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ABSTRACT 
 
MATILDA WRAY NICHOLAS: A Unique Memory B Cell Subset Correlates with Adverse 

Outcomes in Human SLE 
(Under the direction of Stephen H. Clarke) 

 

Systemic lupus erythematosus (SLE) is a devastating systemic autoimmune disease 

marked by the production of antinuclear autoantibodies whose etiology has both genetic and 

environmental components.  We and others have shown that CD19, a positive regulator of B 

cell receptor (BCR) signaling, is ~20% decreased on peripheral blood (PB) naïve B cells in 

>95% of SLE patients (Pts).  We have also identified an expanded subpopulation of IgG+ 

memory B cells in 25-35% of SLE Pts that display a 2-4 fold increase in CD19 expression 

(CD19hi).  SLE Pts with an expanded CD19hi population (CD19hi Pts) have a unique pattern 

of autoantibody production and increased adverse clinical outcomes, particularly end stage 

renal disease and neurological complications. CD19hi B cells have an activated phenotype, 

and sequencing analysis shows they are somatically hypermutated and antigen selected. Our 

data indicate they are most likely in G1 phase of the cell cycle and are in the early stages of 

differentiation to plasma cells. 

CD19hi cells also have a ~3 fold increase in basal levels of phosphorylated Syk 

(pSyk) and ERK1/2 (pERK1/2), suggesting that they have been recently activated.  Although 

CD19hi cells are refractory to further increases in pSyk or pERK1/2, they phosphorylate other 

intermediates similarly to healthy control B cells in response to BCR stimulation. 
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CXCR3 expression is >14-fold elevated in CD19hi cells, and they chemotax 

effectively towards a CXCR3 ligand, suggesting they are homing to sites of inflammation.  

Importantly, CD19hi B cells are enriched for autoreactivity compared to CD19lo B cells from 

the same patient, and a 2-fold increase in this enrichment is associated with a 100-fold 

increase in the serum autoantibody titer, suggesting these cells are precursors to autoantibody 

producing plasma cells.  Finally, CD19hi Pts are short-term or non-responders to rituximab 

treatment, indicating a need for a new therapy modality for these Pts. 

Taken together, these results suggest that dysregulation of CD19 on B cells plays a 

role in the etiology and pathogenesis of SLE, and that CD19hi cells represent an autoreactive 

memory B cell subset that plays an important role in the pathology of this disease. 
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I. B CELLS AND THE IMMUNE SYSTEM 
The immune system is traditionally divided into two large but overlapping arms: the 

innate immune system and the adaptive immune system.  Whereas the innate immune system 

is primordial, it is none the less effective against many pathogens and is the first line of 

defense against invading organisms.  However, it is only able to detect unchanging 

components common to pathogens, but rare in the host, and does not have the ability to refine 

its actions against a specific pathogen nor generate memory against it.  The adaptive immune 

system, on the other hand, generates exquisite and flexible specificity, allowing it to target 

changing aspects of pathogens.  It is also able to generate long term memory, protecting the 

host against future infections by the same organism.  It is, however, slower to respond than 

the innate immune system, and, with its nearly limitless ability to adapt to any invader, also 

carries the risk of misdirected attack against self, or autoimmunity. 

 It is only recently that the level to which these two aspects of the immune system 

influence each other has been appreciated.  We have known for some time that features of the 

adaptive system modify and guide the innate system, such as antibodies enhancing the 

phagocytosis of pathogens by opsinization, or activating complement in immune complexes 

(ICs).  We are also beginning to understand how the innate system strongly influences the 

adaptive system.  Particular complement components, for example, are necessary for an 

efficient adaptive response against certain antigens(1-4), and toll-like receptor (TLR) ligands 

also control and direct the adaptive response(5-15). 

 Herein, I will focus on the role of B cells in the normal immune response and in 

autoimmunity.  Although antibody (Ab) production is a central role of B cells, they play 
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many other pivotal roles in the immune response.  These roles of B cells in health and disease 

will be outlined in more detail below. 

A. B Cells and the Innate Immune System 
 

Traditionally, the innate immune system consists of specific cells types and soluble 

factors.  Cell types such as epithelial cells, macrophages, polymorphonuclear leukocytes 

(PMNs, or neutrophils), and others are able to participate in the innate immune response.  

Epithelial cells can provide early warning of invading pathogens by release of chemokines, 

small molecules that direct macrophages, PMNs, and lymphocytes to the site of infection.  

These cells in turn are able to phagocytose a wide variety of pathogens and produce toxic 

products which indiscriminately kill pathogens.  They are also able to secrete cytokines—

small molecules which have specific, receptor-mediated effects on cells of the adaptive and 

innate immune systems. 

 In addition, soluble proteins, particularly complement, are key mediators of innate 

immunity and are able to mediate actions on their own (such as directly inducing lysis of 

invaders or opsinization) or to enhance the actions of other aspects of the immune system 

(such as modifying responses of cell types through complement receptors). 

 There is not a clear delineation between innate and acquired immunity, however. 

Innate immunity is needed for an efficient acquired response, and aspects of the acquired 

immune system have innate-like features.  Particularly, some subsets of B cells produce what 

is known as “natural antibody” which acts as a first line of defense against many pathogens, 

and B and T cells can respond to TLR ligands. 
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1. Toll-like Receptors  
 

Interestingly, many epithelial and immune cells are able to recognize pathogens 

through the interaction of common pathogen-associated molecular patterns (PAMPs), such as 

lipopolysaccharide (LPS), and pattern recognition receptors (PRRs), such as toll-like 

receptors (TLRs)(16, 17).  The TLR family contains 10 members, and this group appears to 

represent the first evolved type of immune defense. TLRs are highly conserved through many 

different species from plants to vertebrates, and recognize conserved lipid, carbohydrate, 

nucleic-acid and peptide structures expressed by many pathogens(18, 19).  Many of the 

subtypes share the common MyD88 signaling pathway and ultimately exert their actions 

through the activation of ubiquitous transcription factor NF-κB(16, 18, 20).  The recognition 

patterns and expression location of key TLRs is shown in Table 1.1(21-23).  Like 

complement components, these ligand-receptor interactions can influence the acquired 

immune system(7, 11, 13-15, 24).  TLRs, though useful in early defense and immune 

regulation, can also become problematic in that many also bind similar antigens derived from 

the host (Table 1.1), leading to a break in immunological tolerance(5, 9, 12, 22, 25). 

Table 1.1. Properties of Toll-like receptors. 

Receptor Location Ligand Exogenous 
Source 

Endogenous 
Source 

TLR1 Cell Surface Lipoproteins Bacteria n/a 

TLR2 Cell Surface Peptidoglycan et 
al. 

Gram-positive 
Bacteria necrotic cells 

TLR3 Intracellular dsRNA Viruses necrotic cells 

TLR4 Cell Surface LPS Gram-negative 
Bacteria n/a 

TLR7/8 Intracellular ssRNA Viruses dead/dying 
cells, snRNPs 

TLR9 Intracellular CpG-containing 
DNA 

Bacteria and 
Viruses 

dead/dying 
cells 
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a. B cells and TLRs 
 

B cells are among the many cells in the body expressing TLRs and responding to 

stimulation by TLR ligands.  The effects of TLR stimulation upon B cells are typically highly 

stimulatory, although they depend upon B cell differentiative state, presence of concurrent 

signaling through other receptors, and the specific ligand and receptor involved(21, 22). 

 In human B cells, somewhat variable TLRs expression has been reported(26-30).  

Most report very low expression of LPS binding TLR4 on these cells(28, 29), however, an 

alternate LPS receptor, RP105, may substitute in this case(31).  By evaluating mRNA 

transcripts, TLRs1, 7, 9, and 10 are expressed in both peripheral blood (PB) and tonsillar B 

cells(28, 29).  In tonsillar B cells, little variation in expression between naïve, germinal 

center (GC), and memory B cells was found in one study(28), but another showed 

constitutive expression only in memory B cells(26, 27).  Another showed that human naïve, 

PB B cells respond robustly to ligands for TLR1/2, 7, and 9, suggesting presence and 

functional significance of these TLRs on these cells, although indirect effects via stimulation 

of dendritic cells (DC) cannot be ruled out in this study(6).  In addition, human memory B 

cells can be induced to secrete Ab upon stimulation with the TLR9 ligand CpG(32).  A 

summary of current knowledge of TLR expression in human B cells can be found in Table 

1.2(30). 

Much more is known of the function of TLRs in murine B cells, although differences 

between these B cells and human B cells are already known.  Unlike human B cells, murine 

B cells express TLR4(10), and stimulation of these cells with LPS results in significant 

proliferation.  Of particular import is the recent finding that concurrent stimulation of a B cell 

through its BCR and a TLR, particularly TLR7 and TLR9, can induce B cell activation and 
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differentiation to an antibody secreting cell (ASC), and can break tolerance in autoreactive B 

cells(5, 9, 12, 22, 25).  This may be particularly important for B cells which recognize 

nuclear components, since these antigens are often associated with various forms of DNA or 

RNA that can stimulate TLRs. 

 

Table 1.2. Expression of TLRs on human B cells. 
Receptor Naïve/Resting Activated 

TLR1 + ++ 

TLR2-5 +/- +/- 

TLR6-7 + +++ 

TLR8 + ++ 

TLR9-10 + ++++ 

+++, strong expression; ++, moderate expression; +, 
low but detectable expression; +/- low or functionally 
controversial expression 

2. The Complement Cascade and Complement Receptors 
 
Another integral component of the innate immunity is the complement system.  The 

complement system is composed of numerous small plasma proteins which have the ability 

to bind other proteins and molecules with certain properties, such as mannose or polyanionic 

surface structures of bacteria or apoptotic cells(1, 17, 33, 34).  These proteins are 

proteolytically cleaved in complex cascades of activation, the details of which are beyond the 

scope of this dissertation. Briefly, there are three pathways for complement activation: the 

classical pathway, the mannose-binding lectin pathway, and the alternative pathway.  The 

classical pathway relies on ICs formed with IgG or IgM (IgM is particularly efficient at 

activating complement).  C1q can also directly bind certain patterns on the surface of 
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pathogens and apoptotic cells.  C1 binds to the invariant regions of the antibodies; bound C1 

cleaves C4 and C2, forming C3 convertase.  C3 convertase cleaves C3, which continues the 

cascade, forms soluble C3a fragments, which have immunological activity, and coats the 

surface of the pathogen with C3b.  This induces the cleavage of C5 which initiates formation 

of the membrane attack complex (MAC), which can directly lyse certain pathogens (Fig. 

1.1)(1, 17, 33, 34). 

 

Figure 1.1. A brief overview of the classical pathway of complement.

C3a, C4b, and C5a and some of their smaller products all act as mediators of 

inflammation.  Complement receptors (CRs) exist for many of these fragments which 

enhance responsiveness of the cells which express them(17, 35).  Complement receptors 3 
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(CR3, or CD11b), and CR4 (CD11c) are expressed on macrophages and DCs, among others, 

and stimulate phagocytosis as well as regulating the cell response(17, 35, 36).  CR2 (CD21) 

is a positive regulator of B cell receptor (BCR) signaling, and will be discussed in more 

detail in later sections.  Its close relative, CR1 (CD35), has similar function and expression 

pattern, although it differs between mouse and man.  A brief summary of complement 

receptors, their ligands, and expression can be found in Table 1.3(17, 35).  

 

Table 1.3. Complement receptors, their ligands, function, and expression. 
Receptor Ligands Functions Expression 

CR1 
(CD35) C3b, C4b, iC3b Stimulates phagocytosis, 

transport of ICs 
Erythrocytes, macrophages, 

monocytes, PMNs, B cells, FDCs

CR2 
(CD21) 

C3d, iC3b, 
C3dg, EBV, et 

al 

Part of BCR co-receptor 
complex B cells and FDCs 

CR3 
(CD11b) iC3b Stimulates phagocytosis Macrophages, monocytes, 

PMNs, FDCs 

CR4 
(CD11b) iC3b Stimulates phagocytosis Macrophages, monocytes, 

PMNs, FDCs 

3. B-1 and MZ B cells and Natural Antibody 
 

As mentioned above, some subsets of B cells straddle the divide between the innate 

and acquired subparts of the immune system.  These subsets are responsible for T cell 

independent (TI) production of “natural antibody”, which is typically low-affinity, cross-

reactive, and IgM.  Natural antibody represents the bulk of IgM in circulation, and is a key 

player in protection from encapsulated bacteria, septic infections, and septic shock(37-42). 

B-1 cells may branch off early from the B cell development pathway(43) and are 

present primarily in the peritoneal and pleural cavities.  They are self-renewing and express 
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germline Ab genes(43-45).  Interestingly, autoreactive specificities appear to be positively 

selected into this subset(46-48).  They also differ from B-2 cells (non-B-1 cells, see below), 

especially Fo B cells, in their activation and differentiation properties(47, 48). 

 MZ B cells share some of the activation properties with B-1 B cells, but belong to the 

B-2 B cell subset and will be discussed in more detail below. 

B. B Cells and the Adaptive Immune System 
 

The three primary cell types of the adaptive response are T lymphocytes (T cells), B 

lymphocytes (B cells), and antigen presenting cells (APCs).  T cells, so called because they 

develop and mature in the thymus, have numerous subtypes which serve diverse functions.  

CD4+ helper T cells (Th cells) serve to regulate other cell types, and can drive the immune 

response towards either an inflammatory (Type 1, or Th1) or humoral (Type 2, Th2) biased 

response, depending on the cytokines they produce(49).  CD8+ effector T cells combat 

intracellular pathogens by killing infected host cells(49).  Finally, T regulatory cells (or T 

regs) appear to serve a vital role in maintaining tolerance to self in the periphery(50).  The 

role of Th2 CD4+ T cells in B cell activation will be discussed in slightly more detail below. 

Some non-lymphatic cells, such as dendritic cells (DCs) and stromal cells, have vital 

roles in the regulation of B and T cells.  Numerous subtypes of DCs exist, and all have 

pivotal roles in activation, modulation, and control of the immune response(51-53), and 

several subtypes directly influence B cells(51, 54, 55).  Follicular dendritic cells (FDCs), 

actually a type of stromal cell, are present in germinal centers.  These cells can influence B 

cell activation and fate through trapping of ICs and antigen and production of cytokines, and 

have a debated role in lasting B cell memory, affinity maturation and the GC response(56-
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59).  Similarly, T cell maturation and selection in the thymus is guided by specialized thymic 

stromal cells. 

B cells develop in the bone marrow and serve multiple functions in the immune 

system.  As producers of Ab, they play roles in both the adaptive and innate immune 

systems(60).  They also act as antigen presenting cells, activating T cells(61-65), and there is 

accumulating evidence they may act in more subtle, regulatory fashions, such as by 

production of pivotal cytokines(66-69). 

1. Immunoglobulins 
 

Antibodies produced by B cells are diverse in both their recognition of antigen and 

their effector function.  An antibody, or immunoglobulin (Ig), is a protein consisting of two 

identical heavy chains (H) and two identical light chains (L).  Both the H and L chains 

contain constant and variable regions.  The variable regions determine antigen specificity, 

while the constant regions confer structural stability. The constant region of the H chain (Fc) 

also determines effector function and class of Ig. 

a. Ig Subtypes 
 

There are five main classes of Ig: IgM, IgD, IgA, IgE, and IgG(70). IgM exists as a 

pentimer and is always the first Ig class generated in any given B cell.  This class makes up 

the bulk of the TI and natural antibody responses, and is particularly efficient at forming ICs 

and activating complement.  IgD is still poorly understood, appears to only exist as a surface 

molecule, and is not secreted.  IgA exists primarily as a dimer and is secreted for protection 

of mucosal surfaces.  IgE is rarely present in its free form but instead coats the surface of 

mast cells and eosinophils via Fcε receptors to protect against worms and other parasites.  
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IgG dominates the secondary and long-term antibody responses to T-dependent antigens.  

Several subclasses of IgG exist, each with its own mix of effector functions.  The milieu of B 

cell activation determines which, if any, class switch will occur when exposed to antigen and 

co-stimulation. 

DNA splicing prevents multiple Ig classes from being expressed in a single cell at the 

same time.  A notable exception is the co-expression of IgM and IgD which occurs 

commonly and for unknown purpose.  Once class switch from IgM occurs, the IgM and IgD 

alleles are deleted from the genomic DNA and a single Ig class is expressed for the 

remainder of the B cell’s lifespan.  This change is made via the process of class switch 

recombination (CSR), which relies at least in part on activate-induced cytidine deaminase 

(AID)(71, 72). 

As stated above, the effector functions of the various Ig classes are determined by the 

Fc region of the H chain. Three primary mechanisms are involved: formation of multimers 

and/or active transport via Fc-specific transporters into otherwise inaccessible areas (for 

example, IgA into the mucous), activation of complement by regions in the Fc (especially by 

IgM and subclasses of IgG), and association with receptors specific for the Fc regions of 

different subclasses, or Fc receptors. Some Fc receptors are inhibitory and some are 

stimulatory, and have profound regulatory ability on cell types such as T and B cells, 

dendritic cells, macrophages, eosinophils and basophils. 

b. Generation of Ig Diversity and Specificity 
 
Diversity of antigen recognition, generated by the variable regions of the H and L 

chains, is generated in four ways; three during development and one after activation(73-76). 

The variable region of the H chain consists of three gene segments, V, D, and J, while the L 
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chain has only V and J gene segments. There are multiple copies of the genes for H and L 

chains and therefore multiple copies of each variable region which can be recombined by 

recombination activating genes 1 and 2 (RAG1 and 2)(77-79), leading to the first method of 

generating variability: combinatorial diversity(73, 76, 80). During this process, nucleotides 

can be randomly added or deleted at the junctions between these regions. This is called 

junctional diversity, and can change the reading frame of the remainder of the H or L gene 

and therefore generates a non-productive rearrangement in 2 of every 3 attempts(76, 80).  

The third process which generates diversity in the Ig repertoire is the fact that both 

the H and L chain have variable regions which combine to form the binding site of the 

antibody. Thus, a recombined H chain could have very different specificities depending on 

the L chain with which it associates(76).  

The fourth method for diversity generation, somatic hypermutation (SHM)(81-83), 

occurs in the GC and requires T cell help.  SHM, dependent largely upon on AID(72, 81-83), 

induces extensive mutation in the variable regions of Ig, allowing creation and selection of B 

cells with higher specificity for a given antigen.  This is accomplished in part via 

deamination of dC residues in the variable regions of Ig genes, followed by excision with 

uracil-DNA glycosylase (UDG) or replacement(72, 83).  The GC reaction will be discussed 

in more detail below.  

2. Central B Cell Development  
 
The BCR is what allows B cells to identify and respond to foreign antigen. It consists 

of the same two H and L chains as the antibody produced by the B cell, along with two 

signaling components, Igα and Igβ. The expression of this receptor guides the development 

and differentiation of the B cell(17, 74, 84-86), and it will be discussed in more detail below. 
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B cells begin as common lymphoid progenitors in the bone marrow and differentiate 

into pro-B cells, which upregulate the B cell lineage surface marker B220 and activate RAG1 

and 2 to begin DJ rearrangement of their H chain under the control of the transcription 

factors E2A, EBF, and Pax-5(87-91).  Pax-5 in particular is vital for pre-B cell 

differentiation, absolute commitment to a B cell lineage and suppression of inappropriate 

genes(89, 92, 93).  Pre-B cells upregulate CD19, a BCR co-receptor, and proceed with V-DJ 

rearrangement.  Once the H chain is rearranged, it is expressed with a surrogate Ig L chain to 

form the pre-BCR, marking the beginning of the large pre-B cell stage(74, 85).  This stage 

determines if combinatorial and junctional diversification resulted in a functional H chain.  If 

the rearranged H chain is not functional, the cell can attempt rearrangement a second time 

with the alternate H chain allele(74, 85).  If the second rearrangement does not produce 

functional H chain, the cell undergoes apoptosis and dies (positive selection, outlined below).  

If successful, the large pre-B cell undergoes clonal expansion and proceeds to the small pre-

B cell stage, where it rearranges its L chain gene.  When the BCR containing rearranged H 

and L chains is finally expressed on the cell surface, the cell is considered an immature B 

cell, and must survive another round of positive selection(74, 85, 86). 

If a functional BCR is expressed at this stage, the immature B cell leaves the bone 

marrow and immigrates to the spleen. There, it proceeds through several transitional stages 

before becoming either a MZ or mature (Fo) B cell (discussed below).  Mature B cells which 

have not encountered their cognate antigen are called naïve B cells. 

a. Positive and Negative Selection of B Cells 
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Developing B cells are subjected to both negative and positive selection in the bone 

marrow(94, 95).  If the newly generated pre-BCR or BCR is incapable of signaling, it is 

eliminated; this constitutes positive selection, since only productive rearrangements are 

selected to continue. This mechanism occurs at the pre-B cell and immature B cell stages of 

development, and appears to require basal BCR signaling or possibly a very weak or 

particular interaction with self(75, 85, 95).  

Whereas positive selection requires a sufficient pre-BCR or BCR signal, negative 

selection aims to prevent autoreactivity by eliminating immature B cells which recognize self 

before they leave the bone marrow. Since only self antigens should be present in the milieu 

of the bone marrow, if the BCR of an immature B cell transmits too strong of a signal, it is 

triggered to undergo receptor editing, which is a secondary rearrangement of its light 

chain(96). If this fails to eliminate autoreactivity, the cell undergoes apoptosis. This 

mechanism of regulation is known as clonal deletion(85, 95).  Immature B cells that survive 

both negative and positive selection leave the bone marrow and migrate to the spleen to 

complete their differentiation(97). 

3. Peripheral Development and B Cell Subsets 
 

Newly generated immature B cells leave the bone marrow and immigrate to the 

spleen.  The spleen is broadly divided in to red pulp, where the blood is filtered and iron 

recycled, and the white pulp, where lymphocytes reside(98).  The white pulp is organized in 

sheaths around branching arterial vessels, with T cells residing largely in the periarteriolar 

lymphoid sheath (PALS), directly surrounding the arterioles.  Adjacent to the PALS, B cells 

are arranged in follicles, or B cell zones, of the white pulp(98).  Surrounding the PALS and 

follicles, dividing the red and white pulp, is the marginal zone (MZ), which contains several 
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distinct populations of macrophages, DCs, and MZ B cells(98).  Interestingly, MZ B cells are 

thought to be vital in the maintenance of the MZ and the other cell types which reside 

there(99, 100). 

a. Transitional B Cells 
 
Immature B cells immigrating from the bone marrow are directed to the follicle by 

the expression of chemokine receptors, particularly CXCR5, whose ligand, CXCL13, is 

expressed by follicular stromal cells(98, 101-103).  They then proceed through several stages 

wherein they are considered transitional B cells.  Up until recently, three subsets of 

transitional cells (T1, T2 and T3) were recognized; however, recent data suggests cells 

previously defined as the T3 subset may in fact be anergic B cells and not transitional cells at 

all(104).   

T1 and T2 B cells are defined by specific sets of surface markers, half life, location, 

and response to BCR crosslinking.  As a mechanism for elimination of anti-self specificities, 

T1 B cells are eliminated by apoptosis upon antigen encounter.  T2 cells, on the other hand, 

proliferate and mature when cognate antigen is encountered(75, 105, 106).  This additional 

phase of negative selection is a vital checkpoint in the elimination of autoreactive 

specificities which have escaped central tolerance mechanisms(107-109).   

The stage at which MZ B cells branch off and immigrate to the MZ is still unclear(74, 

75).  Although still under some debate in the field, numerous data suggest that the affinity 

displayed by the BCR determines its selection into specific subsets. Stronger signaling 

through the BCR, including that which results from weak reactivity to self, may positively 

select cells into the MZ subset, while only basal BCR signaling is required for selection of 

mature Fo B cells(110, 111). 
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b. Mature (Fo) B cells 
 
T2 B cells primarily mature into Fo B cells.  Fo B cells are responsible for mounting a 

high-affinity, long-lived antibody response, and also generate the memory response against a 

specific pathogen.  Fo B cells exist in the follicle and also recirculate in the blood, lymph, 

and lymphoid tissues(112), and have a half-life of 2-3 months(105, 113).  When Fo B cells 

encounter antigen, they proliferate, upregulate activation markers such as CD80, CD86, and 

CD40, and process and present their cognate antigen on the major histocompatibility 

complex (MHC) II, priming them for T cell help.  When appropriate T cell help is supplied, 

the GC reaction is begun.  This process will be discussed in more detail below. 

c. MZ B cells 
 
MZ B cells are so called because they reside in the marginal zone of the spleen, 

which is positioned between the red and white pulp(98).  They are therefore some of the first 

cells to come into contact with circulating antigen and ICs(37, 114), and as such are perfectly 

positioned to be early immune responders.  Indeed, MZ B cells are thought to produce the 

bulk of the early, TI response(32, 114, 115).  The TI response is important in defending 

against blood-borne infection and such pathogens as encapsulated bacteria(37) and in the 

clearance of LPS, resulting in protection from endotoxic shock(40).  In contrast to that of Fo 

B cells, the MZ B cell response is typically both short-lived and rapid; recent analysis 

indicates that they are molecularly poised to secrete antibody almost immediately after 

stimulation(116).   

In addition to the TI response, MZ cells play a role in the response to T-cell 

dependent (TD) antigens(37, 117).  They are also hyperactive compared to Fo B cells in their 
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processing and presentation of antigen and stimulation of T cells(37, 118, 119), and in their 

response to BCR crosslinking  and T cell co-stimulation(118, 120, 121). 

As mentioned above, multiple lines of evidence suggest that MZ B cells are positively 

selected by recognition of self antigen.  This may be advantageous in that it may enable 

cross-reactivity with common pathogen-derived antigens, or aid in the clearance of apoptotic 

cells which could otherwise act as self-antigen (discussed below). 

4. The B Cell Receptor 
 
Unlike the T cell receptor (TCR), which respond to processed, digested pieces of 

antigen presented by MHC complexes, B cells are able to respond to soluble antigen via the 

BCR.  Recently, however, it was shown that membrane-bound antigen was more effective in 

activating B cells(122), emphasizing a possible role for DCs in B cell activation, as will be 

discussed below. 

The first step of activation of a Fo B cell is crosslinking of the BCR by antigen (Ag).  

The degree of crosslinking directly relates to the strength of the intracellular signal generated.  

The intensity of crosslinking is dependent upon properties of the Ag.  The BCR or Ab/Ag 

interaction can be measured in two ways: affinity and avidity.  Affinity is the strength of 

interaction between a single Ag epitope and a single variable region of the Ab; the higher the 

affinity, the stronger the binding of the variable region to the epitope.  Avidity is a more 

complicated measure of the total strength of interaction between an Ab and the whole Ag or 

Ag complex at all available epitopes present, taking into account multiple antigen binding 

regions.  Therefore, an Ag or Ag complex (such as an IC) with multiple epitopes would have 

higher avidity than one with a single epitope, even though the affinity of the Ab for that 

epitope is unchanged.  For purposes of activating a Fo B cell, high avidity is most important.   
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Other properties which can affect efficiency of BCR crosslinking by Ag include 

presence of TLR ligands (described above) or complement fragments (described below) in 

the Ag complex.  Signaling through the BCR can also differ depending on a variety of 

circumstances, including differentiative state, subset, previous Ag encounter, and presence of 

co-stimulation(85, 86, 123).  Pertinent signaling will be described in the following sections. 

a. Signaling Through the BCR 
 

As mentioned above, the BCR is a membrane-bound version of the Ig currently being 

expressed in a given B cell.  It is able to signal through its association with the 

transmembrane proteins Igα and Igβ, which contain immunoreceptor tyrosine-based 

activation motifs (ITAMs) in their cytoplasmic tails.  Crosslinking of the BCR induces the 

formation of the BCR signalosome, a multi-protein complex containing cytosolic and 

membrane-bound signaling intermediates(124, 125).  The signalosome initiates a 

phosphorylation cascade which perpetuates and branches, culminating in the regulation of 

key genes. 

The cascade begins with the phosphorylation of two tyrosines within the ITAM motif 

by Src-family kinases, particularly Lyn(85, 86, 125).  This phosphorylation allows 

association with and phosphorylation of other tyrosine kinases which contain SH2 domains, 

including spleen tyrosine(Y) kinase (Syk)(86, 125, 126).  Syk is a key mediator of BCR 

signaling, as syk-/- B cells are greatly impaired at both the pro- to pre-B cell and immature to 

mature transitions, where positive selection occurs(127-129).  Through its regulation of other 

intermediates, Syk is essential for many downstream effects of BCR signaling, including 

activation of the phosphatidylinositol 3-kinase (PI3K) and phospholipase Cγ2 (PLCγ2)

pathways(85, 126, 130).  PLCγ2 in turn regulates activation of protein kinase C (PKC) and 
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the Ca2+ flux.  The PI3K pathway is needed for efficient activation of the Ser/Thr kinase Akt, 

which blocks apoptosis in the stimulated cell(85). 

Other key signaling molecules downstream of Syk in the BCR signaling pathway 

include members of the mitogen-activated protein kinase (MAPK) family, such as 

extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK), and p38 

MAPK.  These molecules are key regulators of cell proliferation, survival, and 

differentiation.  In addition,  BCR signaling results in activation of transcription factors, 

including nuclear factor of activated T cells (NFAT) and the ubiquitously expressed NF-

κB(85).  A very simplified schematic, including the key member of the co-receptor complex, 

CD19, can be found below (Fig. 1.2). 

b. The BCR Co-Receptor Complex 
 

The BCR co-receptor complex consists of CD19, a transmembrane glycoprotein with 

signaling motifs in its cytoplasmic tail(131-133); CD81 (TAPA-1), which has a role in signal 

transduction and cell adhesion(133, 134); Leu-13, which associates with CD81 in B cells and 

other cell types(133); and CD21 (CR2), a complement receptor(34, 135).  Together, these 

molecules enhance BCR signaling through several mechanisms, the most important of which 

is thought to involve engagement of CD21 by antigen bound to complement 

components(130, 132, 133).  Complement-bound antigen, allowing efficient BCR and co-

receptor complex interaction, amplifies the signal through the BCR and elicits a 200-10,000 

fold more efficient immune response than antigen alone(1, 4, 132, 133).  It also results in 

increased antigen processing and presentation than with BCR crosslinking alone(136).  At 

least part of the ability of the co-receptor complex to amplify BCR signaling is explained by 
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the finding that crosslinking the BCR/co-receptor complex activates the stimulatory BCR 

signaling pathway without concurrent activation of the inhibitory pathway(137). 

i. CD21 
 
CD21 is a transmembrane protein with 15 or 16 short consensus repeats (SCRs) and a 

short cytoplasmic tail without known signaling motifs(39, 132, 133).  CD35 shares extensive 

homology with CD21, and, in mice, they are simply splice variants of the same gene.  In 

humans, each is encoded by a separate but closely related gene and display somewhat 

differential expression(138) as described in Table 1.2. 

CD21 is unusual in that it binds several diverse ligands, including EBV, CD23, and 

IFN-α, in addition to the complement fragments iC3b, C3d,g and C3d for which it is 

named(39, 135). In mice, only binding to complement fragments has been demonstrated. All 

of these ligands bind in the SCR1 and 2 domains and induce a cellular response(135), 

indicating that binding of these ligands induces signaling. It is thought that CD19 acts as the 

signaling component for CD21, which has traditionally been thought to lack significant 

signaling motifs of its own(2, 39).  However, its transmembrane domain and cytoplasmic tail 

have recently been found to interact with intermediates which effect antigen internalization 

and processing(139).  CD21 is expressed on B lymphocytes and FDCs in mice, and on these 

cells and erythrocytes in humans. 

Co-engagement of CD21 with the BCR also increases the internalization of 

antigen(140) and expression of stable antigen-MHC II complexes on the cell surface for 

presentation of antigen to T cells(3).  Interestingly, complement-linked antigen is targeted to 

different intracellular compartments and therefore may be processed differently than antigen 

alone(141-143).  In some B cells, complement is required to present antigen from ICs to T 
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cells(41, 144).  CD21 also traps ICs on MZ B cells, which then transport and transfer them 

onto FDCs(145).  

ii. CD19 
 

CD19 is an Ig superfamily transmembrane glycoprotein expressed in B cells and 

FDCs(131-133).  The 9 tyrosine residues in its cytoplasmic domain are highly conserved in 

human, mouse, and guinea-pig, suggesting a critical role in signaling(146).  Indeed, these 

residues are phosphorylated upon crosslinking and interact with PI3K and Lyn among 

others(132, 147, 148).  CD19 has been shown to be key in the efficient PI3K-dependent 

activation of Akt(149).  Additionally, CD19 can augment the phosphorylation of the Src-

family kinases, including Lyn, via a process known as progressive amplification, resulting in 

increased phosphorylation of Syk(131, 150).  Signaling through CD19 also increases 

activation of MEK1/2, which is a kinase for ERK1/2(151).  Although CD21 is thought to be 

required to bring CD19 into the BCR signaling complex, it is clear that CD19 has signaling 

roles even in the absence of CD21, given that the phenotype of CD19 deficient mice is 

considerably more profound than that of CD21 deficient mice(132, 133, 146).  It may be that 

CD19 can somehow associate with the BCR in the absence of CD21; alternatively, some 

have proposed there may be an as of yet unidentified ligand for CD19(132, 133). 

Given these findings, it is not surprising that even small increases or decreases in 

CD19 expression can have dramatic effects on B cell development, function, and notably 

tolerance in mouse and man(152-154). This will be discussed in more detail below in the 

context of autoimmunity. 
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Figure 1.2. A simplified schematic depicting signaling through the BCR.

c. Other Molecules Which Regulate B Cells 
 

Numerous additional surface receptors modulate B cell response. The most important 

are those provided by T cell help, as described below.  In addition, B cell activation can be 

enhanced by the putative Ca2+ channel CD20(155, 156), numerous cytokines, particularly IL-

21 and BLyS(157-161), and by TLR ligands, as described above. 

B cell activation and differentiation can be also be inhibited by negative regulators, 

such as the IgG receptor FcγRIIb, CD5, and CD22(162-165).  Clearly, B cells are never 
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simply “turned on” or “turned off”, but their response depends on the sum of many 

competing and overlapping signals.  

5. The B Cell Response  
 

B cells can play different roles in the immune response depending on factors such as 

their subset, activation state, the properties of antigen, the involvement of other cell types, 

and many others.  As the details of the B-1 and MZ B cell response are beyond the scope of 

this dissertation, I will focus on the typical response mounted by mature B-2 B cells.   

The response begins with engagement of the BCR by antigen.  Fo B cells are highly 

motile, scanning the lymph and blood for soluble antigen, and interacting with FDCs in 

search surface-displayed antigen(103).  One mechanism by which FDCs may acquire antigen 

is the capture of ICs containing antigen by FcRs and/or complement receptors(38, 166).  

Interestingly, MZ B cells can capture ICs, bring them to FDCs, and deposit them on their 

surface(145).  In addition, compelling new data shows that FDCs can engulf, retain and 

present intact (non-degraded) antigen to B cells on their surface, eliciting strong BCR 

signaling(122, 167, 168). 

Once the cognate antigen is encountered, signaling through the BCR “primes” the B 

cell to respond to T cell help(60, 81, 103).  The antigen is internalized, processed, and 

presented on MHCII for recognition by antigen-specific Th cells.  In addition, the B cell 

proliferates and upregulates the essential co-stimulatory molecules CD40, CD80, and CD86, 

whose roles will be discussed below.  Importantly, upregulation of the chemokine receptor 

CCR7 allows B cells to locate to the B-T cell boundary in search of T cell help(165).  If a 

cognate Th cell is found, a GC reaction begins. 
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a. B-T Cell Interactions 
 

When an activated B cell encounters an activated Th cell whose TCR recognizes the 

processed antigen it is presenting, an immunological synapse is formed between the TCR and 

the antigen-MHCII complex(60, 81, 169, 170).  This interaction is the “first signal” for 

activation of the T cell; the B cell’s “first signal” was recognition of antigen.  For efficient 

activation, it must be followed by the binding of CD40 on B cells with its ligand, CD40L 

(CD154), on T cells, without which GC formation and its downstream effects are 

blocked(171).  This interaction, together with co-stimulation through the B7 molecules CD80 

and CD86 on B cells by CD28 and CTLA-4 on Th cells, acts as the key “second signal” 

necessary for efficient B and T cell activation(60, 81, 172). 

Multiple other cell-bound and secreted factors are also key in the stimulation of B 

cells by Th cells, particularly the inducible co-stimulator (ICOS) and its ligand ICOS-L, as 

well as IL-4, IL-21, and B cell activating factor belonging to the TNF family (BAFF), also 

known as B lymphocyte stimulator (BLyS)(60, 81).  

These interactions provide activation and stimulatory signals not just to B cells, but 

also to T cells.  Among other effects, the formation of these immune synapses stop T cell 

migration but not B cell migration, and B cells can be seen “dragging” T cells after synapse 

formation in intra vital imaging studies(102).   

b. Germinal Centers 
 

The provision of T cell help results in profound clonal expansion of the B cell.  Some 

of the activated B cells form foci in the T cell zones (extrafollicular foci) and differentiate 

into short-lived antibody secreting cells (ASCs), which may class switch but do not show 
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signs of SHM(171, 173).  The remainder of the B cells proliferate to form a region of IgD-

negative cells within the primary follicle, which, once it acquires a germinal center, is termed 

a secondary follicle(60, 81).  7-10 days after initial priming, the secondary follicle polarizes 

into two regions: one near the T cell zone consisting of rapidly proliferating B cells, or 

centroblasts, and one consisting of quiescent B cells, or centrocytes.  These regions are called 

the dark and light zones, respectively, and once they form, the secondary follicle is called a 

germinal center(60, 81). 

As centroblasts divide, they also undergo SHM and CSR(60, 172, 173).  They then 

proceed as centrocytes into the light zone for selection; competition for relatively limited 

supplies of antigen and a default program for cell death account for rigorous selection at this 

point(60, 81, 172).  Cells which generate lower affinity or lose the function of their BCR die, 

whereas cells whose affinity is enhanced through this process are selected to re-enter the 

cycle or differentiate into either a long-lived plasma cell (PC) or memory cell(60, 81, 169, 

171). 

One of the key transcription factors expressed in GC B cells is Bcl-6.  In mice lacking 

Bcl-6 expression, GC cannot form(174-176).  Bcl-6 also acts as a transcriptional repressor of 

cyclin dependent kinase inhibitors, allowing the rapid proliferation of centroblasts(177, 178).  

It also inhibits B lymphocyte induced maturation protein 1 (Blimp-1), a transcription factor 

crucial for PC differentiation(174, 177).  In addition to Bcl-6, Pax-5 is important in 

maintaining the identity of GC B cells, probably in part due to is repression of X-box binding 

protein 1 (XBP-1), which is upregulated upon Fo B cell activation and required for PC 

differentiation(178-180).  Together, these proteins control the decision between exit to an 
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extrafollicular response vs. generation of memory, and their role in differentiation to PCs will 

be discussed more below. 

In addition to the role of Th cells in the GC reaction, many studies have shown that 

FDCs play a role in survival and selection of GC B cells by means of antigen held on their 

surface(181, 182) and expression of surface-bound and secreted factors, particularly 

BLyS(57, 183-187).  It was long held that the main function of CR2 on FDCs was capture of 

ICs, however, this idea was recently confounded by the finding that expression of CR2 on 

FDCs is critical, even in mice lacking any secreted Ab and therefore lacking ICs(188);  this 

may mean that CR2 has a signaling role in FDCs.  The precise role of FDCs in the GC 

reaction is still under debate(187). 

c. Plasma Cells 
 

Plasma cells are one of two main outcomes of the GC response and represent terminal 

differentiation of the B cell lineage.  They are long-lived, secrete class-switched, SHM Ab, 

and are characterized by the downregulation of B cell specific surface markers such as the 

BCR, CD19, CD20, B220, MHCII and others, with concurrent upregulation of  syndecan-1, 

or CD138(171).  Cells committed to this lineage leave the GC as pre-PC, or plasmablasts, 

since fully differentiated PC no longer respond to chemotactic signals(171).   

While the majority of plasmablasts express CXCR4, which through its interactions 

with its ligand CXCL12 direct PCs to the bone marrow (BM), a subset express CXCR3(180, 

189-191).  The CXCR3 ligands CXCL9 and 10 are expressed at sites of inflammation(192) 

and direct a subset of PCs there, where they terminally differentiate and become resident 

producers of Ab(193-196).  Once formed, PCs can persist and secrete Ab for long periods of 
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time, likely decades, depending on their environment(197).  The phenomenon of long-lived 

PCs residing in extra-lymphatic tissue is prominent in states of autoimmunity(193-195). 

As mentioned above, complex transcriptional control is involved in the differentiation 

of PCs.  In short, Pax-5 is downregulated, leading to a decrease in Bcl-6; the decrease in 

expression of these proteins relieves repression of Blimp-1, the master regulator of PC 

differentiation(171, 180). Blimp-1 in turn further represses Pax-5, Bcl-6, proliferation, and 

other B cell lineage genes, while activating XBP-1(171, 180).  Recent studies indicate that 

commitment to this lineage also requires expression of the transcription factor IRF-4, which 

acts to upregulate Blimp-1 and other PC specific genes(189).  A very simplified schematic 

depicting the interaction of these proteins can be found in Fig. 1.3(171, 180). 

 

Figure 1.3. Interactions of transcriptional regulators controlling PC differentiation.
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d. Memory B Cells 
 

The other type of effector B cell generated by the GC response is the memory B cell. 

Memory B cells are long lived and express Ig, which has, like that of PCs, undergone SHM 

and typically CSR.  In humans, they are defined as CD19+CD38- population which also 

typically, but not always, expresses CD27(197-200).  Class-switched (or IgD-) and IgM 

memory cells have been identified, both of which show SHM of their Ig(201, 202) and, in 

fact, presence of mutations in the V regions of the BCR has been the “gold standard” of 

defining a memory population(203).  Antigen-specific memory B cells can be detected for an 

impressive 60 years or longer after primary immunization(204).   

The role of persistent antigen, in various forms, in the maintenance of this population 

is debated(205, 206).  It was initially shown that the presence of antigen on the surface of 

FDCs was required for the maintenance of memory B cells(205, 207).  However, in the 

absence of secreted Ig, which precludes IC formation, memory B cells display the same 

lifespan and function as those in control mice(208).  In another experimental setting, memory 

B cells could be manipulated via a genetic switch to change BCR specificity.  In this case, 

the memory B cells with specificity for an antigen never present in the animal persisted just 

as well as memory cells of the originally induced specificity(206).  Therefore, the currently 

favored hypothesis is that that antigen is not required for maintenance of memory B 

cells(197). 

Recently, focus has shifted from the study of memory B cells as a homogenous group 

to an attempt to delineate them into distinct subsets.  Multiple lines of evidence suggest that 

memory B cell subsets with distinct functional and more subtle but detectable surface 

phenotypes exist(203).  In mice, multiple subsets of memory B cells are beginning to be 
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defined based on surface receptor expression and function(209, 210).  Emerging evidence 

suggests that this is the case in the human memory B cell pool(197-200), although specific 

markers largely remain to be elucidated.  One possible marker is Fc receptor homologue H4 

(FcRH4), which was found on a subset of largely CD27+ but class-switched and SHM B 

cells in human tonsil, although the significance of this finding is still unclear(200).  In 

addition, it has recently been shown that a small subset of peripheral memory B cells in 

humans express CXCR3, are able to chemotax towards the corresponding ligands, and that 

expression of this receptor is maintained upon differentiation to a PC(190, 211); these cells 

may represent a distinct subset of memory B cells in humans.  

Traditionally, cognate antigen and memory Th cells are thought to be required for 

activation of quiescent memory B cells(60, 191, 212).  However, some evidence exists that 

polyclonal stimuli can induce the proliferation and even differentiation of human memory B 

cells(213), particularly “bystander” T cell help (soluble cytokines), CpG(26, 213), or 

stimulation with CD27 ligand (CD70) and IL-10(214).  Overall, memory B cells appear to be 

poised to respond rapidly to activating stimuli.  In vitro, stimulation through the BCR leads 

to increased secretion of Ig by memory B cells compared to naïve B cells, and memory, but 

not naïve, B cells are able to differentiate to ASCs upon stimulation with anti-CD40, IL-2 

and IL-10 in the absence of antigen(215, 216). 

Upon stimulation, memory B cells proliferate, some replenishing the memory cell 

pool, and others differentiating into short- or long-lived PCs(60, 191, 197, 209, 216, 217).  

They also strongly upregulate B7 molecules and, unlike naïve B cells, are able to effectively 

present antigen to T cells(215).  Memory B cells retain expression of Pax-5 until their 
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reactivation and proliferation, after which those differentiating to a PC undergo the same 

transcriptional shifts as a GC B cell differentiating into a PC. 

e. Other Effector Functions of B Cells 
 

Though production of Ab is a central role of B cells, they have other pivotal roles in 

immune response and regulation.  As mentioned above, B cells can act as APCs, and in some 

autoimmune diseases, particularly SLE, arthritis, and non-obese diabetes, appear to be the 

required APC for initial T cell activation and break in tolerance (218-220). 

 B cells also have the capacity for significant production of important cytokines.  They 

have been shown to produce both Th1 and Th2 cytokines, especially IL-10, IL-6, and TNF-

α(221-224).  IL-10 and IL-6 have autocrine effects on B cells in addition to their effects on 

other cell types, and promote a Th2 response; TNF-α is one of the most potent cytokines, 

mediating a largely Th1 response and activating CD8+ T cells and macrophages, among 

others. 

B cells have also been shown to produce IL-2, IL-4 and IFN-γ, though possibly to a 

lesser extent than those listed above(225-228).  IL-2 and IFN-γ mediate Th1 responses, while 

IL-4 is considered a Th2 cytokine. 

Like Th cells, which can differentiate to Th1 or Th2 types to mediate a Type 1 or 

Type 2 response, B cells can become Type 1 or Type 2 B effector cells (Be1 and Be2) which 

possess many of the same traits as Th1 or Th2 cells, and can control the development of Th1 

and Th2 subtypes from naïve Th cells(229-231).  Be1 and Be2 cells produce IL-2 at nearly 

equal levels. Be1 cells produce significant quantities of IFN-γ and IL-12, whereas Be2 cells 

produce negligible amounts of these cytokines.  On the other hand, Be2 cells produce IL-4, 
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IL-6, and IL-10; Be1 cells produce essentially no IL-4, 4-fold less IL-6, and less than half as 

much IL-10 comparatively(230). 

Most interestingly, Be1 and Be2 cells were able to efficiently generate Th1 or Th2 

cells, respectively, from naïve CD4+ T cells, and in vivo responded by producing cytokines 

even before Th cells.  These data indicate that not only do B cells produce Type 1 and 2 

relevant cytokines themselves, but are able to effectively polarize the global response, and 

may be among the first cell types to do so(230). 

 Clearly, B cells play many roles in the innate and acquired immune systems, even 

apart from their production of Ab. 

C. Generation and Maintenance of Self-Tolerance 
 

Many mechanisms of central and peripheral tolerance via negative and positive 

selection have been outlined above, including receptor editing and clonal deletion.  There are, 

however, additional mechanisms of peripheral tolerance in particular which are crucial to 

prevention of autoreactivity.  These include anergy, block of differentiation at the pre-PC 

stage(232) and suppression by cytokines secreted by DCs and macrophages, which will be 

discussed briefly below. 

1. Anergy 
 

Anergy is a state of non-responsiveness induced by antigen encounter at an early 

differentiative stage or by chronic antigen exposure(233-236).  Generally, whereas higher 

avidity for self results in receptor editing and clonal deletion, B cells which recognize 

autoantigens with low avidity will be regulated by anergy(233). 
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Anergic B cells do not proliferate, upregulate activation markers, or secrete Ab in 

response to BCR crosslinking(235, 237).  This is due, at least in part, to dampened signaling 

through the BCR as measured by decreased phosphorylation of substrates and decreased Ca2+ 

flux(124, 238, 239).  Interestingly, although these intracellular responses to BCR 

crosslinking are diminished and altered, some are basally elevated compared to naïve B cells, 

including intracellular Ca2+ levels(104, 124, 238, 239) and ERK phosphorylation(124, 240). 

Anergic cells also have a shorter half-life than naïve B cells(241), due in part to their 

increased dependence upon BAFF for survival(242). 

 An emerging mechanism for anergy appears to be activation of Lyn and its 

downstream pathways in the absence of Syk activation(233).  Among other effects, this 

would promote the inhibitory feedback mechanisms involving the phosphatases SHP-1 and 

SHIP, blocking the Akt survival pathway and activation of NF-κB by Akt and Syk(233).  

The precise mechanisms governing anergy remain to be elucidated, and many subtle 

subtypes of anergy, or varying states of “non responsiveness” may exist. 

2. Other Means of Peripheral Tolerance 
 

Despite all of the above mechanisms to eliminate or silence autoreactive B cells, 

some still persist.  Numerous additional mechanisms exist to prevent the formation of high-

affinity anti-self Ab and/or memory B cells.  Autoreactive B cells experience impaired 

selection in the GC and blocks in PC formation(243) or are excluded from the follicle 

(“follicular exclusion”)(234).  Recently a block was described for autoreactive B cells at the 

pre-PC stage, which represents regulation at the latest possible differentiative step(232).  Ab 

secretion by self-specific mature B cells can also be suppressed by DCs and macrophages 

through the secretion of soluble mediators, particularly IL-6(244). 
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T cells also play a role in preventing B cell autoimmunity; the simple lack of cognate 

anti-self T cell help can block humeral autoimmunity.  In addition, T regs can suppress B cell 

activation and Ab secretion(245). 

II. AUTOIMMUNE DISEASE 
 

With the phenomenal ability of B and T cells to generate receptors with nearly 

infinite specificity, it is not surprising that many generate receptors which recognize 

components of self.  The immune system has therefore evolved the complex and multi-

layered mechanisms described above to prevent the immune system from unleashing its 

considerable arsenal upon the host.  Given the frequency with which autoreactive B and T 

cells develop, it is a testimony to these mechanisms that so little autoimmune disease occurs. 

 In humans, autoimmune disease takes many forms.  Often, these diseases are broadly 

divided into those primarily mediated by either T cells or B cells.  Clearly, as the immune 

system is a complex, interdependent system, few if any diseases are mediated by a single cell 

type.  However, the heterogeneous family of autoimmune disorders mediated by 

autoantibody are considered to be chiefly B cell mediated (e.g., SLE), while diseases marked 

by the infiltration and destruction of tissue by T cells are considered to be chiefly T cell 

mediated (e.g., Type 1 Diabetes). Recently, a pivotal role for B cells, outside of their ability 

to produce autoantibody, has been described.  It is now clear that in some systems, B cells 

acting as APCs are responsible for the initial break of T cell tolerance(246-248). 

 A summary of autoantibody-mediated diseases can be found in Table 1.4, along with 

their common autoantibody targets(249).  Interestingly, a majority of these diseases are up to 

10 times more common in women than in men, indicating that hormonal environment may 

play a decisive role in the development of these diseases(249, 250). 
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A. Systemic Lupus Erythematosus 
 
Systemic lupus erythematosus (SLE) is a devastating, multi-system autoimmune 

disease which affects millions of people worldwide.  One of the most common autoimmune 

diseases, the prevalence of SLE in the US is approximately 1 in 2000 with an annual 

incidence of 1 in 10,000(251).  Like most autoimmune diseases, SLE affects women much 

more often than men, at a ratio of about 10:1(252), and exposure to additional estrogen, such 

as through oral contraceptive use, can double risk of developing the disease(249), 

highlighting a pivotal role for this hormone in disease development.  Additionally, ethnic 

groups are effected three times more often than Caucasians(253).  The pathology of SLE is 

due to production of autoantibodies, primarily anti-nuclear antibodies (ANA), which are 

found in 95% of patients(254).  The interaction of these autoantibodies with their 

corresponding self antigen leads to formation of ICs, which are deposited in vessels and 

kidneys. This deposition activates the complement cascade within tissues, causing extensive 

damage.  

1. Autoantibodies in SLE 
 
Although various types of ANA exist in other autoimmune diseases and even at low 

levels in healthy individuals, two are relatively specific for SLE: anti-dsDNA antibodies and 

anti-Smith (Sm) antibodies.  Sm is a small nuclear ribonucleoprotein (snRNP) which is part 

of an RNA splicosome complex.  While anti-dsDNA antibodies are sometimes found in low 

amounts in serum from non-SLE patients, a greatly elevated titer is considered one of the 

diagnostic criteria for SLE (American College of Rheumatology SLEDAI), with a sensitivity 

of 95%.  Anti-Sm antibodies, on the other hand, are 99% specific for SLE and are considered 
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to be an indicator of more active disease and poorer prognosis.  While they are seen in only 

about 30% of SLE patients, they are not seen in health or other disease states(255).  

 

The targeting of intracellular components by autoantibodies in SLE has long been 

considered a mystery, but recent data indicates that features of apoptosis may explain the 

formation of ANA.  During apoptosis, numerous intracellular proteins, including nuclear 

components, are exposed on the surface of apoptotic blebs(256-258).  Many labs have 

accumulated evidence that, in fact, apoptotic cells act as the stimulating antigen in SLE; 

apoptotic cell immunization activates autoreactive B cells and triggers autoantibody 

production, and defects in apoptotic cell clearance correlate with development of 

autoantibodies(258-261).  Why these normally tolerogenic dying cells stimulate autoantibody 

production in lupus-prone individuals remains unclear, but is an area of active investigation. 

2. Etiology of SLE 
 
Current data strongly suggest that genetic factors predispose to SLE, but alone are not 

sufficient to trigger the disease; a gene-environment interaction is necessary(262).  The 

Table 1.4. Autoantibodies in human rheumatologic diseases 
Disease Autoantibody specificity 

Myasthenia gravis Nicotinic acetylcholine receptor 
Antiphospholipid syndrome Phospholipid-β2-glycoprotein 1 complex 

Insulin-resistant diabetes mellitus Insulin receptor 
Pernicious anemia Intrinsic factor 

Graves’ disease TSH receptor 
Wegener’s granulomatosis Proteinase-3 (ANCA) 

Pemphigus vulgaris Epidermal cadherin and desmoglein 3 
Goodpasture’s syndrome Collagen IV 

Systemic lupus erythematosus (SLE) dsDNA, snRNPs 
Rheumatoid arthritis (RA) Ig 

Autoimmune thrombocytopenic purpura Platelets 
Autoimmune hemolytic anemia Rh antigens, I antigen 

Hashimoto’s thyroiditis Thyroid peroxidase, thyroglobulin 
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complexity of interaction between genes and environmental exposures has made it difficult to 

study.  With the advent of transgenic and knockout mice, a better understanding of this 

interplay has become possible.  Specific genes have been linked to SLE in humans and in 

mice, as have various environmental exposures(263, 264).  Although no single gene always 

results in lupus, abnormalities in certain genes, such as those encoding HLA-DR2(264), Fcγ

receptors(265, 266) and proteins of the complement system(253, 265) are associated with 

lupus in mice and man.  Likewise, environmental exposures have been implicated in both the 

development and progression of the disease; silica(267, 268), heavy metals(262, 269, 270), 

chemicals(270, 271), certain viruses, especially EBV(272, 273), radiation(274, 275), and 

ultraviolet (UV) radiation exposure(276, 277) are among those most often linked to onset or 

relapse of SLE.  Clearly, both genetic and environmental factors are important in the 

development of lupus; monozygotic twin concordance for SLE is only about 25-50%(255, 

278), and no single environmental agent results in disease in all, or even most, individuals. 

The complement components C1q, C2, and C4 are all intimately linked to 

development of SLE in humans(253, 278-280).  Of all known genetic predispositions, 

deficiency in complement C1q or C4 have the strongest associations with the development of 

SLE(249).  In humans, there are two genes for C4: C4A and C4B.  Although deficiency in 

both genes, resulting in a complete lack of C4, is very rare, it is estimated that ≥75% of these 

individuals develop SLE(281).  Heterozygous deficiency in either C4A or C4B, resulting in 

decreased C4 levels, is much more common and is also strongly associated with the 

development of SLE, occurring in 40-60% of SLE patients(282). 

There is accumulating evidence that CD21 may be important in human SLE as well. 

A population of CD21 low B lymphocytes is present in the peripheral blood of SLE 
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patients(283).  When B cells are activated, CD21 is shed from the cell surface in what 

appears to be regulated intramembrane proteolysis(284).  SLE patients have decreased levels 

of the shed form of CD21 (soluble CD21, or sCD21) in their blood than healthy 

controls(285).  The significance of these observations is unknown. 

Why an intact complement system has a protective effect for SLE when the pathology 

of the disease results largely from complement activation has been the subject of much study 

and debate.  Currently, two hypotheses are prominent: the clearance hypothesis and the 

tolerance hypothesis(35).  The clearance hypothesis states that because the complement 

system is needed for effective clearance of apoptotic cells(286, 287), a deficiency in 

complement increases the apoptotic cell burden, and therefore available antigen, which 

activates autoreactive B cells.  However, C3 is important in apoptotic cell clearance, and 

deficiencies in C3 do not predispose to SLE(279, 288-290).  The tolerance hypothesis states 

that because complement plays an important role in B cell selection and regulation, as well as 

antigen processing and presentation, complement deficiency allows escape of autoreactive B 

cells from central and/or peripheral regulation. 

It is still unclear why certain environmental exposures can act to induce or exacerbate 

lupus. It is likely that many mechanisms are involved; however, one property that all these 

exposures share is their ability to induce apoptosis, either directly or through the formation of 

reactive oxygen species(291-293). This has led to the hypothesis that these exposures induce 

ANAs by increasing exposure of autoreactive B cells to apoptotic cells, which display self 

antigen(294). Supporting this idea, direct intravenous (IV) injection of apoptotic cells into 

mice results in production of ANA(260, 295). 
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There have been many other abnormalities found in SLE patients.  Overall decrease 

in CD19 expression has been shown in patients with SLE(296, 297), but subsets of B cells 

overexpress CD19 in these patients and in patients with common variable immunodeficiency 

(CVID) with autoimmune phenomena(283, 298).  Increases in CD19 expression of as little as 

20% can break tolerance in mice, and overexpression of CD19 has been shown in patients 

with the autoimmune disease systemic sclerosis(297, 299), supporting a role for CD19 

dysregulation in autoimmunity. 

PB B cells from SLE patients are also hyperactive and show spontaneous Ig 

production, reduced susceptibility to Ag-induced cell death, elevated Ca2+ responses, and 

hyperphosphorylation of cytosolic proteins(300-304).   In addition, SLE Pts have increased 

numbers of activated, memory, and B-1 B cells in their PB(305-309).  Interestingly, recent 

data implicate dysregulation of the inhibitory receptor FcγR2b on B cells, particularly 

memory B cells, as a possible causative factor in SLE(266, 310).  The importance of these 

findings is still not well understood. 

3. Clinical Aspects of SLE 
 

The American Collage of Rheumatology requires the presence of at least 4 of 11 

specific criteria for the diagnosis of SLE.  The criteria can be found in Table 1.5(311).  

Among the most clinically devastating and life-threatening consequences of SLE is renal 

disease; almost all patients, if left untreated, will develop end-stage renal disease (ESRD) and 

die from this complication.  Another life-threatening consequence of SLE is the  

dysregulation of clotting, leading to transient ischemic attacks (TIAs), strokes, and 

myocardial infarctions.  In addition, SLE Pts often experience a paradoxical 
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immunodeficiency marked by leukopenia.  As can be seen in table 1.5, essentially all systems 

of the body can be adversely affected by this disease. 

 

Table 1.5. Diagnostic criteria for SLE. 
Malar rash Fixed erythema, flat or raised, over the face 

Discoid rash Erythematous circular raised patches with adherent 
keratotic scaling and follicular plugging 

Photosensitivity Exposure to UV light causes rash 

Oral ulcers Oral and nasopharyngeal ulcers 

Arthritis Nonerosive arthritis of two ore more peripheral 
joints, with tenderness, swelling or effusion 

Serositis Pleuritis or pericarditis 

Renal disorder Proteinuria or cellular casts 

Neurologic disorder Seizures or psychosis without other causes 

Hematologic disorder Hemolytic anemia, leukopenia, lymphopenia, or 
thrombocytopenia 

Immunologic disorder Anti-dsDNA, anti-Sm and/or anti-phospholipid 

Antinuclear antibodies An abnormally elevated ANA titer 

4. Treatment of SLE 
 

For many years, the treatment of SLE has been general immune suppression, since 

there is no cure for the disease.  Drugs used depend largely on severity of disease, presence 

or absence of acute flare, and systems involved.  Non-life threatening disease can be 

managed with mild pharmaceuticals such as non-steroidal anti-inflammatory drugs 

(NSAIDs).  Antimalarials, such as chloroquine, also have efficacy in treatment of both 

symptoms and flares of SLE.  They are presumed to exert their effects via blocking 

acidification of endosomes preventing both MHCII presentation and TLR signaling.  More 

severe disease must be controlled with systemic glucocorticoids such as prednisone, or with 
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other potent immunosuppresents, which in many cases double as chemotherapeutic agents, 

such as azathioprine and cyclophosphamide.  This is unfortunate given the frequent and 

severe adverse effects associated with these drugs(249). 

 Given the substandard efficacy and significant side effect profiles of these therapies, 

new treatments for SLE are constantly under investigation.  The newest is rituximab (trade 

name, Rituxan), which was developed for use in B cell leukemias and lymphomas, 

particularly non-Hodgkin’s lymphoma(312-314).  Because its mechanism of action is 

depletion of B cells, rituximab has been evaluated for treatment of SLE, RA, multiple 

sclerosis, and other autoimmune diseases(312, 315-317).  Rituximab is a monoclonal 

antibody which recognizes the B cell specific marker CD20.  The precise mechanisms by 

which it accomplishes B cell depletion are unclear and are under active investigation, 

although it appears that this process is mediated, at least in large part, by Fc receptors(318-

320). 

Studies evaluating the efficacy of Rituximab in SLE have determined that response is 

variable: about a third respond with a extended clinical remission from the disease, a third 

respond to the drug short-term (less than 12 months), and a third do not respond at all(315, 

321) (and Anolik and Sanz, unpublished data).  Interestingly, in mouse models of Rituximab 

therapy, autoimmune strains were more resistant to depletion than non-autoimmune 

strains(322) (and Shlomchik et al, unpublished data). Therefore, Rituximab may emerge as a 

new therapy for a subset of SLE Pts, but new drugs with increased efficacy and fewer severe 

side effects are desperately needed(249, 323). 

B. ANCA-Associated Small Vessel Vasculitis (ANCA-SVV) 
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Anti-neutrophil cytoplasmic antibodies (ANCA) recognize proteins in the granules of 

neutrophils and monocytes.  They are present in a number of autoimmune diseases, and 

multiple subtypes of ANCA have been identified(249).  Within the scope of this work, only 

ANCA-associated small vessel vasculitis (ANCA-SVV) will be discussed. 

 ANCA-SVV is mediated by autoantibodies directed against myeloperoxidase (MPO-

ANCA)(324) or proteinase 3 (PR3-ANCA)(325, 326).  Besides pathogenesis mediated by 

autoantibody, it shares with SLE the propensity to develop pauci-immune necrotizing 

glomerulonephritis, leading to rapid loss of kidney function.  Other similarities to SLE 

include relapsing and remitting course, similar pharmaceutical treatment regimens(327, 328), 

and manifestations in multiple organ systems(329). Additionally, in both diseases, the 

severity and rate of progression can vary from an insidious course to that of fulminant, life-

threatening, multiorgan disease(311, 330), and in both, at least a subset of patients can be 

successfully treated with Rituximab(323).  

III. SUMMARY OF DISSERTATION 
 

The data presented herein implicate CD19 dysregulation in the pathogenesis of SLE 

and ANCA-SVV.  We show decreased CD19 expression on PB B cells in >95% of patients 

with either disease, and hypothesize that this decrease may allow escape of autoreactive 

specificities from regulation by decreasing the strength of signal generated by the interaction 

of the BCR and autoantigen.   

Additionally, we show that CD19 expression is 2-3 fold increased on a subset of 

memory cells in 25-30% of SLE and ANCA-SVV patients.  These CD19hi cells have many 

features of conventional memory B cells, but also appear to represent a novel and distinct 

subset of activated memory B cells which is enriched for autoreactive specificities.  Our data 
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suggest that these cells travel to sites of inflammation, proliferate, and differentiate to PC; 

they also appear to be precursors to at least a portion of the autoantibody in circulation. 

Finally, we show that patients with an expanded CD19hi population (CD19hi patients) 

experience an increased frequency of adverse outcomes, a unique pattern of autoreactive 

antibody specificities, and poor or non-responsiveness to rituximab therapy.  Taken together, 

these data suggest that CD19hi patients represent a distinct subset of SLE with particular 

clinical features and therapeutic requirements. 

 



CHAPTER 2: SIMILAR CD19 DYSREGULATION IN TWO 
AUTOANTIBODY-ASSOCIATED AUTOIMMUNE DISEASES 

SUGGESTING A SHARED MECHANISM OF B CELL 
TOLERANCE LOSS 
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I. ABSTRACT 

 
We report here that dysregulation of CD19, a co-receptor that augments B cell receptor 

(BCR) signaling, occurs at two B cell differentiative stages in patients with systemic lupus 

erythematosus (SLE) and anti-neutrophil cytoplasmic antibody (ANCA) associated small 

vessel vasculitis (SVV).  The naïve B cells of nearly all SLE and ANCA-SVV patients 

express ~20% less CD19 than healthy control (HC) B cells.  In contrast, a subset of memory 

B cells of some SLE and ANCA-SVV Pts (25-35%) express 2-4 fold more CD19 than HC B 

cells.  These CD19hi memory B cells are activated and exhibit evidence of antigen selection.  

Proteome array analysis of 67 autoantigens indicates that CD19hi SLE Pts exhibit a distinct 

autoantibody profile characterized by high levels of antibodies to small nuclear 

ribonucleoproteins and low levels of anti-glomerular autoantibodies.  These findings have 

implications for autoreactive B cell activation and suggest a shared mechanism of B cell 

tolerance loss in these two diseases. 
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II. INTRODUCTION 

 
The two most common forms of aggressive glomerulonephritis leading to the rapid 

loss of kidney function are glomerular immune complex deposition in systemic lupus 

erythematosus (SLE) and pauci-immune necrotizing glomerular diseases mediated by anti-

neutrophil cytoplasmic autoantibodies (ANCA).  Clinically, SLE and ANCA are rarely 

associated, but they do have some commonalities.  Both diseases are tightly associated with 

well-characterized autoantibodies against intracellular proteins;  SLE with autoantibodies 

directed against nuclear proteins, histones, and DNA(331, 332), and ANCA associated small 

vessel vasculitis (ANCA-SVV) with autoantibodies directed against myeloperoxidase (MPO-

ANCA)(324) or proteinase 3 (PR3-ANCA)(325, 326).  Moreover, both are marked by a 

relapsing and remitting clinical course, are treated with similar immunosuppressive 

regimens(327, 328), and can present with protean manifestations of inflammation involving 

organs such as the lungs, upper airways, skin, joints, and central and peripheral nervous 

systems(329).  The acuity and rate of disease progression varies from an insidious course to 

that of fulminant, life-threatening, multiorgan disease(311, 330).  

Previous studies of peripheral blood (PB) B cells in human SLE have revealed 

differences from normal B cells.  In comparison to healthy control (HC) B cells, PB B cells 

in human SLE patients (Pts) are hyperactive(300).  Moreover, they show spontaneous Ig 

production, reduced susceptibility to Ag-induced cell death, elevated Ca2+ responses, and 

hyper-phosphorylation of cytosolic proteins(300-304).  SLE Pts are also reported to have a 

higher number of activated (CD86+), memory (CD27+), and B-1 (CD5+) PB B cells(305-

309).  In contrast, almost nothing is known about B cells in ANCA-SVV.   
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Imbalances in the positive and negative influences on B cell receptor (BCR) signal 

strength may contribute to human autoimmunity(152).  Alteration in CD19 expression has 

emerged as a possible mechanism for creating an imbalance in BCR signaling that leads to 

autoimmunity.  CD19 complexes with CD81, Leu13, and CD21, the receptor for complement 

component C3d(g)(132, 333), and is a BCR co-receptor that enhances BCR signal 

transduction.  CD19 functions as the signaling component for CD21(132), although it can 

also function independently of CD21(132, 146). Complexes of antigen and C3d(g) are at 

least 1000 times more potent in B cell activation than antigen alone(1).  CD19 density on B 

cells of systemic sclerosis Pts is ~20% higher compared to B cells from HCs(297).  In 

contrast, SLE PB B cells appear to express low levels of CD19(296, 297).  A population of 

PB CD19hi B cells has been described in Pts with common variable immunodeficiency 

(CVID) with autoimmune phenomena, as well as in SLE Pts(283, 298).  Thus, CD19 

dysregulation may link several autoimmune diseases.  

We report here a similar aberrant CD19 regulation in SLE and ANCA-SVV.  In both 

diseases, naïve B cells express ~20% less CD19 than HC B cells.  Some Pts also have a 

subset of memory B cells that expresses 2 to 4 fold more CD19 than naïve or memory HC B 

cells.  The CD19hi B cells have an activated phenotype and show evidence of antigen 

selection.  In SLE, the presence of CD19hi B cells is associated with anti-ribonucleoprotein 

(RNP) production and neurological dysfunction.  These findings suggest that aberrant CD19 

expression occurs at the naïve and memory stages of B cell development in human SLE and 

ANCA-SVV, and may contribute to disease onset and relapse. 
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III. MATERIALS AND METHODS 
 

Pt and HC samples 
 

PB samples were collected from 10 HCs and 41 SLE Pts (Table 2.1) (HC: 30 years, 

range: 25-30, gender: 4 female, 4 male; SLE: 37 years, range: 20-83, gender: 35 female, 4 

male).  SLE Pts were included in this study after informed consent in accordance with our 

institutional internal review board, and fulfilled at least 4 of the established American 

College of Rheumatology 1997 revised criteria for SLE.  Clinical and serological data were 

gathered during routine clinic visits at the time of blood draw for B cell analysis.  The SLE 

disease activity score (SLEDAI)(334) and British Isles Lupus Assessment Group (BILAG) 

index(335) scores were calculated for each Pt to reflect disease activity at the time of the 

sample collection. 

PB samples were collected from 6 healthy donors (different from those used for the 

SLE Pt analysis) and 24 ANCA-SVV Pts (Table 2.2) after informed consent.  Patients were 

classified as having active or inactive disease based on their Birmingham Vasculitis Activity 

Score (BVAS); any patient with a BVAS >1 was considered active.  Healthy controls (HC) 

averaged 36.5 years and ANCA-SVV Pts averaged 47.6 (MPO-ANCA-SVV) and 53.7 years 

(PR3-ANCA-SVV).   

HCs used for the comparison of CD19 levels on naïve and memory B cells included 7 

females and 2 males, and averaged 30.5 years of age. The analysis of these samples was done 

at the same time and used a population of HCs distinct from those used for comparison with 

Pt B cells.   
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Renal disease was determined by renal biopsy.  The Nephropathology Laboratory at 

the University of North Carolina performed the analysis and the results were classified by 

standard criteria as described(336).  

 

Cell preparation and cell surface staining 
 

PB mononuclear cells (PBMCs) were purified from heparinized PB samples (~20 ml) 

by Ficoll centrifugation.  The buffy coat was washed twice in PBS and resuspended in RPMI, 

2% fetal calf serum (FCS), 0.1% sodium azide for cell surface staining.  Cells were stained 

with previously determined optimal concentrations of the following fluorochrome labeled 

antibodies: anti-human CD19-APC, IgD-FITC, IgG-FITC, CD38-PE, CD86-PE, CD40 PE, 

and MHCII-FITC (Pharmingen, San Diego, California) and then fixed with 1% 

paraformaldehyde.   

 

Anti-Sm ELISA 
 

The anti-Sm ELISA was performed as previously described(337) except that the 

secondary antibodies were a goat anti-human IgG (H+L) horseradish peroxidase (Jackson 

Immunoresearch, Westgrove, Pennsylvania) at a 1:10,000 dilution.  Positive anti-Sm control 

serum (Immunovision, Springdale, Arizona) was used to normalize plate-to-plate variation.  

A positive well was defined as three times background (secondary alone) and the titer was 

calculated as the inversion of the most dilute sample giving a positive result. 

 

Molecular analysis of VH region from PB B cells 
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PB B cells from an SLE Pt with an expanded CD19hi population were stained for 

CD19 expression and individual CD19hi B cells were sorted into a 96 well plates that had 

been covalently coated with oligo-dT (RNAture, Irvine, California) for sequence analysis as 

described previously by Arnold and McCray(338). Oligonucleotide mixtures were used as 

reported previously, although modified by removal of the restriction sites(339) (VHL-1: 5’-

TCACCATGGACTGSACCTGGA-3’, VHL-2: 5’-CCATGGACACACTTTGYTCCAC-3’, 

VHL-3: 5’-TCACCATGGAGTTTGGGCTGAGC, VHL-4: 5’-

AGAACATGAAACAYCTGTGGTTCTT-3’, VHL-5: 5’-ATGGGGTCAACCGCCATCCT-

3’, VHL-6: 5’-ACAATGTCTGTCTCCTTCCTCAT-3’, CuII: 5’-

CAGGAGACGAGGGGGAAAAG-3’, CyII:5’-GCCAGGGGGAAGACSGATG-3’).  A 

second nested PCR was done using products from the first PCR with the following primers 

(VH-1: 5’-CAGGTSCAGCTGGTRCAGTC-3’, VH-2: 5’-

CAGRTCACCTTGAAGGAGTCTG-3’, VH-3: 5’-SAGGTGCAGCTGGTGGAGTC-3’, 

VH-4: 5’-CAGGTGCAGCTGCAGGAGTC-3’, VH-5: 5’-GARGTGCAGCTGGTGCAGTC-

3’, VH-6: 5’-CAGGTACAGCTGCAGCAGTCA-3’, CuIII: 5’-

GAAAAGGGTTGGGGCGGATGC-3’, CyIII: 5’-ACSGATGGGCCCTTGGTGGA-3’).  

The products of the second PCR were analyzed on a 1.2% agarose gel; PCR products were 

cleaned and concentrated by Qiagen PCR Purification Kit (Qiagen, Chatsworth, California).  

DNA was sequenced using the second PCR 3’ primer by the Automated DNA Sequencing 

Facility at UNC.  VH genes were identified using Ig BLAST 

(http://www.ncbi.nlm.nih.gov/igblast/).     

 

Analysis of mutations 
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The action of selection on mutated Ig genes was assessed by analyzing the sequences 

with the program SoDA(340), which finds the best putative pre-mutation rearrangement and 

identifies mutations.  All mutations falling into framework regions (FWR) and 

complementarity determining regions (CDRs) were separately classified by codon position 

(1, 2 or 3).  In the absence of selection, mutations will be distributed uniformly over codon 

positions; in the presence of selection, more mutations at codon positions 1 and 2 will be 

purged than mutations at codon position 3, resulting in an apparent excess of mutations at 

position 3.  Furthermore, selection differential between positions 1 and 2 may occur, 

depending on the relative conservation of the amino acid changes resulting on average in 

nucleotide changes in the two positions.  Departure from the uniform distribution over codon 

positions was assessed by a chi-squared goodness of fit test. 

 

Proteome array analysis 

 

The proteome array analysis was performed as previously described(341) using 

HydroGel coated slides spotted with a panel of glomerular and nuclear antigens.  The spotted 

antigens included aggencan, α-actinine, amyloid, β2-glycoprotein, β2-microglobulin, C1q, 

cardiolipin, CENP-A, CENP-B, chondroitin, chromatin, collagen I, collagen II, collagen III, 

collagen IV, ssRNA, cytochrome C, cytochrome P45, DSPG, dsDNA, elastin, fibrinogen IV, 

fibrinogen S, fibronectin, gliadin, glomerular basement membrane, glomerular sonicate, good 

pasteur antigen, histone (H) 1, H2A, H2B, H3, H4, hen egg lysozyme, hemocyanin, heparan 

sulfphate proleoglycan, heperin, hyaluronic acid, intrinsic factor, JO-1, Ku (p70/p80), La/SS-
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B, laminin, matrigel, myosin, PL-12, PL-7, PM/Scl-100, proliferating cell nuclear antigen, 

proteoglycan, ribosomal phosphoprotein PO, Ro/SS-A (52KDa), Ro/SS-A(60KDa), Scl-70, 

ssDNA, thyroglobulin, topoisomerase, total histone, TPO, TTG, U1-snRNP-68, U1-snRNP-

A, U1-snRNP-BB’, U1-snRNP-C, vimentin, vitronectin, and yeast tRNA.  The data were 

analyzed also as previously described(341). IgG and IgM serum levels were determined 

using human IgM and pan IgG ELISA kits (Bethyl Laboratories, Montgomery, TX). 
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IV. RESULTS 
 
The majority of SLE and ANCA-SVV PB B cells were CD19lo.

PBMCs were isolated from 41 SLE and 24 ANCA-SVV Pts, stained with B cell 

specific antibodies, and analyzed by flow cytometry.  ANCA-SVV Pts were selected at 

random.  SLE Pts were initially selected for the presence of elevated anti-Sm titers; hence 

there was a 50% prevalence of patients with an anti-Sm titer, rather than the expected 

30%(342).  A HC was stained with each experiment to control for day-to-day variation in cell 

surface staining.   

The majority of SLE and ANCA-SVV B cells resembled HC B cells in that they 

comprised a single B cell population of uniform CD19 staining intensity and size (Fig. 2.1A).  

However, as reported previously(296, 297), SLE B cells expressed low levels of CD19.  

Surprisingly, the majority of B cells from ANCA-SVV Pts were also CD19lo. Due to the 

high degree of variability of the CD19 median fluorescence index (MFI) on B cells stained 

on different days, comparisons were made only between a Pt and HC stained on the same 

day.  As shown in Fig. 2.1B and C, SLE and ANCA-SVV Pt B cells stained ~18% (range: 3-

45%) and ~20% (range: 15-67%) less well for CD19 than HC B cells, respectively (Fig. 

2.1C) (P<0.01; Wilcoxon’s signed-ranks test).  This is unlikely to be due to treatment since B 

cells of untreated ANCA-SVV Pts were also CD19lo (P<0.01; Wilcoxon’s signed-ranks test) 

(Fig. 2.1C).  The majority (>90%) of CD19lo B cells were IgD+, CD38+, and CD27- (Fig. 

2.1D and data not shown) and thus appeared to be naïve B cells.   

 

CD19hi PB B cells were present in a subset of SLE and ANCA-SVV Pts. 
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Our analysis also revealed a CD19hi B cell population in a subset of SLE and ANCA-

SVV Pts (Fig. 2.1A).  This differs from a previous report of the presence of CD19hi B cells in 

all SLE Pts (283).  Based on a criterion of more than 2 standard deviations above the mean 

percentage of CD19hi HC B cells, a CD19hi B cell population was detected in 14 of 41 

(34.1%) SLE Pts and 6 of 24 (25%) ANCA-SVV Pts, but none of the HCs (Fig. 2.2A, B).  

Among the 14 SLE CD19hi Pts, ~7.5% PB B cells were CD19hi in contrast to 3.5% in the 

remaining SLE Pts and 2.5% in HCs.  Similarly, among the 6 CD19hi ANCA-SVV Pts, ~11% 

of PB B cells were CD19hi, in contrast to ~4% among the remaining 18 Pts.  SLE and 

ANCA-SVV CD19hi B cells stained an average of 216% (range: 137-302%) and 369% 

(range: 274-422%) brighter, respectively, for CD19 than the CD19lo B cells of the same Pt 

(Fig. 2.2C) (P<0.01; Wilcoxon’s signed-ranks test) (Fig. 2.2C).  Four SLE pts were analyzed 

2 or more times over a period of two years and, although fluctuation in frequency occurred, a 

CD19hi population was detected each time (Fig. 2.2D and data not shown).  In addition, two 

ANCA-SVV Pts lacked a CD19hi B cell population on initial analysis, but developed a 

CD19hi population by the time of a second analysis (Fig. 2.2D and data not shown, Table 2).  

Thus, once it appears, the CD19hi population seems to be relatively stable over time.  Herein, 

Pts with a CD19hi population will be referred to as CD19hi Pts, and those without a CD19hi 

population will be referred to as CD19lo Pts.    

 

CD19hi B cells are memory B cells 
 

To determine the differentiative stage of CD19hi B cells, we determined their BCR 

isotype and Bm classification. Approximately 43% of the CD19hi B cells of SLE Pts were 

IgG+, as opposed to ~7% and ~5% of PB B cells from HCs and SLE Pts that lack a CD19hi B 
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cell population (Fig. 2.3A) (P=0.0001 and 0.0001, respectively; Student’s t test).  

Conversely, ~37% of CD19hi B cells were IgD+, versus 83% and 91% of PB B cells in HCs 

and SLE Pts that lacked a CD19hi B cell population (Fig. 2.3A) (P=1.14 x 10-5 and 2.90 x 10-

5, respectively; Student’s t test). The CD19lo B cells in Pts with a CD19hi B cell population 

resembled HC B cells in both IgG and IgD expression (Fig. 2.3A).  Similarly, the percent 

IgD+ B cells among CD19hi B cells of ANCA-SVV Pts and HCs was significantly different 

(56% vs.75%, respectively; P<0.5; Student’s t test) (Fig. 2.3A), although the percent IgG+ B

cells did not reach the level of significance (22% vs. 10%, respectively) owing to the small 

sample size (n=6) and considerable variability among Pts.  Thus, the CD19hi B cell 

population is enriched in IgG+ B cells. 

CD38 and IgD staining was used to further assess CD19hi B cell identity(198).  Most 

SLE and ANCA-SVV CD19hi B cells were IgD- CD38-/low memory B cells (Bm5), with a 

minority of IgD+, CD38- B cells (Bm1).  The Bm1 subset includes both IgD+ memory and 

naïve B cells (Fig. 2.3B and C). CD27 expression was variable among CD19hi B cells (data 

not shown). CD27 has been used as a memory B cell marker, but recent evidence indicates 

that some PB memory B cells are CD27-(199), which appears to be the case here.  In 

contrast, the CD19lo B cells of SLE and ANCA-SVV Pts were primarily activated naïve B 

cells (CD38+ IgD+ Bm2), but also included memory B cells (Fig. 2.3B and C).  The few B 

cells that fall within the CD19hi B cell gate in HCs and Pts lacking a CD19hi B cell 

population were IgD+, CD38+ activated naïve B cells (Bm2) (data not shown).  Thus, in 

keeping with their BCR isotype, the majority of CD19hi B cells had a memory B cell 

phenotype, while a minority had a Bm1 phenotype and accordingly could be either naïve B 

cells or unswitched memory B cells. 
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CD19hi B cells are polyclonal, somatically mutated, and antigen selected. 
 

To assess clonality and selection within the CD19hi B cell population, we determined 

the sequences of the expressed VH region genes from 39 randomly selected CD19hi B cells 

(20 IgM, 19 IgG) from an SLE Pt.  Each sequence had a unique VDJ gene rearrangement and 

thus was of independent clonal origin (data not shown).  VH gene use by CD19hi B cells 

exhibited a bias for VH1 family genes (Fig. 2.4A), which included multiple members (data 

not shown), suggestive of antigen selection.  This contrasts with previous reports of a bias for 

VH3 (~50%) by both SLE and HC B cells(343, 344).  This VH1 bias by CD19hi B cells was 

due to the IgG+ B cells, as almost half of the γ sequences were VH1, in contrast to just 20% of 

µ sequences.  There was no apparent bias in complementarity determining region 3 (CDR3) 

length (median length: 39 bps for both µ and γ sequences) or JH use among CD19hi B cells 

(data not shown).  Comparison to germline sequences identified by Ig BLAST indicates that 

the expressed VH genes from the IgG+ CD19hi B cells were heavily mutated (Fig. 2.4B) 

(median:14 mutations/VH), consistent with a memory B cell identity.  In contrast, the VH

genes from the IgM+ cells exhibited few mutations (median: 1 mutation/VH) (Fig. 2.4B).   

There was a significant bias in the distribution of H chain somatic mutations in 

CD19hi B cells.  Mutations were classified by codon position (1, 2, or 3) and analyzed for 

departure from a uniform distribution using a χ2goodness of fit test.  The 231 mutations in 

the framework encoding regions fell more frequently into the third position of the codons 

than would be expected by chance alone (expected distribution is 77 at each position; actual 

distribution is 73, 59 and 99 at codon positions 1, 2, and 3, respectively; χ2 = 10.7, p = 

2.4×10-3).  This distribution suggests selection against amino acid replacement mutations in 
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FWRs.  In contrast, the 135 mutations in CDR 1 and 2 encoding regions occurred more 

frequently in codon position 2 and less frequently in position 1 than expected by chance 

(expected distribution is 45 at each position; actual distribution is 32, 56, and 47 mutations in 

codon positions 1, 2, and 3, respectively; χ2 = 6.53, p = 0.019; the CDR3 encoding region 

was excluded because of the inability to distinguish N region nucleotides and somatic 

mutation).  This suggests a bias for amino acid replacement mutations in CDRs, consistent 

with antigen selection of mutant CD19hi B cells.   

 Antigen selection of CD19hi B cells was further suggested by the presence of shared 

mutations, particularly in CDR2 and FW3 (Fig. 2.4C).  For example, S51I and M87T 

occurred in all three B cells expressing VH1-3, and 6 other replacement mutations (M34I, 

G53A, E62K, S76T, A78V, and S82aN) occurred in two of the three cells.  Altogether, there 

were 19 instances of the identical mutation occurring in 2 or more cells expressing the same 

VH gene (Fig. 2.4C).  Interestingly, 17 of these mutations occurred in VH1 family genes (Fig. 

2.4C) reinforcing the idea of selection for VH1 gene use by CD19hi B cells.  

 

CD19hi B cells have an activated phenotype. 

 

To determine whether CD19hi B cells were activated, we examined the expression of 

activation markers.  Indicative of an activated phenotype, SLE and ANCA-SVV CD19hi B 

cells expressed higher levels of CD86 and MHCII than CD19lo B cells from the same Pt and 

HC B cells analyzed on the same day (Fig. 2.5).  Their larger size and increased granularity 

(Fig. 2.1 and data not shown) was also suggestive of activation, as was low expression levels 

of CD21 (Fig. 2.5)(284).  In contrast, the expression of the activation marker CD40 was 
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lower on CD19hi B cells than on HC B cells or CD19lo B cells.  Overall, these data suggest 

that CD19hi B cells are activated.   

 

An increase in CD19 expression accompanies differentiation to a memory B cell.  
 

As CD19hi B cells were predominantly memory B cells, we determined whether 

differentiation to a memory B cell results in increased CD19 expression.  Naïve and memory 

B cells from 10 HCs were compared in a single experiment, and in all cases memory B cells 

(IgD-, CD38-/lo) stained ~30% (range: 11-53%) brighter for CD19 than naïve B cells (IgD+,

CD38+) from the same individual (P=3x10-5; Student’s t test) (Fig. 2.6A and B).  Notably, 

SLE and ANCA-SVV Pts with a CD19hi B cell population also had a population of memory 

B cells with levels of CD19 similar to those of HCs (Fig. 2.6A).  Thus, differentiation to a 

memory B cell normally results in increased CD19 expression, but cannot fully explain the 

levels seen on CD19hi B cells. 

 

Correlation of the presence of a CD19hi B cell population with clinical features of disease. 
 

To determine whether the presence of a CD19hi B cell population was associated with 

more active disease or specific disease manifestations, we tested for correlations with clinical 

findings recorded for each Pt on the day of sample collection.  No correlation with the 

SLEDAI or BILAG scores was observed in SLE, nor was a correlation observed with 

ANCA-SVV disease severity, as measured by BVAS scores (Tables 2.1 and 2.2).  There was 

no correlation of the presence of a CD19hi B cell population with renal disease, as determined 

by biopsy, or with creatinine levels or proteinuria (data not shown).  Thus, CD19hi B cells are 

present in Pts with active and inactive disease and are not an indicator of disease activity.   
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However, the presence of a CD19hi population among SLE Pts correlated 

significantly (P=0.01) with neurologic dysfunction (seizure or psychoses).  A CD19hi 

population also correlated with a high anti-Sm titer (Table 2.1); 8 of 14 CD19hi Pts (mean 

titer of 400), but only 13 of the 29 non-CD19hi Pts (mean titer of zero) had an elevated anti-

Sm titer (P= 0.01; Student’s t test) (Fig. 2.7A).  No association was found with the presence 

of anti-nuclear antibodies (ANAs).  In addition, both anti-MPO and anti-PR3 were observed 

among CD19hi ANCA-SVV Pts (Table 2.2) indicating no association with either 

autoantibody.  

To determine whether there were other differences in autoantibody specificities 

associated with CD19hi SLE Pts, we screened Pt serum using autoantigen proteome arrays 

bearing 67 nuclear and glomerular autoantigens(341).  SLE Pts exhibited basal or negligible 

reactivity to most of these autoantigens with several important exceptions. Among these, the 

IgG autoantibody specificities uncovered fell into several distinct reactivity groups. 1) Three 

autoantibody specificities, Ro/SSA (52kD), CENP-A, and CENP-B were significantly 

elevated among the SLE patients, particularly those who lacked CD19hi B cells (Fig. 2.7B 

and data not shown). Whereas most of CD19lo patients exhibited significantly elevated titers 

of anti-Ro/SSA autoantibodies, only a small subset of the CD19hi patients exhibited elevated 

levels of these autoantibodies (Fig. 2.7B). Indeed, these were amongst the highest level of 

autoantibody specificities the SLE patients exhibited. 2) IgG autoantibodies to chromatin, 

dsDNA, PCNA, La/SSB, glomerular sonicates, and the core histones, H2A, H2B, H3 and 

H4, were equally elevated in CD19lo and CD19hi patients (Fig. 2.7B and data not shown).  3) 

SLE patients had reduced IgG autoantibody levels to fibrinogen, heparin sulphate, heparin, 
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laminin, and matrigel, compared to the healthy controls (Fig. 2.7B), and these reactivities 

were even lower among CD19hi patients.  4) Finally, it was remarkable that a small subset of 

autoantigens were selectively targeted by the sera from CD19hi SLE patients, including 

ribosomal phosphoprotein PO, U1snRNP-68, U1snRNP-A and U1snRNP-B/B’ (Fig. 2.7B). 

Indeed, these appeared to be the hallmark specificities of CD19hi sera since the titers of these 

autoantibodies far exceeded the levels of all other specificities assayed in these sera and 

several of these autoantibodies were also significantly higher than the corresponding levels in 

CD19lo SLE patients. Notably, almost all CD19hi sera exhibited elevated levels of IgG 

autoantibodies to U1snRNP-A and U1snRNP-B/B’ compared to the HCs (Fig. 2.7B).  

IgM antibodies were assayed using the same autoantigen proteome arrays. 

Surprisingly, all autoantibody specificities exhibited a fairly similar pattern, with the levels 

being lower in the SLE sera compared to basal levels in the HCs (Fig. 2.7C). Interestingly, in 

the case of some of these specificities, including La/SSB, cardiolipin, H2B, and ribosomal 

phosphoprotein PO, the IgM autoantibody levels were even more depressed in CD19hi Pt 

sera.  Since the IgM and IgG specificities were assayed using the same arrays, the IgG:IgM 

ratios for the different specificities were readily ascertained. Because all IgM specificities 

were depressed in the SLE sera, all autoantibodies that were uncovered in the SLE sera were 

heavily skewed towards the IgG isotype (data not plotted). 
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V. DISCUSSION 
 

Our findings indicate a striking similarity in CD19 dysregulation by the B-cell-

mediated autoimmune diseases SLE and ANCA-SVV.  Low CD19 expression by naïve B 

cells occurs with near complete penetrance in both diseases, while high CD19 expression by 

a subset of memory B cells occurs with a 25-35% penetrance in both diseases.  Thus, 

although the autoantibodies produced in SLE and ANCA-SVV mediate disease by different 

mechanisms—immune complex deposition and premature induction of neutrophil 

degranulation on vessel walls, respectively(345, 346)—SLE and ANCA-SVV Pts exhibit 

strikingly similar CD19 dysregulation. This suggests that diseases which are marked by 

production of autoantibodies, regardless of their specificity, may share a common mechanism 

of B cell tolerance loss. 

 

CD19lo naïve B cells in SLE and ANCA-SVV 

 

Naïve SLE and ANCA-SVV B cells stain ~20% less well for CD19 than HC B cells, 

as previously observed in SLE(296, 297), suggestive of low CD19 expression.  Treatment is 

unlikely to be responsible, since naïve B cells of untreated ANCA-SVV Pts are also CD19lo 

(Fig. 2.1C).  Low CD19 levels can decrease sensitivity to activation through the BCR and 

thus could contribute to the immunodeficiency experienced by SLE Pts(347), and could 

affect differentiation to the follicular, marginal zone, or B-1 cell subsets, as has been shown 

in mice(47).  More importantly, autoreactive CD19lo B cells may escape tolerance induction, 

since it is dependent upon BCR signal strength.  This could explain the higher frequency of 
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autoreactive B cells observed among immature and naïve B cell populations in human 

SLE(348).  Congruent with the idea that low CD19 expression contributes to autoimmunity, 

CD19 maps to a region of chromosome 16 that is linked to SLE(349), and a CD19 

polymorphism associated with SLE in Japanese Pts leads to decreased CD19 mRNA stability 

and low CD19 expression levels(350).  In addition, a single nucleotide polymorphism 

upstream of the human CD19 gene is associated with high CD19 expression levels in 

systemic sclerosis(351).  

 

CD19hi memory B cells in SLE and ANCA-SVV. 

 

A subset of SLE and ANCA-SVV Pts (34.1% and 25%, respectively) has a CD19hi 

memory B cell population.  The prevalence in SLE is likely to be somewhat lower, since SLE 

Pts were initially selected for having high serum anti-Sm titers, and we observe an 

association of CD19hi B cells with high circulating anti-Sm titers and other snRNP antigens 

(Fig. 2.7A).  Among CD19hi SLE and ANCA-SVV Pts, CD19hi B cells constitute a 

substantial fraction of PB B cells (approximately 7.5% and 11%, respectively) (Fig. 2.1A and 

B). Although fluctuation in frequency occurs within Pts over time, and some ANCA-SVV 

Pts were observed to gain a CD19hi population, once it appears this population is relatively 

stable, as it is present during active and inactive disease and remains a significant population 

over time (Tables 2.1 and 2.2, and Fig. 2.2D).  Most CD19hi B cells are IgG+ Bm5 memory B 

cells (Fig. 2.3) and, in at least one SLE Pt, are somatically mutated (Fig. 2.4B), suggesting 

that these cells have passed through a GC.   
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Consistent with a GC origin, the IgG+ CD19hi B cells appear to be antigen selected.  

First, they exhibit a bias in VH1 family gene expression (Fig. 2.4A), in contrast to a VH3 bias 

among IgM+ CD19hi B cells (Fig. 2.4A) and HC B cells(343, 344).  A previous study 

indicated a VH3 bias by SLE B cells(344), but it did not consider individual B cell subsets.  

Analysis of additional Pts is required to determine the generality of this finding and is 

ongoing.  Second, somatic mutation among IgG+ CD19hi B cells is biased in favor of CDR 

amino acid replacement mutations (P=0.019) and against replacement mutations in FWRs 

(P=2.4x10-3), and there are multiple parallel amino acid replacement mutations in VH1

rearrangements (Fig. 2.4C).  The high frequency of VH1 parallel mutation suggests that 

selection is mediated by a limited number of antigens.  We think the selecting antigen(s) are 

likely to be self. In SLE, the selecting antigens may be Sm or other snRNP antigens, since 

very high levels of antibodies to these antigens appear to be the hallmark of CD19hi Pts (Fig. 

2.7B), while in ANCA-SVV the selecting antigens may be MPO and PR3.  This hypothesis is 

currently being tested.  

The activated phenotype of CD19hi B cells (Figs. 2.1 and 2.5) suggests a recent or 

ongoing engagement with antigen, and thus these cells may be undergoing ASC 

differentiation.  The 2-4-fold higher CD19 levels on these cells may confer increased 

sensitivity to activation by antigen, promoting ASC differentiation, as seen in mice with a 

much smaller increase (30%) in CD19 levels(152).  If CD19hi memory B cells are indeed 

more sensitive to activation by antigen and are autoreactive, they likely contribute to disease 

progression and relapse.  A precise determination of their differentiative state, in conjunction 

with identifying the activating antigen(s), will be important to understand their role in 

disease.  Although not associated with increased disease severity as assessed by various 
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clinical scores in either SLE or ANCA-SVV, CD19hi B cells are associated with neurological 

symptoms and anti-RNP antibodies in SLE, suggesting an effect on clinical manifestations of 

disease.  The absence of association with renal disease may be explained by the low levels of 

anti-glomerular antibodies (fibrinogen, laminin, heparin sulfate, Matrigel; Fig. 2.7B), which 

were previously observed to be associated with renal disease(341).  We are currently 

following Pts long-term to determine whether CD19hi B cells are associated with a poorer 

outcome or more frequent relapses.  Overexpression of CD19 by ~20% on systemic sclerosis 

B cells and by B cells in CVID Pts with autoimmune manifestations(297) suggests that 

elevated CD19 is significant to multiple autoimmune diseases. 

Although the molecular basis for CD19 overexpression by memory B cells is 

unknown, our findings provide some insight.  Treatment effects cannot be ruled out; but that 

SLE and ANCA-SVV Pts with and without a CD19hi population receive the same drug 

regimen weakens this explanation.  Genetic factors may be involved, as suggested by the 

possible genetic linkage of CD19 and SLE(349-351).  However, it is noteworthy that 

memory B cell differentiation results in an approximately 30% increase in CD19 expression 

(Fig. 2.6), and that even CD19hi SLE Pts have a memory B cell population with normal 

CD19 upregulation (Fig. 2.6).  Thus, CD19hi B cells appear to represent a unique 

subpopulation of memory B cells in these Pts. This point, along with the finding of skewed 

autoreactivity in CD19hi patients, suggests that CD19 overexpression may be self-antigen 

specific, possibly requiring a combination of antigen and other activating signals, such as 

those through toll-like receptors (TLRs).  A role for TLR signals is an enticing idea, given 

the recent findings strongly implicating dual activation of BCR and TLR receptors in 
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breaking tolerance and generating autoantibodies against nuclear antigens such as dsDNA 

and Sm(8, 9, 11, 352). 
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VI. CONCLUSION 
 

Our data suggest that SLE and ANCA-SVV, although rarely clinically associated, 

share a similar mechanism for loss of B cell tolerance.  We propose that CD19 dysregulation 

affects B cell activation at two stages.  The first is at the CD19lo naïve B cell stage.  It occurs 

with high penetrance in both diseases and may allow autoreactive B cells to evade tolerance 

induction, increasing their likelihood of activation by self.  The second is at the CD19hi 

memory B cell stage.  It occurs with comparatively low penetrance and potentially results in 

increased sensitivity for re-activation.  These findings, along with those of others(283, 298), 

implicate CD19 dysregulation in otherwise distinct antibody-mediated autoimmune diseases 

and point to CD19 as a possible drug target with multiple autoimmune disease applications. 
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Table 2.1. SLE Patients
IDa CD19hi b Medsc Aged Racee Sex Renalf Neurog ANAi α-Smj SLEDAIk BILAG
1 + PL,A 41 B F + 6400 2 2
2 + PR 20 AI F + + 400 2 4
10 + PR, C 18 B F + + 200 6 8
12 + PL, PR,C 26 W F + + 400 8 3
14 + PR, CY 20 W F + + + 25600 28 48
16 + PL, C 34 W F + 0 0 03
17 + PL, PR 45 B F 3200 6 5
24 + PL, PR 21 W F + + 0 4 7
23 + PR, A 31 B F + 800 2 2
25 + PL, PR 48 B F + 0 0 2
26 + PR, M 44 B F + 25600 2 2
27 + PR, CY 33 B F + + 25 8 15
36 + PR 25 B F + + 400 4 14
39 + PL, CY 27 B F + 800 28 24
3 PR 40 B F + 0 0 2
6 PL 31 B F + + 800 2 6
5 PL, PR 21 B F + 0 1 3
4 PL, PR 33 B F + 25 0 3
8 PL, PR 50 W F + 0 0 0
7 PL 25 W F + 25 4 1
9 PL, PR, A 28 B F + + 25600 6 6
11 PL, PR 49 B F + + 0 0 8
13 C 32 W F + + 25 2 0
15 C 36 B F + 1600 2 4
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Table 2.1 Cont.
18 none 50 B F + + 25 2 7
19 C 37 B F + 200 2 1
20 PL, C 19 W M + + 0 4 1
21 C 57 B M + + 0 8 7
22 PL 26 W F 0 0 3
28 PL 61 W M + + 0 0 4
29 PL 33 B F + + 200 8 6
30 PR, CY, C 41 H F + + 0 4 12
31 PL 82 W F 0 2 8
32 C 20 W F + 50 6 4
33 PL, M, PR 45 W F + 0 0 2
34 PL 23 W F + 0 8 5
35 PL, PR 47 W F + + 25 6 6
37 PL, PR 28 W F + 200 7 12
38 PL, PR 33 W M + 50 0 3
41 CY 34 W F + + 0 22 17
40 PR, A 37 B M + + 400 24 18

aEach Pts was assigned a unique number. bPts with a CD19hi population are indicated by a +. cMedications that each Pt was

taking at the time of blood draw are indicated: plaquenil (PL), cellcept (C), cytoxan (CY), prednisone (PR), azathioprine (A), and

methotrexate (M). dAge at the time of analysis is provided. eRace is indicated as American Indian (AI), black (B), Hispanic (H), or

white (W). fIndicates whether the Pt has glomerulonephritis. gIndicates whether a Pt has ever suffered a seizure or psychoses.

hIndicates the presence of anti-ssDNA, anti-dsDNA, or anti-Sm. iIndicates a positive ANA. jIndicates the titer of anti-Sm as

measured by ELISA (illustrated in Fig. 6). kSLEDAI and BILAG scores were determined at the time of B cell analysis(334, 335).
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Table 2.2. ANCA-SVV Patients.
IDa CD19hi b Medsc Gender Aged Racee Diseasef ANCAg ANCA

Titerh
Activityi BVASj

3 + C, CYC F 24 B MPA MPO 24.3 R 0
5 + CY,PR M 76 A MPA MPO 5.3 A 3
11a PR, A M 46 B WG PR3 3.5 R 0
11b + PR, A M 49 B WG PR3 120.5 R 0
16 + C, CYC F 38 W WG PR3 57.9 R 0
19 + PR F 63 W WG PR3 166 R 0
23a PR F 24 W WG PR3 13 A 8
23b + CYC F 25 W WG PR3 76.1 A 3
1 S M 50 W MPA MPO 68.6 A 12
2 None F 67 W MPA MPO 43.1 A 12
4a None F 28 W MPA MPO 75.9 R 0
4b None F 28 W MPA MPO 75 R 0
4c None F 29 W MPA MPO 69.9 R 3
6 PR, CYC, A M 49 W MPA MPO 7.3 R 0
7 None M 56 W GN MPO 29.5 A 6
8 S M 63 W MPA MPO 81.4 A 20
9a PR, A M 63 H MPA MPO 103 A 20
9b PR, A M 63 H MPA MPO 32 R 0
10 None M 66 W MPA MPO 71.4 R 0
12 CY, C F 63 W WG PR3 12O R 0
13a None F 52 B MPA PR3 172 A 6
13b A F 54 B MPA PR3 117 R 0
14 PR F 45 W WG PR3 78.4 R 1
15 PR, CYC, C M 57 W WG PR3 52 A 18
17 C M 23 W WG PR3 74.3 A 11
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aEach Pt was assigned a unique number. Serial numbers of the same Pt are indicated by letters. bPts with a CD19hi population are

indicated with a +. cMedications that each Pt was taking at the time of blood draw are indicated: plaquenil (PL), cellcept (C),

cytoxan (CY), cyclosporine (CYC), prednisone (PR), azathioprine (A), and solumedrol (S). dAge at time of analysis. eRace is

indicated as asian (A), black (B), or white (W). fDisease classification are indicated as Wegener’s granulomatosis (WG),

microscopic polyangitis (MPA), or pauci-immune necrotizing and cresentic glomerulonephritis without extra-renal manifestations

(GN). Pt 22 also has anti-glomerular basement membrane autoantibodies (αGBM). gThe specificity of the ANCA (MPO or PR3)

is indicated. hANCA titer expressed in units/ml. A positive test corresponds to a titer >20u/ml. iPts are classified as being in

remission (R) or having active disease (A) based on clinical assessment and BVAS score. Pts with a BVAS score ≤1 are

considered in remission; Pts with a score >1 are considered active. BVAS was calculated by a standard protocol for vasculitis

activity score modified in 2003(353).

Table 2.2 Cont.
18 PR M 71 W WG PR3 158 A 20
20 None M 38 W WG PR3 116 R 0
21 S F 55 W WG PR3 171 A 27
22 None M 26 W MPA/αGBM PR3 4 R 0
24 S M 77 W WG PR3 165 A 2
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Figure 2.1. Two B cell populations are detected in SLE and ANCA-SVV Pts based on 
CD19 expression and size (FSC).   
(A) Histograms of representative Pts and HCs.  Populations of smaller CD19lo and larger 

CD19hi B cells are indicated.  Two representative HCs, SLE Pts in which the majority of Pts 

that have only the CD19lo population (SLE), and SLE Pts that also have a CD19hi population 

(SLE CD19hi) are shown.  One representative ANCA-SVV Pt with and one Pt without a 

CD19hi population is shown.  Histograms represent >10,000 CD19+ lymphocytes.  Note that 

the CD19 staining intensities differ between Pt samples due to unavoidable day-to-day 

staining variation. (B) Comparison of CD19 expression between SLE and ANCA-SVV B 

cells with HCs analyzed on the same day.  The comparison is between the smaller CD19lo B 

cells from SLE and ANCA-SVV Pts and all CD19+ B cells from HCs stained on the same 

day.  Gates for this analysis are as in (A).  (C) The difference in CD19 MFI between CD19lo 

B cells of SLE and ANCA-SVV Pts and HC B cells.  Numbers were determined by 

subtracting the CD19 MFI of the HC B cells from the CD19 MFI of the CD19lo Pt B cells.  

Each symbol represents a HC/Pt comparison stained on the same day.  On average CD19lo 

SLE PB B cells stain ~18% less well for CD19 than HC B cells (indicated by the horizontal 

dotted line).  To control for medication in this analysis a group of 7 ANCA Pts not on 

medications at the time of analysis were compared separately.  Statistical significance was 

determined by the Wilcoxon’s signed-ranks test.  (D) CD38 and IgD staining of B cells from 

HCs and SLE/ANCA-SVV B cells to identify the Bm designation.  The subset descriptions 

and Bm designation are indicated.  Comparison is between all CD19+ B cells of a HC, and 

the CD19lo population from a SLE and ANCA-SVV Pt as gated in (A). 
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Figure 2.2. CD19hi B cells are present in a subset of SLE or ANCA-SVV Pts. 
(A and B) The frequency of CD19hi B cells in individual SLE and ANCA-SVV Pts.  Each 

symbol represents an individual Pt or HC.  CD19hi B cells were gated as in Fig. 2.1A.  The 

horizontal line indicates the frequency that is 2 standard deviations above the mean for HCs.  

Pts with a CD19hi B cell population above this point were considered positive for a CD19hi 

population.  (C) The difference in MFI between the CD19hi population, as gated in Fig. 

2.1A, and the HC B cells stained on the same day.  The difference was calculated as 

described in Figure 2.1C.  Each dot represents an individual Pt/HC comparison.  Statistical 

significance was determined by the Wilcoxon’s signed-ranks test.  (D) Analysis of 

representative SLE and ANCA-SVV Pts at one year intervals.  The SLE Pt had a CD19hi 

population on initial analysis that was evident at each subsequent visit, whereas the ANCA-

SVV Pt did not have a CD19hi population on their initial analysis, but did on a subsequent 

analysis.  The histograms are as described in Fig. 2.1A.  The frequency of CD19hi B cells, as 

gated, are given. 
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Figure 2.3. SLE and ANCA-SVV CD19hi B cells are primarily IgG+ IgD- memory B 
cells. 
(A) The percentage of IgD+ and IgG+ B cells is shown for each of the following cell 

populations for SLE (upper) and ANCA-SVV (lower) Pts: B cells from HCs, CD19lo B cells 

from Pts and without a CD19hi population (labeled SLE or ANCA-SVV), and CD19hi B cells. 

P values for the differences between CD19hi B cells and HC B cells were calculated by the 

Student’s t test and are shown.  (B) The expression of CD38 and IgD is shown to determine 

the subset identity of SLE and CD19hi B cells.  Total CD19+ B cells from a HC and the 

CD19lo and CD19hi B cells (as defined in Fig. 2.1A) from an SLE Pt are shown.  Similar 

results were obtained from ANCA –SVV Pts.  (C) The average percentage of cells belonging 

to the indicated subset from all SLE and ANCA-SVV Pts and HCs analyzed based on the 

subset identities indicated in B, except that the memory subset is the combination of early 

Bm5 and Bm5.  Error bars represent standard error.  * P <0.05 and ** P <0.001 (Student’s t 

test).  
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Figure 2.4. CD19hi B cells are somatically mutated and antigen selected. 
Single CD19hi B cells were sorted according to the gating shown in Fig. 2.1A.  (A) Percent 

VH family gene use by µ (N=20) and γ (N=19) sequences is shown.  (B) Summary of 

somatic mutations of SLE CD19hi B cells are illustrated.  IgM and IgG sequences are shown 

separately.  The number of sequences with zero, 1-10, or >10 mutations is graphed. The 

number of sequences within each group is given.  (C) Shared independent mutations are 

shown from sequences encoded by the same gene.  The genes expressed are given and each 

mutation is identified with a vertical line.  Unshared mutations are not shown. 
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Figure 2.5. CD19hi B cells of SLE and ANCA-SVV Pts have upregulated activation 
markers.  
 Overlays of the indicated cell surface molecules from a HCs and CD19hi SLE Pt (top row) 

and ANCA-SVV Pt (bottom row).  For the Pt, the CD19lo and CD19hi B cells are shown 

separately.  The dashed line represents HC B cells, the thin solid line represents CD19lo B 

cells from the Pt, and the dark solid line represents CD19hi B cells from the Pt.  Histograms 

are representative of 3 or more Pts and HCs. 
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Figure 2.6. HC memory B cells have higher CD19 expression than naïve B cells.   
(A) CD19 expression on naïve B cells (IgD+ CD38+, dashed line) and memory B cells (IgD-

CD38lo/-, thin black line) from a representative HC (top panel), on naïve and memory B cells 

of an SLE Pt that does not have a CD19hi population (middle panel), and on naïve B cells 

(dashed line), CD19lo memory B cells (thin black line), and CD19hi memory B cells (thick 

black line) from an SLE and ANCA Pt with a CD19hi population (bottom panel) are shown.  

All samples were collected and stained on the same day.  Vertical lines mark the CD19 MFI 

of the HC memory B cells and are in identical positions in all three histograms.  (B) The 

average CD19 MFI of HC naïve and memory B cells (n=10).  The difference between the 

two populations is significant (P=3x10-5; Student’s t test).  
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Figure 2.7. CD19hi Pts have a distinct autoantibody profile.   
(A) CD19hi Pts have a significantly elevated anti-Sm titer compared to CD19lo Pts and HCs 

(P<0.01 for each comparison; Student’s t test).  Each symbol represents an individual Pt.  

The median titer for each group is marked by a horizontal line.  (B) IgG autoantibody 

profiles were determined from sera of HCs, CD19lo SLE Pts and CD19hi SLE Pts using 

autoantigen proteome arrays bearing 67 different nuclear or glomerular autoantigens, as 

previously described(341). Fluorescent intensities were normalized using human IgG 

standard and presented as normalized fluorescent intensity (nfi) units.  Each dot represents 

serum from an individual HC/Pt. Horizontal lines indicate group means.  Listed below the x-

axis are the student’s test P-values when CD19lo was compared to HC, or when CD19hi was 

compared to HC or to CD19lo, respectively (*, P < 0.05; **, P < 0.01; ns, not significant).  

The serum IgG levels for CD19lo and CD19hi Pts (Avg ± SD) were significantly different 

from HCs (P= 0.042 and 0.010, respectively, Student’s t test), but not from each other.  They 

were as follows:  HCs, 5.63 ± 1.26 mg/ml; CD19lo Pts, 8.64 ± 4.06 mg/ml; CD19hi Pts, 8.82 

± 5.01 mg/ml.  (C) IgM autoantibody levels against the same autoantigen proteome arrays as 

in (B).  Fluorescent intensities were normalized using human IgM standard and presented as 

nfi units. Each dot represents serum from an individual HC/Pt. Horizontal lines indicate 

group means.  The serum IgM levels were not significantly different by Student’s t test and 

are given as Avg ± SD: HC, 546 ± 224 µg/ml; CD19lo, 496 ± 346 µg/ml; CD19hi, 455 ± 396

µg/ml. 
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Figure 2.7, continued.

Ribosomal
Protein PO

HC         CD19lo CD19hi

ns **, ns

nf
iu

ni
ts

La/SSB

HC         CD19lo CD19hi

ns **, *

nf
iu

ni
ts

10

100

1000

10

100

1000

H2B

HC         CD19lo CD19hi

ns *, ns

nf
iu

ni
ts

10

100

1000 10000

Cardiolipin

HC         CD19lo CD19hi

ns **, ns

nf
iu

ni
ts

10

100

1000

10000U1RNP-68

HC          CD19lo CD19hi

* ns, ns

nf
iu

ni
ts

10

100

1000

C



CHAPTER 3: A UNIQUE SUBSET OF MEMORY B CELLS IS 
ENRICHED IN AUTOREACTIVITY AND CORRELATES 

WITH ADVERSE OUTCOMES IN SLE 
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I. ABSTRACT 
 

We previously reported that a subset of systemic lupus erythematosus (SLE) patients 

have an expanded population of memory B cells with >2-fold increased expression of CD19 

(CD19hi).  We show here that the presence of CD19hi B cells correlates with long-term 

adverse outcomes, notably neurological complications and end stage renal disease, and with 

poor clinical responsiveness to treatment with rituximab.  B cells specific for the Smith (Sm) 

autoantigen are enriched in the CD19hi population, and this enrichment correlates with the 

serum anti-Sm titer.  Functional analysis and transcription factor expression suggests that 

CD19hi B cells are at an early stage in plasma cell differentiation and are not anergic.  

Interestingly, they have high basal levels of phosphorylated Syk and ERK1/2, indicating 

ongoing signaling, possibly through the B cell receptor complex.  They express high levels of 

CXCR3, but low levels of CXCR4 and CXCR5, and chemotax towards the CXCR3 ligand 

CXCL9, but not the CXCR4 ligand CXCL12, suggesting that they are homing to sites of 

inflammation rather than to the bone marrow.  We conclude that the CD19hi B cells are 

precursors to autoantibody producing plasma cells, and that this population identifies a subset 

of SLE patients likely to experience poor clinical outcomes.  
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II. INTRODUCTION 
 

Systemic lupus erythematosus (SLE) is a severe, autoantibody-mediated disease 

affecting multiple organ systems.  The etiology is poorly understood, but has both genetic 

and environmental components.  Because anti-nuclear antibodies (ANA) are pathogenic in 

this disease(331, 332), B cells are thought to play a pivotal role in its development and 

progression.  Apart from their role as producers of antibody, B cells may also mediate SLE 

development and pathogenesis through their actions as antigen presenting cells (APCs) and 

producers of cytokines(220, 230, 305, 332, 354-357).  Thus, understanding how B cell self-

tolerance is broken in SLE is important to the development of new therapeutic approaches. 

No unique precursors of autoantibody producing cells have been identified in SLE 

patients, suggesting that autoreactive cells are indistinguishable from cells recognizing 

foreign antigens.  Human autoantibodies are predominantly IgG and somatically mutated, 

suggesting that they are the product of germinal center responses.  Both class-switched (IgD-)

and IgM (IgD+) memory B cells have been described in human tonsil, spleen, and circulation, 

and are typically CD38- and CD27+, although CD27- subsets have been described(199, 200).  

CD19loCD38hi plasmablasts have also been identified in human blood, and both of these 

populations are relatively expanded in SLE patients(307, 315).  Upon re-encounter with their 

cognate antigen, memory B cells proliferate, after which some differentiate into plasma cells 

(PC) and others regenerate the long-lived memory population.   

B cell activation is dependent on multiple factors, including specificity and affinity 

for antigen, and the function of co-receptor molecules that act to amplify or dampen signals 

through the BCR.  Balance between these negative and positive modulators is important in 
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establishing B cell tolerance.  CD19 is a BCR co-receptor that augments BCR signaling and 

has become of significant interest in autoimmunity.  It is a component of a multimeric protein 

complex that includes CD21, CD81, and Leu-13(133).  It also serves as a signaling partner 

for other receptors, including CD21, CD40, CD38, CD72, VLA-4, and FcγRIIB(132, 333, 

358-360).  CD19 is expressed by all B cells beginning at the pro-B stage, but is lost along 

with many other B cell-specific proteins upon plasma cell differentiation(358).  Alterations in 

CD19 expression by B cells affect their function and differentiation.  In the absence of CD19, 

B cells are hyporesponsive to BCR signaling and generate weak responses to T-dependent 

antigens with dramatically reduced germinal center formation; conversely, a high density of 

CD19 confers hypersensitivity to BCR signaling and vigorous immune responses(361, 362).  

In mice, as little as a 15% increase in CD19 expression induces a loss of B cell tolerance and 

autoantibody production(132, 152, 297). Thus, CD19 is critical to setting the threshold levels 

for the induction of B cell tolerance and activation.   

How CD19 functions in B cell activation has been intensely investigated. 

Crosslinking of CD19 or the BCR results in rapid phosphorylation of the cytoplasmic tail of 

CD19 leading to a processive amplification of Lyn phosphorylation(363).  Activated Lyn 

phosphorylates the immunoreceptor tyrosine-based activation motifs (ITAMs) on CD79a and 

CD79b, the signaling subunits of the BCR, which provides a binding site for the Src family 

tyrosine kinase Syk(85, 150, 363, 364).  Syk is a key protein tyrosine kinase in B cells, since 

the loss of Syk results in a block in further signaling downstream of the BCR and a block in 

B cell development(128, 129).  These initial events lead to the formation of a BCR 

signalsome, a complex of multiple protein tyrosine kinases and adapter proteins on the inner 

surface of the plasma membrane that induces in the release of intracellular Ca++ and the 
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activation of protein kinase C (PKC) and numerous downstream kinases.  This cascade leads 

to the activation of the mitogen-activated protein kinases (MAPKs) extracellular signal-

regulated kinase (ERK), c-JUN NH2-terminal kinase (JNK), and p38 MAPK(85), which 

induce the transcription of relevant genes.  The profile of the genes activated by MAPKs 

determines cell fate by controlling proliferation, survival, and differentiation.   

In addition to its role in Lyn phosphorylation, CD19 contributes to B cell activation 

by the recruitment phosphatidylinsoitol 3-kinase (PI3K) to the BCR.  Activated PI3K is 

critical to the release of intracellular Ca++ and PKC activation, and therefore MAPK 

activation, and to the activation of the Akt pathway, a B cell survival and metabolic fitness 

pathway.  CD19 signals also synergize with BCR signals by a mechanism independent of 

Ca++ and PKC to enhance the activation of the MAPK ERK1/2(151).  Thus, CD19 

contributes to B cell activation by inducing the activation of multiple pathways crucial to B 

cell function in response to antigen stimulation.  

Altered CD19 expression is evident in human autoimmunity.  Systemic sclerosis 

patients have a 20% increase in CD19 expression(297), while SLE patients have decreased 

CD19 expression compared to healthy control B cells(296, 297, 365).  In addition, we, and 

others, have shown a population of B cells which have 2-3 fold increased levels of CD19 

compared to other B cells from the same patient or to HC B cells(CD19hi cells) in SLE, 

ANCA-SVV, and CVID patients(283, 298, 365).  We previously reported that these CD19hi 

B cells have an activated memory phenotype, are class switched, and show evidence of 

antigen selection(365).  We propose that the increased CD19 expression on CD19hi memory 

B cells decreases their activation threshold leading to enhanced proliferation, survival, and 

plasma cell differentiation.  If the CD19hi memory B cell subset contains autoreactive B cells, 
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then a lower threshold of activation may lead to chronic activation and production of 

autoantibody producing plasma cells.   

Herein we show that the CD19hi population is enriched in autoreactive B cells, and 

that the degree of enrichment correlates with autoantibody titers.  Consistent with increased 

autoreactivity, their presence correlates with poor clinical outcomes and with a poor clinical 

response to B cell depletion by rituximab.  Analysis of these cells suggests that they are at an 

early stage in plasma cell differentiation, are not anergic, and are likely to be homing to sites 

of inflammation rather than the bone marrow.  Thus, CD19hi B cells appear to constitute a 

population unique to autoimmunity that contribute to autoantibody production and that may 

play a pivotal role in disease pathogenesis. 
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III. MATERIALS AND METHODS 
 

HC and Pt Clinical Samples and Data 

PB samples were collected from 10 HCs (mean age: 36.5 yrs, range: 27-54, gender: 8 

female, 2 male) and 10 Pts (mean age: 37 yrs, range: 23-53, gender: 10 female); in some 

cases, the same HC or Pt was used in multiple occasions or experiments.    Five of the 10 Pts 

from this study were patients continuing from the original study(365), and the other five were 

newly identified.  Pts were included in this study after informed consent in accordance with 

our institutional internal review board, and fulfilled at least four of the established American 

College of Rheumatology 1997 revised criteria for SLE.  Samples were gathered during 

routine clinic visits, and sera obtained from the same blood draw as that for B cell analysis. 

Table 1 is a prospective analysis of clinical outcomes of patients remaining in our 

study since the previous publication(365) and details such as their medications can be found 

in that manuscript.  Clinical outcomes were determined by review of patient records. 

PB samples were collected into Vacutainer CPT tubes with sodium heprin (BD 

Biosciences) and sera and PBMCs isolated as per manufacter’s protocol.  PBMCs were 

washed once with sterile PBS before continuing with any protocol. 

 

Flow Cytometry, Signaling Studies, and FACS 

 For surface staining, cells were prepared and stained as previously reported(365). 

Signaling and phosphoprotein studies were carried out using the BD Phosflow system as per 

manufacturer’s Protocol 1 (BD Biosciences, San Diego, CA). Briefly, cells were resuspended 

at 2.5x106 cells/mL in RPMI + 2% FBS and equilibrated at 37°C for at least 20 min.  An 

equal volume of pre-warmed, 2x solution of goat F(ab’)2 α-human IgG (10ug/mL final, 
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Southern Biotech, Birmingham, AL) or Pansorbin (0.1% final, Calbiochem, La Jolla, CA) 

was then added with vortexing, and cells were returned to 37°C for 10 min.  Cells were then 

immediately fixed by addition of pre-warmed Phosflow Fix Buffer 1, and Protocol 1 

followed for permeabilization and staining.  Antibodies used were: pSyk-PE, pERK-PE, Syk-

FITC, pan ERK, pJNK, p-p38-FITC, Ki-67-FITC, CD19-APC, CD20-PE and -APC-Cy7, 

and CD72-FITC (BD Biosciences, San Diego, CA); pAkt (Thr308) and pAkt (Ser473)-

Alexa488 (Cell Signaling Technology, Boston, MA); CD180-PE (RP105), BR3-FITC, 

TLR4-PE, and TLR9-PE (eBioscience, San Diego, CA).  Unlabeled antibodies were labeled 

using Zenon technology (Invitrogen, San Diego, CA).  Appropriate pre-labeled or Zenon 

labeled isotype controls were used in each experiment. 

For PI staining, 5x105 cells were aliquoted, washed with cold PBS, resuspended in 

0.5mL cold PBS and permeabilized with 4.5mL ice cold 70% ethanol for 2 hrs at -20°C.  

Cells were then pelleted, washed with cold PBS, and resuspended in 750uL of a solution with 

0.2 mg/mL RNase A, 0.02 mg/mL propidium iodide (PI), 0.1% Triton X-100 (all from 

Sigma-Aldrich, St. Louis, MO) and αCD20-FITC (cytoplasmic domain, from BD 

Pharmingen, San Diego, CA) in PBS and incubated for 1 hr on ice.  Cells were then washed 

with PBS and analyzed by flow cytometry. 

For FACS, cells were prepared as described above and stained on ice with some or all 

of the following, depending on the experiment: CD19-APC, CD20-APC-Cy7, IgD-FITC, and 

CD38-PE-Cy7 (BD Pharmingen, San Diego, CA).  Cells were sorted using settings to obtain 

maximum purity on one of two high-speed sorters (MoFlo, Dako Cytomation or FACSAria, 

BD Biosciences).  Post-sort analysis determined purity of populations at >90%. 
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RNA Extraction and Real Time PCR 

Sorted cell populations were spun down, supernatant removed, and frozen at -80°C 

until RNA extraction using RNeasy mini columns (Qiagen, San Deigo, CA) as per 

manufacturer’s protocol.  The reaction for generation of cDNA was carried out using a poly-

A primer and SuperScriptII Reverse Transcriptase (Invitrogen, San Diego, CA) according to 

manufacturer’s protocol. 

Real time PCR was carried out using TaqMan Gene Expression Assays, with β-Actin 

as an endogenous control, as per manufacturer’s protocol (Applied Biosystems, Foster City, 

CA) on an ABI Prism 7000 Sequence Detection System machine.  Data were analyzed using 

ABI Prism 7000 software relative quantification study parameters.  In each case, transcript 

expression, normalized to β-actin expression, in CD19hi cells is quantified relative to 

expression in CD19lo cells from the same Pt. 

 

ELISpot 

 Anti-Sm and anti-IgG ELISpot protocols were adapted from those used in this lab for 

mouse B cells(232). Briefly, 96-well filter plates were coated with diluted Sm protein 

(Immunovision, Springdale, AZ) or anti-human IgG (Bethyl Laboratories, Montgomery, 

TX).  Sorted cells were resuspended in DMEM supplemented with 10% FBS, 100U/mL 

Penicillin/Streptomycin (Gibco Invitrogen, San Diego, CA), 0.1% β-mercaptoethanol (Gibco 

Invitrogen, San Diego, CA), and 40ug/mL transferrin (BD Biosciences, San Diego, CA) and 

plated between 5x104 and 6x105 cells in 200uL/well either without stimulation or stimulated 

with 15ug/mL anti-CD40, 100U/mL rhIL-2, 100U/mL rhIL-10, (BD Pharmingen, San Diego, 

CA), and 0.01% Pansorbin (Calbiochem, La Jolla, CA) as previously described for maximal 
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stimulation of antibody secretion(366).  In each plate, CD19hi and CD19lo cells, stimulated 

and unstimulated, were plated on both Sm and IgG coated wells and incubated for 6 days at 

37°C with 5% C02. They were then washed as previously described and incubated with an 

anti-human IgG-HRP antibody (Bethyl Laboratories, Montgomery, TX) overnight at 4°C. 

The plates were then developed and read as previously described(232). Counts were 

normalized to spots per million cells based on the number of cells plated in that well. 

 

Elisas 

The sCD21 Elisa was carried out with frozen serum samples from the Pts and HC 

analyzed in our previous study(365) using a sCD21 Elisa kit (Cell Sciences, Canton, MA) 

according to manufacturer’s protocol. 

The α-Sm Elisa was carried out as previously described(365) using serum samples 

obtained from the same draw as the cells sorted and plated in ELISpot. All four Pt samples 

were run on the same plate. 

 

Chemotaxis Assay 

Chemotaxis assays were performed as previously reported for human PB B 

cells(211).  Briefly, 5uM pore size transwell inserts (Costar, Corning, NY) were coated with 

human fibronectin (Sigma-Aldrich, St. Louis, MO) and washed.  100µL of 5x106 cells/mL 

purified PBMCs in RPMI 1640 (Gibco, Invitrogen, San Deigo, CA) with 0.5% BSA (Sigma-

Aldrich, St. Louis, MO) were added to the upper well and 600µL of media alone or with the 

appropriate chemokine were added to the lower well.  Chemokines used were CXCL9/MIG 

at 10nM and CXCL12/SDF-1β at 100nM (R&D Systems, Minneapolis, MN). Plates were 
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incubated at 37°C in 5% CO2 for 90 minutes and migration assessed by staining and flow 

cytometry of cells in upper and lower wells. 
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IV. RESULTS 
 

The presence of CD19hi B cells correlates with adverse clinical outcomes.

We previously reported that the presence of CD19hi B cells did not correlate with 

disease activity or any specific feature of SLE except for severe neurological dysfunction 

(seizures or psychoses), which was seen in 2 of 14 CD19hi SLE patients and none of 27 

CD19lo SLE patients(365).  We have now followed the same patient cohort over a five-year 

period to determine whether there is a correlation with long-term clinical outcome.  As seen 

in Table 1, the presence of a CD19hi population was again significantly associated with 

severe neurological involvement, as two additional CD19hi SLE patients developed this 

complication, whereas none of the CD19lo SLE patients exhibited neurological symptoms.  In 

addition, there was a significant correlation with end stage renal disease (ESRD), and overall 

presence of any one of four adverse outcomes (severe neurological complications, ESRD, 

thrombic thrombocytopenic purpura (TTP), or death due to disease complications).  Taken 

together, these findings suggest that presence of the CD19hi memory population identifies a 

subset of SLE patients that are likely to develop more severe disease, and suggests that these 

cells play a role in neurologic and renal pathogenesis. 

 

CD19hi patients respond poorly to rituximab.  

 
Given the increased frequency of severe complications among CD19hi patients, we 

determined how these patients responded clinically to B cell depletion therapy with 

rituximab, a humanized anti-CD20 monoclonal antibody.  In SLE, the response to rituximab 

is variable; some patients experience long-term clinical remission, while others experience 
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short-term remission or no clinical response(315, 321, 367).  In a survey of 17 SLE patients 

treated with rituximab, five possessed a CD19hi population either before or after treatment 

with rituximab based on having a frequency of CD19hi B cells that exceeded two-times the 

standard deviation above the mean percentage in healthy controls.  Clinical response to 

rituximab was defined as an improvement in the SLAM or SLEDAI of at least 3.  Clinical 

response duration was defined as the time point where these disease activity indexes began to 

increase (relapse occurred), with the SLAM and/or SLEDAI increasing by at least 3 points 

and/or an increase in steroids required.  As shown in Fig. 1, four CD19hi patients were short-

term responders to rituximab (9 months or less), and one was a non-responder.  In contrast, 

almost half (5 of 12) of CD19lo patients experienced a 12-month or longer remission, and of 

these, three had an extended, ongoing clinical response to rituximab treatment.  The 

remaining seven were short term or non-responders to treatment.  Thus, rituximab may be a 

less efficacious treatment for SLE patients with an expanded CD19hi population than for SLE 

patients that lack this population. 

 

The CD19hi population is enriched in autoreactive B cells.  

 
To determine whether CD19hi B cells can contribute to autoantibody production, we 

tested whether the CD19hi population is enriched in autoreactive B cells.  Since the presence 

of a CD19hi population is strongly associated with a high anti-Smith (Sm) serum titer(365), 

we measured the frequency of anti-Sm IgG B cells in the CD19hi and non-CD19hi (CD19lo)

populations by ELISpot.  We sorted CD19hi and CD19lo B cells from four SLE patients, three 

of whom had elevated anti-Sm titers, and induced ASC differentiation with pansorbin, anti-

CD40, IL-4, and IL-10 for 6 days on ELISpot membranes coated with purified Sm protein.  
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No anti-Sm antibody secreting cells were observed among the CD19hi or CD19lo B cells from 

the patient that lacked an anti-Sm titer.  However, significantly more anti-Sm IgG secreting 

cells were present among CD19hi B cells than among CD19lo B cells (p=0.01, Fig. 2A) from 

the remaining three patients.  Importantly, the frequency of anti-Sm ASCs within the CD19hi 

population correlated exponentially with the serum anti-Sm titer (R2=0.99 and R2=0.4, 

respectively, Fig. 2B).  Since a two-fold increase in anti-Sm B cell frequency within the 

CD19hi compartment is associated with an ~100-fold increase in serum anti-Sm, not only are 

CD19hi cells likely to be direct precursors to autoantibody secreting plasma cells, but they are 

likely to clonally expand before differentiating, and may also play a role in skewing the 

immune response towards particular autoantigens, such as through activation of cognate T 

cells. 

 

CD19hi cells have a unique basal phosphorylation state. 

To determine whether increased CD19 alters BCR signaling, we measured basal and 

BCR stimulated levels of phosphorylated signaling molecules.  We compared the levels of 

phosphorylated CD19, Syk, Akt, and the MAPKs ERK1/2, JNK, and p38 in CD19hi B cells 

with those of CD19lo B cells from the same patient and healthy control (HC) B cells.  To 

detect phosphorylated proteins in these cells we used flow cytometry, since the limited 

numbers of CD19hi B cells that can be obtained precluded the use of standard western 

blotting methods.  Flow cytometry had the added benefit of also determining the frequency 

of B cells within a population that exhibited increased phosphorylation of a given protein.   

 To measure basal phosphorylation levels of these proteins, we stained for their 

presence immediately following purification of peripheral blood monocytes (PBMCs).  In 
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each case a HC blood sample was stained at the same time. There was a modest but 

significant increase in CD19 phosphorylation (pCD19) in CD19hi B cells compared to 

CD19lo (average=1.5 fold), but the increase in total CD19 expression was significantly 

greater (average=2.9 fold, Fig. 3A).  Thus, a smaller proportion of CD19 was phosphorylated 

in CD19hi B cells compared to CD19lo cells.  Because CD19 phosphorylation amplifies Syk 

activation(131), we were surprised to find that despite a lower frequency of CD19 

phosphorylation, nearly all CD19hi B cells displayed significantly elevated levels of 

phosphorylated Syk (pSyk) compared to the CD19lo B cells from the same patient and from 

HC B cells (Fig. 3B-D).  The median fluorescence intensity (MFI) of pSyk was ~3.2-fold 

greater than that for CD19lo B cells from the same patient.  Likewise, nearly all CD19hi B 

cells exhibited significantly elevated levels of pERK1/2 than CD19lo B cells from the same 

patient and from HC B cells (Fig. 3B-D).  CD19hi B cells had a MFI of pERK1/2 that was 

~2.9-fold greater than CD19lo B cells from the same patient.  Levels of total Syk 

(average=1.8 fold) and ERK (average=1.4 fold) protein were also elevated in CD19hi as 

compared to CD19lo B cells (Fig. 3C and D), but they were significantly lower than increases 

in pSyk and pERK1/2 levels (Fig. 3D).  It should be noted that the pan-ERK antibody 

recognizes other ERK family members in addition to ERK1/2, and therefore the increased 

ERK levels detected by this antibody may have overestimated the increase in ERK1/2 levels.  

In contrast to Syk and ERK, we observed no significant increases in basal phosphorylation 

levels of Akt or the MAP kinases p38 or JNK.  In the case of Akt, no increase in 

phosphorylation was detected at either phosphorylation site (Fig. 3D).  Thus, ex vivo CD19hi 

B cells exhibit an unusual phenotype.  Despite a lower frequency of phosphorylated CD19, 
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nearly all cells exhibiting increased levels of pSyk and pERK1/2, but not increased 

phosphorylation of other MAPKs or Akt downstream of the BCR and CD19.  

 

CD19hi B cells are responsive to BCR stimulation. 

Since constitutively elevated pERK levels are associated with B cell tolerance(240), 

we sought to determine whether crosslinking the BCR on CD19hi B cells results in 

transduction of signal and plasma cell differentiation.  To determine whether BCR signaling 

is intact in CD19hi B cells, HC and SLE B cells were stimulated with anti-IgG or pansorbin 

for 10 minutes and the levels of phosphorylated molecules determined by flow cytometry.  

Although the kinetics of phosphorylation may vary for each molecule examined, we sought a 

time point at which phosphorylation of all measured molecules could be observed in HC and 

SLE B cells due to limitation of cell number,  All five signaling intermediates and CD19 

were phosphorylated upon BCR stimulation in HC B cells and SLE CD19lo B cells (Fig. 4A-

C), although a somewhat higher percentage of CD19lo B cells than HC B cells 

phosphorylated these molecules (Fig. 4C) consistent with reports that SLE B cells are 

hyperresponsive to BCR stimulation(300-302, 304, 365).  Importantly, SLE CD19hi B cells 

increased the levels of phosphorylated CD19, p38, JNK, and Akt similarly to HC and CD19lo 

cells (Fig. 4A and B).  The frequency of CD19hi B cells that increased the levels of each 

phosphorylated protein was similar to that of CD19lo and HC B cells (Fig. 4C).  In contrast, 

SLE CD19hi B cells exhibited little or no increase in the already high basal levels of pSyk 

and pERK1/2 (Fig. 4A and B), or in the percentage of cells positive for pSyk and pERK1/2 

(Fig. 4C).  Interestingly, the basal pSyk and pERK1/2 levels in CD19hi B cells were similar 

to those reached by HC and SLE CD19lo B cells after BCR crosslinking, suggesting that ex 
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vivo CD19hi B cells have already maximally phosphorylated these molecules.  Altogether, 

these data indicate that CD19hi B cells are not refractory to BCR signaling.  

To determine whether CD19hi B cells can be activated to become ASCs, we 

determined the frequency of IgG antibody-secreting cells by an ELISpot assay before and 

after stimulation.  As shown in Fig. 4D, an average of only 0.05% (SEM 0.03%) of CD19hi 

cells spontaneously secreted IgG, ~7-fold less than CD19lo B cells (0.34%, SEM 0.16%).  

However, stimulation with pansorbin, anti-CD40, IL-4, and IL-10, a cocktail previously 

shown to induce robust IgG secretion in memory cells(366), induced an average of 14.6% 

(SEM 4.51%) of CD19hi B cells to secrete IgG, nearly twice that seen with CD19lo B cells 

(7.9%, SEM 2.6%).  This may be de to differences in the frequency of IgG+ B cells in each 

population or to an increased propensity of CD19hi B cells to become antibody-secreting 

cells.  Thus, the ability of CD19hi B cells to signal in response to BCR ligation and their 

ability to differentiate to antibody-secreting cells upon stimulation suggests that CD19hi B 

cells are not anergic. 

 

CD21 expression is downregulated in CD19hi cells.

We previously reported the CD21 expression was decreased on the cell surface of 

CD19hi B cells, while CD21 levels were similar between HC B cells and SLE CD19lo B cells 

(Fig. 5A)(365).  Since CD19 is the signaling component for the complement receptor CD21, 

we wished to determine if this decreased surface expression was due to increased recycling, 

cleavage, or downregulation.  In some settings, CD21 is cleaved from the surface of activated 

B cells, forming soluble CD21 (sCD21) which can be detected in serum and in culture 

supernatants(284, 368).  We therefore compared CD21 transcript levels in sorted CD19hi 
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cells relative to CD19lo B cells from the same patient using relative quantification (RQ) real 

time PCR (RT-PCR).  CD21 transcripts were significantly decreased in all three patients 

examined (average RQ=0.16, Fig. 5B), suggesting downregulation, and not increased 

recycling or cleavage, is responsible for decreased CD21 expression by these cells.  

Consistent with this, although analysis of serum samples from the large cohort of CD19hi 

patients indicates that CD21 levels were lower in CD19hi patients compared to CD19lo 

patients and HCs, they were not statistically different (averages of 15.5U/mL, 21.6U/mL 

23.2U/ml, respectively).  However, sCD21 levels were significantly lower among SLE 

patients that had an elevated anti-Sm titer (Fig. 5C), in contrast to the previously reported 

general decrease in sCD21 among SLE patients compared to HCs(285).     

 

CD19hi cells have a pre-plasma cell transcription profile. 

Our previous analysis suggested that CD19hi B cells are activated memory B cells.  

However, the relationship between autoreactive B cell frequency and serum autoantibody 

titers suggests a close relationship between these cells and the plasma cell pool in these 

patients.  Thus, we sought to determine whether these cells were at an early stage in plasma 

cell differentiation by measuring the levels of B cell- and plasma cells-specific transcription 

factors by RQ RT-PCR.  RNA from sorted CD19hi and CD19lo B cells from three patients 

was used to determine expression levels of the B cell-specific transcription factors Pax-5 and 

Bcl-6, and the plasma cell-specific transcription factors Blimp-1, IRF-4 and XBP-1.  During 

differentiation to an ASC, Pax-5 and Bcl-6 are downregulated, and IRF-4, Blimp-1, and 

XBP-1 are upregulated(369).  As shown in Fig. 6A, CD19hi B cells showed significant 

downregulation of Pax-5 and smaller but consistent downregulation of Bcl-6 compared to 
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CD19lo B cells (average RQ=0.34 and 0.49, respectively).  However, they showed no 

upregulation of Blimp-1, IRF-4, or XBP-1 expression (Fig 6A).  Since >70% of CD19hi cells 

are IgD-CD38-(365), we sorted IgD-CD38- memory B cells with all other CD19+ B cells 

from three HCs is presented in Fig. 6B.  No significant differences were observed between 

the cells of these populations, including in Pax-5 expression (average RQ=1.4).  Thus, the 

low Pax-5 levels seen in CD19hi B cells are not a general characteristic of memory B cells, 

suggesting that CD19hi cells are at an early pre-plasma differentiative stage.   

Since our findings indicate that CD19hi B cells may clonally expand before becoming 

plasma cells, we determined whether they were actively undergoing cell division.  As 

expected, CD19hi B cells were not actively undergoing cell division.  As shown in Fig. 6A 

and Table 2, CD19hi B cells did not express high levels of Ki-67, a protein present only in 

proliferating cells, or exhibit an increase in DNA content, as measured by PI staining.  Thus, 

CD19hi cells are not in S phase.  However, CD19hi B cells consistently exhibited a small 

(average 1.7 fold) increase in Ki-67 staining (Table 2), consistent with cells in G1 phase or 

are just entering or leaving S phase(370, 371).  Thus, CD19hi B cells are not actively 

undergoing cell division, indicating the clonal expansion that they undergo before becoming 

plasma cells occurs after they exit the circulation.   

 

CD19hi B Cells have an unusual chemokine receptor expression profile. 

Long-lived plasma cells reside primarily in the bone marrow, and thus to determine 

whether the CD19hi B cells are likely to be homing to the bone marrow, we compared the 

transcript levels of CXCR4 and CXCR5 in CD19hi vs. CD19lo cells.  CXCR5 retains cells in 

the follicles of secondary lymphoid tissues, and is normally downregulated during plasma 
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cell differentiation, while CXCR4 is responsible for directing plasma cell precursors to the 

bone marrow and is normally upregulated during plasma cell differentiation.  As shown in 

Fig. 7A, CXCR4 transcripts were significantly lower in CD19hi B cells of all three patients 

(average RQ=0.1), as were CXCR5 transcripts in two of the three patients (average RQ=0.36, 

overall average RQ=0.7).  Similar to CD19hi B cells, HC memory B cells had lower 

transcript levels of CXCR4 and CXCR5 compared to non-memory B cells (average RQ=0.4 

and 0.7, respectively, Fig. 7B).  CXCR5 transcripts were similarly decreased in CD19hi and 

HC memory B cells relative to their respective controls (Fig. 7A and B).  However, the 

relative decrease in CXCR4 transcripts by CD19hi B cells was ~4 times greater than that in 

HC memory B cells (Fig. 7A and B).  We conclude that CD19hi B cells are unlikely to be 

homing to the bone marrow.   

Since CD19hi B cells are unlikely to be homing to the bone marrow, we determined 

whether CD19hi B cells could be homing to sites of inflammation.  CXCR3 levels are 

elevated on a subset of memory B cells and plasma cells(190, 194, 211), in addition to T 

cells(192), and directs migration sites of inflammation where CXCR3 ligands are present at 

high concentrations(194).  As seen in Fig. 7A, CXCR3 transcript levels were dramatically 

higher in CD19hi B cells compared to CD19lo B cells of all three patients tested (average 

RQ=14.2, range= 7.6-24).  CXCR3 transcripts were higher in HC memory B cells compared 

to non-memory B cells, but this increase was only ~2-fold (Fig. 7B).  This increase in 

transcript levels also results in a significant increase in CXCR3 protein on the cell surface of 

CD19hi B cells (Fig. 7C).  These results suggest that CD19hi B cells are homing to sites of 

inflammation. 



102

To confirm that increased expression of CXCR3 by CD19hi B cells is functionally 

significant, we determined the ability of CD19hi B cells to migrate in response to CXCR3 and 

CXCR4 ligands. As shown in Fig 7D, CD19hi B cells migrated efficiently in response to the 

CXCR3 ligand CXCL9, but not in response to the CXCR4 ligand CXCL12 or to media 

alone.  These data affirm that CD19hi B cells are unlikely to migrate to the bone marrow and 

indicate that the increased expression of CXCR3 on these cells is functionally relevant, 

supporting the idea that CD19hi B cells are homing to sites of inflammation. 
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V. DISCUSSION 
 

CD19hi B cells are a novel population of memory B cells that are expanded in a 

subset of SLE and ANCA-vasculitis patients(365).  We show here that in SLE, these B cells 

are a functionally and phenotypically distinct from HC memory B cells and appear to 

contribute to the autoantibody secreting plasma cell pool.  Presence of an expanded CD19hi B 

cell population may delineate patient subgroups within these diseases, as these patients are 

more likely to develop neurological problems and end stage renal disease, and to show poor 

clinical response to rituximab treatment.  These findings have implications for our 

understanding of autoreactive B cells in SLE and for the development of new therapies.  

Relevance of CD19hi B cells to autoimmunity is indicated by our finding that this 

population is enriched 3- to10-fold in anti-Sm B cells compared to the CD19lo population, 

and that this enrichment correlates with the level of serum anti-Sm antibody.  In contrast, the 

frequency of anti-Sm CD19lo B cells is not different between patients with varying degrees of 

anti-Sm titer elevation.  CD19hi B cells are unlikely to be anergic, as BCR crosslinking 

induces phosphorylation of CD19, Akt, JNK and p38 to levels comparable to those in CD19lo 

B cells from the same patient and to HC B cells.  Moreover, BCR signaling in conjunction 

with a CD40 signal and stimulation with IL-4 and IL-10 induces CD19hi IgG B cells to 

become antibody-secreting cells. 

Since CD19hi B cells are present above background in only 25-30% of SLE patients, 

we presume that anti-self memory B cells are not limited to this population.  However, our 

data suggest that the majority of anti-Sm B cells in the peripheral blood are CD19hi and 

therefore B cells specific for a given self-antigen may segregate to either the CD19hi or non-
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CD19hi memory B cell populations, rather than being present in both.  We reported 

previously that elevated frequencies of CD19hi B cells are associated with increased levels of 

autoantibodies against certain self-antigens, in particular small nuclear ribonucleoprotein 

(snRNP) antigens(365), suggesting that B cells specific for these autoantigens are also 

enriched in the CD19hi population.   

 Our data indicate that a doubling of the anti-Sm B cell frequency in the CD19hi 

population is associated with a ~100-fold increase in the serum anti-Sm titer, a relationship 

which cannot be accounted for by clonal expansion of CD19hi cells alone.  This finding is 

particularly impressive given the overall small number of CD19hi B cells present in the blood 

(typically <1% of PBMC).  Therefore, we hypothesize that CD19hi cells (1) are responsible 

for the majority of serum anti-Sm antibody, (2) clonally expand before differentiating into 

anti-Sm ASCs, and (3) also play a role in the amplification of the immune response to Sm, 

possibly through activation of cognate T cells.  This is an intriguing idea given our previous 

finding that CD19hi cells have increased surface MHCII and CD86 expression(365) and may 

therefore be highly efficient T cell activators. 

Our analysis of basal phosphorylation levels of signaling intermediates, transcription 

factor expression, and chemokine receptor expression support the hypothesis that CD19hi B 

cells are actively migrating to the tissues and undergoing plasma cell differentiation.  CD19hi 

B cells have high basal levels of pSyk and pERK1/2, equivalent to those in CD19lo and HC B 

cells after strong BCR crosslinking (Fig. 4B), suggesting that they have recently received an 

activating signal.  Since Syk phosphorylation is believed to be BCR/CD19 specific, it is 

likely that these cells have received a recent BCR/CD19 signal.  Syk and ERK 
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phosphorylation in BCR stimulated human IgG B cells are normally sustained for more than 

two hours(372), suggesting a possible time frame for the receipt of this activating signal.   

The absence of elevated basal levels of pAkt in CD19hi B cells seemingly contradicts 

the involvement of a BCR signal, since BCR signals induce Akt phosphorylation(149).  The 

main pathway for both ERK1/2 and Akt phosphorylation is the recruitment of 

phosphatidylinositol 3-kinase (PI3K) to the BCR complex by CD19 and its activation by 

Syk(85, 373, 374).  Thus, the phosphorylation of Syk and ERK1/2 suggests that the 

Syk/PI3K/ERK pathway is active.  Our findings could be explained in several ways.  Akt 

phosphorylation may be more transient than ERK or Syk(149) and thus, evidence of Akt 

phosphorylation may be lost before the cells can be analyzed.  Alternatively, Akt 

phosphorylation may be regulated downstream or independently of PI3K activation in 

response to the signal received by CD19hi B cells.  Indeed, Li and Carter(151) have 

demonstrated that that CD19 signals synergize with BCR signals to induce ERK1/2 

activation at a point downstream of PI3K in B cells.  Since Syk phosphorylation is also 

downstream of CD19 phosphorylation, this could explain the high levels of pSyk in these 

cells as well. 

MAP kinases are intimately involved in cell fate decisions regarding proliferation, 

apoptosis, and differentiation, and the activation of different combinations of MAP kinases 

may result in different biological outcomes(375).  Of the three MAP kinases examined, 

ERK1/2, JNK, and p38, only basal pERK1/2 levels were elevated in CD19hi B cells.  In the 

WEHI-231 B lymphoma cell line, BCR signaling preferentially activates ERK1/2, and only 

weakly activates JNK and p38, whereas CD40 signaling preferentially activates the JNK and 

p38 MAP kinases and does not activate ERK1/2(376).  Thus, the pattern of MAPK activation 
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in CD19hi B cells is congruent with these cells having recently received a BCR signal.  ERK 

MAP kinases are involved in regulating cell proliferation(375), and the elevated levels of 

pERK1/2 are consistent with our proposal that CD19hi B cells proliferate before plasma cell 

differentiation.  The absence of increased pJNK and pp38 levels in CD19hi B cells may 

indicate that they have not received a recent CD40 signal.  This could indicate that rather 

than being of direct germinal center origin, they are memory B cells that have been 

reactivated in the absence of T cell help.  A better understanding of the signals that result in 

this pattern of MAP kinase activation would aid in illuminating the nature of the activating 

signals received by CD19hi B cells.   

The low Pax-5 expression by CD19hi B cells suggests that CD19hi B cells are at an 

early stage of plasma cell differentiation.  This level of Pax-5 expression is not a 

characteristic of memory B cells in general, since HC memory B cells express levels of Pax-5 

that are not different from non-memory B cells (Fig. 6B).  Pax-5 is required for B cell 

differentiation and activates the expression of genes that maintain B cell identity(369), 

including CD19.  Thus, the low levels of Pax-5 expression by CD19hi B cells suggest that 

these cells are moving away from a B cell identity.  In addition, although CD19hi and CD19lo 

B cells have similar transcript levels of XBP-1, a transcriptional activator required for plasma 

cell differentiation, HC memory B cells express considerably less XBP-transcript levels than 

control B cells, suggesting that XBP-1 has increased in CD19hi B cells.  Since Pax-5 

represses the expression of XBP-1(377), increased XBP-1 may follow from the decreased 

expression of Pax-5.  We did not observe evidence of increased Blimp-1 transcript levels, 

and since transcription of PDRM1, the gene for human Blimp-1, is repressed by Bcl-6(177), 

this is consistent with the normal expression of Bcl-6 by CD19hi B cells.  Although Blimp-1 
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is required for full plasma cell differentiation and antibody secretion, it is not required for 

plasmablast or pre-plasma cell formation.  Blimp-1 represses the expression of a number of 

genes that are responsible for cell division(378), and thus the absence of increased Blimp-1 

expression is compatible with the hypothesis that CD19hi B cells undergo multiple rounds of 

cell division before differentiating to plasma cells.  It is important to keep in mind that these 

measures are relative to CD19lo cells from the same SLE patient (or non-memory B cells for 

HCs). Thus, differences in the frequency of plasmablasts between patients and HCs would 

tend to inflate the control levels of plasma cell-specific transcripts and diminish the control 

levels of B cell-specific transcripts.  An increase in plasmablasts in the peripheral blood of 

SLE patients and other autoimmune disease has indeed been reported(283, 315, 379).  Single 

cell RT-PCR analysis should clarify this issue, and is underway.  

Chemokine receptor expression further supports the hypothesis that CD19hi B cells 

are undergoing plasma cell differentiation.  CD19hi B cells from two of the three patients 

examined had less than half of the CXCR5 transcript levels seen in CD19lo B cells from the 

same patient.  This is consistent with activation, and could account for their presence in 

peripheral blood.  However, it would not appear that these cells are migrating to the bone 

marrow, a prominent location for long-lived plasma cells.  CXCR4 transcripts, which are 

typically increased during plasma cell differentiation(380), are ~10% of the level present in 

CD19lo cells, and CD19hi B cells are not responsive to the CXCR4 ligand CXCL12.   

A more likely destination for CD19hi B cells are sites of inflammation, guided by high 

levels of CXCR3.  CXCR3 transcripts are ~14-fold higher in CD19hi B cells than in control 

CD19lo B cells, a finding that is reflected by an increase in CXCR3 surface expression.  

CXCR3 on these cells is functional, as they chemotax in response to the CXCR3 ligand 
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CXCL9.  A subset of human memory B cells and plasmablasts express CXCR3, and the 

expression of this chemokine receptor is maintained after plasma cell differentiation(190, 

194, 211).  The CXCR3 ligands CXCL9, CXCL10 and CXCL11 are highly expressed in 

peripheral sites of inflammation, where, in autoimmunity and other highly inflammatory 

states, B cells can differentiate to tissue-resident plasma cells(190, 193, 194, 381, 382).  For 

example, CXCR3 ligands are elevated in the skin of patients with cutaneous lupus(383), the 

synovium of RA patients(193), and the kidney and serum of SLE patients(384-386).  

Interestingly, CXCR3 ligands are elevated in the CNS of SLE patients with neurological 

involvement(387-389) and pre-plasma and plasma cells have been found in the intrathecal 

tissue of SLE patients with CNS involvement(389) and in the synovial tissue of patients with 

rheumatoid arthritis(193).  Plasma cells were found to accumulate and reside in the inflamed 

kidneys of autoimmune NZB/W mice(382), and several studies suggest B cells can infiltrate 

the kidney and contribute to glomerulonephritis in SLE(390, 391).  Studies of the synovium 

of RA patients and in the CNS during viral infection strongly support a vital role for the 

interaction of CXCR3 on B cells and CXCR3 ligand expression in these tissues for 

recruitment and retention of plasma cells(193, 195).  Thus, we propose that inflamed tissue is 

the final destination for CD19hi B cells.    

The elevated expression of CXCR3 and responsiveness to its ligand CXCL9 suggests 

a possible mechanism for the increased incidences of ESRD and severe neurological 

dysfunction in CD19hi Pts.  We speculate that some CD19hi cells are homing to the kidney 

and CNS where they clonally expand and differentiate to plasma cells.  Interestingly, a 

previous study found an association between a positive anti-Sm titer and CNS involvement in 

SLE(392).  Our data suggests that this association may be secondary to an expansion of 
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CD19hi B cells, since such an expansion correlates with an elevated anti-Sm titer.  The 

pathology resulting from the migration of CD19hi cells into peripheral sites of inflammation 

might arise from locally high concentrations of autoantibodies.  However, B cells can 

contribute to pathology through mechanisms independent of antibody production, such as 

production of cytokines and activation of T cells.  As mentioned above, the exponential 

association between enrichment of anti-Sm cells in the CD19hi compartment and the serum 

anti-Sm titer strongly suggests that such additional mechanisms are taking place.  Thus, the 

presence of pre-plasma cells in these sites may be important for providing signals to other 

effectors of inflammation.   

The presence of CD19hi B cells in a subset of SLE patients may have implications for 

prognosis and treatment.  Although rituximab is a promising new therapy for SLE, not all 

patients have a robust clinical response.  This may be because not all B cell subsets are 

equally susceptible to depletion.  While PB B cells and follicular B cells are depleted 

efficiently, marginal zone and memory B cells are less responsive to depletion, and plasma 

cells, which do not express CD20, are not depleted at all(315, 393).  We do not yet know 

how susceptible the CD19hi B cells are to rituximab depletion, but our data suggest that 

CD19hi patients are poor clinical responders to rituximab.  This finding further differentiates 

CD19hi patients as a distinct subgroup of SLE patients and provides a predictive test for 

clinical response to rituximab.  Sanz and colleagues have recently shown that SLE patients 

with high titers of antibodies to Sm, snRNP, Ro, and La have decreased responsiveness to 

rituximab(367).  This is consistent with the findings reported here, since the presence of 

CD19hi B cells is associated with elevated titers of antibodies to Sm and other snRNP 

antigens, although anti-Ro antibodies were found to be lower in CD19hi patients(365).   
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Given the increase in adverse outcomes in these patients, it will be important to determine 

more efficacious therapies for treatment of their disease. Anti-CXCR3 therapy is currently 

under development for multiple inflammatory diseases, and we surmise that this may be a 

prudent choice for treatment of CD19hi patients. 

Taken together, the data presented here and previously by this lab(365) suggest that 

the presence of CD19hi cells delineates a subgroup of SLE Pts with increased adverse clinical 

outcomes, a specific pattern of autoreactivity, and decreased response to Rituximab 

treatment.  Separating heterogeneous diseases, such as SLE, into etiological and pathological 

subgroups is vital to developing appropriate therapeutic modalities and improving clinical 

outcomes.
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Table 3.1. Clinical outcomes of CD19hi and CD19lo Pts. 

Outcome CD19lo Pts CD19hi Pts P vaule 
Severe Neurologic 0% (0/27) 29% (4/14) 0.01 

ESRD 4% (1.27) 29% (4/14) 0.04 
TTP 7% (2/27) 7% (1/14) >0.05 

Death 4% (1/27) 14% (2/14) >0.05 
Any Adverse 15% (4/27) 64% (9/14) 0.003 

27 CD19lo and 14 CD19hi Pts were followed over five years for occurrence of four clinical 

sequelae of SLE.  Fisher’s exact test was used to determine significance of a 2x2 contingency 

table for each outcome.  ESRD, end stage renal disease. TTP, thrombotic thrombocytopenic 

purpura. 

 

Table 3.2. CD19hi cells are not in S phase. 

Fold Ki-67 in CD19hi 
vs CD19lo B cells 

% PI high in 
CD19hi B cells 

% PI high in 
CD19lo B cells

Patient 1 1.78 2.3% 2.8% 
Patient 2 1.72 3.0% 3.5% 
Patient 3 1.54 2.0% 2.0% 

The fold increase in the MFI for Ki-67 staining in CD19hi vs CD19lo B cells from the same 

patient, as well as percentage of each population falling into a PI high gate, indicating S 

phase. 
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Figure 3.1. CD19hi Pts are poor responders to Rituximab treatment.   
Clinical response of CD19hi SLE Pts and CD19lo SLE Pts to Rituximab treatment. NR=no 

response; OG=ongoing response. 
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Figure 3.2. CD19hi cells are enriched for autoreactivity, and the degree of autoreactivity 
in these cells correlates exponentially with serum autoantibody.   
CD19hi and CD19lo cells were sorted from four Pts with differing anti-Sm titers, and ELISpot 

used to determine the number of anti-Sm ASCs in each group. A, Anti-Sm ASCs per million 

CD19hi or CD19lo cells in each of four Pts. Pt 1 did not have detectable serum anti-Sm titer, 

and no anti-Sm ASCs were seen in either cell group. B, Anti-Sm ASCs per million cells in 

each group vs. log10[anti-Sm serum titer], showing an exponential relationship between the 

number of anti-Sm ASCs in the CD19hi cell group and the serum titer of anti-Sm. 
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Figure 3.3. Basal phosphorylative state of CD19hi cells.   
PB cells were permeabilized and stained using antibodies recognizing the indicated 

molecules.  A, Fold increase in MFIs of CD19 or phosphorylated CD19 (pCD19) in CD19hi 

vs CD19lo cells.  B, Representative histograms of PB cells from a CD19hi Pt and HC stained 

for CD19 and pSyk, pERK1/2, or an isotype control.  C, Representative single parameter 

histograms showing staining for phosphorylated or total Syk and ERK1/2 in PB from a HC 

(shaded) and CD19lo (thin line) and CD19hi (thick line) B cells from the same Pt.  D, Fold 

increases in MFI for the labeled signaling molecules in CD19lo vs. CD19hi cells from the 

same Pt.  Each dot represents a different Pt and/or day.  At least four different Pts are 

included for each signaling molecule. Significance for single molecules was determined 

using a 2-sided non parametric rank test.  Significance for pCD19/CD19, pSyk/Syk and 

pERK1/2/ERK comparisons was determined using 2-sided Wilcoxon rank-sum tests. 

*p<0.05, **p<0.01. 
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Figure 3.3, continued.
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Figure 3.4. CD19hi cells respond to BCR crosslinking.   
A, Representative histograms of PB B cells from a CD19hi Pt and a HC after incubation with 

media alone or with α-IgG for 10 min.  Percentages indicate percent of B cells falling into 

each gate.  B, Representative single parameter histograms for each of the indicated 

phosphorylated molecules in PB B cells from a HC and CD19lo and CD19hi cells from a Pt 

after incubation with media (shaded) or pansorbin (line) for 10 minutes.  C, Fold change in 

the percentage of cells falling into the positive gate for each of the phosphorylated signaling 

molecules tested in cells incubated with media or pansorbin in a HC or in CD19lo and CD19hi 

cells from the same Pt.  Each point represents a different individual with at least four per 

group.  Significance was determined by Kruskal-Wallis tests. *p<0.05, **p<0.01.  D, CD19hi 

and CD19lo cells were sorted and IgG antibody secreting cells (ASCs) determined after 

incubation with either media alone or with pansorbin, anti-CD40, IL-10 and IL-2 for 6 days. 

Each dot represents a different Pt. 
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Figure 3.4.
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Figure 3.4, continued.
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Figure 3.4, continued.
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Figure 3.4, continued.
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Figure 3.5. CD21 expression is downregulated in CD19hi cells, and sCD21 is decreased 
in the serum of CD19hi Pts.   
A, Surface expression of CD21 as determined by flow cytometry. Histogram is representative 

of more than 5 Pts.  B, CD21 transcript levels as determined by RT-PCR. CD19lo and CD19hi 

cells were sorted from three Pts and the expression of CD21 transcripts in CD19hi cells 

determined relative to expression in CD19lo cells from the same Pt.  C, sCD21 levels in the 

serum of SLE Pts with and without a positive Sm titer and in HC as determined by ELISA. 

Significance determined by student’s t test. **p<0.01. 
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Figure 3.6. CD19hi cells appear to be pre-plasma cells.   
A and B, Transcription factor expression in indicated sorted B cell groups as determined by 

RQ RT-PCR.  Each bar represents a different individual.  A, Relative expression in CD19hi 

cells as compared to CD19lo cells from the same patient.  B, Relative expression in 

CD19+CD38-IgD- memory cells as compared to all other CD19+ cells from the same HC.  

A, Representative histograms for Ki-67 staining in non-lymphoid PBMCs (shaded) and 

CD19lo (thin line) or CD19hi (thick line) Pt PB B cells and for PI staining of indicated 

subsets.  Percentages indicate cells falling into drawn gate.  
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Figure 3.6, continued.
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Figure 3.7. CXCR expression in CD19hi and HC memory cells.  
A and B, CXCR expression in indicated sorted B cell groups as determined by RQ RT-PCR.  

Each bar represents a different individual.  A, Relative expression in CD19hi cells as 

compared to CD19lo cells from the same patient.  B, Relative expression in CD19+CD38-

IgD- memory cells as compared to all other CD19+ cells from the same HC.  C, Surface 

CXCR3 expression determined by flow cytometry in a HC (shaded) or in CD19lo (thin line) 

or CD19hi (thick line) cells from the same Pt.  Histogram is representative of three patients.  

D, Chemotaxis of CD19hi cells in response to the CXCR3 ligand CXCL9, the CXCR4 ligand 

CXCL12, or media alone.  Migration was determined by collection and staining of cells in 

upper and lower wells after 90 minutes. 
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Figure 3.7, continued.
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CHAPTER 4: GENERAL CONCLUSIONS AND FUTURE 
DIRECTIONS 
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Autoimmune disease remains a mysterious realm in medicine.  Though we continue 

to progress in our understanding of these devastating diseases, we still do not understand 

most aspects of their etiology or pathology.  Because of this, we cannot cure these diseases, 

and must rely on palliative treatments which carry significant morbidities of their own. 

 SLE is often thought of as a general model for systemic autoimmune diseases.  It is 

one of the most severe, and can affect essentially every organ system in the body.  Also like 

other autoimmune diseases, its etiology has significant environmental and genetic 

components.  Interestingly, even though some of these causes have been identified, how and 

why they contribute to the development of SLE is unknown. 

 The “two hit” hypothesis has been proposed to explain the complicated nature of the 

etiology of autoimmune disease.  This hypothesis states that most of the time, a single 

genetic polymorphism or abnormality, or environmental exposure, may predispose to 

development of autoimmunity, but cannot alone lead to its development.  A second “hit”—

that is, a polymorphism in another gene that also predisposes to disease, or a specific 

environmental exposure at the appropriate time—must also be present to develop 

autoimmune disease. 

 For example, Epstein-Barr virus (EBV), although present in >80% of the general 

population, has been associated with SLE(272, 347).  Clearly, EBV infection alone does not 

break self-tolerance; it must enter into a system predisposed to autoimmunity.  In addition, 

none of the genetic polymorphisms that have been associated with SLE always result in 

disease.  It is because of these complex and multi-parameter interactions that understanding 

of autoimmunity is still beyond our grasp. 
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Another impediment to our understanding of SLE is that, although it is heterogeneous 

in its etiology and pathogenesis, only one clinical diagnosis exists.  An examination of even 

the simplified diagnostic criteria listed in Table 1.5 is enough to highlight how many varying 

symptoms in different combinations are diagnosed as SLE.  The fact that we are most likely 

artificially grouping several diseases with distinct causes and pathology under a single 

diagnosis makes it more difficult to find the correct and relevant associations with genes and 

environmental exposures needed to understand SLE.  For example, if all patients with a 

genetic alteration of FcγR2b were categorized as having “Type 1” SLE instead of lumped 

together with all patients diagnosed with SLE, then there would be a perfect concordance of 

“Type 1” SLE and FcγR2b mutations. 

The lack of clinical or pathological delineation between putative subgroups of SLE 

impairs not only our understanding of this disease, but also our ability to effectively treat 

SLE patients.  On the other hand, findings that are very common among all patients are 

useful in that they may enable developing treatments which have wide-spread efficacy.  

Herein I have presented data which links seemingly disparate autoimmune diseases and 

patients within these groups, as well as data which separates SLE patients into potential 

disease subgroups.   

We have found that CD19 is decreased on peripheral B cells from a vast majority of 

patients with SLE or ANCA-SVV.  This finding is very surprising, given the above 

discussion of heterogeneity within these diseases.  In addition, the CD19 locus has been 

closely examined for polymorphisms which might be associated with autoimmune disease 

without much success. One study found an association with two CD19 polymorphisms and 

systemic sclerosis, although these resulted in increased CD19 expression and conferred odds 



129

ratios of only ~2(351). Another study found a ~2-fold increased prevalence of a 

polymorphism in the 3’ UTR of CD19, resulting in slightly decreased CD19 expression, in 

Japanese SLE patients(350), although this has not been successfully repeated in any other 

patient groups.  A group of patients with hypogammaglobulinemia and immune deficiency as 

a result of a homozygous CD19 mutation resulting in complete lack of CD19 expression has 

also been described(394).  As predicted, based on findings from CD19 deficient mice, these 

patients were immunodeficient, and did not have circulating autoantibody nor develop 

autoimmunity. No other associations between genetic polymorphisms of CD19 and human 

disease have been found, and none of these studies can explain the finding of decreased 

CD19 expression in >95% of SLE and ANCA-SVV patients. 

It therefore seems most likely that CD19 expression is decreased on these cells as a 

consequence of disease pathology, rather than as a cause of it.  In fact, we have generated 

preliminary data which suggests that soluble factors secreted by PBMCs from SLE patients 

are able to decrease CD19 expression on B cells from both patients and healthy controls.  

However, regardless of whether low CD19 expression is a cause or consequence of disease, it 

may have implications for perpetuation of disease.  If decreased CD19 expression is present 

in immature or transitional B cells, it could inhibit negative selection of these cells, allowing 

escape of autoreactive specificities into the mature, functional B cell pool.  Therefore, further 

investigation into the mechanism responsible for decreased CD19 expression in these 

diseases may provide new avenues for treatment. 

The first step would be to verify the presence of a secreted factor or factors which are 

able to downregulate CD19 expression. Next would be to identify the cytokines and to 

determine the mechanism by which they decrease CD19 expression. These studies could be 
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carried out in several ways. Cytokine arrays could be used to compare the supernatants of 

PBMCs from SLE patients and healthy controls.  Any cytokines with higher concentration in 

SLE PBMC supernatant compared to healthy control PBMC supernatant would be possible 

candidates.  Clues as to the identity of these candidates would also be found in the literature 

describing cytokines found at increased concentration in the sera of SLE patients, such as IL-

6, IL-10 and BAFF.  These candidate cytokines could then be depleted from supernatants or 

blocked using monoclonal antibodies to determine which affects CD19 expression.  Once the 

culprit is determined, the mechanism by which it accomplishes CD19 downregulation can be 

addressed using standard molecular biology techniques and phosflow staining to dissect 

signaling pathways.  Identification of the players involved in this process would provide drug 

targets for adjunctive therapy in SLE. 

We have also shown that patients with an expanded CD19hi memory B cell 

population may comprise a distinct subset of SLE patients.  CD19hi patients differ from 

CD19lo patients in several ways.  They have a unique pattern of autoreactivity, as shown in 

Figure 2.7.  They also have an increase in adverse outcomes, particularly ESRD and severe 

neurological outcomes (Table 3.1).  Finally, and unfortunately, show poor clinical response 

to rituximab treatment (Fig. 3.7).  Taken together, these findings suggest that CD19hi cells in 

the PB can be used as a marker for SLE patients at high risk for ESRD, neurological 

dysfunction, and overall adverse outcomes, and that rituximab alone is not likely to be an 

effective therapy for these patients. 

CD19hi B cells appear to be a functionally and phenotypically distinct, autoreactive 

subset of memory B cells.  Several recent studies have implicated the memory B cell 

population to be important in autoimmune disease(201, 266, 307), and our data support this 
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idea.  We do not yet know whether CD19hi cells are newly generated memory B cells or 

memory B cells that have undergone a single or multiple rounds of reactivation.  This may be 

a difficult question to address, although employing the IgG sequencing techniques outlined in 

Chapter 2 to following the CD19hi clones in several patients over time might provide insight.  

If a limited set of clones are consistently present over time in a single patient, this would 

argue strongly for continued re-activation of a relatively constricted initial pool of memory 

cells.  A constantly expanding number of clones would suggest that CD19hi memory B cells 

are being continually generated, and are newly emerged germinal center reactions. 

CD19hi memory B cells are similar to non-CD19hi memory B cells in their 

downregulation of CD38 and in the expression of mutant IgG BCRs.  However, they differ in 

their decreased expression of CD27, CD21, and Pax-5 and their increased expression of 

CD19, CD20, and CXCR3.  An important next step in the study of these cells would be to 

conduct a more thorough comparison of gene expression between these two groups, such as 

the employ of a gene chip analysis.  In addition to determining the extent of their differences, 

this kind of analysis may also provide unique surface markers which could make future 

studies, such as the immunohistochemistry analysis of peripheral tissue, possible. 

CD19hi cells have a unique basal phosphorylative state, with increased basal 

phosphorylation of Syk and ERK1/2 but not CD19, Akt, p38 or JNK.  Further exploration of 

functional and signaling alterations in these cells may provide the key to developing 

therapies for CD19hi patients.  Unfortunately, further studies of signaling in CD19hi cells are 

greatly impaired by the number of B cells that can be acquired.  The maximum number of B 

cells that can be purified from a single patient is in the range of 2-3x105 cells, far too few for 

western blot analysis.  Therefore, we must rely on examination by flow cytometry and are 
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consequently limited by availability of antibodies and reagents which are compatible with 

this technique.  For example, it would be useful to measure phosphorylative stages of 

molecules upstream of Syk, such as Lyn, and between Syk and ERK1/2 activation, such as 

Ras and Raf; unfortunately, antibodies that recognize these molecules are not currently 

available for use in flow cytometry.  As this method gains favor, however, antibodies 

recognizing a wider variety of phosphorylated signaling molecules will be developed for this 

purpose and the mechanisms at work here can be further defined. 

We have shown that CD19hi B cells are not anergic, despite their increase in 

autoreactive specificities.  They phosphorylate CD19, Akt, p38 and JNK normally in 

response to stimulation with pansorbin and are able to differentiate to ASCs with pansorbin, 

anti-CD40, IL-10 and IL-4 stimulation.  A logical next step would be to examine the 

proliferative potential of these cells in response to various stimuli.  In addition, it will be 

important to further explore the response of these cells to other stimuli, particularly TLR 

ligands and BAFF, both of which have been implicated in autoimmunity.  It would be 

interesting to know the minimum stimulation required to trigger the differentiation of these 

cells to ASCs, as this would give us hints as to how they may be activated in vivo. For 

example, is BCR crosslinking alone enough to generate ASCs in this population?  If so, it 

would seem that they may be activated to become effector cells in the absence of T cell help.  

Alternatively, perhaps they do not require BCR stimulation, and the presence of certain 

cytokines is enough to stimulate differentiation.  This would suggest that these memory B 

cells can be continually activated in a pro-inflammatory environment, even in the absence of 

cognate T cell help or significant antigen.  These studies might also provide reasonable 

therapeutics for blocking the activation of these cells. 
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The presence of CD19hi B cells is associated with increased adverse clinical 

outcomes, particularly neurological dysfunction and ESRD.  Importantly, only Patients with 

a CD19hi population had neurological complications in this study.  We hypothesize that 

CD19hi cells home to peripheral sites of inflammation, particularly to the kidney and the 

CNS, where they mediate multiple effects including local production of autoantibody and 

possibly activation of T cells and other cells of the immune system (Fig. 3.1).  B cells have 

already been shown to have these roles in autoimmune disease(393), and given their 

activated phenotype and high CXCR3 expression, CD19hi B cells seem particularly apt to 

mediate these effects.  In addition, a 2-fold increase in anti-Sm reactive B cells in the CD19hi 

compartment results in a 100-fold increase in serum anti-Sm.  This finding strongly supports 

the ideas that CD19hi B cells (1) are primary producers of serum antibody against certain 

autoantigens, (2) divide prior to differentiating, and (3) play a regulatory role in amplifying 

the immune response towards particular autoantigens, possibly through the activation of 

cognate T cells. 

 These cells may be particularly suited to APC function given their increased surface 

expression of MHCII and CD86.  They have slightly decreased CD40 expression, but in 

many instances signaling by CD154 after interaction with CD40 is dispensable for T cell 

activation, and in some settings it is actually inhibitory(395, 396).  It would therefore be very 

interesting to determine the ability of these cells to activate naïve and memory T cells; 

however, these studies pose some obvious technical difficulties.  Ideally, one would want to 

determine the ability of these B cells to activate T cells for their cognate antigen; however, 

this would require ability to isolate and purify T cells specific for, for example, Sm.  

Currently, this is not feasible.  However, less specific in vitro assays might be employed 
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using CD19hi B cells loaded with Sm and total CD4+ T cells purified from the PB of the 

same patient.  It will also be interesting to determine if these B cells are significant producers 

of cytokines, as has been reported for other B cell subsets in autoimmunity(397). 

 

Figure 4.1. Unifying hypothesis of CD19hi cell activation, homing and effects in 
peripheral sites of inflammation.
CD19hi cells are either reactivated or newly generated memory cells which leave the follicle and 

home to peripheral sites of inflammation.  There they proliferate and differentiate into autoantibody 

secreting cells.  The locally produced autoantibody forms immune complexes which in turn mediate 

inflammatory reactions.  In addition, they activate T cells, which also proliferate and mediate their 

own actions, such as activation of other inflammatory cell types (CD8+ T cells, for example).  
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Though our data support the idea that CD19hi B cells are important to disease 

pathogenesis, the only way to definitively prove this would be to transfer them to a host 

without autoimmunity and show that these recipients then acquire key features of disease.  

Clearly, such a study is not possible.  One similar scenario is to show that features of disease 

are abrogated upon depletion of CD19hi B cells.  If rituximab efficiently depleted these cells, 

one might argue that this approach would be successful.  However, only depletion of CD19hi 

cells in the peripheral blood could be reasonably monitored, and our data suggest that these 

cells may only exist in the PB briefly before homing to sites of inflammation, where they 

would be highly resistant to depletion(393) and difficult to detect.  To prove they have been 

fully depleted, sections of all relevant tissue would have to be examined, and this would be 

impossible in human subjects.  Moreover, it appears that these cells are in fact not efficiently 

depleted by rituximab, although due to the reasons just described, this will be difficult to 

prove. 

A more reasonable and practical approach to further explore our hypothesis would be 

to use immunohistochemistry of tissue sections of inflamed organs or tissues from SLE 

patients, particularly kidney.  If we are correct, CD19+CD21-CXCR3+ and CD19-

CD138+intracellular IgG+CXCR3+ cells should be present in these tissue sections.  Some of 

the CD19+CD21- cells should stain for Ki-67, indicating proliferation.  We should also be 

able to stain for CXCR3 ligands in the endothelial tissue to verify their expression near 

accumulation of CD19+CD21-cells.  If, in the future, medications are available which 

effectively treat CD19hi patients, these might be useful to determine the true role of these 

cells in disease. 
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We do not yet know what percentage of CD19hi cells are autoreactive.  This question 

could be approached in two ways.  First, the ELISpot technique described in Chapter 3 could 

be used to look for reactivity to other autoantigens.  Although most patients with a CD19hi 

population are strongly snRNP reactive and have minimal reactivity to other autoantigens 

(Fig.2.7), some autoantibodies are also seen CD19hi patients, such as anti-dsDNA and anti-

phospholipid antibodies.  Additionally, individual Ig genes could be cloned from single-cell 

sorted CD19hi B cells, expressed in culture, and their specificity determined, using techniques 

recently described(201).  It would be especially useful to determine if the exponential 

relationship between enrichment and serum autoantibody titer seen in the case of Sm is 

consistent for other autoantigens. 

CD19hi patients do not have a robust clinical to rituximab, but their increased adverse 

outcomes dictate a particular need for treatment options.  Given the high CXCR3 expression 

on CD19hi B cells, we propose that anti-CXCR3 treatment may be an efficacious treatment 

for these patients. Numerous lines of data suggest that blocking CXCR3 interactions with its 

ligands may abrogate disease in CD19hi patients, as discussed in Chapter 3. These studies 

support the idea that CXCR3+ B cells can migrate to sites of inflammation, where, among 

other effector functions, they can differentiate into PCs. Therefore, blocking CXCR3 would 

prevent the migration of autoreactive CD19hi B cells into peripheral sites of inflammation, 

and may deny them a niche in which to differentiate to PCs and block their local effector 

functions(393).   

In addition, a synergistic effect has been seen using rituximab together with blockade 

of BAFF(393).  This approach may be helpful in the treatment of CD19hi patients, however, 

we have found that BAFF Receptor 3 (BR3) expression is consistently decreased on CD19hi 
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cells, suggesting that these cells may have become BAFF-independent.  To further explore 

this idea, levels of the other two BAFF receptors, TACI and BCMA, must be determined.  In 

addition, effects of BAFF on these cells could be determined by examining survival ex vivo 

in the presence and absence of BAFF. 

An overarching and necessary follow-up for the studies described in this dissertation 

would be to examine a much larger cohort of patients to further delineate and verify clinical 

and pathological differences, as well as differences in response to various treatments, in 

CD19hi SLE patients vs. SLE patients without an expanded CD19hi population.  As SLE has 

always been thought of as a heterogeneous disease, studies such as these which begin to 

separate apparent disease subtypes are vital to developing individualized, and therefore more 

efficacious and less debilitating, therapeutic modalities.  
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