Carter et al. Biology Direct 2014, 9:11

http://www.biologydirect.com/content/9/1/11 B i o) I og y D i re Ct

RESEARCH Open Access

The Rodin-Ohno hypothesis that two enzyme
superfamilies descended from one ancestral
gene: an unlikely scenario for the origins of
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Abstract

Background: Because amino acid activation is rate-limiting for uncatalyzed protein synthesis, it is a key puzzle in
understanding the origin of the genetic code. Two unrelated classes (I and Il) of contemporary aminoacyl-tRNA
synthetases (@aRS) now translate the code. Observing that codons for the most highly conserved, Class | catalytic
peptides, when read in the reverse direction, are very nearly anticodons for Class Il defining catalytic peptides,
Rodin and Ohno proposed that the two superfamilies descended from opposite strands of the same ancestral gene.
This unusual hypothesis languished for a decade, perhaps because it appeared to be unfalsifiable.

Results: The proposed sense/antisense alignment makes important predictions. Fragments that align in antiparallel
orientations, and contain the respective active sites, should catalyze the same two reactions catalyzed by
contemporary synthetases. Recent experiments confirmed that prediction. Invariant cores from both classes, called
Urzymes after Ur = primitive, authentic, plus enzyme and representing ~20% of the contemporary structures, can
be expressed and exhibit high, proportionate rate accelerations for both amino-acid activation and tRNA acylation.
A major fraction (60%) of the catalytic rate acceleration by contemporary synthetases resides in segments that align
sense/antisense. Bioinformatic evidence for sense/antisense ancestry extends to codons specifying the invariant
secondary and tertiary structures outside the active sites of the two synthetase classes. Peptides from a designed,
46-residue gene constrained by Rosetta to encode Class | and Il ATP binding sites with fully complementary
sequences both accelerate amino acid activation by ATP ~400 fold.

Conclusions: Biochemical and bioinformatic results substantially enhance the posterior probability that ancestors
of the two synthetase classes arose from opposite strands of the same ancestral gene. The remarkable acceleration
by short peptides of the rate-limiting step in uncatalyzed protein synthesis, together with the synergy of synthetase
Urzymes and their cognate tRNAs, introduce a new paradigm for the origin of protein catalysts, emphasize the
potential relevance of an operational RNA code embedded in the tRNA acceptor stems, and challenge the
RNA-World hypothesis.
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Dedication

“...there is no single path to creativity. We are
constrained not by the necessary discipline of rigor
but by the limits of our own imaginations and
intellectual courage. In the words of Jazz musician
Fats Waller, Dare to be wrong or you may never be
right.”

- J. Michael Bishop [1]

“How often have I said to you that when you have
eliminated the impossible, whatever remains, however
improbable, must be the truth?”

- Sir Arthur Conan Doyle [2]

Sergei Rodin (1947-2011) was both a mentor and a
collaborator. When the paper that launched this work
[3] was challenged [4], Sergei was so incensed that he
and his son, Andrei, wrote a brilliant, rebuttal on our be-
half [5]. Thus, I also considered him my friend.

The origin of the universal genetic code is one of the
most important, fascinating, and vexing questions facing
contemporary biologists. Sergei devoted much of his
professional life pursuing this question using several per-
spectives from “outside the box” [5-11]. One of his more
unlikely hypotheses was the possible ancestry of Class I
and Class II aminoacyl-tRNA synthetases as sense- and
antisense- gene products expressed from the same prim-
ordial gene [11]. That hypothesis was an elegant
realization of thoughts expressed by both Bishop and
Doyle. This review considers recent experimental sup-
port for, and implications of, their hypothesis.

Background

The origin of life has challenged scientific investigation
for a century or more, generating diverse opinions relat-
ing to several disjoint questions about life’s definition in
terms of compartmentation, metabolism, and informa-
tion transfer/storage [12-16]. A central issue linking
these questions is a transition from chemistry to biology.
Our focus is the origin of codon-dependent translation.
Contemporary Aminoacyl-tRNA synthetases (aaRS) ac-
celerate two successive chemical steps: amino acid acti-
vation and tRNA acylation. These coupled tasks involve
(Figure 1): (i) transduction of the chemical free energy of
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Activation: ~10"4-fold rate acceleration
aa + ATP — aa-5'AMP + PPi

Retention: ~103-fold increase in affinity

Ky~10-6 M

Acylation: ~10'0-fold rate acceleration
aa-5'AMP + tRNA — aa-3'tRNA + AMP

Figure 1 Aminoacyl-tRNA synthetases have three important
functions in the cell. They use ATP to activate the alpha carboxyl
group, making the amino acid more reactive (Activation). This
activation step adds the adenosine moiety as an “affinity tag” to the
amino acid, increasing its binding affinity by ~1000-fold (Retention)
This slows the release of a very reactive species and enables
subsequent steps that enhance the fidelity of the final step. Finally,
they catalyze transfer of the activated carboxyl group to the 3" CCA
terminus of tRNA (Acylation), completing the translation of the
genetic code by the covalent linkage to the tRNA anticodon that is
interpreted by the 30S ribosomal subunit in response to codons in
mRNA. The approximate rate accelerations achieved by contemporary
enzymes indicated are based on comparisons of kcat/Ky values to the
uncatalyzed rates, estimated from experimental rates of model
reactions, as described in [38,39].

NTP hydrolysis into the highly unfavorable bond forma-
tion leading to mixed anhydride aminoacyl-5’ adenylates,
(ii) addition of a covalent tag to the amino acid, i.e., the
adenosine moiety, greatly extending the residence time
of the activated amino acid within the active site to allow
dissociation and/or hydrolysis of incorrectly activated
amino acids [17,18], and (iii) specific acylation of tRNA
with cognate amino acid. Translation occurs in the third
step [19-26].

Absent catalysts, aminoacyl-5" adenylates form both
very slowly and in very low equilibrium yield. The acti-
vation step proceeds 10>-10* times more slowly than the
second in aqueous solution®, and therefore requires a
correspondingly more potent catalyst. Release and sub-
sequent hydrolysis of the pyrophosphate leaving group
are both necessary to ensure that activated amino acids
are formed in high yield. Further, once formed, the
aminoacyl-5" adenylate is exceeded in reactivity only by
acyl-halides [27]. In fact, of all reactions involved in
ribosomal protein synthesis and in both kinetic and
thermodynamic terms, amino acid activation is, mechan-
istically, by far the most challenging.

Just how far back in time the three functions can be
traced lies close to the heart of the code’s origins. Consen-
sus holds that aaRS enzymes had essentially assumed their
modern configurations in the last universal cellular ances-
tor, LUCA [28-30]. It is certainly not idle speculation,
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therefore, that simpler ancestral aaRS preceded LUCA by
eons. Nevertheless, because LUCA represents a localized
“Big Bang” [31,32], it was associated with intense genetic
exchange [33]. Thus, it becomes much more difficult to
trace phylogenetic lineages for either activity much be-
yond that hypothetical landmark. One possible avenue lies
in the identification and functional annotation of broadly
conserved tertiary packing motifs, illustrated pointedly
[34] by a nearly invariant core packing motif belonging
to ~ 125 families in the Rossmannoid superfamily. That
motif is associated with a discrete supersecondary struc-
ture that binds ATP and nucleotides in general, in keeping
with its possible role in primordial chemical free energy
conversion, and has been identified as a “protoallosteric
site” [35]. A related effort is the expression and engineer-
ing of invariant cores from enzyme superfamilies [36-40].
We call these constructs Urzymes, from Ur = primitive,
original; they are our central focus here (see also [41]).

Results

Aminoacyl-tRNA synthetases: why two families?

The activation and acylation reactions are so important,
and the twenty canonical amino acids so diverse, that na-
ture invented two different aaRS families to activate all 20
canonical amino acids. The two enzyme families differ
markedly in primary, secondary and tertiary structure
[42]. Amino acids activated by Class I and II aaRS divide
into apparently symmetrical classes of 10 each®, with three
comparably sized subclasses, LIIA(6), LIIB(2-3), and LIIC
(1-2).

Class I and II active sites exhibit several relevant
distinctions (Figure 2). First, the amino acid-binding
pockets of Class I enzymes lie deep within the Rossmann
dinucleotide-binding fold, whereas amino acids bind to a
shallow crevice close to the surface of Class II enzymes.

The most highly-conserved aaRS active-site amino
acids occur in three sets of signature sequences. We'll
focus on Class I HIGH and KMSKS and Class II Motif 1
and 2. With rare exceptions, conserved amino acids with
a direct, catalytic role in Class I active sites are drawn
from amino acid substrates activated by Class II en-
zymes, and conversely (Figure 2). It is hard to imagine
how this came about unless the evolutionary ancestors
appeared simultaneously, rather than sequentially, as is
often argued [43,44].

In any case, sharply contrasting architectures render it
inconceivable that the two classes had a common ances-
tor. Why, then, did nature invent two ways to do the same
job? Three related aspects of the class division seem rele-
vant to answering this question:

i. Coding simplicity. The earliest proteins probably
were encoded by a much simpler genetic code than
the code of 20 amino acids we have today. In fact, a
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binary code of two amino acid TYPES that specify
“inside” and “outside” seems to represent almost
sufficient information (turns excepted) to encode
globular objects with selectable functions and hence,
to launch natural selection. Combinatorial libraries
of polypeptides based on a binary, middle-base code
that differentiates only between core and surface
amino acids contain high proportions of products
with the biophysical characteristics of molten glob-
ules [45], and give rise to significant functionalities
[46,47]. Two different kinds of synthetases with rudi-
mentary specificities reflected in median hydropa-
thies of the contemporary Class I and II aaRS
substrates might thus have been sufficient to launch
codon-directed protein synthesis.
il. Physical chemistry. Amino acid substrates of the two
classes sort into just such a distinction. The
apparent symmetry relating the three subclasses and
the inordinate water preference of Class I arginine
[48] mask an overwhelming difference between the
hydrophobic character of Class IA and Class IIA
amino acids. Despite exceptions, Class II amino
acids generally prefer the aqueous phase, Class I
amino acids the hydrocarbon phase. Their median
free energies of transfer of between water and
cyclohexane differ by -4.6 kcal/mole [40]. Class I
(larger) and Class II (smaller) amino acids are also
distinguished by size. Solvent transfer free energy
(P <1077) and mass difference (P < 10™*) contribute
synergistically (P < 107%) to the solvent accessible
surface area in folded proteins (Carter, CW Jr &
Wolfenden, R tRNA Acceptor-Stem and Anticodon
Bases Form Independent Codes Related to Protein
Folding, in preparation); Class II amino acid side
chains are, on average, 54% exposed whereas Class I
amino acids are 32% exposed (P ~0.03).
Genetic linkage. A pre-cellular world populated by
quasispecies may have placed a premium on efficient
information storage [49]. We further believe that a
substantial selective advantage would arise if both
required kinds of synthetases were present at the
same time and place. Coding Class I and II on
opposite strands would link genes for the two classes
genetically, assuring that when one was present, so
was the other.

iii.

=

Sense/antisense ancestry

Rodin and Ohno observed a statistically significant com-
plementarity between consensus coding sequences for
class-I defining PxxxxHIGH and KMSKS peptide signa-
tures and Class II Motif 2 and Motif 1 sequences, and
conversely [11]. They inferred from this that ancestral
Class I and II aaRS descended from opposite strands of
the same gene, a proposal we call the Rodin-Ohno (RO)
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Amino Acid

ATP

Il (HisRS)

Median DG, kcal/mole 207

W=>CHX
Figure 2 Detailed comparison between active sites of Class | and Class Il aminoacyl-tRNA synthetases. Substrate binding sites for ATP and
amino acid are buried in Class I, and much closer to the surface in Class Il enzymes. The color of the active-site spheres illustrates that conserved
active-site residues that motivated Rodin and Ohno to advance their sense/antisense coding hypothesis are drawn exclusively from the set of
substrates activated by the other class. The median transfer free energy from water to cyclohexane is favorable for Class | substrates and unfavorable

-1.59

for Class Il substrates.

hypothesis. Despite the strength of their statistical tests
(vide infra), it was not obvious when the idea first ap-
peared that experiments could either falsify or confirm
this extraordinary proposal. In the interim, however, spe-
cifying the hypothesis more precisely in terms of the re-
spective tertiary structures has clarified its more important
implications, opening experimental and bioinformatic ave-
nues to assess its validity.

Key to these new developments is the notion that con-
temporary enzymes grew from ancestral forms similar to
invariant cores that can be identified within superim-
posed members of protein superfamilies (Figure 3).
These cores invariably comprise the active sites. They
can be expressed in soluble form, sometimes after re-
design to modify hydrophobic side chains at newly
solvent-exposed surfaces [39]. They exhibit substantial
rate accelerations for the reactions catalyzed by the en-
zymes from which they derive [37-40].

In the following, we first summarize the salient features
of Urzymology, the study of Urzymes. Then we describe
how Urzymology facilitates the modular deconstruction of
Class I TrpRS and Class II HisRS and recapitulation of
their evolution. Finally, we summarize how these two
Urzymes help validate the Rodin-Ohno hypothesis.

Urzymology: structural biology yields insights about the
invariant cores

Comparative anatomy has always been the sine qua non of
phylogenic inference. Because our interest here concerns
molecules far earlier than LUCA, our approach begins
with structural biology and 3D superposition, whose appli-
cation to aaRS$ has been reviewed [50]. We used a variety
of manual least squares and automated algorithms [51,52]

to perform similar analyses. Contemporary aaRS are mod-
erately large enzymes, in keeping with their sophisticated
tasks. Their structures also exhibit considerable variation
within the two classes (Figure 3). From the outside the four
Class I and II monomers superimposed in each part of the
figure look quite different. Inside, however, a much
smaller, invariant core of ~120-130 amino acids is nearly
identical in all 10 examples of each class.

Not surprisingly, cores for each class encompasses the
active sites for amino acid activation and acyl-transfer,
and hence also the most highly conserved secondary and
tertiary structures. Urzymology consists of the methods
we have introduced to identify, re-design, express, purify,
characterize, authenticate, and exploit the properties of
these cores (Table 1).

Whereas invariant cores within each class are very
similar to each other, they retain sufficient identity that
sub-class relationships are preserved. Four examples
(two from subclass A, and one each from subclasses B
and C) were superimposed by partial order structure
alignment (POSA; http://fatcat.burnham.org/POSA; [52])).
Urzymes deduced for members of the same subclass (IA,
ITA) were more similar to each other than to members of
other subclasses, and the subclasses IC and IIC (Figure 4)
were most structurally distinct.

We examine implications from structural biology for
the RO hypothesis in Figure 5. Class I and II invariant
cores themselves actually can be aligned sense/antisense
as noted by Rodin and Ohno [11]. Contemporary aaRs§,
however, violate this alignment in two ways. (i) Large and
variable insertion domains (in Class I these are called
Connecting Peptides 1 and 2 [53,54]), interrupt the active-
site alignment. (ii) Anticodon-binding domains in both
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GInRS
TrpRS

Figure 3 Superposition of four Class | and four Class Il aaRS. Specific enzymes are colored differently and labeled. Full-length contemporary
monomers are shown as surfaces that are 65% transparent, to reveal the invariant cores, shown as cartoons inside the surfaces.

PheRS

Classes lie outside the range where antiparallel alignment
is even possible.

On the other hand, removing all insertion and
anticodon-binding domains from both classes leaves the
potential sense/antisense alignment intact (Figure 5B).
Remarkably, both invariant cores include complete ATP-
and amino acid-binding sites, together with rudimentary
binding sites for the 3’ CCA termini of tRNA (Figure 5C;
[40]).

Figure 5C illustrates the chief experimental prediction
of the RO hypothesis: parts of either gene that cannot be
related sense/antisense—both anticodon-binding domains,
the insertions and Class II Motif 3—appear in some sense
functionally superfluous. Removing them leaves precisely
the invariant cores we had identified for both enzymes,
and these align quite closely, sense/antisense. The key ex-
perimental question is: how active are Class I and II aaRS
Urzymes? Too little catalytic activity to produce activated
amino acids at a sufficient rate to support uncatalyzed as-
sembly into peptides would effectively falsify the RO hy-
pothesis. Urzymes are catalytically very much more active
than necessary.

Table 1 Procedures used in Urzymology

AARS Urzymes both activate, and acylate tRNA with,
cognate amino acids.

Amino acid activation

Two Class I (TrpRS and LeuRS) and one Class II
(HisRS) Urzymes accelerate the rate-limiting amino acid
activation reaction ~10%-10°-fold. These rates are within
107° (Figure 6; Figure 5 in [37]), so transition-state
stabilization free energies of both Class I and II Urzymes
are therefore ~60% of, those of full-length aaRS.

tRNA aminoacylation

Catalysis of amino acid activation by aaRS Urzymes left
a key question unanswered: do these peptide catalysts
also accelerate aminoacylation of tRNA? A central impli-
cation of the RO hypothesis is that sense/antisense
encoded fragments should be exhibit both activities. Pre-
cedent and structural arguments led us to expect recog-
nition of tRNA by aaRS Urzymes, even without the
anticodon-binding domain, which is often considered a
late addition [23]. A considerable literature describes the
acylation of isolated tRNA modules containing the ac-
ceptor stem [19,20,55,56]. Comparable experiments have

Process Remarks

Superimpose homologs
ID shared invariant subset
Re-design exposed surface
Clone & Express
Characterize

Authenticate

Evolutionary recapitulation

POSA server: http://fatcatburnham.org/POSA/

Usually 10-30% of monomeric forms

Protein design: Rosetta http://www.rosettacommons.org/

Maltose Binding Protein (MBP) fusions; TEV cleavage

Rate accelerations, substrate specificities

Single turnover active-site titration, Steady-state kinetics, genetic mutation and manipulation

Multi-scale modular de- and reconstruction
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Figure 4 Partial order structure alignment of four Class | and
Class Il Urzymes. Despite the strong similarities between the four
Urzymes from each class, POSA identifies appropriate sub-classification.

until now not been performed with modular fragments
of aaRS$, owing to the greater difficulty of constructing
and purifying proteins, compared to RNA. Further, sim-
ultaneous appearance of a fully-developed genetic code,
depending heavily on binding the anticodon loop of
most tRNAs [56] is difficult to envision. Accordingly,
Giegé, Schimmel, and others proposed that an earlier,
“operational RNA code” in the tRNA acceptor stem was
a forerunner of the present day code [23].

The crystal structure of human cytosolic TrpRS com-
plexed with the acceptor stem of tRNA™P [57] affords a
model for the corresponding interaction with the TrpRS
Urzyme (from H. Hu’s MD simulations; [39]) Figure 7A.
Buried surface area calculation with a probe radius of
1.5 A shows that 522 A? of the Urzyme is potentially in
contact with tRNA™™P, Further, complementary tRNA-
binding surface in the o-helix of the second crossover
connection of the Urzyme includes an invariant, E152,
that specifically recognizes the discriminator base A73.
Similar considerations apply to the HisRS UrzymestR-
NAM® complex (Figure 7B).

Data shown in Figure 7A, 7B for *’P-3’ adenosine-
labeled tRNAT™® and tRNA'™® [58] demonstrate that
TrpRS [39] and HisRS [38] Urzymes catalyze tRNA ami-
noacylation. TrpRS and HisRS Urzymes therefore retain
a full functional repertoire. In particular, catalytic activities
required for protein synthesis are as finely tuned as the
contemporary enzymes, between activation and acylation
and between Classes, [37]. They therefore represent con-
vincing models for ancestral Class I and Class II aaRS.

Are Urzyme activities authentic?
Urzyme catalysis of amino acid activation is ~10°-fold
weaker than that of contemporary enzymes. How can we
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be sure that they do not result from a tiny amount-1 in
100,000—of contaminating wild-type enzyme? Seven dif-
ferent tests (Table 2) argue from multiple points of view
that these activities are authentic. The last four func-
tional assays uniquely distinguish Urzymes from native
aaR$, and are discussed in detail:

1. Empty vector controls show essentially no activity.
We express all Urzymes as maltose-binding protein
(MBP) fusions to improve solubility. No unfused
MBP expressed and purified in the same manner on
an amylose resin exceeded background when assayed
at 12 mg/ml with **PPi exchange mixes for trypto-
phan, histidine, and leucine.

2. Active TrpRS Urzyme can be renatured from
inclusion bodies [40]. It is unlikely that native full
length enzyme would contaminate inclusion body
preparations.

3. Cleavage of MBP fusion proteins releases cryptic
activity. MBP fusions inhibit both TrpRS and HisRS
Urzymes ~ 50-fold [38,39]. Cryptic activity released
by Tobacco Etch Virus protease cleavage of purified
fusion proteins implicates both the purified fragment
and protease cleavage (see also 5 below).

4. Active-site titrations show significant pre-steady state
bursts in single turnover assays, amounting to 10-
90% of the total number of molecules. Active-site ti-
trations measure single turnover time courses. If
product release is rate-limiting, then turnover will
be slower than the first round of catalysis, and ex-
trapolation of the steady-state rate to the origin can
be used to estimate the “burst” or the amplitude of
the first-order portion of the reaction. Burst size
therefore estimates the proportion of active mole-
cules. Contaminating activity from a tiny amount of
wild type full-length enzyme 10°-fold more active
than the Urzymes would exhibit an insignificant
burst, and the entire time course would represent its
steady-state rate. Active fractions also provide more
accurate k., values.

Both Urzymes show substantial bursts, which range
between ~10 and 90%—much bigger than those
expected from a rare, very active contaminant. Full
length aaRS bind tightly to the aminoacyl-adenylate
to protect the cell from a highly reactive adenylating
reagent and to preserve the specificity achieved by
the activation step [17]. It is remarkable that the
Urzymes also sequester the intermediate. Pre-steady
state bursts are thus a third key function of full-
length aaRS (Figure 1) retained by Urzymes from
both Classes.

5. Active-site mutants and modular variants have
altered activities. Molecular biologists recognize that
manipulating the gene of a suspected source of
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PxxxxHIGH KMSKS
(o tRNA binding Class I
c—l Motif 2 | | | | Motif 1
- W\ AVAVAYS
ATP binding Amino Acid binding
N I+I WN\I/+I\ } } } I*rl\)
HIGH KMSKS
Class | tRNA binding

Figure 5 The Rodin-Ohno hypothesis holds that ancestral forms of Class | and Il aminoacyl-tRNA synthetases (aaRS) had fully
complementary nucleic acid coding sequences and that contemporary aaRS descended from opposite strands of a single gene. The
schematic in A illustrates how this hypothesis leads directly to the concept of aaRS Urzymes. Antiparallel alignment of amino acid sequences for
the Class-defining motifs (HIGH and KMSKS from Class I; Motifs 1 and 2 from Class Il) reveals that neither anticodon-binding domain, nor a long
insertion in each Class can physically be a part of such an ancestral gene. As a result, the only portions of the two Classes consistent with the
hypothesis (B) are about 120-130 residues long. These fragments coincide with invariant tertiary structural cores shared by all superfamily members.
Moreover, these segments together compose a minimal active site, containing binding sites for all three substrates (C). Amino acid and ATP
determinants are reflected across the gene sequence, while tRNA binding determinants are related by two-fold rotation [40].

activity can implicate that gene product in the
observed activity. We therefore tested active-site
mutations and modular variants in the TrpRS and
HisRS Urzymes. All such experiments significantly
altered activity. One result—mutation D146A in
TrpRS Urzyme actually increased, rather than redu-
cing activity as it does in the WT enzyme—was
counter-intuitive. However, the catalytic function of
D146 in full-length TrpRS likely requires allosteric
coupling of missing CP1 and ABD modules, and its
presence in the Urzyme likely stabilizes the ground
state, rather than the transition state [59].

Of particular interest are thermodynamic cycles that
involve an aaRS Urzyme and complementing
segments. Very short (6-20 aa) modules accelerate
HisRS Urzyme amino acid activation by a small but

significant amount (Figure 8; [38]). We PCR
amplified the 122 residue fragment containing only
Motifs 1 and 2, adding either a six-residue N-
terminal extension (red), or Motif 3 (yellow), or
both, giving us a balanced assay for the effects of
both factors. The intrinsic catalytic enhancement of
Motif 3 to transition-state stabilization by HisRS
Urzyme, -0.85 kcal/Mole, is essentially identical to
that of the much shorter and less obvious N-
terminal extension; their synergistic effect is nearly
twice that. Figure 8 emphasizes that the two mod-
ules stabilize the ATP binding site from opposite
faces of the molecule.

Full TrpRS specificity and tRNA™™ aminoacylation
activity both require essentially complete
interdomain synergy (Figure 9; [36]). The TrpRS
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Figure 6 Quantitative framework in which to assess the catalytic significance of Urzymes and various other putative stages of aaRS
evolution. A. Rate accelerations estimated from experimental data for single substrate (red) and bi-substrate (Black, Bold) reactions adapted from
[75] to include uncatalyzed and catalyzed rates of bi-substrate reactions of the ribosome [74], amino acid activation [39] and kinases [106]. Second
order rate constants (black bars) were converted into comparable units by multiplying by 0.002 M, which is the ATP concentration used to assay
the catalysts shown in B. B. Experimental rate accelerations estimated from steady state kinetics as kcat/Ky, for a series of catalysts derived from
Class I and Class Il aminoacy-tRNA synthetases ([38,39] and data of V. Weinreb, L. Li, M. Collier, and K. Gonzalez-Rivera presented here in a subsequent
section). Vertical scales in A and B are the same, and the origin of the histogram in B has been set equal to the uncatalyzed rate of amino acid
activation in (AAact) in A. Red bars denote Class | Tryptophanyl- and Leucyl-tRNA synthetase constructs, blue bars denote Class Il Histidyl-tRNA
synthetase constructs, and green denotes a ribozymal catalyst [97], included for comparison. Research presented in A, B was originally published in
[37]. © The American Society for Biochemistry and Molecular Biology. C. Class | LeuRS and Class Il HisRS Urzyme amino acid specificities. Amino acids
with more negative AGk.,/Ky values indicate higher activities. By ~1 kcal/mole (light bands) or ~ five-fold, each Urzyme prefers substrates from the
class to which it belongs (dark bands). Nonetheless, both activate a range of non-cognate amino acids, and are promiscuous.

Urzyme favors tryptophan activation by ~10-fold peptide segments that can align antisense to the
over competing tyrosine and is ~400 times less HisRS Urzyme, is actually better at the two tasks—
specific than full-length TrpRS. CP1 and the amino acid recognition and tRNA aminoacylation—
anticodon-binding domain (ABD) must account for required of aaRS, and hence lie closer to the actual
the increased specificity of native TrpRS. We ad- path of aaRS$ evolution than either intermediate,
dressed this question by comparing specificities of potentially more advanced construct. Evolutionary
intermediate constructs in which the CP1 and ABD development of contemporary enzymes must be
modules were added back individually to the more subtle than simply accumulating one module
Urzyme [36] to form a complete factorial experi- at a time.

ment in those two variables (Figure 9A). 6. Steady state Ky values differ from those of the WT
Quite surprisingly (Figure 9B), although adding back enzymes. Enzymologists recognize that the steady-
either CP1 or the ABD does enhance tryptophan state Ky value is an independent signature.
binding, this effect is non-specific. Addition of either Contaminating wild-type enzymes, irrespective of
domain also reduced Ky, for tyrosine, such that the concentration, would saturate at the same amino
log of the specificity ratio (Keat/Kng)tep/ (Keat/Knt) Tyo acid concentrations. Altered Ky, values are thus
was actually ~0.0 (Figure 9B). The ~400-fold in- strong evidence against contaminating wild-type en-
crease in specificity observed for full-length TrpRS, zyme activity. @ ATP- and amino acid-dependent
relative to the Urzyme depends entirely on coopera- Michaelis-Menten data for the TrpRS and HisRS
tive interactions (also called epistasis [60-62]) be- Urzymes show that ATP binding affinity is either the
tween the two domains [36]. same or tighter to Urzymes than to contemporary
tRNAT™® aminoacylation requires comparable aaRs [38,39]. The k., values are nearly comparable
interdomain synergy (Figure 9B). These experiments to those of the native enzymes. Urzyme amino acid
with TrpRS Urzyme support the unexpected Kys, however, are quite different from those of full-

conclusion that the Urzyme itself, consisting only of length, native enzymes. The TrpRS Urzyme Ky, for
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Figure 7 tRNAT"® Acylation by TrpRS Urzyme. A. Model of the putative interaction between TrpRS Urzyme and tRNA'™, derived from the
crystal structure of the complex between human TrpRS and tRNA'™ [57]. Autoradiograms documenting the acylation of tRNA™ by Wild Type
TrpRS, TrpRS Urzyme, and two intermediate modular constructs, containing either CP1 or the anticodon-binding domain. B. Model for
interaction of tRNA™™ with HisRS4 Urzyme and autoradiograms showing acylation by HisRS1, 2, and 4 as in A. Spheres show Trp-5’AMP, and
His-5" sulfoamyladenylate. These data were published originally in [37] © The American Society for Biochemistry and Molecular Biology.

Table 2 Criteria for the authenticity of Urzyme catalytic activities

Criterion Implementation Remarks
Empty vector controls Purify, assay MBP De Rigueur, but unconvincing
Renaturation from inclusion bodies Tagged Urzymes purified from WT Enzymes do not segregate with inclusion bodies

pellet
MBP fusions release cryptic activity on TEV  Assay fusion proteins + TEV Inhibition in fusion proteins is widespread, not universal.
cleavage. cleavage
Active-site titrations Urzyme Single turnover time-courses A key criterion, this is also essential for comparing keae/K.
preparations have significant bursts.
Mutations, modular alterations induce Determine effect of active-site Active-site mutations generally affect Urzyme activities differently
predictable changes in activity. mutations, genetic manipulations and can actually enhance activity because mechanisms are different.
Urzymes, WT enzymes have different Measure: Kear, K, Kear/Km Contamination by WT enzyme would saturate at WT K.

Steady-state Ky, values.

Amino acid specificity is different Compare: (Kea/ Kpw/(Kea/ Ky Urzymes are generally low specificity, high k., catalysts.
from full-length
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Figure 8 Quantitative analysis of the catalytic contributions of
Motif 3 and a short N-terminal extension of the Motif 1 helix to
the acceleration of histidine activation by HisRS Urzyme.
Graphics include the Histidyl-5'adenylate as spheres. Details of the
constructions are described in [38].
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tryptophan is ~1 mM, 500 times higher than that of
wild type TrpRS [39]. That for HisRS-3, containing
Motifs 1, 2, and 3, but lacking the six-amino acid N-
terminal extension to Motif 1, is 120 uM, compared
to 30 uM for wild-type HisRS and 45 puM for the
N, catalytic domain [38].

. HisRS and TrpRS Urzymes have reduced, but Class-

dependent specificities. Weaker amino acid affinities
imply that the Urzymes likely have reduced
specificity for their cognate amino acids. The TrpRS
Urzyme retains a 10-fold preference for tryptophan
vs tyrosine [36,39]. Second-order rate constant free
energies, -RT In(k,/Kyp), for amino acid substrates
activated by Class I LeuRS and Class II HisRS
Urzymes (Figure 6C) show that both Urzymes are
promiscuous. However, they both preferentially acti-
vate amino acids similar to the original substrate
(i.e., Leu and His). By a factor of ~5-fold, they both
prefer amino acid substrates from the Class to which
they belong. This modest, class-dependent substrate
specificity also rules out adventitious activities unre-
lated to aaRS-derived constructs. As with active-site
titration and steady-state kinetic parameters, con-
taminating wild-type aaRS would have a specificity
of ~4000-fold.

Tryptophan Activation
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Figure 9 Factorial analysis of TrpRS inter-domain effects. A. The catalytic activity of the Urzyme facilitates a full-factorial analysis of the benefits
of adding either the CP1 or anticodon-binding domain, jointly with their synergistic effect in the full-length enzyme. B. Free energy histograms for the
factorial design in A, showing nearly identical patterns in which the CP1 and ABD actually diminish both specificity for tryptophan vs tyrosine and
acylation of tRNA"™. The entire difference between Urzyme and full-length enzyme is achieved only via the synergistic participation of both domains
missing in the Urzyme.
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Experiments in (1-7) leave little doubt that the
Urzymes are the authentic source of observed amino
acid activation activities.

Bioinformatic evidence from multiple sense/antisense
alignments

Coding sequences for secondary structure scaffolds that
position Class I and II catalytic residues also support
Sense/Antisense (SAS) ancestry. Owing to the evolution-
ary introduction of insertions and deletions, it is signifi-
cantly more difficult to compare coding sequences for
peptides much longer than those analyzed by Rodin and
Ohno. Identification and functional validation of the
Class I and II Urzymes facilitates extension of coding se-
quence analysis to neighboring secondary (and tertiary)
structures. We described a 94-residue excerpt from the
B. stearothermophilus TrpRS and E. coli HisRS Urzyme
coding sequences [40]. That sense/antisense alignment
exhibited conspicuously high (0.44) codon middle base
pairing, <MBP>. We generalized that analysis by con-
structing ~40,000 sense/antisense alignments from ~200
TrpRS and ~200 HisRS sequences distributed through-
out the biome [63] (Figure 10B). Codon middle bases
pair in 0.34 of all SAS TrpRS/HisRS active-site sequence
alignments [63]. This comprehensive analysis sustains
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our earlier conclusion: the middle base pairing frequen-
cies exceed that observed for various comparable data
sets representing the null-hypothesis (Figure 10A,C) that
cluster around ~0.25, by a statistically substantial 200-
300 times the standard error.

Three additional comparisons between subclasses 1C
and IIA using sequences for Class IC TyrRS and Class
IIA ProRS, with which we rooted the Class I and II
phylogenetic trees [63] also all have < MBP > = 0.34 +
0.002. Middle-base pairing is quite similar in antisense
alignments of TrpRS with ProRS, TyrRS with HisRS, or
TyrRS with ProRS. Extending this metric to multiple se-
quences from other subclasses may lead to a deeper
phylogeny of aaRS$ subclasses.

Reconstructed ancestral sequences derived by maximum
likelihood methods from the phylogenetic trees show that
the middle-base pairing frequencies, which are already
markedly higher for bacterial sequences (Figure 10D), also
increase for nodes closer to the root (Figure 10E) [63]. In-
creased ancestral frequencies are consistent with the con-
clusion that middle codon-base pairing decreases with
time, and hence that it was even higher and perhaps equal
to 1.0 in the original gene, now inaccessible from the con-
temporary multiple sequence alignments. Thus, they add
weight to the RO hypothesis. Over-represented extant
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Figure 10 Evidence for sense/antisense ancestry of the secondary structures connecting catalytic peptides in Class | and Class Il aaRS.
Frequency distributions of codon middle base-pairing in control (A,C) and antisense alignments of a 94-residue Urgene excerpted from ~200
TrpRS and ~200 HisRS contemporary coding sequences (B). Distributions under the RO hypothesis (B) have significantly higher mean values than
do those for two samples exhibiting the Null hypothesis that predicts a pairing frequency of 0.25 (one base in four). D,E. Domain and evolutionary
time-dependent estimates for codon middle-base pairing between antisense alignments of TrpRS and HisRS. D. Breakdown of the three consensus
domains. The nine columns arise from comparing sequences for one synthetase another when broken down by domain. E. Codon middle-base
pairing between reconstructed ancestral sequences derived from phylogenetic trees of TrpRS and HisRS Urgene sequences increases as the trees
approach the root. Dotted line; all sequences, Solid line bacterial sequences only. (From Chandrasekaran, et al, Mol. Biol. Evol. 2013, 30:1588-1604).
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taxa can bias reconstructions [64]. Although middle bases
should be least vulnerable to such biases, it is not known
how, or by how much, they might affect sense/antisense
alignments based on reconstructed sequences from differ-
ent protein families, and thus how much they strengthen
the RO hypothesis.

An existence proof for embedded modularity and sense/
antisense coding

We argued previously [37] that the HisRS and TrpRS
Urzymes have such finely tuned rate accelerations that
they represent highly evolved, relatively recent catalysts,
and must have had simpler ancestors. Figure 5C suggests
that the substrate binding sites are modular on a scale of
tens of amino acids. The N-terminal (TrpRS) and C-
terminal 46 (HisRS) amino acids of the Urzymes are ATP-
binding modules. The Class I HIGH signature is arguably
a version of the Walker-A motif [39] (Figure 11A). Fur-
ther, a 7-8 residue non-polar packing motif in the C-
terminal helix-loop-strand of the N-terminal crossover
connection is broadly conserved in Rossmannoid proteins
[34]. We have shown the latter motif (the “D1 Switch”) to
be central to the allosteric behavior of TrpRS [59,65]. Fi-
nally, crystallographic evidence [66] showed that this frag-
ment of TrpRS affords the initial ATP-binding site and
roughly half the ATP binding site in the fully closed, Pre-
transition state TrpRS conformation.

For these reasons, we characterized the 46-residue
peptides from TrpRS and HisRS by several functional
assays. Isolated 46-mers from both aaRS classes bind
tightly to ATP (KD =10-65 uM), as has been observed
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for structurally homologous 45-51 residue fragments
isolated from a variety of nucleotide-binding proteins
[67-71] containing the Walker-A motif and, by this cri-
terion, may prove to be distant relatives of the Class I
aaRS [39].

We (O. Erdogan, B. Kuhlman, X. Ambroggio) set up a
direct test of the Rodin-Ohno hypothesis by configuring
Rosetta to choose sequences that stabilize the 3D struc-
tures of TrpRS and HisRS 46-residue ATP-binding sites,
subject to the constraint that the two coding sequences be
fully base paired, in keeping with the RO hypothesis
(Figure 11B). Catalytic properties of these two gene prod-
ucts have been analyzed extensively (K. Gonzales-Rivera,
M. Jimenez-Rodriguez), with attention to likely sources of
contaminating activity (Figure 11C,D; Table 3). These ex-
periments approach the background of uncatalyzed rates,
and are subject to higher uncertainties. However, Table 3
illustrates that dependences for both peptides on time,
amino acid and catalytic peptide concentrations are
statistically significant. Similar experiments with puri-
fied maltose-binding protein used to solubilize the pep-
tides as a negative control produced an amino acid
concentration-independent rate constant of ~4+2 E-
12/sec. Rate constants in Table 3 are both ~1.8 E-9/sec
and thus accelerate cognate amino acid activation ~400-
fold over the uncatalyzed rate, directly validating the RO
hypothesis [72].

Evolutionary enzymology: “life-enabling” catalysis
Arguably, the most important function of enzymes is
to equalize reaction rates for the diverse chemistry
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Figure 11 A bona fide sense/antisense gene with amino acid activation activity expressed from both strands. A. Sequence and structural
homology of the Class | HIGH signature and the F1 ATPase Walker A sequence. Glycine residues occur in exactly the same locations. The difference
between the two sequences is that the Class | signature is specific for the a-phosphate group, whereas the Walker A signature is specific for the
B-phosphate group. B. A designed sense/antisense gene coding for the 46-residue Class | aaRS and Class Il ATP binding sites on opposite strands. C.
Time course of leucine activation by the Class | 46mer. D. Time course of histidine activation by the Class Il 46mer. Both plots have data for two
concentrations of amino acid (10, 32 mM) and peptide (044, 1.75 puM). Scatter within each set of points is very noisy, so statistical analyses of
various dependences are given in Table 3.
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Table 3 Regression analysis of the time, [amino acid], and
[catalyst] concentrations of amino acid activation by
Class | and Il designed sense/antisense ATP binding sites

Term Estimate  Std error  tRatio  Prob>|t|
CLASS |

Time, sec 1.86E-09 1.60E-10 11.62 <.0001
[Peptide], uM 1.50E-03 7.15E-05 20.79 <.0001
[peptide]*[Leucine] 1.46E-05 6.50E-06 224 0.0304
Time*[peptide] 9.84E-10 2A45E-10 4.02 0.0002
[Leucine], mM 1.06E-05 4.26E-06 25 0.0164
CLASS Il

Time, sec 1.76E-09 144E-10 12.25 <.0001
[peptide], pM 170E-03  7.02E-05 243 002
[peptide]*[Histidine] 1.43E-05 6.38E-06 2.25 0.03
Time*[Histidine] 2.34E-11 1.31E-11 1.79 0.08
[Histidine], mM 6.31E-06 4.18E-06 1.51 0.14

necessary for life. Catalyzed rates of chemical reactions
important for life span at most five orders of magnitude,
whereas the corresponding uncatalyzed rates range over
25 orders of magnitude Figure 6A [73-76]. This quanti-
tative framework (Figure 6) lets us assess rate enhance-
ments of the aaRS Urzymes and related catalysts that we
have characterized (Figure 6B). Reactions much slower
than the fastest uncatalyzed reaction must first be accel-
erated to about the same rate; otherwise life would be
impossible. A key contribution of catalysis, therefore, is
to ensure that different kinds of chemistry will happen
at close to the same rates.

Assembly of activated amino acids to form peptides is
among the faster of the uncatalyzed reactions. Uncata-
lyzed amino acid activation is three orders of magnitude
slower. Uncatalyzed amino acid activation must be accel-
erated ~1000-fold to provide material for protein synthe-
sis, even in the absence of ribosomes. As described in
the previous section, we have found experimentally that
catalysts as small as 46 amino acids derived from both
aaR$ classes afford approximately “life-enabling cataly-
sis” of this essential reaction.

Data in Figure 6C afford a preliminary glimpse at the
potential coding properties of the LeuRS and HisRS
Urzymes. These are also the first experimental data sug-
gesting that the first proteins were indeed statistical pep-
tides as proposed by Woese [49,77,78] that likely contained
sufficient functionality to seed natural selection. We believe
that they represent a crude and probably rather late snap-
shot from the extended process by which decoding pro-
teins (e.g. aaRS) became able to reproduce themselves
from self-contained RNA/DNA genes [79]. Additional and
more definitive data of this kind, and similar studies of
tRNA specificities now afford a new experimental basis
from which to unravel that subtle process, e.g. by posing
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questions such as: can the 46-residue peptide catalysts
function using simpler amino acid alphabets?

Further, subsequent evolution from the earliest bio-
logical catalysis must have proceeded coordinately, in
that reaction rates remained roughly synchronous as
their proficiency increased. The histogram in Figure 6B
shows experimental catalyzed rates for the aaRS con-
structs we have made. Class I, II catalytic proficiencies
track the structural modularity of the two classes of con-
temporary aminoacyl-tRNA synthetases, with comparable
rate increases over 11 orders of magnitude, providing a
crude, but realistic, existence proof of the kind of evolu-
tionary trajectory that led to the contemporary enzymes.
Important expeditions forward in time from Urzyme
base-camp have now shown that specificity in Class I aaRS
requires allosteric behavior in the synergy of two domains,
neither of which by themselves enhance fitness [35,36].

Discussion

Urzymology has strengthened the posterior probability of
the Rodin-Ohno hypothesis

Popper [80] provides an appropriate stance from which
to evaluate the RO Hypothesis. It is appropriate to ask
whether or not the idea can be falsified by articulating
specific predictions derived from the hypothesis, and
assessing how new data gathered to test those predic-
tions confirm or invalidate them. Bayes’s Theorem, in
turn, provides a quantitative framework for how new
data impact confidence in a hypothesis [81]. It asserts
that new data update the prior probability of a hypoth-
esis via their conditional probability given the hypoth-
esis, ie., the likelihood.

Rodin and Ohno adduced a prior probability much
higher than generally appreciated. Jumble tests for the
observed complementarity relating the conserved Class I
and II catalytic signatures had Z-scores ranging from 5.7
to 8.8. Rodin and Ohno understated the corresponding
P-values, placing them at “<< 0.01” [11], rather than cit-
ing the actual values, 5x 10 and 7 x 10™'® under the
null hypothesis. Sense/antisense ancestry thus begins
with a very strong prior probability based on the small
statistical chance of otherwise observing the high com-
plementarity between coding sequences for the class-
defining motifs.

Predictions of the RO hypothesis have led to new bio-
chemical and bioinformatic data whose probabilities are
substantially higher under that hypothesis than under
the null hypothesis:

1. Invariant cores of Class I and II aaRS coincide with
the only segments that align sense/antisense [40].
By consensus, the most conserved amino acid
sequences—often catalytic residues at the active
site—are the oldest remnants in protein superfamilies.
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Ancestral gene reconstruction rests on this
assumption, whose reliability has been established
beyond reasonable doubt for more recent nodes since
LUCA with reconstructed nodes defined by large
multiple sequence alignments [61,82-89]. Sequence
conservation becomes intrinsically less reliable, the
further back we reach in time, so structural biology
inherits its mantle; we invest conservation of 3D
structure with comparable significance.

2. AARS Urzymes from both classes, solubilized forms
of the invariant cores, retain 60% of the transition-
state stabilization of contemporary aaRS$ in both
amino acid activation and tRNA aminoacylation,
retaining rate accelerations proportional to the re-
spective uncatalyzed rates [37]. The gap between
Urzyme and 46-mer rate accelerations (Figure 6B) is
much larger than expected, showing that the most
highly conserved secondary and tertiary scaffolds
identified using 3D structural alignment are both ne-
cessary and sufficient to position conserved active
site residues correctly for transition-state
stabilization of both amino acid activation and tRNA
aminoacylation [36-40]. As the most highly con-
served cores actually catalyze the same reactions it
becomes increasingly difficult to imagine that ances-
tors catalyzing both reactions were actually based on
non-homologous structures, including ribozymes.

3. Approximately 70% of the coding sequences
(94 of ~130 residues) derived from Class I and II
Urzymes exhibit codon middle-base pairing
frequencies that are greater by several hundred-fold
times the standard error than those expected under
the null hypothesis [63].

4. Codon middle-base pairing is not significantly differ-
ent for any of the four combinations between Class
IC and Class IIA [63].

5. Codon middle-base pairing increases toward the root
of TrpRS and HisRS urgene trees [63].

6. Highly conserved ATP binding motifs 46 residues long
from the Class I and II active sites can be coded by
fully complementary nucleic acid sequences, and
exhibit 400-fold stimulation over the uncatalyzed
rate of amino acid activation (Figure 11 and [72]).
They are phylogenetically and functionally
reasonable ancestors of the respective Urzymes.

Probabilities associated with hypothesis testing with
Bayes’s Theorem often take the form of odds ratios com-
paring posterior probability to that of the null hypoth-
esis; the larger that ratio the stronger the case for
rejecting the null hypothesis. Alternatively, ignoring the
prior probabilities, we can examine likelihood ratios, or
how much more probable the new data are under the
hypothesis to be tested than under the null hypothesis.
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For large numbers, the logarithm of the likelihood ratio
or log-likelihood gain affords the relative “support” [90].

Although items 1-6 above all have intuitively very large
log-likelihood gains, few are readily calculated. An illustra-
tive exception is the 400-fold rate acceleration for amino
acid activation by the 46-residue peptides expressed from
both strands of the designed sense/antisense gene. In this
case, we can estimate the odds ratio of posterior probabil-
ities that both peptides are sufficiently active catalysts to
launch ribosome-independent peptide synthesis under the
RO and null hypotheses (Figure 12). The non-uniform
prior for the RO hypothesis is a bi-variate normal distribu-
tion—one dimension for each class—centered on the ratio
of uncatalyzed rates for peptide synthesis from activated
amino acids and amino acid activation, or log(1000)
(Figure 12A). The prior probability for the null hypothesis
(i.e., peptides from both classes are catalytically inert) is a
similar bi-variate normal centered at 0. The blue surface is
the likelihood function for results in Figure 11. Posterior
distributions are products of the two priors by the likeli-
hood (Figure 12B). That for the RO hypothesis has an in-
tegral ~10'* times higher than that under the null
hypothesis. Urzyme-catalyzed rate accelerations are 4-5
orders of magnitude greater than expected. Their poster-
ior probabilities are correspondingly smaller, establishing
the 46-residue peptides, not the Urzymes, as the most
credible models for the catalysts necessary to launch pep-
tide synthesis.

The RNA World hypothesis

Copernicus famously said that Earth revolves around
the sun. But opposition to this revolutionary idea
didn’t come just from the religious authorities.
Evidence favored a different cosmology [91].

“People may spend their whole lives climbing the
ladder of success only to find, once they reach the top,
that the ladder is leaning against the wrong wall”

- Thomas Merton

The genetic code is undoubtedly the nexus between
chemical evolution, where genetic inheritance is mean-
ingless, and biological evolution, from which we can in
principle trace phylogenies. Conventional wisdom holds
that this nexus was traversed exclusively by RNA mole-
cules. That hypothesis is broadly held to be the only
likely scenario for simultaneous introduction of genetic
information and catalysis [15]. Belief in the early import-
ance of RNA-only metabolism continues to be strong
and actively pursued [92], to the exclusion of alterna-
tives. Sergei Rodin was a persuasive and imaginative ad-
vocate of this notion [6].
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Figure 12 lllustrative use of Bayes’s Theorem to estimate the enhancement of posterior probability under the RO hypothesis given by
the catalytic activities of the 46-residue ATP binding sites expressed from a designed, sense/antisense gene. All probability distribution
functions are bivariate normal probability distributions. A. Prior probabilities centered at a mean rate acceleration of 1000 (green), and for the null
hypothesis (brown) that the peptides are catalytically inactive. The likelihood function derived from experimental results obtained for Class | and
I ATP binding sites (blue) is centered at a rate acceleration of 400-fold. Standard deviations of all three distributions in A are 0.4 log;o units,
corresponding to a 40% uncertainty. X and Y axes are logarithmic in the rate enhancement, and 1000-fold is drawn from the ratio of the uncatalyzed
rates of activated amino acid assembly to form peptides to that for amino acid activation by ATP. B. Posterior probabilities obtained for the null prior

(purple) and for the two active peptides (turquoise). The integrated experimental posterior probability under the RO hypothesis is larger than that
under the Null hypothesis by ~10'* The latter posterior probability (brown) has been multiplied by a factor of 10" to be visible.

There is broad consensus, which we share, that RNA
was a carrier of information mediating the origin of
codon-dependent translation. Catalysis, however, is an
entirely different matter. The RNA World hypothesis
rests almost exclusively on engineering and selection of
RNA aptamers capable of RNA replication [93,94],
amino acid recognition [95], aa-5AMP synthesis [96],
and tRNA aminoacylation [97]. The relevance of such
experiments is hard to assess. They arise because oligo-
nucleotide syntheses are so accessible, and because
SELEX technology can select from extraordinarily large
combinatorial libraries. Indeed, given such awesome se-
lective power, it would be surprising not to have identi-
fied such aptamers. Without genetic evidence linking
them to biology it is difficult to attach significance to
their catalytic activities.

Before our work on aaRS Urzymes, the prior [98], alter-
native case for a peptide/RNA origin rested on three argu-
ments. (i) Modeling suggests that even the emergence of
RNA and the establishment of the code required the cata-
lytic repertoire of stereochemically complementary poly-
peptide hairpins. (i) RNA in biology is made entirely by
proteins and conversely, proteins are assembled by ribo-
zymes, suggesting that this may always have been the
case. (iii) The complete absence of contemporary cata-
lytic RNA genes for either ribozyme catalyzed free-
energy conversion (amino acid activation by ATP) or
codon-dependent translation (specific recognition and
catalysis of acyl-transfer to tRNA) argues persuasively

that these processes may never have been catalyzed by
ribozymes. The magnitude of this gap in phylogenetic
support is substantial and, in our view, decisive.

The unexpected catalytic power of relatively simple pep-
tides allows us to invest the peptide/RNA alternative
scenario with a much higher probability [37,98,99], in
part because it implements rudimentary sense/antisense
stereochemical coding of two amino acids per base of an
RNA double helix. The unexpected sophistication of aaRS
Urzymes implies that they had even simpler ancestors.
The two aaR$ classes are certainly among the oldest, if
not the oldest, protein superfamilies. The RO hypothesis
[11] implies that they arose at nearly the same instant in
geological time because, at the nucleic acid level, the infor-
mation necessary for function of each Class is indistin-
guishable from that necessary for function of the other.
Complementarity means that one implies the existence of
the other. Sense/antisense coding thus projects back past
the genetic coding nexus to chemistry.

By greatly reducing the information necessary to
launch natural selection, Urzymes strengthen the case
that it arose from a balanced peptide-RNA partnership.
The origins of natural selection are rooted in catalysis—
producing some molecules faster than others. As amino
acid activation rates limit spontaneous peptide synthesis,
the initial selective advantage of the earliest catalysts was
probably the ability of ancestral synthetases to mobilize
ATP (NTPs) and to activate amino acids, enhancing
rates at which peptides could be made. In this scenario,
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information and catalysis both began simply and evolved
together. Rather than an unaccountable burst of both in-
formation and catalysis, the peptide/RNA scenario lays
out a credible path to complexity.

The transition from chemical evolution to genetic biol-
ogy nevertheless remains baffling. Questions remain about
how Urzyme coding sequences began to function as
genes. However, at some point, that did happen. Codon
middle-base pairing frequencies establish a phylogenetic
lineage that projects peptide-mediated catalysis further to-
ward the origin of life than was previously considered pos-
sible, to events at the origin of translation in a peptide/
RNA world [37].

Conclusions

The RO hypothesis is certainly falsifiable [80]; three or-
thogonal but equally rigorous tests fail to do so. Invari-
ant cores that align sense/antisense have considerable
and comprehensive catalytic activities. Coding sequences
for 70% of Class I, II Urzymes exhibit unexpectedly high
middle-base pairing. Products from a designed, sense/
antisense gene for Class I and II ATP binding sites both
exhibit appropriate catalytic activities. Our formulation
is Popperian [80] and Bayesian [81]: these data have very
high probability under the RO hypothesis, which is thus
a much more probable explanation than others of how
the two aaRS Classes arose.

Urzymes demonstrate that the most highly conserved
segments, by themselves, have high activity but low speci-
ficity—the very properties expected of catalysts imple-
menting the genetic code. By Ockham’s razor, the true
ancestral aaRS were unlikely to have differed greatly from
those of the TrpRS and HisRS Urzymes. More generally,
Urzymes are authentic catalysts that model very early en-
zymes. Their enzymatic activities provide valid metrics for
testing improvements in fitness from modules as small as
6-20 aa [38] and for novel thermodynamic cycle analysis
of contemporary enzyme function [36,35].

Methods

Aspects reviewed in this work were carried out using
methods described in detail in the original publications
[36-40,63]. Briefly, invariant cores from both aaRS super-
families were identified by 3D superposition [52], re-
designed if necessary using Rosetta Design [100], expressed
either with FLAG and Hisg tags or as maltose-binding pro-
tein fusions, purified using these tags, and assayed as de-
scribed [40].

All statistical calculations were performed using JMP
[101]. P values under the null hypothesis in the descrip-
tion of amino acid physical chemistry were estimated
from multivariate linear regression models in which the
dependent variable (i.e., solvent accessible surface area
of each amino acid in folded proteins) is expressed as a
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linear combination of other predictors, amino acid mass
and solvent transfer free energies for each amino acid,
plus their interaction.

Data presented in Figure 6C were obtained by Michaelis-
Menten steady-state kinetics as in [36] in which all
amino acids (excepting tyrosine because of its limited
solubility) were substituted individually for cognate amino
acids. Four-fold replicate assays were performed on two
occasions and all replicated data were treated independ-
ently in nonlinear fits to the Michaelis-Menten equation
using JMP. Maximum velocities were divided by the
concentration of active sites to give k., values. Profi-
ciencies, Ke,/Ky, were converted to free energies and
plotted.

ATP was titrated at pH = 4.5 with increasing amounts
of 46-residue segments isolated from TrpRS and HisRS
by PCR amplification and purified by affinity chromatog-
raphy as noted in the following paragraph. This assay,
described by Mildvan [102] detects fluorescence changes
as the peptide orders and binds to ATP. ATP affinities
were estimated from the titration curves using JMP [101].
TrpRS and HisRS 46-residue peptides were also assayed
by **P PPi exchange, essentially as noted in the next
paragraph.

Data presented in Figure 11 were obtained as follows:
Rosetta was adapted (OE, XA, BK) to constrain se-
quences simultaneously for two backbones provided as
scaffolds with the additional constraint that substitutions
at each position have complementary codons, assuring
that the resulting gene was fully sense/antisense. The
resulting genes were inserted separately in opposite di-
rections for expression as MBP fusion proteins, expressed
and purified by affinity chromatography on amylose,
nickel-NTA, and blue sepharose supports and stored in
50% glycerol at -20 C. Time-dependent assays were sam-
pled at 0, 3, 6, 9, and 12 days in parallel with background
controls using the standard **P PPi exchange assay condi-
tions [40]. After determining that tryptophan over such
long incubations induces elution from charcoal of a yel-
low compound that independently enhances scintilla-
tion counting, leucine was used to assay the Class I ATP
binding site. Histidine did not show such behavior and
was used in the assay of the Class II ATP binding site.
Additional controls were done separately using maltose-
binding protein itself with both amino acids, as isolated
from amylose chromatography.

Reviewers’ reports

Reviewer 1: Dr. Paul Schimmel, Skaggs Institute for
Chemical Biology at The Scripps. Research Institute
(nominated by Prof Laura Landweber)

This review recapitulates the long-standing Rodin-Ohno
hypothesis that, by postulating that complementary strands
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of early genes encoded members of the two classes of
tRNA synthetases, the mystery of two classes is solved.
Specifically, this complementarity is proposed to come
from the active-site-encoding mRNA of one synthetase
(say, from class I) being the anti-sense of the active-site-
encoding mRNA of a synthetase from the opposite class
(say, class II). Thus, one duplex encodes both types of
synthetases. In the active-site encoding region, there is a
group of ‘codons’ in the strand encoding a class I syn-
thetase that are paired (in the duplex gene) with the cor-
responding group of codons in the strand encoding a
class II tRNA synthetase. In their original work, RO pre-
sented evidence from the existing sequence databases to
support their hypothesis. These databases have grown
enormously since then and have provided further op-
portunity to test this hypothesis.

Carter, in a virtually single-handed way, has attempted
to dig more deeply into the predictions of the hypothesis
through experiments and bioinformatics. His first paper
in Molecular Cell (Carter and Duax (2002)) was a pro-
vocative discovery of how the complementary strands of
the NAD-GDH gene, in the fresh water mold Achlya
klebsiana, code for the two different class-associated
synthetase signature motifs. Thus, these gene-encoded
signature motifs are in exact complementary alignment
with each other in the A. klebsiana NAD-GDH gene.
(Surprisingly, this paper is not cited.) This remarkable
finding gave Carter the impetus to search out experi-
mental proofs of the RO hypothesis, using peptide mo-
tifs that embodied the signatures of the class I and class
II synthetases, and testing their abilities to stimulate
amino acid activation. It also stimulated him to dig more
deeply into the bioinformatics.

This review is a compendium of much of that work.
The paper recapitulates the experiments of his labora-
tory, and also summarizes some deeper bioinformatics.
The experimental work is outlined in great detail. An
impressive long summary is given of experiments to
prove that the results are not artifacts. And yet, by giv-
ing this long list, this summary has the appearance of
being defensive. There also are ‘bumps’, such as the fail-
ure to obtain clear results with the ‘mutants’ of the
peptide motifs. And there is always the philosophical
problem of ‘the absence of evidence of an artifact is not
evidence of absence’. Although the work described is
well done and rigorously thought through, Carter et al’s
strong enthusiasm for their work on the peptides gives a
sense of bias.

The section entitled “Bioinformatics evidence from mul-
tiple sense/antisense alignments” impressed me. Carter
has great strength in this sort of analysis and presents
an excellent update and extension of the earlier RO
work. Likewise, the section of the Discussion entitled
“Urzymology has...the RO hypothesis” is an excellent
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point-by-point of the state of affairs on the informatics side.
I was quite impressed by the depth of this recapitulation.

He views the work as providing a challenge to the
RNA World hypothesis. I found this viewpoint some-
what curious. For myself, the two lines of thinking can
by harmonized in a straightforward way, by an extension
of the idea first described in Figure 2 of a rather obscure
publication (Henderson, B. S. and Schimmel, P. (1997).
RNA-RNA Interactions Between Oligonucleotide Sub-
strates for Aminoacylation. Bioorgan. Med. Chem. 5:
1071-1079.) In that publication, the authors suggest that
ribozymes first aminoacylated small RNAs, and then
these aminoacyl RNAs formed clusters that brought to-
gether the activated amino acids to form peptides. I can
imagine some of these peptides eventually associated with
the ribozymes and enhanced their catalytic activities. I
would also imagine that these peptides could be related in
some way to the ones that Carter and his students have so
well studied. Whether or not these ideas are correct, my
main point is that Carter et al. have nothing to gain by
attempting to provide a contrast with the RNA World hy-
pothesis. Their work stands well on its own merits.

Overall the review is written in a somewhat rambling,
diffuse style, and with emotional content. (I noted 5 ex-
clamation points scattered throughout the text, and rec-
ommend that these be removed to give a lack of bias
and to convey “academic sobriety”).

[ am a fan of Carter and his work. He is widely respected
for his thorough and deep understanding of thermody-
namics and protein structure-function. His experiments
are generally thorough and self-critical. He is the only per-
son who not only expanded the analytical side of inform-
atics that is relevant to the RO hypothesis, but also has
done specific experiments to test the hypothesis. This sort
of combined effort is rare in any field. My recommenda-
tion is that the paper be published. It is a fascinating topic
that Carter alone is in the best position to summarize. But
the text needs to be tightened up, shortened, and recast in
a more sober style, considering some of the points raised
above.

Authors’ response: We appreciate both the compli-
mentary assessment of the work overall and the criticism
of the writing. We readily eliminated all exclamation
marks. It takes nothing away from the text to suppress
hyperbolae. We have three substantive replies:

The extant A. Klebsiana sense/antisense gene. Professor
Schimmel asks why our first publication on the RO hypoth-
esis was not cited. In fact, it was cited implicitly in the dedi-
cation to Sergei Rodin. That section now includes explicit
references both to our paper (Carter & Duax, 2002) and to
the paper challenging aspects of the work (Williams, et al,
2008), as well as the rebuttal published by Rodin, Rodin, &
Carter (2009). Carter & Duax based their work on that of
H. LeJohn, in which he used antibody precipitation to clone
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a stress-induced glutamate dehydrogenase [103-105]. The
cloned gene expressed both the putative dehydrogenase
and HSP70. Although LeJohn’s work was described in
some detail in the three resulting papers, Williams, et al.
(2008) concluded that the evidence that the protein
expressed from the putative dehydrogenase clone was
indeed the dehydrogenase was weak, and hence that the
interpretation reported in Carter & Duax might be
flawed. We decided against re-opening this issue here, in
part because it contributes little to the subsequent work
reviewed here on aaRS Urzymes, and because we have
done little to resolve discussions with Dr. Koonin about
a related issue concerning possible ancestral relation-
ships of the Class II aaRS, actin-HSP70, and RNAse H
superfamilies.

Mutational analysis of Urzymes and 46-mers. Profes-
sor Schimmel writes “There also are bumps, such as the
failure to obtain clear results with the ‘mutants’ of the pep-
tide motifs.” His reference fails to distinguish between two
possibilities: (i) the DI46A active site mutation in the
TrpRS Urzyme actually increases activity and (ii) we have
yet to obtain similar results for the 46-mer SAS gene prod-
ucts. Regarding (i), we can now postulate and are testing a
coherent explanation for the unexpected activation of the
TrpRS Urzyme by the D146A mutation. This explanation
is now outlined in the appropriate section of “Are the
Urzyme activities authentic?” point 5. Regarding (ii), we
are in the process of testing active-site mutants to both 46-
mers. The activities of these peptides are more difficult to
validate than those of the Urzymes, owing to the fact that
it is unlikely that they retain activated aminoacyl-
adenylates and their active site titers cannot be determined
as they were for the Urzymes. The authors feel that data in
Table 3 afford compelling, though admittedly not definitive
evidence of authenticity and hence justify publication of
the data in Figure 11C,D.

The RNA World hypothesis. Professor Schimmel ques-
tions our assessment of the RNA World hypothesis, sug-
gesting that the essential validity of the RO hypothesis is
neither evidence for nor against that scenario, and argu-
ing that hypothetical RNA and peptide/RNA scenarios
can be reconciled along lines he developed in an earlier
paper. We disagree substantively on both points. The
paper he cites documents an intriguing model for peptide
synthesis from acylated RNA stems. However, it fails to
address the fundamental issue posed by the RNA World
hypothesis: where did RNA arise if not via rudimentary
catalysis by peptides? The absence of present day ribo-
zymes related in any phylogenetic sense to the any of re-
quired activities of the aminoacyl-tRNA synthetases or
indeed to nucleic acid polymerases, should be a massive
red flag. The sense/antisense ancestry of the aaRS ap-
pears to be solidly established. It points, intrinsically,
far further back in time than do multiple sequence
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alignments for any gene, establishing phylogenetic roots
of the earliest coded peptides.

The RNA World hypothesis suppresses entire domains
of important questions related to the physical chemistry
of proteins and catalysis, including the absence of phylo-
genetic evidence for ribozymal nucleic acid polymerases.
On the other hand, the contributing author’s alternative
scenario, published a dozen years before Gilbert’s pro-
posal, suggests coherent answers to many of these ques-
tions, and in addition affords a rudimentary, but
consistent, path backward to a putative earlier sense/
antisense genetic coding. Thus, there is much for both
the authors and the literate scientific public to gain by
revisiting that alternative hypothesis, especially as we
are the ones who have resurrected it from oblivion with
key catalytic activities that establish its credibility as
an alternative. Suppressing discussion can hardly be
productive.

Professor Schimmel’s discomfort with our discussion of
competing hypotheses is, however, likely exacerbated by
the imbalance of substance and polemic in that particu-
lar section of the submitted manuscript. We have re-
balanced this section by removing >25% of the text, most
of which was either polemical or redundant, and by sup-
plementing it with additional references on ribozymal
aptamers. Elsewhere, the manuscript has been tightened
throughout and is now ~5% shorter overall despite the
inclusion of new material responding to these and other
reviewers’ comments.

Reviewer 2: Dr. Eugene Koonin, National Center for
Biotechnology, NIH

This very lengthy, yet carefully and elegantly written art-
icle summarizes experimental data from the senior
author's laboratory that is perceived to support the
Rodin-Ohno hypothesis on the origin of the two classes
of aminoacyl-tRNA synthetases from complementary
strands of the same gene. I expect this paper to become
an important contribution to the literature on the origin
of codon-dependent translation. It contains a plethora of
interesting ideas and descriptions of ingenious experi-
ments. After quite some thought, I have decided not to
comment in specific detail on the Rodin-Ohno hypoth-
esis and the validity of the presented argument in that
regard. Again, Carter and colleagues present their argu-
ment in detail and with great care, so an interested and
qualified reader will be able to judge it.

Authors’ response: We are grateful to Dr. Koonin both
for his generous remarks and for having provided in Biol-
ogy Direct an appropriate venue in which to generate
public dialog of topics growing from the work described.
As noted above, the revision benefits from tightening and
some re-structuring.



Carter et al. Biology Direct 2014, 9:11
http://www.biologydirect.com/content/9/1/11

Reviewer 3: Professor David Ardell, University of
California, Merced

This work by Carter et al. reviews a substantial and
growing literature on testing and extending the Rodin-
Ohno hypothesis using ‘urzymes’—experimentally tract-
able models of early aaRSs. It presents new data on the
substrate specificities of urzymes—and describes a de-
signed experimental ‘existence proof” of complementary
antisense coding of Class I-type and Class II-type amino
acid activation activities.

The Rodin-Ohno hypothesis is consistent with persua-
sive ideas about early life. For instance, in their original
work, Rodin and Ohno speculate that sense-antisense
coding may, via compression, bring replication advan-
tages to quasispecies. Overlapping genes may also be fa-
vored through co-transfer of co-dependent ‘decoding
genes’ during code evolution in structured populations
(Vetsigian et al. (2006) in “Collective evolution and the
genetic code” PNAS 103(28):10696).

The present work by Carter et al. places weight on
Rodin and Ohno’s own statistical analyses using permu-
tation tests: jumbling’ as according to R. Doolittle. By
design, these jumbles are not constrained to conserve se-
quence, particularly the critical active site motifs of the
two classes of aaRS. Should we not instead attempt to
model the space of all possible sequences with primor-
dial Class I-type and Class II-type aaRS$ activities, and
use this as a condition when measuring the probability
of complementarity? What indeed are the spaces of all
shortest protein sequences with Class I-type or Class
II-type enzymatic activities comparable to (those of)
urzymes? Or to frame the question differently, how ‘des-
ignable’ are the Class I and Class II aaRS active sites (‘Se-
quence optimization and designability of enzyme active
sites’ by Chakrabarti et al. (2005) PNAS 102(34):12035)?
Were the four motifs—HIGH, KMSKS, Motifs I and II
and the extended secondary structures studied by the
authors of the present work—inevitable products of se-
lection for these activities? If the motifs and structures
were inevitable, then perhaps their encoded head-to-tail
antisense complementarity is just a remarkable coincidence.

Of the new data presented by the authors, I found the
data in Figure 6C of interest, reporting activities of
urzymes in activating different amino acids in ambigu-
ous, yet apparently class-specific, ways. These data have
not been published elsewhere, and I caution that I was
unable to evaluate them critically. At face value they
raise the question whether the ‘statistical urzymes’ im-
plied by them have class-specific amino acid activation
activities or not. It would seem to strengthen the Rodin-
Ohno hypothesis if they did, but not necessarily refute it
if they did not. A refinement of this question would take
into consideration that not all amino acids were available
in early ancestral genetic codes. Generally speaking, at
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what rates could antisense-coded urzymes regenerate
themselves in model prebiotic translation systems? For a
relevant theoretical treatment of this question, please see
Bedian (2001). “Self-description and the origin of the
genetic code”. BioSystems 60:39.

Part of the authors’ case in this review rests on ances-
tral reconstructions of aaRS coding sequences. These re-
constructions must be among the most ambitious
possible, in terms of the depth of reconstruction and
base composition nonstationarity of the data being mod-
eled over the Tree of Life. Nonstationarity is especially
problematic in causing bias in ancestral sequence recon-
structions (Susko and Roger (2013). “Problems With Es-
timation of Ancestral Frequencies Under Stationary
Models”. Syst Biol 62:330). I don’t believe that the results
discussed in this work, on complementarity in recon-
structed ancestors, adequately controls for this bias.

The following statement “Without exception, con-
served amino acids with a direct, catalytic role in Class I
active sites are drawn from amino acid substrates acti-
vated by Class II enzymes, and conversely” seems mis-
leadingly strong to me given data from single structures
shown in Figure 2. This is a much stronger claim than
Rodin and Ohno themselves made in their analysis of se-
quence variation (on page 568 of their work).

The statistical methods leading to the p-values re-
ported in the Physical Chemistry section on page 8
should be briefly summarized.

Authors’ response: The authors are especially grateful
for the careful reading and thoughtful criticism from Dr.
Ardell, who identified several intriguing questions, some
that we feel largely lie outside the scope of this article,
but which point directly toward future investigations. We
were unaware of several references provided and have
tried to cite them appropriately in the revision.

Self description and the origin of the genetic code.
We appreciate the identification of previously unpub-
lished work presented in two sections, the specificity spec-
tra of Class I TrpRS and Class II HisRs Urzymes, and
characterization of the sense/antisense gene for the 46-
residue ATP binding sites of Class I and II synthetases. In
order to facilitate more critical assessment, we have
amplified the description in Methods of how specificities
for each amino acid were determined. As with much of
what is reviewed in this paper, in this these data repre-
sent the first attempt to bring the underlying question
raised by Professor Ardell further in par 4 of his review
into an experimental context. These preliminary data
are certainly neither comprehensive nor definitive. None-
theless, they represent an honest attempt to provide ex-
perimental bases from which, eventually, to approach the
question posed by Bedian. We agree wholeheartedly with
Professor Ardell that the aminoacyl-tRNA synthetases lie
at the center of the genesis of biological self-reference
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represented by the genetic code. Our work thus far has
helped only to define experimental systems with which
this problem can be fruitfully addressed. Our revision in-
cludes a new paragraph just before the Discussion in
which we touch briefly on the questions posed by Bedian.
Our work is still at the beginning of the effort to answer
the question; thus it seemed inappropriate to speculate
further.

Designability. This is an excellent question, one about
which we have thought quite a lot. In an as yet unpub-
lished study of the LeuRS Urzyme construction, we char-
acterized eight different Urzymes designed by Rosetta.
These Urzymes had a narrow range of specific activities.
That is, they all had almost the same activity as the re-
designed TrpRS Urzyme. That Rosetta design experiment
does not fully address Professor Ardell’s question, how-
ever, because we did not allow changes to active-site
residues; nor did we constrain the design of catalytic
hydrogen-bonding interactions. We note here, however,
that this question is in some ways simply a re-phrasing of
the question addressed in the preceding paragraph. Curi-
ously, however, more in-depth comparison now reveals
functionally important differences between some of the
LeuRS Urzymes we selected for further work. Notably,
variation in the loop connecting the specificity determin-
ing helix to the GXDQ motive at the N-terminus of the
C-terminal alpha helix generates two LeuRS Urzymes,
one of which exhibits a pre-steady state burst, the other
of which does not. Pursuit of that question is obviously a
valid future research project.

Non-stationarity of ancestral character states. This
is also an excellent question. We were unaware of the po-
tential bias identified in the paper by Susko and Roger,
which appeared online only in September 2013, by which
time our own paper had been published for two months.
We certainly will attempt to take the bias into account
in future work. We have qualified our interpretation of
the reconstructed sequences in the revision. The middle-
base pairing frequency statistic, which as Professor Ardell
correctly states is among the most ambitious metrics ever
proposed for phylogenetic comparisons, has independent
validity irrespective of whether or not we reconstruct an-
cestral states. The data in Figure 10B and 10D reflect
frequencies from contemporary sequences, not recon-
structed ancestral states.

Interdependence of Class I, Class II aaRS. Professor
Ardell questioned the strength of the phrase “Without ex-
ception..” in referring to the active-site compositions in
Class I aaRS, which are constructed from Class II sub-
strates, and vice versa. We have qualified the statement
in the revision. Figure 2 is indeed drawn based on only a
single Class I active site and a single Class I site. How-
ever, a comprehensive examination of active site composi-
tions across the ten members of each family from several
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hundred species does reinforce that description. The
HIGH signature contributes three residues H, G, and H
that interact with ATP. G is essentially invariant because
it is in van der Waals contact with the adenosine ring,
whereas the two Hs are replaced only by T and N, and
for example never by Q, which is in other contexts a
functional substitute for both H and N. Similarly in the
KMSKS motif the four catalytic residues are always K, S,
and T. The only exceptions we know of are from
eukaryotic TrpRSs and TyrRSs in which the terminal
lysine is absent (replaced by A) and its function is taken
by an arginine that occurs uniquely in these enzymes
much closer to the amino terminus. Similarly all 10
Class II active sites invariably use R for transition state
stabilization. The active site E is only very rarely a D.
Thus, the statement discussing Figure 2 is scarcely hyper-
bole. The distinction between our treatment and that of
Rodin and Ohno is that the latter authors included non-
polar amino acids that couple the active site residues to
the rest of the protein, whereas we consider only those
residues that interact directly with ATP.

Statistical methods. It is fair to ask for clarification of
how P-values were calculated. This is explained more
fully in a new addition to the Methods section.

Endnotes

“Estimated rates of uncatalyzed reactions are summa-
rized in [38,39].

PNoncanonical Class I lysyl-, Class II Pyrrolysyl-, and
variations of non-discriminating Class I glutamyl and
Class II Aspartyl-tRNA synthetases lie outside the scope
of this review [24].
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