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ABSTRACT 

Peter J. Mueller: Development and Analysis of Dermal Wound Image  

Processing Techniques Using Chan-Vese and Edge Active Contour Methods 

(Under the direction of Devin Hubbard) 

 

 Present methods for evaluation of burn wounds rely heavily on qualitative and Total 

Body Surface Area (TBSA) estimations. Herein, a digital method for calculating the surface 

area of burn wounds is proposed as a useful tool for monitoring and measuring changes in 

burns. This study tested two segmentation methods: a statistical analysis technique, and an 

active contours technique using edges and Chan-Vese. All methods were tested on images of 

burns taken from a DSLR camera, and Microsoft Kinect V2 and compared to digitally drawn 

traces of the wounds. Using Dice’s Coefficient as a measure for agreement between masks, 

the DSLR images resulted in agreeable segmentations (D=0.939 for edge, D=0.9362 for 

Chan-Vese), while images taken with the Kinect did not meet the threshold for agreeability 

(D=0.815 for edge, D=0.819 for Chan-Vese). This testing shows the active contours method 

is the plausible method for characterizing high-resolution color burn wounds. 
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Chapter 1 

Introduction/Background 

 

Introduction to Burns 

 Burn wounds are traditionally classified into 3 degrees according to the burn depth. 

1st degree, or superficial burns only affect the epidermal (outer most) layer of the skin. The 

appearance of a superficial burn consists of a red, moist lesion which tends to resolve 

spontaneously with little to no medical intervention. Partial thickness, or 2nd degree, burns 

are those that include both superficial partial thickness burns as well as deep partial thickness 

burns. Superficial partial thickness burns affect both the epidermis and the upper dermis. 

Superficial partial thickness burns are typically capable of healing on their own, although 

infections or drying out of the wound can cause progression to a deep partial thickness 

wound. Deep partial thickness wounds affect both the epidermis and extend deep into the 

dermis. These deeper wounds may not heal spontaneously and may require a warm, moist 

environment in order to recover. Full-thickness, 3rd degree burns are those in which all layers 

of the dermis are affected. Full-thickness burns are incapable of healing on their own, 

requiring excision and grafting of new skin.  
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It is important to note that many burns consist of a combination of these different 

degrees of depths. Difficulty lies in assessing deep partial thickness burns, as they may 

initially appear and be diagnosed as superficial partial-thickness. Such complicated wounds 

require a follow-up examination 48 hours after the initial examination to determine the exact 

depth of the wound [1], [2]. Currently in digital analysis of these wounds, only surface 

features of the wounds are considered, including the analysis discussed in this paper. 

Opportunity exists in studying the subdermal features of the wounds, however deep features 

are generally more difficult to image. 

The features of the local surface response of burns consist of three different zones that 

make up the area of an individual burn wound: coagulation, stasis, and hyperemia. The zone 

of coagulation is the area of the wound where the damage is maximal, and is generally the 

central region of the burn where tissue loss is irreversible. Surrounding is the zone of stasis, a 

region in which tissue is capable of being recovered. It is a goal of wound recovery to 

prevent the zone of stasis from converting to the zone of coagulation. The most peripheral 

area of the wound is the zone of hyperemia, the region that is unburned but appears red due 

to increased blood flow in the area [3].  

The current method of burn wound size assessment involves calculating the TBSA of 

a patient [4]. This is done by using predetermined charts that list area estimations for 

different parts of the body, such as the Rule of Nine’s or Lund and Browder charts. A study 

done by T.L. Wachtel [5] compared these methods and found significant amounts of 

variation between the two methods, as well as variations within use of an individual method. 

The methods also only produce an area estimate in percentage of body surface area, which, 

while useful clinically, does not provide adequate information regarding absolute surface 
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area. Absolute values are necessary for accurate measurements and direct comparisons. For 

example, while attempting to analyze data for a clinical trial comparing two wounds that may 

only have a centimeter of difference between them, the currently used broad estimator is not 

accurate enough to calculate this difference.  

The rise of technological advancements in computer systems has created a new 

avenue for wound size assessment namely: computer assisted calculation [6]. These 

computational processes usually involve digital photography of the wound in either 2-

dimensions (2D) or 3-dimensions (3D), and then application of an algorithm to analyze the 

image and calculate the surface area. Traditional photography techniques include digital 

single lens reflex (DSLR) photography, however other techniques are emerging. For 

example, the Microsoft Kinect 2.0 camera is capable of taking color, near infrared, and depth 

images.  

Herein we propose the development and testing of an analysis program for 

automating wound measurements. We hypothesize that a statistical analysis and active 

contours segmentation of the wound will be able to accurately quantify wound size to an 

absolute value. The Microsoft Kinect 2.0 Camera has been proposed as a possible tool of 

image acquisition for the computer assisted calculation of burn wound size. We hypothesize 

that the Kinect is capable of acquiring images that can be analyzed for accurate burn wound 

measurements.  
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Digital Photography in Dermatology 

Outside of direct patient contact, digital photography plays an important role in 

dermatology as it serves as the primary means of analyzing the appearance of a wound. 

Obtaining a color, shape and intensity-accurate image of a wound is important to rendering a 

correct diagnosis. The DSLR camera is the current recommended camera for taking 

dermatological images, although traditional compact cameras are still used in some cases due 

to ease of use and cost. The DSLR is preferred due to the camera’s high pixel resolution, 

modular lenses, and the suite of customizable features present in the device [7]. Lightning 

and flash play an important role in the acquiring of the images. These cameras, as well as 

film, are only capable of resolving approximately 6 orders of magnitude of light intensity. 

This figure is significantly lower than the human eye’s 26 magnitude capability, this makes 

cameras more prone to errors from lighting. Taking an image of a subject that is too brightly 

illuminated, whether from a flash or external light source can cause data loss or make the 

subject appear whiter than it appears in ideal lighting. The same can be said for taking an 

image under insufficiently light intensity. Uneven lighting can also be detrimental as a solid 

color object could appear as a gradient. Insuring ideal lightening conditions are met are 

absolutely critical for accurate diagnosis of wounds, especially in images of wounds taken at 

different times.  

 The Microsoft Kinect 2.0 Camera is a camera that was packaged with the Microsoft 

Xbox One gaming system released in November 2013. This camera is capable of taking 

video in 3 different formats: RGB, near infrared (NIR), and 3D time of flight (TOF). The 

Kinect captures video of all three channels at the same time, recording all three at 30 frames 

per second. The RGB camera has a pixel resolution of 1980 x 1080 and functions as a 
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traditional digital camera. The NIR camera has a pixel resolution of 512 x 424 and has an 

optical pass band wavelength of 850-860 nanometers [8]. The NIR camera also makes use of 

infrared LEDS (˜860 nm) in the device to illuminate the subject with infrared light. The 

infrared channel is of interest in the dermatological field due to its ability it image 

subcutaneous vasculature as shown by Vladimir Zharov [9]. Due to blood’s ability to absorb 

NIR light in higher quantities than surrounding material, such as fat or skin, superficial 

vasculature is easy to visualize due to the high contrast with surrounding material. The depth 

channel also makes use of the infrared camera using ToF technology to create a depth profile 

of the image. The ToF sensing works by comparing the phase of the initial IR wave that is 

sent out via the IR LED’s to the phase of the received IR wave that is bounced from the 

object to the depth sensor. This process is done using multiple frequencies to insure accuracy 

[10] [11]. The depth images that are created are 11-bits in depth which corresponds to 

approximately 1mm spatial resolution over the full operational range (˜8 m) [8]. Due to this 

unique combination of color channels, the Kinect was chosen to be studied as a possible new 

tool for acquiring dermal wound images. 

When capturing an image with a digital camera, an analog to digital conversion takes 

place. Traditionally, the RGB color space is used to digitally represent the analog colors. 

Each pixel has a Red, Green, and Blue component with 0,0,0 representing black, and 1,1,1 

representing white, using a scale of 0-1 (another common scale is 0-255). This color space is 

useful for displaying colors, but not as useful for interpreting colors [12]. The human eye 

does not perfectly separate the color spectrum into R, G, and B channels like the RGB model. 

New models have been created to better emulate how humans interpret color. One of these 

models is the L*a*b color space. In this space, L is lightness, while a and b are color opposite 
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dimensions, yellow-blue, and red-green. This space is ideal for image analysis, because 

reducing the gain of the L channel can balance the effect that lighting in the images causes on 

color values [12].  

Changes in the illumination of a scene can result in changes in perception of color. 

This is true for both imaging and human vision. When directly comparing image intensity 

values, it is important to ensure that colors are represented with the same value. White 

balancing is a method for attempting to correct this color offset. White Balancing involves 

selecting a white portion of the image. The RGB pixel intensity values at this known white 

point are then used to scale the rest of the pixels in the image with the known white values 

[13][14]. Many DSLR camera have an automatic white balance function, however it is 

possible to do a manual white balance by taking images of white cards in the same 

illumination as the subject.  

Herein images taken of burn wounds from a DSLR and Xbox Kinect camera will be 

tested with developed methods of image segmentation. These methods will attempt to 

calculate an absolute surface area value for the wounds imaged. The images and results from 

the DSLR and Kinect cameras will be compared to assess the Kinect’s ability as a 

dermatological image acquisition tool. 
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Chapter 2 

Statistical Analysis Program 

 

The first attempt to analyze the burn wound images is a Statistical Analysis program. 

This program is designed to acquire surface area estimates of the wound being analyzed by 

taking advantage of pixel color intensity. Its goal is to measure skin whose color is abnormal 

compared to the surrounding skin. The statistical filter is based on a previously designed red 

dominance filter that creates a mask of pixels in the image whose red values are dominant. A 

mask is a binary image whose pixel values are either one or zero. If a pixel meets the ‘true’ 

condition of the filter or algorithm, it is given the value one in the mask. Pixels whose red 

values are at least 40% of the maximum pixel intensity larger than the combined green and 

blue values are considered dominant and are given a value of one in the mask.  Measuring 

redness does not capture all of the necessary color information in the image. Colors such as 

white, brown, and black are often present in burns, but are not designed to be picked up by 

this red dominance filter. The statistical analysis program is designed to measure all 

abnormal pixel intensities for all three color channels. Images from both DSLR and Kinect 

cameras were recorded to compare accuracy in results.  
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Data Collection 

In early 2016, GlaxoSmithKline (GSK) performed a study taking images of burn 

wounds. GSK then provided us with the images from this study to develop and test different 

burn analysis methods. The subject of these images was a series of eight circular burns 

administered to groups of mini pigs. Two groups (A and B) of six pigs each were used in the 

study. Each pig had four burns on the left, and four burns on the right of their backs. Wounds 

were labeled L1-4 and R1-4, the letter determining what side of the pig it was on, and 

number counting down starting at the head. Images of the pigs were taken with three imaging 

modalities: a Canon EOS REBEL T5 DSLR camera fitted with a Canon EF-S 18-55 mm 

lens, a Silhouette Star camera, and a Microsoft Kinect 2.0 camera. Images were acquired 

both before and after the initial burn, and every two to three days after, up to 30 days for 

Kinect images and 40 days for DSLR and Silhouette images. Silhouette images were not 

used in this study, as the images generated have alternative lighting conditions as well as 

artifacts from internal processing.  

 The method of image acquisition for the DSLR camera consisted of a clinician 

holding the camera without assistance (tripod, stabilizer, etc.). The subject of the image was 

an individual wound from the series of eight on the pig, and a section of a ruler located above 

the wound for scale. Eight images were taken for each pig for each time period. For the 

Kinect, the camera was plugged into a laptop that was used to direct image acquisition. The 

Kinect images were extracted from short videos of the subjects (this is currently the only way 

to record data with the Kinect 2.0).  The camera itself was held by a clinician at a distance of 

about one meter from the pig. Due to the large minimum focal distance and wide viewing 

angle of the Kinect, images are wider and zoomed out. The Kinect has a minimum imaging 



9 
 

distance of 0.5 meters for the NIR camera, hence images taken closer than 0.5 m appear very 

bright and contain little to no usable data. The Kinect images were taken of the entire left or 

right side of the pig, consisting of four wounds per image. Kinect images were taken at two 

different distances to accommodate the RGB and NIR cameras. 

 

Pre-Processing 

DSLR images were received in .JPG format with 5184 x 3456 pixel resolution. The 

.RAW image files were not saved by the study team. No pre-processing was required for 

these images. The Kinect images were sent as .XEF files, which are specific to Kinect 

videos, and contain four channels RGB, NIR, Depth, and Body. The body channel (unused in 

this experiment) is the location of ‘body shapes’ if the Kinect detects any in the depth frame. 

The only default program to read .XEF files is the Kinect Studio 2.0 program included in the 

Kinect APK. Kinect Studio 2.0 does not contain a feature for exporting images or stills of the 

videos. CK Imaging is a program developed in collaboration with GSK for the purpose of 

capturing and viewing Kinect Videos, as well as exporting the individual frames, a function 

not available in Kinect Studio 2.0.  

To export frames from a Kinect .XEF file, the data must first be loaded into CK 

Imaging. This can be done by opening a file with the included file browser, or by acquiring 

the images directly through CK Imaging. If opening a previous recording, the Preprocess File 

option must be selected as well as the desired channel for output (RGB, Depth, IR, Body). In 

the settings menu the number of frames to be exported can be changed. The frames exported 

are from the first frame to the nth frame, where n is the chosen number of exported frames. 
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Originally the frames were exported in .CSV format, consisting of a spreadsheet with row 

and columns representing X and Y pixel location values, with three values in each cell 

representing the R, G, and B pixel values. In the case of NIR and Depth images, only one 

value is in the cell, representing intensity. The functionality to export images as .PNG image 

files was later added to the program with the option to export the .CSV files. RGB videos 

taken from the Kinect are exported as 1920 x 1080 pixel color .PNG images. NIR/Depth 

videos are exported as 512 x 424 pixel grayscale .PNG images. These depth images are the 

same resolution as the original video recordings [8]. The Kinect files from the study were 

exported using CK Imaging’s .PNG export feature and analyzed in Matlab. The first clear, 

sharp, in-focus frame in each file was used as the image to be analyzed. For RGB Kinect 

images, the close-distance Kinect videos were used. For NIR/Depth images, the further 

distance Kinect videos were used. This was because the NIR/Depth channels in the original 

distance videos were commonly “blown out,” consisting of areas of the image where all the 

pixels’ intensities are maximum, containing little to no usable data. A screenshot of the CK 

imaging program interface is shown in Figure 1. 
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Statistical Algorithm   

 Building on the previous work that used a redness threshold filter, Matlab 

(Mathworks, Inc. Natick, Ma) was used to design a new program that makes use of all of the 

RGB pixel intensities in the wound to try and interpret wound location. Instead of comparing 

the RGB values against each other, like in the red dominance filter, this program compares 

them against the RGB values of the skin. Unlike the red dominance filter, the statistical 

analysis program requires user input to operate. To start, the user determines the pixel density 

scale of the image by moving two ends of a line drawn over the image to line up to points of 

a known distance apart (ex: a ruler). Next, two rectangular patches of skin next to the wound 

are selected by the user to be used as the average skin values. Two areas were used in an 

attempt to correct for uneven lighting in some of the images. An ideal sample would be an 

area of the skin that consists of even lighting (no shadows or changes in intensity), such as 

being bright or dark relative to the rest of the image, as well as free of blemishes or other 

Figure 1. Screenshot of CK Imaging. Used to acquire and view Kinect videos and export them as single 
frames 
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abnormal conditions. For this patch of skin, the mean and standard deviation of the red, 

green, and blue values are calculated, and thresholds are set at 1, 2 and 3 standard deviations 

above and below the means.  

The user then manually selects the area defined by the wound. The pixels in the 

selected wound area are then compared to the mean and standard deviation values from the 

sample patches of skin previously selected. If pixel values fall above or below any of the six 

standard deviation (+3, +2, +1, -1, -2, -3) thresholds, they are added to the mask for that 

standard deviation. The end result is 18 masks of the wound location that represent areas of 

the wound that contain abnormal color intensities.  

For visualization, an image is displayed for each color channel. Using a false-color 

map, areas of the wound that are above the mean are highlighted red, while areas below the 

mean are highlighted blue. Regions of the wound that are within one standard deviation of 

the skin appear green, which can be seen in the output image in Figure 2.  From the 

calculations, a numerical output is given in the form of surface area for each standard 

deviation threshold. The returned masks are binary, meaning there are 1’s in the pixels in the 

segmentation and 0’s outside of this area. Therefore, the sum of this mask is the total count 

of segmented pixels. The pixel per centimeter scale is then used to convert this pixel count to 

surface area.  This calculation provides an area estimation for each standard deviation 

threshold for each color, totaling 18 area estimates. An example input and output of this 

program are each shown in Figure 2. Boxes are drawn over locations on the original image 

representing the skin sample areas and wound location area. Table 1 shows the numerical 

output of the program for this example. Code for these programs can be found Appendix A. 
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Table 1. Numerical Surface Area Output. Data from  the wound shown in Figure 2. Surface area outputs for each color 

channel. Areas are in cm². 

  

 -3 -2 -1 1 2 3 

Red 1.631648 3.097223 5.451948 1.53002 0.118412 0.001326 

Green 2.32193 3.77624 5.559058 3.137223 0.982182 0.029308 

Blue 3.388901 4.702435 6.401372 2.014028 0.345561 0.00687 
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Figure 2. Input and Output of Statistical Analysis Program. The above image shows an example of an input to the Statistical 
Analysis Program, the red boxes highlights skin areas that were chosen for the calibration. The green box is the wound 
location. The bottom image is the collection of the three false-color output masks comprising the of the threshold levels for 
each color channel. 
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To test whether the Statistical Analysis was capable of tracking the progression of 

wounds, all of the images collected in the pig study were processed through this program. 

For the Kinect images, which contained four wounds per image, the program was modified 

slightly to perform the same analysis on all four wounds concurrently. Each wound in the 

image still used two skin samples to calculate the average skin values. The program was also 

modified to measure the Kinect NIR images. Unlike the three channel RGB Images, the NIR 

images only consists of one intensity value. For easy implication, the NIR images were given 

two pseudo channels consisting of only zero values. The final output is a single false-color 

channel mask with six surface area estimations.  

 

Results 

 Due to the large number of outputs created by the program (18 in total), direct 

comparison of the wounds becomes difficult. The program’s ability to calculate surface area 

for each color abnormality is shown in Figure 3. The surface area for a single wound’s 

positive and negative thresholds are plotted over time for each color channel. Each graph 

plots the calculated DSLR and Kinect surface areas for each standard deviation threshold, in 

either the positive or negative for each color. Figure 4 shows the derivatives of these surface 

area calculations over time.  
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Figure 3. Surface area calculations for a single wound B3L1 
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Figure 4. Derivatives of Surface Area calculations. Using values from Figure 3 
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Discussion 

 Because of the wide viewing angle of the Kinect and distance at which images were 

acquired, wound images obtained had significantly lower resolution as compared to the 

DSLR. Although the RGB Kinect camera is considered HD, the distance from the subject 

made the actual wound resolution significantly less. In DSLR images, the wound consists of 

most of the original image.  

While testing the Statistical Analysis Program, several observations were made. The 

number of surface area outputs was large. Each wound had an output of 18 different surface 

area calculations. Ideally there would be one general area estimate for the wound. Adding the 

+1 and -1 thresholds for an individual color channel provides a reasonable estimate of all the 

pixels that are of abnormal values, but this is only an estimate for one color channel. None of 

the outputs could be considered the definitive surface area of the wound.  

A second difficulty is that substantial areas of the image are incorrectly categorized. 

Areas of the wound that have a similar color to the skin are not picked up, but blemishes and 

bright areas that are unrelated to the wound are picked up. The wound output in Figure 2 

displays some of these problems, as the large portions inside the wound are incorrectly 

labeled green. The best way to plot the output was to follow the general trend of the data, 

because the hard estimates were often not accurate. Accuracy of the wound mask could only 

be determined by visual examination, because there was no true surface area estimation to 

compare against.  The plots in Figure 3 shows that the absolute values for the DSLR and 

Kinect cameras are different, but there is not a way to know which one is more accurate. 

However, Figure 4 shows that derivatives of the surface areas over time are showing that the 
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data often tends to move in the same direction, indicating that some visual change is being 

tracked by the program in both high resolution DSLR and lower resolution Kinect images. 

Another major shortcoming arises when attempting to compare surface area 

calculations. Total surface area measurements give no information about the shape or 

location of the wound area. The Analysis program could highlight two completely separate 

areas of the image, but return the same surface area calculation. Due to these issues, the 

decision was made to abandon the Statistical Analysis program and develop a new program 

that would produce a single measurement, as well as attempt to diminish the effect that 

lighting has on the processing. 

 

 

  



20 
 

 

 

 

Chapter 3 

Active Contour Method 

An alternative approach was sought in response to the hurdles and shortcomings 

encountered with the statistical method. For example, to simplify the interpretation for 

physicians, the new method produces a single surface area estimate for a wound and 

determines how accurate the size and position of the area was. One failure of the statistical 

analysis program was that there was no true size measurement of the wound to compare to, 

therefore no way to tell if the program was accurate or not. To verify the accuracy of this 

new method, volunteers traced the outline of the wounds being analyzed. Instead of basing 

the new method on the previous thresholding techniques, the active contour method was 

chosen as the analysis method. 

 

Background 

 The active contour model, or “Snakes”, is an image segmentation method that is used 

to identify specific features in an image. The algorithm, originally published by Michael 

Kass in 1987 [15], works as an energy-minimizing function that adjusts a spline until the 

minimum energy of the points in the spline has been found. The general energy minimizing 

function guiding the snake is: 
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𝐸𝑠𝑛𝑎𝑘𝑒 = 𝐸𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 +  𝐸𝑖𝑚𝑎𝑔𝑒  

Equation 1. Active Contour Model 

In Equation 1, 𝐸𝑠𝑛𝑎𝑘𝑒 is the energy being minimized. 𝐸𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 is the energy of the spline 

itself. For points on the spline, both a high derivative and high second derivative contribute 

to a high internal energy. A low internal energy keeps the spline smooth and penalizes sharp 

movements. 𝐸𝑖𝑚𝑎𝑔𝑒 is the energy of the image and can be created from a variety of properties 

in the image. Two commonly used image energies are pixel intensity, which is the value of 

the pixel, and image gradient, which are the pixel values of the derivative of the image. Pixel 

intensity attracts the contour to a specific color/value, while image gradient attracts the 

contour to edges of the image. By defining user set weights in the energy calculations, the 

algorithm can prioritize different image/spline features over others as shown in Equation 2. 

𝐸𝑖𝑚𝑎𝑔𝑒 = 𝑤1𝐸𝑙𝑖𝑛𝑒 +  𝑤2𝐸𝑒𝑑𝑔𝑒 

Equation 2. External energy of active contour model. Weights 𝑤1 and 𝑤2 adjust the effect that pixel intensity 𝐸𝑙𝑖𝑛𝑒 

and image gradient 𝐸𝑒𝑑𝑔𝑒 have on the contour. 

The ease of use and customization properties of this algorithm has led to its prominence in 

image segmentation for the medical imaging field [15], [16]. 

The Chan-Vese model, or Active Contours without Edges, is a variation of the active 

contour model. This algorithm uses principles from Otsu’s Method of thresholding [17], 

which creates a binary image by determining the point at which the histogram of pixel 

intensities has the minimum intra-class variance between the two created levels. The result is 

a binary mask where the two segmented groups have the least amount of variance within 

their group.  The Chan-Vese model replaces the commonly used edge and intensity values of 
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𝐸𝑖𝑚𝑎𝑔𝑒, and instead computes the pixel intensities distance from the average foreground 

(segmented portion of image) pixel intensity, and the distance from the average background 

(non-segmented portion of image) [18], [19]. This technique therefore creates a segmentation 

where the foreground and background have minimized variances of pixel intensities. 

   

Active Contour Implementation 

The active contour method uses an energy minimizing equation to deform a 

segmentation mask on the image. The edge of the mask is drawn to features of the image 

determined by the parameters set in the method. We tested two active contour methods and 

compared them to human traces of the wounds. The first, edge-based active contours, looks 

at standard image features such as intensity or derivative intensity. The second, using Chan-

Vese active contours, attempts to minimize both the variance of intensities inside the 

segmentation and outside the segmentation. The L*a*b color space was chosen to perform 

the analysis. This color space was designed to better emulate human perception of color. A 

unique property of the space is it’s separate value for lightness, which can be deprioritized, 

balancing out the negative effect that lighting might have on the methods.  

The present implementation makes use of Matlab’s built-in image analysis functions. 

Using the activecontour(A,mask,method) function, depending on the chosen method 

parameter, Matlab will run the edge or Chan-Vese active contour analysis on image A with 

the initial mask at mask. Implementing this built-in Matlab function, the method was 

designed to process a series of images from the original study data collected by GSK for the 

statistical analysis filter. 
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The present analysis uses the previous ruler line process described in the statistical 

method to acquire the pixel to area scale factor. The user crops the image to contain only the 

wound and surrounding skin. The cropped image is then displayed and the user selects 

sequential points around the wound to mark the boundary of the wound and skin. After the 

user is finished marking the wound, more points are interpolated between the user-selected 

points to form a spline, which is used to create a mask for the initial outline of the wound. A 

Gaussian blur of size [3 3] and sigma 0.5 is applied to the cropped image to reduce the noise 

that comes from the amount of detail present in high-resolution images and to improve 

segmentation [20]. The cropped, blurred RGB image is then converted to the L*a*b color 

space. To reduce the effect that the inconsistent lighting has on the images, only the “a” and 

“b” channels are averaged together to create the grayscale image for processing. Both the 

newly-formed grayscale image and initial mask are used by an activecontour function 

implementing the edge method and an activecontour function implementing the Chan-Vese 

method. The output from each of these methods creates two new masks which are 

segmentations of the wound. The cropped image, pixel centimeter conversion scale factor, 

initial mask, edge mask, and Chan-Vese mask are all saved to a Matlab structure array, used 

to keep all the data for a single wound in one location. The cropped images and masks are 

also saved separately outside of the structure to serve as a backup. An example of this 

process is shown in Figure 5. Code for these programs can be found in Appendix A. 
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To test the accuracy of the developed methods, a known accurate segmentation was 

used. To generate comparison data, 5 human volunteers digitally traced the wounds thus 

manually segmenting the image into wound and non-wound areas using general guidelines 

provided by UNC Hospitals Jaycee Burn Unit. Using the cropped images located in the 

structure arrays of the analyzed wounds, the imfreehand Matlab function was used to create 

Figure 5.Masks of Active Contour Method.  In clockwise order starting in upper left; cropped image with user 
placed boundary points, initial mask, Chan-Vese mask, edge mask. 
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masks that are drawn by human input. Using these guidelines, instructions were created on 

how to trace the wound in Matlab according to the UNC Burn Unit’s guidelines.  

Testers are instructed to type in the ID provided by the study team so the trace can be 

saved with a unique name. The testers then select a wound from the folder of cropped wound 

images. The tester then clicks on the boundary of the wound and drags the mouse around the 

wound, segmenting it according to if it would be calculated in TBSA or not. After the trace 

has been completed, the imfreehand segment is converted to a mask and is overlaid on top of 

the cropped image, highlighting the area of segmentation. The tester is prompted to Continue, 

Quit, or Redo the current trace if they believe an error was made. The mask is then added to 

the structure array of the wound. 

To gauge the accuracy of the segmentations, Dice’s Coefficient was used to compare 

size and location of the masks. Dice’s Coefficient is commonly used to compare items of a 

set [21]. It is calculated using the following equation. 

𝑄𝑆 =
2|𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
 

Equation 3. Dice’s Coefficient 

In this equation A and B are masks and the intercept of the two masks is the number of pixels 

that are segmented in both masks. QS is the coefficient value and is between 0 and 1. If two 

items are exactly the same, double the union is equal to their total sum and the coefficient is 

1. This coefficient is used to validate the calculated surface area and to insure that the surface 

areas consist for the same regions. For a single wound, each mask’s Dice’s coefficient is 

evaluated against every other mask (excluding the initial mask). To calculate surface area, 

the total number of segmented pixels in a mask is divided by the pixel per centimeter 
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conversion factor. The outputs of this Active Contours Method include the structure array, 

the dice coefficients, and the surface area measurements.  

As a test case, a single wound, L2, from each pig was used as the seed for comparing 

active contours to human tracing. A total of 270 images of wound L2 were analyzed by both 

active contours and human tracing. Images from both the DSLR and Kinect were analyzed. 

To measure Dice’s coefficient, images must be the same resolution, so the output masks from 

the two cameras could not be compared directly. However, the outputs from active contours 

were compared to the human traces to determine accuracy. 

 

Results 

 While compiling the data, any images the testers may have accidently skipped were 

giving NaN values. To compare accuracy of the Active Contour Methods, Dice’s coefficient 

values can be compared. A value of 0.7 or greater is generally considered to indicate good 

agreement [22], although the value itself is considered only useful for comparing methods of 

segmentations for the same object.  Using box plots, the variance between the individual 

testers can be compared to the variance of the Active Contour Methods and the testers. For 

these plots, tester masks were only compared to other tester masks. Active Contour masks 

were not compared with each other. The first plot shows all of the Dice’s Coefficients for the 

DSLR images, while the second shows all Dice’s Coefficients for Kinect images, shown in 

Figure 6.  
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Figure 6. Mask variance comparisons using Dice’s Coefficient. 
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 The Active Contour Methods resulted in Dice’s Coefficients that were above the 0.7 

threshold for agreement. For n=710 comparisons between DSLR images, the edge method’s 

Dice’s Coefficient mean, reported as mean ± standard deviation, was 0.9399 ±0.0397 with a 

range of 0.7095 to 0.9868. The Chan-Vese Dice’s Coefficient mean was 0.9362 ±0.0435 with 

a range of 0.708 to 0.9876. The Kinect Images did show a larger difference in variance of 

Dice’s Coefficient n=670 comparisons. For the edge method, the Dice’s Coefficient mean 

was 0.8154 ±0.1014 with a range of 0.4051 to 0.9792 and for the Chan Vese method the 

Dice’s Coefficient mean was 0.8186 ±0.1259 with a range of 0.3268 to 0.9746. These results 

agree with a visual examination of the results of the test. The DSLR outputs visually appear 

to match the wound boundaries than in the Kinect outputs. Examples of outputs for both 

DSLR and Kinect are shown in Figure 7. 

Figure 7 Active Contour Outputs. From Pig A3 Wound L2 Day 16; Top is DSLR, Bottom is Kinect, Left side is edge 
method, Right side is Chan Vese method. Purple represents areas of the image segmented as a wound. Green is 
the non-wound area. 
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Plotting the surface area calculations for a specific wound over time attempts 

to show the progression of the wound size over the course of the study, as shown in 

Figure 8. The dotted lines in the plot represent the tester’s traces and the solid lines 

represent the Active Contour Methods. Appendix B has a collection of these plots for 

all pigs. 

 

The overall trends of these surface areas can be viewed by looking at all 

DSLR and Kinect surfaces areas plotted contiguously. The DSLR data fits well with 

the testers’ traces, with a slight tendency to overestimate. The Kinect data is often 

significant different than the testers’ traces. This is shown in Figure 9.  

  

Figure 8. DSLR and Kinect Surface Areas over Time 
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Discussion 

 The second attempt at segmenting the burn wounds proved much more successful 

than the first. For the DSLR images, both the edge and Chan-Vese method’s had agreeable 

Dice’s coefficients with the traces, meaning this current method is capable of providing 

segmentations that are comparable to a human. Although, it is possible that these accurate 

results are coming from a beneficial initial mask rather than the Active Contour Methods 

themselves. In the Kinect images, the output was capable of producing large changes from 

the initial mask. The DSLR images did not have as significant changes to the initial mask, 

especially in the edge method. This could be due to a variety of factors, the Gaussian blur on 

the images could not be strong enough to counteract fine details present in the high resolution 

Figure 9. Top, All DSLR surface area calculations; Bottom, All Kinect surface area calculations. Red and Blue lines represent 
edge and Chan Vese surface areas. Dotted lines represent the Trace’s surface areas. 
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images, or the Active Contour Methods could be going through too few iterations relative to 

the number of pixels.  

 A noticeable difference between the Kinect and DSLR analysis is the run time. Due 

to the large number of pixels in the DSLR images, the run time was around 90 seconds 

versus the Kinect images runtime of 3 seconds.  

The output from the Kinect had large amounts of variance in the Dice Coefficient 

values. This means that the masks from the outputs did segment the same areas of the traces. 

The lowest non-outlier data in both Edge and Chan Vese methods were below the 0.7 

threshold for good agreement between sets. This does not mean the Kinect is not capable of 

taking good images of wounds, but the method used in this study did not provide images that 

were high enough quality for analysis.  
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Chapter 4 

Conclusions 

While the statistical analysis program failed to provide reasonable results, it did 

provide insights into further development of dermal wound analysis. Testing could be redone 

of the statistical analysis program and compared to tester traces to determine compare it to 

the active contours method, but the issue of deriving one mask to compare from the series of 

18 generated still remains. One advantage this analysis method has over Active Contours is 

that it can represent changes in color. This could prove useful if future progress in this field 

requires classification of pixels. Knowing relative pixel intensity to the skin could be a 

possible classification feature if a method were to be designed for classifying areas of the 

wound, or severity of the wound.  

The Active Contour Method has shown agreeable surface area calculations for high-

resolution images, but it is unknown how much of an effect the initial mask has on the 

process. To test effect of initial mask, simplifying the initial mask to a circle, or even the 

border of the cropped image itself should be performed. By using a less favorable initial 

mask, the method will need to rely more on the parameters of the active contours functions. 

Parameters of the activecontours method can also be adjusted that control the smoothing 

factor of the contour, as well as its tendency to grow inwards or outwards. The latter would 

be useful if the initial mask is either entirely surrounding or enveloped in the wound. Further, 

the number of iterations can also be changed. A larger iteration number provides the contour 
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with opportunity to move across more pixels, which would help with the larger resolution 

images, but this comes with an increased run time. The weight of the L*a*b channels can 

also be adjusted easily in this method. Fine-tuning L*a*b weights to increase the contrast of 

the wounds could provide a more accurate segmentation.  

 All of images used in these experiments were uniform wounds of similar severity. 

Burns are not traditionally perfect circles. These methods still need testing on actual burn 

patients. Due to the limitations of 2d photography, only wounds that can be mostly contained 

in a single image will be able to receive surface area estimates. It would be difficult to 

compound analysis of multiple images of the same wound from different angle, for example 

a burn wrapping around an arm. Imaging burn wounds on real patients would increase the 

knowledge of the capabilities and limits of these methods.  

Although the Kinect data used in the study was poor, current research is being done 

on adjusting the Kinect for use in a ‘near mode’. The near mode would allow for close 

NIR/Depth images of the burns that could be analyzed. Receiving an accurate depth value for 

pixels would enable a more accurate surface area calculation by using the third dimension. 

We still recommend segmenting the initial wound with the color images, as they are the 

highest resolution and have the highest variance of pixel intensities. 

 In conclusion, the Chan-Vese and edge based Active Contour Methods have thus far 

proven an effective way to measure the surface area of burn wounds in high resolution 

images, although this may be due to a favorable starting location. Both of these methods 

generated masks with agreeable Dice’s Coefficients between human testers for the high-

resolution images. The surface area calculations from these methods were able to track the 
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size of the wound over time. The development and testing of these methods is the first step in 

designing a system capable of properly calculating burn wound surface area measurements.  

 Due to limitations of the data received and the Kinect 2.0 itself, there was not enough 

comparable data to do a scientific comparison between the Kinect 2.0 and the standard DSLR 

camera. Further testing is required before the Kinect can be properly assessed as a tool for 

dermatological imaging.  
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APPENDIX A: Code 

function [outputc,outpute] = ACmain(oimage,mask) 
%Runs the Chan Vese and Edge Active Contour Method 
%Apply a blur 
h = fspecial('gaussian'); 
image=imfilter(oimage,h); 
%Convert to LAB 
lab_img=rgb2lab(image); 
gray=rgb2gray(image); 
img_a=lab_img(:,:,2); 
img_b=lab_img(:,:,3); 
img_ab=img_a+img_b; 
  
%Run method and perform closing 
coutput=activecontour(img_ab,mask,'chan-vese'); 
eoutput=activecontour(img_ab,mask,'edge'); 
se = strel('disk',3); 
outputc = imclose(coutput,se); 
outpute = imclose(eoutput,se); 
  
%Plot Both Output Masks Over Image 
subplot(1,3,1); 
imshowpair(image,outputc); 
subplot(1,3,2); 
imshowpair(image,outpute); 
subplot(1,3,3); 
imshow(image); 
  

 
function output = dice(mask1, mask2) 
%Perform Dice's Coefficient Analysis on Two Masks 
%Checks to make sure masks are the same size 
if size(mask1)~= size(mask2)  
    output=NaN; 
else 
output= 2*nnz(mask1&mask2)/(nnz(mask1) + nnz(mask2)); 
end 
  

 
function output = dslr_ac (i) 
%Performm AC Analysis on DSLR images 
imshow(i); 
%Measure One Inch on Image, Calculates Pixels per cm 
distline = imdistline; 
pause; 
cm = getDistance(distline)*.3937; 
%Crop Image to just cointain wound 
cimage = imcrop(i); 
clf; 
%Create Initial Mask 
m = mask(cimage); 
%Run AC Methods 
[oc,oe]=ACmain(cimage,m); 
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%Calculate Surface Areas 
sc=sum(sum(oc))/(cm^2); 
se=sum(sum(oe))/(cm^2); 
%Save Outputs in Structure 
output=struct('cropped',cimage,'mask',m,'scale',cm,'chan_vese_mask',oc,'edge_mask',oe,'chan_vese_sa',sc,'edge

_sa',se); 
  

 
function output=dslr_ac_batch() 
%Run Batch Analysis using Active Contours 
running = 1; 
%Data Location 
p = 'D:\DSLR\DSLR\'; 
while running 
     %Load File 
    [f,p]=uigetfile(strcat(p,'*.jpg')); 
    image = imread([p f]); 
    filename = (inputdlg('Whats the name?')); 
    name = filename{1}; 
    output = dlsr_ac(image); 
  

     

     
    %Saving the Output 
    %Folders must exist before running program 
    imwrite(output.cropped,sprintf(['/Data/cropped/cropped_' name '.png'])); 
    imwrite(output.mask,sprintf(['/Data/initialmask_' name '.png'])); 
    imwrite(output.chan_vese_mask,sprintf(['/Data/chanveseoutput_' name '.png'])); 
    imwrite(output.edge_mask,sprintf(['/Data/edgeoutput_' name '.png'])); 
    eval([name '= output']); 
    save(sprintf(['/Data/batch/' name '.mat']),name); 
    
    %UI To Keep Going 
    button = questdlg('Keep Going?',' ','Yes','No','Yes'); 
    if strcmp('Yes',button); 
        running = 1; 
        close gcf; 
    else 
        running = 0; 
    end 
end 
end 
function output = dslr_sa(image) 
%Run SA Analysis on DSLR Images 
%Crop Skin Samples and Wound 
skin1 = imcrop(image); 
skin2 = imcrop(image); 
w1   = imcrop(image); 
%Measure One inch in pixels, convert to cm 
distline = imdistline; 
  
pause; 
meter = getDistance(distline)*.3937; 
dist = meter; 
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%Input Name 
filename = (inputdlg('Whats the name?')); 
  
name = filename{1}; 
close; 
  

  
%Seperate Color Channels 
rskin1 = skin1(:,:,1); 
figure 
  
gskin1 = skin1(:,:,2); 
bskin1 = skin1(:,:,3); 
rskin2 = skin2(:,:,1); 
gskin2 = skin2(:,:,2); 
bskin2 = skin2(:,:,3); 
  
%Combine Skin Samples 
rskin = vertcat(reshape(rskin1,[],1),reshape(rskin2,[],1)); 
gskin = vertcat(reshape(gskin1,[],1),reshape(gskin2,[],1)); 
bskin = vertcat(reshape(bskin1,[],1),reshape(bskin2,[],1)); 
  

  
%Take Mean and STD of Skin Samples 
rmean = mean2(rskin); 
gmean = mean2(gskin); 
bmean = mean2(bskin); 
rstd  = std2(rskin); 
gstd  = std2(gskin); 
bstd  = std2(bskin); 
  
%Create Output Array 
o1 = zeros(size(w1,1),size(w1,2),3,6); 
  
%Cycle Through Pixels in image, compare to postivive STD Tresholds then negative, 
%.. if True set Output Array value to 1 (or True) 
for x = 1:size(w1,1) 
    for y = 1:size(w1,2) 
        for z = 1:3 
            if w1(x,y,1) > (rmean + z*rstd) 
                o1(x,y,1,z+3) = 1; 
            end 
            if w1(x,y,2) > (gmean + z*gstd) 
                o1(x,y,2,z+3) = 1; 
            end 
            if w1(x,y,3) > (bmean + z*bstd) 
                o1(x,y,3,z+3) = 1; 
            end 
        end 
        for z = -3:-1 
            if w1(x,y,1) < (rmean + z*rstd) 
                o1(x,y,1,z+4) = 1; 
            end 
            if w1(x,y,2) < (gmean + z*gstd) 
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                o1(x,y,2,z+4) = 1; 
            end 
            if w1(x,y,3) < (bmean + z*bstd) 
                o1(x,y,3,z+4) = 1; 
            end 
        end 
    end 
end 
  

  

  
%Create Array and Calcuate Surface Areas for Each STD Threshold 
    n1 = zeros(3,6); 
    for d = 1:6 
        for c = 1:3 
            n1(c,d) = (sum(sum(o1(:,:,c,d))/(dist^2))); 
        end 
    end 
     

  
%Create Combined Output Display 
c1 = zeros(size(w1,1),size(w1,2),3); 
  
%Combine the Six Output Masks into one mask per color channel 
for z = 1:3 
    for x = 1: size(w1,1) 
        for y = 1: size(w1,2) 
            if      o1(x,y,z,1) == 1 
                    c1(x,y,z)   = -3; 
            elseif  o1(x,y,z,2) == 1 
                    c1(x,y,z)   = -2; 
            elseif  o1(x,y,z,3) == 1 
                    c1(x,y,z)   = -1; 
            elseif  o1(x,y,z,6) == 1 
                    c1(x,y,z)   = 3; 
            elseif  o1(x,y,z,5) == 1 
                    c1(x,y,z)   = 2; 
            elseif  o1(x,y,z,4) == 1 
                    c1(x,y,z)   = 1; 
            end 
        end 
    end 
    %Display Three Color Channel Output Masks 
    subplot(1,3,z); 
    imshow(c1(:,:,z)); 
    colormap jet; 
    caxis([-3,3]); 
     

     
end 
  
subplot(1,3,1); 
title('Red'); 
subplot(1,3,2); 
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title('Green'); 
subplot(1,3,3); 
title('Blue'); 
%Save Figure 
file = sprintf(['/Data/dslr/png/' name '.png']); 
saveas(gcf,file); 
%Save Surface Areas as .xls  
xlswrite(['C:\Data\dslr\xls\' name '.xlsx'],n1(:,:)); 
%Save data as Structure 
output=struct('CmPixels',dist, 'Cropped', w1, 'RedMean', rmean, 'RedSTD', rstd, 'GreenMean', gmean, 

'GreenSTD', gstd, ... 
    'BlueMean', bmean, 'BlueSTD', bstd, 'OutputImage', c1, 'OutputArea', n1 ); 
eval([name '= output']); 
save(sprintf(['/Data/pig/test/batch/' name '.mat']),name);    
  
end 
 
function dslr_sa_batch() 
%Program to Help Run Batch Analysis using Statistical Analysis Filter 
running = 1; 
%Location of Data 
p = 'D:\DSLR\DSLR\'; 
while running 
    %Load Image 
    [f,p]=uigetfile(strcat(p,'*.png')); 
    image = imread([p f]); 
    %Perform Analysis 
    skincalc4(image); 
    %UI Ask to Continue 
    button = questdlg('Keep Going?',' ','Yes','No','Yes'); 
    if strcmp('Yes',button); 
        running = 1; 
        close gcf; 
    else 
        running = 0; 
    end 
end 
end 
     

        
function output = freehand(image) 
%Creating the Manual Freehand Mask 
imshow(image) 
set(gcf,'position',[200 100 850 750]); 
H=imfreehand; 
output=H.createMask(); 
close; 
imshowpair(image,output); 

 

 
function freehand_batch() 
%Creates Freehand Trace Input 
tester = inputdlg('Which Tester?'); 
letter=char(tester); 
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running = 1; 
repeat = 0; 
%Location of Cropped Images 
p = 'C:\Data\cropped\'; 
while running 
    if repeat == 0; 
        %Load Image 
        [f,p]=uigetfile(strcat(p,'*.png')); 
        image = imread([p f]); 
        %Extract Image Name 
        name=f(9:end-4); 
    end 
    output = freehand(image); 
     

     

     
    %Load Output Strcuture with Same Name as image 
    mat = load(sprintf(['/Data/Test/' name])); 
    %Save Trace in Structure and Save Structure 
    mat.(name).(letter)=output; 
    mat2=mat.(name); 
    eval([name '= mat2']); 
    save(sprintf(['/Data/test/' name '.mat']),name); 
     

     
    %Save Trace Image  
    imwrite(output,sprintf(['/Data/traces/' letter '/' letter 'freehand_' name '.png'])); 
     
    repeat=0; 
    %Display Trace 
    disp(f); 
     
    %UI to Keep Going or Redo 
    button = questdlg('Keep Going?',' ','Yes','No','Repeat','Yes'); 
    if strcmp('Yes',button); 
        running = 1; 
        close gcf; 
    elseif strcmp('Repeat',button); 
        running = 1; 
        repeat = 1; 
         
    else 
        running = 0; 
    end 
end 
end 
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function diceval = gatherdata(diceval) 
%Used to Compile Mask Dice Data from Structures 
addpath('C:\Data\batch') 
  
files = dir('C:\Data\batch'); 
files=files'; 
i=1; 
for file=files(5:end) 
     
        filename = file.name; 
        temp = load(filename); 
        name=char(fieldnames(temp)); 
        disp(name); 
         
        eval(['current=temp.' name ';']); 
        diceval(1,1,i)= dice(current.a,current.f); 
        diceval(1,2,i)= dice(current.a,current.c); 
        diceval(1,3,i)= dice(current.a,current.d); 
        diceval(1,4,i)= dice(current.a,current.e); 
        diceval(1,5,i)= dice(current.a,current.edge_mask); 
        diceval(1,6,i)= dice(current.a,current.chan_vese_mask); 
        diceval(2,2,i)= dice(current.f,current.c); 
        diceval(2,3,i)= dice(current.f,current.d); 
        diceval(2,4,i)= dice(current.f,current.e); 
        diceval(2,5,i)= dice(current.f,current.edge_mask); 
        diceval(2,6,i)= dice(current.f,current.chan_vese_mask); 
        diceval(3,3,i)= dice(current.c,current.d); 
        diceval(3,4,i)= dice(current.c,current.e); 
        diceval(3,5,i)= dice(current.c,current.edge_mask); 
        diceval(3,6,i)= dice(current.c,current.chan_vese_mask);         
        diceval(4,4,i)= dice(current.d,current.e); 
        diceval(4,5,i)= dice(current.d,current.edge_mask); 
        diceval(4,6,i)= dice(current.d,current.chan_vese_mask);   
        diceval(5,5,i)= dice(current.e,current.edge_mask); 
        diceval(5,6,i)= dice(current.e,current.chan_vese_mask);   
        diceval(6,6,i)= dice(current.edge_mask,current.chan_vese_mask);   
        i=i+1; 
         

         

           

     
end 
 

function output = gatherdata2(sa) 
%Used to Compile Surface Area data from Structures 
addpath('C:\Data\batch') 
  
files = dir('C:\Data\batch'); 
files=files'; 
i=1; 
for file=files(5:end) 
     
        filename = file.name; 
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        temp = load(filename); 
        name=char(fieldnames(temp)); 
        disp(name); 
         
        eval(['current=temp.' name ';']); 
        sa(1,i)=sum(sum(current.a))/(current.scale)^2; 
        sa(2,i)=sum(sum(current.f))/(current.scale)^2; 
        sa(3,i)=sum(sum(current.c))/(current.scale)^2; 
        sa(4,i)=sum(sum(current.d))/(current.scale)^2; 
        sa(5,i)=sum(sum(current.e))/(current.scale)^2; 
        sa(6,i)=current.chan_vese_sa; 
        sa(7,i)=current.edge_sa; 
        i=i+1; 
end 
output=sa; 
end 
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function output = kinect_ac (i) 
%Perform AC Analysis on Kinect Images 
imshow(i); 
%Record Lenght of 30 cm (Length of an Entire Ruler) calculate pixels per cm 
distline = imdistline; 
pause; 
cm = getDistance(distline)/30; 
%Crop Image 
cimage = imcrop(i); 
clf; 
%Create Initial Mask 
m = mask(cimage); 
%Run Analysis 
[oc,oe]=ACmain(cimage,m); 
sc=sum(sum(oc))/(cm^2); 
se=sum(sum(oe))/(cm^2); 
%Output Data as Structure 
output=struct('cropped',cimage,'mask',m,'scale',cm,'chan_vese_mask',oc,'edge_mask',oe,'chan_vese_sa',sc,'edge

_sa',se); 
  

 
function output=kinect_ac_batch() 
running = 1; 
p = 'C:\Users\Peter\Desktop\7_7_16 Data\'; 
while running 
  
    [f,p]=uigetfile(strcat(p,'*.png')); 
    mirrorimage = imread([p f]); 
    image = flip(mirrorimage ,2);  
    filename = (inputdlg('Whats the name?')); 
    name = filename{1}; 
    output = kdac(image); 
  

     

     
    %Saving the Output 
   
    imwrite(output.cropped,sprintf(['/Users/Peter/Data/cropped/cropped_' name '.png'])); 
    imwrite(output.mask,sprintf(['/Users/Peter/Data/initialmask_' name '.png'])); 
    imwrite(output.chan_vese_mask,sprintf(['/Users/Peter/Data/chanveseoutput_' name '.png'])); 
    imwrite(output.edge_mask,sprintf(['/Users/Peter/Data/edgeoutput_' name '.png'])); 
     
    %%f2=f(1:end-4); 
    eval([name '= output']); 
    save(sprintf(['/Users/Peter/Data/batch/' name '.mat']),name); 
    

     
    button = questdlg('Keep Going?',' ','Yes','No','Yes'); 
    if strcmp('Yes',button); 
        running = 1; 
        close gcf; 
    else 
        running = 0; 
    end 
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end 
end 
 

 
function output = kinect_sa(image) 
%Perform Statistical Analysis on Kinect Images 
%Select Four Wounds from Image and Four Skin Samples 
disp('skin1'); 
skin1 = imcrop(image); 
disp('w1'); 
w1   = imcrop(image); 
  
disp('skin2'); 
skin2 = imcrop(image); 
disp('w2'); 
w2= imcrop(image); 
  
disp('skin3'); 
skin3 = imcrop(image); 
disp('w3'); 
w3   = imcrop(image); 
  
disp('skin4'); 
skin4 = imcrop(image); 
disp('w4'); 
w4   = imcrop(image); 
  
%Measure Lenght of 30 cm (Lenght of Ruler) and convert to pixels per cm 
distline = imdistline; 
pause; 
ruler = getDistance(distline); 
filename = (inputdlg('Whats the name?')); 
name = filename{1}; 
dist = ruler/30; 
close; 
%Calculate Skin Means and STD 
rskin1 = skin1(:,:,1); 
gskin1 = skin1(:,:,2); 
bskin1 = skin1(:,:,3); 
rmean1 = mean2(rskin1); 
gmean1 = mean2(gskin1); 
bmean1 = mean2(bskin1); 
rstd1  = std2(rskin1); 
gstd1  = std2(gskin1); 
bstd1  = std2(bskin1); 
  
rskin2 = skin2(:,:,1); 
gskin2 = skin2(:,:,2); 
bskin2 = skin2(:,:,3); 
rmean2 = mean2(rskin2); 
gmean2 = mean2(gskin2); 
bmean2 = mean2(bskin2); 
rstd2  = std2(rskin2); 
gstd2  = std2(gskin2); 
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bstd2  = std2(bskin2); 
  
rskin3 = skin3(:,:,1); 
gskin3 = skin3(:,:,2); 
bskin3 = skin3(:,:,3); 
rmean3 = mean2(rskin3); 
gmean3 = mean2(gskin3); 
bmean3 = mean2(bskin3); 
rstd3  = std2(rskin3); 
gstd3  = std2(gskin3); 
bstd3  = std2(bskin3); 
  
rskin4 = skin4(:,:,1); 
gskin4 = skin4(:,:,2); 
bskin4 = skin4(:,:,3); 
rmean4 = mean2(rskin4); 
gmean4 = mean2(gskin4); 
bmean4 = mean2(bskin4); 
rstd4  = std2(rskin4); 
gstd4  = std2(gskin4); 
bstd4  = std2(bskin4); 
  

  

  

  
%Create Output Arrays 
o1 = zeros(size(w1,1),size(w1,2),3,6); 
o2 = zeros(size(w2,1),size(w2,2),3,6); 
o3 = zeros(size(w3,1),size(w3,2),3,6); 
o4 = zeros(size(w4,1),size(w4,2),3,6); 
  
%Cycle Through Pixels in image, compare to postivive STD Tresholds then negative, 
%.. if True set Output Array value to 1 (or True) 
for x = 1:size(w1,1) 
    for y = 1:size(w1,2) 
        for z = 1:3 
            if w1(x,y,1) > (rmean1 + z*rstd1) 
                o1(x,y,1,z+3) = 1; 
            end 
            if w1(x,y,2) > (gmean1 + z*gstd1) 
                o1(x,y,2,z+3) = 1; 
            end 
            if w1(x,y,3) > (bmean1 + z*bstd1) 
                o1(x,y,3,z+3) = 1; 
            end 
        end 
        for z = -3:-1 
            if w1(x,y,1) < (rmean1 + z*rstd1) 
                o1(x,y,1,z+4) = 1; 
            end 
            if w1(x,y,2) < (gmean1 + z*gstd1) 
                o1(x,y,2,z+4) = 1; 
            end 
            if w1(x,y,3) < (bmean1 + z*bstd1) 
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                o1(x,y,3,z+4) = 1; 
            end 
        end 
    end 
end 
  

  
for x = 1:size(w2,1) 
    for y = 1:size(w2,2) 
        for z = 1:3 
            if w2(x,y,1) > (rmean2 + z*rstd2) 
                o2(x,y,1,z+3) = 1; 
            end 
            if w2(x,y,2) > (gmean2 + z*gstd2) 
                o2(x,y,2,z+3) = 1; 
            end 
            if w2(x,y,3) > (bmean2 + z*bstd2) 
                o2(x,y,3,z+3) = 1; 
            end 
        end 
        for z = -3:-1 
            if w2(x,y,1) < (rmean2 + z*rstd2) 
                o2(x,y,1,z+4) = 1; 
            end 
            if w2(x,y,2) < (gmean2 + z*gstd2) 
                o2(x,y,2,z+4) = 1; 
            end 
            if w2(x,y,3) < (bmean2 + z*bstd2) 
                o2(x,y,3,z+4) = 1; 
            end 
        end 
    end 
end 
  
for x = 1:size(w3,1) 
    for y = 1:size(w3,2) 
        for z = 1:3 
            if w3(x,y,1) > (rmean3 + z*rstd3) 
                o3(x,y,1,z+3) = 1; 
            end 
            if w3(x,y,2) > (gmean3 + z*gstd3) 
                o3(x,y,2,z+3) = 1; 
            end 
            if w3(x,y,3) > (bmean3 + z*bstd3) 
                o3(x,y,3,z+3) = 1; 
            end 
        end 
        for z = -3:-1 
            if w3(x,y,1) < (rmean3 + z*rstd3) 
                o3(x,y,1,z+4) = 1; 
            end 
            if w3(x,y,2) < (gmean3 + z*gstd3) 
                o3(x,y,2,z+4) = 1; 
            end 
            if w3(x,y,3) < (bmean3 + z*bstd3) 
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                o3(x,y,3,z+4) = 1; 
            end 
        end 
    end 
end 
  
for x = 1:size(w4,1) 
    for y = 1:size(w4,2) 
        for z = 1:3 
            if w4(x,y,1) > (rmean4 + z*rstd4) 
                o4(x,y,1,z+3) = 1; 
            end 
            if w4(x,y,2) > (gmean4 + z*gstd4) 
                o4(x,y,2,z+3) = 1; 
            end 
            if w4(x,y,3) > (bmean4 + z*bstd4) 
                o4(x,y,3,z+3) = 1; 
            end 
        end 
        for z = -3:-1 
            if w4(x,y,1) < (rmean4 + z*rstd4) 
                o4(x,y,1,z+4) = 1; 
            end 
            if w4(x,y,2) < (gmean4 + z*gstd4) 
                o4(x,y,2,z+4) = 1; 
            end 
            if w4(x,y,3) < (bmean4 + z*bstd4) 
                o4(x,y,3,z+4) = 1; 
            end 
        end 
    end  
end 
  

  
%Create Array and Calcuate Surface Areas for Each STD Threshold 
    n1 = zeros(3,6,4); 
    for d = 1:6 
        for c = 1:3 
            n1(c,d,1) = (sum(sum(o1(:,:,c,d)))/(dist^2)); 
        end 
    end 
     
    for d = 1:6 
        for c = 1:3 
            n1(c,d,2) = (sum(sum(o2(:,:,c,d)))/(dist^2)); 
        end 
    end 
     

     
    for d = 1:6 
        for c = 1:3 
            n1(c,d,3) = (sum(sum(o3(:,:,c,d)))/(dist^2)); 
        end 
    end 
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    for d = 1:6 
        for c = 1:3 
            n1(c,d,4) = (sum(sum(o4(:,:,c,d)))/(dist^2)); 
        end 
    end 
     

     
%Create Combined Output Display 
c1 = zeros(size(w1,1),size(w1,2),3); 
c2 = zeros(size(w2,1),size(w2,2),3); 
c3 = zeros(size(w3,1),size(w3,2),3); 
c4 = zeros(size(w4,1),size(w4,2),3); 
  
%Combine the Six Output Masks into one mask per color channel 
    %Display Three Color Channel Output Masks 
  
for z = 1:3 
    for x = 1: size(w1,1) 
        for y = 1: size(w1,2) 
            if      o1(x,y,z,1) == 1 
                    c1(x,y,z)   = -3; 
            elseif  o1(x,y,z,2) == 1 
                    c1(x,y,z)   = -2; 
            elseif  o1(x,y,z,3) == 1 
                    c1(x,y,z)   = -1; 
            elseif  o1(x,y,z,6) == 1 
                    c1(x,y,z)   = 3; 
            elseif  o1(x,y,z,5) == 1 
                    c1(x,y,z)   = 2; 
            elseif  o1(x,y,z,4) == 1 
                    c1(x,y,z)   = 1; 
            end 
        end 
    end 
    subplot(4,3,z); 
    imshow(c1(:,:,z)); 
    colormap jet; 
    caxis([-3,3]); 
     
end 
  

  

  
for z = 1:3 
    for x = 1: size(w2,1) 
        for y = 1: size(w2,2) 
            if      o2(x,y,z,1) == 1 
                    c2(x,y,z)   = -3; 
            elseif  o2(x,y,z,2) == 1 
                    c2(x,y,z)   = -2; 
            elseif  o2(x,y,z,3) == 1 
                    c2(x,y,z)   = -1; 
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            elseif  o2(x,y,z,6) == 1 
                    c2(x,y,z)   = 3; 
            elseif  o2(x,y,z,5) == 1 
                    c2(x,y,z)   = 2; 
            elseif  o2(x,y,z,4) == 1 
                    c2(x,y,z)   = 1; 
            end 
        end 
    end 
    subplot(4,3,z+3); 
    imshow(c2(:,:,z)); 
    colormap jet; 
    caxis([-3,3]); 
end 
  

  
for z = 1:3 
    for x = 1: size(w3,1) 
        for y = 1: size(w3,2) 
            if      o3(x,y,z,1) == 1 
                    c3(x,y,z)   = -3; 
            elseif  o3(x,y,z,2) == 1 
                    c3(x,y,z)   = -2; 
            elseif  o3(x,y,z,3) == 1 
                    c3(x,y,z)   = -1; 
            elseif  o3(x,y,z,6) == 1 
                    c3(x,y,z)   = 3; 
            elseif  o3(x,y,z,5) == 1 
                    c3(x,y,z)   = 2; 
            elseif  o3(x,y,z,4) == 1 
                    c3(x,y,z)   = 1; 
            end 
        end 
    end 
    subplot(4,3,z+6); 
    imshow(c3(:,:,z)); 
    colormap jet; 
    caxis([-3,3]); 
end 
  
for z = 1:3 
    for x = 1: size(w4,1) 
        for y = 1: size(w4,2) 
            if      o4(x,y,z,1) == 1 
                    c4(x,y,z)   = -3; 
            elseif  o4(x,y,z,2) == 1 
                    c4(x,y,z)   = -2; 
            elseif  o4(x,y,z,3) == 1 
                    c4(x,y,z)   = -1; 
            elseif  o4(x,y,z,6) == 1 
                    c4(x,y,z)   = 3; 
            elseif  o4(x,y,z,5) == 1 
                    c4(x,y,z)   = 2; 
            elseif  o4(x,y,z,4) == 1 
                    c4(x,y,z)   = 1; 
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            end 
        end 
    end 
    subplot(4,3,z+9); 
    imshow(c4(:,:,z)); 
    colormap jet; 
    caxis([-3,3]); 
end 
  
%Save data as Structure 
  
w1=struct('CmPixels',dist, 'Cropped', w1, 'RedMean', rmean1, 'RedSTD', rstd1, 'GreenMean', gmean1, 

'GreenSTD', gstd1, ... 
    'BlueMean', bmean1, 'BlueSTD', bstd1, 'OutputImage', c1, 'OutputArea', n1(:,:,1) ); 
  
w2=struct('CmPixels',dist, 'Cropped', w2, 'RedMean', rmean2, 'RedSTD', rstd2, 'GreenMean', gmean2, 

'GreenSTD', gstd2, ... 
    'BlueMean', bmean2, 'BlueSTD', bstd2, 'OutputImage', c2, 'OutputArea', n1(:,:,2) ); 
  
w3=struct('CmPixels',dist, 'Cropped', w3, 'RedMean', rmean3, 'RedSTD', rstd3, 'GreenMean', gmean3, 

'GreenSTD', gstd3, ... 
    'BlueMean', bmean3, 'BlueSTD', bstd3, 'OutputImage', c3, 'OutputArea', n1(:,:,3) ); 
  
w4=struct('CmPixels',dist, 'Cropped', w4, 'RedMean', rmean4, 'RedSTD', rstd4, 'GreenMean', gmean4, 

'GreenSTD', gstd4, ... 
    'BlueMean', bmean4, 'BlueSTD', bstd4, 'OutputImage', c4, 'OutputArea', n1(:,:,4) ); 
  
output=struct('Wound1', w1,'Wound2',w2,'Wound3',w3,'Wound4', w4); 
  
%Save Figure 
file = sprintf(['/Users/Peter/Desktop/pig/kinect/data/png/' name '.png']); 
saveas(gcf,file); 
  

  
%Save Surface Areas as .xls  
  
xlswrite(['C:\Users\Peter\Desktop\pig\kinect\data\xls\' name '.xlsx'],n1(:,:,1)); 
xlswrite(['C:\Users\Peter\Desktop\pig\kinect\data\xls\' name '.xlsx'],n1(:,:,2),1,'A5'); 
xlswrite(['C:\Users\Peter\Desktop\pig\kinect\data\xls\' name '.xlsx'],n1(:,:,3),1,'A9'); 
xlswrite(['C:\Users\Peter\Desktop\pig\kinect\data\xls\' name '.xlsx'],n1(:,:,4),1,'A13'); 
     
eval([name '= output']); 
save(sprintf(['/Users/Peter/Desktop/pig/kinect/data/batch/' name '.mat']),name);       
end 
  

 
function kinect_sa_batch() 
%Run Batch Statistical Analysis on Kinect Images 
running = 1; 
%File Location 
p = 'C:\Data\'; 
while running 
    %Load Data 
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    [f,p]=uigetfile(strcat(p,'*.png')); 
    image = imread([p f]); 
    %Run SA Method 
    skincalcmulti(image); 
    button = questdlg('Keep Going?',' ','Yes','No','Yes'); 
    if strcmp('Yes',button); 
        running = 1; 
        close gcf; 
    else 
        running = 0; 
    end 
end 
end 
 

 

 
function output = kinectir_sa(image) 
%Perform Statistical Analysis on Kinect NIR Images 
%Select Four Wounds from Image and Four Skin Samples 
  
disp('skin1'); 
skin1 = imcrop(image); 
disp('w1'); 
w1   = imcrop(image); 
  
disp('skin2'); 
skin2 = imcrop(image); 
disp('w2'); 
w2= imcrop(image); 
  
disp('skin3'); 
skin3 = imcrop(image); 
disp('w3'); 
w3   = imcrop(image); 
  
disp('skin4'); 
skin4 = imcrop(image); 
disp('w4'); 
w4   = imcrop(image); 
  
%Measure Lenght of 30 cm (Lenght of Ruler) and convert to pixels per cm 
  
distline = imdistline; 
pause; 
meter = getDistance(distline); 
filename = (inputdlg('Whats the name?')); 
name = filename{1}; 
dist = meter/30; 
close; 
  
%Calculate Skin Means and STD 
rskin1 = skin1(:,:,1); 
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gskin1 = skin1(:,:,2); 
bskin1 = skin1(:,:,3); 
rmean1 = mean2(rskin1); 
gmean1 = mean2(gskin1); 
bmean1 = mean2(bskin1); 
rstd1  = std2(rskin1); 
gstd1  = std2(gskin1); 
bstd1  = std2(bskin1); 
  
rskin2 = skin2(:,:,1); 
gskin2 = skin2(:,:,2); 
bskin2 = skin2(:,:,3); 
rmean2 = mean2(rskin2); 
gmean2 = mean2(gskin2); 
bmean2 = mean2(bskin2); 
rstd2  = std2(rskin2); 
gstd2  = std2(gskin2); 
bstd2  = std2(bskin2); 
  
rskin3 = skin3(:,:,1); 
gskin3 = skin3(:,:,2); 
bskin3 = skin3(:,:,3); 
rmean3 = mean2(rskin3); 
gmean3 = mean2(gskin3); 
bmean3 = mean2(bskin3); 
rstd3  = std2(rskin3); 
gstd3  = std2(gskin3); 
bstd3  = std2(bskin3); 
  
rskin4 = skin4(:,:,1); 
gskin4 = skin4(:,:,2); 
bskin4 = skin4(:,:,3); 
rmean4 = mean2(rskin4); 
gmean4 = mean2(gskin4); 
bmean4 = mean2(bskin4); 
rstd4  = std2(rskin4); 
gstd4  = std2(gskin4); 
bstd4  = std2(bskin4); 
  

  

  
%Create Output Arrays 
  
o1 = zeros(size(w1,1),size(w1,2),3,6); 
o2 = zeros(size(w2,1),size(w2,2),3,6); 
o3 = zeros(size(w3,1),size(w3,2),3,6); 
o4 = zeros(size(w4,1),size(w4,2),3,6); 
  
%Cycle Through Pixels in image, compare to postivive STD Tresholds then negative, 
%.. if True set Output Array value to 1 (or True) 
for x = 1:size(w1,1) 
    for y = 1:size(w1,2) 
        for z = 1:3 
            if w1(x,y,1) > (rmean1 + z*rstd1) 
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                o1(x,y,1,z+3) = 1; 
            end 
            if w1(x,y,2) > (gmean1 + z*gstd1) 
                o1(x,y,2,z+3) = 1; 
            end 
            if w1(x,y,3) > (bmean1 + z*bstd1) 
                o1(x,y,3,z+3) = 1; 
            end 
        end 
        for z = -3:-1 
            if w1(x,y,1) < (rmean1 + z*rstd1) 
                o1(x,y,1,z+4) = 1; 
            end 
            if w1(x,y,2) < (gmean1 + z*gstd1) 
                o1(x,y,2,z+4) = 1; 
            end 
            if w1(x,y,3) < (bmean1 + z*bstd1) 
                o1(x,y,3,z+4) = 1; 
            end 
        end 
    end 
end 
  

  
for x = 1:size(w2,1) 
    for y = 1:size(w2,2) 
        for z = 1:3 
            if w2(x,y,1) > (rmean2 + z*rstd2) 
                o2(x,y,1,z+3) = 1; 
            end 
            if w2(x,y,2) > (gmean2 + z*gstd2) 
                o2(x,y,2,z+3) = 1; 
            end 
            if w2(x,y,3) > (bmean2 + z*bstd2) 
                o2(x,y,3,z+3) = 1; 
            end 
        end 
        for z = -3:-1 
            if w2(x,y,1) < (rmean2 + z*rstd2) 
                o2(x,y,1,z+4) = 1; 
            end 
            if w2(x,y,2) < (gmean2 + z*gstd2) 
                o2(x,y,2,z+4) = 1; 
            end 
            if w2(x,y,3) < (bmean2 + z*bstd2) 
                o2(x,y,3,z+4) = 1; 
            end 
        end 
    end 
end 
  
for x = 1:size(w3,1) 
    for y = 1:size(w3,2) 
        for z = 1:3 
            if w3(x,y,1) > (rmean3 + z*rstd3) 
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                o3(x,y,1,z+3) = 1; 
            end 
            if w3(x,y,2) > (gmean3 + z*gstd3) 
                o3(x,y,2,z+3) = 1; 
            end 
            if w3(x,y,3) > (bmean3 + z*bstd3) 
                o3(x,y,3,z+3) = 1; 
            end 
        end 
        for z = -3:-1 
            if w3(x,y,1) < (rmean3 + z*rstd3) 
                o3(x,y,1,z+4) = 1; 
            end 
            if w3(x,y,2) < (gmean3 + z*gstd3) 
                o3(x,y,2,z+4) = 1; 
            end 
            if w3(x,y,3) < (bmean3 + z*bstd3) 
                o3(x,y,3,z+4) = 1; 
            end 
        end 
    end 
end 
  
for x = 1:size(w4,1) 
    for y = 1:size(w4,2) 
        for z = 1:3 
            if w4(x,y,1) > (rmean4 + z*rstd4) 
                o4(x,y,1,z+3) = 1; 
            end 
            if w4(x,y,2) > (gmean4 + z*gstd4) 
                o4(x,y,2,z+3) = 1; 
            end 
            if w4(x,y,3) > (bmean4 + z*bstd4) 
                o4(x,y,3,z+3) = 1; 
            end 
        end 
        for z = -3:-1 
            if w4(x,y,1) < (rmean4 + z*rstd4) 
                o4(x,y,1,z+4) = 1; 
            end 
            if w4(x,y,2) < (gmean4 + z*gstd4) 
                o4(x,y,2,z+4) = 1; 
            end 
            if w4(x,y,3) < (bmean4 + z*bstd4) 
                o4(x,y,3,z+4) = 1; 
            end 
        end 
    end  
end 
  
%Create Array and Calcuate Surface Areas for Each STD Threshold 
    n1 = zeros(3,6,4); 
    for d = 1:6 
        for c = 1:3 
            n1(c,d,1) = (sum(sum(o1(:,:,c,d)))/(dist^2)); 
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        end 
    end 
     
    for d = 1:6 
        for c = 1:3 
            n1(c,d,2) = (sum(sum(o2(:,:,c,d)))/(dist^2)); 
        end 
    end 
     

     
    for d = 1:6 
        for c = 1:3 
            n1(c,d,3) = (sum(sum(o3(:,:,c,d)))/(dist^2)); 
        end 
    end 
     

     
    for d = 1:6 
        for c = 1:3 
            n1(c,d,4) = (sum(sum(o4(:,:,c,d)))/(dist^2)); 
        end 
    end 
  

     
    %Create Combined Output Display 
c1 = zeros(size(w1,1),size(w1,2),3); 
c2 = zeros(size(w2,1),size(w2,2),3); 
c3 = zeros(size(w3,1),size(w3,2),3); 
c4 = zeros(size(w4,1),size(w4,2),3); 
  
%Combine the Six Output Masks into one mask per color channel 
  
for z = 1:3 
    for x = 1: size(w1,1) 
        for y = 1: size(w1,2) 
            if      o1(x,y,z,1) == 1 
                    c1(x,y,z)   = -3; 
            elseif  o1(x,y,z,2) == 1 
                    c1(x,y,z)   = -2; 
            elseif  o1(x,y,z,3) == 1 
                    c1(x,y,z)   = -1; 
            elseif  o1(x,y,z,6) == 1 
                    c1(x,y,z)   = 3; 
            elseif  o1(x,y,z,5) == 1 
                    c1(x,y,z)   = 2; 
            elseif  o1(x,y,z,4) == 1 
                    c1(x,y,z)   = 1; 
            end 
        end 
    end 
    subplot(4,3,z); 
    imshow(c1(:,:,z)); 
    colormap jet; 
    caxis([-3,3]); 
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end 
  

  

  
for z = 1:3 
    for x = 1: size(w2,1) 
        for y = 1: size(w2,2) 
            if      o2(x,y,z,1) == 1 
                    c2(x,y,z)   = -3; 
            elseif  o2(x,y,z,2) == 1 
                    c2(x,y,z)   = -2; 
            elseif  o2(x,y,z,3) == 1 
                    c2(x,y,z)   = -1; 
            elseif  o2(x,y,z,6) == 1 
                    c2(x,y,z)   = 3; 
            elseif  o2(x,y,z,5) == 1 
                    c2(x,y,z)   = 2; 
            elseif  o2(x,y,z,4) == 1 
                    c2(x,y,z)   = 1; 
            end 
        end 
    end 
    subplot(4,3,z+3); 
    imshow(c2(:,:,z)); 
    colormap jet; 
    caxis([-3,3]); 
end 
  

  
for z = 1:3 
    for x = 1: size(w3,1) 
        for y = 1: size(w3,2) 
            if      o3(x,y,z,1) == 1 
                    c3(x,y,z)   = -3; 
            elseif  o3(x,y,z,2) == 1 
                    c3(x,y,z)   = -2; 
            elseif  o3(x,y,z,3) == 1 
                    c3(x,y,z)   = -1; 
            elseif  o3(x,y,z,6) == 1 
                    c3(x,y,z)   = 3; 
            elseif  o3(x,y,z,5) == 1 
                    c3(x,y,z)   = 2; 
            elseif  o3(x,y,z,4) == 1 
                    c3(x,y,z)   = 1; 
            end 
        end 
    end 
    subplot(4,3,z+6); 
    imshow(c3(:,:,z)); 
    colormap jet; 
    caxis([-3,3]); 
end 
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for z = 1:3 
    for x = 1: size(w4,1) 
        for y = 1: size(w4,2) 
            if      o4(x,y,z,1) == 1 
                    c4(x,y,z)   = -3; 
            elseif  o4(x,y,z,2) == 1 
                    c4(x,y,z)   = -2; 
            elseif  o4(x,y,z,3) == 1 
                    c4(x,y,z)   = -1; 
            elseif  o4(x,y,z,6) == 1 
                    c4(x,y,z)   = 3; 
            elseif  o4(x,y,z,5) == 1 
                    c4(x,y,z)   = 2; 
            elseif  o4(x,y,z,4) == 1 
                    c4(x,y,z)   = 1; 
            end 
        end 
    end 
    subplot(4,3,z+9); 
    imshow(c4(:,:,z)); 
    colormap jet; 
    caxis([-3,3]); 
end 
  
%Save data as Structure 
  
w1=struct('CmPixels',dist, 'Cropped', w1, 'RedMean', rmean1, 'RedSTD', rstd1, 'GreenMean', gmean1, 

'GreenSTD', gstd1, ... 
    'BlueMean', bmean1, 'BlueSTD', bstd1, 'OutputImage', gcf, 'OutputArea', n1(:,:,1) ); 
  
w2=struct('CmPixels',dist, 'Cropped', w2, 'RedMean', rmean2, 'RedSTD', rstd2, 'GreenMean', gmean2, 

'GreenSTD', gstd2, ... 
    'BlueMean', bmean2, 'BlueSTD', bstd2, 'OutputImage', gcf, 'OutputArea', n1(:,:,2) ); 
  
w3=struct('CmPixels',dist, 'Cropped', w3, 'RedMean', rmean3, 'RedSTD', rstd3, 'GreenMean', gmean3, 

'GreenSTD', gstd3, ... 
    'BlueMean', bmean3, 'BlueSTD', bstd3, 'OutputImage', gcf, 'OutputArea', n1(:,:,3) ); 
  
w4=struct('CmPixels',dist, 'Cropped', w4, 'RedMean', rmean4, 'RedSTD', rstd4, 'GreenMean', gmean4, 

'GreenSTD', gstd4, ... 
    'BlueMean', bmean4, 'BlueSTD', bstd4, 'OutputImage', gcf, 'OutputArea', n1(:,:,4) ); 
  
output=struct('Wound1', w1,'Wound2',w2,'Wound3',w3,'Wound4', w4); 
%Save Figure 
file = sprintf(['/Users/Peter/Desktop/pig/kinect/data/png/' name '.png']); 
saveas(gcf,file); 
         
    %Save Surface Areas as .xls  
  

  
xlswrite(['C:\Users\Peter\Desktop\pig\kinect\data\xls\' name '.xlsx'],n1(:,:,1)); 
xlswrite(['C:\Users\Peter\Desktop\pig\kinect\data\xls\' name '.xlsx'],n1(:,:,2),1,'A5'); 
xlswrite(['C:\Users\Peter\Desktop\pig\kinect\data\xls\' name '.xlsx'],n1(:,:,3),1,'A9'); 
xlswrite(['C:\Users\Peter\Desktop\pig\kinect\data\xls\' name '.xlsx'],n1(:,:,4),1,'A13'); 
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eval([name '= output']); 
save(sprintf(['/Users/Peter/Desktop/pig/kinect/data/batch/' name '.mat']),name);       
end 
  
function output = kinectir_sa_batch() 
%Run Batch Statistical Analysis on Kinect NIR Images 
running = 1; 
%Data Location 
p = 'C:\Data\'; 
while running 
    %Load Data 
    [f,p]=uigetfile(strcat(p,'*.png')); 
    image = imread([p f]); 
    %Create 2 empty layers to make fake RGB images  
    blank = zeros(424,512); 
    blank = blank + 25000; 
    image = cat(3,blank,image,blank); 
    %Run Statistical Analysis 
    output = skincalcmulti(image); 
    button = questdlg('Keep Going?',' ','Yes','No','Yes'); 
    if strcmp('Yes',button); 
        running = 1; 
        close gcf; 
    else 
        running = 0; 
    end 
end 
end 
 
function m =  mask(image) 
%Function to Create Initial Mask 
hold on 
imshow(image); 
%Set Window Size to enlarge smaller wounds 
set(gcf,'position',[200 100 850 750]) 
%Create a inital Mask 
[sx, sy] = getpts; 
  
n = size(sx,1); 
n=n+1; 
sxy=[]; 
sxy=[sx sy]; 
sxy=sxy'; 
sxy(:,n) = [sxy(1,1);sxy(2,1)]; 
  
% Interpolate Points and create Spline 
t = 1:n; 
ts = 1: 0.1: n; 
xys = spline(t,sxy,ts); 
%Convert Spline to Mask 
bx = xys(1,:); 
by = xys(2,:); 
m=poly2mask(bx,by,size(image,1),size(image,2)); 
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APPENDIX B: SURFACE AREA OUTPUTS FOR ACTIVE CONTOURS 
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