
DEEP LEARNING & IDEOLOGICAL RHETORIC

Brice D. L. Acree

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in
partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department
of Political Science.

Chapel Hill
2016

Approved by:

James Stimson

Thomas Carsey

Michael MacKuen

Justin Gross

Timothy Ryan

c© 2016

Brice D. L. Acree

ALL RIGHTS RESERVED

ii

ABSTRACT

Brice D. L. Acree: Deep Learning & Ideological Rhetoric.
(Under the direction of James Stimson)

Political conflict unfolds in language. To understand the quest for, and exercise of, power,

we must understand political speech. For more than a decade, political methodologists have

sought to develop methods for using language to study how politicians speak to the public, to

the media, and to each other. This dissertation advances that line of research. Chapters 2 and

3 address ‘deep learning’ methods for analyzing political texts. These computational models,

built on artificial neural network architectures, seek to automatically learn complex patterns in

data. Chapter 2 introduces basic deep learning models, and Chapter 3 introduces distributional

word representations and convolutional neural network models. The final chapter points these

methods toward a substantive problem. As a discipline, we have studied, and debated, the

nature of political ideology. We have often found that, for citizens and elites alike, ideology is

oriented around a single primary dimension: liberalism to conservatism. In Chapter 4, I offer

a different view. Using the language from political ideologues and presidential candidates, I

show that ideology can be much richer and varied than a single dimension will capture, but

that political debate compresses ideological expression into a single dimension.

iii

for Lauren

intelligent, beautiful, wonderful

iv

ACKNOWLEDGMENTS

North Carolina—land of the pines, the Tar Heels, and the craftiest ales brewed from that per-

nicious and wicked weed—is the only place I could imagine embarking on this epic quest we

call graduate school. I could say that I have been fortunate to study here, but that hardly ex-

presses the magnitude of my appreciation. I only hope that I can convey, in measures equal to

my gratitude, how thankful I am for those people who have shown me uncommon support and

friendship, and without whom I could not have sustained this project.

The department of political science at the University of North Carolina has provided fer-

tile ground for graduate work. In particular, I thank the American Politics Research Group for

their feedback, which sharpened my ability to clearly build and express arguments. I am also

indebted to the graduate students for whom I had the pleasure to TA. They had to hear me roar

the virtues of Bayesian inference week in and week out, and somehow never charged the white

board in mutiny. Their patience and feedback taught me how to explain technical material,

which I hope is apparent in the work that follows.

Two groups of scholars provided the data used in this dissertation. I had the privilege to

work with Justin Gross, Noah Smith, and Yanchuan Sim on building and refining the Ideological

Books Corpus. The ReactLabs data was kindly shared by Amber Boydstun, who collected the

data with Philip Resnik and Jeffrey Korn.

I owe my growth as a scholar to an incomparable group of advisors. Dean Lacy, for reasons

surpassing my understanding, thought I might succeed in graduate school, and encouraged me

to apply to doctoral programs. Philip Paolino, my first graduate advisor, sparked my interest in

statistical methodology, introduced me to Bayesian inference, and most importantly, taught me

that methods are a means to an end, not the end in themselves. Michael MacKuen and Timothy

Ryan served on my master’s and dissertation committees, and always encouraged me to look

v

beyond the methodological minutiae and think in terms of broader, theoretical contributions.

Justin Gross bears the most responsibility for my discovery of, and love for, computational

text analysis. He included me in his research during my first semester, and sent me on a path to

where I stand now. Thomas Carsey, too, deserves a share of the blame. He invited me to enroll

in a machine learning course he was auditing (which he promptly stopped auditing after a few

weeks). Tom encourages and challenges in equal measure, and he works harder on behalf of his

students than anyone I have met. Most of all, I owe a lifetime of thanks to my advisor, mentor,

and harshest critic, Jim Stimson. You can paint stripes on a toad, but that does not make it a

tiger. Jim does not hesitate to tell you when you’ve sent him a toad of a paper, no matter the

prose with which you’ve dressed it. Jim’s feedback has made me a better scholar by pushing me

to lay bare my assumptions, to express my arguments clearly, and to place periods inside the

quotation marks.

That understates Jim’s greatest contribution to this dissertation, however. Why is it that

when someone builds a wall, somebody else immediately needs to know what’s on the other

side? Why else? Curiosity. Discovery. Jim’s work is genuinely motivated by the thrill of discover-

ing something heretofore unknown, and sharing it with others. That much was obvious during

our first meeting, and it was contagious. Jim instills in his students an appreciation for broad

thinking and diverse ideas, insisting that we do not reap what we do not sow. As his student, I

have learned to sow many ideas, and this dissertation sees some of those grown to fruition.

My many friends, from Carolina and locations beyond, have supported me in ways large

and small. I especially owe thanks to Kelsey Shoub, my partner in methodological crime; to Eric

Hansen and Andrew Tyner, whose penetrating questions early in the dissertation process made

me think seriously about my role in, and contribution to, the discipline; to Aziz and Ashaya, my

soundtrack when the nights were dark and full of doubts; to Chelsea Estancona, Dan Gustafson,

Ryan Williams, and Rob Williams, for their support on and off the basketball court; and to Chris

Blankenship, Steve Durham, Alec Macaulay, and Dan Thele, for their sustaining friendship.

vi

Finally, I reach that highest pantheon of my gratitude: those who have loved me uncon-

ditionally throughout this process. My wife, Lauren Milam Acree, has born the weight of this

dissertation as much as I. She has ceaselessly encouraged and supported my research. Lauren’s

kindness is woven through the document you are about to read, and without her this thesis

would surely have never come together. My father Doug, my brother Addison, and my grand-

mother Shirley have been unfailing pillars in my life, without whom I would not have reached

graduate school in the first place. And I thank my grandfather Robert, and my uncle Scott, who

would have been proud of this accomplishment. I wish they could read my dissertation—or at

least skim a few pages before wondering aloud ‘What’s this have to do with politics, anyway?’.

Theodor Geisel, better known by the nom-de-plume Doctor Seuss, once asked, “My good-

ness how the time has flewn; how did it get so late, so soon?” This dissertation represents the

culmination of many years, and the contributions of many friends and colleagues. My mantra

in writing this project was to keep looking forward—that if I look back, I am lost. At the end of

the journey, as I write these acknowledgments, I now pause to look back. So many people have

helped to get me to this place. I cannot possibly pay my debts to them, but I will strive to be

worthy of the confidence they have placed in me.

vii

TABLE OF CONTENTS

1 INTRODUCTION.. 1

1.1 Political Text Classification . 2

1.2 Contribution . 4

1.2.1 Methods Contribution. 5

1.2.2 Substantive Contribution . 9

1.3 The Challenges of Text. 11

1.4 Processing & Preparing Text for Analysis . 14

1.4.1 Bag of Words . 14

1.4.2 Preserving Word Order . 18

2 DEEP NEURAL NETWORKS FOR TEXT CLASSIFICATION .. 22

2.1 Neural Network Models . 24

2.1.1 Neural Network Basics. 25

2.1.2 Richer Networks . 28

2.2 Model Specification . 35

2.2.1 Model Evaluation. 36

2.2.2 Loss & Evaluation . 37

2.2.3 Number of Nodes & Layers . 38

2.2.4 Overfitting . 39

2.2.5 Activation Functions . 40

2.2.6 Learning Rate . 41

2.2.7 Fitting . 42

2.3 Simulation Example . 42

viii

2.4 Applications. 45

2.4.1 Political Tone . 45

2.4.2 Political Ideology . 53

2.5 Discussion. 57

2.6 Tables . 59

2.7 Figures . 63

3 DISTRIBUTED WORD REPRESENTATIONS FOR POLITICAL TEXT . 72

3.1 Distributed Word Representations . 73

3.1.1 Continuous Bag of Words . 75

3.1.2 Word Embeddings . 81

3.2 Document Representations. 86

3.2.1 Vector Aggregation . 87

3.2.2 Convolutional Networks . 88

3.3 Applications. 93

3.3.1 Debates . 94

3.3.2 Note on Multi-Channels. 98

3.4 Discussion. 99

3.5 Tables . 103

3.6 Figures . 107

4 ON THE STRUCURE OF ELITE IDEOLOGY .. 116

4.1 Theory . 117

4.1.1 What is ideology? . 118

4.1.2 Who has an ideology? . 120

4.1.3 What is the structure of ideology?. 121

4.1.4 Parties, elections and ideology. 124

ix

4.2 Data & Design. 131

4.2.1 Methods . 133

4.2.2 Expectations . 135

4.3 Results . 136

4.4 Discussion. 141

4.5 Tables . 143

4.6 Figures . 153

x

LIST OF TABLES

2.1 Predictive Accuracy for Ideological Classification . 59

2.2 Logit & ANN Comparison . 60

2.3 Comparing ANN Specifications for Text . 61

2.4 Summary of the Ideological Books Corpus . 62

3.1 Word Representations Capture Semantic and Syntactic Meaning . 103

3.2 Distribution of Topics in the October 3 2012 Presidential Debate . 104

3.3 Topic Cross-Validation Accuracy from Three Models . 105

3.4 CNN Test Set Predictive Accuracy for Tone and Topics. 106

4.1 Descriptions of the Subclasses in the IBC . 143

4.2 Ideological Classification Accuracy Across Models . 146

4.3 Words & Phrases Associated with Liberal Ideologies . 147

4.4 Words & Phrases Associated with Conservative Ideologies . 148

4.5 2016 Candidates’ Use of Ideological Language . 149

4.6 Democratic 2008 Candidates’ Use of Ideological Language . 150

4.7 Republican 2008 Candidates’ Use of Ideological Language. 151

4.8 Republican 2012 Candidates’ Use of Ideological Language. 152

xi

LIST OF FIGURES

2.1 A Basic Artificial Neural Network . 63

2.2 Sigmoid Activation & Cross-Entropy Loss. 64

2.3 A One-Layer Artificial Neural Network . 65

2.4 A One-Layer Artificial Neural Network . 66

2.5 Learning Process of Three Neural Networks . 67

2.6 Accuracy from Unigram Thinning . 68

2.7 Accuracy from Unigram/Bigram Thinning . 69

2.8 Accuracy from Unigram, Bigram and Trigram Thinning . 70

2.9 Cross-Validation Predictive Accuracy for Ideology. 71

3.1 Graphical Representation of the CBOW Model. 107

3.2 Graphical Representation of the CBOW Model with Context . 108

3.3 Generic Evaluation for the CBOW Model . 109

3.4 Domain-Specific Evaluation for the CBOW Model . 110

3.5 Graphical Representation of the Convolution Process . 111

3.6 The Convolution Process with Multiple Window Sizes . 112

3.7 Topic Classification Precision . 113

3.8 Tone Classification Precision with Multiple Embeddings. 114

3.9 Topic Classification Precision with Multiple Embeddings . 115

4.1 Dimensionality of Corpora Classifications . 153

4.2 Latent Representation of Libertarian Documents . 154

4.3 Latent Representation of Progressive Documents . 155

4.4 Latent Representation of Religious Documents . 156

4.5 Candidate Left-Right Positions . 157

xii

1 INTRODUCTION

Politics comprises, in large part, the artful (and sometimes painfully inartful) use of lan-

guage. Candidates for political office barnstorm for months at a time, making their cases and

leveling criticisms of opponents’ actions and points of view; legislators draft and debate bills;

presidents issue statements; justices hand down legal opinions; information age rabble-rousers

peddle conspiracy theories to anyone with an internet connection; and journalists, columnists

and bloggers dissect, reframe and disseminate it all to the American public. For political schol-

ars, the trove of data locked away in transcripts and manuscripts is both a blessing and a curse.

The answers to many fascinating questions lie within the written word; yet harnessing the data

in ways both efficient and reliable poses considerable methodological challenges.

I am not the first, nor will I be the last, to address these challenges. In political science, we

have sought for decades to use text as a source of data. Over the past two decades, we have

built our capacity to process, quantify, and model text using computational methods. With in-

creased computing power and advanced statistical methodology, scholars have developed new,

powerful, and efficient tools to extract patterns from, and test substantive theories using, text

as data. My dissertation seeks to advance this rich history of methodological and substantive

work. It does not represent a paradigmatic shift in political methodology. It represents a step

forward, progress in the normal scientific march toward better tools and better understanding.

This dissertation addresses three major topics. The first, which comprises Chapters 1 and

2, addresses methods for large-scale text analysis. Specifically, these chapters introduce ‘deep

learning’ methodologies for supervised text classification to a political science audience. The

second topic, addressed entirely in Chapter 2, shows how we can improve how we quantify lan-

guage using distributed word representations. The third topic for this dissertation, contained in

Chapter 3, points these tools toward an important substantive political science issue: ideology.

1

In this introduction, I will briefly describe these topics. I will also seek to make clear where

this dissertation fits within the broader field of political methodology, how the dissertation

moves the field forward, and why the reader should bother him- or herself with the results.

1.1 Political Text Classification

Much of political conflict unfolds in language. From speeches to media coverage, platforms

to treaties, tracts to broadcasts, power and influence require communication. As Grimmer &

Stewart (2013, 1) put it, “To understand what politics is about we need to know what political

actors are saying and writing.” This recognition is not new. For decades, political scientists

have manually coded texts for various features—partisan bias, racial undertone, policy frames,

conflictual or negative language, specific policy or treaty provisions, and so on. Computational

methods for text analysis, which use computer programs and statistical models to automate

these tasks, simply make this process faster, more efficient, and scalable to collections of texts

that would be infeasible to code by hand.

In political science, we often wish to achieve one of three goals with text data: classification,

clustering/scaling, and prediction. Most political scientists will find these familiar, even if they

have never used text as data. These tasks are essentially the same goals we pursue in our quan-

titative research. The first two of these tasks fall generally into measurement techniques; that

is, given texts, can we extract useful measurements therefrom? The third attempts to leverage

information in texts to make forecasts about future preferences, behavior, or events.

We can also partition text analysis approaches into two broad classes: supervised and un-

supervised. The former uses hand-labeled data to train a model, which can then be used to

predict the labels on held-out documents. For example, a researcher could hand-code docu-

ments according to their positivity or negativity (i.e., the sentiment) of the language therein.

The researcher then fits a statistical model to estimate what words or phrases predict the senti-

ment of the documents, and then use this information to label the sentiment of many—perhaps

thousands or millions of—new documents. Unsupervised methods, by contrast, do not use

2

hand-labeled documents. Instead, these methods attempt to uncover latent patterns in docu-

ments. Analagous to principal components or exploratory factor analysis, this class of models

produces groupings or scaled representations of documents that the researcher attempts to in-

terpret after model estimation.

Many scholars have employed supervised (e.g., Laver, Benoit & Garry (2003)) and unsuper-

vised (e.g., Slapin & Proksch (2008), Proksch & Slapin (2008) and Spirling (2011)) models to scale

documents into a continuous policy space. Other scholars have attempted to leverage text for

predictive purposes. Tumasjan, Sprenger, Sandner & Welpe (2010), Bermingham & Smeaton

(2011), Beauchamp (2015), and Skoric, Poor, Achananuparp, Lim & Jiang (2012) attempt to

predict electoral polls and outcomes using large-scale Twitter data. Diermeier, Godbout, Yu

& Kaufmann (2012) and Beauchamp (2011) use language in Senate floor speeches to predict

the ideological position of Senators, according to DW-Nominate. These, and the many others

I do not cite, are all important projects. But this line of research falls outside the scope of this

dissertation.

Supervision My dissertation focuses on supervised models classifying political texts. In other

words, I train models to classify political texts into hand-coded, discrete categories. I focus on

supervised methods because I believe that supervision provides a necessary theoretical con-

trol over automated methods. We can find many unsupervised, latent representations of text

data. Textual data contains myriad signals—ideological, partisan, educational, sophistication,

linguistic, translational. Unsupervised methods may unveil important summaries of the docu-

ments in any collection. Unfortunately, there is no guarantee that amongst the many signals in

text, any summary will produce something of substantive interest. When attempting to mea-

sure nuanced concepts, like my analysis of elite ideology in Chapter 3, supervision makes more

sense, because it grounds the measurement task in substantive expertise.

Classification We deal with classification questions routinely, even if we do not think of them

as such. Can we predict whether individuals are liberal or conservative? Can we explain what

3

factors make individuals more likely to vote than others? Or make countries more likely to

engage in war? How do voters choose between many political parties, or insurgent groups be-

tween potential targets? In each of these cases, we attempt to use observable information about

people, countries or institutions to classify them into groups: voters and nonvoters, liberals and

conservatives, Labour, Tory, or Liberal Democratic voters, and so on.

In text analysis, we face a similar challenge: how can we take the language in a document to

classify the document itself? In this dissertation, I focus on classifying documents by the topics,

ideology, and tone they represent. I pay particular attention to the classification of ideology,

which appears in all three chapters. I build on prior work by Sim, Acree, Gross & Smith (2013)

and Iyyer, Enns, Boyd-Graber & Resnik (2014), who use political language to classify documents

into ideological categories, and on work by Acree, Gross, Smith, Sim & Boydstun (2014), who

use ideological classification as the basis for testing a theory of post-primary moderation in

presidential campaigns.

Of course, we can imagine plenty of areas where our theories require us to classify political

texts. Boydstun, Gross, Resnik & Smith (2013) test a theory of policy framing by tracing the evo-

lution of frame over time through media. Tumasjan et al. (2010) classify Twitter statements by

their sentiment, and use the aggregated results to forecast German federal elections. Of partic-

ular interest to institutionalists, scholars have also used supervised methods to classify policy

stances in Congressional floor speeches (Thomas, Pang & Lee 2006, Hopkins & King 2007), ed-

itorials (Hopkins & King 2007), or online debates (Somasundaran & Wiebe 2010). In essence,

methods for classification are useful because they can group documents into any category of

substantive interest, and provide measurements for evaluating social and political theories.

1.2 Contribution

This dissertation seeks to advance this line of political research by introducing new tools

from the computer science literature. I must be clear—I did not invent deep learning methods,

nor do the following chapters represent a breakthrough in the deep learning literature. Instead,

4

my aspiration is to begin to lay the foundation with this document: to prove the usefulness of

deep learning methods for political scholars, to provide practical guidance for its use, and to

assess whether model evaluation benefits from domain-specific tests.

I see the contribution in three parts: (1) I introduce deep learning methods which, while

used in the natural language processing and computer science literature for more than a decade,

have not appeared in political science scholarship. Though not universally superior to other

methods for text classification, deep learning models have the advantage of adapting to com-

plex interactivity and nonlinearities in language, which can render them more powerful in mea-

surement tasks. (2) I describe distributed word representations, why they are useful, and show

for the first time that domain specificity can matter as much as general model performance

when using distributed word vectors. (3) I revisit a longstanding conflict in political science be-

tween what we believe about ideology, and how we typically measure it. With new data and a

new perspective, I make an argument that ideology can be multidimensional, even when the

vast majority of our measurements to date reduce to a single dimension.

1.2.1 Methods Contribution

The bulk of this dissertation centers on deep learning methods as applied to political texts.

As I have mentioned already, these methods have yet to appear in political science scholarship,

despite—as I show in the first two chapters—their usefulness for text analytic tasks. I offer two

reasons why. First, like many machine learning methods, artificial neural networks work well

in measurement or dimensionality reduction, but are ill suited to testing substantive theories.

I explore this more in Chapter 1, but briefly, artificial neural networks make it very difficult

to assess how variables affect each other. For measurement problems, we might not care, so

long as the model performs its task well. Most of our work, however, centers on testing causal

theories of social behavior. Artificial neural networks—no matter how deep or complex—are ill

suited to that task.

Second, deep learning methods evolved out of a different tradition than the methods most

5

political scientists learn and use. More common econometric and statistical methods tended

to progress around principled problem solving. We have Gauss-Markov assumptions but our

data are correlated over time, so we derive a model to account for this autocorrelation and an

estimation routine to fit the model. Artificial neural networks, by contrast, tended to develop by

heuristic. These models were developed with biological inspiration, and much of the structure

seen in advanced models follows this pattern. Feed-forward artificial neural networks were de-

signed to mimic how mammal brains learn, and convolutional neural networks were developed

to mimic the behavior of mammalian retinas.

As a result of its separate development, deep learning has its own vocabulary, its own tra-

ditions, and its own intuitions. This creates a high barrier to entry for scholars outside of the

field. Of course, the same could be said of statistical and machine learning methods over the

past several decades. Many exciting developments in our substantive understandings of poli-

tics derived from scholars adapting tools from other fields. In this dissertation, I introduce these

deep learning methods, show their usefulness in several text classification tasks, and develop a

domain-specific model assessment dataset for a particular type of deep learning model, known

as distributed word models.

We should, of course, question why we desire new tools for computational text analysis. Are

the current methods used in political scholarship not up to the tasks we demand they perform?

If deep learning requires us to adapt to a different tradition of computational models, is it really

worth it? My contention is yes. Current methods perform well, but suffer from some weaknesses

that ultimately limit their performance. I will offer three:

1. Our methods struggle to incorporate high-order interactivity that we know exists in lan-

guage. For example, we might learn much about a document by observing that two words

are used together (‘climate change’) and in conjunction with others (‘so-called’) (Iyyer

et al. 2014). Our existing methods struggle to adapt to this without the researcher ex-

plicitly specifying these interactions a priori. Deep learning methods can adapt to such

6

interactivity automatically.

2. Current methods tend to ignore word order, or incorporate word order by n-gramming

the corpus, or treating multi-word phrases as the unit of analysis (see the final section of

this introduction). Word order clearly matters for language. Ignoring it sets a natural limit

on how well our models match our understandings of political text. Even n-gramming,

though useful, presents serious problems, most notably that the researcher much decide

how to remove unimportant multi-word phrases. N -grams are typically generated by

shingling, or considering every n-length phrase that occurs in a text (Spirling 2011). This

results in most n-grams as meaningless phrases. Deleting uncommon n-grams, however,

can accidentially remove important, informative but uncommon phrases. Deep learning

can adapt to word order without needing to n-gram the corpus or deal with its challenges.

3. We nearly universally quantify text atomically, meaning that we treat words as indepen-

dent, atomic units. This ignores that words are related in natural language, which again

discards useful information and limits the performance of current methods. Deep learn-

ing methods can efficiently and reliably generate continuous, lower-dimensional repre-

sentations of words that can capture the semantic (definitional) and syntactic (linguistic

role) meaning of words.

My first two chapters seek to address these challenges. In Chapter 1, I introduce deep learn-

ing artificial neural networks. Deep learning methodologies present an exciting new area for

exploration in political science research. These computational models attempt to replicate, in

a starkly simplified form, the information processes of the mammalian brain. Deep learning

methods distribute learning across many computational units, much as the brain distributes

learning across many neurons. Artificial neural network models, which serve as the infrastruc-

ture for deep learning, have been described in the computer science and artificial intelligence

literature for decades. For much of that time, only simple models could be estimated with ex-

tant computational power. The rapid development of faster computing has enabled researchers

7

to build larger, richer, and more complex models.

I begin with a simple example: using an artificial neural network model to perform logistic

regression. With this familiar case, I introduce some of the vocabulary in the deep learning lit-

erature, and cover the basic model structure. I also introduce the many choices scholars face

when specifying neural network models—such as model parameters, non-linear ‘activation’

functions, the dimension of the network itself—along with, when possible, practical guidance.

I present a Monte Carlo simulation study, which shows how deep artificial neural networks can

adapt to complex data patterns, like those found in language. Using two data sources, I go on to

show that artificial neural networks not only perform well compared to common text analytic

models in the political science literature, but in many cases perform better.

Building on this foundation, Chapter 2 marks a significant step forward for the analysis of

political texts. To date, political science researchers have relied on ‘atomic’ word representa-

tions. That is, we typically measure words as atomic units, without concern for the semantic

(definitional) or syntactic (linguistic role) similarities between words. This means that we ig-

nore a wealth of valuable information contained in language. We wish to use language because

we believe it conveys meaning. Whenever possible, our methods should try to measure that

meaning.

Distributed word representations are a tool to do just that. In essence, estimating distributed

representations of words is simply dimensionality reduction. Instead of representing words as

atomic, independent units, we try to find latent, lower-dimensional representations of words

that capture patterns in word use. The result is an encoding for words that places similar words

close together in a common space, and dissimilar words further away, which in turn captures

what words mean and how they are used in language.

Chapter 2 also builds a new evaluation tool for these word representation. In the deep

learning literature, there is an unspoken assumption that distributed word representations built

upon larger and more general data should be better. I show, however, that such a strategy can

8

actually obscure domain-specific word meanings. For instance, the word ‘gridlock’ in general

language can imply traffic or congestion; in politics, it usually refers to partisanship and po-

larization. I show that validating models with general-purpose evaluation data misses this nu-

ance. I further show that using distributed word representations trained on multipurpose text

data does not always outperform representations trained on smaller, domain-specific text col-

lections.

Finally, in Chapter 2, I describe a particular type of deep learning model: Convolutional

Neural Networks. These models attempt to leverage spatial dependence between words in doc-

uments to, e.g., classify documents into groups. This could provide a major step forward for po-

litical research. As I discuss in the final section of this introduction, scholars face many choices

when using text data. One of the most important is how to account for word order. The typical

solution is to treat as the analytical unit the multi-word phrase, or n-gram. This suffers from

many problems, however. As I point out in Chapter 1, n-gramming requires the researcher to

make many data cleaning choices, such as how long the multi-word phrases should be, and how

to thin out meaningless or rare phrases. These choices can be highly consequential for model

performance. Convolutional neural networks, by contrast, adapt to word order naturally. They

do not require the researcher to n-gram the documents before estimating the model. As a result,

model performance can prove more stable.

I intend the contribution for the methods community, then, to be two-fold: introducing

methods that hold substantial promise for extracting useful information from textual data, and

moving our methods away from atomic representations of language toward representations

that capture the meaning of words.

1.2.2 Substantive Contribution

In my final chapter, I address a longstanding issue in political science. We recognize as a

field the importance of ideology—those core beliefs that inspire our preferences and motivate

political behavior. We think of ideology as built on fundamental ideas about justice, fairness,

9

morality, and ethics. We also describe ideological conflict largely in terms of left and right, the

ongoing battle between liberalism and conservatism. This structure is born out time and again

in empirical exercises, from Congress to courts to citizen policy preferences. In the vast majority

of quantitative work, political researchers find a unidimensional representation of ideology as

powerful as it is parsimonious (Jost 2006).

Yet a priori, there is no reason to assume that ideology has a unidimensional form. If ideol-

ogy is truly about ideas, then it should extend beyond how we respond to yes/no policy ques-

tions. Is should also reflect the many distinct belief systems that inspire those preferences. I

address this issue in Chapter 3. I present a theory of ideological censorship, which posits that

the familiar unidimensional representation of ideology derives from the nature of two-party

conflict. Ideology itself, I argue, may be nuanced and multidimensional for political elites with

highly constrained political belief systems. Most citizens, however, show little ideological con-

straint beyond a general liberal or conservative orientation. Parties intent on winning power do

not need to appeal to nuanced ideological beliefs. They simply need to offer a binary choice:

Democrat or Republican? So long as these parties generally reflect the liberal-conservative di-

vide, political conflict will look unidimensional.

To evaluate the merit of this theory, I use two sources of data. The first, the Ideological Books

Corpus (Sim et al. 2013), comprises ideological writings from political elites, but outside of any

immediate partisan or electoral competition. The second contains campaign speeches from

presidential candidates from 2008-2016. Using the multidimensional and hierarchical ideolog-

ical classifications provided by Sim et al. (2013), I show that many ideological classifications

can be recovered using only the text that the authors employ. Further, the differences in lan-

guage between ideological groups match our substantive intuition about what differentiates

these groups from one another. Finally, I find evidence that a lower dimensional representa-

tion does not adequately summarize these texts. In other words, there are real and meaning-

ful differences in the beliefs expressed by political elites that do not collapse to our traditional

10

liberal-conservative dimension.

The same pattern does not appear in campaign speeches. To the contrary, presidential can-

didates do not appear to sample much of their language from particular ideological groups.

Instead, candidates appear as ideological generalists, using language from many ideological

groups on the left and the right. Further, the candidates’ language can be easily summarized in

a single dimension that maps cleanly onto a substantive understanding of left and right, with

conservative Republicans on one end and liberal Democrats on the other. Even candidates in

primary campaigns, where we might expect sharper ideological differentiation, appear to com-

ply with our more traditional conceptualization of ideology, treating the main scope of conflict

as one between liberalism and conservatism.

This revisits, and I hope revitalizes, an important discussion for political researchers. For

a long while, our research has uncovered a single ideological dimension, and we have largely

accepted this as the structure of ideological conflict in the United States. By seeking out another

source of data, and by employing methods for analyzing large text collections, I show that this

conclusion may be hasty. Ideology is not unidimemsional or multidimensional—it is both. The

structure of beliefs, at least among elites, can be richly nuanced and multifaceted. When filtered

through an partisan lens, however, ideological conflict simplifies to a battle between left and

right. I hope that this theory, and the evidence I provide, advances how we conceive of, and

measure, elite political ideology.

1.3 The Challenges of Text

If the tasks we perform with textual data is so similar to the rest of our quantitative enter-

prise, does text really differ from other sources of data? We face plenty of challenges in data

analytics. Are those entailed in employing text as data really so different, so difficult, as to merit

its own field of inquiry? The answer is, in the same breath, yes and no. Many methods used for

text analysis are familiar, but textual data present unique problems that render it difficult to use

in applied research. In this section, I discuss the challenges of dealing with textual data, as well

11

as concepts related to how text data is processed and quantified. These concepts are essential

for understanding the remainder of this thesis.

Text is challenging because it is unstructured. Unlike data that can be easily quantified, text

is qualitative. There is no immediately apparent way to integrate text into statistical models.

We face this issue plenty in other research, of course. How do we represent ideology—which

we typically describe as ‘liberal’ or ‘conservative’—quantitatively? For such problems, we make

simplifying assumptions that allow us to ascribe numerical values to qualitative meaning. We

assume some sort of dichotomy or scale, which we can plug into statistical models. The prob-

lem of quantification is as old as empirical political science itself.

How is text different? Text requires considerable processing to represent it quantitatively.

How do we define the unit of analysis? Is it the letter, the word, the multi-word phrase, the

sentence, the paragraph? Should we retain some, none, or all of the capitalization or punctua-

tion? Should we treat documents as ordered sequences of words? As bags of word frequencies?

Should we treat all words equally, or should we try to heavily weight words we find more impor-

tant according to some criteria? Should we ignore very common words? The last section of this

introduction addresses these questions more specifically.

Text also brings with it the legion complexities of natural language. Pause for a moment

to consider how rich, nuanced, and complicated language can be. Teachers find it challeng-

ing enough to instruct students on how to properly communicate their ideas orally and in the

written word. Language comprises grammar, semantic meaning, syntax, humor, negation, sar-

casm. . . and the list continues. As humans, we have engineered the most incredible, the most

ingenious, ways to communicate the complexities of emotion, desire, feeling, and belief. Set a

monkey to your laptop for all eternity—I guarantee you it will not produce the works of Shake-

speare. How can we possibly expect computers or statistical methods to comprehend, or lever-

age, the information contained in the spoken or written word?

The short answer is that we cannot, but we are getting closer. To date, the methods used

12

in political science make simplifying assumptions that, while troublesome for a linguist, result

in methods that perform fairly well. For instance, nearly all methods used in political science

make the ‘bag of words’ assumption. This assumes that words are exchangeable, meaning that

words in a document occur with some probability independent of the words that appear before

or after. This clearly makes no sense. Word order matters quite a lot for humans to comprehend

one another. Yet, perhaps surprisingly, ignoring word order and simply accounting for word

occurrence can account for many patterns of substantive interest. Does the word ‘alien’ appear

in a document addressing immigration? If so, we probably (though not certainly) can infer at

least the general perspective of the author.

Advances in computer science include the development of deep learning methodologies.

These methods have proven so successful that they power many technologies we use daily:

speech recognition and talk-to-text applications on cell phones, facial recognition in social me-

dia platforms, and automated language translation, to name but a few. These tools have also

proven useful in natural language processing and text analytic task. In this dissertation, I use

them to estimate political tone and ideology, and to capture the semantic and syntactic mean-

ing of words in political texts, but they have been used in more text analytic tasks than I can

possibly recount here: sentiment analysis, topic modeling, authorship detection, generating

new texts, and on and on.

The myriad methods—deep learning or otherwise—for text analysis makes this area both

inviting and foreboding. Grimmer and Stewart (2013), in an invaluable overview published by

Political Analysis, point out two facts about text methods. First, borrowing from Box (1979), “All

quantitative models of language are wrong—but some are useful.” Second, there is no single

best automated text analysis method. In other words, what renders text analysis so challenging

is not that the methods are impossibly complicated—most are not—but the diversity of meth-

ods available, and the many choices we must make in order to quantitatively analyze textual

data.

13

1.4 Processing & Preparing Text for Analysis

In most applied political research to date, scholars apply bag of words models, which treat

documents as exchangeable distributions of words or phrases. These methods underly the

methods discussed in the first chapter of this thesis, and I discuss processing for this family

of models first. I also discuss data processing for more advanced applications, which relax the

exchangeability assumption and attempt to account for word order, which features heavily in

the second chapter of this paper.

1.4.1 Bag of Words

Bag of word, or BOW, models treat documents as exchangeable distributions of words or

phrases. According to this assumption, the order in which words occur does not matter. For

actual language, this assumption clearly does not hold. For human comprehension, we require

a logical sequence of words to express a point, and we can easily concoct sentences where word

order is of paramount importance. (For example, compare the meaning of the sentences “I am

not a crook.” to “Am I not a crook?”)

Perhaps surprisingly, though, BOW methods perform well despite this lack of verisimilitude.

For many predictive tasks, knowing that a word (or phrase) occurs in a document provides suf-

ficient evidence, even if we ignore where in the document that word appears. For example,

if a news story contains the two-word phrase “second amendment” several times, the story is

probably discussing gun rights. Where in the document this word occurs will not often matter.

By assuming exchangeability of the words or word phrases, we maintain considerable predic-

tive ability, while simplifying how we quantitatively represent documents, and how we apply

models to these data.

Document-Term Representation In BOW models, we nearly always represent documents as

a ‘document-term’ matrix (DTM). (Clearly the transpose of such a matrix would be a ‘term-

document’ matrix, so these are equivalent.) The DTM contains a row for every document in the

collection of texts, which we call the corpus, and contains a column for every unique word in the

14

vocabulary. The most basic DTM contains word counts. For example, if the word “president”

occurs three times in the first document, then the first row, “president” column of our DTM will

contain a 3.

The DTM can also be populated with various weighted representations of the words. Fre-

quent weights are document-proportions, which take term frequencies and divide them by the

number of words in a document. This gives a sense of how prevalent a word is in a document,

and helps to ‘control’ for document length. Another common weight is the term frequency-

inverse document frequency (tf-idf) weight, which provides higher weights for terms that dif-

ferentiate documents. If D is the number of documents in the corpus, X is the document-term

matrix, and xd ,v is the number of times that word v occurs in document d , the tf-idf weight is

defined as:

tf-idf(d , v) = xd ,v × log
D∑

d I(v ∈ d)
(1.1)

where I(·) is the indicator function, returning 1 if the argument is true, and zero otherwise,

and (v ∈ d) means that term v occurs in document d . In plain English, the tf-idf score gives

higher weights to terms that (a) occur in many times in a document; (b) occur in only a few

other documents; (c) a combination of (a) and (b). If a word occurs in every document in a

corpus—for example, prepositions typically occur in nearly all natural language—the term fre-

quency gets weighted by log(1) = 0. If a word occurs in only ten percent of documents, the term

frequency gets up-weighted by a factor of log10 ≈ 2.3.

Unit of Analysis For many documents, the unit of analysis is straightforward. If we seek to

measure the sentiment of user tweets on Twitter, we would probably treat the tweet as the unit

of analysis. In such a situation, we would hand-label some subset of tweets as falling into our

sentiment categories (e.g., ‘positive,’ ‘neutral,’ or ‘negative’), fit a model to these data, and after

tuning the model, use learned parameters to generate predictions for a large class of new data.

In many applications, however, the unit of analysis is not entirely straightforward. If we seek

15

to classify the ideological content of political speech, should we attempt to classify the entire

speech as a single document? Should we parse the speech into paragraphs, or sentences?

Maintaining larger documents can make classification more reliable. Language is noisy, and

small perturbations in word use in short documents could spur large shifts in predictions. For

example, if a candidate for office says “All my opponent cares about is the second amendment,”

a statistical model may infer that the use of ‘second amendment’ indicates that represents a

conservative viewpoint. In a longer document, however, we would undoubtedly see far more

indicators of a liberal perspective, which could reduce our mis-classification rate.

On the other hand, shorter documents can better represent mixtures of classifications. If we

seek to observe how much a candidate is sampling his or her language from ‘religious conserva-

tive’ versus ‘libertarian’ ideologies, we may justifiably parse single speeches into its component

sentences. This would allow us to model how a candidate switches between two ideological

schools of thought in a single speech.

Choosing the unit of analysis for text modeling is task dependent, and requires the analyst

to balance between the amount of information provided in a single document (i.e., longer doc-

uments provide more information) with the expected nuance of documents themselves.

Text Cleaning In many applications, researchers prefer to strip text of capitalization, punctu-

ation, numerals, and non-typical characters. Under such a text cleaning regime, a document

that says “I would like to buy 100 widgets!! Thanks!! :)” would be converted to the string “i

would like to buy widgets thanks”. Clearly some information is lost in this process, but in many

applied settings the information loss is compensated for by simplifying the resulting vocabu-

lary. (In the first instance, the single-word vocabulary would be “I”, “would”, “like”, “to”, “buy”,

“100”, “widgets”, “!”, “Thanks”, “:)”, while the second would simply be “i”, “would”, “like”, “to”,

“buy”, “widgets”, “thanks”).

Stemming Stemming simply means reducing words to their linguistic stems, dropping suf-

fixes that do not frequently alter the meaning of the word itself. For example, the words “repeal,”

16

“repealed,” and “repealing” convey much the same thing: that a piece of legislation is being, or

has been, or should be repealed. Once we know that the author is discussing repealing, the suf-

fix itself provides scant new information. Stemming also helps to reduce the dimensionality of

the vocabulary, by collapsing variations on single words into a single term. In other words, in-

stead of counting the three ‘repeal’ words separately, we define a single ‘repeal’ stem and count

all versions of that term as instantiations of the same term.

N-Gramming Words do not always convey meaning in isolation. The word ‘pride’ conveys

different meaning if combined with ‘gay’ versus with ‘American’. The BOW assumption that

words are exchangeable would treat the word ‘pride’ the same, whether it occurs after ‘gay’ or

after ‘American.’ To maintain the simplicity of the BOW assumption, but still allow for some

local word ordering, we can generate vocabularies of N-grams, or N−word phrases. To gener-

ate bigrams, or two-word phrases, from the string “We should support gay pride movements,”

we simply take every two-word phrase that occurs in the text: “We should,” “should support,”

“support gay,” “gay pride,” “pride movements.” Each two-word phrase is treated as a unique

term, as if these phrases were a single word.

Documents can be represented as collections of unigrams, bi-grams, tri-grams, or higher-

order n-grams. Without some principled thinning of the vocabulary, however, this process can

dramatically expand the dimension of the vocabulary. Even for the example sentence above,

the vocabulary of unique words or word phrases is five unigrams, nine unigrams and bigrams,

and twelve unigrams, bigrams and trigrams, and so forth. When applied carefully, however,

n-gramming can ease the restrictiveness of the BOW assumptions, by allowing for local depen-

dence of words in meaningful multi-word phrases.

Vocabulary Reduction Theoretically, we would like to employ all available information in a

text corpus. This may include all unique words, as well as all multi-word phrases, that appear

in a given corpus. Unfortunately, this will nearly always be too computationally expensive, and

inefficient for predictive purposes. Many words, and most multi-word phrases, convey little

17

substantive meaning, and thus provide little useful information to leverage in modeling situa-

tions. In the previously mentioned sentence, for example, all of the two-word phrases except

“gay pride” convey little information about the perspective of the author. Including all one- and

multi-word phrases as predictors in a statistical model will prove inefficient, computationally

expensive and can reduce the accuracy of the resulting model.

Thinning the vocabulary is something of an art. Most commonly, researchers remove terms

(either words or multi-word phrases) that do not occur sufficiently frequently in the corpus, or

do not occur in a sufficient number of documents. This filters out very rare words, typograph-

ical errors, or other unique terms (like social media user names, or other hypertext mark-up)

that will almost certainly not assist us in substantive research tasks. The process of thinning vo-

cabulary frequently requires some trial-and-error, to balance efficiency against the potentially

useful information conveyed by the inclusion of rarer terms.

Many researchers also choose to filter out stop words, or very common words, that convey

little information by themselves. Stop words usually include prepositions, functional words like

‘the,’ ‘is,’ ‘which,’ ‘that,’ and pronouns. One can easily imagine situations where stop words con-

vey necessary information, or else might convey information useful for substantive research. If

we concern ourselves with the gendered nature of political language, for instance, we would

want to preserve the use of gendered pronouns like ‘him’ or ‘his’ versus ‘her’ and ‘her’s.’ On the

other hand, if we seek to model the process by which states adapt legislation from other states,

we may add functional words, like the names of state-specific agencies or institutions, to the

list of stop-words. The ultimate choice is task-specific, though in applied research, it is more

common to drop stop words than to retain them.

1.4.2 Preserving Word Order

Word order is essential for language comprehension. By making the exchangeability as-

sumption of BOW models, we potentially ignore valuable information. Further, despite the

modeling convenience by ignoring temporal dependence of word use, BOW models require the

18

analyst to make many consequential choices, such as how large of n-grams to generate from

a corpus, how to filter out the vast majority of uninformative n-grams, and generally how to

represent local word dependence without making the resulting vocabulary too large to be prac-

tical.

To set aside the exchangeability assumption requires a different manner of quantitatively

representing documents. Since words are no longer exchangeable, the document-term matrix

no longer suffices. Instead, we need to construct a matrix representation of documents that

preserves word order. Instead of representing a document as a row in a DTM, we represent a

single document as a matrix, where each row represents a single word, and rows are stacked in

the order of the words in a document.

I will discuss two common ways to encode the row values: one-hot vectors, and distributed

word vectors. We can still stem, n-gram, strip punctuation and numbers, and convert all letters

to lowercase, before constructing the one-hot or distributed word matrices. Since we preserve

word-order, it’s less important to n-gram, but we still typically convert to lowercase. The other

options are left to the analyst.

One-Hot Word Representation The simplest way to represent a word is one-hot encoding. A

one-hot vector for words will have an cell corresponding to every word in the vocabulary, and

will show 1 in the cell corresponding to the word in question, and 0 elsewhere. For example, if

we are one-hot encoding the document “Our children can achieve great things,” the first row

of the matrix will have a 1 for the entry corresponding to the word ‘our’ and 0 elsewhere; the

second row will have a 1 for the entry corresponding to the word ‘children’ and 0 elsewhere; and

so forth.

Distributed Word Representation One-hot representations are sparse, but tend to be very

high-dimensional. Even in moderately sized corpora, there will tend to be thousands of unique

words, meaning that the one-hot vectors will have length in the thousands. We may suspect,

however, that the data in V dimensions may be well represented, or summarized, in far fewer

19

(say L ¿ V) dimensions. Such a suspicion would be well-founded in natural language mod-

eling, since many words will be convey similar information, or be used in similar contexts. In

Chapter 2 of this thesis, I will discuss one popular such reduction: neural word embeddings,

made famous by Google’s word2vec model and similar work.

Constructing a distributed representation of a document looks much the same as the one-

hot. Instead of each word in the vocabulary being represented by a long and sparse one-hot

vector, each word is represented by a dense vector of length L. Typical values for L are between

100 and 500, meaning that we represent each word as existing in some continuous 100 to 500

dimensional space. The document is represented with one row for every word, stacked in the

order in which the words appear in the document.

Document Padding In the BOW approach, we represent an entire corpus as a single DTM,

with one row for each document. By preserving the order of words, each document is repre-

sented as a matrix, with as many rows as there are words in the document. An entire corpus,

then, will be represented as a three-dimensional array, where we stack all document matrices

together.

For such a representation, however, we require each of the matrices to have the same di-

mension. Every word is represented in the same L dimensions, but each document will contain

a different number of words. To fix this issue, it is common to pad or truncate documents to the

same length. If the longest document in our corpus has 50 words, we may force all documents

to have 50 rows. Any document that has fewer than 50 words will be padded with some filler

word (which isn’t a real word, usually just the spacer </s>). So for a thirty-word document,

the first thirty rows will be populated by the L-dimensional word representations correspond-

ing to those thirty words. The remaining twenty rows will be filled with the representation for

the filler word. If some documents are too long, we may set the document length to be some-

where between the shortest and longest, in which case documents over, say, 50 words will be

truncated—i.e., we might just cut off any words past fifty.

20

By preserving word order, we are typically required to specify a unit of analysis to be fairly

small. Sentences, tweets, clauses or paragraphs may contain tens to low-hundreds of words, but

entire speeches, news stories, chapters or books will contain many thousands to hundreds of

thousands of words. (The reader must keep in mind that the number of words in a document is

not the number of unique words, it is how many total words the document contains.) A single-

spaced six-page paper may contain 3000-4000 words by itself. The multi-dimensional array

representation for a corpus can get unwieldy very quickly, making it difficult to store the array

in memory, much less fit a model to it. As such, longer documents (e.g., chapters of a book) are

typically parsed into smaller chunks (e.g., paragraphs) before converting to an array.

21

2 DEEP NEURAL NETWORKS FOR TEXT CLASSIFICATION

The complications inherent in mining usable data from text are not new to political science.

As Krippendorff (2004) and Hopkins & King (2010) note, researchers have been “content ana-

lyzing” political text for at least six decades. For much of this period, content analysis required

scholars and trained coders to wade through stacks of documents, coding each by hand accord-

ing to criteria established by the research project. Faster computing and more advanced tech-

nical capacity have permitted researchers to engineer tools for automated or semi-automated

content analysis (Laver, Benoit & Garry 2003, Grimmer & Stewart 2013). Yet, as always, there

must be tradeoffs. No algorithm or statistical model can perfectly process text for every schol-

arly application. More importantly, purely unsupervised approaches leave little room for theo-

rists’ particular questions and concerns to guide the empirical process. In this article, I propose

a supervised and highly customizable model, and present a class of questions it is well cali-

brated to answer.

This paper addresses an emerging tool in machine learning, known broadly as ‘deep learn-

ing’ methods. This set of tools involves the use of neural networks with multiple layers of hidden

nodes to learn patterns in data (LeCun, Bengio & Hinton 2015, Schmidhuber 2015)1. Multi-layer

neural networks offer some strengths that other methods do not. Namely, neural network mod-

els provide straightforward ways to account for deep interactivity, interconnectivity and nonlin-

earities in the data (Pal & Mitra 1992, Belue & Bauer 1995). These strengths are particularly use-

ful when modeling text corpora, since language involves high degrees of interactivity. For exam-

ple, the phrases ‘climate,’ ‘change,’ ‘climate change,’ and ‘so-called climate change’ all convey

different meaning. Dictionary-based methods, which might categorize documents into topics,

1What makes these models ‘deep’ is the multiple layers of hidden nodes, rather than using a single layer of
hidden nodes.

22

frames, or ideological perspectives based on word occurrence, will fail to account for the inter-

active effect of combining ‘so-called’ and ‘climate change’ unless the researcher can specify the

pattern a priori (Iyyer et al. 2014). More sophisticated structural approaches, like latent dirichlet

allocation (LDA) or structural topic models (STM) and their variants, might model multi-word

(n-gram) phrases (Blei, Ng & Jordan 2003, Blei 2012, Wang, Zhang & Zhai 2011, Roberts, Stewart,

Tingley, Airoldi & Others 2013). Deep learning methods offer some natural, and flexible, ways

to automatically account for such interaction between words and phrases in natural language

(Collobert, Weston, Bottou, Karlen, Kavukcuoglu & Kuksa 2011, Collobert & Weston 2008).

That said, deep learning methods also suffer some weaknesses. This class of models tends

to be computationally intensive, especially as the size of the data grows. This inefficiency arises

from several sources, the primary of which are the large numbers of parameters the models re-

quire us to estimate, and the need to iteratively update parameters in stages (Glorot & Bengio

2010). The flexibility of artificial neural networks (ANNs) also make it extremely easy to overfit

to training data, requiring analysts to regularize and ideally—though this can be challenging

considering computational efficiency—cross-validate the models (Tu 1996, Zhang 2000, Srivas-

tava, Hinton, Krizhevsky, Sutskever & Salakhutdinov 2014). Finally, ANNs can appear as ‘black

box’ tools that provide few ways of assessing the model estimates, aside from the model’s pre-

dictive power. Structural models, like regression-based approaches, allow for the analyst to

see parameter estimates and assess their face validity. For example, the analyst could view the

words that receive the highest weighting vis-à-vis a topic category. The analyst could then eval-

uate whether the words most closely associated with a topic make sense. ANNs, however, often

involve hundreds or thousands of parameters, which interact with each other at the multiple

layers of the network. As mentioned above, this has the advantage of accounting for high-order

interactivity in the data, but it renders is difficult to evaluate what information the model finds

most useful in making predictions.

Many varieties of neural networks exist, some of which alter this architecture in whole or

23

in part. I will discuss a promising extension in the following chapter. In this chapter, however,

I focus entirely on fully connected, feed forward networks. I begin by defining feed-forward

ANNs, then discuss some issues of model specification, before presenting a short simulation

experiment, along with two applications using data on the tone of statements in a presidential

debate, and the ideological content of political books.

2.1 Neural Network Models

Artificial neural network models comprise a family of methods based on a stylized under-

standing of cognitive function. A detailed explanation of brain functioning goes beyond the

scope of this paper (and beyond the ability of the author). In broad strokes, brains comprise

dense networks of neurons connected by axons and dendrites, the former responsible for send-

ing electrical and chemical signals across the network, and the latter responsible for accepting

signals from elsewhere in the network. The responsibility of the neuron is to perform very ba-

sic computation on the signals and to decide how and where to pass it through the network.

Taken by itself, a single neuron is not capable of learning in any meaningful way. Embedded in

a network with millions or billions of other neurons, however, the networked structure provides

incredible information processing and pattern learning power.

ANNs loosely replicate this style of learning by connecting individual, simple computations,

forming an arbitrarily large and complicated network. Put simply, neural networks are dis-

tributed learning models. ANNs take training data as an input, and distribute processing across

units called nodes. Information is passed between those nodes along edges in an attempt to

discover (potentially complex) patterns in the data. The information being passed are vectors

or matrices of data, or more often, the weighted and transformed vectors.

In this section, I will make these concepts more concrete. I begin with a basic ANN, its

structure and how parameters are fit. I then continue to describe richer neural network models,

including the ‘deeper’ architectures with multiple layers of hidden nodes.

24

2.1.1 Neural Network Basics

To begin, I will address some basic terminology. Neural networks aid researchers in learning

patterns in data that can map inputs onto outputs. For illustration, see Figure 2.1. Inputs (the

x’s in the figure) are the variables we use to make predictions about the outputs (the y). For

example, we might seek to model the topics of documents using the words contained in those

documents. In that situation, the topic for each document is the output, while we could use

vectors of word counts for each document as inputs. In a supervised learning task, which will

be the focus of this paper, these topic labels are known.2 The additional input labeled 1 in Figure

2.1 represents the bias, or the equivalent to the intercept in a regression framework. The units of

the ANN, represented by circles in the graph, are called nodes. Nodes are graphically connected

to other nodes via edges, which symbolize weights. Inputs are weighted and then combined

and potentially transformed at the nodes. If the network has multiple layers of nodes, these

‘messages’ are then passed forward through the network. If, as in Figure 2.1, the network only

has two layer of nodes, the input and the output, the ‘message’ is weighted to directly form

predictions of the output.

Regression Example

Logistic Regression Because this can all seem quite abstract, we can consider a simple case

to build the intuition of ANNs. Consider some training data {Y , X } with target (i.e., dependent

variable) Y and inputs (i.e., predictors) X. We will index the training cases with i = (1,2, ...N),

and will index the inputs with p = (1,2, ...P). A typical approach to the problem would be to

2The contrasting situation is unsupervised learning, where part of the inference task is to learn the topics them-
selves. The difference between supervised and unsupervised can be thought of as the difference between con-
firmatory and exploratory factor analysis. In the former setting, the analyst has a theoretically-grounded sense
of the underlying dimensions and is trying to use that pre-defined structure to learn from the data; in the latter,
the researcher will try to find underlying structure in the data and interpret the results post-estimation. In topic
modeling, supervised methods require training data where documents come with hand-labeled topics, while in
unsupervised models the documents are ‘clustered’ by similar language, and the analyst tries to identify the mean-
ing of the clusters after fitting the model.

25

specify some mapping from inputs to outputs, for example

yi =g (β0 +β1xi 1 +β2xi 2 + ...βP xi P +εi)

=h(β0 +Xiβ+εi) (2.1)

This familiar setup involves a linear combination of inputs (β0+Xiβ) and some transforma-

tion (h(·)) of that linear combination. With continuous outputs, we might allow h to simply be

the identify function. For binary outputs, we may instead perform a sigmoid transformation,

often with the inverse logit (softmax) function or with the standard normal cumulative distri-

bution (probit) function. For this example, we will assume that yi ∈ {0,1}, and that the link is

the inverse logit, i.e., h(z) = exp(z)/(1+exp(z)).

This problem can be recast as a simple ANN, shown in Figure 2.1. In this example, the inputs

are the predictors in the regression, such that X1 in the figure represents the length-N vector of

inputs for the first predictor. As in a regression framework, the 1 input corresponds to a length-

N vector of ones for the intercept. The edges represent the parameters in the regression model.

The edge connecting X1 to the node ŷ represents β1, the edge connecting 1 to node ŷ represents

the β0, and so forth. The computation happening at node ŷ is twofold. First, we take the linear

combination of the weights and inputs (β0 +Xβ) and then we transform the resulting vector

using the inverse logit function.

Fitting We can estimate the weights in this model by minimizing some loss function via gra-

dient descent. For example, in many applied settings, we minimize the sum of the squared er-

ror. In that situation, we would initialize the β weights to starting values, take the transformed

linear combination of the inputs and weights at the hidden node, and compute the squared

differences between the predictions and the target outputs. To minimize the loss, we take the

derivative of the loss at the current parameter estimates, and adjust these values in the direction

of the gradient. If we superscript current estimates at iteration t , and signify the inverse logit

26

function with σ(·), the error and gradient are

E (t) =
N∑
i

(
(yi −σ(β(t)

0 +Xiβ
(t)))

)2 (2.2)

∂E (t)

∂β
=

N∑
i
σ(yi −β0 −Xiβ

(t))(β0 −Xiβ
(t))(1−β0 −Xiβ

(t))Xi

=
N∑
i
σ(yi − ŷ (t))(ŷ (t))(1− ŷ (t))Xi (2.3)

where we substitute ŷ (t) for the predicted value of y at the current value of the parameters,

i.e. ŷ =σ(β(t)
0 +Xiβ

(t)), for simplicity.

With a binary output, we might prefer a different loss. The cross-entropy loss function, given

in Equation 2.4, offers an alternative.

E (t) =−
N∑
i

(
yi ln ŷ (t)

i + (1− yi) ln(1− ŷ (t)
i)

)
(2.4)

∂E (t)

∂β
=

N∑
i

(ŷ (t)
i − yi)Xi (2.5)

I skip some algebraic manipulation to arrive at Equation 2.5, which we obtain with two ap-

plications of the chain rule. The result is rather elegant. As the equation shows, the derivative

of the cross-entropy function simplifies to an expression in terms of (ŷ (t)
i − yi), or the differ-

ence between the prediction and the target output value. Contrast this with the expression in

Equation 2.3, where the magnitude of the derivative depends onσ(yi − ŷ (t)
i). Referring to Figure

2.2, one can see that the sigmoid function curve levels off at either extreme. In the classifica-

tion (or logistic regression) scenario, this would correspond to situations where the predicted

probabilities are either close to zero, or close to one.

As a result, the gradient descent algorithm will tend to slow when predictions approach one

or zero. Similarly, updating can be slower with the squared error loss because errors are simply

penalized less. In a situation where the target output for observation i is 1 and the predicted

probability ŷi is 0.2, the loss under squared error would be (1− 0.2)2 = 0.64. Conversely, the

27

loss under cross-entropy would be −1(ln0.2) = 1.61. This can be seen more clearly in Figure 2.2,

which shows the loss incurred under squared error and cross-entropy.

Algorithm 1 A simple gradient descent optimization procedure.
Initialize parameter values
while Making Progress & Not Too Tired do

Compute predictions ŷ(t) =σ(β(t)
0 +Xβ(t))

Compute loss E (t) = `(ŷ(t),y)
Update weight proportional to gradient at ŷ(t)

end while

The fitting procedure for this case, then, involves defining the desired loss function, and

then implementing a gradient descent algorithm. This is straightforward to do. Parameters

are initialized to starting values, and predictions are generated by feeding the inputs forward

through the network. In this case, that simply means multiplying the inputs by the appropriate

weights, adding the bias term, and transforming this quantity. We then estimate the error, and

update the parameters in the direction of the gradient. In practice, this typically involves eval-

uating the gradient at the current prediction, and multiplying this quantity by a small ‘step size’

(e.g., 0.01), to prevent the algorithm from moving too quickly along the error surface and over-

shooting the optimum. Mathematically, this means we would update parameters according to

the rule β(t+1) =β(t) + ∂`(y,ŷ)
∂β ×h, where `(·) is the desired loss function, and h is the step size.

2.1.2 Richer Networks

The primary flexibility of ANNs rests in model specification. We can add more hidden nodes,

and we can stack multiple layers of hidden nodes. Doing so enhances the model’s ability to

adapt to complex patterns in the data. In this section, I will introduce how larger and deeper

networks can be constructed, and how to adapt the parameter estimation procedure to account

for this additional structure.

28

Adding Nodes

Description We can include additional hidden nodes in the network, as shown in Figure 2.3.

In our running example, this essentially transforms the logistic regression problem into an en-

semble of regressions. Each input in the network is connected to each of the hidden nodes by

a weight. The hidden nodes perform the same transformations as before, but the output from

each of the hidden nodes is weighted to generate the final prediction.

The advantage of this set-up is the additional flexibility for the model to learn complex pat-

terns in the inputs. Consider situations where the data contains interactivity between inputs. In

a regression setup, the analyst would need to specify appropriate interactions a priori. A neural

network with multiple hidden nodes can adapt to this interactivity automatically. To see why,

consider Figure 2.3. The inputs x1 and x2 are connected to hidden nodes h1,h2, ...hk , which

allows for different combinations of weights for x1 and x2. For example, maybe x1 gets a higher

weight when the weight on x2 is low, and vice versa. This is interactivity of the kind we might

specify in a regression model, except that we can learn these patterns without defining them

before fitting the model.

Such a network is easily represented using matrix notation. Unlike the zero-node network

above, the multi-node network treats the weights β as two matrices. Assume that we have P

input variables defined for our N observations. We can stack these inputs to a (N ×P) input

matrix. The first matrix of weights of dimension (P ×K) connects the input layer to the layer of

K hidden nodes. Each hidden node thus represents a (N ×1) vector, which horizontally stacked

yields a (N ×K) matrix.

To generate the predicted y values, we need to postmultiply the hidden nodes by the K

weights connecting the hidden layer to the output. This is represented in Figure 2.3 by the

edges from the hidden layer to the output y . Again, we represent this stage of the network in

matrix form, multiplying the stacked (N×K) hidden layer by the (K ×1) weights, yielding (N×1)

predictions for the N observations.

29

Estimation via Error Backpropagation We fit a one-layer ANN with multiple nodes in the

hidden layer using gradient descent via back propagation (Chauvin & Rumelhart 1995, Goh

1995). To see why we require an adaptation of vanilla gradient descent, consider the feed-

forward procedure for generating predictions using the network. Inputs are first linearly com-

bined with the first set of weights, and transformed with our chosen activation function. The

hidden nodes are then linearly combined with another set of weights connecting them to the

output, and again transformed via the chosen activation function. That is, we have two sets

of weights to learn: the (P ×K) weights connecting the inputs to hidden layer, and the (K ×1)

weights connecting the hidden layer to the output3.

Recall that ‘learning’ the weights just means optimizing the weights vis-à-vis some loss func-

tion. In the logistic regression example, we may seek to minimize the cross-entropy loss, mean-

ing that we update the weights in the direction of the loss gradient. With a hidden layer of

nodes, however, the loss is a function of both sets of weights. The predictions, and therefore the

errors and loss, are functions of the weights connecting the output to the hidden nodes, which

are themselves functions of the inputs and the weights that connect them to the hidden layer.

To make this point clearer, let us employ some mathematical precision. Assume that we

seek to predict a binary output y of length N = 100 using an ANN with one hidden layer of five

hidden nodes. We are using 10 inputs, i.e. predictors, for the task, so that our input matrix X has

dimension 100×10 . Assume that the activation function is the sigmoid function, σ(·).

Subscripts will index positions in a matrix. For example, xi ,p is the value for the i th obser-

vation on the p th input. The stacked hidden layer is H, such that hi ,k is the value for the i th

observation at the k th hidden node, and H·,k refers to the entire length-N vector for the k th

hidden node. Superscripts refer to sets, so that β(1) refers to the weight matrix connecting the

inputs to the first (and in this case only) layer of hidden nodes, and β(2) is the weight matrix

connecting the hidden layer to the output. This implies that β(1) exists in (10×5) dimensional

3For further explanations, see Gori & Tesi (1992), Hecht-Nielsen (1989), Werbos (1994), Yu & Deng (2011).

30

space, and β(2) exists in (5×1) dimensional space.

We randomly initialize the weights in the network and feed our inputs forward. First, we

compute the value of the hidden layer: H ≡σ(Xβ(1)). Second, we compute the value of the net-

work output: ŷ ≡ σ(Hβ(2)). This second expression explains why we require backpropagation,

though it’s not immediately apparent. If we substitute in the first expression into the second,

we see that ŷ ≡σ(σ(Xβ(1))β(2)). In other words, the output (and thus the incurred loss from our

errors) is a composite function, i.e., a function of a function. In order to take the derivative of

the loss with respect to the weights, we need to differentiate the composite function.

Fortunately, the calculus produces an elegant and intuitive optimization algorithm. Imagine

we have fed forward our inputs the randomly initialized weights, thereby obtaining our outputs

ŷ, which are the predicted values of our target variable y. With cross-entropy loss, the total loss

for the network is given:

E =−
N∑

i=1
(yi log(ŷi)+ (1− yi) log(1− ŷi))

=−
N∑

i=1
(yi log(σ(Hi ,·β(2)))+ (1− yi) log(1−σ(Hi ,·β(2)))) (2.6)

Let us deal only with the β(2) parameter matrix for the moment. To obtain the update rule

for β(2), we differentiate the loss with respect to β(2), which requires the chain rule. To wit:

∂E

∂β(2)
= ∂E

∂σ(Hβ(2))

∂σ(Hβ(2))

∂Hβ(2)

∂Hβ(2)

∂β(2)
(2.7)

To conserve space, I skip some algebraic manipulation, but we can consider each piece in-

dividually. The first term takes the derivative of the cross-entropy function w.r.t. the output

values σ(Hβ(2))− ŷ:

∂E

∂σ(Hβ(2))
=−

N∑
i=1

∂E

∂ŷi
=−

N∑
i=1

(yi

ŷi
+ 1− yi

1− ŷi

)
=

N∑
i=1

ŷi − yi

ŷi (1− ŷi)
(2.8)

31

For the second term, we differentiate the output with respect to the linear transformation

input to the sigmoid function:

∂σ(Hβ(2))

∂Hβ(2)
=

N∑
i=1

K∑
k=1

σ(hi ,kβ
(2)
k)(1−σ(hi ,kβ

(2)
k)) =

N∑
i=1

ŷi (1− ŷi) (2.9)

where we drop the summation over k since ŷi =∑K
k=1 hi ,kβ

(2)
k .

Finally, the third term differentiates the linear combination of H and β(2) w.r.t. each β(2)
k :

∂Hβ(2)

∂β(2)
k

= ∂

∂β(2)
k

K∑
k=1

hi ,kβ
(2)
k =

N∑
i=1

hi ,k (2.10)

Putting these together yields the expression for the gradient of the loss w.r.t. each β(2)
k :

∂E

∂β(2)
k

=
N∑

i=1

ŷi − yi

ŷi (1− ŷi)
ŷi (1− ŷi) hi ,k =

N∑
i=1

(ŷi − yi)hi ,k (2.11)

We now have our updating rule for each of the β(2)
k : we will update the weights in proportion

to the gradient in Equation 2.11. In other words, ∆β(2)
k ∝∑N

i=1(ŷi − yi)hi ,k .

At this point, we need to perform a similar procedure for the first set of weights, β(1). Doing

so appears complicated, but will simplify nicely. As before, we need to differentiate the loss,

now w.r.t. β(1). Recall that β(1) is a (P ×K) matrix, such that β(1)
p,k connects the input vector X·,p

to hidden node Hk , i.e. that hi ,k = σ(xi ,pβp,k). Let us consider the update rule for one such

weight, βp,k thus:

∂E

∂βp,k
= ∂

∂βp,k

N∑
i=1

yi log(ŷi)+ (1− yi) log(1− ŷi)

= ∂E

∂β(1)
p,k

∑
i

yi log(σ(σ(xi ,pβp,k)β(2)
k))+ (1− yi) log(1−σ(σ(xi ,pβp,k)β(2)

k)) (2.12)

Given the nested nature of these functions, we need to yet again apply the chain rule. It can

32

be shown that

∂E

∂β(1)
p,k

=∑
i

(∂E

∂ŷi

∂ŷi

∂hi ,kβ
(2)
k

∂hi ,kβ
(2)
k

∂hi ,k

∂hi ,k

∂xi ,pβ
(1)
p,k

∂xi ,pβ
(1)
p,k

∂β(1)
p,k

)
(2.13)

Fortunately, we have already computed some of these components in the first stage above,

and the ones that we have not are easily derived. I will again skip some manipulations, but it

can be readily verified that:

∂E

∂β(1)
p,k

=∑
i

(ŷi − yi)β(2)
k hi ,k (1−hi ,k)xi ,p (2.14)

It is possible to lose the forest for the mathematical trees, so let us consider the intuitive

meaning of Equation 2.14. In deciding how much to update a particular weight β(1)
p,k connecting

the input p to the hidden node k, we end up considering four pieces: (1) the magnitude of the

error, given as (ŷi − yi); (2) the weight connecting that error to the hidden node k, given as β(2)
k ;

(3) the value of the hidden node k, given as hi ,k ; and the value of the p th input, xi ,p .

All else equal, larger updates for β(1)
p,k occur when errors are large, or when β(2)

k is large, or

when hi ,k = σ(xi ,pβ
(1)
p,k) is large. In other words, we apportion ‘blame’ for errors to the various

weights in proportion to their magnitude. This should make sense. If β(2)
k were very small, this

would imply that the hidden node Hk has little influence on the predictions, and thus bears

little responsibility for the errors. We therefore apportion even less blame to the parameters

β(1)
·,k that contribute to the value of Hk . Put simply, with great weight comes great responsibility,

and we update parameters accordingly.

The above also suggests an iterative approach to updating the weights. If we start by up-

dating the β(2) weights, we will already have computed the first term in Equation 2.14 when we

move on to updating the β(1). After a full backward pass through the network, all weights will

have been updated, after which we feed inputs forward, generate predictions and the new loss

can be computed.

33

Algorithm 2 Backpropagation gradient descent algorithm for neural network with one hidden
layer.

Initialize parameter values
while Making Progress & Not Too Tired do

Feed forward inputs through the network: (a) H =σ(Xβ(1)); (b) ŷ =σ(Hβ(2))
Compute loss E = `(ŷ,y)
Update weights β(2): ∆β(2)

k ∝∑N
i=1(ŷi − yi)hi ,k

Update weights β(1) via backpropagation: ∆β(1)
p,k ∝∑

i (ŷi − yi)β(2)
k hi ,k (1−hi ,k)xi ,p

end while

Computationally, much of this process can be simplified via vectorization and linear alge-

bra. Many software packages (e.g., R, Python or Julia) offer fast and efficient matrix operations,

often called from lower-level languages (e.g., C or C++). The scalar representations present a

more intuitive explanation, but implementation will nearly always benefit from vectorization.

Adding Layers

To account for additionally complex patterns in data, we can add more layers of hidden

nodes to the network (Schmidhuber 2015, LeCun, Bengio & Hinton 2015, Hinton, Osindero &

Teh 2006). This is essentially what transforms the network from a basic artificial neural network

to a ‘deep’ neural network. Figure 2.4 represents one such network, with two layers of hidden

nodes.

The deep network operates in a similar manner as the one-layer version. Inputs are linearly

combined with weights and transformed, yielding N -dimensional vectors for each node in the

first hidden layer. These vectors are then linearly combined with the next set of weights and

transformed, yielding an N -dimensional vector for each node in the second hidden layer. These

are in turn weighted and transformed, as in the one-layer example, to generate predictions for

the output y .

In the figure, both hidden layers contain K nodes, but deep neural networks can handle dif-

ferent numbers of hidden nodes in each layer. The number of hidden layers, and the number

of nodes in each layer, are parameters that the analyst must specify. As the complexity of the

34

network increases, so too does its ability to learn complicated patterns in the input data. Simi-

larly, we need not assume that the same activation function operates on each hidden layer—or

indeed, even on each node within a layer!—but such an assumption makes the mathematical

derivation for the optimization routine simpler.

Estimation via Error Backpropagation Fortunately, we need to only make minimal changes

to the backpropagation algorithm discussed in the previous section to fit ANN models of arbi-

trary depth. In fact, we have already seen that gradient of the the one-hidden-layer ANN just

requires repeated applications of the chain rule. The same applies for deeper networks. We

first differentiate the loss w.r.t. the weights connecting the last hidden layer to the output, then

proceeding to update the weights from the previous layer to the last layer, and so forth (LeCun,

Bengio & Hinton 2015). The notation over the entire network gets unnecessarily complicated,

but viewed iteratively, the process is quite simple.

Before moving on to issues of model specification, I pause to remind the reader about the

defining characteristic of these ANN models. Deep or shallow, the models are all fully connected.

This means that all nodes in the current layer are connected to all nodes in the following layer.

Put another way, there is an edge along which we can travel from any node to any node further

in the network. Within the feed forward architecture, users can alter the full connectedness

by fixing certain cells in the weight matrices to zero, which makes it so that some nodes to

not connect to some others. That said, doing such reduces the flexibility of the model to learn

complex patterns in the data, and would only be useful if the analyst has strong pre-existing

prior beliefs about how input data interact to form predictions of the outcome variable. In such

a case, however, other modeling approaches would be more straightforward.

2.2 Model Specification

To summarize the chapter to this point: artificial neural network models can provide flexi-

ble methods for learning complex patterns in data. The power of ANNs arises from their ability

to adapt to nonlinearities and high orders of interactivity in input data, and map them onto an

35

output of interest. These models can be designed as simply as a traditional regression model,

but can expand to form what is essentially a large ensemble of classifiers. In most cases, a suffi-

ciently deep ANN can outperform more traditional statistical methods on adapting to patterns

in training data.

Yet applied researchers would then undoubtedly wonder: how ‘deep’ is sufficient? How

many layers of hidden nodes are appropriate? How many nodes should be in each layer? Is

there a cost to a model that is built too deep, or not deep enough? What loss or activation func-

tion should be used? In short, the model specification for ANNs is daunting. In this section, I

discuss some useful metrics for evaluating model performance, and some of the most impor-

tant parameters a researcher needs to specify when fitting an ANN model. There is no one-size

solution to model specification, and the answer in most cases requires some trial-and-error.

2.2.1 Model Evaluation

We need to take care when assessing model specifications and their effectiveness. When

fitting regression models, we can nearly always increase model fit to the training data by re-

gressing on additional predictors, or regressing on interactive, quadratic or polynomial trans-

formations of the predictors. Yet we also know that these complicated models are undoubtedly

overfitting to noise in the data. When comparing model specifications, we need to assess model

performance on a data that were not used to train the model parameters. In many scenarios,

data can be split into two sets, with somewhere between 50 and 80 percent used for model train-

ing (called the training set) and between 20 and 50 percent used for model evaluation (called the

test set). We will typically prefer model specifications that yield the best test-set performance.

In comparing model performances, we can compute any number of predictive accuracy

metrics. After fitting a candidate model to a set of training data, we simply use the learned pa-

rameters to generate predictions (i.e., complete a feed-forward step) with the test data set, and

compare the test outcomes to the network’s predictions. For continuous outcomes, the mean-

square error or root mean-square error offer popular metrics. For classification problems, the

36

‘accuracy’, or percent of observations correctly classified, is the most common choice. One typ-

ically chooses the modal class probability as the model prediction, and computes the percent

of cases correctly classified.

In cases where the researcher is more concerned about particular types of error, he or she

can instead select models based on adjusted criteria. For example, if an analyst wished to use

an ANN to detect ‘abusive’ language in news story comments, he or she may select a model

that minimizes false positives rather than false negatives, since falsely flagging comments may

deter user participation more than allowing some false negatives through. If the user wishes

to detect rare events, he or she may prefer to minimize false negatives, even if this means the

model makes more false positive errors.

2.2.2 Loss & Evaluation

Loss functions, or cost functions, define how we penalize models for inaccuracy. In this

section, I cover the two most common loss functions in deep learning methods: cross-entropy

and squared error. We have been introduced to these already. These are not the only possible

loss functions, simply the most frequently used. They work well in practice, and bring the added

convenience of simple differentiation and thus optimization. Analysts are free, of course, to

specify other losses, especially if certain inaccuracies bring higher costs. In many such cases, a

common loss function can be adjusted to reflect the preference of the researcher.

Multi-Class Cross-Entropy Loss In the running binary-classification example used previously,

I employed the cross-entropy loss function. The cross-entropy loss can be generalized to a

multi-class problem, in a similar way as we generalize binary to multinomial logistic regression.

If we were classifying text documents into one of M categories, the output is now M dimen-

sional rather than one-dimensional. Accordingly, ŷi is also an m−dimensional vector, where

each element is the probability that observation i belongs to category m. If we let I(·) be the

indicator function, taking 1 if the internal argument is true and 0 otherwise, the cross-entropy

37

loss generalizes:

`(y, ŷ) =−
N∑

i=1

M∑
m=1

I(yi = m) log(ŷi ,m) (2.15)

where we can easily see that, in the case of a binary classification problem, the expression

simplifies to the loss given in Equation 2.4.

Squared Error Loss For continuous-valued outputs, we typically prefer squared-error loss,

given in Equation 2.2 for a regression problem, or more generally as

`(y, ŷ) = 1

2
||y− ŷ||2 = 1

2

N∑
i=1

(yi − ŷi)2 (2.16)

Note that the 1/2 is constant with respect to the parameters, but simplifies the differentia-

tion of the quadratic term. As discussed previously, the squared-error loss can work with binary

or multi-class classification problems. In many cases, it is better to use cross-entropy loss.

2.2.3 Number of Nodes & Layers

We face two competing interests in choosing how ‘large’ of a model to specify. We want a

model flexible enough to adapt to complex patterns in the input data. On the other hand, we

need to bear three points in mind: 1. Models too large will tend to overfit the training data and

generalize poorly. 2. We have a general scientific preference for parsimony—i.e., we desire the

simplest possible model that achieves our objectives. 3. Large models require more parameters

and thus are more computationally expensive (Hinton, Osindero & Teh 2006). With P inputs,

L hidden layers with Kl hidden nodes in each layer, and single target (i.e., a binary outcome),

we need to estimate PK1 + (
∑L−1

l=1 Kl ∗Kl+1)+KL parameters for a fully connected model, plus

an additional L + 1 parameters if we include bias (intercept) terms. In fact, the computation

required for the network tends to scale quadratically in the number of nodes, i.e., O(K 2) if K is

the number of hidden nodes.

38

Unfortunately, there is no task-agnostic prescription for how many nodes, or how many lay-

ers of nodes, is sufficient but not excessive. Some researchers have suggested rules-of-thumb,

like starting with one layer, and setting the number of nodes between the number of inputs and

outputs. The best general advice, however, is to start with a simple network, and continue ex-

panding the structure until predictive error on the test data stops decreasing (Hinton, Osindero

& Teh 2006, Bengio 2012). As Bengio (2012) points out, with proper regularization, the primary

cost of building a network too large is computation time, and with modern computing, even

fairly complex networks can be fit in reasonable times.

2.2.4 Overfitting

Theoretically, we can add an arbitrarily large number of hidden nodes. With a sufficiently

large network, training data can be perfectly determined. Unfortunately, such a network will

perform quite poorly on new data. To avoid overfitting, we can introduce some regularization

to the network. Regularization attempts to constrain model parameters, thereby preventing the

model from learning noise in the input data. I will discuss two forms of regularization: L2 or

Ridge regularization, and dropout. In both cases, I provide some guidance, but analysts need

to bear in mind that the degree of regularization depends largely on the size of the network

specified. Larger networks, combined with more regularization, may both prove flexible and

generalizable (Bengio 2012).

L2 Regularization Users of sparse regression techniques will be familiar with likelihood penalty

methods such as Ridge regression. In order to constrain model parameters from adapting over-

much to the noise in the input data, the L2 penalty increases the cost of solutions that involve

large weights. The L2 penalty is simply the sum of the squared weights. If using the cross-

entropy loss from Equation 2.4, the penalized cross-entropy loss would simply be:

E =−
N∑
i

(
yi ln ŷi + (1− yi) ln(1− ŷi)

)+ λ

2

∑
β

β2 (2.17)

Note that the total loss for any particular solution is now augmented by the sum of all the

39

squared parameters. When minimizing the loss, among two otherwise equivalent solutions, we

will prefer the model with smaller average parameter magnitudes. We typically omit the bias

(intercept) parameters from this calculation, however. The logic is similar to the reason we do

not typically suppress intercepts in regression models. The bias terms account for the mean

value of the outputs. Shrinking this parameter does not tend to help generalization, and can

often make predictions worse on average.

The λ in Equation 2.17 is a hyperparameter that the user must define. Small values will

impose less regularization, which might lead to overfitting (Tibshirani 1996). Higher values will

impose heavy regularization, and may limit the model’s ability to learn meaningful patterns

from data. The L2 regularization is sometimes known as weight decay, since it pushes solutions

toward having weights of low magnitude (Collobert & Bengio 2004). The weight decay factor is

set as 1− hλ
2 , where h is the step size or learning rate for the gradient descent algorithm. Defining

the regularization parameter in terms of weight decay helps to adjust for sample and step size,

which both can affect the degree of regularization. A decent starting value for weight decay is

around 0.99, but this of course will need to be tuned.

Dropout Another form of regularization in ANN models is node dropout. As the name sug-

gests, dropout is a probabilistic process that randomly selects nodes to ‘drop out’ or ‘switch

off’ during each stage of the learning process (Srivastava et al. 2014). For each iteration of the

optimization routine, nodes are selected with probability p of having their output set to zero

for that iteration. This effectively nullifies the incoming and outgoing weights from the node,

which in turn makes it harder for the model to overfit. For smaller networks, lower p values

are necessary; otherwise, too much of the network’s learning ability will be reduced. For larger

networks, values between 0.2 and 0.5 are typical.

2.2.5 Activation Functions

In the examples so far, I have discussed the ‘sigmoid’ activation function. Any differentiable

non-linear function can be used, but several have proven useful in applied work.

40

Hyperbolic Tangent The hyperbolic tangent, or ‘tanh’ function, maps real-valued inputs onto

the interval (-1,1). For some input z, the hyperbolic tangent is defined as

tanh(z) = exp(z)−exp(−z)

exp(z)+exp(−z)
(2.18)

Rectified Linear Unit The ReLU, or ‘ramp’ function, is widely used in learning deep network

architectures. It is defined as ReLU(z) = max(0, z). In other words, it takes a real-valued input

and either leaves it untransformed, or truncates it at its lower bound of zero. The ReLU activa-

tion works well in practice, and can be more computationally efficient for deep networks since

it doesn’t require computing exponentials like the sigmoid activation function. It also tends to

help at learning sparse representations, which is helpful with text analytic models, since most

words in a vocabulary aren’t useful at modeling most outcomes of interest. ReLU can suffer

from problems in training, however, like causing nodes to ‘die’—i.e., setting a node’s output to

zero and never adjusting away from that value.

Soft Rectified Linear Unit To adjust for the hard threshold at zero in the ReLU activation,

some researchers propose the use of a ‘soft’ rectified linear unit, or a softplus function. The soft

ReLU smooths the sharp boundary at zero by incorporating a small constant adjustment:

softplus(z) = log(1+exp(z)) (2.19)

When z ≈ 0, the output of the soft ReLU function is quite small (for z = 0.001, the soft ReLU

value is 0.69) but nonzero. Yet the function still strongly (i.e., exponentially) favors positive

values. The soft ReLU activation function is also convenient insofar as its derivative takes a

recognizeable form: that of the sigmoid function.

2.2.6 Learning Rate

In any gradient-based optimization routine, we need to specify a step size, or learning rate

in the ANN parlance, to prevent overshooting optima on the gradient surface. If the gradient

41

represents a valley, overshooting simply means stepping too far in a single step, passing the

lowest point of the valley and arriving instead on the other slope.

When training ANNs with backpropagation, we move in the direction of the loss gradient,

but we scale this step by a small number to avoid overshooting. Setting the learning rate too

large increases the chance of overshooting, while setting it too small increases the required

number of iterations to find a stable minimum, thus increasing computation time. In practice,

we decrease the learning rate over the course of training procedure, so that it is larger during

earlier iterations (aiding quick convergence) but declines as we approach a minimum (helping

us to narrow in without overshooting). Typical learning rates vary between 1.0 and 0.001, but

for a standard ANN an initial learning rate of 0.1 serves as a good starting point.

2.2.7 Fitting

The time to fit an ANN (of fixed specification) scales linearly with the number of training

observations. In text analysis, we often wish to train on a large number of documents—e.g., on

many thousands to many millions of speeches, sentences, tweets or comments. The loss func-

tions, which sum over all observations in the training data, can become computationally ex-

pensive with large sets of data. To mitigate this cost, we often prefer stochastic gradient descent.

The SGD algorithm partitions the data into ‘mini batches’ on each iteration, and evaluates the

loss for a mini batch per iteration. Setting the mini batch size to be large reduces computational

efficiency gains over regular gradient descent. Setting the mini batch size to be too small can

render the algorithm unstable, resulting in a non-smooth reduction in training loss on each

iteration. Typical values for mini batch size vary between 30 and 200, but this parameter too

requires tuning during training.

2.3 Simulation Example

At this point, we have discussed ANN models, and the parameters that need to be decided by

the user to fit such models. To ground the theory, I present a short simulation study mapping

a set of input variables onto a binary output. In this section, I compare a traditional logistic

42

regression to a variety of neural network model specifications. For the purpose of comparison,

I simulate data from two data generating processes: one simple DGP, and one with high levels

of interactivity between inputs and the output of interest. Specifically, for the straightforward

DGP, I simulate N = 500 observations, with y ∈ {0,1} and five input variables X1, X2, . . . X5 from

the following process:

X ∼U (−10,10)

*

β ∼U (−1,1)

yi ∼ Bernoulli(σ(Xi

*

β)) (2.20)

I also specify an interactive DGP, which allows for a more complex mapping from inputs and

the output.

*

β,
*
γ ∼N (0,0.02)

yi ∼ Bernoulli
(
σ(Xi

*

β+γ1X 2
1 +γ2X1X2 +γ3X1X2X3

+γ4X4X5 +γ5X4X5X6)
)

(2.21)

To assess in-sample model fit, I consider the percentage of outputs correctly classified, the

cross-entropy error (see Equation 2.4), and the mean square error. As mentioned previously,

ANN models can easily overfit to data, so I evaluate the models on both prediction on the data

used to train the model, and on out-of-sample predictions on 500 new observations.

Results appear in Table 2.2. There are several results to unpack. First, note the equivalence

in the results between the logistic regression model and the one-layer, one-node ANN. As I de-

scribed earlier, the two models are functionally equivalent, and the only difference in the results

arises from the different optimization routines. Second, referring to the top panel of the table,

note that additional ANN model complexity increases the predictive accuracy on the training

data, but actually decreases accuracy in the testing (out-of-sample) data. This is a classic case

43

of overfitting. No ANN model outperforms the logistic regression on the test set when the DGP

matches the canonical logistic regression.

Moving to the lower panel of the table, however, we see the advantage of the neural network

model. With a more complex DGP, the logistic regression model naturally performs worse, only

correctly predicting about 66 percent of training outputs and 56 percent of test outputs. Adding

additional nodes to the networks dramatically improves the training predictive accuracy and

lowers the mean square error on the training set, just as with the simple DGP. Unlike earlier,

though, the ANNs substantially outperform the logistic regression model on the test set. The

logistic regression model correctly predicts about 56 percent of test cases, with a mean square

error of 0.25. Compare that to a one-layer, ten-node network that correctly predicts 77 percent

of test cases, with mean square error 0.18. As before, we also see some evidence of overfitting

with additional model complexity. Comparing the training and test performance, a more com-

plicated network specification of three layers with ten nodes each predicts 97 percent of the

training cases, but does not outperform the one-layer, ten-node network on the test set.

We might finally want to compare the neural network model to the correctly-specified lo-

gistic regression model. If we include all appropriate quadratics and interactions in the logistic

regression, the test set percent correctly predicted jumps to 0.79, with mean squared error 0.21.

In other words, a logistic regression model with the correct functional form outperforms even

the best neural network model.

Seen from that perspective, the neural network results do not appear impressive. But read-

ers should keep in mind that the ANN models are automatically learning patterns in the data.

To repeat an earlier point, ANNs are not optimal tools for building explanatory models. The

results from the ANN are largely uninterpretable, since inputs are weighted at potentially mul-

tiple stages and in multiple combinations. The advantage of ANNs rests largely in their ability

to approximate arbitrarily complex functions. In applications, like text analysis, complex pat-

terns exist in data. These patterns are largely unknown a priori, making the automated learning

44

ability of ANNs appealing.

2.4 Applications

To show how deep artificial neural networks can be used to model political language, and

thereby serve as an important measurement tool for political science, I apply deep ANNs to two

supervised learning tasks. First, I train a series of ANNs to extract the sentiment of political ex-

pressions drawn from the a 2012 presidential debate between Mitt Romney and Barack Obama.

Second, I train ANN models to predict ideology from political treatises.

For each application, I also fit several baseline models, to which I compare the performance

of the ANNs. I use a simple naïve Bayes model (Soelistio & Surendra 2015), a penalized logistic

or multinomial logistic regression (Nigam, Lafferty & McCallum 1999), and a support vector

machine classifier (Diermeier et al. 2012). These three are some of the most commonly used

text classification4 models used in recent political science literature.

2.4.1 Political Tone

The tone of political speech is as important as it is amorphous. We understand intuitively

that tone matters. A political leader can react to an interviewer angrily or with good humor, a

candidate can speak to our anxieties or to our aspirations, and a reporter can provide a neg-

ative or positive context for current events. These are not simply consequential for under-

standing elite behavior. These choices in tone matter for citizen perceptions and beahavior

(Ansolabehere, Iyengar, Crigler, Holbrook, Huckfeldt & Sprague 1999, Kaid 2004, Sheafer 2007,

Ridout & Franz 2008, Druckman, Kifer & Parkin 2010, inter alia).

Although tone can usually be conveyed and recognized in speech, measuring tone is fraught

with complications. Unlike other features we typically extract from text, like topics (e.g., is this

person talking about Social Security or immigration?), tone can comprise any of the affective,

emotional, or attitudinal images the speaker is trying to impress on his or her audience (Hart,

Childers & Lind 2013). Tone will leave measureable linguistic traces, but detecting them proves

4I am not using any text scaling methods, like the popular Wordscores or Wordfish models.

45

challenging. For this reason, many scholars have relied solely on hand-coding. Yet as I’ve al-

ready discussed, this imposes limits on our ability to measure data quickly and efficiently.

Most coding of political tone centers on positivity and negativity of language. Though not

the only aspect of tone—we could also consider anger, fear, hopefulness, cynicism, and so

forth—positivity and negativity are catch-all categories that nevertheless capture quite a lot of

what we mean by tone. For example, we might question whether candidates engage in neg-

ative campaign advertising (Ansolabehere et al. 1999, Kaid 2004, Geer 2008, Ridout & Franz

2008, Druckman, Kifer & Parkin 2010), or to explain variation in the positivity or negativity

media coverage of presidents (Eshbaugh-Soha 2010) or politics writ large (Lengauer, Esser &

Berganza 2011). In other words, we often wish to understand how, when, and why political

figures employ positive or negative language when addressing the public.

Sentiment analysis, or analyzing the positivity or negativity of language, is a canonical task

in computational linguistics and natural language processing. Many text classification methods

are evaluated on popular toy datasets, including the IMDB movie review datasets, first used by

researchers at IBM and Cornell University (Pang, Lee & Vaithyanathan 2002). The movie review

data includes user-written reviews, along with a star rating. The task, then, is often to predict

whether each user liked the movie or did not, based on how positive or negative their reviews

are.

Sentiment analysis is far less common in political research, perhaps because there are fewer

sources of data so conveniently pre-coded. Words that convey tone tend to be task-specific

(e.g., ‘negative’ words in a movie review differ from ‘negative’ words in a campaign advertise-

ment), so pre-existing data from other domains, or even sentiment dictionaries built for general

purposes, may prove less than useful.

I attempt to measure tone in a political context: during a presidential debate between Barack

Obama and Mitt Romney. During the 2012 presidential election, researchers with ReactLabs

collected moment-by-moment reactions of a large participant pool to the October 3 debate

46

between Barack Obama and Mitt Romney (Julien & Resnik N.d., Boydstun, Glazier, Pietryka &

Resnik 2014). The data also includes a time-stamped transcript of the debate. The authors fol-

low Boydstun et al. (2013), parsing the transcript into clauses, and code each clause for topic

area (according to the Policy Agendas codebook), the frame employed (moral, legal, economic,

safety, bureaucratic, political, patriotic, et cetera) and important for this task, the tone (positive,

negative or neutral). The ReactLabs data thus gives us a domain-specific set of hand-coded

data. If we can learn patterns that map political language onto political tone, we may be able to

use this information to code much larger sets of new textual data.

For the following evaluations, I partition the data into two parts: a training set of 600 obser-

vations, or roughly 80 percent of cases, and a test set of 170 observations, or roughly 20 percent

of cases. The unit of analysis is the sentence or clause, as parsed by Boydstun et al. (2014).

I summarize results using total accuracy, or the number of documents correctly classified, as

well as precision and recall. The precision measure is the percent of cases the model classified

as ‘positive’ that were also hand-coded as positive. Recall is the percent of cases hand-coded as

positive that the model also classifies as positive. The patterns presented in Table 2.3 remain

largely the same for other metrics, such as cross-entropy or mean square error, and are omitted

for space.

Text Processing

The data comprise 1179 hand-coded sentences or clauses, categorized as being positive,

negative or neutral. Positive expressions are those that convey a positive, optimistic or con-

structive outlook, while negative expressions are those focusing on problems, or are else criti-

cal. For example, Mitt Romney’s line “There’s some parts of Dodd-Frank that make all the sense

in the world” is coded as positive, while his line “Dodd- Frank was passed, and it includes within

it a number of provisions that I think have some unintended consequences that are harmful to

the economy” focuses on problems, and is thus coded as negative. For this example, I preserve

47

the positive and negative observations only5.

The results that follow all use the same quantitative representation of the documents. The

sentences/clauses are converted to lower-case, stemmed using the popular Porter stemmer

(Porter 2001), and broken into uni-, bi- and tri-grams. Before thinning the vocabulary, this text

processing routine results in nearly 24,000 unique words or multi-word phrases. To reduce this

dimensionality somewhat, I also drop English stopwords and remove any term that does not

occur at least twice, and in at least two documents. The resulting document-term matrix has

770 rows (documents) and 1116 columns (unique terms).

The effectiveness of the models can vary considerably based on the text cleaning and thin-

ning regimens employed. I experimented with many different ways to clean and thin the texts.

The cleaning procedure above yielded the best results on average across the models. In the

results section, I will show some selected results from other procedures, when informative.

Neural Network Setup

I present the results from several model specifications, varying the number of hidden nodes

and hidden layers in the networks. I also vary the activation functions used, employing the

sigmoid, hyperbolic tangent and soft ReLU functions. For simplicity, I apply the same activa-

tion function to all layers, although technically one could experiment with different activation

functions at each layer of the network. To speed convergence in the stochastic gradient de-

scent algorithm, I also apply a momentum parameter, which augments the parameter updates

at time t by the scaled magnitude of the update at the previous time step. This can speed con-

vergence by updating parameters more when the algorithm is on a steady downward slope on

the loss surface. The scaling parameter, called the momentum, is fixed at 0.9 for all experi-

ments. Other parameters for the networks are given in the descriptions below, and were chosen

by cross-validation. The results of the models fit during the tuning process are not shown.

• ANN0×0: A neural network model with no hidden nodes, and no hidden layers. This model

5Omitting the neutral category removes about one-third of the statements. The results including the neutral
category are not appreciably different from those including it.

48

is functionally equivalent to a binary dependent variable regression model with cross-

entropy loss. Other parameters: learning rate 0.25, mini-batch size 100, momentum 0.9.

• ANN1×1: A neural network with one hidden layer containing one hidden node. Other

parameters: learning rate 0.25, mini-batch size 100, momentum 0.9.

• ANN1×10: A neural network with one hidden layer containing ten hidden nodes. Other

parameters: learning rate 0.25, mini-batch size 100, momentum 0.9.

• ANN2×10: A neural network with two hidden layers, each containing ten hidden nodes.

Other parameters: learning rate 0.25, mini-batch size 100, momentum 0.9.

• ANN2×50: A neural network with two hidden layers, each containing fifty hidden nodes.

Other parameters: learning rate 0.1, mini-batch size 100, momentum 0.9, dropout ratio

on each layer 0.5.

Benchmarks

For comparison, we can consider the performance of several benchmark models:

• Naïve Bayes Given the binary label, {positive, negative}, we seek to model ‘posterior’ prob-

ability that a document belongs in the positive or negative class, conditional on the words

(or phrases) in the document. Using Bayes’ rule and leveraging the exchangeability as-

sumption, this simplifies to the a priori probability that the document belongs to a cer-

tain class, multiplied by the product, taken over the words in the document, of the words

appearing conditional on the class6. For more, see the detailed description provided by

Soelistio & Surendra (2015).

• Regularized Logistic Regression The binary label on a document is modeled as a linear

function of the words in the document, passed through the inverse-logistic link function.

6For example, if the word ‘miserable’ occurs 50 times out of 5000 total words in all negative documents, and 10
times out of 4000 total words in all positive documents, the probability of observing the word ‘miserable’ condi-
tional on the document being negative is 50/5000 = 0.01 and 10/4000 = 0.0025 conditional on the document being
positive. The product is taken over all the words in the document.

49

Because most words (or phrases) are not informative when estimating tone, we apply

two penalties to the model likelihood: a Ridge, or L2 penalty, discussed previously; and

the least absolute shrinkage and selection operator (LASSO), or L1, penalty, which seeks

to minimize the sum of the absolute values of the parameters. When both penalties are

used, the model is known as the elastic net. For more information, refer to Nigam, Lafferty

& McCallum (1999).

• Support Vector Machine Diermeier et al. (2012) find good performance in predicting the

ideology of members of Congress based on speeches from the Congressional Record us-

ing support vector machines (Support Vector Machine). The Support Vector Machine

optimizes for the vectors that best separate the data based on their labels. For example,

the Logistic Regression port Vector Machine optimizes the vectors in the V -dimensional

space in which our documents exist that best serve to separate documents with positive

versus negative tone (Leopold & Kindermann 2002). For more information, see Hearst,

Dumais, Osman, Platt & Scholkopf (1998) or Steinwart & Christmann (2008).

Results

The modeling results are summarized in Table 2.3. The training results are shown in the

left panels of the table, while the testing results are shown in the right panels. I present the

overall accuracy, or the percent of labels correctly predicted, as well as the precision and recall.

Precision is the percentage of ‘positive’ observations correctly classified, and recall is the per-

cent of observations classified ‘positive’ that were truly positive. Perhaps surprisingly, there are

no substantial differences between precision and recall for any model, which probably results

from the balanced training sample, which had nearly even numbers of positive and negative

documents. Bolded entries in the table signify the best performance across all models on each

metric.

We care more about out-of-sample model performance, so we will focus on the right panel

of the table. In both the training and testing sets, most of the neural network models perform

50

at least as well as the baseline models, shown in the bottom panel of Table 2.3. The ANN0×0

model, which is functionally equivalent to a logistic regression model, tends to perform worst

of the ANNs. (The reader will also note that the results for the ANN0×0 model are the same

across activation functions, since there are no hidden nodes in the model, and thus nothing

to activate.) The ANN2×10 and ANN2×50 models with Soft ReLU activation give the best overall

performance, though there is only a small difference between how these two models perform

across the activation functions. Amongst the comparison models, the support vector machine

gives the best performance, with 71 percent accuracy in the test set, though even the Support

Vector Machine performs roughly six points worse than the deep ANNs.

The results in Table 2.3 also provide a warning about overfitting. If we switch our focus to

the left panel of the table, we see that the neural network models achieve better than 90 percent

accuracy on the training data. The ANN2×50 even consistently achieves perfect accuracy on the

training data, correctly predicting every training label.

This is disconcerting, but not unexpected, when fitting deep neural network models. As the

networks get larger—more hidden nodes, and more hidden layers—they develop the capac-

ity to learn complex patterns in the input data. This includes systematic patterns in mapping

language to tone, but also includes noise that does not generalize to new data. This lack of gen-

eralization can be seen in comparing the left and right panels of the table, which shows that

even models achieving perfect training accuracy get, at most, 77 percent accuracy on the train-

ing data. For this reason, a researcher using an ANN, or even one of the comparison models

mentioned here, must take care to evaluate model performance on an independent training

set.

The results in Table 2.3 reflect a series of parameter tuning for each model specification.

To briefly show the consequences of this tuning process, I present Figure 2.5, which shows the

learning for three ANNs over the course of their training. The solid line shows accuracy on the

training set, while the dashed line shows accuracy on the test set. Panel (a) shows the learning

51

process for the ANN2×10, which evinces a dip in accuracy just before the twentieth epoch of

the stochastic gradient descent algorithm. This occurs because the optimization routine has

briefly gotten stuck in a local minimum of the loss. Had the algorithm been stopped too early, it

would not have reached its ultimate best performance, which is reaches at around the thirtieth

training epoch.

Panel (b) shows the consequence of setting the learning rate too high, at 0.35 rather than the

better-performing 0.25. The erratic behavior of the algorithm occurs because the optimization

routine steps too far at each epoch, making it difficult to make steady progress toward an op-

timum. This behavior also lengthens the time needed to fit the model. The model in (b) does

not reach a steady state until training epoch 130, compared with epoch 30 for the same model

specification with learning rate 0.25 shown in Panel (a). Panel (c) evinces much better behavior

overall, with a smooth learning pattern, and despite the more complicated architecture, reaches

a stable solution in less than 100 epochs.

Finally, we can consider other text cleaning procedures, and whether these affect the per-

formance of the various models. For simplicity, I present the results from the three comparison

models, and from the best-performing ANN, the ANN2×50 with Soft ReLU activation. Figures

2.7 through 2.8 give three tokenization schemes: unigrams, bigrams and trigrams. Some exper-

iments with longer phrases yielded poor results, and are not included. Stopwords are dropped

in every cleaning procedure, and all words are stemmed.

For each figure, the x-axis shows the percent of the vocabulary ‘thinned’ or removed from

the document-term matrix, based on infrequent use. For example, thinning 0 means that all

unique words or multi-word phrases are used in the models. Thinning 0.9 means that the 90

percent least-frequent words or multi-word phrases are removed, leaving only the 10 percent

most frequently used words in the corpus. The y-axis gives the mean accuracy across 10 random

splits of the corpus into 80/20 training and testing sets.

In Figure 2.6, we see a consistent drop in all models’ performance as we thin unigrams from

52

the vocabulary. This presumably happens because the most common English words have al-

ready been filtered out by removing stopwords, so by thinning unigrams we end up removing

relevant words, even if those words do not occur frequently in the corpus. For unigrams and bi-

grams in Figure 2.7, however, model performance increases with considerable thinning. Since

bigram tokenization returns all possible two-word sequences in a text, the vast majority of bi-

grams are uninformative, and occur only once or twice in the corpus. Removing these terms re-

moves noise from the model. The same applies even more powerfully to Figure 2.8, which shows

a dramatic increase in performance as we filter out the vast majority of the least-frequently oc-

curring and uninformative uni-, bi- and trigrams. Despite the variable performance, however,

we see that the the rank-ordering of modeling performance seen in Table 2.3 remains fairly

consistent.

2.4.2 Political Ideology

Social scientists have concerned themselves for decades with understanding, explicating

and measuring political ideology. Broadly defined as a set of fundamental beliefs about society

and its relationship with government, ideology presents unique challenges in measurement.

We can never directly observe ideology, left instead to induce the structure of beliefs from out-

ward manifestations like policy or candidate preferences.

In the past several years, political scientists have begun to recognize that a quantitative

analysis of rhetoric may help us to measure ideological, political thought. Political speeches

or writings allow individuals to express their beliefs on their own terms. Unlike measures based

on roll-call votes or interest group endorsements, individuals are not constrained by Congres-

sional or court dockets, the whims of party leaders or even the public’s agenda. Political tracts

and speeches allow for elites to express the full range of their beliefs in a fairly unrestricted

manner. We can surely learn much about an author or speaker’s fundamental political beliefs

by which topics she chooses to address, and what she says about them.

Sim et al. (2013) introduce the Ideological Books Corpus, a collection of more than 200 books

53

and magazine articles written by political figures and commentators between 2008 and 2012.

The researchers hand-code the books by ideology, using a novel hierarchical ideology coding

scheme. They code the books as belonging to three broad ideological classes (left, right and

center) and eight fine-grained ideological subclasses (mainstream liberal, progressive, religious

liberal and socialist on the left; moderate conservative, libertarian, religious conservative, and

populist conservative on the right). In the original paper, the authors use the IBC as a training

corpus. They train a sparse additive model to extract ideological signals from the text, which

they then use to measure the political content of campaign speeches from the 2008 and 2012

presidential elections.Using the IBC, I replicate the measurement task using various ANN mod-

els.

Text Processing

The IBC contains just over 200 books, which have been parsed into paragraphs. The result-

ing corpus has over 170,000 documents, partitioned into three coarse classes and eight sub-

classes. For the following application, I convert all words to lowercase, replace all numbers with

a placeholder token, and I tokenize the corpus for uni-, bi- and trigrams. This yields an initial,

unthinned vocabulary size of 14 million unique words or word phrases. Even after removing

stopwords and tokens that do not occur in at least 30 documents and at least 5 times in the cor-

pus, we still left with roughly a vocabulary of 28,000 unique terms and 22 million total terms.

Table 2.4 shows the breakdown of the corpus by ideological classes and subclasses. Note that

some documents are given coarse labels but not subideological labels; only these documents

are counted for coarse counts.

Even in sparse matrix format, the resulting document-term matrix ties up nearly 2 gigabytes

of memory. To reduce the memory required, and to reduce the time required to fit the following

models, I partition the data into random 50,000 document subsets. When partitioning the data,

I also ensure that the same number of documents from each ideological class are sampled. This

does not match the distribution of documents in the corpus, but it both speeds convergence of

the ANNs and makes the model results more stable across random partitions. For each training

54

data partition, I also randomly select a sample of 10,000 documents for the testing set. The

testing sets are not balanced by their ideological class, which ensures that the models built on

balanced inputs can still perform well on out-of-sample data, which in practice will often be

unbalanced by class. The baseline models for comparison remain the same, though they are

obviously multiclass generalizations of the binary classifiers from the previous example. For

the support vector machine classifier, which is inherently a binary classifier without an obvious

multiclass generalization, predictions are generated based on a series of binary classifications

(e.g., ‘libertarian or not,’ ‘religious liberal or not’) and the resulting probabilities are normalized

to yield a multiclass probability distribution (for more information, see Manning, Raghavan,

Schütze & Others (2008)).

Neural Network Setup

As in the political tone application, I experiment with several ANN specifications. I exclude

the ANN0×0 and ANN1×1 specifications, since their behavior has been exhibited sufficiently in

the prior application. Given the additional training data available in the IBC, and the fact that

we are attempting to model a multi-class outcome (i.e., we now have multiple ideological sub-

classes, not just two tone classes), the models I present here are larger than those presented

in the tone application. For this application, I specify three ANNs: ANN2×50,ANN2×100 and

ANN3×100. For each, I employ the sigmoid activation function (though the soft ReLU evinces

very similar results), dropout probability 0.5, and learning rates 0.2, 0.15, and 0.10 respectively.

For these experiments, I also decrease the learning rate by a factor of 0.9 every 10 epochs, which

can help the optimization routine to move quickly toward a solution, but ‘slow down’ and not

overstep as it approaches a solution.

Results

A summary of the results can be found in Table 2.1. Recall that each model was fit to ten par-

titions of the data, and each tested using a withheld sample of 10,000 paragraphs from the IBC.

The primary estimates in Table 2.1 show the average accuracy across the ten cross-validation

partitions. The numbers in brackets give each model’s best and worst performance among the

55

ten partitions.

We note, again, that the ANN models perform quite well compared to the baseline mod-

els. The ANN3×50 model performs best overall, obtaining an average accuracy of 68 percent,

with a best performance of 72 percent. The ANN3×50 model achieves comparable success to re-

cent methods published in the computer science literature (Sim et al. 2013, Iyyer et al. 2014). By

comparison to the political tone application, these numbers may seem disappointing. Yet com-

pared with tone, ideology is a much more complicated concept. The differences between ide-

ological groups can be subtle, and the documents in the corpus address many different topics,

issues and preoccupations (Freeden 2003, Putnam 1971, Apter 1964). Though language gives

us an optimal window into these complex beliefs and how they are expressed, developing auto-

mated machinery to detect ideological perspective is quite challenging (Iyyer et al. 2014, Acree

et al. 2014).

Figure 2.9 shows the mean classification precision for each of the eleven ideological classes

and subclasses, using the ANN3×50 model across the ten cross-validation partitions. In many

classes and subclasses, the model correctly classifies 66 to 73 percent of the testing documents.

The figure also shows some expected and encouraging patterns. Darker colors represent a

higher proportion of test documents belonging in each cell. We note two darker blocks of (off-

diagonal) cells: a block among the conservative classes, and a block among the liberal classes.

This means that when the model mis-classifies a document, it more often than not still correctly

predicts that the document was written by a liberal or conservative author, even if the predicted

fine-grained ideological label is incorrect. Though not immediately apparent in the figure, the

only case of high mis-classification across the left-right divide occurs between the two religious

classes. Fifteen percent of religious conservative test documents were mis-labeled as belonging

to the religious liberal subclass, and thirteen percent of religious liberal test documents were

mis-labeled as belonging to the religious conservative subclass. Both of these are many times

higher than the mis-classification rates for the other subclasses.

56

The results show a similar capacity to overfit to the training data, as we have seen before.

The best-fitting model to the training data is the largest model fit in this experiment, yet on the

training set the ANN3×100 model performs no better than the elastic-net logistic regression or

the support vector machine classifier. The ANN3×50 model, by contrast, achieves slightly worse

performance on the training set, but outperforms all other models on the test set.

Taken together, the ANN model performs quite well compared to the benchmarks, and com-

pared to other published results. The classification precision is fairly even across the subideo-

logical classes, with the exception of the poor performance on classifying the centrist category,

which has been noted to be notoriously difficult in previous research (Sim et al. 2013, Acree

et al. 2014).

2.5 Discussion

Artificial neural networks offer a flexible, powerful tool to political science scholars hop-

ing to leverage text in their research. Neural networks and deep learning methods have been

used for many years in the machine learning scholarship, with impressive results when applied

to varied natural language processing tasks. Despite this, ANNs have not featured in political

research. In this paper, I introduce how ANNs can be specified, fit and applied to text classifica-

tion tasks for political corpora. In a simulation exercise, and in two applications with political

debate and ideological books data, ANN models outperform benchmark models commonly

used in the current literature.

Though promising, the neural network approach suffers some weaknesses, perceived or

otherwise. At the most basic level, ANNs represent a paradigm foreign to most applied polit-

ical research. Yet as I hope to have made clear, at their core ANNs share much in common with

more traditional models. Clearly, ANNs are ill-suited to testing theoretical models in substan-

tive research. The results of ANNs are largely uninterpretable. The high degree of interactivity,

combined with the frequent lack of unique solutions to overspecified models, render it inadvis-

able to rely on ANNs for theory evaluation. In measurement tasks, however, minimizing errors

57

and maximizing precision are important goals. ANNs achieve competitive performance on this

count, and thus should be considered promising tools for text analytic and measurement tasks.

The reader may also worry about the seeming complexity of the model. As the third section

of this paper lays out, there are many parameters to be specified by the user, and this process

will nearly always require tuning on the analyst’s part. This hardly differs from other meth-

ods, however. Any useful classifier has parameters (regularization parameters, loss functions,

kernel functions, et cetera) that require tuning and experimentation. Recently published soft-

ware packages, like the mxnet framework available in multiple languages and even callable

on mobile devices, can make many common specifications fairly straightforward to estimate

efficiently (Chen, Li, Li, Lin, Wang, Wang, Xiao, Xu, Zhang & Zhang 2015).

Artificial neural networks are not a one-size solution to challenges in extracting meaningful

information from political texts. Specified poorly, neural network models can fail to converge,

or can seemingly perform well on training data, only to fail to generalize when applied to new

data. By themselves, though, ANNs can achieve competitive results, and can prove quite useful

to researchers interested in using text data to answer substantive questions. Further, as I dis-

cuss in the following chapter, ANNs serve as the basic engine for more advanced and powerful

models.

58

2.6 Tables

Table 2.1: PREDICTIVE ACCURACY ON THE IDEOLOGICAL CLASSIFICATION TASK

Model Training Testing
Activation: Sigmoid Accuracy Accuracy
ANN2×50 0.85 0.63

[0.84,0.87] [0.59,0.70]
ANN3×50 0.90 0.68

[0.88,0.91] [0.69,0.72]
ANN3×100 0.94 0.63

[0.90,0.97] [0.55,0.71]
Comparison
Naïve Bayes 0.67 0.53

[0.55,0.69] [0.52,0.55]
Logistic Regression 0.69 0.63

[0.67,0.70] [0.61,0.64]
Support Vector Machine 0.72 0.65

[0.70,0.73] [0.63,0.66]

Each model was fit to ten cross-validation partitions of the data, and then evaluated on a ran-
dom sample of 10,000 withheld documents. Bolded numbers show the highest average predic-
tive accuracy within the training and testing sets. Numbers in brackets give the worst and best
model performance on the ten cross-validation partitions.

59

Ta
b

le
2.

2:
C

O
M

P
A

R
IN

G
R

E
G

R
E

S
S

IO
N

T
O

N
E

U
R

A
L

N
E

T
W

O
R

K
S

M
o

d
el

Tr
ai

n
in

g
Te

st
in

g
Si

m
p

le
D

G
P

A
cc

u
ra

cy
C

ro
ss

-E
n

tr
o

p
y

M
SE

A
cc

u
ra

cy
C

ro
ss

-E
n

tr
o

p
y

M
SE

Lo
gi

st
ic

R
eg

re
ss

io
n

0.
93

11
0.

93
0.

05
0.

89
12

6.
34

0.
08

A
N

N
1

la
ye

r,
1

n
o

d
e

0.
90

11
2.

62
0.

07
0.

89
12

4.
37

0.
08

A
N

N
1

la
ye

r,
5

n
o

d
es

0.
94

12
0.

06
0.

05
0.

88
28

6.
51

0.
11

A
N

N
2

la
ye

rs
,5

n
o

d
es

0.
96

48
3.

76
0.

04
0.

85
10

21
.6

8
0.

13

C
om

p
le

x
D

G
P

Lo
gi

st
ic

R
eg

re
ss

io
n

0.
66

31
4.

42
0.

22
0.

56
31

8.
25

0.
25

A
N

N
1

la
ye

r,
1

n
o

d
e

0.
66

31
1.

83
0.

22
0.

57
32

7.
36

0.
25

A
N

N
1

la
ye

r,
5

n
o

d
es

0.
70

29
1.

08
0.

20
0.

62
34

8.
04

0.
25

A
N

N
1

la
ye

r,
10

n
o

d
es

0.
75

26
9.

65
0.

17
0.

77
44

8.
06

0.
18

A
N

N
2

la
ye

rs
,5

n
o

d
es

0.
90

23
9.

93
0.

08
0.

72
10

94
.3

2
0.

26
A

N
N

2
la

ye
rs

,8
n

o
d

es
0.

96
29

1.
65

0.
04

0.
75

11
70

.2
7

0.
22

A
N

N
3

la
ye

rs
,1

0
n

o
d

es
0.

97
27

0.
57

0.
03

0.
77

21
39

.3
5

0.
23

T
h

e
to

p
p

an
el

sh
ow

s
re

su
lt

s
fi

tt
in

g
th

e
m

o
d

el
s

to
d

at
a

ge
n

er
at

ed
w

it
h

th
e

si
m

p
le

d
at

a
ge

n
er

at
in

g
p

ro
ce

ss
(D

G
P

)g
iv

en
in

E
q

u
at

io
n

2.
20

.T
h

e
b

o
tt

o
m

p
an

el
sh

ow
s

th
e

re
su

lt
s

fr
o

m
fi

tt
in

g
th

e
m

o
d

el
s

to
d

at
a

ge
n

er
at

ed
w

it
h

th
e

co
m

p
le

x
D

G
P

gi
ve

n
in

E
q

u
at

io
n

2.
21

.
T

h
e

tr
ai

n
in

g
re

su
lt

s
ar

e
sh

ow
m

o
d

el
p

er
fo

rm
an

ce
o

n
th

e
tr

ai
n

in
g

se
t,

o
r

th
e

se
to

fd
at

a
u

se
d

to
tr

ai
n

th
e

m
o

d
el

.T
h

e
te

st
se

tr
es

u
lt

s
gi

ve
p

er
fo

rm
an

ce
o

n
a

h
el

d
-o

u
t

se
t

u
se

d
to

ev
al

u
at

e
th

e
m

o
d

el
s.

W
h

en
th

e
re

la
ti

o
n

sh
ip

b
et

w
ee

n
th

e
in

p
u

ts
(t

h
e

in
d

ep
en

d
en

t
va

ri
ab

le
s)

an
d

th
e

o
u

tp
u

ts
(t

h
e

d
ep

en
d

en
t

va
ri

ab
le

)
is

a
st

ra
ig

h
tf

o
rw

ar
d

tr
an

sf
o

rm
ed

li
n

ea
r

co
m

b
in

at
io

n
o

f
in

p
u

ts
an

d
w

ei
gh

ts
,

th
e

lo
gi

st
ic

re
gr

es
si

o
n

m
o

d
el

p
er

fo
rm

s
w

el
lo

n
b

o
th

th
e

tr
ai

n
in

g
se

t
an

d
th

e
te

st
se

t.
T

h
e

d
ee

p
er

n
eu

ra
ln

et
w

o
rk

m
o

d
el

s
p

er
fo

rm
b

et
te

r,
h

ow
ev

er
,w

h
en

th
e

d
at

a
co

n
ta

in
s

m
o

re
in

te
ra

ct
iv

it
y

b
et

w
ee

n
th

e
in

p
u

ts
.W

e
se

e
cl

ea
r

ev
id

en
ce

o
fo

ve
rfi

tt
in

g,
h

ow
ev

er
,w

it
h

th
e

d
ee

p
er

n
et

w
o

rk
s.

T
h

e
A

N
N

w
it

h
th

re
e

la
ye

rs
co

rr
ec

tl
y

cl
as

si
fi

es
97

p
er

ce
n

t
o

ft
h

e
tr

ai
n

in
g

ca
se

s,
m

ak
in

g
it

th
e

b
es

t
m

o
d

el
o

n
th

e
tr

ai
n

in
g

se
t.

B
u

tt
h

at
m

o
d

el
o

n
ly

co
rr

ec
tl

y
cl

as
si

fi
es

77
p

er
ce

n
to

ft
h

e
te

st
ca

se
s,

a
re

su
lt

m
at

ch
ed

b
y

th
e

fa
r

si
m

p
le

r
A

N
N

w
it

h
o

n
e

h
id

d
en

la
ye

r
o

f1
0

h
id

d
en

n
o

d
es

.

60

Table 2.3: COMPARING MODELS FOR TEXT CLASSIFICATION

Model Training Testing
Activation:
Sigmoid

Accuracy Precision Recall Accuracy Precision Recall

ANN0×0 0.94 0.93 0.95 0.62 0.62 0.54
ANN1×1 0.94 0.94 0.95 0.62 0.66 0.65
ANN1×10 0.96 0.93 0.93 0.73 0.72 0.73
ANN2×10 0.98 0.93 0.98 0.75 0.76 0.76
ANN2×50 0.99 0.98 0.99 0.75 0.76 0.74
Activation:Tanh
ANN0×0 0.94 0.93 0.95 0.62 0.62 0.54
ANN1×1 0.92 0.94 0.94 0.65 0.69 0.60
ANN1×10 0.93 0.94 0.94 0.72 0.72 0.72
ANN2×10 0.97 0.92 0.96 0.76 0.77 0.76
ANN2×50 1.00 1.00 1.00 0.75 0.74 0.74
Activation:
Soft ReLU
ANN0×0 0.94 0.93 0.95 0.62 0.62 0.54
ANN1×1 0.94 0.94 0.95 0.64 0.64 0.70
ANN1×10 0.96 0.93 0.93 0.72 0.72 0.72
ANN2×10 0.98 0.93 0.98 0.77 0.77 0.76
ANN2×50 1.00 1.00 1.00 0.77 0.76 0.78
Comparison
Naïve Bayes 0.82 0.83 0.81 0.59 0.58 0.59
Logistic Re-
gression

0.84 0.84 0.83 0.62 0.63 0.62

Support Vec-
tor Machine

0.89 0.88 0.90 0.71 0.72 0.71

The predictive accuracy for tone, based on the hand-coded presidential debate transcript data
from ReactLabs. Accuracy is the percent of observations correctly classified. Precision is the
percent of cases classified as being ‘positive’ over the total number of positive cases; recall is the
percent of ‘positive’ documents that were so labeled. The training set is a random sample of 600
documents used to train the models; the testing set is the remaining 170 documents not used
for training. Bolded entries signify the best performance across all models on each metric.

61

Table 2.4: SUMMARY OF THE IDEOLOGICAL BOOKS CORPUS

Ideology Documents Tokens
Center 6227 0.4m
Left 0 0
Mainline Liberal 15226 1.3m
Socialist 6027 0.7m
Religious Liberal 5367 1.1m
Progressive 27805 3.3m
Right 28323 4.2m
Moderate Conservative 8484 1.3m
Religious Conservative 6648 1.1m
Populist Conservative 7611 1.3m
Far Right 48799 5.2m
Libertarian 11566 1.7m

The number of documents (paragraphs) belonging to each ideological class, and the approxi-
mate number of total filtered uni-, bi-, and trigrams (in millions). Some documents were as-
signed to the Right class without being given an ideological subclass label, but all documents
from the Left were given an ideological subclass label.

62

2.7 Figures

Figure 2.1: A BASIC ARTIFICIAL NEURAL NETWORK

A basic neural network with inputs x, an output prediction ŷ , and for clarity the true target, y ,
which represents the actual value of the dependent variable we seek to predict.

63

Figure 2.2: SIGMOID ACTIVATION & CROSS-ENTROPY LOSS

(a) (b)

Visualizing the sigmoid activation cross-entropy loss functions. (a) The sigmoid (inverse logit)
function. (b) Cross-entropy (solid) applies a larger penalty than squared error loss (dashed),
especially for predictions far from the target value.

64

Figure 2.3: A ONE-LAYER BASIC ARTIFICIAL NEURAL NETWORK

Graphical representation of a one-layer neural network. A neural network with inputs x, k hid-
den nodes h(1)

1 ,h(1)
2 , . . .h(1)

k(1) in the hidden layer, and an output y .

65

Figure 2.4: A ONE-LAYER BASIC ARTIFICIAL NEURAL NETWORK

Graphical representation of a two-layer neural network. A neural network with inputs x, k hid-
den nodes h(1)

1 ,h(1)
2 , . . .h(1)

k(1) in the first layer and h(2)
1 ,h(2)

2 , . . .h(2)
k(2) in the second layer, and an

output y . In this figure, both layers contain the same number (K) of nodes, i.e. k(1) = k(2) = K ,
but models can be specified with a different number of nodes in each layer.

66

Figure 2.5: THE LEARNING PROCESS OF THREE ANN MODELS.

(a) (b) (c)

The learning process of three ANN models. The x-axis shows the epoch of the stochastic gra-
dient descent algorithm; the y-axis shows the accuracy. Solid lines represent the training data,
while the dashed lines represent the test data. (a) The ANN2×10 model, which shows a dip in
accuracy where the network gets stuck at a local minimum. (b) The ANN2×10 model, with learn-
ing rate 0.35. This learning rate is too high, which results in the model stepping too far on most
iterations, seen through the jumpy, uneven progress toward convergence. This also slows con-
vergence, requiring more than 100 epochs to reach a stable accuracy. (c) The ANN2×50 model,
showing smooth convergence and a narrower gap between training and testing performance.
All models presented use the sigmoid activation function.

67

Figure 2.6: THE EFFECT OF THINNING THE UNIGRAM VOCABULARY ON MODEL PERFORMANCE

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Percent Thinned

A
cc

ur
ac

y

Model

LR

NB

NN

SVM

The y-axis gives the percent of the vocabulary thinned based on infrequent use in the corpus.
Thinning of 0 means no words or word phrases are thinned, while 0.9 means the 90 percent
least-occurring words or phrases are thinned. Logistic Regression is the elastic-net logistic re-
gression, Naïve Bayes is the naïve Bayes model; SVM is the support vector machine model; and
NN is the two-layer, 50-node neural network (NN2× 50). (a) Shows unigrams only, (b) shows
unigrams and bigrams, and (c) shows unigrams, bigrams and trigrams.

68

Figure 2.7: THE EFFECT OF THINNING THE UNIGRAM AND BIGRAM VOCABULARIES ON MODEL

PERFORMANCE

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Percent Thinned

A
cc

ur
ac

y

Model

LR

NB

NN

SVM

The y-axis gives the percent of the vocabulary thinned based on infrequent use in the corpus.
Thinning of 0 means no words or word phrases are thinned, while 0.9 means the 90 percent
least-occurring words or phrases are thinned. Logistic Regression is the elastic-net logistic re-
gression, Naïve Bayes is the naïve Bayes model; Support Vector Machine is the support vector
machine model; and NN is the two-layer, 50-node neural network (NN2×50). (a) Shows uni-
grams only, (b) shows unigrams and bigrams, and (c) shows unigrams, bigrams and trigrams.

69

Figure 2.8: THE EFFECT OF THINNING THE UNIGRAM, BIGRAM, AND TRIGRAM VOCABULARIES

ON MODEL PERFORMANCE

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Percent Thinned

A
cc

ur
ac

y

Model

LR

NB

NN

SVM

The y-axis gives the percent of the vocabulary thinned based on infrequent use in the corpus.
Thinning of 0 means no words or word phrases are thinned, while 0.9 means the 90 percent
least-occurring words or phrases are thinned. Logistic Regression is the elastic-net logistic re-
gression, Naïve Bayes is the naïve Bayes model; Support Vector Machine is the support vector
machine model; and NN is the two-layer, 50-node neural network (NN2×50).

70

Figure 2.9: MEAN CROSS-VALIDATION PREDICTIVE PRECISION FOR SUBIDEOLOGICAL CLASS.

0.68

0.66

0.68

0.63

0.66

0.69

0.65

0.74

0.73

0.78

0.56

Rel C

Popul

Mod C

Right

Libtn

Far R

Rel L

Prog

Main L

Social

Center

Rel C Popul Mod C Right Libtn Far R Rel L Prog Main L Social Center
Predicted Class

Tr
ue

 C
la

ss

Means are taken across the ten cross-validation partitions of the Ideological Books Corpus using
the ANN3×50 model. The x-axis gives the predicted class, and the y-axis gives the true class
according to the IBC. Cell entries along the diagonal give the percent of cases correctly classified
into each class.

6

71

3 DISTRIBUTED WORD REPRESENTATIONS FOR POLITICAL TEXT

A common challenge in using text in quantitative research is the sheer complexity of natural

language. In nearly all political research to date, words or word-phrases are treated atomically,

or as independent members of a vocabulary. This representation, while powerful, has ignored

the natural interconnectedness of language (Harris 1954). Words carry semantic meaning—

i.e., the definitional meaning of words and phrases—and syntactic meaning—i.e., the role of

words in forming syntactically proper and meaningful expressions. Words can thus be similar

to certain words and different from others, either in terms of what the words mean or the role

they play in language. Researchers have long proposed solutions to these problems: modeling

with n-grams instead of single words, stemming to remove pluralization and tenses, clustering

words by part of speech, and so forth.

In recent years, some scholars have proposed methods for capturing the semantic and syn-

tactic information in natural languages (Bengio, Schwenk, Senécal, Morin & Gauvain 2006,

Mikolov, Chen, Corrado & Dean 2013, Lai, Liu, Xu & Zhao 2015). This class of methods, known

as word embeddings or distributed word representations, seek to take atomic word representa-

tions and reduce them to a meaningful, lower-dimensional space. The resulting representation

of a word provides key information about how the word is used in natural language. Words with

similar representations will tend to be semantically or syntactically similar, meaning that the

word representations naturally capture the relationships between words. In 2013, researchers

with Google published a highly efficient method for generating such representation, known as

the word2vec model. Since 2013, word representations have been shown to achieve state-of-

the-art results in many natural language processing tasks.

To date, these methods have not been leveraged in political science research. Part of the

challenge in using distributed word representations is that many traditional methods, such as

72

topic models, support vector machines, regularized regression models, inverse regression or

naïve Bayes models, do not easily integrate the information provided by distributed word rep-

resentations. Further, it is not clear how to combine word information to represent entire doc-

uments.

In this chapter, I introduce a common distributed word embedding model, fit the model to

a corpus of political books, and present several examples of how the word embeddings capture

semantic and syntactic information. I then experiment with several ways to use word embed-

dings for document classification tasks. I pay particular attention to a deep learning method,

convolutional neural networks, which combines word embeddings together with word order, to

achieve very high classification accuracy. Convolutional neural networks, or CNNs, are to date

unused in the political science literature, to the best of my knowledge, but offer a promising

tool for text analytic research.

3.1 Distributed Word Representations

We start from the traditional atomic representation, or a one-hot encoding, of words in a

corpus. For each unique word in a corpus, there is a corresponding vector of length V , where

V is the number of unique words in the corpus. The one-hot vector is populated by zeros in all

cells but one. If the first element of the one-hot encoding corresponds to the word ‘president,’

and there are ten unique words in the vocabulary, then the one-hot embedding for ‘president’

would be [1,0,0,0,0,0,0,0,0,0]. Note two important features of the one-hot represen-

tation: it is very sparse, and the vectors have no relationship to each other. To wit:

president [1,0,0,0,0,0,0,0,0,0]
executive [0,1,0,0,0,0,0,0,0,0]
potato [0,0,1,0,0,0,0,0,0,0]

We would think that ‘president’ and ‘executive’ would be similar, yet in their one-hot encod-

ing there is zero correlation between them. There is no calculation on these vectors that would

lead us to conclude that ‘president’ was any more similar to the word ‘executive’ than it is to

the word ‘potato.’ Further, this type of encoding tends to be very high-dimensional, as most

73

corpora will have many thousands of unique words.

Word embedding methods are, at the most fundamental level, dimensionality reduction

techniques. Much like principal components analysis or exploratory factor analysis, word em-

bedding models aim to take very high dimensional data and summarize them in a much lower-

dimensional space. As with tools more traditionally used in political science, the goal is to dis-

till the information provided by the data, and in the process uncover latent patterns that are

too obscure, noisy or high-dimensional in the original data. Survey respondents’ answers to a

single survey item are surely informative, but we can usually glean more information about re-

spondents’ attitudes by searching for patterns in multiple responses. By the same token, atomic

word representations carry some information, but latent patterns among words can prove more

informative.

We begin with the distributional hypothesis, proposed by Harris (1954), which asserts that

the meaning of words can be best understood by the context in which they appear. Or, as Firth

(1957, 11) more colorfully put it, “You shall know a word by the company it keeps.” Words

that tend to occur in similar contexts, such as ‘smart’ and ‘intelligent,’ share similar meaning.

That is, ‘smart’ and ‘stupid’ share semantic similarity (similar meaning) and syntactic similarity

(they have similar role in English syntax). Words like ‘smart’ and ‘stupid’ will also occur in many

similar contexts, so they are syntactically similar, though their semantic meanings are quite

different. ‘Smart’ and ‘stupid’ are thus also similar to each other, yet they will not occur in

contexts as similar as ‘smart’ and ‘intelligent.’ We would therefore conclude, quite rightly, that

‘smart’ is more similar to ‘intelligent’ than it is to ‘stupid,’ but all three are more similar to each

other than a word that would rarely if ever occur in context with the others, like ‘carpet’ for

instance.

We can derive many methods to exploit the distributional hypothesis and generate word

embeddings that represent these contextual similarities. Bullinaria & Levy (2007), Bullinaria &

Levy (2012), and Levy & Goldberg (2014) all discuss matrix factorization methods, like singular

74

value decomposition, to compute word embeddings to capture semantic and syntactic mean-

ing. In this chapter, I will discuss another approach, that underlying the word2vec model,

which has achieved state-of-the-art results in many applied natural language processing tasks.

The model is built on a neural network architecture, scales linearly with the size of the train-

ing corpus, and has efficient implementations in popular languages R and Python, which call

highly optimized C routines.

I introduced deep learning feed forward neural networks in the previous chapter. In this

section, I will build on that understanding to explain how distributed word representations can

be estimated from a training corpus. The task is relatively straightforward: to reduce the dimen-

sionality of words from their atomic representations to a distributed representation. That is, we

want to go from representing words as one-hot vectors, which are sparse and have length equal

to the size of the vocabulary, to representing words as dense, lower-dimensional real-valued

vectors.

3.1.1 Continuous Bag of Words

Building Intuition To begin, assume we have a corpus that contains V unique words and N

total words. For instance, if our corpus was the sentence ‘The president is an executive, but

the president is not a potato,’ the document has N = 12 total words, and V = 9 unique words.

We will index the sequence of words with i = 1,2, . . . N and unique words v = 1,2, . . .V . The

sequence of words in the corpus is w1, w2, . . . wi . . . wN . Each of the wi can be represented as

a V -dimensional one-hot encoding, which we will call x, implying that if wi = v , then xi is a

vector such that xi ,v = 1 and xi ,v ′ = 0 for all v ′ 6= v . In other words, the corpus is a sequence

of words, where each unique word is represented as it’s own one-hot vector. For our example

sentence, then, the words are corpus can be represented as:

To lighten some of the notational burden, we can consider the word-embedding procedure

for a single word, say w1, or the first word in the corpus. Given the distributional hypothesis,

we expect that a single word can be best summarized by the context in which it appears. To

75

the w1 = 1 [1,0,0,0,0,0,0,0,0] =*
x 1

president w2 = 2 [0,1,0,0,0,0,0,0,0] =*
x 2

is w3 = 3 [0,0,1,0,0,0,0,0,0] =*
x 3

an w4 = 4 [0,0,0,1,0,0,0,0,0] =*
x 4

executive w5 = 5 [0,0,0,0,1,0,0,0,0] =*
x 5

but w6 = 6 [0,0,0,0,0,1,0,0,0] =*
x 6

the w7 = 1 [1,0,0,0,0,0,0,0,0] =*
x 7

president w8 = 2 [0,1,0,0,0,0,0,0,0] =*
x 8

...
...

...
...

potato w12 = 9 [0,0,0,0,0,0,0,0,1] =*
x 12

capture this context, we will attempt to predict the words near our current word, conditional

on having observed the current word. For the moment, assume we use a one-word context. We

would seek to estimate the probability p(w2 = president|w1 = the), p(w2 = is|w1 = the), p(w2 =
an|w1 = the), . . . p(w2 = potato|w1 = the). More generally, we seek to estimate the probabilities

p(w2 = v ′|w1 = v).

We can estimate these probabilities empirically, without any model. For all words in the

vocabulary, the probability of following the word ‘the’ would simply be the proportion of times

that each word follows ‘the’—i.e., the number of the times ‘president’ follows ‘the’ divided by

the number of times ‘the’ occurs; the number of times ‘is’ follows ‘the’ divided by the number

of times ‘the’ occurs, and so forth. In our example document,’ the resulting vector of probabili-

ties would be [0,1,0,0,0,0,0,0,0] since the word ‘president’ follows the word ‘the’ both

times that ‘the’ appears in our corpus. If we repeat that exercise for every word in the vocabu-

lary, and stack the matrices horizontally, we would obtain a normalized co-occurrence matrix,

where the v, v ′ entry is just the percentage of times that word v ′ immediately follows word v in

the corpus. This could also be generalized to larger word contexts by, for example, computing

the proportion of times v ′ occurs within a c-word window of v .

This does not achieve our goal of representing words in a lower-dimensional space, however.

We could use matrix algebra to find some linear subspace of the co-occurrence matrix, e.g.,

using principal components analysis or singular value decomposition. But these methods scale

76

poorly, and better results have been achieved using the following neural network set-up.

Neural Structure Again, for simplicity, let us continue dealing with a single word and single-

word context. We wish to predict the next word in the corpus. Both the current word, ‘the,’ and

the next word, ‘president,’ are represented as a V -dimensional one-hot encoding. We could

fully connect the input vector to the output vector, but doing so would not provide an esti-

mate of a lower-dimensional representation. In fact, this set-up would just reduce to the co-

occurrence matrix formulation above.

To generate the lower-dimensional representation, we will impose a bottleneck in the net-

work structure. The distributed embedding approach seeks to project words into a D dimen-

sional space where D ¿V , i.e., we want some transformation such that
*
x i = v ∈ℜV → *

mv ∈ℜD .

To achieve this, we choose D , and specify a one-hidden-layer artificial neural network with D

hidden nodes. See Figure 3.1.

Some notation will make this clearer. The input to the matrix is a single word (the first word

in the corpus), represented as a one-hot vector of length V ,
*
x 1. Note that we are treating each

element of the vector as an individual, scalar input. The hidden layer has D nodes, but these

nodes too are scalars, so we will stack the nodes and treat them as a D ×1 vector,
*

h . The target

is the one-hot vector representing the next word in the corpus, so
*
y 1 = *

x 2. The output of the

model, then, is a V ×1 vector of predicted values,
*
ŷ 1, where the v th entry would represent the

predicted probability that the second word in the corpus would be word v given that the first

word is ‘the.’

The network is fully connected. The weights connecting the input to the hidden layer, Z, is a

V ×D matrix of real-valued weights. We will not perform any non-linear activation function at

the hidden layer—it’s unnecessary and would make computation more intensive. The hidden

layer is thus computed as:

*

h = ZT*x 1 (3.1)

77

The weights connecting the hidden layer to the output layer, A, is a V ×D matrix of real-

valued weights. Since the linear combination of real-valued h and real-valued A will not be

constrained to the probability simplex, we will perform a softmax1 transformation on the raw

outputs. This will ensure that the outputs represent a valid probability distribution over the

words. The model output is computed as:

*
ŷ i = softmax(AT

*

h) (3.2)

It is worth considering for a moment what the matrix multiplications in Equations 3.1 and

3.2 are doing. In the first case, note that
*
x 1 is a one-hot vector representation of the first word.

By pre-multiplying the one-hot vector by ZT, we are simply extracting the first column of ZT, or

the first row of Z. Thus the hidden node h1 = z1,1,h2 = z1,2 . . .hD = z1,D . More generally, if the

vector
*
x i represented word v , then the hidden node is hd = zv,d .

Moving to the next stage of the network, we are essentially trying to use the hidden layer to

predict the target. The task here looks very much like a multinomial logistic regression model.

The categorical outcomes are the V words that could potentially be the next word in the corpus.

As in a multinomial logit, predictors (h1,h2 . . .hD) receive a separate set of weights for every

outcome. If we knew
*

h a priori, then the inference task would reduce to a multinomial logistic

regression, i.e., to optimize the V ×D weights that give the best mapping from
*

h to the observed

outcome,
*
y 1.

Again, it is worth pausing to consider what that means: we are using the D−dimensional

representation of the word to predict the next word in the corpus. If this prediction exercise

works well, it will mean that we have found a lower-dimensional representation of the word

w1 that is nevertheless still contains useful information for predicting the following word. Put

another way, we will have compressed the information represented by the one-hot vector into

1The softmax function, defined softmax(u1) = exp(ui)/
∑

i exp(ui), is the same as used in multinomial logistic
regression. It can take positive or negative inputs ui , make them positive through exponentiation, and normalize
them so that they sum to 1.

78

a much smaller space. Unlike the one-hot embedding, though, the D-dimensional embedding

will be real-valued, meaning that we can compare words to each other in a continuous space.

To estimate the weights in the network, our natural inclination would be to use backprop-

agation. We can define the loss initially using cross-entropy, `(
*
y1,

*
ŷ1) = −∑V

v=1 y1,v log(ŷ1,v).

Conveniently, since the target y1 is one-hot encoded, the only cross-entropy loss derives from

the predicted probability corresponding to the actual target value. (In other words, if the tar-

get word is ‘president’, only the entry in the one-hot vector
*
y 1 corresponding to ‘president’ will

contribute to the loss, since every other predicted probability is being multiplied by zero.) As

a corollary, we can view the task as maximizing the ŷ1,v∗, where v∗ is the index correspond-

ing to the actual target word. And for ease, to simplify the softmax function, we can maximize

the log probability. Taking the log of the ŷ1,v∗ yields log(exp(AT
v∗,·

*

h))− log(
∑V

v=1 exp(AT
v,·
*

h)) =
AT

v∗,·
*

h − log(
∑V

v=1 exp(AT
v,·
*

h). This is our objective function that we wish to maximize, or al-

ternately, we can try to minimize the negative objective. Thus our new loss to minimize is

`=−(AT
v∗,·

*

h − log(
∑V

v=1 exp(AT
v,·
*

h))2.

The backpropagation updates for the weights in the A are:

∆ad ,v ∝−(ŷ1,v − y1,v)hd (3.3)

∆
*
a ·,v ∝−(ŷ1,v − y1,v) ·

*

h (3.4)

and the backpropagation updates for the weights in Z are:

∆zv,d ∝ `hd (3.5)

∆Zv,· ∝ ` ·
*

h (3.6)

2This should intuitively make sense: when ŷ1,v∗ is very near 1, it will mean that the model has generated a good

prediction. For ŷ1,v∗ to be near 1, it must be the case that AT
v∗,·

*
h is much larger than all of the other AT

v,·
*
h , v∗ 6= v ,

so that the loss would be very small. If ŷ1,v∗ is not near 1, the model is incorrect, and the loss will be proportional
to how far off ŷ1,v∗ is from 1.

79

Generalization 1: Context Size Training a neural network model to predict trailing words

gives us what is essentially a ‘bigram’ model, or one that will estimate the word vectors to pro-

duce valid two-word phrases. Words near each other in the resulting D-dimensional embed-

ding will be words that tend to appear together in two-word phrases. This can begin to capture

semantic and syntactic meaning, but a wider context tends to work better. For example, by

modeling the probability that a word wi appears, given the preceding words (wi−3, wi−2, wi−1)

and trailing words (wi+1, wi+2, wi+3), we can learn embeddings that capture the meaning of a

word based on its context.

Fortunately, using a multi-word context does not overly complicate our approach. Let C

be the context window size, such that will consider the C words around wi to predict w1. A

two-word context corresponds to using the two preceding and two trailing words. In many

applications, a larger window size will perform better. In Figure 3.2, I show the schematic rep-

resentation of a C = 2 word context around the target word.

We maintain the representation of the network in large part. As inputs now we have the C

concatenated word vectors representing the one-hot encoded words, C preceding and C follow-

ing the current word under consideration. The input now has dimension V ×2C , the weights

(still) have dimension V ×D , so the linear transformation in Equation 3.1 yields a D ×C matrix.

To combine these to maintain the D × 1 shape of the hidden layer, we simply take the aver-

age over the rows. Equivalently, we can treat the input vector as taking the average over the 2C

one-hot input vectors:
*
x̂i = 1

2C (xi−C , . . . xi−1, xi+1, . . . xi+C), and then leaving the hidden layer un-

averaged. This is what is shown in Figure 3.2, where the four context words are combined to a

single input, which is then connected to the hidden layer. The network from this point onward

is the same as before.

Generalization 2: Multiple Words Clearly we do not wish to fit the model to a single con-

text to predict a single word. Intuitively, we can imagine fitting the model by iterating over the

80

words in the corpus, though that would be quite inefficient for large corpora. (A modest cor-

pus for training word embeddings can be in the millions of words; many example models have

been fit to billions of words.) If we transition from the ‘bigram’ model to a larger context, we

would need to consider every unique context for words. While some multi-word contexts will

occur frequently—like the four-word window around ‘the’ in the expression ‘president of the

united states’—we will still end up with a very large number of unique multi-word contexts to

sum over. In short, while gradient descent methods to optimize the parameters in the neu-

ral network model is theoretically feasible, such a model could prove quite computationally

expensive. To avoid such computational complexity, Mikolov et al. (2013) propose a negative

sampling algorithm.

The basic idea behind negative sampling is fairly straightforward: instead of considering

all output words, we can consider only a portion of them (Rong 2014, Goldberg & Levy 2014).

Clearly for every context in the corpus, we need to maintain the actual target word v∗ in the

sample. We then randomly select words that do not belong in the context, hence negative sam-

ples. Mikolov et al. (2013) describes an empirical distribution for this random sample, which is

basically proportional to the unigram distribution in the text—i.e., we randomly select negative

samples proportional to the frequency with which words appear in the corpus. On each iter-

ation, we sample every true outcome word, and thus update the vectors associated with these

words; and we randomly sample some words that do not belong in the context, and update

those vectors too. This still yields a sufficient number of updates during training to reach stable

and meaningful embedded word vectors.

3.1.2 Word Embeddings

Once the optimization routine converges, we obtain two parameter matrices: the V ×D ma-

trix Z, and the D ×V matrix A. The former projects the one-hot or context-averaged input vec-

tor to a D−space, and the former projects the D−dimensional hidden vector back to V −space.

In essence, then, we have used the neural architecture to factorize a version of the contextual

81

co-occurrence matrix (Levy & Goldberg 2014). As Levy & Goldberg (2014) point out, an adapted

singular value decomposition method can perform roughly as well as the neural network model

on certain tasks, though the neural network model seems to perform better on average.

As stated above, the D-length hidden vector represents the input word (or several context

words) in a lower dimensional space that nevertheless maintains the ability of the context to

predict valid word sequences. The input-to-hidden layer matrix Z thus gives us the projec-

tion of the context words into their low-dimensional representation. The vector Zv,· is the D-

dimensional embedding for word v .

To see how these word embeddings capture semantic and syntactic similarity, I fit the con-

tinuous bag of words model to the Ideological Books Corpus, a collection of more than 200

books and magazine articles written by political figures and commentators. The corpus has

just over 20 million words, and roughly 51,000 unique words, after lower-casing and removing

numbers. For the following examples, I specify the model with D =300 dimensional embed-

dings, though clearly this parameter will need to be tuned in research applications.

In this section, I present the results of the model, showing how to evaluate the syntactic and

semantic similarity between words in the corpus. I then present a method for measuring the

performance of the model, and compare model performance across several specifications.

Word Similarity Unlike the atomic (one-hot) representation for each word in the vocabulary,

the distributed word representations exist in a continuous space. As such, we can conceive of

the distances between words, with the expectation that words close to each other will share

semantic and/or syntactic similarities. Two simple measures for distance in this space are Eu-

clidean distance and the cosine similarity. The Euclidean distance between two words, say v, v ′,

is the shortest line between the two words in the D−dimensional space:
√∑D

d=1(zv,d − zv ′,d)2.

82

The cosine similarity measures the cosine of the angle (in radians) between two vectors3. A co-

sine similarity of 1 implies that the words are exactly the same, and higher scores imply that two

words are close to each other in the D−space. The cosine similarity is computed

∑D
d=1 zv,d zv ′,d√∑D

d=1 z2
v,d

√∑D
d=1 z2

v ′,d

(3.7)

Table 3.1 shows six words that appear in the corpus, along with the five words that the CBOW

model finds to be most similar by cosine similarity. The results show how the lower-dimensional

representation of words captures semantic and syntactic similarity. On the former count, we see

that many of the words in the table are similar in meaning to their reference word: e.g., (awful,

horrible), (terrific, fantastic), (political, ideological). In some cases, the terms are not synonyms

but are syntactically similar. Though (good, bad) and (liberal, conservative) are opposites, they

occur in similar contexts in natural language.

We can also consider the similarity of multiple vectors simultaneously. Consider three cases.

The words most similar to ‘conservative’ are: liberal, conservatism, libertarian, conservatives,

populist. The words most similar to ‘religious’ are: religion, christian, christianity, judeo, re-

ligiously. These are each computed by comparing the D−length vectors for the word ‘conser-

vative’ and ‘religious’ and returning the vectors with the highest cosine similarity to each indi-

vidually. If we combine the two vectors conservative + religious by averaging them

together, we get another D-length vector. The words in the corpus closest to this joint vector

are: evalgelicals, christian, traditional, tradition, fundamentalist. In other words, we are finding

words that are close to both ‘religious’ and ‘conservative.’ This returns words not simply related

to conservatism and religiosity, but specifically related to the religious right in the United States.

3If the angle between two words is 0 degrees (0 radians), it would imply that the words have the exact same
location in the space, and thus have a similarity cos(0) = 1. If the words were completely the opposite of each other
in the space, they would have an angle of 180 degrees (π radians), and thus have a cosine similarity of cos(π) =−1.
If the words were completely unrelated, they would be orthogonal to each other in the space, meaning 90 degrees
(π/2 radians), and thus have cosine similarity cos(π/2) = 0. In other words, words very close to each other will have
a cosine similarity near 1, words unrelated to each other will have cosine similarity near zero, and words opposite
each other will have cosine similarities near -1.

83

Word similarity also reveals how domain-specificity might matter when applying these learned

word vectors to research tasks. When I train the CBOW model on the IBC, the words estimated

most similar to ‘gridlock’ are: partisanship, impass, polarization, partisan, polarized. For com-

parison, if we consider the pre-trained word vectors released by Google, which were trained

on the roughly 100 billion word Google News corpus, the most similar unigrams to gridlock are:

traffic, jams, snarls, congestion, stalemate. If we sought to use distributed word representations

for a political research task, the IBC-trained model’s ‘understanding’ of gridlock would match

our intuition better than the more general Google News-trained model’s understanding. We

will consider this question again in the next section.

Evaluation Word embedding models are unsupervised. They seek to learn the underlying

structure of language based on some version of word co-occurrence. It is thus difficult to eval-

uate model performance. We could expose the model to a test set of context-target pairs, like

those used to train the model. But the size of the vocabulary—again, tens of thousands to mil-

lion of words—means that to get a reasonable test set, we would need a massive testing corpus4

(in addition to a large training corpus).

Bruni, Tran & Baroni (2014) propose an evaluation method using a hand-coded word simi-

larity set. The authors used Amazon Mechanical Turk to obtain human coding for a set of 3000

word pairs, which workers rated on a seven-point Likert scale based on how similar the words

were. The authors note that ratings were reasonably reliable, with a correlation of 0.84 between

the average score of two experts with the scores by the Turkers. The MEN dataset (named for

Marco, Elia and Nam, the study’s authors) gives us a manner to integrate human evaluation

with the model results, and thus compare various unsupervised model specifications based on

how the perform on a supervised task. Unfortunately, the MEN data is generic—pairs include

4Why? Consider what such pairs would demand of the model: given a context, predict the single word that
belongs in context in one sample. In the context ‘The president has ___ the tax bill,’ many words would make
sense: debated, signed, vetoed, rejected, discussed, and so forth. If the single sample of this context actually says
that the president ‘considered’ the tax bill, all of the former predictions would be incorrect, despite them being
reasonable. We would need many testing samples to get a stable estimate of model performance.

84

(car, automobile) and (sunlight, sun)—and contains very few pairs specific to political topics.

I thus composed a separate evaluation set that is domain specific. Following Bruni, Tran &

Baroni (2014), I compose random pairs of words from the IBC, with selection proportional to

word frequency in the corpus. I omit stopwords, however, since these convey little information,

and manually trim common but book-specific terms, like the word ‘chapter.’ As a sample, pairs

include (budget, fiscal) with similarity 6, (congress, court) with similarity 5, and (tomorrow,

legislation) with similarity 1. I rated the pairs, along with a fellow researcher. The correlation

between the raters was 0.72.

I compare several model specifications, based on how they perform on the MEN and domain-

specific evaluation sets. As a sort of external baseline, I compute performance statistics using

the Google News vectors, provided by Google, which contains three million unique words and

300-dimensional embeddings. For the CBOW model fit to the IBC, I vary both the number of

dimensions in the embedding, and the context window-size. With limitless data, more embed-

dings should be capable of capturing more nuances of similarity, and typical window sizes are

5-15 words. Very small context windows tend to miss contextual information, while context

windows too large introduce too much noise by, for example, trying to uncover semantic or

syntactic similarity between two words 100 spaces apart.

Figures 3.3 and 3.4 show the model evaluation results. The x-axis shows the dimensionality

of the word embedding, and the y-axis shows the correlation between the human-coded sim-

ilarity between words and the model cosine similarity between words. Point shapes indicate

the context window size (i.e., the number of words to the left and right of a target word used to

predict it), and I present the results from four sizes: 5, 8, 11 and 15. The dashed line shows the

result from the Google News corpus with context size of 10 and 300-dimensional embeddings.

First, the Google News word embeddings yield better results than any of the IBC embeddings

on the MEN test set, as evidenced by the wide gap between the various IBC-trained model re-

sults and the dashed line at 0.64, the correlation between the Google News-trained embedding

85

similarities and those in the MEN evaluation data. This makes sense: the Google News corpus

contains about 100 billion words in the corpus, meaning that the model is able to observe an

incredible number of contexts, and thus can extract high-quality information about the seman-

tic and syntactic meaning of the words. The IBC, by contrast, offers fewer data with which to

train the model, and performs understandably worse on the generic test set.

The IBC-trained model performs fairly well on the domain-specific test, however. In some

cases, the IBC-trained model performs nearly on-par with the Google News-trained model. The

IBC-trained model seems to reach peak performance on both tasks with a smaller embedding

size, with a peak at somewhere around 200-250 dimensional embeddings, which again makes

sense given the smaller size of the IBC. The size of the context window has a rather smaller effect

on performance. Both the five- and fifteen- word context perform well, while a seven-word

context performs somewhat worse. Aside from very small and very large contexts performing

poorly, there seems not to be much of a clear pattern between window-size and performance

on either test set.

3.2 Document Representations

To this point, I have presented the details of neural network distributed word representa-

tions. The neural network models scale words into a lower-dimensional representation, which

turn out to capture latent semantic and syntactic structure in language. Yet to what end? In

many applied tasks, researchers have found that word embeddings augment performance on

various tasks in natural language processing, such as sentiment analysis (Tang, Wei, Yang, Zhou,

Liu & Qin 2014, Liu 2012, Dos Santos & Gatti 2014, Xue, Fu & Shaobin 2014), document clas-

sification (Kim 2014, Zhang, Zhao & LeCun 2015), and topic classification (Cao, Li, Liu, Li &

Ji 2015). In the literature, however, there are many ideas about how to leverage the word em-

beddings. Imagine we seek to classify the ideological perspective of documents using a super-

vised method. We have training documents, labeled by their ideological perspective; and we

have word embedding vectors for the words in the corpus. How do we aggregate the word-level

86

embeddings into a document-level representation to use in the classification task?

3.2.1 Vector Aggregation

In this section, I consider two simple methods for aggregating the word-level embeddings

to the document level. First, I simply average the word vectors together. This method employs

a similar logic as the conservative + religious example above: by averaging together

the word embedding vectors for each word in a document, we can position the document in

the same space as the words themselves, which might convey information relevant to the tar-

get classification, e.g., the ideological perspective of a document. I consider three weighting

schemes: uniform-weighting, frequency-weighting and tf-idf weighting. Uniform weighting

simply averages together the embeddings for words that appear in a document, regardless of

how frequently each word occurs. Frequency-weighting takes a weighted average of the word

vectors, with the weight proportional to the number of time each word occurs in the document.

Tf-idf weighting computes the weighted average, with weights given by the term frequency-

inverse document frequency for each word in each document (see the introduction to this the-

sis for more).

Second, I employ a max-pooling method, which combines the embeddings for a document

by taking the maximum value in each of the D dimensions across all of the words in the doc-

ument. In other words, if we collect all word vectors for each word in a document, the first

element in the resulting max-pooled vector will be the maximum value in the first dimension of

all words in the document. This approach has proven useful in some deep learning approaches

(Kim 2014, Hu, Lu, Li & Chen 2014, Zhang & LeCun 2015), though in this context it is certainly

atheoretical and might prove ineffective.

In general, should we expect these methods to work? Perhaps not. There are no real in-

terpretations of the latent dimensions into which we are projecting the words using the CBOW

model. Thus there is no reason to expect that averaging the projections together, or taking

maxima over the projections, would be themselves meaningful. Then again, models that ignore

87

word order do not seem like they should work, since order is clearly important for language;

yet they have proven useful enough to dominate text analysis to this point. Researchers, such

as Iyyer et al. (2014), have indeed found that averaging word vectors can work. While methods

that account for word order and linguistic structure improve model performance at predicting

how liberal political language is, they find that baseline models using simple averages do not

perform too poorly. If simple methods can produce decent results, we could reduce some of

the costs to applied researchers of using distributed word representations in their scholarship.

3.2.2 Convolutional Networks

While appealingly simple, the above methods are also rather coarse. Distributed word rep-

resentations clearly capture important latent structure in language, but it’s also not entirely

clear why these methods work (Levy & Goldberg 2014). As such, it’s not obvious that averaging

or max-pooling the word vectors would result in a meaningful representation of documents,

and thus might not work well in text classification or prediction tasks. The simple aggregation

methods also discard important information conveyed through word order. This is true in bag-

of-words models, too, as discussed in the introduction to this thesis.

To avoid the problems that arise from both simplifications, I introduce an adaptation of con-

volutional neural networks. CNNs are deep learning models that filter inputs in local regions,

and aggregate signals up to higher levels of abstraction (Le Cun, Denker, Henderson, Howard,

Hubbard & Jackel 1990, Dos Santos & Gatti 2014, Severyn & Moschitti 2015). Their name derives

from the concept of ‘convolution’ in mathematics, where we repeatedly apply a function to the

output of another function, which corresponds to the CNN’s application of filters to the output

of other filters.

The first applications of convolutional layers in artificial neural networks emerged from im-

age processing and classification research. Convolutions make a bit more intuitive sense in

these cases, so we can begin with an image as an example. A traditional feed-forward ANN, like

88

those discussed in Chapter 2, would attempt to classify an image based on the activation of pix-

els in an image. For instance, we could attempt to recognize a black-and-white hand-written

character based on how dark each pixel in the image is. In a simple ANN, as with a regression

model, this approach ignores spatial relationships between pixels. The convolutional network

samples regions of the space, and then aggregates the information learned from those regions

to use in prediction tasks. This can both improve prediction accuracy, and allows for recogni-

tion of, say, hand-written digits regardless of where they occur in a larger image.

When applied to text models, CNNs sample regions of the words in a document, and then

aggregate the information extracted from those regions into a higher-level abstraction. Essen-

tially, this provides a natural way to account for local dependence between words without hav-

ing to n−gram the text beforehand. For example, very different messages are conveyed by the

phrases ‘Libertarian ideals are fundamental’ and ‘Libertarian ideals are dangerous.’ In a bag-of-

words approach, we would need to specify each as a trigram,libertarian_ideals_fundamental,

libertarian_ideals_dangerous, which for this example works fine, but when applied

to a large corpus will result in a huge vocabulary of mostly nonsensical n-grams. CNNs, by con-

trast, can account for the proximity of ‘libertarian ideals’ and ‘fundamental’ versus ‘dangerous’

naturally and quite efficiently (Zhang & Wallace 2015, Zhang, Roller & Wallace 2016).

Document representation here differs from that used in a straightforward ANN. Instead of

representing documents via a document-term matrix, we represent each document as an N j ×D

matrix, where j = 1,2, ...J indexes the documents in the corpus, and i = 1,2, ...N indexes the

words in the document. So if the first document has 100 total words (i.e., not unique words),

and we represent the words using D = 300 dimensional word embeddings, the document will

be represented by a 100×300 matrix. The first row of the matrix would represent the embedding

for the first word in the document, and so forth. In practice, we standardize document length

so that all documents have the same matrix dimensions. Documents longer than the standard

89

length are truncated, while shorter documents are padded with a filler term5.. The CNN has

three stages that we can consider in turn: filtering, pooling and feeding forward.

Filtering In image processing, where CNNs first gained traction, filters represent a transfor-

mation applied to an image. Filters take areas of, e.g., pixels and locally manipulate them. Aver-

aging pixels with their neighbors blurs an image; differencing pixels with their neighbors tends

to invert an image and produce bright outlines and dark interiors of shapes. Within the CNN

framework, we can think of filters as a window of weights that pass over the input data—the

document—and transform it via Hadamard (i.e., element-wise) multiplication and summation.

For example, if we take the following matrix X and apply the following filter F, the resulting fil-

tered representation of X would be X◦F:

X =


0 0.1 0

0.5 0 0.5

0.1 0.5 0.1

 , F =


1 0 1

1 1 1

0 0 1

 , (X◦F) =


0 0 0

0.5 0 0.5

0 0 0.1


For images, the filter window has a height and a width, to be determined by the researcher.

The window will begin in the top-left of the image and slide across, moving by a user-specified

stride (typically one), until it reaches the right edge, after which it returns to the left edge and

shifts down one pixel. At each stop, the filter is applied, and the resulting filtered representation

is compressed (summed) into a feature map.

In text modeling, the window will have a fixed width, D , so that the filter is applied to all

dimensions of the word embedding vectors. The filter is applied and the result compressed

into a feature map, and then filter then slides down again. A document with N = 10 words and

a filter window size of K = 5 will produce a feature map with N −K +1 = 6 elements. As a simple

example, assume we have the X matrix from above, and a filter F of size 1, i.e. the filter acts on

one row of X at a time. The resulting feature map would have 3 elements, computed as such:

5For more information, see the introduction to this thesis

90

X =


0 0.1 0

0.5 0 0.5

0.1 0.5 0.1

 , F =
[

1 0 1

]
, (X◦F) =


0 0 0

0.5 0 0.5

0 0 0.1

 ,

feature map =


0

1

0.1


If instead we have a filter size 2, the resulting feature map would have 2 elements: one from

the two-row filter applied to the first two rows of X, and one from the filter applied to the second

and third rows of X. Each of these is summed up, which generates the two elements of the

feature map:

F =

1 0 1

1 1 1

 , (X◦F)1 =

 0 0 0

0.5 0 0.5

 , (X◦F)2 =

0.5 0 0.5

0 0 0.1


feature map =

 1

1.1


In the examples above, we have applied a single filter of deterministic weights to a docu-

ment, which yields a single feature map for a single document. This process differs in practice

in three ways. First, the weights in the filter are estimated rather than fixed a priori. Second,

we typically specify many (e.g., tens to hundreds of) filters, each of which is optimized during

training. If we are performing document classification, this enables us to estimate or ‘learn’

the best filters to use for the current task. Third, we can specify filter windows of variable size,

for example specifying a set of filters that scans over two-word windows, another set scanning

over three-word windows, and so forth. Each filter produces a separate feature map for each

document.

91

Visuals can better convey the process. In Figure 3.5, we can consider how a single filter

behaves on a document. Again, let us consider the document ‘The president is an executive,

but the president is not a potato.’ The document is represented by an N = 12 word by D =
6 dimensional embedding matrix. (Clearly in practice, embeddings will have more than six

dimensions.) For the example, imagine that the colors are unique to the words, and that the

color saturation reflects the magnitude of the embedding for a particular word.

We apply a three-word filter window, meaning we will apply our filter (the red rectangle) to

words (1,2,3), words (2,3,4), and so on. By moving the filter down one word each time, we will

obtain 12−3+1 = 10 filter applications. For each filter application, we compress the resulting

matrix by multiplying the filter weights by the each three-word window window, and by sum-

ming the product, thus creating a scalar representation of the filter. For each filter application,

we concatenate the resulting compressions into a 10-length feature map.

Extending this logic, we turn to Figure 3.6. This shows The process for using both two- and

three-word filter windows. The three-word filter window produces a 10-length feature map, as

before; the 2-word filter window produces an 11-length feature map. Performing max pooling

on each produces a scalar representation of both feature maps, which are then put together

into the final concatenated feature map. This process allows us to combine representations

built from filter windows of different sizes.

Pooling The result of filtering produces many feature maps, potentially even producing sets

of feature maps with different lengths. Figure 3.6 shows such a case, where the three-word fil-

ter produces a 10-length feature map, while the two-word filter produces an 11-length feature

map. To combine the feature maps into a single document representation, we perform pool-

ing. The most common form of pooling is max pooling, which selects the maximum value in

each feature map, creating a single representation of the document with as many elements as

there are feature maps. (Nagi, Ducatelle, Di Caro, Cireşan, Meier, Giusti, Nagi, Schmidhuber &

Gambardella 2011, Zeiler & Fergus 2014, Giusti, Cireşan, Masci, Gambardella & Schmidhuber

92

2013). Alternatives include mean pooling or fractional max pooling (Graham 2014, Boureau,

Ponce & LeCun 2010, Lin, Chen & Yan 2013). In this chapter, I will exclusively use max pooling.

Feed Forward After pooling, we have a representation of each document: a vector with length

equal to the number of filters. Each filter applied to the text contributes one element of that

pooled layer. From this point on, we can fit a traditional feed-forward network, along with the

concomitant decisions discussed in the first chapter of this thesis: numbers of hidden layers,

numbers of nodes, activation functions, and so forth. The output of the model is the target, e.g.,

the document classifications, and we optimize parameters (the filters and the weights in the

feed-forward portion of the network) to get the highest predictive performance. We can fit the

parameters using stochastic gradient descent, as with simple ANNs.

Multi-Channels An extension of the framework above is the use of multiple ‘channels’ in the

network. In the models discussed to this point, each document has a single input representa-

tion: each row is a word, in the order in which they appear in the document; and the row vectors

are the word embeddings from, e.g., a continuous bag of words model as described in Section 2.

We can extend this architecture to allow for multiple distributed word representations. For in-

stance, we could fit a CBOW model to our training corpus and use the resulting embeddings as

one channel in a CNN, and use embeddings from a massive (but perhaps not domain-specific)

corpus, like those trained on the Google News corpus, as another channel.

3.3 Applications

The purpose of this paper is to consider to what extent, and under what modeling specifica-

tions, distributed word representations can aid researchers at measurement tasks. To this end,

I assess the predictive accuracy of various models using word embeddings. For one set of mod-

els, I aggregate word embeddings using the two methods described above: averaging together

the embeddings for all words in each document, and pooling the embeddings for all words in

each document by choosing the largest value on each dimension. I also fit several convolutional

neural network models, which considers documents as represented by a sequence of words and

93

their associated embeddings.

I deploy these approaches toward two classification tasks. First, I use the data provided by

ReactLabs to predict the tone of utterances by Mitt Romney and Barack Obama (as in Chapter

2). Second, I push the methods a bit further, toward serving as a supervised topic model. Using

the hand-labeled topic codes provided by ReactLabs, I train models to correctly topic-classify

statements by the two candidates. A third application, analyzing the structure of elite and elec-

toral political ideology appears in the following chapter.

3.3.1 Debates

Following the task described in Chapter 2, I return to the task of measuring the tone, or

positivity/negativity of expressions by Democrat Barack Obama and his Republican opponent

Mitt Romney in the October 3, 2012 presidential debate. In this chapter, I attempt to leverage

the information provided in distributed word representations to improve predictive accuracy.

Each utterance (sentence or stand-alone clause) comes with a hand-coded tone classification.

I extend the application by also considering a another problem: topic coding. Each utter-

ance in the data has been topic coded by area experts (Boydstun et al. 2014). The topic codes

replicate those used in the Policy Agendas Codebook6. Table 3.2 shows the policy area codes

and the proportion of utterances falling into each category. Because certain classes contain too

few utterances for reliable training and test-set generation, I consider five topics: macroeco-

nomics, health, labor/jobs, education, and defense.

The topic task is potentially easier insofar as topics can be quite different in terms of the

language used when discussing them. There are very different sets of words and phrases used

in discussing Social Security and immigration, for instance. Classifying topics can be more dif-

ficult in other ways, however, since it requires classification into one of multiple classes. In

6The coding scheme was originally devised by Frank R. Baumgartner and Bryan D. Jones, with the support of
National Science Foundation grant numbers SBR 9320922 and 0111611, and are distributed through the Depart-
ment of Government at the University of Texas at Austin. Neither NSF nor the original collectors of the data bear
any responsibility for the analysis reported here.

94

this example, we have the added difficulty of topics that conceptually overlap (e.g., macroeco-

nomics and jobs are similar topics). In a bag-of-words approach, the best performing classifica-

tion model considered reached roughly 60 percent accuracy. From one perspective, this result

is disappointing, since it means that of all new utterances considered, a bag-of-words model

might only get a bit over half of the topic classifications to match expert assessments. On the

other hand, if we uniformly assign new utterances to the modal topic class, we would only ex-

pect to get about 40 percent correct. A bag-of-words model, such as those presented in Chapter

2, can beat these baselines considerably.

Unfortunately, as Table 3.3 shows, aggregating the word embedding vectors does not pro-

duce reliable results on either the tone or topic classification task. The table shows the pre-

dictive accuracy of various models, using three different averaging methods on the word em-

beddings, as well as max-pooling, to combine word embeddings into a single document rep-

resentation When attempting to map language onto tone, vector averaging only yields 51 to 55

percent accuracy, which is barely above what random assignment could obtain. Max pooling

fails similarly, with the best performing ANN model (which has two layers of 50 hidden nodes)

only achieving 59 percent accuracy, while the other baseline models perform slightly worse.

This compares quite poorly to the results shown in Chapter 2, where bag-of-words models rou-

tinely achieved north of 65 percent accuracy. On the topic classification task, we again find

both vector aggregation methods producing poor results. Both vector averaging and max pool-

ing produce classification accuracy between 25 and 40 percent. Simply choosing the modal

topic category would give accuracy of 40 percent. In short: this has not worked.

The failure of the vector aggregation models is disappointing, but perhaps should not be

unexpected. As aforementioned, averaging or max pooling the word representations may make

sense for short phrases, such as averaging the vectors ‘religious’ and ‘conservative’ in Section

2. For longer documents, though, it is not entirely clear why aggregating the vectors would

be useful for classification. Is a sentence—much less a longer document—really semantically

95

equivalent to the sum, or average, of its component words? Some researchers have found that

averaging may help to partition documents into very different topics—e.g., food, politics, geog-

raphy, and physics—but is far too coarse for finer-grained distinctions on domain-specific tasks

(Clinchant & Perronnin 2013).

On the other hand, the covolutional neural network models seem to leverage the word em-

beddings to good effect. The test data accuracy results from various specifications appear in

Table 3.4. The model names give the filter window sizes for each CNN; i.e., CNN2,3,4 indicates a

convolutional neural network model with filter window sizes of two, three and four. Each CNN

was fit with 100 hidden nodes in a single hidden layer, and the activation function is soft ReLU.

To minimize overfitting, I specify a dropout parameter p = 0.5. I fit each model using 50, 100

and 200 filters.

We can first focus on the left panel of the table, where we see the predictive accuracy on

the tone classification task. On average, the varied CNN models perform well, though not uni-

formly. The CNN(2) model, which uses only one filter window size of two words, achieves only

about 58 accuracy, or several points worse than the bag-of-words models discussed in Chapter

2. By expanding the number of filter window sizes, however, predictive accuracy jumps consid-

erably. The CNN(3,4,5) model with 100 filters—which uses 100 filters over each of three, four and

five word windows—achieves 82 percent accuracy on the test set. This not only performs better

than any other model on this task, but also outperforms the best bag-of-words models consid-

ered in Chapter 2. The CNN(3,5,7) model, both with 50 and 100 filters, also performs reasonably

well, beating the predictive accuracy of the most robust models in Chapter 2.

As with the vector aggregation models, performance drops when we switch to examining the

topic classification task. The worst performing CNN, with only a two-word filter window, gives

better but still modest results compared to the vector aggregation methods, with performance

slightly less than 50 percent. The CNN(2,3,4) and CNN(3,4,5) models, both with with 100 filters,

achieves a considerably better 61 percent accuracy.

96

Analyzing the heat map in Figure 3.7 shows the topic-specific prediction precision, as well

as showing where the model makes the greatest prediction errors. I present the results from the

CNN(2,3,4) model, but the results are similar for most CNN specifications. The model correctly

predicts more than 60 percent of the utterances in the test set belonging to the health care,

education and defense topics. The worst performance occurs with the macroeconomics and

jobs/labor topics and, as the figure shows, this happens largely because the model tends to

mis-classify each as the other. Take for an example Mitt Romney’s statement “And over the last

four years small-business people have decided that America may not be the place to open a

new business.” The model incorrectly classifies this statement as having an 84 percent chance

of belonging to the ‘macroeconomics’ topic, when in fact the hand-coded label is labor/jobs.

This type of error is disappointing, but reflects the logical conceptual overlap between the two

topics.

Table 3.4 also provides an important warning regarding overfitting with CNNs. Based on the

reported results, specifying somewhere around 100 filters seems to give optimal performance

on these two tasks. Using only 50 filters tends to perform several points worse, on average,

than using 100 filters. But we pay a price for using too many filters. Including more filters can

improve performance on training data, but makes it easier to overfit the model to the training

data. On both the tone and topic classification tasks, the predictive accuracy of the model on

the test data drops—sometimes by as much as 23 points—when we double from 100 to 200

filters.

The takeaway from these applications can be summarized thus: (1) word embeddings con-

vey useful information; (2) this information is not straightforward to use for other tasks, like

sentiment analysis or topic classification; (3) accounting for word order creates a natural way

for documents to be represented as collections of potentially correlated word representations;

and (4) when correctly leveraged, word embeddings can improve model performance and result

in more reliable measurements of concepts that we care about as applied researchers.

97

3.3.2 Note on Multi-Channels

To this point, I have represented words using embeddings provided by Google, trained on

the Google News corpus. I chose these embeddings because they were trained on a large corpus

and have been used in many other applied research projects. As I mention above, however, we

can employ multiple word embeddings within a single model. In such a setup, every document

in the corpus is represented as a matrix for each word embedding used. If we wished to train

a CNN on both the distributed representations provided by Google, as well as those we trained

on the Ideological Books Corpus, each document would then have two matrices: one with the

Google News embeddings stacked in the order in which they appear in the document; and one

with the IBC embeddings, stacked similarly. The model then proceeds as it would with a single

channel: we filter and compress into feature maps, and then pool the feature maps from both

channels into a single representation for each document.

The logic to this approach is compelling. For some words—particularly for common words—

the Google News embeddings may have higher quality, since they were trained on an inordinate

amount of data. For domain-specific language, however, word embeddings trained on political

language may generate better representations. By filtering and pooling, a CNN can automati-

cally select the best representation on a word-by-word basis.

To assess whether employing multiple distributed representations improves model perfor-

mance, I consider the best performing CNN model presented in this chapter, the CNN(3,4,5), fit

to two channels of embeddings: the Google News embeddings, and a 300-dimensional CBOW

model fit to the Ideological Books Corpus. I cross-validate the model using 100 random par-

titions of the ReactLabs debate data: 600 utterances for training and 170 for testing for each

partition. On each partition, I fit the CNN(3,4,5) model once using the Google News word em-

beddings, once using the IBC word embeddings, and once on the two-channel union of both.

The advantage of using multiple channels seems to depend on the application. Referring to

Figure 3.8, using the IBC word embeddings alone performs worse than using those provided by

98

Google, and the empirical 95 percent interval obtained from the 100 cross-validation partitions

are also markedly wider for the IBC-trained embeddings. This shows that the word embed-

dings trained on an exponentially larger corpus outperform those trained on the IBC, and also

produce much more stable results. This makes sense, especially for a task like predicting tone.

Though the utterances of the two presidential candidates are clearly about political topics, there

is a certain universality to the language of optimism and positivity, and that of pessimism and

negativity. Returning to an earlier example, consider the statement that “legislative functions ...

are in a state of paralysis as a result of partisan gridlock.” Whether the model places ‘gridlock’

in a similar space as polarization or traffic snarls probably matters little for predicting that the

statement is negative. Embeddings trained on a much smaller corpus produces lower quality

results when assessed on generic linguistic tasks (see again Figures 3.3 and 3.4), and this loss of

information results in lower-quality predictions overall.

The story is somewhat different on the more domain-dependent task of classifying topics.

Figure 3.9 repeats the cross-validation exercise using the topic classification task. It shows that

we gain a slight—though truthfully not significant at any conventional level—improvement in

average model performance by employing a two-channel CNN specification. As with the tone

task, the GN embeddings produce better results than the IBC embeddings, and show more sta-

bility (lower variation across partitions) than using the IBC alone. Using both performs best,

which indicates that combining general-purpose embeddings trained on a very large corpus,

along with embeddings trained on a domain-specific corpus, can be worth it when the re-

searcher is attempting a task where domain specificity is key.

3.4 Discussion

Taken together, these results suggest that distributed word embeddings can convey useful

information about language, and that they can serve a purpose beyond parlor tricks like re-

turning similar words or solving analogies. By capturing the semantic and syntactic features of

words, distributed representations can account for linguistic patterns, which in turn can aid us

99

in text classification or other modeling tasks. In bag-of-words models, we would typically esti-

mate the effect of ‘health care reform,’ ‘affordable care act’ and ‘obamacare’ on the probability

that a document belongs to a health care topic. Word embeddings can begin to account for the

similarity between ‘obamacare’ and ‘health,’ and ‘obamacare’ and ‘reform,’ which makes our

modeling more robust to the diversity of language.

Yet we also need to note that using distributed word representations in prediction tasks re-

quires special care. Simple methods for aggregating word embeddings to represent documents

largely fail. Averaging or max pooling embedding vectors together might work for constructing

representations of two or three word phrases, like ‘religious conservative,’ but these methods

are too coarse to give clean representations for longer documents. Bag-of-words models, like

regularized logistic regression, support vector machines, or feed-forward artificial neural net-

works, fit to document-term matrices, perform better on average than models fit to aggregated

vector representations of words.

When we represent documents as sequences of words, each of which is represented by a

word embedding, performance improves. Convolutional neural network models give us one

manner by which to accomplish this. CNNs were originally developed for image recognition,

and achieved impressive results by constructing representations of whole images as the aggre-

gate of smaller, regional images. Applied to texts, this means representing entire documents as

the aggregation of smaller multi-word phrases. A single document can thus be represented as

the composite of many smaller sub-documents, which are aggregated and used in prediction,

classification, or scaling tasks.

The CNN models, combined with distributed representations, provide an additional advan-

tage: relative simplicity. Unlike more traditional methods, the convolutional approach naturally

learns multi-word representations that are useful in predictive tasks. In other words, we do not

need to n-gram a corpus before proceeding to model specification. This point can be easy to

understate, but it amounts to a considerable advantage in applied research. Processing a corpus

100

into multi-word phrases can be both computationally expensive and can introduce enormous

bias into the modeling process. Generating n-grams results in a very large vocabulary of unique

words/multi-word phrases, but most of these phrases are meaningless and occur infrequently

in the text. The phrase ‘president is an’ in the sentence ‘The president is an executive’ conveys,

by itself, almost no meaning whatsoever. This requires us to filter phrases from the vocabulary,

but these decisions can have large effects on the predictive abilities of the models we specify

later. By naturally learning the temporal dependencies between words in a document, CNNs

provide a compelling alternative.

The message on domain specificity is a bit more mixed. When we assess the performance of

word embeddings on general tasks—like achieving a high correlation between common words

that the models believe to be similar, and what human coders believe to be similar—embeddings

trained on large, general-purpose corpora will tend to perform better. If we assess model per-

formance on a domain-specific set of tasks, training corpora on domain-specific tasks can work

better.

Similarly, if a text analytic project addresses a question that largely hinges on general lin-

guistic differences—like the positivity or negativity of tweets or speeches, whether messages

contain angry, violent, conciliatory or cooperative language, and so forth—using embeddings

pre-trained on large corpora can improve performance on classification, prediction or scaling

tasks. If the project hinges on leveraging differences in a domain-specific lexicon, where words

can have very different implications than they do outside of the research domain, combining

large-corpora embeddings with those the user trains on a domain-specific corpus may work

better. As the results show, pre-trained embeddings produce good results on predicting the

tone of utterances during a presidential debate, but are augmented on a finer-grained task like

predicting the topics of such statements.

Future research could progress considerably, and along two different routes. (1) The next

phase of research could explore better ways to incorporate distributed word representations

101

into standard text analytic frameworks. Some researchers (e.g., Iyyer et al. (2014)) have found

simpler models like logistic regression, combined with averaging word representation vectors,

to perform reasonably well at classification tasks. Progress in this area would make it easier for

researchers to incorporate continuous word representations into their research without nec-

essarily needing to invest in building convolutional or other deep-learning models. (2) More

research should be done on how to use convolutional neural networks, as well as recursive or

recurrent neural networks, to use word ordering in an efficient way (Iyyer et al. 2014). This

would potentially free us from relying so heavily on n-gramming texts, and thereby having to

make the consequential and sometimes problematic choices thereby associated.

Using distributed representations of words has proven useful in many natural language pro-

cessing tasks. To date, we have not brought these tools to bear in answering political science

questions. Part of the reason, I suspect, is that it is not immediately apparent how to leverage

these tools. Distributed representations are useful, but care must be taken to incorporate them

with measurement tasks appropriately. This chapter attempts to convey the usefulness of dis-

tributed representations, to assess how they can best be integrated into political research, and

ultimately to provide applied scholars with a useful tool for analyzing textual data. In the fol-

lowing chapter, I point these tools toward my own motivating substantive research program:

analyzing the structure of elite political ideology.

102

3.5 Tables

Table 3.1: WORD EMBEDDINGS CAPTURE MEANING

awful good terrific blessed political judiciary liberal
horrible great fantastic fortunate politics courts conservative
terrible bad great thankful ideological judicial liberals
dreadful decent marvelous bless electoral oversight reformist
horrendous nice superb wonderful democratic jurists progressive
horrid better wonderful grateful partisan justice left

The table shows six unigrams (the column headers) and the five unigrams most similar to each,
according to the cosine similarity metric. The results show both semantic (awful → horrible)
and syntactic (good → bad) similarity. The results were computed by using results from the
D300 continuous bag of words model.

103

Table 3.2: TOPIC DISTRIBUTION IN A 2012 PRESIDENTIAL DEBATE

Code Topic Proportion
1 Macroeconomics 0.29
2 Civil Liberties < 0.01
3 Health 0.22
4 Agriculture 0
5 Labor/Jobs 0.05
6 Education 0.07
7 Environment < 0.01
8 Energy 0.03
9 Sundry/Non-political 0.14
10 Transportation < 0.01
12 Law/Crime 0
13 Social Welfare 0.03
14 Community/Housing 0.01
15 Banking/Finance 0.01
16 Defense 0.06
17 Science/Technology < 0.01
18 Trade < 0.01
19 Foreign Affairs < 0.01
20 Gov’t Operations 0.07

The distribution of topics, as coded by researchers with ReactLabs. Each utterance is coded
into one topic category, as defined by the Policy Agendas Project. The ‘sundry’ topic, code 9,
captures mostly statements that are not policy-oriented. In the context of the debate, this com-
prises mainly statements by candidates about the structure of the debate, or interactions with
the moderator.

104

Table 3.3: TEST SET ACCURACY FOR TOPIC AND TONE

Uniform Avg Freq Avg tf-idf Avg Max Pool
Model Tone Topic Tone Topic Tone Topic Tone Topic
Naïve Bayes 0.51 0.25 0.52 0.30 0.54 0.22 0.50 0.30
Logistic re-
gression

0.52 0.33 0.52 0.22 0.48 0.23 0.53 0.28

Support vec-
tor machine

0.55 0.31 0.49 0.38 0.50 0.23 0.50 0.37

ANN2×50 0.51 0.39 0.59 0.26 0.58 0.20 0.49 0.40

The testing accuracy for tone and topic, based on the hand-coded presidential debate tran-
script data from ReactLabs. The training set is a random sample of 600 documents used to
train the models; the testing set is the remaining 170 documents not used for training. Column
blocks give test set predictive accuracy from four models: Naïve Bayes, regularized logistic re-
gression, support vector machine, and a feed forward neural network with 2 layers of 50 hidden
nodes (ANN2×50). Models fit after aggregating the word embedding vectors for each document.
Uniform averaging simply averages the embeddings for all words in a document; frequency-
weighted averaging (Freq Avg) is a weighted average based on how frequently each word ap-
pears in a document; tf-idf averaging (tf-idf Avg) is a weighted average based on the tf-idf score
for each word in each document; and max pooling represents each document as the maximum
value in each of the D dimensions for the words in the document.6 No model performs well.
For tone, there are two categories which are roughly evenly distributed, and no model performs
much above 50 percent. For topic, there are five categories, and the models perform worse than
uniformly predicting the modal topic.

105

Table 3.4: CNN TEST SET ACCURACY FOR TONE AND TOPICS

Tone Topic
Num. Filters: 50 100 200 50 100 200
CNN(2) 0.58 0.57 0.58 0.46 0.48 0.43
CNN(2,3) 0.62 0.63 0.59 0.49 0.52 0.54
CNN(2,3,4) 0.72 0.75 0.60 0.59 0.61 0.57
CNN(3,4,5) 0.74 0.82 0.59 0.53 0.61 0.58
CNN(3,5,7) 0.68 0.79 0.61 0.49 0.49 0.51
CNN(3,4,5,6,7) 0.72 0.77 0.58 0.53 0.55 0.53

Test set predictive accuracy for presidential debate tone and topics. The table shows testing
accuracy (percent correctly predicted) for classifying tone (left) and topic (right), based on the
hand-coded presidential debate transcript data from ReactLabs. The training set is a random
sample of 600 documents used to train the models; the testing set is the remaining 170 docu-
ments not used for training. Bolded figures show the best overall performance on each task.
The model names give the filter window sizes for each CNN; i.e., CNN2,3,4 indicates a convolu-
tional neural network model with filter window sizes of two, three and four. All CNN models
presented use the same feed-forward specification: one hidden layer with 100 hidden nodes,
Soft ReLU activation function, and p = 0.5 dropout on the hidden layer. As a baseline, ran-
domly assigning tone labels would yield roughly 50 percent accuracy, and randomly assigning
topic labels would yield roughly 12 percent accuracy.

106

3.6 Figures

Figure 3.1: GRAPHICAL REPRESENTATION OF THE CONTINUOUS BAG OF WORDS MODEL

Graphical representation of the continuous bag of words model, simplified to represent the
estimation problem for a single word in the corpus. Given a one-hot encoding of the first word
in the corpus, ‘the’, we seek to optimize the D−dimensional representation that can still predict
the following word to be ‘president,’ which is also one-hot encoded. The layer of hidden nodes,
of which there are D , represents a bottleneck in the network, which forces the model to learn a
lower-dimensional representation of the input word that is still capable of predicting the next
word. For clarity, not all edges in the graph are shown, but the layers are fully connected.

107

Figure 3.2: GRAPHICAL REPRESENTATION OF THE CONTINUOUS BAG OF WORDS MODEL WITH

TWO-WORD CONTEXT

Graphical representation of the continuous bag of words model. The figure shows the use of
two-word context window (two words to each side) around the target word. The expression
under consideration is ‘The president is an executive,’ and the target word is ‘is.’ Each context
word is one-hot encoded, and are combined into a single context vector. The rest of the model
is the same as in Figure 3.1.

108

Figure 3.3: MEN EVALUATION RESULTS FOR THE CONTINUOUS BAG OF WORDS MODEL.

0.2

0.3

0.4

0.5

0.6

0.7

50 100 150 200 250 300 350 400 450 500
Embed Dimension

C
or

re
la

tio
n

Context

5

8

11

15

The table gives results from evaluating model performance on the MEN data. The x-axis shows
the dimensionality of the word embedding, and the y-axis shows the correlation between the
human-coded similarity between words and the model cosine similarity between words. Point
shape indicate the context window size (i.e., the number of words to the left and right of a target
word used to predict it). The dashed line shows the result from the Google News corpus with
context size of 10 and 300-dimensional embeddings.

109

Figure 3.4: DOMAIN-SPECIFIC EVALUATION RESULTS FOR THE CONTINUOUS BAG OF WORDS

MODEL

0.2

0.3

0.4

0.5

0.6

0.7

50 100 150 200 250 300 350 400 450 500
Embed Dimension

C
or

re
la

tio
n

Context

5

8

11

15

Domain-specific evaluation results for the continuous bag of words (CBOW) model. The table
gives the results from evaluating model performance on the domain-specific evaluation data.
The x-axis shows the dimensionality of the word embedding, and the y-axis shows the correla-
tion between the human-coded similarity between words and the model cosine similarity be-
tween words. Point shape indicate the context window size (i.e., the number of words to the left
and right of a target word used to predict it). The dashed line shows the result from the Google
News corpus with context size of 10 and 300-dimensional embeddings.

110

F
ig

u
re

3.
5:

A
G

R
A

P
H

IC
A

L
R

E
P

R
E

S
E

N
T

A
T

IO
N

O
F

T
H

E
C

O
N

V
O

L
U

T
IO

N
P

R
O

C
E

S
S

A
gr

ap
h

ic
al

re
p

re
se

n
ta

ti
o

n
o

f
th

e
co

n
vo

lu
ti

o
n

p
ro

ce
ss

in
a

co
n

vo
lu

ti
o

n
al

n
eu

ra
l

n
et

w
o

rk
.

Fo
r

th
is

ex
am

p
le

,
im

ag
in

e
th

at
th

e
d

o
cu

m
en

t
is

‘T
h

e
p

re
si

d
en

t
is

an
ex

ec
u

ti
ve

,b
u

t
th

e
p

re
si

d
en

t
is

n
o

t
a

p
o

ta
to

.’
T

h
is

is
re

p
re

se
n

te
d

b
y

an
N

=
12

w
o

rd
b

y
D

=
6

d
im

en
si

o
n

al
em

b
ed

d
in

g
m

at
ri

x.
C

o
lo

rs
ar

e
u

n
iq

u
e

to
th

e
w

o
rd

s,
an

d
sa

tu
ra

ti
o

n
re

fl
ec

ts
th

e
m

ag
n

it
u

d
e

o
f

th
e

em
b

ed
d

in
g

fo
r

a
p

ar
ti

cu
la

r
w

o
rd

.F
ig

u
re

sh
ow

s
a

K
=

3-
w

o
rd

fi
lt

er
w

in
d

ow
,i

.e
.a

p
p

ly
in

g
th

e
fi

lt
er

(t
h

e
re

d
re

ct
an

gl
e)

to
w

o
rd

s
(1

,2
,3

),
w

o
rd

s
(2

,3
,4

),
et

ce
te

ra
.

W
e

m
ov

e
th

e
fi

lt
er

d
ow

n
o

n
e

w
o

rd
ea

ch
ti

m
e,

o
b

ta
in

in
g

N
−K

+1
=

10
fi

lt
er

ap
p

li
ca

ti
o

n
s.

Fo
r

ea
ch

fi
lt

er
ap

p
li

ca
ti

o
n

,
w

e
co

m
p

re
ss

th
e

re
su

lt
in

g
m

at
ri

x
b

y
m

u
lt

ip
ly

in
g

th
e

fi
lt

er
w

ei
gh

ts
b

y
th

e
ea

ch
th

re
e-

w
o

rd
w

in
d

ow
w

in
d

ow
,

an
d

b
y

su
m

m
in

g
th

e
p

ro
d

u
ct

,t
h

u
s

cr
ea

ti
n

g
a

sc
al

ar
re

p
re

se
n

ta
ti

o
n

o
ft

h
e

fi
lt

er
.

W
e

th
en

co
n

ca
te

n
at

e
th

e
re

su
lt

in
g

co
m

p
re

ss
io

n
s

in
to

a
10

-l
en

gt
h

fe
at

u
re

m
ap

.

111

F
ig

u
re

3.
6:

A
G

R
A

P
H

IC
A

L
R

E
P

R
E

S
E

N
T

A
T

IO
N

O
F

T
H

E
C

O
N

V
O

L
U

T
IO

N
P

R
O

C
E

S
S

W
IT

H
M

U
LT

IP
L

E
W

IN
D

O
W

S
IZ

E
S

A
gr

ap
h

ic
al

re
p

re
se

n
ta

ti
o

n
o

ft
h

e
co

n
vo

lu
ti

o
n

p
ro

ce
ss

in
a

co
n

vo
lu

ti
o

n
al

n
eu

ra
ln

et
w

o
rk

.B
u

il
d

in
g

o
n

th
e

in
tu

it
io

n
in

F
ig

u
re

3.
5,

th
is

sh
ow

s
th

e
p

ro
ce

ss
fo

r
u

si
n

g
m

u
lt

ip
le

fi
lt

er
w

id
th

s.
A

s
b

ef
o

re
,w

e
fi

t
a

K
=

3-
w

o
rd

fi
lt

er
w

in
d

ow
,w

h
ic

h
ag

ai
n

p
ro

d
u

ce
s

a
10

-
le

n
gt

h
fe

at
u

re
m

ap
.W

e
al

so
fi

ta
K
=

2-
w

o
rd

fi
lt

er
w

in
d

ow
,w

h
ic

h
p

ro
d

u
ce

s
an

11
-l

en
gt

h
fe

at
u

re
m

ap
.P

er
fo

rm
in

g
m

ax
p

o
o

li
n

g
o

n
ea

ch
p

ro
d

u
ce

s
a

sc
al

ar
re

p
re

se
n

ta
ti

o
n

o
fe

ac
h

fe
at

u
re

m
ap

,w
h

ic
h

ar
e

th
en

co
n

ca
te

n
at

ed
in

to
th

e
fi

n
al

fe
at

u
re

m
ap

.T
h

is
p

ro
ce

ss
al

lo
w

s
u

s
to

co
m

b
in

e
re

p
re

se
n

ta
ti

o
n

s
b

u
il

tf
ro

m
fi

lt
er

w
in

d
ow

s
o

fd
if

fe
re

n
ts

iz
es

.

112

Figure 3.7: TOPIC CLASSIFICATION PRECISION

0.54

0.61

0.53

0.64

0.66

Macro

Health

Jobs

Educ

Defense

Macro Health Jobs Educ Defense
Predicted Class

Tr
ue

 C
la

ss

Topic classification precision using the CNN(2,3,4) model. The topic labels are: macroeco-
nomics, health care policy, labor/jobs, education, and defense/security. Darker colors repre-
sent a higher proportion of classifications belonging to a certain cell. The darker colors along
the diagonal reflect that most test documents are correctly labeled by the model. The model
performs worst on ‘macroeconomics’ and ‘jobs,’ which while disappointing, reflects a logical
pattern given how similar the two topics are.

113

Figure 3.8: TONE CLASSIFICATION PRECISION WITH MULTIPLE EMBEDDINGS

0.4

0.5

0.6

0.7

0.8

0.9

GN IBC GN+IBC
Word Embedding Used

Te
st

 A
cc

ur
ac

y

Using domain-specific word embeddings decreases tone classification accuracy. Comparing
the test set predictive performance of the CNN(3,4,5) model using various word embeddings,
based on 100 cross-validation samples from the ReactLabs debate data. GN indicates that
the model uses the Google News-trained word embeddings; IBC indicates Ideological Books
Corpus-trained word embeddings; and GN+IBC reflects that the model was fit with two chan-
nels, with one channel populated by the GN embeddings and one channel populated by the IBC
embeddings. Point estimates are the mean accuracy on the task, and bars represent 95 percent
empirical intervals.

114

Figure 3.9: TOPIC CLASSIFICATION PRECISION WITH MULTIPLE EMBEDDINGS

0.4

0.5

0.6

0.7

0.8

0.9

GN IBC GN+IBC
Word Embedding Used

Te
st

 A
cc

ur
ac

y

Using domain-specific word embeddings can improve topic classification. Comparing the test
set predictive performance of the CNN(3,4,5) model using various word embeddings, based on
100 cross-validation samples from the ReactLabs debate data. GN indicates that the model uses
the Google News-trained word embeddings; IBC indicates Ideological Books Corpus-trained
word embeddings; and GN+IBC reflects that the model was fit with two channels, with one
channel populated by the GN embeddings and one channel populated by the IBC embeddings.
Point estimates are the mean accuracy on the task, and bars represent 95 percent empirical
intervals.

115

4 ON THE STRUCURE OF ELITE IDEOLOGY

Ideology anchors politics. Nearly every political conflict centers on a set of fundamental

political ideas, and the manner in which individuals apply those ideas to their social context.

In political science, we have dedicated much ink to the study of ideology. Implicit in this re-

search is an understanding that ideology is foundational to politics, that viewing policy conflict

as simply partisan misses the broader point. Ideology is the structure that produces coherent

sets of political preferences. Without an understanding of ideology, we are unmoored, drifting

from one political conflict to another with little perspective on how these preferences emerged,

or what serves to organize individuals’ many attitudes.

As a discipline, we seem to have arrived at a basic understanding of how ideology in the

United States is structured. Ample evidence from legislative, judicial, state, and public opinion

studies shows that our attempts to measure ideology finds that ideology simplifies to a left-right

divide. From presidents to individual voters, our measurements of ideology are best described

as a scale from very conservative to very liberal. This type of measurement can explain and

predict much political behavior. It is both powerful and simple.

Herein lies the problem, to which I contend we have paid far too little attention. Our un-

derstanding of ideology stands opposed to our measurement. We follow Converse (1964) in

viewing ideology as the framework that organizes and informs our political preferences. Ideol-

ogy is not the preferences themselves, but the fundamental ideas about politics that organize

preferences.

Yet our measurements tend to rely on outward behavior like voting on bills or answering

survey questions. These behaviors do not represent ideology alone, but take place in a context

where partisan conflict prevails. As a result, the low-dimensional representations of ideology

with which we are all so familiar may not actually imply that ideology itself is low-dimensional,

116

but rather that partisan conflict forces political behavior into a one-dimensional space.

In this chapter, I attempt to address this important question. I argue that political ideology

is multifaceted, comprising many distinct schools of thought that are not easily summarized in

a left-right manner. I conceive of ideology as discrete and hierarchical, comprising the familiar

left-right dichotomy, but also comprising subgroups that share some beliefs, while differing on

others. Compressing ideological thought to only the coarse left-right distinction omits much of

what motivates ideological groups.

Further, just because observable political behaviors by elected leaders are readily summa-

rized in a simple left-right space does not necessarily imply that this is the only way to con-

ceptualize the structure of American political ideology. Political actors may indeed hold more

nuanced ideological beliefs, but their behavior is censored by a system dominated by two-party

politics. Parties control the terms of debate in legislatures, in elections, and are even influen-

tial in judicial and bureaucratic decision making. So clearly a left-right divide, which underlies

the modern American party system, is a sizable component of political ideology. But the party

system may also obscure the finer ideological structure among political elites.

To analyze the structure of elite ideology, I employ automated methods for large-scale text

analysis. I analyze the writings of political authors, commentators, and pundits, and I analyze

the campaign speeches of presidential candidates from 2008, 2012 and 2016. I show that a

discrete and nuanced view of ideology fits the political writings well, meaning that there is more

to these expressions of political belief than a simple left-right worldview. When we transition

to political speeches, however, that nuanced structure all but disappears. Candidates do not

express much in the way of nuanced ideological beliefs, and their political language collapses

into a more traditional left-right space.

4.1 Theory

For a concept that political observers understand so intuitively, scholars have myriad, of-

ten quite specific, definitions of ideology. Over the past six decades, researchers have posited

117

that ideology comprises all of “abstraction, internal consistency, external contrast, endurance

through time, rationality, sophistication, a hierarchical ordering of idea-elements, parsimony—

or some combination of these characteristics” (Gerring 1997). This is what Gerring refers to as

the ‘problem of definition’ in ideology studies. Yet as Gerring also argues, despite the wide array

of definitions in the literature, we gain more theoretical ground by looking for commonalities

rather than differences between them.

In this section, I outline how scholars have tended to define ideology, and offer a definition

that draws on the dominant themes in the literature. I review how we have measured ideology,

the apparent unidimensional structure of ideology, and why I believe these inferences may be

misleading. To preview the core of the theory, I ague the following. Many of the sources we use

to measure ideology are not unadulterated ideological behaviors. Instead, data such as roll-call

votes, campaign or Congressional floor speeches, and the like are partisan behaviors, filtered

through and shaped by the political parties. Parties favor conflicts the unite their side against

their opponents, which in turn makes the behavior seem one dimensional. This does not imply

that ideology itself, at least among elites with highly informed and nuanced belief systems, is

unidimensional.

4.1.1 What is ideology?

There are two consistent themes spanning the many definitions of ideology. The first, and

most commonly cited, is that of constraint. According to nearly all political scholarship these

past sixty years, ideology comprises a coherent set of foundational beliefs about proper societal

goals and how best to achieve them (Gerring 1997). We imagine ideology as an “attitude struc-

ture, with its parts organized in a coherent fashion” (Campbell, Converse, Miller & Stokes 1960);

as “an organization of opinions, attitudes and values” (Adorno, Frenkel-Brunswik, Levinson &

Sanford 1950); “a consistent and integrated pattern of thoughts and beliefs explaining man’s

attitude toward...his existence in society” (Loewenstein 1953); or “a system of collectively held

normative and reputedly factual ideas and beliefs about and attitudes advocating a particular

118

pattern of social relationships and arrangements” (Hamilton 1987).

We could continue in this vein for some time. Even at this point, though, it should be clear

that scholarly understandings of ideology center on a common theme. Ideology represents, at

least in part, the core beliefs that organize political attitudes and opinions. This ‘belief system’

anchors political preferences, partisanship and behavior (Campbell et al. 1960, Converse 1964,

Adorno et al. 1950, Apter 1964, Rokeach 1968, Billig 1984, Tedin 1987). Ideology is not constraint

itself, but the pattern of consistency in beliefs that motivates a similar pattern of consistency in

how individuals position themselves on political issues of the day. Or, as Herbert Kritzer put it

more simply (1978,487), ideology is the “general principles from which constraint flows.”

We generally measure ideology as the sum of many political preferences, which may have

desensitized us to the common thread in the academic literature. Ideology is about ideas and

not preferences. Ideology speaks to why we possess the views we do. Ideology is about moti-

vation. Libertarians and religious conservatives will agree on plenty of policy questions. What

separates these groups is why they hold those views. Socialists, progressives, religious liberals—

they agree on plenty, but secular liberals do not draw the motivation for those preferences from

their religious convictions.

Yet another feature remains to ideology, both common in scholarly definitions yet too easily

unremarked,. Ideology comprises not simply the psychological beliefs that organize attitudes,

but also the psychological attachment to an identifiable group of other individuals. In a 1968

article, Edward A. Shils described ideology using nine criteria, most of which centered on the

structure of beliefs, but two of which were “consensus of those that accept [the beliefs]” and

an “association with a corporate body intended to realize the patterns of belief” (Shils 1968, 66).

Ideology is not just the belief system of the individual, but the groups of citizens who share those

beliefs. Indeed, as Noel (2014) points out, the entire purpose behind, and method of, studying

ideology is finding patterns of beliefs among many individuals. Ideology in the isolation of an

individual mind might be of some psychological interest, but an ideology’s ability to influence

119

the political system requires nontrivial popular support (Noel 2014).

Let us then piece together these definitions. On the one hand, ideology comprises the foun-

dational beliefs about politics that define how we view political debates. And on the other,

ideology defines how we associate with other citizens—with whom we find common ground,

how we personally identify and sort ourselves, and how we comprehend modern political de-

bates. Clearly this definition leaves many questions unanswered. Whence come ideologies?

Why do individuals claim certain mantles? For this exercise, these questions remain interesting

but unanswered, left for other scholars to agonize over. For this paper, we focus simply on what

ideology is and why we care about it. Ideology is the core beliefs that organize preferences,

and that ties us to groups of like-minded citizens who share our foundational beliefs. Or, as

Jost (2006, 653) puts it succinctly, ideology is a “belief system of the individual that is typically

shared with an identifiable group, and that organizes, motivates, and gives meaning to political

behavior, broadly construed.” Ideology comprises both the psychological beliefs that organize

our preferences, and the beliefs that tie us to others in society. Neither alone really suffices. We

require both consistency in political preferences, and an identifiable group of individuals who

share those preferences, to believe that we have encountered an ideology.

4.1.2 Who has an ideology?

Scholars of public opinion have noticed the concomitant problem: if we require consistency

of beliefs, and identification with a recognized political group, can we really consider most cit-

izens as being ideological? Most research says no. Foundational studies in political attitudes,

for example Campbell et al. (1960) and Converse (1964), argue that most citizens reflect lit-

tle consistency in beliefs across issue areas or over time. This is not terribly surprising, since

Americans show little interest in, or knowledge of, American politics (Delli Carpini & Keeter

1997). Political elites—elected leaders, party elders, opinion leaders, and power brokers—may

not only possess more knowledge about politics, but also more ideological thinking generally

(Converse 1964, Delli Carpini & Keeter 1997, Kritzer 1978, Jost 2006).

120

As Jost (2006) argues, however, this may arise from our tendency to ‘define away’ political

ideology. According to Jost, we have constructed such high bars to definitional ideology that we

cannot find it in the mass public. Elites may possess constrained attitudes and identify with a

clear ideological group, but most of the public does not (Kritzer 1978). That said, plenty of re-

search has found that citizens evince reasonably high levels of stability in their ideological self-

identification; that is, they can consistently place themselves on a liberal-to-conservative scale

(Conover & Feldman 1981, Kerlinger 1984, Knight 1990, Jacoby 1991). Ellis & Stimson (2012)

remark on a consistent pattern in survey responses, namely the ‘conflicted conservatives’ who

hold mostly liberal policy preferences but self-identify as conservative. Yet even this group,

whose self-identification is at odds with their preferences, is only remarkable because most

respondents show no such inconsistency. The average citizen likely knows little of Rawls and

Rousseau, but nevertheless possesses some political attitudes and can identify the opposing

camps of American political battlefield (Bishop 2004).

In short, we should not view as exclusive the arguments that ideology requires sophistica-

tion, and that average citizens can behave ideologically. Ideology is not a binary state. Political

elites should evince more constraint and a clearer identification with groups of like-minded

thinkers. Less politically-motivated citizens should evince somewhat less constraint, a fuzzier

understanding of ideological groups, and thus a looser identification with those groups. This

leaves us with an exciting possibility, namely that the structure of ideology varies: richly nu-

anced for elites, and simpler for most of the public. This possibility has important implications

for how we understand the structure of American political ideology.

4.1.3 What is the structure of ideology?

This leads us to the central question of this paper: what do ideologies look like? Traditional

conceptualizations of ideology in political science describe a unidimensional, often defined as

a left-right, ideological space (Downs 1957, Abramowitz 1978, Alesina, Roubini & Cohen 1997,

Aldrich 1995, Converse 1964, inter alia). Indeed, “left-right has been,” according to Jost (2006,

121

654), “the single most useful and parsimonious way to classify political attitudes for more than

200 years.”

Researchers have found the parsimony of the left-right ideological scale compelling for decades,

and show time and again that such a definition has predictive power in analyzing elite behav-

ior (Hinich & Munger 1996, Aldrich 1995, Downs 1957). The famous Nominate procedure, and

its cousins, use latent variable models to project thousands of roll-call votes into a low dimen-

sional space. The first dimension (and at various points in history, the second as well) ably pre-

dict future votes in Congress (Poole & Rosenthal 1991, Poole & Rosenthal 1999, McCarty, Poole

& Rosenthal 2006, Jackman 2001, Clinton, Jackman & Rivers 2004). Members estimated to be

on the right end of the scale match those we would assess to be the most conservative; those

on the left tend to be the most liberal; and those in the middle—to the extent that there are

any today—match those we would believe to be moderates. The growing gap between parties

on the latent dimension reflects our understanding that parties are becoming not only more

consistent by partisanship, but also further apart in the foundational beliefs that motivate the

members’ preferences (Poole & Rosenthal 1984, Poole & Rosenthal 2011).

Similar methods applied to voting in state legislatures, the supreme court, and lower courts

recover the same basic pattern (Shor & McCarty 2011, Berry, Fording, Ringquist, Hanson &

Klarner 2010, Shor, Berry & McCarty 2010, Martin & Quinn 2002). Across institutions, the be-

havior of elite political actors is well summarized, and predicted, from a one-dimensional un-

derstanding of ideology. If political ideology exists in some more complex form, political leaders

seem impervious to ideology’s nuance. Leaders act as if the nature of conflict is one-dimensional,

and their behavior follows.

And what of the voters? Do citizens hold beliefs that show more diversity than a left-right

dichotomy? It does not seem so. In fact, most citizens evince little constrained ideological

beliefs at all. Scholars of public opinion have shown that most citizens have little knowledge

of, or interest in, politics (Delli Carpini & Keeter 1997). As a result, most citizens evince little

122

consistency—across issue areas or across time—in their expressed opinions, what Converse

(1964) called a lack of constraint in political preferences. Rarefied political ideology all but

eludes these citizens, but a fairly simple ‘liberal to conservative’ scale, such as the seven-point

ideology scale used in the American National Election Study, does a reasonable job of capturing

the general nature of their political beliefs and party preferences (Holm & Robinson 1978).

Even more convincingly, if we examine the aggregate of citizen preferences, the left-right

representation is more powerful. Despite the vicissitudes of individual political preferences, if

we average over the views of citizens on many political issues, public attitudes are both well-

summarized with, and respond to events in, a one-dimensional space (Stimson, MacKuen &

Erikson 1995, Erikson, MacKuen & Stimson 2002, Stimson 2004). When national leaders move

public policy, or a party wins the White House, the public responds in a one-dimensional space

is a way both theoretically and empirically explicable. This result is stunning. Even if individu-

als do not show much evidence of ideological thinking, the aggregate of individuals shows pre-

dictable reaction to public events and, most important for this chapter, the movement occurs

in a one-dimensional space.

Seen from this perspective, the low-dimensional representation of ideology appears as fait

accompli. Citizens, from voters to legislators, judges to presidents, seem to behave as if ideology

is effectively a left-right conflict. Perhaps counter-intuitively, then, I maintain that this concep-

tualization of ideology misses quite a lot. This follows directly from the our working definition of

ideology: ideology is about ideas, and there’s no compelling reason, a priori, to assume that the

full scope of political thought should align along a single axis (Marcus, Tabb & Sullivan 1974).

Political elites—those who think deeply and often about politics—are not limited in their beliefs

to liberalism and conservatism.

We know this intuitively to be true. Religious liberals and secular liberals both share plenty

of policy preferences, but the foundational beliefs that inspire those preferences differ markedly.

Both groups tend to oppose legally-imposed social traditionalism, both support a strong safety

123

net, and both generally favor an active government role in creating a fair and level economic

playing field. For the former, however, these views derive from deep religious conviction, a be-

lief in social justice, and a commitment to Christian charity. For the latter, these preferences

arise from non-religious conceptions of fairness and justice, and may well accompany deep

skepticism of religious belief. So which, of these two is more liberal—more ‘to the left’—in a

unidimensional space? That there is no reasonable answer to that question tells us that, at least

for elites with highly developed ideological belief systems, one dimension does not suffice.

4.1.4 Parties, elections and ideology.

A prima facie appeal does not qualify as an affirmative theory, especially when faced with

such evidence to the contrary. If ideology among political elites is multidimensional and group-

based, why do we consistently find the “useful and parsimonious” left-right continuum (Jost

2006, 654) when analyzing political preferences and behaviors, across institutions and contexts?

To answer that, I rely on two assumptions: (1) the left-right distinction remains the primary

orientation of ideological conflict; and (2) ideological conflict takes place in a partisan, institu-

tional, and electoral context.

The first of these assumptions is the easiest to handle. Despite the fine-grained differences

between ideological groups—e.g., what differentiates religious and secular liberals—the clear-

est marker for any ideological group is whether they’re fundamentally liberal or conservative in

orientation, which Jost (2006) refers to as the ‘core’ fault line in political conflict. As McClosky &

Zaller (1984, 189) explicate, “Politicians and the policies they espouse . . . are usually described

as liberal if they seek to advance such ideas as equality, aid to the disadvantaged, tolerance of

dissenters, and social reform; and as conservative if they place particular emphasis on order,

stability, the needs of business, differential economic rewards, and defense of the status quo.”

Put more simply, even for conservative ideologies with ample differences in both motivations

and preferences, it is far harder to tell the difference between a libertarian and a religious con-

servative than between a libertarian and a progressive.

124

The logical conclusion, then, is that ideology is still organized around a left-right orienta-

tion. We can think of these as high-level clusters of ideological thought, or as the centroids of

belief systems shared by liberal and conservative ideologues. Within these clusters we find the

more nuanced distinctions: the socialists, the communists, the progressives, the religious lib-

erals, the libertarians, the populist conservatives, the fascists. This implies a tree-like structure

to ideology, with ideological groups nested in broader classes. This view was clearly articulated

by Michael Freeden, a political theorist at Oxford University. Per Freeden (2003), ideologies

are discrete groups with diffuse borders, clusters of individuals who share fundamental polit-

ical ideas. Ideological groups may overlap or share certain ideas with other groups, but the

groups have unique interpretations of how their ideas relate to political debates (Freeden 2003,

Farmer 2006). Freeden also asserts that ideology is hierarchical. There are major (what Freeden

calls ‘macro’) ideological branches with tenets to which large numbers of people subscribe, and

shooting off from these are smaller branches of more refined (‘micro’) clusterings of ideas. Lib-

ertarians and far-right reactionaries, for instance, share many ‘conservative’ principles, but will

differ dramatically on others. As a result, the two groups may cooperate on certain issues put

before the public, while they will oppose each other on others.

The ample and fundamental differences between liberals and conservatives explains why so

much of our measurement uncovers a unidimensional nature to ideological conflict. In short:

these measurements do not uncover ideological conflict per se, but ideological conflict between

two major ideological camps—which align with the two major political parties—rather than be-

tween smaller ideological groups. What we observe and use to measure ideology rarely centers

on ideology itself, but rather on the conflict between political parties in their quest to obtain

and exercise power (Aldrich, Montgomery & Sparks 2014). What is the common thread be-

tween legislative roll call votes, presidential elections, Supreme Court decision making, even

Congressional floor debates? They all entail conflict between the two fundamental political

camps in American politics: Democrats (or their appointees) on the left and Republicans (and

125

their appointees) on the right.

My argument is as follows. Political parties build coalitions, comprising many ideological

schools of thought, and points them toward agreeable, collective action. In so doing, parties

compress the observable scope of political conflict, from richly nuanced and multidimensional,

into a simpler, one-dimensional space. Not all ideologues choose to seek elected office or enter

public service. Those that do not may behave—of interest for this paper, they may express their

views—in ways that allow us to observe a multidimensional structure to ideology. Those that

seek public office, by contrast, need to achieve pragmatic political goals, which incentivizes co-

operation over ideological purity. In other words, even if candidates and public officials possess

nuanced and multidimensional ideological views, they censor themselves in order to appeal to,

and cooperate with, big-tent political parties. Using data that has been filtered through this

process will be unable to recover the original multidimensional ideological structure.

Parties facilitate collective political action Politics is, at heart, about getting things done. In-

dividuals have many motivations for engaging in public affairs. They may wish to advance their

career, or achieve policy outcomes that benefit them. Or perhaps they are motivated by deeply

held beliefs, or moral convictions, or informed assessments about the consequences of policy

proposals. Whatever the case, the political system is the arena for achieving political ends.

In a democratic system, one cannot rule by fiat. For a democratic government to function,

individuals with diverse beliefs, preferences and aspirations must devise some method for co-

operation. Narrow, purist and uncompromising attachment to a set of ideological beliefs stands

directly opposed to such cooperation. A government controlled by a relatively small group who

share a set of core beliefs and seek to impose them on the public is not a democracy, it’s an oli-

garchy. A government constantly pulled apart by many groups of uncompromising ideologues

is an anarchy. Neither works very well.

Political parties provide a solution. Parties bring together individuals, orient them toward

shared goals, and help them to overcome the challenges of collective action. Individuals, who

126

may still possess and passionately believe in their ideological creeds, gain an infrastructure to

achieve some, if not many, of their political goals. In exchange, they agree to cooperate with

individuals representing other ideological predispositions and, if necessary, to abandon some

of those preferences that cannot reach broad agreement (Schattschneider 1960). Parties offer a

bargain to ideological groups: compromise but see some of your ideas come to fruition, or else

starve in the wilderness of ideological purity.

In other words, and more in the parlance of the discipline, political parties serve as aggre-

gators of political interests (Aldrich 1995). Unlike ideological groups, we can assume that par-

ties care more about winning majorities—in elections and in policy-making alike—since power

must first be obtained to be exercised (Mayhew 1974, Aldrich 1995, inter alia). Particularly in

the American context, where our electoral rules favor a two-party system, parties thus become

big tents, required to represent a broad range of ideologies and interests1.

Theoretically, these two parties could orient along any axis. At times in American history,

the parties aligned more along class and economic interests, even though this created coali-

tions that held deeply divergent ideological views on issues such as racial equality and seg-

regation (Aldrich 1995, Poole & Rosenthal 1984, Aldrich, Montgomery & Sparks 2014). In the

modern era, the parties have sorted themselves largely along ideological lines. Recall that most

voters neither know nor care much about politics, and do not evince a highly structured ide-

ological identity; but many understand the broad distinctions between left and right, and can

align themselves thereto. Further, citizens have followed the patterns of ideological polariza-

tion and partisan sorting seen among political elites over the past three decades (Abramowitz

2010, Bartels 2000, Levendusky 2009). As Alan Abramowitz (2010) notes, the popular assump-

tion that most citizens are moderates may be a myth. Instead of the unimodal distribution of

citizens along a left-right axis, which we have tended to assume for decades, a rather bimodal

1We note that ideology is not the only motivator of political action. Plenty of citizens, and presumably plenty of
political elites, do not espouse a particular ideology. Plenty behave in self-interest, or else are motivated by singular
policy goals neither constrained nor related to broader, fundamental political beliefs. Parties build coalitions from
ideological groups, interest groups and—well, any group that can serve the electoral goals of the party.

127

distribution may be more appropriate.

This has three important implications for political parties. First, it makes ‘left’ and ‘right’

the most natural orientation for the two major American political parties. After all, it is easier to

build a coalition among groups that agree on many, or most, issues, rather than those that dis-

agree on most. Further, as I noted earlier, ideology goes deeper than the preferences of individ-

uals. Ideology is about motivation and beliefs that inspire preferences. For individuals focused

on accomplishing political goals, the motivation matters little. It is easier to build a coalition

among those who agree on an outcome, even if they disagree on why that policy outcome is

best. Put heuristically, religious liberals and conservatives will agree plenty that faith serves as

the foundation for their preferences. But it’s easier to get religious liberals and socialists to agree

on welfare policy than to get religious liberals and religious conservatives to agree.

Second, parties have reasons to eschew ideological purity in favor of broader political ap-

peal. To a certain extent, running in a party primary—which selects the party’s nominee to

stand in the general election—ideological purity could work in the favor of a candidate, if the

partisan electorate in a particular consistency mostly comprised a single ideological group, In

other words, running purely as a libertarian could propel a candidate toward winning a Re-

publican Party nomination, if libertarians comprised the majority of the voting constituency

for that office. But even in the case where an ideological purist wins a party nomination, he or

she will face a broader and more ideologically-diverse electorate in a general election. A voting

public with a coarse orientation toward liberalism and conservatism could find plenty to like

in a ideologically-pure candidate, but it is hard to imagine that a ideological purity would be

a winning strategy generally. The better approach would, in fact, be for parties to field candi-

dates who—regardless of their internal beliefs—can represent a broader coalition of political

perspectives.

Finally—and of particular relevance to ideological measures that rely on legislative roll-call

voting—parties tend to structure debate in a way that looks one dimensional, regardless of the

128

preferences of the individuals who comprise those parties. The votes taken by legislators, in

Congress or state legislatures, does not represent an uncensored expression of individual ideol-

ogy (Aldrich, Montgomery & Sparks 2014). In an excellent article in Political Analysis, Aldrich,

Montgomery & Sparks (2014) show that scaling roll call votes nearly always leads researchers to

conclude that individuals possess unidimensional policy preferences, especially when individ-

uals act as members of polarized parties. In addition, institutional rules—committee structure,

filibusters and cloture votes, and so forth—favor legislation acceptable to (super-) majorities of

legislators. Since parties provide the most natural avenue to majority support in a legislature,

most of political conflict in legislatures plays out between the two major political parties. This,

in turn, gives the appearance of unidimensionality in policy preferences.

As Aldrich, Montgomery & Sparks (2014) argue, though, this is an illusion. In a set of simula-

tion studies, the authors show that even imbuing simulated legislators with high-dimensional

preferences leads to unidimensional summaries of roll-call voting behavior, particularly when

members have strong partisan attachments. What is more, plenty of research has shown that

the various institutional peculiarities in legislatures can affect the structure of policy debate in

Congress (Dougherty, Lynch & Madonna 2013, Hurwitz, Moiles & Rohde 2001, Welch & Carlson

1973, Wright & Schaffner 2002, Lee 2009). The particulars of these institutional rules lays be-

yond the scope of this theory. The broad thrust, however, is this: Parties favor debates that

unify their side, and either outright defeat or else divide the opposition. Roll call votes, or even

votes taken by the Supreme Court, are not random selections from the pool of possible votes.

They are strategic choices by legislators—or again, even justices—that will favor issues around

which majoritarian support can be built.

So why do we consistently find unidimensional ideology to be so compelling, so predic-

tive, and so powerful? In all likelihood, it is because of where we have been looking. Ideol-

ogy itself may well be multidimensional, nuanced and complex. Ideologues, however, face a

129

choice: remain true to those core beliefs, or else compromise and cooperate to achieve politi-

cal ends. Our measures focus on the behavior of the latter group exclusively. Those who seek

elected or institutional power should fare better by being ideologically pluralistic, embracing

some compromises to those who share many ideological proclivities but may differ on others.

These broad-based coalitions fare better—in essence, they obtain more of their objectives—if

they unify along ideological grounds, which in turn makes political conflict appear as a po-

larized debate between liberals and conservatives. When we observe behavior that has been

heavily influenced by partisan considerations, we are not truly observing ideology. We are see-

ing ideology filtered through a partisan lens. Parties give individuals an infrastructure in which

to pursue political goals, but they also disincentivize ideological purity. We simply cannot con-

clude that American political ideology must be unidimensional based on roll-calls, campaign

behavior, or citizen preferences.

Why rhetoric? We face another conundrum. If political behavior is tainted by partisan con-

flict, how can we possibly observe the supposed rich nuance of ideological thinking? It is well

and good to contend that ideology can be fine-grained, but another problem entirely to ob-

serve the differences between ideological groups. I contend—unsurprising to the reader of this

thesis—that the best method for analyzing ideological thought is through language. A the-

ory that argues—as I do— that ideology is truly about ideas should begin from that premise.

Rhetoric gives us a window into the ideas of ideological groups (Gerring 1997, Kritzer 1978,

Loewenstein 1953, Thompson 1984). Elite rhetoric tends to be free of corrupting outside influ-

ence. Party platforms face a high degree of scrutiny from politicians intent on winning elected

office. Speeches by legislators are crafted to help the speaker maintain his or her seat, and the

agenda for debate is usually dictated by party leaders. Ideological elites, by contrast, are free to

express their core views, and to tie these to issues of the day.

I contend that language gives us three important clues into the ideological perspective of

the author: As a human reading a political text, we would estimate the ideology of the author by

130

searching for indicators of (1) The author’s fundamental beliefs and how these relate to current

political debate; (2) The issues the author finds most compelling and the solutions the author

proposes to solve them; and (3) The framing and other rhetorical flourishes the author employs.

The first two clearly follow from our working definition of ideology. A person’s core beliefs will,

at least partially, determine which issues that person finds most urgent to solve, and will also

drive them to finds certain solutions more preferable to others. The third comprises the manner

in which—specifically the language with which—the author explains his or her beliefs and issue

preferences. This can include predominantly focusing on certain frames, like focusing on the

law enforcement and crime aspect of immigration. It can also include rhetorical flourishes,

such as labeling immigrants as ‘aliens’ versus ‘workers.’

To measure ideology using language, we need to assume that these three facets of political

language can be captured by measurable linguistic differences. That is, we must rely on the

assumption that political rhetoric contains ideological signals, in addition to the noisy, non-

ideological content that language contains (Sim et al. 2013). Using the automated methods I

describe in the following section, I exploit differences in word frequencies between documents

to account for the ideology of the author. This is clearly imperfect. As humans reading political

writings, we will look for the clues I mention above, but we would also look for other linguistic

features, such as negation, quotation and refutation, or sarcasm. These come naturally to us,

but can prove challenging to account for in statistical models. That said, we should bear in

mind that the methods do not need to account for all signals in the text, so long as it does not

miss signals systematically. There is no indication in the results that follow that this is the case.

4.2 Data & Design

The theory I present requires an assessment of ideology in two contexts: ideological lan-

guage in elite discourse, and in the context of partisan conflict. I analyze two data sources. For

elite discourse, I use the Ideological Books Corpus (Sim et al. 2013). The corpus was compiled

131

by Sim et al. (2013) and has been used by Acree et al. (2014) and Iyyer et al. (2014) to study ide-

ological rhetoric in American politics and elections. The corpus contains text from more than

200 books and magazines from political thinkers and commentators. The documents repre-

sent a diverse cross-section of ideological thought in America: populist conservatives like Pat

Buchanan and Lou Dobbs, religious liberals like Jim Wallis and Rose Agonito, and libertarians

like John Stossel and Andrew Napolitano. In total, the corpus contains documents representing

the two traditional ideological groups, left and right, an ideological center category, and nine

subclassifications. The authors divide conservative authors into: moderates, populists, liber-

tarians, far-right conservatives, and religious conservatives. The authors divide liberal authors

into: moderates, progressives, socialists, and religious liberals. The authors’ descriptions of the

categories, as well as popular exemplars of each category, can be found in Table 4.1.

I pause here to note that the subdivision of ideologies and subideologies is not, and does not

need to be, comprehensive. The corpus was constructed from available books and magazines,

which means that the ideologies and subideologies it comprises must be sufficiently large to

command a commercial audience2. As Noel (2014) argues, to merit consideration, an ideol-

ogy needs to command enough support to influence the political system. The ideologies and

subideologies in the Ideological Books Corpus represent ideas espoused by reasonably large

and influential groups, and those ideas are sufficiently mainstream that they influence modern

political debate. Many voters may find anti-capitalist or anti-immigrant rhetoric to be extreme,

but both ideas find their ways into current political discussions.

To assess the ideological expressions in the face of more partisan considerations, I use cam-

paign speech transcripts from the 2008, 2012 and 2016 presidential campaigns. The collection

includes campaign speeches delivered by all major candidates for office, in the primary and

2Some largeer ideological groups, like environmentalists, communists or anarchists, are not represented in the
corpus. The authors undoubtedly either did not find sufficient writings to represent these groups, or else decided
that they were readily incorporated into other groups, like progressivism or socialism. In future, the corpus can be
extended to accommodate other ideological groups.

132

general elections, from both major political parties in 2008 and 2012, as well as primary cam-

paign speeches from candidates Ted Cruz, Donald Trump, Bernie Sanders and Hillary Clinton

in the 2016 primary.

Presidential campaign speeches offer two advantages. Clearly these speeches qualify as po-

litical expressions in an electoral and partisan context, providing necessary contrast with the

books and magazines in the Ideological Books Corpus. These speeches also offer an oppor-

tunity for ideological nuance. Most speeches were delivered during primary campaigns, not

during the general election contest between the two major party nominees. Primaries do not

center on inter-party conflict, as we might expect from Congressional floor speeches or gen-

eral election campaign speeches, but between candidates from the same political party. If there

were a time in American elections where we would expect to consistently see professional, well-

articulated expressions of nuanced political beliefs, it would be during a contested primary for

high office.

4.2.1 Methods

The analysis unfolds in two parts, each of which addresses a question posed by this chap-

ter. First, is there a multiclass structure to elite political ideology? Second, does this structure

persist in campaign rhetoric, or does it rather reduce to a simpler left-right dimension? For

both questions, we essentially face a predictive task. Just as with roll-call, judicial vote, or pub-

lic attitude scaling procedures, we seek out the lowest-dimensional representation that still has

predictive power. In the famous Nominate procedure, for example, we conclude that one or two

latent dimensions suffice to summarize roll-call voting behavior because that low-dimensional

representation of votes can be used to reliable predict new votes. Put another way, the variance

in votes can be accounted for by a low-dimensional representation. For this chapter, our task is

the same: using the language from political ideologues, can we reliably predict the ideological

group of an author? And can that prediction be easily summarized in a low-dimensional space?

133

To address elite ideology, I employ several supervised machine learning methods for extract-

ing patterns in language from a corpus. The Ideological Books Corpus contains documents,

each of which comes with a hand-labeled ideological class (left, right, center) and ideological

subclass (e.g., religious left, libertarian). The basic strategy, then, is to find the language that

best partitions the authors based on their assigned ideological class and subclass.

I first use results from Sim et al. (2013), who employ a modified version of the Sparse Ad-

ditive Generative model described by Eisenstein, Ahmed & Xing (2011). The sparse additive

model regresses the frequency with which words appear in the documents on the ideological

classification for the documents, using sparsity-inducing priors to select the words or multi-

word phrases useful in the classification task. To ensure that the discovered structure is not

simply a relic of the sparse additive model, I also employ two deep-learning methods for mod-

eling the ideological content of the texts: a deep feed-forward artificial neural network model, as

described in Chapter 1, and a convolutional neural network, as described in Chapter 2. Despite

the different structure and assumptions of the three models, the results from these methods are

quite similar. Since the sparse additive model has been used with this data in other published

studies, I use the sparse additive model for my primary analysis unless otherwise noted. The

sparse additive model also brings the advantage of explicit weights on the words in the vocabu-

lary (unlike the deep-learning methods which contain many weights which makes it difficult to

ascertain the relationship between particular words and particular ideological classes and sub-

classes), which will make it straightforward to assess the substantive differences in language

between ideological groups.

To model the ideological content of campaign speeches, I use the patterns learned in mod-

eling the Ideological Books Corpus to predict the ideological subclassifications of the presiden-

tial campaign speeches. This step follows naturally from the first: for the sparse additive model,

the feed-forward model, and the convolutional model, I simply estimate the conditional prob-

ability that each speech belongs to one of the ideological classes and subclasses, based on the

134

words or multi-word phrases contained in each. By using the language from the Ideological

Books Corpus to model the campaign speeches, I also make it as likely as possible to discover

a multiclass ideological structure in an electoral context, thereby falsifying the theory that elec-

toral pressure compresses ideology to primarily a left-right space.

For these models, the text needs to be initially processed. I follow Sim et al. (2013), and use

their method for processing the text for use in the sparse additive and feed-forward models.

This includes stemming, normalizing numbers (i.e., replacing all numbers with a single place-

holder) and retaining only two- and three-word phrases. For more information, refer to the

Sim et al. (2013) article. For the convolutional model, I normalize numbers, but do not stem

or n-gram the corpus, for the reasons described in Chapter 2. I take as the unit of analysis the

books and magazines parsed at the paragraph-level for the Ideological Books Corpus, and at the

speech-level the campaign speeches. For cross-validation purposes, I partition the Ideological

Books Corpus into an 80 percent training set and 20 percent test set. The partition is random,

but I ensure that the training corpus is balanced between the subclasses, which speeds conver-

gence of the deep learning models.

4.2.2 Expectations

I hypothesize that ideology among elites is not readily captured by a left-right dimension,

but rather that this simplification arises from the nature of partisan conflict. The most natural

fault line in American politics divides the two major parties, and the typical voter does not take

particular interest in, nor have much knowledge of, politics. Accordingly, electoral rhetoric will

be simpler, and lower-dimensional, than other elite language.

If the structure of ideology among political elites does not reduce to a simple left-right di-

mension, we should be able to detect meaningful differences in how ideologues express their

views. We can attempt to study these differences qualitatively, but the methods I propose bring

the benefits of quantitative rigor. If there are real differences in language to be found, statisti-

cal models should be able to exploit those differences, and reliably predict the ideological class

135

and subclass of documents, based solely on the language those documents contain. Further,

the document-level predictions should reflect substantively-meaningful relationships between

the classes and subclasses. Documents belonging to the left subclasses should be more closely

related to each other than those on the right, meaning we should see fewer mis-classifications

among documents within the same broad class than between the classes.

We should expect a different pattern from the speeches. If partisan and electoral pressure

tends to collapse debate into a left-right space, the speeches should reflect this in two ways.

First, we should find it harder to predict subideological labels for political speeches. In other

words, we should find that major candidates for the presidency do not represent niche ide-

ologies in their campaign speeches, but rather seek to represent broader themes of liberalism

and conservatism. Second, if we look for underlying patterns among candidates, we should

find that their political language reduces to a straightforward left-right space. If we evaluate

the language and it is easily, and substantivaly, summarized in a low-dimensional space, we

might conclude that electoral competition has reduced a complex ideological playing field into

a partisan, one-dimensional battle ground.

4.3 Results

Let us begin with the simpler of the two questions. Recall that we have a random parti-

tion of the corpus, which contains more than 170,000 paragraphs from the Ideological Books

Corpus, into a training set and a testing set. A reasonable test for whether real differences in

language exist between the ideological subclasses is whether the hand-labeled ideological sub-

class is learnable from language alone. Can we correctly classify withheld documents into the

classes and subclasses, as assigned by Sim et al. (2013)? The answer to this question is, broadly

speaking, yes.

Table 4.2 summarizes the cross-validation results for the three models described above: the

sparse additive model due to Eisenstein, Ahmed & Xing (2011), the feed-forward artificial neural

136

network, and the convolutional neural network. The top panel shows the test set predictive ac-

curacy using only the coarser ideological classes—i.e., can we classify the documents correctly

into left, right, and center, ignoring the ideological subclasses?—while the bottom panel shows

the accuracy when predicting ideological subclasses.

We note two features from the table. First, the subclass predictive accuracy, across three

models with very different assumptions, are all fairly high. Because the sample was balanced

before fitting the model, the best, modal-subclass prediction would yield accuracy 0.10. Clearly

these models have found differences between the subclasses that aid in prediction. I will ad-

dress momentarily whether those differences seem to carry substantive meaning.

Second, we do notice that all three models find it easier to predict left-right classifications

than to predict the subclassifications. We could interpret this as undercutting the theory I have

presented: namely, that ideology is mostly about left and right, and the other distinctions are

less theoretically meaningful. After all, we would prefer simpler explanations where possible—

there is always nuance in the political world, but our scientific goal is to describe the forest and

not the trees. In this case, however, I would argue that the subideologies are sufficiently distinct

as to be theoretically meaningful. We should expect that left and right are easier to classify than

these more refined subclasses. It is also easier to tell the difference between and dog and a

horse than it is to tell the difference between a poodle and a pitbull, but that doesn’t make the

taxonomy irrelevant.

Whether the subideological taxonomy is theoretically meaningful rests in large part on whether

there are substantively important differences between the subclasses that cannot be easily sum-

marized in a lower-dimensional space. To address the first part, let us refer to Tables 4.3 and

4.4. The sparse additive model attempts to find the features—i.e., the words or multi-word

137

phrases—that are most useful in predicting that a document belongs to each ideological sub-

class. The tables show the top phases associated with each subclass. Clearly the model is find-

ing, by and large, meaningful phrases that match our intuitive understanding of these ideolog-

ical subclasses. The phrases that distinguish libertarian authors include property rights, the

founding fathers, and other phrases associated with constitutionalism and individual liberty.

The phrases associated with religious conservatism include Jesus Christ, Christian nation, and

references to social concerns like abortion.

To address the second question, we can analyze the classification predictions themselves;

or more precisely, the variance of the predictions. If the structure of the elite ideology is much

more easily summarized in a left-right dimension, then the variance in the classification pre-

dictions should be mostly accounted for by differences between left and right. Recall that each

document in the test set has a predicted probability of belonging to each of the ten ideological

subclasses. I assess the top principal components of the predictions to see if a single dimension

captures most of the predicted probabilities. Consider the solid line in Figure 4.1. The figure

shows the cumulative proportion of variance captured by the first ten Thomponents, and as

we can clearly see, no single component seems to capture the predictions well. In fact, we re-

quire seven components to capture 90 percent of the variance in the predictions. This is rather

inconsistent with a theory that the underlying structure of ideology, in these elite writings, is

low-dimensional.

Do these principal components represent the ideological subclasses? Generally speaking,

yes. I present a sample of two principal components for illustration, though the pattern is

largely the same for all components. Figures 4.2 and 4.3 show how documents load on two of the

principal components (the third and sixth respectively). Along the x-xis, the test set documents

are ranked by their loading on the component, and the y-axis shows the actual loadings. The

principal components are of course inductively learned, but we can tell them apart by analyzing

which documents receive the highest loadings. Panel (a) differentiates libertarian documents

138

from all others by representing them as dark circles. Clearly, most of the documents receiv-

ing the highest loadings on the third principal components are those by libertarian authors.

For the sixth principal component, most of the high-loading documents (again, represented as

dark circles) were written by progressive authors.

Figure 4.4 shows another interesting pattern in the predictions. If we plot the loadings for

each document on the fourth and eighth principal components, we see three distinct clouds

of documents. The dark "x" points mark documents hand-coded as religious conservative, the

"+" points mark documents hand-coded as religious liberal, and the lightly-shaded points rep-

resent all other documents in the test set. What we see is a clear relationship between religious

language—both religious liberal and religious conservative documents receive higher scores

on the eighth principal component. The classes are, however, still distinct, with religious liberal

documents tending to have lower loadings on the fourth component, while religious conserva-

tive documents have higher loadings.

The pattern in campaign rhetoric is quite different. Each campaign speech has been clas-

sified into one of the ideological subclasses, using the estimated models fit to the Ideologi-

cal Books Corpus. As with the books test set, this yields a predicted probability that each of

the speeches belongs to each of the ideological subclasses, which I then aggregate up to the

candidate-level. The appendix has tables which show the proportion of speeches, by each can-

didate, classified into each of the subclasses, but this makes for a somewhat overwhelming sum-

mary, and it turns out to be unnecessary.

Figure 4.5 shows the candidates’ language by summing up the proportion of candidate lan-

guage classified as being from one of the liberal subclasses (x-axis) and the proportion classified

as being from one of the conservative subclasses (y-axis). The candidates do not show much of

a pattern of using language from particular ideological subclasses, but they do evince a clear

distribution along a left-right dimension. Candidates like Ted Cruz, Michele Bachmann and

Ron Paul are predicted to be at one extreme, while Joe Biden, Bernie Sanders and John Edwards

139

make up the other. It appears that the subclassifications can be readily summarized in a left-

right way. Referring back to the dashed line in Figure 4.1, this intuition is born out. By using

Principal Components Analysis on the speech classifications, we see that a single component

accounts for 60 percent of the variance in predictions, and two components account for nearly

all of it.

Taken together, we see evidence for both propositions in this chapter. There are real, sub-

stantive differences between the ideological groupings included in the Ideological Books Cor-

pus. These ideological groups use distinct language to represent their core political beliefs, and

to address the issues most central to those beliefs. These differences are not simply qualitative,

but measurable, and they do not collapse into a single left-right dimension.

When we switch attention away from political tracts and toward language in an electoral

context, however, we return to a one-dimensional world. Presidential candidates from the 2008-

2016 campaign cycles use ideological language, but do not seem to represent particular ideo-

logical subclasses. Even candidates like Ron Paul, who self-describes as a libertarian, does not

seem to use that much language similar to libertarian authors (see Table 4.8 in the Appendix).

Instead, candidates tend to sample their language from across the ideological subclasses. This

makes sense: even in a primary campaign, candidates face an incentive to be broadly appealing.

This electoral pressure incentivizes candidates to present themselves, not as niche ideologues,

but in simpler—and for measurement purposes, lower-dimensional—way.

No single principal component well summarizes the use of language by ideologues, yet a

single dimension does well capture patterns in candidate language. Ideology is thus both mul-

tifaceted and low-dimensional, nuanced and simplified, all at once. Outside of electoral and

partisan pressure, ideologues can express the nuanced views that distinguish ideological groups

from one another. In the face of partisan conflict, however, ideological nuance falls away and

the familiar left-right summary reappears.

140

4.4 Discussion

I hope to have presented evidence for a rather simple theory. As scholars and close observers

of politics, we know that ideology is richly nuanced, and that a single- or even two-dimensional

representation of ideology does not adequately capture what is ultimately a group-based iden-

tity (Noel 2014). Yet in so many applications, ideology reduces to a left-right, continuous dimen-

sion. From roll call votes to Supreme Court decisions to the public mood, ideology comprises

attitudes of elites and average citizens, arrayed so neatly from left to right.

As this chapter argues, however, the truth is more complicated. We have not found evidence

for rich and nuanced ideological thought because we have been searching in the wrong places.

Or, to be more precise, we have found ideology in its electoral and partisan form, because we

have searched primarily in places heavily influenced by electoral and partisan concerns. Most

voters care little about politics, and know only the broad partisan strokes of current debate.

Elected officials, bureaucrats, and judges, who concern themselves with public opinion and

institutional legitimacy, and who derive much of their political viability from the support of

political parties, thus engage in what appears to be a one-dimensional conflict. They censor

their expressions in ways that appeal to their party bases and leaders, and in ways that can gain

support from their fellow partisans.

When we seek out the ideas of ideological groups, expressed on their own terms and out-

side of immediate electoral pressure, what we find is stark differences between even similar

ideological groups. To be sure, ideology is still well-described in terms of left and right. But

ideology also appears to be hierarchical, and the subdivisions between classes are sufficiently

distinct that we can find both meaningful and quantitatively-predictable boundaries between

ideological groups. When we attempt to find a clean linear subspace with these groups, such a

summary is elusive.

Yet not all language shows rich nuance of ideological thought. When we return to partisan

141

political conflict, represented in this chapter by the campaign speeches by major party can-

didates for the presidency, language reduces back to a left-right dimension that fairly cleanly

maps onto our substantive understanding of ideology. This result as been replicated on Con-

gressional speeches, and reached the same conclusion (Diermeier et al. 2012). Where the search

for a low-dimensional representation of ideology fails with political books and magazine arti-

cles, it succeeds with speeches.

We arrive, then, at the most important question for any scientific enterprise, and in a sense

at the conviction of this thesis: to what avail? Does this show anything that is useful, relevant

and important to how we understand politics? My belief, and my hope, is that the answer is

yes. For far too long, we have thought that political ideology reduces to primarily a left-right

dichotomy. This representation is powerful, and is true in many contexts. By focusing on votes

or elections, though, we deprive ourselves of an theoretical—and measurable—understanding

of the political ideologies that seek to influence modern political debate.

142

4.5 Tables

Table 4.1: DESCRIPTIONS OF THE SUBCLASSES IN THE IBC

Subclass Description Exemplars

Left-
Progressive

Sometimes critical of Democratic
party from left, but often still vote
Democratic. Highly concerned
about crony capitalism, growing
inequality, money in politics, labor
unions, racial discrimination, gay
rights.

Ed Schultz, Rachel Mad-
dow; Paul Krugman, Ari-
anna Huffington, the Na-
tion and American Prospect
magazines.

Left-Moderate
Liberal

Liberal on some issues, but more
committed to compromise and sup-
portive of financial/business inter-
ests, and military intervention.

Bill Bradley, Evan Bayh, Jim
Webb, The New Republic
magazine.

Left-Religious
Liberal

Religious, but with liberal political
leanings and a commitment to so-
cial justice, egalitarianism, inclu-
siveness and altruism.

Soujourners Magazine, au-
thors like Jim Wallis and
Ronald Sider.

Left-Socialist

Favors government intervention in
economic matters, often advocat-
ing state-run industries, universal
health care, and an extensive safety
net. Also characterized by deep
skepticism of capitalism, banking
and wealth disparities.

Noam Chomsky, Richard
Wolff, the International So-
cialist Review

Centrist

Heavily critical of political polariza-
tion and hyper-partisanship, often
complain about the dysfunction in
the political system, typically critical
of money in politics, and politically
independent.

Thomas Mann, Norman
Ornstein, Charlie Christ,
Charles Wheelan

143

Table 4.1 (continued)

Subclass Description Exemplars

Right-
Moderate
Conservative

Typically critical of talk radio and
tea party influence, unhappy with
perceived radicalism among Repub-
lican elected officials and leadership
and worried that taking a hard-line
on social issues, and immigration
These ideologues tend to take envi-
ronmental issues seriously and sup-
port stem-cell and other scientific
research.

Christine Todd Whitman,
David Frum, Megan Mc-
Cain, Andrew Sullivan,
Joe Scarborough, Ross
Douthat, Reihan Salam.

Right-Populist

Appeal to working class values and
includes cultural conservatives con-
cerned about immigration and the
perceived decline of Western and
White-Anglo culture, suspicious of
political correctness, not completely
convinced of the benefits of free
trade or globalism. These ideo-
logues also tend to highly value na-
tionalism and patriotism.

Lou Dobbs, Bill O’Reilly, Pat
Buchanan

Right-
Libertarian

Favor limited government, individ-
ual freedom and personal liberty;
critical of government overreach.
Often economically conservative
while socially liberal.

Ron Paul, Rand Paul, John
Stossel, Judge Anthony
Napolitano, Reason maga-
zine

Right-
Religious
Conservative

Religious, and politically conserva-
tive and typically literalist in Biblical
interpretation. Often draw on scrip-
ture to justify socially conservative
positions.

Pat Robertson, Rick Santo-
rum, Ralph Reed, Family
Research Council

144

Table 4.1 (continued)

Subclass Description Exemplars

Right-Far
Right

Talk radio conservatives, who tend
to mix elements of libertarianism,
religious conservatism, national
populism, and cultural traditional-
ism. These ideologues also tend ot
be enamored of patriotic symbols
and suspicious of leaders’ insuffi-
cient patriotism or tendency to say
anything critical of U.S. Of all on
in the conservative classes, these
ideologues tend to be the firmest
believers in conspiracy theories,
particularly as relate to liberal
political figures.

Rush Limbaugh, Sean
Hannity, Laura Ingraham,
Glenn Beck, Michael Sav-
age

The ideological subclasses in the Ideological Books Corpus, along with the authors’ description
of each ideological subclass and well-known representatives of each subclass.

145

Table 4.2: IDEOLOGICAL CLASSIFICATION ACCURACY ACROSS THREE MODELS

Model Accuracy
Three Ideological Classes
Sparse Additive Model 0.75
Feed-forward Model 0.72
Convolutional Model 0.80
Ten Ideological Subclasses
Sparse Additive Model 0.64
Feed-forward Model 0.65
Convolutional Model 0.71

Test set predictive accuracy for three classification models: the sparse additive model described
in Eisenstein et al. (2011) and Sim et al. (2013), a feed-forward artificial neural network with 2
layers and 50 hidden nodes in each layer, and a convolutional neural network with filter sizes 3,
4, and 5, and 100 hidden nodes.

146

Ta
b

le
4.

3:
T

H
E

T
O

P
W

O
R

D
S

&
P

H
R

A
S

E
S

A
S

S
O

C
IA

T
E

D
W

IT
H

L
IB

E
R

A
L

ID
E

O
L

O
G

IE
S

P
ro

gr
es

si
ve

So
ci

al
is

t
M

o
d

er
at

e
R

el
ig

io
u

s
C

en
tr

is
t

U
n

it
ed

St
at

es
U

n
it

ed
St

at
es

U
n

it
ed

St
at

es
b

io
lo

gi
ca

lf
am

il
y

Lo
n

g
B

ea
ch

A
m

er
ic

an
P

ro
sp

ec
t

m
o

n
o

p
o

ly
ca

p
it

al
is

m
m

o
d

er
n

ar
t

p
ro

gr
es

si
ve

re
li

gi
o

n
d

eb
tl

im
it

A
b

u
G

h
ra

ib
cl

as
s

st
ru

gg
le

yo
u

n
g

w
o

m
an

n
u

cl
ea

r
fa

m
il

y
st

o
ck

o
p

ti
o

n
ex

ec
u

ti
ve

d
ir

ec
to

r
o

cc
u

p
y

m
ov

em
en

t
ei

gh
te

en
th

ce
n

tu
ry

b
ad

th
eo

lo
gy

co
u

n
tr

y
m

u
si

c
p

u
b

li
c

in
fo

p
o

li
ti

ca
le

co
n

o
m

y
al

Ja
ze

er
a

re
li

gi
o

u
s

is
su

e
av

er
ag

e
A

m
er

ic
an

St
at

e
D

ep
ar

tm
en

t
ca

p
it

al
is

ts
ys

te
m

M
it

tR
o

m
n

ey
ea

rl
y

ch
u

rc
h

co
rp

o
ra

te
A

m
er

ic
a

p
u

b
li

c
p

o
li

cy
tr

ad
e

u
n

io
n

tw
en

ti
et

h
ce

n
tu

ry
re

li
gi

o
u

s
co

m
m

u
n

it
y

o
ri

gi
n

al
in

te
n

t
V

ic
e

P
re

si
d

en
t

la
b

o
r

m
ov

em
en

t
gr

ea
td

ea
l

A
m

er
ic

an
cr

ee
d

ta
x

in
cr

ea
se

in
te

re
st

ra
te

ru
li

n
g

cl
as

s
fr

ee
m

ar
ke

t
W

il
lo

w
C

re
ek

M
ar

k
Le

vi
n

H
ea

d
St

ar
t

d
ev

el
o

p
in

g
co

u
n

tr
y

ta
x

co
d

e
st

ri
ct

fa
th

er
A

m
er

ic
an

d
re

am
U

n
it

ed
N

at
io

n
s

p
u

b
li

c
o

p
ti

o
n

fr
ee

tr
ad

e
ea

rl
y

C
h

ri
st

ia
n

s
W

al
M

ar
t

m
en

ta
li

lln
es

s
w

o
rk

in
g

p
eo

p
le

co
m

m
o

n
la

w
M

o
th

er
T

h
er

es
a

su
p

er
PA

C
Jo

h
n

K
er

ry
D

r.
K

in
g

su
p

p
ly

si
d

er
s

fa
m

il
y

va
lu

es
G

eo
rg

e
W

as
h

in
gt

o
n

Sa
n

Fr
an

ci
sc

o
A

m
er

ic
an

w
o

rk
er

So
u

th
A

fr
ic

a
G

o
d

’s
lo

ve
lo

an
o

ffi
ce

Ir
aq

w
ar

ec
o

n
o

m
ic

cr
is

is
li

vi
n

g
co

n
d

it
io

n
s

ta
x

co
lle

ct
o

r
R

ep
u

b
li

ca
n

Pa
rt

y
ch

il
d

ca
re

so
ci

al
ju

st
ic

e
K

St
re

et
N

U
M

_M
at

th
ew

G
le

n
n

B
ec

k
ci

vi
lw

ar
w

o
rk

in
g

cl
as

s
in

te
re

st
ra

te
N

U
M

_M
ar

k
W

as
h

in
gt

o
n

,D
C

p
o

lit
ic

al
p

ow
er

fo
ss

il
fu

el
G

ro
ve

r
N

o
rq

u
is

t
N

U
M

_L
u

ke
A

le
xa

n
d

er
H

am
il

to
n

co
m

m
u

n
it

y
co

lle
ge

co
rp

o
ra

te
st

at
e

p
ri

va
te

se
ct

o
r

N
U

M
_J

o
h

n
d

eb
tc

ei
li

n
g

P
h

ra
se

s
th

at
m

o
st

cl
ea

rl
y

d
is

ti
n

gu
is

h
ea

ch
id

eo
lo

gi
ca

l
su

b
cl

as
s

fr
o

m
th

e
o

th
er

s,
b

as
ed

o
n

th
e

cl
as

s-
an

d
su

b
cl

as
s-

ef
fe

ct
s

es
ti

-
m

at
ed

u
si

n
g

sp
ar

se
ad

d
it

iv
e

m
o

d
el

.
M

an
y

o
f

th
e

te
rm

s
m

at
ch

th
e

ex
p

ec
ta

ti
o

n
s

o
f

ar
ea

ex
p

er
ts

,
w

it
h

th
e

ex
ce

p
ti

o
n

th
e

ra
th

er
an

em
ic

ce
n

tr
is

t
ca

te
go

ry
.

T
h

e
d

if
fi

cu
lt

y
in

ex
tr

ac
ti

n
g

m
ea

n
in

gf
u

l‘
ce

n
tr

is
t’

w
o

rd
s

la
rg

el
y

st
em

s
fr

o
m

th
e

re
la

ti
ve

ly
fe

w
tr

u
ly

ce
n

-
tr

is
ta

u
th

o
rs

o
fp

o
lit

ic
al

tr
ac

ts
.

147

Ta
b

le
4.

4:
T

H
E

T
O

P
W

O
R

D
S

&
P

H
R

A
S

E
S

A
S

S
O

C
IA

T
E

D
W

IT
H

C
O

N
S

E
R

V
A

T
IV

E
ID

E
O

L
O

G
IE

S

M
o

d
er

ta
e

P
o

p
u

li
st

R
el

ig
io

u
s

Fa
r-

ri
gh

t
L

ib
er

ta
ri

an
G

ov
er

n
o

r
B

u
sh

il
le

ga
la

lie
n

s
C

h
ri

st
ia

n
n

at
io

n
il

le
ga

li
m

m
ig

.
ra

w
m

il
k

R
o

n
al

d
R

ea
ga

n
il

le
ga

li
m

m
ig

ra
n

ts
h

u
m

an
b

ei
n

gs
N

o
rt

h
K

o
re

a
p

ro
p

er
ty

ri
gh

ts
h

u
m

an
b

ei
n

g
b

o
rd

er
p

at
ro

l
Je

su
s

C
h

ri
st

fl
at

ta
x

ch
ie

fj
u

st
ic

e
fo

re
ig

n
p

o
lic

y
im

m
ig

.r
ef

o
rm

an
ti

-C
h

ri
st

ia
n

p
o

li
ti

ca
lc

o
rr

ec
t

n
at

u
ra

lr
ig

h
t

M
id

d
le

E
as

t
b

ir
th

ra
te

N
ew

Yo
rk

b
ig

go
v’

t
fo

u
n

d
in

g
fa

th
er

s
Jo

h
n

M
cC

ai
n

n
at

io
n

al
m

ed
ia

G
o

d
’s

w
o

rd
af

fi
rm

at
iv

e
ac

ti
o

n
em

in
en

td
o

m
ai

n
ra

d
io

p
ro

gr
am

ci
vi

lw
ar

Sa
ra

h
Pa

li
n

Je
w

is
h

st
at

e
Su

p
re

m
e

C
o

u
rt

Sa
d

d
am

H
u

ss
ei

n
Lo

s
A

n
ge

le
s

fe
d

.g
ov

’t
h

u
m

an
li

fe
co

n
st

it
u

ti
o

n
al

ri
gh

t
R

ep
u

b.
Pa

rt
y

w
h

it
e

A
m

er
ic

a
Sa

n
Fr

an
sc

is
co

Sa
u

d
iA

ra
b

ia
T

SA
ag

en
t

m
as

s
d

es
tr

u
ct

io
n

A
fr

ic
an

A
m

er
ic

an
p

ri
va

te
p

ro
p

er
ty

A
ra

b
Sp

ri
n

g
N

in
th

C
ir

cu
it

K
ar

lR
ov

e
o

p
en

b
o

rd
er

el
em

en
ta

ry
sc

h
o

o
l

ra
d

io
sh

ow
b

ea
r

ar
m

s
C

o
ld

W
ar

tr
ad

e
d

efi
ci

t
H

o
ly

Sp
ir

it
A

m
er

ic
an

ex
ce

p
ti

o
n

fr
ee

sp
ee

ch
Sa

m
’s

C
lu

b
el

ec
te

d
o

ffi
ci

al
s

ye
ar

o
ld

le
ft

w
in

g
H

ab
ea

s
C

o
rp

u
s

lo
o

k
b

ac
k

co
rp

o
ra

te
A

m
er

ic
a

p
ro

li
fe

m
ai

n
st

re
am

m
ed

ia
Fo

u
rt

h
A

m
en

d
m

en
t

So
ci

al
Se

cu
ri

ty
fr

ee
tr

ad
e

Jo
se

p
h

Sm
it

h
p

o
p

u
la

r
cu

lt
u

re
Fo

u
rt

ee
n

th
A

m
en

d
m

en
t

M
is

s
A

m
er

ic
a

cu
lt

u
re

w
ar

p
u

b
li

c
sc

h
o

o
ls

gl
o

b
al

w
ar

m
in

g
ju

d
ic

ia
la

ct
iv

is
m

Ir
aq

w
ar

sp
ec

ia
li

n
te

re
st

P
la

n
n

ed
Pa

re
n

th
o

o
d

h
ar

d
w

o
rk

ec
o

n
o

m
ic

fr
ee

d
o

m
m

in
d

se
t

n
at

io
n

al
in

te
re

st
Ju

d
eo

-C
h

ri
st

ia
n

M
u

sl
im

B
ro

th
er

h
o

o
d

Fe
d

er
al

R
es

er
ve

cl
as

s
vo

te
r

w
o

rk
in

g
m

en
d

ai
ly

sa
in

t
R

o
n

Pa
u

l
m

ed
ic

al
m

ar
ij

u
an

a
h

ea
lt

h
ca

re
b

o
rd

er
se

cu
ri

ty
Ji

m
W

al
is

fo
re

ig
n

ai
d

d
ef

en
se

at
to

rn
ey

P
h

ra
se

s
th

at
m

o
st

cl
ea

rl
y

d
is

ti
n

gu
is

h
ea

ch
id

eo
lo

gi
ca

ls
u

b
cl

as
s

fr
o

m
th

e
o

th
er

s,
b

as
ed

o
n

th
e

cl
as

s-
an

d
su

b
cl

as
s-

ef
fe

ct
s

es
ti

m
at

ed
u

si
n

g
th

e
fi

rs
t-

st
ag

e
SA

G
E

m
o

d
el

.
M

an
y

o
f

th
e

te
rm

s
m

at
ch

th
e

ex
p

ec
ta

ti
o

n
s

o
f

ar
ea

ex
p

er
ts

,w
it

h
so

m
e

co
n

fu
si

o
n

b
et

w
ee

n
Fa

r
R

ig
h

ta
n

d
Po

p
u

li
st

cl
as

se
s.

148

Table 4.5: IDEOLOGICAL CLASSIFICATIONS & SUBCLASSIFICATIONS CRUZ, TRUMP, CLINTON, AND

SANDERS IN 2016

Cruz Trump Clinton Sanders
All Liberal 0.20 0.44 0.55 0.55
All Conservative 0.72 0.50 0.42 0.35
Center 0.08 0.06 0.02 0.07
Socialist 0.05 0.08 0.19 0.13
Moderate 0.06 0.15 0.07 0.11
Progressive 0.00 0.18 0.22 0.24
Religious Liberal 0.03 0.00 0.07 0.07
Far-Right 0.21 0.10 0.06 0.08
Libertarian 0.11 0.10 0.09 0.09
Moderate Conservative 0.07 0.17 0.15 0.11
Populist 0.08 0.16 0.07 0.04
Religious Conservative 0.19 0.07 0.05 0.03

The ideological classifications (top panel) and subclassifications (bottom) for the top four can-
didates in the 2016 presidential campaign. Entries represent the proportion of speeches classi-
fied into each ideological class and subclass, according to the sparse additive model (the results
from the neural network models look similar). Rounding may result in columns that do not sum
exactly to 1.

149

Table 4.6: IDEOLOGICAL CLASSIFICATIONS & SUBCLASSIFICATIONS FOR DEMOCRATIC PRESIDEN-
TIAL CANDIDATES IN 2008

Obama (P) Obam (G) Biden Clinton Edwards Richardson
All Liberal 0.59 0.42 0.73 0.68 0.68 0.58
All Conserva-
tive

0.41 0.53 0.24 0.19 0.28 0.37

Center 0.00 0.05 0.03 0.13 0.04 0.05
Socialist 0.06 0.07 0.03 0.01 0.02 0.10
Moderate Lib-
eral

0.19 0.09 0.02 0.01 0.14 0.01

Progressive 0.05 0.08 0.08 0.15 0.11 0.13
Religious Lib-
eral

0.12 0.03 0.03 0.02 0.01 0.05

Far-Right 0.05 0.01 0.02 0.00 0.01 0.01
Libertarian 0.05 0.19 0.01 0.02 0.01 0.01
Moderate
Conservative

0.09 0.12 0.01 0.02 0.03 0.03

Populist 0.12 0.06 0.01 0.01 0.01 0.06
Religious
Conservative

0.05 0.09 0.01 0.01 0.02 0.04

Republican 0.00 0.00 0.00 0.00 0.00 0.00

The ideological classifications (top panel) and subclassifications (bottom) for Democratic can-
didates in the 2008 presidential campaign. Proportions were estimated using the the sparse
additive model (the results from the neural network models look similar). "G" indicates the
candidate’s speeches in the general election, and "P" indicates the primary campaign, where
that difference is necessary. Entries represent the proportion of speeches classified into each
ideological class and subclass. Rounding may result in columns that do not sum exactly to 1.

150

Table 4.7: IDEOLOGICAL CLASSIFICATIONS & SUBCLASSIFICATIONS FOR REPUBLICAN PRESIDEN-
TIAL CANDIDATES IN 2008

Romney Giuliani Huckabee McCain(P) McCain (G)
All Liberal 0.49 0.31 0.29 0.20 0.31
All Conservative 0.51 0.58 0.65 0.70 0.47
Center 0.00 0.10 0.06 0.10 0.22
Socialist 0.01 0.02 0.00 0.04 0.04
Moderate Liberal 0.00 0.04 0.02 0.02 0.02
Progressive 0.02 0.03 0.01 0.02 0.04
Religious Liberal 0.20 0.03 0.02 0.04 0.01
Far-Right 0.01 0.05 0.03 0.02 0.02
Libertarian 0.06 0.05 0.07 0.04 0.04
Moderate Conservative 0.17 0.06 0.06 0.39 0.12
Populist 0.04 0.09 0.04 0.06 0.05
Religious Conservative 0.13 0.03 0.12 0.01 0.02

The ideological classifications (top panel) and subclassifications (bottom) for Republican can-
didates in the 2008 presidential campaign. Proportions were estimated using the the sparse
additive model (the results from the neural network models look similar). "G" indicates the
candidate’s speeches in the general election, and "P" indicates the primary campaign, where
that difference is necessary. Entries represent the proportion of speeches classified into each
ideological class and subclass. Rounding may result in columns that do not sum exactly to 1.

151

Ta
b

le
4.

8:
ID

E
O

L
O

G
IC

A
L

C
L

A
S

S
IF

IC
A

T
IO

N
S

&
S

U
B

C
L

A
S

S
IF

IC
A

T
IO

N
S

F
O

R
R

E
P

U
B

L
IC

A
N

P
R

E
S

ID
E

N
T

IA
L

C
A

N
D

ID
A

T
E

S
IN

2
0

1
2

R
o

m
n

ey
(P

)
R

o
m

n
ey

(G
)

B
ac

h
m

an
n

C
ai

n
H

u
n

ts
m

an
Pa

u
l

Pa
w

le
n

ty
Pe

rr
y

Sa
n

to
ru

m
A

ll
Li

b
er

al
0.

33
0.

48
0.

24
0.

22
0.

46
0.

26
0.

53
0.

30
0.

30
A

ll
C

o
n

se
rv

at
iv

e
0.

59
0.

49
0.

69
0.

56
0.

46
0.

63
0.

39
0.

60
0.

54
C

en
te

r
0.

08
0.

03
0.

07
0.

22
0.

07
0.

11
0.

07
0.

10
0.

16
So

ci
al

is
t

0.
00

0.
13

0.
02

0.
01

0.
01

0.
01

0.
05

0.
02

0.
01

M
o

d
er

at
e

Li
b

er
al

0.
01

0.
02

0.
02

0.
04

0.
02

0.
02

0.
04

0.
02

0.
01

P
ro

gr
es

si
ve

0.
01

0.
01

0.
03

0.
02

0.
01

0.
02

0.
03

0.
03

0.
02

R
el

ig
io

u
s

Li
b

er
al

0.
02

0.
04

0.
03

0.
04

0.
10

0.
01

0.
08

0.
02

0.
01

Fa
r-

R
ig

h
t

0.
08

0.
11

0.
08

0.
05

0.
04

0.
03

0.
03

0.
05

0.
03

Li
b

er
ta

ri
an

0.
14

0.
05

0.
12

0.
02

0.
02

0.
07

0.
06

0.
07

0.
04

M
o

d
er

at
e

C
o

n
se

rv
at

iv
e

0.
00

0.
01

0.
04

0.
05

0.
05

0.
03

0.
07

0.
09

0.
05

Po
p

u
li

st
0.

01
0.

02
0.

02
0.

02
0.

02
0.

01
0.

01
0.

02
0.

02
R

el
ig

io
u

s
C

o
n

se
rv

at
iv

e
0.

02
0.

00
0.

05
0.

08
0.

02
0.

07
0.

07
0.

04
0.

03

T
h

e
id

eo
lo

gi
ca

l
cl

as
si

fi
ca

ti
o

n
s

(t
o

p
p

an
el

)
an

d
su

b
cl

as
si

fi
ca

ti
o

n
s

(b
o

tt
o

m
)

fo
r

R
ep

u
b

li
ca

n
ca

n
d

id
at

es
in

th
e

20
12

p
re

si
d

en
ti

al
ca

m
p

ai
gn

.
P

ro
p

o
rt

io
n

s
w

er
e

es
ti

m
at

ed
u

si
n

g
th

e
th

e
sp

ar
se

ad
d

it
iv

e
m

o
d

el
(t

h
e

re
su

lt
s

fr
o

m
th

e
n

eu
ra

l
n

et
w

o
rk

m
o

d
el

s
lo

o
k

si
m

il
ar

).
‘G

’i
n

d
ic

at
es

th
e

ca
n

d
id

at
e’

s
sp

ee
ch

es
in

th
e

ge
n

er
al

el
ec

ti
o

n
,a

n
d

‘P
’i

n
d

ic
at

es
th

e
p

ri
m

ar
y

ca
m

p
ai

gn
,w

h
er

e
th

at
d

if
-

fe
re

n
ce

is
n

ec
es

sa
ry

.
E

n
tr

ie
s

re
p

re
se

n
t

th
e

p
ro

p
o

rt
io

n
o

f
sp

ee
ch

es
cl

as
si

fi
ed

in
to

ea
ch

id
eo

lo
gi

ca
lc

la
ss

an
d

su
b

cl
as

s.
R

o
u

n
d

in
g

m
ay

re
su

lt
in

co
lu

m
n

s
th

at
d

o
n

o
ts

u
m

ex
ac

tl
y

to
1.

152

4.6 Figures

Figure 4.1: POLITICAL BOOKS EVINCE HIGHER DIMENSIONALITY THAN CAMPAIGN SPEECHES

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 10
Component

C
um

ul
at

iv
e

P
ro

po
rt

io
n

of
 V

ar
ia

nc
e

Text

Books

Speeches

The y-axis shows the proportion of the cumulative proportion of variance explained by the
number of principal components along the x-axis. The solid line represents the the classifica-
tions of the Ideological Books Corpus test set, and the dashed line represents the classifications
of the presidential campaign speeches into the nine ideological subclasses. To account for vari-
ation in the ideological subclassifications in campaign speeches, one component generally suf-
fices.For the ideological subclassifications on test documents in the Ideological Books Corpus,
we require nine principal components to account for as much variation as two components in
political speeches.

153

Figure 4.2: THE THIRD COMPONENT CAPTURES THE UNDERLYING LIBERTARIAN IDEOLOGICAL

DIMENSION

Libertarian

P
rin

ci
pa

l C
om

po
ne

nt
 L

oa
di

ng

−
2

−
1

0
1

2
3

4

Low High

● Libertarian
Other

The figure shows the principal component loadings on the third principal component for the
Ideological Books Corpus test set predictions. Each point represents a document, and the x-axis
indexes the documents ordered by their loadings onto the third principal component. Libertar-
ian documents are represented by the dark circles, and we see that most documents with high
loadings are from libertarian authors.

154

Figure 4.3: THE SIXTH COMPONENT CAPTURES THE UNDERLYING PROGRESSIVE IDEOLOGICAL

DIMENSION

Progressive

P
rin

ci
pa

l C
om

po
ne

nt
 L

oa
di

ng

−
3

−
2

−
1

0
1

2
3

Low High

● Progressive
Other

The figure shows the principal component loadings on the sixth principal component for the
Ideological Books Corpus test set predictions. Each point represents a document, and the x-axis
indexes the documents ordered by their loadings onto the sixth principal component. Progres-
sive documents are represented by the dark circles, and we see that most documents with high
loadings are from libertarian authors.

155

Figure 4.4: TWO LATENT DIMENSIONS CAPTURE RELIGIOSITY IN LANGUAGE

−4 −2 0 2 4

−
4

−
2

0
2

4

Principal Component 8

P
rin

ci
pa

l C
om

po
ne

nt
 4

+

+

+

+
+

+

+

+
+

++

+
+

+

+
+

+

+
+

+
++

+

+

+

+

+

+

+

+ ++

+

+

++

+

+

+
+

+

+
+

++
+

+ +
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

++

+

+

+

+

+
+

+

++

++

+
+

+

+

+

+
++

+

+

+

+
+

+

+

x

x

x

x

xx

x

x

x

x

x

x

xx

x
x

x

x
x

x
x

x
x

x

x

xx

x

x

x
x

x

x
x x

x
x

x

x

x

x
x

x

x
x

x

x

x

x

x

x

x

x

x

x

x

xx

x
x

x

x

x
x

x

x

x

x

x

x

x

x

x

x x

x

x

x

x

x

x x

x

x
x

x

x x

xx

x

x

x

x

x

x

x

x

x x

+

x
Religious Liberal

Religious Conservative

The figure shows the principal component loadings on the eighth (x-axis) and fourth (y-axis)
components. Each point represents a document in the Ideological Books Corpus test set. The
‘x’ marks religious conservative texts, and the ‘+’ marks religious liberal texts. The lighly-shaded
points represent all other documents. The figure shows the relationship between religious
language—both that there is an association between religious language, whether conservative
or liberal, and that there are clearly differences between the two subclasses.

156

Figure 4.5: THE AGGREGATED LEFT-RIGHT CLASSIFICATIONS OF PRESIDENTIAL SPEECHES

Cruz

Sanders

Clinton P16Trump

Obama P08

Obama G08

Obama G12

Romney P08

Romney P12

Romney G12

Bachmann

Biden

Cain

Clinton P08

Edwards

Giuliani

Huckabee

Huntsman

Paul

Pawlenty

Perry

Richardson

Santorum

McCain P08

McCain G08

0.2

0.3

0.4

0.5

0.6

0.7

0.2 0.3 0.4 0.5 0.6 0.7
Proportion Liberal

P
ro

po
rt

io
n

C
on

se
rv

at
iv

e

The proportion left is the sum the percentages of speech sentences classified as one of the lib-
eral ideological subclasses, and the same for the proportion right. While the candidates do not
sample from particular ideological subclasses (i.e., there is no candidate who samples their lan-
guage predominately from a particular subclass), there is a coherent left-right orientation of the
candidates. Democrats tend to use mostly liberal language, Republicans mostly conservative,
and as noted in Acree et al. (2014) note, McCain, Romney and Obama move ‘toward the center’
when moving from the primaries (denoted as ‘P’) to the general election (denoted as ‘G’).

157

REFERENCES

Abramowitz, A.I. 1978. “The Impact of a Presidential Debate on Voter Rationality.” American
Journal of Political Science pp. 680–690.

Abramowitz, Alan I. 2010. The Disappearing Center: Engaged Citizens, Polarization, and Ameri-
can Democracy. Yale University Press.

Acree, Brice, Justin Gross, Noah Smith, Yanchuan Sim & Amber Boydstun. 2014. Testing the
Post-Primary Moderation Hypothesis. In American Political Science Association Annual
Meeting. August 28-31.

Adorno, Theodor W, Else Frenkel-Brunswik, Daniel J Levinson & R Nevitt Sanford. 1950. “The
Authoritarian Personality.”.

Aldrich, John H. 1995. Why Parties? the Origin and Transformation of Party Politics in America.
Vol. 15.

Aldrich, John H, Jacob M Montgomery & David B Sparks. 2014. “Polarization and Ideology: Par-
tisan Sources of Low Dimensionality in Scaled Roll Call Analyses.” Political Analysis 22(4):
435–456.

Alesina, Alberto, Nouriel Roubini & Gerald Cohen. 1997. Political Cycles and the Macroeconomy.
MIT Press.

Ansolabehere, Stephen, Shanto Iyengar, Ann N Crigler, Thomas M Holbrook, Robert Huckfeldt
& John Sprague. 1999. “Going Negative. How Political Advertisements Shrink & Polarize the
Electorate.”.

Apter, David Ernest. 1964. Ideology and Discontent. Free Press New York.

Bartels, Larry M. 2000. “Partisanship and Voting Behavior, 1952-1996.” American Journal of
Political Science 44(1): 35–50.

Beauchamp, Nicholas. 2011. How to Scale Legislatures With Text: A Comparison of Methods,
With Applications to the US Congress and UK House of Commons. Technical report Work-
ing Paper.

Beauchamp, Nicholas. 2015. “Predicting and Interpolating State-Level Polls Using Twitter Tex-
tual Data.”.

Belue, Lisa M & Kenneth W Bauer. 1995. “Determining Input Features for Multilayer Percep-
trons.” Neurocomputing 7(2): 111–121.

Bengio, Yoshua. 2012. “Practical Recommendations for Gradient-Based Training of Deep Archi-
tectures.” In Neural Networks: Tricks of the Trade. Springer. pp. 437–478.

Bengio, Yoshua, Holger Schwenk, Jean-Sébastien Senécal, Fréderic Morin & Jean-Luc Gau-
vain. 2006. “Neural Probabilistic Language Models.” In Innovations in Machine Learning.
Springer. pp. 137–186.

158

Bermingham, Adam & Alan F Smeaton. 2011. On Using Twitter to Monitor Political Sentiment
and Predict Election Results. In Workshop on Sentiment Analysis Where AI Meets Psychol-
ogy. IJCNLP.

Berry, William D, Richard C Fording, Evan J Ringquist, Russell L Hanson & Carl E Klarner. 2010.
“Measuring Citizen and Government Ideology in the US States: A Re-Appraisal.” State Pol-
itics & Policy Quarterly 10(2): 117–135.

Billig, Michael. 1984. “Political Ideology: Social Psychological Aspects.” The Social Dimension 2:
446–470.

Bishop, George F. 2004. The Illusion of Public Opinion: Fact and Artifact in American Public
Opinion Polls. Rowman & Littlefield Publishers.

Blei, David M. 2012. “Probabilistic Topic Models.” Communications of the ACM 55(4): 77–84.

Blei, David M, Andrew Y Ng & Michael I Jordan. 2003. “Latent Dirichlet Allocation.” The Journal
of Machine Learning Research 3: 993–1022.

Boureau, Y-Lan, Jean Ponce & Yann LeCun. 2010. A Theoretical Analysis of Feature Pooling in
Visual Recognition. In Proceedings of the 27th International Conference on Machine Learn-
ing (ICML-10). pp. 111–118.

Box, George EP. 1979. “Robustness in the Strategy of Scientific Model Building.” Robustness in
Statistics 1: 201–236.

Boydstun, Amber E, Justin H Gross, Philip Resnik & Noah A Smith. 2013. “Identifying Media
Frames and Frame Dynamics Within and Across Policy Issues.”.

Boydstun, Amber E, Rebecca a Glazier, Matthew T Pietryka & Philip Resnik. 2014. “Real-Time
Reactions to a 2012 Presidential Debate a Method for Understanding Which Messages Mat-
ter.” Public Opinion Quarterly 78(S1): 330–343.

Bruni, Elia, Nam-Khanh Tran & Marco Baroni. 2014. “Multimodal Distributional Semantics.” J.
Artif. Intell. Res.(JAIR) 49(1-47).

Bullinaria, John a & Joseph P Levy. 2007. “Extracting Semantic Representations From Word Co-
Occurrence Statistics: A Computational Study.” Behavior Research Methods 39(3): 510–526.

Bullinaria, John a & Joseph P Levy. 2012. “Extracting Semantic Representations From Word Co-
Occurrence Statistics: Stop-Lists, Stemming, and SVD.” Behavior Research Methods 44(3):
890–907.

Campbell, A., Phillip E. Converse, W.E. Miller & D. Stokes. 1960. The American Voter. New York:
Wiley.

Cao, Ziqiang, Sujian Li, Yang Liu, Wenjie Li & Heng Ji. 2015. A Novel Neural Topic Model and Its
Supervised Extension. In AAAI. pp. 2210–2216.

159

Chauvin, Yves & David E Rumelhart. 1995. Backpropagation: Theory, Architectures, and Appli-
cations. Psychology Press.

Chen, Tianqi, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu,
Chiyuan Zhang & Zheng Zhang. 2015. “MXNet: A Flexible and Efficient Machine Learning
Library for Heterogeneous Distributed Systems.” arXiv Preprint arXiv:1512.01274 .

Clinchant, Stéphane & Florent Perronnin. 2013. Aggregating Continuous Word Embeddings for
Information Retrieval. In Proceedings of the Workshop on Continuous Vector Space Models
and Their Compositionality. pp. 100–109.

Clinton, Joshua, Simon Jackman & Douglas Rivers. 2004. “The Statistical Analysis of Roll Call
Data.” American Political Science Review 98(02): 355–370.

Collobert, Ronan & Jason Weston. 2008. A Unified Architecture for Natural Language Process-
ing: Deep Neural Networks With Multitask Learning. In Proceedings of the 25th Interna-
tional Conference on Machine Learning. ACM pp. 160–167.

Collobert, Ronan, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu & Pavel
Kuksa. 2011. “Natural Language Processing (Almost) From Scratch.” The Journal of Ma-
chine Learning Research 12: 2493–2537.

Collobert, Ronan & Samy Bengio. 2004. Links Between Perceptrons, MLPs and SVMs. In Pro-
ceedings of the Twenty-First International Conference on Machine Learning. ACM p. 23.

Conover, Pamela Johnston & Stanley Feldman. 1981. “The Origins and Meaning of Lib-
eral/conservative Self-Identifications.” American Journal of Political Science pp. 617–645.

Converse, Philip E. 1964. “The Nature of Belief Systems in Mass Publics. in Ideology and Dis-
content, Ed. David Apter. New York: Free Press.”.

Delli Carpini, Michael. & S. Keeter. 1997. What Americans Know About Politics and Why It Mat-
ters. Yale University Press.

Diermeier, Daniel, Jean-François Godbout, Bei Yu & Stefan Kaufmann. 2012. “Language and
Ideology in Congress.” British Journal of Political Science 42(01): 31–55.

Dos Santos, Cícero Nogueira & Maira Gatti. 2014. Deep Convolutional Neural Networks for
Sentiment Analysis of Short Texts. In COLING. pp. 69–78.

Dougherty, Keith L, Michael S Lynch & Anthony J Madonna. 2013. “Partisan Agenda Control
and the Dimensionality of Congress.” American Politics Research p. 1532673X13511109.

Downs, A. 1957. An Economic Theory of Democracy. New York: Harper and Row.

Druckman, James N, Martin J Kifer & Michael Parkin. 2010. “Timeless Strategy Meets New
Medium: Going Negative on Congressional Campaign Web Sites, 2002–2006.” Political
Communication 27(1): 88–103.

160

Eisenstein, Jacob, Amr Ahmed & Eric P Xing. 2011. Sparse Additive Generative Models of Text.
In Proceedings of ICML. pp. 1041–1048.

Ellis, Christopher & James A Stimson. 2012. Ideology in America. Cambridge University Press.

Erikson, Robert S, Michael B MacKuen & James A Stimson. 2002. The Macro Polity. Cambridge
University Press.

Eshbaugh-Soha, Matthew. 2010. “The Tone of Local Presidential News Coverage.” Political
Communication 27(2): 121–140.

Farmer, Brian. 2006. American Political Ideologies. McFarland.

Firth, John R. 1957. A Synopsis of Linguistic Theory, 1930-1955. Blackwell.

Freeden, Michael. 2003. Ideology: A Very Short Introduction. Oxford University Press.

Geer, John G. 2008. In Defense of Negativity: Attack Ads in Presidential Campaigns. University
of Chicago Press.

Gerring, John. 1997. “Ideology: A Definitional Analysis.” Political Research Quarterly 50(4): 957–
994.

Giusti, Alessandro, Dan C Cireşan, Jonathan Masci, Luca M Gambardella & Jürgen Schmidhu-
ber. 2013. “Fast Image Scanning With Deep Max-Pooling Convolutional Neural Networks.”
arXiv Preprint arXiv:1302.1700 .

Glorot, Xavier & Yoshua Bengio. 2010. Understanding the Difficulty of Training Deep Feedfor-
ward Neural Networks. In International Conference on Artificial Intelligence and Statistics.
pp. 249–256.

Goh, ATC. 1995. “Back-Propagation Neural Networks for Modeling Complex Systems.” Artificial
Intelligence in Engineering 9(3): 143–151.

Goldberg, Yoav & Omer Levy. 2014. “Word2vec Explained: Deriving Mikolov Et al.’s Negative-
Sampling Word-Embedding Method.” arXiv Preprint arXiv:1402.3722 .

Gori, Marco & Alberto Tesi. 1992. “On the Problem of Local Minima in Backpropagation.” IEEE
Transactions on Pattern Analysis & Machine Intelligence 14(1): 76–86.

Graham, Benjamin. 2014. “Fractional Max-Pooling.” arXiv Preprint arXiv:1412.6071 .

Grimmer, Justin & Brandon M Stewart. 2013. “Text as Data: The Promise and Pitfalls of Auto-
matic Content Analysis Methods for Political Texts.” Political Analysis 21(3): 267–297.

Hamilton, Malcolm B. 1987. “The Elements of the Concept of Ideology.” Political Studies 35(1):
18–38.

Harris, Zellig S. 1954. “Distributional Structure.” Word 10(2-3): 146–162.

161

Hart, Roderick P, Jay P Childers & Colene J Lind. 2013. Political Tone: How Leaders Talk and
Why. University of Chicago Press.

Hearst, Marti A., Susan T Dumais, Edgar Osman, John Platt & Bernhard Scholkopf. 1998. “Sup-
port Vector Machines.” Intelligent Systems and Their Applications, IEEE 13(4): 18–28.

Hecht-Nielsen, Robert. 1989. Theory of the Backpropagation Neural Network. In Neural Net-
works, 1989. IJCNN., International Joint Conference On. IEEE pp. 593–605.

Hinich, Melvin J & Michael C Munger. 1996. Ideology and the Theory of Political Choice. Univer-
sity of Michigan Press.

Hinton, Geoffrey E, Simon Osindero & Yee-Whye Teh. 2006. “A Fast Learning Algorithm for Deep
Belief Nets.” Neural Computation 18(7): 1527–1554.

Holm, John D & John P Robinson. 1978. “Ideological Identification and the American Voter.”
Public Opinion Quarterly 42(2): 235–246.

Hopkins, Daniel & Gary King. 2007. “Extracting Systematic Social Science Meaning From Text.”
Manuscript Available at Http://gking. Harvard. Edu/files/words. Pdf .

Hopkins, Daniel J & Gary King. 2010. “A Method of Automated Nonparametric Content Analysis
for Social Science.” American Journal of Political Science 54(1): 229–247.

Hu, Baotian, Zhengdong Lu, Hang Li & Qingcai Chen. 2014. Convolutional Neural Network Ar-
chitectures for Matching Natural Language Sentences. In Advances in Neural Information
Processing Systems. pp. 2042–2050.

Hurwitz, Mark S, Roger J Moiles & David W Rohde. 2001. “Distributive and Partisan Issues in
Agriculture Policy in the 104th House.” American Political Science Review pp. 911–922.

Iyyer, Mohit, Peter Enns, Jordan L Boyd-Graber & Philip Resnik. 2014. Political Ideology Detec-
tion Using Recursive Neural Networks. In ACL (1). pp. 1113–1122.

Jackman, Simon. 2001. “Multidimensional Analysis of Roll Call Data via Bayesian Simulation:
Identification, Estimation, Inference, and Model Checking.” Political Analysis 9(3): 227–
241.

Jacoby, William G. 1991. “Ideological Identification and Issue Attitudes.” American Journal of
Political Science pp. 178–205.

Jost, John T. 2006. “The End of the End of ideology.” American Psychologist 61(7): 651.

Julien, Isaac & Philip Resnik. N.d. “Aligning Real-Time Opinion Poll Responses With an
Expectation-Maximization Algorithm.”.

Kaid, Lynda Lee. 2004. “Political Advertising.” Handbook of Political Communication Research
pp. 155–202.

162

Kerlinger, Fred Nichols. 1984. Liberalism and Conservatism: The Nature and Structure of Social
Attitudes. Vol. 1 Lawrence Erlbaum Assoc Incorporated.

Kim, Yoon. 2014. “Convolutional Neural Networks for Sentence Classification.” arXiv Preprint
arXiv:1408.5882 .

Knight, Kathleen. 1990. “Ideology and Public Opinion.” Research in Micropolitics 3: 59–82.

Krippendorff, Klaus. 2004. “Reliability in Content Analysis.” Human Communication Research
30(3): 411–433.

Kritzer, Herbert M. 1978. “Ideology and American Political Elites.” Public Opinion Quarterly
42(4): 484–502.

Lai, Siwei, Kang Liu, Liheng Xu & Jun Zhao. 2015. “How to Generate a Good Word Embedding?”
arXiv Preprint arXiv:1507.05523 .

Laver, Michael, Kenneth Benoit & John Garry. 2003. “Extracting Policy Positions From Political
Texts Using Words as Data.” American Political Science Review 97(02): 311–331.

Le Cun, B Boser, John S Denker, D Henderson, Richard E Howard, W Hubbard & Lawrence D
Jackel. 1990. Handwritten Digit Recognition With a Back-Propagation Network. In Ad-
vances in Neural Information Processing Systems. Citeseer.

LeCun, Yann, Yoshua Bengio & Geoffrey Hinton. 2015. “Deep Learning.” Nature 521(7553): 436–
444.

Lee, Frances E. 2009. Beyond Ideology: Politics, Principles, and Partisanship in the US Senate.
University of Chicago Press.

Lengauer, Günther, Frank Esser & Rosa Berganza. 2011. “Negativity in Political News: A Review
of Concepts, Operationalizations and Key Findings.” Journalism p. 1464884911427800.

Leopold, Edda & Jörg Kindermann. 2002. “Text Categorization With Support Vector Machines.
How to Represent Texts in Input Space?” Machine Learning 46(1-3): 423–444.

Levendusky, Matthew. 2009. The Partisan Sort: How Liberals Became Democrats and Conserva-
tives Became Republicans. University of Chicago Press.

Levy, Omer & Yoav Goldberg. 2014. Neural Word Embedding as Implicit Matrix Factorization.
In Advances in Neural Information Processing Systems. pp. 2177–2185.

Lin, Min, Qiang Chen & Shuicheng Yan. 2013. “Network in Network.” arXiv Preprint
arXiv:1312.4400 .

Liu, Bing. 2012. “Sentiment Analysis and Opinion Mining.” Synthesis Lectures on Human Lan-
guage Technologies 5(1): 1–167.

163

Loewenstein, Karl. 1953. “Political Systems, Ideologies, and Institutions: The Problem of Their
Circulation.” The Western Political Quarterly 6(4): 689–706.

Manning, Christopher D, Prabhakar Raghavan, Hinrich Schütze & Others. 2008. Introduction to
Information Retrieval. Number 1 Cambridge University Press Cambridge.

Marcus, George E, David Tabb & John L Sullivan. 1974. “The Application of Individual Differ-
ences Scaling to the Measurement of Political Ideologies.” American Journal of Political
Science pp. 405–420.

Martin, Andrew D & Kevin M Quinn. 2002. “Dynamic Ideal Point Estimation via Markov Chain
Monte Carlo for the US Supreme Court, 1953–1999.” Political Analysis 10(2): 134–153.

Mayhew, David R. 1974. Congress: The Electoral Connection. Yale University Press.

McCarty, N.M., K.T. Poole & H. Rosenthal. 2006. Polarized America: The Dance of Ideology and
Unequal Riches. MIT Press Cambridge, MA.

McClosky, Herbert & John Zaller. 1984. The American Ethos: Public Attitudes Toward Capitalism
and Democracy. Harvard University Press.

Mikolov, Tomas, Kai Chen, Greg Corrado & Jeffrey Dean. 2013. “Efficient Estimation of Word
Representations in Vector Space.” arXiv Preprint arXiv:1301.3781 .

Nagi, Jawad, Frederick Ducatelle, Gianni a Di Caro, Dan Cireşan, Ueli Meier, Alessandro Giusti,
Farrukh Nagi, Jürgen Schmidhuber & Luca Maria Gambardella. 2011. Max-Pooling Convo-
lutional Neural Networks for Vision-Based Hand Gesture Recognition. In Signal and Image
Processing Applications (ICSIPA), 2011 IEEE International Conference On. IEEE pp. 342–
347.

Nigam, Kamal, John Lafferty & Andrew McCallum. 1999. Using Maximum Entropy for Text
Classification. In IJCAI-99 Workshop on Machine Learning for Information Filtering. Vol. 1
pp. 61–67.

Noel, Hans. 2014. Political Ideologies and Political Parties in America. Cambridge University
Press.

Pal, Sankar K & Sushmita Mitra. 1992. “Multilayer Perceptron, Fuzzy Sets, and Classification.”
Neural Networks, IEEE Transactions On 3(5): 683–697.

Pang, Bo, Lillian Lee & Shivakumar Vaithyanathan. 2002. Thumbs Up?: Sentiment Classification
Using Machine Learning Techniques. In Proceedings of the ACL-02 Conference on Empiri-
cal Methods in Natural Language Processing-Volume 10. Association for Computational
Linguistics pp. 79–86.

Poole, Keith T & Howard L Rosenthal. 2011. Ideology and Congress. Vol. 1 Transaction Publishers.

Poole, Keith T & Howard Rosenthal. 1991. “Patterns of Congressional Voting.” American Journal
of Political Science pp. 228–278.

164

Poole, K.T. & H. Rosenthal. 1984. “The Polarization of American Politics.” The Journal of Politics
46(04): 1061–1079.

Poole, K.T. & H. Rosenthal. 1999. “D-Nominate After 10-Years: A Comparative Update to
Congress: A Political Economic History of Roll Call Voting.” Unpublished Manuscript.
Carnegie Mellon University .

Porter, Martin F. 2001. “Snowball: A Language for Stemming Algorithms.”.

Proksch, Sven-Oliver & Jonathan B Slapin. 2008. “Position Taking in European Parliament
Speeches.” American Journal of Political Science 52(3): 705–722.

Putnam, Robert D. 1971. “Studying Elite Political Culture: The Case of ŞIdeologyŤ.” American
Political Science Review 65(03): 651–681.

Ridout, Travis N & Michael Franz. 2008. “Evaluating Measures of Campaign Tone.” Political
Communication 25(2): 158–179.

Roberts, Margaret E, Brandon M Stewart, Dustin Tingley, Edoardo M Airoldi & Others. 2013.
The Structural Topic Model and Applied Social Science. In Advances in Neural Information
Processing Systems Workshop on Topic Models: Computation, Application, and Evaluation.

Rokeach, Milton. 1968. “Beliefs, Attitudes and Values: A Theory of Organization and Change.”.

Rong, Xin. 2014. “Word2vec Parameter Learning Explained.” arXiv Preprint arXiv:1411.2738 .

Schattschneider, E.E. 1960. The Semisovereign People. New York: Holt, Rinehart and Winston.

Schmidhuber, Jürgen. 2015. “Deep Learning in Neural Networks: An Overview.” Neural Net-
works 61: 85–117.

Severyn, Aliaksei & Alessandro Moschitti. 2015. UNITN: Training Deep Convolutional Neural
Network for Twitter Sentiment Classification. In Proceedings of the 9th International Work-
shop on Semantic Evaluation (SemEval 2015), Association for Computational Linguistics,
Denver, Colorado. pp. 464–469.

Sheafer, Tamir. 2007. “How to Evaluate It: The Role of Story-Evaluative Tone in Agenda Setting
and Priming.” Journal of Communication 57(1): 21–39.

Shils, Edward Albert. 1968. The Concept and Function of Ideology. Crowell Collier and Macmil-
lan.

Shor, Boris, Christopher Berry & Nolan McCarty. 2010. “A Bridge to Somewhere: Mapping State
and Congressional Ideology on a Cross-Institutional Common Space.” Legislative Studies
Quarterly 35(3): 417–448.

Shor, Boris & Nolan McCarty. 2011. “The Ideological Mapping of American Legislatures.” Amer-
ican Political Science Review 105(03): 530–551.

165

Sim, Yanchuan, Brice Acree, Justin H Gross & Noah A Smith. 2013. Measuring Ideological Pro-
portions in Political Speeches. In Empirical Methods in Natural Language Processing.

Skoric, Marko, Nathaniel Poor, Palakorn Achananuparp, Ee-Peng Lim & Jing Jiang. 2012. Tweets
and Votes: A Study of the 2011 Singapore General Election. In System Science (HICSS), 2012
45th Hawaii International Conference On. IEEE pp. 2583–2591.

Slapin, Jonathan B & Sven-Oliver Proksch. 2008. “A Scaling Model for Estimating Time-Series
Party Positions From Texts.” American Journal of Political Science 52(3): 705–722.

Soelistio, Yustinus Eko & Martinus Raditia Sigit Surendra. 2015. “Simple Text Mining for Sen-
timent Analysis of Political Figure Using Naïve Bayes Classifier Method.” arXiv Preprint
arXiv:1508.05163 .

Somasundaran, Swapna & Janyce Wiebe. 2010. Recognizing Stances in Ideological On-Line De-
bates. In Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to
Analysis and Generation of Emotion in Text. Association for Computational Linguistics
pp. 116–124.

Spirling, Arthur. 2011. “US Treaty-Making With American Indians.” American Journal of Political
Science .

Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever & Ruslan Salakhutdinov.
2014. “Dropout: A Simple Way to Prevent Neural Networks From Overfitting.” The Jour-
nal of Machine Learning Research 15(1): 1929–1958.

Steinwart, Ingo & Andreas Christmann. 2008. Support Vector Machines. Springer Science &
Business Media.

Stimson, James A. 2004. Tides of Consent: How Public Opinion Shapes American Politics. Cam-
bridge University Press.

Stimson, James a, Michael B MacKuen & Robert S Erikson. 1995. “Dynamic Representation.”
American Political Science Review 89(03): 543–565.

Tang, Duyu, Furu Wei, Nan Yang, Ming Zhou, Ting Liu & Bing Qin. 2014. Learning Sentiment-
Specific Word Embedding for Twitter Sentiment Classification. In ACL (1). pp. 1555–1565.

Tedin, Kent L. 1987. “Political Ideology and the Vote.” Research in Micropolitics 2(1): 63–94.

Thomas, Matt, Bo Pang & Lillian Lee. 2006. Get Out the Vote: Determining Support or Opposi-
tion From Congressional Floor-Debate Transcripts. In Proceedings of the 2006 Conference
on Empirical Methods in Natural Language Processing. Association for Computational Lin-
guistics pp. 327–335.

Thompson, John B. 1984. Studies in the Theory of Ideology. University of California Press.

Tibshirani, Robert. 1996. “Regression Shrinkage and Selection via the Lasso.” Journal of the
Royal Statistical Society. Series B (Methodological) pp. 267–288.

166

Tu, Jack V. 1996. “Advantages and Disadvantages of Using Artificial Neural Networks Versus
Logistic Regression for Predicting Medical Outcomes.” Journal of Clinical Epidemiology
49(11): 1225–1231.

Tumasjan, Andranik, Timm Oliver Sprenger, Philipp G Sandner & Isabell M Welpe. 2010. “Pre-
dicting Elections With Twitter: What 140 Characters Reveal About Political Sentiment.”
ICWSM 10: 178–185.

Wang, Hongning, Duo Zhang & ChengXiang Zhai. 2011. Structural Topic Model for Latent Topi-
cal Structure Analysis. In Proceedings of the 49th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technologies-Volume 1. Association for Compu-
tational Linguistics pp. 1526–1535.

Welch, Susan & Eric H Carlson. 1973. “The Impact of Party on Voting Behavior in a Nonpartisan
Legislature.” American Political Science Review 67(03): 854–867.

Werbos, Paul John. 1994. The Roots of Backpropagation: From Ordered Derivatives to Neural
Networks and Political Forecasting. Vol. 1 John Wiley & Sons.

Wright, Gerald C & Brian F Schaffner. 2002. “The Influence of Party: Evidence From the State
Legislatures.” American Political Science Review 96(02): 367–379.

Xue, Bai, Chen Fu & Zhan Shaobin. 2014. A Study on Sentiment Computing and Classification of
Sina Weibo With Word2vec. In 2014 IEEE International Congress on Big Data. IEEE pp. 358–
363.

Yu, Dong & Li Deng. 2011. “Deep Learning and Its Applications to Signal and Information Pro-
cessing [Exploratory Dsp].” Signal Processing Magazine, IEEE 28(1): 145–154.

Zeiler, Matthew D & Rob Fergus. 2014. Visualizing and Understanding Convolutional Networks.
In European Conference on Computer Vision. Springer pp. 818–833.

Zhang, Guoqiang Peter. 2000. “Neural Networks for Classification: A Survey.” Systems, Man, and
Cybernetics, Part C: Applications and Reviews, IEEE Transactions On 30(4): 451–462.

Zhang, Xiang, Junbo Zhao & Yann LeCun. 2015. Character-Level Convolutional Networks for
Text Classification. In Advances in Neural Information Processing Systems. pp. 649–657.

Zhang, Xiang & Yann LeCun. 2015. “Text Understanding From Scratch.” arXiv Preprint
arXiv:1502.01710 .

Zhang, Ye & Byron Wallace. 2015. “A Sensitivity Analysis of (And Practitioners’ Guide To) Con-
volutional Neural Networks for Sentence Classification.” arXiv Preprint arXiv:1510.03820
.

Zhang, Ye, Stephen Roller & Byron Wallace. 2016. “Mgnc-Cnn: A Simple Approach to Exploiting
Multiple Word Embeddings for Sentence Classification.” arXiv Preprint arXiv:1603.00968 .

167

