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ABSTRACT 
 

CHRISTOPHER A DILLON:  A Perfusion System for Maintaining Cochlear Tissue Slices 
during Measurement of Potential Distributions in Response to Electrical Stimulation across a 

Broad Range of Frequencies  
 

(Under the direction of Dr. Charles Finley) 
 

Cochlear implants are able to provide functional hearing to many deaf individuals 

through electrical stimulation of surviving nerves in the cochlea.  While the general success 

of cochlear implants is well documented, there still remain many basic questions concerning 

an implant’s interaction with the cochlear tissue.  This research aims to explore the question 

of how electrical energy delivered by the implant as current pulses distributes through the 

tissue of the cochlea to generate extracellular potentials in the vicinity of surviving neurons.  

In particular, this work seeks to gain insight into how capacitive tissue properties effect the 

distribution of energy delivered by short-duration current pulses.  This thesis describes a 

custom-build tissue chamber designed to maintain live cochlear tissue slices, as well as the 

hardware and software for implementing data collection and analysis protocols for 

characterizing potential distributions in the tissue slice during stimulation.  Electrical 

stimulation is delivered via spatially-fixed ball electrodes, while a moveable metal 

microelectrode recorded data over a wide frequency range (30 Hz. to 100 kHz.) at 100 

separate points evenly distributed across and within the tissue slice.  To date the system has 

been tested with tissue substitutes such as bologna and potato slices to verify the function of 

the system.  Continued work with cochlear slices will one day provide results that may 

improve the effectiveness of cochlear implants.   

 iii



ACKNOWLEDGEMENTS 

 
 I would like to thank my advisor, Dr. Charles Finley, for all his time, resources and 

insights without which completion of this project would not have been possible.  It has been 

a rewarding and amazing experience to work with someone as smart and dedicated to his 

field as Dr. Finley.  I would like to thank Dr. Henry Hsiao and Dr. Allison Fragale for 

serving on my committee and their valuable insights.  I would additionally like to thank Dr. 

Robert Dennis for the use of his lab and his insight in the construction of the tissue chamber.  

I am deeply grateful for the support of my girlfriend and parents, without whom I would 

undoubtedly never have finished.   

  

 iv



TABLE OF CONTENTS 
 

Page 
 

LIST OF FIGURES ……………………………………………………………………….. viii 

 

Chapter 1 INTRODUCTION.................................................................................................... 1 

Chapter 2 BACKGROUND...................................................................................................... 5 

2.1  Auditory System and Hearing................................................................................... 5 

 2.1.1  How Hearing Works ............................................................................... 5 

 2.1.2  Structure of the Cochlea.......................................................................... 7 

 2.1.3  Causes of hearing loss............................................................................. 9 

2.2  Cochlear Implants ................................................................................................... 10 

 2.2.1  Internal and External Components........................................................ 10 

 2.2.2  Bipolar vs. Monopolar Stimulation....................................................... 12 

 2.2.3  Compressed Analog vs. Continuous Interleaved Sampling.................. 13 

Chapter 3 PROJECT OVERVIEW AND GOAL................................................................... 15 

Chapter 4 METHODS AND MATERIALS........................................................................... 19 

4.1  Bulk Tissue Measurements ...................................................................................... 19 

 4.1.1  Simple Syringe Setup............................................................................ 19 

 4.1.2  Simple Syringe Recording Protocol...................................................... 20 

4.2  Tissue Slice Measurements..................................................................................... 21 

 v



 4.2.1  The Tissue Bath .................................................................................... 21 

 4.2.2  Perfusion System .................................................................................. 25 

 4.2.3  Micromanipulation Stages .................................................................... 25 

 4.2.4  Microscopy and Sample Imaging ......................................................... 27 

 4.2.5  Stimulating and Recording Electronics ................................................ 28 

 4.2.6  Stimulation Ball Electrode Fabrication................................................. 29 

 4.2.7  Tissue Bath Recording Protocol ........................................................... 30 

 4.2.8  Tissue Slicing Technique...................................................................... 30 

4.3  Software .................................................................................................................. 31 

 4.3.1  Electrode Movement Control Software ................................................ 32 

 4.3.2  Data Collection and Stimulation Control Software .............................. 34 

 4.3.3  Data Analysis Software......................................................................... 36 

Chapter 5 RESULTS............................................................................................................... 38 

5.1 Results from Simple Syringe Setup ......................................................................... 38 

 5.1.1  Saline and Resistive Load Results ........................................................ 38 

5.2  Results from Tissue Bath Setup.............................................................................. 41 

 5.2.1  Single Point Repeatability Test Results................................................ 41 

 5.2.2  Single Point Depth Dependency Test ................................................... 43 

 5.2.3  One Hundred Point Grid Tests.............................................................. 49 

Chapter 6 DISCUSSION ........................................................................................................ 57 

6.1  Proof of Setup Performance.................................................................................... 57 

6.2  Limitations of the Approach ................................................................................... 59 

6.3  Future Work ............................................................................................................ 60 

 vi



Chapter 7 CONCLUSIONS.................................................................................................... 62 

APPENDICES ........................................................................................................................ 63 

Appendix A:  MatLab code for controlling the movement of the recording electrode . 63 

Appendix A:  MatLab code for controlling the movement of the recording electrode . 64 

Appendix B:  Visual Basic code for recording and storing data.................................... 85 

Appendix C:  MatLab code for extracting data from text-based data storage files ....... 96 

Appendix D:  MatLab code for creating potential field plots ........................................ 99 

Appendix E:  MatLab code for creating bode plots of collected data ......................... 103 

 Appendix F:  Corel Draw files for tissue bath ............................................................. 105 

REFERENCES ..................................................................................................................... 106 

 

 vii



 LIST OF FIGURES 

 
 
Figure 2-1  Diagram of the structure of the human ear............................................................. 5 

Figure 2-2 Mid modiolar section of a cochlea .......................................................................... 7 

Figure 2-3   A cross sectional view of the cochlea ................................................................... 7 

Figure 2-4 Present day cochlear implant system in clinical use ............................................. 11 

Figure 2-5  Block diagram of CIS stimulation strategy (Loizou 1998).................................. 14 

Figure 3-1  Power spectrum of 10 micro second biphasic pulse ............................................ 16 

Figure 3-2 Overview of experimental setup ........................................................................... 17 

Figure 4-1 Picture of simple syringe setup for bulk tissue impedance measures ................... 20 

Figure 4-2 Fully assembled tissue bath................................................................................... 22 

Figure 4-3 Diagram of chamber bottom ................................................................................. 23 

Figure 4-4 Diagram of chamber top........................................................................................ 24 

Figure 4-5 A diagram of the harp ........................................................................................... 24 

Figure 4-6  Schematic of tissue chamber................................................................................ 25 

Figure 4-7 Photograph of manipulation Stage ........................................................................ 27 

Figure 4-8 Output from current source ................................................................................... 28 

Figure 4-9 Image of cochlear slice.......................................................................................... 31 

Figure 4-10 Screenshot of electrode movement control GUI................................................. 34 

Figure 4-11 Screenshot of recording software GUI................................................................ 35 

Figure 5-1 Results from pure saline in simple syringe ........................................................... 39 

Figure 5-2 Additional results from the simple syringe setup.................................................. 40 

Figure 5-3 Results from alternate materials in the simple syringe setup................................ 41 

 viii



Figure 5-4 Bode plot of repeatability test A ........................................................................... 42 

Figure 5-5 Bode Plot of repeatability test B ........................................................................... 43 

Figure 5-6 Bode plot of up down test1 ................................................................................... 44 

Figure 5-7 Bode plot of up down test 2 .................................................................................. 45 

Figure 5-8 Bode plot of up down test with no sample............................................................ 46 

Figure 5-9 Bode plot of depth test INTISSUE........................................................................ 47 

Figure 5-10   Bode plot of depth test IN HOLE ..................................................................... 48 

Figure 5-11 Bode plot of depth test without sample slice ...................................................... 48 

Figure 5-12 Contour plot at 200 hertz..................................................................................... 50 

Figure 5-13 Surface plot at 200 hertz ..................................................................................... 50 

Figure 5-14 Contour plot at 2000 hertz................................................................................... 51 

Figure 5-15 Surface plot at 2000 hertz ................................................................................... 52 

Figure 5-16 Contour plot at 80000 hertz................................................................................. 53 

Figure 5-17 Surface plot at 80000 hertz ................................................................................. 53 

Figure 5-18  Bode plot of first ten points of full scan............................................................. 54 

Figure 5-19  Bode plot of points 21-30 of full scan................................................................ 55 

Figure 5-20  Bode plot of points 91 through 100 of full scan................................................. 55 

Figure 5-21 Screen shot of scanned slice................................................................................ 56 

Figure 6-1 Resistor simulation of tissue in bath ..................................................................... 60 

 ix



Chapter 1      INTRODUCTION 
 

Hearing loss has become a common problem in today’s society due not only to 

unchecked noise levels but also aging, heredity and disease.  The National Institute of 

Deafness and Other Communication Disorders estimates that in the United States alone more 

than 28 million individuals are hearing impaired.  Furthermore, in 2002, there were 59,000 

individuals with cochlear implants in the world.  In the United States at this time 13,000 

adults in addition to 10,000 children had been implanted with cochlear implants (NIDCD 

2002).   

The cochlear stimulation technology has been evolving for the past 50 years and will 

continue to do so into the future.  The first auditory nerve stimulation with an electrode was 

recorded in 1957, in this case the deaf patient was able to hear background noise.  In 1966 the 

first patients were implanted with an array of electrodes placed within the cochlea.  The goal 

of multi-electrode arrays was to stimulate distinct regions of the surviving nerve population 

within the cochlea corresponding to the regions that would be stimulated by particular sounds 

in normal hearing individuals, namely to drive the auditory system in a tonotopic manner.  

To this end much research has been conducted to determine the most advantageous method 

to target distinct nerve regions.  Some of the methods that have provided significant gains 

towards this goal will be described in the background section of this thesis.  However, there 

is one area for potential gain that has not been fully illuminated, that is the creation of a 

detailed map of the characteristics of the tissues within the cochlea. 



The cochlear implants of today provide sound to profoundly deaf individuals with the 

use of multi-channel electrode arrays, which are wrapped around the cochlea within the scala 

tympani.  To date, few papers have endeavored to uncover, in vitro, to what extent the tissues 

within the cochlea present resistive or capacitive characteristics when exposed to the 

electrical signals provided by these electrode arrays.  The design of cochlear implants has 

allowed research to be conducted in which the electrodes within the electrode array are used 

as recording electrodes to get at the question of the tissues resistive characteristics.  However, 

that research is not necessarily a direct representation of the signals that ultimately trigger a 

nerve action potential.   

Further research has been conducted to understand the exact mechanisms that allow 

electrical stimulation within the cochlea to cause hearing within a profoundly deaf individual, 

the question of how the cochlear tissue transmits these electrical impulses has yet to be fully 

understood.  The research, conducted in conjunction with this thesis project was done so to 

begin to illuminate these areas.   

The remaining chapters of this thesis have the following organization:   

Chapter 2.  Background.  A brief description is presented of the auditory system and 

hearing loss.  It describes in greater detail the pertinent functionality of cochlear implants that 

will aid in the understanding of the remainder of this thesis.   

Chapter 3.  Project overview and goals.  In this section, further development of the 

overriding hypothesis driving this project, and the planned approach that will be followed to 

verify the validity of the hypothesis is presented.  The primary objective of this thesis is to 

establish and verify the basic measurement tools that will be employed in future studies.  In 

particular, the principle aim is to develop a robust and repeatable method of recording the 
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distribution of electrical potentials from within 300µm-thick cochlear slices to determine the 

net effect of capacitive tissue characteristics on electrical current distribution within the 

cochlea.   

Chapter 4.  Methods and Materials This chapter includes individual descriptions of 

the equipment and processes that were developed in the achievement of the project’s goals.  

The first section will describe the custom built chamber and the design considerations that 

dictated its final form.  This will be followed by a discussion of the perfusion system and 

how it was designed to maintain the integrity of the living tissue.  Aside from the hardware 

necessary for maintaining the tissue, the hardware and software needed to provide accurate 

electrode placement on a micron scale will be described in full.  In the subsequent section the 

technique for optically imaging the tissue sample and specifying recording positions will be 

detailed.  Additionally, the stimulating and recording electrode and amplification system 

design necessary for returning data that can justify the hypothesis will be outlined.  This 

chapter also outlines the baseline recording tests that were conducted to demonstrate the 

accuracy of all the hardware and software systems described.   

Chapter 5.  Results.  All data relevant to describing the characteristics of test tissues 

and tissue chamber will be presented, along with such data that were vital to the progression 

of the project.   

Chapter 6.  Discussion.  This chapter will elaborate on the results from Chapter 5 – 

Results.  The first section details the significance of the  results.  In the second section, 

limitations and problems that were overcome will be presented.  Finally, the last section 

describes how these tools can be applied to further work examining the original hypothesis 

regarding electrical stimulation within the cochlea. 
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Chapter 7.  Conclusions.  The achievements of this work and the potential impact the 

results may have for patients in the future are presented.  This section is followed by 

appendices containing source listings of the software code developed during this project.
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Chapter 2      BACKGROUND 
 
 
2.1 Auditory System and Hearing 

In order to understand the driving forces behind the formulation of the hypothesis of this 

project, it is essential that one understand how a cochlear implant system functions to restore 

hearing based on the normal mechanisms of the auditory system.  The following section will 

describe the functionality of the auditory system as well as the causes of the loss of this 

functionality.   

2.1.1 How Hearing Works 

Below is shown a diagram of the human ear, which is divided into the outer ear, 

middle ear and inner ear.   

 
Figure 2-1  Diagram of the structure of the human ear 

(obtained from The Ohio Rehabilitation Service Commission website – 
http://www.rsc.ohio.gov/images/Fun4kids/learn/ear.gif) 
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The outer ear, commonly referred by most people as the “ear”, is only the tip of the iceberg 

as far as the hearing process is concerned.  The outer ear has multiple functions, which 

include sound localization, amplification and protection for the middle and inner ear.  The 

middle ear is separated from the outer ear by the tympanic membrane (or ear drum).  

Connected to the tympanic membrane and bridging the gap between the air-filled outer ear 

and fluid-filled inner ear are three tiny bones known as the ossicles.  These bones are the 

malleus, incus and stapes and are suspended loosely within the middle ear.  Their function is 

to transform the sound energy incident on the tympanic membrane to mechanical energy 

incident on the oval window of the inner ear.  Of all the parts of the auditory system, the 

inner ear is the most complex.  It is composed of two parts, the vestibule and the cochlea.  

The vestibule assists in maintaining balance and posture and will not be not be dealt with 

further in this paper.  This discussion will focus on the cochlea which further mediates the 

hearing function of the ear system.  Once a sound wave has been converted in the middle ear, 

the inner ear completes the conversion process and outputs neural stimulation that is sent to 

the brain.  This neural stimulation is conveyed to the brain via the auditory nerve where it is 

further processed to be perceived as sound.   

 6



2.1.2  Structure of the Cochlea 

 

1.  Scala Media 
2.  Scala Vestibuli 
3.  Scala Tympani 
4.  Spiral Ganglion 
5.  Auditory Nerve 

Figure 2-2 Mid modiolar section of a cochlea  
(obtained from Promenade Around the Cochlea website – 

www.iurc.montp.inserm.fr/cric/audition/english/cochlea/cochlea.htm) 
 

As can be seen in Figure 2.2 the cochlea is a spiraled structure with three fluid-filled 

channels:  the scala vestibuli, scala media and scala tympani.  The scala vestibuli and scala 

tympani are in fact one single canal that meets near the apex of the cochlea.  A simpler way 

to envision the geometry of the cochlea is depicted in Figure 2.3 in which the cochlea has 

been uncoiled.  

 

Figure 2-3   A cross sectional view of the cochlea 
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When the stapes, whose base is connected to the oval window, moves in response to a 

sound wave incident on the ear drum, a pressure wave is produced within the cochlear fluids.  

This wave produces a wave-like pattern on the basilar membrane, which is the membrane 

separating the scala media from the scala tympani.  Atop the basilar membrane is the organ 

of Corti, which is the site of the mechanical transduction to nerve activation, which 

subsequently results in hearing percepts after further processing by the central nervous 

system.   

 The organ of Corti rests on top of the basilar membrane and is the home of several 

thousand sensory nerve cells called “hair cells”.  Each hair cell has several cilia protruding 

from the top of the cell.  The organ of Corti contains four rows of hair cells.  The inner most 

row of cells are referred to as “inner hair cells” and are responsible for 90-95% of the 

information carried by the auditory nerve to the brain (Bess 1995).  The cilia of the inner hair 

cells extend from the top of the hair cells and form loose attachments to the overlying tectoral 

membrane, while the base of the hair cell is connected to nerve fibers of the auditory nerve 

via synaptic connections.  The remaining three rows of hair cells are referred to as the “outer 

hair cells”.  The cilia of the outer hair cells are embedded into the tectorial membrane.  Their 

connection to the tectorial membrane is used to mechanically adjust and tune the basilar 

membrane to enhance its response to auditory stimulation.  In combination with systematic 

changes in the width and flexibility of the basilar membrane along its length, the tuning of 

the basilar membrane causes the cochlea to be tonotopically responsive to the vibration 

frequencies present in incoming sound.  This means the sounds waves of different 

frequencies cause wave spikes at different locations within the cochlea.  The tonotopic 

organization of the cochlea results in neurons originating near the base of the cochlea being 
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maximally responsive to high frequencies, where as neurons originating near apex or far end 

of the cochlea being maximally responsive to low frequencies.  For example, low frequency 

sound would cause activation of hair cells on the right hand side of Figure 2.3 and high 

frequency sounds wound activate hair cells and neurons on the left end near the oval window.  

Between these extremes there is a monotonic progression of frequency sensitivity, hence the 

idea that the cochlea is ‘tonotopically” organized and provides the first, and very important, 

level of processing in the auditory system.  In a normally fuctioning system this tonotopic 

organization is retained at all levels of auditory processing in the brain all the way to the 

cortex. 

2.1.3  Causes of hearing loss 

 The properly performing auditory system functions as a transducer converting 

acoustic energy to neural impulses, but when one part of the system fails that transformation 

is not completed.  The mechanism of hearing loss that is of relevance to this research is the 

result of the loss of hair cells within the cochlea, referred to as “sensorineural deafness”.  It 

has been well documented that the degeneration of hair cells and partial loss of auditory 

nerves are at the center of sensorineural deafness.  This will become an important fact in the 

following section when discussing cochlear implants.  The loss of hair cells can be the result 

of diseases (e.g., meningitis, Meniere’s disease), congenital disorders, brief exposure to 

transient extremely loud sounds, sustained exposure to moderately loud sounds (e.g. 

workplace noise, concerts, lawn mowers, etc), the normal process of aging, and/or certain 

drug treatments (Loizou, 1998).  When hair cells are damaged or lost, the auditory neurons to 

which they connect may also atrophy and die, but to a lesser extent.  Hearing loss occurs 

once a substantial number of auditory neurons and hair cells of the cochlea are damaged or 
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lost in a particular region of the cochlea.  As the cochlea is a tonotopic structure, hearing loss 

can affect selected frequencies (e.g. high frequencies as in the case of age related hearing 

loss) and can often be treated effectively by application of hearing aids if sufficient numbers 

of hair cells remain.  However, in the case of severely hearing impaired and/or profoundly 

deaf individuals very few hair cells remain and virtual no acoustic energy is transformed and 

passed to the brain, even when substantial amplification of the sound is provided by a hearing 

aid.  Cochlear implants were developed to assist these populations of patients, who would 

otherwise have no alternative therapies for their deafness. 

2.2 Cochlear Implants 

Cochlear implants are neuroprosthetic devices designed to restore hearing in patients 

with severe to profound sensorineural hearing loss.  As pointed out in the previous section 

the auditory neurons in patients with sensorineural deafness do survive to varying extents and 

are still functionally able to conduct action potentials to the central nervous system.  It is the 

hair cells that have been predominately lost or damaged.  The key design principle of the 

cochlear implant utilizes this fact and is focused on directly stimulating the surviving 

auditory neurons, thus bypassing the functional need for the damaged or lost hair cells. 

2.2.1 Internal and External Components 

Cochlear implants can be functionally divided into two parts:  the surgically 

implanted internal component and the wearable external component.   
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Figure 2-4 Present day cochlear implant system in clinical use 
 

 
The external component has two distinct parts.  First, the head piece provides the connection 

between the internal and external components.  The head piece locates itself on the skin 

directly above the case of the internal component magnetically.  The magnetic alignment of 

the head piece and implanted case provides the alignment for telemetric coils, which pass 

power as well as the stimulating signal to the implanted components.  The second external 

part is the speech processor.  Sound that is picked up by a microphone is passed to the signal 

processor where the sound information is encoded into strings of biphasic pulses.  This 

process will be described further in section 2.2.2.  The speech process also houses the 

rechargeable battery which powers the entire system.  The internal component of a cochlear 

implant consists of an implanted stimulator sealed within a case and an electrode array.  The 

stimulator receives the signal encoded by the speech processor and outputs the required 

signal to the proper electrodes within the electrode array.  The stimulator is surgically placed 

just beneath the skin behind the ear and is secured to the skull.  Depending on the particular 

device selected, the electrode array may contain up to 22 separate electrodes spaced evenly 

along the length of the array.  The electrode array is carefully inserted into the scala tympani 
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under surgical conditions.  Typically the electrode array coils approximately one and a half 

turns into the cochlea.  With this position of the array in the cochlea, stimulation of 

individual electrode contacts causes activation of selective regions of surviving auditory 

neurons, thus providing electrical access to the tonotopic structure of the cochlea and the 

remaining auditory system.  Together the internal and external components of the cochlear 

implant are able to transduce acoustic energy into neural signals.   

2.2.2 Bipolar vs. Monopolar Stimulation 

The two most commonly used methods of stimulation utilized by cochlear implants 

are monopolar and bipolar.  Both techniques employ the same principle of electrical currents.  

When a current is generated by a source electrode it must have a ground point with which to 

complete its current path.  In monopolar stimulation the ground point is located on the 

stimulator case or a separate electrode spaced away from the electrode array.  In bipolar 

stimulation, two electrodes in the electrode array are used to create the electrical field, with 

one electrode in the array acting as the source and the other acting as the ground.   

Both monopolar and bipolar stimulation have their own distinct advantages and 

disadvantages in cochlear implant operation.  The advantage of monopolar is that the 

electrical field that is produced is much larger thus making stimulation of the auditory 

neurons possible at lower current levels.  The disadvantage is that since the field is so large it 

is virtually impossible to limit the number of neurons that are activated.  Since all neurons 

across the cochlea are activated there is diminished ability to discrimination between high- 

and low-frequency sounds.  By using bipolar stimulation the electrical fields are better 

contained and can be localized to neurons responsive to particular frequencies.  However, by 

using a smaller field, a larger current must be passed between the source and ground 
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electrode to ensure the field spreads far enough to reach the neurons.  Higher current results 

in electrolysis of the cochlear fluid and dissolution of the electrode contacts, which can in 

turn damage the surviving cochlear tissue.  Additionally bipolar stimulation, with its smaller 

field, is still not able to create the fine frequency structure of a healthy cochlea.  The results 

from this research project will provide further information what will help characterized the 

electrical distribution of these stimulating strategies within the cochlea.   

2.2.3 Compressed Analog vs. Continuous Interleaved Sampling  

 Not only is it important to understand output from the electrodes, but also to 

understand the signals that are sent to the electrodes.  This will provide greater insight to 

understand the importance of this project.  Compressed Analog (CA) was the initial encoding 

strategy for multi-electrode implants.  Under the CA stimulating strategy sound taken in by a 

microphone is compressed and broken into evenly spaced groups of frequency with band 

pass filters.  Each group is then sent to its respective electrode within the electrode array.  

The stimulation level output of each electrode would be equivalent to the amount of acoustic 

energy that was parceled into its select frequency grouping.  The problem with this strategy 

was that each electrode would be outputting its signal at the same time as every other 

electrode.  When electrical current comes in contact with each other they interact either by 

summing or subtracting from each other.  This “channel interaction” results in the loss of 

frequency specific signals and uncontrollable spread of stimulation.    

 In order to correct for the channel interaction that was encountered in CA, researchers 

developed continuous interleaved sampling (CIS), which continues to be the strategy of 

choice today.  In the CIS strategy, the first step is to divide the raw sound signal into 

frequency groups.  The energy level of the frequency groupings is estimated with a full-wave 
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rectification and low-pass filter setup.  A non-linear mapping component can then bring the 

energy levels to a desired level specific to each individual.  Finally, and most importantly, a 

post processor sequencer is used to sample the energy level of each grouping separately and 

apply stimulation to only one electrode at a time, thus reducing the effect of channel 

interactions, at least interactions due to the simultaneous summation of two or more electrical 

fields.  Because the bulk tissue and neural membranes have capacitive and refractive 

characteristics, respectively, there is another form of channel interaction referred to as 

“temporal” interactions.  These interactions arise from the lingering effects of charge and 

refraction from stimulation on one electrode overlapping with subsequent stimulation on 

another electrode.  By lengthening or shortening the rate of pulsatile stimulation one can 

control the amount of temporal channel interaction between electrodes, which can be directly 

related to a patient’s ability to perform.  Figure 2.4 shows a block diagram of a CIS system 

for a 6 channel processor.   

 

Figure 2-5  Block diagram of CIS stimulation strategy (Loizou 1998) 
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Chapter 3      PROJECT OVERVIEW AND GOAL 
 
 

The primary objective of this work is to develop a procedure capable of measuring 

the effect of capacitive tissue characteristics on the potential distributions generated in the 

cochlea due to brief electrical stimulation with biphasic current pulses.  This project pursues 

this goal by making potential distribution measures in living cochlear slices in vitro using a 

custom-designed tissue bath and facilities for automated collection of potential data during 

active electrical stimulation over a broad range of frequencies.  In furthering the knowledge 

of how the capacitive characteristics of the cochlea tissue influence stimulation, it is hoped 

that new insights into stimulation mechanisms may be gained and cochlear implant designs 

can be improved.   

Research to date provides evidence in support of hypothesizing that cochlear tissue is 

of a resistive nature.  In a recent report by Spelmen et al, guinea pigs and monkeys were 

implanted with electrode arrays and impedances were measured with in the scala tympani 

and between the scala tympani and the internal auditory meatus of the modiolus.  The 

measurements revealed that the impedances inside and outside the scala tympani are resistive 

for frequencies between 8 Hz and 12.5 Hz.  This data leads to the conclusion that the tissue in 

the cochlear will behave in a resistive manner, showing a linear relationship to varied 

frequencies of stimulation.  However, the structure of the cochlea is filled with nerve cells 

and nerve bundles, which extend outward from all parts of the scala tympani, unite and 

proceed to the auditory nerve.  It is known that nerve cells with their extensive myelination 



display capacitive characteristics.  Thus, it is proposed that the tissue of the cochlear due to 

its large makeup of nerve cells may be capacitive.  This project will utilize cochlear slices 

that are 200 to 300 microns thick from which impedance measurements will be made 

throughout the sample.   

Spelmen’s research finding were presented in 1982, since that time many advances 

have increased the speed at which cochlear implants operate.  At the time of Spelmen’s 

research cochlear implants were outputting biphasic pulses with duration between 200 to 500 

micro seconds.  Today’s implants stimulate with biphasic pulses of 10 micro second 

durations.  Figure 3-2 illustrates the power density of today’s implants and depicts the 

frequency at which the Spelmen study was stopped.  The manner in which the Spelmen study 

was conducted also neglected the presence of the various tissue types in the cochlea.   

 

Figure 3-1  Power spectrum of 10 micro second biphasic pulse 
 

Two important requirements drove the progression of this project towards its final 

goal.  First, the data that described the characteristics of the cochlear slices would be 

extracted from a potential field distribution constructed at every desired frequency.  Second 
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the tissue had to be maintained in a living condition in order to obtain useful information.  

Consequently, the tissue was maintained in a profusion chamber which would have its own 

characteristics that would be present in the potential field distributions.  Due to this fact, the 

final potential distributions of the tissue needed to eliminate the baseline characteristics of 

the tissue chamber. With this knowledge, much of the work leading up to the final data 

collection was conducted in order to determine the baseline characteristics of the tissue 

chamber and to determine a repeatable method for doing so.   

The diagram below (Figure 3.1) illustrates the setup for the experiment.  All 

components of the diagram will be described in detail in the materials and methods section of 

this paper.   

 
Figure 3-2 Overview of experimental setup 
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Prior to testing in the tissue bath, a much simpler setup was constructed and tested.   

The simpler setup allowed for a quick and easy way to test the hardware and parts of the 

software, while also illuminating some of the problems that would be encountered with the 

more complex setup.  The simpler setup was tested with a variety of test materials which 

would also be tested in the tissue chamber and allow for comparison of the two setups.   

The process of computing potential field distributions is a useful concept that was 

tested prior to being used with this experiment.  In fact, the software and hardware were used 

to create the potential distribution field plots produced by an actual cochlear implant prior to 

this project.  The creation of these field plots for cochlear implants not only demonstrated the 

potential to create such plots but also the nature of the results that can be inferred by such 

plots.  The creation of potential field plots made it possible to determine the response of all 

parts of the tissue slice to a wide range of frequency stimulation.  Since the cochlea is 

composed of many different types of tissues (ex. bone, nerve, and hollow space) it will be 

possible to determine how each effects the propagation of stimulation.  By comparing the 

potential field plots at various frequencies, the capacitive nature of each tissue type will be 

illuminated.  The knowledge extracted from the plots will be used to fulfill the ultimate goal 

of this project; that of characterizing the capacitive characteristics of cochlear tissue slices.  

This in turn will potentially one day improve the effectiveness of cochlear implants. 
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Chapter 4     METHODS AND MATERIALS
 

The following section describes the materials and methods used to develop the tissue 

recording chamber and the stimulation and recording systems.    

4.1  Bulk Tissue Measurements 

4.1.1  Simple Syringe Setup 

Prior to final construction of the tissue chamber described above a simpler setup was 

created which allowed for preliminary tests to be conducted.  A metal box was filled with 

two holding stands that would fix the syringe in place and prevent electrical conduction to 

the box.  The box provided highly consistent results as well as an easy way to change the test 

material.  The test materials were contained within a modified 8cc syringe.  Round disk 

electrodes (AgCl) (A-M Systems 550025) were fixed to the ends of syringe plungers and 

electrically connected to BNC connects on the front of the box.  The electrodes presented the 

stimulation created by the current source, while the lock-in amplifier made recordings from 

the BNC connections.  Samples were loaded into the syringe from either end, and holes were 

created in the side of the syringe to allow excess air to escape until the electrodes were in 

contact with the sample material.   
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Figure 4-1 Picture of simple syringe setup for bulk tissue impedance measures 

 

4.1.2  Simple Syringe Recording Protocol 

The experimental protocol used to obtain these data is nearly identical to that 

described in the Chapter 3.  Custom Visual Basic software code controlled the frequency of 

the function generator.  The function generator drove the current source at the desired 

frequency and stimulation amplitude.  The current source connected directly to the two way 

BNC connectors on the front of the metal box seen in Figure 4.5.  The second side of the 

BNC connectors connected to either the A or B input of the lock-in amplifier.  In this manner 

current was simultaneously passed through the syringe and its contents while the voltage 

across the syringe was being measured by the lock-in amplifier.  The lock-in amplifier was 

operated in its differential setting, A-B, thus the lock-in was measuring the drop of voltage 

across the syringe’s contents.  The results that were obtained from this experiment describe 

the voltage drop across the whole system including any electrode and test material interface 
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characteristics.  Separation of these factors was not attempted as the ultimate data set would 

be a relative reading, thus any constant characteristics such as electrode/sample interface, 

would be ignored.  The lock-in amplifier was set to output the magnitude and phase which 

was read back into the custom Visual Basic software code though the DAQ card described in 

section 4.3.2.   

4.2  Tissue Slice Measurements  

In order to make the desired recording from a cochlear tissue slice a large number of 

custom designed systems had to be employed.  These systems included a custom designed 

tissue bath for maintaining the tissue’s viability during the recording period, a custom build 

micromanipulation stage as well as individually made Platinum-Iridium (PT-IR) ball 

electrodes.  Due to the fact that this project was the first of its nature to be conducted in Dr. 

Finley’s lab, many additional parameters were resolved that will not be described in detail in 

this paper.   

4.2.1  The Tissue Bath 
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The final design for the tissue bath that used in this project was initially based on the 

design provided by Dr. Kerry Zbicz in his paper “Transient Voltage and Calcium-Dependent 

Outward Currents in Hippocampal CA3 Pyramidal Neurons.”  The chamber was designed 

around the ability to support the tissue slice on a piece of nylon mesh, which would allow 

perfusion above and below the sample.  A system of o-rings was decided on for two reasons.  

First, the o-rings could stretch and hold the mesh in place.  Secondly, the o-rings would 

prevent water from escaping from the chamber.  The goal of the chamber was to provide 

continuous perfusion to the tissue while being open enough to collect from all parts of the 

sample.  Figure 4.1 illustrates the chamber in its complete assembly.   



 
Figure 4-2 Fully assembled tissue bath 

 
The chamber is composed of two separate pieces, a top and a bottom, which were 

held together with screws.  The final chamber design was the seventh revolution from the 

initial design.  All the parts and completed chambers were manufactured in Dr. Robert 

Dennis’ laboratory.  The first revolution was designed within SolidWorks (SolidWorks 6.1, 

SolidWorks Corporation, Concord, MA, USA) and fabricated with the FDM Titan (made by 

Stratasys Inc., Eden Prairie, Minnesota, USA) a fused deposition modeling rapid prototyping 

system.  All subsequent chambers were designed in Corel Draw and fabricated by cutting 

parts out of sheets of acrylic with the X-660 laser cutter (made by Universal Laser Systems 

Inc., Scottsdale, Arizona, USA).  The parts were assembled layer by layer and bonded 

together using methylene chloride, an instantly bonding solvent.   

The bottom piece was composed of three layers of acrylic parts.  As can be seen in 

Figure 4.2 the bottom houses two o-rings and the bottom half of the tissue bathing area.  The 

inner o-ring serves two purposes.  First it stretches and secures the nylon mesh upon  
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Figure 4-3 Diagram of chamber bottom 

 
which the tissue rests.   Secondly it provides a liquid tight seal preventing the profusing 

media from filling the area between the top and bottom parts of the chamber.  Since the nylon 

mesh tended to wick fluid, the second o-ring was added to prevent any fluid loss from the 

entire chamber.  The nylon mesh that was used in this project was made with 120 µm 

diameter nylon string with 185 µm open area between strings.  Additionally a small strip of 

Vaseline was set around the bathing area to deter any fluid from leaking between the top and 

bottom pieces.  The bottom piece additionally provided the inlet and outlet ports for the 

profusion media.   
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Figure 4-4 Diagram of chamber top 

 
The top piece of the tissue chamber was much less complex then the bottom piece.  It 

was composed of two layers of acrylic as seen in Figure 4.3.  The bottom layer creates the 

top half of the tissue bathing area.  The top layer acts as a guide to hold the harp in proper 

alignment.  The harp, as depicted in Figure 4.4, was a circular piece of acrylic which was 

custom designed to prevent the tissue from moving within the bathing area.   

 
Figure 4-5 A diagram of the harp 

 
This was accomplished by stringing 35 µm diameter nylon string between two posts which 

were lowered to the height of the mesh.  The top piece of the tissue chamber in conjunction 
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with the screws arranged around the bathing area were used to apply the compression on the 

o-rings necessary for preventing fluid loss between the top and bottom pieces.   

4.2.2  Perfusion System 

Maintaining viability of the tissue slices was a crucial component of obtaining 

realistic and useful results.  In order to control tissue viability a common buffering solution 

and temperature control system were setup.  Fluid inflow was maintained with a gravity fed 

system while the rate was controlled by a resistive roll clamp at a rate of 0.7ml/min.  The 

working volume of the chamber was one milliliter, but it would hold two milliliters before 

overflowing.  The fluid filled bag was hanging five feet above the tissue chamber and flow 

was controlled by pinch clamp.  Within the chamber a nylon stand pipe controlled the height 

of the fluid level, at low flow rates.   

 

Figure 4-6  Schematic of tissue chamber 
 
Filter paper was passed through the stand pipe to increase the outflow of fluid from the 

chamber and into the reservoir located directly below the tissue chamber.  The reservoir was 

drained constantly through a vacuum chamber connected in series with a vacuum pump.   

4.2.3  Micromanipulation Stages 
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The small size of the cochlear slices obtained, roughly 5mm in diameter, from the 

specimens and the nature of the measurements desired necessitated a precise electrode 

movement system.  Due to the nature of the experiment one recording microelectrode was 

moved all around the tissue slice while two stimulating electrodes were stationary.  The 

recording electrode was controlled by motorized micromanipulation stages while the 

stimulation electrodes were controlled by manual manipulators.  Three linear actuators and 

three translational stages were connected in manner to provide the three-dimensionality 

needed for the recording electrode.  The actuators (Zaber T-LA60) and translation stages 

(Zaber TSB) were purchased from Zaber Technologies (Zaber Technologies Inc., Richmond, 

British Columbia, Canada).  The resolution of the actuators was 0.1 µm, providing the 

precise alignment for the recording electrode positioning.  Two of the stages were stacked 

perpendicularly to each other to provide the x-direction and y-direction control.  The third 

actuator and stage was mounted on a separate fixed support and oriented perpendicular to the 

x-y plane created by the first two actuators, thus controlling the vertical motion.  Springs 

within the translation stages support the stages to keep them firmly against the end of the 

actuator’s driving pin.  However, for the vertical stage the spring could not support the 

weight of the stage and electrode holding apparatus, thus a pulley system was connected to 

provide the extra force necessary.  The recording electrode was connected to the vertical 

translation stage with an aluminum rod onto which an electrode holder was mounted.  This 

electrode holder provided support and was used to position the microelectrode that was used 

to make the recordings from the tissue bath as seen in the right hand portion of figure 4-7.  

The linear actuators were connected to a Dell Precision 420 Workstation (Dell Inc, Round 

Rock, Texas, USA) within which a custom GUI was created to control the precise movement 
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of the units.  Figure 4.6 is a photograph of the micromanipulation stages which controlled the 

recording electrode.  The stimulating electrodes, on the other hand, were simply mounted 

onto Sutter MM-3 manual micromanipulators (Sutter Instrument Company, Novato, CA, 

USA) and the manipulators were fixed to the base plate which also held the tissue chamber.  

The stimulating electrodes were also supported by electrode holders which reduced vibration 

and supported the electrodes to a position closer to the actual tissue.   

 
Figure 4-7 Photograph of manipulation Stage 

 

4.2.4  Microscopy and Sample Imaging 

The magnification for viewing the tissue slices for this experiment was provided 

through the use of the World Precision Instruments microscope model SSZ (WPI Inc.  

Sarasota, FL, USA).  This model had a magnification range between 6.7x  and 45x.  

Connected to the microscope was a Mintron MTV-7266ND CCD camera.  The output from 

the camera was fed to a data translation video acquisition card installed in the Dell desktop 

computer.  Software entitled DT Acquire Version 3.3.0 was provided with the video 
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acquisition card for viewing the imaged produced by the CCD camera, which allowed the 

user to continuously view the camera’s output or to take still images and save them as a bit 

mapped graphic (bmp).  The ‘.bmp’ image would be captured within the DT Acquire 

software then saved to a file from which it would be read into the Matlab program 

responsible for controlling the movement of the electrodes.   

4.2.5  Stimulating and Recording Electronics 

The stimulation current delivered by the stimulating electrodes was controlled by a 

custom designed, high band width (>300kHz) current source that was built by Dr. Finley.   

 
Figure 4-8 Output from current source 

 
The recording amplifier was designed by myself and fellow lab member Punita 

Christopher, in completion of a separate project.  The design was build around a TI INA116 

instrumentation amplifier chip.  This chip was chosen based on two of its distinct features.  

First, it provided for shielded guards, which serve to protect the lead wires from picking up 

environmental noise between the recording site and circuitry.  This was of particular benefit 

since the small diameter of the stimulating electrodes only permitted voltages below 100mV.  

Figure 4-9 illustrates the fact that the stimulating electrodes could not operate above 100mV.  

The picture on the left illustrates a 150mV stimulus on top and 60mV stimulus on bottom.  

The small diameter stimulating electrodes constrained the level of unperturbed output that 
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could be sustained.  The picture on the right hand side of figure 4-9 illustrates the harmonics 

that are created when stimulating above 100mV.  Secondly, the INA116 functions with a 

particularly high common-mode rejection.  The chip is designed to work with two inputs, a 

recording and a reference.  The internal circuitry of the chip allows for the output of a high 

fidelity signal that is without noise that is common on both inputs.  An additional advantage 

is that the complete amplifier circuit can be driven from a 9V battery; thereby eliminating 

noise that is typically associated with a wall-powered power sources.  Additional noise 

reduction was gained from a lock-in amplifier, Princeton Applied Research Model 129.  The 

lock-in is designed to accept a reference signal which is used to extract any signal with the 

same frequency from a noisy input signal.  The bandwidth of this lock-in amplifier is 0.5Hz- 

100kHz.   

4.2.6  Stimulation Ball Electrode Fabrication 

Platinum-Iridium wires of 25 micron diameter (A-M Systems 776000) were melted 

with a MicroFlame Torch (Microflame 4000) to produce ball electrodes.  The MicroFlame 

Torch combines butane and micronox to create a flame that is hotter than 1790 °C.  To create 

the ball electrode the wire is first threaded through a 25 gauge needle for support.  Melting 

the wire back from the tip creates a perfect ball that increases in diameter with the length of 

wire that is melted.  Thus the length needed to create a specific ball diameter can easily be 

calculated and correlated to the length of wire that is melted based on equal volume of 

material.  The balls used in this experiment were 200 microns in diameter, which is 

equivalent to a length of 8.53 mm.  The fabrication technique described was obtained from a 

paper describing the fabrication process for identical electrodes to be used in a cochlear 

implant designed for an animal study (Sudharshana 2004).   
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4.2.7  Tissue Bath Recording Protocol 

Experiments conducted with the tissue bath followed a similar protocol as that 

described in the earlier section for the simple syringe setup, with a few variations in 

hardware.  The custom Visual Basic software controlled the output of the function generator, 

by sending the string “frequency (followed by the desired frequency as a number)” over the 

RS232 connection, which drove the current source.  The current source output its signal onto 

platinum iridium ball electrodes which were positioned with manual micro manipulators 

within the bath.  The head stage amplifier required three electrodes to be placed within the 

bath, two differential leads and a ground reference.  The recording electrode was mounted to 

the three axes micromanipulation stage and was 125 µm diameter 12 degree tip tungsten 

micro electrode (A-M Systems 573210) with a parylene-C coating.  The reference and 

ground electrodes that were needed for the head stage amplifier were custom made platinum 

iridium ball electrodes, see section 4.2.6.  The output from the head stage amplifier was 

routed to a single input on the lock-in amplifier.  The ‘sync out’ from the function generator 

was connected to the reference channel of the lock-in amplifier.  The output of the lock-in 

was again set to give the magnitude and phase, which were read by the Visual Basic code 

through the DAQ card.   

4.2.8  Tissue Slicing Technique 

Drs. Marc Bassim and Carlton Zdanski have completed work to establish at UNC the 

technique described by Jagger et al (2000) for preparing slices of  extracted cochleae of 

neonatal rat pups.  In this technique cochleae of neonatal rat pups (5 days old) are removed 

following intra-peritoneal overdose of sodium pentobarbitone and decapitation.  The scala 
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tympani and scala vestibuli of the cochlea are perfused with a 35% solution of Pluronic gel, 

 

Figure 4-9 Image of cochlear slice 
 
after opening the apex to permit free fluid flow from base to apex.  The gel is a liquid at cold 

temperatures 4°C and is a solid at room temperature.  Once perfused and warmed to room 

temperature, the open fluid space in the cochlea is mechanically stabilized with the solid gel, 

thus allowing sectioning with a vibrating microtome.  Sections of 200-300 microns showing 

a mid modiolar cross section are retained.  The mid modiolar slices are chilled to remove the 

gel and placed in an organ bath for microscopic visual observation and electrode probing.  

The quality of sections to date is considered of sufficient quality to justify the proposed 

measures of potential distributions, which will depend principally on bulk tissue properties as 

opposed to cellular viability.  Figure 4.9 shows a typical section from the original paper by 

Jagger and colleagues. 

4.3  Software 

The use of a fully computer automated system was necessitated by the small size of 

the tissue and the type of data needed for proper analysis.  Data was collected in a grid-wise 

manner in order that potential field plots could be constructed in a reliable manner.  Two 

separate custom software programs were utilized for the completion of the project.  The first 
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was written in Microsoft Visual Basic and controlled the collection of data from the 

recording electrode.  The second was written in Matlab and controlled the movement of the 

recording electrode.   

4.3.1  Electrode Movement Control Software 

The custom software that controlled the movement of the recording electrode was 

written for Matlab version 7 (The MathWorks Inc, Natick, MA, USA).  The functionality of 

the program was organized within a graphical user interface (GUI), which was designed to be 

easily navigated by any user.  The GUI was setup to control the movement of the 

micromanipulation actuators described in section 4.2.3.  The documentation from the 

manufacturer of the micromanipulation actuators provided a list of all the command strings 

that are recognized by the actuators as well as software written in C++ that could be used to 

control the movement of the actuators through the computer.  Each command string sent to 

the actuators consisted of six bytes.  The first byte is used to identify the actuator of choice 

which will receive the command embedded in the remaining five bytes.   

The first and most important role that this code provided was a routine for scanning 

up to 100 points without driving the recording electrode into any obstructions.  The first step 

that the user would take would display a saved image file of the tissue and all electrodes, 

stimulating and recording.  This file would have been created by the Data Acquisition 

software described above.  With the image displayed in the GUI the user could trace out a 

box around the tissue within which he would like to collect data from.  Once this bounding 

box was drawn, a grid of all the points that would be used for data collection or imposed over 

the image.  With all potential recording points displayed the user would need to decide which 

points should be excluded or recorded at a different level.  For example, if a point landed on 
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top of the stimulating electrode it would need to be excluded from the recording, since 

putting the recording electrode down on the stimulating electrode would damage both.  In 

this case the user would mark off the area which contained the stimulating electrodes with a 

box in which no recordings would be made.  A second condition existed that could 

potentially damage the recording electrode was also protected by the computer code.  This 

condition arose because cochlear tissue contains bone that could potentially damage the tip of 

the electrode.  The condition was controlled similarly to the problem of the stimulating 

electrodes.  Once the grid of all potential points was imposed the user would visually 

determine if any recording points would cause the recording electrode to contact bone.  Since 

every grid point was numbered, the user would input the number of any problem points into a 

text field which would mark the points as bone points.  During the recording routine any 

points designated as bone points would only drive the recording to electrode the surface of 

the tissue and not down into the tissue.  Figure 4.10 is a screenshot of the Matlab GUI used to 

accomplish these tasks.  In the image one can see the bounding box (green), No Zone (red 

box) and selected bone points (red points) as well as the 100 recording points.  

 33



 
Figure 4-10 Screenshot of electrode movement control GUI 

 
4.3.2  Data Collection and Stimulation Control Software 

The program used to control the stimulation and record electric potential was written 

in Microsoft Visual Basic (VB).  The program, named LockInAmp was constructed as an 

additional form to an already existing program written by Dr. Finley, called SurfacePotential.  

LockInAmp was added to SurfacePotential, because of SurfacePotential’s robust interface 

with the existing data acquisition card (DAC), that was used to convert the physiological 

data.  The DAC that was used for this project was a National Instruments (DAQCard-6062E, 

National Instruments Inc., Austin, TX, USA).  The stimulation frequency was controlled by 

an Agilent 33120A function generator (Agilent Technologies, Inc. Palo Alto, CA USA).  The 

LockInAmp program communicated with the function generator with the RS232 serial port 

of the computer.   
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Stimulation was produced through a current source constructed by Dr. Finley, while 

the frequency of the stimulation was controlled by the function generator.  The software was 

written to set the function generator to every frequency on the logarithmic scale between 30 

Hz and 100 kHz.  These frequencies included 30, 40, 60, 80, 100, 200, 300, 400, 600, 800, 

1000, 2000, 3000, 4000, 6000, 8000, 10000, 20000, 30000, 40000, 60000, 80000 and 

100000Hz.  All these values between these two frequencies were stored in a file which was 

read by the program and then passed to the function generator the change the stimulation 

frequency.   

 
Figure 4-11 Screenshot of recording software GUI 

 
At each frequency the software would perform two basic steps.  The first was to retrieve the 

position of the recording electrode which was written to a file by the Matlab code described 

below, and write this information to a final data file.  The second task was to monitor the 

lock-in amplifier till the readings had become stable at which point the program would record 

the values from the amplifier.  Stability was achieved once the reading on the lock-in 
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amplifier was unchanged for 0.5 seconds.  The values obtained from the lock-in amplifier, 

for magnitude and phase, were then written to the same data file as the coordinate positions.  

In this manner data files were created for each desired point in the field with the lock-in 

amplifier values at each frequency in the frequency range.   

Timing between the two programs was controlled by creation and deletion of named 

files, and the subsequent polling of the status of said files.  For example, once the data was 

recorded the VB code would create a file called “move.txt”, which would trigger the Matlab 

code to move the recording electrode to the next position.  Once the electrode had arrived at 

the next position the Matlab code would create a file named “ready.txt”, which would trigger 

the VB code to begin collecting data.  The “ready.txt” file would also contain the position of 

the electrode, which the VB code would read and combine with the collected data.   

 
  

4.3.3  Data Analysis Software 

 Due to the vast volume of data that was collected for each trial, custom software was 

written to handle the data automatically.  As trials were conducted the output values from the 

lock-in amplifier were read into the computer and written out to a tab delimitated matrix 

within a text file.  Each point within the grid pattern would create its own separate data file 

with a corresponding number to the one seen on the screen shot in Figure 4.8.  Each data file 

would contain the x-y-z coordinates of the recording electrode as well as the magnitude and 

phase values for all desired frequencies as recorded from the lock-in amplifier.   

All the analysis programs were written in Matlab because it allows for easy matrix 

manipulation and construction of contours maps with sparse matrices.  All programs were 

written to retrieve data from the saved text files, however each one differed in the output 
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display as well as working for a single point of frequency data or the entire grid.  The first 

program, singlepointbodeplot1.m, would create a bode plot on a log-log scale from data 

collected at a single point.  This program was used intensively during the testing phase of the 

tissue chamber in order to compare results with those obtained from the simple syringe setup.  

It was also widely used to determine the affect of stimulating and recording electrode depths.  

A second program, go_bodeplot1singlegraph.m, would expand the input capacity and display 

up to 10 Bode plots at a time.  This was used to ensure that data was consistent and to 

illuminate outlier data that was not an accurate representation of the true values in the bath.  

The final program, go_contourplot1.m, constructed a contour plot from data collect in the 

100 point grid pattern.  The contour plot was create by retrieving the magnitude data for each 

point in the grid that corresponded with one desired frequency.  In this manner as many 

contour plots could be created as there were stimulating frequencies.  This program was used 

extensively for final data analysis.  The contour plots displayed level of electrical potential at 

every recording point and draws equipotential lines which describe where the electrical 

potential declines and how fast it declines.   
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Chapter 5      RESULTS
 

 

5.1 Results from Simple Syringe Setup 

 Results from this section were used to test hardware and software capabilities as well 

as the characterization of test materials.  For this section the results were collected to text-

based files then analyzed within Microsoft excel.  Graphs displayed in this section are 

reflections of the gain of the system, additionally the phase, real and imaginary parts of the 

system were collected but not displayed in this section.   

 

5.1.1 Saline and Resistive Load Results 

Results presented in this section were all obtained using the simple syringe setup 

described in section 4.1.2.  The sample materials that were loaded in the 8cc syringe were cut 

using metal tubing of the same diameter as the syringe.  Unless denoted otherwise all 

samples were three centimeters in length.  Multiple slices of test material were pushed 

together to obtain the desired thickness.  With the material in the syringe, the two syringe 

plungers,with electrodes on the end, were pushed towards each other until both electrodes 

were fully in contact with the test material.  Tests denoted as ‘saline’ followed by a length, 

describe trials where the distance between the electrodes was the length noted, and saline 

filled the void between the electrodes.  The syringe was placed in the metal box to ensure 

consistent environmental factors and electrical shielding.  All testing was done at room 

 38



temperature.  After data collection, the syringe and electrodes were cleaned, with q-tips, soap 

and water, before subsequent trials with different test materials.   

The results presented in Figure 5.1 describe the behavior of the system to varying 

amount of saline within the syringe.  The data for all the plots, except the old saline, were 

obtained sequentially on the same day.  The ‘old saline’ had be recorded days prior with the 

same syringe, electrode and setup.   
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Figure 5-1 Results from pure saline in simple syringe 

  
Figure 5.2 presents the Bode plots describing the system with a couple of different 

materials inside the syringe.  All the results displayed were obtained on the same day with 

the same syringe and setup.  The data plot labeled ‘1 slice pot’ was obtained by inserting a 

single slice of a white potato, roughly 1 cm in length, into the syringe.  ‘Resistor in syringe’ 

described the data that was obtained by inserting a 100k resistor in the syringe and contacting 

the resistor with the electrode tipped plungers.   
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Figure 5-2 Additional results from the simple syringe setup 

 
 The data below in Figure 5.3 illustrates additional results, in the form of Bode plots, 

describing the system characteristics of the simple syringe with multiple materials within it.  

Data plots denoted as a material and saline describe trials in which a thin layer of saline was 

present on both sides of the material between the electrodes.  The data plots denoted simply 

by a material name are those with three centimeter pieces of material directly contacting the 

electrodes.  The data plot denoted as ‘resistor’ was obtained by directly connecting a resistor 

the BNC connectors of the box.  Consequently neither the syringe nor the electrode tipped 

plungers were used for this trial.   
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Figure 5-3 Results from alternate materials in the simple syringe setup 

 

5.2 Results from Tissue Bath Setup 

The results presented in this section were analyzed with Matlab software code 

described in section 4.2.3.  The description of the hardware setup followed in collecting the 

data presented in this section can be found in section 4.1.10.  As was the case in section 5.1 

the results below only depict the magnitude response of the system; the phase, real and 

imaginary data were collected but not analyzed.  All bode plots presented in this section are 

plotted as magnitude, as read off the lock-in amplifier, vs. frequency.  It should also be noted 

that all the slices used in acquiring the results presented were cut by hand with a razor, so the 

thickness of slices had the potential to vary.  However all slices were roughly 0.5 mm thick.   

 

5.2.1 Single Point Repeatability Test Results 

The sets of data presented in this section were both obtained while using the same 

protocol.  However between the times at which the two sets of data were obtained multiple 

changes to tissue bath setup were executed.  All three electrodes used by the head stage 

 41



amplifier were replaced and the gain setting on the amplifier was adjusted.  Between each of 

the trials the recording electrode was removed from the bath and then placed back into the 

bath at the same position.  During the trials no electrodes were moved or adjustments made 

to the hardware.  Figure 5.4 presents the data collected from the tissue bath before the 

changes in electrodes were made.  Figure 5.5 presents the data that was collected after the 

changes had been made.   
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Figure 5-4 Bode plot of repeatability test A 
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Figure 5-5 Bode Plot of repeatability test B 

 

5.2.2 Single Point Depth Dependency Test 

Results from this section were used to determine the effect caused by depth of 

electrode placement in multiple scenarios.  The data entitled ‘updown test’ was a series of 

trials in which the recording electrode and stimulating electrodes were set at heights either 

above the surface of the tissue slice or within the plane of the tissue slice.  In all these trials, 

holes were made in the slice for the stimulating electrodes, and the recording electrode was 

driven directly into the sample slice.  Determining the height at which the electrodes were 

above or below the surface of the slice was confirmed through visual inspection.  Duplication 

of the heights between tests was difficult, so the second set of trials entitle ‘depth tests’ were 

conducted in which the stimulating electrodes were stationary and recording electrode was 

solely moved.  The results that are presented below were obtained from two sample types.  

The tests that are denoted as ‘updown tests’ were all acquired from bologna slices, while the 
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depth tests that are presented were acquired from white potato slices.  ‘Depth tests’ were also 

made in bologna but are not presented as the same trends were reflected in the potato data.   

The ‘updown tests’ were all conducted in the same order; the first reading was made 

with all electrodes above the sample, then the recording electrode was moved into the plane 

of the sample, next the stimulating electrodes were moved into the plane of the sample and 

the final trial was conducted with the stimulating electrodes in the plane of the sample and 

the recording electrode above the sample.  Following this protocol allowed for the 

stimulating electrodes to be moved only once, this was ideal since they were manually 

controlled.  Figures 5.6 and 5.7 show two such trials with four graphs each.   
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Figure 5-6 Bode plot of up down test1 
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Figure 5-7 Bode plot of up down test 2 

 

The data displayed in Figure 5.8 was collected in the same manner as the data in 

Figures 5.6 and 5.7, but after the four trials were collected the sample slice was removed and 

two more recordings were made with out the sample in the bath.   
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Figure 5-8 Bode plot of up down test with no sample 

 

The variability inherent in the visual determination of electrode depth in the ‘updown 

tests’ led to the second method of testing the effect of electrode height.  The data that was 

collected from this method was entitled ‘depth test.’  For these runs the depth was precisely 

measured using the micromanipulation stage.  The titles given to each trial represent the 

distance the recording electrode has traveled from it fully retracted position.  Thus larger 

numbers mean that the recording electrode is further down in the bath.  In Figure 5.9, 5.10 

and 5.11 the top plane of the sample slice was roughly 26600 microns.  Figure 5.9 shows the 

resulting Bode plot when the recording electrode was driven directly into the sample, in this 

case it was a potato slice.  The stimulating electrodes were positioned in holes, roughly 1mm 

in diameter, made in the slice and were resting on the mesh lining.   
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Figure 5-9 Bode plot of depth test INTISSUE 

 

In comparison to Figure 5.9, the Bode plot seen in Figure 5.10 was created by driving 

the recording electrode into its own hole within the same potato slice.  The degree of overlap 

seen in Figure 5.10 was not noticed in bologna slices under the same protocol procedures.  

The protocol that was established for ‘depth tests’ collected an additional set of 

measurements directly after the measurements that were used to produce Figures 5.9 and 

5.10, in this final set of measurements the sample slice was removed and measurements were 

made at three sequential depths within the same vertical range as the previous measurements, 

as seen in Figure 5.11.   
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Figure 5-10   Bode plot of depth test IN HOLE 
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Figure 5-11 Bode plot of depth test without sample slice 
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5.2.3 One Hundred Point Grid Tests 

The results that are presented in this section demonstrate the feasibility of the 

approach taken to create field potential plots of the tissue bath and its contents.  The results 

from the previous two sections helped improve the process of recording from the tissue bath, 

however the final trials with actual cochlear tissue will be conducted under the protocol that 

produced the results in this section.  By combining hardware and software described in the 

previous chapter, an automated system collected the frequency dependent data needed to 

produce the Bode plots seen in the previous section for nearly all one hundred points.  As 

described in section 4.2.2 a ‘no zone’ around the stimulating electrodes was established 

which eliminated six data points.  Interpolation for these data points was found by averaging 

the two points vertically on either side of the missing point.  Two types of graphs were 

produced from the data collected.  The contour plots are 2D plots in which the lines represent 

equal valued areas.  The surface plot is a 3D plot representing the same data in a relief map 

manner.  Figures 5.12 and 5.13 are the contour and surface plots obtain by sampling the Bode 

plot at every point at 200 hertz.   
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Figure 5-12 Contour plot at 200 hertz 
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Figure 5-13 Surface plot at 200 hertz 
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The middle of the frequency range over which this data was collected is represented 

in Figures 5.14 and 5.15.  These Figures present the contour and surface plots of the data 

sampled at 2000 hertz.   
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Figure 5-14 Contour plot at 2000 hertz 
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Figure 5-15 Surface plot at 2000 hertz 

 
 
 

The high frequency data is represented in Figure 5.16 and 5.17, which are the contour 

and surface plots sampled at 80000 hertz.  Figure 5.18 is the screen shot from the Matlab 

GUI that controlled the electrode movement and displays the points at which data was 

collected in the tissue bath.   
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Figure 5-16 Contour plot at 80000 hertz 
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Figure 5-17 Surface plot at 80000 hertz 

 
 
 The contour and surface plots in figures 5-12 through 5-17 were all constructed by 

sampling the bode plots at each individual point.  Figures 5-18 through 5-20 present the Bode 

plots across thirty of the 100 points, in order to illustrate were the fluctuations seen in the 

contour and surface plots.  Figure 5-18 depicts the first ten points that were collect and are 

reflected at the top row on points on the contour plots.  Figure 5-19 depicts points twenty one 
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through 30, which correspond to the third row of point in the contour and surface plots.  This 

corresponds to the row in which the large mound can be found in the surface plots.  Figure 5-

20 depicts the last ten points of the scan, or the bottom row of the contour and surface plots.  

The overlapping of the Bode plots explains the flatness of the contour and surface plots on 

the bottom row.   
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Figure 5-18  Bode plot of first ten points of full scan 
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Figure 5-19  Bode plot of points 21-30 of full scan 
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Figure 5-20  Bode plot of points 91 through 100 of full scan 
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Figure 5-21 Screen shot of scanned slice 
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Chapter 6      DISCUSSION 
 
 

6.1 Proof of Setup Performance 

The goal of producing a tissue perfusion chamber and measuring the potential 

throughout was successfully accomplished.  The results described by Figures 5.12 through 

5.17 demonstrate the capability to produce the contour plots that could potentially describe 

the characteristics inherent in a tissue slice.  The time to acquire all one hundred points was 

roughly three hours.  During which time the fluid level in the bath was constant and did not 

have to be adjusted.  While the contour and surface plots obtained were not able to 

distinguish between points in the slice and out of the slice or in the hole, previous results 

attest to the system’s ability to accomplish such tasks.  For example, the bode plot in Figure 

5.8 clearly displayed a difference between the presence and lack of a sample slice, with the 

NOTISSUE curves clearly distinguishable from the rest.   Additionally, the difference 

between Figure 5.9 and 5.10 demonstrate that a noticeable difference can be identified 

between the recording tip in a hole and in the tissue, below a certain depth, which 

corresponded to the top plane of the tissue.  All these signs point to the conclusion that this 

approach ought to be able to characterize a material placed in the tissue chamber.   

Every point of data that has been collected has given insight into improvements that 

can be made to the system.  The repeatability test presented in Figure 5.4 clearly 

demonstrates the system’s ability to replicate results from one trial to another, but more 

importantly it demonstrated that the system was not perfectly stable.  As can be seen in the 
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dramatic change in ‘runC3’ indicating that a shift in magnitude occurred and then was 

constant for the remainder of the trials.  It was not discovered what caused the change but the 

results did inspire the addition of greater control over positioning of all electrodes.  All the 

‘updown tests’ that were conducted led to the conclusion that the height of the stimulating 

electrode played a small role in the determining the results that were obtained.  

Consequently, when the protocol for the ‘depth tests’ was designed the height of the 

stimulating was left constant and the focus was shifted to the recording electrode.  The first 

‘depth tests’ quickly demonstrated that the recording electrode that was being used was in 

fact damaged and was subsequently replaced.  Fluctuation between trials lead to the 

observation that movement of the reference electrode could greatly affect the results that 

were obtained, so the reference electrode was then firmly attached to the tissue chamber to 

avoid movement.  Step by step the process has been refined until a complete 100 point scan 

could be conducted with a complete belief that obtaining reliable results was achievable.   

The contour plots and surface plots displayed in the previous chapter are not what 

were expected, but when reviewed, these figures shine light on where the project needs to 

head in the future.  At the low frequencies we notice that the first 5 points of the scan, 

starting from the bottom right corner of figures 5-12 and 5-13, are abnormally high, 

indicating that the low frequency level signal was dropping off rapidly after these points.  It 

was noted in separate experiments that if the system was left alone at a low frequency for 

variable amounts of time the amplitude of the signal would fluctuate.  This can also be 

contributed to the milder hump in the middle of the surface plot, best seen in figures 5-15 and 

5-16, after the electrode had been removed from the bath to clear the stimulating electrode 

and the move back down to the bath.  Additionally, the mound that can be seen in the high 
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frequency surface plots can likely be contributed to an un-level sample slice.  It was noticed 

that when the recording electrode was moved at a constant height above the tissue it would 

snag on the tissue at the top left corner where the mound is located on the surface plot.  This 

observation correlated with the bode plot in Figure 5.9 would agree that the further the 

electrode is down in the tissue the higher the amplitude would be at higher frequencies.  It 

can be proposed that the results that prove that this approach ought to work also raise many 

issues that need to be resolved before it provides the desired results.   

6.2 Limitations of the Approach 

While there are still minor obstacles to be overcome, only two foreseeable limitations 

have yet to be explored.  The first is how long the flow rate and design of the tissue chamber 

will support a live tissue slice.  While the flow rate is within the window of ranges used by 

other researchers, the design of the chamber was completely unique.  The position of the inlet 

and outlet ports may or may not provide even distribution.  If it was discovered that the 

chamber could not maintain a tissue slice for a long enough period of time to make the 

necessary recording, it would not doom the research.  None of the hardware is specific to the 

chamber so a chamber redesign would not preclude the use of any of the hardware.   

The second limitation and most troubling is the effect of shunt resistance.  The 

trouble arises with the fact that current will follow the path of least resistance.  Consequently, 

the path along which the current travels needs to be understood.  Figure 6.1 presents an 

idealized circuit that can be used to understand the complications of shunt resistance.   
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Figure 6-1 Resistor simulation of tissue in bath 

 
Further testing will have to be completed to determine the amount of current that is 

picked up by the recording electrode is due to current passed through the tissue or current 

that is shunted through the saline around the tissue.  If the recording electrode is 

overwhelmed by shunted current, then information about the tissue slice will not be 

observed.  Such a situation would occur if, as seen in figure 6-1, the resistance of the tissue 

(Rt) was much greater than the surrounding fluid (Rf).  This question will have to be 

answered through many controlled experiments that can test the effect the bathing solution 

level has on the recording.  While the method that has been established may or may not be 

affected by shunt resistances, the method does provide an easy manner for detecting changes 

in magnitude of the desired signals.  Since the results are displayed with a contour plot or 

surface plot, the baseline signal is virtually eliminated so the only results that are observed 

are those variations from the baseline.  As a result the system does not have to be perfectly 

identical between experiments; as long as it is stable over one experiment, results from one 

experiment can be compared to another.   

6.3 Future Work 

The goal as stated in the introduction to characterize cochlear tissue slices is the 

pinnacle of this line of research.  In order to achieve this goal steps will have to be taken in a 
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coupled directions.  First, identifying and eliminating any sources of fluctuation in signal 

levels within a trial must be eliminated.  That is the first step to establishing a truly accurate 

baseline.  Secondly, more trials need to be conducted to determine the exact affect of holes 

within the samples.  Along these same lines, since cochlear tissue contains bone the system 

should be tested for its ability to make readings in or around bone and the specific effects 

bone might have on the field distributions.  More work will be necessary to determine and 

correct for the limitations described above.  Finally, testing needs to be done with the actual 

bathing solution that will be used with the cochlear slice to determine if the chamber and 

electrodes operate in the same manner as they have in saline. 
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Chapter 7      CONCLUSIONS 
 

 
This project has succeeded in developing a system for perfusing tissue slices and 

recording electrical potentials within the perfusing area.  Software was written that 

automated the collection process as well as the analysis.  While the ultimate goal of the 

research, characterizing a cochlear tissue slice, was not reached, the results that have been 

recorded have provided a wealth of knowledge for the progression towards that goal.  The 

problem of shunt resistance, which could previously only be hypothesized about, is nearly 

ready to be tested on a physical system, where real results can speak for themselves.  The 

system’s capabilities were demonstrated on a potato slice in an experiment that provided 

constant profusion for roughly three hours.  All results to date indicate that the system and 

process for producing the contour plots will provide informative results that may one day 

improve the effectiveness of cochlear implants.

 62



APPENDICES 
 

The following Appendices contain source code listings of MatLab and Visual Basic software 
developed by the author to facilitate data collection and data analysis.  These Appendices 
include: 
 
Appendix A:  MatLab code for controlling the movement of the recording electrode 
Appendix B:  Visual Basic code for recording and storing data 
Appendix C:  MatLab code for extracting data from text files 
Appendix D:  MatLab code for creating potential field plots 
Appendix E:  MatLab code for creating bode plots of collected data 
Appendix F:  Corel Draw files for tissue bath
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Appendix A:  MatLab code for controlling the movement of the recording electrode 
 
 
 This software controlled all the movement of the recording electrode.  It allowed the 
user to import an image of the tissue to be scanned and move the recording electrode to any 
spot in the image.  The code also worked in conjunction with the visual basic code in 
Appendix B to automatically record data from 100 points within the imported image.  With 
the imaged displayed the user is able to box off the area of interest and select the points 
within that area that the recording electrode can record from.  The code presented below must 
be opened in conjunction with a MatLab figure file which is the template for the GUI 
interface.   
 
function varargout = ZaberGui(varargin) 
% ZABERGUI M-file for ZaberGui.fig 
%      ZABERGUI, by itself, creates a new ZABERGUI or raises the existing 
%      singleton*. 
% 
%      H = ZABERGUI returns the handle to a new ZABERGUI or the handle to 
%      the existing singleton*. 
% 
%      ZABERGUI('CALLBACK',hObject,eventData,handles,...) calls the local 
%      function named CALLBACK in ZABERGUI.M with the given input arguments. 
% 
%      ZABERGUI('Property','Value',...) creates a new ZABERGUI or raises the 
%      existing singleton*.  Starting from the left, property value pairs are 
%      applied to the GUI before ZaberGui_OpeningFunction gets called.  An 
%      unrecognized property name or invalid value makes property application 
%      stop.  All inputs are passed to ZaberGui_OpeningFcn via varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 
 
% Copyright 2002-2003 The MathWorks, Inc. 
 
% Edit the above text to modify the response to help ZaberGui 
 
% Last Modified by GUIDE v2.5 10-Mar-2006 15:28:54 
 
% Begin initialization code - DO NOT EDIT 
%----------------global variable--------------------------------------- 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @ZaberGui_OpeningFcn, ... 
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                   'gui_OutputFcn',  @ZaberGui_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
 
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
 
 
% --- Executes just before ZaberGui is made visible.---------------------- 
function ZaberGui_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to ZaberGui (see VARARGIN) 
handles.axis_number = 1; 
 %start count for No Zone boxes 
% Choose default command line output for ZaberGui 
handles.output = hObject; 
 
% Update handles structure 
guidata(hObject, handles); 
 
% UIWAIT makes ZaberGui wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 
 
 
% --- Outputs from this function are returned to the command line.-------- 
function varargout = ZaberGui_OutputFcn(hObject, eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Get default command line output from handles structure 
varargout{1} = handles.output; 
 
 
% --- Executes on button press in pushbutton1.---------------------------- 
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%this button grab the desired picture and displays it on the axis 
function pushbutton1_Callback(hObject, eventdata, handles) 
set(hObject, 'Units', 'pixels'); 
imagefile = get(handles.edit4,'string'); 
handles.picture = imread(char(imagefile)); % Read the image file banner.jpg 
info = imfinfo(char(imagefile)); % Determine the size of the image file 
position = get(handles.axes1, 'Position'); 
 
%set(hObject, 'Position', [position(1:2) info.Width + 100  
%info.Height + 100]); 
axes(handles.axes1); 
image(handles.picture); 
handles.NoBoxCoordXmin = 0; %reset the NO ZONE box coordinates 
handles.NoBoxCoordXmax = 0; 
handles.NoBoxCoordYmin = 0; 
handles.NoBoxCoordYmax = 0; 
for i = 1:handles.axis_number-1 
    cla(handles.drawn_axis(i)) 
end 
set(handles.axes1, ... 
    'Visible', 'off', ... 
    'Units', 'pixels'); 
handles.boxnumber = 1; 
set(handles.edit6,'string','Double click on the tip of the probe, or single click and hit enter'); 
[handles.zprobex,handles.zprobey,p]=impixel 
text(handles.zprobex-3,handles.zprobey-1,'x','color','y'); % CCF mark the probe zero spot 
 
guidata(hObject,handles); 
guidata(gcbo,handles); 
set(handles.edit6,'string',''); 
% --- Executes on button press in pushbutton4.-------------------------- 
function pushbutton4_Callback(hObject, eventdata, handles) 
%subroutine to send all units home 
s1 = handles.current_port; 
 
home = 0; %this puts the stages at fully contracted position  
bytemovestagex = micro2byte(home); 
bytemovestagey = micro2byte(home); 
bytemoveZ = micro2byte(home); 
fwriteQx(s1,[1 20 bytemovestagex(3) bytemovestagex(4) bytemovestagex(5) 
bytemovestagex(6)],handles);  
fwriteQy(s1,[2 20 bytemovestagey(3) bytemovestagey(4) bytemovestagey(5) 
bytemovestagey(6)],handles);  
fwriteQz(s1,[3 20 bytemoveZ(3) bytemoveZ(4) bytemoveZ(5) bytemoveZ(6)],handles); 
while abs(str2num(get(handles.edit1,'string')))>0|abs(str2num(get(handles.edit2,'string')))>0 
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end 
 
set(handles.edit6,'string','Units are home'); 
% --- Executes on button press in pushbutton3.--------------------------- 
function pushbutton3_Callback(hObject, eventdata, handles) 
%subroutine to close the com port 
s1=handles.current_port; 
set(handles.edit6,'string','wait to close program'); 
%%%%%%%%%%%%%send stages home before shut down%%%%%%%%%%%%% 
pause(0.01);home = 0; %this puts the stages at home 
bytemovestagex = micro2byte(home); 
bytemovestagey = micro2byte(home); 
bytemoveZ = micro2byte(home); 
fwriteQx(s1,[1 20 bytemovestagex(3) bytemovestagex(4) bytemovestagex(5) 
bytemovestagex(6)],handles);  
fwriteQy(s1,[2 20 bytemovestagey(3) bytemovestagey(4) bytemovestagey(5) 
bytemovestagey(6)],handles);  
fwriteQz(s1,[3 20 bytemoveZ(3) bytemoveZ(4) bytemoveZ(5) bytemoveZ(6)],handles); 
while 
abs(str2num(get(handles.edit1,'string')))>0|abs(str2num(get(handles.edit2,'string')))>0|abs(str
2num(get(handles.edit5,'string')))>0 
     
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
M = [0 0 0]; 
M(1)= str2num(get(handles.edit1,'string')); 
M(2)= str2num(get(handles.edit2,'string')); 
M(3)= str2num(get(handles.edit5,'string')); 
 
csvwrite('ZaberGuilastPosition.txt',M); 
set(handles.edit6,'string','safe to close program'); 
guidata(hObject,handles) 
guidata(gcbo,handles); 
fclose(s1); 
delete(s1); 
clear s1; 
 
 
% --- Executes on button press in pushbutton2.--------------------------- 
function pushbutton2_Callback(hObject, eventdata, handles) 
%subroutine to open the com Port 
 
s1 = serial('com2', 'baudrate',9600); 
s1.BytesAvailableFcnMode = 'byte'; 
s1.BytesAvailableFcnCount = 6; 
s1.BytesAvailableFcn = {@datareturned,handles}; 
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fopen(s1); 
set(handles.edit6,'string','wait for communication to be established'); 
fwriteQx(s1,[0 2 0 0 0 0],handles); 
set(handles.edit6,'string','communication was established'); 
pause(2) 
M = csvread('ZaberguilastPosition.txt'); 
handles.lastXpos = M(1); 
handles.lastYpos = M(2); 
handles.lastZpos = M(3); 
bytemovestagex = micro2byte(M(1)); 
bytemovestagey = micro2byte(M(2)); 
bytemoveZ = micro2byte(M(3)); 
fwriteQx(s1,[1 45 bytemovestagex(3) bytemovestagex(4) bytemovestagex(5) 
bytemovestagex(6)],handles);  
fwriteQy(s1,[2 45 bytemovestagey(3) bytemovestagey(4) bytemovestagey(5) 
bytemovestagey(6)],handles);  
fwriteQz(s1,[3 45 bytemoveZ(3) bytemoveZ(4) bytemoveZ(5) bytemoveZ(6)],handles); 
set(handles.edit6,'string','Stage is ready'); 
handles.CONVERT = 17; 
handles.current_port = s1; 
%guidata(hObject,handles); 
guidata(gcbo,handles); 
 
%---------------------------------------------------------------------- 
%function that will scan the bytesavailable and trigger a callback when the  
%positioner sends back data of any kind 
function datareturned(s1, bytesavailable, handles) 
returneddata = fread(s1,6); 
%handles.returneddata = returneddata; 
if returneddata(2)==21|20|45; 
    currentposition = byte2micro(returneddata); 
    if returneddata(1) ==1; 
        set(handles.edit1,'string',num2str(currentposition)); 
    elseif returneddata(1)==2; 
        set(handles.edit2,'string',num2str(currentposition)); 
    else returneddata(1)==3; 
        set(handles.edit5,'string',num2str(currentposition)); 
    end 
elseif returneddata(2)==1; 
    currentposition = byte2micro(returneddata) 
    if returneddata(1) ==1; 
        set(handles.edit1,'string',num2str(currentposition)) 
    elseif returneddata(1)==2; 
        set(handles.edit2,'string',num2str(currentposition)) 
    elseif returneddata(1)==3; 
        set(handles.edit5,'string',num2str(currentposition)) 
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    end 
elseif returneddata(2)==60; 
    currentposition = byte2micro(returneddata); 
    if returneddata(1) ==1; 
        handles.lastXpos = currentposition; 
    elseif returneddata(1)==2; 
        handles.lastYpos = currentposition; 
    else returneddata(1)==3; 
        handles.lastZpos = currentposition; 
    end 
    guidata(gcbo,handles); 
end 
 
% -------------------------------------------------------------------- 
%converts data given in a microstep format to its byte equivalent 
function [movecommand]=micro2byte(position); 
movecommand = [0 0 0 0 0 0]; 
position= round(position *64 /6.35); 
if position < 0  
    position = 4294967296 + position; 
end 
movecommand(6) = floor(position/(256*256*256)); 
position = position- 256*256*256*movecommand(6); 
movecommand(5) = floor(position/(256*256)); 
position = position - 256*256*movecommand(5); 
movecommand(4) = floor(position /256); 
position = position - 256*movecommand(4); 
movecommand(3) = floor(position); 
movecommand; 
 
 
%converts data in the byte format into its microstep value--------------- 
function [microposition]= byte2micro(bytevalue); 
    if bytevalue(6) >127 %then value negative 
        microposition = -
4294967296+(256*256*256*bytevalue(6))+(256*256*bytevalue(5))+(256*bytevalue(4))+by
tevalue(3); 
    else 
        microposition = 
(256*256*256*bytevalue(6))+(256*256*bytevalue(5))+(256*bytevalue(4))+bytevalue(3); 
    end 
    microposition = microposition*6.35/64; 
     
% --- Executes on button press in pushbutton5.------------------------- 
function pushbutton5_Callback(hObject, eventdata, handles) 
%subroutine to controll the relative movement of the unit 
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% Stub for Callback of the uicontrol handles.pushbutton5. 
desired_position = str2num(get(handles.edit3,'string')); 
%%%%convert microposition to byte string%%%%%%%%%%% 
    position = desired_position; 
    movecommand = micro2byte(position); 
    Unitchoice = get(handles.popupmenu2, 'value'); 
    movecommand(1) = Unitchoice; %define which motor is moving 
    movecommand(2) = 21; %define if it is relative or absolute move 
s1 = handles.current_port; 
fwrite(s1,movecommand); 
guidata(gcbo,handles); 
 
% --------------------------------------------------------------------- 
function edit1_Callback(hObject, eventdata, handles) 
function edit2_Callback(hObject, eventdata, handles) 
function edit3_Callback(hObject, eventdata, handles) 
function popupmenu2_Callback(hObject, eventdata, handles) 
function edit4_Callback(hObject, eventdata, handles) 
function edit5_Callback(hObject, eventdata, handles) 
 
% --- boundary box button- set the boundary around whole slice------------ 
function pushbutton6_Callback(hObject, eventdata, handles) 
set(handles.edit6,'string','Single left click at top left point of desired entire slice area, move to 
bottom right and single left click'); 
clear xpoints;%reset parameters so most recent boundary will be used 
clear ypoints; 
[xpoints,ypoints] = rubberband('-anim','xor','-return','vectors') 
ypointstransformed = 480-ypoints; 
handles.xstart = xpoints(1); 
handles.ystart = 480-ypoints(1); 
handles.xstop = xpoints(2); 
handles.ystop = 480-ypoints(2); 
handles.drawn_axis(handles.axis_number)= gca; 
handles.axis_number = handles.axis_number +1; 
guidata(hObject,handles); 
guidata(gcbo,handles); 
set(handles.edit6,'string',''); 
if handles.zprobex >= handles.xstart  %CCF 
    msgbox('Notice: zprobex is >= to xstart for the box.  Pick the bounding box again'); 
end 
if handles.zprobey >= (480-handles.ystart)  %CCF 
    msgbox('Notice: zprobey is >= to ystart for the box.  Pick the bounding box again'); 
end 
 
% ---box out the area where you do not want to record-------------------- 
function pushbutton8_Callback(hObject, eventdata, handles) 
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set(handles.edit6,'string','Single left click at top left point of "no recording area", move to 
bottom right and single left click'); 
[xpoints,ypoints] = rubberband('-anim','xor','-return','vectors', '-color', 'g'); 
box_number = handles.boxnumber; 
handles.NoBoxCoordXmin(box_number) = xpoints(1); 
handles.NoBoxCoordXmax(box_number) = xpoints(2);%store the boxes into an array  
handles.NoBoxCoordYmin(box_number) = ypoints(2); 
handles.NoBoxCoordYmax(box_number) = ypoints(1); 
handles.drawn_axis(handles.axis_number)= gca; 
handles.axis_number = handles.axis_number +1; 
 
guidata(hObject,handles); 
guidata(gcbo,handles); 
handles.boxnumber = handles.boxnumber + 1; 
guidata(hObject,handles); 
guidata(gcbo,handles); 
set(handles.edit6,'string',''); 
%set condition so that electrode will not go down into bath 
 
 
% --- move function to move in a grid like manner------------------------ 
%the left,right, top and bottom boundaries are set by the boundary box 
%the routine will move the electrode to the top left corner and will mover 
%to the right till it hits it boundary then it will drop down and begin 
%moving left till it his the left boundary till and continue back and forth 
%and dropping till it passes the bottom boundary 
function pushbutton7_Callback(hObject, eventdata, handles) 
TissueBathPath = 'E:\ChrisDillon Thesis Data\ScanResults\'; %path that communicates to 
VB code 
currentpointx = handles.xstart;  
currentpointy = handles.ystart; 
s1 = handles.current_port; 
set(handles.edit6,'string',''); 
%move the stage so that the z-probe is in position of top left corner of 
%bouding box 
handles.Pixmovestagex = abs(handles.zprobex - currentpointx);%define how for in pixels the 
stage must move in xdir 
handles.Pixmovestagey = abs(handles.zprobey - currentpointy); %define how far in pixels 
the stage must move proper zprobe position 
%********************************************************************** 
 
Micromovestagex = (handles.Pixmovestagex*handles.CONVERT); 
Micromovestagey = (handles.Pixmovestagey*handles.CONVERT); 
%calculate the step size here 
    boxsize = (handles.xstop - handles.xstart)*handles.CONVERT; 
    handles.divisions = 9; %change this to change the step size 
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    Micronstepsize = boxsize/handles.divisions; 
    Pixelstepsize = (Micronstepsize/handles.CONVERT); 
%********************************************************************** 
 
Bytemovestagex = micro2byte(Micromovestagex); 
Bytemovestagey = micro2byte(Micromovestagey); 
Bytemovestagez = micro2byte(200); 
fwriteQx(s1,[1 21 Bytemovestagex(3) Bytemovestagex(4) Bytemovestagex(5) 
Bytemovestagex(6)],handles); 
fwriteQy(s1,[2 21 Bytemovestagey(3) Bytemovestagey(4) Bytemovestagey(5) 
Bytemovestagey(6)],handles); 
fwriteQz(s1,[3 21 Bytemovestagez(3) Bytemovestagez(4) Bytemovestagez(5) 
Bytemovestagez(6)],handles); 
text((currentpointx-3),(480-currentpointy),'x','color', 'r'); 
text((currentpointx-5),(480-currentpointy+7),'1','color','r','fontsize',8);%number the point 
set(handles.edit6,'string','Stage is ready'); 
while 
abs(str2num(get(handles.edit1,'string')))==0|abs(str2num(get(handles.edit2,'string')))==0 
    %waits till units move 
end 
yy= [str2num(get(handles.edit1,'string')) str2num(get(handles.edit2,'string'))]; 
dlmwrite(strcat(TissueBathPath, 'ready.txt'),yy,'precision','%.2f','newline','pc') 
pause(.01) 
while exist(strcat(TissueBathPath, 'start.txt'))==0 
    %do nothing until the start command is sent 
end 
delete(strcat(TissueBathPath, 'start.txt')); 
xdir = 'positive';%set the routing moving right to begin 
 
%wait for VB to make first recording and send first move 
while exist(strcat(TissueBathPath, 'move.txt'))==0 
    %hold the electrodes in place 
end 
%retract the z probe 
Bytemovestagez = micro2byte(-200); 
fwriteQz(s1,[3 21 Bytemovestagez(3) Bytemovestagez(4) Bytemovestagez(5) 
Bytemovestagez(6)],handles); 
pause(2) %give time for electrode to be retracted 
 
%loop to go through till whole grid is covered 
pause(0.01) 
whileloopcount = 1; 
while exist(strcat(TissueBathPath, 'finished.txt'))==0 
    if exist(strcat(TissueBathPath, 'move.txt')) == 2 & (currentpointy < handles.ystop); 
        delete((strcat(TissueBathPath, 'move.txt'))); 
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        if currentpointx <= handles.xstop - Pixelstepsize+2 & xdir=='positive';%moving to right 
but not at edge 
            a = (str2num(get(handles.edit1,'string'))); 
            movegridwise('positive','none',s1,handles); 
            while abs((str2num(get(handles.edit1,'string'))))==a 
                
            end 
            currentpointx = currentpointx + Pixelstepsize; 
            text((currentpointx-3),(480-currentpointy),'x','color', 'r'); 
            pause(.01) 
            if InNoZone(currentpointx,480-currentpointy,handles) == true 
                %do not move Z-controler down to bath 
                dlmwrite(strcat(TissueBathPath, 'ready.txt'),120);%tells VB that electrode is in No 
Zone 
                while exist(strcat(TissueBathPath, 'move.txt'))==0 
                    %wait till VB is ready for next position 
                end 
                pause(.1) 
                if currentpointx > handles.xstop-Pixelstepsize+2 &xdir=='positive'& currentpointy 
+ Pixelstepsize >handles.ystop;%at last point of recording 
                    set(handles.edit6,'string','Recording is done'); 
                    csvwrite(strcat(TissueBathPath, 'finished.txt'),0); 
                    csvwrite(strcat(TissueBathPath, 'ready.txt'),101);%send an additional ready for 
VB to finish 
                end 
            else 
                downstroke = micro2byte(200); 
                fwriteQz(s1,[3 21 downstroke(3) downstroke(4) downstroke(5) 
downstroke(6)],handles); 
                pause(2)%give time for electrode to desend into bath 
                yy = [str2num(get(handles.edit1,'string')) str2num(get(handles.edit2,'string'))]; 
                dlmwrite(strcat(TissueBathPath, 'ready.txt'),yy,'precision','%.2f','newline','pc'); 
                whileloopcount = whileloopcount +1;%count used to label the points 
                text((currentpointx-5),(480-
currentpointy+7),int2str(whileloopcount),'color','r','FontSize',8);%number the point 
                while exist(strcat(TissueBathPath, 'move.txt'))==0 
                    %VB is recording data from the tissue 
                end 
                %check to see if recording is done 
                if currentpointx > handles.xstop-Pixelstepsize+2 &xdir=='positive'& currentpointy 
+ Pixelstepsize >handles.ystop;%at last point of recording 
                    set(handles.edit6,'string','Recording is done'); 
                    csvwrite(strcat(TissueBathPath, 'finished.txt'),0); 
                    csvwrite(strcat(TissueBathPath, 'ready.txt'),101);%send an additional ready for 
VB to finish 
                end 
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                upstroke = micro2byte(-200); 
                fwriteQz(s1,[3 21 upstroke(3) upstroke(4) upstroke(5) upstroke(6)],handles); 
                pause(2);%so electrode is up before next move 
            end 
            
        elseif currentpointx > handles.xstop-Pixelstepsize+2 &xdir=='positive';%at right edge 
            b = (str2num(get(handles.edit2,'string'))); 
            movegridwise('none', 'positive',s1,handles); 
            while abs((str2num(get(handles.edit2,'string'))))==b; 
                
            end 
            currentpointy = currentpointy + Pixelstepsize; 
            text((currentpointx-3),(480-currentpointy),'x','color', 'r'); 
            pause(.01) 
            if InNoZone(currentpointx,480-currentpointy,handles) == true 
                %do not move Z-controler down to bath 
                dlmwrite(strcat(TissueBathPath, 'ready.txt'),120);%tells VB that electrode is in No 
Zone 
                while exist(strcat(TissueBathPath, 'move.txt'))==0 
                    %wait till VB is ready for next position 
                end 
                pause(.1) 
            else 
                downstroke = micro2byte(200); 
                fwriteQz(s1,[3 21 downstroke(3) downstroke(4) downstroke(5) 
downstroke(6)],handles); 
                pause(2) 
                yy = [str2num(get(handles.edit1,'string')) str2num(get(handles.edit2,'string'))]; 
                dlmwrite(strcat(TissueBathPath, 'ready.txt'),yy,'precision','%.2f','newline','pc') 
                whileloopcount = whileloopcount +1;%count used to label the points 
                text((currentpointx-5),(480-
currentpointy+7),int2str(whileloopcount),'color','r','FontSize',8);%number the point 
                while exist(strcat(TissueBathPath, 'move.txt'))==0 
                    %VB is recording data from the tissue 
                end 
                upstroke = micro2byte(-200); 
                fwriteQz(s1,[3 21 upstroke(3) upstroke(4) upstroke(5) upstroke(6)],handles); 
                pause(2);%so electrode is up before next move 
            end 
            xdir = 'negative'; 
 
        elseif currentpointx >=handles.xstart+Pixelstepsize-2 & xdir =='negative';%moving left 
but not at edge 
            c = (str2num(get(handles.edit1,'string'))); 
            movegridwise('negative','none',s1,handles); 
            while abs((str2num(get(handles.edit1,'string'))))==c; 
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            end 
            currentpointx = currentpointx-Pixelstepsize; 
            text((currentpointx-3),(480-currentpointy),'x','color', 'r'); 
            pause(.01) 
            if InNoZone(currentpointx,480 - currentpointy,handles) == true 
               %do not move Z-controler down to bath 
               dlmwrite(strcat(TissueBathPath, 'ready.txt'),120);%tells VB that electrode is in No 
Zone 
               while exist(strcat(TissueBathPath, 'move.txt'))==0 
                   %wait till VB is ready for next position 
               end 
               pause(.1) 
               if currentpointx > handles.xstop-Pixelstepsize+2 &xdir=='positive'& currentpointy 
+ Pixelstepsize >handles.ystop;%at last point of recording 
                   set(handles.edit6,'string','Recording is done'); 
                   csvwrite(strcat(TissueBathPath, 'finished.txt'),0); 
                   csvwrite(strcat(TissueBathPath, 'ready.txt'),101);%send an additional ready for 
VB to finish 
               end 
            else 
                downstroke = micro2byte(200); 
                fwriteQz(s1,[3 21 downstroke(3) downstroke(4) downstroke(5) 
downstroke(6)],handles); 
                pause(2) 
                yy = [str2num(get(handles.edit1,'string')) str2num(get(handles.edit2,'string'))]; 
                dlmwrite(strcat(TissueBathPath, 'ready.txt'),yy,'precision','%.2f','newline','pc') 
                whileloopcount = whileloopcount +1;%count used to label the points 
                text((currentpointx-5),(480-
currentpointy+7),int2str(whileloopcount),'color','r','FontSize',8);%number the point 
                while exist(strcat(TissueBathPath, 'move.txt'))==0 
                    %VB is recording data from the tissue 
                end 
                if currentpointx < handles.xstart +Pixelstepsize-2 & xdir =='negative' 
&currentpointy +Pixelstepsize > handles.ystop; 
                    csvwrite(strcat(TissueBathPath, 'finished.txt'),0); 
                    set(handles.edit6,'string','Recording is done'); 
                    csvwrite(strcat(TissueBathPath, 'ready.txt'),101);%send additional ready so that 
VB can finish 
                end 
                upstroke = micro2byte(-200); 
                fwriteQz(s1,[3 21 upstroke(3) upstroke(4) upstroke(5) upstroke(6)],handles); 
                pause(2);%so electrode is up before next move 
            end 
 
        elseif currentpointx < handles.xstart +Pixelstepsize & xdir =='negative' ;%at left edge 

 75



            d = (str2num(get(handles.edit2,'string'))); 
            movegridwise('none','positive',s1,handles); 
            while abs((str2num(get(handles.edit2,'string'))))==d 
                
            end 
            currentpointy = currentpointy + Pixelstepsize; 
            text((currentpointx-3),(480-currentpointy),'x','color', 'r'); 
            pause(.01) 
            if InNoZone(currentpointx,currentpointy,handles) == true 
                %do not move Z-controler down to bath 
                dlmwrite(strcat(TissueBathPath, 'ready.txt'),120);%tells VB that electrode is in No 
Zone 
                while exist(strcat(TissueBathPath, 'move.txt'))==0 
                    %wait till VB is ready for next position 
                end 
            pause(.1) 
            else 
                downstroke = micro2byte(200); 
                fwriteQz(s1,[3 21 downstroke(3) downstroke(4) downstroke(5) 
downstroke(6)],handles); 
                pause(2) 
                yy = [str2num(get(handles.edit1,'string')) str2num(get(handles.edit2,'string'))]; 
                dlmwrite(strcat(TissueBathPath, 'ready.txt'),yy,'precision','%.2f','newline','pc') 
                whileloopcount = whileloopcount +1;%count used to label the points 
                text((currentpointx-5),(480-
currentpointy+7),int2str(whileloopcount),'color','r','FontSize',8);%number the point 
                while exist(strcat(TissueBathPath, 'move.txt'))==0 
                    %VB is recording data from the tissue 
                end 
                upstroke = micro2byte(-200); 
                fwriteQz(s1,[3 21 upstroke(3) upstroke(4) upstroke(5) upstroke(6)],handles); 
                pause(2); %so electrode is up before movement to next spot 
            end 
            xdir = 'positive'; 
        end 
    elseif currentpointy > handles.ystop 
            csvwrite(strcat(TissueBathPath, 'finished.txt'),0); 
    end 
end 
 
%function that will move in a grid manner dempending on input 
function movegridwise(xdir, ydir,s1,handles) 
    %calculate the step size here 
    boxsize = ((handles.xstop - handles.xstart)*handles.CONVERT); 
     
    ustepsize = boxsize/handles.divisions; 
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    if (strcmp(xdir,'positive'))==1; 
        newcoord = micro2byte(ustepsize); 
        movecommand = [1 21 newcoord(3) newcoord(4) newcoord(5) newcoord(6)]; 
        fwriteQx(s1,movecommand,handles); 
    elseif (strcmp(xdir,'negative')) ==1; 
        newcoord = micro2byte(-ustepsize); 
        movecommand = [1 21 newcoord(3) newcoord(4) newcoord(5) newcoord(6)]; 
        fwriteQy(s1,movecommand,handles); 
    elseif (strcmp(ydir,'positive'))==1; 
        newcoord = micro2byte(ustepsize); 
        movecommand = [2 21 newcoord(3) newcoord(4) newcoord(5) newcoord(6)]; 
        fwriteQx(s1,movecommand,handles); 
    elseif (strcmp(ydir,'negative'))==1; 
        newcoord = micro2byte(-ustepsize); 
        movecommand = [2 21 newcoord(3) newcoord(4) newcoord(5) newcoord(6)]; 
        fwriteQy(s1,movecommand,handles); 
    end 
 
 %function to determine if the current point is within a no zone box 
 function [status]=InNoZone (currentx,currenty,handles); 
     for n=1:handles.boxnumber-1; 
         status = 0; 
         if (currentx > handles.NoBoxCoordXmin(n)) & 
(currentx<handles.NoBoxCoordXmax(n)) 
&(currenty>handles.NoBoxCoordYmin(n))&(currenty<handles.NoBoxCoordYmax(n)); 
             status = 1; 
         end 
     end 
%%%%%%%%%try/catch loops the write serial data to 
controls%%%%%%%%%%%%%%%%%%%%%%%%5  
function fwriteQx(s1,movecommand,handles) 
    try, 
        c=(str2num(get(handles.edit2,'string'))); 
        fwrite(s1,movecommand); 
        catch, 
            try, 
                pause(0.5) 
                cat = 0 
                if abs(str2num(get(handles.edit2,'string'))) ==c 
                    fwrite(s1,movecommand); 
                end 
            catch, 
                try, 
                    pause(0.5) 
                    cat = 1 
                    if abs(str2num(get(handles.edit2,'string'))) ==c 
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                        fwrite(s1,movecommand); 
                    end 
                catch 
                    try, 
                        pause(0.5) 
                        cat = 2 
                        if abs(str2num(get(handles.edit2,'string'))) ==c 
                            fwrite(s1,movecommand); 
                        end 
                    catch 
                        try, 
                            pause(0.5) 
                            cat = 3 
                            if abs(str2num(get(handles.edit2,'string'))) ==c 
                                fwrite(s1,movecommand); 
                            end 
                        catch 
                            try, 
                                pause(0.5) 
                                cat = 4 
                                if abs(str2num(get(handles.edit2,'string'))) ==c 
                                    fwrite(s1,movecommand); 
                                end 
                            catch 
                                pause(0.5) 
                                cat = 5 
                                if abs(str2num(get(handles.edit2,'string'))) ==c 
                                    fwrite(s1,movecommand); 
                                end 
                            end 
                        end 
                    end 
                end 
            end 
    end 
function fwriteQy(s1,movecommand,handles) 
    try, 
        d=(str2num(get(handles.edit3,'string'))); 
        fwrite(s1,movecommand); 
        catch, 
            try, 
                pause(0.5) 
                cat = 10 
                if abs(str2num(get(handles.edit3,'string'))) ==d 
                    fwrite(s1,movecommand); 
                end 
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            catch, 
                try, 
                    pause(0.5) 
                    cat = 11 
                    if abs(str2num(get(handles.edit3,'string'))) ==d 
                        fwrite(s1,movecommand); 
                    end 
                catch 
                    try, 
                        pause(0.5) 
                        cat = 12 
                        if abs(str2num(get(handles.edit3,'string'))) ==d 
                            fwrite(s1,movecommand); 
                        end 
                    catch 
                        try, 
                            pause(0.5) 
                            cat = 13 
                            if abs(str2num(get(handles.edit3,'string'))) ==d 
                                fwrite(s1,movecommand); 
                            end 
                        catch 
                            try, 
                                pause(0.5) 
                                cat = 14 
                                if abs(str2num(get(handles.edit3,'string'))) ==d 
                                    fwrite(s1,movecommand); 
                                end 
                            catch 
                                pause(0.5) 
                                cat = 15 
                                if abs(str2num(get(handles.edit3,'string'))) ==d 
                                    fwrite(s1,movecommand); 
                                end 
                            end 
                        end 
                    end 
                end 
            end 
    end     
  function fwriteQz(s1,movecommand,handles) 
    try, 
        e=(str2num(get(handles.edit5,'string'))); 
        fwrite(s1,movecommand); 
        catch, 
            try, 
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                pause(0.5) 
                cat = 20 
                if abs(str2num(get(handles.edit5,'string'))) ==e 
                    fwrite(s1,movecommand); 
                end 
            catch, 
                try, 
                    pause(0.5) 
                    cat = 21 
                    if abs(str2num(get(handles.edit5,'string'))) ==e 
                        fwrite(s1,movecommand); 
                    end 
                catch 
                    try, 
                        pause(0.5) 
                        cat = 22 
                        if abs(str2num(get(handles.edit5,'string'))) ==e 
                            fwrite(s1,movecommand); 
                        end 
                    catch 
                        try, 
                            pause(0.5) 
                            cat = 23 
                            if abs(str2num(get(handles.edit5,'string'))) ==e 
                                fwrite(s1,movecommand); 
                            end 
                        catch 
                            try, 
                                pause(0.5) 
                                cat = 24 
                                if abs(str2num(get(handles.edit5,'string'))) ==e 
                                    fwrite(s1,movecommand); 
                                end 
                            catch 
                                pause(0.5) 
                                cat = 25 
                                if abs(str2num(get(handles.edit5,'string'))) ==e 
                                    fwrite(s1,movecommand); 
                                end 
                            end 
                        end 
                    end 
                end 
            end 
    end    
%----------------Create function build by matlab gui guide-------------- 
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% --- Executes during object creation, after setting all properties.---- 
function edit1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
% --- Executes during object creation, after setting all properties.------- 
function edit4_CreateFcn(hObject, eventdata, handles) 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
% --- Executes during object creation, after setting all properties.------ 
function popupmenu2_CreateFcn(hObject, eventdata, handles) 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
% --- Executes during object creation, after setting all properties. 
function popupmenu1_CreateFcn(hObject, eventdata, handles) 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
% --- Executes during object creation, after setting all properties. 
function edit3_CreateFcn(hObject, eventdata, handles) 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
% --- Executes during object creation, after setting all properties.---- 
function edit2_CreateFcn(hObject, eventdata, handles) 
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if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
% --- Executes during object creation, after setting all properties. 
function edit5_CreateFcn(hObject, eventdata, handles) 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
function edit6_Callback(hObject, eventdata, handles) 
% hObject    handle to edit6 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of edit6 as text 
%        str2double(get(hObject,'String')) returns contents of edit6 as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function edit6_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit6 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
% --- Executes on button press in pushbutton10. 
function pushbutton10_Callback(hObject, eventdata, handles) 
s1=handles.current_port; 
set(hObject, 'Units', 'pixels');%use pixels values and not corrdinate values from the grid 
imagefile = get(handles.edit4,'string');%retreive picture file of the implant 
handles.picture = imread(char(imagefile)); % Read the image file banner.jpg 
info = imfinfo(char(imagefile)); % Determine the size of the image file 
position = get(handles.axes1, 'Position'); 
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axes(handles.axes1); 
image(handles.picture);%display the picture on the axes in the gui 
set(handles.axes1, ... 
    'Visible', 'off', ... 
    'Units', 'pixels'); 
handles.boxnumber = 1; 
set(handles.edit6,'string','Double click where you want the probe to go'); 
text(handles.zprobex-3,handles.zprobey-1,'x','color','y'); % CCF mark the probe zero spot 
[devicepointx,devicepointy,p]=impixel%displays a cursor on the screen to be used to select 
position of probe 
currentxpoint = abs(str2num(get(handles.edit1,'string')));%get the current position of the 
micro motors 
currentypoint = abs(str2num(get(handles.edit2,'string')));%get the current position of the 
micro motors 
PixelMoveStageX = ((devicepointx-handles.zprobex)*handles.CONVERT) - 
(currentxpoint)%subtract b/c the zero point on the micron scale is at the probe 
PixelMoveStageY = ((devicepointy-handles.zprobey)*handles.CONVERT) - 
(currentypoint)%subtract  b/c the zero point on the micron scale is at the probe  
ByteMoveStageX = micro2byte(PixelMoveStageX);%convert the micron measure to bytes to 
be sent to the stage 
ByteMoveStageY = micro2byte(PixelMoveStageY);%convert the micron measure to bytes to 
be sent to the stage 
text(devicepointx-3,( devicepointy)-1,'x','color','r'); 
fwriteQx(s1,[1 21 ByteMoveStageX(3) ByteMoveStageX(4) ByteMoveStageX(5) 
ByteMoveStageX(6)],handles); 
fwriteQy(s1,[2 21 ByteMoveStageY(3) ByteMoveStageY(4) ByteMoveStageY(5) 
ByteMoveStageY(6)],handles); 
while 
abs(str2num(get(handles.edit2,'string')))==currentxpoint|abs(str2num(get(handles.edit2,'strin
g')))==currentypoint 
                 
end  
set(handles.edit6,'string','correct alignment if nessecary'); 
guidata(hObject,handles); 
guidata(gcbo,handles);     
 
 
 
% % --- Button used to calibrate the pixel to micron conversion 
% function pushbutton11_Callback(hObject, eventdata, handles) 
% % note you must have the calibrate image showing on the gui screen before 
% % clicking on this button 
% set(handles.edit6,'string','Single left click at top of the top line, then click at the top of the 
bottom line'); 
% [xpoints,ypoints] = rubberband('-anim','xor','-return','vectors'); 
% box_number = handles.boxnumber; 
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% handles.NoBoxCoordXmin(box_number) = xpoints(1); 
% handles.NoBoxCoordXmax(box_number) = xpoints(2);%store the boxes into an array  
% handles.NoBoxCoordYmin(box_number) = ypoints(2); 
% handles.NoBoxCoordYmax(box_number) = ypoints(1); 
% handles.convert = abs(7500/(ypoints(2)-ypoints(1)))  %18.52 microns/pixel is found by 
5000 microns for nut size/pixels found using IMPIXEL 
% %conversion between pixels and microns 
% csvwrite('C:\VBMatlab\calibrate.txt',handles.convert); 
% handles.drawn_axis(handles.axis_number)= gca; 
% handles.axis_number = handles.axis_number +1; 
%  
% guidata(hObject,handles); 
% guidata(gcbo,handles); 
% handles.boxnumber = handles.boxnumber + 1; 
% guidata(hObject,handles); 
% guidata(gcbo,handles); 
% set(handles.edit6,'string',''); 
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Appendix B:  Visual Basic code for recording and storing data 
 
 
 The software was responsible for collecting the data from the lock-in amplifier and 
writing the data to text files that could be analyzed later.  The software allowed for two 
methods of recording data.  The “Auto Collect” option worked in conjunction with the 
MatLab code in Appendix A to collect data from 100 grid points.  The “Record over Freq 
Range” option records over the same frequency range as the “Auto Collect” option, however 
it only take the reading at one point and doesn’t interact with the MatLab code.  Thus the 
recording electrode must be placed by the user with the MatLab code before conducting a 
“Record over Freq Range.”   
 
Private Sub AutoColl_Click() 
'this routine collects data over the frequency range at each of 100 points 
'in a square grid controlled by Chris Dillon's "Zaber gui" written in matlab 
 
Dim FinishedFlg As Boolean 
    Dim ReadyFlg As Boolean 
    Dim TissueBathPath As String 
    Dim pathstrfinished As String 
    Dim pathstrready As String 
    Dim pathstrstart As String 
    Dim pathstrmove As String 
    Dim file_name1 As String 
    Dim DataFile As String 
    Dim startfile As TextStream 
    Dim readyfile As TextStream 
    Dim movefile As TextStream 
    Dim msgstr As String 
    Dim strCoordinates As String 
    Dim strX As String 
    Dim strY As String 
    Dim strZ As String 
    Dim commapos1 As Long 
    Dim commapos2 As Long 
    Dim Magnitude(35) As Double 
    Dim Phase(35) As Double 
    Dim MagCompare As String 
    Dim PhaseCompare As String 
    Dim RealPart(35) As Double 
    Dim ImagPart(35) As Double 
    Dim SendFreq As String 
    Dim FreqRange(35) As Double 
    Dim strMagnitude As String 
    Dim strPhase As String 
    Dim strRealPart As String 
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    Dim strImagPart As String 
    Dim PointCount As Integer 
    Dim response As Integer 
    Dim phaseA As Double 
    Dim MeterPhase(35) As Double 
    Dim expandadjust As Double 
     
    TissueBathPath = "E:\ChrisDillon Thesis Data\ScanResults" 
    pathstrready = TissueBathPath + "\ready.txt" 
    pathstrmove = TissueBathPath + "\move.txt" 
    pathstrstart = TissueBathPath + "\start.txt" 
    pathstrfinished = TissueBathPath + "\finished.txt" 
     
    'check for save folder creation 
    If Not Dir(TissueBathPath + "\" + Text2.Text + "\") = "" Then 
        'no need to do anything 
    Else 
         MkDir (TissueBathPath + "\" + Text2.Text + "\") 
    End If 
     
    FinishedFlg = False 
    ReadyFlg = False 
     
    'Clear Finished flag 
    If Not Dir(pathstrfinished) = "" Then 
        Kill (pathstrfinished) 
    End If 
         
    'Clear ready flag 
    If Not Dir(pathstrready) = "" Then 
        Kill (pathstrready) 
    End If 
     
    'Clear move flag 
    If Not Dir(pathstrmove) = "" Then 
        Kill (pathstrmove) 
    End If 
         
    'clear start flag 
    If Not Dir(pathstrstart) = "" Then 
        Kill (pathstrstart) 
    End If 
     
    'read the file with the frequency range values 
    file_name1 = TissueBathPath + "\FreqRange.txt" 
    Open file_name1 For Input As #1 
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    For k = 0 To (23 - 1) Step 1 
            Line Input #1, Value 
            FreqRange(k) = CDbl(Value) 
    Next k 
    Close 1 
     
     
     
'*******setup communication between the function generator*********** 
    Dim mgr As AgilentRMLib.SRMCls 
    Dim instrument As VisaComLib.FormattedIO488 
 
    Set mgr = New AgilentRMLib.SRMCls 
    Set instrument = New VisaComLib.FormattedIO488 
    Set instrument.IO = mgr.Open("ASRL1::INSTR") 
     
    Dim sfc As VisaComLib.ISerial 
    Set sfc = instrument.IO 
    sfc.BaudRate = 9600 
    sfc.FlowControl = ASRL_FLOW_DTR_DSR 
    instrument.IO.TerminationCharacter = 10 
    instrument.IO.TerminationCharacterEnabled = True 
'**********done setting up communication******************************* 
     
    MsgBox "ready to send initial start. Select OK when ready" 
     
    ' Send initial start 
    Open pathstrstart For Output As #55 
    Close #55 
     
    KeyDownFlg = False 
    strCoordinates = "" 
    PointCount = 0 
     
    While Not FinishedFlg 
        msg = "type the phase setting" + Chr(13) + "0 90 180 or 270" 'display phase selection 
        respond = InputBox(msg)   'prompt the user for the phase setting 
        calcphaseadjust respond, ztop, phaseA 
         
        'check for a key press 
        If KeyDownFlg Then 
            KeyDownFlg = False 
            Exit Sub 
        End If 
   
        'if probe is in NO Zone skip the recording 
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        Open pathstrready For Input As #55 
        Seek #55, 1 
        Do Until EOF(55) 
            Line Input #55, strNOZONEcheck 
        Loop 
        Close #55 
        ReadyFlg = True 
         
        If strNOZONEcheck = 120 Then 
            ScanStatus.Caption = "in NO ZONE" 
            PointCount = PointCount + 1 
            Pause (1) 
            'finish housekeeping and send the move command 
            While Not Dir(pathstrready) = "" 
                Kill (pathstrready) 
                ScanStatus.Caption = "ready kill" 
            Wend 
            Open pathstrmove For Output As #55 
            Close #55 
            ScanStatus.Caption = "move sent" 
            'wait for next ready flag to be sent 
            While Not ReadyFlg 
                If Not Dir(pathstrready) = "" Then 
                    ReadyFlg = True 
                    ScanStatus.Caption = "found ready" 
                End If 
            Wend 
            ReadyFlg = False 
        End If 
         
        If ReadyFlg Then 
            'do housekeeping first 
            ReadyFlg = False 
            Open pathstrready For Input As #55 
            ScanStatus.Caption = "ready open" 
            Input #55, strX, strY, strZ 
            Close #55 
         
        'start a counter to be used to name data files 
        PointCount = PointCount + 1 
         
        'write the header for the file that will contain the data 
        ScanStatus.Caption = PointCount 
        On Error Resume Next 
        DataFile = TissueBathPath + "\" + Text2.Text + "\" + Text1.Text + "_" + 
ScanStatus.Caption + ".txt" 
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        Open DataFile For Append As #3 
            Print #3, "X-coord"; Tab; strX; Tab; "Y-coord"; Tab; strY; Tab; "Z-coord"; Tab; strZ 
'write the coordinates at the top of data file 
            Print #3, "Freq"; Tab; "Magnitude"; Tab; "Phase"; Tab; "Real"; Tab; "Imag" 'writes 
header for data file 
        Close #3 
         expandadjust = 1 
        ' perform potential data collection now 
        ScanStatus.Caption = "Scanning"                     'tells the user the scan is running 
        For k = 0 To 22 Step 1 
             
             
            SendFreq = "frequency" + Str(FreqRange(k))      'set freq on function generator 
            instrument.WriteString SendFreq 
            Pause (0.5) 
            iStatus% = AI_VRead(1, 0, 1, Magnitude(k))      'read magnitude of lock in 
            iStatus% = AI_VRead(1, 1, 1, Phase(k))          'read phase from lock in 
            
            If Magnitude(k) < 0.11 Then 
                msg = "enter the expand adjust value x10 or x100" 
                expandadjust = InputBox(msg) 
            End If 
             
            MagCompare = 0 
            PhaseCompare = 0 
            While Abs(Abs(MagCompare) - Abs(Magnitude(k))) > (0.001 / expandadjust) Or 
Abs(Abs(PhaseCompare) - Abs(Phase(k))) > 0.05 
                Pause (0.6)        'makes the program not read data unless value is stable for 0.5 sec. 
                MagCompare = Magnitude(k) 
                iStatus% = AI_VRead(1, 0, 1, Magnitude(k))      'read magnitude of lock in 
                Magnitude(k) = (Magnitude(k) / expandadjust) 
                lADC0.Caption = Format(Magnitude(k), "#.####")  'store magnitude into array 
                PhaseCompare = lADC1.Caption 
                If MeterPhase(k) < -0.9 Or MeterPhase(k) > 0.9 Then 
                    msg = "type the phase setting" + Chr(13) + "0 90 180 or 270" 'display phase 
selection 
                    respond = InputBox(msg)   'prompt the user for the phase setting 
                    calcphaseadjust respond, ztop, phaseA 
                    iStatus% = AI_VRead(1, 1, 1, Phase(k))          'read phase from lock in 
                    MeterPhase(k) = Phase(k) 
                    Phase(k) = Phase(k) + phaseA 
                    lADC1.Caption = Format(Phase(k), "#.####")    'store phase into array 
                Else 
                    iStatus% = AI_VRead(1, 1, 1, Phase(k))          'read phase from lock in 
                    MeterPhase(k) = Phase(k) 
                    Phase(k) = Phase(k) + phaseA 
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                    lADC1.Caption = Format(Phase(k), "#.####")    'store phase into array 
                End If 
            Wend 
'            iStatus% = AI_VRead(1, 0, 1, Magnitude(k)) 
'            lADC0.Caption = "ADC 0 Voltage =" + Format(dRefVoltage, "#.####") 
'            iStatus% = AI_VRead(1, 1, 1, Phase(k)) 
'            lADC1.Caption = "ADC 1 Voltage =" + Format(dRefVoltage, "#.####") 
            RealPart(k) = Magnitude(k) * Cos(Phase(k)) 
            ImagPart(k) = Magnitude(k) * Sin(Phase(k)) 
            strMagnitude = Format(Magnitude(k), "#.######") 
            strPhase = Format(Phase(k), "#.######") 
            strRealPart = Format(RealPart(k), "#.######") 
            strImagPart = Format(ImagPart(k), "#.######") 
         
        ScanStatus.Caption = PointCount 
        Open DataFile For Append As #3 
            Print #3, FreqRange(k); Tab; strMagnitude; Tab; strPhase; Tab; strRealPart; Tab; 
strImagPart; Tab; respond 'write all data to a file 
        Close #3 
        Next k 
     
        ScanStatus.Caption = "Single Point Scan is Done" 
        'finish housekeeping and send the move command 
        While Not Dir(pathstrready) = "" 
            Kill (pathstrready) 
            ScanStatus.Caption = "ready kill" 
        Wend 
        Open pathstrmove For Output As #55 
        Close #55 
            ScanStatus.Caption = "move sent" 
        'check for Readyflg and process if set, else loop 
        While Not ReadyFlg 
            If Not Dir(pathstrready) = "" Then 
                ReadyFlg = True 
                ScanStatus.Caption = "found ready" 
            End If 
        Wend 
        Open pathstrready For Input As #55 
        Seek #55, 1 
        Do Until EOF(55) 
            Line Input #55, strNOZONEcheck 
        Loop 
        Close #55 
    End If 
    While Not ReadyFlg 
        If Not Dir(pathstrready) = "" Then 
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            ReadyFlg = True 
            ScanStatus.Caption = "found ready" 
        End If 
    Wend 
    'step the frequncy back down to 30Hz 
    SendFreq = "frequency" + Str(30) 
    instrument.WriteString SendFreq 
    Pause (0.5) 
    msg = "Reset all setting on lock-in!!" 
    expandadjust = MsgBox(msg, vbOKOnly) 
    'check for FinishedFlg and exit if set (via while loop check) 
    If Not Dir(pathstrfinished) = "" Then 
        FinishedFlg = True 
        ScanStatus.Caption = "Recording Done" 
    End If 
Wend 
     
    MsgBox "finished data collection" 
End Sub 
 
Private Sub cmdReadADC0_Click() 
    Dim dRefVoltage As Double 
    iStatus% = AI_VRead(1, 0, 1, dRefVoltage) 
    lADC0.Caption = "ADC 0 Voltage =" + Format(dRefVoltage, "#.####") 
End Sub 
 
Private Sub cmdReadADC1_Click() 
    Dim dRefVoltage As Double 
    iStatus% = AI_VRead(1, 1, 1, dRefVoltage) 
    lADC1.Caption = "ADC 1 Voltage =" + Format(dRefVoltage, "#.####") 
End Sub 
 
Private Sub Command1_Click() 
    Dim FreqRange(35) As Double 
    Dim DVMRange(35) As Double 
    Dim file_name1 As String 
    Dim file_name2 As String 
    Dim Magnitude(35) As Double 
    Dim Phase(35) As Double 
    Dim DataFile As String 
    Dim folderpath As String 
    Dim RealPart(35) As Double 
    Dim ImagPart(35) As Double 
    Dim SendFreq As String 
    Dim strMagnitude As String 
    Dim strPhase As String 
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    Dim strRealPart As String 
    Dim strImagPart As String 
    Dim PointCount As Integer 
    Dim MagCompare As Double 
    Dim PhaseCompare As Double 
    Dim msg As String 
    Dim respond As Double 
    Dim phaseA As Double 
    Dim MeterPhase(35) As Double 
    Dim ztop As Integer 
    Dim expandadjust As Double 
     
    folderpath = "E:\ChrisDillon Thesis Data\SinglePointResults\" 
    file_name1 = folderpath + "FreqRange.txt" 
    'check for save folder creating 
    If Not Dir(folderpath + Text2.Text + "\") = "" Then 
        'no need to do anything 
    Else 
         MkDir (folderpath + Text2.Text + "\") 
    End If 
     
'*******setup communication between the function generator*********** 
    Dim mgr As AgilentRMLib.SRMCls 
    Dim instrument As VisaComLib.FormattedIO488 
 
    Set mgr = New AgilentRMLib.SRMCls 
    Set instrument = New VisaComLib.FormattedIO488 
    Set instrument.IO = mgr.Open("ASRL1::INSTR") 
     
    Dim sfc As VisaComLib.ISerial 
    Set sfc = instrument.IO 
    sfc.BaudRate = 9600 
    sfc.FlowControl = ASRL_FLOW_DTR_DSR 
    instrument.IO.TerminationCharacter = 10 
    instrument.IO.TerminationCharacterEnabled = True 
'**********done setting up communication******************************* 
    instrument.WriteString "frequency" + Str(30) 
    msg = "type the phase setting" + Chr(13) + "0 90 180 or 270" 'display phase selection 
    respond = InputBox(msg)   'prompt the user for the phase setting 
    calcphaseadjust respond, ztop, phaseA 
 
    Open file_name1 For Input As #1 
    For k = 0 To (35 - 1) Step 1 
            Line Input #1, Value 
            FreqRange(k) = CDbl(Value) 
    Next k 
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    Close 1 
    DataFile = folderpath + Text2.Text + "\" + Text1.Text + ".txt" 
    Open DataFile For Append As #3 
        Print #3, "Freq"; Tab; "Magnitude"; Tab; "Phase"; Tab; "Real"; Tab; "Imag" 'writes 
header for data file 
    Close #3 
    expandadjust = 1        'set the expand adjust variable to 1 
     
    ScanStatus.Caption = "Scanning"                     'tells the user the scan is running 
    For k = 0 To 34 Step 1 
        SendFreq = "frequency" + Str(FreqRange(k))      'set freq on function generator 
        instrument.WriteString SendFreq 
        Pause (0.5)   'give time to reading to move from last point 
        iStatus% = AI_VRead(1, 0, 1, Magnitude(k))      'read magnitude of lock in 
        iStatus% = AI_VRead(1, 1, 1, Phase(k))          'read phase from lock in 
        If Magnitude(k) < 0.11 Then 
            msg = "enter the expand adjust value x10 or x100" 
            expandadjust = InputBox(msg) 
        End If 
        MagCompare = 0 
        PhaseCompare = 0 
        While Abs(Abs(MagCompare) - Abs(Magnitude(k))) > (0.001 / expandadjust) Or 
Abs(Abs(PhaseCompare) - Abs(Phase(k))) > 0.05 
            Pause (0.6)       'makes the program not read data unless value is stable for 0.5 sec. 
            MagCompare = Magnitude(k) 
            iStatus% = AI_VRead(1, 0, 1, Magnitude(k))      'read magnitude of lock in 
            Magnitude(k) = Magnitude(k) / expandadjust 
            lADC0.Caption = Format(Magnitude(k), "#.####")  'store magnitude into array 
            PhaseCompare = Phase(k) 
            If MeterPhase(k) < -0.9 Or MeterPhase(k) > 0.9 Then 
                    msg = "type the phase setting" + Chr(13) + "0 90 180 or 270" 'display phase 
selection 
                    respond = InputBox(msg)   'prompt the user for the phase setting 
                    calcphaseadjust respond, ztop, phaseA 
                    iStatus% = AI_VRead(1, 1, 1, Phase(k))          'read phase from lock in 
                    MeterPhase(k) = Phase(k) 
                    Phase(k) = Phase(k) + phaseA 
                    lADC1.Caption = Format(Phase(k), "#.####")    'store phase into array 
            Else 
                iStatus% = AI_VRead(1, 1, 1, Phase(k))          'read phase from lock in 
                MeterPhase(k) = Phase(k) 
                Phase(k) = Phase(k) + phaseA 
                lADC1.Caption = Format(Phase(k), "#.####")    'store phase into array 
            End If 
        Wend 
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        RealPart(k) = Magnitude(k) * Cos(Phase(k)) 
        ImagPart(k) = Magnitude(k) * Sin(Phase(k)) 
        strMagnitude = Format(Magnitude(k), "#.######") 
        strPhase = Format(Phase(k), "#.######") 
        strRealPart = Format(RealPart(k), "#.######") 
        strImagPart = Format(ImagPart(k), "#.######") 
                 
    Open DataFile For Append As #3 
        Print #3, FreqRange(k); Tab; strMagnitude; Tab; strPhase; Tab; strRealPart; Tab; 
strImagPart; Tab; respond 'write all data to a file 
    Close #3 
     
     
    Next k 
    ScanStatus.Caption = "Scan is Done" 
     
            
     
End Sub 
 
Public Sub calcphaseadjust(response, zztop, phaseadjust As Double) 'subroutine to decide the 
'the amount of ajustment to make to the reading depending on phase dial setting 
    If response = 270 Then 
        phaseadjust = -0.9 
        zztop = 1 
        ElseIf response = 90 Then 
        phaseadjust = 0.9 
        zztop = 2 
        ElseIf response = 180 And zztop = 1 Then 
        phaseadjust = -1.8 
        ElseIf response = 180 And zztop = 2 Then 
        phaseadjust = 1.8 
        Else 
        phaseadjust = 0 
    End If 
         
         
 
End Sub 
 
Private Sub Command3_Click() 
    Dim DesiredFreq As String 
    DesiredFreq = txtAO0Value.Text 
'*******setup communication between the function generator*********** 
    Dim mgr As AgilentRMLib.SRMCls 
    Dim instrument As VisaComLib.FormattedIO488 
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    Set mgr = New AgilentRMLib.SRMCls 
    Set instrument = New VisaComLib.FormattedIO488 
    Set instrument.IO = mgr.Open("ASRL1::INSTR") 
     
    Dim sfc As VisaComLib.ISerial 
    Set sfc = instrument.IO 
    sfc.BaudRate = 9600 
    sfc.FlowControl = ASRL_FLOW_DTR_DSR 
    instrument.IO.TerminationCharacter = 10 
    instrument.IO.TerminationCharacterEnabled = True 
'**********done setting up communication******************************* 
  DesiredFreq = "frequency " + DesiredFreq 
   instrument.WriteString DesiredFreq 
    
     
End Sub 
 
Public Sub Pause(NbSec As Single) 
 Dim Finish As Single 
 Finish = Timer + NbSec 
 DoEvents 
 Do Until Timer >= Finish 
 Loop 
 End Sub 
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Appendix C:  MatLab code for extracting data from text-based data storage files 
 
 
 The following two programs were written to retrieve the data that were collected and 
written by the Visual Basic code in Appendix B.  The first program, getbathdata1.m, reads 
the text files and stores the data in the text file into one large MatLab matrix.  The second 
program, get_all_mag_data1.m, reads the magnitude data from the matrix created by 
getbathdata1.m.  It then creates 2 n-by-n matrices; one for the x coordinate values and one for 
the y coordinate values.  The magnitude data is put into its own matrix to be retrieved in a 
subsequent program.   
 
PROGRAM 1: 
function [x,y,z,d] = getbathdata1(filename) 
%  retrieve x,y,z and measurement data for all freqs from a single specified file 
% 
format long 
fid = fopen(filename); 
a = fgets(fid); 
b = sscanf(a,'%*s%f%*s%f%*s%f'); 
x = b(1); 
y = b(2); 
z = b(3); 
a = fgets(fid); 
d = []; 
for i=1:35 
 
    tline = fgets(fid); 
    if ~ischar(tline) 
        fclose(fid); 
        break 
    end 
    c = sscanf(tline,'%f%f%f%f%f%f',[6 inf]); 
    d = [d c]; 
 
end 
d= d'; 
% x_data = d(:,1); 
% y_data = d(:,2); 
% figure; 
% loglog(x_data,y_data); 
% tstring = strcat('Bode plot:', filename); 
% title(tstring); 
 
% figure; 
% % mesh(X,Y,Z);  % for a mesh plot 
% contour(X,Y,Z,35) % for a contour plot 
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% axis tight;  
% hold on 
% plot3(x,y,z,'.','MarkerSize',15) % nonuniform 
% xlabel('x'); 
% ylabel('y'); 
% zlabel('z'); 
 
 
PROGRAM 2: 
function [X,Y,Z,D] = get_all_mag_data1(root,first,last) 
%example call:   
%get_all_mag_data1('C:\ChrisDillon ThesisData\ScanResults\6_8_06\fulltest_',1,10) 
X = []'; 
Y = []'; 
Z = []'; 
D = []'; 
columncount = 1; 
rowcount = 1; 
fillcolumndirection = 1;  %1 = down  0=up 
for i=first:last 
    istr = num2str(i); 
    filenamestr = strcat(root,istr,'.txt'); 
    if fopen(filenamestr)> -1 
        [x,y,z,d] = getbathdata1(filenamestr); 
        X(rowcount,columncount) = x; 
        Y(rowcount,columncount) = y; 
        Z(rowcount,columncount) = z; 
        [row col] = size(d); 
        irow = linspace(i,i,row); 
        icol = irow'; 
        id = [icol d]; 
        D = [D id]; 
    else  
        X(rowcount,columncount) = 0; 
        Y(rowcount,columncount) = 0; 
        Z(rowcount,columncount) = 0; 
        [row col] = size(d); 
        irow = linspace(i,i,row); 
        icol = irow'; 
        id = [icol (d.*0)]; 
        D = [D id]; 
    end 
    %determine if column fill is up or down and direct next fill according 
    if fillcolumndirection ==1 
        rowcount = rowcount+1; 
    else 
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        rowcount = rowcount-1; 
    end 
    %determine if filling is at bottom or top of column and move over 1 
    if i/5 == ceil(i/5) & fillcolumndirection ==1 
        columncount = columncount+1; 
        rowcount = 5;  %this needs to be changed with the # of grid points 
        fillcolumndirection = 0; 
    elseif i/5 == ceil(i/5) & fillcolumndirection ==0  
        columncount = columncount+1; 
        rowcount = 1; 
        fillcolumndirection = 1; 
    end 
 
end 
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Appendix D:  MatLab code for creating potential field plots 
 
 This software, go_contourplot1.m, is higher level code which calls on both programs 
in Appendix C.  The user specifies the frequency of interest and the program will compute a 
contour plot based on the magnitude date at the desired frequency at all 100 points.  The 
program reads the magnitude data from the matrix created by the program 
get_all_mag_data1.m and creates an n-by-n matrix where each magnitude value is in the 
same position as its x and y coordinate values in their respective matrices.   
 
function go_contourplot1(rootfile,first,last,freq) 
% go_contourplot1.m 
% plot a contour map of a set of data collected from Chris' bath for a single test frequency 
%   'first' is the beginning file number 
%   'last' is the final file number 
%   'rootfile' is the basic name for the experimental run 
%   'freq' is the test frequency in Hz to display 
% 
%first = 1; 
%last = 11; 
%rootfile = 'test2_'; 
%freq = 40; 
 
% go collect all of the data for the files 
[X,Y,Z,D] = get_all_mag_data1(rootfile,first,last); 
X 
Y 
 
% now begin the plotting process 
 
% first select the appropriate index for the desired test frequency 
 
switch freq 
case 30 
    k = 1; 
case 40 
    k = 2; 
case 50 
    k = 3; 
case 60 
    k = 4; 
case 70 
    k = 5; 
case 80 
    k = 6; 
case 90 
    k = 7; 
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case 100 
    k = 8; 
case 200 
    k = 9; 
case 300 
    k = 10; 
case 400 
    k = 11; 
case 500 
    k = 12; 
case 600 
    k = 13; 
case 700 
    k = 14; 
case 800 
    k = 15; 
case 900 
    k = 16; 
case 1000 
    k = 17; 
case 2000 
    k = 18; 
case 3000 
    k = 19; 
case 4000 
    k = 20; 
case 5000 
    k = 21; 
case 6000 
    k = 22; 
case 7000 
    k = 23; 
case 8000 
    k = 24; 
case 9000 
    k = 25; 
case 10000 
    k = 26; 
case 20000 
    k = 27; 
case 30000 
    k = 28; 
case 40000 
    k = 29; 
case 50000 
    k = 30; 
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case 60000 
    k = 31; 
case 70000 
    k = 32; 
case 80000 
    k = 33; 
case 90000 
    k = 34; 
case 100000 
    k = 35; 
otherwise 
    echo ' error in freq specification; check code listing' 
end 
 
DAT = []; 
columncount = 1; 
rowcount = 1; 
fillcolumndirection = 1;  %1= down   0= up 
for m=first:last 
    q = 1;  %  q = 1, 2, 3 or 4 for magnitude, phase, real or imag 
    colptr = (7*(m-1))+(2+q); 
    DAT(rowcount,columncount) =  D(k,colptr); 
%determine if column fill is up or down and direct next fill according 
    if fillcolumndirection ==1 
        rowcount = rowcount+1; 
    else 
        rowcount = rowcount-1; 
    end 
 %determine if filling is at bottom or top of column and move over 1 
    if m/5 == ceil(m/5) & fillcolumndirection ==1 
        columncount = columncount+1; 
        rowcount = 5;  %this needs to be changed with the # of grid points 
        fillcolumndirection = 0; 
    elseif m/5 == ceil(m/5) & fillcolumndirection ==0  
        columncount = columncount+1; 
        rowcount = 1; 
        fillcolumndirection = 1; 
    end 
    
end 
 
DAT(1,3) = 0.734863; 
DAT(4,3) = 0.734863; 
DAT(5,3) = 0.734863 
size(X); 
size(Y); 
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size(DAT); 
 
% now do contour plot 
%  test data to test contour plotting ==>  [X,Y,DAT] = PEAKS; 
contour(X,Y,DAT); 
%pause; 
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Appendix E:  MatLab code for creating bode plots of collected data 
 
 

 These programs allow the user to visualize the bode plots of up to ten points at once.  
The first program, go_bodeplot1.m, creates as many subplots as indicated by the user.  It 
calls on the lower program, bodeplot1.m, to retrieve the data from the text file.  These 
programs allowed the user to quickly determine if any of the 100 scanned points produced 
inconsistent with the general trends of the bode plot.   
 
PROGRAM 1:   
% plot the magnitude data in bode format 
function go_bodeplot1(root,first,last) 
for i=first:last 
    istr = num2str(i); 
    filenamestr = strcat(root,istr,'.txt'); 
    if exist(filenamestr)==2 
        if (last/2) == floor(last/2) 
            subplot(ceil((last-first)/2),2, i-(first-1)); 
            bodeplot1(filenamestr); 
            tstring = strcat('Bode plot:',num2str(i)); 
            title(tstring) 
        else 
            subplot(ceil((last-first)/2)+1,2, i-(first-1)); 
            bodeplot1(filenamestr); 
            tstring = strcat('Bode plot:',num2str(i)); 
            title(tstring) 
        end 
    else 
        %don't plot 
     
    end 
end 
 
 
PROGRAM 2:   
function bodeplot1(filename) 
%  produce a bode plot of the magnitude data in the specified file 
%       the plot is loglog mag vs. freq 
%   phase is not plotted in the present version 
% 
format long 
fid = fopen(filename); 
a = fgets(fid); 
b = sscanf(a,'%*s%f%*s%f%*s%f'); 
x = b(1); 
y = b(2); 
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z = b(3); 
a = fgets(fid); 
d = []; 
%for i=1:34 
%    a = fgets(fid); 
while 1 
    tline = fgetl(fid); 
    if ~ischar(tline) 
        fclose(fid); 
        break 
    end 
    c = sscanf(tline,'%f%f%f%f%f',[5 inf]); 
    d = [d c]; 
end 
 
d= d'; 
f_data = d(:,1); 
mag_data = d(:,2); 
%mag_data = 20*log(mag_data/.1); 
%figure; 
loglog(f_data,mag_data); 
%tstring = strcat('Bode plot:', filename); 
%title(tstring); 
end 
% figure; 
% % mesh(X,Y,Z);  % for a mesh plot 
% contour(X,Y,Z,35) % for a contour plot 
% axis tight;  
% hold on 
% plot3(x,y,z,'.','MarkerSize',15) % nonuniform 
% xlabel('x'); 
% ylabel('y'); 
% zlabel('z'); 
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Appendix F:  Corel Draw files for tissue bath 
 
The images below were created in Corel Draw for the fabrication of the acrylic pieces that 
were used to make the tissue bath.  The pieces labeled thick pieces were cut from 3mm thick 
pieces of acrylic.  The pieces labeled thin pieces were cut from 1.5 mm thick pieces of 
acrylic.  Components were directly machined from cast acrylic sheets of the desired thickness 
using a Universal Laser Systems x660 dual-laser 120W CO2 laser engraving and machining 
system. 

 
Thin Parts: 

 

 
 

Thick Parts: 
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