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ABSTRACT

Haojin Zhai : Principal Component Analysis in Phylogenetic Tree Space
(Under the direction of J. S. Marron and J. Scott Provan)

Complex data objects arise in many fields of modern science including drug discovery, psychology, dy-

namics of gene expression and anatomy. Object oriented data analysis describes the statistical analysis of a

population of complex data objects. The specific case of tree-structured data objects is a large end promis-

ing research area with many interesting questions and challenging problems. This dissertation focuses on

principal component analysis in the tree space introduced by Billera, Holmes, and Vogtmann.

Principal component analysis has been a widely used method in aiding visualization and reducing dimen-

sions, and it is natural to extend this type of analysis into tree space. In this dissertation, we will discuss

three interesting approaches to this extension. The first approach is multidimensional scaling, which focuses

on better visualization of data in tree space, in particular, the out-of-sample embedding problem which in-

serts additional points into previously constructed multidimensional scaling configurations. It is shown that

a better visualization can be achieved by choosing a higher dimensional embedding space and displaying

only the first two dimensions. The other two approaches rely on our novel definitions of tree space line, and

it is proven that there are only two types of such lines. The second approach is sample-limited geodesic

which is an analog of the first type of line. This idea defines the first principal component for a set of trees

by maximizing the data projection variance over geodesic segments connecting pairs of trees. Our study

shows that the sample-limited geodesic is not an effective principal component object in terms of capturing

data variation, due to the intrinsic geometry of the data used in this dissertation, and it is not natural to

be generalized into higher-order principal component objects. The third approach is based on the principal

ray set, which is a representative of the second type of line. We develop some heuristic searching algorithms

for first order principal ray sets and higher order principal axis sets, which are special cases of principal ray

sets. Principal ray sets are better summaries for less variable data, but gain very limited information for

data with larger spread.
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CHAPTER 1: INTRODUCTION

1.1 Motivation

This dissertation focuses on Object Oriented Data Analysis in the context of tree-structured objects. The

concept of “Object Oriented Data Analysis”(OODA) was first defined by [Wang and Marron, 2007] and has

more recently been discussed in [Marron and Alonso, 2014]. Essentially OODA is the statistical analysis of

a population of complex objects. In traditional statistical analysis, the atoms are generally either numbers

or vectors. In functional data analysis, a currently active research area, each sample element is considered

to be a function; see [Ramsay and Silverman, 2002, 2005] for a detailed review. Wang and Marron extended

the idea of functional data analysis to even more complicated objects such as images, two-dimensional or

three-dimensional shapes, and combinatorial structures such as graphs or trees.

In [Wang and Marron, 2007], the authors modeled the human brain blood vessel systems as binary trees.

Two types of information were taken into account: topological structures and attributes associated with

nodes. Although both that work and the present research are based on a common set of human brain blood

vessel systems, very different aspects of the data are studied here. Figure 1.1(a) gives an example of such a

blood vessel system. Each blood vessel system studied in the present research is oriented with respect to 128

(a) (b)

Figure 1.1: (a) shows the brain blood vessel system of a person. (b) illustrates one of the brain artery trees
used as data objects in the present research.
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carefully chosen (i.e. to correspond across patients) landmarks on the cortical surface. As in [Skwerer et al.,

2014a], the cortical correspondence method of [Oguz et al., 2008] gave the landmarks. All 128 landmarks

are used as non-root nodes and an artificial conceptual point is defined to be the root node. Corresponding

to each landmark, a closest point on the brain artery is found by minimizing the 3-D Euclidean distance

from the landmark. Due to the natural tree-like structure of the brain artery system, a brain artery tree

is formed by connecting each landmark with this closest point, and one example is given in Figure 1.1(b).

For the tree representation in the present research, the edge lengths are considered as important geometrical

information. This is different from [Wang and Marron, 2007] in which the authors used nodal attributes

containing other geometrical summaries.

Many applications of OODA come from the field of medical image analysis. In [Singh et al., 2010],

researchers took brain shapes as objects and applied Partial Least Squares Regression to characterize the

neuroanatomical variations observed in neurological disorders. In [Geneser et al., 2011], lung shapes were

taken to be the objects and researchers modeled the changes in lung shapes as a function of chest wall

amplitudes to calculate the resulting variability in radiation dose accumulation.

The present research is performed under the framework of phylogenetic tree space which was first built

in [Billera et al., 2001]. In this space, there is a unique shortest path between each pair of trees, called a

geodesic. Later [Owen and Provan, 2009] constructed a polynomial time algorithm to compute the geodesic

distance which is implemented in [Skwerer, 2014]. These works enable us to find projection of one tree onto

a subset of trees in phylogenetic tree space, and furthermore makes Principal Component Analysis (PCA)

possible in this space.

1.2 Phylogenetic Tree Space

The foundation of this research was developed by [Billera et al., 2001], which gave a rigorous geometric

definition of the space of rooted labeled trees. We will start this section with introducing some of the basic

concepts in graph theory.

1.2.1 Phylogenetic n-trees

We are using standard graph theory terminology, such as given in [Ahuja et al., 1993; Bazaraa et al.,

2010; Cormen et al., 2009]. A tree T is a connected graph with no cycles. A node of T is called a leaf if

there is a unique edge connected to it, and the edge is called a leaf edge. V = {0, 1, . . . , n} usually denotes

the leaf set of T . A weighted tree is a tree with each edge e assigned a weight |e|, or |e|T if we want to

emphasize the tree T to which e belongs. An edge e is contracted if |e| = 0. A split associated with edge e is

defined as σe = Ve|V e, where Ve, V e are sets of leaves and Ve|V e represents the partition of V resulting from

deletion of the edge e from T . In order that a set Σ of splits actually form a tree, the corresponding edges

must be pairwise compatible. Two edges e and f are compatible if their splits Ve|V e and Vf |V f satisfy the

2



property that one of the sets Ve
⋂
Vf , Ve

⋂
V f , V e

⋂
Vf , or V e

⋂
V f is empty. This concept can be naturally

extended to the compatibility of two sets of edges A and B : if for each edge e ∈ A and each edge f ∈ B, e

is compatible with f, then we say A and B are compatible. Here is some facts about compatibility:

• Each edge is identified uniquely by its split, henceforth edges from different trees with the same set of

leaves are comparable.

• Each pair of edges in a tree are compatible.

• A tree is determined uniquely by its set of splits.

A phylogenetic n-tree (or simply n-tree) is a weighted tree T = (V, E ,W,Σ), where V = {0, 1, . . . , n} is a

labeled set of leaves (with 0 arbitrarily denoting the root of T ), E is the set of interior (non-leaf) edges,

W = {|e| : e ∈ E} is the set of edge weights which is also the set of edge lengths, and Σ = {σe : e ∈ E} is the

set of splits for T .

In an n-tree, all the non-leaf nodes are assumed to have at least 3 adjacent edges. A maximal n-tree is

an n-tree with the largest number (2n− 1) of edges, or the largest number (n− 2) of interior edges. Since all

trees with the same set of leaves contain the same set of leaf edges, we will ignore them in this dissertation

that follows. Notice that every n-tree can be represented topologically by contracting a set of edges from

some maximal n-tree.

1.2.2 Construction of Phylogenetic Tree Space

Phylogenetic tree space, or tree space Tn is a geometric space in which each point represents an n-tree and

is placed in an (n− 2)-dimensional orthant (copy of Rn−2
+ ) with each orthant associated with some maximal

n-tree. Orthants are attached to each other through common edges. Here we denote an orthant associated

with tree T = (V, E ,W,Σ) as O(E). Tree space is thus a union of (2n− 3)!! orthants [Schröder, 1870], each

of which corresponds to a distinct maximal tree topology. For any two trees T 1 and T 2 in Tn, d(T 1, T 2), the

distance between T 1 and T 2, will be defined as the length of the shortest path connecting them in Tn. This

extends the standard Euclidean metric, which is the standard distance between two vectors.

We will take T4 as an example to visualize some of the main features of a tree space. Note that each tree in

T4 has only 2 interior edges, so each orthant of T4 will be 2-dimensional. Figure 1.2 shows three orthants of T4,

along with examples of tree topologies T 1, T 2, T 3 attached together along the common edge associated with

the split {0, 1}|{2, 3, 4} (green). The trees in these three orthants have this edge along with one additional

edge with split {0, 1, 2}|{3, 4} (blue), {0, 1, 3}|{2, 4} (red) and {0, 1, 4}|{2, 3} (yellow), respectively. Note

that any one of the distinct splits {0, 1, 2}|{3, 4}, {0, 1, 3}|{2, 4} and {0, 1, 4}|{2, 3} is compatible with the

vertical line {0, 1}|{2, 3, 4}, while no two of them are compatible with each other. Further, each tree T i has
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a projection P i onto the vertical line by contracting its non-common edge as shown by black lines in Figure

1.2.

Figure 1.2: A portion of T4 with three trees T 1, T 2, T 3 and their projections onto the common edge. Orange
represents common edge, while blue, red, yellow represent non-common edges. Black lines illustrate the
contractions of non-common edges.

Figure 1.3: Three examples of shortest paths in T4. All three paths are shortest paths between pairs of trees.
In particular, the solid line represents a cone path.

Figure 1.3 shows three examples of paths in T4. These three paths are chosen to be the shortest path

between T 1 and T 2, T 3, T 4 respectively, since shortest paths are the paths of interest in this dissertation.

The shortest path between T 1 and T 2 looks like a piecewise linear path, while the shortest path between T 1

and T 4 is a straight line segment. However, if the three orthants containing the shortest path between T 1

and T 2 are flattened out, the piecewise linear path will become a straight line. The shortest path between

T 1 and T 3 passes through the origin and is a special type of path called cone path. The cone path consists

of only two line segments: one connecting T 1 with the origin and the other connecting the origin with T 3.
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Tree space has properties that are very useful for deriving and constructing statistical properties in

the space. One important property noted in [Billera et al., 2001] is that Tn is a non-positively curved,

or CAT (0) space. Intuitively speaking, every triangle in a CAT (0) space is skinnier than a triangle with

exactly the same lengths of sides in Euclidean space. More precisely, a metric space X is said to be CAT (0)

if the following statement is true. Given any three points a, b and c, as illustrated in Figure 1.4, with

distances d1 = d(b, c),d2 = d(a, c), and d3 = d(a, b), form a “comparison triangle” in the Euclidean plane.

The “comparison triangle” has vertices a′, b′, and c′ with side lengths d1 = d(b′, c′), d2 = d(a′, c′), and

d3 = d(a′, b′). If x is a point on the geodesic from a to b, at distance d4 from a, find the corresponding point

x′ on the straight line from a′ to b′ at distance d4 from a′. Then d(x, c) 6 d(x′, c′). This leads to many

useful consequences as seen in the next section.

Figure 1.4: Comparison triangle

1.3 Construction of Geodesics

Because the tree space is CAT (0), it follows by [Gromov, 1987] that there is a unique shortest path

connection any two points T = (V, E ,W,Σ) and T ′ = (V, E ′,W ′,Σ′) of Tn, called the geodesic Γ(T, T ′)

between T and T ′, and its length d(T, T ′) can be used to define a metric in tree space. This is the metric

defined by [Billera et al., 2001]. This section reviews the topological structure of Γ(T, T ′) and the algorithm

given by [Owen and Provan, 2009] to compute d(T, T ′). The topological structure of a geodesic was first

given in [Billera et al., 2001] which showed that Γ(T, T ′) is a piecewise linear path contained in a sequence

of orthants. Each linear portion of Γ(T, T ′) is called a leg, and the sequence of orthants is called a path space

P associated with Γ(T, T ′). Assume there are k + 1 orthants O0,O1, . . . ,Ok in P, and let C denote the set

of common edges between T and T ′. Now let A = (A1, . . . , Ak) and B = (B1, . . . , Bk) be partitions of E \ C

and E ′ \C, respectively, such that Ai and Bj are compatible for each i > j. Then (A,B) is called the support

of P, and A1 ∪A2 ∪ · · · ∪Ak ∪ C is the edge set associated with O0 and B1 ∪ · · · ∪Bi ∪Ai+1 ∪ · · · ∪Ak ∪ C

is the edges set of Oi for 1 6 i 6 k. Some properties about path space have been clarified further in [Owen,

2011]. A polynomial time algorithm for computing geodesic distances was developed in [Owen and Provan,

2009]. Here we summarize the relevant properties of the geodesic Γ(T, T ′) and the associated path space P

from [Owen and Provan, 2009].
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Since the Euclidean metric is preserved within each orthant of Tn, the geodesic Γ(T, T ′) will consist of a

series of straight line segments through the orthants of the path space P. The properties of Γ(T, T ′) will be

given in Theorem 1.3.1 which is the combination of Theorem 2.2, Theorem 2.3, Theorem 2.4 and Theorem

2.5 in [Owen and Provan, 2009]. For a set A of edges, we use ||A|| =
√∑

e∈A |e|2 to denote the norm of the

vector whose components are the lengths of the edges in A.

Theorem 1.3.1. Let T = (V, E ,W,Σ) and T ′ = (V, E ′,W ′,Σ′) be two n-trees. Let C be the set of edges

which are common to both trees, and let P be a path space containing T and T ′ with support (A,B) of all

the non-common edges. Then (A,B) corresponds to a geodesic if and only if it satisfies the following three

properties:

(P1) For each i > j, Ai and Bj are compatible.

(P2) ‖A1‖
‖B1‖ ≤

‖A2‖
‖B2‖ ≤ . . . ≤

‖Ak‖
‖Bk‖ .

(P3) For each support pair (Ai, Bi), there is no nontrivial partition C1∪C2 of Ai, and partition

D1 ∪D2 of Bi, such that C2 is compatible with D1 and ‖C1‖
‖D1‖ <

‖C2‖
‖D2‖ .

Further let Γ denote the geodesic between T and T ′, and parameterize Γ as Γ = (γ(λ) : 0 ≤ λ ≤ 1) where

λ is the ratio of distance to T . In this way, Γ can be represented in Tn with legs

Γi =



[
γ(λ) : λ

1−λ ≤
‖A1‖
‖B1‖

]
, i = 0[

γ(λ) : ‖Ai‖
‖Bi‖ ≤

λ
1−λ ≤

‖Ai+1‖
‖Bi+1‖

]
, i = 1, . . . , k − 1,[

γ(λ) : λ
1−λ ≥

‖Ak‖
‖Bk‖

]
, i = k

where the points on each leg Γi are associated with the tree Ti = (V, E i,W i,Σi) having edge set

E i = B1 ∪ . . . ∪Bi ∪Ai+1 ∪ . . . ∪Ak ∪ C

and where the edge lengths in W i are given by

|e|Ti
=



(1−λ)‖Aj‖−λ‖Bj‖
‖Aj‖ |e|T e ∈ Aj

λ‖Bj‖−(1−λ)‖Aj‖
‖Bj‖ |e|T ′ e ∈ Bj

(1− λ)|e|T + λ|e|T ′ e ∈ C

.

The length of Γ is
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L(Γ) =

∥∥∥∥(‖A1‖+ ‖B1‖, . . . , ‖Ak‖+ ‖Bk‖,
√∑
e∈C

(|e|T − |e|T ′)2

)∥∥∥∥ (1.1)

where C is the set of common edges in the corresponding trees.

We note that geodesics can trivially be extended to include leaf edges, since these are always common to

both trees and thus will be elements of C.

In the above Theorem 1.3.1, the combination of (P1) and (P2) only gives us a necessary but not sufficient

condition for a (T, T ′)-path with support (A,B) to be a geodesic, and (P3) focuses on characterizing when this

path is guaranteed to be a geodesic by specifying when no local improvement can be made for the path. Based

on this theorem, an O(n4) algorithm was developed in [Owen and Provan, 2009] and a Java implementation

of the algorithm is available at http://www.stat-or.unc.edu/webspace/miscellaneous/provan/treespace.

1.4 The Fréchet Mean

One of the important applications of the geodesic algorithm is computing the Fréchet mean. For most

data sets, notions of center of data, such as the mean or median provide useful descriptive statistics. For

data sets in tree space though, it is challenging to define analogous objects, since trees can neither be ordered

nor operated on as Euclidean points. If we only take into account the structure information of trees but no

edge length, then identifying a single “best” representative for a set of trees is well-studied in phylogeny, and

such trees are usually called “consensus trees”. Consensus trees are difficult to calculate, however, and do

not tend to take edge lengths into account effectively. The Fréchet mean is a more promising candidate for

measuring the center of a set of trees.

The Fréchet mean is characterized as the solution to a non-linear optimization problem. For a set of

points T = {T 1, T 2, ..., T r} in Tn the Fréchet function F : Tn → R≥0 is the mean square distance

F (T ) =
1

r

r∑
l=1

d(T, T l)2

where d(·, ·) is the geodesic distance, and the Fréchet mean is

T̄ = argminT∈Tn F (T ).

The Fréchet mean T̄ is unique because Tn is CAT (0) and d(T, T ′) is a convex function of T for fixed T ′

[Sturm, 2003]. The minimum value F (T̄ ) of the Fréchet function is the Fréchet variance. The Fréchet mean

is a useful notion of geometrically central tree of the data points in T, and the Fréchet variance summarizes

the variability of the dataset. The purpose of the Fréchet mean is to give a single point summary of an entire
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dataset.

Since the Fréchet mean is such a useful summary statistic for tree data, it is worth some effort to review

the inductive mean algorithm presented by [Sturm, 2003, Theorem 4.7], and further analyzed in [Bac̆àk, 2012]

and [Miller et al., 2015]. Given a set of trees T = {T 1, T 2, . . . , T r}, let {Y1}, {Y2}, . . . denote a sequence

of independently and identically distributed random trees chosen uniformly from T. Then the following

sequence of trees converge to the Fréchet mean of T:

S1 := Y1,

and

Sk :=

(
1− 1

k

)
Sk−1 +

1

k
Yk,

where the right hand side of the second equation denotes the point 1
k of the distance along the geodesic

from Sk−1 to Yk. The point Sk is called the kth inductive mean of Y1, . . . , Yk. Theorem 4.7 of [Sturm, 2003]

states that this inductive mean converges to the Fréchet mean for data sampled from any CAT (0) space.

In particular, the expected squared distance between Sk and T̄ is bounded by F (T̄ )/k. This is also the

theoretical foundation of the following inductive mean algorithm in [Bac̆àk, 2012].

Inductive Mean Algorithm

Input:{T 1, T 2, . . . , T r}

Step 1 S1 := T 1, i := 1

Step 2 choose k ∈ {1, . . . , r} at random

Step 3 Si+1 := 1
i+1T

k + i
i+1Si

Step 4 i := i+ 1

Step 5 go to Step 2

1.5 The Combinatorics of Geodesics

Geodesics play an essential role in tree space data analysis and this section summarizes some useful

results about the combinatorial structure of geodesics in Tn from [Miller et al., 2015, Section 3]. Fix a source

tree T ∈ Tn, and consider the geodesic ΓX = Γ(T,X) from an arbitrary tree X ∈ Tn to T . ΓX has a

combinatorial structure specified by the support pair (A,B) associated with the geodesic. This support pair

can change even when X stays in the same orthant, depending on the precise values of the edge lengths in

X. Miller et al. constructed a partition of Tn into regions for which all geodesics to the fixed tree T have the

same combinatorial structure. This partition is called the vistal subdivision of Tn and its major properties

are summarized below.
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Definition 1.5.1. [Miller et al., 2015, Definition 3.1] Given a source tree T ∈ Tn, a maximal orthant O ⊂ Tn,

and a support (A,B), let V(T,O;A,B) be the closure of the set of trees {X ∈ O} for which the geodesic ΓX

joining each X to T has support (A,B) satisfying (P2) and (P3) with strict inequalities. A previstal facet

is any nonempty set V(T,O;A,B) of this form.

The description of V(T,O;A,B) becomes linear after a simple change of variables. For convenience in

notations, the tree X = (V, E ,W,Σ) can be thought of as a vector in RE+, whose coordinates are expressed

using the corresponding lower-case letter x.

Definition 1.5.2. [Miller et al., 2015, Definition. 3.2] The squaring map Tn → Tn acts on X ∈ Tn ⊂ RE+ by

squaring the coordinates of X:

(xe|e ∈ E)→ (ξe|e ∈ E), where ξe = x2
e

Denote by T 2
n the image of this map, and let ξe = x2

e denote the coordinate indexed by e ∈ E . The image

of an orthant in Tn is then the equivalent orthant in T 2
n , and the image of a previstal facet V(T,O;A,B)

in T 2
n is a vistal facet denoted by V2(T,O;A,B). With this change of variables, given any edge set S ⊂ E ,

‖S‖ =
∑
e∈S ξe.

The squaring map induces on the Fréchet function F a corresponding pullback function

F 2(ξ) = F (
√
ξ), where(

√
ξ)e =

√
ξe.

Since the Fréchet function F (T ) is continuous on Tn with a uniquely attained minimum by convexity, and

continuously differentiable on the interior of every maximal orthant, the same properties hold for F 2. Thus

descent methods apply after squaring just as beforehand.

Proposition 1.5.1. [Miller et al., 2015, Proposition 3.3] The vistal facet V2(T,O;A,B) is a convex polyhe-

dral cone in T 2
n defined by the following inequalities on ξ ∈ Rn−2, where all norm ‖ · ‖ are to be interpreted

as ‖ · ‖T .

(O) ξ ∈ O; that is, ξe ≥ 0 for all e ∈ E, and ξe = 0 for e /∈ E, where O = Rn−2
≥0 .

(P2) ‖Bi+1‖2
∑
e∈Ai

ξe ≤ ‖Bi‖2
∑

e∈Ai+1

ξe for all i = 1, . . . , k − 1.

(P3) ‖Bi \ J‖
∑

e∈Ai\I

ξe ≥ ‖J‖
∑
e∈I

ξe for all i = 1, . . . , k and subsets I ⊂ Ai, J ⊂ Bi such that I ∪ J is

compatible.
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Remark: (P2) and (P3) here are actually the same as (P2) and (P3) in Theorem 1.3.1, but written in the

form of multiplication instead of fraction. (O) is just a nonnegativity constraint.

Proposition 1.5.2. [Miller et al., 2015, Proposition 3.4] The vistal facets are of dimension 2n − 1, have

pairwise disjoint interiors, and cover T 2
n . A point ξ ∈ T 2

n lies interior to a vistal facet V2(T,O;A,B) if and

only if the inequalities in (O), (P2), and (P3) are strict.

Definition 1.5.3. [Miller et al., 2015, Definition 3.5] Fix a source tree T ∈ Tn, a (not necessarily maximal)

orthant O ⊂ Tn, and a support (A,B). A signature associated with the support (A,B) is a length k − 1

sequence S = (s1, . . . , sk−1) of symbols si ∈ {=,≤}. The previstal cell defined by O, A, B, and S is the set

V(T,O;A,B;S) of points {X ∈ O} for which the ratio sequence for (A,B) at each point X has the following

specific form:

‖A1‖
‖B1‖

s1
‖A2‖
‖B2‖

s2 . . . sk−2
‖Ak−1‖
‖Bk−1‖

sk−1
‖Ak‖
‖Bk‖

.

The vistal cell V2(T,O;A,B;S) ⊂ T 2
n is the image of V(T,O;A,B;S) under squaring.

Note that vistal cells are convex polyhedra. A canonical description of vistal cells is given in [Miller et al.,

2015, Theorem 3.23].

Theorem 1.5.3. Fix a tree T ∈ Tn.

1. Vistal cells associated with geodesics to T are exactly those of the form V2(T,O;A,B;S), where (A,B)

is a valid support sequence for (O, T ) and S is a signature on (A,B). Here a signature is a list of ”=”,

”<”, and ”≤” symbols in (P2).

2. The dimension of a vistal cell V(T,O;A,B;S) is dim(O) −m(S), where m(S) is the number of ”=”

components in S.

3. The representation by a valid support sequence and signature is unique up to reordering the support

sets within each equality subsequence of S.

Definition 1.5.4. [Miller et al., 2015, Definition 3.31] A premultivistal cell for a collection T of trees is a

set of the form

V(T;O;AT,BT) =

r⋂
l=1

V(T l,O;Al,Bl),

where V(T l,O;Al,Bl) are previstal cells, and O ⊂ Tn is an orthant, and

(AT,BT) = {(A1,B1), . . . , (Ar,Br)}
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is a collection of support pairs for (T l, T )-geodesics. A multivistal cell (m-vistal) is the image in T 2
n of a

premultivistal cell.

1.6 PCA in Euclidean Space

Principal component analysis(PCA) has been a workhorse method for understanding population structure

of a data set in Euclidean space. A good overview and discussion of many aspects of PCA can be found

in [Jolliffe, 2005]. A common goal of PCA is dimension reduction: finding principal components out of the

original set of variables and making sure the number of principal components is less than the number of

original variables. There are population principal components and sample principal components. Since we

mainly deal with a sample of trees rather than the entire tree population in this research proposal, only

the sample PCA (see [Mardia et al., 1979]) will be studied here. Let X = (x1, . . . , xn)′ be an n× p sample

data matrix, i.e. the rows of X are the data objects. Let a be a standardized p-vector, i.e. a′a = 1. Since

variation is reasonably defined around a center point, we work with a mean centered version of the data,

X−1x̄′, where 1 is an n×1 vector with all entries equal to 1 and x̄′ is a 1×p vector with the ith entry being

the mean for the column i in X. Then the standard linear combination (SLC) Xa gives n observations on

a new variable defined as a weighted sum of the columns of X. The sample variance of this new variable is

a′Sa, where S is the sample covariance matrix of X. The first result is that the SLC with largest variance

is the first principal component defined by

y(1) = (X − 1x̄′)g(1) (1.2)

where g(1) is the standardized eigenvector corresponding to the largest eigenvalue of S (i.e. S = GΛG′).

Similarly, for i = 2, 3, . . . , the ith sample principal component is defined as

y(i) = (X − 1x̄′)g(i) (1.3)

where g(i) is the standardized eigenvector corresponding to the ith largest eigenvalue of S. And we have the

following properties for principal components:

– The principal components are uncorrelated and the variance of y(i) is λi, the ith largest eigenvalue of S.

– Among all the SLCs of columns of X which are uncorrelated with the first k principal components of X,

the (k + 1)th principal component has largest variance.

– The sum of the first k eigenvalues of S divided by the sum of all the eigenvalues of S, (λ1 + . . .+λk)/(λ1 +

. . .+ λp), represents the “proportion of total variation” explained by the first k principal components.
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– If S has rank r < p, then the total variation of X can be entirely explained by the first r principal

components.

1.7 PCA on Manifolds

As noted in [Marron and Alonso, 2014], an interesting extension of PCA is to the “mildly non-Euclidean”

setting, such as data objects on a manifold. The value of thinking about data on a curved manifold was first

motivated in the area of directional data (i.e. the data objects are angles). Such data objects arise in many

contexts, such as wind directions, magnetic directions, etc. Some good examples can be found in [Fisher,

1995; Fisher et al., 1993; Mardia, 1972]. To illustrate the motivation of thinking about directional data as

lying on a manifold, we will take the following example from [Marron and Alonso, 2014]. Consider a data

set consisting of four angles, 1◦, 2◦, 358◦, 359◦, and consider their average. By the fact that there are just

four numbers, it is natural to compute the classical arithmetic mean. The result here of 180◦ is typically

not satisfactory if we view the angles as points on the unit circle. From this perspective a mean of 0◦ makes

more sense. The idea behind this toy example is: we think of paths between data points on a manifold as

“moving along a surface using geodesics”.

As there are quite a few notions of data center in Euclidean space (such as mean, median, trimmed

means, and so on), there are also many ways of defining center on manifolds. On a curved manifold, the

Fréchet Mean (see section 1.4) is one of the commonly used descriptions of data center. To measure the

variation about center within a data set on a manifold, there are plenty of analogs of PCA. We will start

with a simple one in the sense that it only requires a metric, called Multi-Dimensional Scaling (MDS) [Borg

and Groenen, 2005; Cox and Cox, 2001; Lingoes et al., 1979; Young and Hamer, 1987]. MDS takes a matrix

of pairwise distances between data points and finds a lower dimensional representation of the data so as to

optimize the relationships indicated by the distance matrix. The main advantage of MDS is that it works not

only for manifold data but also for general metric space data. One major disadvantage of MDS is that it can

be difficult to interpret. That is also why other generalizations of PCA for manifolds have been presented

in the literature.

Since a manifold is a metric space where there is an approximating tangent space at each point, many of

the refined generalizations of PCA rely on this property. The idea behind the Principal Geodesic Analysis

(PGA) in [Fletcher et al., 2004] is exactly the tangent plane characterization. Similar to the idea of PCA,

starting from the sample mean and then finding directions of maximal projected variance, PGA starts at the

Fréchet mean and finds the geodesic along which the projections of the data have maximal variance. The

nice thing about manifolds is that the geodesics passing through the Fréchet mean could be characterized by

directions in the tangent plane. Hence we can first project all the data points onto a proper tangent plane
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and get the PCA there, and then map the results back into the manifold. One concern about PGA is that

the principal geodesics are constrained to go through the Fréchet mean. It was shown in [Huckmann et al.,

2010] that this was a serious constraint by using an example of uniformly distributed data points along the

equator on the sphere S2. The Fréchet mean of the data are the north and south poles, so PGA could only

find a line of longitude which gives a poor representation of the data. To address this issue [Huckmann et al.,

2010] proposed Geodesic Principal Components which finds the best fit over all geodesics.

On the sphere S2, by relaxing the constraint of searching within only geodesics, [Jung et al., 2011] pro-

posed Principal Arc Analysis (PAA). PAA was motivated by the data following closely to a small circle

(meaning not a great circle). In this case, the above modifications of PCA need to find at least two compo-

nents to explain the variation. However, the nature of the data is still one dimensional, so having more than

one component is unsatisfying. PAA addresses this by finding the best fit of any small circle to the data.

Later on, [Jung et al., 2012] extended the idea of PAA to data lying on higher dimensional spheres, i.e. Sd,

where d > 2, which is called Principal Nested Spheres (PNS). The main idea behind PNS is iterative dimen-

sion reduction. For addressing the problem that data objects lie in the Cartesian product of many spheres,

[Pizer et al., 2012] proposed the method of Composite Principal Nested Spheres (CPNS). The approach of

CPNS is to do a sphere by sphere decomposition of the data using PNS, then to combine the scores into a

large Euclidean vector, and finally to apply PCA to a collection of such large vectors.

1.8 PCA of Tree Structured Data Objects

[Marron and Alonso, 2014] pointed out that a more challenging extension of PCA is to “strongly non-

Euclidean” settings, such as tree-structured or graph-structured data objects. Several attempts at extending

PCA into tree structured data have already been made in literature. An early approach to the tree structured

data PCA was in [Wang and Marron, 2007] where the statistical use of the term OODA first appeared. In that

approach, the focus was on topological structure. Given a set of trees, a two-step procedure was performed:

first, an optimal nested sequence of trees, called principal structure treeline, was obtained; second, for each

tree in the principal structure treeline, an optimal principal attribute treeline was calculated (attributes being

only on nodes). This line of research was continued in [Aydin et al., 2009a]. Aydin et al. used the term

of principal structure treeline from [Wang and Marron, 2007] as their foundation, and one of their main

contributions is a linear time computational method for a production scale data set of trees.

In another recently published work [Shen et al., 2013], authors applied the Dyck path representation

to transform trees into curves, and then used the power of PCA in Functional Data Analysis to explore

statistical properties of tree data. However, all of the above approaches experience a common limitation

which was correspondence between tree branches. This was the result of embedding 3-d trees into 2-d space.

Some work has been done in the area of PCA in phylogenetic tree space. [Nye, 2011] explicitly studied
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the topic of the first principal component in tree space. The basic idea of defining the first PC is closely

related to the idea of [Wang and Marron, 2007]:

1 Given a set of trees {T 1, T 2, . . . , T r}, construct a center T 0.

2 Given a geodesic π through T 0, project {T 1, T 2, . . . , T r} onto π by finding the closest point yi in π to T i

for i = 1, . . . , n.

3 Find the geodesic π such that the points yi have the greatest variance along the geodesic.

In step(1), Nye chooses the center T 0 to be the majority consensus tree [BARTHÉLÉMY, 1986]. The majority

consensus topology consists of splits which are found in strictly more than half the trees in the data set. Due

to the highly complex combinatorial features of tree space, it will be very computationally intense to directly

follow the above procedure since it is not possible to try all the geodesics passing through the center. A

natural idea is to come up with some good heuristics with acceptable computational complexity. The major

contribution of [Nye, 2011] is to propose a greedy algorithm “ΦPCA” which computes an approximated first

principal component. For the detail of the algorithm, see [Nye, 2011, Section 2]. The main idea of ΦPCA

is that the principal component is constructed greedily by adding one coordinate in each step instead of

all at once. Intuitively speaking, Nye reduces the problem of finding the direction with largest projection

variance in an n-dimensional space into a series of 2-dimensional subproblems. This fundamental work of

Nye is pioneering in tree space, but this area needs more comprehensive investigation due to interesting and

complex topological structure.

1.9 Overview of Dissertation

In this dissertation, we develop three approaches of Principal Component Analysis in tree space, in order

to better understand the data structure in tree-like data sets. See [Jolliffe, 2005] for a thorough review of

PCA. The main body of the dissertation is organized as follows. In Chapter 2, we introduce several data sets:

Brain Artery data, Uniformly Random data, Wright-Fisher data, and Reduced Brain Artery data, which

are going to be used as testbeds for three PCA type approaches throughout the rest of the dissertation.

In Chapter 3, we focus on a Euclidean-based approach, namely Multi-Dimensional Scaling (MDS), since

MDS approximates the tree space data in an appropriate Euclidean space. We explore the geometry of the

Brain Artery data by using MDS, and in particular we discuss the out-of-sample embedding in aiding MDS

visualization for the same data set. See [Borg and Groenen, 2005; Cox and Cox, 2001; Lingoes et al., 1979;

Young and Hamer, 1987] for a detailed review of MDS. The other two approaches are based on analog of lines

in tree space. A challenge is that the concept of line is not naturally defined in tree space as in Euclidean

space. This motivates the characterization of notions of lines in tree space, developed in Chapter 4. We
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show that these lines naturally split into type I lines and type II lines. Intuitively speaking, a type I line

is the extension of a sufficiently long geodesic with no bifurcation, while a type II line is the extension of

the union of a collection of short geodesics and it has many bifurcations. Directly modeling PCs as general

type I lines can be computationally hard, thus, we study a practical analog of the type I line in Chapter

5, called Sample-limited Geodesics, which are the geodesics connecting a pair of data points. In Chapter 6,

we continue to discuss methods to search for a restricted version of type II lines, called principal ray sets,

of which all rays emanate from the origin. In particular, we investigate a special case of principal ray sets,

namely principal axis sets, in more detail.
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CHAPTER 2: REAL AND SIMULATED DATA

There are several data sets which will be used through out the rest of this thesis to test and contrast the

methods being developed. The purpose of this chapter is to highlight relevant aspects of several test bed

data sets in order to enhance intuitive understanding of the numerical studies. In Section 2.1 the source

of the brain artery data and the generation of the corresponding tree data set is discussed. Section 2.2

describes the generation of random tree data sets. In Section 2.3 the Wright-Fisher model, which is a useful

tool to generate topologically similar trees, is considered. Useful contrasts between these example data sets

are given in Section 2.4, using some exploratory data analyses. At the end of this chapter, a method of

generating reduced brain artery data sets will be proposed.

2.1 Brain Artery Data

One of the original motivations in this thesis is to look for latent correlates of biological variables such as

sex, age, and handedness from a set of human brain artery trees. Those brain artery trees were constructed

from a raw data set of Magnetic Resonance Angiography (MRA) brain images collected by the CASILab at

the University of North Carolina at Chapel Hill. The data set is publicly available and can be downloaded

following the link on the MIDAG website [Bullitt et al., 2008]. See [Bullitt et al., 2005] for a simple summary

based analysis of this image database. The full data set contains images of the brains of 109 healthy subjects

and each image is tagged with subject features of age, sex, handedness and self-identified race.

2.1.1 Magnetic Resonance Angiography

Magnetic Resonance Angiography (MRA) is an important non-invasive technique in medical imaging to

visualize arteries. MRA uses the fact that blood flowing in the arteries has a distinct magnetic signature.

And MRA can only detect arteries with blood in relatively rapid motion, but not veins because blood moves

more slowly there2. Data are stored as a 3-D image of intensities at voxel location, where brightness indicates

the motion of blood flowing through arteries. This can be visualized using 2-D slices. Figure 2.5(a) gives

one slice of a MRA image of a human brain. The outside dark region indicates the space out of the head.

The outer layer mainly in grey represents skin and skull and the scattered bright pieces might be the blood

vessels in the skin. The next dark layer is cerebrospinal fluid. The inside large region is a piece of the

cerebral cortex. Four darker grey parts near the center are ventricles. The bright pieces are our focus,

namely brain arteries, which can be either dots or segments. Bright dots are arteries going through the

MRA slice and bright segments are those going across the MRA slice. Figure 2.5(b) gives a detailed view of
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(a) (b)

Figure 2.5: (a) One slice of a Magnetic Resonance Angiography (MRA) image for one person. Bright regions
indicate blood flow. These are tracked through MRA slices to recover artery tubes as shown in the figure on
the right. (b) The data object is a reconstructed brain artery tree for one person. The goal of this research
is PCA type statistical analysis of a sample of such data objects.

one reconstructed 3-D artery system. An important point is that MRA has a resolution threshold of about

1mm. Consequently many small arteries, between 1mm in diameter down to capillaries, are too small for

detection.

A challenge in this study is the starting point of the artery tree. For uniformity we work with a set of

subtrees, where each subtree starts at the Circle of Willis, see [Aydin et al., 2009b]. The major part of this

research develops PCA type statistical methods for the tree data set by using the phylogenetic tree space

as a mathematical foundation. Recall from Section 1.2.2, a set of phylogenetic trees must have a common

leaf set. However, the arteries detected by MRA do not even have the same number of branches across

all the subjects. To address this issue, a common leaf set is artificially introduced by determining points

on the cortical surface that correspond across different subjects. The next section describes the details of

representing brain artery systems as points in phylogenetic tree space.

2.1.2 Cortical Correspondence

The work described in this section heavily relies on the elegant work done by [Oguz et al., 2008]. After

reconstructing the brain artery system as the blue lines in Figure 2.6(a), we are ready to map it into a

phylogenetic tree space by using cortical correspondence. A cortical correspondence is a method of deter-

mining landmarks on the cortical surface which correspond across different subjects. A group-wise shape

correspondence algorithm based on spatial locations, which is proposed in [Oguz et al., 2008], is used here to

place landmarks on the cortical surface. In this research 128 landmarks are selected, 64 for each hemisphere,
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which are the red dots in Figure 2.6(a). For each landmark, the closest point on the artery tree system,

called the landmark projection, is found. Each landmark is then connected to its landmark projection by a

red segment in Figure 2.6(b). Each landmark and the line segment to its projection become part of the data

object. Each phylogenetic tree data object is finally formed by tracing the parts of the tree that are between

the base and the landmarks. Any parts of the original brain artery system that are not between a landmark

projection and the base, found as cyan in Figure 2.6(b), are trimmed. The resulting tree is in Figure 2.6(c).

(a) (b) (c)

Figure 2.6: Illustrates steps for cortical correspondence. (a) Brain artery system (blue) with the cortical
landmarks (red). (b) Find the closest point on the brain artery system to each landmark (red segments are
landmark connections). Arteries which are not between the landmark projections and the base (cyan) are
trimmed. (c) The result of this procedure is a cortical correspondence tree.

To form one tree instead of a few subtrees, an artificial leaf, called the root, is added to the base of the

reconstructed data object to substitute for the Circle of Willis. The root and the 128 landmarks together

add up to a common set of 129 leaves. Recall from Section 1.2.2, each edge of a reconstructed phylogenetic

tree is associated with a positive edge length. The edge length for each interior edge is the corresponding arc

length in the original brain artery system. The pendant for each landmark has length equal to the projection

distance plus the original artery length from the projection point to the nearest artery branch. The pendant

length for the root of the tree is zero.

Recall that the raw data set contains images of the brains of 109 healthy subjects. However, after

performing cortical correspondence only 67 images produced eligible phylogenetic trees, hence the real data

set will contain 67 brain artery trees throughout this thesis.

2.2 Generated Data Set I: Uniformly Random

In this section generation of a uniformly random tree data set is discussed. This could be interpreted in

several ways, but here it means that the generated trees are uniformly randomly distributed over all possible

tree topologies. To make the uniformly random tree set comparable with the brain artery tree set, 67 random
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phylogenetic trees with 129 leaves will be generated. Recall from Section 1.2.2 the fact that the number of

all possible topologies for a tree with 129 leaves is 253!! ≈ 10250.

Most of the algorithms for generating randomness heavily rely on some sort of random number generator.

However, just to generate a random integer between 1 and 253!! is infeasible in double-precision floating-point

numerical computing environments such as MATLAB. Therefore, in personal correspondence, Sean Skwerer

proposed another approach which will be used to generate a random tree data set. Instead of randomly

pulling one from a pool of topologies, let the tree randomly grow from a base-tree with only three leaves.

The whole growth process is an iterative procedure. At each iteration, one of the existing edges is uniformly

randomly selected and then cut in the middle. An interior node and a new leaf will be inserted into this cut.

Iterations continue until the resulting tree has 129 leaves. Now we show that we indeed get uniformly random

tree topologies on n leaves by using this approach. First, we need to show that all possible tree topologies on

n leaves can be generated by random growth. For any tree topology on n leaves, we can sequentially delete

leaves and their associated leaf edges in descending order of leaf label, until only leaves with label 1, 2, and

3 left. Then the reverse process is a random growth. Second, we show that each possible topology has the

same probability to be constructed by using induction. Starting from the base-tree with only 3 leaves, it

is straightforward to see that the 3 possible topologies on 4 leaves have equal probability to appear when

inserting the leaf labeled 4. Now suppose all the topologies generated by random growth on k leaves have

equal probability to appear. In the next iteration of random growth, since each of the 2k − 3 edges has

equal probability to be chosen and cut in middle, all the topologies generated by random growth on k + 1

leaves will also have equal probability to be constructed. Therefore, we can obtain uniformly random tree

topologies by using random growth. See Figure 2.7 for an illustration of all three possibilities in the first

iteration. Figure 2.7(a) shows the starting tree with only three leaves: 0, 1, and 2. If the red solid edge is

cut and a new node 3 is inserted, the tree in (b) is obtained. If the blue dotted edge is cut and a new node 3

is inserted, the tree in (c) is obtained. If the green dashed edge is cut and a new node 3 is inserted, the tree

in (d) is obtained. Starting from the tree in (a), there is 1/3 chance of getting each tree in (b), (c), and (d).

After a random topology is generated, it remains to generate edge lengths. Random edge lengths create

additional data variation. To make this uniformly random data comparable with the brain artery data, the

distribution of edge lengths is taken to be the empirical distribution of edge lengths of the brain artery trees.

Figure 2.8 shows the overlay of a kernel density estimate (KDE) of all the edge lengths in the brain artery

data and a Gamma distribution with parameters 1.28 and 15.8. A kernel density estimate (KDE) generates

an empirical density curve for a data sample, see [Wand and Jones, 1995] for more details. Intuitively

speaking, a KDE is a smooth histogram. By comparing these two curves, the edge lengths distribution of

brain artery data can be reasonably approximated by the Gamma distribution. Thus, in our simulations,
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(a) (b)

(c) (d)

Figure 2.7: Schematic plots showing the three possibilities to insert a new leaf in the first iteration.

the edge lengths of uniformly random trees will be generated from this Gamma distribution.

Figure 2.8: Comparison between KDE of edge lengths in brain artery data (blue solid curve) and Gamma
distribution with parameters 1.28 and 15.8 (red dashed curve) shows the Gamma distribution is an excellent
fit for the edge lengths distribution of the brain artery data.
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2.3 Generated Data Set II: The Wright-Fisher Model

Besides the random tree data set, some simulated data sets with controlled similarity of topology are

also considered. Using the relationship between phylogenetic trees and genealogy, the Wright-Fisher model,

introduced by [Wright, 1931] and [Fisher, 1930], will also be used to generate some test bed data sets in this

thesis.

2.3.1 The Wright-Fisher Model

The basic concepts of the Wright-Fisher model are summarized in [Hein et al., 2005, Section 1.4]. The

Wright-Fisher model is a simplified mathematical model of populations describing genealogical relationships.

This model of reproduction provides a dynamic description of the evolution of an idealised population and

the transmission of genes from one generation to the next. The following assumptions are made in the

Wright-Fisher model:

1. Generations are discrete and non-overlapping.

2. The population is made of haploid organisms, that is, the genes making up the present generation are

drawn randomly with replacement from the parental generation.

3. The population size is constant.

4. All individuals have equal reproductive ability.

5. The population has no geographical or social structure.

6. The genes (or sequences) in the population do not recombine.

The original Wright-Fisher model does not consider growth and splitting of populations. However, to generate

tree data, some extensions of the model need to be considered. [Wilson et al., 2003] proposed a more

complex model based on the Wright-Fisher model. This model assumes that the population starts to grow

exponentially at some point instead of being constant all the time. Furthermore, at random time points

the population bifurcates, that is, splits into two separate subpopulations with equal size. We will adjust

Wilson’s model to fit our data generation scheme. In our model, population growth and bifurcation are

assumed to occur at the same time. Further, the bifurcation points can be controlled to approximate a

specified sample geneological tree, as will be shown below. However, instead of exponential growth, the

population grows according to a scalar factor which is the number of subpopulations in the next generation.

Specifically, whenever the population splits, both of the subpopulations will have the same size as the

ancestral population. The advantage of this assumption is that the subpopulations of all branches in the
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genetic tree have the same population size and this single parameter is easy to control. From now on this

parameter will be called the width parameter.

2.3.2 Data Generation

The actual data generating process starts from a template standard phylogenetic tree, with edge lengths

assumed to be integer. (This may require the original lengths to be scaled or approximated.) This template

tree is turned into a population genealogical tree which has the same topology, but additional attributes.

A population genealogical tree preserves the edge lengths from the template tree by setting the number of

reproduction cycles on each subpopulation to be the corresponding edge length in the template tree. To add

population size as an additional uniform attribute on all edges, a population genealogical tree is constructed

by choosing the population size equal to the predetermined width parameter. Figure 2.9(a) shows a template

tree with 4 leaves and edge lengths as marked in boxes. Figure 2.9(b) gives the corresponding population

genealogical tree with width parameter equal to 4. The population genealogical tree has the same topological

structure as the template tree. Each horizontal line of dots represent a generation and the number of

dots in each line equals the width parameter. The numbers of empty spaces between generations in each

subpopulation reflect the edge lengths in the template tree. Each non-root leaf of the template tree becomes

an individual from the latest generation of the corresponding subpopulation, and the root becomes the

common ancestor of the whole population. Since the reproduction from generation to generation is random,

(a) (b)

Figure 2.9: (a) A template phylogenetic tree with 4 leaves and edge lengths in boxes. (b) The corresponding
population genealogical tree has the same topological structure as the template tree. The number of repro-
duction cycles in each subpopulation equals the corresponding edge length in the template tree and the size
of subpopulation in each generation is the width parameter which equals 4.

a sample gene tree will be generated within the population genealogical tree. If the width parameter is set

to be 1, then all the sample gene trees generated from this model will have exactly the same topology as

the template tree. As the width parameter increases, a greater variety of topologies will appear among the

generated trees. Figure 2.10 shows two possible sample gene trees generated within the same population
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genealogical tree displayed in Figure 2.9(b). In both figures, three individuals labeled as 1, 2, and 3 have

been randomly sampled in the most present generation of each subpopulation. Edges back in time tracking

the ancestors of these three individuals are highlighted as green dashed lines. In (a) individuals 1 and 2

find a common ancestor first, then they find the common ancestor with 3. In (b) individuals 2 and 3 find a

common ancestor first, then they find the common ancestor with 1.

(a) (b)

Figure 2.10: Two possible sample gene trees generated within the same population genealogical tree, from
Figure 2.9(b).

To better visualize these two sample gene trees, we represent them in the form of phylogenetic trees in

Figure 2.11 below. The phylogenetic tree in (a) corresponds to the sample gene tree in Figure 2.10(a), and

it has the same topology as the template tree in 2.9(a). The phylogenetic tree in (b) corresponds to the

sample gene tree in Figure 2.10(b), and it has a topology different from the template tree. Although the

Wright-Fisher model can generate trees with topologies quite different from the template trees, they will

tend to be “centered” around the original template tree. It is not known in what way the trees generated

by the Wright-Fisher model statistically represent the original tree.

(a) (b)

Figure 2.11: Two possible sample gene trees with different topologies can be generated within the same
population genealogical tree, from Figure 2.9(b).
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2.4 Exploratory Data Analysis

In sections 2.1, 2.2, and 2.3, a variety of example data sets that will be used in later chapters are

introduced. These are expected to exhibit different levels of similarity. We now focus on 5 specific cases, in

order of decreasing similarity:

• WF2 (Wright-Fisher data with width parameter = 2) has a high level of similarity.

• WF10 has similarity level lower than WF2 from Section 2.3.

• WF40 has even less similarity from Section 2.3.

• Brain artery data will be seen in Sections 2.4.1 and 2.4.2 to have less similarity than WF40.

• Uniformly random data will also be seen in Sections 2.4.1 and 2.4.2 to have the least similarity among

all 5 cases.

2.4.1 Angle-based Data Summaries

One way to measure the similarity of tree data topologies is to study the distribution of angles, with

vertex at the origin, between each pair of trees (called pairwise angle). Given two trees T1 and T2, denote

the pairwise angle between these two trees as θ, then we can define θ by the cosine law:

cosθ =
‖T 1‖2 + ‖T 2‖2 − L(Γ(T 1, T 2))2

2‖T 1‖‖T 2‖
. (2.4)

It can be shown that θ does not depend on either ‖T 1‖ or ‖T 2‖. Under this definition, if Γ(T 1, T 2) is a

cone path, then θ = 180◦, otherwise θ < 180◦. A good general definition of angle in any metric space is the

Alexandrov angle [Alexandrov, 1951]. In the special case of phylogenetic tree space, the definition of angle

by the cosine law in (2.4) coincides with Alexandrov angle.

The distributions of pairwise angles for the five data sets are visualized using kernel density estimation

(KDE), as in Section 2.2. Figure 2.12(a) shows the overlay of KDEs for the five example data sets which

allow direct comparison of these populations. The red curve corresponds to WF2 and shows that all of

these pairwise angles are smaller than 10◦. The magenta curve represents WF10, indicating almost all the

pairwise angles are between 30◦ and 50◦. These much larger angles for WF10 are very consistent with the

greater spread of WF10 data across tree space. The green curve corresponds to WF40, showing most of the

pairwise angles are between 80◦ and 120◦, again consistent with more spread for WF40. The blue curve

represents the brain artery data, with all the pairwise angles between 120◦ and 170◦. This shows that the

spread of the brain artery data is more than even the diverse WF40 distribution. The black curve on the

far right corresponds to the uniformly random data, showing most of the pairwise angles are greater than
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160◦ and a big proportion of angles are 180◦, showing the brain artery data set is not purely random. The

overall comparison of these five distributions is consistent with the similarity ordering of these five data sets

mentioned in the bullet points just before Section 2.4.1. Very often the spread of a data set is proportional

to its mean, to investigate this issue, Figure 2.12(b) presents the overlay of the logarithms of the pairwise

angles. Except for the uniformly random data, all other four data sets have similar spread, which indicates

the variability in pairwise angles is proportional to the magnitude of angles.

(a) (b)

Figure 2.12: (a) Overlay of pairwise angle KDE plots shows the decreasing similarity ordering of the five
data sets: WF2, WF10, WF40, brain artery data, and uniformly random data. (b) Overlay of logarithm of
pairwise angle KDE plots indicates that the variability in pairwise angles is proportional to the magnitude
of angles for WF2, WF10, WF40, and brain artery data, but not for the uniformly random data.

2.4.2 Distance-based Data Summaries

Another way to examine the similarity of a set of trees is to study the distances between each pair of

trees (called pairwise distance). This is defined as the length of the geodesic between the pair of trees. It is

intuitive that larger pairwise distances correspond to less similar data sets. Figure 2.13(a) shows the overlay

of pairwise distance KDE plots for the same five data sets which is another useful comparison. Again, the

red curve corresponds to WF2 and shows that all the pairwise distances are within a narrow range smaller

than 50. The magenta curve represents WF10, indicating almost all the pairwise distances are between 150

and 250, which shows that WF10 has more spread than WF2. The green curve is consistent with even

larger spread for WF40, showing most of the pairwise distances are between 400 and 600. The blue curve

representing the brain artery data and the black curve representing the uniformly random data on the far

right overlap heavily. Both indicate pairwise distances distributing from 450 to 750, again consistent with the

fact that these two data sets have the largest spread. The comparison of distributions of pairwise distances

for these five data sets are quite similar to that of pairwise angles, except that the blue and black curves are

relatively separated for pairwise angles but overlapped heavily for pairwise distances. This indicates that
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the distances between each tree and the origin differ for the brain artery data and the uniformly random

data, probably because the distribution of edge lengths used in the uniform generation is different from

the true distribution of the edge lengths in the brain artery data. This shows that it is worth looking at

both pairwise angles and pairwise distances. Figure 2.13(b) presents the overlay of the logarithms of the

pairwise distances, which again gives a good indication of proportionality between the spread and magnitude

of pairwise distances.

(a) (b)

Figure 2.13: (a) Overlay of pairwise distance KDE plots shows the decreasing similarity ordering of the five
data sets: WF2, WF10, WF40, brain artery data, and uniformly random data. (b) Overlay of the logarithm
of pairwise distance KDE plots implies the proportionality between the spread and magnitude of pairwise
distances.

2.5 Stickiness and Landmark-reduced Brain Artery Data

An important property of the data in tree space is the behavior of the Fréchet mean. In Euclidean space,

the Fréchet mean, which is also the conventional entry-wise sample mean, of a finite set of data points will

move slightly when one of the data points is perturbed. In contrast, we can find data sets in some particular

tree spaces, whose Fréchet mean stays still when one of the data points moves within a certain range. This

interesting phenomenon is called a sticky Fréchet mean. In [Hotz et al., 2013], the stickiness of the Fréchet

mean was defined precisely on an “open book”, which is a metric space constructed by gluing a disjoint

union of half-spaces along their boundary hyperplanes. An “open book” can also be viewed as a subset of

an appropriate tree space. In [Basrak, 2010], the stickiness property was independently and simultaneously

proven for arbitrary binary trees. As a continuation of the work initiated in [Hotz et al., 2013], [Barden

et al., 2013] further investigated the stickiness in T4, the second simplest tree space. From the results in

[Hotz et al., 2013] and [Barden et al., 2013], a reasonable speculation is that the stickiness is likely to occur

for a largely spread data set, even in any general tree space. From the discussion in the previous section, we

saw that the spread of each of the five data sets is quite different from each other. The two data sets with

large spread, namely the Brain Artery data and the Uniformly Random data, are likely to have a sticky
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Fréchet mean.

One goal of this dissertation research is to understand the effect of different aspects of a data set on the

performance of our tree space principal components. Stickiness is certainly a potentially interesting aspect of

tree space data. Since the suspected strong stickiness of the Brain Artery data and the Uniformly Random

data is associated with their large data spread, ideally we want a series of data sets with different levels of

spread. Fortunately, a group of landmark-reduced Brain Artery data sets with different levels of spread have

been created and thoroughly studied in [Skwerer, 2014]. These data sets come from a slightly different data

source from our Brain Artery data. Each of them contains 85 subjects instead of 67, but 64 of the 67 subjects

in our Brain Artery data are included in those 85 subjects. In addition, the original set of 128 landmarks

are chosen differently from our Brain Artery data. The landmarks of the 85-subject data are chosen by only

considering the locations on the cortical surface, but the landmarks of the 67-subject data are chosen by

taking into account both locations and curvatures. However, from the results in [Skwerer, 2014, Section 3.2],

we clearly see different levels of data spread across these data sets, which is our focus here.

Specifically, the landmark-reduced Brain Artery data sets are obtained based on a sequence of nested

subsets of the original landmarks. The subset for each data set is chosen by maximizing the total data

variation within the set. In Chapter 6, we will use some representative landmark-reduced Brain Artery data

sets to investigate an important tree space version of principal components.
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CHAPTER 3: MULTIDIMENSIONAL SCALING IN TREE SPACE

PCA type visualization is very helpful when dealing with high-dimensional complex data sets. A challenge

of visualizing tree space is that it is strongly non-Euclidean. Multidimensional Scaling (MDS) gives one

approach to addressing that. MDS is an analog of PCA, which is applicable in any metric space, such as

tree space. It searches for a lower dimensional representation of a data set based only on pairwise distances

defined between each pair of data objects. In Section 3.1, a brief review of MDS is given. In Section 3.2,

2-D and 3-D MDS are applied to the brain artery data set introduced in Chapter 2. In Section 3.3, it is seen

that embedding one or more geodesics into a data set create a major distortion in the MDS, allowing study

of how the geodesics behave in tree space. In Section 3.4, it is seen that an out-of-sample approach to MDS

can mitigate this distortion.

3.1 Review of Multidimensional Scaling

In this section, we give a short introduction of MDS [Torgerson, 1952, 1958; Gower, 1966]. MDS finds

an appropriate configuration in Euclidean space for a set of objects in any complex space as long as the

dissimilarities between pairs of objects can be defined. A dissimilarity matrix, the most common input form

of MDS, consists of dissimilarity data for each pair of objects. In the case of a metric space, the dissimilarity

is taken to be distance, although MDS works in more general spaces. In this work, since we focus on tree

space with a metric, the word “distance” will be used in most of this chapter. If the objects are labeled

i = 1, . . . , N , the distances are given by Di,j and the distance matrix is given by D. MDS gives a good

understanding of the relationships between the N data objects, by visually representing them as a set of

“configuration points”, x1, . . . ,xN ∈ Rk, whose pairwise distances ‖xi−xj‖ approximate each corresponding

Di,j . The dimension k of the configuration space is arbitrary in theory, but k = 2, 3, 4 are usual for the

purpose of visualization.

Much of the early development of MDS was in the behavioural sciences and Psychometrika published

many papers in this area. The theoretical foundation of MDS was built in the 1930s. [Eckart and Young,

1936] and [Young and Householder, 1938] proved when the input is a Euclidean distance matrix, the MDS

representation is essentially the same as PCA coordinates. Based on this result, [Torgerson, 1952, 1958]

and [Gower, 1966] made the first practical method available for MDS by replacing the Euclidean distance

matrix with the more general dissimilarity matrix, which was the oldest version of non-Euclidean MDS,

called “classical MDS”. [Kruskal, 1964a,b] offered a later version of MDS based on a direct measure of lack
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of fit, called “distance MDS”. More recently, many variations of these ideas have been developed for a variety

of applications, see [Borg and Groenen, 2005; Cox and Cox, 2001] for a good overview of this literature.

During decades of development, MDS has become a rich field in the literature. [Buja et al., 2008] suggests

two dichotomies which give a clearer view of the whole topic. The first one is “metric MDS versus nonmetric

MDS”: Metric MDS uses the actual values of the dissimilarities, while nonmetric MDS uses only their ranks

[Shepard, 1962; Kruskal, 1964a]. Nonmetric MDS estimates an optimal configuration simultaneously with

an optimal monotone transformation f(Di,j) of the dissimilarities. Because the effect of edge lengths is

taken into account in the tree space, the present research focuses on the metric MDS. The second dichotomy

categorizes metric MDS into either classical metric MDS or distance metric MDS. Since we are going to

focus mainly on metric MDS in this research, the terms “distance MDS” and “classical MDS” will be used

instead of “distance metric MDS” and “classical metric MDS” in the rest of this chapter. The main difference

between classical MDS and distance MDS is the loss function used in optimizing the MDS configuration.

A loss function is a commonly used tool to measure the lack of fit between dissimilarities Di,j and fitted

distances ‖xi − xj‖. For metric MDS, Stress and Strain are two most frequently used loss functions.

Distance MDS uses Stress as the loss function which is a direct measure of disparities between dissimi-

larities Di,j and corresponding fitted distances ‖xi − xj‖. In the simplest case, Stress is a residual sum of

squares:

StressD(x1, . . . ,xN ) =

( ∑
i 6=j=1...N

(Di,j − ‖xi − xj‖)2

)1/2

(3.5)

Then distance MDS will minimize Stress over all possible configurations (x1, . . . ,xN )T . The minimization

can be carried out by applying standard gradient descent to StressD, which can be viewed as a function on

RNk.

Classical MDS uses Strain as the loss function and the idea of Strain originates from recovering a set of

points in Euclidean space [Torgerson, 1952, 1958; Gower, 1966]. Some basic results about classical MDS are

summarized here from [Borg and Groenen, 2005; Cox and Cox, 2001]. Given an N ×N matrix of squared

Euclidean distances D2
E , we want to find the MDS coordinate matrix X of x1, . . . ,xN ∈ Rk up to a rotation

or reflection. The matrix X has N rows, corresponding to the N objects. The number of columns of X can

be taken to be any k 6 n−1. Since distances do not depend on locations, we can assume that X has column

means equal to zero to prevent arbitrary translation. In Euclidean space, there is an identity relating the

distance ‖xi − xj‖ and the inner product 〈xi,xj〉:

‖xi − xj‖2 = 〈xi,xi〉 − 2〈xi,xj〉+ 〈xj ,xj〉.

Let I denote the N × N identity matrix, let e = (1, . . . , 1)T ∈ RN , and denote the centering matrix as
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J = I − 1
N ee

T . From the above identity, the inner product matrix BE = − 1
2JD

2
EJ and this operation is

called double centering. Note that matrix multiplication by J on the left or right removes the mean from

each column or row respectively. To find the coordinate matrix X, we factor BE by spectral decomposition,

BE = QΛQT = (QΛ1/2)(QΛ1/2)T = XXT . Classical MDS only differs from the above procedure by replacing

the matrix of squared Euclidean distances D2
E with the matrix of the more general squared dissimilarities

D2. We first obtain the inner product matrix B = − 1
2JD

2J by double centering D2. Then we compute the

spectral decomposition of B = QΛQT , but this decomposition does not give us the coordinate matrix X

directly. Instead, the coordinate matrix X is given by X = Q+Λ
1/2
+ , where Λ+ is the diagonal matrix of the

first k largest eigenvalues greater than zero.

It needs to be pointed out that both distance MDS and classical MDS will get the same configuration up

to a rotation or shift of origin if the given distances are Euclidean and the dimension of the MDS space is

the Euclidean rank of the data. However, if the distances are not Euclidean, these two versions of MDS will

behave very differently. Even when the dissimilarities are Euclidean, but the dimension of the MDS space is

less than the Euclidean rank of the data, these two versions of MDS still perform differently in the following

example shown in Figure 3.14. In 3-D Euclidean space, consider three multivariate normal distributions:

N3((5, 0, 0)T , I), N3((0, 5, 0)T , I), and N3((0, 0, 5)T , I). From each of these three distributions, a sample of 10

data points is randomly generated. Now we have three clusters of points in 3-D Euclidean space, colored red,

green, and blue. Then an identical 3 dimensional MDS configuration is achieved by both distance MDS and

classical MDS. For a better visualization, this common 3 dimensional MDS configuration is displayed in the

form of a scatter plot matrix in Figure 3.14. The scatter plot matrix puts 1-D projections on the diagonals

and corresponding pairwise projection scatter plots off the diagonals based on the three MDS directions.

On the diagonals, there are three smoothed histograms of the data projections onto each MDS direction, of

which the horizontal axes give the projection scores onto the three MDS directions and the vertical axes give

the probability density of the projection scores. The first diagonal plot for MDS direction 1 shows a clear

separation of three colors. The second diagonal plot for MDS direction 2 displays only a separation of red

from green and blue, since it is orthogonal to direction 1. The third diagonal plot for MDS direction 3 shows

no separation at all, because it is orthogonal to both directions 1 and 2. Consequently, the scatter plot of

MDS directions 1 and 2 shows a perfect separation of the three original clusters. From the scatter plot of

MDS directions 1 and 3, we can see that the three clusters are still kind of separated, but the separation is

not as clear as for directions 1 and 2. Finally, the scatter plot of MDS directions 2 and 3 only separates red

from green and blue.

This section is concluded with discussion of the connection between two versions of metric MDS and

PCA. [Cox and Cox, 2001, Section 2.2.7] proved: under the condition that the dissimilarities are given by
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Figure 3.14: The above scatter plot matrix gives a visualization of 3-D MDS configuration on 3 clusters
from front, side, and top views. Both distance MDS and classical MDS produce this same 3-D configuration.
Three data clusters are colored red, green, and blue.

Euclidean distances, classical MDS is equivalent to PCA. In fact, the coordinates obtained in p dimensional

configuration space for the N objects by classical MDS equal the component scores of the N objects on

the first p principal components. However, distance MDS performs differently from both classical MDS and

PCA even when the dissimilarities are given by Euclidean distances. In Figure 3.15(a), each point in 2-D

classical MDS configuration of the above 3-cluster data set is represented by a “©” and the configuration of

principal component 1 versus 2 scores are represented by “+”. The perfect overlap of these two configurations

illustrates that classical MDS and PCA agree with each other on Euclidean data. In Figure 3.15(b), the

same 3-cluster data set is represented using symbols “©” for the 2-D classical MDS configuration and using

symbols “×” for the 2-D distance MDS configuration. The imperfect overlap of these two configurations

indicates that classical MDS and distance MDS give different low rank approxiamtion even in a Euclidean

data space. Due to better algebraic properties, we will focus on classical MDS in tree space, and “MDS”

will be used instead of “classical MDS” from now on for clarity.
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(a) 2-D classical MDS configuration is plotted us-
ing “©” and 2-D PCA configuration is plotted using
“+”. The symbols of “©” and “+” are perfectly
overlapped, which indicates classical MDS and PCA
are equivalent on Euclidean data.

(b) 2-D classical MDS configuration is plotted using
“©” and 2-D distance MDS configuration is plotted
using “×”. The symbols of “©” and “×” are not per-
fectly overlapped, which indicates classical MDS and
distance MDS perform differently even on Euclidean
data.

Figure 3.15: Comparison across classical MDS, distance MDS, and PCA on 3-cluster (colored red, green, and
blue) simulated data set. Shows low rank approximations of Euclidean data are different between classical
MDS and distance MDS.

3.2 MDS of Tree Data

Recall one of the original motivations in this thesis is to search for potential correlates of biological

variables such as sex, age, and handedness from a set of human brain artery trees. To better detect the

potential classes, MDS is applied to aid visualization by embedding trees into a 2-D or 3-D Euclidean space.

Recall MDS is based on the pairwise distance matrix of the data set. As in Section 1.3, distance between

two trees is defined as the length of the geodesic connecting them, which can be computed by applying the

linear time algorithm in [Owen and Provan, 2009]. Then MDS is performed on the geodesic distance matrix

D̃ with configuration space being 2-D or 3-D Euclidean space. The following Figure 3.16 shows the 2-D MDS

plots of brain artery trees from 67 healthy people. All three sub-figures have the same scatter plot of 67

points, but each one is associated with a unique biological variable. In Figure 3.16(a) the points are colored

with a rainbow color scheme: magenta for age 22, through blue, cyan, green, yellow, to red for age 72. This

color scheme has been used in [Marron and Alonso, 2014] to show systematic changes in mortality across

the years. Here we are hoping that the similar color scheme could help to show systematic change in MDS

coordinates across the ages, but unfortunately the distribution of colors seems rather random. In Figure

3.16(b) males are denoted by blue dots and females are denoted by green dots. One might hope to see a

distinction between two groups. However, males and females all seem to mix together without clear clusters.

In Figure 3.16(c) we use red dots and black dots to denote right-handed people and left-handed people

respectively. Although a faint potential separation of left-handedness from right-handedness is present, no
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conclusion can be made due to the small number of left-handed people. While it may be challenging to

approximate a 126-dimensional data set by using a 2-dimensional configuration, the 2-D plot can still be a

helpful visualization tool.

(a) 2-D MDS plot with ages in rain-
bow colors: magenta for age 22,
through blue, cyan, green, yellow,
to red for age 72

(b) Same 2-D MDS plot with males
in blue dots and females in green
dots

(c) Same 2-D MDS plot with right-
handedness in red dots and left-
handedness in black dots

Figure 3.16: 2-D MDS plots associated with 3 biological variables: age, gender and handedness. No clear
correlates of these biological variables can be drawn.

(a) 3-D MDS plot with ages in rainbow colors (b) MDS space dimension 1 vs dimension 2

(c) MDS space dimension 1 vs dimension 3 (d) MDS space dimension 2 vs dimension 3

Figure 3.17: 3-D MDS plots in rainbow color scheme across ages along with top, side, and front views in
separate sub-figures. Very limited information gained from adding the third dimension.
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The configuration space can be easily expanded into 3-D Euclidean space. The above Figure 3.17 shows

a 3-D plot for the 67 brain artery trees in rainbow color scheme across age along with the orthographic

views. Figure 3.17(a) shows a snapshot of the 3-D plot taken from a particular angle for the same data set

in the above 2-D plot. Figure 3.17(b) shows the top view of Figure 3.17(a), which consists of the first and

second dimensions in the MDS space and is also exactly the same plot as in Figure 3.16(a). Figure 3.17(c)

and Figure 3.17(d) are the side view and front view of the 3-D plot in Figure 3.17(a). We are hoping to get

better separation by introducing the third dimension in the MDS space, but the gain is quite limited.

The same visualization is shown for gender as well. Figure 3.18(a) shows a snapshot of the 3-D plot for

the same data set. Figure 3.18(b), Figure 3.18(c), and Figure 3.18(d) show the top view, side view and front

view of Figure 3.18(a) respectively. However, there is no apparent conclusion available about the separation

between males and females.

(a) 3-D MDS plot with genders in different
colors

(b) MDS space dimension 1 vs dimension 2

(c) MDS space dimension 1 vs dimension 3 (d) MDS space dimension 2 vs dimension 3

Figure 3.18: 3-D MDS plots with males in blue dots and females in green dots along with top, side, and
front views in separate sub-figures. Very limited information gained from adding the third dimension.

Although no direct conclusion regarding classification is visually apparent from the 2-D or 3-D MDS

plots, MDS is a useful method to represent tree data in a lower dimensional Euclidean space. In the next

section, MDS will be applied to some specific tree space related problems.
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3.3 MDS for Embedding Geodesics

Since geodesics in tree space are thought of as analogs of straight lines in Euclidean space, it is interesting

to see whether a geodesic turns out to be a straight line segment in the MDS configuration space. As noted

in Section 2.4.2 geodesics between pairs of data trees are useful to consider. As three representatives, the

minimum, median and maximum length geodesics are focused on. An equally spaced grid of points along a

geodesic will be combined with the original data set, in a new MDS.

A preliminary task is to reconstruct the distance matrix D̃ of the augmented data set (the union of the

original data and the points on the geodesic). Suppose that there are n trees in the original brain artery data

set with distance matrix D and k added grid points along the chosen geodesic. The distances between the

added points and original trees are given by an n × k matrix B and the distances among the added points

are denoted by a k × k matrix A. Then the augmented distance matrix D̃ is given by

D̃ =

 D B

BT A


MDS is applied to this augmented distance matrix D̃, and the plots in 2-D Euclidean configuration space

are shown in Figure 3.19. Figure 3.19(a) shows the 2-D MDS plot based on only the 67 original trees

shown as blue dots and their Fréchet mean as the red cross. Three pairs of trees marked as circles, squares,

and diamonds, denote the end points of minimum, median, and maximum length geodesics, respectively.

In Figure 3.19(b)(c)(d), 19 equally spaced grid points chosen from these three representative geodesics are

embedded as green dots. It is surprising that the embedded geodesics completely dominate in these three

MDS plots, and the original MDS configuration in (a) is seriously distorted by the embedded geodesics. This

is because most data variation in the augmented data set is along the embedded geodesic and the first two

MDS directions are strongly influenced by this path. It is also clear that all the embedded geodesics are

heavily bent towards the cluster containing the rest of the data trees in MDS space. In addition, the Fréchet

mean has been pushed away from the center position, and it is even outside the data cloud in (b) and (c).

The location of the Fréchet mean is another indication of different levels of distortion to the original MDS

configuration when embedding different geodesics.

Recall the intuitive definition of CAT (0) space from section 1.2.2: every triangle in a CAT (0) space

is skinnier than a triangle with exactly the same lengths of sides in Euclidean space. A more interesting

question is to examine how a triangle in tree space looks in the MDS configuration space. Each triple of

trees in the brain artery data set was taken and the angle sum of the triangle in tree space was calculated.

To take some representative examples, triangles corresponding to the minimum, first quartile, median, third
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(a) 2-D MDS plot with Fréchet mean (b) 2-D MDS plot with minimum length geodesic em-
bedded

(c) 2-D MDS plot with median length geodesic embedded (d) 2-D MDS plot with maximum length geodesic em-
bedded

Figure 3.19: Examples of embedding geodesics in 2-D MDS plots

quartile and maximum angle sum were selected. To reconstruct the distance matrix D̂, additional points

were selected from each side of a triangle and then the augmented distance matrix D̂ was computed in the

same way as D̃. The plots in Euclidean configuration space are displayed in Figure 3.20. Figure 3.20(a)

again shows the 2-D MDS plot with the 67 original trees as blue dots and their Fréchet mean as the red cross.

In Figure 3.20(b)(c)(d)(e)(f), 29 equally spaced grid points chosen from each side of these five representative

geodesic triangles are embedded as green dots. It is clear that the angle sum of the embedded triangle in

(a) is very small, and it gradually increases from there, until it is fairly large in (f). However, we notice

that even the largest angle sum is obviously less than 180◦ because of the non-positive curvature in the

tree space. Again we see that the embedded triangles dominate in these five MDS plots, and the original

MDS configuration in (a) is seriously distorted. This can be explained by a similar reason to embedding a

single geodesic: the two dimensional hyperplane with the largest data variation is heavily influenced by the
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embedded triangle. In addition, the sides of each triangle are bent towards the data cluster, which is similar

to the case of embedding a single geodesic. However, because the distoring effect of three geodesics are

balanced with each other, the Fréchet mean is always in the middle of data cloud of the rest of the original

trees.

(a) 2-D MDS plot with Fréchet mean (b) 2-D MDS plot with the triangle with minimum
angle sum embedded

(c) 2-D MDS plot with the triangle with Q1 angle
sum embedded

(d) 2-D MDS plot with the triangle with median
angle sum embedded

(e) 2-D MDS plot with the triangle with Q3 angle
sum embedded

(f) 2-D MDS plot with the triangle with maximum
angle sum embedded

Figure 3.20: 2-D MDS plots with one triangle embedded
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3.4 Out-of-Sample Embedding

In Figure 3.19, it is noticeable that the configuration of the original data points has been significantly

altered after embedding geodesics. From the perspective of data visualization, it would be useful to embed

geodesics while keeping the configuration of original data points fixed, i.e. we do not want the embedded

geodesics to influence the original MDS configuration. One approach is to treat the embedded geodesics as

out-of-sample objects without including them in the construction of the MDS configuration of the original

data sample. Then, inserting the out-of-sample objects into the visualization is an out-of-sample embedding

problem. Motivated by some semisupervised classification problems, [Trosset and Priebe, 2008] provided

such an out-of-sample extension of classical MDS, which is formulated as an unconstrained nonlinear least-

squares problem. The instant advantage of Trosset and Priebe’s approach is that the MDS configuration of

the original sample is kept unchanged. A brief summary of Trosset and Priebe’s out-of-sample extension is

given below.

That out-of-sample extension is based on the theory of classical MDS, hence it is convenient to start from

there. Recalling notation from Section 3.1, let I denote the n× n identity matrix, let e = (1, . . . , 1)T ∈ Rn,

and denote the centering matrix as J = I − 1
nee

T . By definition, a squared dissimilarity matrix D2 = [D2
i,j ]

is a Euclidean distance matrix (EDM) if and only if there exist x1, . . . , xn ∈ Rp such that D2
i,j = ‖xi− xj‖2.

The smallest such p is the embedding dimension of an EDM. Then the following theorem from classical

geometry is very convenient for determining whether D2 is an EDM.

Theorem 3.4.1. A non-zero squared dissimilarity matrix D2 is an EDM with embedding dimension p if

and only if the symmetric matrix

B = τ(D2) = −1

2
JD2J

is positive semidefinite and has rank p. Furthermore, if D2 = [D2
i,j ] is an EDM and

B = τ(D2) =


xT1
...

xTn

 [x1 · · · xn] = XXT

then D2
i,j = ‖xi − xj‖2.

If D2 is an EDM, then from the above theorem, τ maps squared Euclidean distances to Euclidean inner

products. Since Je = 0, we have Be = 0. If D2 is an EDM, and X = [x1, · · · , xn]T , then 0 = eTBe =

eTXXT e = (XT e)T (XT e), hence XT e = 0. This means that τ maps squared Euclidean distances to

Euclidean inner products of a configuration of points of which the centroid is the origin. We will see later
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that the configuration of points made by classical MDS also have the origin as their centroid.

Now suppose that we are given a non-zero squared dissimilarity matrix D2 which is not an EDM with

embedding dimension 6 p, then B = τ(D2) is not positive semidefinite with rank 6 p any more, hence we can

not factor B to obtain X. Classical MDS solves this problem by replacing B with B̄, the closest (in the sense

of Frobenius norm) positive semidefinite matrix with rank 6 p. Thus, classical MDS finds a configuration

by approximating the inner products of complex components with those of real valued components in the

least-squares sense. It turns out that a closed-form solution to the optimization problem can be obtained

by discarding all the non-positive eigenvalues of B = τ(D2) along with their eigenvectors, which gives the

configuration as X = Q+Λ
1/2
+ in Section 3.1. This is a main advantage of classical MDS, however, we need

to generalize this result to solve the out-of-sample problem.

The above Theorem 3.4.1 is a special case of a more general result. Given w ∈ Rp, we say that the

collection x1, . . . , xn ∈ Rp is w-centered if and only if
∑n
j=1 wjxj = 0. For w such that eTw 6= 0, define a

w-weighted centering matrix as

Jw = I − weT

eTw
,

and then construct a w-weighted version of τ

τw(D2) = −1

2
JTwD

2Jw

Notice that τe is the τ in Theorem 3.4.1. Then we have the following more general formulation.

Theorem 3.4.2. Let w be any vector not orthogonal to e, i.e. eTw 6= 0, then the n×n squared dissimilarity

matrix D2 is an EDM with embedding dimension p if and only if there exists a w-centered spanning set of

Rp, {y1, . . . , yn}, for which

τw(D2) =


yT1
...

yTn

 [y1 · · · yn].

In Theorem 3.4.2, the special case of w = e was independently discovered by [Schoenberg, 1935] and

[Young and Householder, 1938], and this special case was popularized in [Torgerson, 1952, 1958]. This

general case of eTw 6= 0 is due to [Gower, 1982, 1985].

For the out-of-sample problem, suppose there are n original objects and k out-of-sample objects. Let

D2 = [D2
i,j ] denote the squared dissimilarities of the original n objects. Let the n × k matrix D̃2 = [D̃2

i,j ]

denote the squared dissimilarities between the out-of-sample objects and the original objects. Let the k × k

matrix D̂2 = [D̂2
i,j ] denote the squared dissimilarities of the out-of-sample objects. Let A2 be the augmented
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squared dissimilarity matrix of all n+ k objects, where

A2 =

 D2 D̃2

(D̃2)T D̂2

 .
By applying classical MDS to D2, we can get a configuration of n points x1, . . . , xn whose centroid is the origin

of the embedding Euclidean space. However, by applying classical MDS to A2, we will get a configuration

of n + k points x′1, . . . , x
′
n, y1, . . . , yk whose centroid is the origin of the embedding Euclidean space, so

the centroid of x′1, . . . , x
′
n is not always the origin. Therefore, we can not solve this out-of-sample problem

relative to D2 by applying classical MDS to A2, because the center as well as the entire representation of the n

original objects are often changed after embedding out-of-sample objects. Trosset and Priebe’s out-of-sample

extension circumvents this difficulty, as well as enables classification of new data beyond the training data,

by preserving the original MDS configuration. Let e = (1, . . . , 1)T ∈ Rn, and let w = (eT , 0, . . . , 0)T ∈ Rn+k.

Using the notation of τw in Theorem 3.4.2, factoring τe(D
2) finds X = [x1, . . . , xn]T , the n× p configuration

matrix of the classical MDS embedding of the original n objects. Let Y = [y1, . . . , yk]T denote the k × p

configuration matrix of the k out-of-sample objects to be solved for. Then the out-of-sample embedding is

obtained by first computing the fallible (i.e. generally not positive semi-definite) inner product matrix

B = τw(A2) =

 τe(D
2) Bxy

BTxy Byy

 ,
then solving for Y to minimize

∥∥∥∥B − [XY
][
XT |Y T

]∥∥∥∥2

= 2
∥∥∥Bxy −XY T∥∥∥2

+
∥∥∥Byy − Y Y T∥∥∥2

. (3.6)

We then applied Trosset and Priebe’s out-of-sample extension of classical MDS to our brain artery tree

data. Recall in Figure 3.19, (a) shows the 2-D classical MDS configuration of 67 trees along with their

Fréchet mean (original objects), and (b)(c)(d) illustrate these objects plus 19 equally spaced grid points

chosen from the minimum, median, and maximum length geodesics respectively (out-of-sample objects).

The goal now is to embed those grid points chosen from these three geodesics as out-of-sample objects into

the configuration of 67 original trees along with their Fréchet mean. It is straightforward to adopt the above

out-of-sample version of classical MDS except for the choice of the embedding dimension p. Since Trosset

and Priebe were more interested in how to embed the out-of-sample objects into the original representation

space in such a way that the original classifier can be applied, it was natural to choose p as the dimension
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of the original representation space. However, our goal is to get a clear visualization of the embedded

geodesic while keeping the MDS configuration of the original data points unchanged, so one might initially

consider p = 2. Using the same notations as in loss function (3.6), let X be the 68× 2 configuration matrix

of the classical MDS embedding of the original objects, and let Y be the 19 × 2 configuration matrix of

the out-of-sample objects. Let the 68 × 68 matrix D2 denote the squared dissimilarities of the original

objects, let the 87× 87 matrix A2 denote those of the augmented object set consisting of both the original

and the out-of-sample objects. And let e = (1, . . . , 1)T ∈ R68, let w = (eT , 0, . . . , 0)T ∈ R87. Then by

applying classical MDS to D2, we can obtain X. To solve for Y , we need to minimize the loss function

(3.6). Figure 3.21 shows the 2-D out-of-sample MDS representations of the embedded geodesics. In this

(a) 2-D MDS plot of the original 67 brain artery trees
along with their Fréchet mean

(b) 2-D MDS plot with minimum length geodesic em-
bedded as an out-of-sample object

(c) 2-D MDS plot with median length geodesic em-
bedded as an out-of-sample object

(d) 2-D MDS plot with maximum length geodesic
embedded as an out-of-sample object

Figure 3.21: Examples of embedding geodesics as out-of-sample objects in 2-D MDS plots

figure, plot (a) shows the MDS representation of the 67 original brain artery trees (blue dots) along with

their Fréchet mean (red cross). This plot is the same as Figure 3.19(a) except in different scale. Three

different types of markers (circles, squares, and diamonds) represent the end points of three out-of-sample
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geodesics (minimum, median, and maximum length geodesic respectively). Plots (b), (c), and (d) illustrate

the out-of-sample embedding of these geodesics into plot (a), and the embedded geodesics are displayed as

green stars. Notice that the MDS configuration of the 67 original data points and their Fréchet mean stays

unchanged in all three out-of-sample representations, which is the major advantage of Trosset and Priebe’s

out-of-sample extension of classical MDS in this type of visualization. However, one aspect of the above

out-of-sample embedding which does not make a lot of sense is that the embedded geodesics do not actually

connect their end points, as clearly shown in Figure 3.21(b)(c)(d). One possible explanation is: when the

out-of-sample extension tries to minimize the loss function (3.6), the coordinate matrix Y of the embedded

grid points is naturally determined by the majority of the original data points rather than just the end

points. This issue motivates our research topic of high-dimensional out-of-sample (HDOS) embedding for

visualization purposes, i.e. we first solve the out-of-sample embedding problem with embedding dimension

p > 2 and then choose the first two MDS coordinates to display in R2. It is expected that the distortion in

the first two MDS dimensions can be significantly reduced by allowing p − 2 extra variables in minimizing

the loss function (3.6). For our brain artery data, we applied the HDOS technique to the embedding of

the median length geodesic with the embedding dimensions p = 3, 5, 10, 66. Figure 3.22 shows the results

of this HDOS embedding. We use the same marker types and colors as in Figure 3.21(c). First, as in

Figure 3.21, since the embedded geodesic is treated as an out-of-sample object, the MDS configuration of

the original trees along with their Fréchet mean stays the same for all 4 plots in the above figure. Second,

the embedded geodesic systematically gets closer to connecting the two end points as d increases, especially

when p = 66, the green stars connect with the two blue squares almost perfectly. This important observation

confirmed our intuition that the distortion in the first two MDS dimensions can be significantly reduced by

allowing the extra p − 2 dimensions when solving the out-of-sample embedding problem. However, this is

not true in classical MDS: the first 2-dimensional MDS representation always stays the same no matter

how large the embedding dimension is. This reveals an important property of the out-of-sample extension:

although both classical MDS and the out-of-sample extension approximate an inner product matrix, in terms

of visualization, the 2-dimensional out-of-sample representation significantly benefits from the above high-

dimensional approach, but the classical MDS representation is not affected at all. This has not been pointed

out explicitly in [Trosset and Priebe, 2008].

To quantify the benefit of HDOS in visualizing the out-of-sample embedding, we want to study the distor-

tion of HDOS representation. Although the out-of-sample problem is solved by minimizing the distortion of

the inner product matrix, we choose a more direct measure of distortion for the resulting HDOS representa-

tion. We define the above distortion to be the difference between the original augmented dissimilarity matrix

and the distance matrix generated from the p-dimensional out-of-sample representation. Specifically, we will
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(a) HDOS embedding of median length geodesic with
p = 3

(b) HDOS embedding of median length geodesic with
p = 5

(c) HDOS embedding of median length geodesic with
p = 10

(d) HDOS embedding of median length geodesic with
p = 66

Figure 3.22: HDOS embedding of median length geodesic with embedding dimension p = 3, 5, 10, 66

compute Stress from equation (3.5) for p = 2, 3, 5, 10, 66, where Di,j is the original dissimilarity between

objects i and j, and xi is the vector of MDS coordinates of object i in R2. Table 3.1 shows the 2-dimensional

Stress (i.e. only the first two MDS coordinates) of those five cases. We can see that the 2-dimensional Stress

becomes larger when p increases. The reason is that the HDOS technique tries to minimize the loss function

(3.6) in p-dimensional Euclidean space instead of just the 2-dimensional Euclidean space for visualization.

More specifically, the contribution of the first two dimensions becomes less dominant as p increases, which

leads to the ascending order of 2-dimensional Stresses shown in the table.

A reasonable alternative measure of out-of-sample distortion is the Stress of the p-dimensional out-of-

sample representations (i.e. all p MDS coordinates). This time xi in equation (3.5) is the MDS coordinates of

object i in Rp. Table 3.2 shows the p-dimensional Stress of the same five cases. The value of the p-dimensional

Stress decreases as p gets larger, because more flexibility is allowed in minimizing the loss function (3.6).

Especially, the 66-dimensional Stress is only about 5% of the 2-dimensional Stress. This observation explains
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why the HDOS representation produced better visualization as p increased.

Embedding dimension p 2 3 5 10 66

2-dimensional Stress/103 23.8 24.6 24.8 25.3 25.7

Table 3.1: Row 1 gives the values for the embedding dimension p, and Row 2 shows the Stress of the 2-
dimensional out-of-sample representation for each p. The Stress gets slightly larger as p increases, which
indicates that the Stress of 2-dimensional representation is not a good measure of HDOS distortion.

Embedding dimension p 2 3 5 10 66

p-dimensional Stress/103 23.8 22.3 19.8 15.7 1.32

Table 3.2: Row 1 gives the values for the embedding dimension p, and Row 2 shows the Stress of the p-
dimensional out-of-sample representation. The Stress decreases as p increases, which is compatible with
what we saw in Figure 3.22.

Table 3.2 summarized the overall distortion between the original dissimilarity matrix and the Euclidean

distance matrix produced from the out-of-sample MDS representations. Furthermore, it will be more helpful

to examine the distortion for all 87×87 dissimilarities when embedding the median length geodesic, which will

be displayed by using heat maps. A heat map is a graphical representation of data where the individual values

contained in a matrix are represented as colors. Let D be the original 87×87 dissimilarity matrix, and let DE
p

be the Euclidean distance matrix constructed from the p-dimensional out-of-sample MDS representation of all

87 objects, then we construct a heat map for each distortion matrix D∆
p = DE

p −D, where p = 2, 3, 5, 10, 66.

The color scheme is: white represents zero value; red represents negative value where D > DE
p and negative

values with larger absolute value are colored darker red; blue is used in the corresponding way for positive

value where D < DE
p . Figure 3.23 demonstrates the color scheme and the heat map for D∆

2 . Figure(a)

(a) Color scheme of the heat map (b) Heat map for D∆
2

Figure 3.23: HDOS embedding of median length geodesic with embedding dimension p = 3, 5, 10, 66
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displays the entire color range representing values from -600 (most negative) to 600 (most positive). Figure(b)

demonstrates the heat map for the distortion matrix D∆
2 . First, this heat map is symmetric and all diagonal

elements are white (zero). Second, the two end points of the median length geodesic are labeled as 37 and

67 in the heat map. Third, the entire heat map can be divided into four regions and each region has its own

character reflecting the corresponding portion of the distortion matrix:

• Region 1: first row and first column represent the distortion of the dissimilarities between the Fréchet

mean and all 87 objects. Region 1 is colored light red at the beginning, which indicates that 2-

dimensional classical MDS tends to underestimate the dissimilarities between 67 original brain artery

trees and their Fréchet mean. This is analogous to the PCA in Euclidean space, where if we project

data onto the plane spanned by PC1 and PC2, the projected distances between the Fréchet mean

and data points are smaller than the original distances. However, Region 1 is colored nearly white at

the end, indicating that 2-dimensional out-of-sample MDS maintains the dissimilarities between the

Fréchet mean and the out-of-sample objects quite well. This is because that the 2-dimensional out-of-

sample MDS configuration is dominated by the embedded geodesic and the Fréchet mean happens to

be the origin.

• Region 2: the square region consisting of rows 2 to 68 and columns 2 to 68 represents the distortion

of the dissimilarities within 67 original brain artery trees. Region 2 except row and column labeled

63 is colored dark red, which indicates that 2-dimensional classical MDS tends to underestimate the

dissimilarities among the original 67 brain artery trees. This underestimation can be explained by

Parseval indentity, and it is heavier than the underestimation in region 1 because the dissimilarity

between two original trees is close to twice that between the Fréchet mean and one original tree. Row

63 (or column 63) corresponds to the the point on the far right in Figure 3.21(c), and the distortions

of dissimilarities between this point and other original objects are much smaller than the distortions of

those among other original objects. This can be explained by the fact that this point has a quite large

norm compared to other original objects and the first MDS component direction is pulled towards this

point.

• Region 3: the rectangle region containing rows 2 to 68 and columns 69 to 87 and its diagonal-symmetric

part represent the distortion of the dissimilarities between 67 original brain artery trees and 19 em-

bedded grid points from the median length geodesic. Region 3 other than the rows and columns

corresponding to two end trees (labeled 37 and 67) are in light red, which indicates that 2-dimensional

out-of-sample MDS also tends to underestimate the dissimilarities between the embedded objects and

the original 67 brain artery trees. This is again closely related to Parseval identity. The rows and

45



columns corresponding to two end trees have some blues between each end tree and the embedded

geodesic near the same end, which is consistent with Figure 3.21(c) since the embedded geodesic does

not connect the two end points, thus creating large positive distortion.

• Region 4: the square region at the lower right corner represents the distortion of the dissimilarities

within 19 embedded points. Region 4 is colored either very light blue or very light red, which indicates

that 2-dimensional out-of-sample MDS keeps the dissimilarities among the out-of-sample objects quite

well. This is again due to the fact that the 2-dimensional out-of-sample MDS configuration is dominated

by the embedded geodesic.

(a) HDOS embedding of median length geodesic with
p = 3

(b) HDOS embedding of median length geodesic with
p = 5

(c) HDOS embedding of median length geodesic with
p = 10

(d) HDOS embedding of median length geodesic with
p = 66

Figure 3.24: HDOS embedding of median length geodesic with embedding dimension p = 3, 5, 10, 66

To examine the effect of embedding dimension p on the distortion matrix, we will show heat maps for

D∆
p , where p = 3, 5, 10, 66 in Figure 3.24. From the above plots, we can see that the red region systematically

becomes lighter as p increases, which indicates that the distances become larger and closer to the tree space
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distances in higher dimensional out-of-sample MDS space. This is consistent with Parseval identity. Espe-

cially when p = 66, red region completely disappears, meaning that the underestimation of the dissimilarities

has been compensated by going into high enough embedding dimension. Note in plot (d), region 2 is white

and this indicates that the distortion of dissimilarities within 67 brain artery trees is zero, further this means

that the dissimilarity sub-matrix corresponding to region 2 is a Euclidean distance matrix. However, the

dissimilarity sub-matrix corresponding to region 1 and 2, i.e. including the Fréchet mean, is not a Euclidean

distance matrix any more.

As one approach of PCA in tree space, MDS is only based on the distance matrix of data. Since the

actual locations of data in tree space are known, we will develop two line-based tree space PCA approaches

in the rest of the dissertation. In the next section, we first define and characterize the notions of line in tree

space.
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CHAPTER 4: NOTIONS OF “LINE” IN TREE SPACE

Recall in Euclidean PCA, the principal component directions are defined as one dimensional lines in Rn.

However, there is no such Euclidean line in tree space since the extensions of a line is not well-defined outside

the orthant in which it lies. In this chapter, notions of tree-space lines will be defined and characterized. We

will first define what a general tree-space line is.

4.1 Tree-space Line

Definition 4.1.1. A connected set L ⊂ Tn is a tree-space line if the following three conditions are satisfied

(C1) L is locally one dimensional, i.e. L ∩ O is a one dimensional object for any orthant O.

(C2) L is closed under geodesics, i.e. Γ(T 1, T 2) ⊂ L for each pair of trees T 1, T 2 ∈ L.

(C3) L is maximal in the sense that there is no such set L′ ⊃ L satisfying properties C1 and C2.

We use L(n) to denote the set of all tree-space lines in Tn.

This definition immediately gives the following property of a tree-space line.

Lemma 4.1.1. A tree-space line L ∈ L(n) has the property that for any two trees T 1, T 2 in L the only path

between T 1 and T 2 in L is the (unique) geodesic Γ(T 1, T 2) between them.

Proof. From C1 and C2, we know L ∩ O must be either a line segment or a ray for any orthant O that

L intersects. Now suppose there is another path P (T 1, T 2) ⊂ L between T 1 and T 2 other than Γ(T 1, T 2).

Since P (T 1, T 2) is part of L, it must consist of a sequence of line segments. By the uniqueness of geodesic

in tree space, Γ(T 1, T 2) 6= P (T 1, T 2). Hence, we define T = T ∗ to be the last point T along P (T 1, T 2) such

that Γ(T 1, T ) = P (T 1, T ), as illustrated in Figure 4.25. Since every T on the first leg of P (T 1, T 2) satisfies

Γ(T 1, T ) = P (T 1, T ), it must be that T ∗ 6= T 1. Now select T̃ ∈ P (T ∗, T 2) close enough to T ∗, so T̃ is in

the interior of the vistal cell V with respect to T 1 that contains T ∗. Since Γ(T 1, T̃ ) 6= P (T 1, T̃ ), we must

have Γ(T 1, T ∗) * Γ(T 1, T̃ ). (Otherwise, Γ(T 1, T̃ ) = P (T 1, T̃ ).) Since P (T 1, T 2)∩V must be a line segment,

then Γ(T 1, T̃ ) can not go through T ∗. Instead Γ(T 1, T̃ ) must go into the opposite direction along that line

segment, passing through point T ′ ∈ Γ(T 1, T̃ )∩V. Since T ∗ and T̃ are in the same vistal cell, Γ(T 1, T ∗) and

Γ(T 1, T̃ ) must have the same support pair. Thus, Γ(T 1, T ∗) must also pass T ′. However, we already assume

Γ(T 1, T ∗) = P (T 1, T ∗), which does not pass T ′. Hence, it is a contradiction that there are two distinct

geodesic between T 1 and T ∗. Therefore, Γ(T 1, T 2) must be the only path between T 1 and T 2.
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Figure 4.25: The solid path denotes P (T 1, T 2) and P (T 1, T 2) 6= Γ(T 1, T 2). The dashed ellipse represents the

vistal cell V containing T ∗, T̃ and T ′. The dotted path between T 1 and T ′ together with the solid segment
between T ′ and T̃ is Γ(T 1, T̃ ). We reach a contradiction that there are two distinct geodesics between T 1

and T ∗.

In this chapter, L(n) will be divided into two mutually exclusive types of tree-space lines, and both types

will be completely characterized. Recall from Section 1.3, a geodesic is piecewise linear, and each linear

portion of a geodesic is called a leg.

Definition 4.1.2. L ∈ L(n) is a type I tree-space line if L contains a 3-leg geodesic, and L ∈ L(n) is a type

II tree-space line if L contains no 3-leg geodesic, i.e. all geodesics have one or two legs.

The concepts of ray and inner end point are useful when describing both types of tree-space lines, and

the following definitions formally define a ray and inner end points in the tree space.

Definition 4.1.3. Assume P, T ∈ Tn are in the same orthant, and all edge lengths are non-decreasing from P

to T along Γ(P, T ), then the ray starting from P going through T is denoted as
−→
R(P, T ) = {P+λ·

−−−−−→
(T − P )|λ >

0}, where
−−−−−→
(T − P ) denotes the usual Euclidean vector pointing from P to T .

Definition 4.1.4. Given a geodesic Γ(T 1, T 2) with at least two legs, define the inner end point of Γ(T 1, T 2)

with respect to T 1 (or T 2) to be the opposite end of the leg adjacent to T 1 (or T 2).

In Figure 4.26, one example of each type of tree-space line is given in T4. In Figure (a) the geodesic

between T 1 = {|e1| = 2, |e2| = 1} and T 2 = {|e4| = 2, |e5| = 1.5} has inner end points P = {|e1| = 0.4}

and Q = {|e5| = 0.25}, and L1 consists of Γ(T 1, T 2) together with the rays
−→
R(P, T 1) and

−→
R(Q,T 2).

L2 in Figure (b) is comprised of three rays
−→
R(S, T 3),

−→
R(S, T 4), and

−→
R(S, T 5), with S = {|e6| = 1},

T 3 = {|e6| = 1, |e7| = 2}, T 4 = {|e6| = 1, |e8| = 2}, and T 5 = {|e6| = 1, |e9| = 2}. It is straightforward to

see that L1 contains a 3-leg geodesic Γ(T 1, T 2) and L2 contains no 3-leg geodesic. They will be shown to be

tree-space lines in the following two sections. In Section 4.2, we will focus on constructing and characterizing

type I tree-space lines. In Section 4.3, we will develop type II tree-space lines. From now on, “line” will be

used to mean “tree-space line”.

4.2 Type I Lines

Since a geodesic in tree space satisfies C1 and C2, then it could be a candidate for a line, as shown in

Figure 4.26(a). However, the geodesic between two arbitrary trees is not maximal as defined in C3 for two
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(a) L1 is a type I line in T4 (b) L2 is a type II line in T4

Figure 4.26: Examples of lines in T4

reasons. First, a line must be unbounded, thus a geodesic needs to be extended beyond its two end trees.

Second, a line can bifurcate, that is, branch into multiple orthants when it hits an orthant boundary, as

shown in Figure 4.26(b). In this section, we will see that some geodesics, which can be naturally extended

into type I lines, avoid bifurcation both in the extensions and in the middle of a geodesic.

Definition 4.2.1. A geodesic Γ(T 1, T 2) is uniquely extendable if each edge common to T 1 and T 2 has the

same length in both trees, where common edges include edges with zero length as long as they are compatible

with both trees. (Note that no 1-leg geodesic is uniquely extendable.)

Before characterizing a uniquely extendable geodesic, we would like to use a simple example again in T4

to present some intuition. Consider Figure 4.27 with the same three orthants shown in Figure 4.26(a). Thus

T 1 = {|e1| = 2, |e2| = 1} and T 2 = {|e4| = 2, |e5| = 1.5} are the same as in Figure 4.26(a). T 6 is chosen

to be T 6 = {|e1| = 2, |e5| = 0.3}. Then T 1 and T 2 have no common edges, and thus Γ(T 1, T 2) is uniquely

extendable. We will show later that Γ(T 1, T 2) can be extended into a type I line. T 1 and T 6 share a common

edge e1, but |e1| = 2 for both trees, hence Γ(T 1, T 6) is uniquely extendable. Finally T 2 and T 6 share a

common edge e5, but |e5|T 2 6= |e5|T 3 . Therefore, Γ(T 2, T 6) is not uniquely extendable and the extension

beyond T 6 hits the orthant boundary at T 7 having the single edge e1 with |e1| = 3. At this point, Γ(T 2, T 6)

has two possible extensions.

Lemma 4.2.1. A geodesic Γ(T 1, T 2) is uniquely extendable if and only if neither
−→
R(P, T 1) nor

−→
R(Q,T 2)

crosses any orthant boundary, where P and Q are the inner end points with respect to T 1 and T 2.

Proof. “⇒” Suppose that Γ(T 1, T 2) is uniquely extendable. We show that
−→
R(Q,T 2) will not cross any

orthant boundary, the case for
−→
R(P, T 1) being symmetric. We need to prove that no edge in T 2 vanishes
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Figure 4.27: The above figure shows three geodesics in a portion of T4: Γ(T 1, T 2) is uniquely extendable
and can be extended into a type I line; Γ(T 1, T 6) is also uniquely extendable but can not be extended into
a type I line; Γ(T 2, T 6) is not even uniquely extendable.

along
−→
R(Q,T 2). The common edges between T 1 and T 2 have the same edge lengths in both two end trees,

and hence they will have the same constant edge lengths from Q to T 2, and by the definition of a ray, they

also have the same constant edge lengths in
−→
R(Q,T 2). For the edges only in T 2, each of them will increase

from zero length at some point on the boundary of an orthant containing that edge, hence their lengths will

only increase from Q to T 2, and thus continue increasing along
−→
R(Q,T 2). Therefore,

−→
R(Q,T 2) will not

cross any orthant boundary.

“⇐” Suppose neither
−→
R(P, T 1) nor

−→
R(Q,T 2) crosses any orthant boundary. Then all edge lengths in

T 1 or T 2 will be nondecreasing along
−→
R(P, T 1) and

−→
R(Q,T 2) respectively. Suppose e is a common edge

between T 1 and T 2. If |e|T 1 6= |e|T 2 , say |e|T 1 > |e|T 2 , then it must be that e is decreasing along
−→
R(Q,T 2),

which is a contradiction. We proved that each common edge between T 1 and T 2 have the same length in

both, hence Γ(T 1, T 2) is uniquely extendable.

As the name suggests, a uniquely extendable geodesic has unique extensions beyond its end points. In

particular, we have

Definition 4.2.2. Let Γ(T 1, T 2) be uniquely extendable, and let P and Q be the inner end points of the

first and last leg of Γ(T 1, T 2). Then the extension of Γ(T 1, T 2) is denoted as

ΓExt(T
1, T 2) = Γ(T 1, T 2)

⋃−→
R(Q,T 2)

⋃−→
R(P, T 1)
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Figure 4.28 gives examples of extensions of two uniquely extendable geodesics in Figure 4.27. The dashed

lines represent the extensions of Γ(T 1, T 2), and ΓExt(T
1, T 2) = Γ(T 1, T 2) ∪

−→
R(Q,T 2) ∪

−→
R(P, T 1). The

dotted lines represent the extensions of Γ(T 1, T 3) and Γ(T 1, T 2), and ΓExt(T
1, T 3) = Γ(T 1, T 3)∪

−→
R(S, T 3)∪

−→
R(S, T 1).

Figure 4.28: The above figure shows extensions of Γ(T 1, T 2) and Γ(T 2, T 3) which are uniquely extendable
geodesics for the three trees in Figure 4.27.

Lemma 4.2.2. If Γ(T 1, T 2) is uniquely extendable, then ΓExt(T
1, T 2) satisfies C2.

Proof. To prove that ΓExt(T
1, T 2) is closed under geodesics, let X and Y be two points on ΓExt(T

1, T 2). As-

sume that X ∈
−→
R(P, T 1) and Y ∈

−→
R(Q,T 2), where P and Q are the inner end points of the first and last leg

of Γ(T 1, T 2), the other cases being similar. We need to show that Γ(X,Y ) = Γ(T 1, T 2)
⋃

(T 1, X)
⋃

(T 2, Y ),

where (T 1, X) denotes the line segment connecting T 1 and X, (T 2, Y ) denotes the line segment connecting

T 2 and Y .

From Theorem 1.3.1, Γ(T 1, T 2) satisfies the following conditions:

(a) Γ(T 1, T 2) is contained entirely in the path space defined by the support (A,B).

(b) (P1): For each i > j, Ai and Bj are compatible.

(c) (P2):
‖A1‖T1

‖B1‖T2
≤ ‖A2‖T1

‖B2‖T2
≤ . . . ≤ ‖Ak‖T1

‖Bk‖T2
.

(d) (P3): For each support pair (Ai, Bi), there is no nontrivial partition C1 ∪ C2 of Ai, and partition

D1 ∪D2 of Bi, such that C2 is compatible with D1 and
‖C1‖T1

‖D1‖T2
<
‖C2‖T1

‖D2‖T2
.
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(e) Γ(T 1, T 2) =(γ(λ) : 0 ≤ λ ≤ 1) can be represented in Tn with legs

Γi =



[
γ(λ) : λ

1−λ ≤
‖A1‖T1

‖B1‖T2

]
, i = 0

[
γ(λ) :

‖Ai‖T1

‖Bi‖T2
≤ λ

1−λ ≤
‖Ai+1‖T1

‖Bi+1‖T2

]
, i = 1, . . . , k − 1,

[
γ(λ) : λ

1−λ ≥
‖Ak‖T1

‖Bk‖T2

]
, i = k

(f) The length of Γ(T 1, T 2) is

L(Γ(T 1, T 2)) =

∥∥∥∥(‖A1‖T 1 + ‖B1‖T 2 , . . . , ‖Ak‖T 1 + ‖Bk‖T 2

)∥∥∥∥
Now by the choice of the end trees X and Y , they will have the same edge sets as in T 1 and T 2 respectively.

First, we want to show that the support (A,B) also satisfies (P1), (P2), and (P3).

• It is straightforward that (P1) holds since the edge set remains the same between each end tree and

its respective inner end tree.

• Let λi be the proportion of geodesic traversed from T 1 to T 2 when the edges in Ai contracted and

edges in Bi start to grow. We use d1 to denote the geodesic distance between X and T 1, d2 to denote

the geodesic distance between Y and T 2, L to denote L(Γ(T 1, T 2)). From the above (e), we have

λi =
‖Ai‖T 1

‖Ai‖T 1 + ‖Bi‖T 2

By the geometry of ΓExt(T
1, T 2), we also have

‖Ai‖X =

(
1 +

d1

λiL

)
‖Ai‖T 1 = ‖Ai‖T 1 +

d1

L
(‖Ai‖T 1 + ‖Bi‖T 2)

‖Bi‖Y =

(
1 +

d2

(1− λi)L

)
‖Bi‖T 2 = ‖Bi‖T 2 +

d2

L
(‖Ai‖T 1 + ‖Bi‖T 2)

Now we want to show that

‖Ai‖X
‖Bi‖Y

6
‖Ai+1‖X
‖Bi+1‖Y

After some algebra, we have the following result

‖Ai‖X · ‖Bi+1‖Y − ‖Ai+1‖ · ‖Bi‖Y =

(
1 +

d1

L
+
d2

L

)
(‖Ai‖T 1 · ‖Bi+1‖T 2 − ‖Ai+1‖T 1 · ‖Bi‖T 2)
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From part (c) above, we know ‖Ai‖T 1 · ‖Bi+1‖T 2 − ‖Ai+1‖T 1 · ‖Bi‖T 2 6 0, hence ‖Ai‖X · ‖Bi+1‖Y −

‖Ai+1‖ · ‖Bi‖Y 6 0, i.e. (A,B) satisfies (P2).

• Suppose (A,B) does not satisfy (P3) for X and Y , i.e. there exists a support pair (Ai, Bi), and there is

a nontrivial partition C1∪C2 of Ai, and a nontrivial partition D1∪D2 of Bi, such that C2 is compatible

with D1 and ‖C1‖X
‖D1‖Y < ‖C2‖X

‖D2‖Y .

However, by the geometry of ΓExt(T
1, T 2), we can get similar results for every single edge as in the

proof of (P2)

‖e‖X =

(
1 +

d1

λiL

)
‖e‖T 1 for each e ∈ Ai

‖e‖Y =

(
1 +

d2

(1− λi)L

)
‖e‖T 2 for each e ∈ Bi

From this it is straightforward that

‖C1‖X =

(
1 +

d1

λiL

)
‖C1‖T 1 ‖C2‖X =

(
1 +

d1

λiL

)
‖C2‖T 1

‖D1‖Y =

(
1 +

d2

(1− λi)L

)
‖D1‖T 2 ‖D2‖Y =

(
1 +

d2

(1− λi)L

)
‖D2‖T 2

As an immediate result of the above equations and the assumption that ‖C1‖X
‖D1‖Y < ‖C2‖X

‖D2‖Y , we know

‖C1‖T1

‖D1‖T2
<
‖C2‖T1

‖D2‖T2
also holds. However, this is a contradiction to the fact that Γ(T 1, T 2) satisfies (P3).

Therefore, (A,B) must satisfy (P3) for X and Y .

Now we know that support (A,B) satisfies (P1), (P2), and (P3), hence determines a geodesic Γ(X,Y ).

Next we need to show that Γ(X,Y ) = Γ(T 1, T 2)
⋃

(T 1, X)
⋃

(T 2, Y ). From the above proof of (P2), we

have

λi =
‖Ai‖T 1

‖Ai‖T 1 + ‖Bi‖T 2

‖Ai‖X =

(
1 +

d1

λiL

)
‖Ai‖T 1

‖Bi‖Y =

(
1 +

d2

(1− λi)L

)
‖Bi‖T 2

then after some algebra, we get

‖Ai‖X + ‖Bi‖Y =

(
L+ d1 + d2

L

)
(‖Ai‖T 1 + ‖Bi‖T 2)

From the above part (f), we can compute the length of Γ(X,Y ) as
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L(Γ(X,Y )) =

∥∥∥∥(‖A1‖X + ‖B1‖Y , . . . , ‖Ak‖X + ‖Bk‖Y
)∥∥∥∥ =

(
L+ d1 + d2

L

)
· L(Γ(T 1, T 2)) = L+ d1 + d2

which is exactly the length of Γ(T 1, T 2)
⋃

(T 1, X)
⋃

(T 2, Y ). By the uniqueness of geodesic in the tree

space, we have proven that Γ(X,Y ) = Γ(T 1, T 2)
⋃

(T 1, X)
⋃

(T 2, Y ). Therefore, ΓExt(T
1, T 2) is closed

under geodesics. The same argument holds when X ∈
−→
R(P, T 1), Y ∈ Γ(T 1, T 2) and Y ∈

−→
R(Q,T 2),

X ∈ Γ(T 1, T 2). The case X,Y ∈ Γ(T 1, T 2) is trivial.

Now we are ready to introduce the type I line as a special case of extended geodesic.

Theorem 4.2.3. If Γ(T 1, T 2) is uniquely extendable, and has at least 3 legs, then ΓExt(T
1, T 2) is a type I

line.

Proof. Let ΓExt(T
1, T 2) = Γ(T 1, T 2) ∪

−→
R(Q,T 2) ∪

−→
R(P, T 1), where P and Q are the inner end points of

the first and last leg of Γ(T 1, T 2). From Definition 4.2.2, we know ΓExt(T
1, T 2) satisfies C1. From Lemma

4.2.2, ΓExt(T
1, T 2) also satisfies C2. Thus to prove that ΓExt(T

1, T 2) is a line, we only need to prove that

C3 holds. Suppose not, that is, ΓExt(T
1, T 2) is strictly contained in some line L which must then have a

bifurcation point at some point S along ΓExt(T
1, T 2). However, a bifurcation can not occur in the interior

of any leg of Γ(T 1, T 2), nor on
−→
R(Q,T 2) or

−→
R(P, T 1). Thus S must be at the intersection of two legs of

Γ(T 1, T 2).

Now let (A,B) be the support associated with Γ(T 1, T 2), where A = (A1, . . . , Ak) and B = (B1, . . . , Bk),

and let Oi−1 = B1 ∪ · · · ∪Bi−1 ∪Ai ∪ · · · ∪Ak and Oi = B1 ∪ · · · ∪Bi ∪Ai+1 ∪ · · · ∪Ak be the two adjacent

orthants which Γ(T 1, T 2) traverses. By the above argument, we assume that S is where Γ(T 1, T 2) leaves

Oi−1 and enters Oi. Let l be the second branch of the bifurcation, in orthant O′i obtained by replacing Ai

by the set B′i 6= Bi but compatible with Oi−1 ∩ Oi. Select T̂ 1 ∈ Γ(S, T 1), T̂ 2 ∈ Γ(S, T 2), and T̂ l ∈ l, all

having equal distance ε away from S, where ε is small enough such that (T̂ 1, S) ∪ (S, T̂ 2), (T̂ 1, S) ∪ (S, T̂ l),

and (T̂ 2, S) ∪ (S, T̂ l) are all 2-leg geodesics. See Figure 4.29 for an intuitive view.

Since Γ(T 1, T 2) has at least three legs and T̂ 1, T̂ 2 are on two adjacent legs, then at least one of T̂ 1 and

T̂ 2 must be on a leg of Γ(T 1, T 2) which has neither T 1 nor T 2 as end points. Without loss of generality,

assume T̂ 1 is on such a leg. Thus along this leg there must be at least one edge e ∈ Oi−1 ∩ Oi which has

|e|S 6= 0 but goes to zero at the other end of the leg. It must follow that |e|S > |e|T̂ 1 . Now by the choice of

T̂ 1, T̂ 2, and T̂ l, e is a common edge for these three trees. Also T̂ 1, T̂ 2, and T̂ l are the same distance away

from S. Along Γ(T̂ l, T̂ 1),

|e|S = 0.5|e|T̂ l + 0.5|e|T̂ 1 (4.7)
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Likewise, along Γ(T̂ 1, T̂ 2),

|e|S = 0.5|e|T̂ 1 + 0.5|e|T̂ 2 (4.8)

From equations (4.7) (4.8) and the fact that |e|S > |e|T̂ 1 , it follows that |e|T̂ l > |e|S and |e|T̂ 2 > |e|S . But

along Γ(T̂ l, T̂ 2),

|e|S = 0.5|e|T̂ l + 0.5|e|T̂ 2

which is a contradiction to the facts that |e|T̂ l > |e|S and |e|T̂ 2 > |e|S . Therefore, ΓExt(T
1, T 2) must satisfy

C3, and hence is a type I line.

Figure 4.29: The above figure gives a detailed view of what happens when Γ(T 1, T 2) crosses Oi−1∩Oi which
is intuitively represented by the central vertical axis in bold.

The above theorem showed that a uniquely extendable geodesic with at least three legs can be extended

into a type I line. To complete this section, we will also show that any type I line is an extension of some

uniquely extendable geodesic.

Lemma 4.2.4. If L ∈ L(n) is a line and Γ(T 1, T 2) ⊂ L is a geodesic with the maximum number of legs

among all geodesics in L, then Γ(T 1, T 2) is uniquely extendable.

Proof. Suppose Γ(T 1, T 2) is not uniquely extendable, then by Definition 4.2.1, there must be an edge e in

both T 1 and T 2 with ‖e‖T 1 6= ‖e‖T 2 . Without loss of generality, we assume ‖e‖T 1 > ‖e‖T 2 and e is the first

contracted edge if Γ(T 1, T 2) is extended beyond T 2. From the proof of Lemma 4.2.2 and the fact that L is a

line, the above extension until e being contracted must be part of L. When e is contracted at T̃ 2 (see Figure
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4.30), there will be a bifurcation and at least one branch is contained in L. Therefore we can find one line

segment (T̃ 2, T̂ 2) along that branch such that Γ(T 1, T̂ 2) = Γ(T 1, T̃ 2) ∪ Γ(T̃ 2, T̂ 2) , which is a contradiction

to the fact that Γ(T 1, T 2) has the maximum number of legs among all geodesics in L.

Figure 4.30: The above figure gives a detailed view of what happens when e is contracted.

Theorem 4.2.5. If L ∈ L(n) is a type I line, then L = ΓExt(T
1, T 2) for some T 1, T 2 ∈ L with Γ(T 1, T 2)

being uniquely extendable.

Proof. Since L is a type I line, it must contain a 3-leg geodesic. Now select Γ(T 1, T 2) ⊂ L with the maximum

number of legs among all geodesics in L. From Lemma 4.2.4, we know that Γ(T 1, T 2) must be uniquely

extendable. Because L is a maximal set and closed under geodesic, ΓExt(T
1, T 2) must be contained in L.

However, Theorem 4.2.3 already showed that ΓExt(T
1, T 2) is a type I line. Therefore, L = ΓExt(T

1, T 2).

4.3 Type II Lines

In the above section, we characterized a type I line as an extension of a uniquely extendable geodesic

with at least three legs. In this section, we characterize a type II line as the union of a set of rays which

share the same starting point. Let L be a type II line, and let G2(L) denote the set of all 2-leg geodesics

contained in L. For any Γ(T 1, T 2) ∈ G2(L), define its center to be the point where the two legs meet. The

following lemma ensures that every member of G2(L) is uniquely extendable.

Lemma 4.3.1. Every Γ(T 1, T 2) ∈ G2(L) is uniquely extendable. Further, ΓExt(T
1, T 2) =

−→
R (C, T 1) ∪

−→
R (C, T 2), where C is the center of Γ(T 1, T 2).
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Proof. Since L does not contain any 3-leg geodesic, then Γ(T 1, T 2) ∈ G2(L) contains the maximum number

of legs in L. From Lemma 4.2.4 in the previous section, we know Γ(T 1, T 2) is uniquely extendable. As in

Definition 4.2.2, ΓExt(T
1, T 2) =

−→
R (C, T 1) ∪

−→
R (C, T 2) because Γ(T 1, T 2) contains only two legs.

The concept of 2-leg uniquely extendable geodesic plays an essential role in characterizing type II lines,

and it is a generalization of the following concept.

Definition 4.3.1. Two trees T 1, T 2 ∈ Tn are antipodal if the geodesic Γ(T 1, T 2) is a cone path.

If T 1, T 2 ∈ Tn are antipodal, then they do not have common edges, hence Γ(T 1, T 2) can be thought as a

2-leg uniquely extendable geodesic passing through the origin. However, a general 2-leg uniquely extendable

geodesic does not necessarily go through the origin. The following lemma shows that we can consider 2-leg

uniquely extendable geodesics as “shifted antipodal”, and its proof is obvious from the definition of unique

extendability and antipodality.

Lemma 4.3.2. For T 1, T 2 ∈ Tn, if Γ(T 1, T 2) is a 2-leg uniquely extendable geodesic, then the trees obtained

by contracting common edges in T 1 and T 2 are antipodal.

Define the ray set R2(L) for L to be the set of distinct rays
−→
R (C, T ) as given in Lemma 4.3.1. The

following lemma reveals that R2(L) has a simple and finite structure.

Lemma 4.3.3. R2(L) has a finite number of distinct rays
−→
R (C, T ). Further, all centers C are the same.

Proof. Clearly there can be at most one ray of R2(L) in each orthant O, since if there are two distinct rays

in O, then their convex hull must also be in O, thus contradicting to the fact that L is locally 1-dimensional,

thus we proved the claim. Now we know that the number of rays in R2(L) can not exceed the the number

of orthants in Tn, hence R2(L) has only a finite number r of rays.

Finally we need to prove that all centers are the same. For two distinct rays
−→
R (C, T ) and

−→
R (C ′, T ′), we

want to show that C = C ′. By C2, Γ(T, T ′) must be in L. By C1, (T,C) and (T ′, C ′) must both be parts

of Γ(T, T ′). Since L is a type II line, Γ(T, T ′) must be a 2-leg geodesic, hence C = C ′. Therefore, it must be

true that all centers are the same.

Now we are ready to characterize the type II line as the union of a special set of rays in the following

theorem.

Theorem 4.3.4. L ∈ L(n) is a type II line if and only if L is of the form

L =

r⋃
i=1

−→
R (C, T i)
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where C and {T 1, ..., T r} are trees with the following properties:

1. for each pair (T i, T j), Γ(T i, T j) = (T i, C) ∪ (C, T j),

2. each Γ(T i, T j) is uniquely extendable,

3. {T 1, ..., T r} is a maximal set of trees such that the above 2 conditions are satisfied.

Further in this case, L is uniquely determined by C and {T 1, ..., T r}.

Proof. “⇐” Suppose L has the form of ∪ri=1

−→
R (C, T i) with C and {T 1, ..., T r} satisfying the conditions stated

in the theorem. From the proof of Lemma 4.3.3, there is at most one
−→
R (C, T i) in each orthant, thus C1

holds for L. By Lemma 4.2.2 and the fact that each Γ(T i, T j) is uniquely extendable, we have that C2 holds

for L. To show that C3 holds, suppose that L is strictly contained in some line L′. In particular, L′ must

have a bifurcation point along some geodesic in L. This bifurcation can not occur on the interior of any

−→
R (C, T i), and thus it must occur at C. Let T̂ be a tree on the additional branch, then by Lemma 4.1.1,

Γ(T i, T̂ ) = (T i, C) ∪ (C, T̂ ) for each 1 6 i 6 r. Because {T 1, ..., T r} is already a maximal set satisfying

conditions 1 and 2, there must be at least one T i such that Γ(T i, T̂ ) is not uniquely extendable. Hence, the

extension of Γ(T i, T̂ ) beyond T̂ must hit an orthant boundary and create a third leg. From the previous

section, we know if L′ contains a 3-leg geodesic, then L′ is a type I line. However, a type I line can not

bifurcate, which is a contradiction to the fact that C is a bifurcation point of L′. Therefore, L must be

maximal, i.e. C3 holds for L. And all pairs (T i, T j) are 2-leg geodesics with the common center C, so there

can not be a 3-leg geodesic. Therefore, L is a type II line.

“⇒” Since L is a type II line, L contains no 3-leg geodesic. Noticing that any 1-leg geodesic must be

contained in some 2-leg geodesic, it is true that L = ∪Γ(T ′, T ′′) for all Γ(T ′, T ′′) ∈ G2(L). Then from Lemma

4.3.3, we know that L = ∪ri=1

−→
R (C, T i) for some r. And we also need to prove the 3 properties. First, by

Lemma 4.1.1, we know Γ(T i, T j) = (T i, C) ∪ (C, T j) for each pair (T i, T j). Second, by Lemma 4.3.1, each

Γ(T i, T j) is uniquely extendable. Third, the maximality of {T 1, ..., T r} follows directly from condition C3

of L.

After completely characterizing lines in the tree space, we are interested constructive ways to use these

lines as PCA objects. In the following two chapters, we will focus on the search algorithms for finding

representative line objects of each type, and analyze our data sets by using those objects as principal

component analogs.
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CHAPTER 5: SAMPLE-LIMITED GEODESICS

In [Nye, 2011], geodesics were used as the first principal components in tree space to maximize the

variance of data projections. The first principal component in [Nye, 2011] was constructed to be a general-

positioned geodesic passing through the majority consensus tree by adding coordinates iteratively. To make

it easier to use geodesics as principal components in tree space, using an idea from [Feragen et al., 2013], in

this section we are going to focus on an even simpler set of geodesics, namely sample-limited geodesics which

are geodesics between pairs of data trees. We will start by defining sample-limited geodesics in tree space.

Definition For T 1, T 2 in Tn, the sample-limited geodesic associated with T 1 and T 2 is defined as the

geodesic Γ(T 1, T 2) between T 1 and T 2.

To reduce dimension, a few sample-limited geodesics are needed in order to capture a good portion of

total variation with respect to the Fréchet mean. Two aspects associated with sample-limited geodesic will

be studied in this chapter. In section 5.1, the first sample-limited geodesic (SLG1) is developed and tested on

the five data sets introduced in Chapter 2. In section 5.2, potential approaches to higher-order sample-limited

geodesics are discussed.

5.1 The First Sample-limited Geodesic

Given a data set T = {T 1, T 2, ..., T r} in Tn, for the geodesic Γ(T 1, T 2) between any pair of trees T 1 and

T 2, the projection of any other tree T ∈ T onto Γ(T 1, T 2) is defined as the tree T ′ along Γ(T 1, T 2) which

gives the shortest distance between T and T ′. And the distance between T and T ′, denoted as d(T, T ′), is

called projection residual of T onto Γ(T 1, T 2). The first sample-limited geodesic (SLG1) is the sample-limited

geodesic along which the projections of all trees in T have the largest variation. The formal definition is

given below.

Definition 5.1.1. For a given data set T, the first sample-limited geodesic (SLG1) Γ1 is defined as following:

Γ1 = argmax
Γ(T 1,T 2): T 1,T 2∈T

V arΓ(T 1,T 2){PΓ(T 1,T 2)(T ) : T ∈ T}

where PΓ(T 1,T 2)(T ) denotes the projection from T onto Γ(T 1, T 2), and V arΓ(T 1,T 2) indicates that the variance

is calculated along geodesic Γ(T 1, T 2).

However, given a geodesic segment Γ(T 1, T 2) and a tree T /∈ Γ(T 1, T 2), it is not obvious to find the

projection PΓ(T 1,T 2)(T ). To find a good algorithm, it is beneficial to study the convexity of squared distance
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d2
T (T̃ ) = d2(T, T̃ ) with T̃ ∈ Γ(T 1, T 2).

Definition 5.1.2. A subset S ⊂ Tn is called convex if the whole geodesic Γ(T 1, T 2) between any pair of

trees T1, T2 ∈ S is contained in S.

It is straightforward to show that any geodesic segment is a convex set in Tn. Then the squared distance

between a fixed tree and a variable tree on a given geodesic segment can be studied. The following lemma

is critical to the development of the algorithm for finding the first sample-limited geodesic.

Lemma 5.1.1. Given a geodesic segment Γ(T 1, T 2) and a tree T /∈ Γ(T 1, T 2), the squared distance function

d2
T (T̃ ) is convex for all T̃ ∈ Γ(T 1, T 2).

Proof. Take any two trees Ta, Tb ∈ Γ(T 1, T 2) and let Tλ be a tree on Γ(T 1, T 2) between Ta and Tb with

distance to Ta being λ
1−λ of length of Γ(T 1, T 2). Need to show that

d2
T (Tλ) 6 λ · d2

T (Ta) + (1− λ) · d2
T (Tb) ∀λ ∈ [0, 1]

Due to the non-positive curvature in Tn, if the similar result can be proved in the comparison triangle of

Ta,Tb, and T , then by the fact that triangle is skinnier in Tn, the lemma will be completed. Now the rest

needs to be proved is the following subproblem: in a 2 dimensional Euclidean space, fix two points (a, 0) and

(b, 0), and choose a random point (c, d), then

[λ · a+ (1− λ) · b− c]2 + d2 6 λ · [(c− a)2 + d2] + (1− λ) · [(c− b)2 + d2]

Let f(λ) = LHS−RHS, then by applying standard calculus, we can obtain f ′(λ) = (a− b)2(2λ− 1), hence

f reaches its maximum when λ = 0 or λ = 1. And f(0) = f(1) = 0, so f(λ) 6 0 for all 0 6 λ 6 1, which

also proves the subproblem above.

Now by the non-positive curvature in Tn, it is obvious that d2
T is convex on Γ(T 1, T 2).

There is an immediate result from the above lemma which will be stated as the following corollary.

Corollary 5.1.2. Any local minimum of d2
T is also the global minimum on a given geodesic segment

Γ(T 1, T 2).

Based on this corollary, it is not hard to prove the fact that the projection of a tree T onto any geodesic

is unique. Given a geodesic segment Γ(T 1, T 2) and a tree T /∈ Γ(T 1, T 2), by applying the uniqueness

of projection, a sufficiently good heuristic solution T ′ for the projection of T can be obtained from the

following algorithm.
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Algorithm for Bisection Tree with Tolerance Level τ

Initialization: ∆ =∞, a = T1, b = T2

while ∆ > τ do

Let T̃ be the half-way bisection tree along the geodesic segment Γa,b

Calculate d2
T (a), d2

T (T̃ ), d2
T (b)

if d2
T (a) < d2

T (T̃ ) and d2
T (a) < d2

T (b) then

∆ = |d2
T (a)− d2

T (T̃ )|, a = a and b = T̃

else if d2
T (b) < d2

T (T̃ ) and d2
T (b) < d2

T (a) then

∆ = |d2
T (b)− d2

T (T̃ )|, b = b and a = T̃

else

Let T̃− and T̃+ be the trees with small perturbations toward a and b respectively

Calculate d2
T (T̃−), d2

T (T̃+)

if d2
T (T̃−) < d2

T (T̃+) then

∆ = |d2
T (a)− d2

T (T̃ )|, a = a and b = T̃

else

∆ = |d2
T (b)− d2

T (T̃ )|, b = b and a = T̃

end if

end if

end while

Let T̃ be the half-way bisection tree along the geodesic segment Γ(a, b)

T ′ = T̃

By applying the above algorithm, the first sample-limited geodesic (SLG1) can be obtained for the same

five data sets: WF2, WF10, WF40, brain artery data, and uniformly random data. One of the important

criteria, for determining whether SLG1 is a good first-step approach to reduce the dimension in a data set,

is the proportion of total variation captured. In this section the total variation of a data set is defined with

respect to the Fréchet mean. For computing the Fréchet mean, the recently developed algorithm in [Skwerer,

2014] is used in this section. The following Table 5.3 shows the proportion of total variation captured by

SLG1 in the five data sets.

Since the end points for each SLG1 are also data points, their projections onto SLG1 should be counted

as part of the data projections. However, the projection variation contributed by end points is mainly
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determined by the length of the SLG, which raises a concern that the long SLGs may dominate and prevent us

from finding SLGs carrying more information. Therefore, the first column in Table 5.3 shows the proportion

of variation captured by SLG1 if end points are not counted. On one hand, the decreasing ordering of

proportions of total variation captured by SLG1 in the five data sets reflects the decreasing similarity

ordering across data sets. On the other hand, the proportions of total variation captured by SLG1 in all five

data sets are surprisingly low, with the largest being 1.9%. One major reason that SLG1 can only capture

such a small amount of variation across five data sets is the intrinsic non-positive curvature of the tree space.

More precisely, all the geodesics between pairs of data trees bend heavily towards the point cloud of other

data trees as shown in Figure 3.19. In that figure, three representative SLGs are chosen in the brain artery

data, namely minimum, median, and maximum length SLGs. The red cross represents the origin which is

also the Fréchet mean, and the green dots represent the equally-spaced grid points along the SLG. It is clear

that the bending behavior is consistent across all three representative SLGs, and this phenomenon is true

for all five data sets.

Proportion(without end points) Proportion(with end points) Fréchet sum of squares

WF2 1.9% 4.3% 4.9× 102

WF10 1.2% 3.6% 1.8× 104

WF40 0.6% 3.5% 9.1× 104

Brain 0.2% 4.1% 8.8× 104

Random 0.05% 4.6% 8.7× 104

Table 5.3: Column 1 shows the performance of SLG1 for five data sets without counting end points. Column
2 shows the same statistics but counting end points. Column 3 lists the total variation with respect to the
Fréchet mean in each data set. Overall, SLG1 explains a relatively small amount of the total variation in all
five data sets.

The second column in Table 5.3 shows the proportion of variation captured by SLG1 obtained when

end points are included. For WF2, the projections of end points contribute more than the total projection

variation of all other data points; for WF10, this contribution is 2 times the total projection variation of all

other data points; for the other three data sets, the projection variation contributed by the end points clearly

dominates. And we notice that all proportions in column 2 are stable between 3% and 5%. As discussed in

[Hall et al., 2005], data tend to lie deterministically at the vertices of a regular simplex when the sample size

is fixed and the dimension goes to∞. Recall in Figure 2.13, the distribution of the pairwise geodesic lengths

has small variance across the five data sets, which makes it reasonable to use the vertices of a Euclidean

simplex to approximate our five tree space data sets. Assume there are n points in a high-dimensional

Euclidean space, and their pairwise distances are all the same denoted as d. For the SLG connecting any
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pair of points, all other points will project exactly onto the middle of that SLG. Under this model, all SLGs

capture exactly the same amount of variation which can be calculated as:

1

n− 1
[(
d

2
)2 × 2] =

d2

2(n− 1)

And the total variation is

1

n− 1
[(
d

2
)2 × n] =

nd2

4(n− 1)

hence the proportion of projection variation explained by each SLG is 2/n. In the context of the five data

sets, n = 67 and the proportion is about 3% which is surprisingly close to the proportions listed in column

2 of Table 5.3. This indicates that the SLG1s across the five data sets act similarly to edges in a regular

simplex in the sense of capturing data variation when including the two end point projections.

The third column lists the total variation in terms of mean square distances with respect to the Fréchet

mean. We clearly see that among Wright-Fisher data this Fréchet sum of squares decreases when the width

parameter increases, which can be explained by the following ANOVA calculation. Recall in Euclidean

space, the total variation of a data set with respect to the origin can be decomposed into the sum of the

total variation with respect to the mean and the effect of deviation of the mean from the origin. Precisely,

given n points {x1, . . . , xn} ∈ Rk, the following equality holds.

n∑
i=1

|xi|2 =

n∑
i=1

|xi − x|2 + n|x|2

Here we adopt some of the above notations from Euclidean space and use them in tree space. Specifically,∑
|T i|2,

∑
|T i − T |2, and r|T |2 represent the total variation of a set of trees with respect to the origin, the

total variation of a set of trees with respect to the Fréchet mean, and the effect of deviation of the Fréchet

mean from the origin, respectively. Table 5.4 lists the values of these three statistics across the five data sets.

First, for three Wright-Fisher data sets, the values in Column 2 and Column 3 do not add up to the values

∑
|T i|2

∑
|T i − T |2 r|T |2

WF2 5.15× 106 0.03× 106 5.12× 106

WF10 5.36× 106 1.17× 106 4.18× 106

WF40 6.97× 106 6.12× 106 0.79× 106

Brain 5.88× 106 5.88× 106 0

Random 5.82× 106 5.82× 106 0

Table 5.4: Column 1, 2, and 3 show the total variation with respect to the origin, the total variation with
respect to the Fréchet mean, and the effect of the Fréchet mean in each data set.
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in Column 1 (for WF2, the equality is due to rounding), because of the non-positive curvature of the tree

space. Second, for these three data sets, the norm of the Fréchet mean decreases as the width parameter

increases. Recall in Figure 2.12, the spread of data increases dramatically from WF2 to WF40, and larger

data spread is associated with stronger stickiness of the Fréchet mean. This is why the norm of the Fréchet

mean decreases from WF2 to WF40. Third, we notice that the values of r|T |2 for the Brain Artery data

and the Uniformly Random data are both zero, since their Fréchet means are the origin due to the stickiness

property.

Other than the proportion of variation captured by SLG1, it is also interesting to look at the actual

distribution of data projections along SLG1. Figure 5.31 below shows that all data projections concentrate

on a relatively narrow segment of SLG1 across the five data sets. All SLGs are scaled to unit length, and the

two end points are represented by 0 and 1. Each data projection onto SLG1 is assigned a score between 0

and 1 according to the relative position along SLG1. Each blue curve represents the kernel density estimate

of the distribution of the projection scores for one data set with the bandwidth chosen by using the Sheather

Jones plug-in method. The concentration of the projection scores increases among five data sets in the

following order: WF2, WF10, WF40, brain artery data and uniformly random data, because the data sets

become more and more spread out in this order. Also, the projection means for the brain artery data and

the uniformly random data are very close to 0.5, but for WF2, WF10 and WF40, the means are clearly away

from 0.5, which is possibly related to the non-origin Fréchet mean of the Wright-Fisher data.

Figure 5.31: The above figures show the distributions of data projections along SLG1 across five data sets.
The projections are only distributed within a relatively narrow range between the two end points of SLG1
for all five data sets.
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5.2 Higher Order Sample-limited Geodesic

The SLG1 itself is not an effective data-summary tool unless this concept can be generalized to higher

orders. It will be ideal that the portion of variation captured by SLGs of different orders do not overlap.

Recall in Euclidean space PCA, different principal components are uncorrelated, or geometrically speaking,

orthogonal with each other, hence they captured a non-overlapping portion of variation. However, in the

tree space it is not easy to define the concept of orthogonality between geodesics so that SLGs will capture

strictly non-overlapping portions of variation. Alternatively, it will be more practical to search for some

heuristic higher order SLGs. From the discussion in the previous section, we know when the number of the

leaves becomes large, the tree space data can be well approximated by the vertices of a regular simplex.

Since all the edges of a regular simplex are orthogonal to each other, we can come up with the following

simple heuristic:

1. Find the 1st SLG as the SLG with the largest projection variation.

2. Find the nth SLG to be the SLG with the largest projection variation among all SLGs whose end

points are not used in the n− 1 previously selected SLGs.

3. Repeat Step 2 until no new SLG can be found.

Defining good higher order SLGs can be a challenging research topic. However, in Table 5.3, we already

see that SLG1 is not very effective in terms of capturing data variation, due to the underlying geometrical

properties of the five data sets considered in this dissertation. Hence, we do not spend more effort on SLGs,

instead we will focus on a more promising principal component object coming from type II line, namely the

principal ray set, in the next chapter.
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CHAPTER 6: USING PRINCIPAL RAYS TO MODEL PCA IN TREE SPACE

In this chapter, we are going to use a special type II line to represent the first principal component in

tree space. From Theorem 4.3.4, we know a type II line is a set of mutually antipodal rays with common

center C. The special case we focus on in this chapter is when all the antipodal rays have the the origin O

as their common center.

Let T = {T 1, T 2, ..., T r} be a data set representing a set of trees in Tn. The first principal ray set (1st

PR set) is the type II line centering at the origin O with the largest sum of squared projections from T.

Each ray in the 1st PR set is called a principal ray. In Section 6.1 we will first study projections of trees

onto a ray with a fixed direction. In Section 6.2 we discuss how to find an optimal ray by maximizing the

projection variance over direction-variable rays. Then in Section 6.3 we naturally expand our search to the

1st PR set. Finally, in Section 6.4 we explore the higher order principal axis set (PA set) in tree space, which

is a special case of higher order PR set.

6.1 Fixed Rays

We first focus on the computation of projections onto a given ray in this section. Finding the projection

of a tree onto a fixed ray is equivalent to finding the shortest geodesic between the tree and a point on the

ray. Recall Theorem 1.3.1 in Section 1.3: a geodesic between two trees must satisfy (P1), (P2) and (P3).

Given a tree τ ∈ Tn, the ray generated by τ is the set of all non-negative scalar multiples ~r = {λ · τ : λ > 0},

so all the trees on the ray will have exactly the same edge set. This leads to the following result regarding

the topological structure of the geodesic between T and any point on ~r.

Lemma 6.1.1. Given a tree T in Tn, every geodesic between T and any point on the ray ~r = {λ · τ : λ > 0}

has the same support.

Proof. Assuming we have already found a geodesic between T and τ , it means that there is a support (A,B)

satisfying (P1), (P2) and (P3). Since all the trees on a ray have the same edge set, for any tree λ · τ on the

ray, we can come up with the same support (A,B) between λ · τ and T which automatically satisfies (P1).

Since all the edge lengths of λ · τ are the same scalar multiple of those of τ , then all the inequalities in (P2)

and (P3) are still satisfied. Therefore, the geodesics between T and all the trees on a ray will share the same

support pairs.

The above lemma is useful in determining the projection of any point onto a fixed ray, as the following
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proposition shows.

Proposition 6.1.2. Let τ be the tree with unit norm on the ray ~r = {λ · τ : λ > 0} and let T be another

tree in Tn. Let C be the common edge set of τ and T , and let (A,B) =
(
(A1, . . . , Ak), (B1, . . . , Bk)

)
be the

support for the geodesic from τ to T satisfying (P1), (P2) and (P3). It follows that the projection of T onto

~r is λ∗ · τ , where

λ∗ =


∑
e∈C |e|τ |e|T −

∑k
i=1 ‖Ai‖‖Bi‖, if

∑
e∈C |e|τ |e|T >

∑k
i=1 ‖Ai‖‖Bi‖;

0, otherwise.

Proof. Let T ′ = λ · τ be any tree on ~r and let Γ be the geodesic between T and T ′, then we are trying to

find a λ∗ which minimizes the L(Γ)2, i.e.

λ∗ = argmin
λ
L(Γ)2 = argmin

λ
[

k∑
i=1

(λ · ‖Ai‖+ ‖Bi‖)2 +
∑
e∈C

(λ · |e|τ − |e|T )2]

Taking first and second derivatives where,

d[L(Γ)2]

dλ
= 2

k∑
i=1

‖Ai‖(λ · ‖Ai‖+ ‖Bi‖) + 2
∑
e∈C
|e|τ (λ · |e|τ − |e|T )

d2[L(Γ)2]

dλ2
= 2

k∑
i=1

‖Ai‖2 + 2
∑
e∈C
|e|2τ = 2

From the fact that the second order derivative is positive, we know that L(Γ)2 is a convex function of a,

hence by setting the first derivative to zero, we can solve for λ∗.

The support (A,B) in the above proposition can be found in polynomial time by using the algorithm

proposed in [Owen and Provan, 2009], and thus so can the projection of T onto ~r. The above proposition

is also consistent with our intuition: if T has non-trivial projection onto a ray ~r, then T and any tree τ ∈ ~r

must have some common edges, and the common edges should somehow dominate the edge sets of T and τ

(in the sense that
∑
e∈C |e|τ |e|T >

∑k
i=1 ‖Ai‖‖Bi‖).

6.2 Direction-variable Rays

In this section, we allow the direction of a ray to vary in Tn. For a set of trees T = {T 1, T 2, ..., T r},

we are going to search for the optimal ray in Tn which maximizes the projection variance from T. Since a

direction-variable ray has different edge set in different orthants, we start by solving the problem constrained
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to a specific orthant O. Note that even when a ray is restricted in O, the support of the geodesic between

a fixed tree T and a tree τ on the ray will not always be the same. Recall in Section 1.5, we summarized

the combinatorics of geodesics in tree space which is studied in [Miller et al., 2015, Section 3]. From their

discussion, based on T the orthant O can be divided into a number of multivistal cells, which are convex

polyhedral cones. A nice property of these multivistal cells is: for any tree τ in the multivistal cell, the

support of the geodesic between T and τ stays the same. Hence, we want to further restrict our attention to

a more specific problem of searching for the sub-optimal ray within a multivistal cell. Recalling Definition

1.5.4, each multivistal cell can be represented by V(T;O;AT,BT) =
⋂r
l=1 V(T l,O;Al,Bl), where r is the

number of trees in T. Let Cl be the common edge set between the ray and T l and applying Proposition

6.1.2, we can formulate this most restricted problem into the following form:

Maximize

r∑
l=1

[(∑
e∈Cl
|e|τ |e|T l −

kl∑
i=1

‖Ali‖‖Bli‖
)+
]2

(6.9)

Subject to τ ∈ V(T;O;AT,BT) (6.10)

‖τ‖ = 1 (6.11)

Note that the above objective function only has a fixed form within each multivistal cell defined in equation

(6.10). In other words, the form of the objective function will vary even within one single orthant, which

results in little hope of getting a closed form solution. Therefore, we are going to focus on how to find a

workable heuristic algorithm which gives approximate solutions for finding optimal rays in tree space. A

natural approach is the steepest descent algorithm. However, the feasible region defined in equations (6.10)

and (6.11) is not convex, which creates some difficulties for applying the steepest descent algorithm directly.

Our remedy is that we make the feasible region convex by using a more complex objective function as in the

following formulation.

Maximize

r∑
l=1

[(∑
e∈Cl |e|τ |e|T l −

∑kl
i=1 ‖Ali‖‖Bli‖

)+

‖τ‖

]2

(6.12)

Subject to τ ∈ V(T;O;AT,BT) (6.13)

Here we relaxed the condition that τ must have unit norm by dividing the objective function by ‖τ‖. Although

the above formulation is defined within a multivistal cell, in practice the supports along the geodesics between

the moving ray and the data trees can be recalculated after each search step, even crossing a multivistal cell

boundary. However, before we can solve the optimal ray problem by using the steepest descent algorithm,

there are still two issues regarding its application in tree space. One is particularly related to the tree space
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topology. When the steepest descent search hits an orthant boundary, we need to decide in which one of the

adjacent orthants the search will continue. A depth-first search (DFS) strategy is used in our steepest descent

algorithm. DFS searches along a particular sequence of orthants as far as possible until it hits a local optimal

ray or enters a previously visited orthant. If it hits a local optimum which has the best objective value since

the the search started, then we terminate the search. Otherwise, DFS backtracks to the orthant with the

best objective value, and the search process continues from there. A special case may occur when DFS

hits an orthant boundary: if the search within each of the adjacent orthants again hits the same boundary,

then DFS will continue the search process within that orthant boundary. The other issue is common to the

general steepest descent algorithm: the search process is often trapped in some local optimum. This issue

can be avoided if the objective function is concave. However, by exploring the following example in T4, it

can be seen that the objective function (6.12) is generally not concave.

In T4, 10 trees were randomly generated in terms of both topologies and edge lengths. We generated

the topology for each of these 10 trees by randomly choosing one orthant from the five orthants in Figure

6.32 The edge lengths are integers randomly selected between 1 and 10. And the resulting data set is also

displayed in the same picture.

Figure 6.32: A randomly generated small data set in a portion of T4: 10 trees are represented by blue dots,
and all the edge lengths are integers between 1 and 10.
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We tried our steepest descent algorithm in this small data set with the search being restricted to only

the 5 orthants shown in the above figure. The starting rays were chosen to be the 45◦ ray in each of these

5 orthants. Two local optimal rays were detected: one is in O1 which is also the global optimum, and the

other is in O4. The optimal ray and the Fréchet mean are two measures summarizing a tree data set, and

they both use the sum of squared distances as the objective. Recall that for data in n-dimensional Euclidean

space Rn, the best fit line (i.e. the first principal component) goes through the sample mean, which is also

the Fréchet mean. Followed by this intuition in Euclidean space, we originally suspected that there might

be some similar relationship between these two objects, such as the optimal ray going through the Fréchet

mean or at least the two being in the same orthant. However, after actually calculating the Fréchet mean, it

ends up in O2, which is not even the same orthant as either of the two locally optimal rays. This observation

also shows that the objective function (6.12) is not concave in general. Figure 6.33 illustrates the relative

positions of the two locally optimal rays and the Fréchet mean in the same portion of T4. The two locally

optimal rays are represented by black dotted lines, and the Fréchet mean is plotted as a big filled circle in

red.

Figure 6.33: The black dotted lines represent locally optimal rays, and the red circle denotes the Fréchet
mean. This plot shows that the locally optimal rays and the Fréchet mean do not locate in the same orthant.

One reason for first trying the steepest descent algorithm in a small portion of T4 is that this region is

simple enough that we can actually see how the value of the objective function varies as a ray moves through

this region. Let the ray start from the orthant boundary corresponding to the split {0, 1, 4|2, 3} in Figure
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6.33, and move counterclockwise. In Figure 6.34, the horizontal axis represents the angle from the start in

units of radian/π passed by the ray, and the vertical axis represents the sum of squared projections from the

10 data trees onto the moving ray, which is the value of the objective function. The blue curve shows how

the objective function behaves when the ray moves over the entire region. The vertical dashed lines denote

the orthant boundaries, and the green vertical line indicates the Fréchet mean. One property of projection

onto a ray is that a data point will project at the origin whenever the angle between the ray and the data

point is larger then 90◦. It is helpful to keep track of which data point projects positively as the ray moves

through the region. This information is displayed by the red horizontal line segments near the top of this

figure. The 10 data points are represented by those line segments with different heights. Each line segment

covers a certain range of angles between the moving ray and the start, and the corresponding data point

projects positively when the ray is in that range. When the global optimum is achieved in O1, 5 data points

project positively onto the ray. For the other local optimum in O4, only 3 data points project positively.

When the ray goes through the Fréchet mean, it gets 7 positive projections, but these are overall too small

to attract the peak of the sum of squared projections curve. It is also noticeable that there is no positive

projection when the ray is in a narrow region within O5, i.e. the sum of squared projections is 0.

Figure 6.34: This figure shows the non-concavity of the objective function (6.12) as well as some other aspects
of this toy example in T4. The horizontal axis gives the angle travelled by the moving ray. The vertical axis
represents the sum of squared projections from 10 data points onto the moving ray. The orthant boundaries
are indicated by dashed vertical lines. The Fréchet mean is plotted as the green vertical line. The blue curve
shows how the value of the objective function changes as the ray moves. The red horizontal line segments
keep track of which data points project positively onto the ray.
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Since the objective function (6.12) is not concave in general, it is very likely that the steepest descent

algorithm can only find a local optimum. A common strategy for finding the global optimum or a good

local optimum is to try different starting points. Recall that five data sets have been discussed in Chapter

2, and they are WF2, WF10, WF40, the brain artery data, and the uniformly random data. Trees contain

129 leaves across all five data sets. Ideally we want to try starting points from all different orthants, but the

total number of orthants for the tree space containing each of those five data sets is 253!! ≈ 10250, which is

not manageable by using our available computing resources. One practical choice is to try starting points

from each orthant which contains at least one data point. In particular, the starting point in each orthant is

chosen to be the center ray which has the same angle between itself and all the orthant axes. Another aspect

of applying the steepest descent algorithm is setting the criteria for terminating the search. One natural

criterion is to stop the search when an acceptable local optimum is reached. In our particular version of

the algorithm, an acceptable local optimum is a local optimum which has better objective value than any

other rays along the search path. The number of orthants that needs to be considered, however, makes

this unmanageable. Hence, we add the second criterion to terminate the search if 1000 distinct orthants

have been visited. If this criterion is satisfied, the ray with the best objective value along the search path

is returned. Now the numerical results are summarized below. Table 6.5 lists the best locally optimal ray

among search paths with various starting points for each of those five data sets. This table summarizes the

SS Projections Total SS Proportion Angle

WF2 5.12× 106 5.15× 106 99.37% 0.01◦

WF10 4.20× 106 5.36× 106 78.38% 0.55◦

WF40 7.83× 105 6.97× 106 11.24% 21.44◦

Brain 1.36× 105 5.88× 106 2.32% —

Random 1.34× 105 5.82× 106 2.30% —

Table 6.5: This table lists four summaries across five data sets and the proportion in the third column is
used to measure the performance of the best locally optimal ray.

performance of the best locally optimal ray. The first column lists the sum of squared projections onto the

best locally optimal ray across the five data sets. The second column gives the total sum of squared norms

for all these data sets. The third column shows the proportion of variation captured by the best locally

optimal ray, which is the quotient of the first column divided by the second column. This proportion is a

key measurement of the performance of the best locally optimal ray. The fourth column gives the angle in

degrees between the best locally optimal ray and the ray going through the Fréchet mean.

Recall from Section 2.4.1, the pairwise angles of WF2 are all less than 10◦, which means that all data
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trees stay within a relatively narrow cone. This agrees with the fact that 99.37% of the total variation is

captured by the best locally optimal ray. Trees in WF10 also stay relatively close to each other and their

pairwise angles are mostly between 30◦ and 50◦, on the other hand, the best locally optimal ray can still

capture 78.38% of the total variation. For these two data sets, their Fréchet means are far away from the

origin, and the best locally optimal rays almost go through the Fréchet means, which is shown by the angles

in Column 4. WF40 becomes much more scattered and most of its pairwise angles are between 80◦ and 120◦,

and as expected the corresponding proportion drops to only 11.24%. The Fréchet mean of WF40 gets pretty

close to the origin, and the best locally optimal ray is less influenced by the Fréchet mean, with the angle

being more than 20◦. For the brain artery data and the uniformly random data, their pairwise angles are

so close to 180◦ that the best locally optimal ray captures less than 3% of the total variation. The angles in

Column 4 are not available for these two data sets because for each the Fréchet mean is the origin [Skwerer

et al., 2014a,b]. The performance of the best locally optimal rays for these five data sets is consistent with

the previous angle-based data summaries.

In order to understand more details about the structure of the five data sets, it is helpful to look at

the returned objective values from all different starting points. Again we choose the proportion of variation

captured by the ray as the comparative measure. This proportion is calculated for each returned ray and

together there are 67 proportions (one for each ray) for each data set. For WF2, all returned optimal rays

capture between 99.33% and 99.37% of the total variation, which reflects the small variation of the data set.

For WF10, those proportions are still between 76.5% and 78.5%, which is expected as these data are more

spread out. When the trees become really scattered as in WF40, the proportions are only roughly between

1% and 11%. Furthermore, when trees are antipodal or nearly antipodal to each other in the brain artery

data and the uniformly random data, all returned rays only capture between 1% and 2.5% of the total data

variation.

Among those five data sets, we are most interested in the brain artery data. However, a closer look at

the returned objective values for the brain artery data set reveals the fact that the stickiness (as mentioned

in Section 2.5) of the tree space plays a critical role in searching for the best locally optimal ray. For the 67

returned locally optimal rays, their proportions are sorted in ascending order and they are plotted against

this ordering as red dots in Figure 6.35. We can also divide the squared norm of each tree by the total sum

of squared norms in the brain artery data set to obtain another 67 proportions, which are then sorted and

plotted as blue circles. These two plots are overlaid in Figure 6.35, and we can see that the centers of blue

circles perfectly align with the red dots. It is not a surprise that the two plots are the same. Recall from

Figure 2.12(a), the pairwise angles in the brain artery data set are all greater than 120◦. This property

simplifies the search significantly: after starting off from the starting point in an orthant, the moving ray
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will quickly move towards the data point in the same orthant and eventually go through it, since other data

points only project zero onto this ray. Hence, for the brain artery data containing 67 trees, the 67 rays

returned by the steepest descent algorithm are basically the rays going through those 67 trees. In other

words, the PCA type analysis reveals nothing that is not visible in the raw data. Parallel to the result for

HDLSS data in [Hall et al., 2005], it is not surprising that the brain artery data tend to be very scattered.

Figure 6.35: Red dots represent the sorted proportions of the total variation in the brain artery data captured
by 67 locally optimal rays which are returned by the steepest descent algorithm. Blue circles represent the
sorted proportions obtained in the way that the squared norm of each tree is divided by the total squared
norm of the brain artery data. The two plots are the same, which indicates that locally optimal rays go
through trees in the data set.

To reduce the effect of high dimension, it is interesting to study some data sets in tree space with a

relatively smaller number of leaves. Recall in Section 2.5, we introduced a series of landmark-reduced data

sets inherited from an earlier version of the brain artery data with 85 trees. In those data sets, the number

of leaves are reduced in the sense that the total sum of squared norms is maximized. Then we choose some

representative data sets with number of leaves between 5 and 40 with increment 5. Again when a data

set has only 5 leaves, it must be in T4. The advantage of T4 is that we can represent the whole space by

the Peterson graph shown in Figure 6.36 and hence see things intuitively. In the Peterson graph, each line

segment represents an orthant in T4. For the landmark-reduced data set with only 5 leaves, all trees are

distributed in 5 out of 15 orthants, which are represented by 5 dashed line segments in the Peterson graph.

Then we run the steepest descent algorithm with starting point at the center ray in each of all 15 orthants.

We found that there are only 3 different objective values returned depending on the starting orthant. If the

search starts from orthants plotted as red dotted lines, then the algorithm will be terminated immediately

since no data point projects positively onto the starting ray. If the search starts from orthants plotted
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Figure 6.36: Peterson graph illustrating how the steepest descent search algorithm works for the landmark-
reduced brain artery data set with only 5 leaves. All 85 data trees are contained in 5 orthants represented by
dashed line segments. The search algorithm will end at locally optimal rays in different orthants depending
on where the search process starts.

as thick blue lines (both solid and dashed), then the same locally optimal ray will be reached, colored in

yellow in the figure, which captures only 3.37% of the total variation. If the search starts from all other

orthants colored in black, then the same locally optimal ray will be reached, colored in green in the figure,

which captures 85.86% of the total variation. This latter ray is the global optimum. This proportion seems

sufficiently good for a single ray, however, this proportion is expected to decrease when the number of leaves

gets larger. The bar graph in Figure 6.37 shows the proportion of the total variation captured by the best

locally optimal ray across all 8 representative landmark-reduced brain data sets. Overall, the proportion

decreases as the number of leaves increases. Although the increments of leaves between consecutive data sets

are consistent, the amount of decrease in proportion is not steady. When the number of leaves increases from

5 to 10, the proportion decreases dramatically. When it keeps increasing to 15, we can see another big drop

in the proportion. However, when the number of leaves is between 15 and 30, the proportion stays relatively

stable with small fluctuations. And we notice another drop when the number of leaves jumps from 30 to 35

and 40. Also if we compare Figure 6.37 with Table 6.5, in terms of the proportion of variation explained by

the best ray, the landmark-reduced data set with 5 leaves is somewhere between WF2 and WF10; the data

set with 10 leaves is between WF10 and WF40; the data sets with 15, 20 ,25, and 30 leaves are similar to

WF40; the data sets with 35 and 40 leaves are close to the full brain artery data.
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Figure 6.37: Bar graph showing the comparison of proportions of total variation captured by the best locally
optimal ray across 8 landmark-reduced brain data sets.

6.3 The First Principal Ray Sets

Up to this point we have concentrated on finding a good single ray. However, it is not very effective to use

one single ray as a principal component when there is only a small proportion of variation captured, which is

caused by the fact that a large portion of data points may not project positively onto the ray. In this section

we are going to define the analog of the first principal component as a set of rays, called the first principal

ray set (1st PR set). Of course, we want the set of rays to have the property that makes them useful for

PCA type analysis. A major concern about using a set of rays as a principal component is the uniqueness

of projections. If a whole set of rays is considered as one principal component, then the projection of any

data tree onto this set of rays should be unique. To address this issue, we need to introduce the concept of

antipodality between rays.

Definition 6.3.1. In Tn, two rays ~r1 and ~r2 are antipodal if any two trees T 1 ∈ ~r1 and T 2 ∈ ~r2 are antipodal.

Now we can define a mutually antipodal ray set (MAR set) as a maximal subset of rays which are pairwise

antipodal to each other. One nice property about antipodality is that the projection of any data tree onto

a MAR set is always unique. This property is stated formally in the following lemma.

Lemma 6.3.1. Given an MAR set R, any tree T projects positively onto at most one ray of R.

Proof. To prove the lemma, we will use the fact that the angle sum of any triangle in CAT (0) space is no

larger than 180◦. Suppose that T has positive projections P and Q onto two rays ~r1 and ~r2 of R, respectively,

and let O denote the origin (see Figure 6.38), then ∠TPO = 90◦ and ∠TQO = 90◦. By the above fact, we
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have ∠TOP +∠OTP 6 90◦ and ∠TOQ+∠OTQ 6 90◦, hence ∠TOP < 90◦ and ∠TOQ < 90◦. Therefore,

∠POQ 6 ∠TOP + ∠TOQ < 180◦, and this contradicts the fact that ~r1 and ~r2 are antipodal.

Figure 6.38: This plot shows that there will be a contradiction if tree T projects positively onto two antipodal
rays ~r1 and ~r2.

Due to this nice property of MAR sets, it is natural to define the first principal ray set as the best MAR

set in terms of capturing data variation.

Definition 6.3.2. Given a set of trees T = {T 1, T 2, ..., T r} in Tn, the first principal ray set (1st PR set) is

defined as the MAR set which has the largest sum of squared projections from T.

Now we are ready to modify the optimization formulation defined by (6.12) and (6.13) in order to search

for the 1st PR set. Suppose we look for the 1st PR set containing at most m rays, there will be m variable

trees, and to enforce the antipodality, a large penalty will be added into the objective function for any pair

of rays being not antipodal. The modified formulation is as follows

Maximize

m∑
j=1

r∑
l=1

[(∑
e∈C(j,l) |e|τj |e|T (j,l) −

∑k(j,l)
i=1 ‖A

(j,l)
i ‖‖B(j,l)

i ‖
)+

‖τ j‖

]2

− P (τ1, . . . , τm) (6.14)

Subject to τ j ∈ Vj(T;O;AT
j ,BTj ), for all 1 6 j 6 m (6.15)

where

P (τ1, . . . , τm) = H
∑

16i<j6m

[
‖τ i‖+ ‖τ j‖ − L(τ i, τ j)

]
is the penalty function, and H is a large positive constant to prevent any pair of rays from being not

antipodal. However, if the number of rays m is large, it can be computationally expensive to apply the

steepest descent algorithm, especially when multiple rays approach the orthant boundaries at the same time.

For this reason, we propose two simple heuristics.

The first heuristic is a trial-and-error based greedy algorithm, which is implemented as follows:
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1. Obtain a set of n locally optimal rays Ω by solving the single ray problem defined in (6.12) and (6.13)

for n various starting points.

2. Sort the rays in Ω in descending order according to the proportion of data variation captured, and

label the rays from 1 to n.

3. Get ith candidate MAR set ωi by starting from ray i in sorted Ω, and keep adding rays with label

larger into ωi than i as long as ωi is a MAR set.

4. Choose the set with the largest total proportion of data variation among ω1, . . . , ωn to be the approx-

imate 1st PR set.

This heuristic is easy to implement because it completely avoids solving the penalized optimization problem

defined in (6.14) and (6.15). However, one clear drawback is that the accuracy of the heuristic highly depends

on the set Ω obtained in step 1.

The second heuristic is a sequentially greedy algorithm, containing:

1. Start with a ray by solving the single ray problem defined in (6.12) and (6.13), label the ray as R1.

2. Suppose we already have a set of rays R1, . . . , Rk, to search for the next ray Rk+1, we solve the

optimization problem defined in (6.14) and (6.15) with the penalty function being

P (τk+1) = H
∑

16i6k

[
‖τ i‖+ ‖τk+1‖ − L(τ i, τk+1)

]
, where τ i ∈ Ri.

3. Repeat Step 2 until no more rays can be added to increase the total variation captured.

Although this heuristic solves the penalized optimization problem, it only deals with one variable tree at a

time, hence it is easier to implement than the original formulation.

6.4 Higher Order Principal Axis Set

In the last section, we defined the 1st PR set and discussed how to search for a heuristic solution efficiently.

As for Euclidean PCA, it is natural to study the higher order PR sets. Recall in Euclidean space, all PCs

are orthogonal to each other such that the data variations captured by the PCs do not overlap. In case

of PR sets, each of them usually contains multiple rays, so the orthogonality between two PR sets can be

defined as the pairwise orthogonality between each ray in one set and each ray in the other set. From the

last section, it is seen that significant computational effort is needed to find a heuristic solution for just the

1st PR set. In this section, for simplicity, we will illustrate the idea of higher order PR sets by restricting

our candidate ray set to include only orthant axes. In the following part of this section, we will focus on
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how to define higher order principal axis sets (PA sets). Similar to PR sets, all the axes within a PA set are

required to be pairwise antipodal, which leads to the following definition of mutually antipodal axis sets.

Definition 6.4.1. A mutually antipodal axis set (MAA set) is an MAR set where each ray is an axis in tree

space.

Working with orthant axes has at least four computational advantages. First, there is a finite list of

candidate axes, so computational effort to search for PA sets will be much smaller. Second, it is easy to

characterize MAA sets as the following lemma shows.

Lemma 6.4.1. Two axes e1 and e2 are antipodal if and only if the corresponding splits σ1 and σ2 are

incompatible.

Proof. “⇒” Suppose σ1 and σ2 are compatible, then σ1 and σ2 can be in the same orthant, which indicates

that the angle between e1 and e2 is at most 90◦. This is a contradiction to the definition of antipodality.

“⇐” Suppose e1 and e2 are not antipodal, then the cone path will not be the geodesic. But since the edge

sets for both e1 and e2 only contain a single edge, at least one support pair will include both σ1 and σ2,

hence they are compatible. This is a contradiction to the assumption that σ1 and σ2 are incompatible.

Thirdly, if two distinct axes are not antipodal, then they share the same orthant, and are therefore

orthogonal in the Euclidean sense. Thus we can say that two disjoint MAA sets have the property that

every element in one is always either orthogonal or antipodal to the elements in the other. Finally, the

projection of a tree onto an axis is simple to obtain. Now we are ready to define PA sets in terms of MAA

sets.

Definition 6.4.2. Given a set of trees T = {T 1, T 2, ..., T r} in Tn, the 1st principal axis set (1st PA set)

is defined as the MAA set which has the largest sum of squared projections from T among all MAA sets.

The ith principal axis set (ith PA set) is defined as the MAA set which has the ith largest sum of squared

projections from T among all MAA sets which do not have common axes with the i− 1 previously selected

PA sets.

Since no tree projects positively onto an axis outside the orthant containing itself, we can simply put

together all axes which appear in at least one tree in the data set as the candidate axis pool. To select PA

sets in terms of MAA sets, there are two approaches. One is the traditional “forward approach” (using the

familiar terminology from variable selection in multiple regression analysis), which is how Euclidean PCA is

typically explained. The forward approach chooses the MAA set with the largest sum of squared projections

from candidate axes as the 1st PA set, and deletes all the axes included in this set from the candidate pool.
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Then it chooses the MAA set from the updated axis pool with the largest sum of squared projections as the

2nd PA set, and deletes all the associated axes from the axis pool. We can iteratively continue this process

until the candidate axis pool is empty. The other approach constructs PA sets in the opposite “backward

direction” (also using the regression terminology). This idea was studied empirically in [Marron et al., 2010;

Jung et al., 2010] and was later investigated more theoretically in [Damon and Marron, 2014] by using a

nested sequences of relations. The backward PCA approach was also used in [Jung et al., 2012; Pizer et al.,

2013] to construct a nested sequence of subspaces decreasing in dimension. Instead of searching for the 1st

PA set, the backward approach starts with the last PA set as the MAA set with the smallest sum of squared

projections, and updates the candidate pool. Similar to the forward approach, it will iteratively continue

the process until the axis pool is empty. We will analyze both forward and backward approaches in the rest

of this section.

Unfortunately, the sub-problem for finding the ith PA set is not an easy task. It has been proven that

this sub-problem is equivalent to the problem of finding a maximum weight clique in a weighted graph,

which is NP-complete. Nevertheless, there are good, though not polynomial-time, algorithms for this type

of problem, (see [Bomze et al., 1999] for surveys of these algorithms). As for finding the 1st PR set, it is

more practical to apply some heuristic algorithm, and specifically we will choose some greedy approaches.

We propose four greedy algorithms to select a MAA set from a candidate axis pool: two using a forward

approach and the other two using a backward approach. Since the objective of a PA set is to capture as

much data variation as possible, the first two greedy algorithms use the sum of squared data projections as

the criterion to select axes. The forward approach chooses axes with the largest sum of squared projections:

1. Initialize the MAA set as an empty set.

2. Choose the axis with the largest sum of squared projections as the first axis in the MAA set, and

update the candidate axis pool by removing the chosen axis.

3. Suppose there are already k axes in the MAA set, the (k + 1)st axis is chosen to be the one being

antipodal to the k previously selected axes and also having the largest sum of squared projections.

Update the candidate axis pool accordingly.

4. Repeat step 3 until no antipodal axis can be added.

The corresponding backward approach chooses axes with the smallest sum of squared projections, hence we

can change the “largest” to “smallest” in the above procedure to obtain the second greedy algorithm.

The above two greedy algorithms use the sum of squared data projections as the axis selection criterion.

Two more greedy algorithms can be constructed by using the number of positive data projections as their
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criterion. Similarly, the forward and backward algorithms can be simply obtained by replacing “sum of

squared projections” by “number of positive data projections” in Step 2 and Step 3 of the corresponding two

algorithms discussed previously. After repeatedly applying one of the above four algorithms, we will group

all the candidate axes into MAA sets. Then we sort these MAA sets according to the descending order of

data variation captured by each MAA set, and define the ith-order PA set as the ith MAA set in the sorted

list.

We applied the above four heuristic algorithms to the same five data sets: WF2, WF10, WF40, brain

artery data, and uniformly random data. First, we study the 1st PA set, and the following two tables

illustrate how the resulting 1st PA set performs by comparing two types of information for 4 different greedy

approaches across the 5 data sets. The first basis of comparison is the proportion of data variation captured

by the 1st PA set shown in Table 6.6. The second basis is the number of antipodal axes in the 1st PA set

shown in Table 6.7. For both tables, the column labels give the names of the 5 data sets and the row labels

specify which greedy approach is used: “SS” stands for “Sum of Squared projections”, and “Nr” stands for

“Number of positive projections”.

Proportion of Variation WF2 WF10 WF40 Brain Random

Forward SS 7.76% 7.47% 3.76% 1.83% 5.27%

Backward SS 7.76% 7.47% 3.61% 1.22% 0.97%

Forward Nr 7.76% 7.47% 3.76% 1.74% 1.00%

Backward Nr 7.76% 7.47% 3.61% 1.13% 1.47%

Table 6.6: Comparison of the proportions of data variation captured by the 1st PA set using 4 greedy
approaches across 5 data sets. Suggests that the forward approaches are better than the backward approaches
in terms of capturing data variation.

Number of Axes WF2 WF10 WF40 Brain Random

Forward SS 1 1 6 15 67

Backward SS 1 1 1 3 33

Forward Nr 1 1 6 13 46

Backward Nr 1 1 1 2 67

Table 6.7: Comparison of the numbers of antipodal axes in the 1st PA set using 4 greedy approaches across
5 data sets explains what we have seen in Table 6.6.

In Table 6.6, for WF2 and WF10, the 1st PA sets can capture between 7% and 8% of the total variation

and all four greedy approaches give the same percent. This is because the data trees stay in a relatively

narrow cone, which can be seen from the distribution of pairwise angles in Figure 2.12. The 1st PA set
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explains between 3% and 4% of the total variation for WF40, and this percent drops to less than 2% for

the Brain data. The reason is that these two data sets have more spread. Also for these two data sets, the

two forward approaches are slightly better than the two backward ones, since the forward approaches have a

better chance to collect the axes with larger projection variation. For the Uniformly Random data, “Forward

SS” overwhelms the other 3 approaches by capturing more than 5% of the data variation, compared to less

than 1.5% for others. This again can be explained by the pairwise angles summarized in Figure 2.12. We

see a large proportion of angles are 180◦ or near 180◦, which means a lot of antipodality occurs among data

points. By aggregating antipodality, “Forward SS” includes more axes with larger projection variation than

the other 3 approaches. In general, if we compare Table 6.6 with Table 6.5, the 1st PA set does not capture

as much data variation as the best single ray for the five data sets, since axes are more restricted than general

rays. The exception is the “Forward SS” approach in Uniformly Random data, and the reason is still under

investigation.

In Table 6.7, for WF2 and WF10, the data distribute in a relatively small region, so that their 1st PA

sets contain only one axis and all four approaches give the same axis. This also explains why the percents

are all the same for these two data sets in Table 6.6. For more spread WF40, the two forward approaches

give the same set of 6 axes and the two backward approaches give the same single axis set, which is why

there are two pairs of equal percents for WF40 in Table 6.6. Note that the single axis found by the backward

approaches is included in the axis set found by the forward approaches. Similarly for the Brain data, the

forward approaches include more axes, because they search for the 1st PA set at very beginning. Since the

Uniformly Random data set has the largest data spread, the antipodality is more frequently found among

axes, the 1st PA set contains many axes for all 4 approaches.

Next we want to compare the performance of all the PA sets obtained from the four greedy approaches.

For WF2 and WF10, the PA sets coming from the four approaches are very much the same, hence we will

focus on the other 3 data sets. Since all the PA sets are already sorted in descending order of the proportion

of variation captured, a curve is created by plotting these proportions against the descending ordering for

each greedy approach. The curves corresponding to “Forward SS”, “Backward SS”, “Forward Nr”, and

“Backward Nr” are colored red, green, blue, and black respectively in Figure 6.39. In plot (a), it is clear

that for the Brain Artery data “Forward SS” gives the best result, “Forward Nr” is the second best, then

followed by “Backward SS” and “Backward Nr”. In plot (b), for the Uniformly Random data, “Forward SS”

overwhelms the other three approaches, and it is hard to rank those three approaches. Plot (c) shows the

same comparison for WF40, and it seems that all four approaches produce quite similar results. However,

in plot (d), a zoom-in version of (c) reveals that two forward approaches are doing slightly better than two

backward approaches. Based on the above comparison, “Forward SS” seems to be the best choice among
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the four greedy approaches.

(a) (b)

(c) (d)

Figure 6.39: Shows the comparison of the four greedy approaches for three data sets: (a)Brain Artery data,
(b)Uniformly Random data, (c)WF40, and (d)a zoom-in version of WF40. Suggests that the “Forward SS”
is the best among four greedy approaches.

Another criterion for comparing the performance of the above four greedy approaches is the number of

PA sets needed to cover at least 80% of the total variation. Using this criterion, this number from all four

approaches is calculated for five data sets in Table 6.8. For WF2 and WF10, all four approaches find the

same group of PA sets because these PA sets are all single-axis sets. For WF40, the Brain data and the

Uniformly Random data, the “Forward SS” approach is better than the other approaches in terms of using

fewer PA sets. Also, along each row, we see that the number of PA sets generally gets larger as the spread

of the data set increases. This reverses for the Brain data and the Uniformly Random data, since PA sets

for the Uniformly Random data contain many more axes than those for the Brain data.

From the discussion in this section, we see that PA sets are computationally more convenient to find
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than PR sets. However, they are not as effective as the more general PR sets in terms of capturing data

variation. Therefore, an interesting future research direction is to refine the search algorithm for general PR

sets in order to better summarize tree structured data.

Number of PA Sets WF2 WF10 WF40 Brain Random

Forward SS 34 44 68 105 75

Backward SS 34 44 107 205 181

Forward Nr 34 44 77 146 159

Backward Nr 34 44 113 200 165

Table 6.8: Comparison of the numbers of PA sets needed to capture at least 80% of the data variation by
using the 4 greedy approaches across the 5 data sets. Reveals that the “Forward SS” use fewer principal
components than the other 3 approaches.
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//arxiv.org/pdf/1210.2145v1.pdf. 1.4

Dennis Barden, Huiling Le, and Megan Owen. Central limit theorems for Fréchet means in the space of
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