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ABSTRACT 

Stephen W. Jones: Nanoparticle Clearance is Governed by Th1/Th2 Immunity 
and Strain  

(Under the direction of James E. Bear) 

Extended circulation of nanoparticles in blood is essential for most clinical 

applications. Nanoparticles are rapidly cleared by cells of the mononuclear 

phagocyte system (MPS). Approaches such as grafting polyethylene glycol onto 

particles (PEGylation) extend circulation times; however, these particles are still 

cleared and the processes involved in this clearance remain poorly understood. 

Here we present a novel assay using intravital microscopy for the quantification 

of nanoparticle clearance, allowing us to determine the effect of mouse strain and 

immune system function on particle clearance. We demonstrate that mouse 

strains which are prone to Th1 immune responses clear nanoparticles at a slower 

rate than Th2-prone mice. Using depletion strategies, we show that both 

granulocytes and macrophages participate in the enhanced clearance observed 

in Th2-prone mice. Macrophages isolated from Th1 strains take up fewer 

particles in vitro than macrophages from Th2 strains. Treating macrophages from 

Th1 strains with cytokines to differentiate them into M2 macrophages increases 

the amount of particle uptake. Conversely, treating macrophages from Th2 

strains with cytokines to differentiate them into M1 macrophages decreases their 

particle uptake.  
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CHAPTER ONE: INTRODUCTION 

Nanoparticles in medicine 

Nanoparticles have been investigated for medicinal applications for over 

40 years (Chakraborty et al., 2013). Nanoparticle use in medicine can be broadly 

grouped into two categories, particles used for therapeutic applications in which 

the particle serves as therapeutic vehicle, and particles used for diagnostic 

applications. For the majority of nanoparticle therapeutics the principle is to 

immobilize a therapeutic agent within the matrix of a nanoparticle and thereby 

alter the pharmacokinetics (PK) of the therapeutic agent. The guiding principle 

behind this is that therapeutic agents that are normally toxic, unstable, or 

insoluble can be sequestered within the particle until they can be released at an 

appropriate time and place.  In most systems the particle utilizes a targeting 

agent such as an antibody or a DNA aptamer to direct the particle to a particular 

physiological destination (Beech et al., 2013; Fokong et al., 2012; Lammers et 

al., 2012; Li et al., 2013b; Shin et al., 2013). Once present in the desired location 

in the body the particle either degrades naturally or is triggered to degrade by 

altered physiological conditions such as low pH, reducing environment, or 

enzymatic activity. The degrading particle releases the encapsulated therapeutic 

agent upon degradation thereby targeting the majority of the agent to the site of 
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physiological interest and limiting off target effects (Morachis et al., 2012b). For 

diagnostic applications particles are functionalized with materials that can be 

detected with medical technology such as radiolabels for PET/SPECT imaging, 

MRI contrast agents, or fluorophores for fluorescent imaging (Feng et al., 2013; 

Gu et al., 2013; Wadajkar et al., 2013). Again in most circumstances diagnostic 

nanoparticles are conjugated with targeting agents to direct them to a site of 

interest in the body to aid physicians in the diagnosis and assessment of 

pathological conditions. Despite decades of work and thousands of papers 

published on the topic of nanomedicine, only two nanoformulations have been 

approved for clinical use in the USA. Abraxane which is a naoparticle formulation 

of albumin and paclitaxel, and doxil a liposomal formulation of doxorubicin 

(Coleman et al., 2006; Gradishar, 2006a; Krown et al., 2004). While there is still 

significant hope that nanoparticles will play a major future role in the clinic it has 

become clear that several major hurdles still must be overcome before 

nanotherapies will be widely efficacious. Here we will examine issues related to 

the response of the immune system to nanoparticles in blood. 

Classes of Nanoparticles 

A wide variety of materials schemes have been developed to generate 

nanoparticles for medical applications. Different particles with different material 

properties will show quite different capacities to bind drugs or therapeutic agents, 

utilize targeting strategies, show varying PK, and varying toxicology. Polymeric 

nanoparticles (Fig 1 A), are one of the most common types being researched for 
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medical applications. They can be made out of a very wide variety of materials 

with varying properties, can be easily designed to hold drugs inside the particle, 

can be functionalized with surface ligands of choice, and benefit from a huge 

amount of chemistry and materials knowledge of polymers and their properties. 

However it is challenging to make polymer particles smaller than 80-100nm, and 

they often show a wide range of sizes within one batch (Feng et al., 2013; 

Morachis et al., 2012a; Zhang et al., 2013). Polymeric micells (Fig 1 B) are 

formed by generating a polymer shell with one surface (typically the interior) 

being hydrophobic and the other being hydrophilic. The interior of the particle is 

typically filled with an oil droplet that can dissolve large amounts of hydrophobic 

drugs in the hydrophobic interior. The hydrophilic exterior can then be 

functionalized with stealthing or targeting ligands as needed. They can typically 

carry larger payloads of drug than polymer particles of the same size and can be 

made smaller, down to about 20nm. But they are often unstable in vivo and it is 

difficult to control the release of drugs from the interior of the particle (Fokong et 

al., 2012; Muthiah et al., 2013; Yurgel et al., 2013). Dendrimers (Fig 1 C) are 

large branched single chain polymers which contain within them many binding 

domains for therapeutics or imaging agents within them. The dendrimer is quite 

small for a nanoformulation often being less than 20nm in size. The highly 

hydrophilic nature of dendrimers give them excellent PK, but it is difficult to load 

large amounts of drug on a dendrimer and difficult to effectively target them (Liu 

et al., 2013; Ma et al., 2013; Ravina et al., 2010; Singha et al., 2011). Liposomes 

(Fig 1 D) are the most studied nanoformulation for medical applications and the 
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first nanodrug to get full approval in US for use (Doxil) (Biganzoli et al., 2007; 

Coleman et al., 2006). They are created by making a lipid bilayer typically 

~100nm in size that contain a water droplet on the inside that can be loaded with 

hydrophilic therapeutics.  The outer surface of the liposome can then be 

functionalized with targeting agents or stealthing ligands.  Liposomes are easy to 

make and very biologically compatible with low toxicology and good PK, but like 

polymeric micelles they are unstable and difficult to control drug release from 

(Chattopadhyay, 2013; Jolck et al., 2010; Naik et al., 2013; Qian et al., 2012). In 

recent years some labs have started referring to viruses as nanoparticles (Fig 1 

E), which is a technically correct definition. This has caused virus mediated 

genetic therapies to become incorporated into nanomedicine. In addition some 

effort has been made to formulate viral particles that contain a drug in the interior 

instead of genetic material. Viruses have the advantages of excellent natural 

targeting, cell penetrating, and controlled delivery of cargoes. However. viruses 

often illicit an immune response which limits their efficacy in vivo and can be 

dangerous to the patient. It is also difficult to produce large amounts of virus 

(Lentz et al., 2012; Manjila et al., 2013; Sun et al., 2013b; Usme-Ciro et al., 

2013). Finally carbon nanotubes (Fig 1 F), have shown some potential as 

diagnostic agents due to their unusual optical and magnetic properties that make 

them easy to detect in vivo. However it is difficult to get nanotubes to 

demonstrate good PK, and difficult to target them to sites of interest for 

diagnostics. There have also been several studies suggesting that nanotubes 

may not break down in vivo and can contribute long term to toxicological events 
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(Li et al., 2013a; Reynolds et al., 2013; Sun et al., 2013a; Tan et al., 2011; 

Yildirimer et al., 2011). 

 

The PRINT® System for Nanoparticle Synthesis. 

Recently a new technique known as particle replication in non-wetting 

templates (PRINT) has been developed for the generation of hydrogel 

nanoparticles  with a high level of control over the size and shape of the particles 

(Rolland et al., 2005). This allows for more precise experiments comparing 

effects of size and shape on particle PK (Gratton et al., 2007), cell entry (Gratton 

et al., 2008a; Gratton et al., 2008c), targeting (Wang et al., 2010), PEG stealthing 

(Perry et al., 2012) and novel classes of microparticles (Merkel et al., 2011).  In 

all cases by taking advantage of the nature of the PRINT system particles with 

limited diversity of size and shape can be compared much more rigorously than 

more heterogeneous particle populations, which allows for more detailed 

experiments with better controls. 
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The MPS system 

The arm of the immune system that is most commonly associated with 

nanoparticles is the reticuloendothelial system (RES)/mononuclear phagocyte 

system (MPS). The MPS system broadly consists of tissue macrophages and 

dendritic cells (DCs) found in the spleen, liver, and lungs as well as monocytes in 

the spleen and blood (Miyata and van Eeden, 2011; Moghimi et al., 2012; Wynn 

et al., 2013). In addition some authors have recently suggested that neutrophils 

in the blood should also be considered part of the MPS due to their similar 

function and behavior to other MPS cells, thoughtraditionally neutrophils have not 

been considered a part of the MPS system. The MPS system has been well 

characterized as functioning as the innate immune system’s effecter arm in the 

blood (Fitrolaki et al., 2013; Kono et al., 2012; Ogiku et al., 2011). Additionally in 

pathological contexts the MPS system, especially the DCs, function as the main 

antigen presenting cells in the spleen for activation of adaptive T and B cell 

responses. This particular function will not be considered further here, but has 

been extensively reviewed recently (Blum et al., 2013; Fehres et al., 2013; Guery 

and Hugues, 2013). 

  In the liver kuppfer cells, tissue macrophages play a critical role under 

normal physiological conditions to remove microbes and microbial products from 

blood that enters the liver from the intestines (Crispe, 2009; Traeger et al., 2010). 

To facilitate this process, the kuppfer cells are found in the small liver sinusoids 

where blood flow is slow and the kuppfer cells project large numbers of filopodia 
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into the lumen of the blood vessel. When phagocytic receptors on the filopodia 

engage microbial surfaces the microbes are bound and rapidly internalized by 

the kuppfer cell, this process prevents bacteria and other microbes that 

commonly enter the blood in the intestines from passing into the rest of the body 

and causing sepsis (Gregory et al., 2002; Gregory and Wing, 2002; Shih-Ching 

et al., 2004; Wong et al., 2010). Kuppfer cells have also been implicated in a 

wide range of pathological conditions including liver fibrosis (Frasinariu et al., 

2013; Purohit and Brenner, 2006; Tomita et al., 2013), fatty liver disease (Koek et 

al., 2011; Sawada et al., 2013), hepatic cancer (Bortolami et al., 2002; Van den 

Eynden et al., 2013), malaria (Frevert et al., 2008; Tavares et al., 2013a; Tavares 

et al., 2013b), and alcoholic liver disease(Bala et al., 2012; Petrasek et al., 2012; 

Szabo et al., 2012; Wan et al., 2013). If microbes are introduced directly into the 

blood, it is well known that the majority of microbes will be cleared by the action 

of kuppfer cells in the liver (Shou et al., 1994). In the case of genetic or 

pharmacolgical treatments which significantly blunt the activity of kuppfer cells 

there is a significantly increased risk of death during sepsis (Knoferl et al., 2002). 

After the liver the second largest collection of MPS cells that access the 

blood is found in the spleen, where at least eight different distinct populations of 

macrophages can be found (den Haan and Kraal, 2012). The exact role and 

nature of all of the subpopulations of splenic macrophages is poorly understood, 

but most of the minor populations are believed to be important in antigen 

presentation (Randolph et al., 2008; Tacke et al., 2007). The most abundant type 

is the well-studied red pulp macrophage. Red pulp macrophages, as their name 
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implies, are located in the red pulp of the spleen. Under normal physiological 

conditions they remove aged red blood cells from blood as it passes through the 

spleen (Ganz, 2012). This action plays an important role in preventing anemia 

and inflammation from the lysis of aged red blood cells in inappropriate locations 

in the body (Kovtunovych et al., 2010). In the case of sepsis red pulp 

macrophages will bind and phagocytose microbes in the blood as it passes 

through the spleen. In the case of a normally functioning immune system the 

spleen will clear the second largest amount of microbes during sepsis after the 

liver, with the red pulp macrophage being the dominant player in this process. 

The activity of macrophages in the lung is highly inconsistent from one species to 

another. All mammals contain large numbers of macrophages in the lungs, 

however in some species such as rodents (Fels and Cohn, 1986) the 

macrophages are polarized into the airways and do not respond to the presence 

of microbes in the blood of the lungs and therefore clear only small numbers of 

microbes during sepsis (Fels and Cohn, 1986). However in some larger 

mammals such as dogs, macrophages in the lungs appear to respond both to 

microbes in the airways and the blood allowing them to clear microbes in the 

case of sepsis (Merrill, 1990). Human lung macrophages appear to respond both 

to pathogens in blood and in the airways making the lung the third most prevalent 

site of clearance in humans after liver and spleen (Merrill, 1990). 

Monocytes exist in the body in two distinct populations, CX3CR1 high and 

low. CX3CR1 high monocytes are found in the blood and peripheral blood 
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vessels under normal conditions where they appear to perform a patrolling 

surveillance function. In the case of injury CX3CR1 high monocytes quickly 

migrate into the site of injury where they first release cytokines and chemokines 

to draw other immune cells to the site of injury, then differentiate into tissue 

macrophages to assist in the clearance of invading microbes/cellular debris 

(Auffray et al., 2007; Geissmann et al., 2010). CX3CR1 low monocytes are 

normally resident in the spleen, but upon injury the chemokines during injury 

induces CX3CR1 monocytes to migrate from the spleen into the blood. After 

circulation in the blood they then enter the site of injury where they differentiate 

into macrophages (Swirski et al., 2009). 

Neutrophils are the most prevalent immune cell in the body. They are 

generated at a constant high rate in the bone marrow, circulate in the blood for 

18hrs-3 days, after which time they apoptose and are removed from the blood by 

macrophages in the spleen, liver and bone marrow (Maugeri et al., 2009). In the 

case of injury and/or infection neutrophils quickly enter the site of injury where 

they can act as phagocytes to remove pathogens, or in other circumstances 

release their granular contents of anti-microbial enzymes and reactive oxygen 

species in an attempt to kill invading pathogens (Pittman and Kubes, 2013). 

Other studies have shown neutrophils are important in the phagocytic clearance 

of activated platelets in blood, where they bind to and internalize platelets, and 

then transit to the liver, spleen or bone marrow to be phagocytically cleared by 

macrophages (Manfredi et al., 2010; Maugeri et al., 2012). Although neutrophils 

have long been known to be phagocytic they are often not grouped as part of the 
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MPS system likely due to their different life cycle and microbial killing activities. 

However, recently some authors have suggested that due to their lineage, 

motility and phagocytic capacity they should more properly be classified as an 

MPS cell (Rabinovitch, 1995; Silva and Correia-Neves, 2012). Surprisingly 

despite they abundance and phagocytic capacity few nanoparticle studies have 

examined their role in particle clearance. It has been shown however that certain 

particle types can be found in neutrophils after intravenous injection (Leuschner 

et al., 2011). In addition it has been shown that in vitro nanoparticles can be 

phagocytosed by neutrophils and induce neutrophil netting, a process in which 

the nuclear contents of the neutrophils are mixed with the granular contents and 

then exocytosed to create a DNA, granular, extracellular, anti-microbial net 

(Bartneck et al., 2010). 

MPS clearance of nanoparticles 

Early studies of the PK of nanoparticles injected intravenously showed 

surprisingly fast clearance of particles from the blood (Fernandez-Urrusuno et al., 

1996). Upon further examination of the biodistribution (BD) of the particles it was 

shown that the majority of the particles were located within the kuppfer cells of 

the liver and the red pulp cells of the spleen (Illum and Davis, 1984; Illum et al., 

1984). This result has subsequently been repeated with a wide variety of 

nanoforumlations with widely divergent physical and chemical characteristics 

(Zamboni et al., 2012). A large amount of research has been done examining the 

interactions between macrophages and nanoparticles in vitro to attempt to 
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indentify key factors involved in particle binding and clearance by macrophages. 

No study to date has been able to truly prevent all binding and clearance of 

particles, but several physical and chemical characteristics such as 

hydrophobicity, strong charge, rigidity, size, and the rate at which serum proteins 

bind to a particle have been identified as playing a negative role (Moselhy et al., 

2000). From this work a general consensus has emerged that particles less than 

500nm, that are flexible, hydrophilic and uncharged will demonstrate the best PK 

in vivo. Other studies have attempted to determine which specific receptors on 

macrophages bind to particles to mediate clearance. These studies have been 

primarily in vitro using immortalized cell lines, and often non-specific inhibitors 

with many characterized off target effects. These caveats make drawing any 

strong conclusions about important receptors difficult, but they do provide an 

initial list of suspects including scavenger receptor A (Patel et al., 2010), Fc 

gamma receptor three (Yang et al., 2010), compliment receptor 3 (Sahay et al., 

2010), among others. 

 The most commonly used strategy to extend the circulation time of nanoparticles 

in vivo has been to graft a thick coating of high molecular weight polyethylene 

glycol (PEG) to the surface of particles. PEGylation works by providing a 

hydrophilic low charge surface that coordinates a shell of water molecules 

around the surface of the particle which slows the rate of protein adsorption to 

the particle (Owens and Peppas, 2006; Zamboni et al., 2012). PEG coating has 

been shown to significantly increase the circulation times and alter the BD of 

nanoparticles in vivo (Papahadjopoulos et al., 1991). However PEG does not 
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completely prevent clearance of particles by MPS cells, instead it slows the 

kinetics. In addition there are reasons to believe that PEG is a less than ideal 

solution for clinical applications. First it appears that PEGylation typically 

competes with targeting strategies as targeting molecules must protrude past the 

PEG layer and be present in sufficient quantities to result in targeting. This has a 

tendency to disrupt the coordinated shell of water around the particle, and 

creates the possibility of MPS cells binding directly to the targeting ligand, 

resulting in clearance (Pardeshi et al., 2012), or for serum proteins to bind to the 

particle opsinizing it. It has also been shown that a large number of patients 

treated with PEGylated agents will develop short term anti-PEG IgM antibodies 

(Ishihara et al., 2009; Shimizu et al., 2012), this response is transient, typically 

lasting for only a few weeks, but it significantly limits the flexibility of dosing 

schedules for PEGylated agents. In addition recent work has shown that as much 

as 25% of the population has circulating anti PEG IgG antibodies due to the 

presence of PEG in a large number of consumer products (Garay et al., 2012). 

While the combination of these factors suggests that PEG is not a sufficient 

solution for MPS clearance of nanoparticles, surprisingly little work has been 

done studying the biology of clearance, or coming up with alterative solutions to 

PEG for extending the circulation of nanoparticles.  
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Nanoparticle PK assays 

The study of nanoparticle PK has typically utilized a blood draw assay in 

which nanoparticles are injected into a large number of animals at time zero. At 

various time points after injection the animals are sacrificed and bled. The 

collected blood can then be assayed for concentrations of nanoparticles by using 

reporters such as fluorescence or radiation (Zamboni et al., 2012). In the case of 

inorganic nanoparticles the concentration can be directly assayed by detecting 

the presence of elements in the particles not found in biological samples such as 

gold, in the case of gold nanoparticles or cadmium and selenium in the case of 

quantum dots (Dreaden et al., 2012a; Dreaden et al., 2012b). These assays are 

advantageous as they are simple to perform; the data can be applied to existing 

pharmacokinetic models for small molecule PK, and can provide direct 

concentrations of nanoparticles in blood and/or tissue. There are however 

several disadvantages to these assays: First this technique requires the use of 

large numbers of animals and therefore large amounts of nanoparticles, as a 

group of animals is required at every time point. Second these assays offer 

limited temporal resolution, it is difficult to get data points for less than 1-2min 

after injection of particles making the baseline value unclear, and every time 

point assayed requires the use of additional animals and particles. Third it is 

common for these types of experiments to result in high errors as it is difficult to 

sacrifice animals and bleed them in a controlled, repeatable way. These 

limitations make this type of assay unappealing for use when attempting to 

screen formulations of nanoparticles or animal models of disease due to the fact 
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that large numbers of often difficult to manufacture experimental particles or 

expensive/rare animals must be used. An alternate assay that allows for PK data 

from a small number of animals usingfewer particles and higher temporal 

resolution is critically needed by the field to allow for rapid screening of particles 

and animal models. 

Intravital microscopy 

Intravital microscopy is an emerging technique in biological sciences that 

allows for the direct imaging of cells, molecules, tissues, etc. in living animals. It 

is highly advantageous over traditional in vitro tissue culture based imaging for 

the obvious reason of being performed in a physiologically relevant system. 

Intravital microscopy is most commonly performed using a multiphoton 

microscope (Niesner and Hauser, 2011). This type of scope uses two carefully 

aligned infrared laser lines that cross at a precisely defined position. At the point 

where the two lasers cross their energy is roughly doubled allowing them to 

excite photophores that typically are excited by visible light (Benninger et al., 

2008). This is advantageous as infrared light exhibits far greater tissue 

penetration than visible light allowing for the stimulation of photophores that 

would otherwise be too deep in tissue to be imaged (Bakalova, 2007). However, 

for imaging in tissues that are shallower such as the epidermis, it is often 

advantageous to use traditional laser scanning confocal microscopy as tissue 

penetration is less important and greater resolution can be achieved with 

traditional confocal microscopy. Intravital microscopy has been used recently to 
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study diverse biological processes including cancer invasion (Uchugonova et al., 

2013), development (Canaria and Lansford, 2010), immune function (Sumen et 

al., 2004), neurobiology (Garaschuk et al., 2006), as well as many others. In 

nanomedicine intravital microscopy is slowly gaining traction and has recently 

been used to assay the effect of size and shape on tumor extravasation of 

particles (Smith et al., 2012), targeting of particles to neovasculature (Smith et 

al., 2008), the circulation of gold nanoparticles (Tong et al., 2009b), and the 

uptake of particles by tumors (Smith et al., 2010). By combining the knowledge 

and resources for intravital imaging of the immune system with intravital imaging 

of nanoparticles, we may be able to better understand the clearance of 

nanoparticles by the immune system. In addition, by directly imaging particle 

circulation in blood it is possible to use intravital microscopy as an alternative 

method for assaying nanoparticle circulation times that avoids many of the 

traditional complication of nanoparticle PK assays. 

Th1/Th2 immunology 

In recent years, the systems regulating the immune system and immune 

function have begun to be elucidated. At this point, the central cell controlling the 

immune network is known to be the CD4 positive (CD4+) T cell. These cells are 

the cornerstone of the adaptive immune system and serve as one of the major 

connection points between the innate and adaptive immune system (Schmitt and 

Williams, 2013). CD4+ T cells have no direct effector function on pathogens . 

However, upon stimulation with antigen and other co-stimulatory molecules 
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CD4+ T cells take on one of at least four different classes: the T helper cell, the 

Th1 T cell, the Th2 T cell, and the Th17 T cell (Boswell et al., 2011; Muranski and 

Restifo, 2013; Stadecker et al., 2004; Tundup et al., 2012). These populations 

are defined by the types of cytokines and chemokines that they secrete, and 

thereby inform other immune cell behavior. T helper cells are considered to be 

tolerogenic; they react to autoantigens and suppress the activity of CD8 killer T 

cells, and B cells that recognize the self antigen (Schmitt and Williams, 2013). 

They are characterized to secrete the cytokines interleukin 9 (IL-9), interleukin 10 

(IL-10), and tissue growth factor beta (TGF-beta). Th1 T cells are typically 

elucidated by bacterial infections, they release interferon gamma (IFNg) as their 

primary effecter molecule (Cope et al., 2011). IFNg functions primarily to prime 

and activate cells of the innate immune system to fight microbial pathogens, by 

upregulating molecules required for the killing of bacteria and yeast. In addition, 

Th1 T cells contribute to inflammatory conditions in infected tissue, which allow 

for the entry of immune cells, the slowing of bacterial growth, and the influx of 

plasma carrying immune molecules such as antibodies and complement 

(Paulnock, 1992; Wynn et al., 1992). Macrophages activated by Th1 T cells are 

termed M1 or classically activated macrophages (Novak and Koh, 2013). Th2 

cells are classically thought of to be induced by parasitic infections (Pearce and 

Reiner, 1995). They release TGF-beta, IL-4, IL-7 and IL-13 as effector 

molecules. These molecules stimulate the division and activation of cells involved 

in the elimination of parasites such as eosinophils and basophils, as well as 

promote a robust antibody response from B cells (Pulendran and Artis, 2012). 
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Macrophages activated by Th2 T cells are termed M2 macrophages (Mantovani 

et al., 2002). Th17 T cells are most classically thought of as being elucidated by 

viral infections (Romagnani, 2008), and have also been shown to mediate many 

autoimmune diseases (Brembilla and Chizzolini, 2012). IL-17 is the primary 

cytokine of Th17 cells. IL-17 strongly induces the actively of CD8 killer T cells to 

fight viral pathogens.  

It is known that in humans exposure to certain types of infections early in 

life will have a tendency to polarize the immune system more towards one of 

these types of CD4+ T cell programs. This polarization will, in turn, cause an 

individual to be better protected from some types of pathologies and be more 

vulnerable to others (Grogan and Locksley, 2002). Despite the fact that these 

types of immune priming events are critical for immune function, nothing is 

currently known as to how CD4+ T cell priming affects the clearance of 

nanoparticles by the immune system. Fortunately, this is a tractable problem due 

to the fact that several laboratory mouse strains are known to naturally polarize 

towards one type of immune response or another. For instance, the strain 

C57BL/6 has been shown to always have a Th1 type immune response, while 

the strain BALB/c always has a Th2 type response (Mills et al., 2000). 

M1/M2 Macrophages 

In recent years, studies of macrophages have determined that based on 

the cytokine environment present, macrophages can polarize into at least two 

distinct phenotypes (Mills et al., 2000). The cytokines produced by Th1 CD4+ T 
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cells, primarily IFNg have long be known to induce a state of macrophage 

activation that is now known as classical or M1 activation (Nakano et al., 2001). 

In this case, macrophages are prepared for defense of tissue from invading 

microbes such as bacteria and fungi. To accomplish this, macrophages alter their 

morphology to become mesenchymal and upregulate enzymes involved in the 

formation of reactive oxygen species (ROS) such as nitric oxide synthase (iNOS) 

and microbial killing enzymes such as granzyme (Mills et al., 2000). Studies have 

shown that M1 polarized macrophages are more successful at both 

phagocytosing bacteria, and killing both phagocytosed bacteria and bacteria in 

surrounding tissue. M1 macrophages also secrete pro-inflammatory cytokines 

and chemokines to draw other immune cells to site of infection and activate them 

(Martinez et al., 2006). These effects render M1 macrophages highly effective at 

the elimination of invading microbes, but are also highly destructive to the 

surrounding tissue due to the high levels of inflammation they induce and direct 

damage from ROS (Nishio et al., 2005). More recently, it has been discovered 

that cytokines produced by Th2 immune responses also elucidate an activated 

state in macrophages, but with very different characteristics; these are known as 

alternatively activated or M2 macrophages (Mantovani et al., 2002; Tugal et al., 

2013). M2 macrophages are thought to be involved primarily in the resolution of 

inflammation and tissue/wound repair (Mills et al., 2000). M2 macrophages 

maintain the standard macrophage amoeboid morphology allowing them to be 

more motile in tissue. They downregulate ROS producing enzymes such as 

iNOS and instead upregulate arginase, thereby preventing metabolism of 
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arginine to NO. In addition, a wide range of scavenger and lectin receptors are 

upregulated likely to help with the removal of microbial and cellular debris (Noel 

et al., 2004). Likely due to the upregulation of these receptors, M2 macrophages 

have been shown to more readily phagocytose oxidized low density lipoproteins, 

apoptotic bodies, and latex beads (Chinetti-Gbaguidi et al., 2011; Durafourt et al., 

2012). Finally, M2 macrophages have been shown to secrete anti-inflammatory 

cytokines and induce division of tissue cells for the repair of injury (Cudejko et al., 

2011).  

The current model of infection suggests that macrophage function is a 

two-step process. Initially, macrophages present at the site of infection or 

monocytes recruited to the site of infection differentiate and/or polarize into M1 

macrophages to fight microbes present at the infection. However, as runaway 

inflammation is highly damaging to the tissue after a certain length of time, M1 

macrophages either repolarize to or are replaced by M2 macrophages. The M2 

macrophages then function to remove cellular and microbial debris and to 

promote tissue growth and repair (Biswas et al., 2012). 

Despite the marked difference in macrophage behavior between M1 and 

M2 macrophages and the fact that macrophages are a key player in the 

clearance of nanoparticles in vivo, no one has examined the effect of M1 vs. M2 

polarization on nanoparticle clearance. 
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CHAPTER TWO: AN INTRAVITAL MICROSCOPY ASSAY FOR ASSESING 
THE RELATIVE PHARMACOKINETICS OF NANOPARTICLES IN VIVO 

As discussed in chapter 1, the majority of PK assays for nanoparticles rely 

on a system of blood draws from multiple mice at certain defined timepoints to 

generate concentration of particles in blood over time. These assays are limited 

in their temporal resolution, error measurements, and repeatability due to the 

large number of mice required. For instance, using a fairly minimal number of 

time points for PK (control, 5min, 15min, 30min, 1hr, 2hr, 6hr, 12hr, 24hr) and a 

minimal number of mice (3 per time point), a blood draw PK experiment requires 

27 mice for completion. Using a low dose of particles (15mg/kg) in an average 

weight young female mouse (20g) ends up requiring ~8mg of particles to be 

synthesized. For a better dataset that is more likely to reveal significant 

differences in particle PK, mouse and particle numbers will need to increase by 

at least 50%. This high requirement for numbers of mice and particles becomes 

extremely demanding on resources and time, especially when using difficult-to-

synthesize experimental particles and/or difficult to maintain mouse models. 

Therefore, traditional blood draw PK assays are an unappealing method for 

screening various formulations of nanoparticles and/or mouse models of 

diseases or genetic manipulations. A better-functioning assay would involve the 

use of fewer mice (ideally less than 10), and therefore fewer particles, have high 

temporal resolution and low error, and be able to be completed in a short time 
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frame. This chapter will be devoted to describing the development of a novel 

intravital microscopy assay for nanoparticle circulation times in vivo that 

addresses the above needs. A description of this assay has been published in 

PNAS by Merkel et. al. (REF). 

Detailed protocol: These assays were performed using an Olympus IV100 

laser scanning intravital microscope. However, in principle this assay could be 

performed with limited modifications with any fluorescence microscope capable 

of supporting a heating pad during imaging. 

Mouse preparation: Experiments were performed on young healthy female 

BALB/c mice with an average weight of 20g. Mice were prepared by 

anesthetization with inhalable isoflurane gas at 2% in O2. Once mice were fully 

anesthetized, a pediatrics 27 gauge catheter was inserted into the tail vein and 

immobilized with superglue. The ear of the mouse was prepared by application of 

men’s Nair to the ear for 1min, followed by washing the ear 4X with room temp 

water to remove all Nair and clean the ear. The mouse’s ear was than observed 

for ~2min for any signs of irritation or inflammation from the Nair such as 

excessive redness especially around the blood vessels, swelling, or peeling of 

skin. If any of these were observed, the mouse was returned to the cage for 

future use. If no inflammation was observed, the mouse was carefully moved to 

the stage of the IV100 scope with care taken to not disturb the catheter. On the 

stage of the scope, the mouse’s face was placed in a nose cone which delivered 

2% isoflurane gas continuously. The heating pad on the stage was set to 37C 

and the ear was immobilized using two-sided tape on an aluminum block by 
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placing the outer edge of the ear on the tape, and then gently rolling a finger over 

the ear from the outer edge towards the head to flatten the ear. It is important to 

spread the ear from the outer edge in as going the other direction can result in 

burst capillaries at the outer edge of the ear and inflammation. If at any point in 

the process inflammation is observed in the ear, the experiment should be 

stopped as inflammation results in particles accumulating in the site of the 

inflammation and, therefore. gives false PK data. 

Imaging setup: Blood vessels were located in the mouse’s ear by 

illuminating the ear with white light and then imaging with the green fluorescence 

channel (excitation 488nm, short pass filter 506-540nm). The 506-540nm 

component of the white light was reflected off of tissue in the mouse ear to 

produce a bright signal, while the hemoglobin in the blood vessels absorbs light 

in those wavelengths resulting in dark regions where blood vessels are located 

(Figure 1 A). 
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In initial experiments the location of vessels was confirmed by injection of 

vascular contrast agents such as BSA conjugated to Alexa647 dyes (Figure 1 B). 

After blood vessels were located, the scope was set to image under the same 

protocol that would be used for particles (example, 1 frame/sec, 70% 633 laser, 

PMT gain 700, offset 0, dwell time 10µs/pixel, 320X320 pixels) for 15 min. After 

15 min the movie was examined for evidence of significant drift in the XY or Z 

dimensions. If drift was observed the ear would be removed from the block, and 

a fresh piece of tape placed on the block followed by retaping the ear and 

another 15min imaging. When the ear was shown to be stable we proceeded to 

the particle imaging. 

Particle imaging: For initial experiments developing this intravital 

microscopy assay we used PRINT® microparticles, utilizing the PRINT system 

as described (ref). Imaging sessions lasted 2hrs with frames being acquired 

every 5sec throughout. Before injecting particles blood vessels were located with 

atofluorescence or fluorescent BSA (Fig 2 A). Four frames were acquired 

 



25 
 

prior to particle injection in the far red channel to serve as a baseline reading for 

particle intensity. 500µg of particles were then injected followed by flushing the 

catheter with 40µl of heparin lock solution. The particles quickly filled the blood 

vessel and were visualized by the scope (Fig 2 B and C). Throughout the course 

of the imaging the number of circulating particles decreased as expected (Fig 2 

D). To examine if the assay showed differences in circulation times for 

microparticles of different stiffness, as would be expected, we dosed mice with 

four different particle types with Young’s modulus’s ranging from 63.9kPa to 

7.8kPa.  

Image analysis: Movies were exported as TIF files to ImageJ for analysis. 

In ImageJ individual TIFs were complied together into stacks. Each stack was 

condensed by averaging four frames together using the intensity projection 

plugin. This resulted in 360 frames over 2hrs, or one frame for every 20sec. A 

straight line region of interest (ROI) was drawn in the main vein present in each 

movie. The average fluorescent intensity in the ROI was calculated for each 

frame of the movie. This data was exported to Microsoft Excel or GraphPad 

Prism for further analysis. Analysis included calculating lines and area under the 

curve to compare circulation times between particles of different modulus, or 

deriving PK values such as particle T1 and T2 half-lives and elimination volumes 

(Table 1). Analysis revealed that as expected decrees in particle modulus 

resulted in increases in particle circulation times. 
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TABLE 1. 

Modulus values and compartmental analysis of RBCM particles from intravital 
microscopy experiments 

% Cross-
linker 

Modulus of 
bulk material, 
kPa 

Distribution 
half-life, h 

Elimination 
half-life, h 

AUC, 
fluoresence* h 

Average 
R2 

10% 63.9 ± 15.7 0.038 ± 
0.0012 2.88 ± 0.92 0.65 ± 0.14 0.8966 

5% 39.6 ± 10.4 0.066 ± 0.036 5.12 ± 2.17 0.76 ± 0.57 0.9029 
2% 16.9 ± 1.7 0.15 ± 0.025 7.12 ± 0.82 1.35 ± 0.26 0.9468 
1% 7.8 ± 1.0 0.35 ± 0.13 93.29 ± 31.09 15.44 ± 15.63 0.9330 

*Ranges given represent one standard deviation. Values were derived from 
scans of three mice. 

 

Confirmation of intravital results: To confirm that the new intravital PK 

assay was delivering valid results, we re-tested the results from with the 1% 

crosslinker using a traditional blood draw PK. A large number of mice were 

injected with 500µg particles at the beginning of the experiment. Four mice were 

sacrificed at 5min, 30min, 1hr, 2hrs, 12hrs, 24hrs, 48hr, 138hrs post injection. 

Mice were sacrificed by cardiac puncture and the blood and organs were 

collected. The fluorescence intensity in the blood was calculated for each time 

point and the PK values for the micro particles were derived from these 

measurements (Table 2). No statistical difference was observed between the 

data set from the intravital PK and traditional blood draw PK experiments.   

 

 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3021010/table/T1/#TF1-1
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TABLE 2. 

Pharmacokinetic parameters for 1% cross-linked RBCMs calculated from blood 
draws taken out to 5 d postinjection 

A, 
mg/mL 

B, 
mg/mL 

α, h-1 β, h-1 αt1/2, 
h 

βt1/2, h VC, 
mL 

AUC, 
mg  h/mL 

CLT, 
mL/h 

Vdβ, 
mL 

0.190 0.0482 0.241 0.00768 2.876 90.235 2.934 7.067 0.0990 12.894 
 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



28 
 

 
 
 
 
 

CHAPTER THREE: THE EFFECT OF TH1 AND TH2 IMMUNITY AND 
MOUSE STRAIN ON NANOPARTICLE CLEARANCE 

INTRODUCTION: 

The potential clinical applications of nanoparticles and nanoformulations 

have been investigated for more than 30 years. Nanoparticle approaches have 

the potential to revolutionize drug delivery by allowing for the encapsulation of 

drugs with poor solubility or stability in a stable carrier particle. In addition, 

targeting nanoparticles to specific pathological sites may allow increased 

effective dose of drug at the needed site while decreasing systemic drug 

exposure, and therefore side effects. However, to date, only two 

nanoformulations for cancer treatment have been approved for clinical use (Doxil 

and Abraxane) (Coleman et al., 2006; Gradishar, 2006b; Krown et al., 2004). 

One major obstacle for the use of nanoparticles in vivo is rapid clearance by the 

cells of the reticuloendothelial system (RES)/ mononuclear phagocyte system 

(MPS) (Alexis et al., 2008; Leuschner et al., 2011; Nel et al., 2009; Zamboni et 

al., 2012). In addition to rapid clearance, variable activity of the MPS between 

patients leads to widely variable pharmacokinetics of nanoformulations in the 

clinic, reducing the efficacy of both approved and future experimental 

nanoformulations (Zamboni et al., 2009). The main strategy for extending the 

circulation time of nanoparticles is grafting of uncharged hydrophilic polymers 

onto the surface of particles for “stealthing”, with the most common polymer used 

being polyethylene glycol (PEG) (Owens and Peppas, 2006). PEGylation of 
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particles clearly extends their circulation time in vivo (Papahadjopoulos et al., 

1991; Zamboni et al., 2012); however, up to 25% of patients exhibit circulating 

anti-PEG antibodies prior to treatment, or develop anti-PEG antibodies after the 

first administration of PEGylated particles (Garay et al., 2012; Shimizu et al., 

2012). These factors limit the utility of PEGylation of nanoparticles in the clinic 

and suggest that a better understanding of the biomolecular interactions of 

nanoparticles and the MPS is critical for the development of alternative methods 

to PEGylation for the extension of nanoparticle circulation times in vivo.  

 

The MPS is comprised of the macrophages and dendritic cells located in 

the liver and spleen, as well as monocytes and other phagocytic cells in the 

blood and spleen. When nanoparticles are injected intravenously and begin to 

circulate in the blood, they make direct contact with these MPS cells. Once a 

particle is in contact with MPS cells, receptors on the cell surface either directly 

recognize the particle, or recognize opsonizing serum proteins that have become 

attached to the particle. This leads to internalization of the particle and 

sequestration in the MPS cells (Yoo et al., 2010). Extensive work has been done 

to understand particle uptake at the cellular level, with various studies implicating 

scavenger receptors (Patel et al., 2010), complement (Yang et al., 2010), and Fc 

receptors (Sahay et al., 2010). The majority of these studies have been 

conducted with immortalized macrophage cell lines in vitro, and with various 

types and sizes of particles. However, the physiological relevance of particle 

uptake by immortalized cell lines in vitro for clearance in vivo is unclear. 
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Another relevant factor that has received little attention in the nanoparticle 

field is the effect that global immune status, such as the balance of Th1/Th2 

cytokines and M1/M2 macrophages, has on the clearance process. During 

immune responses, helper T cells adopt distinct Th1 or Th2 identities, leading to 

the secretion of specific combinations of cytokines and chemokines that instruct 

a wide variety of immune cells, including macrophages [as reviewed in Murphy 

et. al. (Murphy and Reiner, 2002)]. The presence of Th1 cytokines has a 

tendency to polarize macrophages towards a pro-inflammatory M1 phenotype 

(Mills et al., 2000). Conversely, Th2 immune responses can induce macrophage 

polarization towards an anti-inflammatory M2 phenotype that promotes wound 

healing and the resolution of inflammation, yet is known to contribute to diseases 

such as allergies and asthma (Gordon and Martinez, 2010; Mills et al., 2000). In 

addition, M1 and M2 macrophages express different repertoires of phagocytic 

receptors, and may show differential efficiency of endocytosis and phagocytosis 

(Gordon and Martinez, 2010; Mills et al., 2000). It appears the effect of 

macrophage polarization on phagocytosis is target-dependent: M1 macrophages 

show enhanced phagocytosis of S. aureus (Krysko et al., 2011), while M2 

macrophages are more phagocytic towards myelin (Durafourt et al., 2012), 

apoptotic cells, and latex beads (Chinetti-Gbaguidi et al., 2011). Development of 

T cell based immune responses requires days to weeks, and would not be 

immediately provoked by exposure to particles. However, it is possible that 

Th1/Th2 priming from previous immune responses or differences in genetic 
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background could affect clearance of nanoparticles via changes in the relative 

number of M1 vs. M2 macrophages (Murphy and Reiner, 2002).  

 

Current techniques for assaying quantitative or relative nanoparticle 

pharmacokinetics (PK) have significant drawbacks for screening multiple particle 

types and/or animal models due to issues with time, expense, sensitivity, and 

temporal resolution (see Discussion). Intravital microscopy (IVM) is an appealing 

alternative for assaying relative PK of nanoparticles in vivo. IVM has been used 

to assay the accumulation of targeted particles in tumors (Smith et al., 2008), 

tissue (Hak et al., 2010), the circulation time of gold nanorods (Tong et al., 

2009a), the accumulation of particles in the liver (Cheng et al., 2012), the effect 

of size and shape on tumor extravasation (Smith et al., 2012) and the circulation 

of hydrogel microparticles (Merkel et al., 2011). In order to determine the roles of 

particle parameters and global immune status on nanoparticle PK, a calibration 

quality nanoparticle that has low batch-to-batch variability, with very low 

polydispersity is required. To this end, we used the Particle Replication in Non 

Wetting Templates (PRINT®) technique to generate particles of varying sizes. 

PRINT provides superior control over particle geometry and physical properties 

by taking advantage of a novel soft lithography technique for particle fabrication. 

This results in low batch-to-batch variability while having very low polydispersity 

values (Rolland et al., 2005) (Gratton et al., 2008b). Recent work has 

demonstrated that the PK of PRINT nanoparticles can be carefully and 
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reproducibly calibrated by adjusting the density of PEG chains present on the 

surface (Perry et al., 2012). 

 

In this study, we observed striking differences in nanoparticle clearance 

kinetics between commonly used ‘wild-type’ mouse strains using intravital 

microscopy and flow cytometry. We have identified the cell types and anatomical 

locations of this differential clearance and identified the global (Th1 vs. Th2) 

immune status as a critical factor in nanoparticle clearance in vivo.  
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RESULTS:  

Intravital microscopy (IVM) allows for rapid screening of nanoparticle 

clearance. 

The ability to easily and inexpensively screen different formulations of 

nanoparticles in animal models is an unmet need in the field of nanomedicine. To 

address this need, we have modified an intravital microscopy technique that we 

recently developed to measure the pharmacokinetics of red blood cell mimetic 

microparticles (RBCM) (Merkel et al., 2011). This technique allows for screening 

the relative nanoparticle resident times in the blood using as few as four animals 

per condition. In order to reduce variation in nanoparticles for these experiments, 

we have employed the PRINT technique to generate monodisperse 300 nm 

cylindrical PEG hydrogel nanoparticles containing far-red fluorescent dyes for in 

vivo and in vitro imaging (Fig. 5); these particles are similar in size and 

composition to those used in a recent study by our group (Perry et al., 2012). 

When injected intravenously (IV), these particles produce bright fluorescence in 

the vasculature of a mouse and can be easily imaged in the ear (Fig. 5A-C). A 

time vs. fluorescence intensity profile can then be generated, and the area under 

the curve (AUC) can be calculated (Fig. 5D). By comparing the AUC from 

different mice we can determine the relative exposure of nanoparticles to blood in 

vivo.  
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Figure 4: Characterization of particles used in experiments.  

(A) Size, PDI, and Zeta potential for all particles used. Size was determined 
by dynamic light scattering for 200nm PRINT particles and Qdots, 
fluorescence microscopy was used to determine size of microparticles. 

(B) Scanning electron micrograph of 200nm PRINT particles. 

(C)  Fluorescence microscopy image of microparticles scale bar is 20µm. 
(D)  TEM image of Qdots on glass scale bar is 50nm 
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Figure 5: An Intravital Microscopy Based Assay for Screening Nanoparticle 
Clearance Rates in Live Animals 

(A) A blood vessel is positioned in the center of the scan area. 

(B) A cartoon showing the orientation of the mouse, the positioning of the 
objective, and the region of the mouse ear imaged. 

(C) Movies are analyzed in ImageJ by selecting a straight line ROI in the large 
vein and average fluorescence intensity for each time point is calculated. Scale 
bar equals 50µm. 

(D) A representative fluorescence vs. time plot of nanoparticle clearance. Marked 
region represents the area under the curve, which is calculated to determine 
relative exposure to blood for particles. 
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As the clearance of nanoparticles is mediated by the phagocytic cells of 

the mononuclear phagocyte system (MPS), we depleted these cells from female 

BALB/c mice using liposomal clodronate (Clod) (Camilleri et al., 1995) and 

continuously measured the blood fluorescence over a two hour period in treated 

and untreated mice (Fig. 6A). As expected, plots of average fluorescence 

intensity over time show a greater peak fluorescence intensity and longer 

nanoparticle residency in blood for Clod- treated mice compared to untreated 

controls (Fig. 6B). To compare the relative exposure of nanoparticles to blood 

between the two conditions, the area under the curve was calculated (Fig. 6C) 

and showed a >6-fold increase of particle exposure to blood in Clod-treated mice. 

This experiment validated that IVM can be used to screen relative exposure of 

nanoparticles to blood.  
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Figure 6: Treatment of BALB/c mice with liposomal clodronate increases 
the circulation of nanoparticles in vivo. 

(A) Still images from a BALB/c mouse and a BALB/c mouse pre-treated with 
liposomal clodronate show significant differences in blood fluorescence from 
nanoparticles. Scale bar equals 50µm. 

(B) A plot of mean fluorescence intensity versus time shows the difference in 
particle clearance rates between the two conditions (N=4). 

(C) Plotting area under the curve shows a significant (p<0.003, t test) increase in 
fluorescence intensity in blood with clodronate pretreatment (N=4).  

 

 

Interestingly, we observed that in all BALB/c mice after a significant 

fraction of the particle dose had been cleared from the blood, areas containing 
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concentrated particles became visible. Upon careful observation, it became clear 

that these visible areas of fluorescence were cells and not extracellular 

aggregates of particles, as some of them moved in a random manner including 

some periods of persistent migration against the blood flow (Fig. 7). Based on 

observations from others, it is likely that these cells are a combination of 

neutrophils and peripheral monocytes (Auffray et al., 2007). This uptake of 

particles in the peripheral vasculature could explain the common finding across 

many nanoparticle studies that a significant fraction of the injected particle dose 

is not recovered from the exsanguinated blood and major organs (Vasquez et al., 

2011). Since a substantial proportion of blood vessel surface is left behind in the 

carcass and skin, particle clearance in the peripheral vasculature may account 

for some of the missing dose.  

 

Figure 7: Peripheral immune cells clear nanoparticles in the vasculature. 

Still images from representative movie (Sup. Movie 3) show the presence of 
three different types of cells made fluorescent by the uptake of labeled 
nanoparticles. White arrow indicates a cell that is free flowing in the blood and 
present for only a single frame of the movie, the red arrow shows a single 
randomly migrating cell and the yellow arrow shows a stationary cell. The 30 
minute max intensity projection shows that the migrating cell (red arrow) moved 
through a circuitous route including migrating against the blood flow. 

 



39 
 

 

Different mouse strains clear nanoparticles with different kinetics.  

 

The removal of nanoparticles from blood is mediated by the MPS system, 

and has been well studied on the cellular level by examining the role of various 

phagocytic receptors and endocytic/phagocytic mechanisms for particle uptake 

(Patel et al., 2010; Sahay et al., 2010; Yang et al., 2010). These properties of 

MPS cells are regulated at the level of the whole animal by higher order immune 

regulation mechanisms such as T-helper (Th) status(Martinez et al., 2006). 

However, the role of these global immune properties on nanoparticle clearance 

kinetics has been poorly studied. We examined the effect of Th1/Th2 immune 

priming in mice by measuring the blood exposure of nanoparticles in two Th1-

biased mouse strains (C57BL/6 and B10D2 (Mills et al., 2000)), two Th2-biased 

mouse strains (BALB/c and DBA/2 (Mills et al., 2000)), as well as BALB/c and 

C57BL/6 mice treated with Clod (Fig 8A). We observed that nanoparticle blood 

exposure was significantly higher in Th1-biased strains than in Th2-biased 

strains (Fig 8B, C), suggesting that clearance mechanisms differ according to 

mouse strain. Clod treatment increased blood exposure in BALB/c, but not the 

C57BL/6 strain (Fig. 8B, C), indicating that little MPS-mediated clearance occurs 

in the first two hours for Th1-biased strains. In addition, we consistently observed 

that the initial peak fluorescence for BALB/c mice was significantly lower than in 

all other strains. Clod treatment resulted in BALB/c peak fluorescence levels 

similar to that of other strains, indicating that this lower peak fluorescence was 
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due to the MPS. As peripheral immune cells containing particles were 

consistently observed to a greater extent in BALB/c mice compared to other 

strains tested, it is possible that peripheral clearance is stronger in BALB/c mice 

resulting in a significant amount of particles being cleared in the first pass 

through the circulatory system.  

 

Figure 8: Th1 mouse strains clear nanoparticles slower than Th2 strains.  

(A) Still images from supplemental movies 1-6 show the differences in particle 
circulation between the four mouse strains as well as liposomal clodronate pre-
treated BALB/c and C57BL/6 mice. 

(B) Plots of fluorescence intensity versus time for all four mouse strains and 
clodronate-treated mice (N=4 mice per condition). 

(C) Plots of area under the curve for all conditions show a significant (p<0.0001, 
One-way ANOVA Dunnett post-test) increase in blood fluorescence between 
BALB/c and C57BL/6 and B10D2 mice, but not DBA2. Clodronate treatment 
significantly increases  (p<0.003, t-test) blood fluorescence in BALB/c mice, but 
not C57BL/6. 
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To further address differences in clearance, we performed a biodistribution 

study by injecting BALB/c and C57BL/6 mice with particles and then sacrificing 

mice at 5min, 30min, 2hr and 24hrs post injection, followed by measuring 

fluorescence in homogenates of tissues by using a plate reader. Relative particle 

distribution was measured in the non-lymphoid organs (heart, lung, and kidneys 

(Fig. 9A)), lymphoid organs (spleen and liver (Fig. 9B)), whole blood (Fig. 9C), 

plasma (Fig. 9D), and blood cell fraction (red cells and leukocytes of whole 

blood) (Fig. 9E). Non-lymphoid organs showed low levels of particles at all time 

points, but C57BL/6 mice showed significantly higher levels of particles at 30min 

and 2hrs in heart and kidney, likely due to more particles still being present in 

blood contained in those organs. Spleen and liver showed a high level of particle 

uptake at all time points, with BALB/c mice having significantly more particles 

present at 5min, 30min and 2hrs. By 24hrs no significant differences were 

observed in any organ or compartment. Whole blood and plasma showed 

significantly more particles in C57BL/6 mice at 5min, 30min and 2hrs, but no 

significant difference was present by 24hrs. Blood cells showed significantly 

more particles in BALB/c mice at 5min and 30min, consistent with the IVM 

results. 
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 Figure 9: Biodistribution of 300nm PRINT hydrogel particles in Balb/c and 
C57BL/6 mice. 

(A) Distribution of particles in the lungs, heart, and kidneys of Balb/c and 
C57BL/6 mice. C57BL/6 mice showed significantly higher amounts of particle 
in heart and kidneys then Balb/c mice at 30min (P<.05 t-test), and 2hrs 
(P<.004 t-test) (N=4). 

(B) Distribution of particles in the liver and spleen of Balb/c and C57BL/6 
mice. C57BL/6 mice showed significantly lower amounts of particle present in 
both liver and spleen compared to Balb/c mice at 5min, 30min and 2hrs (P<.05 
t-test) (N=4). 
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(C) Relative amounts of particle present in Balb/c and C57BL/6 whole blood, 
C57BL/6 had significantly higher levels of particles in blood at 5min, 30min and 
2hrs compared to Balb/C mice (P<.05 t-test) (N=4). 

(D)  Relative amounts of particle present in Balb/c and C57BL/6 plasma, 
C57BL/6 had significantly higher levels of particles in blood at 5min, 30min and 
2hrs compared to Balb/C mice (P<.05 t-test) (N=4). 

(E) Relative amounts of particle present in Balb/c and C57BL/6 blood cell 
fraction of whole blood, C57BL/6 had significantly higher lower of particles in 
blood at 5min, and 30min compared to Balb/C mice (P<.05 t-test) (N=4). 

Some of the differential clearance of particles is due to uptake by 

granulocytes in Th2 prone strains. 

 

To further understand the differences in clearance of nanoparticles by Th1 

and Th2 prone mouse strains, we performed flow cytometry analysis of BALB/c 

and C57BL/6 peripheral blood leucocytes (PBL), splenocytes, and lymph nodes 

at 2hrs post injection. Lymph nodes were also assayed at 24hrs post injection to 

check for trafficking of phagocytes with particles to lymph nodes. We utilized a 

multi-marker flow cytometry protocol to determine particle uptake by lymphocytes 

(T and B cells), macrophages, monocytes, granulocytes, and dendritic cells 

(DC’s) (Fig, 10). Lymph nodes showed no particles present at 2hrs or 24hrs post 

injection (data not shown), suggesting that the PRINT particles used do not gain 

access to the lymphatic system after IV injection.  Uptake by T and B cells was 

minimal in both strains at 2hrs in blood and spleen, with no significant difference 

between strains (Fig. 11A). Uptake by DC’s was observed in the spleen in both 

strains at 2hrs, with C57BL/6 DC’s showing a significantly lower percentage of 

positive cells (Fig. 11B). Uptake by tissue macrophages (fully differentiated 

monocytes defined by the marker F480) showed no significant difference 
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between strains in the spleen (Fig. 11B). Surprisingly, uptake by monocytes in 

blood and spleen was significantly higher in C57BL/6 mice (Fig. 11A,B), but 

uptake by granulocytes was dramatically lower in both blood and spleen in 

C57BL/6 mice (Fig. 11A,B). These data suggest that some of the differential 

clearance observed between these mouse strains may be due to differential 

utilization of monocytes vs. granulocytes for particle uptake in the blood.  
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Figure 10.  Representative gating scheme from BALB/c mouse spleen. 
Single lymphocytes were gated by side scatter vs. forward scatter. Single cells 
were divided into B & T cells VS. non B & T cells by expression of CD3 and 
CD19.  For Non B & T cells those expressing high CD11b were selected for 
further analysis. CD11b high were plotted for F480 and GR1, GR1 high F480- 
were categorized as granulocytes, F480high GR1- were categorized as 
macrophages. GRI- F480- cells were further divided into monocytes (CD11c 
low), and DC’s (CD11c high). 
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 Figure 11: Flow cytometry of peripheral blood leukocytes and splenocytes 
shows dramatically higher uptake of particles by granulocytes in BALB/c 
mice. 

(A) Flow cytometry of PBL’s shows significantly higher uptake of particles by 
granulocytes in BALB/c mice (p<0.002, t-test), and significantly higher uptake by 
monocytes in C57BL/6 mice (p<0.05, t-test) (N=4). 
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(B) Flow cytometry of splenocytes shows significantly higher uptake of particles 
by DC’s (P< .05, t test) and granulocytes (p<0.003, t-test) in BALB/c mice while 
monocytes take up significantly more particles in C57BL/6 mice (p<0.05, t-test) 
(N=4). 

 
To address this idea directly, we depleted granulocytes from both strains 

by administering anti-Ly6-G antibodies, which has previously been shown to 

selectively deplete granulocytes in vivo (Arnold et al., 2010). Flow analysis 

confirmed that after antibody depletion, granulocyte numbers were reduced to 

below detection in both strains (Fig. 12). IVM was performed on both strains after 

granulocyte depletion to determine the effect on particle blood exposure. After 

granulocyte depletion, BALB/c mice showed equivalent peak fluorescence 

intensity compared to C57BL/6 mice (Fig. 13A), and a significant increase in 

particle blood exposure compared to untreated BALB/c mice (Fig. 13B). 

Conversely, C57BL/6 mice after granulocyte depletion showed no significant 

increase in peak fluorescence or particle blood exposure when compared to 

untreated C57BL/6 mice (Fig. 13B). These data indicate that some of the lower 

particle blood exposure (i.e., faster clearance) and lower peak particle 

concentration in BALB/c mice during the early passage through circulation is due 

to particle uptake by granulocytes in the blood. 

 

To determine the fate of particles in the blood and spleen in the absence 

of granulocytes, we assessed particle uptake by immune populations in 

granulocyte-depleted mice using flow cytometry.   Particle uptake by B and T-

lymphocytes of blood and spleen were unaffected (Fig. 13C,D); however, 
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increased particle uptake by blood monocytes was observed in granulocyte 

depleted BALB/c mice, but not in C57BL/6 mice (Fig. 13C). In the spleen, 

granulocyte depletion did not affect monocyte uptake, but did increase 

macrophage uptake, with a greater increase in the BALB/c mice (Fig. 13D). 

Together, these data indicate that granulocytes account for some of the 

increased clearance seen in the BALB/c mice, but that in the absence of these 

cells, BALB/c mice still clear nanoparticles faster than C57BL/6 mice. 

 

 

 

Figure 12: Depletion of granulocytes from mice using rat anti-mouse GR-1 
antibodies. 
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Figure 13: Depletion of granulocytes significantly increases particle 
exposure to blood in BALB/c mice but not C57BL/6 mice. 

(A) Plots of fluorescence intensity versus time for four BALB/c and C57BL/6 mice 
with and without monocyte depletion (N=4 mice per condition). 

(B) Plots of area under the curve show a significant increase in particle exposure 
to blood in BALB/c mice (p<0.01, One-way ANOVA, Dunnett post-test) but not 
C57BL/6 mice (N=4 mice per condition). 

(C) Flow cytometry analysis of changes in PBL particle distribution in BALB/c and 
C57BL/6 mice following granulocyte depletion.  BALB/c monocytes take up 
significantly more particles after granulocyte depletion (p<0.05, t-test) (N=3 mice 
for granulocyte depleted conditions and N=4 mice for controls). 
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(D) Flow cytometry analysis of splenocytes after granulocyte depletion in BALB/c 
and C57BL/6 mice. Macrophages in spleen take up significantly more particles 
after granulocyte depletion in both strains (p<0.05, t test) (N=3 mice for 
granulocyte depleted conditions and N=4 mice for controls). 

Differential clearance of particles in Th1 vs. Th2 strains is dependent on 

particle type.  

As a wide variety of nanoformulations are being investigated for potential 

clinical use and often demonstrate very different properties in vivo, we tested 

whether the differential clearance observed in various mouse strains is specific to 

the PRINT particles (300 nm, PEG hydrogel). We tested the blood exposure of 

quantum dots (Qdots) in BALB/c and C57BL/6 mice. The quantum dots were 

polymer coated with a carboxylated polymer that prevents aggregation in 

aqueous environments. The Qdots tested are a different class of nanoparticle 

(inorganic nanocrystal VS hydrogel) with a different surface (proprietary 

carboxilated polymer vs. PEG), a different shape (sphere vs. cylinder) and an 

order of magnitude smaller (avg size 30nm Qdots vs. 300nm cylindrical PRINT 

hydrogels (Fig. 4A-C). Upon IV injection, the Qdots were more rapidly removed 

from blood by both BALB/c and C57BL/6 mice than PRINT particles. However, 

the Th1 vs. Th2 biased strain clearance difference was still present (Fig. 14A, B), 

including a lower peak fluorescence intensity with Qdots, suggesting that a large 

number of Qdots are cleared in the periphery of BALB/c mice. To test if 

microparticles display the same effect in Th1 vs. Th2 strains, we utilized low 

elastic modulus PRINT microparticles (6 µm disks made of the same PEG 

hydrogel materials as 300nm cylindrical PRINT hydrogels) that were previously 

demonstrated to have long circulation times and are not cleared by mechanical 
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filtration in the lungs (Merkel et al., 2011). Interestingly, BALB/c and C57BL/6 

mice demonstrated the same microparticle exposure to blood (Fig 14C, D), 

suggesting that rapid removal of nanoparticles in Th2 prone strains is not 

observed with larger particles requiring phagocytic clearance.  

 

Figure 14: Depletion of granulocytes significantly increases particle 
exposure to blood in BALB/c mice but not C57BL/6 mice. 

 (A) Plots of fluorescence intensity versus time for quantum dots in blood of 
BALB/c and C57BL/6 mice show a similar trend to what was observed with 300 
nm PRINT hydrogel particles (N=4). 

(B) Area under the curve shows a significant (p<0.05, t-test) increase in blood 
fluorescence from quantum dots in C57BL/6 mice VS BALB/c mice. 

(C) Plot of fluorescence intensity in blood versus time for BALB/c and C57BL/6 
mice show similar clearance rates for microparticles. 

(D) Area under the curve analysis of blood fluorescence intensity from both 
strains shows no significant difference. 
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Murine bone marrow derived macrophages and primary human peripheral 

blood monocyte-derived macrophages take up more particles with M2 

polarization.  

 

We examined if differential clearance by Th1 and Th2 prone strains can 

be reproduced in vitro by culturing primary bone marrow derived macrophages 

(BMM) from both strains and testing particle uptake by BMMs. We chose to use 

BMMs as opposed to granulocytes due to the fact that BMMs can be maintained 

in culture for longer time periods, thus allowing treatment with Th1 and Th2 

cytokine mixtures to polarize these macrophages towards M1 or M2 phenotypes, 

respectively. We imaged the accumulation of particles inside the macrophages 

and quantified the integrated fluorescence intensity of particles per cell. We also 

processed cells for analysis by flow cytometry. Consistent with our in vivo 

observations, untreated BALB/c macrophages take up significantly more particles 

than untreated C57BL/6 macrophages in vitro as assayed by both confocal 

microscopy and flow cytometry (Fig. 15A, B). BMMs from both strains were also 

directed towards M1 or M2 polarization by specific mixtures of cytokines and 

immune stimulators (see Materials and Methods). M1 polarization of C57BL/6 

macrophages had no effect on particle uptake, while differentiation into the M2 

phenotype resulted in an increase in particle uptake (Fig. 15A, B). Conversely, 

M1 polarization of BALB/c macrophages reduced particle uptake to the same 
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level as C57BL/6 macrophages, while M2 polarization showed no significant 

difference compared to BALB/c control (Fig. 15A, B). 

 

As significant differences are known to exist between mouse and human 

macrophages (Mestas and Hughes, 2004),we repeated particle uptake 

experiments with human monocyte-derived macrophages from two healthy 

human volunteers. Volunteer A’s macrophages showed high uptake of particles 

with no stimulation, a significant reduction in uptake with M1 polarization, and no 

difference with M2 polarization (Fig. 15C). Volunteer B’s macrophages showed 

intermediate uptake of particles with no stimulation, a significant decrease in 

uptake with M1 polarization, and a significant increase in uptake with M2 

polarization (Fig. 15D).  These results confirm that immune polarization 

fundamentally impacts cellular interactions with nanoparticles in human cells. 

 

One significant difference between M1 and M2 macrophages is that M2 

macrophages are known to express higher levels of many different scavenger 

and lectin receptors than M1 macrophages. Flow cytometric analysis of revealed 

increased MMR (macrophage manose receptor) expression on the surface of 

BALB/c macrophages (BMMs) compared to C57BL/6 macrophages (Fig. 15E), 

which is consistent with previously published transcriptional profiling data (35,38). 

To test whether the differential uptake of particles by BALB/c and C57BL/6 

macrophages is MMR-dependent, we treated with BMMs with the competitive 

MMR inhibitor mannan prior to addition of particles. Mannan reduced particle 
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uptake in BALB/c macrophages to the same level as C57BL/6 macrophages 

while showing no effect on C57BL/6 macrophages, suggesting that the increased 

level of MMR present on M2 macrophages in BALB/c mice may contribute to  

differences in particle uptake in vitro (Fig. 15F) and (Fig 16).  
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Figure 15: M2 polarized macrophages take up more particles than M1 
macrophages in mice and humans.  

(A) Average integrated fluorescence per cell showed a significant (p<0.0001, 
One-way ANOVA Dunnett’s post-test) increase in particle uptake by BALB/c 
untreated, BALB/c Th2-treated, and C57BL/6 Th2-treated VS C57BL/6 untreated 
cells. C57BL/6 M1-treated and BALB/c M1-treated showed no significant 
difference vs. C57BL/6 untreated Cells (N=4).  

(B) Flow cytometry analysis of uptake showed a significant (P<0.05, One-way 
ANOVA Dunnett’s post-test) increase in uptake by BALB/c untreated, BALB/c 
Th2-treated, and C57BL/6 Th2-treated VS C57BL/6 untreated cells. C57BL/6 
M1-treated and BALB/c M1-treated showed no significant difference vs. C57BL/6 
untreated cells (N=4).  

(C) Flow cytometry analysis of uptake by human macrophages from volunteer A. 
M1 macrophages took up significantly less particles than control or M2 
macrophages (P<0.0001, One-way ANOVA Dunnett’s post-test) (N=4). 
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(D) Flow cytometry analysis of uptake by human macrophages from volunteer B. 
M1 macrophages took up significantly less than control macrophages (P<0.0001, 
One-way ANOVA Dunnett’s post-test). M2 macrophages took up significantly 
more than control macrophages (P<0.001, One-way ANOVA Dunnett’s post-test) 
(N=4). 

(E) Flow cytometry analysis of surface MMR expression on Balb/c and C57BL/6 
mice. Balb/c mice showed significantly higher surface expression of MMR 
(P<0.05, t-test) (N=4). 

(F) Microscopy analysis of uptake by BMMs after mannan blocking. Addition of 
Mannan reduced uptake by Balb/c macrophages to the same levels as C57BL/6 
controls (P<0.0001, One-way ANOVA Dunnett’s post-test)(N=4). 

(G) Representative flow cytometry histogram of particle uptake by BALB/c and 
C57BL/6 BMM’s. 
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Figure 16: Confocal microscopy of Balb/c and C57BL/6 BMMs with and 
without mannan treatment. 
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DISCUSSION 

 

In this study, we have identified a striking difference in nanoparticle 

clearance in different strains of mice that arises due to differences in global 

immune status differences. Th1-prone strains such as C57BL/6 clear particles 

more slowly and have a higher blood exposure compared to the Th2-prone 

BALB/c strain that demonstrated rapid particle clearance. Both 

monocytes/macrophages and granulocytes in the peripheral vasculature and 

spleen are responsible for clearance differences between the strains. 

Interestingly, the differences in clearance were recapitulated in vitro using 

mouse and human macrophages treated with either Th1 or Th2 

chemokine/cytokine mixtures. This effect may be due, in part, to differences in 

surface expression of scavenger receptors such as the macrophage mannose 

receptor (MMR).   

 

In most studies nanoparticle PK is determined by blood draws at specific 

time points post injection, combined with appropriate assays for determining the 

particle concentration in blood (Chu et al., 2012; Kulkarni and Feng, 2013). This 

method has the advantage of directly measuring the particle itself rather than a 

reporter probe and provides absolute particle concentration in the blood. 

However, this approach requires large numbers of animals and particles to yield 

useful data. Most experiments of this type require four animals or more per time 

point, and at least five time points plus a control for a minimum of 24 animals 
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needed for each condition tested. This makes blood draw assays an 

unattractive option for screening multiple types of animals and/or particle types 

due to the high time and resource investment required. In addition, blood draw 

PK tends to give very limited temporal resolution, usually seven or fewer points 

per 24hr experiment (Caron et al., 2012).  

 

Intravital microscopy (IVM) has a number of advantages for measuring 

nanoparticle clearance. With IVM, the relative amount of particles in the 

bloodstream is measured with a wide dynamic range allowing for 

measurements spanning pre-injection to peak particle concentration through 

clearance in a single animal. Fluorescent probes can be directly incorporated 

into hydrogel nanoparticles during synthesis, therefore eliminating the need for 

extensive post-fabrication modifications. In addition, this technique is very fast, 

allowing for real time or near real time measurement of relative particle 

concentrations. Finally, IVM can be multiplexed with different fluorescent dyes 

coupled to different particle types or formulations to measure differential 

clearance in the same animal. However, IVM is limited by the fact that only 

relative numbers are readily available from this type of experiment, the particle 

must be fluorescent, and it is difficult to run experiments longer than 3hrs due to 

the stress on the animal from extended anesthesia.  

 

The nanoparticle research field operates under the implicit assumption 

that nanoparticles will circulate in similar ways in all strains of mice. We are 
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unaware of any previous study that has directly compared the effect of mouse 

strain on nanoparticle circulation times. Our results indicate mouse strain 

background is a critical factor for nanoparticle clearance and is likely important 

for the interpretation of all results of nanomedicine studies. In fact, the changes 

in circulation times observed between Th1 and Th2 prone mouse strains is 

equivalent to the changes that can be produced by heavily PEGylating particle 

surfaces (Perry et al., 2012). This demonstrates that changes in the immune 

status of patients and experimental animals may affect nanoparticle PK to at 

least the same degree as the material properties of particles. However, far less 

work has been done studying the effects of biology on nanoparticle PK than the 

effects of material properties on nanoparticle PK. It is perhaps not surprising 

that we see different results in different mouse strains for clearance, as mouse 

strain background has significant impact on biological processes ranging from 

immune function (Kastrukoff et al., 2012), pain sensation (Mogil et al., 1999) 

and cancer (Mesquita et al., 2012). Outbred, wild mice show a large degree of 

heterogeneity in many measures of immune function, while inbred lab strains of 

mice show very little intrastrain variation (Abolins et al., 2011). In the future, it 

would be beneficial for researchers in the nanoparticle field to begin explicitly 

considering mouse strain immunology when designing experiments and 

interpreting data. 

 

Based on our results, global immune system regulation has a significant 

role in nanoparticle clearance. One main global immunological difference is Th1 
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vs. Th2 status. Numerous studies have established that Th1 and Th2 cytokines 

can induce macrophage differentiation into the corresponding M1 and M2 

phenotypes (Gordon and Martinez, 2010). The result that Th1 prone mice (eg. 

C57BL/6) clear nanoparticles slower is somewhat surprising as M1 

macrophages are thought to be more inflammatory, involved in the destruction 

of pathogens, and have been shown to be more phagocytic towards S. aureus 

(Krysko et al., 2011). The M2 macrophages prevalent in the fast clearing Th2 

stains are generally thought to be anti-inflammatory, with involvement in wound 

healing and potentially less phagocytic (Gordon and Martinez, 2010). However, 

M2 macrophages are thought to have higher levels of endocytosis and may 

thereby take up small particles rapidly. In addition, M2 macrophages are known 

to express higher levels of scavenger and lectin receptors that could be 

responsible for the increased clearance (Martinez et al., 2006). Our data on the 

elevated surface expression of MMR on M2 macrophages and the reduced 

nanoparticle uptake upon mannan treatment support this notion.  

 

While the addition of mannan blocks the enhanced uptake of PEG 

hydrogel particles in M2 macrophages in vitro, a baseline uptake of particles still 

occurs with treatment. Indeed, clearance in vivo likely involves multiple 

receptors and mechanisms. Determining which receptors are responsible for 

nanoparticle clearance is an important next step. Unfortunately, the obvious 

genetic approach of using knockout mice (KO) in candidate clearance receptors 

is severely complicated by the fact that most of these KO’s exist only in the 
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C57BL/6 strain. Since treatment of the slow-clearing C57BL/6 mice with 

clodronate liposomes (removing all MPS cells) did not show a statistically 

significant increase in nanoparticle circulation times in a 2hr window, it is 

unlikely that the genetic loss of any single candidate clearance receptor would 

produce a measurable decrease in nanoparticle clearance. In the future, it will 

be essential to backcross these KO’s into the BALB/c background where these 

experiments are likely to produce more informative results. 

  

It is also worth considering the role of granulocytes (primarily neutrophils) in 

nanoparticle clearance. Although this cell type is rarely discussed as an MPS 

cell (Rabinovitch, 1995; Silva and Correia-Neves, 2012), our data clearly 

indicates that granulocytes play a significant role in the differential nanoparticle 

clearance observed between mouse strains. Previous reports indicate that 

BALB/c mice have greater numbers of circulating granulocytes than C57BL/6 

mice (Petkova et al., 2008). Our data indicate that mere differences in 

granulocyte numbers are unlikely to account for the clearance differences 

between strains, as a smaller percentage of C57BL/6 granulocytes take up 

particles than BALB/c granulocytes. Since neutrophils constitute a large fraction 

of circulating white blood cells in humans (Bishton and Chopra, 2004) and 

neutropenia is a common side effect of clinical treatments such as 

chemotherapy, it will be important to further explore the role of neutrophils in 

nanoparticle clearance in future studies.  
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Similar to our results with mice, the pharmacokinetics of nanoparticles is 

highly variable in human patients (Caron et al., 2012). Previous studies 

demonstrated that monocyte function, as assayed by phagocytic capacity and 

oxidative burst, can be used to predict the clearance of liposomal Doxil (Caron 

et al., 2012). Since both the phagocytic capacity and oxidative burst are partially 

controlled by the patient’s global immune status (Mills et al., 2000), it is likely 

that the Th1/Th2 balance is an important factor in human nanoparticle 

clearance as well. This is supported by our results with human macrophages 

that showed a significant decrease in particle uptake from both volunteers’ 

macrophages following M1 polarization, and one volunteer’s macrophages 

showing an increase in uptake with M2 polarization.  Future studies are needed 

to explore the role of previous immune priming events such as infections or 

allergies on nanoparticle clearance. Our data suggest that a more 

comprehensive understanding of how global immune regulation affects 

nanoparticle clearance will be important both for nanoparticle studies in animals 

and eventual clinical use. 
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CHAPTER FOUR: FUTURE DIRECTIONS 

 

 The nature of the interactions between nanoparticles and the immune 

system still requires significant study to be fully understood, appreciated and 

manipulated. The work presented here suggests promising avenues to be 

pursued and provides several valuable tools to use in future work. In this 

chapter I will address some, although certainly not all, possible future work that 

can derived from the foundation of this body of work. 

 

Genetic Factors Controlling Th1/Th2 Polarization and Nanoparticle 

Clearance 

 This work has shown a clear correlation between Th1 and Th2 immunity 

and particle clearance. However it also suggests that the relationship may be 

more complicated than a simple interpretation of Th2 cytokines produce M2 

macrophages which clear particles more rapidly than M1 macrophages. Three 

results in particular suggest a more complex explanation is needed to fully 

explain the above results. First, non-diseased mice have cytokine levels that 

are extremely low or below detection.This means that resting macrophages in 

these mice should be relatively non-polarized towards either M1/M2 activation 

states. Secondly, isolated primary macrophages from BALB/c and C57BL/6 

mice show a difference in particle uptake with no additional cytokine treatments 
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after identical treatment with L-media and serum which contain the same base 

line of cytokines. This suggests that there is some type of basal genetic 

difference between BALB/c and C57BL/6 macrophages that, while correlated 

with Th1/Th2 prone states, exists independent of cytokine stimulation. Finally, 

the dramatic difference observed in neutrophil activity towards particles in 

BALB/c vs C57BL/6 suggests that differences between Th1 and Th2 cytokine 

activity is not the entire story, as short lived neutrophils in healthy mice will have 

seen very little in the way of cytokines during their life cycle. These three data 

points suggest that there is some upstream genetic difference causing the 

Th1/Th2 polarization, the differences in particle uptake by unstimulated 

macrophages, and the differences in particle uptake by neutrophils. 

Determining what this driving genetic difference is could both reveal important 

aspects of how the immune system interacts with nanoparticles, as well as 

important genetic regulation of Th1/Th2 immunity and its relationship to innate 

immunity.  

 A likely way to address this is using the collaborative cross mice 

(Churchill et al., 2004). The collaborative cross was performed by taking a 

number of lab mouse strains and wild caught mice from around the world and 

breeding them together for several generations before deriving a large number 

of new inbreed strains, with each of these new strains being exhaustively 

genetically profiled at the sequence and transcriptome level. By combining this 

model set with the intravital microscopy PK assay described in this work we 

would have an excellent chance at determining what alleles are responsible for 
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slow and fast nanoparticle clearance by determining which collaborative cross 

strains clear faster or slower, and grouping these datasets. This can then be 

followed by in depth genome and transcriptome analysis to determine which 

alleles are consistently altered in fast and slow clearing mice. Determining 

which genetic pathways are consistently changed in fast vs slow clearing mice 

may allow us to both predict candidate receptors on macrophages and 

neutrophils which could be blocked to extend clearance, or pathways which 

could be drugged to extend particle circulation.  

 

Determination of Gene Products Controlled by Th1/Th2 Cytokines That 

Clear Nanoparticles 

 Ultimately the most likely way to extend the circulation time of 

nanoparticles in vivo is to block the receptors on macrophages that bind and 

clear particles. This is preferential to drug treatments that inactivate phagocytes 

as it will have fewer off-target effects and leave patients less immune 

suppressed. However in order to generate function blocking antibodies or FAB 

fragments against the relevant phagocytic receptors we must first positively 

identify which receptors mediate nanoparticle clearance. We anticipate that this 

can be accomplished in mice using two approaches. First we will need to isolate 

some combination of macrophages, neutrophils and monocytes from BALB/c, 

DBA2, C57BL/5 and B10D2 mice. From these cells RNA can be extracted and 

analyzed by RNA deep sequencing technology to generate an accurate 

transcriptome of each of these cell populations from each mouse type. The 
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same can be done on BALB/c and C57BL/6 BMM’s either untreated or treated 

with cytokines. These samples can then be grouped into two distinct 

populations of cells that take up large numbers of particles and cells that do not. 

We can then analyze the transcriptomes of these cells and determine which 

specific phagocytic receptors have been up regulated in the fast clearing cells 

versus the slow clearing cells. Any receptors that are consistently up in fast 

clearing cells can then be confirmed by quantitative PCR analysis and Western 

to ensure that they represent genuine targets.  

 After determining what receptors are consistently expressed at higher 

levels on phagocytes that clear particles rapidly we can purchase mice that 

have had the receptors knocked out in most cases. Unfortunately these 

receptors are typically knocked out in C57BL/6 mice, which means to use our 

IVMPK assay we must back cross them onto a BALB/c background.  This will 

take approximately two years two accomplish, and so should only be performed 

for receptors that have been implicated by the genetic approaches above. But 

once the backcross is complete we can analyze particle circulation times by 

IVMPK to determine the relative impact of each receptor type on particle 

clearance. 

 Finally for any receptors that have been confirmed to be relevant for 

clearing nanoparticles in knockout mice, we can either purchase or generate 

function blocking antibodies or FAB fragments against them. These can then be 

administered prior to nanoparticle injection to block particle uptake and confirm 

the functionality of inhibiting the implicated receptors. Any receptors that show 
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positive effects from being blocked can be considered for the generation of anti 

human function blocking antibodies for evaluation in the clinic for extending the 

circulation time of nanoparticles in patients. 

 

Further Elucidation of Th1/Th2 Effects on Nanoparticle Clearance 

 As discussed above it is unlikely that Th1/Th2 immune status is the sole 

driver in the differential clearance we observed in this study. However the in 

vitro data clearly demonstrates that Th1/Th2 cytokines can affect the clearance 

of nanoparticles by primary human and mouse macrophages. It is therefore 

worth further elucidating this response in vivo using several common 

immunological assays. 

 First, our data clearly shows that BMM’s from BALB/c and C57BL/6 mice 

have differential particle uptake phenotypes independent of cytokines and T cell 

signals. However it is unclear if this is due to activity of T cell cytokines earlier in 

the development of these cells in mice, or due to inherent genetic differences in 

the macrophages themselves. To test we can first examine the clearance of 

nanoparticles in several mouse models with modified T cell characteristics. 

Nu/Nu mice that lack proper thymuses and therefore lack T cells can be 

purchased in both the BALB/c and C57BL/6 background allowing us to 

determine if clearance of particles in vivo is altered by the loss of T cells in 

these mice. In addition Rag-/- BALB/c and C57BL/6 mice are available that 

have proper thymuses, but do not result in adult T cells in vivo, these mice can 

be compared to wild type and Nu/Nu mice to determine if mature T cells, 
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immature T cells, or no T cells are required for the observed differences in 

nanoparticle circulation. Additionally in all of these models Th1 or Th2 T cells 

from background matched wild type mice can be transferred into the T cell 

deficient mice to see if this can rescue/change observed particle uptake 

phenotypes. These experiments should allow us to determine the relative 

impact on T cell signaling versus genetic differences in other cell types in the 

mouse on particle uptake. 

 Second while BALB/c and C57BL/6 mice are known to be Th1/Th2 prone 

these are not true Th1/Th2 immunity models as cytokine levels remain low. It 

would therefore be better to test the effect of Th1 and Th2 immunity on particle 

clearance in disease models that are well characterized to generate these 

responses. To do this we would first determine the base circulation profile in the 

C3H/HeN mouse strain which is capable of having either a Th1 or Th2 immune 

response. After determining the basal clearance of particles we can infect 

another group of HEN mice with helminth parasitic worms which are well 

characterized to generate Th2 immune responses, and or induce experimental 

asthma which is also know to involve Th2 responses. A second group can be 

infected with gram positive bacteria and or yeast infection to induce Th1 

immune responses. We can then determine the effect of these treatments on 

clearance of particles both during and after the immune response to see if 

particle clearance is affected as expected in both the short term and the long 

term by Th1/Th2 immunity. 
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 Finally, to examine the effect of stromal cells versus immune cells on 

particle clearance BALB/c and C57BL/6 mice can be irradiated to kill all bone 

marrow. After irradiation, bone marrow transplantation can be performed with 

strain matched or reversed bone marrow. This will be followed up with multiple 

rounds of clodrinate injections to remove tissue macrophages from the original 

bone marrow. If BALB/c mice with BALB/c bone marrow and C57BL/6 mice with 

BALB/c bone marrow clear particles rapidly while C57BL/6 mice with C57BL/6 

bone marrow and BALB/c mice with C57BL/6 bone marrow clear particles 

slowly this indicates that differences in the immune system are responsible for 

the observed differences in particle uptake. If, however, the opposite were 

observed, it would suggest that signaling contributions from the stromal cells 

early in phagocyte differentiation are instead responsible for establishing the 

observed differences in particle clearance. 

 Combining these three experiments together should result in a much 

more complete understanding of the exact role of Th1/Th2 immunity on particle 

clearance. 

 

 

Clinical Studies 

 In this work we demonstrated that with a limited sample (N=2) human 

primary blood monocyte derived macropahges behaved similarly to mouse 

macropahges in regards to particle uptake with M1/M2 polarization. However 

there was a substantial difference in the base line uptake of particles by 
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macrophages from the two volunteers. As the value of this work is ultimately to 

improve the efficacy of nanomedicine in human patients it will be important to 

expand on these preliminary experiments with human cells in three ways. First 

and most simply, we need to test a much larger number of human samples. 

This should be done by drawing blood from 20-30 individuals; part of it should 

be used to derive macrophages as done in this study and test baseline uptake 

of particles and the effect of Th1/Th2 cytokine treatment on particle uptake.  

Secondly, we will also dose sample of whole blood from each volunteer with 

particles and then perform flow cytometry on it. This will allow us to determine if 

we see significant differences in the capacity of neutrophils from the different 

volunteers to uptake particles the same way we see differences with different 

mouse strains. Finally we will run ELISA assays for Th1 and Th2 cytokines on 

the plasma from the blood samples and look for correlations between uptake by 

primary macrophages and by neutrophils in whole blood samples to levels of 

Th1 and Th2 cytokines from volunteers.  After establishing baseline readings 

from healthy human volunteers we can get blood samples from clinical patients 

who are experiencing pathological conditions known to elicit Th1, Th2 or Th17 

immune responses. Examples can include asthma or severe allergies for Th2, 

bacterial or yeast infections for Th1, or severe viral infections or autoimmune 

conditions for Th17. These samples can then be analyzed in the same way as 

the healthy volunteer’s samples to determine if the anticipated changes in 

phagocyte behavior from the mouse studies are seen in human samples. 

Finally, there are large numbers of ongoing clinical trials for a diverse range of 
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nanoparticles as well as patients being treated with the approved 

nanoformulation Doxil. We can acquire blood samples from these patients as 

well as detailed PK results from these patients in clinical studies. We can then 

analyze the blood from the patients for levels of Th1 and Th2 cytokines and 

phagocyte behavior and determine how this correlates to observed PK data in 

patients. We predict that we will be able to determine appropriate assays for 

cytokine levels to predict if patients being treated with nanoparticles are likely to 

clear particles quickly or slowly.  In addition if we experience success with 

identifying important receptors in clearance and generating function blocking 

antibodies against them, then in the distant future we may be able to alter the 

PK of nanoformulations in patients with these reagents. 
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APPENDIX A: 

MATERIALS AND METHODS: 

Particle Materials and Methods:  

Materials 

Poly(ethylene glycol) diacrylate (Mn 700) (PEG700DA), 2-aminoethyl 

methacrylate hydrochloride (AEM), diphenyl (2,4,6-trimethylbenzoyl)-phosphine 

oxide (TPO),  and sucrose were purchased from Sigma-Aldrich. Thermo 

Scientific Dylight 650 maleimide, PTFE syringe filters (13 mm membrane, 0.22 

µm pore size), and methanol were obtained from Fisher Scientific. Conventional 

filters (2 μm) were purchased from Agilent and polyvinyl alcohol (Mw 2000) 

(PVOH) was purchased from Acros Organics. PRINT molds (200 nm x 200 nm) 

were obtained from Liquidia Technologies. Tetraethylene glycol monoacrylate 

(HP4A) was synthesized in-house. 

 

PRINT Nanoparticle Fabrication 

The pre-particle solution was prepared by dissolving 5 wt% of the various 

reactive monomers in methanol. The reactive monomers included: a cure-site 

monomer (an oligomeric PEG with a nominal molar mass of 700 g/mol 

terminally functionalized on both end groups with an acryloxy functionality), a 

hydrophilic monomer used to make up the majority of the particle composition 

(HP4A), a polymerizable fluorescent tag (Dylight  650 maleimide), and a 

photoinitiator. The pre-particle solution was comprised of 87.5 wt% HP4A, 10 

wt% PEG700DA, 1.5 wt% Dylight 650, and 1 wt% TPO. Using a # 3 Mayer rod 
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(R.D. Specialties), a thin film of the pre-particles solution was drawn onto a roll 

of freshly corona treated PET using a custom-made roll-to-roll lab line (Liquidia 

Technologies) running at 12 ft/min. The solvent was evaporated from this 

delivery sheet by exposing the film to a hot air dam derived from heat guns. The 

delivery sheet was laminated (80 PSI, 12 ft/min) to the patterned side of the 

mold, followed by delamination at the nip. Particles were cured by passing the 

filled mold through a UV-LED (Phoseon, 395 nm, 30 PSI N2, 12 ft/min). A 

plasdone harvesting sheet was hot laminated to the filled mold (140ºC, 80 PSI, 

12 ft/min). Upon cooling to room temperature, particles were removed from the 

mold by splitting the harvesting sheet from the mold.  Particles were then 

harvested by dissolving the plasdone in a bead of water (1 mL of water per 5 ft 

of harvesting sheet). The particle suspension was passed through a 2 µm filter 

(Agilent) to remove large particulates. To remove the excess plasdone, particles 

were centrifuged at ca. 21,000 x g for 15 min, the supernatant was removed 

and the particles were re-suspended in sterile water. This purification process 

was repeated 4 times.   

 

Nanoparticle Characterization  

Stock particle concentrations were determined by thermogravimetric analysis 

(TGA) using a TA Instruments Q5000 TGA. TGA analysis was conducted by 

pipetting 20 µL of the stock particle solution into a tared aluminum sample pan. 

Samples suspended in water were heated at 30°C/min to 130°C, followed by a 

10 minute isotherm at 130°C.  Samples were then cooled at 30°C/min to 30°C, 
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followed by a 2 minute isotherm at 30°C. TGA was also performed on a 20 µL 

aliquot of supernatant from a centrifuged sample of the stock nanoparticle 

suspension to account for the mass of any stabilizer remaining in each sample. 

The supernatant concentration was subtracted from the concentration of stock 

particle suspension to determine the actual particle concentration.  Particles 

were visualized by scanning electron microscopy (SEM) using a Hitachi S-4700 

SEM. Prior to imaging, SEM samples where coated with 1.5 nm of gold-

palladium alloy using a Cressington 108 auto sputter coater. Particle size and 

zeta potential were measured by dynamic light scattering (DLS) on a Zetasizer 

Nano ZS (Malvern Instruments, Ltd.). 

 

Microparticle Fabrication 

PRINT molds made of perfluoropolyether were received from Liquidia 

Technologies (NC, USA). The RBC mimics--starting from a pre-polymer 

composition of 87% 2-Hydroxyethyl acrylate (sigma), 10% 2-Carboxyethyl 

acrylate (sigma), 1% Poly(ethylyeny glycol) diacrylate (MW=4,000) 

(PolySciences), and 1% DyLight 650 malemide (ThermoScientific)--were made 

using a mold that had discoid feature with 2 μm diameters and heights of 0.6 

μm. Briefly, the pre-polymer mixture was spread onto a piece of the mold 

(0.5×0.5 ft.) that was chilled to 2-5°C on a custom-built laminator platform to 

avoid monomer evaporation prior to photocuring. A poly(ethylene terepthalate) 

(PET) sheet was laminated to the top of the mold and pre-polymer solution, 

wetting the total mold area. The sheet was peeled away at the nip point of the 
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laminator, leaving the wells of the mold filled while wicking away excess 

solution. The filled mold was immediately transferred into a chilled (2–5 °C) 

nitrogen purged UV oven and cured with UV light (λ=365 nm, power =20 

mW∕cm2) for 3 min. After curing, the filled mold was placed face down on a thin 

film of 0.1% 2,000 g/mol poly(vinyl alcohol) (PVOH, Acros) in water on top of 

another PET sheet. This assembly was placed in a cooler filled with dry ice, 

allowing the water to freeze and adhere to the particles. After freezing, the mold 

was peeled away from the particles trapped in the ice layer, and the ice was 

allowed to melt. RBCMs and water were collected, washed, and concentrated 

via centrifugation at ca. 21,000 x g (Eppendorf 5417R) to remove any sol 

fraction from solution. Particles were then suspended in 0.1% 2,000 g/mol 

PVOH in PBS, pH 7.4 for subsequent experiments. 

 

Intravital Microscopy. Intravital microscopy experiments were performed using 

an IV-100 laser scanning microscope (Olympus) on female mice of 19- to 24-g 

body weight. BALB/c (Charles River), C57BL/6, DBA/2, and B10D2 (Jackson 

Labs) were maintained in clean animal housing at UNC. Hair was removed from 

the ear, and a tail vein catheter was applied. The mice were anesthetized with 

isofluorane and placed onto a heated stage (37°C), with their ear immobilized 

by two sided taping to an aluminum block. Blood vessels were located by 

illuminating the ear with a bright white light while imaging in the green 

fluorescence channel. Blood vessels appear dark on the field. A suspension of 

300 nm PRINT particles, 15 mg particles/kg mouse weight via a 4 mg/mL 
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solution of particles in isotonic 9% sucrose solution, was then injected and 

visualized using a 633-nm laser. For all imaging blood vessels were selected 

from the approximate same region of the ear to reduce differences in intensity 

due to depth of the vessel. For experiments with liposomal clodronate mice 

were injected with 100 µl of 5 mg/mL clodronate in liposomes both IV and IP 24 

hrs prior to experiments. Clodronate was purchased from Encapsula, Nashville 

TN. For microparticle injections 15 mg/kg of particle in a 2 mg/ml PBS 

suspension was used. For quantum dot experiments a 4 nmol water soluble 

carboxilated 665-nm emission suspension of qdots were purchased from Ocean 

NanoTech (Springdale, Arkansas). 5µl of Qdots were suspended in 100 µl of 

PBS and then IV injected via tail vein. Granulocyte depletion was performed by 

injecting 1mg of rat anti mouse Ly6-G (GR-1) monoclonal antibody 1a8 

(bioXcell USA) IP 3 days and 1 day prior to experiments. 

 

For image analysis of the blood exposure of the particles, the image files from 

each scan were exported to ImageJ. For ease of analysis, we followed the 

example of Merkel et al. (Merkel et al., 2011) and stacked the images in groups 

of 5. We analyzed the region of interest containing vasculature for fluorescent 

signal prior to particle injection, and in each scan after injection. The 

background fluorescence value prior to injection was then subtracted from all 

following fluorescence values. The data was then exported to GraphPad Prism 

to generate graphs and perform indicated statistical analysis.  
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Biodistribution. BALB/c and C57BL6 mice were injected with 300nm 

cylindrical PRINT particles as described above. At 5min, 30min, 2hr, and 24hrs 

after injection, four mice of each strain were sacrificed by CO2 asphyxiation 

followed by cardiac puncture to collect blood. The lungs, kidneys, heart, liver 

and spleen were collected and kept in PBS on ice. Solid organs were weighed 

then placed in 2X weight volume of PBS. The organs were then homogenized 

and PBS was added to each tube to bring it to a known volume. 50µL of organ 

homogenate was pipetted into a 96 well plate. For blood 50µL of whole blood 

was plated followed by centrifuging the remaining blood for 5min at 1500RPM 

to separate plasma and blood cells. 50µL of plasma and cell fraction was then 

plated. The plates were read using a fluorescent plate reader (BD, USA), and 

fluorescence values per gram of tissue were calculated. 

 

Flow cytometry of animal samples. Blood was collected by cardiac puncture 

and added to EDTA tubes.  Spleen and inguinal lymph nodes were dissected 

and placed in FACS buffer (1xPBS +5%FCS) on ice. All samples were kept on 

ice or at 4°C for the duration of the experiment. 300µl of blood was taken from 

each sample; red cells were lysed by addition of 2ml of 0.1X PBS for 10sec 

followed by 2ml of 2X PBS and 10ml FACS buffer. Spleen and lymph nodes 

were gently dissociated between frosted slides to free cells and filtered through 

70µm cell filters. Red cells in spleen samples were lysed by addition of 1ml 

ACK lysis buffer (Gibco, Grand Island, NY USA) for 1 min followed by 14ml 

FACS buffer. Cells were blocked with  anti-CD16/32 (Fc-block) from BioLegend 
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(San Diego, CA USA)) 2µl per sample in 10µl for 10min. Mouse cells were then 

stained with the following  antibodies; anti-CD3-FITC (145-211C), CD19-FITC 

(ebio1D3), CD19-efluor450 (ebio1D3),  anti-TCRβ-APC-Cy7 (H57-591) from 

ebioscience (San Diego, CA USA),  anti-CD11c-PacBlue (N418), anti-F4/80-PE 

(CI:A3-1), CD11b-PE-Cy7 (M1/70), anti-Gr-1-APC-Cy7 (1A8) from BioLegend 

(San Diego, CA USA), and anti-CD45-PacOrange (MCD4530) from Invitrogen 

(Grand Island, NY USA).  Cells were stained using antibodies at 1: 200 for 

30min on ice. Cells were fixed using 2% PFA in PBS.  Particle fluorescence in 

BMM was detected in the far red channel with a 633nm laser. The average 

fluorescence intensity of live single cells was calculated and reported. All data 

were collected using LSRII (BD Biosciences, San Jose, CA USA) or CyAn 

(Beckman Coulter, Brea, CA  USA) flow cytometers.  Data analysis performed 

using FlowJo software (Treestar, Ashland, OR USA). 

Cell Culture Reagents. BMM’s were generated by extracting bone marrow as 

described previously (Bennett, 1966) from four female BALB/c or C57BL/6 mice 

and differentiated into macrophages using L-media as previously reported 

(Englen et al., 1995). After 1 week of differentiation, cells were placed in serum 

free DMEM media (Sigma). Cells were then washed once with PBS, placed in 

ice cold PBS + 5% FBS + .5 mM EDTA, and left on ice for 10 min. Cells were 

then lifted by gentle scraping and pelleted by centrifugation. 350,000 

macrophages were then plated on glass coverslips in DMEM supplemented 

with 10% FBS (HyClone USA), L-Glutamine, and penicillin/streptomycin for 

microscopy, or plated under the same media conditions in a 24 well plate for 
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flow cytometry experiments. For cytokine stimulation, we followed a previously 

published protocol for in vitro differentiation of macrophages (Martinez et al., 

2006). Briefly, cells were exposed to 1 µg/ml LPS (InvivoGen USA) and 25 

ng/ml interferon gamma (eBioscience USA) for 24 hrs for M1 stimulation. Cells 

were cultured with 25 ng/ml IL-4 (eBioscience USA) for M2 stimulation. Human 

macrophages were generated using a previously published protocol (Beyer et 

al., 2012). Briefly, peripheral blood monocytes were collected from two healthy 

male volunteers, cells were then plated on 15cm dishes in DMEM 

supplemented with 10% FBS, L-Glutamine, penicillin/streptomycin, and 

100ng/ml human M-CSF (eBiosciences USA) for seven days. After culture, cells 

were lifted from 15cm plates as described for BMM’s and plated in 24 well 

plates for 48hrs. Macrophages were then left untreated (control) or 

supplemented with 1 µg/ml LPS and 25ng/ml human interferon gamma 

(eBiosciences USA), or human IL-4 25ng/ml (eBiosciences USA) for 24hrs to 

generate M1 or M2 macropahges respectively.  For MMR blocking 5 mg/ml 

mannan from Saccharomyces cerevisiae (Invitrogen) was added to cells for 5 

min prior to the addition of particles. 

 

Particle Uptake. For confocal microscopy particle uptake experiments, stock 

media was made with 75 µg/ml of 300 nm PRINT particles. Media on the cells 

was then exchanged for media + FBS + particles. Cells were returned to the 

incubator for 20 min. Media with particles was removed and cells were washed 

3X with warm PBS + 5% FBS to remove particles, then 2X with PBS-serum. 
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Cells were then fixed with ice cold 4% paraformaldehyde in Krebs buffer. Cells 

were permeabilized with 0.1% Triton in PBS for 5 min. F-actin was stained with 

Alexa 488 phalloidin (Invitrogen). Coverslips were mounted on glass slides. For 

flow cytometry, cells were exposed to particles and washed as described for 

microscopy. After washing cells were placed in ice cold PBS supplemented with 

5% FBS and 0.5mM ETDA on ice for 10min followed by gentle scraping to 

remove from plastic. 

 

Fixed Cell Imaging and analysis. Cells were imaged using an Olympus 

FV1000 laser scanning confocal microscope. Using a 10X objective, Z stacks 

were taken in 3 random fields of the coverslip in the Alexa 488 channel to 

image the cell body and Alexa 633 to image the particles. Each Z stack was 

then exported to ImageJ and turned into 2 maximum intensity projections of the 

cell body (phalloidin) and the particles. Single cells were then outlined by 

automated thresholding in the phalloidin channel and particle fluorescence 

intensity was acquired in the 633 nm channel. A total of 50 random cells were 

analyzed per coverslip. The results from cells from four mice were then 

averaged to determine the relative particle uptake. 

 

Flow cytometry of cultured macrophages. Cells were analyzed using a Dako 

cyan ADP flow cytometer (Beckman Coulter). Live single cells were selected 

using forward scatter and side scatter. Particle fluorescence was detected in the 

far red channel with a 633nm laser. The average fluorescence intensity of live 
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single cells was calculated and reported. All analysis was performed using 

FlowJo software. 

 

Statistics. All statistical analysis was performed using GraphPad Prism 5. P 

values less than .05 were considered significant. For t test unpaired two tailed t 

test was used, for ANOVA tests 1 way ANOVA with Dunnett’s post-test was 

used. All error bars represent ± SEM. 

 

Study approval. Studies with human samples were performed under IRB #12-

1858 with approval from the Office of Human Research Ethics at the University 

of North Carolina Chapel Hill. All animal experiments were performed with 

approval of the University of North Carolina Institutional Animal Care and Use 

Committee. 
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