. The value of Gu for each task can be determined experimentally. This

is probably a valid assumption, although depending on the application Gu could be easily

over-estimated.

Assumption 3. There exists some “vicinity” around the target miss-ratio for which the

derivative of the relationship between the utilization and miss-ratio is a constant, i.e., the

value Gm exists and is a constant. This assumption is probably more questionable than the

previous two. Since depending on the types of tasks in the system, the relationship between

the miss-ratio and utilization could vary widely.

Example (Figure 2.10). Consider the example in Figure 2.10, which depicts a one-processor

system with 4 tasks: T1:(7, 8); T2:(2, 8); T3:(2, 8); and T4:(2, 8). In inset (a), T1 has the highest

priority. In inset (b), T1 has the lowest priority. In Figure 2.10(a), since T 1
1 is scheduled first,

T2–T4 all miss deadlines. In Figure 2.10(b), since T 1
1 is scheduled last, T2–T4 all make their

deadlines.

Notice that, even though these two schedules are both valid under EDF, the miss-ratio

differs dramatically. It is worth mentioning that Lu et al. suggest that the value of Gm should

be determined experimentally. Thus, while it is conceivable that for some applications it may

be feasible to empirically determine the value of Gm, such a value may not accurately reflect

the typical behavior of the system.

2.5.4 Limitations of the FCS Framework

We conclude our discussion of the FCS Framework with a discussion of its limitations.

Limitation 1. The FCS framework adjusts tasks based on only the system-wide miss-ratio

and utilization. As a result, if only a few tasks have actual utilizations that differ substantially
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Figure 2.10: An example one of the FCS framework’s assumptions. (a) T1 has the highest
scheduling priority. (b) T1 has the lowest scheduling priority.

from their estimated utilizations, then the system is incapable of adjusting only those few

tasks.

Limitation 2. Lu et al. state, without proof, that both the miss-ratio and utilization cannot

be saturated at the same time in a given sampling period. While it is true that if the system

is over-utilized, then jobs will eventually start missing their deadlines, they claim that in each

sampling period the utilization and the miss-ratio are not both saturated. This stronger claim

is not always true.

Example (Figure 2.11). Consider the example in Figure 2.11, which depicts a one-processor

system with four tasks: T1:(3, 8); T2:(3, 8); T3:(3, 8); and T4:(3, 8). In this system, the miss-

ratio and the utilization are monitored every three time units (as denoted by the dashed line).

Thus, for the first two sampling periods, the miss-ratio is 0% and the utilization is one. As a
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Figure 2.11: An example one of the FCS framework’s limitations.

result, both variables are saturated.

It is worthwhile to note that Lu et al. do not offer any guidelines for choosing the sampling

period. However, even if we assume that the sampling periods are substantially larger than

task periods (which would mitigate this limitation), it is not hard to construct example

systems for which there exists at least one sampling period where both the miss-ratio and the

utilization are saturated.

2.6 The Constant Bandwidth Server Feedback Scheduler

As mentioned in Section 2.5.4, one of the main limitations of the approach in (Lu et al.,

2002) is that the system cannot identify whether an individual task has an actual execution

time that deviates substantially from its estimated execution time. A uniprocessor feedback-

controlled real-time scheduling algorithm that does not have this limitation was proposed

in (Abeni et al., 2002). To accurately assign each task a weight, their algorithm monitors,

for each task , the difference between the estimated and actual execution times of each job.

Once the system has calculated a new estimated execution time for a future job, it adjusts

the maximum fraction of the processor allocated to the task in order to reduce the number

of deadline misses while ensuring that the task receives an accurate fraction of the processor.
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2.6.1 Constant Bandwidth Server

Before describing Abeni et al.’s work in detail, we first review the Constant Bandwidth Server

(CBS), first proposed by (Abeni and Buttazzo, 1998), which is the scheduling framework their

system is built upon. Under CBS, each task is defined by a triple (p(Ti), band(Ti), PR(Ti)),

where p(Ti) denotes the period of Ti, band(Ti) is the bandwidth of Ti—which is the fraction of

a processor allocated to Ti (this is similar to notion of a task weight)—and PR(Ti) is the period

of reservation—in every PR(Ti) time units, Ti can be scheduled for up to band(Ti)·PR(Ti) time

units. The value band(Ti) ·PR(Ti) is called the budget of Ti and is denoted budg(Ti). At time

q · PR(Ti) (where q ≥ 1 is an integer), Ti experiences a budget renewal . (Notice that a task’s

period defines when its jobs maybe released, but the period of reservation defines when the

task’s budget is renewed.) Tasks are scheduled on an earliest-budget-renewal-time-first basis.

It is important to note that PR(Ti) can be defined as any value so long as p(Ti) = k · PR(Ti)

for some integer value k ≥ 1. One final note: if a job must execute for more than its alloted

budget, then it will continue executing by using the next job’s budget.

Example (Figure 2.12). Consider the example in Figure 2.12, which depicts a one-processor

system scheduled by CBS with three tasks: T1, which is defined by the triple (4, 1/4, 4), T2,

which is defined by the triple (8, 1/4, 4), and T3, which is defined by the triple (4, 1/2, 2).

Also, T 1
3 requires one additional unit of execution beyond its budget. A budget renewal is

denoted by a large down-arrow. Notice that T 1
3 uses one time unit of T 2

3 ’s budget. As such,

T 1
3 executes for three time units, even though T 1

3 is allocated only two time units over the

range [0, 4). As a result, T 1
3 ’s remaining execution time is scheduled using T 2

3 ’s budget over

the time range [4, 5).

2.6.2 Feedback Framework

The objective of the CBS feedback scheduling algorithm is to maintain the smallest possible

value of band(Ti) such that each job of Ti completes by its deadline. In order to satisfy this

design object, each task has a feedback-control loop, as depicted in Figure 2.13, that monitors

the “scheduling error” for each job. The scheduling error for the job T j
i , denoted ǫ(T j

i ), is the

58



T   Scheduledi

T

2:(8,1/4,4)T

:(4,1/4,4)1T

:(4,1/2,2)3

Job deadline & budget renewalj

3 4 5 6 7 80
Time

Budget renewalJob release

1 2

T

T1
2

T 1
3T1

3
1

i
jT

3 T3

1
1T

2

T1 T1
2 2

Figure 2.12: A one-processor example of the CBS with three tasks.

0
F (z)

OutputRefernce 

− G(z) +

F (z)AE(z)

Input E(z)u

c

Figure 2.13: The adaptive reservation-based feedback design.

difference between its period, p(Ti), and the time that the job would finish if it were assigned

to a processor with a speed of band(Ti). Specifically,

ǫ(T j+1
i ) =











ǫ(T j
i ) + Ae(T j

i ) · band(T j
i ) − p(Ti) ǫ(T j

i ) ≥ 0

Ae(T j
i ) · band(T j

i ) − p(Ti) ǫ(T j
i ) < 0

, (2.32)

where band(T j
i ) is the bandwidth assigned to Ti when T j

i is released. Recall that Ae(T j
i ) is

the actual execution time of T j
i . The reason why the term ǫ(T j

i ) is included in the calculation

of ǫ(T j+1
i ) when ǫ(T j

i ) ≥ 0 is because, in this case, T j
i overran its budget. As a result,

the first part of T j+1
i ’s budget is dedicated to finishing T j

i . For example, in Figure 2.12,

ǫ(T 1
3 ) = 1, and as a result, one quantum of T 2

3 ’s budget is spent completing T 1
3 . Upon the

completion of a job, T j
i , the scheduling error is fed into a PI controller, which we will describe

in Section 2.6.3. Notice that, in this system, unlike Lu et al.’s FCS framework, there is an

exact linear relationship between the input (i.e., the actual execution time) and the output

(i.e., the scheduling error). (This linear relationship could not be enacted under the FCS

framework because of its use of the miss-ratio and system utilization.)

59



2.6.3 Stability

One complicating factor in this system is that the behavior of the plant, i.e., the scheduling

error, changes dramatically depending on whether ǫ(T j
i ) < 0. To resolve this issue, Abeni

et al. assume that the equilibrium value of ǫ(T j
i ), denoted ǭ(Ti), is far enough away from

0 that the system does not frequently switch between the two modes. By making such an

assumption, the objective of the system is for ǫ(T j
i ) = ǭ(Ti) to hold. (In Section 2.6.4, we

disucss the validity of this assumption.) After making such an assumption, Abeni et al.

construct two different system equations based on whether ǭ(Ti) < 0. In the remainder of

this section, we explain these equations.

Case 1: ǭ(Ti) ≥ 0. We first consider the case where ǭ(Ti) ≥ 0. In this case, assuming

that the variation around the equilibrium quantities for scheduling error, execution time, and

bandwidth are small, the formula for the plant can be written as

∆ǫ(T j+1
i ) = ∆ǫ(T j

i ) +
p(Ti)

ū(Ti)
∆u(T j

i ) + ū(Ti)∆Ae(T j
i ), (2.33)

where ∆ǫ(T j
i ) = ǫ(T j

i ) − ǭ(Ti), u(T j
i ) = 1

band(T j
i )

, ū(Ti) is the equilibrium value of u(T j
i ),

∆u(T j
i ) = u(T j

i ) − ū(Ti), ∆Ae(T j
i ) = Ae(T j

i ) − Āe(Ti), and Āe(Ti) is the equilibrium value of

Ae(T j
i ). By taking the z-transform of (2.33), we get

E(z) = Fc(z)AE(z) + Fu(z)U(z), (2.34)

where E(z) is the z-transform of ǫ(T j
i ), AE(z) is the z-transform of ∆Ae(T j

i ), U(z) is the

z-transform of ∆u(T j
i ), Fc(z) = ū(Ti)

z−1 , and Fu(z) = p(Ti)
ū(Ti)(z−1) .

The relationship between the the value ∆ǫ(T j
i ) and ∆u(T j

i ) is specified as a PI controller,

which is given as

∆u(T j
i ) = −a · ∆ǫ(T j

i ) + b

j−1
∑

q=1

(−∆ǫ(T q
i )), (2.35)

where both a and b are constants determined by the system designer. The z-transform of
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(2.35) is given as

U(z)

−E(z)
= G(z) =

αz + β

z − 1
, (2.36)

where α = a and β = b−a. By substituting (2.36) into (2.34), we get the closed-loop transfer

function, which is defined as

E(z) =
Fc(z)

1 + G(z)Fu(z)
AE(z), (2.37)

By expanding (2.37), we get

E(z) =
ū(Ti)(z − 1)

z2 +
(

p(Ti)
ū(Ti)

α − 2
)

z + β p(Ti)
ū(Ti)

+ 1
AE(z). (2.38)

Notice that the closed-loop poles of (2.38) are the values of P1 and P2 such that

z2 +

(

p(Ti)

ū(Ti)
α − 2

)

z + β
p(Ti)

ū(Ti)
+ 1 = z2 − (P1 + P2) z + P1P2.

Thus, in terms of α and β, the closed-loop poles for (2.37) are the values of P1 and P2 such

that

α = ū(Ti)(2−P1−P2)
p(Ti)

, β = ū(Ti)(P1P2)
p(Ti)

. (2.39)

Since (2.37) is a second-order system, the system is stable if the distance of both poles from

the origin is less than one. Thus, for a given α and β, the system is stable if the values of P1

and P2 that satisfy (2.39) also satisfy.

||P1|| < 1, ||P2|| < 1.

Case 2: ǭ(Ti) < 0. From the above result, it is easy to show (by redoing the calculations)

that if ǭ(Ti) < 0, then for a given value of α and β, the system is stable if the values of P1

and P2 that satisfy

α = ū(Ti)(1−P1−P2)
p(Ti)

, β = ū(Ti)(P1P2)
p(Ti)
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also satisfy

||P1|| < 1, ||P2|| < 1.

2.6.4 Scheduling Error Assumption

The most important assumption made by Abeni et al. is that the the scheduling error has

an average value and there is little variance around this value. For applications that are

not deployed in highly variable environments, this is probably a reasonable assumption. For

highly variable scenarios, this assumption could be problematic because if the scheduling error

rapidly switches between positive and negative values, then their analysis is invalidated.

2.6.5 Limitations

The major limitations of this work stem from the fact that its only objective is to determine an

accurate bandwidth value for each task. As a result, the system is not capable of minimizing

deadline misses when the system is overloaded. Specifically, if the system is overloaded, i.e.,

∑

Ti∈τ band(Ti) > 1, then the system will scale down the bandwidth of all tasks such that

∑

Ti∈τ band(Ti) ≤ 1. As a result, in an overloaded scenario, it is possible that every task will

miss its deadlines regardless of relative importance. Moreover, because the only manipulated

variable is the bandwidth, it is not possible to mitigate an overloaded scenario by increasing

either the period or reservation period of a task (which would have the impact of reducing

the task’s QoS to prevent deadline misses).

2.7 Conclusion

In this chapter, we reviewed several different techniques for changing the weight of a task

(i.e., leave/join reweighting, RBED scheduling, and EEVDF scheduling). In addition, we

discussed the basics of feedback control theory that will be used in this dissertation. Finally,

we concluded this chapter with a discussion of two uniprocessor feedback-based approaches for

adapting to external stimuli (i.e., the FCS framework and the feedback-controlled reservation

based scheduling algorithm). In the remainder of this dissertation, we will extend the work

reviewed in this chapter to function under a multiprocessor environment.
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CHAPTER 3

GEDF and NP-GEDF
∗

In this chapter, we present the rules for reweighting tasks for both the GEDF and NP-GEDF

scheduling algorithms. Before doing so so, we first define the “adaptable sporadic task model”

as well as three theoretical scheduling algorithms that will be useful for describing these

reweighting rules. (To improve readability, all of the terms in this chapter are summarized in

Table 3.1.)

3.1 Adaptable Sporadic Task System

An adaptable sporadic task system is an extension of a sporadic task system, where the weight

of each task Ti is a function of time t, denoted wt(Ti, t), and its execution time can vary with

each job T j
i , denoted e(T j

i ). (The behavior of an adaptable sporadic task is defined by an

execution time and weight instead of an execution time and period pair—the two approaches

are equivalent but the former results in less complex reweighting rules.) For simplicity, if

every job of a task Ti has the same execution time, then we will denote this time by e(T j
i ),

and if the weight of task Ti is constant, then we denote its weight as wt(Ti).

For adaptable sporadic tasks, the absolute deadline of a job T j
i , denoted d(T j

i ), is defined

as

d(T j
i ) = r(T j

i ) + e(T j
i )/wt(Ti, r(T j

i )).

(Recall that r(T j
i ) is the release time of T j

i .) In the absence of reweighting, consecutive job

releases (r(T j
i ) and r(T j+1

i )) of a task Ti must be separated by at least e(T j
i )/ wt(Ti, r(T j

i ))

∗ Contents of this chapter previously appeared in preliminary form in the following paper:
Block, A., Anderson J., and Devi, U. (2008b). Task reweighting under global scheduling on multiproces-
sors. Real-Time Systems, Special Issue on Selected Papers from the 18th Euromicro Conference on Real-Time

Systems, 39:123–167.



Notation Definition
wt(Ti, t) Weight of Ti at time t.
wt(Ti) Weight of the Ti that does not change its weight.

Swt(Ti, t) Scheduling weight of Ti at time t.

e(T j
i ) Worst-case execution time of job T j

i .
e(Ti) Worst-case execution time for all jobs of Ti.

emax(Ti) Maximal worst-case execution time of all jobs of Ti.

Ae(T j
i ) Actual execution time of job T j

i .

r(T j
i ) Release time of T j

i .

d(T j
i ) Deadline of T j

i .

θ(T j
i ) IS separation between T j−1

i and T j
i .

SW Non-clairvoyant scheduling-weight scheduling algorithm. While a task is active, this
algorithm allocates the task its scheduling weight at each instant.

SW SW schedule of a task system τ .
CSW Clairvoyant scheduling-weight scheduling algorithm. While a task is active and the

allocation to its active job is less than its actual execution time, this algorithm
allocates the task its scheduling weight at each instant.

CSW CSW schedule of task system τ .
IDEAL Ideal scheduling algorithm. While a task is active, this algorithm allocates each task

its weight at each instant.
I IDEAL schedule of task system τ .
S Actual (i.e., GEDF or NP-GEDF) schedule of task system τ .

A(B, T j
i , t1, t2) Allocation to T j

i in the schedule B over [t1, t2).
A(B, Ti, t1, t2) Allocation to Ti in the schedule B over [t1, t2).

dev(T j
i , t) Deviance of T j

i : A(SW , T j
i , 0, t) − A(S, T j

i , 0, t).
drift(Ti, t) Drift of Ti: A(I, Ti, 0, t) − A(CSW , Ti, 0, t).

Ow Scheduling weight before a reweighting event.
Nw New weight after a reweighting event.

REM(T j
i , t) Remaining execution time of T j

i at t. e(T j
i ) − A(S, T j

i , 0, t).

nextE(T j
i , t) If REM(T j

i , t) > 0, then nextE(T j
i , t) = REM(T j

i , t); else, nextE(T j
i , t) = e(T j+1

i ).

Table 3.1: Summary of notation used in this chapter.
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Figure 3.1: A one-processor example of an adaptable sporadic task system.

time units.

Example (Figure 3.1). Consider the example in Figure 3.1, which depicts a one-processor

system with four tasks: T1, which joins the system at time 3 with wt(T1) = 2/5 and e(T1) = 2;

T2 and T3, both of which have a weight of 1/6 and an execution time of 1; and T4, which has,

e(T 1
4 ) = 2, e(T 2

4 ) = 1, and an initial weight of 2/3 that decreases to 1/5 at time 3. Notice

that since e(T 1
4 ) = 2 and wt(T4, r(T 1

4 )) = 2/3, both d(T 1
4 ) = 3 and r(T 2

4 ) = 3. Also, since

e(T 2
4 ) = 1 and wt(T4, r(T 2

4 )) = 1/5, d(T 2
4 ) = 8.

A task Ti changes weight or reweights at time t if wt(Ti, t − ǫ) 6= wt(Ti, t) where ǫ → 0+.

For example, in the system depicted in Figure 3.1, T4 reweights at time 3.

We now explain some of the issues involved in processing such a reweighting event. If a

task Ti changes weight at a time tc between the release and the deadline of some job T j
i , then

the following two actions may occur:

• The execution time of T j
i may be reduced to the amount of time for which T j

i has

executed prior to tc, and the execution time of T j+1
i may be redefined to be the amount

of time “lost” by reducing the execution time of T j
i .

• r(T j+1
i ) may be redefined to be less than r(T j

i )+ e(T j
i )/wt(Ti, r(T j

i )). In this case, since

d(T j
i ) = r(T j

i ) + e(T j
i )/wt(Ti, r(T j

i )), jobs T j
i and T j+1

i will “overlap.” (For a standard

sporadic task, every job’s deadline is at or before its successor’s release.)
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The reweighting rules we present in Section 3.4 state under what conditions the above actions

occur and by how much before r(T j
i )+e(T j

i )/wt(Ti, r(T j
i )) the job T j+1

i can be released. When

the execution time of a job is reduced at a time t, then we say that it is “halted.” Specifically,

if a job T j
i is halted at time t, then Ae(T j

i ) is set to A(S , T j
i , 0, t).

Initiate and enact. As mentioned in Section 1.3.1, when a task reweights, there can be

a difference between when it “initiates” the change and when the change is “enacted.” The

time at which the change is initiated is a user-defined time; the time at which the change

is enacted is dictated by a set of conditions described in Section 3.4. We use the scheduling

weight of a task Ti at time t, denoted Swt(Ti, t), to represent the “last enacted weight of Ti.”

Formally, Swt(Ti, t) equals wt(Ti, u), where u is the last time at or before t that a weight

change was enacted for Ti (assuming an initial weight change occurred when Ti joined the

system). It is important to note that for adaptable sporadic tasks, we compute task deadlines

and releases using scheduling weights. Hence, we have the following formulas:

r(T 1
i ) = θ(T 1

i )

d(T j
i ) = r(T j

i ) + e(T j
i )/Swt(Ti, r(T

j
i ))

r(T j+1
i ) = d(T j

i ) + θ(T j+1
i ),

where θ(T j
i ) ≥ 0. The third equation only applies in the absence of reweighting events, which

may cause release times to be redefined.

Because the reweighting rules may cause r(T j+1
i ) < d(T j

i ), we must slightly modify the

definition of “window,” “active,” and “inactive” presented in Section 1.2.

Definition 3.1 (Window, Active, and Inactive). If T j
i is a job in the adaptable sporadic

task system, T , then the window of T j
i defined as the range [r(T j

i ), min(d(T j
i ), r(T j+1

i ))). Fur-

thermore, job T j
i is active at time t iff t is in T j

i ’s window (i.e., t ∈ [r(T j
i ), min(d(T j

i ), r(T j+1
i )))),

and inactive otherwise.
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3.2 The SW Scheduling Algorithm and Deviance

The scheduling weight (SW) scheduling algorithm is a theoretical scheduling algorithm that is

used to determine which reweighting rule to apply as well to prove tardiness bounds. Under

the SW scheduling algorithm, at each instant t, each active job T j
i in τ is allocated a share

equal to its scheduling weight Swt(Ti, t). Hence, if a job T j
i is active over the range [t1, t2),

then over this range, T j
i is allocated

∫ t2
t1

Swt(Ti, u)du time. (If a job is inactive, then it receives

no allocations in SW.) Throughout this dissertation we use SW to denote the SW schedule

of a task system τ .

Example (Figure 3.2). Consider the example in Figure 3.2, which depict a one-processor

system with four tasks: T1, which has e(T1) = 1 and wt(T1) = 1/3; T2, which has e(T2) = 1

and wt(T2) = 1/6; T3, which has e(T3) = 2 and wt(T3) = 1/4 and leaves at time 8; and T4,

which has e(T4) = 4 and an initial weight of 1/4 and initiates and enacts a weight increase

to 1/2 at time 8. (As we will discuss in Section 3.4, the reweighting rules stop T 1
4 from

receiving more than one unit of allocation and cause T 2
4 to be released with the remaining

three units of execution at time 8.) Inset (a) depicts the GEDF schedule. Inset (b) depicts the

SW schedule. Notice that, T4 initiates and enacts a weight increase from 1/4 to 1/2 at time

8. Inset (c) depicts the allocations to T4 in the GEDF and SW. Hence, before time 8, in the

SW schedule, T4 receives 1/4 of the processor at each instant, and after time 8, T4 receives

1/2 of the processor at each instant.

Example (Figure 3.3). Consider the example in Figure 3.3, which depicts a one-processor

system with four tasks (where the execution time of each job is one): T1, which joins the

system at time 2 with wt(T1) = 1/2; T2 and T3, both of which have a weight of 1/6; and T4,

which has an initial weight of 1/2 and initiates a weight decrease to 1/6 at time 1 that is

enacted at time 2. (As we will discuss in Section 3.4, the reweighting rules do not allow T2

to decrease its weight immediately.) Inset (a) depicts the GEDF schedule. Inset (b) depicts

the SW schedule. Inset (c) depicts the allocations to T4 by the GEDF and SW scheduling

algorithms. Notice that T4 initiates a weight decrease at time 1 from 1/2 to 1/6 that is

enacted at time 2. As a result, in SW over the range [1, 2), T4 receives 1/2 of the processor
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at each instant, even though over t ∈ [1, 2), wt(T4, t) = 1/6.

The deviance of job T j
i of task Ti at time t is defined as dev(T j

i , t) = A(SW , T j
i , 0, t) −

A(S, T j
i , 0, t), where S is the actual schedule. The deviance of a job T j

i represents the

difference between T j
i ’s actual and SW allocations up to time t. If the deviance is negative,

then the job has received a greater allocation in the actual schedule, and if the deviance is

positive, then the job has received a greater allocation in the SW schedule. For example,

in the system depicted in Figure 3.2, at time 8, T 1
4 ’s deviance is positive since it has been

allocated more capacity in the SW schedule than in the actual schedule. On the other hand,

in the system depicted in Figure 3.3, T 1
4 has negative deviance at time 1 because it has been

allocated more capacity in the actual schedule than in the SW schedule. Whether the deviance

of a task is positive or negative will determine which reweighting rule can be applied.

3.3 Modifications

In the adaptable sporadic task model, as presented in this chapter, the desired and guaranteed

weight of each task is the same. Additionally, the fundamental unit for scheduling is a job.

Both of these assumptions do not hold when scheduling tasks under PEDF or Pfair-based

algorithms. Specifically, as we will discuss in Chapter 4, under our adaptive PEDF scheduling

algorithm, a task’s guaranteed and desired weight may differ. Also, as we will discuss in

Chapter 5, under Pfair-based scheduling algorithms, the fundamental unit of scheduling is a

subtask, not a job. As a result, the adaptable sporadic task model and theoretical scheduling

algorithms presented here will be slightly modified in subsequent chapters to accommodate

these differences.

3.4 Task Reweighting

Having defined the adaptable sporadic task model and its associated theoretical schedul-

ing algorithms, we now define the reweighting rules for the GEDF and NP-GEDF scheduling

algorithms and prove their tardiness and drift bounds.
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We begin our discussion of reweighting under GEDF and NP-GEDF by defining the reweight-

ing rules for GEDF. Then, in Section 3.4.2, we explain how these rules can be modified for

NP-GEDF. Before continuing, we introduce one assumption that we make for simplicity: we

assume that the actual execution time for any job is equal to its specified execution time,

unless a task reweights when it has an active job. Then and only then can the actual execution

time of a job be less than its execution time.1 In this scenario, the actual execution time of

the job is determined by the rules we present shortly.

3.4.1 Reweighting Under GEDF

Let τ be a task system in which some task Ti initiates a weight change to weight Nw at time

tc. Let Ow be the last scheduling weight of Ti before the change is initiated at tc. Let S be

the m-processor GEDF schedule of τ . Let T j
i be last-released job of Ti before tc. If T j

i does

not exist or T j
i is inactive at tc before the reweighting event is initiated (i.e., tc ≥ d(T j

i )),

then the weight change is immediately enacted, and future jobs of Ti are released with the

new weight. In the following rules, we consider the remaining possibility, i.e., T j
i exists and

is active at tc. (Notice that if tc = d(T k
i ) = r(T k+1

i ), then T k
i is the last-released job of Ti

before tc, and it is not active at tc. Therefore, the change is immediately enacted and T k+1
i

is released with the new weight.)

Let REM(T j
i , tc) = e(T j

i ) − A(S , T j
i , 0, tc). Note that REM(T j

i , tc) denotes the actual re-

maining computation in Ti’s current job. Let nextE(T j
i , tc) equal REM(T j

i , tc), if REM(T j
i , tc) >

0; otherwise, if REM(T j
i , tc) = 0, then let nextE(T j

i , tc) equal the value of e(T j+1
i ) had the

weight-change event not occurred. Since nextE(T j
i , tc) is only used to determine the execution

time of the next job released, it can be calculated at time r(T j+1
i ). (Notice that, if Ti has no

next job T j+1
i to release at the time specified in the rules below, then nextE(T j

i , tc) = 0. In

this case, the rules are applied as stated, except that T j+1
i is not released.)

As was mentioned earlier, the choice of which rule to apply depends on whether deviance

is positive or negative. If positive, then we say that Ti is positive-changeable at time tc

1Since reweighting events may modify the actual execution time of a job, removing this assumption would
entail having notation to distinguish between redefined execution times as the result of reweighting and rede-
fined execution times that occur due to a task executing for less than its specified execution time.
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from weight Ow to Nw; otherwise Ti is negative-changeable at time tc from weight Ow to

Nw. Because Ti initiates its weight change at time tc, wt(Ti, tc) = Nw holds; however, Ti’s

scheduling weight does not change until the weight change has been enacted, as specified in

the rules below. Note that, if tc occurs between the initiation and enaction of a previous

reweighting event of Ti, then the previous event is canceled , i.e., treated as if it had not

occurred. As discussed later, any “error” associated with canceling a reweighting event like

this is accounted for when determining drift (formally defined in Section 3.5.3).

Rule P: If Ti is positive-changeable at time tc from weight Ow to Nw, then one of two actions

is taken: (i) if d(T j
i )− tc > REM(T j

i , tc)/Nw, then immediately, T j
i is halted, the weight

change is enacted, a new job with an execution time of nextE(T j
i , tc) is released (if

nextE(T j
i , tc) > 0), and T j

i becomes inactive; (ii) otherwise, at time d(T j
i ), the weight

change is enacted, i.e., the scheduling weight of Ti does not change until the end of its

current job.

Rule N: If Ti is negative-changeable at time tc from weight Ow to Nw, then one of two

actions is taken: (i) if Nw > Ow, then immediately, T j
i is halted and its weight change

is enacted, and at time tr, a new job with an execution time of nextE(T j
i , tc) is released

(if nextE(T j
i , tc) > 0) and T j

i becomes inactive, where tr is the smallest time at or after tc

such that dev(T j
i , tr) = 0 holds; (ii) otherwise, at time te, the weight change is enacted,

a new job with an execution time of nextE(T j
i , tc) is released (if nextE(T j

i , tc) > 0), and

T j
i becomes inactive, where te = min(tr, d(T j

i )), and tr is smallest time at or after tc

such that dev(T j
i , tr) = 0 holds.

Intuitively, Rule P changes a task’s weight by halting its current job and issuing a new job

with an execution time of nextE(T j
i , tc) with the new weight if doing so would improve its

deadline.

Example (Figure 3.4). Consider the example in Figure 3.4, which depicts a one-processor

system with four tasks (where the execution time of each job is one): T1, which has wt(T1) =

1/2 and leaves at time at time 2; T2 and T3, both of which have a weight of 1/6; and T4, which

has an initial weight of 1/6 that increases to 4/6 at time 2. In this system, T4 initially has the
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lowest scheduling priority (there is a deadline tie). Inset (a) depicts the GEDF schedule. Inset

(b) depicts T4’s allocations in the SW schedule and also in the other schedules, the IDEAL and

CSW schedules, which are formally defined later in Section 3.5.2. Since T4 is not scheduled

by time 2 and because d(T 1
4 )− tc > REM(T 1

4 , tc)/Nw, i.e., d(T 1
4 )−2 > 0/(4/6), it has positive

deviance and changes its weight via Case (i) of Rule P. This, in turn, causes T 1
4 to be halted,

T 2
4 to be released at time 2 with a deadline of 7/2, and T4’s drift to become 2/6. Note that

halting T4’s current job and issuing a new job with an execution time of one improves T4’s

scheduling priority, i.e., d(T 1
4 ) = 6 > 7

2 = d(T 2
4 ).

Example (Figure 3.5). Consider the example in Figure 3.5, which depicts a one-processor

system with three tasks (where the execution time of each job is one): T1, which has wt(T1) =

1/3; T2, which has wt(T2) = 1/4; and T3, which has an initial weight of 1/4 that increases to

1/3 at time 2. Inset (a) depicts the GEDF schedule. Inset (b) depicts T3’s allocations in the

IDEAL, CSW, and SW schedules. (Again, the IDEAL and CSW schedules are formally defined

later in Section 3.5.2.) Since T 1
3 has not been scheduled by time 2 its deviance is positive;

furthermore, since d(T 1
3 ) − 2 < REM(T 1

3 , 2)/(1/3), T1 enacts its weight change via Case (ii)

of Rule P. Notice that if T 1
3 had been halted at time 2 and released a new job of weight 1/3,

the deadline of this new job would equal time 5 (since 5 = 2 + 1/(1/3)). Thus, if we were

to enact the change via Case (i) of Rule P, then we would increase the deadline of the first

scheduled job of T3, even though the weight of the task increased (i.e., such a change would

decrease the scheduling priority of T3). Therefore, we enact the weight change via Case (ii)

of Rule P, which delays enacting the weight change until the deadline of T 1
3 .

Rule N changes the weight of a task by one of two approaches: (i) if a task increases

its weight, then Rule N causes the release time of its next job to be adjusted so that it is

commensurate with the new weight; (ii) if a task decreases its weight, then Rule N causes

the next job to be issued with a deadline that is commensurate with the new weight at the

end of the current job.

Example (Figure 3.6). Consider the example in Figure 3.6, which depicts a one-processor

system with four tasks (where the execution time of each job is one): T1, which has wt(T1) =

1/2 and leaves at time at time 2; T2 and T3, both of which have a weight of 1/6; and T4,
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which has an initial weight of 1/6 that increases to 4/6 at time 2. This is the same system

as in Figure 3.4 except that T4 has a higher priority than both T2 and T3. Inset (a) depicts

the GEDF schedule. Inset (b) depicts T4’s allocations in the IDEAL, CSW, and SW schedules.

(Again, the IDEAL and CSW schedules are formally defined later in Section 3.5.2.) Since

T4 has been scheduled by time 2, it has negative deviance and thus because it increases its

weight, the change is enacted via Case (i) of Rule N. Thus, its next job is released time of

3, which is such that dev(T4, 3) =
∫ 3
0 Swt(Ti, u)du − A(S, T4, 0, 3) = 1 − 1 = 0. By releasing

the next job of T4 at time 3, the drift incurred is zero.

Example (Figure 3.7). Consider the example in Figure 3.7, which depicts a one-processor

system with four tasks (where the execution time of each job is one): T1, which joins the

system at time 2 and has wt(T1) = 1/2; T2 and T3, both of which have a weight of 1/6; and

T4, which has an initial weight of 1/2 that initiates a weight decrease to 1/6 at time 1 that

is enacted at time 2. Inset (a) depicts the GEDF schedule. Inset (b) depicts T4’s allocations

in the IDEAL, CSW, and SW schedules. (Again, the IDEAL and CSW schedules are formally

defined later in Section 3.5.2.) Since T4 has negative deviance at time 1 and it decreases its

weight, this weight change is enacted via Case (ii) of Rule N, causing T4’s next job to have a

deadline of 8 and T4 to have a drift of −1/3.

Notice that if Ti initiates a weight change at time tc while some job T k
i of Ti (not necessarily

its last-released job) has missed its deadline, then the Rules P and N specify that one of two

actions is taken. If no job of Ti is active at tc, then the weight change is enacted immediately.

If there is a job T j
i that is active at tc, then since T j

i has not been scheduled (because the

earlier job T k
i has missed its deadline), it follows that Ti is positive-changeable, and thus the

weight change is enacted via Rule P (which may cause T j
i but not T k

i to halt). Notice that

T k
i is unaffected in both cases.

It is important to remember that when the Rules P and N halt a job, they do not abandon

the computation that the job was performing. Rather, these rules split that computation

across two jobs. Since these rules change the ordering of a task in the priority queues that

determine scheduling, the time complexity for reweighting one task is O(logN), where N is

the number of tasks in the system (assuming priority queues are implement using binomial
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heaps).

Canceled reweighting events. We now introduce a property about the relationship be-

tween the initiation and enactment of a reweighting event in the case that some such events

are canceled due to later reweighting events. Notice that, once a task Ti initiates a weight

change at tc, this weight change is eventually either canceled by another weight change or

enacted. Further, Rules P and N enact any non-canceled reweighting event no later than the

deadline of the last-released job T j
i of Ti at tc (if it exists and if tc ≤ d(T j

i )).

Example (Figure 3.8). Consider the example in Figure 3.8, which depicts a one-processor

system with three tasks: T1 and T2, both of which have an execution time of 2 and a weight

of 1/3; and T3, which has e(T3) = 2 and an initial weight of 1/3 that changes to 1/10 at

time 3 via Case (ii) of Rule N and then to 1/4 at time 5 via Case (ii) of Rule N. Notice that,

because the change initiated at time 3 is via Case (ii) of Rule N, the change is not enacted

until time 6. As a result, when a change is initiated at time 5, this new change cancels the

previous change. Even though the change initiated at time 3 is canceled, the time of the next

weight enactment is still at time 6.

From Figure 3.8, we can see that, once a reweighting event has been initiated during an

active job, some weight change will be enacted by the earlier of the deadline of that job
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or when the job becomes inactive (which may be earlier, by Rules P and N). Property (X)

formalizes this idea.

(X) If a task Ti initiates a weight change at time tc and the job T j
i is active at tc, then some

weight change is enacted according to Rule P or N by either d(T j
i ) or when T j

i becomes

inactive, whichever is first.

3.4.2 Modifications for NP-GEDF

In order to adapt Rules P and N to work for NP-GEDF, the only modification we need to

make is when these rules are initiated . If a task with an active job reweights before or after

that job has been scheduled, then Rules P and N are initiated as before. (Note that after the

active job T j
i has been released, if T j

i has not been scheduled, then Ti is positive changeable,

and if T j
i has been scheduled, then Ti is negative changeable.) However, if a task changes

its weight while the active job T j
i is executing, then the initiation of the weight change is

delayed until T j
i has completed or T j

i is no longer active, whichever is first. Note that, if a

task Ti changes its weight from Ow to Nw at time tc in NP-GEDF, then wt(Ti, tc) = Nw holds,

regardless of whether the initiation of Rule P or N must be delayed.

Example (Figure 3.9). Consider the example in Figure 3.9, which depicts the NP-GEDF

schedule of a one-processor system with three tasks: T1, which has e(T1) = 1 and wt(T1) = 1/2
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that leaves at time 2; T2, which has e(T2) = 1 and wt(T2) = 1/6; and T3, which has e(T3) = 2

and an initial weight of 1/3 that increases to 4/6 at time 2. In inset (a), T3 has the lowest

scheduling priority (there is a deadline tie). Since T3 is not scheduled by time 2, it has positive

deviance and changes its weight via Rule P, causing T 1
3 to be halted, T 2

3 to be released at time

2 with a deadline of 5. Inset (b) depicts the same scenario as in (a) except that T3 has higher

priority than T2. Since T3 is scheduled at time 2, and the system is schedule by NP-GEDF,

the initiation of the reweighting event is delayed until T3 stops executing at time 3. Since T 1
3

is complete by time 2, it has negative deviance and changes its weight via Rule N, causing its

next job to have a release time of 9/2.

3.5 Tardiness and Drift Bounds

In this section, we formally present and prove tardiness and drift bounds for the GEDF and

NP-GEDF reweighting algorithms.

3.5.1 Tardiness Bounds

Instead of deriving tardiness bounds for GEDF or NP-GEDF when scheduling adaptable spo-

radic tasks from scratch (which would be quite tedious), we instead leverage the results

reported by Devi and Anderson in (Devi and Anderson, 2008) concerning tardiness bounds

that can be guaranteed under GEDF and NP-GEDF when scheduling sporadic tasks. In addi-

tion to deriving tardiness bounds under GEDF and NP-GEDF for sporadic task systems, Devi

and Anderson also proposed an extension to the sporadic task model, referred to as the ex-

tended sporadic task model , and determined tardiness bounds that can be guaranteed to task

systems that conform to the extended sporadic task model. We will show that any adaptable

sporadic task system can be modeled as an extended sporadic task system; hence, tardiness

bounds derived for extended sporadic task systems can be applied to adaptable sporadic task

systems as well. We begin by describing the extended sporadic task model.

The extended sporadic task model. In the conventional sporadic task model, the num-

ber of tasks in a task system is fixed, and the sum of the weights of all its tasks is assumed
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to be at most m (the number of processors). On the other hand, in the extended model, the

number of tasks associated with a task system is allowed to vary and the total weight of all

tasks is allowed to exceed m. (The number of tasks could potentially be infinite.) Further,

each task is assigned a static weight, and all jobs (except possibly the final job) of a task have

equal execution times. However, to prevent overload, at any given time, only a subset of tasks

whose total weight is at most m is allowed to be effective,2 i.e., is allowed to release jobs.

Additionally, the final job of a task can stop3 at some time ts before its deadline, provided

the allocation that the job receives in the actual schedule is at most the allocation it receives

up to ts in the SW schedule,4 i.e., the last job has non-negative deviance, and the job is not

executing in a non-preemptive segment at ts. When a job stops, its execution time is altered

to equal the amount of time that the job actually executed for in the actual schedule up to

time ts. Thus, at any time t, each task Ti can be in one of the following states.

• Effective, if the first job of Ti is released at or before t, the deadline of its final job is

after t, and its final job has not stopped at or before t. A task whose final job has its

deadline at or before t is not considered effective at t even if the final job is pending at

t.

• Ineffective, if the release time of the first job of Ti is after t.

• Terminated , if the deadline of Ti’s final job is before t.

• Stopped , if the final job has stopped but its deadline has not elapsed.

As can be easily seen, a task that is either ineffective or terminated at time t cannot have

active or effective jobs at t.

In order to provide tardiness bounds for extended sporadic task systems, Devi and An-

derson proposed partitioning the set of all tasks associated with a task system into N task

classes such that the following hold: (i) effective intervals are disjoint for every two tasks in

2In (Devi and Anderson, 2008), an effective task is referred to as an active task. We use this alternative
term here to avoid conflicts in terminology.

3Here again, to avoid conflicting terminology, we differ from the term used in (Devi and Anderson, 2008).
Stopping is referred to as halting in (Devi and Anderson, 2008).

4Since each extended sporadic task has only one weight, in an SW schedule the extended sporadic task Ti

is allocated wt(Ti) at each instant it is effective.
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each class and (ii) tasks within a class are governed by precedence constraints, i.e., the first

job of a task cannot begin execution until all jobs of all tasks with earlier effective intervals

in its class have completed execution. The second requirement implies that tasks that are

not bound by precedence constraints should belong to different classes even if their effective

intervals are disjoint.

Example (Figure 3.10). Consider the example in Figure 3.10(a), which depicts five tasks,

each with an execution time of one: T1, which has wt(T1) = 1/2 that leaves at time 2; T2 and

T3, each of which have a weight of 1/6; T4, which has wt(T4) = 1/6 and stops at time 2; and

T5, which has wt(T5) = 4/6, is in the same task class as T4, and becomes effective as soon

as T4 stops. T 1
4 has a lower scheduling-priority than T 1

2 and T 1
3 . Inset (b) depicts the same

system as in Figure 3.4 (with the tasks renumbered for clarity). Notice that T4 can stop at

time 2 because its deviance is zero. Also note that, since T4 and T5 are in the same task class,

only one of them can be effective at the same time.

Let T [ℓ] denote task class ℓ, and let emax(T
[ℓ]) and W(T [ℓ]) denote the maximum execution

time and weight, respectively, of any task in T [ℓ]. In (Devi and Anderson, 2008), it is shown

that the tardiness for any task of any task class T [i] of an extended sporadic task system T
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under global EDF is at most

∑

T [ℓ]∈E(T,m−1) emax(T
[ℓ])

m −∑T [ℓ]∈X (T,m−2) W(T [ℓ])
+ emax(T

[i]), (3.1)

and that under global NP-EDF is at most

∑

T [ℓ]∈E(T,m) emax(T
[ℓ])

m −∑T [ℓ]∈X (T,m−1) W(T [ℓ])
+ emax(T

[i]), (3.2)

where E(T, k) and X (T, k) are subsets of k task classes of T with the highest execution times

and weights, respectively, for any of their tasks (i.e., with the highest values for emax(T
[ℓ])

and W(T [ℓ]), respectively).

Extended and adaptable sporadic task systems. We now show how an adaptable

sporadic task system can be modeled as an extended sporadic task system. We initially

assume that no task changes its weight by Case (i) of Rule N, i.e., no negative-changeable

task halts. Such weight changes are considered afterwards. We first show that each task of

an adaptable sporadic task system can be modeled as a task class of an extended sporadic

task system. For this, we decompose each adaptable sporadic task into disjoint “subtasks5,”

where a subtask sub(Ti, j) of a adaptable sporadic task Ti is a “maximal” set of jobs with

the following properties: (i) the jobs in sub(Ti, j) are consecutive jobs of Ti; (ii) each job is

released between the same pair of two consecutive weight-change enactments for Ti; (iii) each

job has the same execution time; and (iv) no new job can be added to sub(Ti, j) without

violating one or more of properties (i), (ii), and (iii), and in that sense, sub(Ti, j) is maximal.

As an example, consider Figure 3.10(b), which depicts the same system as in Figure 3.4 with

the subtasks marked.

Recall that in an extended sporadic task system, if a job T j
i “stops” at time ts, then

ts < d(T j
i ), T j

i ’s deviance is non-negative, and when a job stops, its actual execution time

is set to the value that the job had executed for in the actual schedule up to time ts. Since

we are assuming that only positive-changeable tasks may halt, which by definition have an

5This usage of the term “subtask” should not be confused with that used in work on Pfair scheduling.
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active job that has non-negative deviance, it is easy to see that for positive-changeable tasks

“stopping” in an extended sporadic task system has the same effect as “halting” an adaptable

sporadic task system. For example, the impact on the system when T 1
4 stops in Figure 3.10(a)

is the same as when T 1
6 halts in Figure 3.10(b).

By definition, all jobs of a subtask have equal execution times, and because all such jobs

are released between two consecutive weight-change enactments, each subtask has a static

scheduling weight. Also, as explained above, halting is the same as stopping for a positive-

changeable task. Hence, if no task changes its weight via Case (i) of Rule N, then it follows

that each subtask in the adaptable sporadic task model corresponds to a task, with a static

weight and execution time, in the extended sporadic task model, and each task in a adaptable

sporadic task model that consists of subtasks corresponds to a task class, composed of tasks

with different weights or execution times or both, of the extended sporadic task model. Also

note that intervals within which subtasks of an adaptable sporadic task are effective are

disjoint. For example, consider insets (a) and (b) of Figure 3.10, which despite the notation

change, have the identical schedules.

We now explain that an adaptable sporadic task can be modeled as an extended sporadic

task even if tasks change their weight via Case (i) of Rule N. Before we continue, notice that

the one difference between positive and negative-changeable tasks with respect to halting at

time th is as follows: if Ti is positive-changeable at th and its job T j
i is active at that time,

then T j+1
i , i.e., the next job of Ti, may be released at th, whereas if Ti is negative-changeable,

then T j+1
i may not be released until time tr > th, where tr is the earliest time at which the

allocations to T j
i are equal in the actual schedule and under SW, i.e., the next time T j

i ’s

deviance is zero. Thus, if Ti is negative-changeable and halts at th, then T j
i may be thought

of as stopping at time tr, where tr is as defined above. However, notice that by Case (i) of

Rule N, if T j
i halts at time th, then Ti enacts a weight increase at time th. Thus, the time tr is

calculated using dynamic weights, which are not explicitly included in Devi and Anderson’s

extended sporadic model.

Example (Figure 3.11). Consider the example in Figure 3.11(a), which depicts five tasks,

each with an execution time of one: T1, which has wt(T1) = 1/2 and leaves at time 2; T2
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and T3, each of which has a weight of 1/6; T4, which has an initial weight of 1/6, at time 2

increases its weight to 4/6, and at time 3 stops; and T5, which has wt(T5) = 4/6, is in the

same task class as T4, and becomes effective as soon as T4 stops. T 1
4 has a higher scheduling-

priority than T 1
2 and T 1

3 . Inset (b) depicts the same system as in Figure 3.6 (with the tasks

renumbered for clarity). Since T4 and T5 are in the same task class, only one of them can be

effective at the same time. Notice that T4 can stop at time 3 because its actual allocation

until then is no greater than its SW allocation; however, if we were using static weights than

T 1
4 would not be able to stop until time 6.

Even though dynamic weights are not explicitly included in the extended sporadic model,

the bounds in (3.1) and (3.2) still hold if the only time a task is allowed to change its weight

is when its final job has finished executing and the weight change is an increase, which is

exactly the scenario that arises when a task changes its weight via Case (i) of Rule N. The

reason why (3.1) and (3.2) still hold in the presence of such weight changes is because the

extended sporadic task model only requires that the total allocation in the SW schedule to

a stopping job T j
i at the time it stops be at least the allocation T j

i received in the actual

schedule; increasing the rate at which the T j
i is allocated time in the SW schedule is not an

issue as long as the total SW allocation to all tasks that are effective is at most m at each
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instant.

Informally, this holds by the following reasoning. Increasing a task Ti’s allocation rate

in the SW schedule would cause Ti’s period to decrease. As a result, jobs of Ti would have

a higher relative scheduling priority after the change. However, since the final job of Ti has

already completed execution in the actual schedule when it halts, this increase in priority

does not impact any job. In particular, it is not possible for another job to have a lower

priority than the halting job T j
i before the weight change and a higher priority after the

weight change. Therefore, scheduling T j
i (the halting job) in the past with a lower priority

does not adversely impact how any other job was scheduled in the past. Since T j
i has already

completed execution before its deadline, T j
i ’s tardiness is not impacted either.

Hence, if the task Ti enacts a weight change via Case (i) of Rule N at th and the system

is not over-utilized after the change, no other job will be impacted. Thus, since a weight

change is enacted at th regardless of whether Ti is positive- or negative-changeable, and T j+1
i

is released at or after th, in both the cases, T j
i and T j+1

i belong to different subtasks of Ti.

Hence, the definition of a subtask is unaltered even in the presence of negative-changeable

jobs by Case (i) of Rule N, and the correspondence described earlier between a adaptable

sporadic task and an extended sporadic task holds.

Thus, the tardiness bounds specified in (3.1) and (3.2) and that can be guaranteed to

extended sporadic task systems are also applicable to adaptable sporadic task systems if task

class T [ℓ] is replaced by adaptable sporadic task Tz, and emax(Tz) and W(Tz) are taken as the

maximum execution time of any job of Tz and the maximum weight assigned to Tz at any

time. (It should be noted that the tardiness bounds hold only if the sum of the weights of all

tasks that are active at any instant is at most m.) Thus, we have the following theorem.

Theorem 3.1. Let τ be an adaptable sporadic task system, where for any t ≥ 0,

∑

Ti∈τ Swt(Ti, t) ≤ m. Then, for any task Ti, GEDF on m processors ensures a tardiness

of at most
∑

Tz∈E(m−1) emax(Tz)

m −
∑

Tz∈X (m−2) wtmax(Tz)
+ emax(Ti),

85



and NP-GEDF on m processors ensures a tardiness of at most

∑

Tz∈E(T,m) emax(Tz)

m −∑Tz∈X (T,m−1) W(Tz)
+ emax(Ti).

3.5.2 Additional Theoretical Algorithms

“Drift bounds” (formally defined in Section 3.5.3) reflect a reweighting algorithm’s accuracy

at creating a job set that mimics an “ideal” task system, in which weight changes can always

be initiated and enacted instantaneously. In order to define drift and prove drift bounds

for the reweighting rules proposed in Section 3.4, we introduce two additional theoretical

scheduling algorithms that are able to preempt and swap tasks at arbitrarily small intervals:

the clairvoyant scheduling-weight (CSW) scheduling algorithm and the ideal (IDEAL) schedul-

ing algorithm. The CSW scheduling algorithm allocates each task a fraction of the system

equal to its scheduling weight , and will not allocate capacity to a task if its active job has

received an allocation equal to its actual execution time. The IDEAL scheduling algorithm

allocates each task a fraction of the system equal to its weight (i.e., not its scheduling weight)

at each instant. Further, the IDEAL scheduling algorithm continually allocates capacity to a

task as long as it has an active job.

We now discuss these two algorithms in more detail, by exploring their differences when

scheduling the two example systems presented in Figures 3.12, 3.13, and 3.14.

Example (Figures 3.12 and 3.13). Consider the example in Figures 3.12 and 3.13, which

depict a one-processor system with four tasks: T1, which has e(T1) = 1 and wt(T1) = 1/3; T2,

which has e(T2) = 1 and wt(T2) = 1/6; T3, which has e(T3) = 2 and wt(T3) = 1/4 and leaves

at time 8; and T4, which has e(T4) = 4 and an initial weight of 1/4 and initiates and enacts a

weight increase to 1/2 at time 8 (the same system as in Figure 3.2). Figure 3.12(a) depicts the

GEDF schedule. Figure 3.12(b) depicts the allocations to T4 in the GEDF, IDEAL, SW, and

CSW scheduling algorithms. Figure 3.13(a) depicts the SW schedule. Figure 3.13(b) depicts

the CSW schedule. Figure 3.13(c) depicts the IDEAL schedule. Notice that T 1
4 receives no
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allocations in the CSW schedule once it has received one unit of execution (the amount T 1
4 is

allocated in the GEDF schedule).

Example (Figure 3.14). Consider the example in Figure 3.14, which depicts a one-processor

system with four tasks (where the execution time of each job is one): T1, which joins the sys-

tem at time 2 with a wt(T1) = 1/2; T2 and T3, both of which have a weight of 1/6; and T4,

which has an initial weight of 1/2 and initiates a weight decrease to 1/6 at time 1 that is

enacted at time 2 (the same system as in Figure 3.3). Inset (a) depicts the GEDF schedule.

Inset (b) depicts the allocations to T4 in the GEDF, IDEAL, SW, and CSW scheduling algo-

rithms. Inset (c) depicts the SW schedule. Inset (d) depicts the CSW schedule. Inset (e)

depicts the IDEAL schedule.

The CSW scheduling algorithm. CSW is a theoretical scheduling algorithm that is used

as a reference for calculating drift. Under the CSW scheduling algorithm, at each instant t,

each job of each task Ti that is both active and incomplete (in the CSW schedule) is allocated a

fraction of a processor equal to Swt(Ti, t). Furthermore, we consider CSW to be “clairvoyant”

in the sense that CSW uses the actual execution time of T j
i to determine if T j

i has completed

before it halts. More specifically, for any schedule CSW under CSW of any task system τ , we

say that T j
i has completed by time t in CSW iff T j

i has executed for Ae(T j
i ) by t. Thus, the

difference between SW and CSW is that a job in SW will not stop receiving allocations as long

as its active, whereas a job in CSW will stop receiving allocations as soon as it receives its

actual execution time. Throughout this dissertation we use CSW to denote the CSW schedule

of a task system τ .

Example (Figures 3.12 and 3.13). Consider the system depicted in Figures 3.12 and 3.13

(described above). In this system, the reweighting rules Rule P stops T 1
4 from scheduling its

second unit of execution. As a result, Ae(T 1
4 ) = 1. So, as illustrated in Figure 3.13(b), T 1

4

stops receiving allocation in the CSW schedule once it has been allocated one unit of execution

(at time 4). T4 resumes execution once its next job has been released at time 8. This differs

from the SW schedule, where T4 receives allocations over the range [4, 8). Notice that, in the

example depicted in Figure 3.14, Ae(T 1
4 ) = e(T 1

4 ), so T 1
4 ’s allocations are identical in both
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schedule. (b) The allocations to T4 in the GEDF, IDEAL, SW, and CSW scheduling algorithms.
(c) The SW schedule. (c) The CSW schedule. (d) The IDEAL schedule.
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the SW and CSW schedules. Notice that, in both the CSW and actual schedule, the total

time allocated to a job is the same. Thus, the CSW algorithm more accurately represents the

behavior of a task than the SW algorithm.

The IDEAL scheduling algorithm. Under the ideal (IDEAL) scheduling algorithm, at each

instant t, each task Ti in τ with an active job at t is allocated a fraction of the system equal

to its weight (i.e., wt(Ti, t)). Hence, if I is the IDEAL schedule of τ and Ti is active over the

interval [t1, t2), then over [t1, t2), the task Ti is allocated A(I, T j
i , t1, t2) =

∫ t2
t1

wt(Ti, u)du

time. As mentioned earlier, the IDEAL algorithm is similar to SW, with one major exception:

each task receives an allocation equal to its weight, whereas under SW, each task receives an

allocation equal to its scheduling weight. Throughout this dissertation we use I to denote the

IDEAL schedule of a task system τ .

Example (Figures 3.12–3.14). Notice that in the system depicted in Figure 3.14, the

reweighting event initiated at time 1 by T4 is not enacted until time 2. As a result, over the

range [1, 2), in the IDEAL schedule, T4 receives wt(T4, t) = 1/6 at each instant, whereas in

the SW schedule, T4 receives Swt(T4, t) = 1/2 at each instant. On the other hand, in the

systems depicted in Figures 3.12 and 3.13, T4’s reweighting event is enacted as soon as it is

initiated. As a result, the IDEAL and SW schedules are the same.

3.5.3 Drift

For most real-time scheduling algorithms, the difference between the IDEAL and actual allo-

cations a task receives lies within some bounded range centered at zero. For example, under

a uniprocessor EDF schedule, the difference between the ideal and actual allocations for a

task lies within (−emax(Ti), emax(Ti)) (assuming the processor is not over-utilized). When a

weight change occurs, the same bounds are maintained except that they may be centered at

a different value. For example, in Figure 3.12, the range for T4 is originally (−4, 4), but after

the reweighting event, it is (−3, 5). This lost allocation is called drift. Given this loss (barring

further reweighting events) Ti ’s drift will not change. In general, a task’s drift per reweighting

event will be non-negative if it increases its weight, and a task’s drift per reweighting event
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will be non-positive if it decreases its weight. The drift of a task Ti at time t is defined as

drift(Ti, t) = A(I, Ti, 0, t) − A(CSW , Ti, 0, t).

(Notice that drift is defined in terms of CSW instead of SW. This is because, as we discussed

earlier, the CSW scheduling algorithm is a more accurate representation of the actual schedule

than the SW scheduling algorithm.) The per-event absolute drift is the absolute value of the

amount of drift that is incurred as a result of a reweighting event. For example, if the per-

event absolute drift is emax(Ti), then after n reweighting events, the maximal absolute drift

is n · emax(Ti).

Under GEDF, the drift per reweighting event is bounded as follows.

Theorem 3.2. The per-event absolute drift under GEDF for each task Ti is at most emax(Ti).

Proof. We first show that for any job T j
i of any task Ti, A(CSW , Ti, r(T j

i ), tA) ≤ emax(Ti),

where tA is the time that T j
i becomes inactive. Notice that, since a job is inactive by its

deadline (i.e., tA ≤ d(T j
i )), and the deadline of T j

i is defined as r(T j
i )+e(T j

i )/Swt(Ti, r(T
j
i )), it

follows that if Ti does not enact a weight change over the range [r(T j
i ), tA), i.e., Ti ’s scheduling

weight is static over the range [r(T j
i ), tA), then A(CSW , Ti, r(T j

i ), tA) ≤ e(T j
i ) ≤ emax(Ti).

Thus, in order for, A(CSW , Ti, r(T j
i ), tA) > emax(Ti) to hold, it must be that Ti enacted

a weight change over the range [r(T j
i ), tA). Thus, we assume that Ti enacts a change over

the range [r(T j
i ), tA), and that te is the last such time. Notice that if the change enacted

at te is by Case (i) or (ii) of Rule P or Case (ii) of Rule N, then T j
i becomes inactive at

te, which contradicts our assumption that te < tA. Thus, the change enacted at te must

be by Case (i) of Rule N. By Case (i) of Rule N, T j
i becomes inactive at the first time at

or after te such that the deviance of T j
i equals zero, i.e., tA is the smallest time such that

∫ tA
r(T j

i )
Swt(Ti, u)du = Ae(T j

i ). Since A(CSW , Ti, r(T j
i ), tA) ≤

∫ tA
r(T j

i )
Swt(Ti, u)du and since

Ae(T j
i ) ≤ e(T j

i ) ≤ emax(T
j
i ), it follows that

A(CSW , Ti, r(T j
i ), tA) ≤ emax(Ti). (3.3)

Let tc be a time such that some task Ti initiates a weight change. Let te denote the next

92



time that the change initiated at tc is either canceled or enacted, whichever is first. Thus, by

the definition of canceled, no weight change is initiated over the range (tc, te). We show that

regardless of which rule Ti uses to change its weight, the drift incurred by this initiation is at

most emax(Ti). Let T j
i be the last-released job of Ti before tc. Notice that if T j

i is not active

at tc or T j
i does not exist, then the change is immediately enacted and no job is halted. Since

the only two potential sources of drift are delays in enacting a weight change and halting a

job (which causes the actual execution time to be lower than the execution time), it follows

that if T j
i does not exist or T j

i is inactive at tc then no drift is incurred. Thus, for the rest of

this proof, we assume that T j
i is active at tc, and we let tA denote the time that T j

i becomes

inactive. By Property (X) and the fact that tA ≤ d(T j
i ) holds, we have

tc ≤ te ≤ tA ≤ d(T j
i ). (3.4)

If Ti changes its weight at time tc via Case (i) of Rule P, then since this weight change

is immediately enacted (i.e., tc = te), it is as though allocation equal to A(I, Ti, r(T j
i ), tc) −

A(CSW , Ti, r(T j
i ), tc) is “lost.” For example in Figure 3.4, the task T4 “loses” an alloca-

tion of 2/6. Notice that, per reweighting event, A(I, Ti, r(T j
i ), tc)−A(CSW , Ti, r(T j

i ), tc) ≤

emax(Ti). Also note that since, by (3.3) and (3.4), A(CSW , Ti, r(T j
i ), tc) ≤ emax(Ti), it fol-

lows that −emax(Ti) ≤ A(I, Ti, r(T j
i ), tc) − A(CSW , Ti, r(T j

i ), tc). Thus, since −emax(Ti) ≤

A(I, Ti, r(T j
i ), tc) − A(CSW , Ti, r(T j

i ), tc) ≤ emax(Ti), it follows that the absolute drift is at

most emax(Ti).

Suppose that Ti initiates a change to weight Nw via Case (ii) of Rule P at tc. Since this

change is enacted or canceled at time te, it is as though allocation equal to A(I, Ti, tc, te) −

A(CSW , Ti, tc, te) is “lost.” Recall that a task only changes its weight via Case (ii) of Rule P

if the deviance of Ti is positive and if d(T j
i )−tc ≤ REM(T j

i , tc)/Nw. Since by (3.4), te ≤ d(T j
i )

and REM(T j
i , tc) ≤ emax(Ti), the previous inequality can be rewritten as

Nw · (te − tc) ≤ emax(Ti). (3.5)

Recall that no change is initiated over the range (tc, te). Thus, by definition, A(I, Ti, tc, te) =
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∫ te
tc

(Nw)du = Nw · (te − tc). Hence, by (3.5), A(I, Ti, tc, te) ≤ emax(Ti). Furthermore,

by (3.3) and (3.4), A(CSW , Ti, tc, te) ≤ emax(Ti). Thus, −emax(Ti) ≤ A(I, Ti, tc, te) −

A(CSW , Ti, tc, te) ≤ emax(Ti). Since A(I, Ti, tc, te) − A(CSW , Ti, tc, te) denotes the lost

allocation for this reweighting event, it follows that the absolute drift is at most emax(Ti).

For example, in Figure 3.5, over the range [2, 4) for task T3, an allocation of A(I, T3, 2, 4) −

A(CSW , T3, 2, 4) = 2/3 − 2/4 = 1/6 is lost.

Suppose that Ti changes its weight to Nw at time tc via Rule N. If Ti decreases its

weight, then it is as though the allocation equal to A(I, Ti, tc, te)−A(CSW , Ti, tc, te) is lost.

Furthermore, since it was a weight decrease initiated at tc, it follows that A(I, Ti, tc, te) <

A(CSW , Ti, tc, te). Thus, since by (3.3) and (3.4), A(CSW , Ti, tc, te) ≤ emax(Ti), it follows

that A(I, Ti, tc, te) < A(CSW , Ti, tc, te) ≤ emax(Ti). Thus, −emax(Ti) ≤ A(I, Ti, tc, te) −

A(CSW , Ti, tc, te) ≤ emax(Ti). Since A(I, Ti, tc, te) − A(CSW , Ti, tc, te) denotes the lost

allocation for this reweighting event, it follows that the absolute drift incurred is at most

emax(Ti). For example, in Figure 3.7, the drift incurred by T4 is −1/3, i.e., drift(T4, t) =

−1/3, where t ≥ 2. If Ti increases its weight (Case (i)), then it incurs zero drift, since

it immediately enacts the weight change (i.e., the scheduling weight changes immediately).

Hence, the absolute drift incurred by this reweighting event is less than emax(Ti). For example,

in Figure 3.6, the drift incurred by T4 is 0, i.e., drift(T4, t) = 0, where t ≥ 2.

Notice that the presence of jobs that miss their deadlines does not affect the drift bounds.

The reason for this is that the reweighting rules are only based on the state of the active

job at the time the reweighting event is initiated. Thus, if a job has not been scheduled by

the time it reweights, then it does not matter whether a predecessor prevented the job from

being scheduled or the job had the lowest scheduling priority, only that the job has not been

scheduled, and therefore is positive-changeable.

Example (Figure 3.15). Consider the example in Figure 3.15, which depicts the partial

schedule for a task Ti that has all of the following characteristics: an initial weight of 1/10

that increases to 1/2 at time tc; a job T j−1
i that has a deadline at tr = tc − 5, an execution

time of 14, and misses its deadline by 11 time units; and all jobs released after T j−1
i have

an execution time of 1. Inset (a) depicts the GEDF schedule. Inset (b) depicts the CSW
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Figure 3.15: A partial schedule that illustrates drift when tasks miss deadlines. The partial
(a) GEDF and (b) CSW and IDEAL schedules for the task Ti. The difference between Ti’s
allocation in CSW and IDEAL are labeled above inset (b).

and IDEAL schedules. Notice that, even though T j−1
i misses its deadline at time tr, when Ti

initiates the change at time tc, T j
i is the active job, and since it has not been scheduled, Ti

is positive-changeable at tc. Therefore, by Rule P, T j
i (but not T j−1

i ) is halted and T j+1
i is

immediately released with the new weight, which incurs a drift of 1/2.

Modifications for NP-GEDF. Note that delaying the initiation of a reweighting event due

to non-preemptivity does not substantially increase the drift incurred per reweighting event,

since the longest a reweighting event can be delayed is the execution time of the active job of

the task being reweighted.

Suppose that the task Ti initiates a weight change at time tc. If T j
i is active at tc, and if

Ti’s reweighting event is delayed until some time t (by a non-preemptive section), then at t

either (a) T j
i has a non-positive deviance (i.e., T j

i completes before its deadline), or (b) t is
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the first time that T j
i becomes inactive (i.e., t = min(r(T j+1

i ), d(T j
i )).)

If Case (a) occurs, then Ti is negative-changeable at t, and T j
i is active at t. Hence, if Ti

increases its weight, then the only drift Ti will incur for this reweighting event results from

delaying the initiation of the event, i.e., at most emax(Ti). If Ti decreases its weight, then

delaying the reweighting event will not affect drift, since the enactment of the reweighting

event would occur when T j
i becomes inactive, regardless of whether the initiation of the

reweighting event was delayed or not.

Example (Figure 3.16). Consider the example in Figure 3.16, which depicts a one-processor

system scheduled by NP-GEDF with two tasks: T1, which has wt(T1) = 3/10 and e(T1) = 3;

and T2, which has e(T2) = 2 and an initial weight of 1/5 and initiates a weight increase to 1/2

at time 4. Inset (a) depicts the NP-GEDF schedule. Inset (b) depicts the CSW schedule. Inset

(c) depicts the IDEAL schedule. Inset (d) depicts T2’s allocations in the CSW and IDEAL

schedules. Notice that T2’s weight change is delayed from time 4 to time 5 because T2 is

non-preemptively executing at time 4. As a result, T2 is negative-changeable at time 5. Also

note that, T 2
2 is released when T2’s actual allocation equals its allocation in the CSW schedule

at time 7, i.e., when T 2
2 ’s deviance equals zero.

If Case (b), mentioned earlier, occurs, then either no job of Ti is active at t or T j+1
i is

active at t. If no job of Ti is active at t, then the change is enacted immediately, and the

drift that the task incurs from the reweighting event is a result of delaying the initiation of

the event, i.e., emax(Ti). If T j+1
i is active at t, then since t = min(r(T j+1

i ), d(T j
i )), it must be

the case that r(T j+1
i ) = t. As a result, the weight change is enacted immediately and T j+1

i is

released with the new weight. Hence, the only drift that is incurred is as a result of delaying

the initiation of the reweighting event, i.e., at most emax(Ti).

Example (Figure 3.17). Consider the example in Figure 3.17, which depicts a partial

NP-GEDF schedule for a task Ti, which has an initial weight of 1/10 that increases to 1/2

at time tc while the last-released job of Ti before tc, T j
i , is both active and being scheduled.

Note that T j
i has an execution time of four, and all jobs released after T j

i have an execu-

tion time of one. Moreover, T j
i does not complete execution until after its deadline. Inset

(a) depicts the NP-GEDF schedule. Inset (b) depicts the CSW schedule. Inset (c) depicts
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deadline. (a) The NP-GEDF schedule. (b) The CSW schedule. (c) The IDEAL schedule.
(d) T2’s allocations in the CSW and IDEAL schedules.

the IDEAL schedule. Inset (d) depicts Ti’s allocation in the CSW and IDEAL schedules. Be-

cause T j
i is not complete by its deadline, the initiation of the weight change is delayed until

t = d(T j
i ) = r(T j+1

i ). Recall that, if a weight change is initiated when d(T j
i ) = r(T j+1

i ), then

the weight change is immediately enacted and T j+1
i is released with the new weight (even

though T j
i has not yet completed execution). Thus, the only source of drift is because the

initiation of the reweighting event is delayed.

From the reasoning presented in these examples, we can see that the following theorem

holds.

Theorem 3.3. The per-event absolute drift under NP-GEDF for each task Ti is at most

emax(Ti).

3.6 Conclusion

In this chapter, we presented the adaptable sporadic task model as well as the rules for

reweighting a task under the GEDF and NP-GEDF scheduling algorithms. In addition, we
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proved tardiness bounds our reweighting rules by leveraging prior work by Devi and Anderson.

In addition, we proved that the absolute value of the drift that can be incurred per reweighting

event is at most the maximal execution time of a task.
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CHAPTER 4

PEDF and NP-PEDF
∗

In this chapter, we examine the issue of reweighting in the context of partitioned algo-

rithms. Because there cannot exist an optimal1 partitioned scheduling algorithm, we focus

our attention on different heuristic tradeoffs that can minimize different sources of error. Be-

fore discussing these tradeoffs in detail, we first define some necessary notation and consider

a fundamental limitation of all partitioning algorithms.

4.1 Preliminaries

In this section, we introduce a few terms that will facilitate our discussion of partitioned

systems. We denote the qth processor in the system, where processors are ordered by some

arbitrary method, as P[q]. As a shorthand, we use Ti ∈ P[q] to denote that Ti is assigned to

P[q]. We denote the set of tasks that are assigned to P[q] at time t as ASSN(P[q], t). We denote

the set of tasks that are assigned to P[q] and active at time t as ACT(P[q], t). (Recall that a

task Ti is active at time if it has an active job at time t, and a job T j
i is active at time t if

t ∈ [r(T j
i ), min(d(T j

i ), r(T j+1
i ))).) We denote the desired and guaranteed weight of Ti at time

t as Dwt(Ti, t) and Gwt(Ti, t), respectively. (As we discuss in Section 4.4.3, when a task’s

guaranteed and desired weight differ, the releases and deadlines of its jobs will be based on

its guaranteed weight.) If a task’s desired weight does not change with time, then we denote

∗ Contents of this chapter previously appeared in preliminary form in the following paper:
Block, A. and Anderson J. (2006). Accuracy versus migration overhead in multiprocessor reweighting al-
gorithms. In Proceedings of the 12th International Conference on Parallel and Distributed Systems, pages
355–364.

1A reweighting algorithm is optimal if each task can always be granted a guaranteed weight equal to its
desired weight, provided the sum of all desired weights is at most the number of available processors.



this value as Dwt(Ti).

We say that Ti ∈ P[q] is the heaviest task assigned to P[q] iff Ti has the largest desired

weight of any task assigned to P[q]. Similarly, we say that Ti ∈ P[q] is the lightest task

assigned to P[q] iff Ti has the smallest desired weight of any task assigned to P[q]. We say that

a processor P[q] is over-utilized by x iff it has been assigned tasks with a total desired weight

of 1 + x. Similarly, we say that P[q] is under-utilized by x iff it has been assigned tasks with

a total desired weight of 1 − x. Additionally, we say that P[q] is fully-utilized iff it has been

assigned tasks with a total desired weight of 1. If P[q] is over-utilized by x at time t, then we

denote this value as ω(P[q], t); if P[q] is not over-utilized at t, then ω(P[q], t) = 0. These terms

(as well as other terms used throughout this chapter) are summarized in Table 4.1.

4.2 A Limitation of Partitioning Schemes

As was mentioned in Section 1.2.2, under any partitioning scheme, there exist task systems

where only a subset of tasks can receive their desired allocation even though the total weight

of all tasks is at most the number of processors. For example, consider a two-processor system

with three identical periodic tasks with an execution cost of 2.0 and a period of 3.0. Because

tasks are partitioned, one processor will be assigned two of these tasks, thus over-utilizing it.

There are two approaches for handling this problem. First, we could cap the total utilization

of all tasks in the system. Unfortunately, under any M -processor partitioning scheme, a cap

of approximately M/2 is required in the worst case (Carpenter et al., 2004), which implies

that as much as half the system’s processing capacity could be lost. Such caps are due to

connections to bin-packing.

An alternative approach is to assign a subset of tasks in the system guaranteed weights

that are less than their desired weights. Although allocating a task a weight less than its de-

sired weight is obviously undesirable, such an approach can guarantee that the system’s overall

capacity does not have to be restricted, which is a significant advantage in computationally-

intensive systems like Whisper and VEC. Moreover, allowing the guaranteed weights of tasks

to be somewhat malleable circumvents any bin-packing-like intractabilities that might other-

wise arise—with frequent weight changes, such intractabilities would have to be dealt with
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Notation Definition
P[q] The qth processor.

Ti ∈ P[q] Ti is assigned to P[q].
ASSN(P[q], t) Set of tasks assigned to P[q] at time t.
ACT(P[q], t) Set of tasks assigned to P[q] that are active at time t.

e(T j
i ) WECT of job T j

i .
emax(Ti) Maximal worst-case execution time of all jobs of Ti.

Ae(T j
i ) Actual execution time of job T j

i .

r(T j
i ) Release time of T j

i .

d(T j
i , t) Perceived deadline of T j

i at time t.

d(T j
i ) Deadline of T j

i .

θ(T j
i ) IS separation between T j−1

i and T j
i .

Dwt(Ti, t) Ti’s desired weight at time t.
Gwt(Ti, t) Ti’s guaranteed weight at time t.
SDwt(Ti, t) Ti’s desired scheduling weight at time t.
SGwt(Ti, t) Ti’s guaranteed scheduling weight at time t.
T D(P[q], t) P[q]’s desired weight scaling factor: max(1,

∑

Ti∈ACT(P[q],t)
Dwt(Ti, t)).

T S(P[q], t) P[q]’s desired scheduling weight scaling factor:
max(1,

∑

Ti∈ACT(P[q],t)
SDwt(Ti, t)).

ω(P[q], t) max(0, 1 −
∑

Ti∈ACT(P[q],t)
Dwt(Ti, t)).

Irem(T j
i , t) e(T j

i ) −
∫ t

r(T j

i
) SGwt(Ti, u)du.

SW Scheduling-weight scheduling algorithm.
SW SW schedule of a task system τ .
CSW Clairvoyant scheduling-weight scheduling algorithm.
CSW CSW schedule of a task system τ .
IDEAL Ideal scheduling algorithm.

I IDEAL schedule of a task system τ .
PT Partial ideal scheduling algorithm.
PT PT schedule of a task system τ .
S Actual schedule (i.e., GEDF or NP-GEDF) of task system τ .

A(B, T j
i , t1, t2) Allocation to T j

i in the schedule B over [t1, t2).
A(B, Ti, t1, t2) Allocation to Ti in the schedule B over [t1, t2).

dev(T j
i , t) Deviance of T j

i : A(SW , T j
i , 0, t) − A(S, T j

i , 0, t).
drift(Ti, t) Drift of Ti: A(I, Ti, 0, t) − A(CSW , Ti, 0, t).
Pdrift(Ti, t) Partial drift of Ti: A(PT , Ti, 0, t) − A(CSW , Ti, 0, t).

Ow Desired scheduling weight before a reweighting event.
Nw New desired weight after a reweighting event.

REM(T j
i , t) Remaining execution time of T j

i at t: e(T j
i ) − A(S, T j

i , 0, t).

nextE(T j
i , t) If REM(T j

i , t) > 0, then nextE(T j
i , t) = REM(T j

i , t);

else, nextE(T j
i , t) = e(T j+1

i ).

H(T j
i , t) Jobs with a scheduling priority higher than or equal to T j

i ’s that are

assigned to the same processor as T j
i and are both active and pending

at time t.

lag(T j
i , t) Lag of T j

i at t: A(CSW , T j
i , r(T j

i ), t) − A(S, T j
i , r(T j

i ), t).

LAG(G, t) Lag of the job group G at time t:
∑

T
j

i
∈G

lag(T j
i , t).

Table 4.1: Summary of notation used in this chapter.
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frequently at run-time. Note that we are still able to offer some service guarantees with this

approach, as discussed in Sections 4.7 and 4.9. (In particular, if the maximum amount by

which a processor is over-utilized is relatively small, then the resulting guaranteed weight

may be acceptable.) For these reasons, we use this approach in the schemes we propose. To

the best of our knowledge, we are the first to suggest using such an approach to schedule

dynamically-changing multiprocessor workloads. The fundamental limitation of partitioned

schemes noted at the beginning of this chapter is formalized by the following theorem.

Theorem 4.1. For any partitioned scheduling algorithm and any integers M and k such that

M ≥ 2 and k ≥ M + 1, there exists an M -processor system τ with k tasks that have a total

desired weight at most M where at least one processor is assigned a set of tasks that have a

total desired weight greater than one.

Proof. In order to prove Theorem 4.1, we construct a system that satisfies the theorem for

any value of M and k such that M ≥ 2 and k ≥ M + 1. Let the first M tasks of τ have a

desired weight X = 1 − ǫ, where 0 < ǫ < 0.5. Let the (M + 1)st task of τ have a desired

weight of W = min(M · ǫ − δ, 1 − ǫ), where 0 < δ < ǫ, and let the total desired weight of the

remaining k − (M + 1) tasks of τ be δ. (For example, if ǫ = 1/3, k = 3, and M = 2, then the

system consists of three tasks of weight 2/3.) By definition, the desired weight of the first

(M + 1)st tasks have a total desired weight of at most M · (1− ǫ) + M · ǫ− δ = M − δ. Since

the total desired weight of the remaining k − (M + 1) tasks is δ, the total desired weight of

all the tasks is at most M .

Thus, it remains to be shown that one processor is assigned tasks with a total desired

weight greater than one. Notice that no matter how the first M + 1 tasks are partitioned, at

least one processor will been assigned two of these tasks, i.e., at least one processor will be

assigned either two of the first M tasks or one of the first M tasks and the (M + 1)st task. If

two of the first M tasks are assigned to the same processor, then the total desired weight on

that processor is at least 2 · (1 − ǫ). In this case, since ǫ < 0.5, the processor will have been

assigned tasks with total desired weight greater than one. If one processor is assigned one of

the first M tasks and the (M + 1)st task, then the total desired weight of the tasks assigned

to this processor would be 1 − ǫ + W . Thus, it remains to be shown that W > ǫ. Thus, we
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consider two cases depending on whether W = 1 − ǫ or W = M · ǫ − δ. If W = 1 − ǫ, then

since ǫ < 0.5, W > ǫ. If W = M · ǫ − δ, then since M ≥ 2 and δ < ǫ, it follows that W > ǫ.

This completes the proof.

4.3 Partitioning and Repartitioning

The problem of assigning tasks to processors is equivalent to the NP-hard bin-packing prob-

lem. Given that reweighting events may be frequent, an optimal assignment of tasks to

processors is not realistic to maintain. In our approach, we partition N tasks onto M pro-

cessors in O(M + N log N) time by first sorting them by desired weight from heaviest to

lightest, and by then placing each on the processor that is the “best fit” (this partitioning

method is called descending best-fit). We chose this method because it falls within a class of

bin-packing heuristics called reasonable allocation decreasing (RAD), which has been shown

by Lopez et al. to produce better packings than other types of heuristics (Lopez et al., 2004).

Most importantly, the “descending best-fit” strategy can guarantee that no processor is over-

utilized by more than W , where W is the desired weight of the
(

M ·
⌊

1
X

⌋

+ 1
)st

heaviest task

in the system and X is the desired weight of the heaviest task in the system. Also, under

this strategy, no processor is over-utilized by more than the desired weight of the lightest task

assigned to it.

As tasks are reweighted, the likelihood of a processor becoming substantially over-utilized

increases dramatically, creating significant overall error (however assessed) on these proces-

sors. The extent of overall error can be controlled by repartitioning the system. In order to

give the user control over migration overhead, we introduce α-partitioning : if a reweighting

event causes the total desired weight of all tasks assigned to any one processor to be at least

1 + α, the system is reset , where α is a user-defined value. A reset causes the set of tasks

to be repartitioned (using the descending best-fit method described earlier) and each active

task to issue a new job with the remaining execution time of its pending job (“pending” is

formally defined in Section 1.2). In Section 4.6, we formally define the rule for resetting a

system.
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Metric Name Metric Formula

MAOE maxTi∈ASSN(P[q],t) {Dwt(Ti, t) − Gwt(Ti, t)}
AAOE 1

n ·∑Ti∈ASSN(P[q],t)
(Dwt(Ti, t) − Gwt(Ti, t))

MROE maxTi∈ASSN(P[q],t)

{

Dwt(Ti,t)−Gwt(Ti,t)
Dwt(Ti,t)

}

AROE 1
n ·∑Ti∈ASSN(P[q],t)

(

Dwt(Ti,t)−Gwt(Ti,t)
Dwt(T,t)

)

Table 4.2: The MAOE, AAOE, MROE, and AROE metrics.

4.4 Allowing Guaranteed and Desired Weights to Differ

Given that we allow a task’s guaranteed and desired weight to differ, two questions arise.

First, how do we determine each task’s guaranteed weight? Second, how do we modify the

adaptable sporadic task model (presented in Section 3.1) to accommodate a task with a

different guaranteed and desired weight? In this section, we discuss several possible answers

to these questions.

4.4.1 Determining Guaranteed Weights

When a processor P[q] is over-utilized, there is a degradation in the system’s performance

because at least one task assigned to P[q] will have a guaranteed weight that is less than its

desired weight. Unfortunately, it is not immediately clear how this degradation should be

measured. For example, should we measure the absolute or relative difference between each

task’s desired and guaranteed weight? In this section, we propose four different metrics for

measuring the system’s degradation, summarized in Tables 4.2 and 4.3, and explain how to

determine the guaranteed weight of tasks in order to minimizing each of these metrics.2 We

illustrate these metrics via the following example.

Example (Figure 4.1). Consider the example in Figure 4.1, which depicts one processor

that is assigned four tasks: T1, which has a desired weight of 0.36; T2 and T3, both of which

have a have a desired weight of 0.30; and T4, which has a desired weight of 0.24. Inset (a)

depicts the desired weight for each task. Insets (b), (c), and (d) depict, respectively, the

2In Table 4.3, the formula for minimizing the MAOE only holds if
ω(P[q],t)

|ASSN(P[q],t)|
≤ Dwt(Tz, t) for every

Tz ∈ ASSN(P[q], t). Additionally, the formula for minimizing the AROE only holds if ω(P[q], t) ≤ Dwt(TH , t).

104



Metric Name Guaranteed Weight Assignment

MAOE Gwt(Ti, t) = Dwt(Ti, t) −
ω(P[q],t)

|ASSN(P[q],t)|

AAOE 1 =
∑

Tz∈ASSN(P[q],t)
Gwt(Tz, t)

MROE Gwt(Ti, t) = Dwt(Ti,t)
P

Tz∈ASSN(P[q],t)
Dwt(Tz ,t)

AROE Gwt(Ti, t) =

{

Dwt(Ti, t) − ω(P[q], t) if Ti = TH

Dwt(Ti, t) otherwise

Table 4.3: The guaranteed weight assignments for Ti ∈ ASSN(P[q], t) that minimize the MAOE,
AAOE, MROE, and AROE metrics. TH is the heaviest task in ASSN(P[q], t).

guaranteed weights for the four tasks when such weights are chosen to minimize the MAOE,

MROE, and AAOE metrics (discussed shortly).

Absolute Error. The first two metrics we consider are based on the absolute difference

between the guaranteed and desired weight of a task. Specifically, the maximal absolute

overall error (MAOE) on an over-utilized processor, P[q], is given by

maxTi∈ASSN(P[q],t) {Dwt(Ti, t) − Gwt(Ti, t)} .

To minimize this metric, the difference between the guaranteed and the desired weight for

each task should be the same. Specifically, to minimize the MAOE metric, the guaranteed

weight for Ti ∈ P[q] at time t is specified as

Gwt(Ti, t) = Dwt(Ti, t) −
ω(P[q], t)

|ASSN(P[q], t)|
. (4.1)

Notice that, in Figure 4.1, since the processor is over-utilized by 0.20 and there are four

tasks assigned to it, MAOE is minimized by setting each task’s guaranteed weight to be 0.2
4

less than its desired weight.

It is worthwhile to note that (4.1) only produces non-negative guaranteed weights if the

desired weight for each task is at least
ω(P[q],t)

|ASSN(P[q],t)|
. This condition is satisfied when P[q]

is over-utilized by less than smallest desired weight of any task assigned to P[q]. Since, as

we discussed in Section 4.3, such a property can be guaranteed by any RAD partitioning
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Figure 4.1: (a) The desired weights for four tasks assigned to one processor. Guaranteed
weights for the four tasks when the guaranteed weights are chosen to minimize the (b)
MAOE, (c) MROE and (d) AAOE metrics.

algorithm, it is possible to repartition the system in order to guarantee that (4.1) returns

valid results. If repartitioning cannot be performed (e.g., for application-oriented reasons),

then it is possible to use an iterative approach for determining the guaranteed weight of tasks.

The average absolute overall error (AAOE) on an over-utilized processor, P[q], is given by

1

n
·

∑

Ti∈ASSN(P[q],t)

(Dwt(Ti, t) − Gwt(Ti, t)) .

It is easy to show that this metric is minimized whenever the guaranteed weight of all tasks

assigned to a processor sum to 1. Since any reasonable method for determining the guaranteed

weights of tasks will minimize the AAOE metric, this metric is of little value.

Relative error. The next two metrics we consider are based on the relative difference

between the guaranteed and desired weights of a task. The maximal relative overall error

(MROE) on an over-utilized processor, P[q], is given by

maxTi∈ASSN(P[q],t)

{

Dwt(Ti, t) − Gwt(Ti, t)

Dwt(Ti, t)

}

.
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This metric is minimized when all task shares are scaled by the same value. Specifically, we

define the guaranteed weight of Ti assigned to the processor P[q] at time t as

Gwt(Ti, t) =
Dwt(Ti, t)

T D(P[q], t)
, (4.2)

where

T D(P[q], t) = max



1,
∑

Ti∈ASSN(P[q],t)

Dwt(Ti, t)



 (4.3)

For example, consider the system in Figure 4.1(c). The depicted set of tasks over-utilizes the

processor by 0.2, so each task’s guaranteed weight should be 1
1.2 times its desired weight. This

scaling is the same as the proportional-share scaling used in EEVDF (Stoica et al., 1996).

The average relative overall error (AROE) on an over-utilized processor P[q] is given by

1

n
·
∑

Ti∈P[q]

Dwt(Ti, t) − Gwt(Ti, t)

Dwt(T, t)
.

This metric is minimized when the guaranteed weight for the heaviest task on an over-utilized

processor P[q] is less than its desired weight by ω(P[q], t), and the guaranteed weight of every

other task equals its desired weight. Specifically, the guaranteed weight of Ti ∈ ASSN(P[q], t)

is defined as

Gwt(Ti, t) =











Dwt(Ti, t) − ω(P[q], t), if Ti is the heaviest task in ASSN(P[q], t)

Dwt(Ti, t), otherwise.
(4.4)

For example, consider the system depicted in Figure 4.1(d). In this system, since T1 has

the largest desired weight, its guaranteed weight is its desired weight minus the amount the

processor is over-utilized, i.e., 0.36 − 0.20 = 0.16.

Notice that (4.4) is valid only if ω(P[q], t) ≤ Dwt(TH , t), where TH is the heaviest task

in ASSN(P[q], t). As with the MAOE metric, this condition is satisfied by repartitioning the

system by using any RAD partitioning algorithm. If repartitioning cannot be performed

(e.g., for application-oriented reasons), then it is possible to reduce the AROE by itierativly

choosing the smallest possible guaranteed weight for tasks from the heaviest to lightest task
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in ASSN(P[q], t) until the total guaranteed weight equals one.

To simplify our discussion, we focus on minimizing MROE. It is worthwhile to note that

under our adaptable framework, any method for determining the guaranteed weights of tasks

on an over-utilized processor can be used so long as the sum of these weights is at most one. In

Section 4.10, we explain how our system can be extended to accommodate any such method,

including methods based the AROE and MAOE metrics.

4.4.2 The Adaptable Sporadic Task Model, Revisted

In this section, we incorporate the notions of guaranteed and desired weights into the adapt-

able sporadic task model that was presented in Section 3.1. It is important to note that,

unless otherwise specified, all references to the adaptable sporadic task model in this chap-

ter are to the task model presented in this section. We begin our discussion by formally

defining when a task changes its weight. A task Ti changes its desired weight at time t if

Dwt(Ti, t− ǫ) 6= Dwt(Ti, t) where ǫ → 0+. Similarly, a task, Ti, changes its guaranteed weight

at time t if Gwt(Ti, t − ǫ) 6= Gwt(Ti, t) where ǫ → 0+.

Notice that, since we are attempting to minimize MROE, by (4.2), the guaranteed weight

for every task on an over-utilized processor is a function of its desired weight and the desired

weight of every other task assigned to the same processor. As a result, when a task, Ti,

changes its desired weight at time t, the guaranteed weight for Ti and for every other task

assigned to same processor may change.

Additionally, different actions may occur depending on whether the desired or guaranteed

weight of a task changes. Specifically, if a task, Ti, changes its desired weight at time tc when

a job T j
i is active, then the following two actions may occur.

• The execution time of T j
i may be reduced to the amount of time for which T j

i has

executed prior to tc, and the execution time of T j+1
i may be redefined to be the amount

of time “lost” by reducing the execution time of T j
i .

• r(T j+1
i ) may be redefined to be less than d(T j

i ), which would cause jobs T j
i and T j+1

i

to “overlap.”
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If the guaranteed weight but not the desired weight of a task changes, then the following two

actions may occur

• The deadline of T j
i may be changed.

• The release time of T j+1
i (if it exists) may be changed.

Scheduling weights. Just as with the adaptable sporadic task model presented in Sec-

tion 3.1, there can be a difference between when a desired weight change is initiated and

when it is enacted. We use the desired scheduling weight of a task Ti at time t, denoted

SDwt(Ti, t), to represent the “last enacted desired weight of Ti.” Formally, SDwt(Ti, t) equals

Dwt(Ti, u), where u is the last time at or before t that a weight change was enacted for Ti. It

is important to note that we use the desired scheduling weight of a task to compute the guar-

anteed scheduling weight of a task, denoted SGwt(Ti, t). In turn, the guaranteed scheduling

weight is used to compute the deadlines and releases of tasks.

Formally, the guaranteed scheduling weight of Ti that is assigned to the processor P[q] at

time t is

SGwt(Ti, t) =
SDwt(Ti, t)

T S(P[q], t)
, (4.5)

where

T S(P[q], t) = max



1,
∑

Ti∈ASSN(P[q],t)

SDwt(Ti, t)



 (4.6)

Notice that, by (4.5), the sum of the guaranteed scheduling weights of all active tasks assigned

to a processor is at most one, which is formalized by the following property

(W) For any processor P[q] and any time t,
∑

T j
i ∈ASSN(P[q],t)

SGwt(Ti, t) ≤ 1.

Because the rules for changing the guaranteed weight of a task are simpler than changing

its desired weight, it is possible to integrate them directly into the definition of a job’s release

and deadline. To do so, we introduce the notion of a perceived deadline of T j
i at time t,

denoted d(T j
i , t), which represents what the deadline of T j

i would be if its guaranteed weight

did not change. As a shorthand, we use d(T j
i ) to denote the time u such that u = d(T j

i , u).

(d(T j
i ) represents the actual deadline of the job, but it cannot be determined until it is reached
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(see the example below). Formally, we define d(T j
i , t) as,

d(T j
i , t) =











t +
Irem(T j

i ,t)
SGwt(Ti,t)

, if SGwt(Ti, t) > 0

∞, otherwise.
(4.7)

where

Irem(T j
i , t) =











e(T j
i ), if t < r(T j

i )

e(T j
i ) −

∫ t
r(T j

i ) SGwt(Ti, u)du, otherwise.
(4.8)

Additionally, we define r(T j
i ) as,

r(T j
i ) = θ(T j

i ), j = 1 (4.9)

r(T j
i ) = d(T j−1

i ) + θ(T j
i ), j > 1, (4.10)

where θ(T j
i ) ≥ 0. Notice that, if for some job T j

i and t > r(T j
i ), SGwt(Ti, t) = 0, then it is

possible that d(T j
i ) cannot be reached since d(T j

i , t) = ∞. The scenario where SGwt(Ti, t) = 0

is a special case that is used to represent Ti leaving the system. Thus, once SGwt(Ti, t) = 0

holds, Ti cannot release any more jobs and is no longer allocated any capacity in any schedule.

As a result, if d(T j
i , t) = ∞, then we set d(T j

i ) as ∞. Notice that all other terms of Ti are

still well-defined since the only other term that is defined using d(T j
i ) is r(T j+1

i ); however, if

d(T j
i ) = ∞, then T j+1

i does not exist.

From the definition of d(T j
i , t) in (4.7) it is not hard to see that the following property

holds.

(D) For any two times u1 and u2 such that r(T j
i ) ≤ u1 ≤ u2 ≤ d(T j

i ),
∫ u2

u1
SGwt(Ti, t)dt ≤

e(T j
i ).

Notice that, since for t ∈ [r(T j
i ), d(T j

i )),
∫ t
r(T j

i ) SGwt(Ti, u) ≤ e(T j
i ), by (4.8), it follows

that for any time t

Irem(T j
i , t) ≤ e(T j

i ) ≤ emax(Ti) (4.11)

It is important to note that the PEDF and NP-PEDF scheduling algorithms discussed in

this chapter prioritize jobs based on their perceived deadlines; however, even though jobs are
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prioritized based on their perceived deadlines, the relative scheduling priority between any

two jobs is time invariant. Specifically, it two jobs, T j
i and T b

a , are assigned to the same

processor and at some time t1 ≥ max(r(T j
i ), r(T b

a)), d(T j
i , t1) < d(T b

a , t1) holds, then at any

time t ≥ max(r(T j
i ), r(T b

a)), d(T j
i , t) < d(T b

a , t) holds. Intuitively, the reason for this behavior

is that the deadlines for both jobs always scale by the same factor, i.e., 1
T S(P[q],t)

. Also, when

the desired weight of a task changes, the relative scheduling priority between any two released

jobs of any two tasks is unchanged. (When task’s desired weight is changed, it is possible that

the current job may halt and release a new job with a higher or lower scheduling priority. Such

an action would change the relative scheduling priority between two tasks but not between

the jobs themselves because the original job was halted.)

Example (Figure 4.2). Consider the example in Figure 4.2, which depicts a processor that

is assigned four tasks: T1, which has e(T1) = 3 and Dwt(T1) = 2/5; T2, which has e(T2) = 2

and Dwt(T2) = 1/3; T3, which has e(T3) = 1 and Dwt(T3) = 1/3; and T4, which has e(T4) = 4

and Dwt(T4) = 4/15. The total desired weight is 4
3 . T 1

4 ’s perceived deadline is shown above

each inset. Inset (a) depicts the scenario where T1 never leaves. Inset (b) depicts the scenario

where T1 leaves at time 10 causing the processor to be under-utilized. Notice that, in inset (b),

T 1
4 ’s perceived deadline changes when T1 leaves (at time 10) from 20 to 18.3̄ because T 1

4 ’s

guaranteed scheduling weight changes. This differs from inset (a), in which T 1
4 ’s guaranteed

scheduling weight does not change, and as a result, T 1
4 ’s perceived deadline remains constant.

One final note: while, in inset (a), d(T 1
4 ) = 20, and in inset (b), d(T 1

4 ) = 18.3̄, neither of these

values are known until these corresponding points in time are reached.

Because the reweighting rules may cause r(T j+1
i ) < d(T j

i ), we must slightly modify the

definition of “window,” “active,” and “inactive” presented in Section 1.2.

Definition 4.1 (Window, Active, and Inactive). If T j
i is a job in the adaptable sporadic

task system, T , then the window of T j
i is defined as the range [r(T j

i ), min(d(T j
i ), r(T j+1

i ))).

Furthermore, the job T j
i is active at time t iff t is in T j

i ’s window (i.e., t ∈

[r(T j
i ), min(d(T j

i ), r(T j+1
i )))), and is inactive otherwise.
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Figure 4.2: A one-processor system with four tasks. (a) T1 never leaves. (b) T1 leaves at
time 10. The perceived deadline for T 1

4 is shown above each figure.

4.4.3 Modifying the SW Algorithm

Having extended the adaptable sporadic task model presented in Section 3.1, we now extend

the SW theoretical algorithm, presented in Section 3.2, to incorporate desired and guaranteed

weights. Under the SW scheduling algorithm, at each instant t, each active job T j
i in τ

is allocated a fraction of the system equal to its guaranteed scheduling weight SGwt(Ti, t).

Hence, if a job T j
i is active over the range [t1, t2), then over this range, T j

i is allocated
∫ t2
t1

SGwt(Ti, u)du time. Throughout this chapter, we use SW to denote the SW schedule of

a task system τ .

Deviance. The deviance of the job T j
i of the task Ti at time t is defined as

dev(T j
i , t) = A(SW , T j

i , 0, t) − A(S, T j
i , 0, t), (4.12)

where S is the actual schedule.
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Example (Figure 4.3). Consider the example in Figure 4.3, which depicts one processor

that is assigned four tasks: T1, which has e(T1) = 1 and Dwt(T1) = 1/3; T2, which has

e(T2) = 1 and Dwt(T2) = 1/6; T3, which has e(T3) = 2, Dwt(T3) = 1/4, and leaves at time 8;

and T4, which has e(T4) = 4 and an initial desired weight of 1/4 that increases to 1/2 at time

8. (The reweighting rules presented in Section 4.5 stop T 1
4 from receiving more than one unit

of allocation and cause T 2
4 to be released with the remaining three units of execution at time

8.) Inset (a) depicts the PEDF schedule. Inset (b) depicts the SW schedule. Inset (c) depicts

the allocations to T4 in the PEDF and SW schedules. Notice that T 1
4 has positive deviance at

time 8.

Example (Figure 4.4). Consider the example in Figure 4.4, which depicts one processor

that is assigned four tasks (where the execution time of each job is one): T1, which has

Dwt(T1) = 1/2; T2 and T3, both of which have a desired weight of 1/6; and T4, which has

an initial desired weight of 1/2 that initiates a desired weight decrease to 1/6 at time 1 that

is enacted at time 2.6̄. (The reweighting rules presented in Section 4.5 do not allow T2 to

decrease its desired weight immediately.) Notice that T 1
4 has negative deviance at time 1.

4.5 Changing Desired Weights

We now introduce two rules for changing the desired weight of a task. (These rules are similar

to reweighting rules for changing the weight of a task under GEDF that were presented in

Section 3.4.) These rules work by modifying future release times and deadlines. (The rules

below are applied on a single processor; reweighting events that trigger a repartitioning are

discussed in Section 4.6.) We first describe how to change the desired weight of a task under

PEDF in Section 4.5.1 and then explain how to change the desired weight of a task under

NP-PEDF in Section 4.5.2.

4.5.1 Changing Desired Weights in PEDF

Let τ be a task system in which some task Ti initiates a desired weight change to Nw at time

tc. Let Ow be the last desired scheduling weight of Ti before the change is initiated at tc. Let
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S be the M -processor PEDF schedule of τ . Let T j
i be last-released job of Ti before tc. If T j

i

does not exist or T j
i is inactive at tc before the reweighting event is initiated (i.e., tc ≥ d(T j

i )),

then the desired weight change is immediately enacted, and future jobs of Ti are released with

the new desired weight. In the following rules, we consider the remaining possibility, i.e., T j
i

exists and is active at tc. (Notice that, if tc = d(T k
i ) = r(T k+1

i ), then T k
i is the last-released

job of Ti before tc, and it is not active at tc. Therefore, the change is immediately enacted

and T k+1
i is released with the new desired weight.)

Let REM(T j
i , t) = e(T j

i )−A(S, T j
i , 0, t). Note that REM(T j

i , t) denotes the actual remain-

ing computation in Ti’s current job. Since for any time t, A(S, T j
i , 0, t) ≥ 0,

REM(T j
i , t) ≤ e(T j

i ) ≤ emax(Ti). (4.13)

Let nextE(T j
i , tc) equal REM(T j

i , tc), if REM(T j
i , tc) > 0; otherwise, if REM(T j

i , tc) = 0,

then let nextE(T j
i , tc) equal the value of e(T j+1

i ) had the desired weight change event not

occurred. Since nextE(T j
i , tc) is only used to determine the execution time of the next job

released, it can be calculated at time r(T j+1
i ). (Notice that, if Ti has no next job T j+1

i to

release at the time specified in the rules below, then nextE(T j
i , tc) = 0. In this case, the rules

are applied as stated, except that T j+1
i is not released.)

As was the case for reweighting under GEDF, the choice of which rule to apply depends on

whether deviance is positive or negative. If positive, then we say that Ti is positive-changeable

at time tc from a desired weight of Ow to Nw; otherwise Ti is negative-changeable at time tc

from a desired weight of Ow to Nw. Because Ti initiates its desired weight change at time

tc, Dwt(Ti, tc) = Nw holds; however, Ti’s desired scheduling weight does not change until the

desired weight change has been enacted, as specified in the rules below. Note that, if tc occurs

between the initiation and enaction of a previous reweighting event of Ti, then the previous

event is canceled , i.e., treated as if it had not occurred. As discussed later, any “error”

associated with canceling a reweighting event like this is accounted for when determining

drift (formally defined in Section 4.9).

Rule P: If Ti is positive-changeable at time tc from a desired weight of Ow to Nw, then one
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of two actions is taken: (i) if
Irem(T j

i ,tc)
Ow

>
REM(T j

i ,tc)
Nw

, then immediately, T j
i is halted, the

desired weight change is enacted, a new job T j+1
i with an execution time of nextE(T j

i , tc)

is released (if nextE(T j
i , tc) > 0), and T j

i becomes inactive; (ii) otherwise, at time d(T j
i ),

the desired weight change is enacted, i.e., the desired scheduling weight of Ti does not

change until the end of its current job.

Rule N: If Ti is negative-changeable at time tc from a desired weight of Ow to Nw, then one

of two actions is taken: (i) if Nw > Ow, then immediately, T j
i is halted and its desired

weight change is enacted, and at time tr, a new job T j+1
i with an execution time of

nextE(T j
i , tc) is released (if nextE(T j

i , tc) > 0) and T j
i becomes inactive, where tr is the

smallest time at or after tc such that dev(T j
i , tr) = 0 holds; (ii) otherwise, at time te,

the desired weight change is enacted, a new job with an execution time of nextE(T j
i , tc)

is released (if nextE(T j
i , tc) > 0), and T j

i becomes inactive, where te = min(tr, d(T j
i )),

and tr is smallest time at or after tc such that dev(T j
i , tr) = 0 holds.

Intuitively, Rule P changes a task’s desired weight by halting its current job and issuing a

new job with an execution time of nextE(T j
i , tc) with the new desired weight if doing so would

improve its scheduling priority. Notice that, at time t, job T j
i has a higher scheduling priority

than job Tw
ℓ if

Irem(T j
i , tc)

SGwt(Ti, tc)
<

Irem(Tw
ℓ , tc)

SGwt(Tℓ, tc)
.

Hence, it is not difficult to show that if
Irem(T j

i ,tc)
Ow

>
REM(T j

i ,tc)
Nw

holds, then halting T j
i and

issuing a new job with an execution time of nextE(T j
i , tc) would improve Ti’s scheduling

priority.

Example (Figure 4.5). Consider the example of Case (i) of Rule P illustrated in Figure 4.5,

which depicts one processor that is assigned four tasks (where the execution cost of each job

is one): T1, which has Dwt(T1) = 1/2 and leaves at time at time 2; T2 and T3, both of which

have a desired weight of 1/6; and T4, which has an initial desired weight of 1/6 that increases

to 4/6 at time 2. In this system, T4 initially has the lowest scheduling priority (there is a

deadline tie). Inset (a) depicts the PEDF schedule. Inset (b) depicts T4’s allocations in the

SW schedule as well three other schedules, namely, the CSW, IDEAL, and PT schedules, which
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are defined later in Sections 4.7.1 and 4.8. Since T4 is not scheduled by time 2, it has positive

deviance and changes its weight via Rule P, causing T 1
4 to be halted, T 2

4 to be released at time

2 with a deadline of 7/2, and T4’s drift to become 2/6. Note that halting T4’s current job

and issuing a new job with an execution time of one improves T4’s scheduling priority, i.e.,

Irem(T 1
4 ,2)

Ow
= 4/6

1/6 = 4 > 6/4 = 1
4/6 =

REM(T 1
4 ,2)

Nw
. Notice also that the third job of T4 is issued

6/4 time units after time 2. This spacing is in keeping with a new job of desired weight 4/6

issued at time 2.

Example (Figure 4.6). Consider the example of Case (ii) of Rule P illustrated in Figure 4.6,

which depicts one processor that is assigned three tasks (where the execution cost of each

job is one): T1, which has Dwt(T1) = 1/3; T2, which has Dwt(T2) = 1/4; and T3, which has

an initial desired weight of 1/4 that initiates an increase to 1/3 at time 2. Inset (a) depicts

the PEDF schedule. Inset (b) depicts T3’s allocations in the SW schedule. (Again, the CSW,

IDEAL, and PT scheduling algorithms are defined later in Sections 4.7.1 and 4.8.) Since T 1
1

has not been scheduled by time 2, its deviance is positive; furthermore, since
Irem(T 1

3 ,2)
Ow

= .50
.25 =

2 < 3 = 1
1/3 =

REM(T 1
3 ,2)

Nw
, T1 enacts its weight change via Case (ii) of Rule P. Notice that,

if T 1
3 had been halted at time 2 and released a new job of desired weight 1/3, its scheduling

priority would be decreased. Thus, if we were to enact the change via Case (i) of Rule P, then

we would in effect be increasing the deadline of the first scheduled job of T3, even though the

desired weight of the task increased.

Rule N changes the desired weight of a task by one of two approaches: (i) if a task

increases its desired weight, then Rule N causes the release time of its next job to be adjusted

so that it is commensurate with the new desired weight; (ii) if a task decreases its desired

weight, then Rule N causes the next job to be issued with a deadline that is commensurate

with the new desired weight at the end of the current job.

Example (Figure 4.7). Consider the example of Case (i) of Rule N illustrated in Figure 4.7,

which depicts the same system as in Figure 4.5, except that T4 has the highest priority.

Inset (a) depicts the PEDF schedule. Inset (b) depicts T3’s allocations in the SW schedule.

(Again, the CSW, IDEAL, and PT scheduling algorithms are defined later in Sections 4.7.1
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and 4.8.) Notice that the second job of T4 is released at time 3, which is the time such that

dev(T4, 3) =
∫ 3
0 SGwt(Ti, u)du − A(S, T4, 0, 3) = 1 − 1 = 0.

Example (Figure 4.8). Consider the example of Case (ii) of Rule N illustrated in Figure 4.8,

which depicts a one-processor systems with four tasks (where the execution cost of each job

is one): T1, which has Dwt(T1) = 1/2 and joins the system at time 2; T2 and T3, both of

which have a desired weight of 1/6; and T4, which has an initial desired weight of 1/2 that

initiates a weight decrease to 1/6 at time 1 that is enacted at time 2. Inset (a) depicts the

PEDF schedule. Inset (b) depicts T4’s allocations in the SW schedule. (Again, the CSW,

IDEAL, and PT scheduling algorithms are defined later in Sections 4.7.1 and 4.8.) Since T4

has negative deviance at time 1, and it decreases its desired weight, this change is enacted

via Case (ii) of Rule N, causing T4’s next job to have a deadline of 8 and T4 to have a drift

of −1/3.

It is important to remember that when the Rules P and N halt a job, they do not abandon

the computation that the job was performing. Rather, these rules split that computation

across two jobs. Since these rules change the ordering of a task in the priority queues that

determine scheduling, the time complexity for reweighting one task is O(logN), where N is

the number of tasks in the system (assuming that binomial heaps are used to implement the

priority queues).

Canceled reweighting events. We now introduce a property about the relationship be-

tween the initiation and enactment of a desired weight change in the case that some such

changes are canceled due to later desired weight changes. Notice that, once a task Ti initiates

a desired weight change at tc, this desired weight change is eventually either canceled by

another desired weight change or enacted. Further, Rules P and N enact any non-canceled

desired weight change no later than the deadline of the last-released job T j
i of Ti at tc (if it

exists and if tc ≤ d(T j
i )).

Example (Figure 4.9). Consider the example in Figure 4.9, which depicts one processor

that is assigned three tasks: T1 and T2, both of which have an execution time of 2 and a

weight of 1/3; and T3, which has e(T3) = 2 and an initial weight of 1/3 that changes to 1/10
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at time 3 via Case (ii) of Rule N and then to 1/4 at time 5 via Case (ii) of Rule N. Notice that,

because the change initiated at time 3 is via Case (ii) of Rule N, the change is not enacted

until time 6. As a result, when a change is initiated at time 5, this new change cancels the

previous change. Even though the change initiated at time 3 is canceled, the time of the next

weight enactment is still at time 6.

From this example, we can see that, once a desired weight change has been initiated during

an active job, some desired weight change will be enacted by the earlier of the deadline of that

job or when the job becomes inactive (which may be earlier, by Rules P and N). Property

(X) formalizes this idea.

(X) If a task Ti initiates a desired weight change at time tc and the job T j
i is active at tc,

then some desired weight change is enacted according to Rule P or N by either d(T j
i )

or when T j
i becomes inactive, whichever is first.

4.5.2 Modifications for NP-PEDF

In order to adapt Rules P and N to work for NP-PEDF, the only modification we need to

make is when these rules are initiated . If a task with an active job changes its desired weight

before or after that job has been scheduled, then Rules P and N are initiated as before. (Note

that, if the active job has not been scheduled, then its deviance is positive, and if the active
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job has been scheduled, then its deviance is negative.) However, if a task changes its desired

weight while the active job T j
i is executing, then the initiation of the desired weight change is

delayed until T j
i has completed or T j

i is no longer active, whichever is first. Note that, if a task

Ti changes its desired weight from Ow to Nw at time tc in NP-PEDF, then Dwt(Ti, tc) = Nw

holds, regardless of whether the initiation of Rule P or N must be delayed.

Example (Figure 4.10). Consider the example in Figure 4.10, which depicts one processor

that is assigned three tasks: T1, which has e(T1) = 1, Dwt(T1) = 1/2, and leaves at time 2; T2,

which has e(T2) = 1 and Dwt(T2) = 1/6; and T3, which has e(T3) = 2 and an initial desired

weight of 1/3 and initiates an increases to 4/6 at time 2. Inset (a) depicts the scenario where

T 1
3 has the lowest scheduling priority (there is a deadline tie). Since T3 is not scheduled by

time 2, it has positive deviance and changes its weight via Rule P, causing T 1
3 to be halted,

and T 2
3 to be released at time 2 with a deadline of 5. Inset (b) depicts the same scenario

as in (a) except that T3 has higher priority than T2. Since T3 is scheduled at time 2, and

the system is schedule by NP-PEDF, the initiation of the reweighting event is delayed until

T3 stops executing at time 3. Since T 1
3 is complete by time 2, it has negative deviance and

changes its weight via Rule N, causing its next job to have a release time of 9/2.
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4.6 Resetting Rules

In this section, we formally define the rules for resetting a system. Let τ be a task system in

which the system is reset at time tc. Let S be an M -processor PEDF schedule of τ . Let T j
i be

the last-released job (if any) of some task Ti before tc. Let P[q] and P[ℓ] be, respectively, the

processor that Ti is assigned to before and after the system is reset at time tc. Then, there

are two possibilities. First, T j
i exists and is active at tc, (e.g., r(T j

i ) ≤ tc < d(T j
i )). Second,

T j
i either is inactive at tc or does not exist (because T 1

i is not released until after tc). Thus,

we have the following rule, with two cases, for resetting a task

Rule R: (i) If T j
i exists and is active at tc, then T j

i is halted, and T j+1
i is released immediately

on P[ℓ], with an execution time of nextE(T j
i , tc). (ii) If T j

i either does not exist or is

inactive at tc, then the next job of Ti is released at tc +θ(T j+1
i ) on P[ℓ] (or at tc +θ(T 1

i ),

if T j
i does not exist).

Notice that, by this rule, whenever a system is reset, all active jobs are halted, and new jobs

are released for the newly repartitioned system. Thus, if some task Ta is assigned to P[z] when

T b
a is released, then T b

a will only be scheduled on P[z].

Example (Figure 4.11). Consider the example in Figure 4.11, which depicts a two-processor

system that is assigned four tasks: T1, which has e(T1) = 1 and an initial desired weight of 1/2

that decreases to 1/4 at time 2; T2, which has e(T2) = 2 and Dwt(T2) = 1/2; T3, which has

e(T3) = 3 and an initial desired weight of 1/2 that increases to 3/4 at time 2; and T4, which

has e(T4) = 4 and Dwt(T4) = 1/2. Initially, T1 and T2 are assigned to the first processor and

T3 and T4 are assigned to the second. Inset (a) depicts the PEDF schedule (the other insets

are considered later). At time 2, the system is repartitioned, i.e., is reset, and T1 and T3 are

assigned to one processor and T2 and T4 are assigned to the other processor.

Complications with NP-PEDF. Under NP-PEDF, repartitioning is slightly more complex

since a job cannot be preempted if it is currently being scheduled. Thus, the entire system

cannot be reset at the same time. Thus, there are two viable options for reseting an NP-PEDF-

scheduled system. First, whenever the system is reset, ignore non-preemptive behavior, and
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Property Definition
(SW-1)

[Page 127]
If the system is not reset over the range (t1, t2], then the function A(CSW , Ti, 0, t)
is continuous for any t ∈ [t1, t2].

(SW-2)
[Page 127]

For any job T j
i and any t ≥ r(T j

i ), A(CSW , T j
i , r(T j

i ), t) ≤ Ae(T j
i ) ≤ e(T j

i ).

(SW-3)
[Page 127]

Any job T j
i is complete in the CSW schedule by time d(T j

i ).

(V)
[Page 128]

For the jobs T j
i and T j+1

i , if d(T j
i ) > r(T j+1

i ), then T j
i is complete in both the CSW

and actual schedules by time r(T j+1
i ).

(L-1)
[Page 129]

For any time t ≤ r(T j
i ), lag(T j

i , t) = 0.

(L-2)
[Page 129]

If lag(T j
i , t) > 0 for some time t ≥ d(T j

i ), then the value of lag(T j
i , t) denotes the

amount of time remaining to be scheduled for T j
i after time t.

(L-3)
[Page 129]

If the system is not reset over the time range (t1, t2], then the function lag(T j
i , t) is

continuous over [t1, t2].

(H-1)
[Page 130]

If a job T b
a has a scheduling priority at least T j

i ’s and is assigned to the same processor

as T j
i , then T b

a ∈ H(T j
i , t) for every value of t ∈ [r(T b

a), te), where te is the first time
at which T b

a is both inactive and not pending.

(H-2)
[Page 130]

If the system is not reset over the range (t1, t2], then for any job, T j
i the function

LAG(H(T j
i , t), t) is continuous over the time range [t1, t2].

Table 4.4: Summary of properties used in Section 4.7.

immediately halt all active tasks. Second, apply Rule R to all tasks that are not currently

running when the system reset at tc, and migrate the tasks that are scheduled at tc when

they complete. Notice that the first option can only be used in systems where non-preemptive

behavior is desirable but not required. The second option is more complex to implement than

the first option, but is the only viable option when non-preemptive behavior is required.

4.7 Scheduling Correctness

In this section, we prove that no job misses a deadline under our adaptive PEDF scheduling

algorithm and that jobs have bounded tardiness under our adaptive NP-PEDF scheduling

algorithm. The properties used throughout this section are summarized in Table 4.4.

4.7.1 The CSW Algorithm

Scheduling correctness is established by considering the clairvoyant scheduling-weight (CSW)

scheduling algorithm. Under it, at each instant t, each job of each task Ti that is both

active and incomplete (in the CSW schedule) is allocated a fraction of a processor equal to
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SGwt(Ti, t). We consider CSW to be “clairvoyant” in the sense that CSW does not allocate a

job T j
i more than Ae(T j

i ) time. More specifically, for any schedule CSW under CSW of any

task system τ , we say that T j
i has completed by time t in CSW iff T j

i has executed for Ae(T j
i )

by t. For example, in Figure 4.5, T 1
4 receives no allocations in the CSW scheduling algorithm

since Ae(T 1
4 ) = 0. In addition, if S is the actual schedule for a task system τ , CSW is the

CSW schedule of τ , the system is reset (re-partitioned) at some time tr, and some task Ti has

received X more time units of allocation in S than in CSW , then for any t ≥ tr, the value X

is added to A(CSW , Ti, 0, t). For example, in Figure 4.11, when the system is reset at time

2, T3 is allocated more capacity in the actual schedule than in the CSW schedule. As a result,

T3’s allocations in the CSW schedule jumps at time 2 from 1 to 2.

From Figure 4.11, we can see that the following property holds:

(SW-1) If the system is not reset over the range (t1, t2], then the function A(CSW , Ti, 0, t)

is continuous for any t ∈ [t1, t2].

By the definition of the CSW scheduling algorithm, we have the following property:

(SW-2) For any job T j
i and any two times ta and tb, where r(T j

i ) ≤ ta ≤ tb,

A(CSW , T j
i , ta, tb) ≤ Ae(T j

i ) ≤ e(T j
i ).

In addition, by the definition of d(T j
i ), it is not difficult to see that the following property

holds:

(SW-3) Any job T j
i is complete in the CSW schedule by time d(T j

i ).

Throughout this chapter, we use CSW to denote the CSW schedule of a task system τ .

Notice that, since the CSW schedule is identical to the SW schedule, except for jobs that

halt, which receive a smaller allocation in the CSW schedule, it follows that for any job T j
i

and times t1 and t2, where t1 ≤ t2, the following property holds:

A(CSW , T j
i , t1, t2) ≤ A(SW , T j

i , t1, t2). (4.14)

Moreover, since for the same times t1 and t2, A(SW , T j
i , t1, t2) =

∫ t2
t1

SGwt(Ti, u)du, the

reweighting rules allow at most one job of a task to be active at any given point in time t,
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and by the Property (W),
∑

T j
i ∈ASSN(P[q],t)

SGwt(Ti, t) ≤ 1, holds for any job, at any time t,

it follows that is not difficult to prove the following lemma.

Lemma 4.1. For any time interval [t1, t2] on any processor P[q],

∑

T j
i ∈ASSN(P[q],t)

A(CSW , T j
i , t1, t2) ≤

∑

T j
i ∈ASSN(P[q],t)

A(SW , T j
i , t1, t2) ≤ t2 − t1.

4.7.2 Overlap

One consequence of the reweighting rules is that for some job, T j
i , it is possible that r(T j+1

i ) <

d(T j
i ). Such a scenario can arise through one of four possibilities: at some time t, Ti changes

its desired weight via Case (i) of Rule P; Ti changes its desired weight via Case (i) of Rule N;

Ti changes its desired weight via Case (ii) of Rule N; or Ti is reset via Case (i) of Rule R. In

all four of these scenarios, T j
i is halted (and thus completes in the actual schedule) at time

t. Moreover, in all three cases, T j
i is complete in the CSW schedule by time r(T j+1

i ) ≥ t. (In

Case (i) of Rule P, T j
i has positive deviance, which guarantees that in the CSW schedule T j

i

has received an allocation of Ae(T j
i ) by time t. In Case (i) of Rule N, T j+1

i is released when

its deviance is zero, which guarantees that in the CSW schedule T j
i has received an allocation

of Ae(T j
i ) by time r(T j+1

i ). In Case (i) of Rule R, if T j
i has a smaller allocation in the CSW

schedule than the actual schedule, then this difference is added to T j
i ’s allocation at time t,

which again guarantees that in the CSW schedule T j
i has received an allocation of Ae(T j

i ) by

time r(T j+1
i ).) Thus, we have the following property:

(V) For the jobs T j
i and T j+1

i , if d(T j
i ) > r(T j+1

i ), then T j
i is complete in both the CSW and

actual schedules by time r(T j+1
i ).

4.7.3 Lag

Before continuing, we introduce the notion of lag, which represents the difference between the

actual allocations to a task and its CSW allocations. Formally, the lag of a job at time t is
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given by

lag(T j
i , t) = A(CSW , T j

i , r(T j
i ), t) − A(S, T j

i , r(T j
i ), t), (4.15)

where CSW is the CSW schedule for the system and S is the actual schedule for the system.

Notice that lag is similar to deviance, except that while deviance relates the actual schedule

to the SW schedule, lag relates the actual schedule to the CSW schedule. For example, in

Figure 4.5, lag(T 1
4 , 2) = 1/3 and lag(T 1

4 , 3) = −1/6.

We now present a few simple properties about lag will be used in the following proofs.

(L-1) For any time t ≤ r(T j
i ), lag(T j

i , t) = 0.

(L-2) If lag(T j
i , t) > 0 for some time t ≥ d(T j

i ), then the value of lag(T j
i , t) denotes the

amount of time remaining to be scheduled for T j
i after time t.

(L-3) If the system is not reset over the time range (t1, t2], then the function lag(T j
i , t) is

continuous over [t1, t2].

Property (L-1) is trivially true, since for any t ≤ r(T j
i ), A(CSW , T j

i , r(T j
i ), t) =

A(S, T j
i , r(T j

i ), t) = 0. Property (L-2) holds since by time t ≥ d(T j
i ), A(CSW , T j

i , r(T j
i ), t) =

Ae(T j
i ) and Ae(T j

i )−A(S , T j
i , r(T j

i ), t) denotes the amount of time remaining to be scheduled

for T j
i at and after t. Property (L-3) holds because as long as the system is not reset over

the range (t1, t2], both A(S, T j
i , r(T j

i ), t) and A(CSW , T j
i , r(T j

i ), t) are continuous for any

t ∈ [t1, t2]. (Notice that the function A(S, T j
i , r(T j

i ), t) is continuous by definition and the

function A(CSW , T j
i , r(T j

i ), t) is continuous by Property (SW-1).)

For brevity, we use LAG(G, t) to denote

LAG(G, t) =
∑

T j
i ∈G

lag(T j
i , t),

where G is some set of jobs.

We now prove a simple property about lag in PEDF schedules.

Lemma 4.2. If no deadline of a job of task Ti has been missed by time t and the job T j
i is

not pending at time t, then lag(T j
i , t) ≤ 0.
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Proof. Let T j
i be as defined in the lemma, i.e., T j

i is not pending at time t. Since all previous

jobs of Ti have completed before their deadlines, by the definition of pending, either t < r(T j
i )

or t ≥ r(T j
i ) ∧ A(S , T j

i , r(T j
i ), t) = Ae(T j

i ) holds. By Property (L-1), if t < r(T j
i ), then

lag(T j
i , t) = 0. If t ≥ r(T j

i ) ∧ A(S, T j
i , r(T j

i ), t) = Ae(T j
i ) holds, then by Property (SW-

2), A(S, T j
i , r(T j

i ), t) = Ae(T j
i ) ≥ A(CSW , T j

i , r(T j
i ), t) holds. This, in turn, implies that

lag(T j
i , t) ≤ 0.

4.7.4 Higher-Priority Jobs

In the following proofs, we use the term H(T j
i , t) to denote the set of jobs that are assigned

to the same processor as T j
i , have a scheduling priority higher than or equal to T j

i , and

are either pending or active at time t. For example, in Figure 4.3, H(T 1
3 , 0) = {T 1

1 , T 1
2 , T 1

3 },

H(T 1
3 , 3) = {T 2

1 , T 1
2 , T 1

3 } and H(T 1
3 , 7) = {T 1

3 }. Since, as we discussed in Section 4.4.2, the

relative scheduling priority between any two jobs is time invariant, we have the following

property:

(H-1) If a job T b
a has a scheduling priority at least T j

i ’s and is assigned to the same processor

as T j
i , then T b

a ∈ H(T j
i , t) for every value of t ∈ [r(T b

a), te), where te is the first time at

which T b
a is both inactive and not pending.

Notice that, if a job T b
a becomes an element of H(T j

i , t) at some time t, then by Property

(H-1) it must be that T b
a was released at time t, and thus, by Property (L-1), lag(T b

a , t) = 0

holds. Moreover, by Property (H-1), the only way a job T b
a can leave the set H(T j

i , t) is if by

time t, T b
a is both inactive and not pending. If T b

a is inactive at t, then r(T b+1
a ) ≤ t or d(T b

a) ≤ t

(or both). If r(T b+1
a ) ≤ t holds, then by Property (V), T b

a is complete in both the actual and

CSW schedules, in which case lag(T b
a , t) = 0. If d(T b

a) ≤ t, then since T b
a is not pending at

time t, i.e., Ae(T b
a) = A(S, T b

a , r(T b
a), t), by Property (L-2), lag(T b

a , t) = 0. Thus, given that

the lag of a job is zero when it either joins or leaves H(T j
i , t) and that (by Property (L-3))

lag(T b
a , t) is continuous so long as the system is not reset, we have the following property:

(H-2) If the system is not reset over the range (t1, t2], then for any job T j
i , the function

LAG(H(T j
i , t), t) is continuous over the time range [t1, t2].
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4.7.5 PEDF Correctness

We now show that in a PEDF scheduled system, no job misses a deadline.

Theorem 4.2. Let τ be an adaptable sporadic task system. Then, for any job T j
i that is in

τ , T j
i completes by d(T j

i ) under PEDF.

Proof. Suppose, to derive a contradiction, that there exists some job T j
i in τ such that T j

i

misses its deadline at time td. Without loss of generality, let td be the first time that a job

deadline is missed in τ . Notice that, by Property (V), if d(T j−1
i ) > r(T j

i ), then T j−1
i must be

complete by r(T j
i ). Moreover, if d(T j−1

i ) ≤ r(T j
i ) < d(T j

i ) = td, then by the definition of td,

T j−1
i is complete by r(T j

i ). Thus, in either case, T j−1
i is complete by r(T j

i ).

By Property (L-2), the value of lag(T b
a , t) at any time t ≥ d(T b

a) represents T b
a ’s re-

maining computation time at time t. Thus, if T j
i misses a deadline at time td, then

lag(T j
i , td) > 0 must hold. Moreover, since every job in LAG(H(T j

i , td), td) has a deadline

at or before td, by Property (L-2), LAG(H(T j
i , td), td) represents the amount of computa-

tion remaining for all jobs in LAG(H(T j
i , td), td), including T j

i . Thus, if T j
i misses a deadline

at td, then LAG(H(T j
i , td), td) > 0 must hold. The objective of this proof is to show that

LAG(H(T j
i , td), td) ≤ 0, which contradicts our assumption and completes the proof.

Before continuing, we introduce a few terms. Let P[q] denote the processor that T j
i is

assigned to at time td. Let S denote the PEDF schedule of τ . Let t1 be the first time before

td such that over the range (t1, td] the system is not reset, and over the range [t1, td], P[q] is

continually scheduling jobs from H(T j
i , t). Notice that t1 must exist because T j

i is pending

at time td, and since (as we established above) T j−1
i is complete by r(T j

i ), either T j
i or some

higher-priority job is scheduled immediately before td. In addition, the system is not reset

at td because if it were, then T j
i would be halted at td (and thus complete). Figure 4.12

illustrates both t1 and td.

There are two remaining components of this proof. First, we show that

LAG(H(T j
i , t1), t1) ≤ 0 holds. Second, we show that for any t ∈ [t1, td], LAG(H(T j

i , t), t) ≤ 0

holds, which implies that lag(T j
i , td) ≤ 0 holds.

Claim 4.1. LAG(H(T j
i , t1), t1) ≤ 0.
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Figure 4.12: An illustration of time t1 and td.

Proof. By Rule R, if the system is reset at time t1 or t1 = 0, then every job that is active at

t1 must also be released at t1. Thus, by Property (L-1) the lag of every active job at t1 equals

0. This, in turn, implies that LAG(H(T j
i , t1), t1) = 0. Thus, for the remainder of the proof of

Claim 4.1, we assume that t1 > 0 and the system is not reset at time t1.

In this case, by the definition of t1, no job with a priority higher than or equal to T j
i ’s is

scheduled t1. Thus, there must exist some value ǫ1 > 0 such that for any time t ∈ [t1 − ǫ1, t1),

either P[q] is idle or some job T b
a with a scheduling priority lower than any job in H(T j

i , t) is

scheduled on P[q]. For example, in Figure 4.12, T3 is scheduled over [t1 − 1, t1). Regardless

of whether P[q] is idle or scheduling a lower-priority job over the range [t1 − ǫ1, t1), no job

in H(T j
i , t) is pending over t ∈ [t1 − ǫ1, t1). For example, in Figure 4.12, neither T1 or T2 is

pending over the range [t1 − 1, t1). As a result, at time t1 every job in H(T j
i , t1) is either

released, i.e., becomes a pending job, or is active but not pending. Thus, by Property (L-1),

Lemma 4.2, and because no deadline is missed by t1 (since t1 < td), LAG(H(T j
i , t1), t1) ≤ 0.

Claim 4.2. For any t ∈ [t1, td], LAG(H(T j
i , t), t) ≤ 0.

Proof. To derive a contradiction, we assume that there exists some t ∈ [t1, td] such that

LAG(H(T j
i , t), t) > 0. Since the system is not reset over the time range (t1, td], by Property

(H-2), it follows that LAG(H(T j
i , t), t) is continuous over the range [t1, td]. As a result, by

Claim 4.1 (LAG(H(T j
i , t1), t1) ≤ 0) and our assumption that LAG(H(T j

i , t), t) > 0 holds, it

follows, by the definition of continuity, that there exists a time tz ∈ [t1, td) and a value
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ǫz ∈ (0, td − tz) such that the following conditions hold

(i) LAG(H(T j
i , tz), tz) = 0,

(ii) LAG(H(T j
i , t), t) is strictly monotonically increasing over the range t ∈ [tz, tz + ǫz),

Such a scenario is illustrated in Figure 4.13.

We now show that tz and ǫz cannot exist, which completes the proof of Claim 4.2. Since,

by the definition of t1, over the range [t1, td], P[q] is continually scheduling jobs from H(T j
i , t),

it follows that some job from H(T j
i , t) is scheduled for some range (t3, t4) that is contained

within (tz, tz + ǫz). Thus, by Lemma 4.1,

A(CSW , ASSN(P[q], t), t3, t4) ≤ t4 − t3 = A(S, H(T j
i , t), t4, t3).

Moreover, since A(CSW , H(T j
i , t), t3, t4) ≤ A(CSW , ASSN(P[q], t), t3, t4) it follows that

A(CSW , H(T j
i , t), t3, t4) ≤ A(CSW , ASSN(P[q], t), t3, t4) ≤ A(S, H(T j

i , t), t4, t3).

Thus,

LAG(H(T j
i , t), t4) − LAG(H(T j

i , t), t3) ≤ 0.
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This, in turn, implies that over the range (t3, t4), LAG(H(T j
i , t), t) is not strictly monotonically

increasing, which contradicts Property (ii) of tz and ǫz. Thus, tz and ǫz cannot exist, which

completes the proof of the claim.

Since Claim 4.2 implies that LAG(H(T j
i , td), td) ≤ 0 holds, it follows that at td no compu-

tation time remains for any job in H(T j
i , td), which includes T j

i . Thus, T j
i is complete by its

deadline.

4.7.6 NP-PEDF Correctness

In this section, we show that the tardiness of a task Ti under NP-PEDF is at most X , where X

is the largest execution time of any task. Since the proof for tardiness bounds under NP-PEDF

is similar to the scheduling correctness proof for PEDF, rather than repeat the entire proof,

we state where they differ.

The primary difference between the proofs for NP-PEDF and PEDF is that in the proof of

Theorem 4.2, if the system is not reset at t1 and t1 > 0, then we can guarantee that no job

in H(T j
i , t) is pending immediately before t1. However, in proving the tardiness bounds for

NP-PEDF this is not the case. For example, consider the scenario, depicted in Figure 4.14,

where a job not in H(T j
i , t) becomes pending immediately after a lower-priority job begins

being scheduled. In this scenario, the job in H(T j
i , t) must wait until the lower-priority job

completes before it begins being scheduled. Since this delay can be up to X time units

long, and since it is possible that the sum of the guaranteed weights of all tasks in H(T j
i , t)

may be close to one, it is possible that LAG(H(T j
i , t1), t1) may be close to X . As a result,

LAG(H(T j
i , td), td) may be close to X , which implies that the amount of work remaining for

all tasks in LAG(H(T j
i , td), td) is at most X , which means that T j

i may miss its deadline by at

most X .

One final note: notice that if a task cannot be migrated immediately when the system is

reset (because it is non-preemptable and is being scheduled), then this does not impact the

correctness proof. The reason why is because delaying a task’s migration does not cause the

guaranteed weight of all tasks assigned to a processor to be larger than one.

From this discussion, we have the following theorem.
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Figure 4.14: A one-processor example of an NP-PEDF system where two tasks are released
after a lower-priority job begins executing.

Theorem 4.3. Let τ be an adaptable sporadic task system. Then, for any job T j
i of a task

in τ , T j
i has tardiness at most X under NP-PEDF, where X is the largest execution time of

any job in τ .

4.8 The IDEAL and PT Algorithms

In section, Section 4.9, we turn our attention to proving “drift” bounds. For this purpose, we

introduce two new theoretical scheduling algorithms, namely the IDEAL and PT algorithms.

Under the IDEAL scheduling algorithm, at each instant t, each task Ti in τ with an active

job at t is allocated a fraction of the system equal to its guaranteed weight, Gwt(Ti, t). Hence,

if I is the IDEAL schedule of τ and Ti is active over the interval [t1, t2), then over [t1, t2), the

task Ti, assigned to P[q], is allocated

A(I, Ti, t1, t2) =

∫ t2

t1

Gwt(Ti, u)du =

∫ t2

t1

Dwt(Ti, u)

T D(P[q], u)
du (4.16)

time. Throughout this chapter, we use I to denote an IDEAL schedule of the task system τ .

In the partial ideal (PT) scheduling algorithm, each task Ti with an active job at each

instant is allocated a fraction of the system equal to

Dwt(Ti, t)

T S(P[q], t)
.

Hence, if PT is a PT schedule of τ and the task Ti is active over the interval [t1, t2), then
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over [t1, t2), Ti is allocated

A(PT , Ti, t1, t2) =

∫ t2

t1

Dwt(Ti, u)

T S(P[q], u)
du (4.17)

time. The PT scheduling algorithm will be used to help calculate the drift incurred by

changing the desired weight of a task. Throughout this chapter, we use PT to denote a PT

schedule of the task system τ .

Example (Figures 4.15 and 4.16). Consider the example in Figures 4.15 and 4.16, which

pertain to a one-processor system that is assigned four tasks: T1, which has e(T1) = 1

and Dwt(T1) = 1/3; T2, which has e(T2) = 1 and Dwt(T2) = 1/6; T3, which has e(T3) = 2,

Dwt(T3) = 1/4, and leaves at time 8; and T4, which has e(T4) = 4 and an initial desired weight

of 1/4 that increases to 1/2 at time 8 via Case (i) of Rule P. (This is the same system as in

Figure 4.3.) Figure 4.15(a) depicts the PEDF schedule. Figure 4.15(b) depicts the allocations

to T4 in the PEDF, IDEAL, SW, CSW, and PT scheduling algorithms. Figure 4.16(a) depicts

the SW, IDEAL, and PT schedules. Figure 4.16(b) depicts the CSW schedule. Notice that T 1
4

receives no allocations in CSW once it has received one unit of execution (the amount that

T 1
4 is allocated in the PEDF schedule).

Example (Figure 4.17). Consider the example in Figure 4.17, which depicts one processor

that is assigned four tasks (where the execution time of each job is one): T1, which has

Dwt(T1) = 1/2; T2 and T3, both of which have a desired weight of 1/6; and T4, which has an

initial desired weight of 1/2 that initiates a desired weight decrease to 1/6 at time 1 that is

enacted at time 2.6̄ via Case (ii) of Rule N. (This is the same system as in Figure 4.4.)

Notice that, since the IDEAL scheduling algorithm allocates capacity to each task based

on its guaranteed weight (rather than based on its guaranteed scheduling weight), when one

task initiates a decrease in its desired weight on an over-utilized processor, the allocation to

all other tasks in the IDEAL schedule immediately increases. For example, in Figure 4.17(e),

when T4 initiates a desired weight decrease at time 1, the rate of allocation to all other tasks

immediately increases even though the desired weight change is not enacted until time 2.6̄.

(In the IDEAL schedule, before time 1, T1 is allocated 3/8 of the processor at each instant,
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Figure 4.15: A one-processor system with four tasks. (a) The PEDF schedule. (b) The
allocations to T4 in the PEDF, IDEAL, SW, CSW, and PT scheduling algorithms. (Figure 4.16
depicts the IDEAL, SW, CSW, and PT schedules.)
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The SW, IDEAL, and PT schedules. (b) The CSW schedule.

and after time 1 it is allocated 1/2 of the processor at each instant.)

It is important to note that since the scaling factor for each task in the PT scheduling

algorithm is based on the the total guaranteed scheduling weight (rather than the total guar-

anteed weight), when one task initiates a decrease in its desired weight on an over-utilized

processor, the allocation to all other tasks in the PT schedule remains the same until the

desired weight change is enacted. For example, in Figure 4.17(f), when T4 initiates a desired

weight decrease at time 1, the rate of allocation to all other tasks remains the same until the

change is enacted at time 8
3 . This example illustrates the difference between the IDEAL and

PT scheduling algorithms.
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Figure 4.17: A one-processor system with four tasks. (a) The PEDF schedule. (b) The
allocations to T4 in the PEDF, IDEAL, SW, CSW, and PT scheduling algorithms. (c) The SW

schedule. (d) The CSW schedule. (e) The IDEAL schedule. (f) The PT schedule.
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Property Definition

(D)
[Page 110]

For any two times u1 and u2 such that r(T j
i ) ≤ u1 ≤ u2 ≤ d(T j

i ),
∫ u2

u1
SGwt(Ti, t)dt ≤

e(T j
i ).

(SW-2)
[Page 127]

For any job T j
i and any t ≥ r(T j

i ), A(CSW , T j
i , r(T j

i ), t) ≤ Ae(T j
i ) ≤ e(T j

i ).

(SW-2)
[Page 127]

Any job T j
i is complete in the CSW schedule by time d(T j

i ).

(X)
[Page 122]

If a task Ti initiates a desired weight change at time tc and the job T j
i is active at tc,

then some desired weight change is enacted according to Rule P or N by either d(T j
i )

or when T j
i becomes inactive, whichever is first.

(V)
[Page 128]

For the jobs T j
i and T j+1

i , if d(T j
i ) > r(T j+1

i ), then T j
i is complete in both the CSW

and actual schedules by time r(T j+1
i ).

Table 4.5: Summary of properties used in Section 4.9.

4.9 Drift

We now turn our attention to the issue of measuring drift under PEDF. The properties used

throughout this section are summarized in Table 4.5. We begin this section, by formally

defining drift. The drift of a task Ti at time t is defined as

drift(Ti, t) = A(I, Ti, 0, t) − A(CSW , Ti, 0, t). (4.18)

In this section, we show that at time t for Ti, if t satisfies one of conditions (T-1), ..., (T-3)

(defined below), then the value of drift(Ti, t) is bounded by [−X · Q, X · Q], where X is the

maximal execution time of any task in the system and Q denotes the number of system resets

plus the number of desired weight changes for any task assigned to the same processor as Ti

that are initiated before t. In the following conditions, T j
i denotes the last-released job (if

any) of Ti before t.

(T-1) The first job of Ti (if it exists) is released at or after t.

(T-2) d(T j
i ) ≤ t.

(T-3) r(T j
i ) < te ≤ t, where te is the time that the last-initiated change (at or before t) by

Ti was enacted.
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The reason why we must constrain the times at which the drift is measured is because it

is possible for Ti to incur drift for a reweighting event of Ti that has yet to be initiated. For

example, in Figure 4.5, T4 incurs drift over the range [0, 2) even though it does not initiate

a desired weight change until time 2. This complication arises because the reweighting rules

may halt the last-released job of a task. Since the CSW scheduling algorithm is clairvoyant,

it accounts for this drift before the reweighting event occurs. Thus, to accurately assess the

drift Ti incurs per reweighting event, we can only measure the drift at the times described

above.

We begin our discussion by first calculating the drift that is incurred in a system with no

system resets. We then factor in resets in Section 4.9.4.

Lemma 4.3. For any job T j
i of any task Ti in a adaptable sporadic task system scheduled by

PEDF,

A(CSW , Ti, r(T j
i ), tI) ≤ emax(Ti),

where tI is the time that T j
i becomes inactive.

Proof. By Property (SW-2), A(CSW , T j
i , r(T j

i ), t) ≤ emax(Ti) holds for any t ≥ r(T j
i ), includ-

ing tI . Thus, if it can be shown that no other job of Ti receives allocations in CSW over the

range [r(T j
i ), tI), then the proof is complete. Since T j

i becomes inactive at min(d(T j
i ), r(T j+1

i )),

it follows that no job of Ti that is released after r(T j
i ) recives any allocations in CSW over

the range [r(T j
i ), tI).

Thus, it remains to be shown that no job T a
i that is released before r(T j

i ) receives any

allocations in CSW over the range [r(T j
i ), tI). By Property (V), if d(T a

i ) > r(T j
i ), then T a

i

is complete by r(T j
i ). By Property (SW-3), if d(T a

i ) ≤ r(T j
i ), then T a

i is complete by r(T j
i ).

Thus, in either case, T a
i , receives no allocations in CSW over the range [r(T j

i ), tI). This

completes the proof.

Two types of drift. One complication with calculating the drift associated with a non-

resetting reweighting event is that on an over-utilized processor a task may incur drift even

when its desired weight does not change. For example, in Figure 4.17, T1, T2, and T3, incur

drift over the range [1, 8/3), during which time T4 has initiated a reweighting event that has
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not yet been enacted. This behavior is the result of defining each task’s guaranteed weight as

a function of its desired weight and the desired weight of every task in the system. Thus, when

T4 initiates its desired weight decrease at time 1, in the IDEAL schedule, in Figure 4.17(e), the

guaranteed weight of every other task immediately increases. However, in the CSW schedule,

in Figure 4.17(d), the guaranteed weight of T1, T2, and T3 cannot change until T4’s decrease

is enacted at time 8/3.

As a result, a task Ti can incur two types of drift: (i) Ti can incur drift because it changes

its desired weight and (ii) Ti can incur drift because another task on the same processor

initiated a desired weight change that is not immediately enacted. (Recall that, for now,

we are ignoring the drift incurred by resetting the system.) In order to determine the total

amount of drift caused by a reweighting event, we consider these two types of drift separately.

In order to differentiate between type-(i) and -(ii) drift, we use the PT scheduling algorithm

(which was defined in Section 4.8).

Recall that under the PT scheduling algorithm at each instant each active task Ti (assigned

to P[q]) receives an allocation equal to

Dwt(Ti, t)

T S(P[q], t)
.

Since the scaling factor in the PT scheduling algorithm, i.e., 1
T S(P[q],t)

, is defined in terms of the

total desired scheduling weight instead of the total desired weight (i.e., in terms of T S(P[q], t)

instead of T D(P[q], t)), the only time there is a difference between Ti’s allocations in the PT

and CSW schedules, is when Ti’s desired weight is changed. We describe this difference as the

partial drift of a task Ti at time t, which is formally defined as

Pdrift(Ti, t) = A(PT , Ti, 0, t) − A(CSW , Ti, 0, t). (4.19)

For example, in Figures 4.15 and 4.16, only T4 incurs partial drift because it is the only

task that changes its desired weight. Also, in Figure 4.17, T4 is the only task to incur partial

drift because it is the only task that changes its desired weight. Thus, the partial drift incurred

by Ti changing its desired weight via Rules P and N is equal to drift of type (i).
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In addition, since the only difference between a task’s allocations in the IDEAL and PT

schedules is the scaling factor (i.e., in the IDEAL schedule Ti receives Dwt(Ti,t)
T D(P[q],t)

allocations at

each instant, while in the PT, schedule Ti receives Dwt(Ti,t)
T S(P[q],t)

allocations at each instant), the

amount of type (ii) drift a task incurs is equal to the difference in its allocations between the

PT and IDEAL schedules.

4.9.1 Partial Drift

In this section, we establish bounds on the partial drift incurred by a reweighting event.

Lemma 4.4. Under PEDF, let Ti be a task that initiates a desired weight change at tc.

Assume that Ti has released a job before time tc and let T j
i be its last-released job before tc.

Let te denote the first time at or after tc at which Ti enacts a desired weight change. Let tI

denote the time that T j
i becomes inactive. If tc is the first change initiated by Ti in the range

(r(T j
i ), tI ], then for any tb ∈ [te, tI ] and any time ta ∈ [r(T j

i ), tb], Pdrift(Ti, tb)−Pdrift(Ti, ta) is

bounded by [−emax(Ti)·(G+P1), emax(Ti)·(P1+P2)], where G, P1, and P2 denote, respectively,

the number of weight decreases, the number of weight increases via Case (i) of Rule P, and

the number of weight increases via Case (ii) of Rule P by Ti that were initiated at or before

tb and enacted or canceled after ta.

Proof. Let tc, te, tb, ta, tI , and T j
i be as defined in the statement of the lemma. If tI < te,

then the lemma is vacuously true, so assume that te ≤ tI . Notice that, by the definition of

inactive (Definition 4.1), tI = min(d(T j
i ), r(T j+1

i )). Thus, by the statement of the lemma, we

have

tc ≤ te ≤ tb ≤ tI ≤ d(T j
i ). (4.20)

Suppose for the moment that Ti initiates a desired weight change at time t′c such that

te < t′c ≤ tI . Notice that t′c’s existence implies that the change enacted at te must have been

by Case (i) of Rule N, since for all other rules, te = tI (specifically, all other scenarios release

T j+1
i at te). Thus, by Case (i) of Rule N, T j

i is halted before t′c. Thus, we having the following

property:

(HA) No change initiated in the range (te, tI ] can halt T j
i .
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Having established (4.20) and Property (HA), we now show that the value of Pdrift(Ti, tb)−

Pdrift(Ti, ta) is bounded. Notice that, by (4.19),

Pdrift(Ti, tb) − Pdrift(Ti, ta) = A(PT , Ti, ta, tb) − A(CSW , Ti, ta, tb). (4.21)

By adding and subtracting
∫ tb
ta

SGwt(Ti, u)du, the right-hand side of the above formula can

be rewritten as

A(PT , Ti, ta, tb) −
∫ tb

ta

SGwt(Ti, u)du +

∫ tb

ta

SGwt(Ti, u)du − A(CSW , Ti, ta, tb).

We now bound the terms A(PT , Ti, ta, tb) −
∫ tb
ta

SGwt(Ti, u)du and
∫ tb
ta

SGwt(Ti, u)du −

A(CSW , Ti, ta, tb).

Bounding A(PT , Ti, ta, tb) −
∫ tb
ta

SGwt(Ti, u)du. Notice that, since tc is the first change

initiated by Ti over the range (r(T j
i ), tI ], it follows that for any t ∈ [r(T j

i ), tc), Dwt(Ti, t) =

SDwt(Ti, t). Thus, since, by (4.5), SGwt(Ti, t) = SDwt(Ti,t)
T S(P[q],t)

and Ti receives Dwt(Ti,t)
T S(P[q],t)

allocations

at each instant in the PT schedule, it follows that A(PT , Ti, r(T j
i ), tc)−

∫ tc
r(T j

i )
SGwt(Ti, u)du =

0, and, by extension, if ta ∈ [r(T j
i ), tb], then A(PT , Ti, ta, tc) −

∫ tc
ta

SGwt(Ti, u)du = 0.

Thus, for the remainder of this case we bound the value of A(PT , Ti, max(tc, ta), tb) −
∫ tb
max(tc,ta) SGwt(Ti, u)du.

Notice that, if tc = tb, then tb = te = max(tc, ta) (since, by the definition of tb and ta

given in the statement of the lemma, both ta ≤ tb and te ≤ tb hold, and by (4.20), tc ≤ te)

and A(PT , Ti, max(tc, ta), tb) −
∫ tb
max(tc,ta) SGwt(Ti, u)du = 0. Thus, for the remainder of this

case, we assume that tc < tb.

Let z denote the number of times Ti initiates or enacts a desired weight change over the

range [max(tc, ta), tb). We begin by decomposing the interval [max(tc, ta), tb) into several

subregions. Let t1 = max(tc, ta) and let tz+1 = tb. For k ∈ {2, 3, ..., z}, let tk be the first

time after tk−1 such that Ti either initiates or enacts a desired weight change. Notice that,

by statement of the lemma, r(T j
i ) < max(tc, ta), and by the definition of our decomposition,
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max(tc, ta) ≤ tk for any k ∈ {1, ..., z + 1}. Thus,

for any k ∈ {1, ..., z + 1}, r(T j
i ) < max(tc, ta) ≤ tk. (4.22)

Notice that, if we can bound the value of A(PT , Ti, tk, tk+1) −
∫ tk+1

tk
SGwt(Ti, u)du for

every value of k ∈ {2, 3, ..., z}, then we can compute a bound for A(PT , Ti, ta, tb) −
∫ tb
ta

SGwt(Ti, u)du.

Example (Figure 4.18). Consider the example in Figure 4.18, which depicts one processor

that is assigned three tasks: T1 and T2, both of which have an execution time of 3 and a

desired weight of 1/4; and T3, which has e(T3) = 2 and an initial desired weight of 1/6 that

changes to 1/10 at time 3 via Case (ii) of Rule N, then to 1/2 at time 5 via Case (i) of Rule

N, and then again to 1/3 at time 7 via Case (ii) of Rule N. Notice that, because the change

initiated at time 3 is via Case (ii) of Rule N, the change is not enacted until T 1
3 ’s deadline. As

a result, when a change is initiated at time 6, this new change cancels the previous change.

Moreover, since the change enacted at time 6 is a weight increase, it is immediately enacted

via Case (i) of Rule N. Finally, before the deviance of T 1
3 becomes zero, T3 initiates a weight

decrease at time 7, which is enacted once the T 1
3 ’s deviance becomes zero at time 8. Notice

that, if ta = r(T 1
3 ) and tb = 8, then there are three weight initiations and two enactments

over the range [r(T 1
3 ), tb). Thus, t1 = 3, t2 = 6, t3 = 7, and t4 = tb = 8.

To continue the proof, let k denote some value in {1, 2, ..., z}. If Ti enacts a change at

tk, then since Ti does not initiate or enact a desired weight change until tk+1, SGwt(Ti, u) =

Gwt(Ti, u). Thus, A(PT , Ti, tk, tk+1) =
∫ tk+1

tk
SGwt(Ti, u)du holds. Thus, we henceforth

assume that Ti initiates a change at tk. Since tk < tk+1, the change initiated at tk must

have been by either Case (ii) of Rule P or Case (ii) of Rule N. We now consider these two

possibilities.

Sub-Case 1: Case (ii) of Rule P. By definition, Ti does not enact any desired weight

changes over the range (tk, tk+1). Thus, we have the following property

(SC) The value SDwt(Ti, t) is constant within [tk, tk+1).
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Figure 4.18: A one-processor example of the task decomposition in Lemma 4.4.

Thus, for brevity, we denote SDwt(Ti, tk) as Ow.

Suppose that Ti initiates a change in its desired weight from Ow to Nw via Case (ii)

of Rule P at tk. Thus, for t ∈ [tk, tk+1), Dwt(Ti, t) = Nw. Since, by Property (SC),

for t ∈ [tk, tk+1), SDwt(Ti, t) = Ow, A(PT , Ti, tk, tk+1) =
∫ tk+1

tk

Dwt(Ti,t)
T S(P[q],t)

dt, and, by (4.5),

SGwt(Ti, t) = SDwt(Ti,t)
T S(P[q],t)

, it follows that

A(PT , Ti, tk, tk+1) −
∫ tk+1

tk

SGwt(Ti, t)dt =

∫ tk+1

tk

Nw − Ow

T S(P[q], t)
dt. (4.23)

Thus, for the remainder of this subcase, we bound the value of
∫ tk+1

tk
Nw−Ow
T S(P[q],t)

dt.

Recall that a task only changes its weight via Case (ii) of Rule P if the deviance of Ti is

positive and the following equation holds:

Irem(T j
i , tk)

Ow
≤ REM(T j

i , tk)

Nw
. (4.24)
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By our decomposition and (4.20), tk+1 ≤ te ≤ d(T j
i ). Thus, by Property (D),

∫ tk+1

r(T j
i )

SGwt(Ti, u)du ≤ e(Ti). Notice that, by (4.8), Irem(T j
i , tk) = e(T j

i )−
∫ tk
r(T j

i )
SGwt(Ti, u)du.

By substituting
∫ tk+1

r(T j
i )

SGwt(Ti, u)du ≤ e(Ti) into Irem(T j
i , tk) = e(T j

i ) −
∫ tk
r(T j

i )
SGwt(Ti, u)du,

it follows that
∫ tk+1

tk
SGwt(Ti, u)du ≤ Irem(T j

i , tk).

Since, by (4.5), SGwt(Ti, t) = SDwt(Ti,t)
T S(P[q],t)

, and for any t ∈ [tk, tk+1), SDwt(Ti, t) =

SDwt(Ti, tk) = Ow, by (4.11), we have

∫ tk+1

tk

Ow

T S(P[q], t)
dt =

∫ tk+1

tk

SGwt(Ti, u)du ≤ Irem(T j
i , tk) ≤ emax(Ti). (4.25)

We now consider two scenarios depending on whether Ow > Nw or Ow < Nw. We first

consider the scenario where Ow > Nw. In this case, since, by (4.6), T S(P[q], t) ≥ 1, it is trivial

to show that

0 ≥
∫ tk+1

tk

Nw − Ow

T S(P[q], t)
dt

holds. By (4.25) and because Nw − Ow ≥ −Ow and T S(P[q], t) ≥ 1, it follows that

0 ≥
∫ tk+1

tk

Nw − Ow

T S(P[q], t)
dt ≥

∫ tk+1

tk

−Ow

T S(P[q], t)
dt ≥ −emax(Ti).

Thus, by (4.23), if Ti initiates a weight decrease via Case (ii) of Rule P at time tk, then

0 ≥ A(PT , Ti, tk, tk+1) −
∫ tk+1

tk

SGwt(Ti, u)du ≥ −emax(Ti). (4.26)

We now consider the scenario where Ow < Nw. In this case, since by (4.6), T S(P[q], t) ≥ 1,

it is trivial to show that

0 ≤
∫ tk+1

tk

Nw − Ow

T S(P[q], t)
dt

holds. By (4.24) and (4.25), it follows that

∫ tk+1

tk

1

T S(P[q], t)
dt ≤ Irem(T j

i , tk)

Ow
≤ REM(T j

i , tk)

Nw
.
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Thus, by (4.13),
∫ tk+1

tk

Nw

T S(P[q], t)
dt ≤ REM(T j

i , tc) ≤ emax(Ti).

Since, Nw > Ow ≥ 0,

0 ≤
∫ tk+1

tk

Nw − Ow

T S(P[q], t)
dt ≤ REM(T j

i , tc) ≤ emax(Ti).

Thus, by (4.23), if Ti initiates a weight increase via Case (ii) of Rule P at time tk, then

0 ≤ A(PT , Ti, tk, tk+1) −
∫ tk+1

tk

SGwt(Ti, t)dt ≤ emax(Ti). (4.27)

Case (ii) of Rule N. Suppose that Ti changes its desired weight to Nw at time tk via Rule

N. If Ti initiates a desired weight decrease at time tk (i.e., the change initiated is via Case

(ii) of Rule N), it follows that for any t ∈ [tk, tk+1), Dwt(Ti, t) ≤ SDwt(Ti, t). Thus, since

A(PT , Ti, tk, tk+1) =
∫ tk+1

tk

SDwt(Ti,u)
T S(P[q],t)

du (by (4.17)), and SGwt(Ti, t) = SDwt(Ti,t)
T S(P[q],t)

(by (4.5)), it

follows that 0 ≤ A(PT , Ti, tk, tk+1) ≤
∫ tk+1

tk
SGwt(Ti, u)du holds.

We now show that
∫ tk+1

tk
SGwt(Ti, u)du ≤ emax(Ti). By the definition of our decomposition

and (4.20), tk+1 ≤ tb ≤ d(T j
i ). Thus, by Property (D),

∫ tk+1

r(T j
i )

SGwt(Ti, u)du ≤ e(Ti). Since,

by (4.22), r(T j
i ) < tk, and SGwt(Ti, t) ≥ 0 for all t, it follows that

∫ tk+1

tk
SGwt(Ti, u)du ≤

∫ tk+1

r(T j
i )

SGwt(Ti, u)du ≤ e(Ti) ≤ emax(Ti). Thus, if Ti initiates a weight decrease via Case (ii)

of Rule N at time tk, then

0 ≥ A(PT , Ti, tk, tk+1) −
∫ tk+1

tk

SGwt(Ti, u)du ≥ −emax(Ti). (4.28)

By combining (4.26), (4.27), and (4.28), it follows that

−emax(Ti) · G ≤ A(PT , Ti, ta, tb) −
∫ tb

ta

SGwt(Ti, u)du ≤ emax(Ti) · P2 (4.29)

where G denotes the number of weight decreases by Ti that were initiated at or before tb and

enacted or canceled after ta, over the range and P2 denotes the number of desired weight

increases via Case (ii) of Rule P that were initiated at or before tb and enacted or canceled
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after ta.

Bounding
∫ tb
ta

SGwt(Ti, u)du − A(CSW , Ti, ta, tb). Notice that
∫ tb
ta

SGwt(Ti, u)du =

A(CSW , Ti, ta, tb) unless T j
i is halted by a desired weight change. By Property (HA),

no change initiated over the range (te, tI ] can halt T j
i . Thus, if

∫ tb
ta

SGwt(Ti, u)du 6=

A(CSW , Ti, ta, tb), then T j
i enacted a desired weight change at te that halts T j

i . More-

over, by the reweighting rules, if the change enacted at te halts T j
i , then that change must

also have been initiated at te and must have been by either Case (i) of Rule P or Case (i) of

Rule N.

Suppose that the change initiated at te is via Case (i) of Rule N. Notice that, by Prop-

erty (SW-2), A(CSW , Ti, ta, te) ≤ Ae(T j
i ). Moreover, at the smallest value of tr such that

A(SW , Ti, r(T j
i ), tr) = Ae(T j

i ) holds, T j
i becomes inactive, i.e., tI = tr. Recall, from the

definition of CSW , that A(CSW , Ti, r(T j
i ), t) = A(SW , Ti, r(T j

i ), t) up to the first t such

that A(CSW , Ti, r(T j
i ), t) = Ae(T j

i ). Thus, since, by (4.20), te ≤ tb ≤ tI , T j
i receives an allo-

cation of SGwt(Ti, t) at each instant t ∈ [r(T u
i ), tb) in CSW . Therefore, since ta ∈ [r(T j

i ), tb]

(by the statement of the lemma), we have
∫ tb
ta

SGwt(Ti, u)du = A(CSW , Ti, ta, tb). Thus, if
∫ tb
ta

SGwt(Ti, u)du 6= A(CSW , Ti, ta, tb), then the change must have been via Case (i) of Rule

P.

If the change initiated at te is via Case (i) of Rule P, then T j
i has positive deviance

at te and te = tI . Thus, by (4.20), te = tb. Since te = tb = tI ≤ d(T j
i ) (by (4.20)),

by Property (D), 0 ≤
∫ tb
ta

SGwt(Ti, u)du ≤ emax(Ti). Also, by Lemma 4.3, since tb = tI ,

0 ≤ A(CSW , Ti, ta, tb) ≤ emax(Ti). Thus,

−emax(Ti) ≤
∫ tb

ta

SGwt(Ti, u)du − A(CSW , Ti, ta, tb) ≤ emax(Ti). (4.30)

From (4.29) and (4.30), we have −emax(Ti) · (G + P1) ≤ A(PT , Ti, ta, tb) −

A(CSW , Ti, ta, tb) ≤ emax(Ti) · (P1 +P2), where G, P1, and P2 are as defined in the statement

of the lemma. Thus, by (4.19)

−emax(Ti) · (G + P1) ≤ Pdrift(Ti, tb) − Pdrift(Ti, ta) ≤ emax(Ti) · (P1 + P2),
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which completes the proof of Lemma 4.4.

Notice that, if a task Ti is inactive over the range [ta, tb), then Pdrift(Ti, tb)−Pdrift(Ti, ta) =

0. Also notice that if Ti never changes its desired weight while the job T j
i is active, then for

any two times ta and tb such that r(T j
i ) ≤ ta ≤ tb ≤ tI , where tI is the time that T j

i becomes

inactive, Pdrift(Ti, tb) − Pdrift(Ti, ta) = 0. Thus, a task Ti can only incur partial drift over a

range in which a job of Ti is active and Ti initiates a desired weight change. Such a scenario is

addressed in Lemma 4.4. Thus, by iteratively applying Lemma 4.4, it is possible to show that

the partial drift incurred over any range [ta, tb] is bounded by [−emax(Ti) · (G +P1), emax(Ti) ·

(P1+P2)], where G, P1, and P2 denote, respectively, the number of weight decreases by Ti, the

number of weight increases by Ti via Case (i) of Rule P, and the number of weight increases

by Ti via Case (ii) of Rule P that were initiated at or before tb and enacted or canceled after

ta. Assuming that tb and Ti satisfy one of conditions (T-1), ..., (T-3).

This bound is summarized in the following corollary

Corollary 4.1. Let Ti denote a task that is assigned to P[q] over some range [ta, tb). If Ti and

tb satisfy one of Conditions (T-1), ..., (T-3). Then, Pdrift(Ti, tb) − Pdrift(Ti, ta) is bounded

by [−emax(Ti) · (G + P1), emax(Ti) · (P1 + P2)], where G, P1, and P2 denote, respectively, the

number of weight decreases, the number of weight increases via Case (i) of Rule P, and the

number of weight increase via Case (ii) of Rule P by Ti that were initiated at or before tb and

enacted or canceled after ta.

Example (Figure 4.19). Consider the example in Figure 4.9, which depicts one processor

that is assigned three tasks: T1 and T2, both of which have an execution time of 2 and a

weight of 1/3; and T3, which has e(T3) = 1 and an initial weight of 1/10 that changes to 1/7

at time 1 via Case (i) of Rule P and then to 1/3 at time 3 via Case (i) of Rule P. Inset (a)

depicts the PEDF schedule. Inset (b) depicts T3’s partial drift. By Lemma 4.4, the maximal

partial drift incurred by T3 is one (its execution time) over both ranges [0, 1) and [1, 3) (even

though the actual partial drift incurred is 0.1 over the range [0, 1) and 2/7 over the range

[1, 3)). Notice that, Lemma 4.4 cannot be used to determine the maximal partial drift over

the range [1, 2.5) because T 2
3 has not enacted a weight change. Moreover, notice that the
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last-initiated change at or before time 2.5 was enacted at time 1, i.e., te = 1, and r(T 2
3 ) = 1.

Hence, te = r(T 2
3 ). Thus, Condition (T-3) does not hold at time 2.5 (even though 1 = te ≤ 2.5

holds). On the other hand, the last-initiated change at or before time 3 was enacted at time

3, i.e., te = 3. Thus, in this case, r(T 2
3 ) < te. Hence, Condition (T-3) holds at time 3 because

r(T 2
3 ) < te ≤ 3. Corollary 4.1 is used to sum the partial drift over multiple jobs, i.e., by

Corollary 4.1, the maximal partial drift over the range [0, 3) is two.

4.9.2 Relationship Between PT and IDEAL

Now that we have established the partial drift incurred by a change in the desired weight

of a task, we can determine the difference between a task’s allocation in the IDEAL and PT

schedules. In this section, we show that this difference up to time t, which can be easily

determined from (4.16) and (4.17) as
∫ t
0 Dwt(Ti, u) · ( 1

T D(P[q],u) − 1
T S(P[q],u))du, is bounded by

the range [−C ·X ,D·X ], where C denotes the number of weight increases via Case (ii) of Rule

P, D denotes the number of weight decreases via Case (ii) of Rule P or Case (ii) of Rule N,

and X denotes the maximal execution time of any task assigned to the same processor as Ti.

Before we can establish this bound, we must establish some preliminarily lemmas.

Lemma 4.5. If a task Ti initiates a desired weight decrease at time tc from Ow to Nw while

T j
i is active, Ti is assigned to P[q], and the decrease is enacted or canceled at time te, then

0 ≤
∫ te
tc

SDwt(Ti,t)−Dwt(Ti,t)
T S(P[q],t)T D(P[q],t)

dt ≤ emax(Ti).

Proof. Notice that, if tc = te, then lemma is trivially true. Thus, for the remainder of this

proof we assume that tc < te. Since tc < te, the change initiated at tc is not immediately

enacted. Moreover, by the definition of tc and te, Ti does not initiate a desired weight change

over the range (tc, te). Thus, both the desired weight and the desired scheduling weight of Ti

are constant over the range [tc, te). Specifically, for any t ∈ [tc, te), both

SDwt(Ti, t) = Ow (4.31)
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and Dwt(Ti, t) = Nw hold. Thus, if

0 ≤
∫ te

tc

Ow − Nw

T S(P[q], t)T D(P[q], t)
dt ≤ emax(Ti), (4.32)

holds, then the proof is complete.

Since Ow > Nw, tc < te, T S(P[q], t) ≥ 1 (by (4.6)), and T D(P[q], t) ≥ 1 (by (4.3)), it

follows that

0 ≤
∫ te

tc

Ow − Nw

T S(P[q], t)T D(P[q], t)
dt

holds. In, the remainder of this proof, we establish the upper bound of (4.32).

Because te > tc, the change initiated at time tc was either by Case (ii) of Rule P or Case

(ii) of Rule N. In either case, by Property (X), the weight change is either enacted or canceled

by d(T j
i ), i.e., te ≤ d(T j

i ). Since r(T j
i ) ≤ tc < te ≤ d(T j

i ), by Property (D),

∫ te

tc

SGwt(Ti, t)dt ≤ e(T j
i ).

Moreover, since, by (4.31), for any t ∈ [tc, te), SDwt(Ti, t) = Ow, and by (4.5), SGwt(Ti, t) =

SDwt(Ti,t)
T S(P[q],t)

, we have
∫ te

tc

Ow

T S(P[q], t)
dt ≤ e(T j

i ). (4.33)

Since, by the statement of the lemma, Ow > Nw ≥ 0, and by (4.3), T D(P[q], t) ≥ 1, we

have Ow − Nw ≤ Ow and T S(P[q], t)T D(P[q], t) ≥ T S(P[q], t). Hence, by (4.33),

∫ te

tc

Ow − Nw

T S(P[q], t)T D(P[q], t)
dt ≤

∫ te

tc

Ow

T S(P[q], t)
dt ≤ e(T j

i ) ≤ emax(Ti)

Thus, it follows that the upper bound of (4.32) holds, which completes the proof.

Notice that, if a task initiates a desired weight increase at tc via Case (i) of Rule P or Case

(i) of Rule N, then it is enacted at time tc. Similarly, if the last-released job of Ti is not active

or Ti has not release such a job, then the change is enacted at tc. From these observations,

we have the following lemma.

Lemma 4.6. Let Ti ∈ P[q] be a task that initiates a desired weight increase from Ow to Nw
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at time tc, let T j
i be the last-released job (if any) of Ti, and let te denote the time the change

is enacted or canceled. If T j
i is not active at tc or no such job exists, or the change initiated

at tc is via either Case (i) of Rule P or Case (i) of Rule N, then
∫ te
tc

SDwt(Ti,t)−Dwt(Ti,t)
T S(P[q],t)T D(P[q],t)

dt = 0.

Lemma 4.7. If a task Ti initiates a desired weight increase at time tc via Case (ii) of Rule

P from Ow to Nw while T j
i is active, Ti is assigned to P[q], and the increase is enacted or

canceled at time te, then 0 ≤
∫ te
tc

Dwt(Ti,t)−SDwt(Ti,t)
T S(P[q],t)T D(P[q],t)

dt ≤ emax(Ti).

Proof. Notice that, if tc = te, then lemma is trivially true. Thus, for the remainder of the

proof, we assume that tc < te. Since tc < te, the change initiated at tc is not immediately

enacted. Moreover, by the definition of tc and te, Ti does not initiate a desired weight change

over the range (tc, te). Thus, both the desired weight and the desired scheduling weight of Ti

are constant over the range [tc, te). Specifically, for any t ∈ [tc, te), both SDwt(Ti, t) = Ow

and Dwt(Ti, t) = Nw hold. Thus, if

0 ≤
∫ te

tc

Nw − Ow

T S(P[q], t)T D(P[q], t)
dt ≤ emax(Ti). (4.34)

holds, then the proof is complete.

Since Nw > Ow, tc < te, T S(P[q], t) ≥ 1 (by (4.6)), and T D(P[q], t) ≥ 1 (by (4.3)), it

follows that

0 ≤
∫ te

tc

Nw − Ow

T S(P[q], t)T D(P[q], t)
dt

holds. In the remainder of this proof, we establish the upper bound of (4.34). By Prop-

erty (X), the weight change initiated at tc is either enacted or canceled by d(T j
i ), i.e.,

te ≤ d(T j
i ). Thus, by Property (D),

∫ te
r(T j

i )
SGwt(Ti, u)du ≤ e(Ti). By (4.8), Irem(T j

i , tc) =

e(T j
i ) −

∫ tc
r(T j

i
)
SGwt(Ti, u)du. By substituting

∫ te
r(T j

i
)
SGwt(Ti, u)du ≤ e(Ti) into Irem(T j

i , tc) =

e(T j
i ) −

∫ tc
r(T j

i )
SGwt(Ti, u)du, it follows that

∫ te
tc

SGwt(Ti, u)du ≤ Irem(T j
i , tc).

Since, by (4.5), SGwt(Ti, t) = SDwt(Ti,t)
T S(P[q],t)

, for any t ∈ [tc, te), SDwt(Ti, t) = SDwt(Ti, tc) =

Ow, and by (4.11), Irem(T j
i , tv) ≤ emax(Ti), we have

∫ te

tc

Ow

T S(P[q], t)
dt =

∫ te

tc

SGwt(Ti, u)du ≤ Irem(T j
i , tv) ≤ emax(Ti). (4.35)
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We now decompose the interval [tc, te) into the set of regions

{[t1, t2), [t2, t3), ..., [tz , tz+1)}. Let t1 = tc and tz+1 = te. For, k ∈ {1, 2, ..., z − 1},

let tk+1 equal the first time after tk such that the value of either T S(P[q], t) or T D(P[q], t)

changes. Note that the value of either T S(P[q], t) or T D(P[q], t) can only change as a result

of a task enacting or initiating a desired weight change. Thus, there exist a discrete number

of times over the region [tc, te) that the value of either T S(P[q], t) or T D(P[q], t) can change,

which makes this decomposition possible. An example decomposition is given in Figure 4.20.

Since, by the definition of our decomposition, the value of T S(P[q], t) does not change

within [tk, tk+1), where k = {1, 2, ..., z}, (4.35) implies

Ow ·





∑

k=1,...,z

tk+1 − tk
T S(P[q], tk)



 ≤ Irem(T j
i , tc). (4.36)

Additionally, since the value of T D(P[q], t) also does not change within [tk, tk+1), where

k = {1, 2, ..., z}, we have

∫ te

tc

Nw − Ow

T S(P[q], t)T D(P[q], t)
dt = (Nw − Ow)

∑

k=1,...,z

tk+1 − tk
T D(P[q], tk)T S(P[q], tk)

. (4.37)
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Notice that, since Nw > Ow and T D(P[q], t) ≥ 1 holds (by (4.3)), it follows that

(Nw − Ow)
∑

k=1,...,z

tk+1 − tk
T D(P[q], tk)T S(P[q], tk)

≤ (Nw − Ow)
∑

k=1,...,z

tk+1 − tk
T S(P[q], tk)

Thus, by (4.36) and the fact that Ow > 0 holds, it follows that

(Nw − Ow)
∑

k=1,...,z

tk+1 − tk
T D(P[q], tk)T S(P[q], tk)

≤ (Nw − Ow)
Irem(T j

i , tc)

Ow
.

Thus, by (4.37),

∫ te

tc

Nw − Ow

T S(P[q], t)T D(P[q], t)
dt ≤ (Nw − Ow)

Irem(T j
i , tc)

Ow
.

Thus, if we can show that

(Nw − Ow)
Irem(T j

i , tc)

Ow
≤ emax(Ti)

holds, then the proof is complete.

Recall that the change initiated at tc was via Case (ii) of Rule P. Thus,

Irem(T j
i , tc)

Ow
≤ REM(T j

i , tc)

Nw
.

Therefore, since Nw − Ow > 0,

(Nw − Ow)
Irem(T j

i , tc)

Ow
≤ (Nw − Ow)

REM(T j
i , tc)

Nw
.

By rearranging terms, we get

(Nw − Ow)
Irem(T j

i , tc)

Ow
≤
(

1 − Ow

Nw

)

REM(T j
i , tc).

Since Ow < Nw and REM(T j
i , tc) ≤ e(T j

i ) ≤ emax(Ti) (by (4.13)), it follows that

(Nw − Ow)
Irem(T j

i , tc)

Ow
≤
(

1 − Ow

Nw

)

REM(T j
i , tc) ≤ REM(T j

i , tc) ≤ e(T j
i ) ≤ emax(Ti).
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This completes the proof.

Before continuing, we introduce an additional function that will facilitate our discussion.

Let γ(Ti, t) be defined as

γ(Ti, t) =











0, if Ti ∈ ACT(P[q], t)

SDwt(Ti,t)−Dwt(Ti,t)
T S(P[q],t)T D(P[q],t)

, otherwise,
(4.38)

where P[q] is the processor that Ti is assigned to at time t.

Lemma 4.8. Let ta and tb be any two times such that ta < tb, and the system is not reset

over the interval (ta, tb). Let D denote the number of desired weight decreases for Ti that are

both initiated at or before tb and enacted or canceled after ta, and let C denote the number of

desired weight increases via Case (ii) of Rule P for Ti that are both initiated at or before tb

and enacted or canceled after ta. Then,

−C · emax(Ti) ≤
∫ tb

ta

min (0, γ(Ti, t)) dt,

D · emax(Ti) ≥
∫ tb

ta

max (0, γ(Ti, t)) dt.

Proof. Notice that, if ta = tb, then the lemma is trivially true. Thus, for the remainder of

this proof we assume that ta < tb. If Ti initiates a change before ta that is not enacted or

canceled until after ta, then let t′a denote the time that change was initiated; otherwise, let

t′a = ta. If Ti initiates a change before tb that is not enacted or canceled until after tb, then

let t′b denote the time that change is enacted or canceled; otherwise, let t′b = tb. Since t′a ≤ ta

and tb ≤ t′b, it suffices to bound
∫ t′

b

t′a
min(0, γ(Ti, t))dt and

∫ t′
b

t′a
max(0, γ(Ti, t))dt.

We now decompose the internal [t′a, t′b) into the set of regions

{[t1, t2), [t2, t3), ..., [tz , tz+1)}. Let t1 = t′a, let tz+1 = t′b, and for k ∈ {1, 2, ..., z − 1},

let tk+1 the next time after tk that Ti initiated or enacted a desired weight change. Notice

that, by the definitions of C and D given in the statement of the lemma, there are C values of

k ∈ {1, 2, ..., z} such that at tk, Ti initiated a desired weight increase via Case (ii) of Rule P,

and D values of k ∈ {1, 2, ..., z} such that at tk, Ti initiated a desired weight decrease. Thus,

we can complete the proof by showing that, for any value of k ∈ {1, 2, ...z},
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• if Ti initiates a desired weight increase via Case (ii) of Rule P at time tk, then

−emax(Ti) ≤
∫ tk+1

tk
min(0, γ(Ti, t))dt;

• if Ti initiates a desired weight decrease at time tk, then emax(Ti) ≥
∫ tk+1

tk
max(0, γ(Ti, t))dt;

• if Ti initiates any other type of desired weight change at tk or does not initiate a desired

weight change at tk, then 0 =
∫ tk+1

tk
max(0, γ(Ti, t))dt =

∫ tk+1

tk
min(0, γ(Ti, t))dt.

Before we discuss these three case, notice that, for all values of k ∈ {1, 2, ..., z}, for

any t ∈ [tk, tk+1), SDwt(Ti, t) = SDwt(Ti, tk) and Dwt(Ti, t) = Dwt(Ti, tk) both hold since

Ti does not initiate or enact a change within (tk, tk+1), Thus, for any k ∈ {1, 2, ..., z}, if

Dwt(Ti, tk) = SDwt(Ti, tk) holds, then
∫ tk+1

tk
min(0, γ(Ti, t))dt =

∫ tk+1

tk
max(0, γ(Ti, t))dt = 0

holds as well.

Ti initiates a desired weight increase via Case (ii) of Rule P at time tk. If the

change initiated at tk is enacted immediately, then Dwt(Ti, tk) = SDwt(Ti, tk), which as we

already discussed implies
∫ tk+1

tk
min(0, γ(Ti, t))dt =

∫ tk+1

tk
max(0, γ(Ti, t))dt = 0. Thus, we

assume that the change initiated at tk is not immediately enacted. Thus, by the definition of

our decomposition, tk+1 represents the time that Ti enacts or cancels the change initiated at

tk. Thus, by Lemma 4.7, 0 ≤
∫ tk+1

tk

Dwt(Ti,t)−SDwt(Ti,t)
T S(P[q],t)T D(P[q],t)

dt ≤ emax(Ti), which implies

−emax(Ti) ≤
∫ tk+1

tk

min(0, γ(Ti, t))dt. (4.39)

Ti initiates a desired weight decrease at time tk. If the change initiated at tk is

enacted immediately, then Dwt(Ti, tk) = SDwt(Ti, tk), which as we already discussed implies
∫ tk+1

tk
min(0, γ(Ti, t))dt =

∫ tk+1

tk
max(0, γ(Ti, t))dt = 0. Thus, we assume that the change

initiated at tk is not immediately enacted. In this case, by the definition of our decomposition,

tk+1 represents the time that Ti enacts or cancels the change initiated at tk. Thus, by

Lemma 4.5, 0 ≤
∫ tk+1

tk

SDwt(Ti,t)−Dwt(Ti,t)
T S(P[q],t)T D(P[q],t)

dt ≤ emax(Ti), which implies

emax(Ti) ≥
∫ tk+1

tk

max(0, γ(Ti, t))dt. (4.40)
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Ti initiates alternative change at tk or does not initiate a change at tk. If Ti initiates

an alternative type of desired weight change or does not initaite a desired weight change at

tk, then Dwt(Ti, tk) = SDwt(Ti, tk), which as we already discussed implies

∫ tk+1

tk

min(0, γ(Ti, t))dt =

∫ tk+1

tk

max(0, γ(Ti, t))dt = 0. (4.41)

Since, there are at most C values of k ∈ {1, 2, ..., z} such that (4.39) holds, D values of

k ∈ {1, 2, ..., z} such that (4.40) holds, and for every other value of k ∈ {1, 2, ..., z}, (4.41)

holds, we have

−C · emax(Ti) ≤
∫ tb

ta

min (0, γ(Ti, t)) dt ≤
∫ t′

b

t′a

min (0, γ(Ti, t)) dt

and

D · emax(Ti) ≥
∫ tb

ta

max (0, γ(Ti, t)) dt ≥
∫ t′

b

t′a

max (0, γ(Ti, t)) dt.

This completes the proof.

Having proven the prerequisite lemmas, we can now show that the difference between

1
T D(P[q],t)

and 1
T S(P[q],t)

is a function of the number of reweighting events. Bounding this

difference will enable us to bound the difference between Ti’s allocations in the IDEAL and

PT schedules, which is given by
∫ t
0 Dwt(Ti, u) · ( 1

T D(P[q],u) − 1
T S(P[q],u))du.

Lemma 4.9. Let ta and tb be any two times such that ta < tb, and the system is not reset

over the interval (ta, tb). If D denotes the number of desired weight decreases by tasks assigned

to P[q] that are both initiated at or before tb and enacted or canceled after ta and C denotes

the number of desired weight increases via Case (ii) of Rule P by tasks assigned to P[q] that

are both initiated at or before tb and enacted or canceled after ta, then

−C · X ≤
∫ tb

ta

min

(

0,
1

T D(P[q], t)
− 1

T S(P[q], t)

)

dt,

159



V
al

ue
t

t

t t t

t

t

a b
Time

5432

1

1.25

1

TD

TS

Figure 4.21: Decomposition of a task for Lemma 4.9.

D · X ≥
∫ tb

ta

max

(

0,
1

T D(P[q], t)
− 1

T S(P[q], t)

)

dt,

where X is the largest execution time of any task assigned to P[q] over the range [ta, tb).

Proof. We begin by decomposing the interval [ta, tb) into several subregions. Let t1 = ta and

let tz+1 = tb. For k ∈ {1, 2, ..., z − 1}, let tk+1 be the first time after tk such that at least one

of the following conditions holds:

1. If T S(P[q], tk) = 1, then T S(P[q], tk+1) > 1.

2. If T D(P[q], tk) = 1, then T D(P[q], tk+1) > 1.

3. If T S(P[q], tk) > 1, then T S(P[q], tk+1) = 1.

4. If T D(P[q], tk) > 1, then T D(P[q], tk+1) = 1.

In other words, tk+1 denotes the time at which the total desired weight or total desired

scheduling weight changes from over-utilizing P[q] to either under- or fully-utilizing P[q], or

vice versa. An example of this decomposition is given in Figure 4.21. Notice that it is possible

that neither the total desired scheduling weight nor the total desired weight will change from

over-utilizing to under/fully-utilizing a processor or vice versa. In this case, t1 = ta and

t2 = tb.

Before continuing, notice that 1
T D(P[q],t)

− 1
T S(P[q],t)

can be rearranged to equal

T S(P[q],t)−T D(P[q],t)

T D(P[q],t)T S(P[q],t)
. Thus, since our decomposition completely covers the range [ta, tb), we
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have

∫ tb
ta

min
(

0, 1
T D(P[q],t)

− 1
T S(P[q],t)

)

dt =
∫ tb
ta

min
(

0,
T S(P[q],t)−T D(P[q],t)

T D(P[q],t)T S(P[q],t)

)

dt

=
∑
∫ tk+1

tk
min

(

0,
T S(P[q],t)−T D(P[q],t)

T D(P[q],t)T S(P[q],t)

)

dt,
(4.42)

∫ tb
ta

max
(

0, 1
T D(P[q],t)

− 1
T S(P[q],t)

)

dt =
∫ tb
ta

max
(

0,
T S(P[q],t)−T D(P[q],t)

T D(P[q],t)T S(P[q],t)

)

dt

=
∑
∫ tk+1

tk
max

(

0,
T S(P[q],t)−T D(P[q],t)

T D(P[q],t)T S(P[q],t)

)

dt.
(4.43)

Thus, it suffices to bound the values of

∫ tk+1

tk

min

(

0,
T S(P[q], t) − T D(P[q], t)

T D(P[q], t)T S(P[q], t)

)

dt

and
∫ tk+1

tk

max

(

0,
T S(P[q], t) − T D(P[q], t)

T D(P[q], t)T S(P[q], t)

)

dt

for each interval [tk, tk+1). We now consider the different possible values for T S(P[q], t) and

T S(P[q], t) for any t ∈ [tk, tk+1).

Interval type 1: T S(P[q], t) = 1 and T D(P[q], t) = 1. If T S(P[q], t) = 1 and T D(P[q], t) = 1

both hold, then
T S(P[q], t) − T D(P[q], t)

T D(P[q], t)T S(P[q], t)
= 0. (4.44)

Interval type 2: T S(P[q], t) > 1 and T D(P[q], t) > 1. By (4.3) and (4.6), if T S(P[q], t) > 1

and T D(P[q], t) > 1 both hold, then T S(P[q], t) =
∑

Ti∈ASSN(P[q],t)
SDwt(Ti, t) and T D(P[q], t) =

∑

Ti∈ASSN(P[q],t)
Dwt(Ti, t) hold. Thus,

T S(P[q], t) − T D(P[q], t)

T D(P[q], t)T S(P[q], t)

can be rewritten as

∑

Ti∈ASSN(P[q],t)
SDwt(Ti, t) −

∑

Ti∈ASSN(P[q],t)
Dwt(Ti, t)

T D(P[q], t)T S(P[q], t)
,
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which equals
∑

Ti∈ASSN(P[q],t)

SDwt(Ti, t) − Dwt(Ti, t)

T D(P[q], t)T S(P[q], t)
=

∑

Ti∈P[q]

γ(Ti, t).

Thus,
T S(P[q], t) − T D(P[q], t)

T D(P[q], t)T S(P[q], t)
=

∑

Ti∈P[q]

γ(Ti, t). (4.45)

Interval type 3: T S(P[q], t) > 1 and T D(P[q], t) = 1. By (4.6), if T S(P[q], t) > 1 holds,

then T S(P[q], t) =
∑

Ti∈ASSN(P[q],t)
SDwt(Ti, t) holds. Thus,

T S(P[q], t) − T D(P[q], t)

T D(P[q], t)T S(P[q], t)
=

∑

Ti∈ASSN(P[q],t)
SDwt(Ti, t) − 1

T D(P[q], t)T S(P[q], t)
.

By (4.3), T D(P[q], t) = 1, implies
∑

Ti∈ASSN(P[q],t)
Dwt(Ti, t) ≤ 1. Thus, since 1 < T S(P[q], t) =

∑

Ti∈ASSN(P[q],t)
SDwt(Ti, t), we have

0 ≤
∑

Ti∈ASSN(P[q],t)
SDwt(Ti, t) − 1

T D(P[q], t)T S(P[q], t)
≤

∑

Ti∈ASSN(P[q],t)

SDwt(Ti, t) − Dwt(Ti, t)

T D(P[q], t)T S(P[q], t)
=

∑

Ti∈P[q]

γ(Ti, t).

Thus,

0 ≤
T S(P[q], t) − T D(P[q], t)

T D(P[q], t)T S(P[q], t)
=

∑

Ti∈P[q]

γ(Ti, t) (4.46)

Interval type 4: T S(P[q], t) = 1 and T D(P[q], t) > 1. By (4.3), if T D(P[q], t) > 1 holds,

then T D(P[q], t) =
∑

Ti∈ASSN(P[q],t)
Dwt(Ti, t) holds. Thus,

T S(P[q], t) − T D(P[q], t)

T D(P[q], t)T S(P[q], t)
=

1 −∑Ti∈ASSN(P[q],t)
Dwt(Ti, t)

T D(P[q], t)T S(P[q], t)
.

By (4.6), T S(P[q], t) = 1 implies
∑

Ti∈ASSN(P[q],t)
SDwt(Ti, t) ≤ 1. Thus, since 1 < T S(P[q], t) =

∑

Ti∈ASSN(P[q],t)
SDwt(Ti, t), we have

0 ≥
1 −∑Ti∈ASSN(P[q],t)

Dwt(Ti, t)

T D(P[q], t)T S(P[q], t)
≥

∑

Ti∈ASSN(P[q],t)

SDwt(Ti, t) − Dwt(Ti, t)

T D(P[q], t)T S(P[q], t)
=

∑

Ti∈P[q]

γ(Ti, t).
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Thus,

0 ≥
T S(P[q], t) − T D(P[q], t)

T D(P[q], t)T S(P[q], t)
=

∑

Ti∈P[q]

γ(Ti, t). (4.47)

Putting it together. From (4.44)–(4.47), it follows that for any interval [tk, tk+1),

∫ tk+1

tk

min

(

0,
T S(P[q], t) − T D(P[q], t)

T D(P[q], t)T S(P[q], t)

)

dt ≥
∑

Ti∈P[q]

∫ tk+1

tk

min (0, γ(Ti, t)) dt,

and

∫ tk+1

tk

max

(

0,
T S(P[q], t) − T D(P[q], t)

T D(P[q], t)T S(P[q], t)

)

dt ≤
∑

Ti∈P[q]

∫ tk+1

tk

max (0, γ(Ti, t)) dt.

Thus, from (4.42),

∫ tb

ta

min

(

0,
T S(P[q], t) − T D(P[q], t)

T D(P[q], t)T S(P[q], t)

)

dt ≥
∑

k={1,...,z}

∑

Ti∈P[q]

∫ tk+1

tk

min (0, γ(Ti, t)) dt,

≥
∑

Ti∈P[q]

∫ tb

ta

min (0, γ(Ti, t)) dt, (4.48)

and from (4.43),

∫ tb

ta

max

(

0,
T S(P[q], t) − T D(P[q], t)

T D(P[q], t)T S(P[q], t)

)

dt ≤
∑

k={1,...,z}

∑

Ti∈P[q]

∫ tk+1

tk

max (0, γ(Ti, t)) dt,

≤
∑

Ti∈P[q]

∫ tb

ta

max (0, γ(Ti, t)) dt. (4.49)

By Lemma 4.8, we have

−
∑

Ti∈P[q]

Ci · emax(Ti) ≤
∑

Ti∈P[q]

∫ tb

ta

min (0, γ(Ti, t)) dt,

and
∑

Ti∈P[q]

Di · emax(Ti) ≥
∑

Ti∈P[q]

∫ tb

ta

max (0, γ(Ti, t)) dt,

where Di denotes the number of desired weight decreases for Ti that are both initiated at
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or before tb and enacted or canceled after ta and Ci denotes the number of desired weight

increases via Case (ii) of Rule P for Ti that are both initiated at or before tb and enacted or

canceled after ta. Notice that
∑ Ci = C,

∑Di = D, and for any Ti, emax(Ti) ≤ X . Thus,

from (4.48) and (4.49), we have

−C · X ≤
∫ tb

ta

min

(

0,
1

T D(P[q], t)
− 1

T S(P[q], t)

)

dt,

and

D · X ≥
∫ tb

ta

max

(

0,
1

T D(P[q], t)
− 1

T S(P[q], t)

)

dt,

which completes the proof.

4.9.3 Calculating Drift

Having established Corollary 4.1 and Lemma 4.9 we can now calculate the total drift incurred.

Before continuing, we introduce some terminology to facilitate our discussion. Assume that

Ti is assigned to the processor P[q] over the range [ta, tb).

• Let P1 denote the number of weight increases via Case (i) of Rule P by Ti that were

initiated at or before tb and enacted or canceled after ta.

• Let P2 denote the number of weight increases via Case (ii) of Rule P by Ti that were

initiated at or before tb and enacted or canceled after ta.

• Let G denote the number of weight decreases by Ti that were initiated at or before tb

and enacted or canceled after ta.

• Let C denote the number of weight increases via Case (ii) or Rule P by any task assigned

to P[q] that were initiated at or before tb and enacted or canceled after ta.

• Let D denote the number of weight decreases by any task assigned to P[q] that were

initiated at or before tb and enacted or canceled after ta.

• Let X denote the maximal execution time of any task assigned to P[q] over the range

[ta, tb).
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By Corollary 4.1, the partial drift incurred by the task Ti over the range [ta, tb) is bounded

by

− (G + P1) emax(Ti) ≤ Pdrift(Ti, tb) − Pdrift(Ti, ta) ≤ (P1 + P2) emax(Ti), (4.50)

assuming that tb and Ti satisfy one of Conditions (T-1), ..., (T-3).

In addition, since Ti’s allocation over the range [ta, tb) is given by
∫ tb
ta

Dwt(Ti,t)
T D(P[q],t)

dt in the

IDEAL schedule (by (4.16)), and by
∫ tb
ta

Dwt(Ti,t)
T S(P[q],t)

dt in the PT schedule (by (4.17)), the difference

in Ti’s allocation in the IDEAL and PT schedules over the range [ta, tb) is given by

∫ tb

ta

Dwt(Ti, t)

(

1

T D(P[q], t)
− 1

T S(P[q], t)

)

dt.

Since 0 ≤ Dwt(Ti, t) ≤ 1, and min(0, 1
T D(P[q],t)

− 1
T S(P[q],t)

) ≤ 1
T D(P[q],t)

−
1

T S(P[q],t)
≤ max(0, 1

T D(P[q],t)
− 1

T S(P[q],t)
), it follows that

∫ tb
ta

min
(

0, 1
T D(P[q],t)

− 1
T S(P[q],t)

)

dt ≤
∫ tb
ta

Dwt(Ti, t)
(

1
T D(P[q],t)

− 1
T S(P[q],t)

)

dt ≤
∫ tb
ta

max
(

0, 1
T D(P[q],t)

− 1
T S(P[q],t)

)

dt. Thus, by

Lemma 4.9,

−C · X ≤
∫ tb

ta

Dwt(Ti, t)

(

1

T D(P[q], t)
− 1

T S(P[q], t)

)

dt ≤ D · X . (4.51)

The total drift incurred by Ti within [ta, tb) is given by Pdrift(Ti, tb) − Pdrift(Ti, ta) +
∫ tb
ta

Dwt(Ti, t)
(

1
T D(P[q],t)

− 1
T S(P[q],t)

)

dt. By (4.50) and (4.51), this incurred drift is within the

range

[− (G + P1) · emax(Ti) − C · X , (P1 + P2) · emax(Ti) + D · X ] .

Thus, we have the following lemma.

Lemma 4.10. Let ta and tb be any two times such that ta < tb, and the system is not reset

over the interval (ta, tb). Let Q denote the number of desired weight changes for any task

on P[q] that are both initiated at or before tb and enacted or canceled after ta, and let Ti be

assigned to P[q] over the range [ta, tb). If Ti and tb satisfy one of Conditions (T-1), ...,(T-3),

then the absolute drift incurred by Ti within [ta, tb) is at most Q · X , where X is the largest

execution time of any task assigned to P[q] over the range [ta, tb).
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4.9.4 Incorporating Resets

Having established Lemma 4.10, we now determine the additional drift incurred by resetting

the system.

Lemma 4.11. If the system is reset at time tc, then the drift incurred by any task Ti is within

the range [−emax(Ti), emax(Ti)].

Proof. Let T j
i be the last-released job (if any) of Ti before tc. Notice that, if T j

i is not active

at tc or T j
i does not exist, then via Case (ii) of Rule R, Ti is simply assigned to a (possibly

different) processor and Ti’s next job is released at either tc +θ(T j+1
i ) or tc +θ(T 1

i ), depending

on whether T j
i exists. Since the only two potential sources of drift are delays in enacting a

desired weight change and halting a job, it follows that no partial drift is incurred in this

case. Thus, for the rest of this proof, we assume that T j
i is active at tc. Thus,

tc ∈ [r(T j
i ), min(r(T j+1

i ), d(T j
i ))). (4.52)

Since T j
i is active at tc, it is reset via Case (i) of Rule R. In this case, Ti releases a job

immediately with execution time nextE(T j
i , tc). Moreover, its current job T j

i is halted, so it

is as though allocation equal to A(PT , Ti, r(T j
i ), tc)−A(CSW , Ti, r(T j

i ), tc) is “lost.” Notice

that, since, T j
i becomes inactive at tc (because it is halted), by Lemma 4.3

A(CSW , Ti, r(T j
i ), tc) ≤ emax(Ti). (4.53)

Also, notice that, if Ti does not initiate any desired weight increase over the range

[r(T j
i ), tc) that is not immediately enacted, then for all t ∈ [r(T j

i ), tc), A(PT , Ti, r(T j
i ), t) ≤

∫ t
r(T j

i )
SGwt(Ti, t)dt. Thus, in this case, by Property (D) and (4.52),

A(PT , Ti, r(T j
i ), t) ≤ e(T j

i ). (4.54)

Thus, if Ti does not initiate any desired weight increase over the range [r(T j
i ), tc) that is
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not immediately enacted, then by (4.53) and (4.54),

−emax(Ti) ≤ A(PT , Ti, r(T j
i ), tc) − A(CSW , Ti, r(T j

i ), tc) ≤ emax(Ti). (4.55)

In addition, if Ti initiates a desired weight increase over the range [r(T j
i ), tc) that is not

immediately enacted, then this change must have been via Case (ii) of Rule P. Notice that,

if such a change occurs, then it is possible that the upper bound in (4.55) may not hold,

i.e., it is possible that A(PT , Ti, r(T j
i ), tc) − A(CSW , Ti, r(T j

i ), tc) = emax(Ti) + X, where

X > 0. However, if the upper bound in (4.55) is violated by X, then it must have been

the case that Ti incurred at least X units of drift from reweighting events initiated over the

range [r(T j
i ), tc). Moreover, this drift would have been accounted for by Lemma 4.4. Thus, if

A(PT , Ti, r(T j
i ), tc)−A(CSW , Ti, r(T j

i ), tc) = emax(Ti)+X holds, then the maximal amount

of additional drift incurred by resetting Ti is A(PT , Ti, r(T j
i ), tc) − A(CSW , Ti, r(T j

i ), tc) −

X = emax(Ti).

Thus, it follows that Ti’s drift due to the reset is bounded within [−emax(Ti), emax(Ti)].

4.9.5 Total Drift Incurred

From Lemmas 4.10 and 4.11, we have the following.

Theorem 4.4. For any task Ti and for any interval of time [ta, tb), let Q denote the number

of system resets plus the number of desired weight changes for any task assigned to the same

processor as Ti that are both initiated at or before tb and enacted or canceled after ta. If Ti

and tb satisfy one of Conditions (T-1), ...,(T-3), then the absolute drift incurred by Ti is at

most Q · X , where X is the largest execution time of any task in the system.

Moreover, if a task is never assigned to an over-utilized processor, then the partial drift

of a task always equals its drift. As a result, we can tighten Theorem 4.4.

Theorem 4.5. For any task Ti that is never assigned to an over-utilized processor and any

interval of time [tb, ta), let Q denote the number of system resets plus the number of desired

weight changes by Ti that are both initiated at or before tb and enacted or canceled after ta.
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If Ti and tb satisfy one of Conditions (T-1), ...,(T-3), then the absolute drift incurred by Ti

is at most Q · emax(Ti).

4.9.6 Modifications for NP-PEDF

Note that delaying the initiation of a reweighting event due to non-preemptivity does not

substantially increase the drift incurred per reweighting event, since the longest a reweighting

event can be delayed is the execution time of the active job of the task being reweighted.

Suppose that task Ti initiates a weight change at time tc. If T j
i is active at tc, and if Ti’s

reweighting event is delayed until some time t (by a non-preemptive section), then at t either

(a) T j
i has a non-positive deviance (i.e., T j

i completes before its deadline), or (b) t is the first

time that T j
i becomes inactive (i.e., t = min(r(T j+1

i ), d(T j
i )).)

If Case (a) occurs, then Ti is negative-changeable at t, and T j
i is active at t. Hence, if

Ti increases its weight, then the only drift Ti will incur for this reweighting event results

from delaying the initiation of the event, i.e., at most emax(Ti). If Ti decreases its weight,

then delaying the reweighting event will not affect partial drift, since the enactment of the

reweighting event would occur when T j
i becomes inactive, regardless of whether the initiation

of the reweighting event was delayed or not.

Example (Figure 4.22). Consider the example in Figure 4.22, which depicts a one-

processor system scheduled by NP-PEDF with two tasks: T1, which has wt(T1) = 3/10 and

e(T1) = 3; and T2, which has e(T2) = 2 and an initial weight of 1/5 and initiates a weight

increase to 1/2 at time 4. Inset (a) depicts the NP-PEDF schedule. Inset (b) depicts the

CSW schedule. Inset (c) depicts the IDEAL schedule. Inset (d) depicts T2’s allocations in the

CSW and IDEAL schedules. Notice that T2’s weight change is delayed from time 4 to time 5

because T2 is non-preemptively executing at time 4. As a result, T2 is negative-changeable at

time 5. Also note that, T 2
2 is released when T2’s actual allocation equals its allocation in the

CSW schedule at time 7, i.e., when T 2
2 ’s deviance equals zero.

If Case (b), mentioned earlier, occurs, then either no job of Ti is active at t or T j+1
i is active

at t. If no job of Ti is active at t, then the change is enacted immediately, and the partial

drift that the task incurs from the reweighting event is a result of delaying the initiation of
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Figure 4.22: A one-processor example of drift in NP-PEDF, where T 1
2 completes before its

deadline. (a) The NP-PEDF schedule. (b) The CSW schedule. (c) The IDEAL schedule.
(d) T2’s allocations in the CSW and IDEAL schedules.

the event, i.e., emax(Ti). If T j+1
i is active at t, then since t = min(r(T j+1

i ), d(T j
i )), it must be

the case that r(T j+1
i ) = t. As a result, the weight change is enacted immediately and T j+1

i is

released with the new weight. Hence, the only partial drift that is incurred is as a result of

delaying the initiation of the reweighting event, i.e., at most emax(Ti).

Example (Figure 4.23). Consider the example in Figure 4.23, which depicts a partial

NP-PEDF schedule for a task Ti, which has an initial weight of 1/10 that increases to 1/2 at

time tc while the last-released job of Ti before tc, T j
i , is both active and being scheduled. Note

that T j
i has an execution time of four, and all jobs released after T j

i have an execution time of

one. Moreover, T j
i does not complete execution until after its deadline. Inset (a) depicts the

NP-PEDF schedule. Inset (b) depicts the CSW schedule. Inset (c) depicts the IDEAL schedule.

Inset (d) depicts Ti’s allocation in the CSW and IDEAL schedules. Because T j
i is not complete

by its deadline, the initiation of the weight change is delayed until t = d(T j
i ) = r(T j+1

i ).

Recall that, if a weight change is initiated when d(T j
i ) = r(T j+1

i ), then the weight change is

immediately enacted and T j+1
i is released with the new weight (even though T j

i has not yet

completed execution). Thus, the only source of partial drift is because the initiation of the
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Figure 4.23: A partial schedule of a one-processor example of drift in NP-PEDF. T j
i completes

after its deadline. (a) The NP-PEDF schedule. (b) The CSW schedule. (c) The IDEAL

schedule. (d) Ti’s allocations in the CSW and IDEAL schedules.

reweighting event is delayed.

In addition, similar reasoning holds for describing the impact of non-preemptability on the

difference between a task’s allocation in the IDEAL and PT schedules. From this reasoning,

the following theorem holds.

Theorem 4.6. In a NP-PEDF scheduled system, for any task Ti, and for any interval of time

[ta, tb), let Q denote the number of system resets plus the number of desired weight changes

for any task assigned to the same processor as Ti that are both initiated at or before tb and

enacted or canceled after ta. If Ti and tb satisfy one of Conditions (T-1), ...,(T-3), then the

absolute drift incurred by Ti is at most Q · X , where X is the largest execution time of any

task assigned to P[q] over this range.

It is important to note that Theorem 4.6 still holds even if a task Ti is not immediately

migrated from P[q] to P[k] at a system reset because its last-released job T j
i was executing

when the system was reset. The reason why is because Ti’s allocations in the IDEAL schedule

are based on its assigned processor. Thus, Ti does not incur any additional drift by remaining
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on its old processor. Similarly, no other task on P[q] or P[k] incurs additional drift by Ti

remaining assigned to P[q] while T j
i completes its execution. It is possible that if Ti remains

on P[q] while T j
i completes execution, then tasks on P[q] will receive a guaranteed weight that

is less than their desired weight; however, this difference is already captured by the MROE

metric and it is not considered to contribute to drift.

Again, if a task is never assigned to an over-utilized processor, then the partial drift of a

task always equals its drift. As a result, we can tighten Theorem 4.6.

Theorem 4.7. In a NP-PEDF scheduled system, for any task Ti that is never assigned to an

over-utilized processor and for any interval of time [ta, tb), let Q denote the number of system

resets plus the number of desired weight changes by Ti that are both initiated at or before tb

and enacted or canceled after ta. If Ti and tb satisfy one of Conditions (T-1), ...,(T-3), then

the absolute drift incurred by Ti is at most Q · emax(Ti).

4.10 Adjusting PEDF for Use with any Metric

In order to allow PEDF to determine the guaranteed weights of tasks via any non-MROE met-

ric, we must make some small changes to our adapative PEDF algorithm. Before continuing,

notice that the following property holds for the MROE metric.

QS (queue stability): At any reweighting event on a processor P[q], the guaranteed weight

of each non-reweighting task assigned to P[q] changes by the same multiple: old

new
, where

old (new) is the total desired weight of all tasks assigned to P[q] immediately before

(after) the reweighting event.

Recall that Rules P and N function by changing the future releases and deadlines of a

reweighted task. Any currently-queued job of such a task must be reinserted into the sched-

uler’s priority queue. Since QS guarantees that the guaranteed weight of all non-reweighted

tasks change by the same multiple, the jobs of these tasks already appear in the queue in the

correct order, so they do not have to be reinserted into the priority queue via a rule like Rule

P or N. (Moreover, if the concept of virtual time is introduced, then the deadlines of such jobs

do not have to be recomputed (Stoica et al., 1996).) In fact, the primary purpose of Rules
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P and N is to remove jobs from the scheduler’s priority queues as needed and reinsert them

into their proper places.

Example. Suppose that four tasks T1, T2, T3, and T4 with desired weights 0.5, 0.2, 0.2, and

0.2, respectively, are assigned to a processor, and at some time, T4 changes its desired weight

to 0.3. Under the MROE metric, T4’s weight change causes T1’s guaranteed weight to change

from 0.5/1.1 to 0.5/1.2, and the guaranteed weight of both T2 and T3 to change from 0.2/1.1

to 0.2/1.2. Thus, the guaranteed weights of T1, T2, and T3 all change by the same factor,

1.1/1.2 (the old total desired weight divided by the new total desired weight).

Under metrics that are not equivalent to MROE, QS does not hold . Consider the same

example as above except that the AROE metric is used. Then, T1’s guaranteed weight changes

from 0.5 − (1.1 − 1) = 0.4 to 0.5 − (1.2 − 1) = 0.3, while the guaranteed weights of both T2

and T3 remain at 0.2. Thus, T1 and T2 (as well as T1 and T3) change guaranteed weights by

a different multiple. As a result, T1 (or both T2 and T3) must change its (their) guaranteed

weight by a rule (i.e., Rule P or N) that may remove and reinsert currently-queued jobs into

the scheduler’s priority queue.

Since, from a reweighting perspective, the primary difference between the MROE metrics

and non-MROE metrics is the Property QS, and as we mentioned above, the primary objective

of Rules P and N is to remove a job from the scheduler’s priority queues and reinsert it into

its proper place, is possible to adapt Rules P and N to work for non-MROE metrics by using

them whenever a task changes its guaranteed weight (recall that under the MROE metric the

Rules P and N are only used when a task changes its desired weight). Thus, in the above

example under the AROE metric, when T4 changes its desired weight both T1 and T4 must

uses the modified Rules P and N to possibly remove jobs the scheduler’s priority queues and

reinsert them into their proper places. Under the MROE metric, only T4 had to use Rules P

and N.
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4.11 Time Complexity

As noted earlier, the time complexity for PEDF to partition N tasks onto M processors

is O(M + N log N). If we were to implement PEDF using binomial heaps, then the time

complexity to make a scheduling decision on a processor P[q] is O(log n), where n is the

number of tasks assigned to P[q]. Recall that when a task changes its desired weight using

either Rule P or N, one of its jobs may be removed from its processor’s priority queue and

reinserted. Thus, O(log n) time is required to change a task’s desired weight via Rule P or N

using the MROE metric. Under non-MROE metrics, O(n log n) time is required, due to the

potential need to re-enqueue jobs of non-reweighted tasks. Hence, the MROE metric has a

clear advantage over the non-MROE metrics.

4.12 Conclusion

In this chapter, we presented several different methods for calculating the error on an over-

utilized processor, presented a variant of the adaptable sporadic task model that allows the

guaranteed and desired weights of a task to differ, and presented rules for reweighting a task

under the PEDF and NP-PEDF scheduling algorithms. In addition, we proved scheduling

correctness and established tardiness and drift bounds for our reweighting rules.

We conclude this chapter with two important remarks. First, it is worth reiterating that

even though PEDF does not miss a deadline by our reweighting rules, if a task Ti is assigned to

an over-utilized processor, then there could possibly be an arbitrarily large difference between

Ti’s allocations in the actual schedule and a schedule in which it receives a fraction of the

system equal to its desired weight at each instant. This differs from GEDF-scheduled systems,

in which the difference between Ti’s allocations in the actual system and a system in which

it receives its desired weight at each instant is bounded (if we defined job deadlines based

on desired weights, then PEDF could have unbounded tardiness). Second, we do not claim

that our adaptive variant of PEDF is the final word regarding partitioned reweighting schemes.

However, we have tried hard to devise reasonable approaches for dealing with the fundamental

limitation discussed earlier in Section 4.2 to which such schemes are subject. Thus, we believe
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that our adaptive variant of PEDF is a good candidate partitioning approach.
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CHAPTER 5

PD2∗

In this chapter, we examine the issue of reweighting in Pfair-scheduled systems. Before

continuing, we first review the basics of Pfair scheduling.

5.1 Preliminaries

As was mentioned in Section 1.2.4, in Pfair-scheduled systems, processor time is allocated

in discrete time units, called quanta. The time interval [t, t + 1), where t is a nonnegative

integer, is called slot t. (Hence, time t refers to the beginning of slot t.) In this chapter, all

time values are assumed to indicate an integral number of quanta, unless specified otherwise.

Recall, from Section 1.2, that the function A(S, Ti, t1, t2) denotes the allocations to the

task Ti in the schedule S over the range [t1, t2). Similarly, we use A(S, T
[j]
i , t1, t2) and

A(S, τ , t1, t2) to denote, respectively, the total allocations to the “subtask” T
[j]
i (as defined

below) and to all tasks in the set τ over the range [t1, t2). As a shorthand, we denote

A(S, Ti, t, t + 1) as A(S, Ti, t). Let S be the Pfair schedule of the system τ ; if A(S, T
[j]
i , t) =

1, then we say that T
[j]
i is scheduled in slot t. For reference, all terms used in this chapter are

listed in Table 5.1.

5.1.1 Periodic Pfair Scheduling

In defining notions relevant to Pfair scheduling, we limit attention (for now) to periodic tasks,

all of which begin execution at time 0, where each task’s relative deadline equals its period. A

periodic task Ti with an integer period p(Ti) and an integer execution time e(Ti) has a weight

∗ Contents of this chapter previously appeared in preliminary form in the following paper:
Block, A., Anderson J., and Bishop, G. (2008a). Fine-Grained task reweighting on multiprocessors. Journal

of Embedded Computing , (to appear).



Notation Definition

T
[j]
i The jth subtask of Ti.

wt(Ti, t) Weight of Ti at time t.
wt(Ti) Weight of a task Ti that does not change its weight.

Swt(Ti, t) Scheduling weight of Ti at time t.

r(T
[j]
i ) Release time of T j

i .

d(T
[j]
i ) Deadline of T j

i .

w(T
[j]
i ) Window of T

[j]
i , i.e., [r(T

[j]
i ), d(T

[j]
i )).

b(T
[j]
i ) b-bit of T j

i .

C(B, T
[j]
i ) Time T

[j]
i completes in the schedule B.

D(T
[j]
i ) Group deadline of T j

i .
En(Ti, t) Last time at or before t that Ti was reset.

Id(T
[j]
i ) The index of the first subtask of Ti after En(Ti, t).

ω(T
[j]
i ) Subtask associated with D(T

[j]
i ).

θ(T
[j]
i ) IS separation between T

[j−1]
i and T

[j]
i .

SW Non-clairvoyant scheduling-weight scheduling algorithm. While a
task is active, this algorithm allocates the task its scheduling weight
at each instant.

SW SW schedule of a task system τ .
CSW Clairvoyant scheduling-weight scheduling algorithm. Only allocates

capacity to non-halted subtasks.
CSW CSW schedule of a task system τ .
IDEAL Ideal scheduling algorithm. While a task is active, this algorithm

allocates a task its weight at each instant.
I IDEAL schedule of a task system τ .
S Actual schedule (i.e., PD2 schedule) of task system τ .

A(B, T
[j]
i , t1, t2) Allocation to T

[j]
i in the schedule B over [t1, t2).

A(B, Ti, t1, t2) Allocation to Ti in the schedule B over [t1, t2).
drift(Ti, t) Drift of Ti: A(I, Ti, 0, t) − A(CSW , Ti, 0, t).

Ow Scheduling weight before a reweighting event.
Nw New weight after a reweighting event.

lag(S, I, Ti, t) Lag of Ti at time t: A(I, Ti, 0, t) − A(S, Ti, 0, t).
lag(Ti, t) Lag of Ti at time t when the actual and ideal schedules are implicit.

LAG(S, I, τ , t) Total lag of all tasks in τ at time t.
LAG(τ , t) Total lag of all tasks in τ at time t when the actual and ideal schedules

are implicit.

X(j) jth subtask in a chain of displacements.

〈X(j), tj , X
(j+1), tj+1〉 Displacement tuple.

Table 5.1: Brief description of the notation used in this chapter.
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(or utilization) wt(Ti) = e(Ti)/p(Ti), where 0 < wt(Ti) < 1. We say that a task is light if its

weight is in the range (0, 1/2), and heavy if its weight is in the range [1/2, 1). (For simplicity,

we ignore the possibility of a task having a weight of 1. Such tasks can be included, but at

the expense of more complicated notation in the reweighting rules.)

The ideal schedule for a periodic task system allocates wt(Ti) processing time to each

task in each time slot. More specifically, in the ideal schedule, E , of the task system τ ,

A(S, Ti, t) = wt(Ti) holds for any Ti ∈ τ and any time t ≥ 0.

In order to compare the difference in the task Ti’s allocations in the actual schedule S

and the ideal schedule E up to time t, we use the function lag(S, E , Ti, t) = A(E , Ti, 0, t) −

A(S, Ti, 0, t). Additionally, we use the function LAG(S, E , τ , t) =
∑

Ti∈τ lag(S, E , Ti, t) to

compare the differences in allocations for all tasks in the task set τ in schedules S and E . We

assume lag(S, E , Ti, 0) = 0. Thus, LAG(S, E , τ , t) can be rewritten as

LAG(S, E , τ , t) = LAG(S, E , τ , t − 1) + A(E , τ , t − 1) − A(S, τ , t − 1). (5.1)

For brevity, we denote lag(S, E , Ti, t) as lag(Ti, t) and LAG(S , E , τ , t) as LAG(τ , t), when S and

E are well-defined and obvious. (Later, we apply (5.1) in contexts where the ideal schedule is

defined to reflect changes caused by reweighting events.)

The schedule S is Pfair iff (∀Ti ∈ τ , t :: −1 < lag(Ti, t) < 1). Informally, each task’s

allocation error must always be less than one quantum. These error bounds are ensured by

treating each quantum of a task’s execution, henceforth called a subtask , as a schedulable

entity. Scheduling decisions are made only at quantum boundaries. The jth subtask of task

Ti, denoted T
[j]
i , where j ≥ 1, has an associated pseudo-release

r(T
[j]
i ) =

⌊

j − 1

wt(Ti)

⌋

and pseudo-deadline

d(T
[j]
i ) =

⌈

j

wt(Ti)

⌉

.

(For brevity, we often drop the prefix “pseudo-.”) It can be shown that if each subtask T
[j]
i
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Figure 5.1: A(I, T
[j]
i , t) for a (a) periodic and (b) IS task T1 of weight 5/16.

is scheduled in the interval w(T
[j]
i ) = [r(T

[j]
i ), d(T

[j]
i )), termed its window , then (∀Ti ∈ τ , t ::

−1 < lag(Ti, t) < 1) is maintained (Baruah et al., 1996).

Example (Figure 5.1). Consider the example in Figure 5.1, which depicts the releases and

deadlines for a task T1, which has wt(T1) = 5/16. (This figure also depicts per-slot ideal

allocations for each subtask, which are considered below.) In this example, r(T
[2]
1 ) = 3,

d(T
[2]
1 ) = 7, and w(T

[2]
1 ) = [3, 7). Thus, T

[2]
1 must be scheduled in slots 3–6. (Tasks execute

sequentially, so if T
[1]
1 is scheduled in slot 3, then T

[2]
1 must be scheduled in slots 4–6.)

5.1.2 The Intra-Sporadic Task Model

The intra-sporadic (IS) task model (Srinivasan and Anderson, 2006) generalizes the well-

known sporadic task model (Mok, 1983) by allowing subtasks to be released late. This extra

flexibility is useful in many applications where processing steps may be delayed. Fig. 5.1(b)

illustrates the Pfair windows of an IS task of weight 5/16 in which the release of T
[2]
1 is delayed

by two quanta and the release of T
[3]
1 is delayed by an additional quantum. Each subtask

T
[j]
i of an IS task has an offset , θ(T

[j]
i ), that gives the amount by which its release has been

delayed. For example, in Figure 5.1(b), θ(T
[1]
1 ) = 0, θ(T

[2]
1 ) = 2, and for j ≥ 3, θ(T

[j]
1 ) = 3.
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The release and deadline of a subtask T
[j]
i of an IS task Ti are defined as

r(T
[1]
i ) = θ(T

[1]
i ) (5.2)

r(T
[j+1]
i ) = (θ(T

[j+1]
i ) − θ(T

[j+1]
i )) + d(T

[j]
i ) −

⌈

j

wt(Ti)

⌉

+

⌊

j

wt(Ti)

⌋

(5.3)

d(T
[j]
i ) = = r(T

[j]
i ) +

⌈

j

wt(Ti)

⌉

−
⌊

j − 1

wt(Ti)

⌋

(5.4)

where the offsets satisfy the property k ≥ j ⇒ θ(T
[k]
i ) ≥ θ(T

[j]
i ). A subtask T

[j]
i is active at

time t iff r(T
[j]
i ) ≤ t < d(T

[j]
i ), and a task Ti is active at t iff it has an active subtask at t. For

example, in Figure 5.1(b), Ti is active in every slot except slot 4. If θ(T
[j+1]
i ) > θ(T

[j]
i ), then

we say that there is an IS separation between T
[j]
i and T

[j+1]
i . For example, in Figure 5.1(b),

there is an IS separation between T
[1]
1 and T

[2]
1 , as well as between T

[2]
1 and T

[3]
1 . (Note

that an extension of the IS model exists in which a subtask T
[j]
i can become eligible before

r(T
[j]
i ) (Srinivasan and Anderson, 2006). All the results of this chapter can be easily extended

to such a model, but for clarity, we do not consider this extension to the IS model.)

5.1.3 The PD2 Algorithm

The PD2 Pfair scheduling algorithm (Srinivasan and Anderson, 2006) is optimal for scheduling

IS tasks on an arbitrary number of processors. It prioritizes subtasks on an earliest-pseudo-

deadline-first (EPDF) basis, and uses two tie-breaking rules: the b-bit and the group deadline.

The b-bit of the subtask T
[j]
i is defined as

b(T
[j]
i ) =

⌈

j

wt(Ti)

⌉

−
⌊

j

wt(Ti)

⌋

. (5.5)

The group deadline of the subtask T
[j]
i of a task where wt(Ti) ≥ 1/2 is defined as

D(T
[j]
i ) =















0, wt(Ti) < 1/2

θ(T
[j]
i ) +

⌈
ll

j
wt(Ti)

m

·(1−wt(Ti))
m

1−wt(Ti)

⌉

, wt(Ti) ≥ 1/2
. (5.6)
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b(T
[j]
i ) is 1 in a periodic task system (or an IS system where θ(T

[j]
i ) = 0 for every subtask), if

T
[j]
i ’s window overlaps T

[j+1]
i ’s, and is 0 otherwise. For example, in both insets in Figure 5.1,

b(T
[j]
i ) = 1 for 1 ≤ i ≤ 4 and b(T

[5]
i ) = 0. If two subtasks have equal deadlines, then a

subtask with a b-bit of 1 is favored over one with a b-bit of 0. Notice that, in the absence

of IS separations, r(T
[j+1]
i ) = d(T

[j]
i ) − b(T

[j]
i ). For example, in Figure 5.1(a), r(T

[2]
i ) =

d(T
[1]
i ) − b(T

[1]
i ) = 4 − 1 = 3, and r(T

[6]
i ) = d(T

[5]
i ) − b(T

[5]
i ) = 16 − 0 = 16. Also, if

b(T
[j]
i ) = 1, θ(T

[j+1]
i ) ≥ θ(T

[j]
i ) + 1, and T

[j+1]
i exists, then r(T

[j+1]
i ) = d(T

[j]
i ). For example,

in Figure 5.1(b), r(T
[3]
1 ) = d(T

[2]
1 ).

In a periodic task system, the group-deadline of the subtask T
[j]
i of a heavy task Ti

represents the slot after which Ti will not have two overlapping subtask windows, because

some subtask has either a b-bit of 0 or a window length of three. (Note that, by (5.6), if Ti

is light, then all of its subtasks have a group deadline of zero.) If two subtasks have equal

deadlines and b-bits, then subtask with a larger group deadline is favored over a subtask with

a smaller group deadline. Further ties are broken arbitrarily. By breaking ties in this manner,

the PD2 scheduling algorithm reduces the impact current scheduling decisions have on future

ones. Notice that the subtask associated with the group deadline of T
[j]
i , T

[k]
i , satisfies one of

the following two conditions (assuming Ti is heavy):

(ω-i) r(T
[k]
i ) > r(T

[j]
i ) and d(T

[k]
i ) − r(T

[k]
i ) = 3.

(ω-ii) r(T
[k]
i ) ≥ r(T

[j]
i ), d(T

[k]
i ) − r(T

[k]
i ) = 2, and b(T

[k]
i ) = 0.

Example (Figure 5.2). Consider the example in Figure 5.1, which depicts the releases and

deadlines for the task T1, which has wt(T1) = 7/9. (Again, the per-slot allocations are

considered later.) Notice that, for j ∈ {1, 2, 3}, D(T
[j]
1 ) = 5, and for j ∈ {4, 5, 6, 7}, D(T

[j]
1 ) =

9. T
[4]
1 is the subtask associated with the group deadline of T

[1]
1 , ..., T

[3]
1 and satisfies condition

(ω-i). T
[7]
1 is the subtask associated with the group deadline of T

[4]
1 , ..., T

[7]
1 and satisfies

condition (ω-ii).

We use ω(T
[j]
i ) to denote the subtask that is associated with the group deadline of T

[j]
i .
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Figure 5.2: A(I, T
[j]
i , t) for a periodic task with weight 7/9.

Specifically,

ω(T
[j]
i ) =











first subtask that satisfies (ω-i) or (ω-ii) for T j
i , if D(T

[j]
i ) > 0

undefined, if D(T
[j]
i ) = 0

(5.7)

For example, in Figure 5.2, for j ∈ {1, 2, 3}, ω(T
[j]
1 ) = T

[4]
1 , and for j ∈ {4, 5, 6, 7},

ω(T
[j]
1 ) = T

[7]
1 . Notice that, if a subtask has a b-bit of 0, then its group deadline is its own

deadline (e.g., in Figure 5.2, D(T
[7]
1 ) = d(T

[7]
1 ) = 9); however, if a subtask has a window

length of three, then its group deadline is after its deadline (e.g., D(T
[4]
1 ) = 9 ≥ 6 = d(T

[4]
1 )).

It is easy to see that for IS task systems, ω(T
[j]
i ) is defined if Ti is heavy and undefined if

Ti is light. However, this will not necessarily hold for the adaptable IS task model, which is

defined in Section 5.2.

From the definition of a group deadline it is not difficult to show that the following

properties holds.

(GD-1) For any T
[j]
i such that D(T

[j]
i ) > 0, if for all T

[q]
i ∈ {T [j]

i , ..., ω(T
[j]
i )}, θ(T

[q]
i ) = θ(T

[j]
i )

(i.e., there are no IS separations between subtasks until the group deadline), then:

(i) r(ω(T
[j]
i )) = D(T

[j]
i ) − 2;

(ii) either d(ω(T
[j]
i )) = D(T

[j]
i ) and b(ω(T

[j]
i )) = 0 (i.e., ω(T

[j]
i ) has a window length of
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A(IIS, T
[j]
i , t)

1: if (t < r(T
[j]
i )) ∨ (t ≥ d(T

[j]
i )) then

2: A(IIS, T
[j]
i , t) := 0

3: else if t = r(T
[j]
i ) then

4: if j = 1 ∨ b(T
[j−1]
i ) = 0 then

5: A(IIS, T
[j]
i , t) := wt(Ti)

6: else

7: A(IIS, T
[j]
i , t) :=

wt(Ti) − A(IIS, T
[j−1]
i , d(T

[j−1]
i ) − 1)

8: fi

9: else

10: A(IIS, T
[j]
i , t) :=

min(wt(Ti), 1 − A(IIS, T
[j]
i , 0, t))

11: fi

Figure 5.3: Pseudo-code defining A(IIS, T
[j]
i , t).

two and a b-bit of zero) or d(ω(T
[j]
i )) = D(T

[j]
i )+1 and b(ω(T

[j]
i )) = 1 (i.e., ω(T

[j]
i )

has a window length of three).

(GD-2) If D(T
[j]
i ) > 0, then D(T

[j]
i ) ≥ d(T

[j]
i ) + b(T

[j]
i ).

5.1.4 IS Ideal Schedule

Ideal allocations within the IS task model are defined so that the cumulative allocation for

one subtask is one and the total per-slot allocation is at most the weight of the corresponding

task (Srinivasan and Anderson, 2006). The total allocation to a task in a given time slot

equals the total allocation to all of its subtasks in that slot. Thus, for any ideal schedule E ,

A(E , Ti, t) =
∑

T
[j]
i ∈Ti

A(E , T
[j]
i , t).

For example, in Figure 5.1(a), A(E , Ti, 6) = A(E , T1, 6) + A(E , T2, 6) + A(E , T3, 6) + ... =

0 + 2/16 + 3/16 + 0 + ... = 5/16. Thus, per-task and per-task-set allocations in the ideal

schedule E over an arbitrary interval can be defined by simply defining A(E , T
[j]
i , t) for an

arbitrary subtask T
[j]
i and time slot t.

For an arbitrary IS task system τ , we let IIS denote the ideal schedule of τ . A(IIS, T
[j]
i , u)

can be defined using an arithmetic expression, but we have opted instead for a more intuitive
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pseudo-code-based definition in Figure 5.3. The ideal IS schedule allocates each subtask T
[j]
i

some amount of processing time in each slot of its window. For slots other than r(T
[j]
i ) and

d(T
[j]
i )−1, this allocation is wt(Ti). T

[j]
i ’s allocation in slots r(T

[j]
i ) and d(T

[j]
i )−1 are adjusted

so that

(i) T
[j]
i ’s entire allocation (across all slots in its window) is one.

(ii) T
[j]
i ’s allocation in slot r(T

[j]
i ) plus T

[j−1]
i ’s allocation in slot d(T

[j−1]
i )− 1 equals wt(Ti)

(assuming T
[j]
i and T

[j−1]
i exist).

(iii) T
[j]
i ’s allocation in slot d(T

[j]
i )− 1 plus T

[j+1]
i ’s allocation in slot r(T

[j+1]
i ) equals wt(Ti)

(assuming T
[j]
i and T

[j+1]
i exist).

Examples of such allocations are given in Figure 5.1.

5.1.5 Dynamic Task Systems

The dynamic IS task model is an extension of the IS model in which tasks can leave and join

by conditions defined in (Srinivasan and Anderson, 2005), which are stated below.

J: (join condition) A task Ti can join at time t iff the sum of the weights of all tasks after

joining is at most M .

L: (leave condition) Let T
[j]
i denote the last-scheduled subtask of Ti. If Ti is light, then Ti

can leave at time t iff t ≥ d(T
[j]
i ) + b(T

[j]
i ). If Ti is heavy, then Ti can leave at time t iff

t ≥ D(T
[j]
i ).

For example, in Figure 5.1(b), if T1 were to leave after T
[1]
1 , then T1 could not leave until time

5 because 5 = d(T
[1]
1 )+ b(T

[1]
1 ) = 4+ 1. Moreover, if T1 were to leave after T

[5]
1 , then Ti could

not leave until time 19 because 19 = d(T
[5]
1 ) + b(T

[5]
1 ) = 19 + 0.

Theorem 5.1 (From (Srinivasan and Anderson, 2005)). PD2 correctly schedules any dynamic

IS task system satisfying J and L.

By Theorem 5.1, a task may be reweighted by leaving with its old weight and rejoining

with its new weight.
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5.2 Adaptable Task Model

In this section, we introduce the adaptable IS (AIS) task model. The AIS task model is an

extension of IS task model, where the weight of each task Ti, wt(Ti, t), is a function of time t.

(The AIS task model is similar to the adaptable sporadic task model presented in Chapter 3,

except that the AIS task model is designed for Pfair-scheduled systems.) For brevity, we use

wt(Ti) to denote the value of a task Ti that never changes its weight.

Before continuing, it is important to mention that while for periodic and IS tasks the

weight of a task is bounded by the range (0, 1), for AIS tasks, it is possible for a task’s weight

to equal 0. When a task’s weight equals 0, we assume, without loss of generality, that it has

left the system and will not return.

A task Ti changes weight or reweights at time t+1 if wt(Ti, t) 6= wt(Ti, t + 1). If a task Ti

changes weight at a time tc between the release and the deadline of some subtask T
[j]
i , then

the following two actions may occur:

(i) If T
[j]
i has not been scheduled by tc, then T

[j]
i may be “halted” at tc.

(ii) r(T
[j+1]
i ) may be redefined to be less than d(T

[j]
i ) − b(T

[j]
i ).

In addition, if a heavy task, Ti, changes its weight at time tc and T
[j]
i is the last-released

subtask of Ti, then the following three additional actions may occur:

(iii) The window length of every subtask released in the range {r(T [j]
i ) + 1, ...,D(T

[j]
i ) − 2}

may have a window length of two, a b-bit of 1, and a group deadline of D(T
[j]
i ) regardless

of the new weight of the task.

(iv) No subtask of Ti will be released at time D(T
[j]
i ) − 1.

(v) If Ti decreases its weight, then no task, other than Ti, can use the “freed” capacity until

D(T
[j]
i ).

As we discuss shortly, the reason why the above actions may occur is because the releases,

deadlines, b-bits, and group deadlines of subtasks may change as a result of a reweighting

event. The reweighting rules we present at the end of this section state the conditions under
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Figure 5.4: The per-slot SW allocations for three different AIS tasks. (a) T1 changes its

weight from 3/19 to 2/5 and T
[2]
1 halts. (b) T2 changes its weight from 3/19 to 2/5 and T

[2]
1

does not halt. (c) T3 does not change its weight from 2/5.

which the above actions may occur and the number of slots before d(T
[j]
i ) − b(T

[j]
i ) that

subtask T
[j+1]
i can be released.

Halting. If T
[j]
i is halted before it is scheduled, then it is never scheduled. (Note that a

subtask can only be halted if it has not yet been scheduled in the PD2 schedule.) Since a

subtask is only halted as a result of a reweighting event, if we do not have a priori knowledge

of such events, then we cannot determine whether a released subtask will be halted in the

future. It is important to note that we consider a subtask T
[j]
i to be active at time t only if

r(T
[j]
i ) ≤ t < d(T

[j]
i ) and T

[j]
i has not been halted by t.

Example (Figure 5.4). Consider the example in Figure 5.4, which depicts three different

tasks. Inset (a) depicts a task T1, which has an initial weight of 3/19 and at time 8 both halts

its current subtask and changes its weight to 2/5. Inset (b) depicts a task T2, which has an

initial weight of 3/19 and at time 8 changes its weight to 2/5 but but does not halt the current

subtask. Inset (c) depicts a periodic task T3, which has wt(T3) = 2/5. The dotted window

lines indicate that the window would have existed if the subtask task did not reweight. Notice

that, in inset (a), we have no knowledge when T
[2]
1 is released at time 6 that it will be halted

at time 8. (We will consider the per-slot SW allocations depicted in the figure later.)

Definition 5.1 (Initiated, Enacted, Freed Capacity, and Reset). When a task

reweights, there can be a difference between when it “initiates” the change, when the change
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is “enacted,” and when any newly-available capacity is “freed.” The time at which the change

is initiated is a user-defined time; the time at which the change is enacted and the capacity

is freed (in the case of a weight decrease) are both dictated by a set of conditions discussed

shortly. We use the scheduling weight of a task Ti at time t, denoted Swt(Ti, t), to represent

the “last enacted weight of Ti.” Formally, Swt(Ti, t) equals wt(Ti, u), where u is the last time

at or before t that a weight change was enacted for Ti. (For the purposes of this definition,

we assume an initial weight change occurred for Ti when it initially joined the system.) It is

important to note that, we henceforth compute subtask deadlines and releases using schedul-

ing weights. If Ti decreases its scheduling weight from Ow to Nw, then until the capacity has

been freed, no other task can use the capacity Nw −Ow gained by decreasing Ti’s scheduling

weight. A weight change is finalized by “resetting” the corresponding task. When a task Ti

is reset at time t, its future releases and deadlines are changed so that it is as though the

Ti joined at time t. The times at which a task can be reset are described in the following

reweighting rules. We use En(Ti, t) to denote the last time at or before time t that Ti was

reset, and Id(T
[j]
i ) to denote the smallest index k such that En(Ti, r(T

[j]
i )) ≤ r(T

[k]
i ) holds.

Example (Figure 5.4). In Figure 5.4(b), En(T2, t) = 0, for 0 ≤ t < 8; for j ∈ {1, 2},

Id(T
[j]
2 ) = 1; for t ≥ 8, En(T2, t) = 8; and for j ∈ {3, 4, 5}, Id(T

[j]
2 ) = 3. Note that, if

Id(T
[j]
i ) = j, then T

[j]
i is the first subtask of Ti released at or after a weight change for Ti has

been enacted.

Example (Figure 5.5). Consider the one-processor example in Figure 5.5, which consists of

three tasks: T1, which has wt(T1) = 1/2; T2, which has an initial weight of 1/5 that increases

to 3/10 at time 5; and T3, which has an initial weight of 3/10 that initiates a weight decrease

to 1/5 at time 2 that is enacted at time 5. The capacity gained from T3’s weight decrease is

not freed until time 5. Thus, T2 cannot increase its weight to 3/10 until this time.

Definition 5.2 (Complete). If S is a schedule for the task system τ , then a subtask T
[j]
i of

Ti ∈ τ is said to have completed by time t in S iff t ≥ r(T
[j]
i ) and one of the following holds:

(i) T
[j]
i has been allocated one quantum by t in S; or (ii) T

[j]
i is halted by time t. We use the

function C(S, T
[j]
i ) to denote the earliest (integral) time at which T

[j]
i is complete in S.
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Figure 5.5: A one-processor system with three tasks: T1, which has wt(T1) = 1/2; T2, which
has an initial weight of 1/5 that increases to 3/10 at time 5; and T3, which has an initial
weight of 3/10 that initiates a weight decrease to 1/5 at time 2 that is enacted at time 5.

Example (Figure 5.6). Consider the example in Figure 5.6, which depicts a one-processor

PD2 schedule for two tasks: T1, which has wt(T1) = 2/5, and T2, which has an initial weight

of 2/5 that increases to 1/2 at time 3 by halting T
[2]
2 . In this example, T

[1]
1 is complete in the

PD2 schedule by time 1 because it is scheduled in slot 0, whereas T
[1]
2 does is not complete in

the PD2 schedule until time 2 because it is not scheduled until slot 1. Notice that, since T
[2]
2

is halted at time 3, it is complete at time 3 even though it is never scheduled.

For an adaptable task, the deadline, b-bit, release, and group deadline of a subtask T
[j]
i ,

respectively, are defined by (5.8)–(5.12) below, where z = Id(T
[j]
i )−1, θ(T

[j+1]
i ) ≥ θ(T

[j]
i ) ≥ 0.

d(T
[j]
i ) = r(T

[j]
i ) +

⌈

j − z

Swt(Ti, r(T
[j]
i ))

⌉

−
⌊

j − z − 1

Swt(Ti, r(T
[j]
i ))

⌋

(5.8)

b(T
[j]
i ) =

⌈

j − z

Swt(Ti, r(T
[j]
i ))

⌉

−
⌊

j − z

Swt(Ti, r(T
[j]
i ))

⌋

(5.9)
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r(T
[1]
i ) = θ(T

[1]
i ) (5.10)

r(T
[j+1]
i ) = d(T

[j]
i ) − b(T

[j]
i ) +

(

θ(T
[j+1]
i ) − θ(T

[j]
i )
)

(5.11)

D(T
[j]
i ) =







































0, if Swt(Ti, r(T
[j]
i )) < 1/2











&&

j−z

Swt(Ti,r(T
[j]
i

))

’

·
“

1−Swt(Ti,r(T
[j]
i ))

”

’

1−Swt(Ti,r(T
[j]
i ))











+
(

θ(T
[j]
i ) − θ(T

[z+1]
i ) + r(T

[z+1]
i )

)

, if Swt(Ti, r(T
[j]
i )) ≥ 1/2

(5.12)

It is important to note that, since reweighting events may change a subtask’s release time,

b-bit, deadline, and group deadline, values obtained from all of these formulas are subject to

be changed by the reweighting rules presented in Section 5.4.

The above equations differ (5.2)–(5.6) in two ways. First, (5.8), (5.9), and (5.12) define

the deadline, b-bit, and group-deadline of a subtask based on the scheduling weight of the

task at the time the subtask is released . Second, after a task enacts a weight change, its

release, deadline, b-bit, and group deadline are defined as though a new task with the new

weight joined the system. (Recall that a subtask T
[j]
i is the first-released subtask after the

task is reset iff Id(T
[j]
i ) = j.) For example, in Figure 5.4(a), after T1 changes its weight to 2/5,

the subtasks T
[3]
1 –T

[5]
1 have similar releases, deadlines, and b-bits as the first three subtasks

of the task T3 with weight 2/5 in inset (c).
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A(SW , T
[j]
i , t)

1: if t < r(T
[j]
i ) ∨ t ≥ C(SW,T

[j]
i ) then

2: A(SW , T
[j]
i , t) := 0

3: else if t = r(T
[j]
i ) then

4: if j = Id(T
[j]
i ) ∨ b(T

[j−1]
i ) = 0 then

5: A(SW , T
[j]
i , t) := Swt(Ti, t)

6: else

7: A(SW , T
[j]
i , t) := Swt(Ti, t)−

A(SW , T
[j−1]
i , C(SW,T

[j−1]
i ) − 1)

8: fi

9: else

10: A(SW , T
[j]
i , t) :=

min(Swt(Ti, t), 1 − A(SW , T
[j]
i , 0, t))

11: fi

Figure 5.7: Pseudo-code defining the A(SW , T
[j]
i , t).

5.3 SW Scheduling Algorithm

Just as with the adaptable sporadic task model in Chapters 3–4, in order to prove correctness

and drift properties, we introduce the scheduling-weight (SW) scheduling algorithm for the

AIS task model. Just as with the adaptable sporadic task model, we use SW , to denote the

SW schedule for a given system.

As with IIS, A(SW , T
[j]
i , t) can be defined mathematically, but we opt instead for a

pseudo-code-based definition, shown in Figure 5.7. There are three differences between

the definitions of A(IIS, T
[j]
i , t) (in Figure 5.3) and A(SW , T

[j]
i , t): in lines 5, 7, and 10

(in Figure 5.7), Swt(Ti, t) is used instead of wt(Ti); and in lines 1 and 7 (in Figure 5.7),

C(SW,T
[j]
i ) is used instead of d(T

[j]
i ). These two changes account for Ti’s time-varying weight.

The final change is that, in line 4, j = Id(T
[j]
i ) is used instead of j = 1. This change causes the

per-slot allocations of T
[z]
i , where z = Id(T

[j]
i ), to equal that of a task that joins the system

at r(T
[z]
i ).

Example (Figure 5.4). In Figure 5.4(a), since Id(T
[3]
1 ) = 3, by lines 4 and 5,

A(SW , T
[3]
1 , r(T

[3]
1 )) = Swt(Ti, r(T

[3]
1 )) = 2/5, which is the same per-slot allocation that T

[1]
3

in Figure 5.4(c) receives at time r(T
[1]
3 ).

Before continuing, there are two important issues to note. First, in the absence of reweight-

ing events, C(SW,T
[j]
i ) = d(T

[j]
i ). Second, when a task is halted via the reweighting rules
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given below, it is halted in both the PD2 and SW schedules. Since SW is not clairvoyant,

it will allocate “normally” to a subtask until that subtask halts, after which the subtask’s

per-slot allocations are zero, as with T
[2]
1 in Figure 5.4(a). Also note that, in Figure 5.4(b),

T
[2]
2 is complete at time 10, since A(SW , T

[2]
2 , 0, 10) = 1. Several other examples of SW

allocations are also given in Figure 5.4.

5.4 Reweighting Rules

In this section, we introduce three reweighting rules that improve upon leave/join reweighting

by changing future subtask releases. It is important to note that, in the following rules, for a

given subtask T
[j]
i , the value d(T

[j]
i ) is used to determine the scheduling priority of T

[j]
i in the

PD2 algorithm and does not change once T
[j]
i has been released. Furthermore, C(SW,T

[j]
i )

is used for some of these rules to determine the release time of T
[j]
i ’s successor, T

[j+1]
i . As

mentioned earlier, the completion time of a subtask cannot be accurately predicted without a

priori knowledge of weight changes; however, in the reweighting rules below, the completion

time of a subtask in SW is only used after the subtask has completed, and therefore it is

well-defined.

Assumptions and definitions. Let τ be a task system in which some task Ti initiates a

weight change from weight Ow to weight Nw at time tc. If there does not exist a subtask T
[j]
i

of Ti such that r(T
[j]
i ) ≤ tc, then the weight change is enacted immediately; otherwise, let

T
[j]
i denote the last-released subtask of Ti. For simplicity, we assume that the first subtask

after a weight change by the corresponding task is released as early as possible. In addition,

we assume that for a heavy task all subtasks released before the group deadline are released as

early as possible. These assumptions can be removed at the cost of more complex notation.

The choice of which rule to apply depends on the weight of Ti, whether tc ≤ d(T
[j]
i ),

and whether T
[j]
i has been scheduled by tc. We say that Ti is heavy-changeable at time tc

from Ow to Nw if tc < D(T
[j]
i ) (recall that light tasks have a group deadline of 0). If Ti is

not heavy-changeable at time tc and d(T
[j]
i ) ≤ tc, then the weight change is enacted at time

max(tc, d(T
[j]
i ) + b(T

[j]
i )). If D(T

[j]
i ) ≤ tc < d(T

[j]
i ) and T

[j]
i has been scheduled by time tc,
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then we say that Ti is negative-changeable at time tc from weight Ow to Nw; otherwise, if T
[j]
i

has not been scheduled by tc, then we say Ti is positive-changeable at time tc from Ow to

Nw.1

Because Ti initiates a weight change at time tc, wt(Ti, tc) = Nw holds; however, Ti’s

scheduling weight does not change until the weight change has been enacted, as specified in

the rules below. Note that, if tc occurs between the initiation and enaction of a previous

reweighting event of Ti, then the previous event is canceled , i.e., treated as if it had not

occurred. As discussed later, any “error” associated with skipping a reweighting event like

this is accounted for when determining drift.

5.4.1 Positive- and Negative-Changeable

We first describe the rules for reweighting positive- and negative-changeable tasks, then, in

Section 5.4.2, describe the rule for reweighting heavy-changeable tasks. Notice that, for both

of the rules below, the capacity gained by decreasing a task’s weight is freed when the change

is enacted.

Rule P: If Ti is positive-changeable at time tc from weight Ow to Nw, Ti has released a

subtask prior to tc and T
[j]
i is the last such subtask, tc < d(T

[j]
i ), and j > 1, then at time

tc, subtask T
[j]
i is halted and at time max(tc,min(C(SW,T

[j−1]
i ), d(T

[j−1]
i )) + b(T

[j−1]
i )),

Ti’s weight change is enacted, Ti is reset, and a new subtask T
[j+1]
i is released. If j = 1,

then at time tc, T
[j]
i is halted, Ti’s weight change is enacted, Ti is reset, and a new

subtask T
[j+1]
i is released.

Rule N: If Ti is negative-changeable at time tc from weight Ow to Nw, Ti has released a

subtask prior to tc and T
[j]
i is the last such subtask, and tc < d(T

[j]
i ), then one of

two actions is taken: (i) if Nw > Ow, then the weight change is immediately enacted,

and at time C(SW,T
[j]
i ) + b(T

[j]
i ), Ti is reset and a new subtask T

[j+1]
i is released; (ii)

otherwise, at time C(SW,T
[j]
i ) + b(T

[j]
i ), Ti is reset, the change is enacted, and a new

subtask T
[j+1]
i is released.

1Originally, in (Block et al., 2008a), a negative-changeable task was called ideal-changeable and a task that
was positive-changeable was called omission-changeable. The names have been changed here to be consistent
with the reweighting rules for GEDF and PEDF.
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Figure 5.8: A four-processor illustration of Rule P under PD2. C is a set of 19 tasks with a
weight of 3/20 each. (a) T1 leaves at time 8 and T2 joins at time 10. (b) T1 reweights to 1/2
via rule P at slot 10.

Both rules are extensions of Rules L and J given earlier in Section 5.1. However, the rules

above exploit the specific circumstances that occur when a task changes its weight to “short

circuit” Rules L and J, so that reweighting is accomplished faster. By Rule L, Ti can leave

at time d(T
[k]
i ) + b(T

[k]
i ), where T

[k]
i is its last-scheduled subtask. We can easily extend Rule

L to show that Ti can leave at time C(SW,T
[k]
i ) + b(T

[k]
i ). If task Ti (as defined above) is

positive-changeable, then its subtask T
[j]
i has not been scheduled by time tc. Such a task can

be viewed as having “left” the system at time max(tc,C(SW,T
[j−1]
i ) + b(T

[j−1]
i )), in which

case, it can rejoin the system immediately.

Example (Figure 5.8). Consider the four-processor example in Figure 5.8, which illustrates

Rule P. Inset (a) depicts a set C of 19 tasks each with a weight of 3/20, a task T1 with a weight

of 3/20 that leaves at time 8, and T2 that joins at time 10 with a weight of 1/2. Inset (b)

depicts the same set C plus a task T1 that has an initial weight of 3/20 that increases its

weight to 1/2 at time 10 via Rule P. Notice that T1 and T2 in inset (a) are scheduled in the

same time slots as T1 in inset (b). The top of inset (b) depict T1’s per-slot allocations for the

SW, CSW, and IDEAL scheduling algorithms as well as T1’s drift. The terms CSW, IDEAL,

and drift are defined later in Section 5.6.
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Figure 5.9: A four-processor illustration of Rule N under PD2. C is a set of 19 tasks with a
weight of 3/20 each. (a) T1 increases its weight from 3/20 to 1/2 at time 10 via rule N. (b)
T1 decreases its weight from 2/5 to 3/20 via rule N at time 1.

If Ti is negative-changeable, then by Rule L, it may “leave and rejoin” with a new weight

at time d(T
[j]
i ) + b(T

[j]
i ), i.e., its weight change can be enacted at time d(T

[j]
i ) + b(T

[j]
i ).

However, if C(SW,Tj) < d(T
[j]
i ), then Ti may “leave and rejoin” with a new weight at time

C(SW,T
[j]
i ) + b(T

[j]
i ).

Example (Figure 5.9). Consider the four-processor example in Figure 5.9, which illustrates

Rule N. Inset (a) depicts of a set C of 19 tasks each with a weight of 3/20 and a task T1 that

increases its weight from 3/20 to 1/2 via Rule N. Inset (b) depicts of the same set C and a

task T1 that decreases its weight from 2/5 to 3/20. The top of each inset depict T1’s per-slot

allocations for the SW, CSW, and IDEAL scheduling algorithms as well as T1’s drift. Again,

the terms CSW, IDEAL, and drift are defined later in Section 5.6.

Notice that the difference in Rule N between Cases (i) and (ii) is that, when a task increases

its weight, the weight change is immediately enacted, whereas when a task decreases its weight,

its weight change is not enacted until time C(SW,T
[j]
i )+b(T

[j]
i ). Thus, Ti’s scheduling weight

is redefined at different times.
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Figure 5.10: A 35-processor system consisting of a set A with nine tasks of weight 7/9; B
with 35 tasks with an initial weight of 4/5 that decreases to 0 at time 2; and C with 35 tasks
of weight 4/5 that joins at time 3. All tie-breaks go against tasks in set A.

5.4.2 Heavy-Changeable

One of the major complications with changing the weight of a heavy task is that when such a

task decreases its weight, capacity cannot be freed until the group deadline of the last-released

subtask of that task. If this capacity is freed sooner, then a subtask may miss its deadline.

Example (Figure 5.10). Consider the example in Figure 5.10, which depicts a 35-processor

system that is assigned 79 tasks: set A, which consists of nine tasks each with a of weight

7/9; set B, which consists of 35 tasks each with an initial weight of 4/5 that decreases to 0

at time 2, with the corresponding capacity being freed at time 3; and set C, which consists

of 35 tasks each with a weight 4/5 that all join the system at time 3. All tie-breaks (not

resolved by by PD2) go against tasks in set A. Since the first subtasks of tasks in both A

and B have a group deadline at time 5 and all ties are broken against tasks in A, the tasks

in B are scheduled in the slot 0. Also, since the capacity gained by decreasing the weight of

tasks in set B to 0 has been freed before the group deadline of the tasks in B, the tasks in

set C can join the system at time 3. As a result, a task in set C misses its deadline at time 3.

If the capacity gained from decreasing the weight of tasks in set B had not been freed until

194



time 5 (i.e., the group deadline of tasks in set B), then all deadline misses would have been

avoided.

In light of this complication, we propose the following rule for reweighting heavy-

changeable tasks.

Rule H: If Ti is heavy-changeable at time tc from weight Ow to Nw and T
[j]
i both exists and

is the last-released subtask of Ti, then the following actions occur.

1. If Ow > Nw, then the capacity of Ow − Nw is not freed until time D(T
[j]
i ).

2. If T
[j]
i has been scheduled by time tc, then at time max(tc, d(T

[j]
i ) + b(T

[j]
i )), the

weight change is enacted, Ti is reset, and T
[j]
i is complete in the SW schedule

(i.e., it stops receiving allocations); otherwise, at time tc, T
[j]
i is halted, and at

time max(tc, d(T
[j−1]
i )+ b(T

[j−1]
i )), Ti is reset, and the weight change is enacted (if

T
[j−1]
i does not exist, at time tc Ti is reset and the change is enacted at tc).

3. Any subtask T
[q]
i released between tc and time D(T

[j]
i )− 2 has a window length of

two, a b-bit of 1, a group deadline of D(T
[j]
i ), and a release time of

r(T
[q]
i ) = te +

⌊

q − 1 − j

Nw

⌋

,

where te is the time the change was enacted.

4. If T
[ℓ]
i is the last subtask of Ti released before D(T

[j]
i ) − 1, then its successor is

released and Ti is reset at time

r(T
[ℓ+1]
i ) = max

(

D(T
[j]
i ), te +

⌊

ℓ − j

Nw

⌋)

,

where te is the time the change was enacted.

Rule H changes the release pattern of subtasks of Ti from the time the weight change

is enacted until time D(T
[j]
i ) − 1 so that the allocation Ti receives over that range of

time is commensurate with Nw. It is important to note that the term r(T
[ℓ+1]
i ) =

max
(

D(T
[j]
i ), te +

⌊

ℓ−j
Nw

⌋

+ θ(T
[ℓ+1]
i ) − θ(T

[ℓ]
i )
)

in Part 4 is used to guarantee that no sub-

task of Ti is released at time D(T
[j]
i ) − 1. If such a subtask did exist, then it could cause a
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Figure 5.11: A one-processor system consisting of a task T1, which has wt(T1) = 1/10, and T2,
which has an initial weight of 8/9 and initiates a weight increase to 9/10 at time 2. (a) The
actual schedule. (b) The allocations in SW (and CSW ) and T2’s allocations in I.

deadline to be missed. (Notice that Rule H can cause a Ti to be reset twice. Once when the

change is enacted and a second time when Ti releases its first subtask at or after D(T
[j]
i ).)

Example (Figure 5.11). Consider the example in Figure 5.11(a), which depicts a one-

processor system that is assigned two tasks: T1, which has wt(T1) = 1/10, and T2, which

has an initial weight of 8/9 and initiates a weight increase to 9/10 at time 2. Since T
[2]
2 is the

last-released subtask of T2 before 2 and it has been scheduled by time 2, the change is enacted

at time d(T
[2]
2 ) + b(T

[2]
2 ) = 4. Moreover, over the time range [4, 8), the subtasks of T2 are

released in a pattern that is commensurate with a task of weight 9/10, and T
[6]
2 ’s successor is

released at D(T
[2]
2 ) = 9.

Example (Figure 5.12). Consider the example in Figure 5.12(a), which depicts a one-

processor system that is assigned two tasks: T1, which has an initial weight of 1/10 and

initiates and enacts a weight increase to 2/3 at time 9, and T2, which has an initial weight

of 8/9 and initiates a weight decrease at time 2 to 1/3. Since T
[2]
2 has been scheduled by

time 2, T2’s change is enacted at time 4. Notice that, over the time range [4, 8) the subtasks

are released in a pattern that is commensurate with a task of weight 1/3, i.e., one subtask
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has an initial weight of 8/9 and initiates a weight decrease at time 2 to 1/3. (a) The actual
schedule. (b) The SW (and CSW) schedule.

is released every 3 quanta, even though every subtask has a deadline two quanta after it is

released. After time D(T
[2]
2 ), i.e., time 9, T2 behaves exactly like a “normal” task of weight

1/3.

It is important to note that while the capacity freed from decreasing a heavy-changeable

task Ti is not available to the rest of the system until the group deadline of its last-released

subtask, it remains available for Ti.

Example (Figure 5.13). Consider the example in Figure 5.13, which depicts a one-

processor system that is assigned two tasks: T1, which has an initial weight of 1/14 and

both initiates and enacts a weight increase to 1/4 at time 14, and T2, which has an initial

weight of 13/14, initiates a weight decrease to 1/3 at time 2, and initiates a weight increase to

3/4 at time 9. Notice that, while T1 cannot increase its weight (by using the capacity gained

from T2 decreasing its weight at time 2) until time D(T
[2]
2 ) = 14, T2 can use this capacity to

increase its weight from 1/3 to 3/4 at time 9.

Because the weight of every task is in the range (0, 1), heavy tasks (and those with a

positive group deadline) have a window length of at most three, and because all tasks with a
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Figure 5.13: A one-processor system consisting of a task T1, which has an initial weight of
1/14 and both initiates and enacts a weight increase to 1/4 at time 14, and T2, which has
an initial weight of 13/14, initiates a weight decrease to 1/3 at time 2, and initiates a weight
increase to 3/4 at time 9.

group deadline of 0 are light tasks, it is not difficult to show that the following property holds

(WL) For any subtask T
[j]
i , if D(T

[j]
i ) = 0, then d(T

[j]
i )− r(T

[j]
i ) ≥ 3; otherwise, 2 ≤ d(T

[j]
i )−

r(T
[j]
i ) ≤ 3.

Light and heavy tasks. Recall from Section 5.1.3 that for IS light tasks, if D(T
[j]
i ) = 0,

then Ti is light, and if D(T
[j]
i ) > 0, then Ti is heavy. We can see that for AIS tasks, because

of Rule H, the terms “light” and “heavy” are more difficult to distinguish. Specifically, it is

possible for a task Ti to have a scheduling weight less than 1/2 and still release subtasks with

a group deadline greater than zero. For this reason, for the remainder of this chapter, we do

not distinguish between light and heavy tasks, but rather between tasks that release subtasks

with a group deadline of zero and those that release subtasks with a group deadline greater

than zero.

Before concluding this section, we make one final observation. When a heavy-changeable
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task decreases its weight, it is possible that a subtask will receive allocations in the SW

schedule beyond its deadline. For example, in Figure 5.12(b), T
[3]
2 and T

[4]
2 both receive

allocations in SW after their deadlines. This behavior may occur because Rule H “artificially”

decreases the window length of all subtasks until the group deadline of the last-released

subtask to two; however, this does not negatively impact the scheduling correctness or drift

bounds of PD2.

Throughout this chapter we use PD-PNH (respectively, PD-LJ) to refer to reweighting via

Rules P, N, and H (respectively, the Rules L and J) under PD2. Unless otherwise specified,

throughout this chapter, we use S to denote the PD-PNH schedule of a system. Since these

rules change the ordering of a task in the priority queues that determine scheduling, the time

complexity for reweighting one task is O(logN), where N is the number of tasks in the system

(assuming that binomial heaps are used to implement needed priority queues).

5.5 Scheduling Correctness

In this section, we prove that, in PD-PNH-scheduled systems, deadlines are not missed. The

properties used throughout this section are summarized in Table 5.2. We begin with a prop-

erty pertaining to cancelled weight-change events.

(C) If Ti initiates two consecutive weight-change events at tc and t′c, where tc < t′c < te, and

te denotes the time at which the change initiated at tc would have been enacted in the

absence of other reweighting events, then t′e ≤ te, where t′e denotes the time at which

the change initiated at tc would have been enacted in the absence of other reweighting

events.

Proof of (C). Assume that tc, te, t′c, and t′e are as defined in Property (C). Notice that, if

d(T
[j]
i ) ≤ t′c, where T

[j]
i is the last-released subtask of Ti at tc (as defined in Rules P, N, and

H), then the change initiated at t′c is enacted by t′c +1. Since t′c < te, this implies that t′e ≤ te

holds. In the rest of the proof, we assume t′c < d(T
[j]
i ) and consider the different types of

reweighting events initiated at tc.
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Property Definition
(C)

[Page 199]
If Ti initiates two consecutive weight-change events at tc and t′c, where tc < t′c < te,
and te denotes the time at which the change initiated at tc would have been enacted
in the absence of other reweighting events, then t′e ≤ te, where t′e denotes the time
at which the change initiated at tc would have been enacted in the absence of other
reweighting events.

(X1)
[Page 203]

If a task Ti initiates a weight change at time tc and Ti releases a subtask T
[j]
i at or

after tc, then the change initiated at tc is enacted no later than time r(T
[j]
i ).

(X2)
[Page 203]

If a weight change is enacted over the range (r(T
[ℓ]
i ), d(T

[ℓ]
i )], then that change must

have been initiated over the range [r(T
[ℓ]
i ), d(T

[ℓ]
i )].

(W)
[Page 203]

For any time t,
∑

Ti∈τ Swt(Ti, t) ≤ M , where M is the number of processors.

(V)
[Page 203]

For any two subtasks, T
[j]
i and T

[j+1]
i , if r(T

[j+1]
i ) < d(T

[j]
i ) − b(T

[j]
i ), then

C(SW, T
[j]
i ) ≤ r(T

[j+1]
i ) and C(S, T

[j]
i ) ≤ r(T

[j+1]
i ).

(RW)
[Page 210]

Suppose Ti initiates a weight change at time tc ≥ r(T
[1]
i ) and T

[j]
i is the last-released

subtask of Ti at tc. If r(T
[j]
i ) ≤ tc < d(T

[j]
i ), then Ti is either positive-, negative-, or

heavy-changeable at tc.

(GV)
[Page 211]

For the subtasks T
[j]
i and T

[k]
i , where j < k, if r(T

[k]
i ) < d(T

[j]
i ) − b(T

[j]
i ), then

C(SW, T
[j]
i ) ≤ r(T

[k]
i ) and C(S, T

[j]
i ) ≤ r(T

[k]
i ).

(GD-1)
[Page 182]

For any T
[j]
i such that D(T

[j]
i ) > 0, if for all T

[q]
i ∈ {T [j]

i , ..., ω(T
[j]
i )}, θ(T

[q]
i ) = θ(T

[j]
i )

(i.e., there are no IS separations between subtasks until the group deadline), then:(i)

r(ω(T
[j]
i )) = D(T

[j]
i ) − 2; and (ii) either d(ω(T

[j]
i )) = D(T

[j]
i ) and b(ω(T

[j]
i )) = 0 or

d(ω(T
[j]
i )) = D(T

[j]
i ) + 1 and b(ω(T

[j]
i )) = 1.

(GD-2)
[Page 182]

If D(T
[j]
i ) > 0, then D(T

[j]
i ) ≥ d(T

[j]
i ) + b(T

[j]
i ).

(GD-3)
[Page 211]

For the subtasks T
[j]
i and T

[k]
i , where j < k, if r(T

[k]
i ) < d(T

[j]
i ) − b(T

[j]
i ), then

C(SW, T
[j]
i ) ≤ r(T

[k]
i ) and C(S, T

[j]
i ) ≤ r(T

[k]
i ).

(AF1)
[Page 211]

For all t ≥ 0, A(SW , Ti, t) ≤ Swt(Ti, t).

(AF2)
[Page 211]

For any present subtask T
[j]
i of the task Ti ∈ τ and its successor T

[k]
i , if b(T

[j]
i ) =

1 and r(T
[k]
i ) ≥ C(SW, T

[j]
i ), then A(SW , Ti, C(SW, T

[j]
i ) − 1, C(SW, T

[j]
i ) + 1) ≤

Swt(Ti, C(SW, T
[j]
i )).

(AF3)
[Page 211]

For any subtask T
[j]
i , C(SW, T

[j]
i ) ≤ d(T

[j]
i ).

(AF4)
[Page 212]

For any subtask T
[j]
i and any time t, if t < r(T

[j]
i ) or t ≥ C(SW, T

[j]
i ), then

A(SW , T
[j]
i , t) = 0.

(AF5)
[Page 212]

For any present subtask T
[j]
i , let T

[k]
i be its next present successor T

[k]
i (if it exists).

If T
[k]
i does not exist, and D(T

[j]
i ) > 0, then for any t such that C(SW, T

[j]
i )− 1 ≤ t ≤

D(T
[j]
i ), A(SW , Ti, C(SW, T

[j]
i ) − 1, t + 1) ≤ Swt(Ti, t) holds. Otherwise, if T

[k]
i ex-

ists, D(T
[j]
i ) > 0, and C(SW, T

[j]
i ) ≤ r(T

[k]
i ), then for any t such that C(SW, T

[j]
i )−1 ≤

t ≤ min(r(T
[k]
i ), D(T

[j]
i ) − 1), A(SW , Ti, C(SW, T

[j]
i ) − 1, t + 1) ≤ Swt(Ti, t) holds.

(T1)
[Page 213]

τ misses a deadline under PD-PNH at td.

(T2)
[Page 214]

No task system satisfying (T1) has fewer present subtasks in [0, td) than τ .

Table 5.2: Summary of properties used in Section 5.5.
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Positive-changeable. We begin by considering the case wherein Ti is positive-

changeable at tc. In this case, the change initiated at tc is enacted at time te =

max(tc,min(C(SW,T
[j−1]
i ), d(T

[j−1]
i ))+b(T

[j−1]
i )). If te = tc, then since tc < t′c < te, t′c cannot

exist. Thus, we assume tc < te, which implies te = min(C(SW,T
[j−1]
i ), d(T

[j−1]
i ))+b(T

[j−1]
i ) >

tc. Since Ti is positive-changeable at tc, T
[j]
i is halted at tc and no successor subtask can be re-

leased until the change initiated at tc (or a future change) has been enacted. Hence, since t′c <

te, T
[j+1]
i is not released until at or after t′c. Thus, since tc < t′c, T

[j]
i is the last-released subtask

of Ti at t′c. Because, by Rule P, T
[j]
i was halted at tc < t′c and (as we assumed at the begin-

ning of the proof) t′c < d(T
[j]
i ), Ti is therefore positive-changeable at t′c. Thus, by Rule P, the

change initiated at t′c is enacted at time t′e = max(t′c,min(C(SW,T
[j−1]
i ), d(T

[j−1]
i ))+b(T

[j−1]
i )).

Again, since t′c < te and te = min(C(SW,T
[j−1]
i ), d(T

[j−1]
i )) + b(T

[j−1]
i ), it follows that

t′e = min(C(SW,T
[j−1]
i ), d(T

[j−1]
i )) + b(T

[j−1]
i ) = te.

Decreasing-weight negative changeable. We next consider the case wherein Ti is

decreasing-weight negative-changeable at tc. By Rule N, such a change initiated at tc will

be enacted at time te = C(SW,T
[j]
i ) + b(T

[j]
i ). Since Ti is negative-changeable at tc, no

subtask can be released until the change that was initiated at tc (or a future change) has

been enacted. Hence, since t′c < te, T
[j+1]
i is not released until at or after t′c. Thus, since

tc < t′c, T
[j]
i is the last-released subtask of Ti at t′c. Because T

[j]
i is scheduled before tc < t′c,

and (as we assumed at the beginning of the proof) t′c < d(T
[j]
i ), Ti is negative-changeable at

t′c. If the change at t′c is a decreasing-weight event, then by Rule N, it is enacted at time

t′e = C(SW,T
[j]
i ) + b(T

[j]
i ) = te.

Increasing-weight negative-changeable. Notice that, if Ti at tc is increasing-weight

negative-changeable, then the change initiated at tc is enacted immediately, i.e., tc = te.

Thus, since tc < t′c < te, if Ti at tc is increasing-weight negative-changeable, then t′c cannot

exist.

Heavy-changeable. Notice that, if Ti is heavy-changeable at tc, then D(T
[j]
i ) > tc holds,

and, by Part 2 of Rule H, if T
[j]
i has been scheduled by tc, then te = max(tc, d(T

[j]
i )+ b(T

[j]
i )),
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and if T
[j]
i has not been scheduled by tc, then te = max(tc, d(T

[j−1]
i ) + b(T

[j−1]
i )) (or te = tc if

T
[j−1]
i does not exist). If tc = te, then since tc < t′c < te, t′c cannot exist. Thus, assume that

tc < te.

We first consider the case where T
[j]
i has been scheduled before tc. In this case, since we

have assumed that tc < te, it follows that te = d(T
[j]
i ) + b(T

[j]
i ) > tc. Thus, in this case,

t′c ∈ (tc, d(T
[j]
i ) + b(T

[j]
i )), (5.13)

and (by Part 3 of Rule H), r(T
[j+1]
i ) ≥ te. Thus, it follows that at t′c > tc, T

[j]
i is the

last-released subtask of Ti.

By Property (GD-2), D(T
[j]
i ) ≥ d(T

[j]
i ) + b(T

[j]
i ). Thus, since (as we assumed at the

beginning of the proof) t′c < d(T
[j]
i ), it follows that t′c < d(T

[j]
i ) ≤ D(T

[j]
i ). Thus, since T

[j]
i

is the last-released subtask of Ti at t′c and t′c < D(T
[j]
i ), Ti is heavy-changeable at t′c. Hence,

by Step 2 of Rule H, t′e = max(d(T
[j]
i ) + b(T

[j]
i ), t′c). Since, by (5.13), t′c < d(T

[j]
i ) + b(T

[j]
i ), it

follows that t′e = d(T
[j]
i ) + b(T

[j]
i ) = te.

We now consider the case where T
[j]
i has not been scheduled before tc. Since we have

assumed that tc < te, if T
[j]
i has not been scheduled by tc, then tc < te = d(T

[j−1]
i )+b(T

[j−1]
i ).

Thus, in this scenario,

t′c ∈ (tc, d(T
[j−1]
i ) + b(T

[j−1]
i )), (5.14)

and (by Step 3 of Rule H), r(T
[j+1]
i ) ≥ te = d(T

[j−1]
i ) + b(T

[j−1]
i ). Thus, it follows that at

t′c > tc, T
[j]
i is the last-released subtask of Ti.

By Property (GD-2), D(T
[j]
i ) ≥ d(T

[j]
i ) + b(T

[j]
i ). Thus, since (as we assumed at the

beginning of the proof) t′c < d(T
[j]
i ), it follows that t′c < D(T

[j]
i ). Thus, since T

[j]
i is the last-

released subtask of Ti at t′c and t′c < D(T
[j]
i ), Ti is heavy-changeable at t′c. Moreover, since T

[j]
i

had not been scheduled at tc, it follows by Part 2 of Rule H, that T
[j]
i was halted at tc. Thus,

T
[j]
i is not scheduled by t′c > tc. Thus, by Part 2 of Rule H, t′e = max(d(T

[j−1]
i )+b(T

[j−1]
i ), t′c).

Since, by (5.14), t′c < d(T
[j−1]
i ) + b(T

[j−1]
i ), it follows that t′e = d(T

[j−1]
i ) + b(T

[j−1]
i ) = te.
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Initiation and enactment properties. We now state two properties about the relation-

ship between the initiation and enactment of reweighting events.

(X1) If a task Ti initiates a weight change at time tc and Ti releases a subtask T
[j]
i at or after

tc, then the change initiated at tc is enacted no later than time r(T
[j]
i ).

(X2) If a weight change is enacted over the range (r(T
[ℓ]
i ), d(T

[ℓ]
i )], then that change must

have been initiated over the range [r(T
[ℓ]
i ), d(T

[ℓ]
i )].

Given that Property (C) guarantees that no sequence of reweighting events can delay the next

weight-change enactment after a weight change has been initiated, and that the Rules N, P,

and H guarantee a subtask is released within one quantum of a weight change enactment, the

subtask T
[j]
i (as defined in Property (X1)) will eventually be released, if it exists. Thus, from

the definitions of Rules P, N, and H, Property (X1) should be fairly intuitive. Property (X2)

is implied by Property (X1).

When Srinivasan and Anderson (Srinivasan and Anderson, 2005) proved the scheduling

correctness of PD-LJ for an IS task system, they assumed that the weight of all tasks is at most

M and utilized the property that in an IS task system the windows for any subtask T
[j]
i and its

successor T
[j+1]
i do not “overlap” by more than b(T

[j]
i ) quanta, i.e., d(T

[j]
i )−b(T

[j]
i ) ≤ r(T

[j+1]
i ).

However, this property can be weakened without affecting most of their proof, so that their

proof can be applied to an AIS task system. Specifically, their proof can be used to establish

the scheduling correctness of PD-PNH for any AIS task system τ , if the following conditions

hold, which parallel the assumption that the weight of all tasks is at most M and the property

that in IS system d(T
[j]
i ) − b(T

[j]
i ) ≤ r(T

[j+1]
i ). (In these properties, we denote the PD-PNH

schedule of τ as S.)

(W) For any time t,
∑

Ti∈τ Swt(Ti, t) ≤ M , where M is the number of processors.

(V) For any two subtasks, T
[j]
i and T

[j+1]
i , if r(T

[j+1]
i ) < d(T

[j]
i )−b(T

[j]
i ), then C(SW,T

[j]
i ) ≤

r(T
[j+1]
i ) and C(S, T

[j]
i ) ≤ r(T

[j+1]
i ).

Since Property (W) can be satisfied by policing weight-change requests, we focus our attention

on showing that S and SW satisfy Property (V).
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Example (Figures 5.8 and 5.9). In Figure 5.8(b), d(T
[2]
1 ) + b(T

[2]
1 ) = 15 and r(T

[3]
1 ) = 10.

Notice that, by Rule P, T
[2]
1 is halted (and hence complete) in both the SW and PD2 schedules

when the change is enacted at time 10 = r(T
[3]
1 ). In Figure 5.9(a), d(T

[2]
1 ) + b(T

[2]
1 ) = 15 and

r(T
[3]
1 ) = 12. Notice that, T

[2]
1 has been scheduled (and is therefore complete) before time

10 < r(T
[3]
1 ). Further, T

[3]
1 is released once T

[2]
1 has received one unit of allocation in the SW

schedule, and as a result T
[2]
1 is complete in the SW schedule by r(T

[3]
1 ).

Proof of (V). Referring to Property (V), let T
[j]
i be some subtask such that d(T

[j]
i ) −

b(T
[j]
i ) > r(T

[j+1]
i ). By the definition of a subtask release, if d(T

[j]
i )− b(T

[j]
i ) > r(T

[j+1]
i ), then

Ti enacted a weight change te ∈ (r(T
[j]
i ), r(T

[j+1]
i )]; otherwise, we would have d(T

[j]
i )−b(T

[j]
i ) ≤

r(T
[j+1]
i ), by (5.11). Since a weight change is enacted in the range (r(T

[j]
i ), r(T

[j+1]
i )], by Prop-

erty (X2) a change must have been initiated in the range [r(T
[j]
i ), r(T

[j+1]
i )]. Without loss of

generality, let tc be the earliest time in this range that Ti initiates a weight change.

At time tc, Ti is positive-, negative-, or heavy-changeable. If at tc, Ti is positive-

changeable, then by Rule P, T
[j]
i is complete by tc ≤ te ≤ r(T

[j+1]
i ) in both S and SW .

If Ti is negative-changeable at tc, then T
[j]
i has been scheduled in S before tc, and hence, T

[j]
i

is complete by tc ≤ r(T j+1
i ) in S. Furthermore, in this case T

[j+1]
i is not released until time

C(SW,T
[j]
i ) + b(T

[j]
i ). If at tc, Ti is heavy-changeable and T

[j]
i has not been scheduled by

tc, then by Rule H, T
[j]
i is complete by tc ≤ te ≤ r(T

[j+1]
i ) in both S and SW . If at tc, Ti

is heavy-changeable and T
[j]
i has been scheduled by tc, then by Rule H, T

[j]
i is complete by

te ≤ r(T
[j+1]
i ) in both S and SW .

We now prove that PD-PNH correctly schedules any AIS task system that satisfies Property

(W). Note that, this proof is only a slight modification of the correctness proof for PD-LJ

originally presented by Srinivasan and Anderson in (Srinivasan and Anderson, 2005).

Before proving that PD-PNH correctly schedules any AIS task system, we introduce some

basic concepts and properties that are useful in the proof. We begin by introducing the

“adaptive generalized intra-sporadic” task model. After this, we introduce the notion of a

“displacement.” Lastly, we introduce some properties and definitions pertaining to PD-PNH.
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Per−slot SW Allocation
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Figure 5.14: An illustration of the AGIS task model. The dashed window lines indicate that
a subtask is absent.

5.5.1 The AGIS Task Model

To prove the scheduling correctness of PD-PNH in an AIS system, we consider an extension

of the AIS task model called the adaptive generalized intra-sporadic (AGIS) task model. The

AGIS model generalizes the AIS model by allowing some subtasks to be “absent.” An absent

subtask is never scheduled; however, such subtasks are considered to be part of a given task

system, and as such, they have both releases and deadlines. If a subtask is not absent then

we say that it is present. In an AGIS task system, T
[j]
i is T

[k]
i ’s predecessor (and T

[k]
i is T

[j]
i ’s

successor) iff T
[j]
i and T

[k]
i are both present and there are no present subtasks that have an

index between j and k. The per-slot allocations to a subtask T
[j]
i in the AGIS variant of an

SW schedule are the same as in the AIS variant, except that if a subtask is absent, then its

per-slot allocation is zero in all slots.

Example (Figure 5.14). Consider the example depicted in Figure 5.14, which consists of

one task, T1, which has wt(T1) = 5/16, and has one absent subtask, T
[3]
1 . T

[2]
1 is T

[4]
1 ’s

predecessor, and T
[4]
1 is T

[2]
1 ’s successor. The per-slot allocations to all subtasks except T

[3]
1

are the same as in an AIS system, and T
[3]
1 ’s per-slot allocation is zero for each slot.

Example (Figure 5.15). As a second example, consider Figure 5.15, which consists of one

task, T1, which has wt(T1) = 7/9. In inset (a), no tasks are absent. In inset (b), T
[2]
1 , T

[3]
1 ,

and T
[5]
1 are absent.

Throughout this section, we use LAG(τ, t) to denote LAG(S,SW, τ, t) and lag(Ti, t) to

denote lag(S,SW,Ti, t), where S is the PD-PNH schedule of a task system τ .
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Figure 5.15: A(SW , T
[j]
i , t) for a periodic task with weight 7/9. (a) No subtasks are absent.

(b) T
[2]
1 , T

[3]
1 , and T

[5]
1 are absent.

Completed. Since, under the AGIS task model, absent tasks never receive any allocations,

by the definition of completed, presented earlier, such a subtask would never complete unless

it was halted. Therefore, we amend the definition of completed so that an absent subtask

T
[j]
i is considered to be complete in all schedules as soon as it is released, i.e., C(S , T

[j]
i ) =

C(SW,T
[j]
i ) = r(T

[j]
i ). For example, in Figure 5.14, C(SW,T

[3]
1 ) = r(T

[3]
1 ) = 7.

Absent subtasks and reweighting. Notice that, if a task Tq initiates a weight change

at time tc, and the last-released subtask of Tq, T
[k]
q , is absent, then that subtask has not yet

been scheduled. Therefore, if tc < d(T
[k]
q ) and Tq is not heavy-changeable at tc, then Tq is

positive-changeable at tc. Similarly, if Tq is heavy-changeable at tc, then T
[k]
q is “halted” and

its successor (which may also be absent) is released at the appropriate time. In such cases, an

absent subtask is considered to be “halted,” even though it was never eligible to be scheduled.

Example (Figure 5.16). Consider the example in Figure 5.16, which depicts the impact

of the reweighting rules on an AGIS task T1, which changes its weight from 3/19 to 2/5. In
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Figure 5.16: The impact of reweighting on an AGIS task. (a) T1 changes its weight via

Rule P. (b) T1 changes its weight via Rule N. (c) T
[2]
1 is absent when T1 is changed causing

it to change via Rule P.

inset (a), T2 changes its weight via Rule P causing T
[2]
1 to be halted at time 8. In inset (b),

T1 changes its weight via Rule N causing T
[2]
1 to be complete at time 10. In inset (c), T

[2]
1 is

absent, and so T1 is positive-changeable at time 8. Notice that, in inset (a), the subtask T
[2]
1

is halted at time 8, so C(SW,T
[2]
1 ) = r(T

[2]
1 ) = 8. In contrast, in inset (b), the subtask T

[2]
i , is

never halted, and therefore C(SW,T
[2]
1 ) = 10. Also note that, in inset (c), when T1 changes

its weight via Rule P at time 8, T
[2]
1 is considered to be halted, even though it is absent.

5.5.2 Displacements

We now introduce the notions of an “instance” of a task system and a task “displacement.”

An instance of a task system is obtained by specifying a unique assignment of release times

for each subtask and weight changes for each task.
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Figure 5.17: A one-processor system consisting of a task T1 with an initial weight of 1/9 that
increases its weight at time 9 to 2/3, and a task T2 that has an initial weight of 8/9 that

decreases to 1/3. (a) T2’s weight change is initiated at time 2. (b) Subtasks T
[3]
2 , T

[4]
2 , T

[6]
2 ,

T
[7]
2 are absent and T2’s weight change is initiated at time 9.

Equivalent instances. Before continuing, it is worth pointing out that since halted sub-

tasks are never scheduled, and Rules P, N, and H behave the same whether the last-released

subtask is absent or not, PD-PNH produces the same schedule regardless of whether a halted

subtask is absent or present. Thus, we assume that in every task instance presented in the

remainder of this section, if a subtask is halted, then it is absent.

Similarly, notice that, Rule H can be emulated by delaying the initiation of a weight

change until the group deadline of the last-released subtask and selectively choosing some

subtasks to be absent.

Example (Figure 5.17). Consider the example in Figure 5.17, which depicts a one-

processor system that contains two tasks: T1, which has an initial weight of 1/9 that increases

to 2/3 at time 9; and T2, which has an initial weight of 8/9 that decreases to 1/3. In inset (a),

T2 initiates its weight change at time 2. In inset (b), subtasks T
[3]
2 , T

[4]
2 , T

[6]
2 , T

[7]
2 are absent,

and T2 initiates its weight change at time D(T
[2]
2 ) = 9. Notice that, these two systems have

exactly the same schedule.
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Figure 5.18: An illustration of displacements. (a) The original system. (b) The system with

T
[1]
1 removed.

Given the equivalence demonstrated above, in every AGIS task instance considered in the

remainder of this section, we assume that a heavy task only initiates a weight change at or

after the group deadline of the last-released subtask. (This assumption removes the possibility

that a subtask of a heavy-changeable task could receive allocations in the SW schedule after

its deadline.)

Definition 5.3 (Removal and Displacements (Srinivasan, 2003)). By definition, the

removal of a subtask (i.e., changing a subtask from present to absent) from one instance of

an AGIS task system results in another instance. (Note that, only present subtasks can be

removed.) Let X(j) denote a subtask of any task in an AGIS task system τ . Let S denote

the PD-PNH schedule of τ . Assume that removing X(1) scheduled at slot t1 in S causes X(2)

to shift from slot t2 to t1, where t1 6= t2, which in turn may cause other shifts. We call

this shift a displacement and represent it by the four-tuple 〈X(1), t1,X
(2), t2〉. A displacement

〈X(1), t1,X
(2), t2〉 is valid iff r(X(2)) ≤ t1. Because there can be a cascade of shifts, we may

have a chain of displacements.

Example (Figure 5.18). Consider the two-processor example in Figure 5.18, which depicts

the schedule for a system with four task T1, ..., T4, each of which has a weight of 3/7, and T5,
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which has wt(T5) = 1/7. Inset (a) depicts the system in which all tasks are present. Inset (b)

depicts the system where T
[1]
1 has been removed causing a chain of displacements.

Removing a subtask may also lead to slots in which some processors are idle. In a schedule

S, if k processors are idle in slot t, then we say that there are k holes in S in slot t. Note that,

holes may exist because of late subtask releases or absent subtasks, even if total utilization is

M . We now present three lemmas that describe the relationship among subtasks in a chain of

displacements. These three lemmas were originally proven by Srinivasan and Anderson for the

“generalized IS task model,” i.e., an IS task system, where subtasks can be absent (Srinivasan

and Anderson, 2006). Since the logic of their proof holds for AGIS task systems, we state

these lemmas without proof.

Lemma 5.1 (From (Srinivasan, 2003)). Let X(1) be a subtask that is removed from τ ,

where all halted subtasks are absent, and let the resulting chain of displacements in S be

C = ∆1,∆2, ...,∆k, where ∆j = 〈X(j), tj ,X
(j+1), tj+1〉. Then tj+1 > tj, for all j ∈ {1, ..., k}

Lemma 5.2 (From (Srinivasan, 2003)). Let ∆ = 〈X(1), t1,X
(2), t2〉 be a valid displacement

in S, in which all halted subtasks are absent. If t1 < t2 and there is a hole in slot t1 in that

schedule, then X(2) is X(1)’s successor in τ .

Lemma 5.3 (From (Srinivasan, 2003)). Let ∆ = 〈X(1), t1,X
(2), t2〉 be a valid displacement

in S, in which all halted subtasks are absent. If t1 < t2 and there is a hole in slot t′ such that

t1 ≤ t′ < t2 in that schedule, then t′ = t1 and X(2) is the successor of X(1) in τ .

5.5.3 Reweighting Properties

In this section, we introduce some properties that are necessary to prove scheduling correct-

ness.

Basic properties. The following simple property follows directly from the definition of

PD-PNH.

(RW) Suppose Ti initiates a weight change at time tc ≥ r(T
[1]
i ) and T

[j]
i is the last-released

subtask of Ti at tc. If r(T
[j]
i ) ≤ tc < d(T

[j]
i ), then Ti is either positive-, negative-, or

heavy-changeable at tc.
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In Section 5.5, we presented Property (V), which relates the release times, completion

times, and deadlines of two subtasks T
[j]
i and T

[j+1]
i . In the following proof, it is useful

to extend this property to relate the release times, completion times, and deadlines of two

subtasks T
[j]
i and T

[k]
i , where j < k.

(GV) For the subtasks T
[j]
i and T

[k]
i , where j < k, if r(T

[k]
i ) < d(T

[j]
i ) − b(T

[j]
i ), then

C(SW,T
[j]
i ) ≤ r(T

[k]
i ) and C(S, T

[j]
i ) ≤ r(T

[k]
i ).

The proof of Property (GV) follows directly from Property (V). Property (GV) holds even if

T
[j]
i or T

[j]
i is absent.

Group deadlines of light tasks. Notice that, if a present subtask T
[j]
i has a group-deadline

of 0, then it must be the case that Swt(Ti, r(T
[j]
i )) < 1/2. Thus, unless Ti enacts a weight

change by time r(T
[k]
i ), where T

[k]
i is T

[j]
i ’s successor, then D(T

[k]
i ) = 0 must hold. Moreover,

by Rules P and N, if T
[j]
i is scheduled in slot d(T

[j]
i )− 1, b(T

[j]
i ) = 1, and r(T

[k]
i ) ≤ d(T

[j]
i )− 1,

then it is not possible for Ti to enact a weight change before T
[k]
i is released. Thus, we have

the following property

(GD-3) For any subtask T
[j]
i , and its successor T

[k]
i , if D(T

[j]
i ) = 0, b(T

[j]
i ) = 1, T

[j]
i is

scheduled in slot d(T
[j]
i ) − 1, and r(T

[k]
i ) ≤ d(T

[j]
i ) − 1, then D(T

[k]
i ) = 0.

Per-slot allocation properties. We now introduce five properties about the per-slot allo-

cations of a task and the completion time of a subtask in an AGIS system τ that are useful in

the correctness proof. (Recall that we assume that in τ all halted subtasks are absent and no

heavy task initiates a weight change before the group deadline of its last-released subtask.)

(AF1) For all t ≥ 0, A(SW , Ti, t) ≤ Swt(Ti, t).

(AF2) For any present subtask T
[j]
i of the task Ti ∈ τ and its successor T

[k]
i , if b(T

[j]
i ) =

1 and r(T
[k]
i ) ≥ C(SW,T

[j]
i ), then A(SW , Ti, C(SW,T

[j]
i ) − 1, C(SW,T

[j]
i ) + 1) ≤

Swt(Ti,C(SW,T
[j]
i )).

(AF3) For any subtask T
[j]
i , C(SW,T

[j]
i ) ≤ d(T

[j]
i ).
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(AF4) For any subtask T
[j]
i and any time t, if t < r(T

[j]
i ) or t ≥ C(SW,T

[j]
i ), then

A(SW , T
[j]
i , t) = 0.

(AF5) For any present subtask T
[j]
i , let T

[k]
i be its next present successor T

[k]
i (if it exists).

If T
[k]
i does not exist, and D(T

[j]
i ) > 0, then for any t such that C(SW,T

[j]
i ) − 1 ≤ t ≤

D(T
[j]
i ), A(SW , Ti, C(SW,T

[j]
i ) − 1, t + 1) ≤ Swt(Ti, t) holds. Otherwise, if T

[k]
i exists,

D(T
[j]
i ) > 0, and C(SW,T

[j]
i ) ≤ r(T

[k]
i ), then for any t such that C(SW,T

[j]
i ) − 1 ≤ t ≤

min(r(T
[k]
i ),D(T

[j]
i ) − 1), A(SW , Ti, C(SW,T

[j]
i ) − 1, t + 1) ≤ Swt(Ti, t) holds.

Given the examples in Figure 5.14 and Figure 5.16, both Properties (AF1) and

(AF4) should be fairly intuitive. As for Property (AF2), notice that, in Figure 5.14,

A(SW , T1, C(SW,T
[1]
1 ) − 1, C(SW,T

[1]
1 ) + 1) = 1/16 + 4/16 ≤ Swt(T1, 4) = 5/16 and

A(SW , T1, C(SW,T
[4]
1 ) − 1, C(SW,T

[4]
1 ) + 1) = 4/16 + 0 ≤ Swt(T1, 14) = 5/16. Also notice

that, in Figure 5.16(b), which depicts a task Ti that changes its weight from 3/19 to 2/5 via

Rule N at time 8, A(SW , Ti, C(SW,T
[2]
i ) − 1, C(SW,T

[2]
i ) + 1) = 32/95 + 0 ≤ Swt(Ti, 10) =

2/5. Also note that, in Figure 5.16(c), which depicts a task T1 that changes its weight from

3/19 to 2/5 via Rule P at time 8, A(SW , Ti, C(SW,T
[1]
i ) − 1, C(SW,T

[1]
i ) + 1) = 1/19 + 0 ≤

Swt(Ti, 7) = 3/19.

As for Property (AF3), recall that (for systems in which no heavy task initiates a weight

change before the group deadline of its last-released subtask) in the absence of reweighting

events, d(T
[j]
i ) = C(SW,T

[j]
i ). To increase the completion time of T

[j]
i (and hence C(SW,T

[j]
i ))

in SW , Ti would have to enact a weight change in the range (r(T
[j]
i ), d(T

[j]
i )) that decreases the

weight of Ti, without halting T
[j]
i . However, by Property (X2), a change enacted in the range

(r(T
[j]
i ), d(T

[j]
i )) must have been initiated in the range [r(T

[j]
i ), d(T

[j]
i )). Thus, by Property

(RW) when such a change is initiated, Ti is either positive, negative-, or heavy-changeable.

Since only Rule N can enact a weight change before d(T
[j]
i ) without halting the last-released

subtask (i.e., T
[j]
i ), when such a change is initiated, Ti must be negative-changeable. However,

by Rule N, no weight decrease that is initiated in the range [r(T
[j]
i ), d(T

[j]
i )) can be enacted

before time C(SW,T
[j]
i ). Thus, the completion time for a subtask in SW is upper bounded

by the deadline of the subtask.
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As for Property (AF5), notice that, in Figure 5.15(a), as successive subtasks of a task Ti are

released, the allocations to each of Ti’s subtasks in the SW schedule in the first slot of each sub-

task’s window decreases up until the group deadline. For example, A(SW , T
[1]
1 , r(T

[1]
1 )) = 7/9,

A(SW , T
[2]
1 , r(T

[2]
1 )) = 5/9, A(SW , T

[3]
1 , r(T

[3]
1 )) = 3/9, and A(SW , T

[4]
1 , r(T

[4]
1 )) = 1/9. As

a result, if Ti has no present subtasks between T
[j]
i and T

[k]
i and r(T

[k]
i ) ≤ ω(T

[j]
i ), then

the allocation over the range [C(SW,T
[j]
i ) − 1, r(T

[k]
i )) is at most the scheduling weight of

Ti. For example, in Figure 5.15(b), A(SW , T1, C(SW,T
[1]
1 ) − 1, r(T

[4]
1 )) = 2/9 + 1/9 =

3/9 ≤ Swt(T1, 4) = 7/9 and A(SW , T1, C(SW,T
[4]
1 ) − 1, r(T

[6]
1 ) + 1) = 1/9 + 4/9 ≤ 5/9 =

Swt(T1, 14).

It is worthwhile to note that the proofs of Properties (AF1), (AF3), and (AF5) follow

directly from corresponding IS properties that were proven in (Srinivasan, 2003).

As a consequence of Properties (AF1) and (W), LAG can only increase over a slot if there

is a hole in that slot. Hence, the lemma below follows.

Lemma 5.4. If LAG(τ, t) < LAG(τ, t + 1), then there is a hole in slot t.

5.5.4 Correctness Proof

Having defined the AGIS task model, displacements, and some basic properties, we can now

prove the following theorem.

Theorem 5.2. Under PD-PNH, no subtask is scheduled after its deadline, provided that

Property (W ) holds.

To prove of Theorem 5.2, suppose that it does not hold. Then, there exists a time td and

a task system τ as given in the definitions below.

Definition 5.4 (td). td is the earliest time at which any AGIS task system instance misses a

deadline under PD-PNH.

Definition 5.5 (τ and S). τ is an instance of an AGIS task system with the following

properties.

(T1) τ misses a deadline under PD-PNH at td.
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(T2) No task system satisfying (T1) has fewer present subtasks in [0, td) than τ .

In the remainder of this proof, we let S denote PD-PNH schedule of τ .

By (T1), (T2), and the definition of td, exactly one subtask in τ misses its deadline at td:

if several subtasks miss their deadlines, then all but one can be removed and the remaining

subtask will still miss its deadline, contradicting (T2). We now prove several properties about

S.

Lemma 5.5. The following properties hold for τ and S, where T
[j]
i is any subtask in S.

(a) For any present subtask T
[j]
i , d(T

[j]
i ) ≤ td.

(b) There are no holes in slot td − 1.

(c) LAG(τ, td) = 1.

(d) LAG(τ, td − 1) ≥ 1.

(e) No present subtask halts.

Proof of (a). Suppose that τ contains a subtask T
[j]
i with a deadline greater than td. T

[j]
i can

be removed without affecting the scheduling of higher-priority subtasks with earlier deadlines.

Thus, if T
[j]
i is removed, then a deadline still missed at td. This contradicts (T2).

Proof of (b). If there were a hole in slot td − 1, then the subtask that misses its deadline at

td would have been scheduled there, which is a contradiction. (Note that, by the minimality

of td, its predecessor meets its deadline at or before td − 1 and hence is not scheduled in slot

td − 1.)

Proof of (c). By (5.1), we have

LAG(τ, td) = A(SW , τ , 0, td) − A(S, τ , 0, td).

In the above equation, the term A(SW , τ , 0, td) equals the total number of present subtasks

in τ . The second term corresponds to the number of subtasks scheduled by PD-PNH in [0, td).
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Figure 5.19: The task sets A, B, and I.

Since exactly one subtask misses its deadline, the difference between these two terms is one,

i.e., LAG(τ, td) = 1.

Proof of (d). By (b), there are no holes in slot td−1. Hence, by Lemma 5.4, LAG(τ, td−1) ≥

LAG(τ, td). Therefore, by (c), LAG(τ, td − 1) ≥ 1.

Proof of (e). If T
[j]
i is a halted subtask, then it is never scheduled. Hence, it can be removed

and a deadline will still be missed at td, contradicting (T2).

Definition 5.6 (At, Bt, and It). At, Bt, and It are all defined with respect to schedule S

and some time t. At denotes the set of tasks that have a subtask scheduled at t. Bt denotes

the set of tasks that are not scheduled at t, and receive some allocation in SW at slot t, i.e.,

A(SW , Ti, t) > 0 for Ti ∈ Bt. It denotes the set of all tasks that are in the system at t but

are not in At or Bt. At, Bt, and It are illustrated in Figure 5.19. Notice that, there are two

types of tasks in set It: tasks that have a deadline at or before t (denoted I1t ) and tasks that

have a deadline after t but complete in SW at or before t (denoted I2t ).

Displacement-based proofs. We now prove several lemmas about tasks in At and Bt

when there is a hole at time t. The proofs of the following lemmas all use the same basic

technique. First, we assume, to derive a contradiction, that the lemma does not hold for some

subtask, T
[j]
u . Then, we show that T

[j]
u can be removed from τ without causing a chain of

displacements that extends beyond time t. Thus, the system without T
[j]
u misses a deadline

at time td. This, in turn, implies that τ violates property (T2), which is a contradiction.
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Figure 5.20: An illustration of the chain of displacements that occurs by removing X(1) = T
[j]
u

in Lemma 5.6.

Lemma 5.6. Let t < td − 1 be a time at which there is a hole in S. Let Tu be any task in Bt

or At. Let T
[j]
u be the subtask with the largest index such that r(T

[j]
u ) ≤ t < d(T

[j]
u ) and T

[j]
u is

scheduled at or before t. Then, d(T
[j]
u ) = t + 1 ∧ b(T

[j]
u ) = 1.

Proof. Let t and Tu be as defined in the statement of the lemma. If Tu ∈ At, then since

t < td − 1 and T
[j]
u is scheduled at or before t, d(T

[j]
u ) ≥ t + 1. If Tu ∈ Bt, then since

A(SW , Tu, t) > 0 it follows that Tu is not complete in SW before t + 1. Thus, by Property

(AF3), d(T
[j]
u ) ≥ C(SW,T

[j]
i ) ≥ t + 1. Thus, if we can show that a contradiction follows from

d(T [j]
u ) > t + 1 or d(T [j]

u ) = t + 1 ∧ b(T [j]
u ) = 0, (5.15)

then the proof is complete.

We now show that if (5.15) holds, then T
[j]
u can be removed and a deadline will still

be missed at td, contradicting Property (T2). (Before continuing, notice that, since T
[j]
u is

scheduled, it is present, and as a result, T
[j]
u can be removed.) Let the chain of displacements

caused by removing T
[j]
u be ∆1,∆2, ...,∆k, where ∆i = 〈X(i), ti,X

(i+1), ti+1〉 and X(1) = T
[j]
u .

By Lemma 5.1, ti+1 > ti, for 1 ≤ i ≤ k. (This chain of displacements is illustrated in

Figure 5.20.)

Note that, at slot ti, the priority of X(i) is at least that of X(i+1), because X(i) was chosen

over X(i+1) in S. Thus, because X(1) = T
[j]
u , by (5.15), for each subtask 1 ≤ i ≤ k + 1, either

d(X(i)) > t + 1 or d(X(i)) = t + 1 ∧ b(X(i)) = 0. We now show that the displacements do not
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extend beyond slot t. Assume to the contrary that tk+1 > t. Consider h ∈ {2, ..., k + 1} such

that th > t and th−1 ≤ t. Such an h exists because t1 ≤ t < tk+1. Because there is a hole

in slot t and th−1 ≤ t < th, by Lemma 5.3, th−1 = t and X(h) is X(h−1)’s successor. Since a

subtask cannot be scheduled before it is released, r(X(h)) < t + 1. Since h − 1 ≤ k, either

d(X(h−1)) > t + 1 or d(X(h−1)) = t + 1 ∧ b(X(h−1)) = 0 holds. Therefore, since r(X(h)) < t + 1,

d(X(h−1)) − b(X(h−1)) > r(X(h)) holds. Thus, by Property (GV), X(h−1) is scheduled before

r(X(h)) ≤ t in S, contradicting our assumption that X(h−1) is scheduled in slot t.

Thus, the displacements do not extend beyond slot t. Hence, no subtask scheduled after

t is “left-shifted.” Thus, a deadline is still missed at time tc, contradicting Property (T2).

Hence, d(T
[j]
u ) = t + 1 ∧ b(T

[j]
u ) = 1.

Lemma 5.7. Let t < td − 1 be a time at which there is a hole in S. Let Tu be any task in Bt.

Let T
[j]
u be the subtask with the largest index such that r(T

[j]
u ) ≤ t < d(T

[j]
u ) and T

[j]
u is scheduled

before t. Then, there exists a subtask T
[b]
a scheduled in slot t such that D(T

[b]
a ) ≤ D(T

[j]
u ).

Proof. Let t and Tu be as defined in the statement of the lemma. Suppose that all subtasks

scheduled in slot t have a group deadline greater than D(T
[j]
u ). We now show that T

[j]
u can

be removed and a deadline will still be missed at td, contradicting Property (T2). (Before

continuing, notice that, since T
[j]
u is scheduled, it is present, and as a result, T

[j]
u can be

removed.) Let the chain of displacements caused by removing T
[j]
u be ∆1,∆2, ...,∆k, where

∆i = 〈X(i), ti,X
(i+1), ti+1〉, X(1) = T

[j]
u . By Lemma 5.1, ti+1 > ti, for 1 ≤ i ≤ k.

Note that, at slot ti, the priority of X(i) is at least that of X(i+1), because X(i) was chosen

over X(i+1) in S. Thus, because X(1) = T
[j]
u and, by Lemma 5.6, d(T

[j]
u ) = t + 1 ∧ b(T

[j]
u ) = 1,

we have the following property.

(Q) For any value of i such that 1 ≤ i ≤ k + 1, if d(X(i)) = t + 1 and b(X(i)) = 1, then

D(X(i)) ≤ D(T
[j]
u ).

We now show that the displacements do not extend beyond slot t. Assume to the contrary

that tk+1 > t. Consider h ∈ {2, ..., k + 1} such that th > t and th−1 ≤ t. Such an h exists

because t1 ≤ t < tk+1. Because there is a hole in slot t and th−1 ≤ t < th, by Lemma 5.3,

th−1 = t. Thus, X(h−1) is scheduled in slot t and, by extension, X(h−1) has the largest
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index of any subtask of its task that is scheduled at or before t. Thus, by Lemma 5.6,

d(X(h−1)) = t + 1 ∧ b(X(h−1)) = 1. Thus, by Property (Q), D(X(h−1)) ≤ D(T
[j]
u ), which

contradicts our assumption all subtasks scheduled in slot t have a group deadline greater

than D(T
[j]
u ).

Thus, the displacements do not extend beyond slot t. Hence, no subtask scheduled after

t is “left-shifted.” Thus, a deadline is still missed at time td, contradicting Property (T2).

Hence, there exists a subtask T
[b]
a scheduled in slot t such that D(T

[b]
a ) ≤ D(T

[j]
u ).

Lemma 5.8. Let t < td − 1 be a slot in which there is a hole in S. Let Tu be any task in At.

Let T
[j]
u be the subtask of Tu that is scheduled in slot t. Then, T

[j]
u ’s successor is released at

time t.

Proof. Let t and Tu be as defined in the statement of the lemma. By Lemma 5.6, d(T
[j]
u ) = t+1

and b(T
[j]
u ) = 1. Since T

[j]
u is scheduled at time t, T

[j]
u is not complete by time t in S. Thus,

by Property (GV), T
[j]
u ’s successor cannot be released before d(T

[j]
u ) − b(T

[j]
u ) = t.

We now show that T
[j]
u ’s successor must be released by time t, which completes the proof.

Suppose, to derive a contradiction, that T
[j]
u ’s successor is released after time t. We now show

that T
[j]
u can be removed and a deadline will still be missed at td, contradicting Property (T2).

(Before continuing, notice that, since T
[j]
u is scheduled, it is present, and as a result, T

[j]
u can

be removed.) Let the chain of displacements caused by removing T
[j]
u be ∆1,∆2, ...,∆k, where

∆i = 〈X(i), ti,X
(i+1), ti+1〉, X(1) = T

[j]
u . By Lemma 5.1, ti+1 > ti, for 1 ≤ i ≤ k.

We now show that the displacements do not extend beyond slot t. Assume to the contrary

that tk+1 > t. Consider h ∈ {2, ..., k + 1} such that th > t and th−1 ≤ t. Such an h exists

because t1 ≤ t < tk+1. Because there is a hole in slot t and th−1 ≤ t < th, by Lemma 5.3,

th−1 = t, X(h) is X(h−1)’s successor. Moreover, by Lemma 5.1, X(h−1) = T
[j]
u . Notice that the

displacement 〈X(h−1), th−1,X
(h), th〉 is valid iff r(X(h)) ≤ t, which implies that T

[j]
u ’s successor

is released by time t. However, this contradicts our assumption that T
[j]
u ’s successor is released

after time t.

Thus, the displacements do not extend beyond slot t. Hence, no subtask scheduled after

t is “left-shifted.” Thus, a deadline is still missed at time td, contradicting Property (T2).

Hence, T
[j]
u ’s successor is released at time t.
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Consecutive holes. Notice that, if there are two consecutive slots with holes, ta and tb,

then by Lemma 5.8, for any subtask T
[j]
u scheduled in slot ta, T

[j]
u ’s successor, T

[q]
u , is released

at time ta. As a result, since r(T
[q]
u ) = ta < tb, there is a hole in slot tb, and T

[j]
u is scheduled

in slot ta, it follows that T
[q]
u is scheduled in slot tb. Thus, we have the following lemma.

Lemma 5.9. Let ta and tb be two consecutive slots such that ta = tb − 1 < td − 1 and both ta

and tb contain holes in the schedule S. Let Tu be any task in Ata . Let T
[j]
u be the subtask of

Tu that is scheduled in slot ta. Then, T
[j]
u ’s successor is scheduled in slot tb.

Lemma 5.10. Let ta and tb be two consecutive slots such that ta = tb − 1 < td − 1 and both

ta and tb contain holes in the schedule S. Let Tu be any task in Atb. Let T
[j]
u be the subtask

of Tu that is scheduled in slot tb. Then, T
[j]
u ’s predecessor is scheduled in slot ta.

Proof. Let ta, tb, and Tu be as defined in the statement of the lemma. By Lemma 5.6,

d(T
[j]
u ) = tb + 1 and b(T

[j]
u ) = 1. Thus, by Property (WL), r(T

[j]
u ) ≤ d(T

[j]
u )− 2 = tb − 1 = ta.

Since there is a hole at ta and r(T
[j]
u ) ≤ ta, T

[j]
u would be scheduled in slot ta, unless its

predecessor was scheduled there. Since T
[j]
u is scheduled in slot tb, its predecessor must be

scheduled in slot ta.

From Lemmas 5.9 and 5.10, the subsequent corollary follows.

Corollary 5.1. Let ta and tb be two slots such ta ≤ tb ≤ td − 1 and there is a hole in every

slot in the range {ta, ..., tb}. If a task Tx is not scheduled in slot ta, then it is not scheduled

in any slot over the range {ta, ..., tb}.

Notice that, by Lemma 5.9, any task Tu that is scheduled in the first hole in a sequence

of slots with holes must be scheduled in every slot in the sequence. Moreover, by Lemma 5.8,

a subtask of Tu must be released at every slot in this sequence. Thus, there can be no IS

separations between subtasks until the sequence of holes is over. In addition, every subtask

of Tu that is released over the range {ta, tb − 2} will be scheduled in the second slot of its

window. Thus, we have the following corollaries (depicted in Figure 5.21).

Corollary 5.2. Let ta and tb be two slots such that ta ≤ tb ≤ td−1 and there is a hole in every

slot in the range {ta, ..., tb}. If T
[j]
u is scheduled at time ta, then for q ∈ {j, ..., j + 1 + tb − ta},

θ(T
[q]
u ) = θ(T

[j]
u ), i.e., there are no IS separations between any two subtasks of Tu.
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Figure 5.21: An illustration of Corollaries 5.2 and 5.3.

Corollary 5.3. Let ta and tb be two slots such ta < tb ≤ td − 1 and there is a hole in every

slot in the range {ta, ..., tb}. If T
[j]
u is scheduled at time ta, then for any subtask T

[q]
u such that

ta ≤ r(T
[q]
u ) ≤ tb − 1, T

[q]
u is scheduled in slot r(T

[q]
u ) + 1.

Time tH. Since, by part (d) of Lemma 5.5, LAG(τ, td − 1) ≥ 1, and by the definition of

LAG, LAG(τ, 0) = 0, there exists a time tH such that

0 ≤ tH < td − 1 ∧ LAG(τ, tH) < 1 ∧ LAG(τ, tH + 1) ≥ 1. (5.16)

Without loss of generality, let tH, be the latest such time, i.e., for all u such that tH < u ≤

td − 1, LAG(τ, u) ≥ 1. We now show that such a tH cannot exist, thus contradicting our

starting assumption that td and τ exist. For brevity, we use A to denote AtH , B to denote

BtH , and I to denote ItH .

Lemma 5.11. B is non-empty

Proof. Let the number of holes in slot tH be h. Then, A(S, τ , tH) = M − h. By (5.1),

LAG(τ, tH + 1) = LAG(τ, tH) + A(SW , τ , tH) − A(S, τ , tH) (recall that for this section

we have assumed that LAG(τ, t) = LAG(S,SW, τ, t)). Thus, because LAG(τ, tH + 1) >

LAG(τ, tH) (by (5.16)), we have A(SW , τ , tH) > M − h. Since, for every Tv 6∈ A ∪ B,

A(SW , Tv, tH) = 0, it follows that A(SW , A ∪ B, tH) > M − h. Therefore, by Property

(AF1),
∑

Ti∈A (Swt(Ti, tH))+
∑

Ti∈B (A(SW , Ti, tH)) > M −h. Because the number of tasks
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scheduled in slot tH is M−h, |A| = M−h. Because Swt(Ti, t) ≤ 1, for any task Ti at any time

t,
∑

Ti∈A Swt(Ti, tH) ≤ M − h. Thus,
∑

Ti∈B A(SW , Ti, tH) > 0. Hence, B is not empty.

(TK) Let Tu be any task in B and let T
[j]
u be the subtask of Tu with the largest index such

that r(T
[j]
u ) ≤ tH < d(T

[j]
u ) and T

[j]
u is scheduled before tH. Then, no present subtask of

Tu with an index greater than j (including T
[j]
u ’s successor) is released before d(T

[j]
u ).

Notice that Lemma 5.6 implies d(T
[j]
u ) = tH +1. Thus, Property (TK) easily follows from the

fact that there is a hole in slot tH and no subtask of any task in B is scheduled in slot tH.

Lemma 5.12. Let Tu be any task in B. Let T
[j]
u be the subtask of Tu with the largest index

such that r(T
[j]
u ) ≤ tH < d(T

[j]
u ) and T

[j]
u is scheduled before tH. Then, C(SW,T

[j]
u ) = tH + 1.

Proof. Let Tu and T
[j]
u be defined as in the statement of the lemma. Since T

[j]
u is the subtask

of Tu with the largest index such that r(T
[j]
u ) ≤ tH < d(T

[j]
u ) and T

[j]
u is scheduled before

tH (by the definition of B, no subtask of Tu ∈ B is scheduled in slot tH), by Lemma 5.6,

d(T
[j]
u ) = tH + 1. Thus, by Property (AF3), C(SW,T

[j]
u ) ≤ tH + 1.

We now show that for ℓ 6= j, A(SW , T
[ℓ]
u , tH) = 0. First, we consider ℓ > j. From the

definition of T
[j]
u , at least one of the following three conditions must hold: (i) r(T

[ℓ]
u ) > tH;

(ii) d(T
[ℓ]
u ) ≤ tH; or (iii) T

[ℓ]
u is not scheduled by time tH. If Conditions (i) or (ii) hold,

then by Properties (AF3) and (AF4), A(SW , T
[ℓ]
u , tH) = 0. If Condition (iii) holds, then

by Property (TK), either r(T
[ℓ]
u ) > d(T

[j]
u ), in which case Condition (i) holds, or T

[ℓ]
u is

not present, in which case A(SW , T
[ℓ]
u , tH) = 0. Thus, for ℓ > j, A(SW , T

[ℓ]
u , tH) = 0.

Now, consider ℓ < j. By Lemma 5.6, d(T
[j]
u ) = tH + 1 ∧ b(T

[j]
u ) = 1. By Property (WL),

every subtask has a window length of at least two. Hence, r(T
[j]
u ) ≤ tH − 1. By Property

(GV), if d(T
[ℓ]
u ) − b(T

[ℓ]
u ) > r(T

[j]
u ) holds, then C(SW,T

[ℓ]
u ) ≤ r(T

[j]
u ) holds. Thus, either

C(SW,T
[ℓ]
u ) ≤ r(T

[j]
u ) or d(T

[ℓ]
u ) − b(T

[ℓ]
u ) ≤ r(T

[j]
u ) holds. Since r(T

[j]
u ) ≤ tH − 1, this implies

that either C(SW,T
[ℓ]
u ) ≤ r(T

[j]
u ) ≤ tH− 1 or d(T

[ℓ]
u ) ≤ r(T

[j]
u )+ b(T

[ℓ]
u ) ≤ tH− 1+ b(T

[ℓ]
u ) ≤ tH

holds. Since, by Property (AF3), C(SW,T
[ℓ]
u ) ≤ d(T

[ℓ]
u ), C(SW,T

[ℓ]
u ) ≤ tH holds in either case.

Thus, by Property (AF4), A(SW , T
[ℓ]
u , tH) = 0.

Thus, the allocation to each subtask of Tu, except T
[j]
u , in SW in slot tH is zero. By the

definition of B, A(SW , Tu, tH) > 0. Thus, since A(SW , Tu, tH) =
∑

T
[i]
u ∈Tu

A(SW , T
[i]
u , tH),
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Figure 5.22: An illustration of the proof of Lemma 5.13, where there is a hole in time slots
tH and tH + 1.

there must exist at least one present subtask with a positive allocation in SW in the slot tH.

Thus, A(SW , T
[j]
u , tH) > 0. By Property (AF4), this implies that C(SW,T

[j]
u ) ≥ tH+1. Since

we have already established that C(SW,T
[j]
u ) ≤ tH + 1, we have C(SW,T

[j]
u ) = tH + 1.

Lemma 5.13. Let Tu be a task in A and let T
[j]
u be the subtask of Tu that is scheduled in slot

tH. If D(T
[j]
u ) = 0, then there is no hole in slot tH + 1.

Proof. Let Tu and T
[j]
u be as defined in the statement of the lemma. Since tasks tH < td,

T
[j]
u is scheduled before its deadline, i.e., tH < d(T

[j]
u ). Moreover, since tasks are scheduled

sequentially, it follows that T
[j]
u has the largest index of any subtask of Tu scheduled at or

before tH. (Tu is illustrated in Figure 5.22.)

Thus, by Lemma 5.6, d(T
[j]
u ) = tH + 1 ∧ b(T

[j]
u ) = 1. In addition, since there is a hole in

tH, by Lemma 5.8, T
[j]
u ’s successor, T

[j+1]
u , is released at time tH, i.e., r(T

[j+1]
u ) = tH.

We now assume that there is a hole in slot tH + 1 to derive a contradiction. By this

assumption and Lemma 5.9, it follows that T
[j+1]
u is scheduled in slot tH + 1. Since T

[j+1]
u

is scheduled at tH + 1 < td, T
[j+1]
u does not miss its deadline. Hence, d(T

[j+1]
u ) ≥ tH + 2.

Since subtasks are scheduled in index order, T
[j+1]
u has the largest index of any subtask of Tu

scheduled at or before tH +1. Thus, by Lemma 5.6, d(T
[j+1]
u ) = tH +2∧ b(T

[j+1]
u ) = 1. Thus,

because (as was already established) r(T
[j+1]
u ) = tH, it follows that d(T

[j+1]
u ) − r(T

[j+1]
u ) = 2.

Since T
[j]
u is scheduled in slot tH, b(T

[j]
u ) = 1, D(T

[j]
u ) = 0, and r(T

[j+1]
u ) = tH, by Property

(GD-3), D(T
[j+1]
u ) = 0. Thus, by Property (WL), d(T

[j+1]
u ) − r(T

[j+1]
u ) ≥ 3; however, this

contradicts our earlier assertion that d(T
[j+1]
u ) − r(T

[j+1]
u ) = 2. Thus, there cannot exist a

hole in slot tH + 1, which completes the proof.
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Corollary 5.4. Let Tb be a task in B and let T
[c]
b be the subtask of Tb with the largest index

such that r(T
[c]
b ) ≤ tH < d(T

[c]
b ). If D(T

[c]
b ) = 0, then there is no hole in slot tH + 1.

Proof. Let Tb and T
[c]
b be as defined in the statement of the lemma. Since by the statement

of a lemma, D(T
[c]
b ) = 0, it follows, by Lemma 5.7, that there is a subtask, T

[j]
u , of a task Tu

in A such that D(T
[j]
u ) = 0 and T

[j]
u is scheduled at time tH. Thus, by Lemma 5.13, there is

no hole in slot tH + 1.

Lemma 5.14. Let Tu be a task in B and let T
[j]
u be the subtask of Tu with the largest index

such that r(T
[j]
u ) ≤ tH < d(T

[j]
u ). If D(T

[j]
u ) > 0, then there exists a slot with no holes in

[d(T
[j]
u ), min(D(T

[j]
u ), td)).

Proof. By Lemma 5.6, d(T
[j]
u ) = tH + 1 ∧ b(T

[j]
u ) = 1. By (5.16), tH < td − 1. Thus,

d(T
[j]
u ) < td − 1. Thus, by Lemma 5.5(b), if D(T

[j]
u ) ≥ td − 1, then the proof is complete.

Therefore, for the remainder of the proof, we assume that

D(T [j]
u ) < td − 1. (5.17)

Since D(T
[j]
u ) > 0 and b(T

[j]
u ) = 1, by Property (GD-2), we have that D(T

[j]
u ) > d(T

[j]
u ).

Thus,

D(T [j]
u ) ≥ d(T [j]

u ) + 1 = tH + 2. (5.18)

By Lemma 5.7, we have the following property:

(E-1) There exists a subtask T
[z]
x scheduled in slot tH such that D(T

[z]
x ) ≤ D(T

[j]
u ).

(Tx is illustrated in Figure 5.23.) By Lemma 5.13, if D(T
[z]
x ) = 0, then there is no hole in slot

tH+1. Since, we have assumed that D(T
[j]
u ) < td−1 and, by (5.18), D(T

[j]
u ) ≥ tH+1 = d(T

[j]
u ),

it follows that if D(T
[z]
x ) = 0, then there exists a slot with no holes in [d(T

[j]
u ), min(D(T

[j]
u ), td)).

Thus, for the remainder of the proof we assume that

D(T [z]
x ) > 0. (5.19)

Since T
[z]
x is scheduled in slot tH, and tH < td, it follows T

[z]
x is scheduled before its
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deadline. Thus, since a subtask must be released before it is scheduled, r(T
[z]
x ) ≤ tH < d(T

[z]
x ).

Moreover, since subtasks are scheduled sequentially, T
[z]
x has the largest index of any subtask

of Tx that is scheduled at or before tH such that r(T
[z]
x ) ≤ tH < d(T

[z]
x ). Thus, by Lemma 5.6,

d(T
[z]
x ) = tH + 1 ∧ b(T

[z]
x ) = 1. Thus, by (5.19) and Properties (E-1) and (GD-2), it follows

that

tH + 2 ≤ D(T [z]
x ) ≤ D(T [j]

u ). (5.20)

To derive a contradiction, we assume that every slot in the set {tH, ...,D(T
[j]
u ) − 1} con-

tains a hole. Since by (5.20), D(T
[z]
x ) ≤ D(T

[j]
u ), if there is a hole in every slot in the set

{tH, ...,D(T
[j]
u ) − 1}, then we have the following property.

(E-2) Every slot in the set {tH, ...,D(T
[z]
x ) − 1} contains a hole.

(Notice that the set {tH, ...,D(T
[z]
x ) − 1} is non-empty since by (5.20), tH + 2 ≤ D(T

[z]
x ).) By

Lemma 5.9 and Properties (E-1) and (E-2), it follows that Tx is scheduled in every slot in the

set {tH, ...,D(T
[z]
x ) − 1}. Thus, by Corollary 5.2, we have the following property.

(E-3) For all q ∈ {z, ..., z + (D(T
[z]
x ) − tH)}, θ(T

[z]
x ) = θ(T

[q]
x ).

Let k equal the index of the subtask ω(T
[z]
x ). Notice that D(T

[z]
x ) − tH + z = k since the

number of Tx’s subtasks that are released after r(T
[z]
x ) but before D(T

[z]
x ) equals D(T

[z]
x )− tH.

Thus, by Property (E-3), it follows that for all T
[q]
x ∈ {T [z]

x , ..., ω(T
[z]
x )}, θ(T

[z]
x ) = θ(T

[q]
x ).

Thus, by Property (GD-1), the subtask ω(T
[z]
x ), has the following two properties

(Y-1) r(ω(T
[z]
x )) = D(T

[z]
x ) − 2.

(Y-2) Either d(ω(T
[z]
x )) = D(T

[z]
x ) and b(ω(T

[z]
x )) = 0 or d(ω(T

[z]
x )) = D(T

[z]
x ) + 1 and

b(ω(T
[z]
x )) = 1.

We now show that ω(T
[z]
x ) cannot satisfy both Properties (Y-1) and (Y-2), which contradicts

Property (E-2) and completes the proof.

Since tH < D(T
[z]
x )− 1 (by (5.20)), and D(T

[z]
x )− 1 < td − 1 (by 5.17), by Properties (E-1)

and (E-2), we have the following.

(E-4) tH < D(T
[z]
x )−1 ≤ td−1, where there is a hole in every slot in the range {tH, ...,D(T

[z]
x )−

1}, and T
[z]
x is scheduled in slot tH.
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Figure 5.23: An illustration of the two possibilities for Tx in Lemma 5.14.

Recall that, by Property (Y-1), r(ω(T
[z]
x )) = D(T

[z]
x )−2. Thus, by Corollary 5.3 and Property

(E-4), it follows that ω(T
[z]
x ) is scheduled in slot r(ω(T

[z]
x )) + 1 = D(T

[z]
x ) − 1.

Since ω(T
[z]
x ) is scheduled at time D(T

[z]
x )−1, by Property (E-2), there is a hole at the time

it is scheduled. Thus, by Lemma 5.6, it follows that b(ω(T
[z]
x )) = 1 and d(ω(T

[z]
x )) = D(T

[z]
x );

however, this contradicts Property (Y-2).

The following lemma contradicts our choice of tH as the last slot such that LAG(τ, tH) < 1.

Lemma 5.15. Let Tb be a task in B and let T
[c]
b be the subtask of Tb with the largest index

such that r(T
[c]
b ) ≤ tH < d(T

[c]
b ). If D(T

[c]
b ) = 0, then LAG(τ, tH + 2) < 1.

Proof. Let the number of holes in slot tH be h. Assume that T
[c]
b exists and is defined as in

the statement of the lemma. We now derive some properties about the per-slot allocations to

tasks in the SW schedule in slots tH and tH + 1.

By the definition of I, if task Ty is in I, then A(SW , Ty, tH) = 0. Since τ = A ∪

B ∪ I,
∑

Ty∈τ A(SW , Ty, tH) =
∑

Ty∈A∪B A(SW , Ty, tH). Since Swt(Ty, t) ≤ 1, for any

task Ty and any time t, we have
∑

Ty∈A Swt(Ty, tH) ≤ |A|. Thus, by Property (AF1),

∑

Ty∈A A(SW , Ty, tH) ≤ |A|. Because there are h holes in slot tH, M −h tasks are scheduled

at tH, i.e., |A| = M − h. Thus,
∑

Ty∈A A(SW , Ty, tH) ≤ M − h, and hence

∑

Ty∈τ

A(SW , Ty, tH) ≤ M − h +
∑

Ty∈B

A(SW , Ty, tH). (5.21)
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Let C denote the set of tasks that receive a positive allocation in SW in slot tH + 1 and

are not in B. Then, the set of tasks that receive a positive allocation in SW is a subset of

C ∪ B. Thus, by Property (W) in Section 5.5,

∑

Ty∈C∪B

Swt(Ty, tH + 1) ≤ M. (5.22)

Also,
∑

Ty∈τ A(SW , Ty, tH + 1) =
∑

Ty∈C∪B A(SW , Ty, tH + 1). By Property (AF1), this

implies that
∑

Ty∈τ A(SW , Ty, tH + 1) ≤∑Ty∈C Swt(Ty, tH+1)+
∑

Ty∈B A(SW , Ty, tH + 1).

Thus, by (5.21),

∑

Ty∈τ

A(SW , Ty, tH, tH + 2) ≤ M − h +
∑

Ty∈C

Swt(Ty, tH + 1) +
∑

Ty∈B

A(SW , Ty, tH, tH + 2)

(5.23)

Consider Tu ∈ B. Let T
[j]
u be the subtask of Tu with the largest index such that r(T

[j]
u ) ≤

tH < d(T
[j]
u ) that is scheduled before tH. Let D denote the set of such subtasks for all tasks

in B. Then, by Lemmas 5.6 and 5.12,

for all T [j]
u ∈ D,C(SW,T [j]

u ) = d(T [j]
u ) = tH + 1 ∧ b(T [j]

u ) = 1. (5.24)

By (TK), T
[j]
u ’s successor T

[k]
u (if it exists) is not released until at or after tH+1 ≥ C(SW,T

[j]
u ).

Since r(T
[k]
u ) ≥ C(SW,T

[j]
u ) and b(T

[j]
u ) = 1, by (AF2), A(SW , Tu, tH, tH + 2) ≤ Swt(Tu, tH+

1). Thus,
∑

Ty∈B A(SW , Ty, tH, tH + 2) ≤∑Ty∈B Swt(Ty, tH + 1).

By (5.23), this implies that

∑

Ty∈τ

A(SW , Ty, tH, tH + 2) ≤ M − h +
∑

Ty∈C∪B

Swt(Ty, tH + 1).

Thus, from (5.22) it follows that

∑

Ty∈τ

A(SW , Ty, tH, tH + 2) ≤ M − h + M. (5.25)

Notice that, by Corollary 5.4, the existence of T
[c]
b (from the statement of the lemma) im-
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plies that there is no hole in slot tH + 1. Thus, since there are h holes in slot tH, we

have A(S, τ , tH, tH + 2) = M − h + M . Hence, by (5.25),
∑

Ty∈τ A(SW , Ty, tH, tH + 2) ≤
∑

Ty∈τ A(S, τ , tH, tH + 2). Using this relation in (5.1) we obtain, LAG(τ, tH+2) = LAG(τ, tH)+

∑

Ty∈τ A(SW , Ty, tH, tH + 2) −∑Ty∈τ A(S, Ty, tH, tH + 2) (recall that for this section, we

have assumed that LAG(τ, t) = LAG(S,SW, τ , t)). Since, LAG(τ, tH) < 1, we have LAG(τ, tH+

2) < 1.

Lemma 5.16. If tN is the first time after tH such that there are no holes in the schedule S,

then LAG(τ, tN + 1) < 1.

Proof. By Corollary 5.4, if there exists a task Tb in B with a subtask T
[c]
b , where D(T

[c]
b ) = 0,

and T
[c]
b has the largest index of any task in Tb such that r(T

[c]
b ) ≤ tH < d(T

[c]
b ) holds, then

there is no hole in slot tH + 1 (i.e., tN = tH + 1), and by Lemma 5.15, LAG(τ, tN + 1) < 1.

Thus, for the remainder of this proof we assume that no such task is in B.

Let the number of holes in slot tH be h. By Corollary 5.1, only tasks in A are scheduled

in slots in the range {tH, ..., tN −1}, and by Lemma 5.9, every task in A is scheduled in every

slot in this range. Thus, we have the following property

(H) There are h holes in every slot in the range {tH, ..., tN − 1}.

We now derive some properties about the per-slot allocations to tasks in the SW schedule

in the slots {tH, ..., tN }.

Allocations in SW in slot tH. By the definition of set I, if a task Ty is in I, then

A(SW , Ty, tH) = 0. Since τ = A∪B ∪ I,
∑

Ty∈τ A(SW , Ty, tH) =
∑

Ty∈A∪B A(SW , Ty, tH).

Since Swt(Ty, t) ≤ 1 for any task Ty, we have
∑

Ty∈A Swt(Ty, tH) ≤ |A|. Thus, by Property

(AF1),
∑

Ty∈A A(SW , Ty, tH) ≤ |A|. Because there are h holes in slot tH, M − h tasks are

scheduled at tH, i.e., |A| = M − h. Thus,
∑

Ty∈A A(SW , Ty, tH) ≤ M − h, and hence

∑

Ty∈τ

A(SW , Ty, tH) ≤ M − h +
∑

Ty∈B

A(SW , Ty, tH). (5.26)

Allocations in SW between slots tH and tN . By Corollary 5.1, only tasks in A release

subtasks in the slots {tH + 1, ..., tN − 1}. (If a subtask of a task not in A was released within
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this range, then it would be scheduled within this range since there are holes in every slot.)

Moreover, by Lemma 5.6, any task that is released at or before tH and is not part of A must

have a deadline no later than tH + 1. Thus, by Properties (AF3) and (AF4), the allocations

to all tasks in SW , not in A, in the slots {tH + 1, ..., tN − 1} is zero. Moreover, reasoning as

above,
∑

Ty∈τ A(SW , Ty, t) ≤ M − h holds for any slot t in this range. Therefore,

∑

Ty∈τ

A(SW , Ty, tH + 1, tN ) ≤ (tN − tH − 2) · (M − h). (5.27)

Allocations in SW in slot tN . Let C denote the set of tasks that receive a positive

allocation in SW in slot tN and are not in B. Then, the set of tasks that receive a positive

allocation in SW is a subset of C ∪ B. By Property (W) in Section 5.5,

∑

Ty∈C∪B

Swt(Ty, tN ) ≤ M. (5.28)

Also,
∑

Ty∈τ A(SW , Ty, tN ) =
∑

Ty∈C∪B A(SW , Ty, tN ). By Property (AF1), this implies

that
∑

Ty∈τ

A(SW , Ty, tN ) ≤
∑

Ty∈C

Swt(Ty, tN ) +
∑

Ty∈B

A(SW , Ty, tN ). (5.29)

By (5.26), (5.27), and (5.29), the total SW allocation in the slots {tH, ..., tN } is

∑

Ty∈τ A(SW , Ty, tH, tN ) ≤ ∑

Ty∈C Swt(Ty, tN ) + (tN − tH − 1) · (M − h)

+
∑

Ty∈B A(SW , Ty, tH, tN + 1).
(5.30)

Constructing an upper bound for
∑

Ty∈B A(SW , Ty, tH, tN + 1). Consider Tu ∈ B.

Let T
[j]
u be the subtask of Tu with the largest index such that r(T

[j]
u ) ≤ tH < d(T

[j]
u ) that is

scheduled before tH. Let D denote the set of such subtasks for all tasks in B. Notice that,

by the assumption we made at the beginning of this proof, for any subtask T
[j]
u in D,

D(T [j]
u ) > 0 (5.31)
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and ω(T
[j]
u ) is defined. By Lemmas 5.6 and 5.12,

C(SW,T [j]
u ) = d(T [j]

u ) = tH + 1 ∧ b(T [j]
u ) = 1. (5.32)

In addition, since, by the statement of the lemma tH < tN , it follows from (5.32) that

C(SW,T [j]
u ) = tH + 1 ≤ tN . (5.33)

Moreover, by Lemma 5.14, tN is before the earliest group deadline of any subtask in D. Thus,

tN < D(T [j]
u ). (5.34)

Let T
[f ]
u be T

[j]
u ’s next present successor. We now show that, if T

[f ]
u does not exist, then by

Property (AF5), A(SW , Tu, tH, tN + 1) ≤ Swt(Tu, tN ). In order to apply (AF5) the following

conditions must hold: (i) D(T
[j]
u ) > 0; (ii) C(SW,T

[j]
u ) − 1 ≤ tN ; and (iii) tN ≤ D(T

[j]
u ).

Condition (i) holds by (5.31). Condition (ii) holds by (5.33). Condition (iii) holds by (5.34).

Thus, Property (AF5) applies, and A(SW , Tu, tH, tN + 1) ≤ Swt(Tu, tN ).

We now consider the possibility where T
[f ]
u exists. By Corollary 5.1, since no subtask of

any task in B is scheduled in slot tH, no subtask of any task in B is scheduled over the range

{tH, ..., tN − 1}. Thus, since there are holes in every slot in this range, it follows that no task

in B releases a present subtask at a slot within the range {tH, ..., tN −1}. Thus, if T
[f ]
u exists,

then tN ≤ r(T
[f ]
u ). Hence, by (5.34),

tN ≤ min(r(T [f ]
u ),D(T [j]

u )). (5.35)

We now apply Property (AF5) to show that A(SW , Tu, tH, tN + 1) ≤ Swt(Tu, tN ). In or-

der for Property (AF5) to apply, the following conditions must hold: (i) D(T
[j]
u ) > 0; (ii)

C(SW,T
[j]
u ) ≤ r(T

[f ]
u ); (iii) C(SW,T

[j]
u ) − 1 ≤ tN ; and (iv) tN ≤ min(r(T

[f ]
u ),D(T

[j]
u ) − 1).

Condition (i) holds by (5.31). By (5.35) and (5.33), C(SW,T
[j]
u ) = tH + 1 ≤ tN ≤

min(r(T
[f ]
u ),D(T

[j]
u )). This implies that C(SW,T

[j]
u )− 1 ≤ r(T

[f ]
u ) holds, which satisfies Condi-

tion (ii). Similarly, (5.33) implies that Condition (iii) holds, and (5.35) implies that Condition
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(iv) holds. Thus, by Property (AF5), it follows that A(SW , Tu, tH, tN + 1) ≤ Swt(Tu, tN ).

Thus, regardless of whether T
[f ]
u exists or not,

∑

Ty∈B A(SW , Ty, tH, tN + 1) ≤
∑

Ty∈B Swt(Ty, tN ).

By (5.30), this implies that

∑

Ty∈τ

A(SW , Ty, tH, tN + 1) ≤ (tN − tH − 1) · (M − h) +
∑

Ty∈C∪B

Swt(Ty, tN ).

Thus, from (5.28) it follows that

∑

Ty∈τ

A(SW , Ty, tH, tN + 1) ≤ (tN − tH − 1) · (M − h) + M. (5.36)

Completing the proof. Since, by the statement of the lemma, there is no hole in slot tN

and by Property (H), there are h holes in every slot in the range {tH, ..., tN − 1}, we have

A(S, τ , tH, tN + 1) = (tN − tH − 1) · (M − h) + M.

Hence, by (5.36),
∑

Ty∈τ A(SW , Ty, tH, tN + 1) ≤ ∑

Ty∈τ A(S , τ , tH, tN + 1). By (5.1),

LAG(τ, tN + 1) = LAG(τ, tH) +
∑

Ty∈τ A(SW , Ty, tH, tN + 1) −∑Ty∈τ A(S , Ty, tH, tN + 1)

(recall that for this section, we have assumed that LAG(τ, t) = LAG(S,SW, τ , t)). Since,

LAG(τ, tH) < 1, we obtain LAG(τ, tN + 1) < 1.

It follows, by Lemma 5.16, there exists a time, t after tH such that LAG(τ, t) < 1. This

contradicts (5.16), which implies that td does not exist. Thus, Theorem 5.2 holds.

5.6 Drift

We now turn our attention to the issue of measuring drift under PD-PNH. In order to measure

the drift of a task system τ , we introduce two additional theoretical scheduling algorithms: the

clairvoyant scheduling-weight (CSW) scheduling algorithm; and the ideal (IDEAL) scheduling

algorithm. The CSW scheduling algorithm is the same as the SW scheduling algorithm except

that the CSW scheduling algorithm is “clairvoyant” so that it does not allocate capacity to
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tasks that will halt. Under the IDEAL scheduling algorithm, at each instant t, each task Ti

in τ is allocated a share equal to its weight wt(Ti, t). Hence, over the interval [t1, t2), the

task Ti is allocated A(I, Ti, t1, t2) =
∫ t2
t1

wt(Ti, u)du time. We use CSW and I to denote,

respectively, CSW and IDEAL schedules for a given system.

Using the definition of SW , we can simply define CSW as follows:

A(CSW , T
[j]
i , t) =











A(SW , T
[j]
i , t), if T

[j]
i never halts

0, otherwise.

For example, in Figure 5.4(a) A(SW , T
[j]
i , t) = A(CSW , T

[j]
i , t) except for T

[2]
1 , where

A(CSW , T
[2]
1 , t) = 0, for all t. We use CSW and I to denote, respectively, CSW and IDEAL

schedules for a given system.

For the remainder of this section, we assume that every subtask in Ti is released as early

as possible. This assumption can be removed at the cost of more complex notation. If we did

not make this assumption, then the allocation function for I would equal zero between active

subtasks.

Comparing IDEAL to SW and CSW. I is similar to SW and CSW , with three major

exceptions: (i) tasks in I continually receive allocations, whereas tasks in SW and CSW

receive allocations only at quantum boundaries; (ii) under I, each task receives an allocation

equal to its weight, whereas under SW and CSW , each task receives allocations according

to its scheduling weight; and (iii) the total allocation each task receives in SW and CSW is

calculated based on the releases and completion times of its active subtasks, whereas alloca-

tions in I are independent of subtask releases and completion times. Hence, even if all active

subtasks of a given task are halted, I still allocates capacity to that task.

Example (Figure 5.24). Consider the example in Figure 5.24, which depicts the allocations

in the schedules CSW and I (insets (a) and (b), respectively) to a task T1 that has an initial

weight of 3/19 that increases to 2/5 (via Rule N) at time 8. Notice that, over the range [8, 10)

in I, T1 receives an allocation equal to its weight at every instant (for a total allocation of

4/5 over [8, 10)). Compare this to CSW , in which T1 receives only an allocation of 44/95 over
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Figure 5.24: Allocations for a task T1 with an initial weight of 3/19 that changes to 2/5.

(a) The value of A(CSW , T
[j]
1 , u) for each slot and subtask. (b) The allocations to T1 in I

at each instant.

the same range.

As was the case for the adaptable sporadic task model and the modified adaptable sporadic

task model, the drift of a task Ti is calculated as the difference between Ti’s allocations in

the CSW and the I schedules. Formally, under PD-PNH, the drift of a task Ti is defined as

drift(Ti, t) = A(I, Ti, 0, t) − A(CSW , Ti, 0, t). (5.37)

Example (Figure 5.8). For example, in Figure 5.8(b), the drift of task T1 at time t = 9 is

A(I, T1, 0, 9) − A(CSW , T1, 0, 9) = 27/20 − 20/20 = 7/20, whereas at time t = 10, the drift

of Ti is A(I, T1, 0, 10)−A(CSW , T1, 0, 10) = 3/2− 1 = 1/2. Notice that, since T
[2]
1 is halted

at time 10, A(CSW , T
[2]
1 , 0, 10) = 0.

We say that a reweighting algorithm is fine-grained iff there exists some constant value c

such that the drift per weight change is less than c. We say that a reweighting algorithm is

coarse-grained otherwise.

5.6.1 PD-LJ is Not Fine-Grained

We now prove that PD-LJ is not fine-grained. (The definition of drift for PD-LJ is the same

as the definition of drift for PD-PNH, except that CSW is determined by using PD-LJ.)
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Figure 5.25: A four-processor example illustrating why PD-LJ is coarse-grained. A is a set of
35 tasks each with a weight 1/10. T1 has a weight of 1/10 that increases to 1/2 at time 4.

Example (Figure 5.25). Consider the four-processor example in Figure 5.25, which depicts

the PD-LJ schedule for a system that consists of a set A of 35 tasks with weight 1/10 and

a task T1 with weight 1/10 that increases to 1/2 at time 4. By Rule L, T1 cannot “leave”

until time 10. Hence, the change is not enacted until time 10. Thus, over the range [4, 10),

Ti receives a 1/10 per-slot allocation in CSW and 1/2 in I. Hence, Ti’s drift reaches a value

of 24/10 at time 10. This example can be generalized by decreasing the weights of the tasks

in set A and the initial weight of T1 to 1
10c and increasing the number of tasks in A to 35c,

where c is a positive integer, in which case drift(T1, d(T
[1]
1 )) = 5c − 3 + 2

5c .

From the generalization of Figure 5.25, the theorem below follows.

Theorem 5.3. PD-LJ is not fine-grained.

5.6.2 All EPDF Scheduling Algorithms Incur Drift

Next, we show that any EPDF scheduling algorithm incurs some drift.

Example (Figure 5.26). Consider the example in Figure 5.26, which depicts a two-

processor system that consists of a set A of 10 tasks with weight 1/7 that leave at time

7, a set B of two tasks with weight 1/6 that leave at time 6, a set C of two tasks with weight

1/14 that join at time 6, and a set D of five tasks with a weight of 1/21 that increases to

1/3 at time 7. The projected deadlines of tasks in D based on their IDEAL allocation are

labeled above the schedule, I. With subtask deadlines defined by I, the deadline for each

task in set D changes at time 7 from 21 to 9. The tasks in D have an original deadline of 21

233



2

1 2 3 4 5 6 7 8 9

9 9 9 9 9 9 9 9 9 9 9 9 99

Y

10 11 12 13 14 15 16 17 18 19 20 21

2

2 2 2 2 2

2

0

2 1

21 21 21 21 21 21 21 9Deadline of D

Present Subtask

D

C

B

A

Completed before deadline

Number of subtasks scheduled

Figure 5.26: A two-processor system illustrating that all EPDF algorithms incur drift.

because that is the projected time at which their I allocations will equal one if their weights

do not change. These tasks change their deadlines to 9 at time 7 because the new weight, 1/3,

changes the projected time by which their allocations in I will equal one to time 9. Note that

any EPDF algorithm will not schedule the tasks in D until time 7. As a result, a deadline is

missed. Notice also that any EPDF algorithm would need to use projections for determining

subtask deadlines if we assume no prior knowledge of weight changes. To prevent a deadline

miss, the lag-bound range must be shifted, thus incurring drift.

From Figure 5.26, the theorem below follows.

Theorem 5.4. All EPDF algorithms can incur non-zero drift per reweighting event.

5.6.3 PD-PNH is fine-grained

Finally, we show that PD-PNH is fine-grained. We first show that the rules for reweighting

non-heavy-changeable tasks are fine-grained, and then we show that the rules for reweighting

heavy-changeable tasks are fine grained.

Non-heavy-changeable tasks. By the definition of drift, in order to prove that PD-PNH

is fine-grained, for non-heavy-changeable tasks, we merely need to consider wether a subtask

has been halted and the window placement of a task after it is reweighted. Suppose that a

non-heavy-changeable task Ti initiates a weight change at tc. Let te be the next time at which

Ti enacts a change at or after tc, assume that Ti releases a subtask at or before tc, and let
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T
[j]
i be the last-released such subtask. (If Ti does not release a subtask at or before tc, then

Ti’s drift does not change when reweighted at tc.)

We now show that if the change initiated at tc is enacted at te, then absolute drift increases

by at most two. We begin by observing that there are three sources of drift: drift incurred

because T
[j]
i is halted; drift incurred because tc < te; and drift that is incurred because T

[j+1]
i

is not released at time te. (Throughout this discussion we assume that a reweighting event is

not canceled, since canceling a reweighting event would decrease the amount of drift incurred.)

Example (Figure 5.27). Consider the four-processor example in Figure 5.27, which consists

of a set C of 19 tasks, each with a weight of 3/20, and a task T1 that increases its weight from

3/20 to 1/2 via Rule P (tie-breaks not resolved by PD2 go against task T1). Inset (a) depicts

the PD-PNH schedule. Inset (b) depicts the CSW schedule. Inset (c) depicts the IDEAL

schedule. Notice that T1 incurs 1/2 of a quantum of drift over the range [6, 10) because T
[2]
1

receives no allocation in the CSW schedule.

Example (Figure 5.28). Consider the four-processor example in Figure 5.28, which consists

of a set C of 19 tasks each with a weight of 3/20 and a task T1 that increases its weight from

3/20 to 1/2 via Rule N (tie-breaks not resolved by PD2 go against tasks in C). Inset (a)

depicts the PD-PNH schedule. Inset (b) depicts the CSW schedule. Inset (c) depicts the

IDEAL schedule. Notice that T1 incurs 1/2 of a quantum of drift over the range [11, 12)

because T
[3]
1 ’s release is delayed.

Example (Figure 5.29). Consider the four-processor example in Figure 5.29, which consists

of a set C of 19 tasks each with a weight of 3/20 and a task T1 that decreases its weight from

2/5 to 3/20 via Rule N at time 1. Inset (a) depicts the PD-PNH schedule. Inset (b) depicts

the CSW schedule. Inset (c) depicts the IDEAL schedule. Notice that T1 incurs −3/20 of a

quantum of drift over the range [1, 4) because the enactment of the weight change occurs

after the change is initiated.

Positive-changeable. We now consider the amount of drift that is incurred based

on whether Ti is positive- or negative-changeable at tc. If Ti is positive-changeable
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at tc, then it changes its weight by Rule P. Thus, T
[j]
i is halted and at time

max(tc,min(C(SW,T
[j−1]
i ), d(T

[j−1]
i ))+b(T

[j−1]
i )), the change is enacted and T

[j+1]
i is released.

Thus, if Ti is positive-changeable, then it may incur drift because T
[j]
u is halted and because

the change is not immediately enacted.

Since it is trivial to show that Ti incurs at most one quantum of drift because T
[j]
u is halted,

we focus on showing that Ti incurs at most one quantum of absolute drift because the change is

not enacted immediately. Notice that, if max(tc,min(C(SW,T
[j−1]
i ), d(T

[j−1]
i )) + b(T

[j−1]
i )) ≤

tc, then the change is immediately enacted and the only drift Ti incurs is a result of T
[j]
i

halting. Thus, we assume that tc < max(tc,min(C(SW,T
[j−1]
i ), d(T

[j−1]
i )) + b(T

[j−1]
i )).

Since we have assumed that T
[j]
i is the last-released subtask of Ti at tc, it follows that

r(T
[j]
i ) ≤ tc. Thus, since we are assuming that tc < max(tc,min(C(SW,T

[j−1]
i ), d(T

[j−1]
i )) +

b(T
[j−1]
i )), we have

r(T
[j]
i ) ≤ tc < min(C(SW,T

[j−1]
i ), d(T

[j−1]
i )) + b(T

[j−1]
i ) ≤ d(T

[j−1]
i ) + b(T

[j−1]
i ).

We now show that the range [tc, min(C(SW,T
[j−1]
i ), d(T

[j−1]
i )) + b(T

[j−1]
i )) is at most

two. Notice that, in order for the range [tc, min(C(SW,T
[j−1]
i ), d(T

[j−1]
i )) + b(T

[j−1]
i )) to be

greater than two, r(T
[j]
i ) < d(T

[j−1]
i ) − b(T

[j−1]
i ) must hold. However, by Property (V), if

r(T
[j]
i ) < d(T

[j−1]
i ) − b(T

[j−1]
i ), then C(SW,T

[j−1]
i ) ≤ r(T

[j]
i ). This, in turn, implies that

the range [tc, min(C(SW,T
[j−1]
i ), d(T

[j−1]
i )) + b(T

[j−1]
i )) is at most one. Thus, the range

[tc, min(C(SW,T
[j−1]
i ), d(T

[j−1]
i )) + b(T

[j−1]
i )) is at most two. This implies that

max(tc,min(C(SW,T
[j−1]
i ), d(T

[j−1]
i )) + b(T

[j−1]
i )) − tc = te − tc ≤ 2. (5.38)

Since the maximal weight for any non-heavy changeable task is less than 1/2, and te−tc ≤

2, it follows that A(CSW , Ti, tc, te) < 1 and A(I, Ti, tc, te) < 1. Thus, since the absolute

drift incurred over the range [tc, te) is given as |A(I, Ti, tc, te)−A(CSW , Ti, tc, te)|, it follows

that Ti incurs up to one additional quantum of absolute drift waiting for the change initiated

at tc to be enacted. Thus, combined with the additional quantum of drift incurred by halting

T
[j]
i , if Ti is positive-changeable at tc, then it incurs at most two quanta of absolute drift.
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Negative-changeable. If Ti is negative-changeable at tc, then it changes its weight by Rule

N. Therefore, T
[j]
i does not halt and, as a result, T

[j]
i receives the same allocation in SW and

CSW . Thus,

C(SW,T
[j]
i ) = C(CSW,T

[j]
i ). (5.39)

If Ti increases its weight at tc, then the change is immediately enacted and T
[j+1]
i is released

at time C(SW,T
[j]
i ) + b(T

[j]
i ). Thus, by (5.39), C(SW,T

[j]
i ) + b(T

[j]
i ) = C(CSW,T

[j]
i ) + b(T

[j]
i )

Since the weight change is immediately enacted, Ti receives the same allocation in CSW

and I in every time slot in the range [tc, C(CSW,T
[j]
i ) − 1). (Specifically, if Ti increases

its weight to Nw at time tc, then in every slot in the range [tc, C(CSW,T
[j]
i ) − 1), Ti is

allocated Nw in both CSW and I.) Thus, since Rule N does not halt T
[j]
i , the only source

of drift that can be incurred is over the range [C(CSW,T
[j]
i ) − 1, r(T

[j+1]
i )). Since r(T

[j+1]
i ) =

C(CSW,T
[j]
i ) + b(T

[j]
i ), the length of this interval is at most two. Since the weight of a

non-heavy-changeable task is less than 1/2, the increase in drift is at most 2 · 1/2.

For example, in Figure 5.9(a), A(CSW , T1, 10, 12) = A(CSW , T1, 0, 12) −

A(CSW , T1, 0, 10) = 4/2 − 3/2 = 1/2 < 1 = 5/2 − 3/2 = A(I, T1, 0, 12) − A(I, T1, 0, 10) =

A(I, T1, 10, 12).

If Ti decreases its weight at tc via Rule N, then T
[j+1]
i is released at time C(SW,T

[j]
i ) +

b(T
[j]
i ). Thus, by (5.39), T

[j+1]
i is released at time C(CSW,T

[j]
i ) + b(T

[j]
i ). Since Ti decreases

its weight, over the range [tc,C(CSW,T
[j]
i )), Ti is allocated at most one quantum more in

CSW than in I. Furthermore, over the range [C(CSW,T
[j]
i ),C(CSW,T

[j]
i ) + b(T

[j]
i )), Ti is

allocated less than 1/2 quanta more in I than in CSW , since the length of this range is at

most one and the weight of a non-heavy changeable task is less than 1/2. Thus, the maximal

possible decrease in drift is one and the maximal possible increase in drift is 1/2. For example,

in Figure 5.9(b), the drift incurred by changing the weight of T1 from 2/5 to 3/20 is −3/20,

i.e., A(CSW , T1, 1, 4) = A(CSW , T1, 0, 4) − A(CSW , T1, 0, 1) = 5/5 − 2/5 = 3/5 > 9/20 =

17/20 − 2/5 = A(I, T1, 0, 4) − A(I, T1, 0, 1) = A(I, T1, 1, 4).

Heavy-changeable tasks. We now show that the drift of a heavy-changeable task is at

most five. By the definition of drift, in order to prove that PD-PNH is fine-grained, for heavy-
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changeable tasks, we only need to consider the window placement of a task Ti, from the

reweighting initiation, at time tc, until r(T
[k]
i ), where T

[k]
i is the first subtask of Ti released at

or after D(T
[j]
i ) and T

[j]
i is the last-released subtask of Ti at or before time tc. (If Ti does not

release a subtask at or before tc or D(T
[j]
i ) ≤ tc, then Ti is not heavy-changeable.) We bound

the drift by showing that the maximal absolute difference between CSW and I in allocating

to Ti over the interval [tc, r(T
[j+1]
i )) is at most four and that one additional quantum of drift

is incurred in the slot D(T
[j]
i ) − 1. (Notice that, even if the reweighting event initiated at tc

were canceled, then the absolute drift per reweighting event would still be at most five.)

If d(T
[j]
i ) ≤ tc, then, by Part 2 of Rule H, the weight change is enacted within one quantum.

Moreover, by Part 3 of Rule H, T
[j+1]
i is released when the change is enacted. Thus, the range

[tc, r(T
[j+1]
i )) is at most one quantum long. Since the weight of a heavy-changeable task is

less than one, the maximal increase in the absolute value of drift in such a case is less than

one over the time range [tc, r(T
[j+1]
i )). If d(T

[j]
i ) > tc, then, again by Part 2 of Rule H, the

weight change is enacted within four quanta since the maximal window length of any heavy-

changeable task is three (and the enactment may be delayed by an additional quantum if the

b-bit is one). Moreover, by Part 3 of Rule H, T
[j+1]
i is released when the change is enacted.

Thus, the range [tc, r(T
[j+1]
i )) is at most four quantum long. As a result, since the weight of a

heavy-changeable subtask is less than one, the maximal increase in the absolute drift in such

a case is less than four over the time range [tc, r(T
[j+1]
i )). For example, in Figure 5.11(b), T2

receives an allocation 18/10 in the schedule I over the range [2, 4), whereas it receives only

2/9 over this same range in the schedule CSW . Thus, T2 incurs 18/10 − 2/9 ≈ 1.58 units of

drift over this region.

Notice that, over the range [r(T
[j+1]
i ), r(T

[k]
i )), with one possible exception in the slot

D(T
[j]
i )−1, the allocation to Ti in I and CSW are the same (assuming no additional reweight-

ing events are initiated), despite the fact that the window length of each subtask of Ti released

over this time range is two (where T
[k]
i is, as above, the first subtask of Ti released at or after

D(T
[j]
i )). The reason for this behavior is two-fold. First, the deadline of a subtask is not

used in the definition of CSW , which is based on the pseudo-code in Figure 5.7. Hence, Ti’s

allocation in the CSW schedule is not affected by the fact that its subtasks may have had
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their window lengths “artificially” shrunk to two by Rule H. For example, in Figure 5.11, T2

receives an allocation of 36/10 in both the CSW and IDEAL schedules over the range [4, 8).

Second, by Rule H, Ti releases subtasks with the same frequency as a “normal” task. For

example, in Figure 5.12, over the range [4, 10), T2 releases one subtask every three quantum,

which is exactly the same frequency at which “normal” tasks with a weight of 1/3 release

subtasks.

As we mentioned in the previous paragraph, it is possible that in the slot D(T
[j]
i )− 1, Ti’s

allocation may differ in I and CSW . The reason for this behavior is that, by Part 4 of Rule H,

no subtask of Ti is released at time D(T
[j]
i )−1. Thus, if the definition of release given in Part

3 of Rule H specifies that a job should be released in slot D(T
[j]
i ) − 1, then drift is incurred

since that subtask will not be released. Since the maximal weight of a heavy-changeable task

is less than 1, in the slot D(T
[j]
i ) − 1, less than one additional unit of drift may be incurred.

Also, notice that after r(T
[k]
i ), Ti behaves as a normal task with its new weight. Thus, the

maximal absolute drift that can be incurred by a heavy-changeable task changing its weight

is five. For example, in Figure 5.11(b), T2 receives an allocation of 9/10 in the schedule I

over the range [8, 9), whereas it receives only 4/10 over this same range in the schedule CSW .

Thus, T2 incurs 9/10 − 4/10 = 1/2 units of drift over this interval. Thus, the total drift

incurred as a result of this change is (A(I, T2, 2, 4) − A(CSW , T2, 2, 4)) + (A(I, T2, 4, 8) −

A(CSW , T2, 4, 8))+(A(I, T2, 8, 9)−A(CSW , T2, 8, 9)) = (18/10−2/9)+0+(9/10−4/10) ≈

2.08.

One final note: if Ti initiates an additional reweighting event over the range

[r(T
[j+1]
i ), D(T

[j]
i ) − 1), then Ti may experience three additional quanta of drift (as opposed

to four quanta). The reason why it experiences an additional three quanta of drift is because

the window length of a subtask in the range [r(T
[j+1]
i ), D(T

[j]
i ) − 1) is at most 2. Thus, this

enactment may be delayed for up to three quantum. Since such a change would be an ad-

ditional reweighting event, this does not impact the per-reweighting-event measurement of

drift.

Theorem 5.5. PD-PNH is fine-grained; moreover, the absolute value of the per-event drift

under PD-PNH is at most two for non-heavy-changeable tasks and at most five for heavy-
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changeable tasks.

5.7 Lost Utilization

As we mentioned earlier, when a task decreases its weight, there is a delay between when

the weight change is initiated and when the capacity gained by this decrease is freed. When

a non-heavy-changeable initiates a weight decrease, the capacity is freed when the change is

enacted. For example, in Figure 5.9(b), only at or after time 4 could another task could use

the capacity of 2/5 − 3/20 gained by T2 decreasing its weight. For heavy-changeable tasks,

the capacity is freed at the group deadline of the last-released subtask. For example, in the

system depicted in Figure 5.12, T1 cannot use the additional capacity gained by T2’s weight

decrease until time 9, which is the group deadline of T
[2]
1 .

This delay is tantamount to “idling” a faction of the system, which could cause some

utilization to be lost with respect to a system in which weight changes could be enacted

instantly. The lost utilization caused by Ti initiating a weight decrease at time tc is defined

as
∫ tf

tc

LC(Ti, u)du, (5.40)

where LC(Ti, t) is the capacity that has not been freed by Ti at time t, and tf is the earliest

time t such that Ti frees its capacity, wt(Ti, t) ≥ Ow, or Ti initiates another weight decrease.

Example (Figures 5.13 and 5.29). Notice that in Figure 5.29, over the range [1, 4), the

lost utilization is 2/5 − 3/20 at each instant. Thus, the total lost utilization as the result of

this weight change is.
∫ 4
1 (2/5 − 3/20)dt = 3 · 5/20 = 15/20. Also notice that, in Figure 5.13,

T2 incurs 13/14− 1/3 of lost utilization at each instant over the range [2, 9), and 13/14− 3/4

over the range [9, 14). Thus, the total lost utilization incurred by T2 decreasing its weight at

time 2 is
∫ 14
2 (13/14−wt(T2, t))dt =

∫ 9
2 (13/14− 1/3)dt +

∫ 14
9 (13/14− 3/4)dt ≈ 5.059. Notice

that the weight increase at time 9 does not stop T2 from accruing lost utilization because

the new weight after the change (i.e., 3/4) is less than the original scheduling weight (i.e.,

13/14).

243



Non-heavy-changeable tasks. Notice that, if a task is not heavy-changeable when it

initiates a weight change, then the time the capacity is freed is the time the weight change is

enacted. Thus, by (5.40), if Ti is non-heavy-changeable when it initiates a weight decrease to

Nw at time tc, then the lost utilization caused by this weight change equals

∫ te

tc

LC(Ti, u)du, (5.41)

where te is the time that the weight change is enacted or canceled. Notice that, if the

change initiated at tc is canceled at te, then this implies that either wt(Ti, te) ≥ Ow holds

or Ti initiated another weight decrease at te. Thus, for non-heavy-changeable tasks (5.41) is

equivalent to (5.40).

Let T
[j]
i denote the last-released subtask (if any) of Ti at tc. If T

[j]
i does not exist, then the

change is enacted immediately, and the lost utilization is zero. If T
[j]
i exists but d(T

[j]
i ) ≤ tc,

then the change is enacted within one quantum. Moreover, since the weight of a non-heavy-

changeable task is less than 1/2, LC(Ti, t) < 1/2 for any time t. Thus, by (5.41), the maximal

amount of lost utilization is 1.

Positive-changeable. If Ti is positive-changeable at tc, then the change is initiated via

Rule P. Thus, the change is enacted at max(tc,min(C(SW,T
[j−1]
i ), d(T

[j−1]
i )) + b(T

[j−1]
i )). As

we proved in (5.38), max(tc,min(C(SW,T
[j−1]
i ), d(T

[j−1]
i )) + b(T

[j−1]
i )) − tc ≤ 2. Thus, since

the weight of a non-heavy-changeable task is less than 1/2, by (5.41), the lost utilization Ti

is negative-changeable at tc is less than one.

Negative-changeable. If Ti is negative-changeable at tc, then by Rule N, the weight change

is enacted or canceled by C(SW,T
[j]
i )+b(T

[j]
i ), i.e., te ≤ C(SW,T

[j]
i )+b(T

[j]
i ). By the definition

of completed,
∫ C(SW,T

[j]
i )

r(T
[j]
i )

Swt(Ti, u)du = 1. Since T
[j]
i is the last-released subtask of Ti at tc,

r(T
[j]
i ) ≤ tc. Thus, since te − b(T

[j]
i ) ≤ C(SW,T

[j]
i ), Swt(Ti, t) < 1/2 for every t ∈ [tc, te), and

by assumption tc ≤ te,

∫ te

tc

Swt(Ti, u)du =

∫ te−b(T
[j]
i )

tc

Swt(Ti, u)du +

∫ te

te−b(T
[j]
i )

Swt(Ti, u)du < 1 + 1/2. (5.42)
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Since Ti decreases its weight at tc, it follows that for every t ∈ [tc, te), LC(Ti, t) ≤

Swt(Ti, t). Thus, by (5.42),
∫ te
tc

LC(Ti, u)du < 3/2. Thus, by (5.41), if Ti is negative-

changeable at tc, then the lost utilization is less than 3/2. Notice that, for non-heavy-

changeable tasks, the lost utilization is closely related to the drift incurred.

Heavy-changeable tasks. For a heavy-changeable task, the amount of lost utilization

could be substantially larger than the drift incurred. Let T
[j]
i denote the last-released subtask

of a heavy-changeable task Ti at tc. (Notice that, T
[j]
i must exist, because by the definition of

heavy-changeable, a Ti must have released a subtask at or before tc that had a group deadline

after tc.) Notice that, by Part 1 of Rule H, if Ti decreases its weight from Ow to Nw at tc,

then the capacity is freed at time D(T
[j]
i ). Thus, (5.40), i.e., the lost utilization incurred by

this change, is upper-bounded by

∫ D(T
[j]
i )

tc

(Ow − Nw)dt. (5.43)

Before continuing, notice that, a heavy task must have at least one group deadline every

period. As a result, D(T
[j]
i ) − tc ≤ p(Ti). Moreover, recall that the weight of Ti is given by

wt(Ti) = e(Ti)/p(Ti). Thus, (5.43) can be upper-bounded by

(Ow − Nw) · (D(T
[j]
i ) − tc) ≤ Ow · p(Ti) ≤ emax(Ti).

The above bound still holds even if Ti initiates additional changes over the range [tc, D(T
[j]
i )).

For example, in the system depicted in Figure 5.12, the amount of lost utilization caused

by T2 decreasing its weight from 8/9 is (Ow − Nw) · (D(T
[2]
2 ) − tc) = (8/9 − 1/3) · (9 − 2) =

35/9 ≈ 3.88. Since under Pfair scheduling, all execution times and periods are an integral

number of quanta, the only way T2 could have a weight of 8/9 is if its execution time is at

least 8. Thus, the amount of lost utilization caused by this decrease is at least ≈ 4.12 less

than the execution time for T2.

Theorem 5.6. The lost utilization per reweighting event initiation under under PD-PNH is

at most 3/2 for non-heavy-changeable tasks and at most emax(Ti) for heavy-changeable tasks.
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5.8 Conclusion

In this chapter, we presented the AIS task model as well as the rules for reweighting a task un-

der the PD2 scheduling algorithm. In addition, by using techniques borrowed from (Srinivasan

and Anderson, 2005), we proved that no subtask misses its deadline using our reweighting

rules. Also, we proved that the absolute drift that can be incurred per reweighting event is at

most five. Finally, we proved that the amount of lost utilization caused by a weight decrease

is at most 3/2 for non-heavy changeable tasks and at most emax(Ti) for heavy-changeable

tasks.
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CHAPTER 6

AGEDF
∗

In this section, we present the adaptable GEDF (AGEDF) scheduling algorithm, which

extends the GEDF algorithm by using feedback techniques in order to determine when a task

should enact a weight change.

6.1 Adaptable Service Level Tasks

Before discussing the AGEDF scheduling algorithm, we first introduce the adaptable service-

level task model, which is based on a task model presented in (Lu et al., 2002) and extends

the notion of a sporadic task system in two major ways. First, worst-case execution times

are not assumed. Second, each task Ti has a set of service levels, denoted SL(Ti), each of

which represents a different level of QoS for Ti, and a weight translation function, denoted

g(Ti, e, k, q), which is used to compute the weight of Ti at different service levels, as explained

below.

The kth service level of SL(Ti) is defined by an importance value, v(Ti, k), a period ,

p(Ti, k), and a code segment . Without loss of generality, we assume that the service levels

in SL(Ti) are indexed from 1 to |SL(Ti)| by increasing importance value, where |SL(Ti)| is

the number of elements in SL(Ti). The importance value represents some user-defined notion

of “goodness,” where 0.0 represents a service level that has no value and 1.0 represents the

maximal possible value associated with any service level of any task in the system.

At any point in time t, one service level in SL(Ti) is said to be the functional service level

∗ Contents of this chapter previously appeared in preliminary form in the following paper:
Block, A., Brandenburg, B., Anderson J., and Quint, S. (2008). An Adaptive Framework for Multiprocessor
Real-Time Systems. In Proceedings of the 20th Euromicro Conference on Real-Time Systems, pages 23–33.



of Ti. The index of the functional service level of Ti at time t is denoted f(Ti, t). For now, we

assume that the functional service level of a task Ti does not change within (r(T j
i ), d(T j

i )) for

any job T j
i of Ti. In Section 6.2.3, we discuss how to change the functional service level of a

task at any time. If k is the functional service level at r(T j
i ), then T j

i is said to be functioning

at service level k. If T j
i is functioning at service level k, then both r(T j+1

i ) ≥ r(T j
i ) + p(Ti, k)

and d(T j
i ) = r(T j

i ) + p(Ti, k) hold. We consider a task Ti to be active at time t if there exists

a job T j
i (called Ti’s active job) such that t ∈ [r(T j

i ), d(T j
i )). We use ACT(t) to denote the

set of active jobs at time t.

The code segment associated with the kth service level is the code segment that a job T j
i

will execute if T j
i is functioning at service level k. Depending on the specific application, there

are numerous different methods for defining such code segments. For some applications, each

service level may execute the same code segment, and the only difference between service levels

is the period. For other applications, the difference between service levels may be something

as simple as the number of iterations in a loop, while for others, each service level may use

entirely different code. As we discuss in Section 6.2, how the code segment is implemented

will impact the efficacy of AGEDF at adapting tasks.

Just as for sporadic tasks, the value of Ae(T j
i ) denotes the amount of time for which T j

i

is actually scheduled. The actual weight of a job T j
i , denoted Aw(T j

i ), represents the actual

fraction of a processor that T j
i requires and is defined by Aw(T j

i ) = Ae(T j
i )/p(T j

i , k), where

T j
i is functioning at service level k. Just as with sporadic tasks, we assume that the value of

Ae(T j
i ) (and by extension Aw(T j

i )) is not known until T j
i finishes execution.

As we discuss in Section 6.2.1, since the actual weight of a job is not known until it

completes, AGEDF uses an estimated weight for incomplete jobs, denoted Ew(T j
i ). When

AGEDF calculates the estimated weight for a job T j
i , it does so for a specific service level

(typically, the same service level at which T j−1
i was functioning). The weight translation

function is used to map the estimated weight as calculated by AGEDF for a specific job

T j
i functioning at a specific service level to what the estimated weight of T j

i would be if it

functioned at a different service level. Specifically, if e is the estimated weight of T j
i assuming

that T j
i is functioning at service level k, then the weight translation function, g(Ti, e, k, q),

248



S
ervice Level

2

3

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

1

2

3 S
ervice Level

Estimated Weight

Im
po

rt
an

ce
 V

al
ue

0.0

0.1

0.2

0.3

T
T1

2

(a)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Im
po

rt
an

ce
 V

al
ue

0.0

0.1

0.2

0.3

T
T1

2

0.9 1.0
Estimated Weight

(b)

1

Figure 6.1: Estimated weight vs. importance value/service level for two tasks. (a) e = 0.1.
(b) e = 0.2.

returns the estimated weight of T j
i if it were to be functioning at qth service level instead of

the kth service level .

Example (Figure 6.1). Consider the example in Figure 6.1, which depicts the estimated

weight vs. importance value/service level for two tasks: T1 and T2, each of which have three

service levels with importance values of 0.1, 0.2, and 0.3. For T1, g(T1, e, 1, 2) = 2e and

g(T1, e, 1, 3) = 3e, and for T2, g(T2, e, 1, 2) = e1/4 and g(T2, e, 1, 3) = e1/8, where e is the

estimated weight while functioning at service level one. Inset (a) depicts the scenario where

e = 0.1 for both tasks. Inset (b) depicts the scenario where e = 0.2 for both tasks. Notice

that, in inset (a), if e = 0.1, k = 1, and q = 3, then g(T1, e, k, q) = 0.3, which is the estimated

weight of a job of T1 if it had been calculated for the third service level instead of the first.

Also, for T2, g(T2, e, k, q) ≈ 0.75, which is the estimated weight of a job of T2 if it had been

calculated for the third service level instead of the first.

As we discuss in Section 6.2.2, the weight translation function is used to determine the

effect on the system caused by changing the functional service level of a task. We make

only two assumption about the behavior of g(Ti, e, k, q): if q < k, then g(Ti, e, k, q) ≤ e;

and if g(Ti, e1, k, q) = e2, then g(Ti, e2, q, k) = e1. It is important to note that the func-
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tion g(Ti, e, k, q) can return approximate values; however, the accuracy of g(Ti, e, k, q) will

impact the performance of AGEDF’s optimizer component, which determines the functional

service level of each task. Like service levels and code segments, the weight translation func-

tion is defined by the application developer and can be determined empirically.

The primary difference between the task model presented in (Lu et al., 2002) and our

task model is that in (Lu et al., 2002) each service level of a task Ti has a static notion

of “estimated weight” that represents the nominal fraction of a processor required by Ti.

Statically assigning an estimated weight to a task implies that the task has a typical behavior

and that if it requires a smaller or larger fraction of a processor, then such a scenario is an

anomaly. While this may be true for many applications, for systems like Whisper and VEC,

predetermining the nominal weight of a task can be difficult if not impossible. Thus, as we

will discuss in Section 6.2, rather than statically determining estimated weights, AGEDF will

dynamically calculate the estimated weight for each job.

6.2 The AGEDF Scheduling Algorithm

We now present the AGEDF scheduling algorithm and its three components: the predictor

(Section 6.2.1), which uses feedback-based techniques to estimate the actual weights of future

jobs; the optimizer (Section 6.2.2), which given estimated job weights, attempts to determine

an optimal set of functional service levels; and several reweighting rules (Section 6.2.3), which

are used to change the functional service level of a task to match that chosen by the optimizer.

In the following, we assume that AGEDF is used on an M -processor system.

The major components of AGEDF are depicted in Figure 6.2. At a high level, these

components function as follows.

• At each instant , the M pending jobs with the smallest deadlines are scheduled.

• At T j
i ’s completion, the predictor is used to estimate the weight for the next job release

of Ti. If maintaining a constant weight is important, then the reweighting rules may

change T j+1
i ’s functional service level.

• After some user-specified threshold , the optimization component is run to determine
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Figure 6.2: (a) The AGEDF scheduling algorithm. (b) The model of AGEDF’s feedback
component.

new service levels for each task. Then, the following two steps are performed. First, if

some tasks require an estimated weight decrease, then the reweighting rules are used

to change the service levels of those tasks. This creates spare capacity in the system.

Second, as the spare capacity created by weight decreases becomes available, if some

tasks require an estimated weight increase, then the reweighting rules are used to change

the service levels of those tasks.

It is worthwhile to note that the optimization component (and hence large-scale changes to

task functional service levels) is only executed after some user-specified threshold. We offer

some guidelines for choosing this threshold in Section 6.2.4.

6.2.1 The Feedback Predictor

Before continuing, we briefly review the basics of feedback systems (a thorough review of

feedback systems can be found in Section 2.4). Most feedback systems consist of the following

components, which are labeled in the model of our system in Figure 6.2(b): the input value,

the output value, the actuator , the error , the plant , and the controller . The input value is

the reference value for the system, while the output value is value computed by the system.
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The actuator calculates the error by subtracting the output from the input. The plant is the

system we wish to control. The controller modifies the input to change the behavior of the

output.

The performance of a feedback system is measured in terms of transient response, steady-

state error , and stability . The transient response of a system is the initial output of the

system to a change in input, as depicted in Figure 6.3. The steady-state error denotes the

difference between the output and the input of the system as time increases (also depicted in

Figure 6.3). A system is considered to be stable if every bounded input causes the system’s

steady-state error to be bounded.

It is worthwhile to note that while feedback-based techniques are primarily used to control

the behavior of a plant for which the (reference) input is known, another viable use for such

techniques is to predict future values of a changing and unknown input. The design of such

a system is exactly the same as the typical feedback system, except that the feedback loop

does not directly impact the behavior of the system. In such a system, the transient response

describes the initial accuracy of predictions after there has been a change in the input, and the

steady-state error describes the difference between the predicted and actual values as system

time increases.

The feedback predictor. Since the predictor in AGEDF uses feedback-based techniques

to predict the weight of future jobs instead of using a simpler approach, such as setting
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Ew(T j
i ) = Aw(T j−1

i ), the predictor both produces values of Ew(T j
i ) that are less susceptible

to ephemeral fluctuations in the workload and is capable of closely tracking trends in the

actual weight (e.g., when the actual weight of the task changes at a constant rate). Using a

feedback loop to predict the weight of future jobs is similar to the approach in (Abeni et al.,

2002), described earlier in Section 2.4.

As depicted in Figure 6.2(a), in the predictor, each task has its own feedback loop. Also,

as depicted in Figure 6.2(b), for each feedback loop, the input is the actual weight; the

output is the estimated weight; the error is the actual weight minus the estimated weight;

and the controller is a proportional-integral (PI) controller that uses information about the

current error and the sum of all previous errors in order to calculate a new estimated weight.

Specifically, the controller is defined as

Ew(T j+1
i ) = a · ǫ(T j

i ) + b

k=j−1
∑

k=1

ǫ(T k
i ), (6.1)

where Ew(T 1
i ) = 0, ǫ(T j

i ) = Aw(T j
i ) − Ew(T j

i ), and both a and b are user-defined values that

we discuss shortly. Taking the Z-transform of (6.1) and rearranging, we get

G(z) =
a(z − c)

z(z − 1)
, (6.2)

where c = (a − b)/a. As discussed in Section 2.4, in control theory parlance, (6.2) is called

the open-loop transfer function because it represents the behavior of the controller ignoring

the feedback loop. The closed-loop transfer function, which incorporates both the behavior of

the controller and feedback loop is given by

H(z) =
G(z)

1 + G(z)
=

a(z − c)

z2 + (a − 1)z − ac
. (6.3)

From the above equation, the predictor has a closed-loop zero (the value of z for which

H(z) = 0) at z = c, and closed-loop poles (the values of z for which H(z) is undefined) at

(1 − a) ±
√

(a − 1)2 + 4ac

2
. (6.4)
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Because the predictor has two closed-loop poles, it is a second-order system. This is the

reason why we chose to use a PI controller instead of a proportional-integral-derivative (PID)

controller. Since PID controllers are third-order systems, i.e., such systems have three poles,

the transient response analysis is substantially more complex. In fact, the typical means for

determining the transient response of a third-order system is to approximate it as a second-

order system.

Feedback characteristics. We use standard techniques, which are discussed in detail in

Section 2.4, for analyzing the feedback characteristics of our system. We begin by rewriting

(6.4) as

P1 =
(1 − a) +

√

(a − 1)2 + 4ac

2
(6.5)

P2 =
(1 − a) −

√

(a − 1)2 + 4ac

2
. (6.6)

We let Pm denote the pole from (6.5) and (6.6) that is the farthest from the origin. Also, we

use R(P) and θ(P) to denote, respectively, the radius and angle (in radians) of the pole P in

polar-complex form.

Stability. By using both the open- and closed-loop transfer functions and the closed-loop

poles, we can discuss how setting the values of a and c impact stability, transient response,

and steady-state error. First, we address the stability of the system. The system is stable if

both closed-loop poles are within the unit circle in the complex plane, i.e., R(Pm) < 1. The

system is unstable if either closed-loop pole is outside the unit circle, i.e., R(Pm) ≥ 1. The

system is in a state called marginally stable, in which case the output neither converges nor

diverges, if one pole is on the unit circle and the other is within it, i.e., R(Pm) = 1.

Transient response. The transient response is usually evaluated by the behavior of the

output when the system incurs a step input , i.e., the input suddenly increases to a given value.

Since feedback systems use previous results to predict future results, a step input represents

the worst-case scenario—a sudden change from one value to a substantially different value.
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The transient response of a second-order system is characterized by both the settling time

(i.e., the time it takes for the output to attain and stay within 2% of its steady-state value),

and whether the system is over-damped , under-damped , or critically-damped (depicted in

Fig. 6.3). The settling time (where time is measured in terms of job releases) of the system

is given by the standard formula
⌈ −4

ln (R(Pm))

⌉

. (6.7)

A lower settling time will improve the system’s capacity to respond to sudden changes in the

execution time of a task; however, it will also make the system more susceptible to ephemeral

fluctuations in the execution time of tasks. As a result, a low settling time may be undesirable

for the purposes of predicting future values.

If a system is over-damped, then the output will never “overshoot” the input for a step

input. If a system is under-damped, then the output will overshoot the input for a step input.

For under-damped systems, the percent overshoot is an additional characteristic of transient

response. If the system is critically-damped, then the settling time is as small as possible

without causing the output to overshoot the input. Whether a system is under-, over-, or

critically-damped depends on the location of the closed loop poles in (6.5) and (6.6). If both

poles are unique and both poles are real then the system is over-damped. If both poles have

the same radius and are real, then the system is critically-damped. Otherwise, the system is

under-damped.

For under-damped systems, the percent overshoot is given by

e−(ζπ/
√

1−ζ2) · 100, (6.8)

where ζ is a value called the damping ratio and is given by

ζ =
−ln (R(Pm))

√

θ(Pm)2 + ln2 (R(Pm))
(6.9)

Steady-state error. The steady-state error of a system is measured based on the system’s

response to a step and/or a ramp input. The ramp input simulates an input that constantly
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increases by a rate of T per job release. The steady-state error is based on the system type,

which is given by the power to which (z − 1) is raised in the denominator of (6.2). Since our

system has a system type of one, the steady-state error for the step input is zero, and the

steady-state error of the ramp input is given by

T
limz→1(z − 1)G(z)

=
T

a(1 − c)
. (6.10)

The fact that a PI controller has zero steady-state error for a step response is the reason

why we chose a PI controller instead of a proportional-derivative (PD), which would have a

superior transient response but would have a non-zero value for a step input (i.e., if the actual

weight is constant, a PD controller would still have error).

Putting it together. Now that we have established formulas for stability, transient re-

sponse, and steady-state error, it is possible to choose values for a and c (and thus implic-

itly set the value of b) that satisfy our design objectives. Suppose, for example, that we

wish to construct a critically-damped system with a settling time of five job releases. From

the definitions of critically-damped and settling time, it is not difficult to calculate that if

a = 0.10206228 and c = −1.975, then these two design objectives are achieved. Specifically,

in this case, by (6.5) and (6.6), the closed-loop poles are

P1 =
(1 − a) +

√

(a − 1)2 + 4ac

2
≈ 0.449

P2 =
(1 − a) −

√

(a − 1)2 + 4ac

2
≈ 0.449.

Thus, P1 ≈ P2, which implies that the system is critically-damped (or at least close to it). In

addition, by (6.7), the settling time (in terms of number of jobs) is

⌈ −4

ln (R(Pm))

⌉

= ⌈4.997⌉ = 5.
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Moreover, by (6.10), we can calculate that the steady-state error of this system for a ramp

input that increases at a constant rate of T per job release is

T
limz→1(z − 1)G(z)

=
T

a(1 − c)
≈ 3.29 · T .

However, if we wish to construct an under-damped system with a settling time of five job

releases, and a percent overshoot of approximately 10%, then it is not difficult to show that

a = 1.4008 and c = −0.1439 satisfy these design objectives. Specifically, by (6.5) and (6.6),

the closed-loop poles are

P1 =
(1 − a) +

√

(a − 1)2 + 4ac

2
≈ −0.2004 + 0.4018i

P2 =
(1 − a) −

√

(a − 1)2 + 4ac

2
≈ −0.2004 − 0.4018i.

Because P1 and P2 are complex values, it follows that the system is under-damped. In

addition, because both P1 and P2 are equidistance from the origin, either Pm ≈ −0.2004 +

0.4018i or Pm ≈ −0.2004 − 0.4018i holds (the results are the same either way). Because

R(Pm) and θ(Pm) denote, respectively, the radius and angle (in radians) of the pole Pm in

polar-complex form, if we set Pm ≈ −0.2004 + 0.4018i, then R(Pm) ≈ 0.449 and θ(Pm) ≈

−1.108.

Thus, by (6.7), the settling time (in terms of number of jobs) is given by

⌈ −4

ln (R(Pm))

⌉

= ⌈4.995⌉ = 5.

Furthermore, by (6.9), we can calculate the damping ratio as

ζ =
−ln (R(Pm))

√

θ(Pm)2 + ln2 (R(Pm))
≈ 0.5857.

Thus, by (6.8), we can calculate the percent overshoot as

e−(ζπ/
√

1−ζ2) · 100 ≈ 10.33%.
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Moreover, by (6.10), we can calculate that the steady-state error of this system for a ramp

input that increases at a constant rate of T per job release as

T
limz→1(z − 1)G(z)

=
T

a(1 − c)
≈ 0.624 · T .

6.2.2 Optimization

As mentioned above, the optimization component of AGEDF uses the estimated weights of

tasks in order to choose service levels for each task. There are a variety of different methods

for implementing this component depending on what metric the user wants to optimize and

the behavior of g(Ti, e, k, q).

For example, suppose the objective is to optimize the total importance value in the system.

In this case, if the relationship between the importance value and weight is linear (like T1 in

Figure 6.1), then an approximate solution for this objective could be achieved by assigning

the highest service level possible to those tasks with the highest value density , as given by,

v(Ti, |SL(Ti)|) − v(Ti, 1)

g(Ti, Ew(T j
i ), k, |SL(Ti)|) − g(Ti, Ew(T j

i ), k, 1)
, (6.11)

while ensuring at least every task receives its minimum service level and the system is not

over-utilized. In this approach, the value v(Ti, |SL(Ti)|) − v(Ti, 1) denotes by how much Ti’s

importance value improves by changing from the lowest service level to the highest service

level. Additionally, the value g(Ti, Ew(T j
i ), k, |SL(Ti)|) − g(Ti, Ew(T j

i ), k, 1) represents by

how much Ti’s weight would have to be changed to improve its service level from the lowest

service level to the highest service level. Notice that, for two tasks T1 and T2, if T1 has a

larger value for (6.11) than T2, and both tasks had their estimated weight increase by the

same amount, then T1’s importance value would improve more than T2’s. This approach is

similar to the highest-value-density-first approach used in (Lu et al., 2002).

Example (Figure 6.4). Consider the example in Figure 6.4, which depicts the estimated

weight vs. importance value/service level for two tasks: T1 and T2, each of which has three

service levels with importance values of 0.1, 0.2, and 0.3. Inset (a) depicts the scenario
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Figure 6.4: Estimated weight vs. importance value/service level for two tasks. (a) This
relationship is linear for both tasks. (b) This relationship is linear for T1 and non-linear for
T2.

where both tasks have a linear relationship between the estimated weight and the importance

value/service level. Inset (b) depicts the scenario where the estimated weight and the im-

portance value/service level relationship is linear for T1 and non-linear for T2. Notice that,

in inset (a), the value densities for T1 and T2 are, respectively, 0.2
0.2 = 1 and 0.2

0.6 = 1
3 . Thus,

improving T1’s service level requires less weight. Hence, by the highest-value-density-first

rule, the service level of T1 is improved before T2.

On the other hand, if the relationship between the importance value and weight is non-

linear (like T2 in Figure 6.1), then an approximate solution for this objective could be

achieved by using nonlinear programming techniques such as steepest descent or Newton’s

method (Bertsekas, 1999). If exact solutions are required, then techniques like branch-and-

bound can be used offline, and the optimization component could then switch between several

predetermined system states. (In Section 7.5, we discuss how we implemented the optimizer

for both Whisper and the VEC.)

Example (Figure 6.4). Notice that, in Figure 6.4(b), the relationship between the the es-

timated weight and the importance value/service level for T2 is non-linear. Moreover, the

value density for T1 and T2 are, respectively, 0.2
0.2 = 1 and 0.2

0.65 ≈ 0.308. Thus, if the highest-
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value-density-first approach were used to determine the service levels of these two tasks, then

T1 would be improved before T2. However, improving T2’s service level from Level 2 to Level

3 requires less weight than improving T1’s service level by one level. Thus, the highest-value-

density-first approach would not produce an optimal distribution of weights for these two

tasks.

It is important to note that the use of weight translation functions is the reason why the

optimization component is extensible because it allows any optimizing function to assess the

impact of changing the functional service level. In prior work on adaptive real-time systems,

the two primary methods for optimizing service levels have been to assume either that each

service level has a “nominal” utilization (Lu et al., 2002) or the relationship between the

service level and importance value is linear (Marti et al., 2004). As we discussed in Section 6.1,

the problem with the first approach is that assessing a meaningful “nominal” utilization may

be difficult if not impossible for many applications. The problem with the second approach is

that there exist applications for which linearity cannot be assumed. For example, consider any

video application in which each service level corresponds to a different resolution. Typically,

in such a system, as the service level (and by extension the resolution) increases, the amount

of benefit to user perception per pixel added decreases. It is easy to see that in such a scenario,

the relationship between importance value and estimated weight is nonlinear.

6.2.3 Reweighting

Whenever a task is reweighted (i.e., changes its functional service level) either by the opti-

mization component or by the main AGEDF algorithm, its code segment and/or period may

change. If no job of a task, Ti, is active when Ti changes its functional service level from the

ℓth0 to ℓth1 service level at time t, then the change is simple—the next released job of Ti has the

period and code segment associated with the ℓth1 service level. If a job of Ti is active at t, then

the situation is more complicated. For the remainder of this section, let T j
i denote the active

job of Ti at t. Recall from Chapter 3 that, when a task with an active job reweights, there

can be a difference between when it “initiates” the change and when the change is “enacted.”

The time at which the change is initiated is defined externally to the reweighting component
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(by either the optimization component or the main AGEDF algorithm); the time at which the

change is enacted , i.e., the functional service level is changed, is dictated by reweighting rules.

Changing the period. In order to change the period of a job, we use the GEDF reweighting

Rules P and N, presented in Section 3.4.1. For brevity, we do not review these rules here.

Changing the code segment. Whether the code segment of the task Ti that released T j
i

can change depends on the implementation of Ti. For example, if the ℓth0 and ℓth1 service levels

have substantially different code segments, then T j
i cannot change its code segment. On the

other hand, suppose that the difference between the code segments for the ℓth0 and ℓth1 service

levels is simply the number of iterations in a loop. Then, as long as T j
i is not complete and

this change would not cause either Ew(T j
i ) > 1 or

∑

T b
a∈ACT(t) Ew(T b

a) > M , T j
i can change its

code segment immediately. Moreover, if the code segment is changed, then Ew(T j
i ) is changed

to

max(Nw · p(Ti, ℓ1), A(S, T j
i , r(T j

i ), t))

p(Ti, ℓ0)
, (6.12)

where S is the AGEDF schedule, and Nw = g(Ti, Ew(T j
i ), ℓ0, ℓ1). Notice that the estimated

amount of time for which T j
i will execute as a consequence of changing its code segment is the

larger of the amount of time it has already been schedule by time t, i.e., A(S, T j
i , r(T j

i ), t),

and the amount of time that T j
i would have been scheduled if the ℓth1 service level was the

functional service level at r(T j
i ), Nw · p(Ti, ℓ1). Thus, the estimated weight of T j

i is the

estimated amount of time that T j
i will be scheduled divided by p(Ti, ℓ0). (In Section 7.5, we

discuss how we implemented the code segment for both Whisper and the VEC.)

Example (Figure 6.5). Consider the example in Figure 6.5, which depicts a three-processor

system scheduled by AGEDF with three tasks, all of which have a period of 7, an estimated

weight of 3/7, and in the absence of a weight change, would be scheduled for 3 time units. At

time 1, all three tasks experience a service level change that changes the code segment for each

job. Moreover, we assume that g(T1, Ew(T 1
1 ), ℓ1,0, ℓ1,1) = 4/7, g(T2, Ew(T 1

2 ), ℓ2,0, ℓ2,1) = 2/7,

and g(T3, Ew(T 1
3 ), ℓ3,0, ℓ3,1) = 1/14, where ℓi,0 is the initial service level of Ti and ℓi,1 is the

service level that Ti changes to at time 1. Thus, as a result of the change, T 1
1 executes for 4
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Figure 6.5: An illustration of changing the code segment.

time units, T 1
2 executes for 2 time units, and T 1

3 executes for 1 time unit. Notice that Ew(T 1
3 )

is changed to 1/7 even though g(T3, 3/7, ℓ3,0, ℓ3,1) = 1/14. The reason for this is that 1 =

A(S, T 1
3 , 0, 1) > Nw ·p(Ti, ℓ1) = 1

14 ·7 = 1/2. Thus, by (6.12), Ew(T 1
3 ) = max(1,1/2)

7 = 1/7.

6.2.4 User-Defined Threshold

Choosing a specific user-defined threshold for invoking the optimizer will depend largely

on the targeted application. Some possible thresholds could include a duration of time, a

substantial change in the estimated weight for one task, or a substantial change in the total

estimated weight for all tasks. While running the optimizer more frequently will increase

the accuracy of the system, it will also increase the amount of time the scheduler is active

with the system not producing “useful” work. Additionally, as we discussed in Section 6.2.3,

the reweighting rules cannot always be enacted immediately. Thus, if the optimizer is called

before all changes have been enacted, then it may produce an inaccurate result. Notice that,

if the weight translation function is accurate, then after all reweighting events have been

enacted, the system will remain in an “optimal” state, unless the actual weight of a task

changes. Thus, if the separation between optimizer invocations is sufficiently large for all

tasks to enact their functional service level changes (i.e., at least the largest period of a job in

the system), then it is possible to guarantee that no task will unnecessarily “thrash” between

service levels. (In Section 7.5, we discuss how we chose the user-defined threshold for both

Whisper and the VEC.)
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6.3 Conclusion

In this chapter, we presented the adaptable service-level task model, which is based on a

task model presented in (Lu et al., 2002). In addition, we presented the AGEDF scheduling

framework, in which tasks are scheduled by GEDF augmented with three components to

facilitate adaption: a feedback predictor, an optimizer, and a task reweighter. It is worth

noting that these components are modular. As a result, a developer could modify each of

these components to improve the performance for a specific application.
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CHAPTER 7

IMPLEMENTATION and

EXPERIMENTS

In this chapter, we present two sets of experiments. First, we present simulations in which

Whisper and VEC are scheduled by our adaptive variants of GEDF, NP-GEDF, PEDF,

NP-PEDF, and PD2. Second, we present experiments conducted using the real-time Linux

testbed LITMUSRT to evaluate the performance of AGEDF when running the core operations

of Whisper and VEC.

Unfortunately at this time, it is not feasible to produce experiments involving a complete

implementation of either Whisper or VEC, for two reasons. First, both the existing Whisper

and VEC designs are single-threaded (and non-adaptive) and consist of several thousands

of lines of code. Converting each implementation to a multi-threaded implementation is a

nontrivial task. Indeed, because of this, it is essential that we first understand the scheduling

and resource-allocation trade-offs involved. The development of our various adaptive algo-

rithms can be seen as an attempt to articulate these tradeoffs. Second, support for task

synchronization is required, and while there has been work on real-time task synchronization

on multiprocessors (Block et al., 2007; Brandenburg et al., 2008; Brandenburg and Anderson,

2008; Chen and Tripathi, 1994; Devi et al., 2006; Gai et al., 2003; Holman and Anderson,

2006; Lopez et al., 2004; Rajkumar, 1991; Sha et al., 1990), applying such work in the context

of adaptive scheduling algorithms is non-trivial. For these reasons, we have chosen to con-

duct our evaluation using both simulations and an implementation of the core operations for

Whisper and VEC, i.e., correlation computations for Whisper and bilateral filters for VEC.

We begin this chapter with brief descriptions of Whisper (Section 7.1), VEC (Section 7.2),

and LITMUSRT (Section 7.3). Then, in Section 7.4, we present our simulations of Whisper



User

Microphones on Ceiling

Tracking Computer

Speakers on Hands and Feet

Figure 7.1: The Whisper system.

and VEC when scheduled via the adaptive variants of GEDF, NP-GEDF, PEDF, NP-PEDF,

and PD2. In Section 7.5, we present our evaluation of the AGEDF algorithm when imple-

mented under LITMUSRT and scheduling the core operations of both Whisper and VEC.

(We emphasize that this set of experiments involved running real code on a real OS kernel

and are not merely simulations.) Finally, we conclude in Section 7.6.

7.1 Whisper

As depicted in Figure 7.1, Whisper tracks users via speakers that each emit a unique sound

wave and are attached to each user’s hands, feet, and head. Microphones located on the wall

and ceiling receive these signals and a tracking computer calculates (via a speed-of-sound

computation) each speaker’s position by measuring signal delays. Whisper is able to compute

the signal delay between the transmitted and received versions of the sound by performing

a correlation calculation on the most recent set of samples. Because correlations are com-

putationally intensive, Whisper uses a Kalman filter to decrease the number of correlations

required to track a user.

We begin this section by reviewing the concepts of correlation (Section 7.1.1) and the

Kalman filter (Section 7.1.2). Next, we discuss the impact of occluding objects (Sec-

tion 7.1.3). We conclude this section with a discussion of Whisper’s real-time characteristics

(Section 7.1.4).
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Cor(x: array [0...m − 1] of doubles, t: array [0...n − 1] of doubles):
array [0...m − n − 1] of doubles

1: i, j: integer;
2: y: array [0...m − n − 1] of doubles
3: for i := 0 to m − n − 1 do
4: y[i] := 0;
5: for j := 0 to n − 1 do
6: y[i] := y[i] + x[i + j] · t[j]
7: od
8: od;
9: return y

Figure 7.2: Pseudo-code defining correlation. x is the received signal, t is the target signal,
and y is cross-correlation signal.

7.1.1 Correlation

Correlation is a signal-processing technique for locating a known waveform in a signal. In

this section, we briefly review the central concepts behind correlation computations. A more

detailed discussion can be found in (Smith, 1997).

As an input, correlation takes two discrete signals, t and x, where t is the known wave-

form, called the target signal , that contains n samples, and x is the received signal that

contains m samples all of which have some level of white noise. As an output, correla-

tion produces a discrete signal, y, called the cross-correlation signal , of m − n samples,

where y[i] =
∑

0≤j<n (t[j] · x[i + j]). (Pseudo-code for the correlation computation is given

in Figure 7.2.) The cross-correlation signal has the property that the value of i for which y[i]

is the maximal value in y denotes the index at which the signal t likely appears in x.

Example (Figure 7.3). Consider the example in Figure 7.3, which illustrates the received

signal with noise x, known waveform t, and output of the correlation y. Notice that the

value of y[2] is substantially larger than any other value in y. Thus, it is easy to see that the

waveform t begins at x[2].

Whisper uses correlation computations to determine the number of samples that have

elapsed from the time a signal is emitted by a speaker to the time it is received by a mi-

crophone. Whisper is capable of making such a calculation because the microphones and

speakers are synchronized. So, in Figure 7.3, if x is the signal received by a microphone from
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Figure 7.3: An illustration of correlation.

a speaker starting at time 0, and t is the signal sent by that speaker at time 0, then two

samples would have elapsed between the time when the signal was sent to the time it was

received.

Signal-to-noise ratio. It is important to note that the ability of a correlation computation

to determine the location of the target signal in the received signal is directly related to the

signal-to-noise ratio. This behavior occurs because, as the signal-to-noise ratio decreases, the

relative difference between the maximal value in the cross-correlation value and the other

values in the cross-correlation signal decreases. It is possible to compensate for a decreasing

signal-to-noise ratio by increasing the number of samples in the target signal; however, this

increases the computation time of a task.

Speed of sound. Notice that, once Whisper has used a correlation computation to de-

termine the location of the target signal in the received signal, then (given the number of

samples emitted/received per second and the speed of sound) it is a simple matter to com-

pute the distance between a speaker/microphone pair. Specifically, if a speaker/microphone

pair emits/receives k samples per second, and from a correlation computation it is determined

that ℓ samples have elapsed from the time the signal was sent from the speaker to the time
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it was received by the microphone, then the total time it took for the sound to reach the

microphone from the speaker is ℓ/k. Thus, the distance between the speaker/microphone

pair is

c · ℓ

k
,

where c is the speed of sound.

Example. Consider a scenario where a speaker/microphone pair emits/receives 1,000 sam-

ples per second. If a correlation computation determines that 50 samples have elapsed between

the time a signal was sent from the speaker to the time it was received by the microphone,

then the sound from the speaker took 0.05 seconds to reach the microphone. Thus, given that

the speed of sound is approximately 343m/s, the distance between the microphone speaker

pair is 0.05s · 343m/s ≈ 17.15m.

7.1.2 Kalman Filter

One of the drawbacks to using correlation to locate a known waveform is that it is computa-

tionally expensive. Specifically, the cost of using a correlation to locate a target signal t of

length m in a received signal x of length n is O(m · n). In order to reduce this cost, Whisper

attempts to estimate the location of t in x by using a Kalman filter. The correlation compu-

tation merely verifies the estimated location of the target rather than searching through the

entire received signal.

The Kalman filter is a recursive mathematical process that combines multiple measure-

ments and the error associated with those measurements to produce an estimated value that

is more accurate than any previous measurement. Because understanding the Kalman filter

requires knowledge of digital signal processing that is will beyond the scope of this disserta-

tion, we present an intuitive example here and refer the reader to (Welch and Bishop, 1995)

for a more detailed discussion.

Example (Figure 7.4). Consider the following example (originally presented in (Maybeck,

1979)), depicted in Figure 7.4, in which two sailors attempt to find their location in one-

dimension by using the stars. By using his sextant, the first sailor estimates the ship’s
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Figure 7.4: An illustration of the Kalman Filter.

position as z1; however, due to both human and equipment error, the standard deviation

for this measurement is σ1. A second sailor measures their position as z2, with a standard

deviation of σ2, which is less than σ1. The Kalman filter combines both measurements to

produce a measurement, µ, with a smaller deviance, σ, as given by the formulas

µ =
σ2

2 · z1

σ2
1 + σ2

2

+
σ2

1 · z2

σ2
1 + σ2

2

1

σ2
=

1

σ2
1

+
1

σ2
2

.

Notice that, while the value µ is between the two values z1 and z2, it is closer to z2 since σ2

is less than σ1. Also notice that the standard deviation produced by the Kaman filter, i.e.,

σ, is less than both σ1 and σ2.

The Kalman filter and Whisper. In Whisper, the Kalman filter is used both before

and after the correlation computation. Before Whisper runs the correlation computation,

the Kalman filter uses the previous position and velocity of a tracked object to produce an

estimate of its position. The second time the Kalman filter is used, the position of an object,

produced by the correlation computation, is fed back into the Kalman filter to refine its inter-

nal state. This loop is depicted in Figure 7.5. It is important to note that the computation

time associated with the Kalman filter is dwarfed in comparison to the computation time

required for the correlations.
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Figure 7.6: An illustration of an occluding object.

7.1.3 Occlusion

One of the advantages of using sound to track a user is that it can bend around objects. As

a result, if a user’s torso, arms, head, or any other body part obstruct the path between a

speaker/microphone pair, then it is still possible to estimate the distance between the pair.

This being said, occlusions impact the performance of Whisper in two ways. First, an occlud-

ing object acts as a low-pass filter since high frequencies are attenuated as they pass around

objects. As a result, the correlation computation will not be as precise. Second, as depicted in

Figure 7.6, occluding objects increase the perceived distance between the speaker/microphone

pair. The problem with increasing the perceived distance is that it is extremely difficult to

correct because the system cannot distinguish between interference by an occluding object or

an increase in distance. As a result, this introduces an additional source of error in Whisper’s

measurements. Whisper handles the additional source of error by estimating the maximal

amount of occlusion that an object is likely to cause in order to calculate an estimated upper

bound on the error associated with any measurement. Then, this information is used in the

Kalman filter, which can partially mitigate the error associated with occlusion.
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7.1.4 Real-time Characteristics

As noted above, when the signal-to-noise ratio decreases, correlation become less effective at

finding the target signal. To compensate for a decreasing signal-to-noise ratio, the accuracy

of Whisper can be improved at the expense of additional computation by either increasing the

number of samples in the target signal or increasing the number of position updates per second.

In addition, notice that the signal-to-noise ratio is inversely related to the distance between a

speaker/microphone pair (since as the distance between a speaker/microphone pair grows, the

signal becomes weaker). As a result, when the distance between a speaker/microphone pair

is large, the signal-to-noise ratio will be small, which implies that the task associated with

this pair will need more computation time to compensate. Thus, as users move around in a

virtual environment, the processor shares of tasks assigned to different speaker/microphone

pairs must change to compensate for dynamic signal-to-noise ratios.

In addition, since Whisper continuously performs calculations on incoming data, at any

point in time, it does not have a significant amount of “useful” data stored in cache. As a

result, migration/preemption costs in Whisper are fairly small (at least, on a tightly-coupled

system, as assumed here, where the main cost of a preemption or migration is a loss of cache

affinity). In addition, fairness and real-time guarantees are important due to the inherent

“tight coupling” among tasks required to accurately perform triangulation calculations.

7.2 VEC

In this section, we provide a brief introduction to VEC. Just as with Whisper, a detailed

discussion of VEC would involve aspects of multimedia systems that are well beyond the

scope of this dissertation. Thus, we refer readers to (Bennett, 2007) for a detailed description

of VEC. We begin our discussion of VEC by first reviewing some basics of videography and

providing an overview of the system.

Video as a collection of frames. All video is a collection of still images called frames.

Associated with each pixel in a video frame are luminance and chrominance values. The

luminance value denotes the brightness of the pixel (the higher the value, the brighter the

271



pixel) and the chrominance values denote the color. The luminance of a frame can be increased

by lengthening the time the camera’s shutter is open, called the exposure time. Frames with

faster exposure times capture moving objects with more detail, while frames with slower

exposure times are brighter. If a frame is underexposed (i.e., the exposure time is too fast),

then the image can be too dark to discern any object.

VEC corrects underexposed video while maintaining the detail captured by faster exposure

times by combining the information of multiple frames. To intuitively understand how VEC

achieves this behavior, consider the following example. If a camera, A, has an exposure time

of 1/30th of a second, and a second camera, B, has an exposure time of 1/15th of a second,

then for every two frames shot by camera A, the shutter is open for the same time as one

frame shot by B. VEC is capable of exploiting this observation in order to allow camera A to

shoot frames with the detail of 1/30th of a second exposure time but the brightness of 1/15th

of a second exposure time.

7.2.1 Bilateral Filter

The primary complication with adjusting the luminance values of pixels to correctly expose a

frame is the presence of noise in an image. As a result, a pixel may have different luminance

values across multiple frames even if the image being recorded is static, and adjacent pixels

may have different luminance values even if all represent the same object.

Example (Figure 7.7). Consider the example in Figure 7.7, which illustrates a 5 × 5 pixel

region of a video frame. The black pixels all represent the same dark object and would all

have a luminance value of 20, if not for noise. Thus, in the absence of noise the luminance

of p13 is 20. Inset (a) depicts the luminance value of each pixel. Insets (b), (c), and (d) are

discussed later. Notice that, because of noise, pixels that represent the same object may have

subtle variations in luminance intensity.

One approach for removing the luminance noise from a pixel, henceforth referred to as

the origin pixel , is to change its luminance to be a weighted1 average of every pixel within

1The usage of the term “weight” here should not be confused with that elsewhere in this dissertation, where
this term is used to indicate a processor share.

272



(d)

p15

p21 p22 p23 p24 p25

p10

p20

p1 p2 p3 p4

p11 p12

p17 p18

p5

p6 p7 p8 p9

p14

p19p16

0.017

0.017

0.017

0.017

0.017

p15

0.0170.0170.0170.017

0.04

0.04

0.04

p5

p6 p7 p8 p9

p14

p19p16

p15

p17

0.005

0.004

0.004

0.0040.004

0.005

0.0050.0050.005

(a) (b)

p21 p22 p23 p24 p25

p20

p1 p2 p3 p4

p11 p12

p16 p18

p5

p6 p7 p9

p14

p19

p15

p8 p10

p17

0.04

0.040.040.040.040.04

(c)

I=200

I=200I=200
p21

I=190 I=190
p22 p23 p24 p25

I=190

I=190

I=190
p10

p20

I=10
p1

I=20

I=10 I=10

I=10 I=10

I=10I=20

I=20I=20I=10I=20

I=20

I=10

p2 p3 p4

I=20

p11 p12 p14

p16 p17 p18 p19

I=200
p5

p6 p7 p8 p9

p21 p22 p23 p24 p25

p10

p20

p1 p2 p3 p4

p11 p12

p18
0.086

0.04 0.04 0.04

0.040.04 0.04 0.04

0.040.04 0.04 0.04

0.040.04

0.086

0.04 0.04
p13

0.019

0.019

0.0190.0190.0190.019

p13

0.017 0.0170.0170.017

0.017

0.017

0.017 0.076 0.076 0.076

0.0760.0760.076

0.076 0.0760.125

0.085

0.085

0.085

p13

0.019

I=22

0.076

0.141

0.085

0.086

p13

0.04

Figure 7.7: Example of different methods for removing noise from a pixel.
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a nearby proximity. (This distance can be calculated either spatially , i.e., the space between

two pixels on the same frame, or temporally , i.e., the number of frames between two pixels on

different frames.) While such an approach will remove the noise from the origin pixel, it is not

immediately obvious what is the best method for determining how much each surrounding

pixel should contribute to the origin pixel’s final luminance value. The simplest approach is

to value all pixels within a given distance equally. The problem with this approach is that it

does not account for the fact that the closer a pixel is to the origin pixel the more likely both

pixels represents the same object.

Example (Figure 7.7(b)). Such a solution is illustrated in Figure 7.7(b). In this inset (as

well as insets (c) and (d)), the values depict the contribution associated with each pixel when

computing a weighted average for pixel p13, e.g., in this inset, the weighted average for p13

is 0.04 · Ip1 + 0.04 · Ip2 + 0.04 · Ip3 + ...0.04 · Ip25, where Ip is the luminance intensity of the

pixel p. The weighted average of p13’s luminance computed in this way is 79.68, which is

nearly four-times its actual noise-free luminance of 20. The reason why this weighted average

calculation is so inaccurate is because it values the luminance of all pixels equally, regardless

of how close they are to the origin pixel, e.g., pixel p18 has the same weight as pixel p23, even

though pixel p18 is closer to pixel p13.

An alternative approach is to value pixels that are closer (again, either temporally or

spatially) over those that are far away. One method of determining a pixel’s contribution to

the weighted average is to use a Gaussian distribution. Specifically, if x is the temporal or

spatial distance between a pixel p from the origin pixel s, and σ is used to determine the

rate of fall off (i.e., the higher the value of σ the steeper the Gaussian distribution), then p’s

contribution to the weighted average of s is

g(x, σ) =
e

−x2

2σ2

σ
√

2π
. (7.1)

The problem with this approach is that nearby pixels may not represent the same object.

Example (Figure 7.7(c)). Such a solution is illustrated in Figure 7.7(c). In this case, in

this inset, the weighted average of p13’s luminance is 43.42, which is nearly two-times its
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actual noise-free luminance of 20. This measurement is more accurate than that given by

Figure 7.7(b) because the closer a pixel is to p13 the more it contributes to the weighted

average; however, this approach still produces an inaccurate result because nearby pixels may

not represent the same object. To observe this behavior, notice that, the luminance of p11

should have a greater impact on the final value of p13 than p15 (since p11 and p13 represent

the same object in the video, while p15 represents a different object); however, since p15

and p11 are the same distance from p13, a purely distance-based approach values both pixels

equally.

A third approach, called the bilateral filter , involves taking a weighted average that not

only gives preference to closer pixels but also pixels that have a similar luminance. By adding

similarity in luminance as an additional constraint, such a technique would not be as prone

to interference by abutting objects.

Example (Figure 7.7(d)). Such a solution is illustrated in Figure 7.7(d). Notice that, in

this inset, the weighted average of p13’s luminance is 23.23, which nearly equals its actual

noise-free luminance of 20.

Formally, the bilateral filter of the pixel s, with a spatial/temporal fall off of σh and a

luminance similarity fall off of σi, is given by the formula

B(s, σh, σi) =

∑

p∈Ns
g (||p − s||, σh) · g (D(p, s), σi) · Ip

∑

p∈Ns
g (||p − s||, σh) · g (D(p, s), σi)

, (7.2)

where Ip denotes the luminance intensity of the pixel p, ||p − s|| denotes either the spatial

or temporal distance between pixels p and s, D(p, s) is the difference in luminance intensity

between pixels p and s, and Ns is called the kernel and denotes the space of pixels that could

contribute to s.

7.2.2 A Few Observations

Before continuing, we make a few observations about the bilateral filter and image processing.

First, notice that if an object is not moving, then applying the temporal bilateral filter over
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the same pixel in multiple frames will likely produce better results than the spatial filter,

since each pixel on each frame represents the same object.

Second, because there is a base level of noise in every pixel, the signal-to-noise ratio will

be smaller for objects with lower luminance than those with higher luminance (i.e., dark

pixels are nosier than light pixels). In addition, humans are more capable of perceiving minor

differences between pixels with low luminance than those with high luminance (Pappas and

Safranek, 2000). As a result (of both the signal-to-noise and human perception issues), pixels

with a low luminance require more noise correction than those with high luminance.

Third, while the bilateral filter (and by extension VEC) can trade accuracy for compu-

tational intensity by increasing the number of pixels used to correct a single pixel, the exact

number of pixels required to correct a single pixel s is a function of both s’s luminance and

the similarity of luminance of pixels that surround s. For example, in Figure 7.7(a), Pixel

p13 will require fewer pixels than p19 since all pixels that are adjacent to p13 have similar

luminance values. On the other hand, the pixel p19 has only three adjacent pixels with similar

luminance.

7.2.3 VEC’s Algorithm

VEC consists of two phases (illustrated in Figure 7.8). First, VEC uses both spatial and

temporal bilateral filters to correct the noise of each pixel. Second, VEC applies a technique

called tone mapping to each noise-reduced frame to change the luminance levels of each pixel

into a range that is more palatable for human perception. Since tone mapping requires

relatively little processing time in comparison to removing the noise from a frame, and since

understanding the process by which VEC applies a tone mapping requires knowledge of image

processing techniques, which are beyond the scope of this dissertation, we focus on VEC’s

noise-removal technique and refer the reader to (Bennett, 2007) for a discussion of tone

mapping.

In order to remove the noise from a frame, VEC first calculates the luminance level of

each pixel. Next, VEC calculates the gain factor for each pixel. The gain factor for a pixel

represents the amount of noise correction that pixel requires. The higher the gain factor,
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the more noise correction that pixel requires. As we observed earlier, the lower a pixel’s

luminance, the more error correction it will require. As a result, pixels with a low luminance

will have a high gain factor and pixels with a high luminance will have a low gain factor. We

denote the gain factor for the pixel s as λs. λs is linearly proportional to the ratio between

the output tone-mapped luminance and the input luminance at s.2

As we observed in the previous section, some pixels contribute more than others when

correcting noise. To formalize this notion, we say that a pixel p when used to correct a pixel s

has a vote of g (||p − s||, σh)·g (D(p, s), σi) (where g (x, σ) is as defined in (7.1)). Moreover, the

total amount of pixel votes that are required to correct the pixel s equals λs ·g (0, σh) ·g (0, σi).

(Notice that, by (7.1), the larger the value of x, the smaller the value of g (x, σ). Thus, since

the vote of a task is defined as g (||p − s||, σh) · g (D(p, s), σi), the maximal vote of a pixel is

g (0, σh) · g (0, σi).)

After the gain factor has been computed for each pixel, VEC then runs a temporal bilateral

filter over a predetermined range of frames. If the total votes of all pixels used by the temporal

bilateral filter, γs, is less than λs · g (0, σh) · g (0, σi), then VEC runs a spatial bilateral filter

over a circular area around the pixel s with a radius approximately 3σi. If VEC runs both

spatial and temporal bilateral filters on the pixel s, then the luminance value of s is a weighted

average of the values produced by the spatial and temporal bilateral filters, where the value

of each filter is weighted based on the number of votes its pixels contributed. (Notice that, if

the total number of votes is still less than λs ·g (0, σh) ·g (0, σi) after the spatial and temporal

filters have been run, then the pixel will still have some noise.)

7.2.4 Real-time Characteristics

The most straightforward method for using real-time tasks in VEC is to assign each task

a region of each frame to correct, as depicted in Figure 7.9. As a result, since darker ob-

jects require more computation than lighter objects to correct, as dark objects move in the

video, the processor shares of the tasks assigned to process different areas of the video will

2Since understanding λs’s exact formula in detail requires knowledge of image processing techniques that
are beyond the scope of this dissertation, we refer the reader to (Bennett, 2007) for a complete discussion of
this topic.
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Figure 7.9: The VEC system divided into real-time tasks.

change. Hence, tasks will need to adjust their weights as quickly as an object can move

across the screen. Since VEC continuously performs calculations based on previous frames,

it performs best when a substantial amount of “useful” data is stored in cache. As a result,

migration/preemption costs in VEC are fairly high. In addition, while strong real-time and

fairness guarantees would be desirable in VEC, they are not as important here as in Whisper,

because tasks can function more independently in VEC.

7.3 LITMUS
RT

In this section, we discuss the LITMUSRT testbed. Since LITMUSRT is a joint effort by

our entire research group with work that has spanned multiple publications (Block et al.,

2008c; Brandenburg et al., 2008; Brandenburg et al., 2007; Brandenburg and Anderson, 2008;

Calandrino et al., 2006), an in depth description of it would be outside of the scope of this

dissertation. Instead, we provide a brief overview of LITMUSRT and refer the reader to the

aforementioned papers for a more detailed discussion.

LITMUSRT is an extension of Linux that supports a variety of real-time multiprocessor

scheduling policies. In its current state, it is most useful as a testbed within which different

scheduling policies can be implemented and empirically evaluated. LITMUSRT is designed

in such a way that adding support for additional scheduling policies is straightforward.
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LITMUSRT was implemented by modifying the Linux 2.6.20 kernel3 configured to run on

a symmetric multiprocessor (SMP) architecture. Our particular development platform is an

SMP consisting of four 32-bit Intel(R) Xeon(TM) processors running at 2.70 GHz, with 8K

instruction and data caches, and a unified 512K L2 cache per processor, and 2 GB of main

memory.

Why provide real-time support in Linux? We chose to create our testbed by modifying

Linux instead of an existing real-time operating system (RTOS) for two reasons. First, Linux

is free, open-source software that is easy to obtain and modify, and is widely accepted by

both developers and end users. Second, the potential client base for LITMUSRT as it evolves

will include many real-time graphics and multimedia applications developed within our own

department. The developers of those applications actually prefer Linux as a development

platform.

We acknowledge that producing system designs in any Linux-based system in which real-

time correctness is guaranteed with certainty is not feasible. Therefore, we expect systems

to be provisioned in LITMUSRT using experimentally-determined worst-case (average-case)

values for execution costs and system overheads in the hard (soft) real-time case, instead of

using analytically-determined, verified values. Thus, in LITMUSRT, the term “hard real-

time” should really be interpreted to mean that deadlines are almost never missed, and “soft

real-time” to mean that deadline tardiness almost always remains within some bound, even if

individual tasks misbehave. These are stronger guarantees than provided by most real-time

Linux variants in commercial use today.

7.3.1 The Design of LITMUSRT

LITMUSRT has been implemented via changes to the Linux kernel and the creation of user-

space libraries. Since LITMUSRT is concerned with real-time scheduling, most kernel changes

affect the scheduler and timer interrupt code. The kernel modifications can be split into

roughly three components. The core infrastructure consists of modifications to the Linux

3This is true of the LITMUS
RT release that was used in performing the experiments in this chapter.

Recently, LITMUS
RT was re-based to Linux 2.6.24 and a number of improvements were made.
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scheduler, as well as support structures and services such as tracing and sorted run queues that

can be used by scheduler plugins. The scheduler plugins encapsulate the available real-time

scheduling algorithms by providing functions that implement the methods of the scheduler

plugin interface. Finally, a collection of system calls provides a user-space API for real-time

tasks to interact with the kernel. In the following subsections, we describe each component

in turn.

Note that, in the discussion that follows, the term real-time task means tasks that are

scheduled by LITMUSRT. Normal Linux tasks that run with a static priority from the

“POSIX real-time range” are not considered to be real-time tasks in LITMUSRT. Since they

do not follow the sporadic task model, they are considered to be just best-effort tasks with a

high static priority.

7.3.2 Core Infrastructure

To facilitate the releasing and queuing of real-time tasks, LITMUSRT provides the abstraction

of a real-time domain, which consists of a ready queue and a release queue (as well as one

lock per queue). When a real-time domain is instantiated, it is parametrized with an order

function that is used to sort tasks in the ready queue (the release queue is ordered by ascending

release time). Wrapper functions are provided in the real-time domain for operations such

as queuing, dequeuing, and inspecting designated queue elements. This removes the need

for list-handling in most scheduler plugins, thereby reducing development effort (and also

removing a common source of bugs).

Scheduling quanta are defined to be the intervals between local timer interrupts. To realize

aligned quanta, LITMUSRT synchronizes timer interrupts during boot across all processors.

This is done by having each processor disable its local timer within the local timer interrupt

handler, enter a barrier, and restart its timer immediately afterward. When all processors

reach the barrier, they will be simultaneously released, resulting in all processors restarting

their timers at approximately the same time. Using this method, we have been able to achieve

aligned quanta with an error of at most 10 µs on our test platform—in some cases, error is

as low as 1-2 µs.
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The core LITMUSRT infrastructure also includes an implementation of the MCS queue

lock (Mellor-Crummey and Scott, 1991). Ideally, deterministic locking primitives should be

used throughout the kernel. Unfortunately, the Linux kernel uses non-FIFO spin locks, and

it is not currently feasible to replace all kernel spin locks with queue locks. Thus, we must be

aware of their potential impact on the real-time guarantees that can be made.

At the heart of LITMUSRT, the core infrastructure is also responsible for interfacing with

the rest of Linux. It initializes a real-time scheduler plugin (based on a kernel command-line

parameter) during system boot. To pass control to the plugin, it hooks into the Linux

scheduler tick() and schedule() functions. Overriding the Linux scheduler works as fol-

lows. Real-time tasks are assigned the highest static Linux scheduling priority upon creation.

However, they are not kept in the standard Linux run queues. Instead each plugin is respon-

sible for managing its own run queue. (Similarly, time-slice management is also delegated to

plugins for real-time tasks.) When schedule() is invoked, control is passed to the current

scheduler plugin. If it selects a real-time task to be scheduled on the local processor, then the

task is inserted into the run queue and the Linux scheduler is bypassed. When a real-time

task is preempted, it is removed again from the run queue, thereby taking it out of the reach

of the Linux scheduler.

LITMUSRT has two modes of operation, real-time and non-real-time. When started, the

system is initially in non-real-time mode. Real-time tasks are not scheduled as long as the

system is in non-real-time mode. This feature allows complete task systems to be set up

before they are scheduled, thereby allowing for the synchronous release of the first jobs of all

tasks.

7.3.3 Scheduler Plugins

As mentioned before, real-time scheduling policies are implemented as scheduler plugins. Such

plugins are realized similarly to other pluggable components in Linux such as file systems.

To create a scheduler plugin, functions that realize several methods4 of the plugin interface

must be implemented and registered to the LITMUSRTcore. These methods include adding

4Sometimes also called “operations” or “callbacks.”
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a task to the set, “tearing-down” a task, and scheduling a task.5

7.3.4 System Call API

LITMUSRT introduces a number of new system calls to Linux. While some of these system

calls can be used directly, most of them are intended to be used by liblitmus, a user-space

library that provides higher-level abstractions. The introduced system calls are organized by

purpose into five groups: managing real-time tasks, querying state information, controlling

job releases, system setup, and synchronization.6 Real-time management APIs handle setting

up a task and adding it to the task set. State information APIs are used to query a task

about their real-time characteristics, e.g., WCET and period. Job control APIs are invoked

when a job completes. System setup APIs are used to configure scheduler-specific settings.

Finally, synchronization APIs are used to synchronize data across tasks. It is important to

note that, currently, synchronization APIs are only implemented for non-adaptive tasks.

7.4 Comparison

In this section, we discuss the first set of experiments we conducted, in which we evalu-

ated the performance of the adaptive algorithms proposed in Chapters 3, 4, and 5 when

scheduling Whisper- and VEC-like tasks on a simulated four-processor system. While these

experiments are just simulations, most of the parameters used here were obtained by im-

plementing and timing the scheduling algorithms discussed in this dissertation and some of

the signal-processing and video-enhancement code in Whisper and VEC, respectively, on a

real multiprocessor testbed. Thus, the behaviors in these simulations should fairly accurately

reflect what one would see in a real Whisper or VEC implementation.

For both Whisper and VEC, the simulated platform was assumed to be a shared-memory

multiprocessor, with four 2.7-GHz processors and a 1-ms quantum, like our test platform.

All simulations were run 100 times. Both systems were simulated for 10 secs. (Note that

decreasing and increasing the simulation time gives similar results.) We implemented and

5A complete list of all 13 methods can be found in (Brandenburg et al., 2007).
6A complete discussion of the system call APIs can be found in (Brandenburg et al., 2007).
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timed each scheduling scheme considered in our simulations on our test platform and found

that all scheduling and reweighting computations could be completed within 5µs. We consid-

ered this value to be negligible in comparison to a 1-ms quantum and thus did not consider

scheduling overheads in our simulations. For both Whisper and VEC, we conducted two types

of experiments: (i) all preemption and migration costs were the same and corresponded to a

loss of cache affinity; and (ii) the preemption cost was set to a fixed value and the migration

cost was varied. If a task was preempted and then migrated, we assumed that it incurred

the maximum of the two costs. Based on measurements taken on our testbed system, we es-

timated Whisper’s migration/preemption cost as 2µs–10µs, and VEC’s as 50µs–60µs. While

we believe that these costs may be typical for a wide range of systems, in our experiments we

varied the preemption/migration cost over a slightly larger range. (It is worth noting that,

in related work by our research group (Calandrino et al., 2006), the average-case preemption

(migration) cost for a 4KB working set size, i.e., applications that randomly access 4KB of

data, was found to be 15.70µs (15.80µs), and the worst-case preemption (migration) cost for

a 4KB working set size as 42.00µs (44.00µs). This research was conducted using the same

test platform as considered here.) For all experiments, the maximum execution time was 7ms

for PEDF and NP-PEDF and 5ms for GEDF and NP-GEDF. These values were determined

by profiling each system beforehand to determine the “best” compromise of accuracy and

performance.

While the ultimate metric for determining the efficacy of both systems would be user

perception, such a metric would require a full implementation of both systems (which as we

discussed at the beginning of this chapter is not currently feasible). Therefore, we compared

each of the tested schemes by comparing allocations against each algorithm’s respective notion

of an IDEAL schedule. In particular, we measured both the “average under-allocation” and

“fairness factor” for each task set at the end of each simulation (i.e., 10 secs.). The average

under-allocation (UA) is the average amount each task is behind its IDEAL allocation (this

value is defined to be nonnegative, i.e., for a task that is not behind its IDEAL, this value is

zero). The fairness factor (FF) of a task set is the largest deviance from the allocations in

IDEAL between any two tasks (e.g., if a system has three tasks, one that deviates from its
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IDEAL allocation by −10, another by 20, and the third by 50, then the FF is 50−(−10) = 60).

The FF is a good indication of how fairly a scheme allocates processing capacity. A lower FF

means the system is more fair. For applications like Whisper, where the output generated

by multiple tasks is periodically combined, a low FF is important, since if any one task is

“behind,” then performance of the entire system is impacted; however, for applications like

VEC, where tasks are more independent, a high FF does not affect the system performance

nearly as much. These metrics should provide us with a reasonable impression of how well

the tested schemes will perform when Whisper and VEC are fully re-implemented.

7.4.1 Whisper Experiments

In our Whisper experiments, we simulated three speakers (one per object) revolving around

pole in a 1m × 1m room with a microphone in each corner, as shown in Figure 7.10—the

results of these simulations appear in Figure 7.11 and Figure 7.12. The pole creates potential

occlusions. One task is required for each speaker/microphone pair, for a total of 12 tasks. In

each simulation, the speakers were evenly distributed around the pole at an equal distance

from the pole, and rotated around the pole at the same speed. The starting position for

each speaker was set randomly. As mentioned in Section 7.1.1, as the distance between a

speaker and microphone changes, so does the amount of computation necessary to correctly

track the speaker. This distance is (obviously) impacted by a speaker’s movement, but is

also lengthened when an occlusion is caused by the pole. The range of weights of each task

was determined (as a function of a tracked object’s position) by implementing and timing

the basic computation of the correlation algorithm (an accumulate-and-multiply operation)

on our testbed system.

In the Whisper simulations, we made several simplifying assumptions. First, all objects

are moving in only two dimensions. Second, there is no ambient noise in the room. Third,

no speaker can interfere with any other speaker. Fourth, all objects move at a constant

rate. Fifth, the weight of each task changes only once for every 5cm of distance between its

associated speaker and microphone. Sixth, all speakers and microphones are omnidirectional.

Finally, all tasks have a minimum weight based on measurements from our testbed system
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Figure 7.10: The simulated Whisper system.

and a maximum weight of 1.0. A task’s current weight at any time lies between these two

extremes and depends on the corresponding speaker’s current position. Even with theses

assumptions, frequent share adaptations are required.

We conducted Whisper experiments in which the tracked objects were sampled at a rate

of 1,000 Hz, the distance of each object from the room’s center was set at 50cm, the speed of

each object was set at 5 m/sec. (this is within the speed of human motion), and the maximum

execution cost, migration, and preemption cost were varied.

The first set of graphs in Figure 7.11 and Figure 7.12 show the result of the Whisper

simulations conducted to compare PD2, PEDF, NP-PEDF, GEDF, and NP-GEDF. Figure 7.11

depicts the average UA and FF, respectively, for each scheme, where the preemption cost is

varied from 0 to 100µs and the migration cost equals the preemption cost. Figure 7.12 depicts

the average UA and FF, respectively, for each scheme, where the preemption cost is set at 10µs

(the maximum expected preemption cost for Whisper) and the migration cost is varied from

0 to 100µs. There are five things worth noting here. First, when the preemption/migration

cost is varied over the range 2 to 10µs (the expected range for Whisper, as noted on each

graph), the UA is about the same for all schemes (Figure 7.11(a)); however, PD2 has the

best FF (Figure 7.11(b)). Second, while GEDF and NP-GEDF do not have the best UA for the

expected preemption/migration costs for Whisper, for higher preemption/migration costs, i.e.,

preemption/migration costs larger than 10µs, GEDF and NP-GEDF both have a substantially

better UA than PD2 and better FF than either PEDF or NP-PEDF. Third, as the migration

cost (but not preemption cost) of a task increases, the UA of PEDF and NP-PEDF increases

slowly (Figure 7.12(a)). However the performance of the other three schemes decays quickly.
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Figure 7.11: (a) The average UA and (b) FF for Whisper as a function of preemp-
tion/migration cost, as scheduled by each tested algorithm. The key in each graph is in
the order that the schemes appear in that graph at 100µs. Standard deviations are shown.
Note that, in (b), GEDF and NP-GEDF are indistinguishable from each other.
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Figure 7.12: (a) The average UA and (b) FF for Whisper as a function of migration cost
(preemption cost is fixed at 10µs), as scheduled by each tested algorithm. The key in each
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Figure 7.13: The simulated VEC system.

Fourth, standard deviations of the FF for GEDF, NP-GEDF, and PD2 are smaller than for

PEDF and NP-PEDF, since GEDF, NP-GEDF, and PD2 have better accuracy. Fifth, as seen

in Figure 7.12, PD2’s and GEDF’s UA and FF do not appreciably increase until the migration

cost exceeds 10µs. This is because, until the migration cost is 10µs, PD2 and GEDF incur the

maximum of the migration or preemption cost, which is 10µs.

7.4.2 VEC Experiments

In our VEC experiments, we simulated a 640× 640-pixel video feed where a grey square that

is 160×160 pixels moves around in a circle with a radius of 160 pixels on a white background.

This is illustrated in Figure 7.13. The grey square makes one complete rotation every ten

seconds. The position of the grey square on the circle is random. Each frame is divided into

sixteen 160× 160-pixel regions; each of these regions is corrected by a different task. A task’s

weight is determined by whether the grey square covers its region. By analyzing VEC’s code,

we determined that the grey square takes three times more processing time to correct than

the white background. Hence, if the grey square completely covers a task’s region, then its

weight is three times larger than that of a task with an all-white region. The video is shot at

a rate of 25 frames per second, and as a result, each frame has an exposure time of 40ms.

Figures 7.14 and 7.15 show the results of the VEC simulations conducted to compare

the five tested scheduling algorithms. Figure 7.14 depicts the average UA and FF, for each

scheme, where the preemption cost is varied from 0 to 100µs and the migration cost equals

the preemption cost. Figure 7.15 depicts the average UA and FF for each scheme, where the
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preemption cost is set at 60µs (the maximum expected preemption cost for VEC) and the

migration cost is varied from 0 to 100µs. There are two things worth noting here. First, when

the preemption/migration cost is varied over the range 50 to 60µs (the expected range for

VEC, as noted on each graph), NP-PEDF and PEDF have the smallest UA (Figure 7.14(a));

however, GEDF and NP-GEDF both have a UA that is competitive with both PEDF and

NP-PEDF (Figure 7.14(a)) and have a substantially smaller FF (Figure 7.14(b)). Second, as

seen in Figure 7.15, PD2’s and GEDF’s UA and FF do not appreciably increase until the

migration cost equals 60µs. This occurs for the same reason that PD2 and GEDF did not

noticeably increase until 10µs in Figure 7.12.

7.5 AGEDF Implementation and Evaluation

In this section, we first describe our implementation of AGEDF in the LITMUSRTframework.

Next, we describe the experiments that we used to evaluate our implementation.

7.5.1 Implementation

Because LITMUSRT was designed for sporadic tasks provisioned using WCETs, several mod-

ifications were needed to support adaptable sporadic tasks. These included: adjusting the

internal structure of the task control block to allow each task to have multiple service levels;

disabling the enforcement of WCETs to allow tasks to overrun their expected allocation; and

modifying LITMUSRT to allow task statistics such as actual execution times to be gathered.

After making these changes, we implemented the AGEDF framework by changing the

GEDF scheduling algorithm (which had already been implemented in LITMUSRT) in two

ways. First, we introduced a system call to query the kernel in order for a task to determine

its current service level. Second, we implemented the feedback, optimization, and reweighting

components in kernel space. Since in Linux floating point operations cannot be used in kernel

space, these components were implemented using fixed-point calculations instead.
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Figure 7.14: (a) The average UA and (b) FF for VEC as a function of preemption/migration
cost, as scheduled by each tested algorithm. The key in each graph is in the order that the
schemes appear in that graph at 100µs. Standard deviations are shown. Note that, in (b),
GEDF and NP-GEDF are indistinguishable from each other.
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Figure 7.15: (a) The average UA and (b) FF for VEC as a function of migration cost (pre-
emption cost is fixed at 60µs), as scheduled by each tested algorithm. The key in each graph
is in the order that the schemes appear in that graph at 100µs. Standard deviations are
shown. Note that, in (b), GEDF and NP-GEDF are indistinguishable from each other.
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7.5.2 Evaluation

The development platform used in our experiments is an SMP consisting of four 32-bit Intel(R)

Xeon(TM) processors running at 2.7 GHz, with 8K L1 instruction and data caches, and a

unified 512K L2 cache per processor, and 2 GB of main memory (this is the same system

that was used for the experiments in Section 7.4). For each task, each job was implemented

as a loop in which the core operations of Whisper and VEC are performed iteratively. The

exact manner in which jobs behave is discussed below. In implementing the optimizing

component, we assumed that there is a linear relationship between importance value and

estimated weight, and attempted to maximize the total importance value for all tasks via the

highest-value-density-first rule (described in Section 6.2.2). The optimizer was configured to

run at least once every second, and also whenever the estimated weight of a task changed

by at least 50%, or upon a job completion, the total estimated system weight exceeded four.

However, it was constrained to run at most once every 200ms. Note that, in full Whisper and

VEC implementations, these choices could possibly be improved upon by carefully considering

human-factors issues of relevance to virtual-reality or night-vision systems.

In all experiments, we defined the PI controller using a = 0.102 and c = −1.975 (see

Section 6.2.1 for a discussion of the feedback characteristics associated with these values). We

chose these values because we believe that they represent a good tradeoff between transient

response and steady-state error (for a ramp input).

Whisper experiments. In our Whisper experiments, we simulated three speakers (one

per object) revolving at a speed of 2m/s (this is within the speed of human motion) in a 10m

× 10m room with a microphone in each corner, as shown in Figure 7.16. Tracked objects

were sampled at a rate of 2,000 kHz, and the distance of each object from the room’s center

was set at 5m. While this test scenario may seem simple (since the path of each object

is simple and pre-determined), it is actually a challenging test case for Whisper. This is

because objects moving at a relatively high speed of 2m/s require significant computational

resources to track. Moreover, while it is possible to simulate objects that start, stop, and

change directions, such scenarios actually require less computational resources and adapt
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Figure 7.16: The simulated Whisper system.

task service levels less frequently, because user motion is typically slower when motion is not

continuous.

In the above scenario, one task is required per speaker/microphone pair, for a total of 12

tasks. Each task was configured to have three service levels, with periods/importance values of

66ms/0.25, 33ms/0.5, 22ms/0.75, respectively, and g(Ti, e, 1, 2) ≈ 5e and g(Ti, e, 1, 3) ≈ 9e

(g(Ti, e, ℓ1, ℓ2) is defined in Section 6.1). The importance values were selected somewhat

arbitrarily after some trial-and-error experimentation; in an actual deployment, user studies

would be required to assess the impact of different settings. Since the weight/importance value

relationship is linear, we used the approach in Section 6.2.2 to optimize the system. The other

parameters were selected based upon the existing Whisper implementation. As we discussed

in Section 7.1, in Whisper, the QoS provided is directly related to the number of correlation

computations (CCs) performed per second. When the signal-to-noise ratio decreases, the

number of CCs must be increased to maintain the same QoS. Similarly, the QoS provided can

be increased by increasing the number of CCs per second. A change in the functional service

level of a Whisper task changes the number of CCs per second. We estimated that the existing

Whisper implementation, if implemented on our test platform, would perform approximately

27,600,000 CCs per second in the average case. The task periods and g(Ti, e, ℓ1, ℓ2) values

given above were defined so that the average number of CCs per second for the second service

level matches this rate. Note that, because the code segments of the three service levels differ

only in the number of CCs performed, the code segment of an active job can be changed.

The first experiment we discuss was conducted to see if adaptivity is even needed in

implementing Whisper. In this experiment, we ran each of the twelve speaker/microphone

294



pair tasks individually as a normal Linux task for 20 seconds at all three service levels and

measured their actual weight. The results for one of the twelve tasks is shown in Figure 7.17

(the other eleven tasks have a similar behavior). After 5.5 and 12.3 seconds, the system

experiences 480ms of noise that doubles the number of correlation computations required per

job. The average weight of the task at the first, second, and third service level is, respectively,

0.05, 0.25, and 0.45. Notice that, for a system with 12 tasks, operating each task at its highest

service level and allocating it a processor share based on its worst-case weight (which is 1.0)

gives a total actual weight of 12, which substantially over-utilizes the system. Even with

an average-case provisioning, the system is still over-utilized, as the total actual weight is

5.4 in this case. On the other hand, configuring each task to run at its second service level

using its average-case weight gives a total actual weight of 3.0, which does not over-utilize the

system; however, using a constant average-case allocation would likely cause the system to

be over-utilized when noise is encountered. Thus, from this experiment, we can infer that, in

order for Whisper to schedule tasks at any service level higher than the lowest one, adaptive

scheduling is needed (as is a multiprocessor).

In the second experiment, we ran all 12 Whisper tasks on LITMUSRT, scheduled by

AGEDF, for 20 seconds with 480ms bursts of ambient noise after 5.5 and 12.3 seconds that

double the number of CCs required to maintain the same QoS. Figure 7.18 shows the total

actual weight and the total importance value of the system as a function of time. Figures 7.19–

7.24 depict the actual and estimated weights and error (defined as the difference between the

actual and estimated weight) for all twelve tasks as a function of time. They also show the

functional service level for each task as a function of time. There are several interesting

things to notice about these graphs. First, for the tasks depicted in Figure 7.19–7.24, error is

typically within the range [−0.05, 0.05]. Second, whenever the functional service level changes

or the system encounters noise, error briefly spikes but quickly falls back within the range

[−0.05, 0.05]. Third, when the task in Figure 7.19(a) encounters noise at time 5.5, its service

level is changed and there is a substantial drop in its weight; however, when it encounters

noise at time 12.3, its service level is not decreased because its actual weight is so low. Note

that its low weight at this time is coincidental: its weight varies between times 8 and 20
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Figure 7.17: The actual weight of a Whisper task at three different service levels over a
20-second run with two bursts of noise at approximately times 6 and 13.

as depicted because of the movement of the corresponding object, and that object happens

to be closest to the microphone for which this task is defined at approximately time 14.

Fourth, when a job of the task in Figure 7.19(b) completes after the noise at time 12.3, the

total estimated weight is greater than four, so the optimizer is invoked causing this task to

decrease its service level. This is why the actual weight of this task is briefly greater than

one. Fifth, the total utilization of the system is typically close to four, and the system is

briefly over-utilized when noise is encountered. Because the total actual weight is always

close to four, this system would not be schedulable using a partitioning approach. Sixth, the

total importance value of the system is typically in the range [7.5, 8] and drops below 6.0 only

when noise is encountered. In contrast, if tasks were statically assigned their second service

level and scheduled by GEDF, then the total importance value would never exceed 6.0.
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Figure 7.18: Total actual weight and importance value as a function of time, when executing
12 Whisper tasks for 20 seconds.

VEC experiments. In the VEC experiments, we considered a 320 × 320-pixel video feed

where a grey square that is 80×80 pixels moves around in a circle with a radius of 80 pixels on

a white background, as illustrated in Figure 7.25. Each frame is divided into sixteen 80× 80-

pixel regions (as depicted in Figure 7.9); each of these regions is corrected by a different task.

The amount of execution time a task requires is determined by whether the grey square covers

its region. We assumed that the grey square is sufficiently dark that it takes three times more

processing time to correct than the white background. Hence, if the grey square completely

covers a task’s region, then its weight is three times larger than that of a task with an all-

white region. Moreover, occasionally the video briefly becomes dark, doubling the execution

time for each job. For each experiment, we considered two different sets of three service

levels—one in which periods change and one in which code segments change (by varying the

number of iterations described earlier in Section 6.2.3). The periods/importance levels were

set at 66ms/0.25, 33ms/0.5, and 22ms/0.75, respectively. Furthermore, we do not allow the

code segment of an active job to change. Also, g(Ti, q, 1, 2) = 2q and g(Ti, q, 1, 3) = 3q
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Figure 7.19: Results from executing 12 Whisper tasks for 20 seconds. Actual and estimated
weights and error for (a) T1 and (b) T2 as a function of time. The service level for each task
is depicted across the top of each inset. In both insets, the error line is centered around zero,
and the actual and estimated lines are often indistinguishable.
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Figure 7.20: Results from executing 12 Whisper tasks for 20 seconds. Actual and estimated
weights and error for (a) T3 and (b) T4 as a function of time. The service level for each task
is depicted across the top of each inset. In both insets, the error line is centered around zero,
and the actual and estimated lines are often indistinguishable.
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Figure 7.21: Results from executing 12 Whisper tasks for 20 seconds. Actual and estimated
weights and error for (a) T5 and (b) T6 as a function of time. The service level for each task
is depicted across the top of each inset. In both insets, the error line is centered around zero,
and the actual and estimated lines are often indistinguishable.
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Figure 7.22: Results from executing 12 Whisper tasks for 20 seconds. Actual and estimated
weights and error for (a) T7 and (b) T8 as a function of time. The service level for each task
is depicted across the top of each inset. In both insets, the error line is centered around zero,
and the actual and estimated lines are often indistinguishable.
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Figure 7.23: Results from executing 12 Whisper tasks for 20 seconds. Actual and estimated
weights and error for (a) T9 and (b) T10 as a function of time. The service level for each task
is depicted across the top of each inset. In both insets, the error line is centered around zero,
and the actual and estimated lines are often indistinguishable.
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Figure 7.24: Results from executing 12 Whisper tasks for 20 seconds. Actual and estimated
weights and error for (a) T11 and (b) T12 as a function of time. The service level for each
task is depicted across the top of each inset. In both insets, the error line is centered around
zero, and the actual and estimated lines are often indistinguishable.
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Figure 7.25: The simulated VEC system.

(g(Ti, q, ℓ1, ℓ2) is defined in Section 6.1).

Video is shot at a rate of 30 frames per second, and as a result, each frame has an

exposure time of approximately 33ms. In the experiment that we report on here, we ran VEC

for 20 seconds, the dark square makes one revolution approximately every 2.2 seconds, and

after 8.9 seconds, the system encountered 1,100ms of darkness that doubled the number of

computations required by each task.

In the first set of VEC experiments, we determined if adaptivity is needed in implementing

VEC. In this experiment, we ran each of the sixteen VEC tasks individually as normal Linux

tasks for 20 seconds at all three service levels and measured their actual weight. The results

for T1, T2, and T6 are given in Figures 7.26(a), 7.26(b), and 7.27, respectively. (As seen in

Figure 7.9, the corner tasks, T4, T13, and T16, have the same behavior as T1; the side tasks,

T3, T5, T8, T9, T12, T14, and T15, have the same behavior as T2; and the center tasks, T7, T10,

and T11, have the same behavior as T6.) Notice that, if tasks are statically assigned their

maximum weight and either their second or third service level, then the total weight of all

tasks would exceed four. On the other hand, if tasks are statically assigned their average

weight, then the total weight of all tasks at their highest service level would not exceed four

(the corner, side, and center tasks in this case are assigned weights that are approximately,

0.17, 0.19, and 0.22, respectively). However, in this case, each task would be incapable of

correcting its associated region when either the grey square was present or the system incurred

darkness. Thus, from this experiment, we can infer that, in order for VEC to fully utilize the

system, adaptive scheduling is needed (as is a multiprocessor).
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Figure 7.26: The actual weight of a VEC task at three different service levels. (a) T1. (b)
T2.
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Figure 7.27: The actual weight of a VEC task, T6, at three different service levels.

In the second set of experiments, we ran all sixteen tasks as real-time tasks in LITMUSRT

at the same time. Figure 7.28 shows the total actual weight and total importance value of the

system as a function of time. Figures 7.29–7.36 depicts the actual and estimated weights and

error for all of the tasks as a function of time. (As before, the mapping of tasks to regions

of the screen is as given in Figure 7.9. Thus, T1 corrects the upper-left corner of the screen,

and T16 corrects the lower-right corner of the screen.) There are a few interesting things to

notice about these graphs. First, the error of the task in Figures 7.29–7.36 is typically within

the range [−0.08, 0.08], except when either the system starts or a major change to the system

occurs, i.e., darkness. Second, the total importance value of the system has less jitter than

for Whisper. This is because in our experimental set-up, fewer tasks are changing at any

given point in time. Third, the weights of tasks correcting the corners of the screen (i.e., T1,

T4, T13, and T16) do not change that much (except when darkness is incurred). The reason

why this behavior occurs is because the dark square barley enters the four corners. On the

other hand, the weights of the center four tasks (i.e., T6, T7, T10, and T11) have substantial
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Figure 7.28: Results from executing 16 VEC tasks for 20 seconds. Total actual weight and
importance value as a function of time.

variance. This behavior occurs because the dark square frequently covers a large fraction of

the center four regions.

One final note. Notice that, in the above evaluations of AGEDF, we used real code from

both Whisper and VEC in simulations of deterministic scenarios. Since we are primarily

interested in the behavior of AGEDF rather than the behavior of either Whisper or VEC, we

have chosen to simulate simple environments. These simulations (elements moving around in

a circle with occasional bursts of noise or darkness) provide a sufficient evaluation of AGEDF

since they allow us to measure its behavior when scheduling systems that require a substantial

amount of adaption (in both systems, tasks continually change their execution time and there

are occasional periods of stress). As a result, if we were to simulate more complex scenarios

(objects moving in random or different deterministic patterns), then the results would be

similar. In addition, by evaluating simple scenarios, we can more easily discern the efficacy

of AGEDF when scheduling either Whisper or VEC.
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Figure 7.29: Results from executing 16 VEC tasks for 20 seconds. Actual and estimated
weights and error for (a) T1 and (b) T2 as a function of time. The service level for each task
is depicted across the top of each inset. In both insets, the error line is centered around zero,
and the actual and estimated lines are often indistinguishable.
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Figure 7.30: Results from executing 16 VEC tasks for 20 seconds. Actual and estimated
weights and error for (a) T3 and (b) T4 as a function of time. The service level for each task
is depicted across the top of each inset. In both insets, the error line is centered around zero,
and the actual and estimated lines are often indistinguishable.
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Figure 7.31: Results from executing 16 VEC tasks for 20 seconds. Actual and estimated
weights and error for (a) T5 and (b) T6 as a function of time. The service level for each task
is depicted across the top of each inset. In both insets, the error line is centered around zero,
and the actual and estimated lines are often indistinguishable.
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Figure 7.32: Results from executing 16 VEC tasks for 20 seconds. Actual and estimated
weights and error for (a) T7 and (b) T8 as a function of time. The service level for each task
is depicted across the top of each inset. In both insets, the error line is centered around zero,
and the actual and estimated lines are often indistinguishable.
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Figure 7.33: Results from executing 16 VEC tasks for 20 seconds. Actual and estimated
weights and error for (a) T9 and (b) T10 as a function of time. The service level for each task
is depicted across the top of each inset. In both insets, the error line is centered around zero,
and the actual and estimated lines are often indistinguishable.
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Figure 7.34: Results from executing 16 VEC tasks for 20 seconds. Actual and estimated
weights and error for (a) T11 and (b) T12 as a function of time. The service level for each
task is depicted across the top of each inset. In both insets, the error line is centered around
zero, and the actual and estimated lines are often indistinguishable.
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Figure 7.35: Results from executing 16 VEC tasks for 20 seconds. Actual and estimated
weights and error for (a) T13 and (b) T14 as a function of time. The service level for each
task is depicted across the top of each inset. In both insets, the error line is centered around
zero, and the actual and estimated lines are often indistinguishable.
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Figure 7.36: Results from executing 16 VEC tasks for 20 seconds. Actual and estimated
weights and error for (a) T15 and (b) T16 as a function of time. The service level for each
task is depicted across the top of each inset. In both insets, the error line is centered around
zero, and the actual and estimated lines are often indistinguishable.
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7.6 Conclusion

In this section, we presented two sets of experiments. First, we presented a simulation-based

comparison of our adaptive variants of GEDF, NP-GEDF, PEDF, NP-PEDF, and PD2. Second,

we presented an implementation and evaluation of our AGEDF framework using LITMUSRT.

The results of our simulation-based comparison suggest the following: first, when it is critical

that every task make its deadline and migration/preemption costs are low (i.e., systems

like Whisper), PD2 is the best choice. Second, when preemption/migration costs are high

(i.e., either Whisper or VEC as implemented on a system where the processors are not as

tightly integrated), average case performance is of the utmost importance, and fairness and

timeliness are less important, then either PEDF or NP-PEDF may be the best choice. Third,

when migration/preemption costs are high and a good mix of average-case performance and

fairness factors is beneficial (i.e., systems like VEC), then either GEDF or NP-GEDF may the

best choice. In addition, our evaluation of the AGEDF framework shows that it is capable of

enacting needed adaptions in a way that enhances overall QoS for both Whisper and VEC.
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CHAPTER 8

CONCLUSION AND FUTURE WORK

In research on real-time systems, multiprocessor platforms are of growing importance, due

to both hardware trends such as the emergence of multicore technologies and the prevalence

of computationally-intensive applications for which single-processor designs are insufficient.

While research on real-time systems has traditionally focused on applications with static tim-

ing constraints, for many applications, such constraints can change at run time. For these

applications, adaptive real-time scheduling techniques are needed. This dissertation has fo-

cused on developing multiprocessor adaptive real-time scheduling techniques and studying the

usefulness of such techniques when developing computationally-intensive multimedia applica-

tions such as human-tracking and night-vision systems.

8.1 Summary of Results

In this dissertation, we examined the thesis that multiprocessor real-time scheduling algorithms

can be made more adaptive by allowing tasks to reweight between job releases. Feedback and

optimization techniques can be used to determine at run time which reweighting events are

needed. The accuracy of such an algorithm can be improved by allowing more frequent task

migrations and preemptions; however, this accuracy comes at the expense of higher migration

and preemption costs, which impacts average-case performance. Thus, there is a tradeoff

between accuracy and average-case performance that will be dependent on the frequency of

task migrations/preemptions and their cost.

The main difficulty in constructing an adaptable system is that it is often necessary to

delay enacting weight changes that have been initiated . (If weight changes are always im-

mediately enacted, then it is possible for a task to artificially boost its weight, possibly



causing over-utilization, by aggressively requesting weight changes that, if delayed appropri-

ately, would not cause over-utilization.) As a result, fundamentally , whenever a task’s weight

changes, there may be some “loss” to the system relative to an “ideal” system in which each

weight change can be enacted as soon it is initiated. The allocation difference between the

ideal and actual systems that arises for a single task as a result of one weight change is called

drift . Before the research presented in this dissertation, the only available method for chang-

ing the weight of a task on a multiprocessor was for the task to “leave” with its old weight

and “rejoin” with its new weight. The problem with this method is that drift can be arbi-

trarily large. (This is because a task is permitted to leave only after its next deadline. Since

deadlines can be arbitrarily large, drift can be as well.) As a result, any adaptive algorithm

that changes weights by such a method would be unresponsive to the frequent and substantial

changes that occur in applications such as Whisper and VEC. Moreover, before the research

presented in this dissertation, the only methods for multiprocessor systems for detecting when

task weights should change, and the extent of change required, made assumptions about the

behavior of tasks that are too conservative for these applications. In this section, we review

the multiprocessor framework that we have presented and implemented for scheduling tasks

that require adaptation, and our evaluation of this framework by using the core operations

of Whisper and VEC (correlation computations for Whisper and bilateral filters for VEC).

While this framework was designed for Whisper and VEC, it is general enough to be used for

any real-time application that has a workload that is both intensive and time-varying.

Adaptive algorithm for restricted global systems. As stated in Chapter 3 under re-

stricted global scheduling algorithms (i.e., GEDF and NP-GEDF), jobs may miss their deadlines

by a bounded amount. In Chapter 3, we presented rules that allow a task to change its weight,

even if that task has expired deadlines.

Adaptive algorithm for partitioned systems. In Chapter 4, we presented for parti-

tioned scheduling algorithms (i.e., PEDF and NP-PEDF) rules for changing the weight of a

task that are similar to the rules for restricted global scheduling. However, because in par-

titioned systems each task is assigned to a specific processor, it is possible that when task
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weights change, a single processor may become overloaded , i.e., the sum of the weights of all

tasks assigned to it is greater than one. To resolve this issue, we presented two techniques

in Chapter 4. In the first, the guaranteed weight each task receives is proportional to its

“desired” weight relative to the “desired” weight of all tasks assigned to the same processor.

By assigning task weights in this manner (i.e., allocating to a task a guaranteed weight that

is less then its desired weight), it is possible to guarantee that jobs do not miss deadlines even

when a processor is overloaded. (While this technique will guarantee that deadlines are not

missed, this behavior only occurs because tasks that are assigned to an overloaded processor

receive a guaranteed weight less than their desired weights. If tasks were to receive their

desired weights, then, in such a case, deadline tardiness would grow unboundedly .) In the

second technique, whenever a processor becomes overloaded by some user-defined value, the

entire system is repartitioned. By initiating such repartitioning events, it can be guaranteed

that no processor is overloaded for “too long.”

Adaptive algorithm for unrestricted global systems. One of the most important

unrestricted global scheduling algorithms is the Pfair algorithm PD2. PD2 is the most efficient

known algorithm (in terms of achievable utilization) for scheduling a set of hard real-time

sporadic tasks that fully utilize a multiprocessor system. In Chapter 5, we presented a

modification of PD2 that allows a task’s weight to change at run-time with only a small,

constant amount of drift.

Empirical comparison. In Section 7.4, we presented an experimental comparison of our

adaptive variants of GEDF, NP-GEDF, PEDF, NP-PEDF, and PD2. The results of our exper-

imental comparison suggest the following: first, when it is critical for every task to meet its

deadlines and migration/preemption costs are low (i.e., systems like Whisper), PD2 is the

best choice. Second, when preemption/migration costs are high (i.e., either Whisper or VEC

as implemented on a system where the processors are not tightly integrated), average case

performance is of the utmost importance, and both fairness and timeliness are less important,

then either PEDF or NP-PEDF may be the best choice. Third, when migration/preemption

costs are high and a good mix of average-case performance and fairness is beneficial (i.e.,
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systems like VEC), then either GEDF or NP-GEDF may the best choice.

Multiprocessor feedback-controlled adaptive algorithm. One method for determin-

ing task weights is to assume that each task has multiple service levels, each of which rep-

resents a different level of QoS and a different processor weight. When a task has multiple

service levels, there may exist times when it must be forced to change its service level be-

cause of system constraints. For example, in VEC, if one region is particularly dark, then

tasks associated with other lighter regions may be forced to reduce their weights in order to

provide more resources to the task assigned to the dark region. Forced changes in service

levels present two challenges: how does the system detect when the service level of the system

should change, and how are the service levels of tasks determined? In Chapter 6 we presented

the adaptable GEDF (AGEDF) framework, which attempts to solve this problem by using

feedback control and optimization techniques. In feedback-controlled systems, prior states of

the system are used to predict the future state of the system. By employing feedback-control

techniques, it is possible to determine needed service-level changes. In addition to construct-

ing this algorithm, in Section 7.5, we presented an implementation of the AGEDF framework

on LITMUSRT, a real-time multiprocessor testbed developed by our research group, and

evaluated its performance when performing the core operations of both Whisper and VEC.

This evaluation showed that, by using a feedback-controlled mechanism, the QoS of both

Whisper and VEC can be improved.

8.2 Other Related Work

In this section, we briefly discuss other contributions by the author to the field of real-time

systems that are outside of the scope of this dissertation.

Quick-release fair scheduling. One drawback to PD2 is that it is not work conserving , i.e.,

a processor can become idle even if there exists pending work. This can cause task response

times to be unnecessarily long. In prior work on introducing work conserving behavior to PD2,

techniques were used that can cause a task that consumes otherwise-idle processing capacity
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to be “unfairly” penalized later. In joint work with Anderson and Srinivasan, a technique

called quick-release fair scheduling was developed that ensures that such tasks are treated

fairly (Anderson et al., 2003).

LITMUSRT. In order to better understand how PD2, GEDF, NP-GEDF, PEDF, and

NP-PEDF would behave in practice, our research group constructed the aforementioned

LITMUSRT real-time multiprocessor testbed. Using this system, we evaluated the perfor-

mance of PD2, GEDF, NP-GEDF, PEDF, and NP-PEDF. We found that, for hard real-time

systems, if tasks have relatively small weights, PEDF performs better in terms of schedua-

bility; however, if task weights are relatively large, then PD2 has superior performance. On

the other hand, if bounded deadline tardiness is acceptable, then GEDF and NP-GEDF have

superior performance regardless of any task’s weight (Brandenburg et al., 2007; Brandenburg

et al., 2008; Calandrino et al., 2006).

Multiprocessor synchronization. In work on multiprocessor real-time systems, there is

a dearth of research on task synchronization techniques for use in scheduling algorithms where

task priorities can change at run time (e.g., PD2, GEDF, NP-GEDF, PEDF, and NP-PEDF).

To remedy this situation, members of our research group developed the flexible multiprocessor

locking protocol (FMLP), which is capable of synchronizing tasks via either semaphores or non-

preemptable queue locks in globally-scheduled systems. We also implemented this protocol

in LITMUSRT and compared both the semaphore and queue-lock versions of the FMLP

with each other, and, when implementing shared data objects, with lock-free and wait-free

algorithms. We found that for simple data structures, lock-free and wait-free approaches are

superior to locking approaches; however, for more complex data structures, non-preemptable

queue locks provide superior performance. Interestingly, we found that the use of semaphores

always results in worse scheduability than non-preemptable queue locks (Block et al., 2007;

Brandenburg et al., 2008).
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8.3 Future Work

One limitation of this dissertation is that we were not able to fully re-implement Whisper and

VEC. In order to do this, four objectives must be achieved. First, an adaptive synchronization

protocol must be devised. Second, AGEDF should be extended to more complex machine

models. Third, tools must be developed that allow software engineers to easily specify desired

adaptive behaviors. Fourth, user studies are needed in order to optimize the performance of

both Whisper and VEC. Below, we briefly outline a plan for achieving these three objectives.

An adaptive synchronization protocol. Such a protocol could be devised by modifying

the aforementioned FMLP. While an adaptive variant of this protocol will probably be similar

to the non-adaptive version, determining the protocol’s impact on scheduability will likely be

complex since the non-adaptive protocol’s scheduability analysis is based on the assumption

that task weights do not change. Another complication with the construction of an adaptive

FMLP is that critical sections impose additional constraints on the times at which weight

changes can be enacted. As a result, introducing synchronization into an adaptive system

will likely increase the maximal possible drift because of synchronization-related delays in

enacting weight changes.

More complex machine models. In addition to constructing an adaptive synchroniza-

tion protocol, it would be interesting to extend AGEDF to incorporate more complex machine

models in which various factor (e.g., caching, page faults, TLB misses, etc.) that affect exe-

cution costs are directly considered. One complication with such machine models is that it

becomes more difficult to predict the future weight of a task based solely on its prior weights.

For this reason, in more complex machine models, it may be worthwhile for applications to

provide additional information about the expected weight of a task to assist in the calculation

of future task weights.

Developer tools. One of the advantages of AGEDF is that there are several parameters

that can be adjusted for each task in order to control how an application responds to workload

changes. In order for a user to take advantage of this flexibility, it would be desirable to have
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a set of tools that assist a developer in choosing these parameters under different types of

system load. In addition, constructing multithreaded code where each thread (i.e., task) has

multiple service levels is a non-trivial issue. Such a toolset could be configured to include

three utilities. The first would allow a developer to express a desired system response to

different types of workload changes, and from this information, compute appropriate values

for the AGEDF parameters. The second would consist of a simulator that allows a developer

to quickly assess the behavior of AGEDF for a given set of parameters. The final utility would

assist the developer in constructing multithreaded code where each thread may have multiple

versions and periods.

User studies. Since both Whisper and VEC are multimedia applications, the ultimate

metric of success is user perception. Thus, while many of the parameters of AGEDF can be

chosen by simulations conducted by the developer, fine-tuning the parameters for Whisper

and VEC will involve conducting user studies. Upon completing these three objectives, we

will have built a system for which applications can be easily constructed to fully utilize a

multiprocessor system while at the same time providing real-time guarantees.
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