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tLo
al maximum likelihood estimation is a nonparametri
 
ounterpart of the widely-usedparametri
 maximum likelihood te
hnique. It extends the s
ope of the parametri
 maximumlikelihood method to a mu
h wider 
lass of parametri
 spa
es. Asso
iated with this nonpara-metri
 estimation s
heme is the issue of bandwidth sele
tion and bias and varian
e assessment.This arti
le provides a uni�ed approa
h to sele
ting a bandwidth and 
onstru
ting 
on�den
eintervals in lo
al maximum likelihood estimation. The approa
h is then applied to least-squaresnonparametri
 regression and to nonparametri
 logisti
 regression. Our experien
es in these twosettings show that the general idea outlined here is powerful and en
ouraging.1 Introdu
tionMaximum likelihood estimation provides a useful blueprint for various statisti
al estimation prob-lems. It also provides a uni�ed method for 
onstru
ting 
on�den
e intervals for parameters. AAbbreviated title: Lo
al likelihood estimation.AMS 1991 subje
t 
lassi�
ation. Primary 62G07. Se
ondary 62A10.Key words and phrases: Bandwidth sele
tion; 
on�den
e intervals; generalized linear models; logit regression;maximum likelihood; nonparametri
 regression. 1



drawba
k of this method is that one has to assume a parti
ular parametri
 form for the unknowntarget fun
tion. This restri
tive assumption 
an be removed by using a maximum lo
al kernel-weighted likelihood estimator. An important issue is then to 
hoose the size of the neighborhood.Further, the question arises of how to 
onstru
t 
on�den
e intervals. These problems are 
halleng-ing and so far they have no satisfa
tory answer in the literature. This arti
le attempts to providea uni�ed approa
h to these problems.Lo
al maximum likelihood estimation is based on the idea of lo
al �tting. S
atterplot smoothingby lo
al �tting has been around for many years. Lo
al �tting is indeed a parti
ular useful te
hniquein nonparametri
 estimation. Among the earlier papers in the 
ontext of nonparametri
 regressionare Stone (1977, 1980), Cleveland (1979) and Friedman and Stuetzle (1981). Further, there is a vastliterature on likelihood-based models in various domains of appli
ation, and these models mainlyappear in parametri
 estimation problems.The idea of using lo
al �tting for likelihood-based regression models was applied by Tibshiraniand Hastie (1987) to the 
lass of generalized linear models (see Nelder and Wedderburn (1972)) andto the proportional hazards model of Cox (1972). Fan, He
kman and Wand (1995) show that theapproa
h has good sampling properties when used with lo
al polynomial �tting in the 
ontext ofgeneralized linear models. Staniswalis (1989) approa
hed the same problem using a kernel method.These ni
e sampling properties 
arry further to the hazard regression setting (see Fan, Gijbels andKing (1997)). There is a vast interest in applying the lo
al likelihood method to the problem ofdensity estimation or hazard rate estimation. For more on this, see for example Hjort (1991, 1995),Jones (1994), Copas (1995), Hjort and Glad (1995), Hjort and Jones (1996) and Loader (1996).A related idea to the lo
al maximum likelihood method is the lo
al estimating equation approa
hintrodu
ed by Carroll, Ruppert and Welsh (1996) who uses the empiri
al-bias idea of Ruppert(1995) to sele
t the bandwidth.An important issue when using lo
al te
hniques is the determination of the `lo
al neighborhood',whi
h is 
ommonly des
ribed by a kernel fun
tion K and a bandwidth parameter h. It is well-known that among these two quantities, the 
hoi
e of the bandwidth is the more 
ru
ial one. Thisbandwidth 
ontrols the size of the lo
al neighborhood, and 
an be 
hosen to be 
onstant or todepend on lo
ation. 2



The building blo
ks for bandwidth sele
tion are bias and varian
e estimates of the nonparametri
estimator. A general idea for this estimation task is proposed in the paper, and is appli
able tomost of the likelihood-based models. The idea is an extension of the pre-asymptoti
 substitutionmethod developed by Fan and Gijbels (1995) in the least-squares 
ontext. The bias assessmentrelies on the di�eren
e of two maximum lo
al likelihood �ts with di�erent a

ura
ies. Fan andGijbels (1995) provide extensive eviden
e showing that the resulting pro
edure performs very welland we show further in this paper that the generalized idea is appealing for logisti
 regression.Therefore, it is expe
ted that the extension will work well in a more general likelihood 
ontext.The assessed bias and varian
e also have important appli
ations in 
onstru
ting 
on�den
eintervals and even 
on�den
e bands. Indeed, one 
an use the estimated bias and varian
e andrely on the asymptoti
 normality of the estimator to 
onstru
t 
on�den
e intervals and 
on�den
ebands. See for example Eubank and Spe
kman (1993).The organization of the paper is as follows. In the next se
tion we dis
uss brie
y the idea oflo
al likelihood te
hniques using lo
al polynomial �tting. Se
tions 3 and 4 show how to a

ess thebias and varian
e of the lo
al maximum likelihood estimator. Se
tion 5 dis
usses a simple approa
hto sele
t a pilot bandwidth. The appli
ations to bandwidth sele
tion are dis
ussed in Se
tion 6.Se
tion 7 presents how to 
onstru
t 
on�den
e intervals based on the assessed bias and varian
e.The proposed methodology is then illustrated for lo
al least-squares regression and for lo
al logisti
regression in Se
tion 8.2 Lo
al log-likelihood estimationIn order to introdu
e the lo
al likelihood idea, we re
all the maximum likelihood estimation methodfor a parametri
 model. Suppose that the ith observation (Xi; Yi) in a sample (X1; Y1); � � � ; (Xn; Yn)has a 
ontribution `fg(Xi); Yig to the 
onditional log-likelihood, where g(�) is an unknown para-metrized fun
tion of interest, i.e. g(x) = g�(x) where � is an unknown parameter. The 
onditionallog-likelihood of the n observations is then given by Pni=1 `fg�(Xi); Yig: We require that � is theunique solution to the likelihood equationEf`0fg�(x); Y gjX = xg = 0; (2.1)3



where `0(t; u) = ��t`(t; u). Note that one 
an regard (2.1) as the de�nition of the parameter �.We now turn to nonparametri
 estimation of g(�) in whi
h the form of g(�) is 
ompletely un-known. Suppose that we want to estimate g(x0). Assume that the fun
tion g has a (p + 1)th
ontinuous derivative at the point x0. For data points Xi in a neighborhood of x0 we approximateg(Xi) via a Taylor expansion by a polynomial of degree p:g(Xi) � g(x0) + g0(x0)(Xi � x0) + � � � + g(p)(x0)p! (Xi � x0)p � XTi �0;where Xi = (1;Xi � x0; � � � ; (Xi � x0)p)T and �0 = (�00 ; � � � ; �0p)T , with �0� = g(�)(x0)=�!, � =0; 1; � � � ; p. For data points (Xi; Yi) in a neighborhood of x0, the 
ontribution to the log-likelihoodis `(XTi �; Yi), weighted by Kh(Xi � x0), with Kh(�) = K(�=h)=h where � = (�0; � � � ; �p)T is themodel parameter. These 
onsiderations yield the 
onditional lo
al kernel-weighted log-likelihoodLp(�;h; x0) = nXi=1 `(XTi �; Yi)Kh(Xi � x0): (2.2)The subs
ript p indi
ates the degree of the polynomial used for the lo
al �tting. Maximizingthe lo
al kernel-weighted log-likelihood (2.2) with respe
t to � gives the ve
tor of estimators b� =(b�0; � � � ; b�p)T . Estimators bg�(x0) for g(�)(x0), � = 0; 1; � � � ; p are then given bybg�(x0) = �!b�� : (2.3)For simpli
ity, (2.2) is also referred to as the lo
al likelihood.To illustrate the above 
on
ept we 
onsider the normal regression model Y = g(X) + " with" � N(0;�2), and X and " independent. The 
onditional lo
al log-likelihood is� log(p2��) nXi=1Kh(Xi � x0)� 12�2 nXi=1nYi � pXj=0�j(Xi � x0)jo2Kh(Xi � x0); (2.4)whi
h has to be maximized with respe
t to �. This is equivalent to minimizingnXi=1nYi � pXj=0�j(Xi � x0)jo2Kh(Xi � x0); (2.5)leading to lo
al polynomial regression, also referred to as lo
ally weighted least-squares regression.In the above example, the unknown fun
tion was a mean regression fun
tion. In other 
ontexts,g(�) will be another unknown fun
tion of interest. For example, g(�) 
an be a transformed 
ondi-tional mean fun
tion in generalized linear models, or the risk 
ontribution fun
tion of 
ovariates to4



the 
onditional hazard fun
tion in a proportional hazards model en
ountered in survival analysis,or the logarithm of the density fun
tion in a density estimation problem.Note that the lo
al kernel-weighted likelihood method is still appli
able when the likelihoodfun
tion involves a 
onstant s
ale fa
tor su
h as � in (2.4). Even when � depends on the lo
ationx0, the lo
al kernel-weighted likelihood method (2.4) 
an still be used to estimate g(�) be
auseof lo
al homos
eda
ity: �2(Xi) � �2(x0) for Xi in a neighborhood of x0. To estimate the s
aleparameter fun
tion �(�) in the latter situation, we 
an have two possible methods. The �rst oneis to approximate logf�2(�)g lo
ally by a polynomial fun
tion with unknown parameters denotedby 
 and then maximize (2.4) simultaneously with respe
t to parameters � and 
. The se
ondapproa
h is to estimate � �rst by regarding �2(�) lo
ally as a 
onstant, and then apply the lo
almodeling idea to logf�2(�)g by using a di�erent bandwidth. The se
ond approa
h is basi
ally aresidual-based method, whi
h is similar to that given in Ruppert, Wand, Holst and H�ossjer (1995)who show that the latter method is e�e
tive. While the above dis
ussions are in the 
ontext of thenormal models, the idea is expandable to the general likelihood setting.3 Assessing the bias of the estimatorIn this and in the next se
tion, we fo
us on how to estimate the bias and varian
e of the lo
al max-imum likelihood estimator. The estimated bias and varian
e will be used to sele
t the bandwidthand to 
onstru
t 
on�den
e intervals in Se
tions 6 and 7, respe
tively.The bias of the estimator b� 
omes from the approximation error in the Taylor expansion.Let r(Xi) = g(Xi) �Ppj=0 g(j)(x0)(Xi � x0)j=j! denote this approximation error at the point Xi.Suppose that the (p + a + 1)th derivative of the fun
tion g exists at the point x0 for some a > 0.Then, a further expansion of g(Xi) gives an approximation to the approximation error:r(Xi) � �0p+1(Xi � x0)p+1 + � � � + �0p+a(Xi � x0)p+a � ri; (3.1)where a denotes the order of the approximation. The 
hoi
e of a will have some e�e
t on theperforman
e of the estimated bias. A dis
ussion on the 
hoi
e of a 
an be found in Fan and Gijbels(1995). Good pra
ti
al performan
e is obtained with a = 2.Suppose for a moment that the quantities ri are known. Then, a more pre
ise lo
al log-likelihood5



is L�p(�;h; x0) = nXi=1 `(XTi � + ri; Yi)Kh(Xi � x0): (3.2)The maximizer of the lo
al log-likelihood L�p(�;h; x0) will be denoted by b�� = b��(x0). The bias ofb�(x0) 
an then be estimated by b�(x0)� b��(x0): However, the 
omputation of b�� = b��(x0) 
an beavoided as follows. LetL�p0(�;h; x0) = ���L�p(�;h; x0) and L�p00(�;h; x0) = �2��2L�p(�;h; x0)denote the gradient ve
tor and the Hessian matrix, respe
tively, of the lo
al log-likelihood L�p. Sin
eb��(x0) is the maximizer of L�p(�;h; x0), a Taylor expansion gives0 = L�p0(b��;h; x0) � L�p0(b�;h;x0) + L�p00(b�;h; x0)fb��(x0)� b�(x0)g;and this leads us to de�ne the estimated bias ve
torbbp(x0) = nL�p00(b�;h; x0)o�1 L�p0(b�;h; x0): (3.3)To get better insight into the bias approximation (3.3), let us look at the normal likelihood(2.5). Denote by X, the design matrix of the regression problem, i.e. the n� (p+ 1) matrix whose(i; j)th-element is (Xi�x0)j�1, and letW = diag fKh(Xi � x0)g be the diagonal matrix 
ontainingthe weights. Then, ex
ept for a 
onstant fa
tor,L�p(�;h; x0) = (y �X� � r)TW(y �X� � r);where y = (Y1; � � � ; Yn)T and r = (r1; � � � ; rn)T . Further, b� = (XTWX)�1 XTWy, and hen
eL�p0(b�;h; x0) = 2XTWr and L�p00(b�;h; x0) = 2XTWX: (3.4)Therefore bbp(x0) = (XTWX)�1XTWr;whi
h is equal to the approximation of the bias, E(b�jXX)��0, obtained in Fan and Gijbels (1995),where XX denotes (X1; � � � ;Xn).Re
all that the approximated bias (3.3) depends on the quantities r1; � � � ; rn, whi
h are unknown.These quantities will be estimated by �tting a polynomial of degree p+ a lo
ally via (2.2), using a6



pilot bandwidth h�. This gives estimates b�(p+a) = (b�0; � � � ; b�p+a)T , whi
h are then substituted intoexpression (3.1), yielding estimates br1; � � � ; brn of r1; � � � ; rn. These estimates are then substitutedinto (3.2), leading to the estimated bias as in (3.3). Denote the estimated bias of b�� by bBp;�(x0;h),the (� + 1)th element of bbp(x0).The 
hoi
e of the pilot bandwidth h� will be dis
ussed in Se
tion 5.4 Assessing the varian
e of the estimatorTo get a grip on the varian
e, �rst note that,0 = L0p(b�;h; x0) � L0p(�0;h; x0) + L00p(�0;h; x0)(b� � �0):This leads to b� � �0 � �nL00p(�0;h; x0)o�1 L0p(�0;h; x0);and an approximation for the 
onditional varian
e isVar(b�jXX) � nL00p(�0;h; x0)o�1VarnL0p(�0;h; x0)jXXonL00p(�0;h; x0)o�1 : (4.1)The Hessian matrix L00p(�0;h; x0) 
an be estimated by L00p(b�;h; x0), and the 
onditional varian
e onthe right-hand side of (4.1) 
an be approximated as follows. From (2.2) we obtainVarnL0p(�0;h; x0)jXXo = nXi=1Var� ��� `(XTi �; Yi)jXX��=�0 K2h(Xi � x0)= nXi=1Varn`0(XTi �0; Yi)jXioXiXTi K2h(Xi � x0):Sin
e Xi has signi�
ant weight only in a neighborhood around x0,Varf`0(XTi �0; Yi)jXig � Var[`0fg(x0); Y gjX = x0℄:Thus, we have VarnL0p(�0;h; x0)jXXo � Var �`0(g(x0); Y )jX = x0	Sn; (4.2)where Sn = Pni=1XiXTi K2h(Xi � x0). Combining (4.1) and (4.2) we obtain the following approxi-mation of the 
onditional varian
e of b�:Var(b�jXX) � �(x0) = Var �`0(g(x0); Y )jX = x0	 nL00p(�0;h; x0)o�1 Sn nL00p(�0;h; x0)o�1 : (4.3)7



The unknown lo
al parameter �0 in (4.3) 
an be estimated by b�. The �rst fa
tor in (4.3) isalso unknown and has to be estimated. We separate this into two 
ases. The �rst 
ase is thatVar f`0(g(x0); Y )jX = x0g = V fg(x0)g for some known fun
tion V (�) su
h as for the Bernoulli,Poisson and Exponential distributions in the 
ontext of generalized linear models. In this 
ase, weestimate the 
onditional varian
e by V fbg0(x0)g. The se
ond 
ase is that in whi
h we do not havesu
h a form. The normal likelihood model is an example. By (2.1), it follows thatVarf`0(g(x0); Y )jX = x0g = E[f`0(g(x0); Y )g2jX = x0℄:This quantity 
an be estimated byPni=1 n`0(X�Ti b�(p+a); Yi)o2Kh�(Xi � x0)Pni=1Kh�(Xi � x0) ; (4.4)where b�(p+a) = (b�0; � � � ; b�p+a)T is the result of a (p+ a)th-order lo
al polynomial �t (2.2) using thepilot bandwidth h� and X�i = (1;Xi � x0; � � � ; (Xi � x0)p+a)T .In many pra
ti
al situations, it is possible to en
ounter over-dispersion in the �rst 
ase above,i.e. Var �`0(g(x0); Y )jX = x0	 = �V fg(x0)g;where � is an unknown parameter. See M
Cullagh and Nelder (1989) for a more detailed des
ription.In this 
ase, we will use (4.4), instead of V fbg0(x0)g to estimate the 
onditional varian
e in (4.3).To illustrate the idea, let use 
onsider again the normal likelihood, in whi
h `(x; y) = �(y�x)2=2.This implies Var �`0(g(x0); Y )jX = x0	 = Var fY � g(x0)jX = x0g = �2(x0);and (4.3) 
an be expressed as �(x0) = �2(x0)S�1n SnS�1n ; (4.5)where Sn = XTWX.The right-hand side of (4.5) is exa
tly the approximation to the 
onditional varian
e derived byFan and Gijbels (1995) for the lo
ally weighted least-squares regression problem.What does the estimator (4.4) redu
e to in this spe
ial 
ase? Here `0(u; y) = y � u andX�Ti b�(p+a) = bYi, the �tted value from a lo
al (p+ a)th-order �t. Hen
e (4.4) redu
es tob�2(x0) = Pni=1(Yi � bYi)2Kh�(Xi � x0)Pni=1Kh�(Xi � x0) ; (4.6)8



whi
h is asymptoti
ally the same as the estimator for �2(x0) provided in Fan and Gijbels (1995)(see expression (2.3) in that paper or (5.2) below for a similar expression). Ruppert, Wand, Holstand H�ossjer (1995) give a thorough study on the estimation of �2(x0), in
luding the bandwidthsele
tion and eÆ
ien
y.5 Pilot bandwidth sele
torThe estimated bias dis
ussed in Se
tion 3 depends on the pilot estimation of the derivatives,g(p+1)(x0)=(p+ 1)!; � � � ; g(p+a)(x0)=(p+ a)!:This in turn requires a sele
tion of bandwidth. Also the estimation of the varian
e, des
ribed inthe previous se
tion, requires sele
tion of a pilot bandwidth.To motivate our sele
tion pro
edure, let us 
onsider the least-squares 
ase studied in Fan andGijbels (1995). Suppose the goal is to estimate g(�)(�) using a lo
al polynomial �t of order p.Let hopt(x0) be the asymptoti
 optimal bandwidth that minimizes the asymptoti
 optimal MSEof b��(x0). In the least-squares 
ase, Fan and Gijbels (1995) de�ne the following Residual SquaresCriterion (RSC): RSC(x0;h) = b�2(x0)f1 + (p+ 1)=Ng; (5.1)where b�2(�) is the normalized weighted residual sum of squares after �tting lo
ally a pth-orderpolynomial given by b�2(x0) = Pni=1 �Yi � bYi�2Kh(Xi � x0)tr (W)� trn(XTWX)�1XTW2Xo ; (5.2)and N�1 is the �rst diagonal element of the matrix (XTWX)�1(XTW2X)(XTWX)�1. Note thatN in fa
t re
e
ts the e�e
tive number of lo
al data points, sin
e Varfb�0jXXg � �2(x0)=N by (4.5).The intuition behind (5.1) is as follows. When the bandwidth h is too large, the polynomial doesnot �t well. The bias is large and so is b�2(x0). When the bandwidth h is too small, the varian
eof the �t will be large and hen
e N�1 will be large as well. Both fa
tors, b�2(x0) and N , arein
orporated into RSC in su
h a way that the quantity be
omes large at both extreme 
hoi
es ofbandwidth. It is shown in Fan and Gijbels (1995) that the minimizer of (5.1) is only a 
onstant9



fa
tor away from the targeted optimal bandwidth:hopt(x0) = adjp;�(K)ho(x0); (5.3)where ho(x0) is the asymptoti
 optimal bandwidth that minimizes the main terms of the expe
tedvalue of (5.1), and adjp;�(K) is a known 
onstant that depends only on K, p and � (see de�nitionbelow), and is tabulated in Fan and Gijbels (1995). The exa
t expression of this 
onstant is asfollows. Let �j = R tjK(t)dt. De�ne the (p+ 1)� (p+ 1) matrix S with the (i + j � 2)th-moment�i+j�2 of K as its (i; j)th-element. Let K�� (t) = fPpj=0 s�+1;jtjgK(t) be the equivalent kernel,where s�+1;j is the (� + 1; j)th-element of S�1. The 
onstants adjp;�(K) are de�ned byadjp;�(K) = " (2� + 1)Cp R K�2� (t)dt(p+ 1� �)fR tp+1K�� (t)dtg2 R K�20 (t)dt#1=(2p+3) ; (5.4)where Cp = �2p+2 � (�p+1; � � � ; �2p+1)S�1(�p+1; � � � ; �2p+1)T .The above 
riterion 
an also be used when the fun
tion g(�) is a transform of the mean regressionfun
tion: g(�) = Lf�(�)g where L is a link fun
tion and � is the mean regression fun
tion. In this
ase, bYi = L�1(XTi b�) in equation (5.2). This RSC-
riterion 
orresponds to the approximatelyweighted squared errors in the domain of g using weight [L0f�(x)g℄�2.An extension of the above idea is to regard the lo
al likelihood problem as iterative lo
al least-squares problems. Given the 
urrent value �
 of �, update �
 via the lo
al pth-order polynomialregression of the working variableZi = XTi �
 � `0(XTi �
; Yi)Ef`00(g(x0); Y )jX = x0g (5.5)on Xi, where the 
onditional expe
tation is 
omputed using the parameter �
. The justi�
ationof this is given in the appendix. Thus, at the last step of the iteration, we 
an regard the lo
allikelihood problem as a lo
al polynomial regression problem, and use the residual squares 
riterionERSC(x0;h) = 
��2(x0)f1 + (p+ 1)=Ng; (5.6)where 
��2(x0) is the normalized residual sum of squares using the working variable Zi (
ompare with(5.1)). We will refer to the 
riterion (5.6) as the Extended Residual Squares Criterion (ERSC). Theheuristi
 justi�
ation of this is simple. First of all, the bias of b� 
omes from the lo
al polynomial10



approximation of g. Hen
e, it is the same for the lo
al likelihood method as for the lo
al least-squares problem. Using (4.3) together with approximation (A.2),Var(b�jXX) � �2�(x0)S�1n �SnS�1n ;where �2�(x0) = Varf`0(g(x0); Y )jX = x0g[Ef`00(g(x0); Y )jX = x0g℄�2:Comparing (4.3) with (4.5), the asymptoti
 varian
e of the lo
al likelihood problem 
orresponds tothat of the least-squares problem with � = ��. Treating �
 in (5.5) as �xed, the working variableZi has the same varian
e stru
ture, namelyVar(ZijXi) � �2�(x0):We now 
an sele
t the pilot bandwidth as follows. Letbh�p;� = argminh Z ERSC(x;h)w(x)dx; (5.7)for some given weight fun
tion w. Then, de�ne the ERSC-sele
tor as followsbhERSCp;� = adjp;�(K)bh�p;� : (5.8)ERSC in (5.7) 
an be repla
ed by RSC, (5.1), to produ
e a RSC-sele
tor. As mentioned above,in the 
ase that g(�) = Lf�(�)g, the ERSC-sele
tor with uniform weighting will be approximatelythe same as the RSC-sele
tor with weight w(x) = [L0f�(x)g℄�2. In the least-squares problem, thisbandwidth sele
tor was investigated in Fan and Gijbels (1995). It performs reasonably well, butthe rate of 
onvergen
e 
an be improved. For this reason, we only use it in the pilot stage.6 Bandwidth sele
tionRe
all that the estimation pro
edure 
onsists of maximizing the lo
al log-likelihood (2.2), leading tothe estimated ve
tor b�. The 
omplexity of the model is determined by the bandwidth h. If h!1then (2.2) results in a global �t of a polynomial of degree p. If on the other hand h ! 0 thenwe end up with interpolation of the data. Many interesting models lie between these two extreme
hoi
es. In this se
tion we dis
uss data-driven 
hoi
es of a 
onstant and lo
al variable bandwidth.11



The basi
 idea for bandwidth sele
tion is very simple. First a pilot bandwidth bh�p+a;p+1 shouldbe sele
ted. This 
an be done by either the RSC-
riterion (5.1) or the ERSC-
riterion (5.6). Asnoted at the end of Se
tion 5, the di�eren
e is only a matter of weighting s
heme. Given a pilotbandwidth bh�p+a;p+1, we then �rst �t a polynomial of degree p + a lo
ally via maximizing (2.2),resulting in the estimator b�(p+a) = (b�0; � � � ; b�p+a)T . With these estimated parameters we obtainthe estimated bias bBp;�(x0;h) and varian
e bVp;�(x0;h) of b�� , whi
h are, respe
tively, the (� + 1)th-element of (3.3) and the (�+1)th-diagonal element of the estimated expression (4.3). An estimatorfor the Mean Squared Error (MSE) of b�� is then given bydMSEp;�(x0;h) = bB2p;�(x0;h) + bVp;�(x0;h): (6.1)This leads to the following bandwidth sele
tor:bhp;� = argminh Z dMSEp;�(x;h)w(x)dx; (6.2)where w(�) is a given weight fun
tion. A 
ommon 
hoi
e of w(�) is the indi
ator fun
tion of theinterval where the 
urve g(�)(�) is to be estimated.The 
onstant bandwidth bhp;� , whi
h is independent of the lo
ation x0, suÆ
es in many appli
a-tions. However, when the 
urve g(�)(�) admits various degrees of smoothness at di�erent lo
ations,a variable bandwidth sele
tor is needed in order to enhan
e the spatial adaptation. The basi
 ideasfor sele
ting su
h a variable bandwidth are simple: sele
t a bandwidth bhp;�(x0) that minimizesthe lo
ally weighted average of dMSEp;�(x;h) around the point x0. This average stabilizes the esti-mated MSE. The implementation is analogous to that dis
ussed in Fan and Gijbels (1995) in theleast-squares regression 
ontext. We omit details here.7 Con�den
e IntervalsA 
on�den
e interval is a very important tool for understanding the sampling variability of anestimator. In the 
ontext of nonparametri
 fun
tion estimation, the task of 
onstru
ting su
h aninterval is diÆ
ult, due to non-negligible bias. However, with our estimated bias and varian
e, one
an easily 
onstru
t a 
on�den
e interval. 12



De�ne bBAp;�(x0;h) = Z bBp;�(x;h)Kh(x� x0)dx (7.1)bV Ap;�(x0;h) = Z bVp;�(x;h)Kh(x� x0)dx: (7.2)These two quantities are just lo
al weighted averages of the estimated bias and varian
e, respe
-tively. Note that the estimated bias involves the estimation of higher order derivative 
urves,whose estimation 
an be unstable. The purpose of the average is to stabilize the estimated biasand varian
e fun
tion, and to prevent them from abrupt 
hange. The same bandwidth as usedfor (2.2) is used here, but a di�erent bandwidth 
ould also be employed. This was done primarilyfor simpli
ity of implementation, but Bro
kmann, Gasser, and Herrmann (1993) have used thisamount of smoothing for a lo
al bias estimate, whi
h produ
ed a lo
ation dependent bandwidth intraditional kernel based regression. This adaptive method has both good asymptoti
 and pra
ti
alperforman
e.The lo
al maximum likelihood estimator is usually asymptoti
ally normal. In the 
ontextof generalized linear models, this has been shown by Fan, He
kman and Wand (1995) and inthe 
ontext of hazards regression by Fan, Gijbels and King (1997). By invoking the asymptoti
normality, we 
onstru
t the pointwise 
on�den
e interval as follows. With approximately 1 � �
overage probability, the unknown fun
tion g(�)(x0) falls in the random intervalbg�(x0)� bBAp;�(x0;h)� ��1(1� �=2) f bV Ap;�(x0;h)g1=2: (7.3)The 
overage probability of the 
on�den
e interval (7.3) 
an 
onverge slowly to the nominallevel 1��. There are two reasons for that. One is that the number of data points used to estimateg(�)(x0) 
an be mu
h smaller than n and the other is that the bias 
an possibly be non-negligible.Nevertheless, Figures 8.1(d), 8.2(d) and 8.3(d) report reasonably satisfa
tory 
overage probabilityin our simulation studies.In our implemention, the 
on�den
e interval (7.3) is 
onstru
ted based on the estimated optimalbandwidth. Te
hni
ally, the asymptoti
 normality still holds with su
h a data-driven bandwidthowing to the tightness of the sto
hasti
 pro
ess indexed by bandwidth h (See M�uller and Stadtm�uller(1987) for te
hni
al arguments in a simpler setup). With the optimal bandwidth, the estimator13



bg(�)(x0) has smaller asymptoti
 MISE than any other 
hoi
e of bandwidth and hen
e the 
on�den
einterval is expe
ted to be tighter.An alternative approa
h for 
onstru
ting 
on�den
e intervals is to undersmooth the estimated
urve in su
h a way that the bias of the estimator is negligible. While this idea is simple and useful,it has a few potential short
omings: It is hard to know how small the bandwidth will need to be tomake the bias negligible; with an undersmoothed estimator, the varian
e will be larger and hen
ethe 
on�den
e intervals will tend to be wider; the asymptoti
 normality for the undersmoothedestimator tends to a
tualize itself more slowly be
ause there are fewer lo
al data points.For 
onstru
ting simultaneous 
on�den
e bands, one 
an use the raw materials given in (7.1)and (7.2) and the ideas given in Eubank and Spe
kman (1993).8 Appli
ations to logisti
 regressionWe have illustrated the key idea of this paper in the 
ontext of the least-squares regression problem.Extensive simulations in Fan and Gijbels (1995) indi
ate good performan
e of the resulting pro
e-dure. We now 
onsider nonparametri
 logisti
 regression to further 
larify the idea. The method
an readily be applied to other likelihood models su
h as those based on the Poisson and Gammadistributions.8.1 IllustrationWe assume that the data, (Xi; Yi), are i.i.d. and that the 
onditional distribution of Yi given Xi isa Bernoulli distribution:P (Yi = 1jXi = x) = p(x); P (Yi = 0jXi = x) = 1� p(x) � q(x):In this 
ase, the mean regression fun
tion is p(x) = E(Y jX = x). The parameter of interest isg(x) = logit(p(x)) = log p(x)1� p(x) :In this nonparametri
 regression 
ontext, estimating p(�) is equivalent to estimating g(�). However,we prefer working on the logit domain, sin
e the log-likelihood is 
on
ave, and the logisti
 linear14



regression model 
orresponds to our 
ase with h = 1. See Fan, He
kman and Wand (1995) formore detailed arguments.The log-likelihood is determined via`(g(X); Y ) = logfp(X)Y q(X)1�Y g = Y g(X) � log[1 + expfg(X)g℄:Thus, `0(u; y) = y � eu=(1 + eu) andEf`0(g(X); Y )jXg = 0; Varf`0(g(X); Y )jXg = p(X)q(X): (8.1)For this 
ase, we haveL�p(�;h; x0) = nXi=1hYi(XTi � + ri)� logf1 + exp(XTi � + ri)giKh(Xi � x0):The lo
al likelihood Lp 
orresponds to L�p with ri � 0. De�nep�i = exp(XTi � + ri)1 + exp(XTi � + ri) ; and pi = exp(XTi �)1 + exp(XTi �) : (8.2)Then, simple algebra shows thatL�p0(�;h; x0) = nXi=1(Yi � p�i )XiKh(Xi � x0);L�p00(�;h; x0) = � nXi=1 p�i (1� p�i )XiXTi Kh(Xi � x0):The approximated bias ve
tor and varian
e matrix are now easily obtained, and are given bybbp(x0) = nL�p00(b�;h; x0)o�1 L�p0(b�;h; x0)�(x0) = p(x0)q(x0)f nXi=1 piqiXiXTi Kh(Xi � x0)g�1(XTW2X)f nXi=1 piqiXiXTi Kh(Xi � x0)g�1;where qi = 1� pi.It 
an also be shown thatERSC(x0;h0) = 2f1 + (p+ 1)=Ng nXi=1[Yi log(Yi=bpi) + (1� Yi) logf(1� Yi)=(1 � bpi)g℄Kh(Xi � x0);where bpi is given by (8.2) with � being estimated. Minimizing the average of ERSC gives a pilotbandwidth sele
tor as dis
ussed in Se
tion 5. 15



8.2 ImplementationIn the 
ontext of logisti
 regression, the two stage bandwidth sele
tor was tested on simulated datafrom a variety of target 
urves. The Epane
hnikov kernelK(u) = 34 �1� u2� I[�1;1℄(u)and order p = 1 were used for estimating g at a set of equally spa
ed grid points x1; :::; xnbin. TheRSC-
riterion was used to 
hoose the pilot bandwidth with a p = 3 order �t for estimating the
urvature g00. The sum ARSC(hj) = nbin��Xi=� RSC(xi;hj);where � is the largest integer less than (0:05 nbin), was 
omputed on a multipli
ative grid ofbandwidths hj = Cjhmin. Restri
ting the sum helps to redu
e boundary e�e
ts. At the boundaries,RSC and estimated derivatives 
an be too large due to numeri
al instabilities and s
ar
ity of data.The implementation of our idea is somewhat tri
ky sin
e it involves iterative solution. For smallvalues of h, the solution may not even exist sin
e lo
ally one may get a set of all zeros or ones. Toavoid su
h a diÆ
ulty, we only 
onsider the bandwidths that are large enough so that the b�0s arede�ned. To this goal, let lruns be the maximum span among lengths of runs of ones or zeros. Forinstan
e, if X(1); :::;X(n) are the order statisti
s of the X sample and the bivariate data are sorteda

ording to the X sample, then X(k) �X(j) is the length of a run of ones providedYj�1 = 0; Yj = 1; Yj+1 = 1; :::; Yk = 1; Yk+1 = 0:The 
hoi
e of the minimum value of h was given byhmin = (1:25lruns + 6�g)=2where �g is the grid spa
ing. The maximum value of the bandwidth was set athmax = maxj nCjhmin : Cjhmin < (xnbin � x1)=2owith C = 1:1.
16
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(c) (d)Figure 8.1: Example 1. (a) Kernel Density Estimate of bandwidth relative errors for three samplesizes. (b) Base 10 log of MISE versus sample size. The asymptoti
ally optimal MISE is indi
ated bythe solid 
urve. (
) Five sample 
urve estimates with true 
urve (solid line) and sample logits (+)using �ve 
ontiguous observations. (d) Sample 
urve estimate (solid line) with 
on�den
e interval(dashed line) and the per
entage of 
on�den
e intervals 
ontaining the true 
urve at three separatepoints indi
ated with verti
al lines.8.3 Simulation ResultsResults for three underlying target 
urves on the logit s
ale are presented. Sample sizes of n =250; 500; 1000 were used. The design is from a uniform distribution on [�2; 2℄. In other words, themarginal distribution for X is uniform on [�2; 2℄. The logit transform of the 
onditional probability17



Y = 1 is given byExample 1. g(x) = 3 sin(2x)Example 2. g(x) = 7[expf�(x+ 1)2g+ expf�(x� 1)2)g℄� 5:5Example 3. g(x) = 2� x2:These 
urves appear as the thi
k line in part (
) of the following �gures. Only 100 simulationswere performed for a given target 
urve at a given sample size. This was a pra
ti
al 
onstraint dueto the fa
t that it takes approximately 20 minutes to 
ompute the two stage bandwidth using aprototype implementation in Matlab on a Spar
 10 station. This 
an be improved upon by at leasta fa
tor of 10, if a lower level language su
h as C is used. The asymptoti
ally optimal bandwidthfrom Fan, He
kman and Wand (1995)hopt = (R K(u)2du R Var(Y jX = x)L0(�(x))2w(x)=fX (x)dxn (R u2K(u)du)2 R g00(x)2w(x)dx )1=5 (8.3)with w taken to be the indi
ator fun
tion on [�2; 2℄ was used to judge performan
e.Example 1 Example 2 Example 3n hopt hMedISE hopt hMedISE hopt hMedISE250 0:53 0:64 0:48 0:53 0:83 1:04500 0:46 0:59 0:42 0:47 0:72 0:861000 0:40 0:44 0:36 0:40 0:63 0:78Table 1: Comparison of asymptoti
 and small sample optimal bandwidths, where the asymptoti
optimal bandwidth is denoted by hopt and the median integrated squared error optimal bandwidthis denoted by hMedISE. The MedISE optimal bandwidth is based on the un
onditional expe
tation
omputed by simulation.Both the 
onditional and un
onditional Mean Integrated Squared Error (MISE) of the lo
almaximum likelihood estimator are not mathemati
ally de�ned. For any �xed bandwidth, thereis positive probability that all the data in the \window" is either one or zero. In this 
ase, themaximizer of (2.2) is in�nite. Thus, the MISE-based optimal bandwidths are not properly de�ned.In 
ontrast, the optimal bandwidths based on the Median Integrated Squared Error (MedISE) areproperly de�ned and this avoids the te
hni
al diÆ
ulty of the MISE. In order to assess the appro-priateness of hopt for judging �nite sample performan
e, the MedISE was 
omputed by simulation18
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(c) (d)Figure 8.2: Example 2. (a) Kernel Density Estimate of bandwidth relative errors for three samplesizes. (b) Base 10 log of MISE versus sample size. The asymptoti
ally optimal MISE is indi
ated bythe solid 
urve. (
) Five sample 
urve estimates with true 
urve (solid line) and sample logits (+)using �ve 
ontiguous observations. (d) Sample 
urve estimate (solid line) with 
on�den
e interval(dashed line) and the per
entage of 
on�den
e intervals 
ontaining the true 
urve at three separatepoints indi
ated with verti
al lines.on the bandwidth grid, hj = Cjhmin. The simulated MedISE was a 
onvex fun
tion of the band-width, h, for all three examples and the minimizing value of h for ea
h example appears in Table 1.The simulated MedISE was based on 400 
urve estimates and the 95% error margin was typi
allywithin 10% of the minimizing value and never more than 20%. The 
loseness of hopt to the MedISEoptimal bandwidth makes it appropriate for a ben
h mark for performan
e.19
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ated bythe solid 
urve. (
) Five sample 
urve estimates with true 
urve (solid line) and sample logits (+)using �ve 
ontiguous observations. (d) Sample 
urve estimate (solid line) with 
on�den
e interval(dashed line) and the per
entage of 
on�den
e intervals 
ontaining the true 
urve at three separatepoints indi
ated with verti
al lines.The relative error of the two stage bandwidth bh is 
omputed as (bh� hopt)=hopt. In addition torelative error, the median of the integrated squared errors of the 100 
urve estimates was taken andthe per
entage of the 100 
on�den
e intervals that 
ontained the true 
urve at a given point wasalso 
omputed. The results are summarized in Figures 8.1, 8.2 and 8.3. Note that the standarderror for the sample 
overage is (0:05 � 0:95=100)1=2 = 2:18%.20



Observe that the relative errors be
ome more and more 
on
entrated near zero as n in
reases.There are a few bandwidths that appear to have quite large relative errors but the number of largeerrors de
reases with n. From part (b), the MISE be
omes 
loser to the asymptoti
ally optimalMISE as n in
reases. Part (
) indi
ates the diÆ
ulty in estimating these 
urves by the spread ofthe sample logits based on �ve observations. The values of these logits were trun
ated at �5 andsome were a
tually in�nite. These large sample logits are indi
ated by the plus marks along theaxes. Details of 
omputing sample logits are as follows: Group the data points a

ording to their
ovariate values so that ea
h group 
onsists of 5 data points. For ea
h group, 
ompute the sampleproportion of ones and do a logit transform of it. This sample logit is then plotted against mean
ovariate values of its 
orresponding group. The sample 
urve estimates indi
ate that the estimatorperforms quite well. The pointwise 
on�den
e intervals also have good performan
e. Figures 8.1and 8.2 indi
ate some diÆ
ulty near the peaks but this diÆ
ulty is expe
ted be
ause the bias 
anbe quite large near sharp peaks. The 
urve estimate in the 
on�den
e interval is the bias 
orre
ted
urve estimate bg0(x)� bBA1;0(x;h) (see (7.3)).9 Con
luding RemarksWe have laid out a versatile approa
h for nonparametri
 smoothing, bandwidth sele
tion and 
on-�den
e interval 
onstru
tion. The purpose of this arti
le is to indi
ate that there is a uni�edapproa
h to nonparametri
 smoothing. We have only extensively tested the idea in the 
ontext ofleast-squares and in a few other 
ases. Further studies are needed to test the approa
h in other
ontexts. We hope this arti
le will stimulate future resear
h on this topi
.A
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al maximum likelihoodestimator is to update b� viab� = �0 � [EfL00p(�0;h; x0)jXXg℄�1L0p(�0;h; x0): (A.1)Using the 
ontinuity assumption of the 
onditional expe
tation, it follows thatEfL00p(�0;h; x0)jXXg = nXi=1Ef`00(XTi �0; Yi)jXigXiXTi Kh(Xi � x0)� Ef`00(g(x0); Y )jX = x0g nXi=1XiXTi Kh(Xi � x0): (A.2)Note that even though the 
omputational expe
tation is 
omputed approximately, the algorithm isexa
t, namely it 
onverges to the lo
al MLE even when we use the approximated Hessian matrix(A.2). Therefore, substituting (A.2) into (A.1) and using (2.2), we haveb� = [ nXi=1XiXTi Kh(Xi � x0)℄�1 nXi=1ZiXiKh(Xi � x0);namely, b� is obtained via regressing Zi on Xi using lo
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