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ABSTRACT
Michele Arzano: Aspects of quantum gravity: quantum space-time and

black hole thermodynamics.
(Under the Direction of Prof. Yee Jack Ng)

This work is devoted to the study of certain quantum properties of space-time

at the Planck scale and of black holes. We discuss the possibility that in quan-

tum gravity scenarios the symmetry structure of flat space-time might deviate

from the classical relativistic picture and lead to broken or deformed Poincaré

invariance. The striking feature of these “quantum” space-time models is the

possibility that they might have experimentally observable effects. We discuss

how a purely kinematical model within these frameworks, besides providing the

threshold anomalies needed to explain the existence of above-GZK cosmic rays,

can modify the Bachall-Waxman bound on the flux of neutrinos that are ex-

pected to be produced together with such cosmic rays.

A relevant characteristic of “quantum” space-time scenarios with modifications

of relativistic kinematics is the emergence of a Planck-scale particle localization

limit that reflects the presence of the Planck length as an intrinsic spatial res-

olution limit for regimes in which quantum and gravitational effects are of the

same magnitude. We propose a remarkable argument which relates the type of

quantum gravity corrections to the Bekenstein-Hawking entropy-area relation for

black holes and the form of the Planck-scale particle localization limit. Using this

argument we are able to constraint the form of the deformed energy-momentum

dispersion relation expected to emerge in the low-energy limit of loop quantum

gravity. The same argument is then generalized to quantum gravity frameworks

which predict a modifications of Heisenberg’s uncertainty relation. We carried

on a systematic study of the effects of modified energy-momentum dispersion

relation and generalized uncertainty principle for an evaporating black hole ob-
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taining also results for Planck-scale modifications of the spectrum of a radiating

black-body.

Finally, we extend our study of quantum gravity corrections to the Hawking

radiation spectrum by adapting the tunneling picture proposed by Parikh and

Wilczek including, in such a way, non-thermal corrections due to back-reaction

of the emitted particle. It is also showed that a quantum fluctuating black

hole horizon, characterized by a “quantum ergosphere” produces the same type

of modification to the emission spectrum expected when higher order quantum

gravity corrections to the entropy-area relation are present.
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Chapter 1

Introduction

The beginning of 20th century has witnessed the start of two major revo-

lutions in our understanding of the concepts of space and time and of the mi-

croscopic behavior of physical systems. In 1900, Max Planck, motivated by the

embarrassing failure of classical electrodynamics and statistical mechanics in ex-

plaining the properties of a radiating black-body, proposed a model in which

the different modes of the gas of radiation in the cavity of the black body had

a discrete or “quantized” distribution. It was the first step of the “quantum”

revolution from which quantum mechanics (QM) culminated more than seventy

years later with the standard model of particle physics: a very successful descrip-

tion of the microscopic world up to the energy scales probed by current particle

accelerators. Five years later, in 1905, Albert Einstein brilliantly resolved the

apparent contradiction between Maxwell’s theory of electrodynamics and the

symmetry structure of classical mechanics introducing the relativity postulates

which constitute the basis of the theory of special relativity (SR). Einstein him-

self in 1916 completed his “relativity” revolution providing, with the theory of

general relativity (GR), the most accurate and experimentally successful picture

of space-time and gravitation at large scales.

While a unified quantum description seems to be possible for three of the fun-

damental forces of Nature, electro-magnetic, weak and strong interaction, the



very nature of gravity, as described by GR, seems to prevent any straightforward

“quantization”. Indeed the non-linearity of GR, or in cruder words the facts

that gravity “gravitates”, together with the fact that the coupling constant of

the theory is not dimensionless, conspire to produce, at a perturbative level, a

proliferation of divergent quantities which renders impossible any renormaliza-

tion.

Infinities already emerge in Quantum Electrodynamics (QED), where they can

be eliminated with an appropriate renormalization, and they simply reflect the

existence of a limited energy range for the validity of the theory. Once a definite

energy scale is reached, new physics appears which is appropriately described

by a more general theory (Weinberg-Salam model of electroweak interaction in

the specific case of QED). In the case of gravity the scale at which new (quan-

tum) effects are expected to become important is set by the Planck energy:

Ep =
√

c3h̄
G
' 1018 GeV . Associated with this energy are length, time and mass

scales: Lp =
√

Gh̄
c3
' 10−33 cm, Tp =

√
Gh̄
c5
' 10−42 s and Mp =

√
ch̄
G
' 10−5 g.

Moreover in GR the existence of space-time singularities, regions of arbitrarily

high curvature, signals the existence of a limit in the predictive power of the

theory. Near a singularity, where the curvature can go far below the scale set by

the Planck length Lp, a full theory of Quantum Gravity (QG) would be needed

to describe the dynamics of space-time.

At a deeper level one can trace the incompatibility of QM and GR back to the

fact that each was formulated starting from radically different assumptions: QM

assumed a fixed space-time background, while GR was formulated in terms of

a dynamical metric field. More precisely, while non-relativistic QM was based

on the choice of an external time variable (and later QFT defined positive and

negative energy field modes in term of a global time variable), in GR there is

no global definition of any special time variable as the theory is invariant under

general coordinate transformations.

The present picture of our physical world is then based on a set of theories (GR,
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QM with QFT and the standard model) which are empirically successful in their

own range of validity but that, due to their radically different natures, seem to

resist all the efforts to be combined in a new synthesis.

For many years attempts to identify a correct theoretical framework for QG have

moved from first principles, as the scales involved in possible manifestations of

the quantum nature of gravity are so far from any experimental reach. Nowadays

the leading proposals of theories describing quantum gravity are based on the

canonical quantization of GR (also known as loop quantum gravity (LQG) [1])

and on the framework of string/M-theory [2] in which classical gravity emerges

as a low energy limit of a more general model of unified interactions in which

elementary particles are excitations of extended objects (strings) (for a review of

different approaches to quantum gravity we refer the reader to [3]).

Alternatives to these “direct” approaches to the construction of general QG theo-

ries are other, less ambitious, attempts which try to shed some light on particular

physical settings in which quantum gravitational effects are expected to play a

significant role or which adopt simplified models and obtain results that are of

guidance in the path to a more complete QG theory. One of these approches,

which has now been very successfully investigated for more than three decades,

is the study of “semiclassical” approximations in which quantum matter fields

propagate on a curved (classical) space-time background [4, 5]. This is anal-

ogous to “pre-QED” semiclassical approximations in which quantum particles

were considered interacting with a classical electromagnetic field. Indeed the

results obtained in these frameworks turned out to be in perfect agreement with

the full theory of QED. One of the most striking predictions obtained from the

study of quantum field theory (QFT) on curved spaces is Hawking’s discovery [6]

of the phenomenon of quantum radiance from black holes. This result, having

been re-derived in a variety of different methods (for recent reviews see [7, 8]),

is believed to be very fundamental and is expected to provide an important el-

ement of guidance in quantum gravity research. Indeed Hawking’s discovery
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justified a previous conjecture by Bekenstein [9] which associated to every black

hole an “entropy” proportional to its horizon area. The Bekenstein-Hawking

entropy-area relation1

SBH =
A

4L2
p

(1.1)

provides a very deep connection between gravity, the quantum realm and the

basic thermodynamic concept of entropy. More importantly this relation is ex-

pected to be a general prediction of any candidate theory of quantum gravity,

and any such theory should also provide a natural explanation of the “degrees

of freedom” contributing to the entropy of a quantum black hole.

A different approach to the quantum gravity problem, to which much atten-

tion has been given in recent years, tries instead to gain a deeper understanding

of the small-scale “quantum” structure of space-time. The main idea is that

the “lowest energy” vacuum state of quantum gravity might not simply be flat

Minkowski space-time but a more complicated “quantum” geometrical config-

uration. Indeed various heuristic arguments and “gedanken” experiments (see

[10] and references therein) suggest that the Planck length Lp might play the

role of a fundamental minimal length scale in quantum gravity, setting a lower

limit to any distance measurement. The existence of such “operative” limitation

on space-time resolution is obviously in contrast with the picture of a classical

smooth manifold. Moreover standard relativistic symmetries can not incorporate

a fundamental “length” scale which is invariant for different inertial observers.

On one side non-commutative geometry (NCG) [11, 12] provides a possible de-

scription of space-time at the Planck scale in which, following the idea that

space-time should be “quantized”, usual commuting coordinates are replaced by

operators with non-trivial commutation relations2.

On the other hand modifications or “quantum” deformations of the standard

1From now on, unless otherwise stated, we will work in units h̄ = c = 1.

2For a different approach to NCG in which non-commutativity is instead
introduced at the level of algebra of functions on a manifold see [13, 14]
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Poincaré algebra of symmetries in which the dimensionful deformation parame-

ter appears as a fundamental scale have been studied [15, 16]. These “deformed”

symmetry models provide prototypes for the recently proposed doubly (or de-

formed) relativity scenarios (DSR) [17, 18, 19], modifications of standard special

relativity which accommodate a second invariant length (energy) scale reflecting

a non-trivial structure of space-time at planckian regimes.

These two approaches are not unrelated and there exist examples of non-com-

mutative space-times which enjoy certain types of deformed symmetries which

are also relevant for DSR scenarios [20, 21]. In general there are indications that

some particular models of non-commutative space-time can be endowed with de-

formed relativistic symmetries while in other cases Lorentz invariance is broken

by the emergence of a “preferred” orientation defined by the tensor parametriz-

ing the non-commutativity of the coordinates.

A very interesting point to note is that Planck-scale departures from Poincaré

invariance of the type encountered in NCG and DSR scenarios are also relevant

for their possible phenomenological implications. In fact one of the major break-

through in quantum gravity research in recent years has been the realization

that we may be closer than has been thought in the past to the observation of

signatures of Planck-scale physics in various experimental settings.

This recent development in “quantum gravity phenomenology” will be the start-

ing point of the present dissertation. After a brief overview of quantum space-

time scenarios with departures from classical, flat space, relativistic symmetries

at the Planck-scale, in Chapter 2, we will describe the possible effects of space-

time quantization on the spectrum of the highest energy neutrinos [24]. We will

then discuss, in Chapter 3, a remarkable link between modifications of the spe-

cial relativistic energy-momentum dispersion relation (MDR) emerging in QG

scenarios (with particular emphasis on LQG) and quantum gravity corrections

to the entropy area law (1.1) [25]. In Chapter 4, following the strategy outlined

in Chapter 3 we will study, more extensively, the relation between Planck-scale
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modifications of the E ≥ 1
δx

relation and its consequences for the spectrum of an

evaporating black hole. In this context we will also see how these corrections can

affect a black body emission spectrum and will point out some consequences for

the Bekenstein entropy bound and the generalized second law of thermodynam-

ics (GSL) [26]. In the following Chapter 5 we discuss how the possible quantum

space-time features previously studied can be incorporated in the description of

black hole radiation as quantum tunneling and comment on the non-thermal de-

viations of the radiation spectrum [27]. We also propose a connection between

Planck-scale modifications of a black hole emission probability in the tunnel-

ing framework and the presence of a “quantum ergosphere” associated with the

quantum fluctuating space-time which endows the black hole with a non-trivial

horizon structure [28]. Chapter 6 is devoted to a final summary and concluding

remarks.
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Chapter 2

Planck-scale structure of

space-time and some

phenomenological implications

2.1 Quantum space-time and the fate of rela-

tivistic symmetries in quantum gravity

Departures from standard relativistic symmetries in quantum space-time, in-

tended as Planck-scale discrete or non-commutative space-time, have recently

received much attention3. It is natural, in fact, to expect that the introducing of

additional structure in a flat space-time besides the classical causal Minkowski

structure, will accordingly affect its symmetries. This is evident, for example,

for Planck-scale discretization of space-time due to the fact that continuous sym-

metry transformations are clearly at odd with a discrete network of points. One

example is LQG which is one of the most developed quantum gravity picture

3In the following we will focus principally on departures from Lorentz and
Poincaré invariance. However quantum gravity violations of CPT symmetry and
their possible phenomenological implications have also been considered in the
literature, see e.g. [22, 23]



which introduces the idea of space-time discreteness [29, 30, 31]. LQG does not

predict a rigid discrete network of spacetime points, but discretization emerges in

a more sophisticated way through the appearance of quantized spectra of areas

and volumes while space-time points loose any operational meaning. It appears

that even this more advanced form of discretization is incompatible with classical

relativistic symmetries; in fact, there is [32, 33] evidence in the LQG literature

of Planck-scale departures from Poincaré symmetry (although the issue remains

subject to further scrutiny).

Poincaré symmetry, for different reasons, is also often at odds with spacetime

non-commutativity. In particular, as we mentioned in the Introduction, stud-

ies of non-commutative space-times have shown that the Lie-algebra Poincaré

symmetries can be either broken or deformed into a new type of symmetries. It

appears that in certain cases the non-commutativity length scale (possibly the

Planck length), affects the laws of transformation between inertial observers, and

infinitesimal symmetries can be described in terms of the new language of Hopf

algebras (quantum groups) [15, 16]. The type of space-time quantization pro-

vided by noncommutativity can then be related to a corresponding symmetry

quantization in which the concept of Lie-algebra symmetry is replaced by the

one of Hopf-algebra symmetry.

In this chapter we will focus on quantum space-time departures from standard

relativistic symmetry which lead, in particular, to Planck-scale modifications of

the special relativistic energy-momentum dispersion relation. In the next sub-

sections we will discuss MDRs in the context of NCG and LQG4 and discuss

whether or not the emergence of such MDR’s is associated with broken or de-

formed Poincaré symmetry. Then, in section 2.2, we will give a brief overview of

experimental phenomena in which our quantum space-time models might play a

role and present a detailed derivation of a new, quantum gravity modified, bound

4We focus on NCG and LQG scenarios but MDRs also appear in other frame-
works, for example “spacetime foam” models (see e.g. [34, 35]).
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on the flux of the highest energy cosmic neutrinos.

Non-commutative space-time and MDR

We will focus here on NCG in the particular case of non-commutative flat

(Minkowski) space-time5 in which coordinates commutators are either constant

or depend on the coordinate themselves. Two simple examples are “canonical”

NCST

[xµ, xν ] = iθµν (2.1)

and “Lie-algebra” NCST

[xµ, xν ] = iCβ
µνxβ , (2.2)

(µ, ν, β = 0, 1, 2, 3). It is convenient to first focus on the canonical case (2.1).

The construction of a QFT on NCSTs of the type (2.1) has been developed rather

extensively [37, 38]. While most aspects of these field theories closely resemble

their commutative space-time counterparts, a surprising feature that emerges is

the so-called “IR/UV mixing” [39, 40]: the high-energy sector of the theory does

not decouple from the low-energy sector. Connected with this IR/UV mixing is

the type of modified dispersion relations that one encounters in field theory on

canonical noncommutative spacetime, which in general take the form

m2 ' E2 − ~p2 +
α1

pµθµνθνσpσ

+ α2m
2 log(pµθµνθ

νσpσ) + ... (2.3)

where α1, α2 are parameters, possibly taking different values for different particles

(the dispersion relation is not universal), that depend on various aspects of the

field theory, including its field nature and the type of interactions. The fact that

this dispersion relation can be singular in the infrared is a result of the IR/UV

mixing. The presence of modified dispersion relations in canonical NCST should

be expected, since Lorentz symmetry is broken by the tensor θµν . This tensor,

5Another interesting example of non-commutative Minkowski space is given
by Snyder’s space-time [36], in which the commutators of the coordinates are
expressed in terms of elements of the Lorentz algebra.
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infact, plays the role of a background that identifies a preferred class of inertial

observers6. Different particles can be affected by the presence of this background

in different ways, leading to the emergence of different dispersion relations7.

On the “Lie-algebra” side one example of non-commutative Minkowski space-

time that has been extensively studied is κ-Minkowski [16, 21, 42, 43, 44, 45]

[xm, t] =
i

κ
xm [xm, xl] = 0 (2.4)

(l,m = 1, 2, 3). κ-Minkowski is an example of NCST which is invariant under

deformed or “quantum” relativistic symmetries expressed by κ-Poincaré Hopf

algebra. In fact although it is clear from (2.4) that κ-Minkowski enjoys classical

space rotation symmetry it turns out that, in a Hopf-algebra sense (see, e.g.,

[21]) this space is invariant under non-commutative translations and that boost

transformations are necessarily modified. A first hint of this comes from the

necessity of a deformed law of composition of momenta, encoded in the so-called

“co-product” (a standard structure for a Hopf algebra). One can see this clearly

by considering the Fourier tranform. It turns out [43, 46] that in the κ-Minkowski

case the correct formulation of the Fourier theory requires a suitable ordering

prescription for wave exponentials:

: eikµxµ :≡ eikixieik0x0 (2.5)

While wave exponentials of the type eikµxµ would not combine in a simple way

(as a result of the κ-Minkowski non-commutativity), for the ordered exponential

6Very recently, it has been proposed [41] that canonical NCST may, instead,
be endowed with a Hopf-algebra type of symmetries represented by the “twisted”
Poincaré Hopf algebra.

7These remarks apply to canonical NCST as studied in the (often String-
Theory inspired) literature, in which θµν is indeed simply a tensor (for a given
observer, an antisymmetric matrix of numbers). Earlier studies of canonical
NCST however (see e.g. [11]) considered a θµν with richer mathematical prop-
erties and nontrivial algebra relations with the spacetime coordinates. In that
earlier setup it is not obvious that Lorentz symmetry would be broken: the fate of
Lorentz symmetry may depend on the, possibly dynamical, properties attributed
to θµν .
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one finds

(: eipµxµ :)(: eikνxν :) = : ei(p+̇k)µxµ : (2.6)

The notation +̇ introduced in [44] reflects the role of the “co-product” in the

composition of momenta:

pµ+̇kµ = δµ,0(p0 + k0) + (1− δµ,0)(pµ + e
p0
κ kµ) . (2.7)

As argued in [17] the non-linearity of the law of composition of momenta might re-

quire an absolute (observer-independent) momentum scale with the non-commu-

tativity scale κ playing the role of such scale. This is analogous to the transition

from newtonian mechanics to special relativity where upon introducing a non-

linear law of composition of velocities one must introduce the absolute observer-

independent scale of velocity c. On the basis of (2.7) one is led [16, 43, 46] to

the following form of the energy-momentum dispersion relation(
2κ sinh

m

2κ

)2

=
(
2κ sinh

E

2κ

)2

− e
E
κ ~p 2 (2.8)

which at leading order in 1
κ

takes the form

m2 ' E2 − ~p 2 − E

κ
~p 2 . (2.9)

The precise form of the dispersion relation depends on the choice of ordering

prescription for wave exponentials [21] and this point deserves further study.

There also appear to be severe obstructions [44, 46] for a satisfactory formulation

of a quantum field theory in κ-Minkowski as the techniques that were rather

straightforwardly applied for the construction of field theory in canonical non-

commutative spacetime do not seem to be applicable in the κ-Minkowski case.

MDR in LQG

In the modern approach to canonical quantization of GR known as loop quan-

tum gravity various interesting results have been obtained whose understanding,

though, is still in a relatively early stage. As we already stressed, LQG predicts
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an inherently discretized spacetime. There has been much discussion recently,

prompted by the studies [32, 33], of the possibility that this discretization might

lead to broken Lorentz symmetry and a modified dispersion relation. Arguments

presented in [32, 33] suggest that Lorentz symmetry might indeed be broken

in LQG. However, recently it has been proposed [47] a mechanism such that

LQG would be described at the most fundamental level as a theory that in the

flat-spacetime limit admits deformed Lorentz symmetry, in the sense of DSR sce-

narios [17]. The argument presented in [47] originates from the role that certain

quantum symmetry groups (q-deformed algebras) have in the LQG description

of space-time with a cosmological constant, and observing that in the flat space-

time limit (the limit of vanishing cosmological constant) these quantum groups

might not contract to a classical Lie algebra, but rather contract to a quantum

(Hopf) algebra.

All these studies point to the presence of a MDR, although different arguments

lead to different intuition for the form of the dispersion relation. A definite re-

sult might have to wait for the solution of the well-known classical-limit problem

of LQG. However, as we will see in Chapter 3, a compelling argument can be

made which relates the form of Planck-scale corrections to a particle’s relativis-

tic localization limit and QG corrections to the Bekenstein-Hawking entropy-area

relation. This argument can be used to set a stringent constraint on the form of

the LQG deformed dispersion relation based on the well established logarithmic

form of the LQG correction to the black hole entropy area relation.

2.2 Phenomenology

Over the last few years a growing number of research groups have attempted

to tackle the quantum gravity problem with an approach in which non-classical

pictures of space-time are being studied with strong emphasis on their observable

predictions. Indeed, certain classes of experiments turned out to have extremely
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high sensitivity to some non-classical features of spacetime. We now even have

(see later) some first examples of experimental puzzles whose solution is being

sought also within simple ideas involving non-classical pictures of spacetime. The

hope in this line of research is that by trial and error, both on the theory side and

on the experiment side, one might eventually stumble upon the first few definite

(experimental) hints on quantum gravity.

We can observe that the most robust part of the results summarized in the

previous subsections is clearly the emergence of a modified dispersion relation.

Therefore if one could set up experiments testing directly the dispersion rela-

tion the resulting limits would have wide applicability. In principle one could

investigate the form of the dispersion relation directly by making simultaneous

measurements of energy and space momentum; however, it is easy to see that

achieving Planck-scale sensitivity in such a direct test is well beyond our capa-

bilities. Useful test theories on which to base the relevant phenomenology must

therefore combine the presence of a MDR with other ingredients. There are three

key issues which must be taken into account for such test theories: whether or

not in presence of a MDR the relation v = dE
dp

between the speed of a parti-

cle and its dispersion relation is still valid; the validity of the standard laws of

energy-momentum conservation; the formalism to be adopted for the description

of dynamics. Unfortunately on these three key points the quantum space-time

pictures which are providing motivation for the study of Planck scale modifica-

tions of the dispersion relation, which we reviewed in the previous subsections,

are not providing much guidance yet. For example, in LQG, while we do have

evidence that the dispersion relation should be modified, we do not yet have a

clear indication concerning whether the law of energy-momentum conservation

should also be modified and we also cannot yet robustly establish whether the

relation v = dE
dp

should be preserved. Similarly in the analysis of NCSTs we

are close to establishing in rather general terms that some modification of the

dispersion relation is inevitable, but other aspects of the framework have not yet
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been clarified.

In the following subsections we will see examples of simple test theory models

based on MDRs “at work”, and discuss how it could be possible to detect their

signatures in the experimental contexts of cosmological gamma ray bursts (GRB)

and ultra high energy cosmic rays (UHECR).

2.2.1 Gamma Ray Bursts

We focus in this section on a possible quantum space-time scenario with a

general MDR of the form

m2 = E2 − ~p 2 + η~p 2En

En
p

+ O

(
En

En
p

)
(2.10)

and in which a particle’s velocity is given by the standard v = dE
dp

relation. In

the energy range m < E � Ep such velocity will be approximatively

v ' 1− m2

2E2
+ η

n + 1

2

En

En
p

. (2.11)

According to (2.11) two photons emitted simultaneously should reach a far-away

detector at different times if they carry different energy. This time-of-arrival

difference effect can be significant [49, 50] in the analysis of short duration GRBs

that reach us from cosmological distances. For a GRB it is not uncommon that

the time travelled before reaching our Earth detectors be of order T ∼ 1017s.

Microbursts within a burst can have very short duration, as short as 10−3s (or

even 10−4s), and this means that the photons that compose such a microburst are

all emitted at the same time, up to an uncertainty of 10−4s. Some of the photons

in these bursts have energies that extend at least up to the GeV range. For two

photons with energy difference of order ∆E ∼ 1GeV a η∆E
Ep

speed difference over

a time of travel of 1017s would lead to a difference in times of arrival of order

∆t ∼ ηT
∆E

Ep

∼ 10−2s . (2.12)

The sensitivities achievable with the next generation of gamma-ray telescopes,

such as GLAST [51, 52], could allow to test very significantly (2.12) in the case
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n = 1, by possibly pushing the limit on η far below 1 (whereas the effects

found in the case n = 2, |η| ∼ 1 are too small for GLAST). Whether or not

these levels of sensitivity to the Planck-scale effects are actually achieved may

depend on progress in understanding other aspects of GRB physics. In fact,

the Planck-scale-effect analysis would be severely affected if there were poorly

understood at-the-source correlations between energy of the photons and time of

emission. Recently, it was emphasized [53] that it appears that one can infer such

an energy/time-of-emission correlation from available GRB data. The studies

of Planck-scale effects will be therefore confronted with a severe challenge of

background/noise removal. At present it is difficult to guess whether this problem

can be handled successfully. However a good point can be made observing that

our Planck-scale picture predicts that the times of arrival should depend on

energy in a way that grows in exactly linear way with the distance of the source.

One may hope that, once a large enough sample of gamma-ray bursts (with

known source distances) becomes available, one might be able disentangle the

Planck-scale propagation effect from the at-the-source background.

2.2.2 UHECR and the the Bahcall-Waxman neutrino bo-

und

Interest in tests of modifications of Lorentz symmetry has increased recently

as a result of the realization [54, 55, 56, 57] that these modifications can provide

one of the possible solutions of the so-called “cosmic-ray paradox”. The spectrum

of observed cosmic rays was expected to be affected by a cutoff at the scale

EGZK ∼ 5·1019 eV. Cosmic rays emitted with energy higher than EGZK should

interact with photons in the cosmic microwave background and lose energy by

pion emission, so that their energy should have been reduced to the EGZK level by

the time they reach our Earth observatories. However, the AGASA observatory

has reported [58] several observations of cosmic rays with energies exceeding the
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EGZK limit [59] by nearly one order of magnitude. As other experiments do not

see an excess of particles above the GZK limit, this experimental puzzle will

only be established when confirmed by larger observatories, such as Auger [60].

Furthermore, numerous other solutions have been discussed in the literature.

Still, it is noteworthy that Planck-scale modifications of Lorentz symmetry can

raise [54, 55] the threshold energy for pion production in collisions between cosmic

rays and microwave photons, and the increase is sufficient to explain away the

puzzle associated with the mentioned ultra-high-energy cosmic-ray observations.

Bahcall-Waxman [61] have shown that the same particles which we observe as

high-energy cosmic rays should also lead to neutrino production at the source.

Using the observed cosmic ray fluxes they derive a bound (the Bahcall-Waxman

bound) on the flux of high-energy neutrinos that can be revealed in astrophysics

observatories. We show here that the same Lorentz symmetry violations that can

extend the cosmic ray spectrum also affect the chain of processes that arise in the

neutrino production and hence in establishing the Bahcall-Waxman bound [61].

Thus, the departures from Lorentz symmetry that are capable of explaining the

“cosmic-ray paradox” inevitably lead to modification of this limit. We will only

focus here on one of the chains of processes that are relevant for the Bahcall-

Waxman bound: the case in which a proton at the source undergoes photo-pion

interactions of the type p+γ → X+π+ before escaping the source, then giving rise

to neutrino production through the decays π+ → µ+ +νµ and µ+ → e+ +νe + ν̄µ.

The phenomenological model we consider is the simplest one in the literature,

which evolved primarily through the studies reported in Refs. [48, 54, 55]. This is

a kinematic in which the Planck-scale Ep enters the energy/momentum dispersion

relation

m2 = E2 − ~p 2 + f(E, ~p; Ep) ' E2 − ~p 2 + η~p 2En

En
p

(2.13)

while the laws of energy-momentum conservation remain unaffected8 by the

8Our analysis based on (2.13) and standard energy-momentum conservation
should be applicable (up to small numerical modifications) to a large class of
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Planck scale. η is a dimensionless coefficient which one expects to be roughly of

order 1 (but cannot be reliably predicted at the present preliminary level of de-

velopment of the relevant quantum-gravity models). The power n, which should

also be treated as a phenomenological parameter, is a key element of this phe-

nomelogical scenario, since it characterizes the first nonvanishing contribution in

a (inverse-)Planck-scale power series of the quantum-gravity-induced correction

f(E, ~p; Ep). It is usually expected that n = 1 and n = 2 are most likely.

In the next subsection we revisit the analysis of the emergence of “threshold

anomalies” due to (2.13) in the study of particle production in collision pro-

cesses. For positive η (η ∼ 1) and n ≤ 2, according to the Planck-scale effect

(2.13) one expects [55] an increase in the threshold energy for pion production in

collisions between cosmic rays and microwave photons, and the increase is suffi-

cient to explain away the GZK puzzle raised by the AGASA observations. We

also comment on another potentially observable threshold anomaly that concerns

electron-positron pair production in photon-photon collisions and emphasize the

differences between the case of positive η and the case of negative η.

Next we show that (2.13) also affects significantly the at-the-source processes

of the type p + γ → X + π+ that are relevant for the Bahcall-Waxman analy-

sis. If η ∼ 1 and n ≤ 2 (i.e. for the same departures from Lorentz symmetry

that would explain the cosmic-ray paradox) (2.13) leads to the prediction of a

strongly reduced probability for the process p + γ → X + π+ to occur before

the proton escapes the source. Correspondingly one expects sharply reduced

neutrino production, and as a result the “quantum-gravity-modified Bahcall-

Waxman bound” should be expected to be many orders of magnitude lower than

quantum-gravity models which are being considered as possible solutions of the
cosmic-ray paradox. One exception is the DSR framework [17], in which one
could adopt a dispersion relation of type (2.13) but it would then be neces-
sary to introduce a corresponding modification of the laws of energy-momentum
conservation (in order to avoid the emergence of a preferred class of inertial
observers [17]). Our conclusions are not applicable to that scheme.

17



the standard Bahcall-Waxman bound. The opposite effect is found for negative

η (η ∼ −1): in that case one would expect the standard Bahcall-Waxman bound

to be violated, i.e. for negative η one could find a neutrino flux that exceeds the

standard Bahcall-Waxman bound.

In the last subsection we show that also the decays π+ → µ+ + νµ and µ+ →

e+ + νe + ν̄µ are significantly affected by the Planck-scale effect (2.13). Again

the effect goes in the direction of reducing neutrino production for positive η.

However we also observe that the dominant quantum-gravity modification of the

Bahcall-Waxman bound comes at the level of analysis of processes of the type

p + γ → X + π+, where a several-order-of-magnitude modification would be

expected, whereas the additional modification encountered at the level of the

processes π+ → µ+ + νµ and µ+ → e+ + νe + ν̄µ is not as significant.

Previous results on Planck-scale-induced threshold anomalies and the

sign of η

We begin by considering the implications of (2.13) for the analysis of pro-

cesses of the type 1 + γ → 2 + 3. The key point for us is that, for a given energy

E1 of the particle that collides with the photon, there is of course a minimal en-

ergy εmin of the photon (γ) in order for the process to be kinematically allowed,

and therefore achieve production of the particles 2 and 3. One finds that if η is

positive the value of εmin predicted according to the Planck-scale effect (2.13) is

higher than the corresponding value obtained using ordinary Lorentz symmetry.

In the applications that are of interest here the particle that collides with the

photon has a very high energy, E1 ' p1 � m1, and its energy is also much larger

than the energy of the photon with which it collides E1 � ε. This will allow

some useful simplifications in the analysis.

Let us start by briefly summarizing the familiar derivation of εmin in the ordi-

nary Lorentz-invariant case. At the threshold (no momenta in the CM frame

after the collision) energy conservation and momentum conservation become one
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dimensional:

E1 + ε = E2 + E3 , (2.14)

p1 − q = p2 + p3 , (2.15)

where q is the photon’s momentum. The ordinary Lorentz-invariant relations are

q = ε , Ei =
√

p2
i + m2

i ' pi +
m2

i

2pi

, (2.16)

where we have assumed that, since E1 is large as mentioned, E2 and E3 are also

large (E2,3 ' p2,3 � m2,3).

The threshold conditions are usually identified by transforming these laboratory-

frame relations into center-of-mass-frame relations and imposing that the center-

of-mass energy be equal to m2 + m3. However, in preparation for the discussion

of deformations of Lorentz invariance it is useful to work fully in the context of

the laboratory frame. There the threshold condition that characterizes εmin can

be identified with the requirement that the solutions for E2 and E3 as functions

of ε (with a given value of E1) that follow from (2.14), (2.15) and (2.16) should

be imaginary for ε < εmin and should be real for ε ≥ εmin. This straightforwardly

leads to

ε ≥ εmin '
(m2 + m3)

2 −m2
1

4E1

. (2.17)

This standard Lorentz-invariant analysis is modified [54, 55] by the deformations

codified in (2.13). The key point is that Eq. (2.16) is replaced by

ε = q − η
qn+1

2En
p

, Ei ' pi +
m2

i

2pi

− η
pn+1

i

2En
p

. (2.18)

Combining (2.14), (2.15) and (2.18) one obtains a modified kinematical require-

ment

ε ≥ εmin '
(m2 + m3)

2 −m2
1

4E1

+ η
En+1

1

4En
p

(
1− mn+1

2 + mn+1
3

(m2 + m3)n+1

)
. (2.19)

where we have included only the leading corrections (terms suppressed by both

the smallness of E−1
p and the smallness of ε or m were neglected).
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The Planck-scale “threshold anomaly” [55] described by (2.19) is relevant for the

analysis of the GZK limit in cosmic-ray physics. In fact, the GZK limit essen-

tially corresponds to the maximum energy allowed of a proton in order to travel

in the CMBR without undergoing processes of the type p + γ → p + π. For a

proton of energy E1 ∼ 5·1019eV the value of εmin obtained from the undeformed

equation (2.17) is such that CMBR photons can effectively act as targets for

photopion production. But, for η ∼ 1 and n ≤ 2, the value of εmin obtained from

the Planck-scale deformed equation (2.19) places CMBR photons below thresh-

old for photo-pion production by protons with energies as high as E1 ∼ 1021eV ,

and would explain [54, 55] observations of cosmic rays above the GZK limit. For

negative η ∼ −1 one obtains the opposite result: photopion production should

be even more efficient than in the standard case. Therefore negative η is dis-

favoured by the observations reported by various UHECR observations.

There has also been some interest [54, 55, 62] in the implications of (2.19) for

electron-positron pair production in collisions between astrophysical high-energy

photons and the photons of the Far Infrared Background. Electron-positron

pair production should start to be significant when the high-energy photon has

energies of about 10 or 20 TeV. The Planck-scale correction in (2.19) would be

significant, though not dominant, at those energies. Observations of TeV photons

are becoming more abundant, but the field is still relatively young. Moreover, our

knowledge of the Far Infrared Background is presently not as good as our knowl-

edge of the CMBR. Therefore observations of TeV photons do not yet provide a

significant insight on the Planck scale physics of interest here. Consistency with

those observations only imposes a constraint [62] of the type |η| < 100, which

(since the quantum-gravity intuition favours |η| ∼ 1) is not yet significant from

a quantum-gravity perspective.

A similar upper limit (|η| < 100) is obtained by considering the implications [48,

50] of the deformed dispersion relation for the arrival times of photons with dif-

ferent energies emitted (nearly-)simultaneously from cosmological sources.
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In summary, the present situation justifies some interest for the case of positive

η, particularly as a possible description of cosmic rays above the GZK limit.

The case of negative η is disfavored by various UHECR observations. Additional

phenomenological reasons to disfavour negative η have been found in analyses

of photon stability (see, e.g., [62]), which is instead not relevant for the positive

η case. Moreover, the case of negative η appears to be also troublesome con-

ceptually since it leads to superluminal velocities in a framework, such as the

one adopted here, in which the new effects are simply motivated by the idea

of a quantum-spacetime medium9, and therefore do not naturally lead to the

expectation of superluminal velocities. Still, as a contribution to this evolving

understanding, we will consider the Bahcall-Waxman bound both for positive

and negative η.

Planck-scale-induced threshold anomalies and the neutrino bound

A key observation for our analysis comes from the fact that the Planck-scale

threshold anomaly described by (2.19) is significant for the Bahcall-Waxman

bound for the same reasons that render it significant for the GZK limit in cosmic-

ray physics. In fact, both the Bahcall-Waxman bound and the GZK limit involve

the analysis of processes of the type p + γ → X + π in which high-energy proton

collides with a softer photon. In the case of the Bahcall-Waxman bound one

finds that for a proton of energy E1 ∼ 1019eV which is emerging from a source

(e.g. an AGN), according to the standard kinematical requirement (2.17) the

photons in the environment that are eligible for production of charged pions π+

9A deformed dispersion relation is generically expected in a special relativistic
theory when a medium is present. The presence of the medium does not alter
the principles of special relativity, and superluminal velocities should not be
allowed. The situation is different in the context of the approach proposed in
[17], in which the deformed dispersion relation is not motivated by the presence
of a quantum-spacetime medium but rather by a role for the Planck scale in the
relativity principles. In the framework of [17] superluminal velocities would not
lead to paradoxical results.
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are all the photons with energy ε ≥ εmin ∼ 0.01eV . But, for the Planck-scale

scenario of (2.19) with η ∼ 1 and n = 1 far fewer photons in the environment,

viz. only photons with energy ε ≥ εmin ∼ 109eV , are kinematically eligible for

production of charged pions. In a typical source the abundance of photons with

ε ≥ 109eV is much smaller, by several orders of magnitude, than the abundance

of photons with ε ≥ 0.01eV . Correspondingly the Planck-scale effect predicts

a huge reduction in the probability that a charged pion be produced before

the proton escapes the source, and in turn this leads (for η > 0 and n = 1) to a

decrease in the expected high-energy neutrinos flux by many orders of magnitude

below the level set by the Bahcall-Waxman bound.

The same qualitative picture applies to the case η ∼ 1, n = 2, although the

effect is somewhat less dramatic because of the large suppression of the effect

that is due to the extra power of the Planck scale. In fact, for η ∼ 1, n = 2 one

finds that the photons in the environment that are energetically enough for the

production of charged pions must have energy ε ≥ εmin ∼ 1eV .

Whereas for positive η the Planck-scale effect leads to a lower neutrino bound

the reverse is true for negative η. In particular, for η ∼ −1, n ≤ 2 from (2.19) it

follows that photons in the source with energies even below10 0.01eV are viable

targets for the production of charged pions by protons with energy E1 ∼ 1019eV .

Correspondingly, the Bahcall-Waxman bound would be weakened.

Implications of the Planck-scale for particle decays and the neutrino

bound

In the previous subsection we have shown that the Planck-scale effects con-

sidered here would affect the production of charged pions before the ultra-high-

10Formally in this case (2.19) even admits photon targets with “negative en-
ergies”. But, of course, considering the approximations we implemented, one
can only robustly infer that photons with very low energies can lead to pion
production.
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energy cosmic-ray proton escapes the source. In this Section we analyze the

implications of the same effects for the decay processes π+ → µ+ + νµ and

µ+ → e+ + νe + ν̄µ which are also relevant for the Bahcall-Waxman bound.

Since we are interested in both a two-body decay, π+ → µ+ + νµ, and a three-

body decay, µ+ → e+ + νe + ν̄µ it is convenient for us to obtain a general result

for N -body decays. This will also be a technical contribution to the study of the

kinematics governed by (2.13). In fact, the implications of (2.13) for two-body

decays have been previously analyzed [63], but for decays in three or more par-

ticles there are no previous results in the literature.

We start our analysis of the decay A → 1 + 2 + ... + N (A is the generic parti-

cle that decays into particles 1, 2, ...N) with the energy-momentum conservation

laws:

EA = E1 + E2 + ... + EN (2.20)

~pA = ~p1 + ~p2 + ... + ~pN (2.21)

Denoting with θij the angle between the linear momentum of particle i and that

of particle j, and denoting with p the modulus of the 3-vector ~p, we can use

(2.21) to obtain (i, j = 1, 2, ...N)

p2
A =

∑
i

p2
i +

∑
i6=j

pipj cos θij (2.22)

and (2.20) to get

E2
A =

∑
i

E2
i +

∑
i6=j

EiEj . (2.23)

From (2.22) and (2.23) it follows that

E2
A − p2

A =
∑

i

(E2
i − p2

i ) +
∑
i6=j

(EiEj − pipj cos θij) . (2.24)

Next we use the deformed dispersion relation (2.13), E2− p2 = m2− ηEnp2/En
p ,

to obtain

m2
A − ηE2

Ap2
A/E2

p =
∑

i

(m2
i − ηEn

i p2
i /E

n
p ) +

∑
i6=j

(EiEj − pipj cos θij) (2.25)
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For simplicity let us consider separately the cases n = 1 and n = 2, starting with

n = 1. It is convenient to rewrite the kinematical condition (2.25), for n = 1, in

the following way

∑
i

m2
i−m2

A+
∑
i6=j

(
pipj + pi

m2
j

pj

)
+

η

Ep

E3
A −

∑
i

E3
i −

∑
i6=j

EiE
2
j

 =
∑
i6=j

pipj cos θij

(2.26)

where we used again the deformed dispersion relation,

E = (p2 + m2 − η

Ep

Ep2)
1
2 ' p− η

2Ep

p2 +
m2

2p
. (2.27)

We are neglecting terms of order E−2
p and higher, which are clearly subleading,

and we are also neglecting terms of order E−1
p m2 which are negligible compared

to terms of order E−1
p E2 since all particles involved in the processes of interest

to us have very high momentum.

Using the fact that cos θij ≤ 1 for every θij, it follows from (2.26) that for the

decay to be kinematically allowed a necessary condition is

∑
i

m2
i −m2

A +
∑
i6=j

(
pipj + pi

m2
j

pj

)
+

η

Ep

E3
A −

∑
i

E3
i −

∑
i6=j

EiE
2
j

 ≤∑
i6=j

pipj

(2.28)

or equivalently

∑
i

m2
i −m2

A +
∑
i6=j

pi

m2
j

pj

+
η

Ep

E3
A −

∑
i

E3
i −

∑
i6=j

EiE
2
j

 ≤ 0 (2.29)

In the analysis of particle-decay processes relations of the type (2.29) impose

constraints on the available phase space. For positive η the quantum-gravity

effect clearly goes in the direction of reducing the available phase space; in fact,

it is easily seen thatE3
A −

∑
i

E3
i −

∑
i6=j

EiE
2
j

 =

(
∑

i

Ei)
3 −

∑
i

E3
i −

∑
i6=j

EiE
2
j

 > 0 . (2.30)

The correction is completely negligible as long as m2
A � E3

A/Ep, but for m2
A �

E3
A/Ep there is clearly a portion of phase space in which, for positive η, condition
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(2.29) is not satisfied. (Think for example of the case E1 ∼ E2 ∼ ... ∼ EN ∼

EA/N .) Starting at EA ≥ (m2
AEp)

1/3 the phase space available for the decay

of particle A is gradually reduced as EA increases. The difference between the

standard Lorentz-symmetry prediction for the lifetime and the quantum-gravity-

corrected prediction becomes more and more significant as the energy of the

decaying particle is increased, and goes in the direction of rendering the parti-

cle more stable, i.e., rendering the decay more unlikely. For the relevant decays

of pions and muons we expect that the quantum-gravity effect starts being im-

portant at pion/muon energies of order (m2
πEp)

1/3 ∼ (m2
µEp)

1/3 ∼ 1015eV . For

positive η it is inevitable that at some energy a significant suppression of the

decay probability kicks in, while for negative η it is easy to see that there is no

effect on the size of the phase space available for the decays. The change in the

sign of η turns as usual into a change of sign of the effect, which would go in the

direction of extending the phase space available for the decay, but the relevant

portion of parameter space (some neighborhood of E1 ∼ E2 ∼ ... ∼ EN ∼ EA/N)

is already allowed even without the Planck scale effect, so for negative-η effect is

not significant. Completely analogous considerations apply to the case n = 2.

From (2.25), for n = 2, one obtains

∑
i

m2
i−m2

A+
∑
i6=j

(
pipj + pi

m2
j

pj

)
+

η

E2
p

E4
A −

∑
i

E4
i −

∑
i6=j

EiE
3
j

 =
∑
i6=j

pipj cos θij ,

(2.31)

and then, just following the same line of analysis we already adopted for the case

n = 1, for n = 2 one finds that the decay is only allowed if

∑
i

m2
i −m2

A +
∑
i6=j

pi

m2
j

pj

+
η

E2
p

E4
A −

∑
i

E4
i −

∑
i6=j

EiE
3
j

 ≤ 0 . (2.32)

SinceE4
A −

∑
i

E4
i −

∑
i6=j

EiE
3
j

 =

(
∑

i

Ei)
4 −

∑
i

E4
i −

∑
i6=j

EiE
3
j

 > 0 , (2.33)

we find again that for positive η the quantum-gravity correction inevitably goes

in the direction of reducing the available phase space and therefore rendering the
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decay more unlikely. In this n = 2 case we expect that the quantum-gravity sup-

pression of the decay probability starts being important at pion/muon energies

of order (mπEp)
1/2 ∼ (mµEp)

1/2 ∼ 1018eV . Of course also for n = 2 one finds

that the case of negative η does not have significant implications, for exactly the

same reasons discussed above in considering the n = 1 case.

To summarize: we found that Planck-scale effects can have important implica-

tions for the neutrino-producing chain of processes p+γ → X+π+, π+ → µ++νµ,

µ+ → e+ + νe + ν̄µ, which are relevant for the Bahcall-Waxman bound. We fo-

cused on a single simple example of Planck-scale kinematics. Because of the

simple kinematical origin of our argument it is reasonable to expect that these

more detailed studies will confirm that, for positive η, the quantum-gravity effect

leads to a neutrino flux that is many orders of magnitude below the level allowed

by the Bahcall-Waxman bound. We have shown here that this is due primarily

to a strong suppression of the production of high-energy charged pions by pro-

tons at the source. If future observations give us a neutrino flux which is close

to the level allowed by the Bahcall-Waxman bound, the type of quantum-gravity

physics considered here would be excluded (for positive η). On the other hand,

a low neutrino flux will be harder to interpret as, a priori, it is not clear that the

Bahcall-Waxman bound should be saturated.

The suppression present for positive η already found full support at the first step

in the chain of processes, in the collisions p + γ → X + π+. We felt however

that it was appropriate to consider also the processes further down in the chain,

in the decays of π+ → µ+ + νµ, µ+ → e+ + νe + ν̄µ. In fact, it was conceivable

that perhaps at that level the production of neutrinos might receive a compen-

sating boost form the quantum-gravity effect which, for positive η, suppresses

the likelihood of the process p+γ → X +π+. This turned out not to be the case:

for positive η one actually expects a further suppression of neutrino production,

since the quantum-gravity effect renders ultrahigh-energy pions and muons more
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stable. This part of our analysis also provided a technical contribution to the

study of the kinematics governed by (2.13), since previously the implications of

(2.13) were only known for two-body decays, while here we obtained a general-

ization to N -body decays for arbitrary N .

We saw that the case of negative η is disfavoured conceptually and starts to be

strongly constrained by preliminary observations in astrophysics. We found that

it would have striking consequences for the Bahcall-Waxman bound: in the case

of negative η the modification of the Bahcall-Waxman bound would amount to

violating (raising) the Bahcall-Waxman bound by several orders of magnitude.

The analysis we presented contributes to ongoing work aimed at establishing a

web of consequences of the type of Planck-scale kinematics considered here. It is

not hard to find several different solutions to a single anomaly in ultrahigh-energy

astrophysics, e.g. the cosmic-ray paradox, if confirmed by other observatories.

However for the type of Planck-scale kinematics considered here, there are sev-

eral correlated predictions and these together can be used to favor or rule out

the scenario. In particular, evidence supporting both a cosmic-ray paradox and

an unexpectedly low ultrahigh-energy neutrino flux would fit naturally within

the Planck-scale-kinematics scenario (with positive η). More precisely, evidence

supporting both a cosmic-ray paradox and an unexpectedly low ultrahigh-energy

neutrino flux would favor solutions of the cosmic-ray paradox based on violations

of Lorentz symmetry with respect to other proposed solutions of the cosmic-ray

paradox. In fact, the correlation we have exposed here between a cosmic-ray

paradox and a lowered Bahcall-Waxman bound is a characteristic of models in

which the kinematics of the processes p + γ → X + π is modified by a viola-

tion of Lorentz symmetry. In fact, the processes p + γ → X + π±,0 dominate

the GZK threshold and the Bahcall-Waxman limit. An increase in the GZK

limit and a lowered Bahcall-Waxman bound are found whenever the violation of

Lorentz symmetry causes an increased energy-threshold condition for the pro-

cesses p + γ → X + π. Therefore it can distinguish between models with and
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without this Lorentz-violation effect, but it cannot establish whether the origin

of the Lorentz violation is connected with quantum gravity. In particular, it is

interesting to consider the suggestion of Coleman and Glashow [56] concerning a

specific Lorentz-violation solution of the GZK paradox, which is not motivated

by quantum gravity. Coleman and Glashow [56] consider a scheme in which

different particles have a different “maximum attainable speed” (essentially a

different “speed-of-light constant” for different particles). This can be cast into

our formalism with a particle-dependent η and with n = 0. It follows from

our analysis that any model that resolves the UHECR GZK paradox using the

Coleman-Glashow scheme will also lead to a stronger Bahcall-Waxman neutrino

bound.
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Chapter 3

Planck-scale particle localization

limit and black hole entropy

As we stressed in the Introduction and in the previous Chapter, the Planck

length, Lp, seems to set the ultimate limit to measurements of distances when

both quantum and gravitational effects are taken into account. The simplest

heuristic arguments supporting this conclusion states that in order to localize a

particle with accuracy δx < Lp one needs a probe which, in its interaction with

the observed particle, will exchange an energy sufficient to create an event horizon

thus preventing the localization procedure from completing successfully.11

Historically the first limitation to the spatial localization of a particle was given

by Heisenberg’s uncertainty relation

δx ≥ 1/δp , (3.1)

valid for non-relativistic quantum mechanics. The generalization to the relativis-

tic realm was proposed by Landau and Peierls [64] and takes the form of the well

known relativistic particle localization limit

δx ≥ 1/E , (3.2)

11For a review of the role of a minimal length in quantum gravity and a series
of arguments supporting the existence of Lp as a localization limit see [10].



in which E is the energy of the particle.

While in the non-relativistic case there is no absolute limitation to the localiza-

tion accuracy for a particle of given energy E (the only price to pay for a very

high accuracy is a corresponding large uncertainty in the particle’s momentum)

in relativistic quantum mechanics one must take into account the possibility of

particle production which introduces a further, absolute, limitation. Even in the

presence of this additional limitation it is still possible to introduce the concept

of a sharply localized particle in the limit of very large energy. General relativity

introduces an obstruction to the idea of sharp localization because of the distor-

tion in the geometry that a very large energy density would produce, eventually

leading to gravitational collapse. Indeed the concept itself of classical space-time

point, from a quantum localization point of view, loses operative meaning due

to the presence of the minimal length Lp.

It is natural to expect that the impossibility of sub-Planckian localization caused

by the convergence of quantum and gravitational effects should affect in some

way the bound (3.2). In fact, as we will see later in this Chapter, Planck-scale

modifications of (3.2) are expected in quantum gravity scenarios in which rela-

tivistic kinematics is altered by the presence of a deformed energy-momentum

dispersion relation of the type considered in the previous Chapter.

The relativistic particle localization limit (3.2) unexpectedly makes its appear-

ance in another, apparently unrelated, context in which gravity and the quantum

interact: the black hole area-entropy relation. The intuition that the entropy of

a black hole should be proportional to its (horizon-surface) area, up to correc-

tions that can be neglected when the area A is much larger than the square

of the Planck length Lp, has provided an important element of guidance for

quantum-gravity research. It is noteworthy that, as shown by Bekenstein [9],

this contribution to black hole entropy can be obtained from very simple in-

gredients. One starts from the GR result [65] that the minimum increase of

area when the black hole absorbs a classical particle of energy E and size s is
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∆A ' 8πL2
pEs. Taking into account the quantum properties of particles one can

estimate s as roughly given by the position uncertainty s ∼ δx ∼ 1/E leading

to the conclusion[9, 67] that the minimum change in the black-hole area must

be of order L2
p, independently of the size of the area. Then using the fact that,

also independently of the size of the area, this minimum increase of area should

correspond to the minimum (“one bit”) change of entropy one easily obtains [9]

the proportionality between black-hole entropy and area.

It is remarkable that, in spite of the humble ingredients of this Bekenstein analy-

sis, the entropy-area relation introduced such a valuable constraint for quantum-

gravity research. And a rather challenging constraint, since attempts to repro-

duce the entropy-area-linearity result using directly some quantum properties of

black holes were unsuccessful for nearly three decades. But over the last few

years both in String Theory and LQG the needed techniques for the analysis of

entropy on the basis of quantum properties of black holes were developed. These

results [68, 69, 70, 71] now go even beyond the entropy-area-proportionality con-

tribution: they establish that the leading correction should be of log-area type,

so that one expects (for A � L2
p) an entropy-area relation for black holes of the

type

S =
A

4L2
p

+ ρ ln
A

L2
p

+ O

(
L2

p

A

)
. (3.3)

For the case of loop quantum gravity, on which we will focus here, there is

still no consensus on the coefficient of the logarithmic correction, ρ, but it is

established [69, 70, 71] that there are no correction terms with stronger-than-

logarithimic dependence on the area.

We observe that the availability of results on the log-area correction might pro-

vide motivation for reversing the Bekenstein argument: the knowledge of black-

hole entropy up to the leading log correction can be used to establish the Planck-

scale modifications of the ingredients of the Bekenstein analysis.

In particular, the mentioned role of the relation E ≥ 1/δx in the Bekenstein

analysis appears to provide an opportunity to put under scrutiny some scenarios
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for the energy-momentum dispersion relation in LQG. Several recent studies have

tentatively argued that the LQG dispersion relation might involve a term with

a linear dependence on the Planck length, and, as we observe in the next Sec-

tion this in turn requires a Planck-length modification of the relation E ≥ 1/δx

between the energy and position uncertainty of a particle. However, as we show

in Section 3.2, the resulting modification of the E ≥ 1/δx relation would in turn

lead, following the Bekenstein argument, to a contribution to black-hole entropy

that goes like the square root of the area. Since such a square-root contribution

is, as mentioned, excluded by direct analysis of black-hole entropy in LQG, we

conclude that the presence in the energy-momentum dispersion relation of a term

with linear dependence on the Planck length is also excluded.

3.1 LQG dispersion relation and its implications

for the E ≥ 1/δx relation

As we stressed in Chapter 2, the possibility of Planck-scale modifications of

the dispersion relation has been considered extensively in the recent quantum

gravity literature and in particular in LQG [32, 33, 72, 47]. Some LQG calcu-

lations [32, 33] provide support for the idea of an energy-momentum dispersion

relation that for a particle of high energy would take the approximate form

E ' p +
m2

2p
+ αLpE

2 , (3.4)

where α is a coefficient of order 1. However, these results must be viewed

as preliminary [72, 47] since they essentially consider perturbations of “weave

states” [32, 33], rather than perturbations of the ground state of the theory. It

is not surprising (and therefore not necessarily insightful) that there would be

some states of the theory whose excitations have a modified spectrum. If instead

a relation of the type (3.4) were applicable to excitations of the ground state of

the theory this would provide a striking characteristic LQG.
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Several papers have been devoted to the derivation of tighter and tighter ex-

perimental limits on coefficients of the α type for LQG (see, e.g., Ref. [73] and

references therein). We intend to show here that the linear-in-Lp term can be

excluded already on theoretical grounds, because of an inconsistency with the

black-hole-entropy results.

Here we start by observing that a modified dispersion relation implies a modifi-

cation of the relation E ≥ 1/δx between the energy of a particle and its position

uncertainty. We can see this by simply following the familiar derivation [66]

of the relation E ≥ 1/δx, substituting, where applicable, the standard special-

relativistic dispersion relation with the Planck-scale modified dispersion relation.

It is convenient to focus first [66] on the case of a particle of mass M at rest, whose

position is being measured by a procedure involving a collision with a photon

of energy Eγ and momentum pγ. In order to measure the particle position with

precision δx one should use a photon with momentum uncertainty δpγ ≥ 1/δx.

Following the standard argument [66], one takes this δpγ ≥ 1/δx relation and

converts it into the relation δEγ ≥ 1/δx, using the special-relativistic disper-

sion relation, and then the relation δEγ ≥ 1/δx is converted into the relation

M ≥ 1/δx because the measurement procedure requires12 M ≥ δEγ. If indeed

LQG hosts a Planck-scale-modified dispersion relation of the form (3.4), it is easy

to see that, following the same reasoning, one would obtain from δpγ ≥ 1/δx the

requirement M ≥ (1/δx)[1 + 2α(Lp/δx)].

These results strictly apply only to the measurement of the position of a particle

at rest, but they can be straightforwardly generalized [66] (simply using a boost)

to the case of measurement of the position of a particle of energy E. In the

case of the standard dispersion relation (without Planck-scale modification) one

12One must take into account the fact [66] that the measurement procedure
should ensure that the relevant energy uncertainties are not large enough to pos-
sibly produce extra copies of the particle whose position one intends to measure.
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obtains the familiar E ≥ 1/δx. In the case of (3.4) one instead easily finds that

E ≥ 1

δx

(
1 + 2α

Lp

δx

)
. (3.5)

3.2 A requirement of consistency with the black-

hole entropy analysis

We now intend to show that the linear-in-Lp modification of the relation be-

tween the energy of a particle and its position uncertainty, which follows from the

corresponding modification of the energy-momentum dispersion relation, should

be disallowed in LQG since it leads to a contribution to the black-hole entropy-

area relation which has already been excluded in direct black-hole-entropy anal-

yses.

We do this by following the original Bekenstein argument [9]. As done in [9] we

take as starting point the general-relativistic result which establishes that the

area of a black hole changes according to ∆A ≥ 8πEs when a classical particle

of energy E and size s is absorbed. In order to describe the absorption of a

quantum particle one must describe the size of the particle in terms of the un-

certainty in its position [9, 67], s ∼ δx, and take into account a “calibration13

factor” [74, 75, 76] (ln 2)/2π that connects the ∆A ≥ 8πEs classical-particle

result with the quantum-particle estimate ∆A ≥ 4(ln 2)L2
pEδx. Following the

13Clearly some calibration is needed in order to adapt the classical-gravity re-
sult for absorption of a classical particle to the case of a quantum black hole
absorbing a quantum particle. In particular, a calibration should arise in the
description of a quantum particle with position uncertainty δx in terms of a clas-
sical particle of size s. A direct evaluation of the calibration coefficient within
quantum gravity is presently beyond reach; however, several authors (see, e.g.,
Refs. [74, 75, 76]) have used the independent analysis of black-hole entropy by
Hawking [77] to infer indirectly this calibration needed in the Bekenstein argu-
ment. We adopt this calibration for consistency with previous literature, but the
careful reader will notice that this calibration does not affect our line of analysis
(the calibration could be reabsorbed in the free parameter α).
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original Bekenstein argument [9] one then enforces the relation E ≥ 1/δx (and

this leads to ∆A ≥ 4(ln 2)L2
p), but we must take into account the Planck-length

modification in (3.5), obtaining

∆A ≥ 4(ln 2)

[
L2

p +2
αL3

p

δx

]
' 4(ln 2)

[
L2

p +2
αL3

p

RS

]
' 4(ln 2)

[
L2

p +
α4
√

πL3
p√

A

]
,

where we also used the fact that in falling in the black hole the particle acquires

[75, 78, 79] position uncertainty δx ∼ RS, where RS is the Schwarzschild radius

(and of course A = 4πR2
S).

Next, following again Bekenstein [9], one assumes that the entropy depends only

on the area of the black hole, and one uses the fact that according to information

theory the minimum increase of entropy should be ln 2, independently of the

value of the area:

dS

dA
' min(∆S)

min(∆A)
' ln 2

4(ln 2)L2
p

[
1 + α4

√
π Lp√

A

] ' (
1

4L2
p

− α
√

π

Lp

√
A

)
. (3.6)

From this one easily obtains (up to an irrelevant constant contribution to en-

tropy):

S ' A

4L2
p

− 2α
√

π

√
A

Lp

. (3.7)

We therefore conclude that when a quantum-gravity theory predicts the pres-

ence of a linear-in-Lp contribution to the energy-momentum dispersion relation

it should correspondingly predict the presence of
√

A contribution to black-hole

entropy. Since in LQG such a
√

A contribution to black-hole entropy has already

been excluded [69, 70, 71] in direct black-hole entropy studies, we conclude that

in LQG the presence of linear-in-Lp contributions to the energy-momentum dis-

persion relation is excluded.

It is instead plausible that Loop Quantum Gravity might host a dispersion rela-

tion of the type

E ' p +
m2

2p
+ α̃L2

pE
3 , (3.8)

with a quadratic-in-Lp contribution. In fact, the careful reader can easily adapt

our analysis to the case of the dispersion relation (3.8), finding that the quadratic-
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in-Lp contribution to the dispersion relation ultimately leads to a leading cor-

rection to the black-hole-entropy formula which is of log-area type, consistently

with the indications obtained in direct black-hole entropy studies [69, 70, 71].
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Chapter 4

Black hole thermodynamics in

quantum space-time

Various arguments suggest that the description of black holes should be an

important aspect of a quantum gravity theory, and that some key operatively

meaningful (not merely formal) differences between alternative theories should

emerge as we establish, within each approach, how the singularity, the evapo-

ration, the “thermodynamics”, and the “information paradox” are handled. A

similar role could be played, by the analysis of the energy-momentum dispersion

relation and the position-momentum uncertainty principle. As we saw in the

previous Chapters approaches to the quantum gravity problem lead to different

expectations for what concerns the possibility of a MDR, in particular, in LQG

and of models based on NG there has been strong interest [32, 33, 47, 42] in

some candidate modifications of the energy-momentum dispersion relation. The

possibility of a quantum gravity motivated generalized position-momentum un-

certainty principle (GUP) has also been considered. GUPs [80, 10] have been

studied primarily in the literature on String Theory [81] and on models based

on NCG [11]. The form of the energy-momentum dispersion relation and of the

position-momentum uncertainty relation can therefore be used to characterize

alternative approaches to the quantum-gravity problem.



In the previous Chapter we studied a possible link between the predictions that

a quantum gravity theory makes for black hole thermodynamics and the predic-

tions that the same theory makes for the energy-momentum dispersion relation.

By establishing the nature of such a link one would, in our opinion, obtain a

valuable characterization of the type of internal logical consistency that various

aspects of a quantum-gravity theory should satisfy.

In this Chapter, following the strategy outlined in Chapter 3, we attempt to give

the first elements of a general analysis of some key characteristics of black-hole

physics, as affected by some scenarios for a MDR or a GUP.

Sections 4.2, 4.3 and 4.4, set the stage, by reviewing some results in the MDR

and GUP literature and revisiting the point made in Chapter 3 generalizing the

link between the log-area terms in the entropy-area relation for black holes and

certain formulations of the MDR and the GUP. In Section 4.5 we explore the

implications of a MDR and/or a GUP for the Bekenstein entropy bound and

for the Generalized Second Law of thermodynamics. We find that the implica-

tions are significant and we conjecture that they should also not be negligible in

the analysis of other entropy-bound proposals. Section 4.6 considers a role for

MDR/GUP modifications in the analysis of the black-body radiation spectrum,

and again exposes some significant changes with respect to the standard picture,

including the possibility that the characteristic frequency of black-body radiation

at given temperature T might have a dependence on T such that in the infinite-

temperature limit the characteristic frequency would take a finite (Planckian)

value. It is then perhaps not surprising that in the analysis of the black-hole

evaporation process, discussed in Section 4.7, we also find some characteristic

MDR/GUP-induced new features, such as the possibility that the energy flux

emitted by the black hole might diverge when the black-hole mass reaches a

certain finite (Planckian) value. In Section 4.8, we comment on one key aspect

which might deserve further consideration: for these theories with MDRs and/or

GUPs there has been some speculation that the speed of massless particles might
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be different from the familiar speed-of-light scale value of c. In Sections 4.1-4.7

we assume throughout that c still is the speed of massless particles, but in Section

4.8 we establish how the analysis of black-body radiation would be changed if

one implemented some alternatives considered in the literature. In Section 4.9 we

compare our analysis with other studies which have considered the implications

of a MDR or a GUP for some aspects of black-hole physics.

4.1 MDR, GUP and black hole entropy

4.1.1 MDRs and GUPs in Quantum Gravity

The emergence of MDRs and/or GUPs in quantum gravity, although of course

not guaranteed, can be motivated on general grounds, and also finds support in

the direct analysis of certain quantum gravity scenarios.

As we discussed in the previous Chapters, in most cases (LQG, NG scenarios,

DSR etc.) one is led to consider a dispersion relation of the type14

~p2 = f(E, m; Lp) ' E2 − µ2 + α1LpE
3 + α2L

2
pE

4 + O
(
L3

pE
5
)

, (4.1)

where f is the function that gives the exact dispersion relation, and on the

right-hand side we just assumed the applicability of a Taylor-series expansion for

E � 1/Lp. The coefficients αi can take different values in different Quantum-

Gravity proposals.

The situation concerning the possibility of a GUP is rather similar and can be

motivated, on general grounds, by the intuition [80, 10] that quantum gravity

14We denote with m, as conventional, the rest energy of the particle. The
mass parameter µ on the right-hand side is directly related to the rest energy,
but µ 6= m if the αi do not all vanish. For example, if α1 6= 0 but αi = 0 for every
i ≥ 2 one of course obtains µ2 = m2 + α1Lpm

3. This needed to be clarified since
it is relevant for more general analyses of MDRs, but in our study we are always
concerned with particles which are either massless or anyway are analyzed at
energies such that the mass can be neglected, and therefore both µ and m will
never actually enter our key formulas.
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might require the introduction of an absolute Planckian limit on the size of the

collision region, applicable to high-energy microscopic collision processes. For

example, a GUP of the form

δx ≥ 1

δp
+ αL2

pδp + O(L3
pδp

2) , (4.2)

which has been derived within String Theory [81], is such that at small δp one

finds the standard dependence of δx on δp (δx gets smaller as δp increases) but

for large δp the Planckian correction term becomes significant and keeps δx ≥ Lp.

In this approach the coefficient α should take a value of roughly the ratio between

the square of the string length and the square of the Planck length, but this of

course might work out differently in other quantum gravity proposals.

While in the parametrization of (4.1) we included a possible correction term sup-

pressed only by one power of the Planck length, in (4.2) such a linear-in-Lp is

assumed not to be present. This reflects the status of the presently-available lit-

erature: for the MDR a large number of alternative formulations, including some

with the linear-in-Lp term, are being considered, as they find support in different

quantum gravity scenarios (and different preliminary results adopting alternative

approximation schemes within a given approach), whereas all the discussions of

a GUP assume that the leading-order correction should be proportional to the

square of Lp.

4.1.2 MDR, GUP and a Planck scale particle localization

limit

One can easily repeat the analysis reported in Chapter 3, and show that if

our quantum gravity scenario hosts a Planck-scale modification of the dispersion

relation of the form (4.1) then clearly the relation between δpγ and δEγ should

be re-written as follows

δpγ '
(

1 + α1LpE + 3

(
α2

2
− α2

1

8

)
L2

pE
2

)
δEγ (4.3)
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which then leads to the requirement

M ≥ 1

δx
− α1

Lp

(δx)2
+
(

11

8
α2

1 −
3

2
α2

) L2
p

(δx)3
+ O

(
L3

p

(δx)4

)
. (4.4)

This result can be straightforwardly generalized (simply using a boost) to the case

of the measurement of the position of a particle of energy E. For the standard

case this leads to the E ≥ 1/δx relation while in the presence of an MDR one

easily finds

E ≥ 1

δx
− α1

Lp

(δx)2
+
(

11

8
α2

1 −
3

2
α2

) L2
p

(δx)3
+ O

(
L3

p

(δx)4

)
. (4.5)

While the connection between a MDR and a Planck-scale particle-localization

limit is somewhat less obvious, it is not at all surprising that the GUP would

give rise to such a particle-localization limit. In fact, as mentioned, the GUP

is primarily viewed as a way to introduce a Planckian limit on the size of the

collision region, applicable to high-energy microscopic collision processes, and a

limitation on the size of collision regions would naturally be expected to lead to a

particle-localization limit. Indeed, as the careful reader can easily verify, from the

GUP one obtains (following again straightforwardly the familiar line of analysis

discussed in Ref. [66]) a modification of the relation E ≥ 1/δx. The modification

is of the type E ≥ 1/δx+∆, with ∆ of order αL2
p/δx

3, and originates from the fact

that according to the GUP, (4.2), one obtains δpγ ≥ 1/δx+λ2
s/δx

3 (instead of the

original δpγ ≥ 1/δx). Using the standard special-relativistic dispersion relation

for a photon pγ = Eγ the condition on the momentum uncertainty translates to

a condition on the energy uncertainty δEγ ≥ 1
δx

(
1 + α

L2
p

δx2

)
, and ultimately this

leads to

E ≥ 1

δx
+ α

L2
p

(δx)3
+ O

(
L3

p

(δx)4

)
. (4.6)

4.1.3 MDR and black hole entropy

The argument proposed in Chapter 3 suggested that a Planck-scale modifi-

cation of the particle-localization limit, of the type (4.5) or (4.6), can be used to
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motivate corrections to the S = A/(4L2
p) area-entropy relation for black holes.

As we saw in the previous Chapter, the Bekenstein argument implicitly assumes

(through the E ≥ 1/δx relation) that the energy-momentum dispersion rela-

tion and the position-momentum uncertainty principle take the standard form.

Let us now reformulate the argument, still assuming a standard form for the

position-momentum uncertainty principle, but introducing a MDR of the type

(4.1). The area of a black hole changes according to ∆A ≥ 8πL2
pEs when a

classical particle of energy E and size s is absorbed. Describing the size of the

particle in terms of the uncertainty in its position and taking into account the

MDR-induced Planck-length modification in (4.5), one obtains

∆A ≥ 4(ln 2)

L2
p −

α1L
3
p

δx
−

(
3
2
α2 − 11

8
α2

1

)
L4

p

(δx)2

 (4.7)

' 4(ln 2)

L2
p −

α1L
3
p

RS

−

(
3
2
α2 − 11

8
α2

1

)
L4

p

(RS)2


' 4(ln 2)

L2
p −

α12
√

πL3
p√

A
−

(
3
2
α2 − 11

8
α2

1

)
4πL4

p

A

 .

From (4.8) we derive an area-entropy relation assuming that the entropy of the

black hole depends only on its area and that the minimum increase of entropy

should be, independently of the value of the area, ln 2:

dS

dA
' min(∆S)

min(∆A)
(4.8)

' ln 2

4(ln 2)L2
p

[
1− α12

√
πLp√
A

− ( 3
2
α2− 11

8
α2

1)4πL2
p

A

]

'

 1

4L2
p

+
α1

√
π

2Lp

√
A

+

(
3
2
α2 − 11

8
α2

1

)
π

A

 ,

which gives (up to an irrelevant constant contribution to entropy)

S ' A

4L2
p

+ α1

√
π

√
A

Lp

+
(

3

2
α2 −

11

8
α2

1

)
π ln

A

L2
p

. (4.9)

This result of course reproduces the famous linear formula if all coefficients αi

vanish. If the cubic term α1E
3 is present in the energy-momentum dispersion
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relation then the leading correction goes like
√

A, whereas if the first nonzero

coefficient in the dispersion relation expansion is α2 the leading correction term

goes like log A. Our “improved Bekenstein argument” therefore provides a pos-

sible link between the form of the MDR (and of the GUP, as we stress later) and

the all-order form of the entropy-area relation for black holes.

We can also use (4.9) to obtain, using the first law of black hole thermodynamics

dS = dM
T

, a Planck-scale-corrected relation between black-hole temperature and

mass:

TMDR
BH '

E2
p

8πM

(
1− α1

Ep

2
√

2M
−
(

15

32
α2

1 −
3

8
α2

) E2
p

M2

)
, (4.10)

where we also used the familiar relation between black hole area and mass A =

16πM2.

Some all-order results for MDR modifications of black-hole entropy

In the previous pages we discussed a possible relation between MDR and log

corrections to the entropy-area relation. Since the log-area term is a leading-

order term it was appropriate to work within a power-series expansion of the

MDR. Moreover, the mentioned results from quantum-gravity research (primarily

from LQG and approaches based on NG) that provide motivation for a Planck-

scale modification of the dispersion relation in most cases are obtained within

analyses that only have access to the first terms in a power-series expansion of

the dispersion relation. Still for some aspects of our analysis it will be useful

to contemplate some illustrative examples of all-order dispersion relations. The

careful reader can easily verify that once a given energy-momentum dispersion

relation E = fdisp(p) is adopted the steps of the calculation reported in the

preceding subsection can be followed rather straightforwardly, obtaining

dS

dA
' min(∆S)

min(∆A)
' 1

2L2
p

√
π

A

1

fdisp

(√
4π
A

) (4.11)

and

TBH '
1

4π
fdisp

(
E2

p

2M

)
. (4.12)
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As illustrative examples of “all-order MDRs” we consider the following three

cases:

cosh(E/Ep)− cosh(m/Ep)−
p2

2E2
p

eE/Ep = 0, (4.13)

E2

(1− E/Ep)2
− p2

(1− E/Ep)2
−m2 = 0, (4.14)

cosh(
√

2E/Ep)− cosh(
√

2m/Ep)−
p2

E2
p

cosh(
√

2E/Ep) = 0, (4.15)

(4.13) has already been considered in the previous literature [42, 17, 20, 87], par-

ticularly as a possible description of particle propagation in κ-Minkowski non-

commutative spacetime. It provides an example in which the coefficient of the

linear-in-Lp term is nonvanishing: α1 = −1/2. And it is noteworthy that accord-

ing to (4.13) there is a maximum momentum for fundamental particles: from

(4.13) it follows that for E →∞ one has p → Ep.

The case (4.15) has not been previously considered in the literature. It provides

for our purposes a valuable illustrative example since, as in the case of (4.13), it

would lead to a maximum momentum (p → Ep for E →∞) but, contrary to the

case of (4.13), it corresponds to α1 = 0 (whereas α2 = −5/18). This is therefore

an example with the maximum-momentum feature and such that one would ex-

pect the leading corrections to the entropy-area relation to be logarithmic.

The case of (4.14) has already been considered in the literature for other rea-

sons [18], and it provides us an opportunity to illustrate some consequences of

a scenario in which both α1 and α2 vanish, but still there are some Planck-scale

modifications of the energy-momentum dispersion relation. And it is noteworthy

that (4.14) can be implemented in such a way that [18] the Planck scale provides

the maximum value of both momentum and energy.

For the cases with dispersion relations (4.13) or (4.15), since E →∞ for p → Ep,

the formulas derived above would lead to the conclusion that the black hole

temperature diverges at some finite (nonzero!) value of the black-hole mass

Mmin = Ep/2. We would then assume that this Mmin is the minimum allowed
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mass for a black hole, and that the standard description of the evaporation pro-

cess should not be applicable beyond this small value of mass.

In cases in which one introduces both a maximum momentum and a maximum

energy while keeping the form of the dispersion relation largely unaffected15, as

done in some applications of (4.14), one would expect (since the energy has a

maximum Planckian value, EMax = EP ) that the temperature should be bounded

to be lower than the Planck scale, TMax ∼ Ep, and that the minimum allowed

value of black-hole mass should be also Plankian, since it should be the value of

mass such that temperature reaches is maximum allowed value.

4.1.4 GUP and black hole entropy

In the previous subsection we focused on scenarios in which the energy-

momentum dispersion relation is modified but the position-momentum uncer-

tainty principle preserves the Heisenberg form. Clearly the key ingredient of our

analysis is the presence of a correction term ∆ in the particle-localization-limit

relation E ≥ 1/δx + ∆. As stressed in subsection 4.1.2, both a MDR and a

GUP can introduce such a correction term in the particle-localization limit, and

therefore, as we want to discuss explicitly in this subsection, also in presence of

a GUP one should expect corrections to the entropy-area black-hole formula and

to the formula that relates the mass and the temperature of a black hole.

We start the section by considering scenarios in which the position-momentum

uncertainty principle is Planck-scale modified, while the energy-momentum dis-

persion relation preserves its special-relativistic form. Then we comment on the

more general case, in which one might be dealing with both a MDR and a GUP.

Let us start by noting here again for convenience the particle-localization limit

15Whenever the mass m can be ignored (i.e. for massless particles and high-
energy particles with finite mass) the dispersion relation (4.14) is indistinguish-
able from the standard special-relativistic one.
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that one obtains assuming a GUP of the form (4.2) and a standard (special-

relativistic) energy-momentum dispersion relation:

E ≥ 1

δx
+ α

L2
p

(δx)3
+ O

(
L3

p

(δx)4

)
. (4.16)

Following the same strategy of analysis adopted in the previous section, one finds

that the Bekenstein argument, when taking into account this localization limit

(4.16), leads to the conclusion that the minimum increase of black-hole area upon

absorption of a particle of energy E is given by

∆A ≥ 4(ln 2)

[
L2

p +
αL4

p

(δx)2

]
' 4(ln 2)

[
L2

p +
αL4

p

(RS)2

]
' 4(ln 2)

[
L2

p +
α4πL4

p

A

]
.

From this it follows that the entropy-area relation should take the form

S ' A

4L2
p

− απ ln
A

L2
p

, (4.17)

and the formula relating the temperature and the mass of the black hole should

take the form

TGUP
BH '

E2
p

8πM

(
1 + α

E2
p

8M2

)
. (4.18)

Combining MDR and GUP in the analysis of black-hole entropy

We have argued that both a MDR and a GUP are possible features of a

quantum-gravity theory that would affect black-hole termodynamics. Actually,

as the careful reader must have noticed, the line of analysis we are advocating

is composed of two steps. First we notice that the “particle-localization limit”

in its standard form, E ≥ 1/δx, is derived on the basis of two key assumptions,

the validity of the Heisenberg position-momentum uncertainty principle and the

validity of the special-relativistic energy-momentum dispersion relation, and that

by modifying the uncertainty principle and/or the dispersion relation one gets

a modified particle-localization limit of the type E ≥ 1/δx + ∆δx,Lp . Then we

observe that a key assumption of the Bekenstein argument for the derivation

of black-hole entropy is the validity of the standard particle-localization limit
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E ≥ 1/δx. With a MDR and/or a GUP one gets a modified particle-localization

limit, which in turn leads to a modification of the black-hole area-entropy rela-

tionship.

It is worth mentioning that the modifications induced by a MDR and a GUP

may (at least in part) cancel out at the level of the area-entropy equation. In

order to stress the importance of this possibility let us consider the information

presently available on the LQG approach: (i) several LQG studies have argued

in favour of a MDR with non-vanishing α1 (leading Planck-scale correction to

the dispersion relation that goes linearly with Lp), (ii) there is no mention of a

GUP in the LQG literature, (iii) several LQG studies have argued in favour of an

entropy-area relationship in which the leading correction, beyond the linear term,

is of log-area type. According to the perspective on the derivation of black-hole

entropy that we are advocating one would find these three ingredients to be logi-

cally incompatible: if the MDR has nonvanishing α1 and the position-momentum

uncertainty principle is not Planck-scale modified then in the entropy-area re-

lationship the leading correction, beyond the linear term, should have
√

area

dependence. Does this mean that LQG is a logically inconsistent framework? Of

course, it does not. It simply means that some of the relevant preliminary results

must be further investigated. It may well be that, as the LQG approach is un-

derstood more deeply, it turns out that the α1 coefficient in the MDR vanishes.

Or else we might discover that in LQG the α1 coefficient in the MDR takes a

nonzero value, but there is a corresponding linear-in-Lp term in the GUP with

just the right coefficient to give an overall vanishing coefficient to the
√

area

term in the entropy-area relation.

Our perspective on the derivation of black-hole entropy provides a logical link

between different aspects of a quantum-gravity theory and may be used most

fruitfully when, as in the case of LQG, the formalism is very rich and some of the

results obtained within that formalism are of preliminary nature. Even before be-

ing able to derive more robust results we may uncover that the presently-available
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preliminary results are not providing us with a logically-consistent picture, and

this in turn will give us additional motivation for investigating more carefully

those preliminary results.

It is also worth mentioning that on the string-theory side our perspective on

the derivation of black-hole entropy provides no evidence of a logical inconsis-

tency among the results so far obtained in that framework. The string-theory

literature indicates that the entropy-area relationship should involve a leading

correction, beyond the linear term, of log-area type, and provides strong evidence

of a GUP of the type (4.2), while the results so far obtained do not indicate the

need to modify the dispersion relation in string theory. These three ingredients

provide a logically-consistent scenario within our perspective on the derivation

of black-hole entropy. As shown above, with a GUP of the type (4.2) and with

an unmodified (still special-relativistic) dispersion relation one is indeed led to

an entropy-area relationship in which the leading correction, beyond the linear

term, is of log-area type.

4.2 Implications for the Bekenstein entropy bo-

und and Generalized Second Law

It is natural at this point, after having shown that a MDR and a GUP can

affect the black-hole entropy-area and mass-temperature relationships, to won-

der whether other aspects of black-hole thermodynamics are also affected, and

whether the overall picture preserves the elegance/appeal of the original scheme,

based on standard uncertainty principle and dispersion relation. In this section

we investigate the validity of the Generalized Second Law (GSL) of thermody-

namics and the implications for the Bekenstein entropy bound. In order to work

within a definite scenario we assume here a MDR (while we implicitly assume

that the uncertainty principle takes its standard form).

The GSL [88] asserts that the second law of thermodynamics is still valid in
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presence of collapsed matter. Given the entropy of the black hole, as described

by the area-entropy relation, the GSL requires that the total entropy of a system

composed of a black hole and ordinary matter never decreases. This means that

the following inequality holds for all physical processes

SBH + Smat ≥ 0 . (4.19)

It was observed [89] that in principle (using the so-called “Geroch process”)

one could violate the GSL if objects of fixed size R and energy E could have

arbitrarily large entropy S. This led Bekenstein to propose a “entropy bound”

Smat ≤ 2πER (4.20)

for an arbitrary system of energy E and effective radius R. The fact that the

GSL implies the Bekenstein bound and vice versa has long been debated and

is still actively debated. However the Bekenstein bound turns out to hold for a

variety of systems in flat Minkowski space and can be derived as weak-gravity

limit of the popular “Generalized Covariant Entropy Bound” [90].

A remarkable feature of the Bekenstein bound is that, in spite of being motivated

by considerations rooted in the gravitational realm, it does not involve the Planck

scale (or equivalently Newton’s constant). The absence of the Planck scale is less

puzzling in light of the observation that the bound can be derived even without

advocating gravity in any way: it is sufficient [75] to analyze some implications

of the particle-localization limit E ≥ 1
δx

. This alternative derivation requires

considering a matter system with energy E, in which self-gravitation effects can

be neglected, that occupies a region in flat spacetime with radius R smaller than

the gravitational radius RG ≡ 2L2
pE. The standard particle-localization limit,

when generalized to this type of systems, sets a minimum value for the energy

of a quantum in a region of spatial radius R

ε(R) ≥ 1

R
. (4.21)
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The maximum number of quanta that we can have in the region is then given by

Nmax '
E

ε(R)
= ER . (4.22)

If we consider the simple case of a system for which the maximal number of

microstates for N particles is given by Ω(N) = 2N then the entropy of the

system S = log Ω(N) is bounded by the inequality

Smat ≤ (log 2)ER , (4.23)

which is indeed consistent with the Bekenstein bound (up to another ”calibration

factor” η = 2π
log 2

).

We briefly reviewed this derivation of the Bekenstein bound especially in order

to stress the role played by the particle-localization limit E ≥ 1
δx

. It is then

obvious that the modifications of the particle-localization limit induced by a

MDR (and/or a GUP) would affect the Bekenstein bound. As shown earlier,

within our parametrization of the MDR16, one obtains a particle localization

limit of the form

ε(R) ≥ 1

R

(
1− α1

Lp

R
−
(

3

2
α2 −

11

8
α2

1

) L2
p

R2
+ O

(
L3

p

R3

))
(4.24)

which gives

Smat ≤ 2πER

(
1 + α1

Lp

R
+
(

3

2
α2 −

11

8
α2

1

) L2
p

R2
+ O

(
L3

p

R3

))
. (4.25)

This MDR-modified Bekenstein bound fits very naturally with our corresponding

formula, (4.9), for the entropy-area relation; in fact, the two results combine to

provide us with a picture which is still consistent with the GSL. According to

(4.25) when a matter system of energy E falls into the black hole, this corresponds

to a negative change of entropy which has absolute value not greater than

max(|∆Smat|) ' 2πER

(
1 + α1

Lp

R
+
(

3

2
α2 −

11

8
α2

1

) L2
p

R2
+ O

(
L3

p

R3

))
(4.26)

16For an analogous modification of the Bekenstein bound coming from the
GUP see Ref. [75].
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and correspondingly, according to (4.9), the black hole entropy increases at least

by

min(∆SBH) ' 2πER

(
1 + α1

Lp

R
+
(

3

2
α2 −

11

8
α2

1

) L2
p

R2
+ O

(
L3

p

R3

))
(4.27)

Thus the MDR-induced corrections to SBH and Smat cancel exactly at the level

of the inequality relevant for the GSL. The GSL stills holds, even in presence of

a modified particle-localization limit.

4.3 Corrections to black-body radiation spec-

trum

In preparation for some observations on black-hole evaporation, to which we

devote Section 4.4, we now want to investigate the implications of a MDR and/or

a GUP for the black-body radiation spectrum.

4.3.1 MDR and black-body spectrum in leading order

Let us start by considering photons in a cubical box with edges of length

L (and volume V = L3). The wavelengths of the photons are subject to the

boundary condition 1
λ

= n
2L

, where n is a positive integer. This condition implies,

assuming that the de Broglie relation is left unchanged, that the photons have

(space-)momenta that take values p = n
2L

. Thus momentum space is divided into

cells of volume Vp =
(

1
2L

)3
= 1

8V
. From this it follows that the number of modes

with momentum in the interval [p, p + dp] is given by

g(p)dp = 8πV p2dp . (4.28)

Assuming a MDR of the type parametrized in (4.1) one then finds that (m = 0

for photons)

p ' E

(
1 +

α1

2
LpE +

(
α2

2
− α2

1

8

)
L2

pE
2

)
(4.29)
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and

dp '
(
1 + α1LpE +

(
3

2
α2 −

3

8
α2

1

)
L2

pE
2
)

dE (4.30)

Using this in (4.28) one obtains

g(E)dE = 8πV
(
1 + 2α1LpE + 5

(
1

2
α2 +

1

8
α2

1

)
L2

pE
2
)

E2dE (4.31)

which in terms of the frequency ν takes the form

g(ν)dν = 8πV
(
1 + 2α1Lpν + 5

(
1

2
α2 +

1

8
α2

1

)
L2

pν
2
)

ν2dν . (4.32)

In order to obtain the MDR-modified energy density of a black body at tempera-

ture T we must now use (4.32) and rely on the statistical arguments which show

that in a system of bosons at temperature T the average energy per oscillator is

given by

Ē =
ν

e
ν
T − 1

. (4.33)

Thus the energy density at a given temperature T , for the frequency interval

[ν, ν + dν], is

uν(T )dν = 8π
(
1 + 2α1Lpν + 5

(
1

2
α2 +

1

8
α2

1

)
L2

pE
2
)

ν3dν

e
ν
T − 1

. (4.34)

and integrating this formula we get the MDR-modified energy density of a black

body at temperature T

u(T ) =
8π5

15
T 4 + 384πζ(5)α1LpT

5 + 5
(

1

2
α2 +

1

8
α2

1

)
160π7

63
L2

pT
6 (4.35)

The MDR introduces corrections of the type T 4+n/En
P to the Stefan-Boltzmann

law. Moreover, the maximum value of the integrand in (4.34), as a function

of ν, is clearly also shifted: the MDR also introduces a modification of Wien’s

law. Of course, using the low-energy expansion (4.1) of the dispersion relation

we only get a reliable picture at temperatures safely below the Planck scale, but

the presence of correction terms of the type T 4+n/En
P clearly suggests that the

MDR-modified description leads to departures from the Stefan-Boltzmann law

that can become very significant as the temperature approaches the Planck scale.

We intend to show this explicitly by considering an example of all-order MDR

formula.
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4.3.2 Some all-order results for MDR modifications of

black-body spectrum

Let us therefore derive once again the modified Stefan-Boltzmann law, now

assuming, as illustrative example of an all-order MDR formula, the validity of

the dispersion relation (4.15). Clearly the number of modes in momentum space

is still given by

g(p)dp = 8πV p2dp , (4.36)

but now

p2 = E2
p

(
1− 1

cosh(
√

2E/Ep)

)
(4.37)

and this implies that the number of modes for given energy is given by

g(E)dE = 16πV E2
p sinh2

(
E/Ep√

2

)
cosh

(
E/Ep√

2

)
1

cosh5/2
(√

2E/Ep

)dE (4.38)

i.e. the number of modes for given frequency is

g(ν)dν = 16πV E2
p sinh2

(
ν/Ep√

2

)
cosh

(
ν/Ep√

2

)
1

cosh5/2
(√

2ν/Ep

)dν . (4.39)

Then the modified Stefan-Boltzmann law is given, in integral form, by

u(T ) =
1

V

∫ ∞

0

g(ν)

e
ν
T − 1

νdν , (4.40)

where g(ν) is the one of (4.39).

It is useful to consider some limiting forms of the integration in (4.40). Clearly,

since (4.15) is consistent with (4.1) for α1 = 0 and α2 = −5/18, in the limit

T/Ep � 1 the integration (4.40) gives a result that reproduces (4.35) for α1 = 0

and α2 = −5/18. But, now that we are dealing with an all-order formula,

besides considering the case T/Ep � 1 we can also investigate the opposite limit

T/Ep � 1, finding

u(T ) = 16πE4
p

{
T

Ep

C1 −
1

2
C2 −

Ep

T
C3 + O(E2

p/T
2)

}
(4.41)
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where

C1 =
∫ ∞

0
sinh2(x/

√
2)

cosh(x/
√

2)

cosh5/2(
√

2x)
dx =

1

6
, (4.42)

C2 =
∫ ∞

0
x sinh2(x/

√
2)

cosh(x/
√

2)

cosh5/2(
√

2x)
dx ' 0.22, (4.43)

C3 =
∫ ∞

0
x2 sinh2(x/

√
2)

cosh(x/
√

2)

cosh5/2(
√

2x)
dx ' 0.41, (4.44)

This means that the MDR (4.15) leads to a modification of the Stefan-Boltzmann

law which at the Planck scale is very significant: for T � Ep one finds that u

depends linearly on T , rather than with the fourth power.

It is of particular interest to establish what is the relationship between the “char-

acteristic frequency” (and characteristic wavelength) of the black-body spectrum

and temperature. In the standard description of a black body the characteristic

frequency grows linearly with the temperature. In order to verify whether this is

still the case in our MDR-modified scenario we can take the derivative of uν(T )

with respect to ν, so that we can identify the value of frequency for which the

energy density (and the radiated flux) reaches a maximum. This leads to the

following equation that must be satisfied by the characteristic frequency ν̄:

(
e

ν̄
T − 1

)
(g(ν̄) + g′(ν̄)ν̄)− e

ν̄
T

T
g(ν̄)ν̄ = 0 . (4.45)

For T � Ep of course this reproduces the type of small modification of Wien’s

law, which we already noticed in the previous section. The fact that we are now

considering a scenario with a given all-order MDR formula allows us to exam-

ine the dependence of the characteristic frequency on temperature even when

the temperature reaches and eventually exceeds the Planck scale. And we find

that for T/Ep � 1 the characteristic frequency becomes essentially independent

of temperature. No matter how high the temperature goes the characteristic

frequency never exceeds the following finite value:

ν̄ ' Ep
cosh−1[(1 +

√
41)/4]√

2
' 0.87Ep (4.46)
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This means that at low temperatures any increase of temperature causes a cor-

responding increase in characteristic frequency of the black-body spectrum, but

gradually a saturation mechanism takes over and even in the infinite-temperature

limit the characteristic frequency is still finite, and given by the Planck scale (up

to a coefficient of order 1). This occurs with the dispersion relation (4.15), i.e.

in a scenario with a minimum value of wavelength but no maximum value of fre-

quency. An analogous result for the case of the dispersion relation (4.14), which

leads to both a minimum value of wavelength and a maximum value of frequency,

would have not been surprising: if the framework introduces from the beginning

a maximum Planckian value of frequency, then of course also the characteristic

frequency of black-body radiation would be “sub-Planckian”. But in analyzing

the case of (4.15) we found that the presence of a minimum wavelength at the

fundamental level is sufficient for the emergence of a maximum Planckian value

of the characteristic frequency of black-body radiation, as shown explicitly by

Eq. (4.46).

4.3.3 Black-body spectrum with GUP

In the previous two subsections the key point was that a MDR leads to a

modified formula for the density of modes in a given (infinitesimal) frequency

interval, g(ν)dν. If instead we now assume that the dispersion relation takes its

standard special-relativistic form, but there is a GUP, it is not a priori obvious

that the black-body spectrum is affected. One does indeed obtain a modified

black-body spectrum if it is assumed that the GUP should also be reflected in a

corresponding modification of the de Broglie relation,

λ ' 1

p

(
1 + αL2

pp
2
)

(4.47)

and

E ' ν
(
1 + αL2

pν
2
)

. (4.48)
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For oscillators in a box the number of modes in an infinitesimal frequency interval

would still be described by the standard formula

g(ν)dν = 8πV ν2dν , (4.49)

but, as a result of (4.48), the average energy per oscillator would be given by

Ē =
ν

e
ν
T − 1

(
1 + αL2

pν
2

(
1−

ν
T

1− e−
ν
T

))
. (4.50)

Combining (4.48) and (4.50) one finds

uν(T )dν = 8π

(
1 + αL2

pν
2

(
1−

ν
T

1− e−
ν
T

))
ν3dν

e
ν
T − 1

. (4.51)

and the modified Stefan-Boltzmann law takes the form

u(T ) =
8π5

15
T 4 +

8π6

9
αL2

pT
6 . (4.52)

The L2
pT

6 correction term is just one of the Ln
pT

4+n correction terms on which

we already commented in the context of the MDR modifications of black-body

radiation.

4.4 Black hole evaporation

In this section we use some of the results obtained in the previous sections in

a description of the black-hole evaporation process. The key ingredients are the

relation between the black-hole temperature and mass and the relation between

the black-hole temperature and the energy density emitted by the black hole. We

neglect possible non-thermal corrections due to back-reaction effects, that will be

extensively discussed in the next Chapter, and we therefore treat the radiation

emitted by the black-hole as black-body radiation.

4.4.1 MDR and Black hole evaporation

At temperature T the intensity I of the radiation emitted by a black hole of

area A is given by

I(T ) = A u(T ) . (4.53)
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Using energy conservation one can write

dM

dt
= −A u, (4.54)

and assuming a MDR of the type E = fdisp(p), in light of our result (4.12), one

finds
dM

dt
= −16π

M2

E4
p

u

(
1

4π
fdisp

(
E2

p

2M

))
(4.55)

When M � Ep (so that a power-series expansion of fdisp(E
2
p/2M) is mean-

ingful) this takes the form

dM

dt
= = −k0

E8
p

M2
− k1α1

E9
p

M3
− (k21α

2
1 + k22α2)

E10
p

M4
+ O(E5

p/M
5) (4.56)

where k0 = π2

480
, k1 = k0

90ζ(5)−π5

π5 , k21 = k0
502π5−75600ζ(5)

672π5 and k22 = −k0
211

672π5

This power-series analysis allows to conclude that a MDR can affect the speed

of evaporation of a black hole. For example, in the case of the dispersion relation

(4.13) the evaporation process is retarded with respect to the standard case,

whereas in the case of (4.15) the evaporation process is accelerated.

With a given all-order MDR formula one can obtain of course even more detailed

information than available using the power-series expansion. In particular, let

us look at the case of the dispersion relation (4.15) and analyze the stage of the

evaporation process when the mass of the black hole is of the order of the Planck

scale. For M ∼ EP we can approximate the MDR (4.15) as follows

E ' Ep√
2

ln

(
2

1− (p/Ep)2

)
(4.57)

and then one finds

dM

dt
' −(16π)2M2

 C1

4π
√

2
ln

 2

1− ( Ep

2M
)2

− 1

2
C2

 . (4.58)

This shows that, in the case of the MDR (4.15), the energy flux emitted by the

black hole would formally diverge as the black-hole mass approaches Ep/2. This

is mainly a consequence of the fact that the black-hole temperature diverges

when M → Ep/2. In the standard description of black-hole evaporation these

divergences occur as M → 0.
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4.4.2 GUP and Black hole evaporation

The observations reported in the previous subsection for the case of a MDR

(with unmodified energy-momentum uncertainty relation) can be easily adapted

to the complementary situation with a GUP and a standard (unmodified) dis-

persion relation. One must however assume, as already stressed in Subsection

4.3.3, that the GUP is reflected in a corresponding modification of the de Broglie

relation (λ ' (1 + αL2
pp

2)/p). In this hypothesis one easily finds that the black

hole should lose its mass at a rate given by

dM

dt
= −A u

(
E2

p

2M

)
= −16π

8π5

15

(
T

(
E2

p

2M

))4

+
8π6

9
αL2

p

(
T

(
E2

p

2M

))6

. (4.59)

Expanding for M/Ep � 1 we obtain

dM

dt
' −16π

E4
p

M2

(
k̃0 + αk̃1

E2
p

M2

)
, (4.60)

with k̃0 = π
7680

and k̃1 = 1
294912

+ π
15360

. Clearly the modifications to the black hole

evaporation formula obtained in the GUP scenario are qualitatively the same as

in the MDR scenario with α1 = 0.

4.5 A possible dependence on the speed law for

photons

Throughout our analysis we have implicitly assumed that the law vγ = 1

describing the speed of photons is not affected by the MDR and/or the GUP.

The possibility of modifications of the speed law for photons has been however

considered rather extensively, particularly in the MDR literature. While several

authors have argued that the law vγ = 1 should not be modified even in presence

of an MDR (see, e.g., Refs. [91, 92, 93] and references therein), one also finds

support in the literature for the proposal (see, e.g., Ref. [87] and references

therein) of the law vγ = [dE/dp]m=0 = [dfdisp(p)/dp]m=0 and the proposal (see,
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e.g., Ref. [18] and references therein) of the law vγ = p/E.

For our analysis a key point is that if, instead of vγ = 1, one took vγ = [dE/dp]m=0

or vγ = p/E then the speed of photons would acquire an energy dependence which

should be taken into account in some aspects of our derivations. We postpone

to future studies this more general analysis, but in order to explore the type

of modifications which could be induced by such an energy dependence of the

speed of photons we do intend to consider here the description of black-body

radiation with the dispersion relation (4.15), assuming that the speed of photons

is governed by either vγ = [dE/dp]m=0 or vγ = p/E.

We focus on the emitted “flux density”

Iν = A uν vγ(ν) (4.61)

where A is the area of the radiating surface and uν is the energy density at a

given frequency. Taking vγ = p/E, from (4.15) it follows that

vγ(ν) =
p

E
=

Ep

E

√√√√1− 1

cosh
(√

2E
Ep

) . (4.62)

From this it would then follow that the energy flux density is given by

Iν(T ) = 4πA
√

2E3
p

1

eν/T − 1

sinh(
√

2E/Ep)

cosh3(
√

2E/Ep)

[
cosh(

√
2E/Ep)− 1

]
. (4.63)

This suggests that, although there are some small quantitative differences, the

qualitative features of black-body radiation with the dispersion relation (4.15) are

largely independent of the choice between vγ = 1 and vγ = p/E. In particular,

from (4.63) with one finds that the typical frequency of the photons contributing

to the energy flux saturates at

ν̄ ' 0.76Ep, (4.64)

which is not much different from the typical frequency found for the case vγ = 1.

The analysis of the total emitted energy (
∫∞
0 Iν(T )dν) also leads to rather small
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differences between the choices vγ = 1 and vγ = p/E. In particular from (4.63)

one finds

I/A =
8

15
π5T 4

1 + C1

(
T

Ep

)2

+ C2

(
T

Ep

)4

+ O

(
T

Ep

)6
 , (4.65)

in the limit T/Ep � 1, and

I/A = E4
p

{
C̃1

T

Ep

+ C̃2 + C̃3
Ep

T
+ O

(
Ep

T

)2
}

, (4.66)

in the limit T/Ep � 1, where C1 = −100π2

21
, C2 = 164π4

5
and C̃1 = 5.57, C̃1 = −π

and C̃3 = 0.79.

If instead one adopts the law vγ = [dE/dp]m=0, still assuming (4.15), one obtains

vγ(ν) =
dE

dp
=

cosh
3
2

√
2E

Ep

cosh E√
2Ep

(4.67)

and then the flux density takes the form

Iν = 16πAE2
p ν

sinh2 ν√
2Ep(

e
ν
T − 1

)
cosh

√
2ν

Ep

. (4.68)

From this one easily verifies that the effects induced by the Planck-scale defor-

mation in the case vγ = [dE/dp]m=0 are essentially of the same type encountered

in the cases vγ = 1 and vγ = p/E, but the quantitative differences between the

case vγ = [dE/dp]m=0 and the other two cases are more significant then the ones

between the cases vγ = 1 and vγ = p/E. As mentioned, in absence of the Planck-

scale effects the typical frequency of the photons contributing to the energy flux

grows linearly with the temperature, while in the cases in which the Planck-scale

effects of (4.15) are introduced with vγ = 1 or vγ = p/E the typical frequency

saturates at a Planckian value. If the same Planck-scale effects are introduced

with vγ = [dE/dp]m=0, as implicitly codified in (4.68), one finds that the growth

of the typical frequency with temperature also slows down significantly at high

temperatures but it does not completely saturate: at high temperatures the typ-

ical frequency grows logarithmically with the temperature.
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In summary the choice of the speed law does not appear to affect the core fea-

tures of the analysis, but it appears that it could in some cases introduce some

significant quantitative differences.

4.6 Comparison with previous analyses

To our knowledge, the one we reported here, in spite of its preliminary nature,

is at this point the most composite effort of exploration of the implications of

a MDR and/or a GUP in black-hole thermodynamics. But parts of the overall

picture we attempted to provide had been investigated previously, and it seems

appropriate to comment briefly on this previous related studies.

Closest in spirit to our perspective are the studies of the implications of the GUP

for black-hole thermodynamics reported in Refs. [83] and [75]. Whereas for us

(4.2) is to be handled prudently, as it could possibly be only an approximate

form of a more complicated all-order-in-Lp formula, in Refs. [83, 75] the formula

(4.2) is taken as the exact form of the GUP, thereby leading to a corresponding

form of the entropy-area relation. Perhaps more importantly Refs. [83, 75] as-

sume that the GUP would not affect the black-body spectrum and in particular

a standard expression for Stefan’s law is used even in Planckian regimes. There

was no investigation of MDRs in Refs. [83, 75].

An attempt to describe Hawking radiation in presence of a MDR was reported

in Ref. [82]. There the problem is approached from the field-theoretic perspec-

tive, considering possible modification of the field equations coming from the

MDR. No explicit formula for the corrections to the Hawking spectrum and to

the entropy-area relation was obtained in Ref. [82].

Ref. [84] investigates how a general form of the GUP could modify the volume

element of phase space, and therefore the black-body-radiation formula, using

the Hamiltonian formulation in terms of Poisson brackets.

In Ref. [85] an analysis of black-body radiation is carried out in presence of a
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MDR of the type emerging from a proposed “semiclassical limit” of LQG, which

is analogous to the “leading order” MDR (4.1) we studied in some parts of this

paper. The results reported there are consistent with the power-series formu-

las for Stefan’s and Wien’s law which we derived. The features we exposed in

considering some illustrative examples of all-order MDRs, were not discussed in

Ref. [85]. Also the entropy-area relation and the aspects of black-hole evapora-

tion which we considered here were not part of the analysis reported in Ref. [85],

and Ref. [85] did not consider the possibility of a GUP.

Ref. [86] is closest in spirit to the part of our analysis where we focused on the

black-body radiation spectrum, as affected by a MDR. Although the formal setup

differs in several points, the results are roughly consistent with ours, including

the possibility of “saturation” of the characteristic frequency at T � Ep. There

was however no investigation of the entropy-area relation and the Generalized

Second law in Ref. [86], and Ref. [86] also did not consider the possibility of a

GUP.

In summary: the technical difficulties that are encountered in most approaches

to the quantum-gravity problem usually only allow one to grasp a few discon-

nected aspects of the physical picture that the theories could provide. And in

some approaches even the few “physical” results that are obtained, are only de-

rived within approximation schemes whose reliability is not fully established. We

have argued that in this situation it might be particularly valuable to establish

a few logical links connecting some apparently unrelated aspects of the physical

picture. And we showed that such a link can be found between some aspects of

quantum-gravity research which have attracted strong interest in recent times, a

link providing a connection between results on modified energy-momentum dis-

persion relations and/or modified position-momentum uncertainty principles and

results on the thermodynamics of black holes. We have provided a description

of log corrections to the entropy-area law for black holes that is based on the
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availability of a MDR and/or a GUP.

In exploring other aspects of black-hole thermodynamics as affected by MDRs

and GUPs we stumbled upon a few noteworthy points. We found that the Gen-

eralized Second Law of thermodynamics might be robust enough to survive the

introduction of these Planck-scale effects. We found that a MDR introducing a

minimum value for wavelengths (even when no maximum value for frequencies

is introduced) could lead to a description of black-body radiation in which the

characteristic frequency of the radiation never exceeds a finite Planckian value

(described in Eq. (4.46)). This in turn also affects black-hole evaporation in such

a way that the temperature diverges already when the mass of the black hole

decreases to a Planck-scale value (instead of diverging only in the zero-mass limit

as usually assumed).

A key test for our line of analysis will come from future improved analyses within

the LQG approach. According to the perspective we adopted some preliminary

results on the emergence of modifications of the dispersion relation that depend

linearly on the Planck length (at low energies) would be incompatible with the

LQG results on log corrections to the entropy-area relation for black holes. We

predict that improved analyses of the LQG approach should lead to the emer-

gence of a picture that is instead compatible with the conceptual link we are

proposing.

As stressed in Section 4.5 one aspect of our analysis in which we took a rather

conservative attitude (in comparison with the possibilities considered in the lit-

erature) is the one concerning the description of the speed of photons, which

we assumed to be still frequency independent. We do not expect major obsta-

cles for a generalization of our analysis with the inclusion of the possibility of

a frequency-dependent speed of photons, and the preliminary investigation re-

ported in Section 4.5 suggests that some of the core features that emerged from

our analysis are only moderately affected by the choice of law for the speed of

photons.
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Chapter 5

Tunneling through the quantum

horizon

Classical black holes are perfect absorbers: they accrete their (irreducible)

mass and no fraction of it can escape as there are no classical allowed trajecto-

ries crossing the horizon on the way out. This particular behavior suggests an

interpretation of the black hole area as an entropy-like quantity. The key point

of Bekenstein’s argument is the inclusion of the quantum mechanical properties

of a particle crossing the black-hole horizon. For this reason the entropy-area

relation can be viewed as a first step towards the understanding of the “quan-

tum” behavior of black holes. Hawking’s discovery [6] that quantum fields on

a Schwarzschild background do indeed predict a thermal flux of particles away

from the horizon confirmed that the black hole entropy/area is in all senses a

thermodynamic quantity and it is legitimate to define a temperature that corre-

sponds to a “physical” temperature associated with the radiation.

It is interesting to note how the inclusion of quantum effects allows, for particles

in a Schwarzschild geometry, to propagate through classically forbidden regions.

This suggests that it should be possible to describe the black hole emission pro-

cess, in a semiclassical fashion, as quantum tunneling. Parikh and Wilczek [95]

(see also [96, 97]) showed how such a description of black hole radiance is possible



if one considers the emission as a transition between states with the same energy.

In this way the lowering of the mass of the black hole during the process and the

related change in the radius set the barrier through which the particle tunnels.

The resulting probability of emission differs from the standard Boltzmann factor

by a corrective term which depends on the ratio of the energy of the emitted

particle and the mass of the hole. The appearance of the correction causes the

emission spectrum to be non-thermal. This reflects the fact that in order to de-

scribe transitions in which the energy of the emitted particle-black hole system

does not change one must take into account the particle’s self-gravitation. In the

limit when the energy of the emitted particle is small compared with the mass

of the black hole the emission spectrum becomes thermal and Hawking’s result

is recovered.

In the tunneling picture the Bekenstein-Hawking entropy-area relation can be

deduced from the form of the emission probability. In fact for a generic sys-

tem undergoing a quantum transition the emission probability is proportional

[96, 97] to a phase space factor depending on the initial and final entropy of the

system. A phase space factor given by the exponential of the difference between

the Bekenstein-Hawking entropy17 SBH = A
4

= 4πM2 associated with the black

hole after and before the emission corresponds exactly to the Parikh-Wilczek

result for the tunneling probability18.

The derivation of Parikh and Wilczek gives a dynamical description of black

hole radiance in terms of the semiclassical tunneling of a shell propagating in a

Schwarzschild metric. The metric “knows” of the particle’s energy through the

phenomenon of back reaction but its role is just that of a classical background

17In this Chapter, for convenience, we will work in k = h̄ = c = G = 1 units,
until, in Section 5.2 we will return to k = h̄ = c = 1 units to keep track of the
Planck-scale suppressed terms.

18The same result for the emission probability is obtained, using different tech-
niques, in [98]. In the same work the authors discuss the universal validity of the
formula Γ ∼ e(−∆A/4) for a quantum emission from every type of event horizon.
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space-time. It is interesting to ask then if it is possible to have a complementary

derivation of black hole radiance in which space-time itself with its “quantum”

properties drives the emission process. In [102] York provided such a descrip-

tion in terms of zero point quantum fluctuations of the black hole metric. In

the model he proposed such fluctuations, governed by the uncertainty principle,

are responsible for the appearance of a “quantum ergosphere”. If one associates

the irreducible mass of the quantum ergosphere to the mean thermal energy of

a Planckian oscillator at a given temperature the result is that, for the lowest

modes of oscillation, the temperature of the heat bath is approximatively given

by Hawking’s formula.

In this Chapter we proceed a step further and modify the Parikh-Wilczek tun-

neling picture including Planck-scale corrections for the near-horizon emission

process. The type of modification we consider is directly related to the logarith-

mic corrective term appearing in the Bekenstein-Hawking entropy-area relation

discussed in Chapter 3 and 4. We will also show how, within the tunneling

framework, the presence of a quantum ergosphere can be related to the appear-

ance of a logarithmic correction. This provides a link between quantum gravity

microscopic description of black holes and the origin of the quantum fluctuations

responsible for the formation of the quantum ergosphere.

5.1 Hawking radiation as tunneling

5.1.1 Motion of a self-gravitating spherical shell in a Sch-

warzschild geometry

We summarize here the results of [103] where the corrections to the geodesic

motion of a spherical shell due to self-gravitation in a Schwarzschild geometry

were calculated. We start by writing the metric for a general spherically sym-
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metric system in ADM form

ds2 = −Nt(t, r)
2dt2 + L(t, r)2[dr + Nr(t, r)dt]2 + R(t, r)2dΩ2 . (5.1)

The action for the black hole plus the emitted shell system is

S =
1

16π

∫
d4x
√
−gR−m

∫
dt
√

(N̂ t)2(L̂r)2( ˙̂r + N̂ r)2 +boundary terms , (5.2)

where r̂ is the shell radius and the other quantities under “ˆ” are evaluated at the

shell through ĝµν = gµν(t̂, r̂). The above action can be written in Hamiltonian

form where all the canonically conjugate momenta appear. Since the system has

only one effective degree of freedom the idea is to solve the constraints of the

theory in order to eliminate the dependence of the action from all the momenta

but the one conjugate to the shell radius. This remaining degree of freedom can

be expressed in terms of the total mass/energy of the system and it is obviously

related to the position of the shell. In the approach followed in [103], the total

(ADM) mass is allowed to vary with time while the mass of the hole is kept fixed.

This time dependence accommodates the dynamics of the system and allows en-

ergy conservation to hold at any time of the process.

Once the constraints are solved and the expression for the conjugate momenta

are substituted into the action one integrates over the gravitational degrees of

freedom to obtain an effective action. Furthermore one specializes to the case of

a massless particle (m = 0) and fixes the gauge appropriately (L = 1 R = r).

This choice of the gauge corresponds to a particular set of coordinates for the

line element (Painleve’ coordinates) which is particularly useful to study across

horizon phenomena being non-singular at the horizon and having Euclidean con-

stant time slices (for more details see [105]). The effective action for a massless

gravitating spherical shell is then

S =
∫

dt
(
pc

˙̂r −M+

)
, (5.3)

where pc is the momentum canonically conjugate to r̂, the radial position of the

shell, and M+ is the total mass of the shell-hole system which plays the role of
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the Hamiltonian. In terms of the black hole mass M and the shell energy E we

have M+ = M + E. Details of the lengthy derivation can be found in [103]. The

trajectories which extremize this action are the null geodesics of the metric

ds2 = −[Nt(r; M + E)dt]2 + [dr + Nr(r; M + E)dt]2 + r2dΩ2 , (5.4)

for which
dr

dt
= Nt(r; M + E)−Nr(r; M + E) . (5.5)

5.1.2 The KKW model in a nutshell

In [103] and [104], Keski-Vakkuri, Kraus and Wilczek showed how corrections

of the type considered above can affect the emission spectrum of a black hole.

They consider the Bogoliubov coefficients, αkk′ and βkk′ , connecting the positive

and negative frequency modes of an asymptotic observer and one freely falling

through the horizon. The (semiclassical) WKB approximation is then used to

express the mode solutions for the observer crossing the horizon. Such an ap-

proximation is valid since the black hole emission is dominated by modes that

have very small wavelengths close to the horizon and undergo a large red-shift

when propagating away from it. Once this approximation is taken into account

one finds [104]

|αkk′| = e
−Im

∫ rf
r+(0)

p+(r)dr
; |βkk′| = e

−Im
∫ rf

r−(0)
p−(r)dr

, (5.6)

where r± and p± are the trajectories and momenta of positive and negative

energy modes propagating in and out of the horizon and rf is located outside the

horizon. From Hamilton’s equation ṙ = ∂H
∂p

= ∂E
∂p

, with the Hamiltonian given

by H = M + E, one can express p± using (5.5)

p±(r) =
∫ ±ωk

0

dE

Nt(r; M + E)−Nr(r; M + E)
. (5.7)

It can be shown [104] that αkk′ = 1. For βkk′ one instead finds

Im
∫ rf

r−(0)
p−(r)dr = −π

∫ −ωk

0

dE

κ(M + E)
. (5.8)
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In order to calculate the amplitude for particle production in the KKW model,

it is assumed that the emission in the low energy regime is uncorrelated so that

the amplitude in terms of |βkk′/αkk′|2 reads

ρ(ωk) =
|βkk′/αkk′|2

1− |βkk′/αkk′|2
. (5.9)

Instead when ωk is comparable with the mass of the black hole and at most one

quantum can be emitted

ρ(ωk) '
∣∣∣∣∣βkk′

αkk′

∣∣∣∣∣
2

. (5.10)

Using the first law of black-hole thermodynamics dM = κ(M)
2π

dS, one can evaluate

(5.8). For the first case when ωk is small compared to M , we obtain the usual

emission amplitude governed by the Hawking temperature. For large ωk instead

one has

ρ(ωk) ' exp [S(M − ωk)− S(M)] . (5.11)

Substituting the standard Bekenstein-Hawking expression for the black hole en-

tropy in the previous equation leads to a non-thermal correction, quadratic in

ωk, to the typical Boltzmann factor of the emission probability.

5.1.3 Quantum tunneling and non-thermal spectrum

The results of [103] and [104] can be recast in an elegant and simple form

if one describes the emission of a particle as a tunneling process [95, 96]. This

is done by considering the geometrical optics limit19 so that one can treat the

wave-packets near the horizon as effective particles. The emission of each of

these particles is seen as a tunneling through a barrier set by the energy of the

particles itself. This simple argument makes it possible to avoid the machinery

of Bogoliubov coefficients and also shows how energy conservation is naturally

19This limit is valid for the same reason that allowed us to use the WKB
approximation in the analysis of the previous section, i.e. the fact that the
emitted wave packets are arbitrarily blue-shifted close to the horizon.
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preserved during the emission process [97].

The authors consider now an explicit expression for the line element (5.4) ob-

tained from the expressions of Nt and Nr given by the constraint equations [103]

Nt = ±1 ; Nr = ±
√

2M+

r
. (5.12)

In the model proposed in [95] the total mass of the system is kept fixed while

the hole mass is allowed to vary. This means that the mass parameter M+ is

now M+ = M − E. One then has the following expression for a spherical shell

moving along a radial null geodesic

ṙ = ±1−
√

2(M − E)

r
. (5.13)

In the WKB approximation the tunneling probability is a function of the imagi-

nary part of the particle’s action

Γ ∼ e−2 Im S . (5.14)

If we consider the emission of a spherical shell we have

Im S = Im
∫ rfin

rin

prdr , (5.15)

where rin and rfin are just inside and outside the barrier through which the

particle is tunneling. We can now see the key point: the expression for Im S is

the same as the one for the Bogoliubov coefficient βkk′ used in the KKW analysis.

The same coefficient characterizes the emission probability in the field theoretical

model. The advantage of considering the particle-tunneling picture is that the

correction we get now is present at all energy regimes even though it becomes

dominant only in the high energy regime. To calculate Im S we use once again

Hamilton’s equation, ṙ = ∂H
∂p

,

Im S = Im
∫ rfin

rin

prdr = Im
∫ rfin

rin

∫ M−E

M

dH ′

ṙ
dr . (5.16)

The Hamiltonian is H ′ = M − E ′, so the imaginary part of the action reads

Im S = −Im
∫ rfin

rin

∫ E

0

dE ′

ṙ
dr . (5.17)
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Using (5.13) and integrating first over r one easily obtains

Γ ∼ exp
(
−8πME

(
1− E

2M

))
, (5.18)

which, provided the usual Bekenstein-Hawking formula SBH = A/4 = 4πM2 is

valid, corresponds to the KKW result

Γ ∼ exp [SBH(M − E)− SBH(M)] . (5.19)

If one integrates (5.17) first over the energies it is easily seen that in order to

get (5.18) we must have rin = M and rout = M − E. So according to what

one would expect from energy conservation, the tunneling barrier is set by the

shrinking of the black hole horizon with a change in the radius set by the energy

of the emitted particle itself.

An interesting aspect to analyze is whether or not the non-thermal correction

obtained leads to statistical correlations between the probabilities of emission of

quanta with different energies. This would allow for information to be encoded

in the emitted radiation. Consider for example the probability of emission of a

quantum of energy E = E1 + E2 and two quanta of energies E1 and E2. The

function

χ(E1 + E2; E1, E2) = log(Γ(E1 + E2))− log(Γ(E1)Γ(E2)) (5.20)

measures the statistical correlation between the two probabilities. It is zero

when the probabilities are independent (or “uncorrelated”) as e.g. for a thermal

emission spectrum like the one of a radiating black body. Using (5.18) it is easy

to verify [97] that for the non-thermal correction due to back-reaction effects

χ(E1 + E2; E1, E2) = 0. One concludes that back-reaction effects alone do not

provide a straightforward way in which information can emerge from the horizon.

There might well be other processes that would allow the information of a pure

quantum state to be recovered after its gravitational collapse but one would have
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to resort to other mechanisms 20 .

5.2 The Parikh-Wilczek tunneling picture re-

visited

In this section we discuss a modification of the above argument that takes

into account the presence of Quantum Gravity-induced corrections. Let us first

notice that the probability of emission of a shell with energy E, in the presence

of back-reaction effects, put in the form (5.19) is highly suggestive. It is what

one would expect from a quantum mechanical calculation of a transition rate

where, up to a factor containing the square of the amplitude of the process,

Γ ∼ eSfin

eSin
= exp (∆S) . (5.21)

In other words the emission probability is proportional to a phase space factor

which depends on the initial and final entropy of the system. The entropy is

directly related to the number of micro-states available to the system itself.

This observation calls for an immediate generalization. As we discussed in the

previous chapters calculations of the black hole entropy in several quantum grav-

ity scenarios [69, 70, 71, 68, 99, 100, 101], besides reproducing the familiar linear

relation between area and entropy obtained a leading order “quantum” correction

with a logarithmic21 dependence on the area

SQG =
A

4L2
p

+ α ln
A

L2
p

+ O

(
L2

p

A

)
. (5.22)

Now consider the emission of a particle of energy E from the black hole. One

might expect that a derivation of the emission probability in a quantum gravity

20As proposed in [97] correlations might appear when back-reaction effects are
considered in transient phases of the black hole emission.

21We now switch from k = h̄ = c = G = 1 units of the previous sections to
k = h̄ = c = 1 to keep track of the Planck-scale suppressed terms.
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framework in presence of back-reaction would lead to an expression analogous to

(5.21) with the usual Bekenstein-Hawking entropy SBH = A
4L2

p
replaced by (5.22),

i.e.

Γ ∼ exp (SQG(M − E)− SQG(M)) . (5.23)

The previous expression written in explicit form reads

Γ(E) ∼ exp (∆SQG) =
(
1− E

M

)2α

exp
(
−8πGME

(
1− E

2M

))
. (5.24)

The exponential in this equation shows the same type of non-thermal deviation

found in [95]. In this case, however, an additional factor depending on the ratio

of the energy of the emitted quantum and the mass of the black hole is present.

We would now like to know whether or not, in our case, the emission probabilities

for different modes are statistically correlated. Using (5.24), we have, for a first

emission of energy E1,

ln[Γ(E1)] = −8πGME1

(
1− E1

2M

)
+ 2α ln

[
M − E1

M

]
. (5.25)

Then a second emission of energy E2 gives us

ln[Γ(E2)] = −8πG(M − E1)E2

(
1− E2

2(M − E1)

)
+ 2α ln

[
M − E1 − E2

M − E1

]
.

(5.26)

Alternatively, a single emission of the same total energy yields

ln[Γ(E1 + E2)] = −8πGM(E1 + E2)
(
1− E1 + E2

2M

)
+ 2α ln

[
M − E1 − E2

M

]
.

(5.27)

It is now easily verified that the vanishing of the correlations, or

χ(E1 + E2; E1, E2) = 0 , (5.28)

is still in effect at least to this logarithmic order. In fact, after just a few it-

erations, one should readily be convinced that this outcome will persist up to

any perturbative order of the quantum-corrected entropy [cf, equation (5.22)].

Hence, it does not appear that the inclusion of such correlations can account for
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the mode correlations after all.

On the other hand, it is interesting to note that the emission of three or more

quanta could still induce a non-zero correlation even for the tree-level calcu-

lation. By which we mean that, for the sequential emission of (e.g.) E1, E2

and E1 + E2, then S(M − E1) − S(M) + S(M − E1 − E2) − S(M − E1) 6=

S(M − 2E1− 2E2)−S(M −E1−E2). And so there still appears to be viability,

on some level, for the notion that information leaks out in the tunneling process.

Let us also notice how the appearance of the Quantum Gravity suppression term

in (5.24) can cause Γ(E) → 0 when the energy of the emitted quantum ap-

proaches the mass of the black hole. However, this suppression can only take

place when α > 0; whereas a negative value of α will, conversely, cause the prob-

ability to diverge as the same limit is approached! 22

5.2.1 Tunneling in the presence of near-horizon Planck-

scale effects

We discuss now a possible modification of the Parikh-Wilczek derivation, in

the presence of Planck-scale effects, which could give rise to an emission spectrum

of the type (5.24). As we already observed in the previous sections, the black

hole radiation spectrum seen from an observer at infinity is dominated by modes

that propagate from “near” the horizon where they have arbitrarily high fre-

quencies and their wavelengths can easily go below the Planck length [106, 107].

It turns out then that a key assumption in all the derivations of the Hawking

radiation is that the quantum state near the horizon looks, to a freely falling

observer, like the Minkowski vacuum. In other words Lorentz symmetry should

hold up to extremely short scales or very large boosts. It is plausible then that

22Let us, however, point out one possible loophole: higher-order corrections
may conspire to induce a suppression that is stronger than this divergence.
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the motion of our particle tunneling through the horizon might be affected by

Planck scale modifications of relativistic kinematics associated to the presence of

a MDR. One would expect that an analysis analogous to the ones of the previous

sections with opportune modifications should lead to a result of the form (5.19)

with SBH replaced by SQG.

Once again we consider the emission of a spherical shell and compute the tun-

neling amplitude (5.14) through (5.15)

Im S = Im
∫ rfin

rin

prdr = Im
∫ rfin

rin

∫ H

0

dH ′

ṙ
dr = −Im

∫ rfin

rin

∫ E

0

dE ′

ṙ
dr . (5.29)

where we used the fact that for the Hamiltonian H = M − E. Now we proceed

to evaluate the integral without using an explicit form for the null geodesic of

the spherical shell in terms of its energy. In fact, near the horizon, where our

integral is being evaluated, one has

Nt(r; M)−Nr(r; M) ' (r −R) κ(M) + O((r −R)2) (5.30)

where R is the Schwarzschild radius and κ(M) is the horizon surface gravity.

Taking into account self-gravitation effects, ṙ can be approximated by

ṙ ' (r −R) κ(M − E) + O((r −R)2) . (5.31)

We can then write

Im S = −Im
∫ rfin

rin

∫ E

0

dE ′

(r −R) κ(M − E ′)
dr . (5.32)

Integrating over r, using the Feynman prescription23 for the pole on the real axis

r = R, we get

Im S = −π
∫ E

0

dE ′

κ(M − E ′)
. (5.33)

The surface gravity appearing in the above integral carries quantum gravity

corrections coming from modifications of near horizon physics related to Planck-

scale departures from Lorentz invariance. As shown explicitly in Chapter 4 these

23The pole is moved in the lower half plane as in [95].
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modifications are such that they reproduce via the first law of black hole ther-

modynamics, dE ′ = dM ′ = κ(M)
2π

dS, the quantum gravity corrected entropy-area

law (5.22). Using the first law, (5.33) becomes

Im S = −1

2

∫ SQG(M−E)

SQG(M)
dS =

1

2
[SQG(M)− SQG(M − E)] (5.34)

which leads to a probability of emission

Γ(E) ∼ exp (−2ImS) =
(
1− E

M

)2α

exp
(
−8πGME

(
1− E

2M

))
(5.35)

analogous to (5.24).

5.2.2 The quantum ergosphere

In the previous sections a key step toward the tunneling description was the

inclusion of back reaction effects for the propagation shell at the classical level.

The origin of the “quantum ergosphere” can be also traced back to a calculation

of back reaction effects. In this case one studies the response of the metric to

the energy momentum tensor associated with the quantum fluctuations near the

horizon responsible for the black hole emission process. An estimate [108, 109] of

this effect can be given in terms of the black hole luminosity, which for a Hawking

flux is given by LH = B
M2 , with B a barrier factor depending on the grey body

absorption and the radiated species.

The quantum-induced energy leakage from the black hole [109] produces a split-

ting between the timelike limit surface (TLS) (on which ṙ = 0 for radial null

geodesics, with r the circumferential radius) and the event horizon (EH), ap-

proximately identified [109] with the locus of “unaccelerated” (r̈ = 0) photons.

This splitting, which is essentially a back reaction effect, leads to the creation of

a quantum ergosphere associated with the geometrically well defined difference of

areas δAQE = ATLS −AEH . The important point to note is that if one considers

the explicit form of δAQE it is easy to see that this does not go to zero when

LH → 0 (and consequently when the Hawking temperature TH → 0) as it would
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be expected. This reveals an intrinsic “quantum” nature of the ergosphere and

indeed it turns out that δAQE goes to zero only in the limit h̄→ 0, in which case

one recovers the classical Schwarzschild structure. This fact suggests that for

quantum black holes, zero point fluctuations of the metric might play an active

role in near horizon phenomena, in primis in the Hawking effect.

The above arguments served as a starting point for York’s description of black

hole radiance. In [102] he proposes a model of fluctuating metric whose oscillation

amplitudes are determined by the uncertainty principle. A quantum ergosphere

is formed for each mode of oscillation with an irreducible mass defined by the dif-

ference between the mean irreducible masses associated with the EH and TLS. In

order to estimate Hawking’s temperature York conjectured that this irreducible

mass corresponds to the mean thermal energy of a quantum oscillator in a heat

bath at a given temperature. The frequencies of oscillation are then determined

by the lowest gravitational quasinormal modes of the black hole. The tempera-

ture obtained in this way agrees in good approximation with Hawking’s result.

York’s model provides an example of how it is possible to “switch on” a quan-

tum ergosphere introducing appropriate quantum effects, namely, quantum os-

cillations around the classical Schwarzschild metric. More generally one would

expect that the presence of a quantum ergosphere would play a role in the phe-

nomenon of black hole radiance whenever quantum properties of the geometry

are taken into account. Along these lines it is reasonable to assume that quantum

effects on the horizon within a particular quantum gravity framework, without

the introduction of an ad hoc model for the quantum fluctuations of the metric,

will be effectively described in terms of a quantum ergosphere. In the follow-

ing section we will see this conjecture at work in the context of the previously

discussed tunneling framework.
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5.2.3 A tunnel through the quantum ergosphere

In this section we will see how it is possible to give a complementary descrip-

tion of the tunneling process with quantum corrections that instead of focusing on

Planck-scale effects on the tunneling particle will take into account the quantum

properties of space-time itself. Our goal is to show how an emission probability

of the type (5.24) can be obtained if one takes into account the possibility that

a “quantum” background space-time can alter the geometry near the horizon.

In the spirit of York we will assume that zero-point quantum fluctuations of the

metric produce a splitting between the timelike limit surface and the event hori-

zon. This would lead to the formation of a quantum ergosphere characterized

by the area difference δAQE = ĀTLS − ĀEH (where ĀTLS and ĀEH are the mean

areas associated with the fluctuating TLS and EH). As in the previous sections,

in order to derive the tunneling amplitude, we have to evaluate the integral

Im S = Im
∫ rfin

rin

prdr = Im
∫ rfin

rin

∫ H

0

dH ′

ṙ
dr = −Im

∫ rfin

rin

∫ E

0

dE ′

ṙ
dr , (5.36)

but now taking into account the presence of the quantum ergosphere. Let us

focus on the propagation of a classical shell in a Schwarzschild geometry. When

no back reaction effects nor quantum gravity corrections are present the geodesic

(5.13) is simply

ṙ = ±1−
√

2GM

r
, (5.37)

ṙ = 0 at r = 2GM where the TLS and EH coincide (the apparent horizon (AH)

for spherically symmetric configurations coincides with the TLS)24. To evaluate

the effects of this shifting on (5.37) we consider the mean irreducible masses

associated with the TLS and EH

M̄TLS =

(
ĀTLS

16π

)1/2

, M̄EH =

(
ĀEH

16π

)1/2

(5.38)

24The radial coordinate r is, just like in standard Schwarzschild coordinates
and in the coordinate set used in [102, 108], the circumferential radius.
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Following [102] we assume that M̄TLS and M̄EH will differ from the standard

value of M by a term of order E2
p/M

M̄TLS = M + α̃
E2

p

M
(5.39)

M̄EH = M + β̃
E2

p

M
(5.40)

with α̃ > β̃. There will be an irreducible mass associated with the quantum

ergosphere MQE = M̄TLS − M̄EH which can be seen as a measure of the zero

point energy associated with quantum fluctuations of the geometry. We assume

that a non-vanishing MQE will cause a shift in the pole of the integrand in ImS.

To see this let us recall that, as stressed in Section 5.1.3, the tunneling barrier

is set by the energy of the black hole before and after the emission of the shell.

This is obtained using only the information about the radial location of the TLS

contained in the integral (5.17). We realize then that the position of the TLS is

what really determines the emission probability in the tunneling framework. As

an estimate of the shift in the pole we will assume that in the expression for the

radial null geodesic (5.37) the mass associated with the TLS will be given by the

mean value M̄TLS. Equation (5.37) then becomes

ṙ = ±1−

√√√√2G
(
M + α̃

E2
p

M

)
r

(5.41)

As a next step we attempt to introduce back reaction effects due to the energy of

the propagating shell. In doing so let us recall that, in the absence of a quantum

ergosphere, a self-gravitating massless shell of energy E, in its geodetic motion,

“sees” an effective black hole mass M − E, i.e. in the shell’s geodesic equation

(5.37) M is replaced by M−E. Our assumption is that an analogous replacement

will be required in (5.41) in order to take into account the back reaction of the

shell. The geodesic would then read

ṙ = ±1−

√√√√2G
(
(M − E) + α̃

E2
p

(M−E)

)
r

. (5.42)
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Equipped with this expression we now turn to the calculation of the transition

amplitude à la Parikh-Wilczek. Substituting (5.42) (with a plus sign for an out-

going shell) in (5.36) and integrating over r using the usual Feynman prescription

we have

Im S = 4π
∫ E

0
G(M − E ′)

(
1 + α̃

E2
p

(M − E ′)2

)
dE ′ . (5.43)

Doing the integral over the energy and substituting in (5.14) we obtain for the

emission probability

Γ ∼ exp (−2ImS) =
(
1− E

M

)8πα̃

exp
(
−8πGME

(
1− E

2M

))
(5.44)

which is corresponds to (5.24) provided α = 4πα̃.

Let us note that in our derivation the main consequence of the introduction of a

quantum ergosphere is to modify the tunneling rate in such a way that a leading

order logarithmic correction to the black hole entropy-area law is reproduced.

The quantum ergosphere, in this context, has a genuine quantum space-time

nature i.e. we expect its presence to be a prediction of a yet-to-be found theory

of quantum gravity. Following York’s original idea we also expect that a more

refined model of a quantum ergosphere, emerging from a consistent quantum

gravity framework, should also allow one to derive the Hawking effect in terms

of the black hole quasi-normal modes when there are no quantum matter fields

propagating in the hole geometry, as in [102].
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Chapter 6

Conclusion

We started by considering the possibility that quantum gravity might ex-

hibit a low-energy, flat-spacetime, limit which differs from our current, classical,

picture at the Planck scale. This scenario is indeed realized, as we reviewed in

Chapter 2, in several quantum gravity frameworks including approaches based

on non-commutative geometry and loop quantum gravity.

One remarkable aspect of these departures from classical relativistic symme-

tries is the possibility that the deformed kinematics they introduce might lead

to experimentally testable consequences. We focused in particular on scenar-

ios that predict Planck-scale suppressed modifications of the relativistic energy-

momentum dispersion relation which may lead to a violation of Lorentz symmetry

or be associated to “quantum” deformations of relativistic symmetries. We saw,

in Chapter 2, how observations of GRBs and UHECR might carry signatures

of such quantum space-time models. In particular we focused on the threshold

anomalies that a specific kinematical framework based on a MDR might induce

in the chain of production of very high energy neutrinos associated with UHE-

CRs. We showed that different choices in the parameters of the model lead to

different modifications of the bound , proposed by Bahcall and Waxman, on the

flux of such high energy neutrinos.

In Chapter 3 we pointed out how a characteristic feature of quantum space-time



scenarios, such as the presence of a length scale, the Planck length Lp, setting

a lower bound on the accuracy of distance measurements, necessarily affects the

relativistic particle localization limit E ≥ 1/δx. This observation offered the

opportunity to investigate a link between the non-trivial flat-space limit of a

quantum gravity theory and the, genuinely quantum-gravitational, relation be-

tween the area of a black hole and its entropy. In particular we were able to

constraint the form of MDR that seems to emerge in preliminary works in LQG,

looking at the logarithmic corrections, obtained from direct micro-states count-

ing in LQG, to the semiclassical Bekenstein-Hawking result S = A
4L2

p
.

Following this link we discussed, in Chapter 4, the possible consequences that

Planck-scale modifications of the E ≥ 1/δx relation, emerging in quantum grav-

ity scenarios with MDR and/or GUP, might have for the thermodynamic be-

havior of black holes and their evaporation process. The analysis led also to

study how the spectrum of a radiating black body is affected in such quantum

space-time scenarios and the consequences that this Planck-scale modified ther-

modynamics might have for the generalized second law.

Finally in, Chapter 5, we discussed how it is possible to combine quantum gravity

effects and back-reaction using the description of Hawking radiation as tunnel-

ing proposed by Parikh and Wilczek. We first showed how Planck-scale effects

can be incorporated in the Parikh-Wilczek tunneling picture and analyzed the

possibility that statistical correlation might appear in the non-thermal, quantum

corrected, spectrum obtained. We then adapted the derivation of Parikh and

Wilczek in order to include effects due to quantum fluctuations of the black hole

horizon which lead to the formation of a “quantum ergosphere”. We saw how

the “quantum corrected” emission probability contains an additional factor anal-

ogous to the corrective factor produced by the inclusion of the quantum gravity

logarithmic correction to the entropy-area relation. This analogy suggests that

the quantum ergosphere, seen as an indelible signature of quantum gravity on

a black hole metric, affects the near horizon geometry of the black hole leading
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to the emergence of a logarithmic correction in the entropy-area law. Reversing

the view, the argument we presented might support the idea that leading order

(logarithmic) quantum corrections to the black hole entropy are related to the

presence of zero-point quantum fluctuations of the metric.

Departures from Lorentz/Poincaré symmetry at the Planck scale, with their po-

tential of being experimentally falsifiable, provide, in our opinion, a valuable

starting point to guide us toward the understanding of the full quantum descrip-

tion of gravity. In this dissertation we have also shown how possible hints on

the quantum structure of space-time can emerge from a microscopic quantum-

gravity description of black holes. We believe there is still a lot to learn from the

analysis of the interplay between the quantum behavior of black holes and the

symmetry structure of space-time at the Planck scale and that future advances

will help us to set experimental and logical consistency boundaries to a field that

until few years ago was open to the wildest theoretical speculations.
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