
Abstract

Glenn A. Thesing. Analysis and Local Estimation of Spatial Data Under the Intrinsic
Hypothesis of Spatial Random Fields. (Under the direction of Dr. George Christakos.)

The intrinsic hypothesis of random fields is applied in the analysis of spatially
distributed point-value data. In particular, the intrinsic hypothesis is coupled with a
kriging point estimator to study the local behavior of non-homogeneous natural processes
over two-dimensional space and to produce maps of degree of spatial trend, spatial
correlation features, and point estimates.

An automated computer algorithm is implemented to conduct the analysis at a
local scale. A rectangular grid is assigned throughout the data domain. Trend assessment,
covariance modeling, and estimation are conducted at each grid node using local subsets
of data. The algorithm is applied to a set of soil moisture content measurements.
Sensitivity analyses are conducted and indicate estimation accuracy is dependent on the
size of the local subset and the covariance model used.
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Section 1.0

Introduction

In the sciences which study environmental, hydrologic, atmospheric and other

phenomena, an investigator may often collect a set of data consisting of the measured

values of some parameter (e.g., atmospheric deposition of sulfate) at various discrete

locations in space. If the process is transient in time such as phreatic ground water

elevations, the parameter values may be assumed to have been measured simultaneously,

and if the process may be considered invariant in time such as bedrock surface elevations,

the measurements need not be simultaneous. The problem which this work addresses is to

estimate the parameter at a location for which there is no measurement by using the data

provided. The problem is referred to as point estimation and may be approached with a

number of different methodologies (see Chpt. 11, Isaaks, 1989). This work implements an

unbiased linear estimation method which may be grouped within the category of kriging

methods. The method used here is referred to as intrinsic kriging.

Since the given data set provides information about the phenomenon only at the

locations of the data points, it is necessary to introduce a model to estimate the

phenomenon at unmeasured locations. Given that the phenomena usually studied are the

result of complex interactions of many processes, it is unlikely that useful deterministic

models which preserve the complexity of the process have been developed, or if they have,

they may require the estimation of an impractically large number of parameters. The

scientific understanding of process interactions may be too simplistic to permit such an

approach without introducing assumptions which oversimplify the model, resulting in an

analytically tractable but potentially inaccurate representation. A probabilistic model may

be more appropriate in such cases. Within the framework of a probabilistic model, the

sample data are viewed as the result of a physical process which, due to the complexity of

its interacting components and the lack of understanding of those components, appears to
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contain an element of statistical randomness. In this work, a probabilistic model is chosen

with the following considerations and requirements:

• the phenomenon under study is modeled as a statistically correlated spatial random

field (SRF);

• the set of sample data are assumed to represent one realization from an infinite set of

possible realizations of the random field;

• the modeled random field is permitted to exhibit non-homogeneity in its statistical

mean and/or covariance;

• the characteristics of non-homogeneity are analyzed using the tools provided by the

intrinsic hypothesis (see Christakos and Thesing, 1993);

• characterization of the non-homogeneous process, point estimation, and calculation of

estimation error variance are all conducted at a local scale using a local subset of the

complete data set.

As mentioned previously, this work implements a form of the point estimation

method known as kriging. Ordinary kriging ~ the conventional form of the kriging

methods — is an unbiased estimation method which defines a point estimator as a linear

combination of weighted values of the known data points. The derivation of the method

and its application are readily found in the literature (e.g., Chpt. 12, Isaaks, 1989). At the

core of the kriging process is the fitting of a covariance or semivariogram model to the

data. The principle weakness of ordinary kriging is that it assumes the random field

represented by the data to be homogeneous in space. However, rarely are spatial data of

natural processes homogeneous, and a non-constant mean is generally the source of non-

homogeneity (Cressie, 1986). As mentioned previously, the ability to accept and

characterize non-homogeneous data is one of the primary considerations in the

development of this work. Thus, a more general approach is required.

Matheron's (1973) theory of the intrinsic spatial random field (ISRF) offers a

framework in which to build models capable of accepting non-homogeneous processes.
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The theory is derived from the basic principle that a non-homogeneous spatial random

field can be mathematically transformed into an analog which is homogeneous. The

mathematical analog is comprised of spatial increments where each increment is a linear

combination of values from the original SRF. In constructing these increments, the spatial

trend, which renders the original SRF non-homogeneous, is removed by way of

mathematical cancellation or filtering. The resulting SRF of increments is , thus,

homogeneous.

Non-homogeneous data may be accepted under the intrinsic hypothesis without

making the assumption that the data are locally or quasi-homogenous. The assumptions

that are made apply to the nature of the intrinsic model, not the data. This characteristic is

an important motivation for this work because it removes the often-unreahstic restriction

of data homogeneity. However, the generality of the intrinsic hypothesis makes it equally

applicable to homogeneous processes.

One of the integral components of ISRF theory is the order ofintrinsity, v.

Qualitatively, v represents the complexity of trend in the mean of a non-homogeneous

SRF. The higher the value of v, the more complex is the trend. Another important aspect

is that the ordinary covariance for a non-homogeneous SRF may be decomposed into a

homogeneous component ~ the generalized spatial covariance ~ and a non-homogeneous

component usually represented by a polynomial of degree v. It turns out that under the

intrinsic hypothesis, the order ofintrinsity v and the generalized covariance function for a

non-homogeneous (or homogeneous) SRF provide a complete stochastic characterization

of the SRF's spatial correlation structure. In addition to the data themselves, these

parameters are necessary and sufficient inputs to the spatial estimation procedure

developed for use under the intrinsic hypothesis.

The objective of this work has been to develop an automated computer program to

conduct the analysis of degree of trend and covariance modeling on a local scale using

proximal subsets of the complete data set. This analysis is followed by estimation of the
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phenomenon via kriging at unmeasured locations. By considering local subsets of the data

instead of the entire set, we allow the model to depict spatial variability of trend and

correlation characteristics which may be present in the actual phenomenon. Conducting

the procedure at numerous points within some domain of interest results in graphical

depictions of the spatial variability of v, covariance parameters, point estimates, and

estimation error variances. These depictions then provide insight into the behavior of the

phenomenon across the algebraic structure of space.
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Introductory SRF Concepts and Theory

Motivation

Empirical analysis of data fi"om spatially distributed natural phenomena ~ such as

atmospheric deposition of sulfate, or hydraulic conductivity in an aquifer system ~ often

indicates that the spatial variablility of these processes has two important descriptive

features, each of which is associated with a pariticular scale of observation. On a regional

or macroscopic level, there may be a well-defined spatial structure resulting fi-om trend or,

as in time series analysis, cyclic changes. On a local or microscopic scale, the process may

exhibit irregular, erratic fluctuations characteristic of unstructured random behavior. The

coexistence of both these macroscopic and microscopic properties is termed the macro-

micro duality and is essential to the core of spatial random field theory.

In constructing a model to study these phenomena, both features should be

addressed. Classical theory of probability could be implemented by considering each data

observation to be the outcome of a random variable. However, this platform alone fails to

account for the spatial structure and correlation among the collective of random variables.

An improvement upon this concept is the spatial random field (SRF) in which the behavior

of the phenomenon is conceptually (and eventually mathematically) disassociated into a

deterministic trend component describing the macroscopic structural features and a

random residual accounting for erratic fluctuations on the micro-scale. The following

discussion will expand some fundamental concepts underlying SRF theory. Throughout

the discussion, lower case letters x, y, etc. will denote random variables; upper case letters

X, Y, etc. will denote random fields; and lower case Greek letters %, \|/, etc. will denote the

values of the random variables and spatial random fields.
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Introductory SRF Concepts and Theory

Characteristics and Definitions

In the most basic sense, a SRF may be conceptualized as a collection of random

variables x.{^) in an ^-dimensional domain where each x,(^) is associated with a

location s, in R"; s, =(*,,...,5„),, and ^is an elementary event from the sample space Q.

Associated with each x,(^) is a probability density f^^ (z) which ascribes a probability

law to the random variable. Figure 1 illustrates this concept in R\ Such a collection of

random variables in R" is referred to as a spatial random field (SRF) X{(^, s). When this

construction is restricted to one spatial dimension, it is referred to as a random process.

The configuration of the probability distributions — their relative arrangement ~ for the

collective of random variables is what imparts a spatial structure the phenomenon on a

macro-scale. The outcome of the SRF at any location is a random outcome subject to the

constraints of the governing probability law at that location. Thus, random behavior is

possible at any location in the SRF.

Realization of X(s)

Trend of X(s)

Sj s„

Figure 1. A one-dimensional SRF.

Spatial random fields exhibit variability with the spatial coordinates s and the state

variable ^. If s is fixed, then X{^,Sq) becomes a random variable specific to location Sq.

If ^is fixed, then X(^,,s) becomes a realization of X across the ensemble of random
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variables (Figure 1). For notational convenience, ^ is generally omitted fi-om this
representation:  X{^,s) = X{%).

Classifications

A SRF can be qualitatively described by the following classifications:
• discrete or continuous in s;

• discrete or continuous in x,

• vector or scalar s and X(s);

• Gaussian or non-Gaussian probability densities;

• homogeneous or non-homogenous;

• isotropic/anisotropic;

• degree of memory of X(s);

• spatial/spatio-temporal.

Within the context of this investigation, only classifications based on discrete/continuous,

vector/scalar, and homogeneous/non-homogenous parameters are relevant. The SRFs

considered here will be continuous in both s and ^, 2-dimensionally vector in spatial

location s; and scalar in the SRF value X{i). Regarding homogeneity, the SRFs

considered here may be homogeneous or non-homogeneous. Consider the following

example of a waste disposal site with chemically impacted soils. The spatial location

vector s is continuously defined over the site and is comprised of the components s^ and 52
in R^, while the values of chemical concentrations represented by the SRF ^(s) are scalar
magnitudes over some range [0,;i:„^ ]. The SRF of concentrations may be homogeneous
or non-homogeneous; the intrinsic method employed here will accept either.

Homogeneity of a Spatial Random Field

Homogeneity is an integral consideration in the modeling of SRFs. Whether or not

a physical process can be appropriately modeled as a homogeneous SRF is one of the key
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questions an analyst must answer before constructing a model to represent the process.

Within the context of geostatistical and stochastic modeling of spatial phenomena, there

are two classes of homogeneity. The first class is strong homogeneity and refers to the

condition in which the individual probability densities in the ensemble of random variables

that comprise X(s) do not vary with translation across s. The second class is weak

homogeneity, also known as second-order homogeneity, and refers to the condition in

which only the first two moments of the probability densities—the mean and the

covariance—are invariant with translation across the ensemble of random variables in s.

That is, the mean value is given by

E[X{i)\ = m [1]

where m is constant across all s. The covariance is a measure of the correlation between

two random variables at different points in space and is defined as

c(s,s + r) = £{[x(s)-/M(s)][x(s + r)-/w(s + r)]} [2]
where r is the spatial vector, or lag, separating the locations of the two random variables

under consideration.   For a homogeneous process /m(s) = m{$ -\-r) = m, and thus the

covariance between any two locations s and s + r is given by

c(s,s + r) = c(r). [3]

Note that for the homogeneous case, the covariance is a fianction only of the lag r

separating the two points, not of the actual locations of those points. Furthermore, a SRF

may be non-homogeneous in its mean or covariance or both. Strong homogeneity

necessarily includes weak homogeneity, although a weakly homogeneous SRF is not

necessarily strongly homogeneous. In the geostatistical literature, the term "homogeneity"

is generally used to indicate weak homogeneity; this paper will follow that convention.

In practice, data sets from physical processes, especially natural processes, rarely

exhibit homogeneity. There is usually some trend which precludes a constant mean.

Thus, in analyses of real data, the assumption of a homogeneous SRF is often unrealistic.

Pages
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A significant amount of research in geostatistical and stochastic methods has focused on

the analysis of homogeneity/non-homogeneity and the development and implementation of

methods that can effectively model non-homogeneous phenomena (e.g., Bilonick, 1985;

Christensen, 1990; Cressie, 1986; Venkatram, 1988).

Statistical inference of a covariance or semivariogram function is critical to the

success of kriging estimation and other geostatistical methods. The SRF approach holds

that spatial phenomena are described by the underlying macroscopic trend and by locally-

based random fluctuations around the base trend. For homogeneous data, the data

themselves may be used to calculate an estimate of the constant mean. Thus, the

disassociation of the realization (as represented by the data) into a deterministic trend

component and a random component is straightforward. However, the mean for non-

homogeneous data changes with location. The disassociation is no longer clear-cut, since

the mean is not well defined. This uncertainty leads to difficulty in statistical inference of

an appropriate covariance flinction. Furthermore, a non-constant trend may lead to

serious bias in the experimental semivariogram (Cressie, 1991)

rAr) = \var[x{s+r)-X{s)] [4]
leading to errors in parameter estimation for a semivariance model, which can ultimately

lead to misinterpretations regarding the underlying structure of the phenomenon.

These diflSculties raise the question of how to address the estimation of non-

homogeneous data. When the estimation approach is kriging, several methods are used

frequently. One approach is to conduct variogram or covariance inference and estimation

with conventional, homogeneous methods but on a local scale using proximal subsets of

data. The rationale is that a non-homogeneous process defined over a large region will

exhibit less absolute trend and a more homogeneous correlation structure over a subregion

relative to the entire domain. This concept is termed quasi-homogeneity and is

implemented by Haas (1990) in his study of atmospheric sulfate deposition. Another
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approach, termed universal kriging (Matheron, 1969), is an extension of ordinary kriging

and involves the modeling of the trend as a polynomial of finite (and unknown) degree.

Defining the trend analytically allows it to be accounted for in the analysis. Intrinsic

kriging is of course another approach and will be explored in detail in this paper.

Page 10

NEATPAGEINFO:id=391C8CD7-5490-4D17-BAAE-3BAD1781E799



Section 3.0
Overview of ISRF-v Theory

This section will present the mathematical theory underlying the intrinsic spatial
random field of order v (ISRF-v). The discussion will begin with definitions of two of the
integral components of ISRF-v theory: order of intrinsity v and the spatial increment of
order v. These fundamental components are requisite to the definition of the ISRF-v.
The generalized spatial covariance is integral to the spatial estimation procedure
implemented in this work and will be introduced following the ISRF-v discussion. Within
the context of this discussion, SRF will refer to any random field, and ISRF-v will refer to
any SRF which can be mathematically transformed into a homogeneous analog.

Order of Intrinsity v

The order of intrinsity v of an ISRF is analogous to the degree of a polynomial
which describes the spatial trend in the mean of the SRF. For example, an ISRF of order
v=0 refers to a SRF with constant mean; an ISRF of order v=l refers to a SRF with a
linear trend in the mean; an ISRF of order v=2 refers to a SRF with quadratic trend in the
mean; and so on. The higher the representative value of v, the more complex is the trend.
Figure 2 illustrates this concept. The order v provides insight into the complex spatial
structure of the ISRF. The non-homogeneous mean is mathematically described in terms
of a polynomial of order v.
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V=3

v = 0

Figure 2. Conceptual illustration of v.

Spatial Increment of Order v

Given the spatial random field X(s), the linear combination of SRF values
m

1=1 [5]

is defined to be a generalized spatial increment of order v (SI-v) if and only if the
coefficients q. meet the conditions

m

[6]

The ^, are real-valued weights and g^(Sf) = s^'...s^" are monomial products of the spatial
coordinates in n dimensions. The exponents p, are non-negative integers such that

i=l
^Pi ^ v- The subscript /ctakes the values k = l,2,...,a(v) where

^v + 2^    (v + l)(v + 2)a(v) =
V

[7]

and assigns the number of possible permutations of ^^(s,) where the exponents

p^,P2,...,p„ are varied. If the conditions [6] are met for an order of intrinsity v, then

Y^(s) is itself a zero-mean homogeneous SRF. That is, the algebraic combinations of the
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appropriate q^ and the surrounding values X(s,) "filter out" the v* order trend in the

original SRF.

Consider a two-dimensional ISRF-v: X{s) - Xis^,s^ = X(x,y). Here, x andy

are Cartesian coordinates. Equation [6] thus yields the set of monomials shown in Table

1.

Tablet. Spatial Monomials of g^(s,)
v = 0 v=l v = 2

a(0) = 1 a(l) = 3* a{2) = 6

^,(s)-xV = l ^,(s) = xV = l g^-xY^i

g2(s) = x'y°^x g^(s)--x'y° =x

g,(s) = xy=y gM = ^y=y

g,(s)^xy^x'

gs(s)=xy=f

g6(s) = x'/=xy

Therefore, J^(s) is a SI-v if the following conditions hold:

if v=0, then^^. = o;
. . 1=1

if V= 1, then f^q^=o,   ±q^x,=0,   X^.J', =0;
/==l 1=1 /=!

, HI tn m m m m

If v=2,then2;9, = 0, X9,^,=0, X?-^.=0, Z^.^NO, X^,;^/=0, X^,^.>',=0-    [8]
1=1 1=1 1=1 1=1 1=1 1=1

An example is illustrated in Figure 3. Five points are indicated in R^ with point s,

centered at (x^,}^,,). Assume that weights q^ are associated with each of these points so

that the spatial increment at s, is given by

yM = 4X{s,)-IX{s,)-1X{s,)-\X{s,)-IX{s,). [9]
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The highest order of intrinsity for which the conditions of Equation [6] are met is v=l.

The conditions break down for the second-order terms. Therefore, Equation [9] is a SI-1.

5

5_

5

Figure 3. Spatial increment of order 1.

Intrinsic Spatial Random Field of Order v

Having defined the generalized spatial increments of X(s), we may now state the

following definition: An intrinsic spatial random field of order v is a random field for

which the SI-v are weakly homogeneous. The following definitions supplement the

above.

• By convention, a homogeneous SRF is an ISRF-(-l).

• The spatial increments of any SRF which is already homogeneous are also

homogeneous. A homogeneous SRF is also an ISRF-v for all values of v.

Additionally, any ISRF-r| is also an ISRF-*^ where ^> rj, although the reverse is not

generally true. For example, if an ISRF has homogeneous increments of order 2, it

will also have homogeneous increments of orders 3, 4, et cetera.

Generalized Spatial Covariance of Order v

The spatial correlations of natural processes which are modeled as SRFs are

quantitatively defined by the covariance Sanction. Within the modeling fi-amework, the

covariance describes the correlation in SRF behavior between two points in space. One of

the integral components of the ISRF theory is that the ordinary covariance for an ISRF

satisfies
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c^{s„s^) = k^(r,^+pis„s,) [10]
where kj^[r^jj, r^ =s, -s^ is the generalized spatial covariance of order v(GSC-v) and
/?''(s;,Sy) is a v*-order polynomial in s with variable coefficients. This decomposition
principle is an important theoretical construct. Under the intrinsic hypothesis, the
conditions [6] placed on the spatial increment filter out the polynomial component of the
ordinary covariance in the spatial increment, eliminating the need to quantify this
component. Additionally, the ordinary covariance of the homogeneous l^(s) is related to
the GSC-v of the non-homogeneous Jr(s) by the expression

'^r(>l,) = ZZ^.«^;^^x(»"J [11]
a=\ p=\

where the weights q^ take values subject to constraints [6].
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As mentioned in Section 2.0, a SRF is represented by the function X(^, s), where

^ is a random component accounting for fluctuations in JTat a smaller scale and s is the

spatial vector component accounting for the macro-evolution of the process on a larger

scale. The problem we will solve is to calculate estimates of the SRF using the

information provided by the measurements Xt of the physical process at the locations s,,

where i=l,2,...,m and represents the local sample set used for estimation.   In creating an

optimal estimate X(s) at some location s^, we want to satisfy three conditions.

• The estimate should be a weighted linear combination of the available data. Thus, the

point estimate is given by

m

x{s,)=Y.^M^*) [12]

where the A, are real-valued kriging weights determined during the estimation process.

• The estimator X(s,) should possess the property of unbiasedness such that the

expected value of the estimation error £= X{s^)-X{si^) is zero:

e[x{s,)-X{s,)] = 0. [13]

• Finally, the variance of the estimation error <t^(s^,) should be minimized with respect

to the kriging weights {A., i = l,2,...,m} to provide an optimal estimate.

These conditions are used to develop the system of kriging equations. We begin

by linking the kriging estimator to the ISRF-v theory. This linkage is accomplished

through the kriging weights. To derive a solution to the unknown weights 1,., we

minimize the estimation error variance under the same constraints used to define the SI-v,
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namely those given by [6]. In other words, we want to define a SI-v, }^(sj.), where the

kriging weights X. are valid coefficients q. such that the constraints

Z^,^.(s,) = 0 [14]
1=1

are met with /l^ = -1. In this case the constraints may also be written as

m

Z^,^.(s,) = UsJ. [15]
1=1

When the X. are valid SI-v coefficients, Equation [5] may be rewritten as

m,k

i;(sj = 22,x(sj, [16]
1=1

and recalling /l^ = -1 and the form of the linear estimator given by [12] we can write

m

7,(sJ = 2;A,Jr(s,)-4sJ = l(sJ-X(sJ. [17]
j=l

Note that the latter is the expression for estimation error £"(sj.) so that under these

conditions the estimation error is a valid SI-v.

Now we must develop an expression for the estimation error variance

al{s,) = E[{e-my] [18]
where m^ is the mean value of the estimation errors. Applying the condition of

unbiasedness (m^ = 0), we get

a]{.,) = EMUE\[xM-X[sM [19]
Substituting the linear estimator from the first condition above, this equation becomes

alM^E 2:a,4s,)-x(sJ
V .=1

mm /vn'" r

1=1 ;=1 1=1 '•
[20]
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where /Ij. = -1. It is important to note that, since fs l^(sj.), this expression for

estimation error variance given by [20] is equivalent to the variance for the SI-v, which is

by definition a zero-mean homogeneous SRF. The link between ISRF-v theory and the

kriging estimator lies in this equivalence. The terms E\ X(s,)x(sj)  and £'[x(s,)x(sj.)]

in [20] are covariance expressions for a homogeneous zero-mean process. Under the

intrinsic hypothesis these expressions are represented by the homogeneous component, the

GSC-v, of the ordinary covariance for a non-homogeneous SRF. Similarly, the term

{X{s,)f is a variance expression for a homogeneous zero-mean process and is also

represented by the GSC-v at lag zero. With these observations we can rewrite [20] as

1=1 y=i <=i

Now we have an expression for error variance in terms of kriging weights and the

gener^zed covariance. The object is to minimize this expression with respect to the

weights by taking the partial derivatives and setting them to zero:

^A,
0,  V/.

Doing this under the constraints of [15] yields the kriging equations:

Kw=k

where

[22]

[23]
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#

K =
^l(Sl)       &(S2)

kxi^iJ gi(s,) g2(s,)
*x(''2m) gl(Sl) ^2(82)

^x('U) &(S,) g2(Sm)
^>(sJ        0 0

g2(sj 0 0

5a(Sm) 0 0

sAh)' [^'1 ^Ar(l*)]
8a(S2) 2, ^A-('-2*)

0
, w=-

Mo
,k =

0 Ml ^2(S*)

0 Ma. . .?a(sj J

In this system, k^{r^^ is the GSC-v, and the argument r^^ is the isotropic lag:

r,-\^,-^\^^{x,-x;f^{y,-y;f. [24]
Note that r^j - r.^ so that the matrix K is symmetric; additionally, r.^ = 0. The g^(s,) are

monomials of the spatial coordinates s, and are equivalent to the monomials which define

the SI-v of X{%). Here k takes the values K=\,2,...,a with a = (v+1)(v+ 2)/2. For

example, the case of v=l would yield g^,(s,) = x^y^ = 1, gjis^) = x]y^ = x,., and

gj (s,) = x°y] = y.. The /I, are the kriging weights, and the ju^ (/c = 1,2,..., a) are

Lagrange multipliers which arise from the minimization of the error variance under the

constraints of [15].

The solution to the optimal kriging weights is given by w = K~'k and provides
values for the weights used to determine ^(s^). The weights are also used to determine
cr^(sj^), which provides an indication of the accuracy of the estimate.   Equation [21] may

be used, although a more useful expression is provided by
<j'Ah) = kAO)-w'k. [25]

Note that the kriging system [23] does not depend on the data values X(s,) but only their

spatial locations. This property is termed data independence and is one of the advantages

of kriging estimators.

Page 19

NEATPAGEINFO:id=B1E520A8-3972-4AE0-B3A7-111E42562B8D



Section 5.0
Intrinsic Kriging Algorithm

Now that the details of the mathematical theory have been addressed in previous
sections, we will move on to a description of the algorithm used to implement kriging
under the intrinsic hypothesis. The intrinsic kriging algorithm described here is also
introduced in Delfiner (1976). However, a number of modifications have been made fi"om
the Delfiner algorithm, and these will be included in the following discussion.

Data Preparation

The first step in the process is data preparation. The point estimation method uses
spatial data located in R^, so a data file should consist of some number of measured values
each consisting of an X-coordinate, a Y-coordinate, and a parameter measurement. The
set of measurements should be checked, and duplicate or near-duplicate points should be
declustered to prevent possible numerical problems with closely spaced points.

Kriging Grid

In short, the method of kriging takes a set of spatial measurements and calculates
an estimate of the measured parameter at a location s^ = (^tjJt) where no measurement
was taken. In a typical analysis, this estimation is conducted over a large number of
spatial points to provide a discretized representation of the estimates. If a graphical
portrait of the estimated process is desired, then the usual approach is to define a
rectangular grid of nodes~the kriging grid~and conduct the estimation calculations at
each node. The results can then be used in a graphics routine to visualize the surface of
the estimates and the estimation error variances.

In defining the grid system, it is important to remember that kriging methods are
linear interpolators. Therefore, an attempt should be made to define the grid system such
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that the boundaries do not lie too far outside the group of data, and it is preferable to keep

the grid system completely within the range of the data.

Neighborhood Selection

In this work the analysis of spatial trend, the determination of a covariance model,

and the calculations of the kriging estimate and error variance are all conducted on a local

scale. These tasks are carried out using localized subsets of the complete data set (Figure

4). The subsets are referred to as neighborhoods, and X{s^) and cr^is^^) are based on the

SRF properties exhibited by the local neighborhoods surrounding each grid node.

i=J i=2

Figure 4. Local subset of five data.

When defining a neighborhood, one of several criteria may be followed. In one

case, the neighborhood could be defined by all the data points that lie within a given fixed

radius, r. Since the generalized covariances considered in this work are isotropic, the

vector direction of the points chosen is irrelevant; thus, all points within the scalar radius r

are suitable for the neighborhood. This approach may be appropriate when the data are

spaced uniformly throughout the domain under consideration.

In a second case, the neighborhood could be defined by a fixed number m of

closest data points. Again the use of an isotropic generalized covariance allows the

Page 21

NEATPAGEINFO:id=340F0480-4FC5-45AE-B039-113FEF6B10D6



Section 5.0

Intrinsic Kriging Algorithm

selection of nearest neighbors regardless of vector location. This approach may be

appropriate when the data occur more densely in some areas of the domain than in others.

In this work, we have implemented the criterion of a fixed number m of nearest

neighbors; thus, the m closest points constitute the neighborhood. For the case of intrinsic

kriging, neighborhood sizes of 8-16 data points are usually adequate.

The kriging estimator is an exact interpolator, meaning the estimates are faithfiil to

the data. Thus in the event that a kriging node s^ falls exactly on the location of a data

point ~ a condition refered to here as "bull's-eye" — the estimate for that point will be

equal to the data value. (This assumes there is no measurement error.) Intuitively, there

is no estimation error in such a case, so the error variance is zero. These characteristics

are accounted for in the kriging algorithm. For each kriging node, a check is performed to

determine if the node coincides with a data point. If it does, ^(s^^) is given the value of

that data point, a^(sj) becomes zero, and the estimation procedure is bypassed.

However, we are still interested to see what the order of intrinsity and covariance

parameters are for this node. These portions of the analysis are still conducted, although

when defining the neighborhood, the bull's-eye data point is excluded fi^om the

neighborhood. The neighborhood is, thus, based on the m closest data points located a

distance r > 0 away fi'om the node.

Local Order of Intrinsity v

The next step in the algorithm is to determine the order of intrinsity which best fits

the trend characteristics of the local neighborhood. This step is based on the accurate

estimation of the data points themselves and, therefore, involves the assumption of a

representative covariance model for the neighborhood. The objective is to chose the value

of V fi-om the set {0,1,2} which best describes the trend in the data. Although v can take

on any non-negative integer value, the set {0,1,2} is usually sufficient to represent most

local trends. The procedure is described in the following steps.
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(1) Each data point X(s,) in the neighborhood of/w points is "removed" one at a time.
(2) The removed point X(s^) is estimated from the remaining m-l points assuming in turn

that V = 0, 1, and 2. A linear covariance model k^(r) = -r is used to construct the
kriging system [23] which is solved for the kriging weights X., which are in turn used
to calculate X{s)  by [12]. The linear covariance originates from the polynomial
model k^ir) = a^dij-) - cj + c^r' - c^r^ where a^ = c, = C2 = 0 and c^ = 1. Although
the model is not optimized to the correlation structure of the neighborhood, it is a
valid model for all values of v.

(3) At each point; removed , the estimation error is determined for the three cases of v =
0, 1, and 2 by the following

s,^^\x{sX-X{^,)\. ' [26]
(4) For each /, the estimation errors e^^ for v = 0, 1, and 2 are ranked as 1, 2, and 3 from

smallest error to largest error, respectively. The rationale here is that the smallest
error corresponds to the best estimate.

(5) The error ranks p^ ^ are then summed for each case of v:
m m m

.=1 1=1 i=\ [21]

where/w is the number of points in the neighborhood.
(6) The v-value corresponding to the smallest Q^, value is chosen as the order of intrinsity

for the neighborhood. In the event that two O^ values are equal and less than the

third, the lower v-value from the tied rank sums is taken as the order of intrinsity for
the neighborhood. This response reflects intrinsic random field theory in that an ISRF-
ri is also an ISRF-^where ^> 77, ahhough the reverse is not generally true. Thus,
when the above procedure produces two equally favorable possibilities for v, the more
conservative choice is to pick the lower v-value.
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Note that the ranks p, ^ of the estimation errors e^^ are used to determine v rather than

the £•, ^ themselves. Ranking makes the procedure resistant against the bias of outlier

estimation errors. At this stage, the order of intrinsity of the neighborhood has been

assigned. The next phase will identify the covariance model which best represents the

correlation structure of the neighborhood.

Covariance Parameter Estimation

The fitting of a covariance model to the neighborhood of data constitutes the most

critical step in the estimation procedure. The GSC function mathematically defines the

correlation structure of the SRF and, as is evident from inspection of the kriging equation

[23], it is the platform upon which the kriging estimations are built. It is also the most

numerically intensive component of the computer program, since it requires the

optimization of a nonlinear function.

Three different GSC-v models have been implemented in this work: polynomial,

polynomial-spline, and poly-exponential models. Each model contains unknown

coefficients whose values are determined based on the correlation structure of the

neighborhood. The values of these coefficients must obey permissibility conditions which

are assigned to ensure the GSC is conditionally positive definite, a requirement for

generalized covariance fiinctions (Christakos, 1984). In this sense, it leads to legitimate

second moments of the generalized spatial increments. Permissibility values are obtained

through spectral analysis and are unique to a particular GSC model. The objective of the

covariance modeling portion of the algorithm is to calculate the optimal values for these

coefficients subject to the constraints of permissibility. A least squares method which

minimizes ~ with respect to the coefficients — the sum of the squared differences between

the expected values of the estimation errors and their actual values is applied. Although

the least squares method used here is a suitable approach, several other optimization

methods may be employed for the inference. These include maximum likelihood
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estimation and minimum variance unbiased quadratic estimation (Kitanidis, 1983). Since

the procedures for determining a suitable covariance function are different for the different

general forms, they are discussed separately.

Polynomial Covariance Model

The polynomial generalized covariance function is perhaps the most common

GSC-v used with intrinsic kriging estimators and is frequently indicated in the literature

(e.g. Delfiner, 1976; Kitanidis, 1983; Christakos, 1992). The general form of this flinction

is given by

kAr) = a,S(r) + ±(-iy^'cy'^' . [28]
1=0

where a^ and c, are unknown constants, r is the lag between two points, and S{r) is

Kronecker's delta function:  S{r) = 1 for r = 0, and S{r) = 0 for r > 0. Note that the

polynomial degree and number of terms in the function depend on the given order of

intrinsity, v. The term a^ d{r) describes the nugget effect. Additionally, [28] is linear in

its parameters a^ and c,, a condition which facilitates inference. Practical experience with

the intrinsic hypothesis has shown that, in most cases, values of v from the set {0, 1, 2}

will suffice for characterizing non-homogeneity. The values of the unknown coefficients

are restricted to the permissibility conditions listed in Table 2. These conditions vary with

the number of spatial dimensions of the data set. Note that this model is isotropic in R" so

that r is scalar. Since its coefficients can take values of zero, the general equation [28]

submits 3, 7, and 15 distinct covariance functions for v-values of 0, 1, and 2, respectively,

as shown in Table 3. The form ^^.(a") = agS(r) represents a completely random process

(white noise or pure nugget effect) with no correlation in behavior between different

points in space. All other forms represent a process with significant correlation.
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Table 2. Permissibility conditions for polynomial GSC-v coefficients.
v=0:

v=l :

a,>0
a,>0

c,>0
Co>0 c, >0

v=2 :        ao>0 Co>0 c, > -^IQc^c^(« + 3)/3(« +1) C2>0

Table 3. Polynomial covariance models.

v=0 v=2

Kir)^a^5{r)-c^r M'') = ^o^'') - Co''+ c/- c^r'
kx(r) = aA^) M'') = «oW-V + c/
kx(r) = -Cor kx(r)^a^S(r)-c^r--c^

kx(r) = a,S(r) + c,r' -c^
MO=-Co^ + c/- c/

v=l MO^^oW-CoA-
M^) = «o^(^)-V + c/ M^) = «o^^) + Ci^'
M0 = «o<5(0-V kx(r) = a^S(r)-cy
M^) = «o«5(/-) + c/ kxir) = -Car + c/
MO = -v+c/ kx(j') = -c^r-cy
A^,(r) = ao<5(/-) kxif) = ^ir'-cy
kx(f) = -Cor k^(r) = a,S{r)
kx(f) = cy

Kir) = cy
Kir) = -c^

\

The method for finding a suitable GSC-v begins with a known value of v. The
coefficients for each of the possible forms are determined and tested for permissibility. If
any coefficient value does not pass the permissibility test, that form is not considered any
further. Those forms which pass are tested for goodness of fit. The passing form which
provides the best fit is then used for the estimation and error variance calculations.
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To conduct the least squares routine which optimizes the values of the coefficients

for a given GSC-v form, we must first define several fiinctions. The SI-v defined

previously as [16] is now written for a data point removed from a local neighborhood:

yM)=i:^,4^j) [29]

where m is the number of points in the neighborhood, / refers to the index of the point

currently removed from the neighborhood, and /l,^ are the kriging weights associated with

the remaining points. Note that A. = -1 and that }^(s,) is the estimation error of point /

since

Y^(s,)^X(s,)-X(s,). [30]

Next we define the expected value of the squared estimation error for point / removed:

Substituting [12] for the estimate ^(s,) into [30] and subsequently substituting this into

expression [31], we obtain

[31]

^,(«.)j = ZSA.^.^4^(sJ^W] [32]

where X^^ - -1, and £[X(s„)z(s^]  is the covariance for a zero-mean homogeneous SRF

-- the generalized spatial covariance. The resulting equation is

mm -        .

A^YX^a^pKVj [33]

where X.^ and 1,^ are kriging weights and r„^ is the scalar distance between data points s„

and s^. Now an objective function to be minimized with respect to the coefficients may be

defined:

^ = Zk(s.)'-4]- [34]
i=l

1 '
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The function F applies to a given neighborhood with m data points and is the sum of the

squared differences between the actual estimation error squared and the expected

estimation error squared.

Note that through the k^yr^) term in A^, F depends on the values of the
coefficients a^, c^, c,, and c^. The objective function is then minimized through taking

partial derivatives with respect to the coefficients and setting them to zero:

OF     dF    dF     dF

da^     dc^     dc^     dc^

This operation yields the following set of equations:

0. [35]

from-----= 0, [36]
*0

aot{^T-c±^f^f^c±^f^?-cX^f^f=tYMf^f-^
1=1 1=1 1=1 1=1 1=1

from-----= 0,
dc^

m m    . .'y m m m

a„2A<;'A*"-c„2(A™) +'^,lA',"Af--.EA',"A'? =Ef;fe)'A'
1=1 1=1 1=1 1=1 i=\

1).

from----= 0,
^c,

a,±/^M?-c,±AfA^:^+c±{Aff-c,±AfAf = ±Y^{sjAf;
i=l 1=1 1=1 1=1 1=1

from-----= 0,
^Cj

c'o±A'P^':^-Co±^?A^Sc±AfA^?-c,±(Aff=±Y^{s,yAf.r
1 = 1 1=1 1=1 7=1 1 = 1

As they appear in the above equations, the following are defined:
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m rn        rn

m     m m     m

where the parenthetical superscripts in the left-hand-side terms are indices which identify

the different fiinctions.

Given a set of kriging weights {A,y} for a neighborhood, [36] are solved

simultaneously as a system of linear equations for the unknown coefficients a^, c^, c,, and

Cj. Because F is non-linearly dependent on the covariance coefficients, the minimization

ofFis an iterative process. For a given value of v, the optimization ofFis conducted for

each of the GSC-v models shown in Table 3. The process is described in the following

steps.

(1) Since [36] require a set of weights {A,^ j for solution, and since a GSC-v function is

required for the solution of these weights from the kriging system [23], an initial guess

for the GSC-v is required to start the iterative solution to {a^,Cf^,c^,c^^ ^   where /is

an iteration counter referring to the current iteration. In this algorithm, we chose an

initial GSC-v fianction of

kf%r) = -r [37]

since it is a permissible ftmction for all values of v. Note that this form is used only to

initiate the iteration cycle. After this initial guess, one of the forms from Table 3 is

used.

(2) Given a covariance model from Table 3 (or the initial GSC if 7=0) and its most recent

coefficient set {aQ,CQ,c,,C2}   , each point X(s,) in the neighborhood is removed one

at a time and the kriging system [23] is constructed using the remaining points as the
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neighborhood and X(s,) as the point to be estimated. Equation [23] is solved for the

set |/l,^; j = \,2,...,m; 7 ^/}   . When all the neighborhood points have been

removed and the weights calculated, they may be represented by the following matrix:

/ = 1

/-2

i = m

J-1   7=2

-1 "'12

-1

^ml ^m2

j^nt

X
\m

"Im

-1

Note that in the above matrix, the weights X.. are assigned values of-1.

(3) With \X^^\   known, equations [36] are constructed and solved simuhaneously for

{a^,c^,c„c^]
{M)

(4) The permissibility of the solution set [«0'^0'<^i'^2} ^   ^^ verified with the conditions of

Table 2. If the solution is not permissible, the current GSC model is no longer

considered and the cycle begins at step (1) with another covariance model from Table

3. If the solution is permissible, the cycle proceeds to the next step.

(5) Coefficient solutions which pass the permissibility test are checked for convergence at

each iteration. A percent relative difference criterion is used. The values

Pi =
a,
(w)_ J/)

a,
{M)

Sm)     J')

JM)

.(M)

^2 ^2

.{M) [38]
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are calculated, and the largest of the four is compared against a maximum allowable
error criterion (e.g. p„^ = 10"^).

(6) If Plainest - Pmax thc solution has converged, and the iterative cycle is broken. The next
model of the GSC-v fi-om Table 3 is used, and the process restarts with step (1).

If AaiBest > Pmax the solution has not converged and another iteration is required. The
solution set is updated so that {«o><^o>'^i>^21 ^ i^ used for {a^,Cq,c^,c^} in the next
iteration beginning with step (2).

Once all the appropriate models have been considered, those which provide

permissible solutions must be compared against one another to determine which one best

represents the correlation structure of the neighborhood. To this end, we use a goodness-
of-fit indicator defined by

%=—.------- [39]
1=1

where // is an integer index identifying a particular covariance form optimized for the

curret neighborhood. Note that 7] represents the ratio of the actual squared SI-v values to
the expected squared SI-v values, and the case ;/ = I indicates an exact least-squares fit of

the covariance to the correlation structure of the neighborhood. Thus, 77^ is calculated for
all GSC-v^, and the covariance which produces the value closest to 1 is chosen as the
model with the best fit. This covariance is used in the subsequent estimation and error

variance calculations. Of course, in the event only one of the possible covariance forms
results in a permissible GSC-v, the goodness-of-fit test is unnecessary.
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Polynomial-Spline Model

The polynomial-spline model is another common covariance (de Marsily, 1986;

Cressie, 1987) and is similar to the polynomial model but with a smoothing spline term.

In general, the fiinction is

k^(r) = a^Sir)-Cor + c,r^+c/^lnr [40]

where a^, c^, c, and c^ are unknown constants. Table 4 lists the permissibility conditions

on the values of these coefficients for the case of R^. Because of the logarithm term, the

spline model possesses smoothing properties not present in the polynomial model. Like

the polynomial model, the unknown coefficients can take values of zero. Thus, there are

several covariance forms for each value of v. For the case of v= 0, only the first two

terms are valid so that the polynomial-spline model is identical to the polynomial model;

the appropriate forms are given in Table 3. For the case v> 1, all four terms are valid;

thus, there are 15 possible permutations of the covariance form.

Table 4. Permissibility conditions for polynomial-spline GSC-v coefficients in. R

v=0:        ao>0 Co>0

2

K= 1, 2 :     ao > 0 Co > 0 c, > 0 c^> -l.SyJc^

The procedure for stochastic inference of the coefficient values is the same as for

the polynomial model with several minor differences. The same objective fiinction [34]

used for the polynomial model is used for the polynomial-spline model; however, the c^

term is not present and is substituted by the c^ term. Thus, the partial derivative

dc.
0 [41]

replaces the — term in [36] with the following:
dc^
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,=1 1=1 1=1 1=1 i=l

where

mm

o=l ^=1

The steps to determine the coefficient values for the polynomial model are also used for

the polynomial-spline model. The only differences are those noted above.

Poly-Exponential Covariance Model

The poly-exponential model was developed by Christakos (1992) and in general

form is given by

b
InlJbr

2v+l(     A^V
* > 0 [43]

where b is an unknovm constant taking real values greater than zero, and r is the scalar

distance between the two points under consideration. Unlike the previous covariances,

the poly-exponential model has one unknown coefficient and does not possess a nugget

term (although a nugget term could be included if desired). Additionally, there is only one

possible form for each value of v. The specific forms are shown as follows:

forv=0,     ^^» = -^ + ±-I; [44]

forv=l,     ky,{r)=——^------t + -t------7 +—; [45]

for v=2,     k„Ar) = ——r- + —--^ + —--------- +---------------.     [46]
""•'        h'e'"    b'    b'    lb'    6b'    246'    120Z»

Given a neighborhood of points, the method for optimizing the value ofb such that the

GSC best represents the local correlation structure is similar to the method used for the

polynomial and polynomial-spline covariance models. Equation [34] is again defined as an
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objective function to be minimized with respect to h. Taking the derivative and equating

to zero yields

dF    ^\-^   ^r -i  dA

^-l;[yM.f-A.]-^^o [47]

where / is the point removed and the subscript v indicates that A^ depends on v.

Newton-Raphson iteration is used to solve for 6 as a root to equation [47].   For

this one variable case, the method is developed as follows. First, define the equation

fJP

fib) = ~-0 [48]
do

such that

dA...

/(*)=zk(o^-AJ-

The Newton-Raphson formula is then given by

db
[49]

^,(M^^W_
7W)

[50]

where the superscript / is an iteration index and refers to the current iteration. Also

^ ͣ(*"')4=?
d'A

db KyM)-A.)-[-
dA^

db
[51]

where

dA mm d I       \ d  A mm j2 .

The general form of the covariance first derivative is given by

dk^    (-1)
w-2

db
l2vm-2

2v+2
/

..   'f{-br)
\

1=0

f
+

2v+l,-„i

re

V !=0 /!''-Z-^i-b) [52]

while the specific forms of the second derivatives are given for v = 0, 1, and 2 as follows:
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<^^^x.v=o _   -6       6       4r      2r      r^
"^  i4 i-ihr 1^ T7hr' l-^^l

d^k^^.       20       8r        r'      20    12r    3r'     r^
c/6'        b^e"''    b'e"'    b^"-    b'     b'     b*     3b' '

d^^x.v=2 _ -42      12r       r'      42_30r    10r^_2r^   j;^____r^
db^     'bV'    b'e"-    bV^b'     b' ^  b'       b''^4b'    60b'

Note that A^ and its derivatives are functions of J since they contain the covariance

fiinction or one of its derivatives. For a given value of v, the optimal solution of Z» is

conducted as follows.

(1) Start with an initial guess A    ' arbitrarily chosen within the range of permissibility of

b.

(2) Using the appropriate covariance model and its most recent coefficient J   , each point

X{sj) in the neighborhood is removed one at a time and the kriging system [23] is

constructed using the remaining points as the neighborhood and X{sj) as the point to
(I)

be estimated. Equation [23] is solved for the set [Ay; j = l,2,...,m; j ^^ij

(3) Use b^'' and [Ay] to solve the Newton-Raphson equation [50] for b^'*^\ A globally

convergent routine by Press et al, (1992) is impemented in the actual computer code.

In order to enforce the permissibility condition that Z> > 0, the solution ofb is

constrained to meet permissibility with the addition of a penalty function p{b) to the

objective function:

p{b)='-^. [56]
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(4) At each iteration, check 6^'^'^ for convergence by calculating the relative error

P =

and comparing against the maximum allowable error (e.g. p^^ = 10"^).

[57]

(5) If p<p^^ the solution has converged, and the iterative cycle is broken. The GSC has
been determined and is ready for use in the estimation of the kriging node.

If p> /7^^ the solution has not converged and another iteration is required. The
solution set is updated so that 6^'^'' is used for b^'' in the next iteration beginning with
step (2).

If the number of iterations has reached the maximum allowable without converging,
another initial guess may be required. However, this scenario is not likely with the
globally convergent Newton solver.

At the conclusion of these steps, the GSC is ready for use in calculation of the unknown
point estimate and estimation error variance.

Point Estimate and Error Variance

At this stage in the algorithm, the order of intrinsity which best characterizes the trend in
the neighborhood has been determined, and a GSC-v model has been optimized for the
correlation structure of the neighborhood. We are ready to proceed with the actual
kriging estimation at the unknown point s^. The estimation begins with the construction
of the system [23] using v and the optimized GSC and s^ as the point to be estimated.
The system is solved for the unknown kriging weights A.. The weights are then used in
conjunction with the neighboring data to calculate the point estimate by [12].
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Intrinsic Kriging Algorithm

Subsequently, [25] is used to calculate the estimation error variance o-^ls^.). With this

step, the algorithm is completed and may restart with the next point to be estimated.

Summary and Computer Implementation

Figure 5 provides a flow chart which outlines the intrinsic kriging algorithm just

discussed.

First node

Find Local

Neighborhood

Local value!
of V

Next node

St

Local Covariance
Parameters

Determine

l(s.) anda,'(s.)

Solve for

Kriging weights

Construct

Kriging System

Figure 5. Intrinsic l^riging algorithm.

Recall that a principle focus of this work was to develop an automated computer

program to conduct this algorithm. The program structure follows directly fi^om the

algorithm described in this section. Because of the differences in numerical

implementation of the three generalized covariances, three separate versions of the

program have been written, and each version implements one covariance:   polynomial,

polynomial-spline, or poly-exponential. The polynomial and polynomial-spline versions

are nearly identical, since these GSCs differ only in one term. However, the poly-

exponential version is significantly different from the other two due to the uniqueness of

this GSC function. All three programs are coded in FORTRAN 77. Commented hard-

copies and tables of variable definitions from the polynomial and poly-exponential versions

are contained in Appendices A and B respectively.
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Intrinsic Kriging Algorithm

The algorithm described herein is well suited to parallel processing. The

calculations of v, covariance parameters, ^(s^.), and c^ls^) are specific to each node and

depend only on the locations and values of the data points in the local neighborhood.

Thus, the calculations at any node are completely independent of the calculations at every

other node. If this algorithm was compiled for parallel processing and executed on a

parallel machine, its processing speed could be significantly accelerated relative to the

serial execution time.
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Application: Soil Moisture Content Data Set

General Information and Data Set

The automated computer program developed for the intrinsic kriging algorithm

was applied with a set of soil moisture content data from a study area near Maricopa,

Arizona. The site is located at the Maricopa Agricultural Center about 90 miles northwest

of Tucson. The data consist of 75 soil moisture measurements collected in Spring of 1988

from a depth of 10 centimeters within a domain approximately 1500 meters long (East-

West) and 250 meters wide (North-South). Figure 6 shows the sampling locations in plan

view. Note there are three East-West transections of 15 data each and two areas of

denser data clustering. Warrick et al (1990) designed and implemented the sampling plan

as part of a project involving sampling strategies and geostatistical analysis of hydrologic

properties in the upper vadose zone. The two areas of clustering were assigned on a

quasi-random basis for the purpose of homogenizing lag class sizes for experimental

variogram calculations. Each measurement consists of an X-Y coordinate location and the

moisture content (ratio of weight of entrained water to weight of solids) of the extracted

sample given in percent. Table 5 lists the measured values. Soil types in the area consist

of the Casa Grande sandy clay loam and the Trix clay loam. We used the soil moisture

data to calculate a set of estimations at gridded locations for graphical output as well as to

conduct sensitivity analysis for key program parameters and to evaluate estimation error.

Presently, we will discuss the initial set of gridded estimations.
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t
250 m

1
.•      •

1,500 m

L
Figure 6. Locations of the 75 soil moisture content measurements, plan view. X is east, and Y is

north.

Table 5. List of soil moisture content data.

Ea«ting Northing Percent Easting Northing Percent

(meters) (meters) Moisture (meters) (meters) IMoisture

50.0 500 17.2 865.0 50.0 17.2

500 150.0 21.9 866.0 150.0 20.1

50.0 260.0 246 865.0 250.0 21.5                          '

150.0 50.0 iao 965.0 50.0 20.1

150.0 150.0 23.6 966.0 160.0 202

150.0 250.0 245 965.0 250.0 197

250.0 60.0 19.6 1035.0 210.0 19.8

250.0 160.0 241 1040.0 140.0 199

250 0 260.0 242 1040.0 230.0 19.0

360 0 50.0 20.9 1065.0 50.0 21.8

350.0 160.0 26.3 1065.0 160.0 20 0

350.0 250.0 241 1065.0 260.0 18.3

385.0 236.0 22.8 1070.0 185.0 19.9

395 0 70.0 20.0 1090.0 155.0 21.4

400.0 215.0 204 1090.0 265.0 17.8

400.0 255.0 19.7 1095.0 30.0 201

410.0 90.0 22.2 1095.0 75.0 193

410.0 175.0 23.5 1120.0 20.0 16.5

415.0 195.0 22.7 1120.0 90.0 19.9

420.0 30.0 19.0 1125.0 250.0 168

425.0 125.0 23.2 1135.0 130.0 198

445.0 140.0 19.2 1145.0 265.0 17.9

445.0 250.0 17.4 1156.0 50.0 18.8

450.0 700 160 1165.0 150.0 23.1

465.0 50.0 142 1165.0 250.0 163

465.0 150.0 18.8 1205.0 100 17.5

465.0 260.0 18.4 1205.0 850 191

485.0 100.0 13.3 1225.0 100 17.2

505.0 110.0 13.2 1265.0 50.0 22.0

565.0 50.0 10.4 1265.0 150.0 22.7

565.0 160.0 15.5 1265.0 250.0 16.2

565.0 250.0 158 1365.0 50.0 21.8

665.0 50.0 149 1365.0 150.0 2Z4

665.0 150.0 149 1365.0 250.0 183

665.0 250.0 20.9 1465.0 50.0 204

765.0 50.0 169 1465.0 160.0 19.6

766.0 150.0 20.3 1465.0 260.0 15.1

765.0 260.0 19.0

Baseline Case

We constructed an estimation grid around the data for the first case. The

rectangular domain extends in the X-direction (easting) fi-om 0 to 1500 meters and in the
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Y-direction (northing) from 20 to 270 meters. Node spacing was 10 meters in both

directions for 151 nodes in X and 26 in Y. The total number of estimation points is 3926.

For this case, we used the polynomial GSC model with a local neighborhood of 13 data

points.

On output, the following parameters are provided for each node: order of
intrinsity v, covariance coefficient values, soil moisture estimate ^(s^.), and estimation
error variance 0^(5^). These resuhs are graphically displayed to depict their spatial
variation. Figure 7 depicts v throughout the domain. The noteworthy contribution of this

graphic is the spatial variability of v. The order of intrinsity which best describes the trend

characteristics for any local neighborhood varies from neighborhood to neighborhood.

Similarly, Figure 8 depicts the spatial variability of the covariance coefficient values

{aQ,CQ,c,,C2} which provide the optimal (minimized) solution to the objective fiinction
[34]. Again, this variability indicates the correlation structure of the soil moisture SRF

varies from neighborhood to neighborhood so that the optimal covariance parameters

modeled for the correlation structure vary as well.

It is important to note that the values for v and {a^, c^, c,, Cj} do not depend on the
actual spatial coordinates of a given node but rather on the set of local data points which

comprise the neighborhood around that node. Thus any two or more adjacent nodes

which, because of their proximity, share the same neighborhood of/w data will also have

the same calculated values for v and {cIo,Cq,c^,c^]. This characteristic results from the
algorithm which employs only the local data points, removing them one at a time and

estimating them from the remaining neighborhood points, to determine v and the

covariance parameters.

The calculated values of v and {a^, c^, c,, 03} at each node give rise to the estimates
and estimation error variances for each node. Making the assumption that the estimation
errors X{s^)- JSf(s^) are normally distributed, 95% confidence interval widths can be
constructed using the values for C7^(s^). The estimates and confidence interval widths are

Page 41

NEATPAGEINFO:id=6BE3D337-8816-43CC-84BB-E5EC8569238A



#

Section 6.0

Application: Soil Moisture Content Data Set

270.0

220.0

S  170.0

O  120.0
z

70.0

20.0

•••••••••
ͣ ͣ•••••••
•••••••••

• ͣ•••••••

-••• ͣ
• ••• ͣ

iUui

•••• ͣ• ͣͣ
••••• ͣͣͣ
•••••• ͣͣ

t;;;:t; iZi is
« ͣͣͣͣͣͣ
! ͣͣͣͣͣͣͣ
! ͣͣͣͣͣͣ•••••••
! ͣͣͣͣͣͣͣ•••••••
ͣͣͣͣͣͣͣf••••4•ͣͣͣͣͣͣ•* ͣ• ͣ• ••*•

• ••
• ••

• •••
• •••
• •••
• •••

• ͣͣͣͣͣͣ
ͣͣͣͣͣͣͣ
ͣͣͣͣͣ« ͣ

|----i

ͣͣͣͣI
ͣͣͣͣ
ͣͣͣͣ

ͣ•••••••

ͣ ͣͣͣͣ!
ͣ ͣͣͣͣ!
• ͣͣͣͣ!

ͣ••• ͣͣͣͣ
ͣ ••••• ͣͣ
• •••••• ͣ
ͣ ••••• ͣ
• •••••  ͣ

I--I-

q
d o

o
o
o
CM

o

Nu = 0

• Nu = 1

o
o

o
o
Irt

o
o

o
o

o
o
CO

Easting

o
o

o
o
o

o
o

o
o
CN

O
O

O
O

o
o

Nu   =  2

Figure 7. Order of intrinsity for baseline estimation case.
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Figure 8a. Values of coefficient a. for baseline estimation case.
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'%.        "'' ^C.*^"^"^

Figure 8b. Values of coefficient c^ for baseline estimation case.
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depicted graphically in Figures 9 and 10, respectively. Note that the estimation surface

(Figure 9) is locally irregular and, on a more regional scale, depicts soil moisture content

as a non-homogeneous process. This behavior is appropriate for a SRF approach to

modeling and estimation.

Error and Sensitivity Analyses

We conducted error and sensitivity analyses to assess the performance of the

algorithm. These consisted of cross-validating the 75 data ~ that is, calculating estimates

at each data point using surrounding points ~ and determining the estimation error for

various configurations of neighborhood size and generalized covariance model. Table 6

summarizes the scenarios considered. Appendix C contains histograms of estimation

errors for each case as well as scatter plots with linear regression fits for the actual data

values ^(s;) versus the estimated values ^(s,). The linear regressions provide an

indication of kriging prediction success with a regression model of y-lx and a regression

coefficient of 1.0 indicating perfect prediction.

Table 6. Summary of cross-validation cases.

Case Neighborhood GSC Nugget Regression

Number Size Model

P

Term Coefficient

C1 10 Yes 0.5683

C2 13 P Yes 0.4536

03 16 P Yes 0.4166

C4 10 PS Yes 0.5725

05 13 PS Yes 0.5884

06 16 PS Yes 0.4763

07 10 PE (na) 0.4525

08 13 PE (na) 0.4729

09 16 PE (na) 0.0783

010 10 P No 0.6222

011 13 PS No 0.7100

P. Polynomial Model
PS: Polynomial-Spline Model
PE- Poly-Exponential Model
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Figure 9. Estimated values of soil moisture content for baseline case.
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%     lO-"

Figure 10. 95% confidence interval widths for estimates from baseline case.
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In addition we have constructed cumulative distribution plots for the absolute errors
X(s,) - X(s,). These plots can be contrasted against one another to provide an
indication of relative overall accuracy. Figure 11 contrasts the absolute errors for the
polynomial GSC given neighborhood sizes of 10, 13, and 16 points. Inspection suggests
that the 10-, 13-, and 16-point neighborhoods are close in overall accuracy but that the
10-point subset provides slightly better overall accuracy than the 13-point which is slightly
better than the 16-point. The corresponding linear regression coeflBcient values are
0.5683, 0.4536, and 0.4166 for 10, 13, and 16 points respectively. The decreasing values
verify the suggestion of the cumulative plots, namely that the smallest neighborhood
provides the most accurate results.

A similar plot of cumulative errors for the polynomial-spline GSC model is shown
in Figure 12. Inspection suggests the 10- and 13-point neighborhood cases are very close
in overall accuracy and both are slightly better than the 16-point case. The corresponding
regression coefficient values are 0.5725, 0.5884, and 0.4763 for 10, 13, and 16 points
respectively. The r^ values echo the implication of the cumulative distribution graph that
the smaller neighborhoods are better.

The same neighborhood-size cases were run with the poly-exponential model.
Figure 13 is the cumulative plot of cross-vaHdation errors. The 10- and 13-point
neighborhoods provide approximately the same overall accuracy, and both are significantly
better than the 16-point neighborhood. The corresponding regression coefficient values
are 0.4525, 0.4729, and 0.0783 for 10, 13, and 16 points respectively. The extremely low
r^ value for the 16 point case was caused mostly by 3 extreme outlier errors, jfi] > 10%
moisture. When these outliers are ignored, the regression coefficient improves to 0.4751.
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Figure 11. Cumulative frequency distribution of absolute errors for different neighborhood sizes
using the polynomial GSC model.
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Figure 12. Cumulative frequency distribution of absolute errors for different neighborhood sizes
using the polynomial-spline GSC model.
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Figure 13. Cunnulative frequency distribution of absolute errors for different neighborhood sizes
using the poly-exponential GSC model.

It is apparent that neighborhood size has an effect on overall estimation accuracy.
For all three GSC models, the smaller neighborhoods seemed to produce the best results

with this data set. It should also be noted that the optimal GSC at a disproportionately

large number of the grid locations in Figure 8 were chosen by the goodness-of-fit
parameter [39] to be the pure nugget covariance k^{r) = a^ S{r). Cressie (1986) made a
similar observation of the geostatistical package BLUEPACK (Delfiner, Renard, and

Chiles, 1978) which uses a similar algorithm for kriging under the intrinsic hypothesis.

The declaration of a process as white noise runs contrary to the SRF concept of structural

correlation. Thus, we reran the polynomial and polynomial-spline cross-validations
without the GSC nugget term. The coefficient a^ was simply forced to take the value 0.0.

A 10-point neighborhood was used for the polynomial case, since 10 points produced the

best results with nugget effect. Similarly 13 points were used for the polynomial-spline
case.

Figure 14 shows the cumulative frequency distributions for the absolute errors

from the polynomial case with and without a nugget term. Figure 15 is the same for the
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polynomial-spline case. In both GSCs, the case without nugget effect appears to produce
better overall accuracy. The linear regression coeflBcients for the polynomial model are
0.5683 with nugget term and 0.6222 without. For the polynomial-spline, the values are
0.5884 with nugget and 0.7100 without.

Estimation accuracy for this data set is improved using a GSC model without
nugget effect. However, during the gridded estimation, the goodness-of-fit parameter
[39] gave better values for the pure nugget GSC than for any other form the majority of
the time. It is suggested that in subsequent versions of the kriging program an alternate
goodness-of-fit evaluation (e.g. ajackknife estimator) should be used in place of [39] to
correct this anomaly. I
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Figure 14. Cumulative frequency distribution of absolute errors, polynomial GSC model with and
without nugget effect.
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Figure 15. Cumulative frequency distribution of absolute errors, polynomial-spline GSC model
with and without nugget effect.

One additional evaluation contrasts the three diflferent GSC models: which one

performs the best with this data set? Based on the correlation coefficients for the cross-

validations above, the best performance is from the polynomial-spline model without
nugget effect. The poly-exponential model proved the least accurate. However, the

solution scheme for the poly-exponential coefficient is more complex than for the other
GSCs and requires an initial coefficient guess as well as a penalty fiinction appended to the
objective fiinction [34] to impose a solution constrain for permissibility of the GSC.

Different combinations of initial guess and choice of penalty fiinction might improve
results.

Estimation Error Variance

One final topic concerns estimation error variance. It has been generally thought
that the estimation error variance for a kriging estimate provides some indication of
accuracy of the estimate. One would therefore expect high error variances to be

associated with high errors. To check whether the kriging variances for both an ordinary
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and universal kriging scheme could be used as measures of local accuracy, Journel and
Rossi (1989) ranked the absolute errors from 100 cross-validated data and plotted them
against the ranks of the corresponding error variances. They found no significant
correlation (linear regression correlation coefficients < 0.1).

We conducted a similar exercise with our 75 data using the most successful case:
polynomial-spline GSC and 13-point neighborhood. The scatter plot is shown in Figure
16. Our results confirm the findings of Journel and Rossi, namely that the relative
magnitude of the estimation error variance is not correlated with the relative magnitude of
the actual estimation error. It should be noted that solution of the kriging weights does
not depend on the actual data values (data-independence property) but only on the
covariance fiinction and the relative positions of the data and estimation point. Thus, the
error variance is not generally a measure of local accuracy. Rather, as noted by Journel
and Rossi, it is simply a covariance-model-dependent ranking of configurations of data
locations.
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Figure 16. Rani^s of absolute estimation errors vs. ranks of corresponding error variances.
Correlation coefficient: r^=0.0363.
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We offer an additional explanation for this lack of correlation. Being a function of
random variables, the estimation error is itself a random variable. As such it is
characterized by a probability density fiinction for which the variance parameter provides
some indication of spread. The larger the variance, the wider the spread and the more
probable is a large error value (i.e., inaccurate estimate). However, a large variance does
not necessarily correspond to a large estimation error. Rather, it simply corresponds to a
larger range of possible error values. It says nothing about the error values themselves.
Being random variables, they can take on any value within the range assigned by the
probability distributions. Thus, it is quite possible and not surprising to have a small error
associated with a large error variance and a somewhat large error associated with a small
variance. This condition would account for the lack of correlation between the relative
magnitudes of the estimation errors and the error variances. It is suggested here that
analysts using kriging should keep the above discussion in mind while assessing accuracy
with the error variance.
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Summary

In this work we have applied, using local neighborhoods of data, a kriging

estimator under the intrinsic hypothesis of SRFs to analyze trend characteristics and GSC

parameters and to calculate point estimates of a spatially distributed parameter (in this

case, soil moisture content). The intrinsic hypothesis studied here is more general in

theory than commonly used conventional approaches. The non-homogeneous

phenomenon is transformed into a homogeneous process of spatial increments of order v.

The resulting surface is trend-free. Subsequent analyses are performed using these

increments rather than the original process. The assumption of data homogeneity which

more conventional methods rely upon (e.g. ordinary kriging) is not necessary. The order

of intrinsity parameter, v, describes the degree of trend in the original process. This trend

is filtered out in the increments. Additionally, the ordinary covariance of the original

process may be decomposed into a homogeneous component (the GSC-v) and a non-

homogeneous component. As it turns out, v and the GSC-v provide a complete

stochastic characterization of the process and are necessary and sufficient inputs to the

kriging estimation scheme. As with other kriging estimators, the intrinsic kriging scheme

is a linear, unbiased estimator with minimum estimation error variance.

We have implemented an automated algorithm which chooses the order of

intrinsity and GSC-v parameters that best suit the trend and correlation structure of the

local neighborhoods. The point estimates are then based on these localized descriptions.

When trend and covariance analyses are conducted over a grid, the results can be

illustrated graphically to depict the spatial variations in trend and correlation structure of

the original process.

The algorithm has been applied to a set of 75 soil moisture content measurements.

We used three different GSC-v models in various combinations with neighborhood size.
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Summary

Comparison of the results from these combinations demonstrates that neighborhood size

and GSC model both effect the overall accuracy of the estimates. The combination which

produced the best overall results consisted of the polynomial-spline GSC model without

the nugget term and a 13-point neighborhood.
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Appendix A:
Variable Definitions and Source Code for Poiynomlal GSC

Main Module

Name Type
AO, CO, CI, C2 Real variable
Akm Real array

Bkv Real array

Bkvdup Real array
Data Real array
dX Real variable
dY Real variable
Err Real variable
Est Real variable
ibul Integer variable
icvg Integer variable

lext Integer variable
IGSC Integer array

ispot Integer variable
MAXdat Integer variable
MAXnhd Integer variable
Ncumt Integer variable
ncvg Integer variable

Ndata Integer variable
Ne Integer variable
Nhood Integer variable
Nnx Integer variable
Nny Integer variable
Nu Integer variable
Radii Real array

Subl Real array
WtsLin Real array

Description
Local values of polynomial covariance coefficients.
Left-hand-side covariance matrix for system of intrinsic kriging

equations.
Right-hand-side covariance vector for system of intrinsic kriging

equations.
Dublicate of array Bkv.
Spatial coordinates and parameter values of input data.
X-spacing between grid nodes.
Y-spacing between grid nodes.
Local value of estimation error variance.
Local value of point estimate.
Condition flag: 0 = no bull's-eye; 1 = bull's-eye.
Condition flag: 0 = non-converging covariance solutions; 1 =

converging solutions.
Number of spatial monomials in system of kriging equations.
Mixed-integer template for various forms of the covariance

fiinction. Dimensioned 15x4x3: up to 15 possible polynomial
covariance forms depending on v; 4 coefficients in order as AO,
CO, CI, and C2; 3 possible orders of intrinsity. An entry of 1
indicates a non-zero coefficient value for that covariance form
and the given v-value. Entries of 0 indicate the coefficient is not
used in that form.

Index placeholder for data point which is buU's-eyed.
Dimension parameter for number of input data points.
Dimension parameter for size of local neighborhoods.
Coimter for kriging node ciurently being processed.
Counter for number of non-converging covariance coefficients

solutions.
Number of data points in the input file.
Number of equations in kriging system.
Number of data points which comprise the local neighborhoods.
Number of grid nodes in X-direction.
Number of grid nodes in Y-direction.
Local value of order of intrinsity, v.
Matrix of scalar distances between all pairs of neighborhood points.

Diagonal holds values between current node and all
neighborhood points.

Spatial coordinates and parameter values of input data.
Matrix of kriging weights resulting from estimation of each

neighborhood point from all others using the linear covariance
k(r) = -r.
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Appendix A:

Variable Definitions and Source Code for Polynomial GSC

Xo Real variable

Xsk Real variable

Xvect Real array

Yo Real variable

Ysk Real variable

Starting X-value for grid.
X-value of current grid node.
Left-hand-side vector of unknown kriging weights and Lagrange

multipliers for system of kriging equations.
Starting X-value for grid.
X-value of current grid node.

Subroutine Search

Name Type
Data Real array
lorder Integer array

istep Integer variable

MAXdat Integer variable
MAXnhd Integer variable
Ndata Integer variable
Nhood Integer variable
Radius Real array
Subl Real array
Xsk Real variable

Ysk Real variable

Description

Spatial coordinates and parameter values of input data.
Index which keeps track of original order of sorted Radius values.
Causes sorting of one additional Radius value when there is a bull's-

eye.

Dimension parameter for number of input data points.
Dimension parameter for size of local neighborhoods.
Number of data points in the input file.
Number of data points which comprise the local neighborhoods.
Distances between all data points and current grid node.
Spatial coordinates and parameter values of current neighborhood.
X-value of current grid node.
X-value of current grid node.

Subroutine CalcRd

Name

Datset

MAXnhd

Nhood

r

Radii

Xsk

Ysk

Type

Real array

Integer variable
Integer variable
Real variable

Real array

Real variable

Real variable

Description

Spatial coordinates and parameter values of current neighborhood.
Dimension parameter for size of local neighborhoods.
Number of data points which comprise the local neighborhoods.
Distance between two indicated points.
Matrix of scalar distances between all pairs of neighborhood points.

Diagonal holds values between current node and all
neighborhood points.

X-value of current grid node.
X-value of current grid node.

Subroutine Intrin

Name

Anu

Bnu

Diff

Real array

Real array

Real array

Description

Left-hand-side covariance matrix for system of intrinsic kriging
equations constructed to estimate one data point from the others
in the neighborhood.

Right-hand-side covariance vector for system of intrinsic kriging
equations constructed to estimate one data point from the others
in the neighborhood..

Absolute values of estimation errors £ calculated for each removed

data point and each value of Nu = 0,1,2.
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Appendix A:
Variable Definitions and Source Code for Polynomial GSC

Est Real variable
lalfa Integer variable
Irank Integer array
MAXnhd Integer variable
Ne Integer variable
Nhood Integer variable
Nu Integer variable
Subl Real array
Sub2 Real array

WtsLin

XAllNu
Xnu

Real array

Real array
Real array

Local estimate of data point removed from the neighborhood.
Number of spatial monomial in system of kriging equations.
Rank values of estimation errors stored in DiflF.
Dimension parameter for size of local neighborhoods.
Number of equations in kriging system.
Number of data points which comprise the local neighborhoods.
Local order of intrinsity, v.
Spatial coordinates and parameter values of current neighborhood.
Spatial coordinates and parameter values of current neighborhood

with one point removed.
Matrix of kriging weights resulting from estimation of each

neighborhood point from all others using the linear covariance
k(r) = -r.

Same as WtsLin.
Vector of solved kriging weights for a given point removed from the

neighborhood and a given order of intrinsity.

Subroutine Remove

Name Type Description
IndxPt Integer variable Index value for neighborhood point currently removed.
MAXnhd Integer variable Dimension parameter for size of local neighborhoods
Nhood Integer variable Nmnber of data points which comprise the local neighborhoods.
Sub 1 Real array Spatial coordinates and parameter values of current neighborhood.
Sub2 Real array Spatial coordinates and parameter values of current neighborhood

with one point removed.

Subroutine Rank

Name
Diff

lorder

Ipoint
Irank
MAXnhd

Type Description
Real array Absolute values of estimation errors s calculated for each removed

data point and each value of Nu = 0,1,2.
Integer array Stores original (pre-ranked) orders of estimation errors in Diff.
Integer variable Index value for neighborhood point currently removed.
Integer array Stores rank for given estimation error for current point removed.
Integer variable Dimension parameter for size of local neighborhoods

Subroutine SetNu

Name Type Description
lorder Integer anay Stores original (pre-ranked) orders of estimation errors in Diff.
Ipoint Integer variable Index value for neighborhood point currently removed.
Irank Integer array Stores rank for given estimation error for ciurent point removed.
Isum0,l,2 Integer variable Summations of ranks associated with estimation errors from all

points removed for a given value of Nu = 0,1,2.
MAXnhd Integer variable Dimension parameter for size of local neighborhoods
Minsum Integer variable Smallest of the three sums of ranks, IsumO, IsumI, and Isum2
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Nhood

Nu

Integer variable Number of data points which comprise the local neighborhoods.
Integer variable Local value of order of intrinsit>', v.

Subroutine Covar

Name Type
AO, CO, CI, C2      Real variable
BestCf Real array

GSCcf

Radii

Subl

WtsLin

Real array

MAXnhd Integer variable
Nhood Integer variable
Npass Integer variable
Nu Integer variable
Permis Character array

Real array

Real array
Real array

Description

Local values of polynomial covariance coefficients.
Set of coefficients returned by the goodness-of-fit test conducted by

Select.

In COMMON block GSCval based in routine Covar. Holds values
of polynomial covariance coefficients which are calculated in
CalcCf   Dimensioned 15x4x3 entries: up to 15 possible
polynomial covariance forms depending on v; 4 coefficients in
order as AO, CO, CI, and C2; 3 possible orders of intrinsity.
Non-zero entries correspond to Is in IGSC array in main
module.

Dimension parameter for size of local neighborhoods
Number of data points which comprise the local neighborhoods.
Number of passing covariance forms for a given grid node.
Local value of order of intrinsity, v.
Declared in COMMON block COPchk based in routine Covar.

Entries correspond with a set of covariance coefficients for a
given form and are either "Pass" or "Fail", indicating the status
of the solution. Dimensioned 15x1x3 entries: 15 possible
polynomial covariance forms depending on v; 1 set of
coefficients for each form; 3 possible orders of intrinsity.

Matrix of scalar distances between all pairs of neighborhood points.
Diagonal holds values between current node and all
neighborhood points.

Spatial coordinates and parameter values of input data.
Matrix of kriging weights resulting from estimation of each

neighborhood point from all others using the linear covariance
k(r) = -r.

Subroutine CalcCf

Name Type
AO, CO, CI, C2 Real variable
AOLi Real variable

BestCf Realanay

COLi Real variable

ClLi Real variable

C2Li Real variable

Csums Real variable

ErrChk Character

Errmax Real variable

error Real variable

Description

Local values of polynomial covariance coefficients.
Value from fimction AOlamb.

Set of coefficients returned by the goodness-of-fit test conducted by
Select.

Value from function Cnlamb.
Value from fimction Cnlamb.
Value from function Cnlamb.
Summartion counters of lambda function terms.
Flag indicating if convergence test has passed for failed.
Maximum allowable error in any coefficient solution vector.
Value from function Reldif.
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GSCcf Real array

icvg

IGSC

Integer variable

Integer array

Iter Integer variable
Maxit Integer variable
MAXnhd Integer variable
Morel Integer variable

More2 Integer variable

More3 Integer variable

More4 Integer variable

ncvg Integer variable
Nforms Integer variable
Nhood Integer variable
Npass Integer variable
Nu Integer variable
Permis Character array

Pvalu Character

Radii Real array

Subl Real array
surl Real variable

sur2 Real variable

sur3 Real variable
sur4 Real variable

WtsLin Real array

In COMMON block GSCval based in routine Covar. Holds values
of polynomial covariance coefficients which are calculated in
CalcCf   Dimensioned 15x4x3 entries: up to 15 possible
polynomial covariance forms depending on v; 4 coefficients in
order as AO, CO, CI, and C2; 3 possible orders of intrinsity.
Non-zero entries correspond to Is in IGSC array in main
module.

COMMON flag indicating convergence ("1") or non-convergence
("0").

Declared in un-named COMMON block. Mixed-integer template
for various forms of the covariance function. Dimensioned
15x4x3 entries: up to 15 possible polynomial covariance forms
depending on v; 4 coefficients in order as AO, CO, CI, and C2; 3
possible orders of intrinsity. An entry of 1 indicates a non-zero
coefficient value for that covariance form and the given v-value.
Entries of 0 indicate the coefficient is not used in that form.

Iteration counter.

Maximum number of iterations.

Dimension parameter for size of local neighborhoods
Iteration at which to begin the 1st level of successive under-

relaxation..

Iteration at which to begin the 2nd level of successive under-
relaxation..

Iteration at which to begin the 3rd level of successive under-
relaxation..

Iteration at which to begin the 4th level of successive under-
relaxation..

Counter for number of non-converging solutions.
Number of possible GSC forms for a given value of v.
Number of data points which comprise the local neighborhoods.
Number of passing covariance forms for a given grid node.
Local value of order of intrinsity, v.
Declared in COMMON block COPchk based in routine Covar.

Entries correspond with a set of covariance coefficients for a
given form and are either "Pass" or "Fail", indicating the status
of the solution. Dimensioned 15x1x3 entries: 15 possible
polynomial covariance forms depending on v; 1 set of
coefficients for each form; 3 possible orders of intrinsity.

Flag indicating if permissibility test has passed or failed.
Matrix of scalar distances between all pairs of neighborhood points.

Diagonal holds values between current node and all
neighborhood points.

Spatial coordinates and parameter values of input data.
Successive under-relaxation factor for 1st level.
Successive tmder-relaxation factor for 2nd level.
Successive under-relaxation factor for 3rd level.
Successive under-relaxation factor for 4th level.

Matrix of kriging weights resulting from estimation of each
neighborhood point from all others using the linear covariance
k(r) = -r.
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WtsNxt Real array

Xnew Real array
Xold Real array
Yi Real variable
Ysums Real array

Set of kriging weights calculated at each iteration for each point
removed in the local neighborhood.

New vector of coefficient values for a current iteration.
Old vector of coefficient values for previous iteration.
Value of the spatial increment for a current data point removed.
Right-hand-side vector for system of equations for unknown

coefficients.

Subroutine PermQ

Name Type
A0,C0,C1,C2 Real variable
Flag Charater variable
Iform Integer variable
Nu Integer variable

Description
Value of the polynomial covariance coefficients.
Flag indicating whether coefficient set is permissible or not.
Index number for current form of the GSC being considered.
Value of order of intrinsity.

Subroutine NewWts

Name Type
A0,C0,C1,C2 Real variable
Ak Real array
Bk Real array
Coeffs Real array
lalfa Integer variable
Nhood Integer variable
Nu Integer variable
Sub I Real array
Sub2 Real array

WtSet Real array
Xk Real array

Description
Value of the polynomial covariance coefficients.
Covariance matrix for the kriging system.
Covariance vector for the kriging system.
Array of polynomial GSC coefficients.
Number of spatial monomials in system of kriging equations.
Number of data in neighborhood.
Value for order of intrinsity V.
Array of neighborhood point locations and values.
Array of neighborhood point locations and values with one point

removed.

Set of kriging weights for all points in the neighborhood removed.
Unknown vector in kriging system: the kriging weights.

Subroutine Select

Name
Ai

BestCf
Eta

Nhood
Nu

Passng
Subl
WtSet
Yi

Type
Real variable

Real array
Real array

Integer variable
Integer variable
Real array
Real array
Real array
Real variable

Description

Value of fimction A^.
Values of coefficients with best goodness-of-fit.
Values of goodness-of-fit parameter r] associated with

corresponding GSC form.
Number of data in neighborhood.
Value for order of intrinsity v.
Values of coefficients for all GSC forms which gave viable solutions
Array of neighborhood point locations and values.
Set of kriging weights for all points in the neighborhood removed.
Value of spatial increment.
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Variable Definitions and Source Code for Polynomial GSC

Subroutines Kmatrx and Kvectr

Name Type

A0,C0,C1,C2 Real variable

AK Real array
BK Real array
Datset Real array
lext Integer variable
Ndim Integer variable

Polyiun Real array

Description

Values of polynomial GSC coefficients.
Values of covariance matrix.

Values of right-hand-side covariance vector.
Spatial locations and values for neighborhood data.
Number of spatial monomials in sytem of kriging equations.
Number of points in neighborhood.
Values of polynomial monomials.

Subroutines Estmat and EstErr

Name Type

A0,C0,C1,C2 Real variable

BK Real array
Datset Real array
Error Real variable

Est Real variable

lext Integer variable
Ndim Integer variable
Wts Real array

Description

Values of polynomial GSC coefficients.
Values of right-hand-side covariance vector.
Spatial locations and values for neighborhood data.
Value of the estimation error variance.

Value of the kriging point estimate.
Number of spatial monomials in sytem of kriging equations.
Number of points in neighborhood.
Values of kriging weights.
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This version of code contains in-line comments to explain the program structure. It is not
meant for machine use.  The source code filename for this program is ^4AIN6.FOR.

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

C.....Set the run parameters for the case run.
PARAMETER (Ndata=75, Nhood=13, Nnx=151, Nny=l, Xo=0.dO, Yo=20.d0,
& dX=10.dO, dY=10.dO)

C.....Dimension the arrays which are used in the main module.

PARAMETER {MAXdat=100, MAXnhd=20)

DIMENSION Data(MAXdat,3), Subl(MAXnhd,3), WtsLin{MAXnhd,MAXnhd),
& Radii(MAXnhd,MAXnhd), Akm(MAXnhd+6,MAXnhd+6),

& Bkv(MAXnhd+6), Bkvdup(MAXnhd+6), Xvect(MAXnhd+6)

C.....Declare and dimension the variables and arrays which are common.
COMMON  IGSC(15,4,0:2), ncvg, Icvg

COMMON /Serch/ Ibul, ispot

INTEGER IGSC, ncvg, icvg, ibul, ispot

C.....Open the disk files used in input/output data transfers. By convention, file units
in the 10s are for input, and file units in the 20s are for output.  Unit 10 is the
input file containing the point value data. Three output files are specified.  Unit 20
is the file receiving all the kriglng results.  Unit 25 contains locations of any nodes
where covariance coefficient solututions did not converge.  Unit 30 logs the execution
of the run, keeping a record of input data and run parameters.

OPEN {10,File='d:\work\data\sollwatr.txt',IOSTAT=iolO)
OPEN (20,File='d:\work\scratch\chk77-l.txt',IOSTAT=io20)
OPEN (25,File='d:\work\scratch\chk77-2.txt',I0STAT=io25)

OPEN (30,File='d:\work\scratch\chk77-3.txt',IOSTAT=io30)

WRITE {*,'(4(2x,i5))•) iolO, io20, io25, ioSO

C.....Read the input data set from the specified disk file.  Note that the
first column of numbers in the data file should consist of integer
values which index the order of the data points.  Currently, this
index value is not used in the program, but is useful in the data
file as a means of identifying where points may have been removed
by declustering.  The input data is echoed to screen and to the log
output file.

READ (10,*) (idumb, Data{I,l), Data(I,2), Data(I,3), I=l,Ndata)

WRITE (*,2020) (Data(I,l), Data(I,2), Data(I,3), I=l,Ndata)
WRITE (30,2020) (Data(I,l), Data(I,2), Data(I,3), I=l,Ndata)

2020 FORMAT (2(2x,f16.8),2x,f10.3)

C.....Echo the run parameters to the log output file. ,   ;
WRITE (30,*) '  Parent   =   main6.for'

WRITE (30,*) '  Nhood    =', Nhood

WRITE (30,*) '  GSC      =   Polynomial'
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^ WRITE (30,*)

WRITE (30,*)

WRITE (30,*)

WRITE (30,*)

WRITE (30,*)

WRITE (30,*)

WRITE (30,*)

'  Nugget? = Yes'

'  Errmax = l.Oe-05

•  Ndata = , Ndata

'  Nnx = , Nnx

'  Nny = , Nny

•  dX = , dX

•  dY = , dY

.Initialize some values.  The subroutine Templt initializes the values

of the array IGSC to either 0 or 1, providing a template of possible

covariance forms.  See variable definitions for explanations of these
terms.

CALL Templt -     ͣ     .    '  ͣ

ncvg=0 . ' ͣ •    ,--- ͣ
Nn=Nnx*Nny -

Ncurnt=l

Yslc=Yo

C.....The following nested DO-loops for Iny and Inx conduct the main portion of the
program.  They iterate through the grid of Icriging nodes, moving across a row of nodes
from smaller to larger X-values then up to the next      row.  The local intrinsic

Icriging algorithm is conducted within this nest for each node in the grid.

DO Iny=l,Nny        \
Xsk=Xo .        ͣ    :

DO Inx=l,Nnx

i090

icvg=l

ibul=0

WRITE (*,1090) Ncurnt, Nn, ncvg

WRITE (30,1090) Ncurnt, Nn, ncvg

FORMAT (' Processing node ',14,' of ',\^,' Ncvg = ',14)

CALL Search (Ndata,Nhood,Data,Xsk,Ysk,Subl)

CALL CalcRd (Nhood,Xsk,Ysk,Subl,Radii)

CALL Intrin (Nhood,Subl,WtsLin,Nu)

CALL Covar (Nhood,Nu,Subl,Radii,WtsLin,

& A0,C0,C1,C2)

C.............Now the order and coefficients of the GSC-v have been found for the current

kriging node (Xsk,Ysk).  The kriging point estimate and estimation error variance can

now be determined.  First, check to see a bull's-eye has occurred.  If so, the estimate

is given the value of the data point where the bull's-eye has occurred, and the

estimation error variance is zero.  If not, the estimate and error variance are

calculated normally.

IF (ibul .EQ. 1) THEN

Est=Data(ispot,3)

Err=0.dO
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ELSE IF (ibul .EQ. 0) THEN

ͣ    ͣ - Iext=IalphalNu)
CALL Kmatrx (Nhood,Text,A0,CO,CI,C2, Subl,Akm) ͣ

ͣ   •- CALL Kvectr (Nhood, Iext,Xsk, Ysk, A0,C0,C1, C2,
S Subl,Bkv)

C.................The b-vector for the kriging system is used in two places:  the
kriging system itself and the estimation error variance.  In the
solution of the kriging system, the b-vector is operated on and
its values changed.  Therefore, the duplicate Bkvdup is utilized
in the linear solver, and the original Bkv is used in the error
variance calculation.

DO m=l,Nhood+6

Bkvdup(m)=Bkv(m)

END DO

Ne=Nhood+Iext

.; CALL SolvGJ (Akm,Ne,26,Bkvdup,1,1) i

C.................The return from the linear solver SolvGJ is the solution vector

the the system of kriging equations.  These values are passed
back the the calling module through the array for the right-
hand-side vector, in this case Bkvdup.  Therefore, the solution

•. '     values are copied into the array Xvect to avoid confusion as to
where they are.

DO ko=l,Ne ,:; ' ͣ :
"  • Xvect {ko)=Bkvdup(ko) - ͣ;

END DO

CALL Estmat (Nhood,Subl,Xvect,Est)

CALL EstErr (Nhood,Iext,AO,CO,CI,C2,Xvect,Bkv,Err)
END IF

C.............Analysis for the current node is now complete.  The results are
written to the output file.  Next, icvg is checked to see if there were any non-
converging coefficient solutions to the covarlance parameters.  If so, the coordinates
of the current node are written to file 25.

WRITE (20,2000) Xsk,Ysk,Est,Err,Nu,AC,CO,CI,C2

2000 FORMAT (2(f12.7,2x),2(el5.7,2x),il,4(2x,el5.7))

IF (icvg .EQ. 0) THEN

WRITE (25,2010) Inx,Iny,Xsk,Ysk

2010 FORMAT (2(2x,14),2(2x,f12.2))
-  ,    END IF

Ncurnt=Ncurnt+l ; ' '

Xsk=Xsk+dX .; ͣ '!
END DO : '^  .        ; "...  .* •'' ^ ^
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Ysk=Ysk+dY

END DO ͣ " ,

C.....The line above defines the end of the DO-nest.  The program is completed here.

WRITE (20,'(a,i4)') 'Number of GSC models not converging:', ncvg
WRITE (25,'(a,14)') 'Number of GSC models not converging:', ncvg

STOP

END

C.....This subroutine initializes the values of the array IGSC which provide a mixed-
integer template of the various forms of the polynomial GSC function which are possible
with different orders of intrinsity.  All the values in IGSC are initially set to zero.
Then those elements which correspond to covariance coefficients with non-zero values
are given values of 1.

SUBROUTINE Templt

COMMON  IGSCfl5,4,0:2)
INTEGER IGSC

C.....The first step is to initialize all elements in IGSC().
DO 1=1,15 ,
DO j =1,4 ͣ' . • ͣ
DO k=0,2 y - "
IGSCd, j,k)=0 ͣ• ͣ
END DO _

END DO -

END DO :

C.....Now, set the nonzero values for the case of v=0.

IGSCd,1,0)=1
IGSC(1,2,0)=1 -      :::

1GSC(2,1,0)=1

IGSC(3,2,0)=1

C.....Now, set the nonzero values for the case of v=l.

IGSCd,1,1)=1

IGSC(1,2,1)=1
IGSCd,3,l)=l

IGSC{2,1,1)=1
IGSC(2,2,1)=1 .  ,
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IGSC(3,1,1)=1

IGSC(3,3,1)=1 r

IGSC(4,2,1)=1

IGSC(4,3,1)=1

IGSC(5,1,1)=1

IGSC(6,2,1)=1

IGSC(7,3,1)=1

.Now, set the nonzero values for the case of v=2.

IGSC(1,1,2)=1

IGSC(1,2,2)=1

IGSC{1,3,2)=1

IGSC(1,4,2)=1

IGSC{2,1,2)=1

IGSC(2,2,2)=1 ';
IGSC{2,3,2)=1

IGSC(3,l,2j=l

IGSC(3,2,2)=1   '  ͣ     - - ' 'I
IGSC(3,4,2)=1

IGSC(4,1,2)=1

IGSC(4,3,2)=1

IGSC(4,4,2)=1

IGSC(5,2,2)=1

IGSC(5,3,2)=1

IGSC{5,4,2)=1

IGSC(6,1,2)=1

IGSC(6,2,2)=1   ͣ  "

IGSC{7,1,2)=1

IGSC(7,3,2)=1

IGSC{8,1,2)=1

IGSC(8,4,2)=1

IGSC(9,2,2)=1

IGSC(9,3,2)=1

IGSC(10,2,2)=1

IGSC(10,4,2)=1

IGSC{11,3,2)=1
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IGSC{11,4,2)=1 -   .

IGSC(12,1,2)=1

IGSC(13,2,2)=1 " '

IGSC(14,3,2)=1 ͣ , ͣ;:

IGSC(15,4,2)=!

.All the nonzero values are now set.  Return to calling module.

RETURN

END

Q-k ͣ)(-k-k-k * * * * *-ie *-k-ir-k-k-it *-if-k-k-ir-it ^-k *-ie *-k'k * * * * *-k-i^-k * * * * * *-it-it-if-it-if-k *-k *-k it * * * *-k-k it-if * *-k

C.....This subroutine conducts the search to identify the Nhood closest data points to a
given kriging node.  The search is exhaustive among all data points and is based on the
ranking of the scalar distances between a given node and the data points.  The routine
also identifies bull's-eyes and sets      a series of flags if a bull's-eye occurs.

SUBROUTINE Search (Ndata,Nhood,Data,Xsk,Ysk,Subl)

IMPLICIT DOUBLE PRECISION {A-H,0-Z)

PARAMETER (MAXdat=100, ^4AXnhd=20)

DIMENSION Data(MAXdat,3), Radius(MAXdat), Subl(MAXnhd,3)
INTEGER lorder(MAXdat)

COMMON /Serch/ ibul, ispot :  . _ ' -
INTEGER ibul, ispot

C.....Calculate the scalar distances between all the data points and the node.
DO 1=1,Ndata

Radius(I)=Dist(Data(1,1),Data(1,2) ,Xsk,Ysk)

lorder(I)=I • ͣ
END DO

C.....Sort the Nhood+1 smallest values in Radius(), leaving the rest unsorted.
C    Although there are only Nhood points to comprising the neighborhood, one
C     extra value is sorted in the event that there is a "bull's-eye" and the
C     closest point cannot be used.

ͣ      DO 1=1,Nhood+1
,. ,    DO J=I + 1,Ndata :

IF (RadiusfJ) .LT. Radius(I)) THEN             \          .'  ';
CALL RSwap{Radius(I),Radius(J)) ,     ,
CALL ISwap(lorder(I),lorder(J)) :     ',.
END IF ,

END DO

END DO i
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C.....Check for a bullseye in the smallest radius value, i.e. the 1st array elem.
C     ibul:  "0"=no bullseye; "l"=bullseye

C     istep:  "1" = don't include 1st pt. in nhood: "0" = do include 1st pt.
C     ispot:  this is the index # of bullseyed data pt.

C.....The bull's-eyes are identified by a distance of zero between a given pair of
kriging node and data point.

IF (Radiusd) .EQ. O.dO) THEN

ibui=i : ^ ^ ͣ      ;•
istep=l ' •   :
ispot=Iorder(1)

ELSE

istep=0

END IF

C.....Now set the values of Subl() to the appropriate values from Data().

DO 1=1,Nhood ͣ  J
Subl{I,1)=Data(lorder(I+istep),1)
Subl(I,2)=Data{lorder(I+istep),2)

'        Subl(I,3l=Data{lorder(I + istep), 3)
END DO

RETURN

END ͣ: '"^
C-

C.....This routine swaps two real variable values.

SUBROUTINE RSwap (argl,arg2)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

temp=argl

argl=arg2

arg2=temp '

RETURN

END

C-

C.....This routine swaps two integer variable values.

SUBROUTINE ISwap (iargl,iarg2)

IMPLICIT INTEGER (I-N)

itemp=iargl

iargl=iarg2

iarg2=itemp
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RETURN ͣ/ - ͣ :
END \ ' ͣ

C.....This routine calculates the distances between all pairs of data points in the
current neighborhood and stores them is the array Radii for use in other routines.

SUBROUTINE CalcRd (Nhood,Xsk,Ysk,Datset,Radii)

IMPLICIT DOUBLE PRECISION (A-H,0-Z) . •-'    '
PARAMETER (MAXnhd=20)

DIMENSION Datset(MAXnhd,3), Radii{MAXnhd,MAXnhd)

C.....STEP 1:  Calculate the distances between the points in Datset and
C     the current kriging node.  Store these values on the diagonal of Radii().

DO 1=1,Nhood

r=Dist(Xsk,Ysk,Datset(1,1),Datset(1,2))
Radii(I,I)=r

END DO

C.....STEP 2:  Calculate the distances between all pairs of points in Datset().
C    Note that corresponding entries in the upper and lower triangle of
C     the matrix are equivalent. ,    ' ͣ

DO I=l,Nhood-l " '       ' ͣͣͣ
DO J=I+1,Nhood

r=Dist(Datset(1,1),Datset(1,2),

& Datset(J,1),Datset(J,2))

Radii(I,J)=r

Radii(J,I)=r ' :       . :
END DO

END DO

RETURN

END

C.....This subroutine determines the order of intrinsity from the set (0,1,2} which best
represents the trend characteristics of the current neighborhood. The algorithm used is
defined in the text section on the intrinsic kriging algorithm.

SUBROUTINE Intrin (Nhood,Subl,WtsLin,Nu)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

PARAMETER (MAXnhd=20)

DIMENSION Subl(MAXnhd,3), Sub2(MAXnhd,3), Diff(0:2),
& Anu(MAXnhd+6,MAXnhd+6), Bnu{MAXnhd+6), Xnu(MAXnhd+6),
& X;i.llNu(MAXnhd,MAXnhd,0:2) , WtsLin (MAXnhd, MAXnhd )
INTEGER Irank(MAXnhd,0:2)
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Nh=Nhuod-l ; ;

C.....The following DO-loop is the master loop which progresses through all the data
points in the neighborhood and conducts the operations described in the text sections.

DO I=l,Nhood

CALL Remove (Nhood,1,Subl,Sub2)

C.........The following DO cycles through the set of Nu-values {0,1,2} for each point
removed and calculates the estimation error associated with that Nu-value.

ͣͣ-     DO Inu=0,2 ;,    -^
Ialfa=Ialpha(Inu)

CALL Kmatrx (Nh,lalfa,0.dO,1.dO,0.dO,0.dO,Sub2,Anu)
CALL Kvectr (Nh,lalfa,Subl(I,1),Subl(I,2),

& 0.dO,l.dO,0.dO,0.dO,Sub2,Bnu)

Ne=Nh+Ialfa '   .

.    CALL SolvGJ (Anu,Ne,26,Bnu,l,l)       •      ;'
DO ko=l,Ne

Xnu{ko)=Bnu(ko)

END DO

DO M=l,Nh _ ;^    ^ ^ •      ;     - ' , ,
XAllNu(I,M,Inu)=Xnu{M)

;' "   END DO - '
CALL Estmat (Nh,Sub2,Xnu,Est) i
Diff (Inu)=ABS(Est-Subl (1,3) ) -. ͣͣ
END DO ]

C.........The estimation errors in Diff are now ranked from lowest to highest.

CALL Rank {I,Diff,Irank) ͣ    .    :
END DO

C.....The lowest sum of ranks for a given Nu is now determined, and the neighborhood is
given the corresponding order of intrinsity.

CALL SetNu (Nhood,Irank,Nu)

C.....Now, for later use, save the sets of kriging weights which correspond
C     to the determined value of v for the neighborhood.  The IF block maps
C     the appropriate layer in XAllNu into WtsLin.  Note that these two
C     arrays have different numbers of columns; hence, the IF block is needed
C     to correctly map the entries.  This segment is verified, 6-25-92.ID

DO M=l,Nhood ͣ
DO N=l,Nhood ͣ  ͣ,

IF (N .LT. M) THEN ͣ„ "
WtsLin{M,N)=XAllNu(M,N,Nu) ͣ '
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ELSE IF (N -EQ. M) THEN

WtsLin(M,N)=-l.dO

ELSE IF (N .GT. M) THEN

WtsLin(M,N)=XAllNu(M,N-l,Nu)

END IF  :       >;,

END DO

END DO

RETURN                   /   '

END            _        . ,.

c.. .-This routine removes a data point from a

c-

neighborhood Sub2 consisting of the old neighbors minus the removed point.

SUBROUTINE Remove (Nhood,IndxPt,Subl,Sub2)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

PARAMETER (MAXnhd=20)

DIMENSION Subl(MAXnhd,3), Sub2(MAXnhd,3)

IF (IndxPt .EQ. 1) THEN

DO 1=2,Nhood

Sub2(I-l,l)=Subl{I,l) - ͣ
Sub2(I-l,2)=Subl(I,2)

Sub2(I-l,3)=Subl(I,3)

END DO

ELSE \,,; '  • ,.. J
Sub2(IndxPt-1,1)=Subl(IndxPt-1,1)

Sub2(IndxPt-1,2)=Subl{IndxPt-1,2)

Sub2(IndxPt-1,3)=Subl(IndxPt-1, 3)

END IF   -

RETURN

END

C.....This routine ranks the estimation errors from Nu-values (0,1,2) as 1st, 2nd,
or 3rd from smallest error to largest error.

SUBROUTINE Rank (Ipoint,Diff,Irank)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

PARAMETER (MAXnhd=20)

DIMENSION Diff(0:2)

INTEGER Irank(MAXnhd,0:2), Iorder(0:2)

C.....Initialize the array Iorder{).
Iorder(0)=0

Iorder(l)=l

Iorder(2)=2    \
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C.....Sort the estimation errors in increasing order.
DO 1=0,2

DO J=I+1,2

IF (Diff(J) .LT. Diff(I)) THEN

_     - CALL Rswap (Diff(I),Diff(J))
CALL Iswap (lorder(I),lorder(J))

END IF

END DO

END DO

C.....Assign ranks according to the sorted variance values.
Irank(Ipoint,lorder{0))=1

Irank(Ipoint,Iorder(l))=2

Irank(Ipoint,lorder(2))=3

RETURN

END ͣ '
C-

C.....This routine sets the order of intrinsity for a given neighborhood based on the
lowest sum of ranks for all the points removed and all the tested values of Nu.

SUBROUTINE SetNu (Nhood,Irank,Nu)

IMPLICIT DOUBLE PRECISION (A-H,0-Z) r
PARAMETER (MAXnhd=20)

INTEGER Irank(MAXnhd,0:2)

C.....Initialize the summation variables.      • "
IsumO=0

lsuml=0

Isum2=0

C.....Add up the rank values for each order of intrinsity {0,1,2}.
DO 1=1,Nhood

IsuraO=IsumO+Irank(I,0) .   '

Isuml=Isuml+Irank(1,1)

IBum2=Isum2+Irank(I, 2)

END DO '     ' J.    ;   :

C.....Test if two or more of the rank sums are equal and smaller than the other rank sum.
If so, then assign v subjectively to the smallest possible order. This decision is
based on the fact that an ISRF of order T) is also an ISRF       of order C,  where ( >   rj
and that the reverse is not necessarily true.  Thus, by chosing the lower Nu-value in
the event of a tie, the more conservative case is chosen.

IF ((IsumO .EQ. Isuml) .AND. (IsumO .LT. Isum2)) THEN
Nu=0

RETURN ͣ ͣ
ELSE IF ((IsumO .EQ. Isum2) .AND. (IsumO .LT. Isuml)) THEN
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Nu=0

RETURN

ELSE IF ((Isuml .EQ. Isum2) .AND. (Isuml .LT. IsumO)) THEN
Nu=l

RETURN -i
ELSE IF {(IsumO .EQ. Isuml) .AND. (IsumO .EQ. Isum2)) THEN

Nu=0

RETURN

END IF

C.....Determine which sum of ranks is the lowest and set Nu to the corresponding order of
intrinslty.

Minsum=MIN(IsumO,Isuml,Isum2)

IF (Minsum .EQ. IsumO) THEN

Nu=0

ELSE IF (Minsum .EQ. Isuml) THEN

Nu=l : '
ELSE IF (Minsum .EQ. Isum2) THEN

Nu=2

END IF '     ͣ ,

RETURN       . ͣͣ "  /  ͣ
END

Q**** ********* ****** + -JfJ^-J^* + -tr + -JfJf**** + Jfi-*** + ****-ti'*Jf***ir^tJtf ************

C.....This routine controls the calculation of the polynomial covariance parameters

{a„,Cn,c. ,c,}.  Given a value of Nu, each possible form of the covariance is analyzed.
Those which provide permissible solutions for {a|,,c.,c,,c,} are checked for goodness of
fit, and the best of those is used in the Icriglng calculations.  The steps implemented
here are discussed in the text section on the intrinsic kriging algorithm.

SUBROUTINE Covar (Nhood,Nu,Subl,Radii,WtsLin,AO,CO,CI,C2)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

PARAMETER (MAXnhd=20)

DIMENSION Subl(MAXnhd,3), Radii(MAXnhd,MAXnhd),
i WtsLin(MAXnhd,MAXnhd), BestCf(4)

COMMON /GSCval/ GSCcf(15,4,0:2)

COMMON /COPchk/ Permis(15,1,0:2)
DOUBLE PRECISION GSCcf ͣ >
CHARACTER*4 Permis , ,'  .,  '     '

C.....First, initialize the values of the /GSCval/ and /COPchk/ COMMON arrays.

DO 1=1,15

DO j=1,4

" DO k=0,2
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GSCcf{i,j,k)=0.dO

Permis(i,1,k)='Fall'

END DO

END DO       _

END DO

C.....Now, begin the segment to yield the values of the GSC coefs.

CALL CalcCf (Nhood,Nu,Subl,WtsLin,Radii,Npass)

C.....The variable Npass is returned from the routine CalcCf and is the number of
coefficient forms which pass the permissibility criteria.  If this value is zero, a

problem has occurred in CalcCf, since no solution has been found for [a„,c„,c,,cA ͣ      In
this case, the linear covariance form k{r) = -r  is used by       default for the
kriging calculations.  If the value of Npass is 1, then only one form has passed and
there is no need to conduct the goodness-of-fit test. If more than one form passes, the
fit test is conducted to select the form which best describes the correlation structure
of the given neighborhood.

IF (Npass .EQ. 0) THEN

WRITE (30,*) ' **ERROR**  Npass=0 in Covar().'
AO=0.dO

CO=l.dO

Cl=0.dO .  -  ,
C2=0.dO

ELSE IF (Npass -EQ. 1) THEN

DO 1=1,15

IF (Permis(i,l,Nu) .EQ. 'Pass') THEN ͣ;
DO j=1,4

BestCf(j)=GSCcf(i,j,Nu)
END DO

END IF

END DO

ELSE IF (Npass .GE. 2) THEN

CALL Select (Nhood,Nu,Npass,Subl,Radii,BestCf)
END IF

AO=BestCf(1)

C0=BestCf(2)

Cl=BestCf(3)    -   .   - ͣ
C2=BestCf(4)

RETURN       .

END '!
r;*-jf**'*'^fir*--<f + -Jr***-Jf**^ + *^***^***-Jf*******'*'***"*'**'lf **********************

C.....For a given value of Nu, this subroutine calculates the values of the covariance
coefficients and determines whether or not they are permissible.  Embedded within the
loop for Iform, which cycles through the possible GSC forms, is the DO WHILE loop which
iterates on the coefficient solution set, checking for coefficient permissibility and
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convergence at each iteration.  Each solution set corresponds to a GSC form, and those
sets which are permissible and converged are saved.  If there is more than one such
set, they are checked for goodness-of-fit from the calling module Covar.

SUBROUTINE CalcCf (Nhood,Nu,Subl,WtsLln,Radii,Npass)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

PARAMETER (M;i.Xnhd=20)

DIMENSION WtsLin(MAXnhd,MAXnhd), WtsNxt(MAXnhd,MAXnhd),
5 Radii(MAXnhd,MAXnhd), Subl(MAXnhd,3), Csums(4,4),
6 Xnew(4), Xold(4), Ysums(4)
CHARACTER*4 ErrChk, Pvalu

COMMON  IGSC{15,4,0:2), ncvg, icvg
COMMON /GSCval/ GSCcf{15,4,0:2) ' "
COMMON /COPchk/ Permis(15,1,0:2)
DOUBLE PRECISION GSCcf

INTEGER IGSC, ncvg, icvg ͣ "
CHARACTER*4 Permis

PARAMETER (Errmax=l.Od-05, Maxit=25, Morel=10, surl=0.5d0,
i More2=12, sur2=0.1d0, More3=15, sur3=0.OOOOldO,
& More4=20, sur4=0.OOOOOldO)

C.....Assign the number of possible GSC forms given the order v.
IF (Nu .EQ. 0) Nforms=3

IF (Nu .EQ. 1) Nforms=7 .
IF (Nu .EQ. 2) Nforms=15 '    ͣ
Npass=0 ͣ

C.....Begin the main loop which iterates through all possible forms of the GSC-v.

DO 100 Iform=l,Nforms

C.........Now, eguate values in WtsNxt with those in WtsLin so that the
C initial set of weights comes from the case of k=(-r).  Note that
C        WtsNxt() is reset to this initial set of values for each new GSC
C         form. . ,

DO 1=1,Nhood

DO J=l,Nhood

WtsNxtd, J)=WtsLin(I, J)
END DO

ͣ  -;     END DO

C.........Now, begin the DO WHILE loop which tests the convergence and
C        permissibility of the different GSC-v forms.  Some parameters are
C        initialized first.  Note that the parameters Xnew and Xold are
C        forced to zero by default for each new form of the GSC-v.  Non-zero
C        solutions from the solver will override the default values.
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C.........Initialize some variables before beginning.

ErrChk='Fail'

Pvalu='Pass' . .

Iter=0 \

DO ni=l,4

Xnew{ni)=0.dO

Xold(ni)=0.dO

,-'       END DO

C.........Begin the loop to iterate on the coeffs for a given GSC form.

DO WHILE ((ErrChk .EQ. 'Fail') .AND. {Pvalu .EQ. 'Pass')
S .AND. (Iter .LT. Maxit))

Iter=Iter+l

C.............STEP 1: construct the system of equations resulting from dF/dc.

DO mi=l,4 ,   ͣ
Ysums(mi)=0.dO . . i
DO mj=l, 4 ,    •

Csums (ml,mj )=0.dO '   -:
END DO

END DO

AOLi=0.dO       '

COLi=0.dO

ClLi=0.dO

C2H=0.dO

DO i=l,Nhood

IF (IGSC(Iform,l,Nu) .NE. 0)

, - ͣ   & A0Li=A01amb(Nhood,i,WtsNxt)
IF {IGSC(Iform,2,Nu) .NE. 0)

5 COLi=Cnlamb(Nhood,i,WtsNxt,Radii,1)        ;
IF {IGSC(Iforra,3,Nu) .NE. 0)

6 ClLi=Cnlamb(Nhood,i,HtsNxt,Radii,3)
IF (IGSC(Iform,4,Nu) .NE. 0)

& C2Li=Cnlamb(Nhood,i,WtsNxt,Radii,5)
Yl=SpaInc(Nhood,i,WtsNxt,Subl)

IF {IGSC(Iform,l,Nu) .NE. 0) THEN

• Csums(l,l)=Csums{l,l)+A0Li**2
Csums(l,2)=Csums(l,2)-A0Li*C0Li ;
Csums(l,3)=Csums(l,3)+A0Li*ClLi

Csums(1,4)=Csums(1,4)-A0Li*C2Li

Ysums(l)=ysums(l)+(Yi**2)*A0Ll

ELSE ͣ
Csums(l,l)=l.dO

END IF ,    :
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IF {IGSC(Iform,2,Nu) .NE. 0) THEN

ͣͣ  ' Csums(2,l)=Csums(2,l)+C0Li*A0Li
Csums(2,2)==Csums (2,2)-C0Li**2

Csums(2,3)=Csums(2,3)+C0Li*ClLi

Csums(2,4)=Csums(2,4)-C0Li*C2Li

Ysums(2)=Ysums(2)+(Yi**2)*COLi

ͣͣ  ELSE ,
Csums(2,2)=l.dO

END IF ' ͣ'     ;: :

IF (IGSC(Iform,3,Nu) .NE. 0) THEN
Csums(3,1)=Csums(3,1)+ClLi*AOLi

Csums(3,2)=Csums(3,2)-ClLi*C0Li    .

Csums{3,3)=Csums(3,3)+ClLi**2

Csums(3,4)=Csums(3,4)-ClLi*C2Li ͣ
Ysums(3)=Ysums(3)+(Yi**2)*ClLi

ELSE

Csums(3,3)=l.d0

END IF

IF (IGSC(Iform,4,Nu) .NE. 0) THEN

.     Csums(4,l)=Csums(4,l)+C2Li*A0Li       .
Csums(4,2)=Csums(4,2)-C2Li*C0Li

Csums(4,3)=Csums(4,3)+C2Li*ClLl

Csums(4,4)=Csums(4,4)-C2Li**2

Ysums(4)=Ysums(4)+(Yi**2)*C2Li :

V ' ELSE , ;    ',,
Csums(4,4)=l.dO

END IF

END DO  -. - ͣ    ͣ ͣ

C.............STEP 2:  solve the current system of equations using Gauss-Jordan.

CALL SolvGJ (Csums,4,4,Ysums,l,l)

DO ki=l,4

Xnew(ki)=Ysums(ki) -    - '

END DO ...    , .

C.............STEP 3:  use successive underrelaxatlon if the solution is not converging.

IF ((Iter .GT. Morel) .AND. (Iter .LE. More2)) THEN
DO lr=l,4

Xnew(ir)=surl*Xnew(ir) + (l.dO-surl)-^Xold(ir)
END DO

ELSE IF ((Iter .GT. More2) .AND. (Iter .LE. More3)) THEN
DO ir=l,4

Xnew(ir)=sur2*Xnew(ir)+(1.0-sur2)*Xold(ir)
END DO

ELSE IF ((Iter .GT. More3) .AND. (Iter .LE. More4)) THEN
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DO ir=l,4 •

Xnew{ir)=sur3*Xnew(ir)+(1.0-sur3)*Xold(ir)
END DO

ELSE IF (Iter .GT. More4) THEN

DO ir=l,4

Xnew(ir)=sur4*Xnew(ir)+(1.0-sur4)*Xold(ir)
END DO

END IF •     .

C.............STEP 4:  check the permissibility of the new coeff values.
CALL PermQ (Nu,Iform,Xnew(l),Xnew(2),Xnew(3),

& Xnew(4),Pvalu)

IF (Pvalu .EQ. 'Fail') THEN

GOTO 200 .-'"   .  ͣ
EIiSE

CONTINUE -

END IF :

C.............STEP 5:  check if the new coeff solution set has converged.  If not, update
the solution set and prepare another set of kriging weights using the updated GSC
coefficients.

error=Reldif(4,Xold,Xnew)

IF ((error .LE. Errmax) .AND. (Iter .GT. 1)) THEN
ErrChk='Pass'

ELSE

ErrChk='Fail'

Xold=Xnew

CALL NewWts (Nhood,Nu,Subl,Xold,WtsNxt)
END IF

200 CONTINUE ͣ

END DO

IF (Iter .GE. Maxit) THEN

ncvg=ncvg+l .       >
icvg=0 ,- ͣͣͣ;.
ErrChk='Fail'

END IF , _

GSCcf(Iforra,1,Nu)=Xnew(1)

GSCcf(Iform,2,Nu)=Xnew(2)

_  ͣ       GSCcf(Iform,3,Nu)=Xnew(3)
GSCcf(Iform,4,Nu)=Xnew(4)

IF ((ErrChk .EQ. 'Pass') .AND. (Pvalu .EQ. 'Pass')) THEN i  "
Permis(Iform,l,Nu)='Pass'

Npass=Npass+l

ELSE ' ; :'
Permis(Iform,l,Nu)='Fail' .

END IF
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100 END DO

RETURN

END

Q*********************************-************************* ********

C.....This subroutine checks the permissibility of a set of covariance coefficients

{a(i,C|,,c, jCj} against the required conditions.

SUBROUTINE PermQ (Nu,Iform,A0,C0,Cl,C2,Flag)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)      •,
CHARACTER*4  Flag

COMMON  IGSC(15,4,0:2)
INTEGER IGSC :

Flag='Pass' ͣ

IF (AO .LT. O.dO) THEN .
Flag='Fall' / ͣ       J   ͣ
RETURN ͣ ͣ :  ,

ELSE IF (CO .LT. O.dO) THEN "- -
Flag='Fail' '
RETURN

ELSE IF (C2 .LT. O.dO) THEN

Flag='Fail'
RETURN

END IF . ͣ

IF ((Nu .EQ. 2) .AND. (IGSC(Iform,3,Nu) .NE. 0)) THEN
value= -DSQRT((100.dO/9.dO)*CO*C2)

IF (CI .LT. value) Flag='Fail'
ELSE

IF (CI .LT. O.dO) Flag='Fail'

;   END IF

RETURN

END

n******************************************************************

C.....Given a value of Nu, a neighborhood of data, and a set of covariance coefficients,

this routine calculates a new set of kriging weights X^-   ^°^  each point i removed from
the neighborhood.

SUBROUTINE NewWts (Nhood,Nu,Subl,Coeffs,WtSet)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

PARAMETER (MAXdat=100, MAXnhd=20)
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DIMENSION Subl(MAXnhd,3), Coeffs(4), Sub2(MAXnhd,3), i
& Ak(MAXnhd+6,MAXnhd+6), Bk(MAXnhd+6), Xk(MAXnhd+6),
& WtSet(MAXnhd,MAXnhd)

C.....Assign some initial values to local variables.       ,

Nh=Nhood-l

ͣ;      Ialfa=Ialpha(Nu)        ^

AO=Coeffs(l)

C0=Coeffs(2)

Cl=Coeffs(3)

C2=Coeffs(4) ,    ,

C.....Now, construct the matrix of kriging weights using the GSC passed in.

DO i=l,Nhood

CALL Remove (Nhood,i,Subl,Sub2)

CALL Kmatrx (Nh,Ialfa,AO,CO,CI,C2,Sub2,Ak)

CALL Kvectr (Nh,lalfa,Subl(i,1),Subl(i,2),
& A0,C0,Cl,C2,Sub2,Bk)

Ne=Nh+Ialfa

.. - .       CALL SolvGJ (Ak,Ne,26,Bk,l,l)

DO ko=l,Ne

Xk(ko)=Bk(ko) ; ͣ
END DO

DO j=l,Nhood \.:'':   .
IF (j .LT. i) THEN

WtSetd, j )=Xk(j ) '*
ELSE IF (j .EQ. 1) THEN

WtSetd,j )=-l.dO

ELSE IF (j .GT. 1) THEN ͣ : "
/        WtSet (i, j )=Xk(j-l)

END IF ...      .V
END DO ;

END DO " :

RETURN

END

C.....This routine calculates the value of the function A. given the set of kriging

weights X^j-

FUNCTION AOlamb (Nhood, Irow,WtSet) -]

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

PARAMETER (MAXnhd=20)
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DIMENSION WtSet{MAXnhd,MAXnhd) "        .

Sum=0.dO ͣ ͣ ͣ

DO M=l,Nhood , ,
Sum=Sum+(WtSet{Irow,M) 1**2 .-,
END DO ͣ  ^

AOIamb=Sum

RETURN

END ͣ    •
l^^-k-k kk k k-k ^k-k -k kkk-k k-kk^ k^ ^t k-k k kk^ k k k-k -k ^ kkkk k ^ ^*:*( k ^ -k -k k kk -k krk-k k k k k k k k-k -k k k

C.....This routine calculates the value of the functions A- » A. ? and A-  given the set
of kriging weights X--   and a neighborhood of data.

FUNCTION Cnlamb (Nhood,Irow,WtSet,Radii,k) -

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
PARAMETER {MAXnhd=20) -•

DIMENSION WtSet(MAXnhd,MAXnhd), Radii(MAXnhd,MAXnhd)

Sura=0.dO       ͣ

DO M=l,Nhood " ' ' /
DO N=l,Nhood

IF (M .EQ. N) THEN

radius=0.dO

r-      .        ELSE

radius=Radii(M,N)

END IF

Term=WtSet(Irow,M)*WtSet(Irow,N)*{radius**k)
Sum=Sum+Term

END DO ͣ - • ,' '
END DO

Cnlamb=Sum

RETURN \ .,  -
END ͣ    '

Qkk-kkkkkkkkkkkkkkkk-kkk-kkkkk^kkkk-kkkkkkkkkkkkkkkkkkkkkkkkkkk kkkkkkkk

C.....This routine calculates the value of the spatial increment /(s,) given the set of
kriging weights X.-

FUNCTION SpaInc (Nhood,Irow,WtSet,Datset)
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IMPLICIT DOUBLE PRECISION (A-H,0-Z) ͣ  '
PARAMETER (MAXnhd=20)

DIMENSION WtSet(MAXnhd,MAXnhd) , Datset(MAXnhd,3)

Sum=0.dO - -  ͣ       ;

': DO M=l,Nhood '      ':
Sum=Sum+KtSet(Irow,M)*Datset(M,3)

END DO

SpaInc=Sum     ,  ' ͣ "

RETURN

END

C.....This routine calculates the percent relative difference between two values XI and
X2.

FUNCTION Reldif (Ndim,X1,X2)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

PARAMETER (MAXnhd=20, MAXdim=4)

DIMENSION  Xl(MAXdim), X2(MAXdim) ͣ '

errmax=1.0d-20

DO i=l,Ndim '  '
IF (XI(i) .EQ. O.dO) THEN

CONTINUE :
ELSE , ,, -        '

pdlff=ABS((XI(i)-X2(i))/X2(i))
IF (pdiff .GT. errmax) errmax=pdiff

END IF . ,   '   ͣ
END DO

Reldif=errmax

RETURN

END

C.....This routine conducts a goodness-of-fit test on two or more coefficient solutions
(i.e. covariance functions) to determine which one provides the best fit to the
correlation structure of the given neighborhood.  The goodnes-of fit equation is
described in the text section.

SUBROUTINE Select (Nhood,Nu,Npass,Subl,Radii,BestCf)

IMPLICIT DOUBLE PRECISION (A-H,0-Z) •
PARAMETER (MAXnhd=20, MAXpas=15)
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DIMENSION Subl{MAXnhd,3), BestCf(4), Passng(MAXpas,4),

& Eta(MAXpas), WtSet(MAXnhd,MAXnhd), Cf(4)

COMMON /GSCval/ GSCcf(15,4,0:2) '

COMMON /COPchk/ Permis(15,1,0:2)

DOUBLE PRECISION GSCcf

CHARACTER*4 Permis

C.....Assign the number of possible  GSC forms given the order v.  (This does not mean the
number of actual   forms being tested.  That number is stored by the variable Npass.)

IF (Nu .EQ. 0) Nforms=3

IF (Nu .EQ. 1) Nforms=7

IF (Nu .EQ. 2) Nforms=15

C.....Now, copy the passing forms of the GSC from the COMMON array GSCcf()

C     into the local array Passng().

icount=0

DO m=l,Nforms

IF (Permis(m,l,Nu) .EQ. 'Pass') THEN v

icount=iCOunt+1

DO n=l,4

Passng(icount,n)=GSCcf(m,n,Nu)

END DO       , ;

ELSE

CONTINUE

END IF

END DO

IF (icount .NE. Npass) THEN

WRITE (*,*)' ͣ

WRITE (*,*)' **ERROR**  Values for icount and Npass in subroutine

& Select are not equal.'

STOP : - .   ,

END IF . ͣ

.Now, determine the value of Eta for each of the passing GSC forms.

DO m=l,Npass

DO n=l,4

Cf(n)=Passng{m,n)

END DO

CALL NewWts (Nhood,Nu,Subl,Cf,WtSet)

Ysum=0.dO

Asum=0.dO

DO i=l,Nhood ^    '  ͣ

Yi=SpaInc(Nhood,i,WtSet,Subl)

Ai=Afunc(Nhood,i,WtSet,Radii,Cf)

Ysum=Ysum+Yi**2 ',
Asum=Asum+Ai

END DO % -

Page A-29

NEATPAGEINFO:id=43497295-7F89-4075-A7D0-426D5B470956

NEATPAGEINFO:id=084F5736-E9A2-4A27-AE21-9CEEDC496C4E



Appendix A:
Variable Definitions and Source Code for Polynomial GSC

Eta(m)=Ysum/Asum

END DO ,  "

C.....Now, determine which of the GSC forms produced the value of Eta closest
C     to one.  This form is the best of the set.

dlfmin=1.0d20

index=0 . ' ͣ '       ͣ

DO m=l,Npass

dif=ABS{l.dO-Eta(m))

IF (dif .LT. difmin) THEN -. ͣ
difmln=dlf

index=m ' ͣ

END IF ͣ .

END DO ,   .

DO n=l,4

BestCf(n)=Passng(index, n)

END DO .; ; . ͣ

RETURN

END

.This routine calculates the value of the the function A.   given the set of kriging

weights X,.i   a neighborhood of data points, and a covariance function.

FUNCTION Afunc (Nhood,Irow,WtSet,Radii,Coeffs)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

PARAMETER (f4AXnhd=20)

DIMENSION  WtSet(MAXnhd,MAXnhdl,   Radii(MAXnhd,MAXnhd),   Coeffs(4)

AO=Coeffs{l) ^ ͣ"

C0=Coeff3(2) ͣ".;
Cl=Coeffs(3)

C2=Coeffs(4|

Sum=0.dO ;'      ,      .

DO m=l,Nhood

DO n=l,Nhood

IF (n .EQ. m) THEN

rlag=0.dO •    " '  '
ELSE V : ' .

rlag=Radli(m,n) .      _

END IF

covar=GSC(A0,C0,Cl,C2,rlag) ͣ- ':
Term=WtSet(Irow,m)*WtSet(Irow,n)*covar

Sum=Sum+Term .  '
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END DO

END DO -

Afunc=Sum -' ͣ .  "  ^     ' ; :

RETURN ^'-

END

C.....This routine constructs the left-hand-side covariance matrix of the system of
krlging equations.        ,

SUBROUTINE Kmatrx (Ndlm,Iext,AO,CO,CI,C2,Datset,AK) _

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

PARAMETER (t-lAXnhd=20)       ,  '

DIMENSION AK(MAXnhd+6,MAXnhd+6), Polynm(MAXnhd,6),
4 Datset(MAXnhd,3)

C.....Zero the values of the elements in AK.

DO i=l,MAXnhd+6 -
DO j=l,MAXnhd+6

AK(i,j)=0.dO ;. ͣ    :^  '  .
END DO " '

END DO

C.....STEP 1:  Calculate the GSC values which comprise the core of the K matrix.  The
matrix is symmetric; therefore, redundant calculations are eliminated.

CovO=GSC(AO,CO,CI,C2,0.dO)

DO 1=1,Ndlm

AK(I,I)=CovO

END DO

DO I=l,Ndim-l

DO J=I+l,Ndim

r=Dlst (Datset (1,1) ,Datset( 1,2), ..     -
& Datset(J,1),Datset(J,2))

AK(I,J)=GSC(A0,C0,Cl,C2,r)        ,

AK(J,I)=AK(I, J)

END DO ,
END DO

0.....STEP 2:  Calculate the spatial monomials and enter them into
C    the appropriate locations in the K matrix.

' :   DO 1=1,Ndlm

Polynm(I,l)=l.dO ^ ,  ; ^  ..
Polynm(I,2)=Datset(1,1)

Polynra(I,3)=Datset(1,2)

Polynm(I,4)=(Datset(I,l))**2
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Polynm(I,5)=Datset(I,l)*Datset(I,2) /
Polynm(I,6)={Datset(I,2))**2

END DO

DO 1=1,Ndim

DO J=l,lext

AK(I,J+Ndim)=Polynm(I, J)

AK(J+Ndim,I)=Polynm(I, J)
END DO

END DO

C.....STEP 3:  Fill in the zero block of the K matrix.

DO I=Ndim+l,Ndim+Iext ͣ  "
DO J=Ndim+l,Ndim+Iext

AK{I,J)=0.dO

END DO ' V;;    .•
END DO ͣ. ͣ V"

RETURN

END

C.....This routine constructs the right-hand-side covariance vector of the system of
kriging equations.

SUBROUTINE Kvectr (Ndim,lext,Xsk,ysk,AO,CO,CI, C2, Datset, BK)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

PARAMETER (MAXnhd=20)

DIMENSION BK(MAXnhd+6), Datset(MAXnhd,3), Polynm(6) :

C.....Zero the values of the elements in BK.

DO i=l,MAXnhd+6

BK(i)=0.dO ͣ'  '
END DO

C.....STEP 1:  Calculate the GSC segment of the vector.

DO 1=1,Ndim

r=Dist(Datset(I,l),Datset(I,2),Xsk,Ysk)    '
BK(I)=GSC{AC,CO,01,C2, r)

END DO

C.....STEP 2:  Calculate the polynomial segment of the vector.

Polynm{l)=l.dO

Polynm(2)=Xsk

Polynm(3)=Ysk

:; ͣ.   Polynm(4)=Xsk**2
' Polynra{5)=Xsk*Ysk
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Polynm(6)=Ysk;**2 ͣ

DO I=l,Iext

BK(I+Ndlm)=Polynm(I) ͣ ͣ   • i

ͣ      END DO •   ,, ^ ͣͣ'.;'       ]
RETURN

END

C.....This subroutine solves the system of linear equations A*x=b by Gauss-Jordan
elimination with full pivoting. The solution vector {x} is passed back: to the calling
program through the array which initially contains the right-hand-side vector, B. The
the routine was taken from Numerical Recipes (FORTRAN), 1992 edition,

SUBROUTINE SolvGJ (A, N,NP,B,M,MP)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)    „ ͣ  ;  '
PARAMETER (Nt'IAX=50)

DIMENSION A(NP,NP) ,B(NP,MP) ,IPIV(NMAX) ,INDXR(NMAX),INDXC(NMAX)

DO 11 J=1,N

IPIV(J)=0

11 CONTINUE ,-^ ͣ       .
DO 22 1 = 1,N          ,   ''.

,      BIG=0.

DO 13 J=1,N

IF(IPIV(J) -NE.DTHEN ͣ ;        -'
DO 12 K=1,N

.^. IF (IPIV(K) .EQ.O) THEN
IF (ABS(A(J,K)).GE.BIGjTHEN

BIG=ABS(A(J,K) )

IROW=J

ICOL=K

ENDIF :-- ,      ."V
ELSE IF (IPIV(K) .GT.l) THEN ͣ     -, / .

PAUSE 'Singular matrix'

ENDIF ,

12 CONTINUE • , -  :,;'- ͣ , ͣ '
ENDIF ; ͣ ͣ        J

13 CONTINUE

IPIV(IC0L)=IPIV(IC0L)+1

IF (IROW.NE.ICOL) THEN

DO 14 L=1,N

DUM=A(IROW,L)

A(IROW,L)=A(ICOL,L)     ^ -  -  ',

A(ICOL,L)=DUM

14 CONTINUE , ;
DO 15 L=1,M

DUM=B(IROW,L)

B(IROW,L)=B(ICOL,L)

B(ICOL,L)=DUM
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15 CONTINUE ͣ• . .

ENDIF             ;    ͣ
INDXR(I)=TROW , . '^      ͣ
INDXC{I)=ICOL / ͣ •
IF (A(ICOL,ICOL).EQ.O.) THEN :  .
WRITE (*,*) 'Singular matrix.'
STOP

END IF

PIVINV=l./A(ICOL,ICOL) .  '.

A(IC0L,IC0L)=1. ͣ
DO   16 L=1,N

A(ICOL,L)=A(ICOL,L)*PIVINV       ͣ    .    .    .
16 CONTINUE * ͣ

DO 17 L=1,M

B(ICOL,L)=B(ICOL,L)*PIVINV
17 CONTINUE

DO 21 LL=1,N ^      ,

IF(LL.NE.ICOL)THEN ' •  ,
DUM=A(LL,ICOL)

A(LL,ICOL)=0.

DO 18 L=1,N

A(LL,L)=A(LL,L)-A{ICOL,L)*DUM
18 CONTINUE

DO 19 L=1,M ͣ.   '    ͣ '
B(LL,L)=B(LL,L)-B(ICOL,L)*DUM

19 CONTINUE

ENDIF

21 CONTINUE

22 CONTINUE

DO 24 L=N,1,-1 ͣ -V J
IF(INDXR(L) .NE.INDXC(L) )THEN / ''

DO 23 K=1,N

DUM=A(K, INDXR(L) ) ^-

A(K,INDXR(L))=A(K,INDXC{L))

A(K, INDXC(L) )=DUM ; -,
23 CONTINUE

ENDIF

24 CONTINUE

RETURN

END

(^^it-kitidf if if kkiekii icit k kiiifitkk k k-k ki<ifkkki:i!k-k-kkkk i! kitititititititkkkk it i(kiti<icki;kit k-k if i<

C.....This routine solves the point estimate X\i)  given a set of kriging weights.

SUBROUTINE Estmat (Ndim,Datset,Wts,Est)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

PARAMETER {MAXnhd=20) ^       -

DIMENSION Datset(MAXnhd,3),Wts(MAXnhd+6) <
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C  Calculate the estimate at the point Sk.

Est=0.dO ;
DO 1=1,Ndim .   '

Est=Est+Datset{I,3)*Wts(I)

ͣ   ͣ   END DO ; ͣ

RETURN .  ,

END

C.....This routine solves the estimation error a-^(s) • ͣ !

SUBROUTINE EstErr (Ndim,Iext,AO,CO,CI,02,Wts,BK,Error)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

PARAMETER (MAXnhd=20)

DIMENSION BK(MAXnhd+6), Wts(MAXnhd+6)

Sum=0.dO     ' . -^
DO I=l,Ndim+Iext ,  ͣ ;

Sum=Sum+Wts(I)*BK(I)

END DO ' '  : -    >:
CovO=GSC(AO,CO,CI,C2,0.dO)

Error=CovO-Sum

RETURN ,

END :'

C.....This function calculates the scalar distance between two points in 2d space.

FUNCTION Dist (XI,Yl,X2,Y2)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

Dlst=DSQRT((X2-X1)**2+(Y2-Y1)**2)
ͣv

RETURN ͣ      ͣ

END

C.....This function calculates the value of the polynomial GSC function given a lag and a

set of coefficients {ag,Ci^,c^,c^} ͣ

FUNCTION GSC (AO,CO,CI,C2,rlag) '        ͣ        ͣ - ;

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

IF (rlag .NE. O.dO) THEN 1
delta=0.dO

ELSE
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delta=l.dO

END IF

GSC={A0*delta)-(C0*rlag)+(Cl*rlag**3)-(C2*rlag**5)

RETURN ͣ ;
END '

C.....This function calculates the value of the function a(v) used to determine the number
of monomial spatial coordinate functions needed in the system of kriglng equations.

FUNCTION lalpha (nu) , i

IMPLICIT INTEGER (I-N) . } /
Ialpha=( (nu+l)*(nu+2) )/2 ;   ij

RETURN -  ' ['
END

Q+** ͣ-Jf *****-Jf * ͣ + ***** ir ************* It-*********-t *** + *********** + ********* *
n******************************************************************

Q******************************************************************
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This appendix contains the FORTRAN source code for the intrinsic kriging program

which implements the poly-exponential GSC model. The code is nearly identical to that

version of the program which uses the polynomial GSC model with the exception of those

subroutines an flinctions which conduct the solution of the co variance coefficient value, b.

Therefore, the code is sparsely commented. The reader is referred to the polynomial source

code for detailed comments and variable definitions.

***********************************************************************

C.This is the driving program for a set of routines which conducts
C  intrinsic kriging. The program advances through a user-defined grid of
C kriging nodes.  At each node, the order of intrinsity, the coeffs
C of the GSC-v, the kriging point estimate, and the estimation error
C variance are calculated and saved in a data file.  This program
C  implements the poly-exponential GSC model.

C.The program conducts the following steps:
C *Reads in the set of data used for kriging
C *Assigns a kriging node (Sk)
C *Finds the neighborhood of data points around Sk
C *Determines the order of intrinsity of the neighborhood
C *Determines the form and coefflent values for the GSC-v

C *Calculates the kriging point estimate
C *Calculates the estimation error variance

C *Repeats the above steps for all points in the grid

$LARGE
$DEBUG

IMPLICIT REAL*8 (A-H,0-Z)

C.....Set the run parameters for the diagnostic test runs.
PARAMETER (Ndata=75, Nhood=13)
PARAMETER (Nnx=151, Nny=26, Xo=0.dO, Yo=0.02dO)
PARAMETER (dX=0.01dO, dY=0.01dO)

PARAMETER (MAXdat=100, MAXnhd=20)
REAL*8 Data(MAXdat,3), Subl(MAXnhd,3),
&      Radii(MAXnhd,MAXnhd), Akm(MAXnhd+6,MAXnhd+6),
&      Bkv(MAXnhd+6), Bkvdup(MAXnhd+6), Xvect(MAXnhd+6)

COMMON ncvg, icvg   !Block based in main prgm
COMMON /Serch/ ibul, ispot IBlock based in main prgm
INTEGER*2 ncvg, icvg, ibul, ispot

OPEN (10,File='b:\soilwtr2.txt',IOSTAT=iolO)
OPEN (20,File='b:\trashl.out ͣ,IOSTAT=io20)
OPEN (25,File='b:\trash2.out',IOSTAT=io25)
OPEN (30,File='b:\trash3.out',IOSTAT=io30)
WRITE (*,•(4(2x,i5))•) iolO, io20, io25, io30
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C.....Read  the   input  data  set   from the  specified  disk  file.
READ   (10,*)   (idumb,   Data(i,l),   Data(i,2),   Data(i,3),   i=l,Ndata)

WRITE (*,2020) (Data(I,l), Data(I,2), Data(I,3), I=l,Ndata)
2020 FORMAT (2(2x,f16.8),2x,f10.3)

C.....Initialize some values and execute the main body of the program:
the

C    loop which iterates through the grid of kriging nodes.

ncvg=0
Nn=Nnx*Nny
Ncurnt=l

Ysk=Yo

DO Iny=l,Nny
Xsk=Xo

DO Inx=l,Nnx

icvg=l !"l"=converged GSC coeffs; "0"=non-converged
ibul=0 !"0"=no bullseye; "l"=bullseye
WRITE (*,1G90) Ncurnt, Nn, ncvg
WRITE (30,1090) Ncurnt, Nn, ncvg

1090        FORMAT (' Processing node ',14,' of ',14,' : Ncvg = ',14)

CALL Search (Ndata,Nhood,Data,Xsk,ysk,Subl)
CALL Rmatrx (Nhood,Xsk,ysk,Subl,Radii)
CALL Intrin (Nhood,Subl,Nu)
CALL CovFnc (Nhood,Nu,Subl,Radii,b)

C.............Now the order and coefficient of the EGSC-v have been found
C for the current kriging node (Xsk,Ysk).  The kriging point
C estimate and estimation error variance can now be
determined.

bullseyed

IF (ibul .EQ. 1) THEN   1ibul=l indicates a bullseye
Est=Data(ispot,3)   Jispot is data pt wh/has been

Err=0.dO

ELSE IF (ibul .EQ. 0) THEN
Iext=Ialpha(Nu)
CALL Kmatrx (Nhood,Iext,Nu,b,'Exp',Subl,Akm)
CALL Kvectr (Nhood,Iext,Nu,Xsk,Ysk,b,'Exp',Subl,Bkv)

DO m=l,Nhood+6
Bkvdup(m)=Bkv(m) !Copy the original Bnu()

END DO

Ne=Nhood+Iext

CALL SolvGJ (Akm,Ne,26,Bkvdup,l,l)
DO ko=l,Ne

Xvect(ko)=Bkvdup(ko)
END DO

CALL Estmat (Nhood,Subl,Xvect,Est)
CALL EstErr (Nhood,Iext,Nu,b,Xvect,Bkv,Err)

END IF

WRITE (20,2000) Xsk,Ysk,Est,Err,Nu,b
2000 FORMAT (2(f12.7,2x),2(el5.7,2x),il,2x,el5.7)
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IF (icvg ,EQ. 0) THEN
WRITE (25,2010) Inx,Iny,Xsk,Ysk

2010 FORMAT (2(2x,14),2(2x,f12.2))
END IF

Ncurnt=Ncurnt+l
Xsk=Xsk+dX

END DO

ysk=Ysk+dY

END DO

WRITE (20,'(a,14)') 'Number of GSC models not converging:', ncvg
WRITE (25,'(a,i4)') 'Number of GSC models not converging:', ncvg

STOP

END

C******************************************************************

SUBROUTINE Search (Ndata,Nhood,Data,Xsk,Ysk,Subl)

IMPLICIT REAL*8 (A-H,0-Z)
PARAMETER (MAXdat=100, MAXnhd=20)
REAL*8 Data(MAXdat,3), Radius(MAXdat), Subl(MAXnhd,3)
INTEGER*4 lorder(MAXdat)

COMMON /Serch/ ibul, ispot      1Block based in main prgm
INTEGER*2 ibul, ispot

C Calculate the distance between the data points and Sk.
DO 1=1,Ndata

Radius(I)=Dist(Data(I,l),Data(I,2),Xsk,Ysk)
lorder(I)=I

END DO

C Sort the Nhood+1 smallest values in Radius(), leaving the rest
unsorted.

C Although there are only Nhood points to comprising the neighborhood,
one

C extra value is sorted in the event that there is a "bullseye" and the
C  closest point cannot be used.

DO 1=1,Nhood+1
DO J=I+1,Ndata

IF (Radius(J) .LT. Radius(I)) THEN
CALL RSwap(Radius(I),Radius(J))
CALL ISwap(lorder(I),lorder(J))

END IF

END DO

END DO

C  Check for a bullseye in the smallest radius value, ie the 1st array
elem.

IF (Radius(1) .EQ. O.dO) THEN
ibul=l !"0"=no bullseye; "l"=bullseye
istep=l !"l"=don't include 1st data pt. in nhood
ispot=Iorder(l)      Ithis is the index # of bullseyed data pt.

ELSE

istep=0 !"0"=include 1st data pt. in nhood
END IF

C Now set the values of Subl() to the appropriate values from Data().
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DO I=l,Nhood
Subl(1,1)=Data(lorder(I+istep),1)
Subl(1,2)=Data(lorder(I+istep),2)
Subl(1,3)=Data(lorder(I+istep),3)

END DO

RETURN

END

SUBROUTINE RSwap (argl,arg2)

IMPLICIT REAL*8 (A-H,0-Z)

temp=argl
argl=arg2
arg2=temp

RETURN

END

C---------------------------------------

SUBROUTINE ISwap (iargl,iarg2)

IMPLICIT INTEGER*4 (I-N)

itemp=iargl
iargl=iarg2
iarg2=itemp

RETURN

END

Q******************************************************************

SUBROUTINE Rmatrx (Nhood,Xsk,Ysk,Dataset,Radii)

IMPLICIT REAL*8 (A-H,0-Z)
PARAMETER (MAXnhd=20)
REAL*8 Dataset(MAXnhd,3), Radii(MAXnhd,MAXnhd)

C  STEP 1:  Calculate the distances between the points in Dataset and
C the central node Sk.  Store these values on the diagonal of Radii()

DO I=l,Nhood
r=Dist(Xsk,Ysk,Dataset(I,l),Dataset(I,2))
Radii(I,I)=r

END DO

C  STEP 2:  Calculate the distances between all pairs of points in
Dataset().
C Note that corresponding entries in the upper and lower triangle of
C the matrix are equivalent.

DO I=l,Nhood-l
DO J=I+l,Nhood

r=Dist(Dataset(1,1),Dataset(1,2),
& Dataset(J,l),Dataset(J,2))

Radii(I,J)=r !Upper Triangle Entries
Radii(J,I)=r ILower Triangle Entries
END DO ,

END DO

RETURN

END
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Q******************************************************************

SUBROUTINE Intrin (Nhood,Subl,Nu)

IMPLICIT REAL*8 (A-H,0-Z)
PARAMETER (MAXnhd=20)
REAL*8 Subl(MAXnhd,3), Sub2(MAXnhd,3), Diff(0:2),
&      Anu(MAXnhd+ 6,MAXnhd+6), Bnu(MAXnhd+6), Xnu(MAXnhd+6)
INTEGER*4 Irank{MAXnhd,0:2)

Nh=Nhood-l      ! Nh is the # of points in Sub2().

DO 1=1,Nhood

CALL Remove (Nhood,I,Subl,Sub2)

DO Inu=0,2
Ialfa=Ialpha(Inu)     IDetermine the spatial polynom buffer
CALL Kmatrx (Nh,Ialfa,Inu,0.dO,'Lin',Sub2,Anu)
CALL Kvectr (Nh,lalfa,Inu,Subl(I,1),Subl(I,2),

& 0.dO,'Lin',Sub2,Bnu)

Ne=Nh+lalfa

CALL SolvGJ (Anu,Ne,26,Bnu,1,1)
DO ko=l,Ne

Xnu(ko)=Bnu(ko)
END DO

CALL Estmat (Nh,Sub2,Xnu,Est)
Diff(Inu)=ABS(Est-Subl(I,3))   iCalc the error in Est

END DO

CALL Rank (I,Diff,Irank)
END DO

CALL SetNu (Nhood,Irank,Nu)

RETURN

END

SUBROUTINE Remove (Nhood,IndexPt,Subl,Sub2)

IMPLICIT REAL*8 (A-H,0-Z)
PARAMETER (MAXnhd=20)
REAL*8 Subl(MAXnhd,3), Sub2(MAXnhd,3)

IF (IndexPt .EQ. 1) THEN
DO 1=2,Nhood

Sub2(I-l,1)=Subl(I,1)
Sub2(I-l,2)=Subl(I,2)
Sub2(1-1,3)=Subl(1,3)

END DO
ELSE

Sub2(IndexPt-1,1)=Subl(IndexPt-1,1)
Sub2(IndexPt-1,2)=Subl(IndexPt-1,2)
Sub2(IndexPt-1,3)=Subl(IndexPt-1,3)

END IF

RETURN

END
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SUBROUTINE Rank (Ipoint,Diff,Irank)

IMPLICIT REAL*8 (A-H,0-Z)
PARAMETER (MAXnhd=20)
REAL*8 Diff(0:2)
INTEGER*4 Irank(MAXnhd,0:2), Iorder{0:2)

Initialize the array Iorder().
Iorder{0)=0
Iorder(l)=l
Iorder(2)=2

Sort the estimation error variances in increasing order.
DO 1=0,2

DO J=I+1,2
IF (Diff(J) .LT. Diff(I)) THEN

CALL Rswap (Diff(I),Diff(J))
CALL Iswap (lorder(I),Iorder(J))

END IF

END DO

END DO

Assign ranks according to the sorted variance values.
Irank(Ipoint,lorder(O))=1
Irank(Ipoint,lorder(l))=2
Irank(Ipoint,Iorder(2))=3

RETURN
END

SUBROUTINE SetNu (Nhood,Irank,Nu)

IMPLICIT REAL*8 (A-H,0-Z)
PARAMETER (MAXnhd=20)
INTEGER*4 Irank(MAXnhd,0:2)

C  Initialize the summation variables.
IsumO=0
lsuml=0

Isum2=0

C Add up the rank values for order of intrinsity.
DO 1=1,Nhood

IsumO=IsumO+Irank(1,0)
Isuml=Isuml+Irank(1,1)
Isum2=Isum2+Irank(I,2)

END DO

C Test if two or more of the rank sums are equal and smaller than
C the other rank sum.  If so, then assign v subjectively to the
C  smallest possible order.

IF ((IsumO .EQ. Isuml) .AND. (IsumO .LT. Isum2)) THEN
Nu=0

RETURN

ELSE IF ((IsumO .EQ. Isum2) .AND. (IsumO .LT. Isuml)) THEN
Nu=0

RETURN

ELSE IF ((Isuml .EQ. Isum2) .AND. (Isuml .LT. IsumO)) THEN
Nu=l

RETURN

Page B-6

NEATPAGEINFO:id=4DCABAE4-9FDD-441E-BF8B-683E46224B9A



Appendix B:
Source Code for Poly-Exponential GSC

ELSE IF ((IsumO .EQ. Isuml) .AND. (IsumO .EQ. Isum2)) THEN
Nu=0
RETURN

END IF

C Determine which rank sum is the lowest and set Nu to its corre-
C  spending order of intrinsity.

Minsum=MIN{IsumO,Isuml,Isum2)
IF (Minsum .EQ. IsumO) THEN

Nu=0

ELSE IF (Minsum .EQ. Isuml) THEN
Nu=l

ELSE IF (Minsum .EQ. Isum2) THEN
Nu=2

END IF

RETURN

END

Q******************************************************************
C.This routine determines the value of the exponential GSC coeff
C b by a Newton-Raphson algorithm to find the minimum value of
C the function F wrt b.

SUBROUTINE CovFnc (Nhood,Nu,Subl,Radii,bfinal)

IMPLICIT REAL*8 (A-H,0-Z)
PARAMETER (MAXnhd=20)
REAL*8 Subl(MAXnhd,3),Radii(MAXnhd,MAXnhd)
LOGICAL check

COMMON ncvg, icvg !Based in main program
INTEGER*2 ncvg, icvg

C.....Assign an initial guess for b.

PARAMETER (bO=l.dO)

C.....Call the subroutine newt which finds a root to the dF/db=0 equation
C    by a glogally-convergent Newton's method.  The method is adapted
C    from Press, et al (1992).

b=bO

CALL newtz(Nhood,Nu,Radii,Subl,b,1,check)
WRITE (*,*) 'Passed newtz.'
bfinal=b

RETURN

END

Q* **************************************************************** *

SUBROUTINE newtz(Nhood,Nu,Radii,Subl,x,n,check)

INTEGER n,nn,NP,MAXITS
LOGICAL check

DOUBLE PRECISION x(n),fvec,TOLF,TOLMIN,TOLX,STPMX
PARAMETER (NP=40,MAXITS=120,TOLF=l.d-4,TOLMIN=l.d-6,TOLX=l.d-7,
& STPMX=100.dO,MAXnhd=20)
COMMON /newtv/ fvec(NP),nn
SAVE /newtv/
INTEGER i,its,j,indx(NP)
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DOUBLE  PRECISION d,den,f,fold,stpmax,sum,temp,test,fjac(NP,NP),
& g(NP),p(NP),xold(NP), fminz,WtSet(MAXnhd,MAXnhd),
& Radii(MAXnhd,MAXnhd),Subl(MAXnhd,3)
EXTERNAL  fminz

CALL NewWts(Nhood,Nu,Subl,x,WtSet)
WRITE (*,*) 'Passed NewWts.',WtSet(1,1),WtSet(1,2)
nn=n

f=fminz(Nhood,Nu,WtSet,Radii,Subl,x)
WRITE (*,*) 'Passed fminz.',f
test=0.
do 11 i=l,n

if(abs(fvec(i)).gt.test)test=abs(fvec(i))
11 continue

if(test.lt..01*TOLF)return
sum=0.
do 12 i=l,n

sum=sum+x(i)**2
12 continue

stpmax=STPMX*max(sqrt(sum),float(n))
do 21 its=l,MAXITS

WRITE (*,'(i3,2x,fl8.8)') its,x(l)

call anljac(Nhood,Nu,WtSet,Radii,Subl,x,fjac)
WRITE (*,*) 'Passed anljac. ͣ,fjac(l,l),fjac(l,2)

do 14 i=l,n
sum=0.
do 13 j=l,n

sum=sum+fjac(j,i)*fvec(j)
13 continue

g(i)=sum
14 continue

do 15 i=l,n
xold(i)=x(i)

15 continue
fold=f
do 16 i=l,n

p(i)=-fvec(i)
16 continue

call ludcmp(fjac,n,NP,indx,d)
WRITE (*,*) 'Passed ludcmp.'
call lubksb(fjac,n,NP,indx,p)
WRITE (*,*) 'Passed lubksb.'
call linez(n,xold,fold,g,p,x,f,stpmax,check,fminz)
WRITE (*,*) 'Passed linez.'
test=0.
do 17 i=l,n

if(abs(fvec(i)).gt.test)test=abs(fvec(i))
17 continue

if(test.It.TOLF)then
check=.false.
return

endif
if(check)then

test=0.
den=max(f,.5*n)
do 18 i=l,n

temp=abs(g(i))*max(abs(x(i)),1.)/den
if(temp.gt.test)test=temp
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18 continue

if(test.It.TOLMIN)then
check=.true.

else
check=.false.

endif
return

endif

test=0.

do 19 i=l,n
temp=(abs(x(i)-xold(i)))/max(abs(x(i)),1.)
if(temp.gt.test)test=temp

19 continue
if(test.It.TOLX)return

21   continue

pause 'MAXITS exceeded in newt'
END

C  (C) Copr. 1986-92 Numerical Recipes Software #4-UZ2.
Q******************************************************************

SUBROUTINE 1inez(n,xold,fold,g,p,x,f,stpmax,check,func)

IMPLICIT DOUBLE PRECISION (A-H,0,Z)
INTEGER n

LOGICAL check

DOUBLE PRECISION f,fold,Stpmax,g(n),p(n),x{n),xold(n),
& func,ALF,TOLX
PARAMETER (ALF=1.d-4,TOLX=l.d-7)
EXTERNAL func

CU    USES func
INTEGER i

DOUBLE PRECISION a,alam,alam2,alamin,b,disc,f2,fold2,rhsl,
& rhs2,slope,sum,temp,test,tmplam

check=.false.
sum=0.

do 11 i=l,n
sum=sum+p(i)*p(i)

11 continue

sum=sqrt(sum)
if(sum.gt.stpmax)then
do 12 i=l,n

p(i)=p(i)*stpmax/sum
12 continue

endif

slope=0.
do 13 i=l,n

slope=slope+g(i)*p{i)
13 continue

test=0.

do 14 i=l,n
temp=abs(p(i))/max(abs(xold(i)), 1.)
if(temp.gt.test)test=temp

14 continue

alamin=TOLX/test
alam=l.

1     continue
do 15 i=l,n

X(i)=xold(i)+alam*p(i)
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15 continue

f=func{x)
if(alam.it.alamin)then
do 16 i=l,n

x(i)=xold(i)
16 continue

check=.true.

return

else if (f. le. f old+ALF*alain*slope) then
return

else

if(alam.eq.l.)then
tmplain=-slope/(2 .*(f-fold-slope))

else

rhsl=f-fold-alam*slope
rhs2=f2-fold2-alam2*slope
a=(rhsl/alam**2-rhs2/alam2**2)/(alam-alam2)
b=(-alam2*rhsl/alam**2+alam*rhs2/alam2**2)/(alain-alam2)
if(a.eq.O.)then
tmplam=-slope/(2.*b)

else

disc=b*b-3.*a*slope
tmplam=(-b+sqrt(disc))/(3.*a)

endif

if (tmplam.gt.. 5*alam)tmplain=. 5*alain
endif

endif

alam2=alam
f2=f

fold2=fold

alam=max(tmplam,.l*alam)
goto 1
END

C  (C) Copr. 1986-92 Numerical Recipes Software #4-UZ2.
C******************************************************************

C.....This subroutine solves the value of the function f(b) given b.

SUBROUTINE funcfb(Nhood,Nu,WtSet,Radii,Subl,b,fb)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
PARAMETER (MAXnhd=20)
DOUBLE PRECISION Subl(MAXnhd,3),Radii(MAXnhd,MAXnhd),
& WtSet(MAXnhd,MAXnhd)

Sum=0.dO

DO i=l,Nhood
Yval=Yqi(Nhood,i,WtSet,Subl)
Aval=Ai(Nhood,i,Nu,WtSet,Radii,b)
dlAval=dlAi(Nhood,i,Nu,WtSet,Radii,b)

fbi=(yval**2-Aval)*(-!)*dlAval
Sum=Sum+fbi

END DO

fb=2.dO*Sum

C.....Add the terms of the penalty function.
fb=fb+(-0.001dO/b**2)

RETURN
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END
Q******************************************************************

C.....This subroutine solves the value of the function df/db given b.

SUBROUTINE anljac(Nhood,Nu,WtSet,Radii,Subl,b,dlfB)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
PARAMETER {MAXnhd=20)
DOUBLE PRECISION Subl(MAXnhd,3),Radii(MAXnhd,MAXnhd),
& WtSet(MAXnhd,MAXnhd)

Sum=0.dO

DO i=l,Nhood
yval=Yqi(Nhood,i,WtSet,Subl)
Aval=Ai(Nhood,i,Nu,WtSet,Radii,b)
dlAval=dlAi(Nhood,i,Nu,WtSet,Radii,b)
d2Aval=d2Ai(Nhood,i,Nu,WtSet,Radii,b)

dlfbi=((Yval**2-Aval)*(-1)*d2Aval)-((-1)*dlAval**2)
Sum=Sum+dlfbi

END DO

dlfb=2.dO*Sum

C.....Add the terms of the penalty function.
dlfb=dlfb+(0.002dO/b**3)

RETURN

END

Q******************************************************************

FUNCTION fminz(Nhood,Nu,WtSet,Radii,Subl,X)

IMPLICIT DOUBLE PRECISION (A-H,0,Z)
INTEGER n,NP
DOUBLE PRECISION fminz,x(*),fvec
PARAMETER (NP=40,MAXnhd=20)
DOUBLE PRECISION Subl(MAXnhd,3),Radii(MAXnhd,MAXnhd),
Si WtSet( MAXnhd, MAXnhd)
COMMON /newtv/ fvec(NP),n
SAVE /newtv/

CU....USES funcv
INTEGER i
REAL sum

call funcfb{Nhood,Nu,WtSet,Radii,Subl,x,fvec)

sum=0.

do 11 i=l,n
sum=sum+fvec(i)**2

11   continue

fminz=0.5*sum

RETURN

END

C  (C) Copr. 1986-92 Numerical Recipes Software #4-UZ2.
Q******************************************************************

SUBROUTINE ludcmp{a,n,np,indx,d)
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IMPLICIT DOUBLE PRECISION (A-H,0,Z)

INTEGER n,np,indx(n),NMAX
DOUBLE PRECISION d,a(np,np),TINy
PARAMETER (NMAX=500,TINY=1.Oe-20)
INTEGER i,imax,j,k
DOUBLE PRECISION aamax,dum,sum,vv(NMAX)
d=l.

do 12 i=l,n
aamax=0.

do 11 j=l,n
if (abs(a(i,j)).gt.aamax) aamax=abs(a(i,j))

11 continue
if (aamax.eq.O.) pause 'singular matrix in ludcmp'
vv(i)=l./aamax

12 continue
do 19 j=l,n

do 14 i=l,j-l
sum=a(i,j)
do 13 k=l,i-l

sum=sum-a(i,k)*a(k,j)
13 continue

a(i,j)=sum
14 continue

aainax=0.

do 16 i=j,n
sum=a(i/j)
do 15 k=l,j-l

sum=sum-a(i,k)*a(k,j)
15 continue

a(i,j)=sum
dum=vv(i)* abs(sum)
if (dum.ge.aamax) then

imax=i
aamax=dum

endif
16 continue

if (j.ne.imax)then
do 17 k=l,n

dum=a(imax,k)
a(imax,k)=a(j,k)
a(j/k)=dum

17 continue
d=-d

vv(imax)=vv(j)
endif

indx(j)=imax
if(a(j,j).eq.O.)a(j,j)=TINY
if(j.ne.n)then

dum=l./a(j,j)
do 18 i=j+l,n

a{i,j)=a(i,j)*dum
18 continue

endif
19 continue

return
END

C  (C) Copr. 1986-92 Numerical Recipes Software #4-UZ2.
C***************************************** *** ͣ>!******* **************

SUBROUTINE lubksb(a,n,np,indx,b)
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Source Code for Poly-Exponential GSC

IMPLICIT DOUBLE PRECISION {A-H,0,Z)

INTEGER n,np,indx(n)
DOUBLE PRECISION a(np,np),b(n)
INTEGER i,ii,j,ll
DOUBLE PRECISION sum
ii=0

do 12 i=l,n
ll=indx{i)
sum=b(ll)
b(ll)=b(i)
if (ii.ne.O)then

do 11 j=ii,i-l
sum=sum-a(i,j)*b(j)

11 continue
else if (sum.ne.O.) then

ii=i
endif

b(i)=sum
12 continue

do 14 i=n,l,-l
sum=b(i)
do 13 j=i+l,n

sum=sum-a(i,j)*b(j)
13 continue

b(i)=sum/a(i,i)
14 continue

return

END

C  (C) Copr. 1986-92 Numerical Recipes Software #4-UZ2.
C*************************************************************

C.This function subprogram calculates the value of the spatial increment
C for a given point i removed from the neighborhood.

FUNCTION Yqi (Nhood,Irow,WtSet,Data)

IMPLICIT REAL*8 (A-H,0-Z)
PARAMETER (MAXnhd=20)
REAL*8 WtSet(MAXnhd,MAXnhd), Data(MAXnhd,3)

Sum=0.dO

DO M=l,Nhood
Sum=Sum+WtSet(Irow,M)*Data(M,3)

END DO

Yqi=Sum

RETURN

END

C******************************************************************
C.This function calculates the expected value of the square of the
spatial
C  increment, ie the square of the estimation error for the point i
removed

C  from the neighborhood.

FUNCTION Ai (Nhood,Irow,Nu,WtSet,Radii,b)

IMPLICIT REAL*8 (A-H,0-Z)
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PARAMETER (MAXnhd=20)
REAL*8 WtSet(MAXnhd,MAXnhd), Radii(MAXnhd,MAXnhd)

Sum=0.dO

DO m=l,Nhood
DO n=l,Nhood

IF (n .EQ. m) THEN
rlag=0.dO

ELSE

rlag=Radii(m,n)
END IF

covar=ExpGSC(Nu,b,rlag)
Term=WtSet(Irow,m)*WtSet(Irow,n)*covar
Sum=Sum+Term

END DO

END DO

Ai=Sum

RETURN

END

C.This function calculates the first derivative of expected value of the
C  square of the spatial increment, ie the square of the estimation error
for

C the point i removed from the neighborhood.

FUNCTION dlAi (Nhood,Irow,Nu,WtSet,Radii,b)

IMPLICIT REAL*8 (A-H,0-Z)
PARAMETER (MAXnhd=20)
REAL*8 WtSet(MAXnhd,MAXnhd), Radii(MAXnhd,MAXnhd)

Sum=0.dO

DO m=l,Nhood
DO n=l,Nhood

IF (n .EQ. m) THEN
rlag=0.dO

ELSE

rlag=Radii{m,n)
END IF

dlcov=dlEGSC(Nu,b,rlag)
Term=WtSet(Irow,m)*WtSet(Irow,n)*dlcov
Sum=Sum+Term

END DO

END DO

dlAi=Sum

RETURN

END

Q******************************************************************
C.This function calculates the second derivative of expected value of the
C square of the spatial increment for the case of Nu=0.

FUNCTION d2Ai (Nhood,Irow,Nu,WtSet,Radii,b)

IMPLICIT REAL*8 (A-H,0-Z)
PARAMETER (MAXnhd=20)
REAL*8 WtSet(MAXnhd,MAXnhd) , Radii(MAXnhd,MAXnhd)
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Sum=0.dO

DO m=l,Nhood
DO n=l,Nhood

IF (n .EQ. m) THEN
rlag=0.dO

ELSE

rlag=Radii(m,n)
END IF

C.............Determine which form of the 2nd derivative EGC to call.
IF (Nu .EQ. 0) THEN

d2cov=d2EGC0(b,rlag)
ELSE IF (Nu .EQ. 1) THEN

d2cov=d2EGCl{b,rlag)
ELSE IF (Nu .EQ. 2) THEN

d2cov=d2EGC2(b,rlag)
END IF

C.............Calculate the value for the current term.
Term=WtSet(Irow,m)*WtSet(Irow,n)*d2cov
Sum=Sum+Term

END DO

END DO

d2Ai=Sum

RETURN

END

Q******************************************************************
C.This function calculates the value of the linear form of the
C polynomial GSC for given values of CO and rlag.

FUNCTION GSClin (CO,rlag)

IMPLICIT REAL*8 (A-H,0-Z)
GSClin=(-1.dO)*CO*rlag

RETURN

END

Q******************************************************************
C.This function subprogram calculates the value of the exponential
C  form of the GSC-v function given the values of Nu, b, and rlag.

FUNCTION ExpGSC (Nu,b,rlag)

IMPLICIT REAL*8 (A-H,0-Z)

p=b*rlag
n=2*Nu+l
sum=0.dO

DO i=0,n
fctrl=Factrl(i)
sum=sum+((-p)**i/fctrl)

END DO

Terml=((-l.d0)**(Nu+l))/(b**(n+l)*DEXP(p))
Term2=1.dO-DEXP(p)* sum

ExpGSC=Terml*Term2

RETURN

END

C---------------------------------------
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FUNCTION Factrl(n)

IMPLICIT REAL*8 (A-H,0-Z)

Term=l.dO

DO i=l,n
Term=Term*DBLE(i)

END DO

Factrl=Term

RETURN

END

C.This function subprogram calculates the value of the first derivative
C of the exponential GSC function using a general form (ie one that can
C be used for any value of Nu).  Values of Nu, b, and rlag are passed
C to the subprogram from the calling module.

FUNCTION dlEGSC(Nu,b,rlag)

IMPLICIT REAL*8 {A-H,0-Z)

n=2*Nu+l

p=2.dO*DBLE(Nu)+2.do
suml=0.dO
sum2=0.dO

DO i=0,n

C.........Calculate the first summation term.
fctrl=Factrl(i)
terml=(-b*rlag)**i/fctrl
suml=suml+terml

C.........Calculate the second summation term.
term2=((-l.dO)**(i-l))*DBLE(i)*(rlag**i)*(b**(i-l))/fctrl
sum2=sum2+term2

END DO

term3=(-l.dO)**(Nu+2)/(b**p)
term4=(p/b)*(DEXP(-b*rlag)-suml)
term5=rlag*DEXP(-b*rlag)-sum2

dlEGSC=term3*(term4+term5)

RETURN

END

C******************************************************************

C.This function subprogram calculates the value of the second derivative
C of the expontential GSC for the case Nu=0.  Values of b, and rlag
C  are passed in from the calling module.

FUNCTION d2EGC0(b,rlag)

IMPLICIT REAL*8 (A-H,0-Z)

p=b*rlag
ep=DEXP(p)

terml=(-6.d0)/(ep*b**4)
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term2=(-4.d0*rlag)/(ep*b**3)
term3=6.d0/b**4
term4=(-2.d0*rlag)/b**3
term5=(-1.dO)*(rlag**2)/(ep*b**2)

d2EGC0=terml+term2+term3+term4+term5

RETURN

END

Q**** **************************** *****************ic***ie*ic******1<***
C.This function subprogram calculates the value of the second derivative
C of the expontential GSC for the case Nu=l.  Values of b, and rlag
C  are passed in from the calling module.

FUNCTION d2EGCl(b,rlag)

IMPLICIT REAL*8 (A-H,0-Z)

p=b*rlag
ep=DEXP(p)

terml=20.dO/(ep*b**6)
term2=(8.d0*rlag)/(ep*b**5)
term3={rlag**2)/(ep*b**4)
term4=(-20.dO)/b**6
term5=(12.dO*rlag)/b**5
term6=(-3.d0*rlag**2)/b**4
term7=rlag**3/(3.d0*b**3)

d2EGCl=terml+term2+term3+term4+term5+term6+term7

RETURN

END

Q******************************************************************

C.This function subprogram calculates the value of the second derivative
C of the expontential GSC for the case Nu=2.  Values of b, and rlag
C  are passed in from the calling module.

FUNCTION d2EGC2(b,rlag)

IMPLICIT REAL*8 (A-H,0-Z)

p=b*rlag
ep=DEXP(p)

terml=(-42.dO)/{ep*b**8)
term2=(-12.dO*rlag)/{ep*b**7)
term3=(-1.dO)*(rlag**2)/(ep*b**6)
term4=42.d0/b**8
term5=(-30.dO*rlag)/b**7
term6=(10.dO*rlag**2)/b**6
term7=(-2.d0*rlag**3)/b**5
term8=rlag**4/(4.d0*b**4)
term9={-l.d0)*(rlag**5)/(60.d0*b**3)

d2EGC2=terml+term2+term3+term4+term5+term6+term7+term8+term9

RETURN

END

C******************************************************************

SUBROUTINE PermChk (b,Flag)
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IMPLICIT REAL*8 (A-H,0-Z)
CHARACTER*4  Flag

Plag='Pass'

IF (b .LE. O.dO) THEN
Flag='Fail'
RETURN

END IF

RETURN

END

Q******************************************************************

SUBROUTINE NewWts (Nhood,Nu,Subl,b,WtSet)

IMPLICIT REAL*8 (A-H,0-Z)
PARAMETER (MAXdat=100, MAXnhd=20)
REAL*8 Subl(MAXnhd,3), Sub2(MAXnhd,3), WtSet(MAXnhd,MAXnhd),
&      Ak(MAXnhd+6,MAXnhd+6), Bk(MAXnhd+6), Xk(MAXnhd+6)

C.....Assign some initial values to local variables.

Nh=Nhood-l !Nh will be the # of points in Sub2()
Ialfa=Ialpha(Nu)      [Determine the spatial monomial buffer

C.....Now, construct the matrix of kriging weights using the exponential
C    GSC passed in by the value of b.

DO i=l,Nhood
CALL Remove (Nhood,i,Subl,Sub2)
CALL Kmatrx(Nh,Ialfa,Nu,b,'Exp',Sub2,Ak)
CALL Kvectr(Nh,Ialfa,Nu,Subl(i,l) ,Subl(i,2),b,'Exp',Sub2,Bk)

Ne=Nh+Ialfa

CALL SolvGJ (Ak,Ne,26,Bk,l,l)
DO ko=l,Ne

Xk(ko)=Bk(ko)
END DO

DO j=l,Nhood
IF (j .LT, i) THEN

WtSet(i,j)=Xk(j)
ELSE IF (j .EQ. i) THEN

WtSet(i,j)=-l.dO
ELSE IF (j .GT. i) THEN

WtSet(i,j)=Xk(j-1)
END IF

END DO

END DO

RETURN
END

Q********* *********************************************************
C.This function calculates the relative error between two scalar
C values Xnew and Xold.

FUNCTION Reldif (Xnew,Xold)

IMPLICIT REAL*8 (A-H,0-Z)
value=ABS((Xnew-Xold)/Xnew)  IRelative Err, Eq6.46 NumMeth
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Reldif=value

RETURN
END

Q******************************************************************
c..This function calcs the value of Eta for each of the exponential GSC
C to be used in the estimation system and error variance calculation.

FUNCTION EtaVal (Nhood,Nu,Subl,Radii,b)

IMPLICIT REAL*8 (A-H,0-Z)
PARAMETER {MAXnhd=20)
REAL*8 Subl(MAXnhd,3), WtSet(MAXnhd,MAXnhd)

CALL NewWts (Nhood,Nu,Subl,b,WtSet)
ysum=0.dO
Asum=0.dO

DO i=l,Nhood
yval=yqi(Nhood,i,WtSet,Subl)
Aval=Ai(Nhood,i,Nu,WtSet,Radii,b)
Ysum=ysum+yva1**2
Asum=Asum+Ava1

END DO

EtaVal=ysum/Asum

RETURN

END

C********************************************************** ********

SUBROUTINE Kmatrx (Ndim,Iext,Nu,b,switch,Dataset,AK)

IMPLICIT REAL*8 (A-H,0-Z) i
PARAMETER (MAXnhd=20)
REAL*8 AK(MAXnhd+6,MAXnhd+6), Polynm(MAXnhd,6),
&      Dataset(MAXnhd,3)
CHARACTER*3 switch

r

C..STEP 1:  Calculate the GSC core values of the K matrix.  The matrix
C  is symmetric; therefore, redundant calculations are eliminated. An
C  IF statement is used to check whether the calling module needs
C values calced with the linear GSC (switch='Lin') or the
C exponential GSC {switch='Exp').

IF (switch .EQ. 'Lin') THEN
CovO=0.dO

ELSE

CovO=ExpGSC(Nu,b,0.dO)
END IF

DO 1=1,Ndim
AK(I,I)=CovO !Diagonal Entries

END DO

DO I=l,Ndim-l
DO J=I+l,Ndim

r=Dist(Dataset(1,1),Dataset(1,2),
& Dataset(J,l),Dataset(J,2))

IF (switch .EQ. 'Lin') THEN
entry=GSClin(1.dO, r)

ELSE
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entry=ExpGSC(Nu,b,r)
END IF

AK(I,J)=entry      !Upper Triangle Entries
AK(J,I)=AK(I,J) !Lower Triangle Entries

END DO

END DO

C  STEP 2:  Calculate the spatial polynomials and enter them into
C the appropriate locations in the K matrix.

DO 1=1,Ndim
Polynm(I,l)=l.dO
Polynm(I,2)=Dataset(I,1)
Polynm(1,3)=Dataset(1,2)
Polynm(I,4)=(Dataset(I,l))**2
Polynm(1,5)=Dataset(1,1)*Dataset(1,2)
Polynm(1,6) = (Dataset(1,2))* *2

END DO

DO 1=1,Ndim
DO J=l,Iext

AK(I,J+Ndim)=Polynm(I,J)       !Upper Polynomial Block
AK(J+Ndim,I)=Polynm(I,J)       ILower Polynomial Block

END DO

END DO

C  STEP 3:  Fill in the zero block of the K matrix.
DO I=Ndim+l,Ndim+Iext

DO J=Ndim+l,Ndim+Iext
AK(I,J)=0.dO "Zero Block

END DO

END DO

RETURN

END
Q******************************************************************

SUBROUTINE Kvectr (Ndim,Iext,Nu,Xsk,ysk,b,switch,Dataset,BK)

IMPLICIT REAL*8 (A-H,0-Z)
PARAMETER (MAXnhd=20)
REAL*8 BK(MAXnhd+6), Dataset(MAXnhd,3), Polynm(6)
CHARACTER*3 switch

C  STEP 1:  Calculate the GSC segment of the vector.
DO 1=1,Ndim

r=Dist(Dataset(I,l),Dataset(I,2),Xsk,ysk)
IF (switch .EQ. 'Lin') THEN

entry=GSClin(1,do,r)
ELSE

entry=ExpGSC(Nu,b,r)
END IF

BK(I)=entry !GSC Segment
END DO

C STEP 2t  Calculate the polynomial segment of the vector.
Polynm(l)=l.dO
Polynm(2)=Xsk
Polynm(3)=Ysk
Polynm(4)=Xsk**2
Polynm(5)=Xsk*ysk
Polynm(6)=ysk**2
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DO I=l,Iext
BK(I+Ndim)=Polynm(I)        IPolynomial Segment

END DO

RETURN

END

Q*********************************************************** *******
C..This subroutine solves the system of linear equations A*x=b by
C Gauss-Jordan elimination with full pivoting.  The program originally
C  came from Numerical Recipes (FORTRAN), 1992 edition.

SUBROUTINE SolvGJ (A,N,NP,B,M,MP)

IMPLICIT REAL*8 (A-H,0-Z)
PARAMETER (NMAX=50)

DIMENSION A{NP,NP),B(NP,MP),IPIV(NMAX),INDXR(NMAX),INDXC(NMAX)
DO 11 J=1,N

IPIV(J)=0
11 CONTINUE

DO 22 1=1,N
BIG=0.
DO 13 J=1,N

IF(IPIV(J).NE.1)THEN
DO 12 K=1,N

IF (IPIV(K).EQ.O) THEN
IF (ABS(A(J,K)).GE.BIG)THEN

BIG=ABS(A(J,K))
IROW=J
ICOL=K

END IF

ELSE IF (IPIV(K).GT.l) THEN
PAUSE 'Singular matrix'

END IF

12 CONTINUE
ENDIF

13 CONTINUE
IPIV(ICOL)=IPIV(ICOL)+l
IF (IROW.NE.ICOL) THEN
DO 14 L=1,N

DUM=A(IROW,L)
A(IROW,L)=A(ICOL,L)
A(ICOL,L)=DUM

14 CONTINUE
DO 15 L=1,M

DUM=B{IROW,L)
B(IROW,L)=B(ICOL,L)
B{ICOL,L)=DUM

15 CONTINUE
ENDIF

INDXR(I)=IROW
INDXC{I)=ICOL
IF (A(ICOL,ICOL).EQ.O.) PAUSE 'Singular matrix.'
PIVINV=1./A(ICOL,ICOL)
A(ICOL,ICOL)=l.
DO 16 L=1,N
A(ICOL,L)=A(ICOL,L)*PlVINV

16 CONTINUE

DO 17 L=1,M
B(ICOL,L)=B(ICOL,L)*PIVINV

17 CONTINUE

DO 21 LL=1,N
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IF(LL.NE.ICOL)THEN
DUM=A(LL,ICOL)
A(LL,ICOL)=0.
DO 18 L=1,N

A(LL,L)=A(LL,L)-A(ICOL,L)*DUM
18 CONTINUE

DO 19 L=1,M
B(LL,L)=B(LL,L)-B(ICOL,L)*DUM

19 CONTINUE
ENDIF

21 CONTINUE
22 CONTINUE

DO 24 L=N,1,-1
IF(INDXR(L).NE.INDXC(L))THEN
DO 23 K=1,N

DUM=A(K,INDXR(L))
A(K,INDXR(L))=A(K,INDXC(L))
A{K,INDXC(L))=DUM

23 CONTINUE
ENDIF

24 CONTINUE
RETURN
END

Q* **************************************************************** *

SUBROUTINE Estmat (Ndim,Dataset,Wts,Est)

IMPLICIT REAL*8 (A-H,0-Z)
PARAMETER (MAXnhd=20)
REAL*8 Dataset(MAXnhd,3),Wts(MAXnhd+6)

C Calculate the estimate at the point Sk.
Est=0.dO

DO I=l,Ndim
Est=Est+Dataset(1,3)*Wts(I)

END DO

RETURN

END

SUBROUTINE EstErr (Ndim,Iext,Nu,b,Wts,BK,Error)

IMPLICIT REAL*8 (A-H,0-Z)
PARAMETER (MAXnhd=20)
REAL*8 BK(MAXnhd+6), Wts(MAXnhd+6)

Sum=0.dO

DO I=l,Ndim+Iext
Sum=Sum+Wts(I)*BK(I)

END DO

CovO=ExpGSC{Nu,b,0.dO)
Error=CovO-Sum

RETURN

END

Q******************************************************************
FUNCTION Dist (Xl,Yl,X2,y2)

IMPLICIT REAL*8 (A-H,0-Z)
Dist=DSQRT((X2-Xl)**2+(Y2-yi)**2)
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RETURN
END

Q******************************************************************
FUNCTION Ialpha (nu)

IMPLICIT INTEGER*4 (I-N)
Ialpha=({nu+l)*{nu+2))/2
RETURN
END

Q******************************************************************
c******************************************************************
C******************************************************************

C  Changes made from parent program, MAINS.FOR:
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Appendix C:

Regression Plots and Error IHistograms for Cross-validations

This appendix contains linear regression plots and estimation error histograms for

the 11 cases of cross-validation of the soil moisture content data. The linear regressions

describe the correlation between actual moisture content and the intrinsic kriging estimate

for that value at each of the 75 data locations. The associated histograms describe the
distribution of the estimation error

£{S,)=1(S,)-X(s,).
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Regression Plots and Error Histograms for Cross-validations

Case No.: CI

Neighborhood Size:  10
GSC Model: Polynomial
Nugget Term: Yes
Regression Coefficient, r^: 0.5683
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Regression Plots and Error Histograms for Cross-validations

Case No.: C2

Neighborhood Size:  13
GSC Model: Polynomial
Nugget Term: Yes
Regression Coefficient, r^: 0.4536
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Case No.: C3

Neighborhood Size:  16
GSC Model: Polynomial
Nugget Term: Yes
Regression Coefficient, r^: 0.4166
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Appendix C:
Regression Plots and Error Histograms for Cross-validations

Case No.: C4

Neighborhood Size:  10
GSC Model: Polynomial-spline
Nugget Term: Yes
Regression Coefficient, A*^: 0.5725
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Appendix C:
Regression Plots and Error Histograms for Cross-validations

Case No.: C5

Neighborhood Size: 13
GSC Model: Polynomial-spline
Nugget Term: Yes
Regression Coefficient, r^: 0.5884
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Appendix C:
Regression Plots and Error Histograms for Cross-validations

Case No.: C6
Neighborhood Size:  16
GSC Model: Polynomial-spline
Nugget Term: Yes
Regression Coefficient, r^: 0.4763
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Appendix C:
Regression Plots and Error Histograms for Cross-validations

Case No.: C7

Neighborhood Size:  10
GSC Model: Poly-exponential
Nugget Term: (na)
Regression Coefficient, r^: 0.4525
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Appendix C:
Regression Plots and Error Histograms for Cross-validations

Case No.: C8

Neighborhood Size:  13
GSC Model: Poly-exponential
Nugget Term: (na)
Regression Coefficient, r^: 0.4729
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Appendix C:
Regression Plots and Error Histograms for Cross-validations

Case No.: C9

Neighborhood Size:   16
GSC Model: Poly-exponential
Nugget Term: (na)
Regression Coefficient, r^: 0.0783
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Appendix C:
Regression Plots and Error Histograms for Cross-validations

Case No.: ClO

Neighborhood Size:  10
GSC Model: Polynomial
Nugget Term: No
Regression Coefficient, r^: 0.6222
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Appendix C:
Regression Plots and Error Histograms for Cross-validations

Case No.: Cll
Neighborhood Size:  13
GSC Model: Polynomial-spline
Nugget Term: No
Regression Coefficient,/-^: 0.7100
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