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METHODOLOGY

Development of an agent‑based model 
to assess the impact of substandard and falsified 
anti‑malarials: Uganda case study
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Abstract 

Background:  Global efforts to address the burden of malaria have stagnated in recent years with malaria cases 
beginning to rise. Substandard and falsified anti-malarial treatments contribute to this stagnation. Poor quality 
anti-malarials directly affect health outcomes by increasing malaria morbidity and mortality, as well as threaten the 
effectiveness of treatment by contributing to artemisinin resistance. Research to assess the scope and impact of poor 
quality anti-malarials is essential to raise awareness and allocate resources to improve the quality of treatment. A 
probabilistic agent-based model was developed to provide country-specific estimates of the health and economic 
impact of poor quality anti-malarials on paediatric malaria. This paper presents the methodology and case study of 
the Substandard and Falsified Antimalarial Research Impact (SAFARI) model developed and applied to Uganda.

Results:  The total annual economic impact of malaria in Ugandan children under age five was estimated at US$614 
million. Among children who sought medical care, the total economic impact was estimated at $403 million, includ-
ing $57.7 million in direct costs. Substandard and falsified anti-malarials were a significant contributor to this annual 
burden, accounting for $31 million (8% of care-seeking children) in total economic impact involving $5.2 million 
in direct costs. Further, 9% of malaria deaths relating to cases seeking treatment were attributable to poor quality 
anti-malarials. In the event of widespread artemisinin resistance in Uganda, we simulated a 12% yearly increase in 
costs associated with paediatric malaria cases that sought care, inflicting $48.5 million in additional economic impact 
annually.

Conclusions:  Improving the quality of treatment is essential to combat the burden of malaria and prevent the devel-
opment of drug resistance. The SAFARI model provides country-specific estimates of the health and economic impact 
of substandard and falsified anti-malarials to inform governments, policy makers, donors and the malaria community 
about the threat posed by poor quality medicines. The model findings are useful to illustrate the significance of the 
issue and inform policy and interventions to improve medicinal quality.
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Background
Malaria is a preventable and treatable disease transmit-
ted by infected mosquitoes. Since the millennium devel-
opment goals listed combatting malaria as an important 
global development goal [1], significant progress has 
been made to combat malaria morbidity and mortality 
[2, 3]. Between 2006 and 2015, large-scale vector control 
campaigns, increased prophylactic treatments for preg-
nant women, as well as improved medical access, test-
ing, and treatment methods reduced the global burden 
of malaria by an estimated 33 million cases and 435,000 
deaths [2–4]. Unfortunately, this progress has stagnated 
and even regressed in recent years with malaria cases 
beginning to rise [2, 5].

This stagnation and regression in the battle against 
malaria represents a significant global health threat, espe-
cially in sub-Saharan Africa, where approximately 90% of 
the global malaria burden exists [2, 3, 5]. Plasmodium fal-
ciparum is a deadly species and disproportionally affects 
children under five, with the majority of malaria-related 
deaths occurring in this age group [6, 7]. In 2016, P. falci-
parum infections killed 285,000 children in Africa before 
they reached their fifth birthday [2, 7]. Malaria also poses 
a significant economic impact as a disease of poverty, and 
a cause of poverty [2, 8–11]. Malaria costs an estimated 
US$12 billion in direct costs to patients and their families 
annually, as well as hundreds of billions of dollars in indi-
rect productivity losses [8]. These costs disproportionally 
affect low-and middle-income countries, instigating and 
reinforcing poverty rates and stunting national economic 
development [9–11].

One of the reasons for stalled progress in the fight 
against malaria can be traced to substandard and falsified 
(SF) anti-malarial treatments [12–15]. A recent meta-
analysis estimates that approximately 19.1% of all anti-
malarials in low- and middle-income countries are SF 
[16]. Substandard anti-malarials are defined as those that 
fail to meet the quality standards and/or specifications, 
while falsified anti-malarials deliberately and fraudulently 
misrepresent their identity, composition or source [17]. 
Anti-malarials as a medication class are the most likely 
to be falsified, and regional rates as high as 35% have 
been reported in Africa [13, 18]. Poor quality medicines 
directly affect health outcomes by increasing malaria 
morbidity and mortality, as well as threaten their effec-
tiveness by contributing to artemisinin resistance [13–19, 
20, 21]. SF anti-malarials also contribute to the economic 
burden of malaria through additional care-seeking and 
productivity losses from increased morbidity and mortal-
ity [19, 22].

Children under age five are at the greatest risk of 
malaria and also at the greatest risk to suffer from 
the consequences of SF anti-malarials [7, 13, 23]. The 

World Health Organization (WHO) estimates that SF 
anti-malarials in sub-Saharan Africa are responsible for 
31,000–116,000 additional deaths, the majority of whom 
are children under five, resulting in US$10.4–38.5 mil-
lion in avertable costs due to additional care-seeking 
[19]. While these estimates indicate the magnitude of the 
effect of poor quality medicines, robust, country-specific 
estimates are not available to combat the issue effectively 
and inform policy decisions [19]. This study developed 
the SAFARI (Substandard and Falsified Antimalarial 
Research Impact) model, an agent-based model simula-
tion, to provide country-specific estimates of the health 
and economic impact of SF anti-malarials on paediatric 
malaria. This paper describes and presents model find-
ings for Uganda, a country with particularly high under-
five mortality due to malaria.

Methods
The SAFARI model simulates population characteristics, 
malaria infection, patient care-seeking, disease progres-
sion, treatment outcomes, and associated costs, in order 
to estimate the health and economic impact of SF anti-
malarial medicines among children below 5 years of age 
[19]. The model was developed using NetLogo software 
(Version 6.0.2). An agent-based model was utilized as 
it is adept at modelling complex adaptive systems [24]. 
The main model inputs and distributions are shown in 
Table  1 with additional inputs and coefficients included 
in Additional file  1. All model inputs were extracted 
from available literature and epidemiological outputs 
were compared to previously reported data. The primary 
outputs of the model are estimates of the health impact, 
direct costs, and productivity losses, based on the 
increased morbidity and mortality due to SF medicines. 
The model was presented to experts who helped validate 
the structure, inputs and assumptions.

Demographic characteristics, malaria infection 
and care‑seeking rates
Utilizing agent-based modelling allows us to assign each 
child below age 5, or “agent-child” in the model, with 
individual demographic characteristics. Six demographic 
characteristics were applied to each agent-child: age, sex, 
geographic region, rural/urban, wealth quintile, and level 
of maternal education. These characteristics were chosen 
as important predictors that affect incidence, care-seek-
ing, disease progression and treatment outcomes, and 
also to facilitate analysis by demographic groups. These 
characteristics were applied according to rates derived 
from the latest nationally representative Malaria Indica-
tor Survey (MIS) using population sampling weights. For 
example, statistical analysis of the Uganda MIS dataset 
indicated significant associations between region, rural/
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Table 1  SAFARI model inputs

Model inputs Input Range Source

Demographic and epidemiological data < 5 Population at risk 7,881,620 [25]

Malaria incidence (annual rate for < 5 popula-
tion at risk)

0.447 (0.197–0.744) [26]

Asymptomatic malaria case rate per 1000 
population

0.156 (0.08–0.23) [59]

Probability that an untreated case progresses 
to a severe case

0.130 (0.07–0.3) [60]

Probability that a treatment failure progresses 
to a severe case

0.020 (0.005–0.05) [61, 71]

Case fatality rate for a severe case receiving 
quinine

0.109 (0.06–0.22) [62]

Case fatality rate for a severe case receiving 
other treatments

0.109 (0.06–0.22) Assumption

Case fatality rate for a severe case receiving 
ACTs

0.085 (0.06–0.22) [62]

Probability that a severe case progresses to NS 0.032 (0.028–0.035) [62]

Healthcare-seeking behaviour Care-seeking behaviour (%)

  Public facilities 34.7% [27]

  Private facilities 40.8%

  Pharmacies 1.0%

  Drug stores 5.6%

  CHWs 0.7%

  Self/neighbours 12.7%

  No treatment 4.4%

Medication stock by facility Public facilities

  % Stock ACTs 89.5% [27]

  % Stock quinine 9.2%

  % Stock other treatmentsa 1.3%

Private facilities

  % Stock ACTs 77.2%

  % Stock quinine 14.3%

  % Stock other treatments 8.6%

Pharmacies

  % Stock ACTs 76.0%

  % Stock quinine 0.0%

  % Stock other treatments 24.0%

Drug stores

  % Stock ACTs 80.9%

  % Stock quinine 19.1%

  % Stock other treatments 0.0%

CHW2

  % Stock ACTs 78.9%

  % Stock quinine 0.0%

  % Stock other treatments 21.1%

Self/neighbours

  % Stock ACTs 87.2%

  % Stock quinine 9.7%

  % Stock other treatments 3.1%
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Table 1  (continued)

Model inputs Input Range Source

Probability facility has anti-malarial in stock Public facilities 96.1% [33]

Private facilities 88.6%

Pharmacies 99.7%

Drug stores 86.1%

CHWs 99.7%

Self/neighbours (for ACTs) 100.0%

Medication effectiveness ACTs cure rate 0.9755 (0.9615–0.9895) [35, 36, 38, 39, 41–49]

Quinine cure rate 0.8818 (0.8484–0.9152) [46, 49]

Other treatments cure rate 0.7167 (0.6581–0.7753) [37, 40, 47]

No treatment cure rate 0 Assumption based on [32]

Proportions of SF medications ACTs Coefficient

  Not SF (API > 85%) 80.5% 1 [51, 53, 56, 57]

  Category 1: API = 75–85% 10.5% 0.75 Adjusted [50, 54]

  Category 2: API = 50–75% 4.5% 0.5

  Category 3: API < 50% 4.5% 0

Quinine

  Not SF (API > 85%) 77.9% 1 [51–53, 55–57]

  Category 1: API = 75–85% 11.9% 0.75 Adjusted [50, 54]

  Category 2: API = 50–75% 5.1% 0.5

  Category 3: API < 50% 5.1% 0

Other treatments

  Not SF (API > 85%) 68.7% 1 [52, 55, 57]

  Category 1: API = 75–85% 16.9% 0.75 Adjusted [50, 54]

  Category 2: API = 50–75% 7.3% 0.5

  Category 3: API < 50% 7.2% 0

Treatment adherence Number of doses taken Coefficient

  0–1 3.9% 0 [34]

  2 3.1% 0.25

  3 7.3% 0.5

  4 10.9% 0.75

  5–6 74.7% 1

Care-seeking behaviour Number of days after onset of fever care was 
sought

Coefficient [27]

  Same day 18.7% 0

  1 32.0% 0.2

  2 25.3% 0.4

  3+ 24.0% 0.6

Cost inputsb Input Range Source

Patient out-of-pocket costs Public facilities

  Average cost of ACTs $ 0.00 Assumption based on [27]

  Average cost of quinine $ 0.00

  Average cost of other treatments $ 0.00

Private facilities

  Average cost of ACTs $ 2.59 (1.48–3.99) [33]

  Average cost of quinine $ 3.39 (2.75–4.08)

  Average cost of other treatments $ 0.65 (0.49–0.82)
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urban, wealth quintile, and level of maternal educa-
tion characteristics. To account for this association, the 
agent-child is sequentially assigned: (1) a region, (2) a 
rural/urban delineation according the regional propor-
tions, (3) a wealth quintile according to the rural/urban 

proportions, and then (4) a maternal education level 
according to the proportions for the agent-child’s wealth 
quintile. Age in months (0–59) and sex were assigned 
randomly to each agent-child in the model. To ensure 
that the model population is comparable to a nationally 

Table 1  (continued)

Cost inputsb Input Range Source

Pharmacies

  Average cost of ACTs $ 2.91 (1.55–4.69)

  Average cost of quinine $ 2.72 (2.10–3.42)

  Average cost of other treatments $ 0.48 (0.32–0.66)

Drug stores

  Average Cost of ACTs $ 1.62 (1.05–2.31)

  Average cost of quinine $ 3.39 (2.76–4.08)

  Average cost of other treatments $ 0.48 (0.33–0.66)

CHWs

  Average cost of ACTs $ 0.00 Assumption based on [27]

  Average cost of quinine $ 0.00

  Average cost of other treatments $ 0.00

Self/neighbours

  Average cost of ACTs $ 0.00 Assumption

  Average cost of quinine $ 0.00 Assumption

  Average cost of other treatments $ 0.00 Assumption

Transport (pub, private) $ 0.47 (0.39–0.55) [64]

Transport (pharmacy, drugstore) $ 0.08 (0.04–0.12) [65]

Special foods for child $ 1.15 (0.87–1.43) [66]

Supplemental medicines $ 1.14 (1.02–1.26) [64]

Average testing costs $ 0.91 (0.65–1.17) [33]

Private facility consultation costs $ 4.35 (0–21.00) [67]

Cost per paediatric malaria hospitalization $ 14.17 (0.75–47.50) [67]

Productivity losses Productivity loss per sick day $ 1.59 (0.4–3.70) [70]c

Productivity losses from death $ 14,959.66 [70]d

NS disability productivity losses $ 6189.87 [63, 70]e

Facility costs Facility cost per testing $ 1.46 (1.34–1.58) [33, 64]

Facility cost per ACTs $ 1.50 (1.35–1.65) [64]

Facility cost for quinine $ 2.48 (1.75–3.32) [68]

Facility cost per other treatments $ 0.12 (0.03–0.26) [68]

Public facility cost per consultation $ 8.58 (7.75–10.00) [64]

Facility cost per paediatric malaria hospitaliza-
tion

$ 65.89 (59.55–72.45) [69]

Cost per CHW treatment $ 1.17 (0.74–1.60) [66]

Cost per CHW testing $ 1.09 (0.95–1.23) [66]

Facility cost per CHW visit $ 4.63 (2.95–6.7) [66]

ACTs artemisinin-based combination therapy, API active pharmaceutical ingredient, CHWs community health worker, NS neurological sequelae, SF substandard and 
falsified
a  Other treatments included Sulfadoxine-pyrimethamine (SP), Chloroquine (CQ) and Amodiaquine (AQ)
b  All costs are presented in US$2017
c   GDP per capita was divided by 365 days
d   GDP per capita was multiplied by disability-adjusted life expectancy
e   GDP per capita was multiplied by disability-adjusted life expectancy and disability weight
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representative sample [25], the proportions of each 
demographic characteristic in the model was calibrated 
to be within two percent of the MIS proportions.

In this model, each agent-child possesses individual 
incidence and care-seeking rates based on the demo-
graphic characteristics. Analysis of the Uganda MIS data 
showed significant associations between malaria preva-
lence and age, region, rural/urban, wealth quintile, and 
maternal education [27]. Further, significant associations 
were found between care-seeking and care sector seek-
ing rates, and four of these characteristics besides age. 
The model accounts for these associations by deriving the 
prevalence and care-seeking coefficients for each demo-
graphic characteristic by dividing the categorical rate by 
the national rate. These coefficients are then multiplied 
by the incidence [26], care-seeking, and care sector seek-
ing rates for each agent-child according to demographic 
characteristics. This allows the model to account for het-
erogeneity by giving each agent-child a unique individual 
incidence and care sector seeking rate. No significant 
association was observed between sex and malaria preva-
lence or between sex or age and care-seeking in Uganda. 
Beyond this Uganda example, associations between the 
six demographic characteristics can be analysed to deter-
mine which coefficients should be applied to the inci-
dence and care/sector seeking rates in future SAFARI 
outputs.

Disease progression
The disease model, shown in Fig. 1, is derived from the 
malaria disease progression established by the WHO, 
going from infection to asymptomatic parasitaemia, to 
uncomplicated illness, to severe malaria, and then to 
death [28]. The definitions for clinical outcomes and 
other components of the model are presented in Table 2 
[29, 30]. The model simulates 1000 agent-children who 
are assigned individual characteristics, incidence, and 
care-seeking rates. A simulation was run over a 1-year 
period broken down into 5-day increments. The length of 
a period was set at 5 days to account for different rates of 
care-seeking and reported average duration of symptoms 
for a case of uncomplicated malaria receiving treatment 
[31]. There are four potential health states in the model: 
healthy, infected and asymptomatic, infected and symp-
tomatic, and dead. Infected and symptomatic agent-chil-
dren can develop neurological sequelae.

For each period, the 5-day incidence rate determines 
whether the agent-child will become infected and enter 
the disease model, or remain healthy. If the agent-
child becomes infected, the agent-child can either stay 
asymptomatic, or become symptomatic and enter the 
care-seeking portion of the model. Symptomatic agent-
children from the previous period that did not experience 

an adequate clinical and parasitogical response remain 
infected and symptomatic or become asymptomatic. 
Agent-children that are asymptomatic from the previous 
period will either become symptomatic or remain asymp-
tomatic. Due to the longevity of Plasmodium falciparum 
infections, it is assumed that spontaneous recovery from 
malaria is not possible [32].

All symptomatic agent-children undergo simulated 
care-seeking and will either seek care or not, based on 
individual care-seeking rates. For agent-children seek-
ing care, individual rates also determine the specific care 
location in which they will seek care. Analysis of MIS 
data determined the care locations incorporated in the 
model. For example, the Uganda model contains six care 
locations: public health facilities, private health facili-
ties, pharmacies, drug stores, community health workers, 
and self-treatment/neighbours. The type of treatment 
the agent-child receives in each care location is deter-
mined by each location’s MIS-derived ratio of utiliza-
tion of three anti-malarial treatments: artemisinin-based 
combination therapies (ACTs), oral quinine, and other 
treatments. Each care location also has a probability of 
stocking out of anti-malarial treatments based on ACT-
watch data [33]. In the event that agent-children visit a 
care location during a stock out, they will receive no 
treatment and non-severe cases will remain symptomatic 
in the next period.

Anti‑malarial treatment outcomes
The treatment outcome for each agent-child was deter-
mined based on treatment adherence rates, treatment 
efficacy by medication, medicine quality measured by the 
active pharmaceutical ingredient (API) concentration of 
the specific drug the agent-child received, and treatment 
duration. Treatment adherence rates were derived from a 
study reporting the proportion of total malaria treatment 
taken, categorized by the numbers of doses taken: 0–1, 2, 
3, 4, and 5–6 [34]. Treatment efficacy was modelled based 
on the doses taken, where lower adherence reduced the 
likelihood of successful treatment. If an agent-child pur-
sued self-treatment or received medication from neigh-
bours, the likelihood of treatment success was reduced 
by 20% due to lower adherence. Malaria treatment adher-
ence was assumed to be similar throughout sub-Saharan 
Africa due to the lack of country-specific data available.

Treatment efficacy [35–49] and prevalence of SF medi-
cines [50–57] for each anti-malarial type was calculated 
via the WWARN (Worldwide Antimalarial Resistance 
Network) database [58] and a systematic literature search 
specific to Uganda. The input for treatment efficacy was 
medication-specific likelihood of adequate clinical and 
parasitological response at 28  days based on polymer-
ase chain reaction, controlling for recrudescence and 
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reinfection. Treatment efficacy was estimated across 
studies by taking the weighted average of the success rate 
based on the number of people in the studies. The 95% 
confidence interval for treatment efficacy was derived 
based on the standard deviations of included studies. 
While SF medicines have API concentrations outside 
of the therapeutic range, model inputs acknowledge 
that not all are ineffective. Medication effectiveness was 
assumed to decrease proportionally by API concentra-
tion [19, 23], categorized according to API percentages 
between 75 and 85%, 50 and 75%, and < 50%, as inter-
polated from two studies [50, 54]. The prevalence of SF 
medicines was estimated by counting SF samples identi-
fied over all samples tested across studies. These SF med-
icines were then categorized based on the likelihood of 
having percentage API levels. Each modelled anti-malar-
ial medication was assigned an API percentage category 
and corresponding treatment efficacy with lower APIs 
reducing the likelihood of successful treatment. The pro-
portion of SF medicines for each anti-malarial category 
was assumed to be equivalent across care sectors, as no 
other data were available to segment medication quality 
by treatment location.

This model differentiates between symptomatic recov-
ery and complete recovery, resulting in three outcomes 
for non-severe malaria in the model: recovery, complete 
treatment failure, and parasite clearance failure. Agent-
children who experience treatment failure due to anti-
malarials with an API < 50% or not adhering to treatment 
(taking only 0–1 doses) experience complete treatment 
failure and remain symptomatic. All other agent-children 
that experience treatment failure are considered to expe-
rience parasite clearance failure and remain infected but 
asymptomatic [59].

Severe malaria
The probability of untreated symptomatic malaria pro-
gressing to severe malaria increases over time [28]. This 
is accounted for by using a severity rate that captures 
the country-specific rate of progression of an untreated 
uncomplicated case to a severe case, as reported in a Del-
phi study based on the country’s endemicity [60]. This 
severity rate is adjusted for each agent-child seeking care 
according to the amount of time from onset of symptoms 
until treatment. To determine these rates, MIS data were 

Table 2  Definitions utilized in the SAFARI model

Term Definition

Malaria case Occurrence of malaria infection in a person in whom the presence of malaria parasites in the blood can be confirmed by a 
diagnostic test [29]

 Asymptomatic “The presence of asexual parasites in the blood without symptoms of illness” [29]

 Symptomatic The presence of asexual parasites in the blood with symptoms of illness [29]

Recrudescence “Malaria case attributed to the recurrence of asexual parasitaemia after anti-malarial treatment, due to incomplete clearance 
of asexual parasitaemia of the same genotype(s) that caused the original illness” [29]

Uncomplicated malaria “Symptomatic malaria parasitaemia without signs of severity or evidence of vital organ dysfunction” [29]

Severe malaria “Acute falciparum malaria with signs of severe illness and/or evidence of vital organ dysfunction” [29]

Treatment failure “Inability to clear malarial parasitaemia or prevent recrudescence after administration of an anti-malarial medicine, regardless 
of whether clinical symptoms are resolved” [29]

 Early treatment failure Development of severe malaria or increase in parasitaemia during first three days of treatment or the presence of parasitae-
mia and a fever on third day of treatment [30]

 Late clinical failure Development of severe malaria or presence of parasitaemia and fever after three or more days since treatment began in 
cases that did not meet criteria for early treatment failure [30]

 Complete treatment
 Failure/clinical failure

Complete treatment failure or clinical failure is equal to the sum of Early Treatment Failure and Late Clinical Failure” [30]

 Parasite clearance 
failure

Presence of parasitaemia with no fever 1 week or longer after treatment began, also known as late parasitological failure [30]

Recovery Recovery comes with adequate clinical and parasitological response, defined by absence of parasitaemia after 2 weeks 
indicating the elimination of all malaria parasites that caused the infection [29, 30]

Neurological sequelae Deficits in cognition, gross motor function, speech, vision and hearing, behaviour problems or epilepsy resulting from severe 
malaria [28]

Drug efficacy “Capacity of an anti-malarial medicine to achieve the therapeutic objective when administered at a recommended dose, 
which is well tolerated and has minimal toxicity” [29]

Treatment adherence “Compliance with a regimen (chemoprophylaxis or treatment) or with procedures and practices prescribed by a health care 
worker” [29]

Substandard medicine “Authorized medical products that fail to meet either their quality standards or specifications, or both” [18]

Falsified medicine “Medical products that deliberately/fraudulently misrepresent their identity, composition or source” [18]
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used to assign each agent-child with the number of days 
after onset of symptoms that care was sought, effectively 
capturing treatment duration. The severity rate for agent-
children that seek care was adjusted to increase propor-
tional to the number of days since onset [61]. The severity 
rate was not adjusted for agent-children that do not seek 
care.

In this model, agent-children that seek care with severe 
malaria become hospitalized and receive inpatient care, 
while those that do not initially seek care have a chance 
to seek care again in the next cycle. Inpatient hospital 
treatments were assumed to be of acceptable quality and 
patients admitted to hospitals were assumed to adhere to 
treatment.

There are four possible severe malaria outcomes in the 
model: death, neurological sequelae, remaining infected, 
and treatment success. Patients who receive inpatient 
care can be successfully treated, die, or experience neu-
rological sequelae based on proportions reported by the 
AQUAMAT study in Africa [62]. Patients who do not 
receive care with severe malaria can remain infected, suf-
fer from neurological sequelae, or die. A Delphi study 
estimated the mortality rate for severe cases that do not 
receive treatment [60].

The model tabulates the number of cases, neurological 
sequelae, and deaths due to malaria. Disability-adjusted 
life years (DALYs) due to malaria was also estimated as a 
measure of overall disease burden expressed as the num-
ber of years lost due to ill-health, disability or early death. 
Non-age weighted and non-discounted DALYs using dis-
ability weights from the Global Burden of Disease study 
are presented [63].

Economic outcomes
Economic outcomes in the model were categorized as 
either direct costs or indirect costs. Direct costs included 
costs for transportation, testing, drugs, consultation, 
and hospital costs [64–67]. Direct costs were further 
separated into those that were paid out-of-pocket versus 
those incurred by public facilities [68, 69]. Indirect costs 
included productivity losses incurred by care-takers, as 
well as productivity losses due to disability and death 
due to malaria. Productivity losses were estimated using 
the human capital approach, based on gross domestic 
product (GDP) per capita and duration of lost produc-
tivity [70]. Caregiver productivity losses were estimated 
for 5  days of lost earnings for a case of uncomplicated 
severe malaria. Lifetime productivity losses were esti-
mated based on lost economic productivity between age 
15 and life expectancy, discounted at 3%. Disability pro-
ductivity losses were calculated by applying the disability 
weights for neurological sequelae to discounted lifetime 

productivity losses [63]. All costs are rounded to the 
nearest thousands and expressed in 2017 US dollars.

Scenario analyses
Three scenarios are presented for this analysis: the base-
line scenario, a second scenario with no SF anti-malari-
als, and a third scenario with emergence of antimicrobial 
resistance. For the scenario with no SF medicines, all 
medications were assumed to have an API > 85%. For the 
antimicrobial resistance scenario, treatment efficacies for 
ACT and quinine were assumed to be the same as those 
for other treatments. The health and economic impact of 
SF anti-malarials and artemisinin resistance were calcu-
lated by examining the difference between the baseline 
scenario and the other two scenarios. To assess if there 
was a significant difference between the baseline and 
scenario outputs, a two-sample t-test was used for epide-
miological outputs, and a Wilcoxon ranked-sum test was 
used for cost outputs. All data analysis was conducted 
using Stata 14.2.

To account for the natural variation in epidemiologi-
cal and cost inputs, each input was simulated to vary 
probabilistically, where inputs were randomly generated 
within a specific distribution. Epidemiological inputs 
were normally distributed and cost inputs came from a 
gamma distribution. The overall results demonstrate the 
best estimate and standard deviation based on variations 
across all inputs.

Results
This case study presents the SAFARI model results for 
Uganda. At current incidence rates and population lev-
els, the model estimates that there are around 3.5 million 
annual cases of malaria in Ugandan children under age 
five. Among the total population, we estimated nearly 
11,000 cases of neurological sequelae and around 29,000 
deaths, which contributed to approximately 2 million 
DALYs lost. For cases that pursued some medical treat-
ment (94%), an average of 177,000 (5%) were hospital-
ized in a year, with nearly 13,000 (0.4%) resulting in 
death and 5700 (0.2%) suffering from neurological seque-
lae. These cases of malaria, neurological sequelae, and 
death resulted in almost 1.1 million DALYs lost annually, 
including 953,000  years of life lost to early death from 
malaria. These health outcomes contributed to a total 
estimated economic impact of $614 million. Those that 
sought medical treatment made up $403 million of the 
total impact, with approximately 66% of the total. Direct 
costs associated with care seeking was estimated at $57.7 
million (14%) and caregiver productivity losses were pro-
jected at $141 million (35%). Simulated outcomes for 
total malaria burden and cases who sought care are pre-
sented in Table 3.
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SF anti-malarials contribute significantly to these esti-
mates. Comparing the baseline among cases seeking 
treatment to a scenario with no SF drugs, poor quality 
anti-malarials were responsible for nearly 14,000 (8%) 
additional hospitalizations, approximately 300 (5%) 
more cases of neurological sequelae, and around 1100 
(9%) additional deaths. SF anti-malarials contributed to 
about 71,000 (7%) years of potential life lost to children 
under five and almost 79,000 (7%) additional DALYs lost 
annually. In addition to the significant health impact, the 
economic impact of poor quality anti-malarials taken by 
Ugandan children was estimated at $31 million (8%). The 
additional morbidity and mortality caused by SF anti-
malarials resulted in $5.2 million in direct costs annually, 
including $2.9 million incurred by the government and 
$2.3 million paid by patients as out-of-pocket costs. Pro-
ductivity losses as a result of poor quality anti-malarials 
amounted to $25.9 million a year, including $8.1 million 
in caregiver productivity losses, $2 million due to disabil-
ity, and $15.8 million due to early death.

In the event of widespread artemisinin resistance in 
Uganda, significant increases in severe malaria cases 
and hospitalizations would be expected. If treatment 
efficacies of ACT medicines and quinine were to fall to 
the level of other treatment efficacies, the model simu-
lated a 6% increase in hospitalizations and 7% increase in 
malaria deaths, which would result in nearly 57,000 years 
of life lost due to early death and 63,000 DALYs lost. The 
resulting increase in economic impact was estimated at 
$48.5 million, a 12% increase in costs associated with 
paediatric malaria annually. This included an additional 
$8 million in government facility costs (25% increase) and 
an additional $7.5 million paid out-of-pocket by patients 
(30% increase).

Discussion
The SAFARI model can be used to develop country-spe-
cific estimates of the health and economic impact of SF 
anti-malarials. Using agent-based modelling, we devel-
oped a dynamic model to simulate a cohort of children 
with demographic characteristics, malaria infection 
rates, care-seeking patterns, disease progression, treat-
ment outcomes, and associated costs. Model results 
reinforce the magnitude of the burden of malaria at a 
national level, as well as highlight the health and eco-
nomic benefits of reducing this burden through access to 
better quality medications. The SAFARI model should be 
used across malaria endemic countries to not only esti-
mate the impact of SF anti-malarials, but to also assess 
the impact of national policies and interventions to coun-
ter this threat.

Through a case study in Uganda, this study demon-
strated that SF anti-malarials contribute significantly 

to both the health and economic burden of malaria in 
children under five. The results of this model are useful 
as they provide the first country-specific estimate of the 
contribution of SF anti-malarials to the malaria burden 
for Uganda. It also demonstrates the burden of avert-
able costs on patients and the government. The results 
demonstrate that addressing drug quality, even with no 
changes in incidence rates, will significantly contribute 
to reducing the malaria burden. As such, these estimates 
are crucial to not only illustrate the scope of the issue to 
pertinent actors in the fight against malaria, but to also 
encourage and inform future research, policies, and 
interventions to combat poor quality anti-malarials.

The SAFARI model builds on and improves upon previ-
ous efforts to model the impact of malaria in sub-Saharan 
Africa [19, 23, 71–73]. For example, the disease model 
and clinical inputs utilized in the SAFARI model are com-
parable to previous efforts to model the burden of malaria 
in sub-Saharan Africa [19, 23, 71, 73]. Specifically, similar 
data inputs were utilized as Renshler et al. [23] estimat-
ing the number of under five deaths due to poor quality 
anti-malarials, Lubell et al. [71] modelling the impact of 
artemisinin resistance, and Bath et al. [19] assessing the 
economic impact of poor quality anti-malarials across 
sub-Saharan Africa. The SAFARI model builds upon the 
analysis by Bath et  al. by focusing on a country, reduc-
ing the number of assumptions and better accounting for 
regional variation and heterogeneity within the model 
population. The SAFARI model is a country-level model 
and utilizes agent-based modelling rather than decision 
tree modelling, which can account for national, regional, 
and patient-specific variation, thereby generating more 
rigorous estimates. The SAFARI model also incorporates 
the financing source for direct costs and report epide-
miological and cost outputs for each individual child in 
the model. The model can subsequently be used to assess 
various interventions to address the burden of malaria as 
well as assess the distribution of the malaria burden and 
impact of poor quality anti-malarials across demographic 
characteristics of a population.

The number of cases and deaths reported by the 
SAFARI model are comparable to those reported by 
the World Malaria Report [2]. While the World Malaria 
Report estimates the malaria burden across all ages, the 
WHO estimates that 45% of malaria cases occur in chil-
dren under five [19]. This model reported approximately 
3.5 million malaria cases, which is comparable to 45% of 
the estimated malaria cases in Uganda (2.0–5.6 million) 
reported by the 2017 World Malaria Report [2]. Children 
under five also account for the majority of malaria deaths; 
the nearly 29,000 total number of deaths resulting from 
the model is within the UNICEF estimates of 23,023–
32,371 deaths due to malaria in 2016, calculated from 
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the under-five mortality rate of 43.6–61.3 per 1000 live 
births with 6.7% of deaths due to malaria [74, 75]. Of chil-
dren who sought care, the nearly 13,000 deaths reported 
by the model are in range of the 10,280–13,850 malaria 
treatment deaths reported in Uganda by the 2017 World 
Malaria Report [2]. Further, this study’s finding that 
8.7% of under five deaths are due to SF anti-malarials is 
comparable to the estimated 3.8–8.9% of all-age malaria 
deaths due to poor quality medicines in sub-Saharan 
Africa reported by the WHO [19].

There are a number of key limitations to note. First, 
models are inherently limited by the quality of the data 
used to derive model parameters [76, 77]. To address this, 
an extensive literature search and MIS dataset analyses 
were conducted to ensure that model parameters were 
derived from the most recent and best quality published 
data. While the quality of data inputs inherently limit 
model outputs, the SAFARI model improves upon previ-
ous estimates by appropriately controlling for these limi-
tations through rigorous analyses. Secondly, population, 
regional, and individual level heterogeneity limits models 
to capture population-wide variances [76, 77]. To con-
trol for heterogeneity, a probabilistic agent-based model 
was used and each agent-child was assigned with demo-
graphic characteristics including age, sex, geographic 
region, rural/urban, wealth quintile, and level of maternal 
education. Using these demographic characteristics, the 
SAFARI model is able to account for natural individual 
and regional heterogeneity based on the variance around 
each input variable and assign individual rates specific 
to each agent-child’s characteristic and location. Third, 
a large amount of uncertainty in the case fatality rate of 
untreated malaria cases was found, with estimates rang-
ing from 0.45 to 60% in the literature [19, 23, 50, 60]. Due 
to this uncertainty, we calibrated the model using vari-
ous literature source estimates for this rate. Further, the 
model does not account for malaria treatments taken 
by children that do not have malaria and unessential 
inpatient care for non-severe cases due to lack of data. 
Despite these limitations, the SAFARI model is a unique 
and valuable tool to assess and counter the impact of SF 
anti-malarials at the country level.

Conclusions
After years of progress in addressing the burden of malaria, 
recent indicators suggest that malaria is making a resur-
gence. To ensure that progress continues, it is essential to 
address the factors affecting this resurgence, such as the 
rise in poor quality anti-malarials. The SAFARI model is 
presented to assess and illustrate the magnitude of the 
health and economic impact of SF anti-malarials at the 
country level through a model case study in Uganda. 
The SAFARI model should inform country malaria 

stakeholders, international donors, and national malaria 
control programmes to recognize the burden of SF anti-
malarials and identify interventions to improve medici-
nal quality. As the world seeks to achieve the Sustainable 
Development Goals and meet the Global Health Security 
Agenda, reducing the prevalence of poor quality medicines 
will be essential to combat the global burden of malaria.
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