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ABSTRACT 
 

JOSEPH MICHAEL THOMPSON:  Venezuelan Equine Encephalitis Virus Particles:  
Mucosal Vaccine Vectors and Biological Adjuvants 

(Under the direction of Dr. Robert E. Johnston) 
 

 Vaccination is the most effective control measure in the fight against infectious 

diseases, and represents an opportunity to intercede in the spread of dangerous organisms 

through prophylactic intervention.  Viral vectors, including alphavirus vectors, have proven 

to be powerful vaccine delivery vehicles and a promising platform for vaccines against 

multiple pathogens.  Specifically, as demonstrated here, Venezuelan equine encephalitis 

virus (VEE) replicon particles (VRP) induced strong humoral, cell-mediated, and mucosal 

immune responses directed against heterologous antigens expressed from the viral genome, 

as well as against antigens simply mixed with VRP.  These observations established a dual 

function of VRP as both vaccine expression vectors and vaccine adjuvants, demonstrating 

that VRP possess intrinsic immunostimulatory properties.  When utilized as adjuvants, VRP 

systemic humoral adjuvant activity was as strong as the activity of CpG DNA.  In addition, 

the mucosal responses induced by VRP adjuvants were superior to those induced by CpG, an 

effect that was dependent upon VRP RNA replication.   The induction of mucosal immune 

responses is critical for vaccine-mediated protection following challenge with mucosal 

pathogens.  Delivery of antigens directly to mucosal lymphoid tissues, as occurs following 

mucosal delivery, results in the strongest mucosal immune responses. While this has revealed 
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the components of the natural mucosal inductive pathway, little is known regarding the 

lymphoid structures responsible for mucosal immune induction following nonmucosal 

delivery.  Here we demonstrate that following nonmucosal VRP vaccination, several markers 

of mucosal lymphoid tissues were present in the draining lymph node (DLN). This included 

the presence of antigen-specific polymeric IgA antibodies, upregulated expression of the α4β7 

integrin on DLN lymphocytes, expression of the mucosal addressin, MAdCAM-1, and the 

production of IL-6 and other mucosal cytokines.  The presence of these markers is consistent 

with a model in which the DLN is converted by VRP infection into the functional equivalent 

of a mucosal inductive site.  Furthermore, while type I interferon (IFN) signaling was not 

required for VRP adjuvant activity, it was critical for the induction of mucosal IgA responses 

induced by VRP expression vectors.  Together, these findings may significantly improve 

both our knowledge of viral immunology and the efficacy of viral-based vaccines. 
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GENERAL PRINCIPLES OF VACCINATION 

 

Historical Perspective 

 The earliest recorded accounts of variolation, or vaccination, date back as far as 1000 

A.D. in China, where smallpox scabs or pustules from infected individuals were used to 

inoculate unexposed people and afforded a significant degree of protection (207, 294).  It was 

stated that following this procedure, “not one in 10, not one in 100 does not recover.” (98, 

207).  Reports of parenteral smallpox variolation surfaced in India, Asia, and Africa as early 

as the sixteenth century (207, 291).   In eighteenth century Europe, smallpox was a 

devastating illness, responsible for 8-20% of all the deaths in both rural and urban 

populations (8).  It was recognized by physicians and scholars of the time that milkmaids 

often acquired a pox-like infection from cows, and in turn, were spared from the most 

agonizing symptoms of smallpox (98, 207, 339).  However, a direct relationship between the 

mild pox infection and protection from smallpox infection was not established until 1796, in 

the pioneering work performed by Edward Jenner. 

 On May 14, 1796, Jenner inoculated a 13-year-old boy, James Phipps, with the 

cowpox or vaccinia virus obtained from a woman named Sarah Nelmes, who was 

accidentally infected by a cow named Rosebud (8).  James Phipps was deemed “secure” or 

immune to a subsequent smallpox challenge delivered “some months afterwards.” (8, 207).  

Thus, the science of vaccine inoculation (159), or vaccination, as coined by Louis Pasteur 

many years later (207),  was born.  As a result of these discoveries, and as predicted by 

Jenner (8, 207), smallpox has been eradicated from its natural environment in the world by a 

vaccine developed approximately 200 years before (98).   
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The Jennerian approach to vaccination was first deliberately applied by Louis Pasteur, 

following his discovery of the principle of attenuation (291, 294).  Pasteur returned to the 

laboratory following a vacation over the summer of 1881 to find a culture of a Pasteurella 

species, the causative agent of fatal chicken cholera, which had been left out on the bench 

over the summer.    Pasteur discovered that the aged culture was avirulent in chickens, and in 

fact, protected chickens from lethal disease following challenge with fresh cultures (207, 

280, 291).  These results served as the groundwork for the hypothesis that organisms could 

be rendered attenuated by exposure to external insults.  This hypothesis was confirmed by his 

work on anthrax and rabies over the next several years (207, 281, 291), a remarkable 

achievement given the fact that he was unable to cultivate the rabies virus in vitro, as cell 

culture for the purposes of virus growth was not adapted until the middle of the twentieth 

century (379).  The concept of attenuation was applied to a number of organisms over the 

next century (291, 294), including Mycobacterium bovis by Calmette and Guerin (49) and 

yellow fever virus by Max Theiler (357).  To date, live attenuated vaccines still serve as 

some of the most immunogenic vaccines ever produced, most likely due to the fact that they 

most closely mimic the events which occur following a natural infection (109, 179, 260, 

372).   

 

Immunological Correlates of Protection and Vaccines 

 The development of new vaccine technologies in the twentieth century has brought 

about vaccines for lethal diseases such as diphtheria, tetanus, paralytic poliomyelitis, 

pertussis, measles, mumps, rubella, Haemophilus influenzae type b (Hib), and Hepatitis A 

and B [reviewed in (8, 291, 294, 295)].  These vaccines are based on live attenuated 
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vaccines, subunit or whole-cell bacterial vaccines, and/or recombinant production of 

individual vaccine components [reviewed in (8, 291, 294, 295)].  These advances have 

significantly increased overall life expectancy over the last few decades (29, 290), with 

widespread vaccination efforts in infants estimated to save the lives of 3 million children a 

year (8).  Systematic administration of existing vaccines would save millions of additional 

lives worldwide  (7, 384).   

 The overall goal of vaccination is to generate memory B and T cell responses 

sufficient to protect the individual from a natural infection (196).  While the concept of 

protective immunity is a relative quantity/quality of immune induction, much effort has  been 

exerted to define protective factors (288).  The nature and magnitude of the immune response 

required to provide protection clearly varies from pathogen to pathogen (100, 200, 203, 277).  

Knowledge of the correlates of protection for a specific organism is central to the design of 

an efficacious vaccine (288).  In general terms, vaccines activate B cell responses (antibody 

secretion or other activities), CD8+ T cell responses (usually as cytotoxic lymphocytes or 

CTLs), and/or CD4+ T cell responses to provide cytokine help for either B cell responses or 

CD8+ T cell responses (288, 315, 349).   

 

 A role for systemic antibody responses.  Protection from challenge after 

immunization with most traditional vaccines is mediated by the reduction in systemic spread 

of the organism, as manifested by a decrease in serum viremia or bacteremia, in the case of 

viral and bacterial pathogens, respectively.  This is normally facilitated by vaccine-induced 

specific serum IgG antibodies [reviewed by Stanly Plotkin (288)].  Here we provide support 

for the role of vaccine-induced systemic antibody responses in protection.   For example, 
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serum IgG responses directed against hepatitis A virus protect individuals from the onset of 

hepatitis.  In fact, gamma-globulin preparations from naturally-infected patients provides 

protection, allowing the establishment of a minimally protective dose (62, 338).  Studies in 

primates suggested that serum antibodies also protect from the paralytic manifestations of 

polio infection, presumably by limiting viremic spread to the CNS, even though viral 

delivery and replication occur in the gut. (26).  Systemic IgG antibodies also provide various 

levels of immunity to rabies virus infection (289), yellow fever virus infection (222), 

meningococcal polysaccharides (392), pneumococcal polysaccharides (180), and typhoid 

polysaccharides (292).  While controversy exists regarding which component of the pertussis 

vaccine is the dominant protective antigen (54, 242, 293, 360), it is clear that serum IgG 

antibodies play an important role in protection from this important pathogen as well (288).  

Serum IgG responses directed against bacterial toxins have also been shown to provide 

protection; such as is the case for vaccines against both diphtheria and tetanus (227, 228).   

 

A role for local mucosal antibody responses.  The examples provided above clearly 

demonstrate the importance of systemic antibody responses in vaccine-induced protective 

immunity (288).  However, what role do vaccine-induced systemic antibodies play in 

limiting infection at the local mucosal surface?  For example, polio virus replicates in the gut 

epithelium, and delivery of the oral polio vaccine (OPV) induces local mucosal immunity to 

subsequent challenge (348).  Interestingly, parenteral delivery of the inactivated polio 

vaccine (IPV) does not induce equivalent levels of local antibody production in the gut (94, 

253).  However, IPV does appear equally capable as OPV at reducing extraintestinal virus 

titers (219).  The effectiveness of IPV appears to be affected by previous natural or OPV 
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exposure (270, 288).  IPV vaccination only induced mucosal immune responses in previously 

infected individuals (141), suggesting that mucosal antigen delivery is required for the 

induction of mucosal immunity. 

It is also important to consider the relative contributions of both systemic and 

mucosal immunity antibodies in protection from infectious agents that either do not have a 

systemic replication stage in their life cycle, or have a very limited systemic phase.  Such is 

the case for both rotavirus infection as well as influenza virus infection.  The definitive 

correlates  of protection from rotavirus infection are not completely understood; however, 

resistance to natural infection appears to correlate with both systemic IgG and IgA antibody 

production (265).  It is likely that systemic IgA merely serves as a surrogate for mucosal IgA, 

as local IgA antibody production likewise appears to predict outcome of infection (223).  The 

inactivated parenteral influenza vaccine provides a strong degree of protection form 

mortality, although it does not block replication at the local mucosal surface.  Serum anti-

hemagglutinin titers correlate with protection (57, 71, 72, 144); however, it is thought that 

such antibodies are transudated onto the local lung mucosa to mediate protection, as 

influenza does not replicate to substantial levels outside the lung (90).  In a later section of 

this review, the anatomical basis and molecular mechanisms responsible for the induction of 

mucosal immune responses are discussed in detail (see below). 

 

A role for T cell responses.  Many natural infections with organisms and/or vaccine 

strains that replicate systemically and at the local mucosal surface result in the activation of 

efficient CD8+ T responses.  Such is the case with both rotavirus infection (267-269) and 

influenza virus infection (25, 106, 226).  As mentioned above, both antibody and T cell 
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responses may influence the outcome of infection with these mucosal viruses; however, T 

cell immunity alone, in the absence of an antibody response, is necessary and sufficient for 

protection with other pathogens.  The activation of CD4+ T cells and CD8+ T cells are critical 

for protection from Mycobacterium tuberculosis (TB) (69, 70, 274, 288), and the live 

attenuated vaccine (BCG)  is known to induce protective T cell immunity in humans and 

animal models (99, 275).   

T cell responses also play an important role with infections agents other than TB.  

CD8+ T cells are capable of killing virus- and bacterial-infected cells and represent one of the 

most critical clearance mechanisms, especially with chronic infections (83, 93, 208).    Cell-

mediated immune responses provide protective capacity either with primary infection or 

reactivation from latency with several herpesviruses including varicella zoster (13), herpes 

simplex virus type 1 (211), herpes simplex virus type 2 (243), Epstein-Barr virus (48), 

cytomegalovirus (168), as well as other chronic infections such as hepatitis C virus  (305).  

 

Herd Immunity.  This review has focused thus far on the effects of vaccination 

within a given vaccinated individual.  However, when considered on a population level, 

vaccination provides significant benefits even to the unvaccinated individuals within the 

population.  These benefits are manifested in at least 3 separate ways (288).  First, within a 

highly vaccinated population, there are fewer infected individuals, decreasing the likelihood 

of an exposure event.  Secondly, some vaccines, such as the Hib vaccine (245), reduce 

carriage of the organisms, further decreasing the chance of exposure.  Lastly, live vaccine 

strains have the potential to spread to, and directly induce immunity in, unvaccinated 

individuals, as was observed with OPV (154).  While controversy exists regarding the 
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nomenclature for herd immunity (164), the protective effect of vaccination in unvaccinated 

individuals is unquestioned, and should be considered in vaccine design.   

 

The status of human immunodeficiency virus vaccines.  While this review is not 

intended to be comprehensive in terms of vaccine-induced immunity to all human pathogens, 

we would be remiss not to mention the current status of human immunodeficiency virus 

(HIV) vaccine development.  There are approximately 5 million new HIV infections each 

year and the virus is spreading at an increased rate in numerous locales worldwide (203).  

The development of an efficacious vaccine would save the lives of millions of individuals.  

Unlike the scenario described above for many of the infectious agents in which the exact 

correlates of protective immunity are known, definitive correlates of protection from HIV 

infection have not been clearly established (203).  To date, the most promising protective 

efficacy has been demonstrated with live attenuated vaccines in the simian 

immunodeficiency (SIV) and simian human immunodeficiency virus (SHIV) models (190).  

In fact, live attenuated SIV vaccines not only provide protection from systemic challenge, but 

also from challenge by the natural mucosal route (317).  While this approach harbors the 

potential to define immunological correlates, delivery of live viruses is not feasible in 

humans because of the potential of generating a pathogenic revertant virus in vaccinees.   

Conflicting evidence exists regarding the ability of specific immune components to 

provide protection from SIV infections.  For example, passive antibody transfer studies have 

implicated humoral immune responses in protection from SIV following both systemic (128, 

220) and mucosal (221) challenge.  However, B-cell-depleted monkeys displayed normal 

virus clearance at early times following SIV challenge, suggesting that humoral immunity 
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may not play a dominant role (327).  In contrast, SIV was not controlled in monkeys lacking 

CD8+ T cells, directly implicating a role for cell-mediated immunity in protection from SIV 

infection (326).  Additionally, local mucosal immune responses are proposed to play an 

important role in protection as well (241).  As definitive proof regarding precise correlates of 

protection is lacking, a successful HIV vaccine most likely will need to stimulate humoral, 

cell-mediated, and mucosal immunity.   

 

New Vaccine Technologies.   

Traditional vaccine approaches have relied upon parenteral delivery of either live 

attenuated organisms, subunits/proteins derived from infectious organisms, or inactivated 

particles.  While these approaches have resulted in a plethora of efficacious vaccines against 

important human pathogens, it is estimated that infectious diseases still account for almost 

25% of deaths worldwide, particularly in developing countries (192, 272).  The failures 

associated with HIV vaccine development alone exemplify the need for new vaccine 

platforms.  Here we outline several of the promising new techniques currently under 

development at various stages from early preclinical studies to efficacy-stage clinical trials, 

including viral/bacterial gene transfer systems, adjuvants, DNA vaccines, differential 

prime/boost systems, and new delivery methods.  Again, this is not intended to serve as a 

comprehensive list, but instead provide a survey of the state of this new area of vaccinology.   

 

DNA vaccines.  The utilization of plasmid DNA as an antigen delivery system is a 

relatively recent development, first utilized in the 1980s [reviewed in (80, 365)].  Early 

studies with DNA vaccines demonstrated activation of both B cell and T cell responses in 
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small rodents and non-human primates (313, 363).  In humans, DNA vaccines elicit potent T 

cell-mediated immune responses (373); however, they appear inefficient at stimulating an 

antibody response directed against the encoded antigen (66).  DNA vaccines are traditionally 

delivered by the intramuscular (i.m.) route, which results in DNA uptake and antigen 

expression in myocytes.  Myocytes present the expressed antigen in the context of major 

histocompatibility complex (MHC) I molecules on the cell surface; however, as myocytes do 

not upregulate costimulatory molecule expression, other cell types most likely function as 

antigen-presenting cells (APCs) for immune activation (146) [reviewed in (189)]. Both local 

and recruited APCs, especially dendritic cells (DCs), become transfected and activate 

costimulatory molecules for direct activation of CD8+ T cells (389), or activation by cross 

priming (364).  DNA vaccines activate components of the innate immune system through the 

presentation of unmethylated CpG motifs present in bacterial DNA (182).  Bacterial DNA is 

recognized by toll-like receptor (TLR) 9 (see below), and stimulation of this pathway plays a 

pivotal role in the immunogenicity of DNA vaccines (14). 

DNA vaccines may be advantageous under various experimental conditions, 

including as a tool in neonatal or early childhood vaccines, when maternal antibodies are 

present.  Traditional vaccines which are reliant upon the authentic particles initiating 

infection or presenting antigen to the immune system are susceptible to interference by 

placentally-transferred antibodies (334).  As DNA delivery does not deliver any antigens 

which maternal antibodies can recognize, DNA vaccines may circumvent maternal antibody 

interference (333).  DNA vaccines have proven effective in numerous infectious disease and 

cancer models [reviewed in (80, 365)] either alone, or as components of an alternative prime 
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boost system; and therefore may enable the production of safe, efficacious vaccines in the 

future. 

 

Adjuvants.  Adjuvants were originally defined by Ramon as, “substances used in 

combination with a specific antigen that produced a more robust immune response than the 

antigen alone”  (306) [reviewed in (264, 335)].  Adjuvants can function to improve vaccine-

induced immunity in numerous different ways, including 1) increasing immunogenicity of 

weak antigens, 2)  enhancing the speed and/or duration of the immune response, 3)  

modulating antibody avidity, specificity, isotype, or subclass distribution, 4)  stimulating 

cytotoxic T lymphocytes (CTLs), 5)  promoting mucosal immune induction, 6)  increasing 

immunity in immunologically immature or senescent individuals, 7)  decreasing the antigen 

dose in a vaccine required to induce a protective response, or  8)  helping to overcome 

antigen competition in combination vaccines (264, 335).  Here we briefly introduce several 

common and new adjuvant systems and what is known regarding their mechanism/s of 

action. 

 

Alum.  While the adjuvant activity of aluminum-based mineral salts, or alum, was 

discovered over 80 years ago (117), it is, to this day, the only adjuvant approved in licensed 

vaccines by the Food and Drug Administration (FDA) in the United States (174).  It has been 

extremely difficult to precisely determine the mechanism/s of adjuvant activity associated 

with alum, as it has profound effects on numerous systems following in vivo delivery (42).  

The original hypothesis suggested that alum exerted its adjuvant activity by means of a 

“depot” effect, that is the deposition of antigen in the immune system for continued immune 
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stimulation (116); however, this notion has been challenged recently (124).  The major effect 

of alum appears to be the regulation of the Th1/Th2 environment (247) by promoting the 

production of Th2 cytokines, particularly interleukin (IL)-4 (362) and antibodies of the Th2 

IgG subtype, IgG1 (210).  Interestingly, alum still exerted a significant adjuvant effect in IL-

4 knockout (KO) mice (43), IL-13 KOs (43), IL-6 KOs (41), and tumor necrosis factor (TNF) 

receptor KO mice (41).  The production of IL-4 following alum delivery was markedly 

reduced in IL-18 KO animals; however, the production of IgG1 antibodies was not affected 

(296).  Alum has not proven an effective inducer of Th1 cytokines nor activation of delayed 

type hypersensitivity (DTH) reactions (127), consistent with a strong skewing towards Th2 

responses.  Together, these observations typify the complexity of the cytokine networks 

active following adjuvant delivery and underscore the difficulty in attributing adjuvant 

effects to a single immunological mechanism.  

 

Freund’s adjuvant/s.  Similar to the alum story, incomplete Freund’s adjuvant (IFA) 

and complete Freund’s adjuvant (CFA) were discovered over fifty years ago, and the 

mechanism of adjuvant activity remains elusive to this day (101) [reviewed in (22)].  IFA is 

composed of a paraffin oil surfactant mixture that, when mixed with antigen, forms a viscous 

water-in-oil emulsion with antigen in the water phase (101).  CFA also contains preparations 

of heat-killed Mycobacterium (M. tuberculosis and/or others) which play a significant role in 

immunogenicity (22)].  Like alum, CFA and IFA provide a potent adjuvant signal for the 

activation of antibody responses to co-delivered antigens (386).  Interestingly, CFA, but not 

IFA, induces cell-mediated immune responses in addition.  This observation suggests that the 

presence of Mycobacterium preparations drives T cell activation.  This is the case, as 
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cytokine profiles are dramatically shifted towards a Th1 phenotype with CFA as compared to 

IFA (137, 390).  Both CFA and IFA upregulate the  phagocytic activity of APCs (261) and 

have dramatic effects on antigen localization (22).  Interestingly, both CFA and IFA delivery 

appear to trap antigens, at least at early times post delivery, in the subcapsular sinuses of the 

draining lymph nodes, potentially providing an immunological locale for lymphocyte 

activation (177, 209).  This suggests that, unlike the induction of cell-mediated immunity, the 

antigen entrapment function of Freund’s adjuvant is attributable to the oil-in-water emulsion 

alone.   

While IFA and CFA have provided valuable tools as a vaccine adjuvants, there are 

detrimental effects of their use as well.  Both adjuvants are associated with moderate to 

extreme local inflammation in all species tested to date, including small rodents and humans 

(22, 340).  Additionally, both IFA and CFA are associated with the formation of granulomas, 

or tubercles in treated animals, especially following repeated treatments (374).  Granulaoma 

formation was dependent upon adjuvant-induced TNF-α  (176), which may also play a role in 

the adjvanticity of Freund’s (22).  Together, these observations support the notion that 

Freund’s adjuvants are potent immunomodulators and illustrate the balance which must be 

struck between immunogenicity and toxicity for the widespread use of vaccine technologies 

in humans.   

 

TLR ligands.  It has been suggested that the overall goal of adjuvants, in the context 

of vaccines for infectious diseases, is to ensure that the vaccine mimics natural infection 

accurately enough to promote induction of protective immunity (96, 157) [ reviewed in (192, 

279, 301, 335)].  Therefore, stimulation of the receptors which first “sense” natural infection 
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may serve as a potent adjuvant strategy.  TLRs are among the pattern recognition receptors 

(PRRs), which recognize conserved pathogen-associated molecular patterns (PAMPs) (158).  

The Toll proteins were originally discovered in Drosophila, recognized for their role in the 

induction of anti-fungal responses (202).  Eleven different TLRs have been identified to date 

(279), each receptor recognizing a distinct PAMP or set of PAMPS (382):  TLR1 and TLR 2 

recognize ligands from gram-positive bacteria (129, 330, 367); TLRs 4 and 5 recognize 

products from gram-negative bacteria (105, 136, 298); TLR 9 recognizes bacterial DNA 

(353); and TLRs 3, 7, and 8 recognize viral RNA (5, 138).  TLR ligation triggers a complex 

intracellular signaling cascade (266) involving the adaptor molecule myeloid differentiation 

factor 88 (MyD88), ultimately culminating in the activation of the transcription factor NF-kB 

and the release of pro-inflammatory cytokines such as IL-6, IL-12, and TNF-α (3, 352).  

Signaling via TLR3 and TLR4 also utilize additional adaptor molecules to mediate cellular 

responses (387).   

TLR ligands in general have pleiotropic effects following in vivo delivery, and while 

commonalities exist in terms of responses induced by all TLR agonists, stimulation with a 

given TLR agonist may promote a slightly different response than others (301).  For this 

reason, here we consider the adjuvant activity of CpG DNA as a representative TLR agonist, 

mindful that different TLR agonists may regulate immunity to co-delivered antigen in a 

different manner.  Delivery of CpG DNA has dramatic effects in vivo,  including increased 

cellular migration towards the draining lymph node (368), increased costimulatory molecule 

expression on DCs (135), increased cytokine production (156), and increased immunity 

directed towards co-delivered antigen (73, 183).  CpG DNA promotes the production of 

IgG2a antibodies (56), as well as an increase in cell-mediated immune responses (55) 
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directed towards a co-delivered antigen, consistent with a Th1 phenotype.  CpG DNA 

provides a potent adjuvant signal either when used alone, or in combination with other 

traditional adjuvants (153).   

The promising results obtained with CpG DNA as a vaccine adjuvant have raised the 

question of involvement of TLR triggering as a general mechanisms of action of adjuvant 

activity.  Querec et al. recently proposed multiple TLR stimulation as a critical mechanism 

responsible for the efficacy of the yellow fever virus (YFV) 17D vaccine, one of the most 

successful and safe vaccines utilized in humans (304).  Indeed TLR signaling plays a critical 

role in mediating the adjuvant effect associated with CFA, evidenced by the observation that 

T cell proliferation and IFN-γ production were abrogated in MyD88 knockout mice, which 

are defective in TLR-mediated signaling (328).  However, a generalized role for TLR 

signaling with traditional adjuvants has been called into question recently, given the fact that 

some traditional adjuvants including CFA do retain activity in MyD88 knockout animals 

(104).  It is clear TLR ligands in general, and CpG DNAs specifically, possess potent 

immunomodulatory effects which may be harnessed as tools in vaccinology; however, the 

details of how generalized a role TLR signaling plays with traditional adjuvants remains to 

be fully elucidated.   

 

Authentic infections provide adjuvant effects.  As mentioned above, adjuvants have a 

place is vaccinology as a means to more accurately mimic the events which occur following 

natural infection which lead to potent immune induction (96, 157) [ reviewed in (192, 279, 

301, 335)].  Delivery of TLR ligands is an example of a reductionist approach to defining the 

individual components amongst a complex infection environment which are responsible for 
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immune induction, and harnessing them separately for use as immunomodulatory modalities. 

While potentially less satisfying from a definitive mechanistic point of view, it is possible 

that the holistic approach of simply relying on natural infection to provide an adjuvant signal 

may in fact provide an even stronger adjuvant effect that any one constituent alone, as 

proposed for the YFV vaccine (304).  While this principle has not been tested vigorously in 

animal models, it is clear that natural infection with several viruses and bacteria do provide 

an adjuvant signal.   For example, bacterial DNA provides an adjuvant signal in the form of 

CpG DNA described above, as does infection with bacteria from which the DNA was 

isolated.  This is  demonstrated by the observed adjuvant activity of  Mycobacterium 

tuberculosis (22), Corynebacterium parvum (375), and Bacillus firmus (244).   

It is possible that the adjuvant effect observed following bacterial infection is due 

entirely to the presence of CpG DNA present in the bacterial genome; however, such an 

explanation does not account for the adjuvant effect observed following virus infection.  

Various forms of adjuvant effects have been observed with influenza virus (44), poxviruses 

(152), adenovirus (152), oka varicella zoster virus (287), lactic dehydrogenase virus (263), 

and alphaviruses (65, 151).  Interestingly, adjuvant effects were observed with non-

replicating virus particles derived from parvovirus (27) as well as the alphaviruses (142, 

358), suggesting that early events in the virus replication cycle are capable of triggering an 

adjuvant signal.  Consistent with this idea, adjuvant activity in the alphavirus system was 

dependent upon RNA replication (358) and type I interferon signaling (142).   Together these 

examples are supportive of a role for natural viral and bacterial infections as adjuvant tools.   
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Viral expression vectors.  As mentioned above, considerable effort has gone into 

understanding the specific mechanisms by which natural infections promote immune 

induction.  While much is known regarding the general principles, there is paucity of 

knowledge regarding the specifics.    Viruses have evolved highly efficient mechanisms for 

both infecting cells and generating new copies of the viral genome and structural 

components.  While the strategies employed by different viruses vary widely, cell entry and 

genome replication are commonalities of all successful infections.  This concept is exploited 

by live attenuated vaccines as described above.  It is also exploited by viral-based expression 

vector systems.  In this case, molecular genetic approaches are employed to generate 

recombinant viruses which express a heterologous gene as a vaccine antigen [reviewed in 

(40, 84, 198, 337)].  Vaccine expression systems have also been developed based upon a 

number of bacterial genomes [reviewed in (82, 139)]; however, here we focus on viral-based 

delivery systems.  Here we describe the salient features of some of the most promising viral 

expression vector systems. 

 

Poxviruses.  Poxviruses are large, complex viruses which contain a double-stranded 

DNA genome ranging in size from 130-300 kilobases (kb) (165) and exhibit a number of 

advantageous characteristics as vaccine vectors.  First, these vectors are very stable and 

retain effectiveness following lyophilization, a real advantage as cold chain problems 

represent a significant impediment to vaccine distribution, especially in the developing world 

(337).  Second, poxvirus vectors are relatively easy to produce, cost effective, and versatile, 

as they are effective following delivery via multiple routes, including mucosal delivery (see 

below).  Pre-existing immunity, which can be a problem with some vaccine vectors, can be 
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overcome with mucosal delivery (337), as the systemic and mucosal immune systems are 

distinct (145).  The most widely used vectors are based on attenuated strains such as 

modified vaccinia Ankara (MVA) (346), NYVAC (based on the Copenhagen strain of 

vaccinia) (354), as well as viruses which naturally infect alternative species such as 

canarypox (355) or fowlpox (356).   

Poxvirus vectors have proven to be potent inducers of humoral and cellular immunity 

in numerous experimental systems, as well as inducers of mucosal immunity following 

mucosal delivery (see below) (107).  Poxviruses induce measurable protection in several 

infectious disease models including SHIV (6), influenza (347), measles (341), and others.  

Another advantage of the poxvirus system is the ability to incorporate large amounts of 

foreign DNA into recombinant viruses.  Up to 10 kb of heterologous DNA can be inserted; in 

fact, poxvectors induced protection/immunity to up to 3 foreign genes from 3 separate 

pathogens in the same recombinant vector (282).  These observations support the pursuit of 

poxvirus vaccine vectors for improved human vaccines. 

 

Adenovirus.  The adenoviruses (Ad) are members of the Adenoviridae family, and 

have been used extensively as live vaccines in the US Army (337).  Ad contains a double-

stranded DNA genome of approximately 35 kb and display a number of important features 

which promote their use as vaccine vectors including stability, ease of manipulation, 

feasibility of high titer production, and simple purification (337).  As with poxviruses, Ad is 

active following lyophilization and functions as a potent gene delivery vector following 

delivery by the intranasal, oral, intratracheal, intraperitoneal, intravenous, intramuscular, or 

subcutaneous routes, allowing tailored use based upon the specifics of the desired immune 
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response (337).  Replication-incompetent Ad vectors have been engineered which either lack 

structural components required for virion assembly all together or harbor mutations in the 

structural components.  These replication-incompetent constructs are likewise extremely 

immunogenic as vectors (191).   

Potential concerns regarding the use of Ad-based vaccines that have arisen are the 

potential for inhibition by pre-existing immunity to the virus, the relatively small payload for 

heterologous sequence, especially with replication competent vectors, and the virus-induced 

inflammatory response (40, 337).  Strategies to deal with these concerns have been 

developed including the use of alternative strains of Ad to circumvent pre-existing immunity 

and oral delivery to limit the systemic inflammatory reaction (40, 337).  Recombinant Ad 

expression vectors have demonstrated protective efficacy as vaccines for important 

pathogens such as SHIV(332), Ebola (345), measles (323), and  malaria (314).  Ad provide a 

powerful tool in vaccinology and an opportunity to study virus-induced immunity. 

 

Alphaviruses.  Alphaviruses are small, single-stranded RNA viruses of the 

Togaviridae family.  Alphaviruses contain a message sense genome of approximately 12 kb 

and have proven to be effective vaccine vectors.  Expression vectors based on Sindbis virus 

(SIN), Semliki forest virus (SFV), and Venezuelan equine encephalitis virus (VEE) have all 

shown promise in preclinical studies in both infectious disease and cancer models [reviewed 

in (77, 214, 215, 297, 307, 312, 325)].  Both replication-competent and replication-defective 

vector systems have been developed.  Alphavirus vectors are active following many 

parenteral delivery routes as well as following mucosal delivery.  Replication-defective 
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vectors, or replicon particles, have the structural gene cassette replaced with the heterologous 

gene and therefore infect cells, but fail to produce new progeny virions.  (324, 342) 

The alphavirus display numerous advantages as vaccines in that they are simple to 

work with, produce large amounts of heterologous transgene product, target DCs in vivo 

(103, 218) , and induce robust humoral, cellular, and mucosal immunity (77, 214, 215, 297, 

307, 312, 325).  Additionally, as the majority of the human and veterinary population has not 

been exposed to most of the alphaviruses, pre-existing immunity is not predicted to be 

prohibitive.  Protective immune responses have been demonstrated with a number of 

important pathogens such as influenza virus (74, 303, 329), Ebola virus, (302), SIV (75, 

248), as well as a number of bacterial toxins (197, 199).  Alphavirus vectors have 

demonstrated promise as vaccine expression vectors and are under development for vaccines 

in numerous additional model systems.  A more extensive review of alphavirus-induced 

immunity, especially in the context of mucosal immune induction is found in the VEE 

section of this review.   

 

Novel Delivery Techniques 

 As mentioned above, the majority of vaccines are delivered by a parenteral route 

(288).  The most common methods employ either intramuscular or subcutaneous delivery.  

Under these conditions, antigens and vaccines access the skin DC system and are reliant 

upon the function of skin-derived APCs and lymphatics to deliver antigens to the draining 

lymph node/s to initiate immune induction (351).  While parenteral delivery results in 

efficient stimulation of systemic immunity, this technique typically fails to stimulate a 

response that is active at the local mucosal surface (291).  Additionally, parenteral delivery 
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relies on the use of sterile syringes and needles, which can serve as an impediment, 

especially is resource-poor countries.  Still other complications with parenteral delivery exist, 

such as reactogenicity at the injection site, training of vaccinators, and contamination with 

blood after multiple users of the same syringe (108).  Therefore, additional delivery methods 

are under development in an attempt to circumvent some of the pitfalls associated with 

traditional delivery approaches.  For example, mucosal antigen delivery is an efficient 

method for stimulating systemic, but more importantly mucosal immunity, and various 

needle-free delivery techniques are being explored.  Here we briefly summarize some of the 

promising non-parenteral delivery methods in use.   

 

Mucosal immunization.  The term mucosal immunization refers to antigen or vaccine 

delivery across a mucosal surface (252).  The ideal mucosal delivery system should satisfy a 

set of important requirements.  Effective systems should be protected from both physical and 

enzymatic barriers which exist at the mucosal surface, target the vaccine to the appropriate 

mucosal lymphoid environment for immune induction (see below), and orchestrate the 

induction of the appropriate innate signals to fully activate antigen-specific adaptive 

immunity at the mucosal surface (148).  In theory, all mucosal surfaces are equally good 

candidates for mucosal vaccine delivery; however, some practical limitations impede antigen 

delivery across the vaginal and rectal surfaces as well as the conjuctiva (204).  Thus, delivery 

of antigens by the oral and nasal routes represent two of the most promising mucosal delivery 

strategies (205).  Here we discuss some of the successful mucosal vaccines as models of 

mucosal immunization. 
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 Oral vaccines.  Oral vaccine delivery has proven effective in several systems.  The 

most widely used mucosal vaccine is OPV, developed some 45 years ago (348).  Following 

oral delivery, OPV replicates in the gut and efficiently delivers viral antigens to the gut-

associated lymphoid tissue.  This local infection triggers the induction of a strong intestinal 

humoral immune response (81, 170).  Immunogenicity of OPV is one of the factors 

contributing to the largely successful eradication of polio, as is the fact that OPV is simply 

delivered by a single-dose disposable pipette and requires only a single immunization.  These 

characteristics have proven important in the eradication campaign (108).  The success of 

OPV has prompted hope for the development of other oral vaccines  (273).  However, the 

incidence of vaccine-associated paralytic poliomyelitis (VAPP), which causes approximately 

1 case per 2.9 million vaccinations, is cause for caution and signifies the potential dangers of 

live attenuated vaccines (4, 175).   

 Two additional live oral vaccines were developed based on the knowledge gained 

from OPV for vaccines against cholera and typhoid fever (108).  The live attenuated strain 

Salmonella typhi Ty21a was developed in the 1970s and has proven to be well tolerated and 

safe (108).  This vaccine induces protection in 60-80% of vaccinees for at least 5-7 years, 

demonstrating its efficacy as a human mucosal vaccine (81, 206).  Likewise,  a single oral 

inoculation of the cholera strain, CVD 103-HgR, induced 60-100% efficacy and few adverse 

effects (81, 359).  An additional oral vaccine, a human-rhesus rotavirus reassortant was 

developed as a rotavirus vaccine; however, it was withdrawn from the market due to safety 

concerns with vaccine-induced intussusception (254, 255).  While intussusception was 

clearly observed in vaccinees, the incidence was not significantly increased as compared to 

unvaccinated children of the same age group (284).   



 23

 A number of new technologies have been developed in the arena of oral vaccines.  As 

mentioned above, oral delivery of viral and bacterial expression vectors represents a 

promising area of oral vaccine development.  Additionally, new successful oral vaccine 

technologies have been developed, such as strong mucosal adjuvants like the bacterial 

enterotoxins (149), the development of oral edible vaccine approaches (343, 344), and oral 

delivery of many of the established parenteral vaccines.  The area of mucosal adjuvants will 

be reviewed in the next section in detail.   

 

Nasal Vaccines.  Nasal vaccine delivery is an active area of inquiry, and here we 

highlight one of the more recent success stories.  The traditional influenza vaccine consists of 

a trivalent inactivated preparation which is delivered parenterally.  This vaccine induces a 

strong serum IgG response which protects the lungs from complications associated with 

lower respiratory tract (LRT) infection; however, it does not inhibit virus replication in the 

upper respiratory tract (URT) (57, 71, 72, 144).  Therefore, a cold-adapted influenza virus 

was selected for its ability to grow at the colder temperatures of the URT, but that would not 

replicate at the higher temperatures of the LRT (64).  The cold-adapted vaccine appears to be 

safe and much more immunogenic, due to the fact that it more accurately mimics natural 

infection (1, 64).  Other methods for increasing the immunogenicity of nasal vaccines include 

the use of mucosal adjuvants, as will be discussed below. 

 

Transcutaneous immunization.  Transcutaneous immunization (TCI) refers to a 

novel vaccine delivery technique in which vaccine antigens and adjuvants are delivered 

through the skin using a skin patch [reviewed in (111, 113, 114)].  Recently, the skin has 
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been appreciated not only as a barrier to antigen entry, but also as one of the largest 

immunological organs of the body, and a promising target for vaccine delivery (112, 113).  

The epidermis of the skin contains a significant number of powerful APCs called Langerhans 

cells (LCs), which take up skin derived antigens and transport them to the draining lymph 

node/s for immune induction (155).  The inclusion of strong adjuvants in skin patches 

dramatically increased LC migration and activation (63, 64).  TCI has proven to be a potent 

inducer of humoral and cell-mediated immune responses in numerous experimental systems 

and in rodent and human models (112-115).  Interestingly, TCI also results in potent mucosal 

antibody and T cell induction (17, 89, 118).  The mechanism by which TCI is capable of 

stimulating mucosal immunity in the absence of mucosal delivery is not completely clear; 

however, it is proposed that the TCI-activated skin DCs are induced to migrate to mucosal 

inductive sites to present antigen (17, 89).  TCI represents a promising new delivery 

technique which may enable the production of new efficacious vaccines against multiple 

pathogens, including mucosal pathogens.  

 

Concluding Remarks  

 Here we have highlighted what is known regarding the components of the immune 

system that are activated by vaccines, the immune correlates of protection with a select group 

of important human pathogens, and the current tools under development in vaccinology.  

This is not intended to serve as a complete list in any one of the mentioned areas, but instead, 

to provide a context in which to place the development of new vaccines and vaccine 

technologies.  We hope this affords the reader an appreciation of the simultaneous simplicity, 

and complexity of the interactions between vaccines and the immune system.  The previous 
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studies described here provide a strong foundation for discussion of new vaccine 

technologies, such as those introduced in this dissertation.  Hopefully, these new vaccine 

approaches will provide new tools in the fight against infectious diseases, and their study will 

lead to an improved basic understanding of pathogenesis and immunity associated with 

infectious organisms.   
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ORGANIZATION OF THE MUCOSAL IMMUNE SYSTEM 

 

Overview 

 The mucosal surface is classically defined as the mucus-covered exterior which 

serves as the body’s interface with the external world (231).  The epithelial structures lining 

the respiratory, gastrointestinal, and urogenital tracts as well as the exposed 

cornea/conjuctiva provide simultaneous absorptive and barrier function for nutrient uptake, 

oxygen exchange, and a path for waste excretion (234).  The mucosal immune system is 

charged with the daunting task of protecting the body’s vast mucosal surfaces from invading 

organisms, while simultaneously facilitating the uptake of critical nutrients from food 

particles as well as air exchange (259).  This objective is complicated by the fact that the 

mucosal immune system must differentiate harmful organisms from innocuous food and 

inhaled antigens (251, 257).   

It is estimated that approximately 90% of all human infections are initiated at the 

mucosal surface (234), and the surface area of the mucosa is extensive, at approximately 400 

m2 in humans (67, 150).  In turn, size and cellular makeup define the mucosal immune 

system as the largest immunological organ of the body (234).  The gut alone contains 

approximately 1012 lymphoid cells per meter of small intestine, accounting for the greatest 

number of immunoglobulin (Ig)-secreting cells, more than in all other lymphoid organs 

(spleen, bone marrow, peripheral lymph nodes) combined (234, 236).  IgA antibodies are by 

far the most prominent antibody isotype present in mucosal secretions (37, 231, 232, 237, 

238).  In fact, Conley and Delacroix estimated that adult humans produce between 2 and 4 

grams of IgA per day (61).  
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The activation of adaptive mucosal immune responses, including IgA-producing B 

lymphocytes, occurs within the organized mucosal-associated lymphoid tissue (MALT) 

(259).  Antigen transport into the mucosal lymphoid tissues initiates a complex cascade of 

events which ultimately culminate in the activation of lymphocytes with effector function at 

the mucosal surface (258, 259).  Here we review the anatomical basis of mucosal immune 

induction, with emphasis on the gut immune system, the anatomy and function of mucosal 

antibody responses, the role of mucosal adjuvants in stimulating the natural pathway of 

mucosal immune induction, and the evidence supporting the existence of an alternative 

pathway for mucosal immune induction.   

 

Anatomy of a Mucosal Immune Response 

 Organized mucosal lymphoid tissue.  The mucosal immune system is organized into 

mucosal inductive and mucosal effector sites.  Mucosal inductive sites, include the organized 

mucosal lymphoid tissues and are responsible for the activation of immune responses active 

at the diffuse mucosal surfaces, or the mucosal effector sites (181, 231).  Organized mucosal 

lymphoid tissues are present at all of the mucosal surfaces including in the digestive (276), 

respiratory (16), and genital mucosa (34).  While the specific organization of MALT differs 

between different mucosal surfaces, the aggregates of lymphoid cells at each surface perform 

the same function of directing luminal antigens into the correct anatomical context for the 

activation of antigen-specific immune responses (259).  A commonality amongst the primary 

lymphoid structures at all of the mucosal surfaces is the presence of a specialized epithelial 

surface covering the lymphoid aggregates (181).  In the Peyer’s patches (PPs) of the gut, this 

specialized epithelium is termed the follicle-associated epithelium (FAE) and contains the 



 28

microfold cells, or M cells, specialized epithelial cells which function to transport luminal 

antigens into the underlying lymphoid compartment (169). 

 The lymphoid cell component underlying the FAE has been studied in a number of 

animal models.  (24, 91, 92).  The follicle contains B cells, T cells, DCs, and macrophages.  

Most B cells in the actual corona of the follicle are surface IgM positive, whereas the B cells 

present in the germinal centers within the follicle have switched to the IgA isotype (195, 

233).  Both CD4+ and CD8+ T cells are localized in the inductive sites; however, the CD4+ T 

cells are predominantly located in the subepithelial dome, while the CD8+ T cells are found 

in the parafollicular zones (24, 91).  Both Th1 and Th2 CD4+ T cells (as defined by IFN-γ 

and IL-5 secretion, respectively) reside within the inductive sites of the mouse intestine; 

however, a greater proportion of Th2 cells exist throughout the lamina propria (181, 350) 

(see below). DCs and macrophages, in addition to M cells, play a critical role in sampling 

luminal antigens; however, the relative contribution of the various APC subsets varies 

significantly based upon the structure of the epithelial cell anatomy at the specific mucosal 

surface (259, 322). 

 

 Diffuse mucosal lymphoid tissue.  Following antigen delivery to the inductive tissues 

and subsequent lymphocyte activation, lymphocytes migrate through the general circulation 

and home to the diffuse mucosal effector tissues of the corresponding mucosal surface 

(reviewed below).  Once present at the mucosal surface, local signals drive further 

differentiation of activated cells where they mediate their effector functions at the local 

surface (91, 181).  Two distinct subsets of lymphocytes exist at the mucosal surface 

according to their specific localization; the intraepithelial lymphocytes (IELs) and the lamina 
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propria lymphocytes (LPLs).  The majority (approximately 80%) of the gut IELs in mice and 

humans are CD8+ T lymphocytes (181).  There are fewer IELs present at the nasal and 

respiratory mucosal surfaces, and a higher proportion of CD4+ T cells (385).  Within the IEL 

population, two distinct subsets of CD8+ T lymphocytes exist based on expression of the 

CD8 molecule.  Both CD8 α/β and CD8 γ/δ T cell populations are present (181).  γ/δ T cells 

are proposed to play a critical role in mediating defense to common bacterial infections in the 

gut (28).   

The second population of gut lymphocytes is the LPLs.  LPLs consist of 

approximately 40% B cells and 25% T cells (mostly CD4+).  Approximately 90% of the LPL 

B cells produce IgA antibodies as well as secrete Th2 cytokines, along with the CD4+ T cells, 

and epithelial cells, promoting IgA class switch (39, 331, 350).  It is thought that Th1 cells in 

the LPL compartment produce IL-2, which activates proliferation of all T cells, including 

Th2 cells, which in turn secrete large amounts of IL-5, IL-6, transforming growth factor beta 

(TGF-β), and other cytokines to orchestrate the efficient IgA class switch signal (224, 336).  

Together, these lymphocyte populations provide the first line of adaptive defense at the local 

mucosal surface, and are critical for protection from mucosal pathogens (35). 

 

The Natural Pathway for Mucosal Immune Induction 

 Mucosal immune responses are most efficiently induced following antigen/pathogen 

delivery at the local mucosal surface (231).  In turn, the natural pathway for mucosal immune 

induction is defined as the cellular mechanism by which adaptive mucosal immune responses 

are activated following mucosal delivery.  Much is known regarding the programming that is 

initiated in mucosal tissues and culminates in the localization of antigen-specific cells at the 
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mucosal surface.  Here we outline those events and the characteristics of mucosal IgA 

antibodies at mucosal surfaces.   

 

Mucosal lymphocyte homing.  Following activation in the mucosal inductive tissues 

lining each mucosal surface, a complex cascade of events is initiated which directs those 

activated cells to migrate back to effector sites at that mucosal surface.  This differs from the 

homing program initiated following antigen encounter in a peripheral lymph node.  In 

general terms, lymphocytes activated in a mucosa-draining lymphoid tissue are programmed 

to migrate back to effector sites at that mucosal surface, whereas lymphocytes activated in a 

non-mucosa-draining lymphoid tissue (i.e. peripheral lymph node or spleen), as occurs 

following parenteral vaccine delivery, are directed elsewhere (46).  In this regard, the 

regulation of homing to the mucosal surface represents a critical checkpoint in the natural 

pathway of mucosal immune induction (187).   

Classical adoptive transfer studies demonstrated the propensity of cells isolated from 

mucosal lymphoid tissues to preferentially repopulate the mucosal compartment following 

adoptive transfer (229, 316).  Since then, many of the mechanisms responsible for 

lymphocyte homing to the mucosal surface have been discovered and recently reviewed (46, 

186, 187).  Here we present an overview of the regulation of mucosal homing by endothelial 

cell-integrin interactions as well as specific chemokines and chemokine receptors (CCRs). 

 

Regulation of mucosal homing by lymphocyte-endothelial cell recognition.  

Transendothelial lymphocyte migration can be broken down into four key steps:  1) initial 

tethering; 2) activation; 3) arrest; and 4) diapedesis (46, 47, 234).  The initial tethering steps 
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are mediated through the interaction of lymphocytes with the high endothelial venules 

(HEVs).  The HEVs of peripheral lymph nodes express peripheral lymph–node addressins 

(PNAd), whereas the HEV of mucosal lymphoid tissues express mucosal addressin cellular 

adhesion molecule-1 (MAdCAM-1) (46, 47, 234).  L-selection (CD62L) is responsible for 

binding to PNAd, while the α4β7 integrin binds to MAdCAM-1.  The tethering and rolling of 

lymphocytes on the endothelium mediated by these interactions serve to slow lymphocyte 

movement and allow the establishment of more permanent interactions (234).  In the gut, 

rolling is mediated by both L-selectin and α4β7 integrin binding to MAdCAM-1 (20, 130).  

The activation stage involves signaling via a number of chemokine-CCR interactions and 

promotes firm arrest on the endothelium (50).  Following the establishment of firm contacts, 

lymphocytes next undergo transendothelial migration by diapedesis into the mucosal 

lymphoid area (46, 47).  This step is also regulated by the activities of a number of factors 

including α4β7 integrin-MAdCAM-1 interactions and numerous chemokines (95, 173, 311).  

Interactions between α4β7 integrin and MAdCAM-1 regulate mucosal homing at numerous 

levels and therefore  are proposed to be critical regulators of mucosal homing, especially in 

the gut (37, 38, 46, 47).   

 

Chemokine regulation of mucosal homing.  Recently, a number of chemokine-CCR 

interactions have been demonstrated to play a role in mucosal homing, especially in the 

recruitment of IgA-secreting cells to the gut mucosa.  Both thymus-expressed chemokine 

(TECK/CCL25)-CCR9 interactions, as well as mucosae-associated epithelial chemokine 

(MEC/CCL28)-CCR10 interactions play a critical role in the recruitment of IgA-secreting 

cells to the gut mucosa (31, 143, 194).  In fact, the α4β7 integrin, TECK, and MEC, all play a 
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role in the local IgA response to an important gut pathogen, rotavirus (97, 185).  Thus, CCR9 

and CCR10 expression, along with α4β7 integrin appear to regulate mucosal homing of IgA-

secreting cells (187, 188).   

 

 Architecture of mucosal IgA antibodies.  The respiratory and gastrointestinal 

surfaces of humans comprise approximately 100m2 and 300m2 respectively (161).  These 

surfaces are vulnerable to attack from various mucosal pathogens and require active effort for 

protection.  A number of innate protective mechanisms play a critical role in protecting the 

mucosal surfaces (300, 320); however, here we focus on the adaptive responses that are 

activated by vaccination and their roles in protection from mucosal challenge.  Secretory IgA 

(SIgA) is the most prominent antibody isotype in mucosal secretions and mediates protection 

of the mucosal surface in a number of experimental systems.  Here we review the structure of 

mucosal IgA, the mechanism by which IgA antibodies are transported into mucosal 

secretions, and the evidence for IgA-mediated protection at the mucosal surface. 

 

 Structure of mucosal IgA.  As mentioned above, IgA antibodies are the most abundant 

antibodies present in mucosal secretions; although IgG and IgM antibodies are also present 

and do play a role in mucosal defense (34, 239).  IgA antibody-secreting-cells (ASCs) 

present at mucosal sites are distinguishable from systemic IgA ASCs, as over 90% of 

mucosal IgA cells concomitantly express the joining chain, or J chain (20).  J chain is a 15 

kilodalton (kDa) protein incorporated into IgA molecules, most likely during trafficking 

through the endoplasmic reticulum, that facilitates the production of dimeric and/or 

polymeric forms of IgA (36, 37, 239).  Intracellular J chain expression has been observed in 
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IgG-secreting-cells as well; however, the J chain is not incorporated into secreted IgG and 

the reason for J chain expression in these cells is unclear (23).  IgA molecules form mostly 

dimers in the presence of J chain; however, trimeric and tetrameric polymers also have been 

observed (369).  

In humans, serum contains between 80-100% monomeric IgA, while dimeric and 

polymeric forms of IgA dominate in mucosal secretions (238, 239).  Increased levels of 

polymeric IgA has been noted in the serum of rodents, although the exact importance of this 

finding is unclear (318).  The importance of J chain in polymeric IgA production is 

evidenced by the observation that J-chain knockout mice exhibited a significant increase in 

the ratio of monomeric-to-dimeric forms of IgA.  J chain is also incorporated into pentameric 

IgM complexes (262).  J-chain-containing IgA and IgM antibodies are preferentially 

transported into mucosal secretions by an active transport mechanism (see below).  Thus, the 

physiological structure of mucosal IgA molecules facilitates their role in mucosal defense. 

 

Transport of IgA molecules into mucosal secretions.  The unique ability of IgA and 

IgM antibodies to polymerize into higher order structures is determined by the ability of the α 

and µ heavy chains to interact with J chain.  Two cysteine residues present in the human J 

chain form a disulfide bridge with the penultimate cysteines in the α and µ chain to form 

polymeric IgA and pentameric IgM respectively (161, 240).  Support for a role of J chain in 

the transport of IgA molecules into mucosal secretions comes from analysis of J chain 

knockout mice.  Decreased levels of fecal IgA antibodies were observed in J chain-deficient 

animals, suggesting that polymeric forms of IgA were transported across mucosal surfaces 

(140).   
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The original description of dimeric IgA at the mucosal surface demonstrated not only 

the addition of the J chain to IgA, but also an 80 kDa protein, designated as the ‘secretory 

piece’ (361).  We now know this component as the secretory component (SC), a proteolytic 

fragment of the poly Ig receptor (pIgR) which is retained in SIgA following transport through 

mucosal epithelial cells.  Much is known regarding the mechanism of IgA transport via the 

pIgR (167, 250).  The pIgR is a 100 kDa protein expressed on the basolateral surface of 

mucosal epithelial cells which binds to IgA in a J chain-dependent manner (162, 249).  The 

polymeric IgA-pIgR complexes are endocytosed and transported to the apical surface of 

mucosal epithelial cells.  During transport, disulphide bridges hold the complex together and 

proteolytic cleavage at the apical surface cleaves off the transmembrane domain of pIgR and 

releases SIgA into the mucosal lumen (10).  Support for the importance of this pathway 

comes from the observation that animals lacking the pIgR have severe defects in the levels of 

IgA and IgM antibodies in mucosal secretions (163).  Analysis of the structure and function 

of mucosal IgA transport suggests a clear relationship between the form and function of IgA 

molecules within the mucosal compartment. 

 

Role of IgA antibodies in mucosal defense.  As mentioned above, mucosal antigen 

delivery is the most efficient method of generating a mucosal IgA response.  Evidence from a 

number of experimental systems has demonstrated a correlation between the appearance of 

IgA antibodies in mucosal secretions and protection from challenge with influenza virus (58), 

rotavirus (63), polio virus (270), and cholera (160) [reviewed in (234, 319)].  While this 

correlation is strong and appears to be broadly applicable, the correlation alone does not 

prove that IgA provides a critical, non-redundant role in protective mucosal immunity.   
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Two lines of evidence support the notion that IgA antibodies provide a critical 

protective effect at the local mucosal surface.  First, systemic passive transfer of IgA 

antibodies is protective in several mucosal challenge models [reviewed in (319)].  Following 

systemic IgA transfer, IgA antibodies can be detected at the mucosal surface, suggesting they 

mediate protection at the local level; however, such antibodies are also present systemically, 

complicating that clear interpretation.  Interestingly, nasal administration of IgA antibodies 

mediated protection from an intranasal influenza challenge in mice (225), and intranasal 

challenge with respiratory syncytial virus in both mice (380) and monkeys (381) provides 

clear evidence for a role for IgA at the local mucosal surface.   

The second line of evidence comes from studies performed in IgA, and/or mucosal 

IgA deficient mouse models.  A number of IgA deficiency models exist including IgA 

knockouts (12), J chain knockouts (217), and pIgR knockouts (388), all of which exhibit 

increased susceptibility to mucosal challenge.  However, compensatory mechanisms exist in 

these models such as increased serum IgA (J chain and pIgR KOs), serum IgG/IgM, and 

increased mucosal IgG, clouding the interpretation of such studies (234).  Further definitive 

evidence for the protective capacity of mucosal IgA comes from an additional model system.  

In an elegant study, Renegar and Small (310) depleted IgA, IgG, and IgM antibodies 

specifically in the URT of influenza virus-immune animals by local delivery of specific anti-

immunoglobulin antibodies prior to/during a nasal influenza challenge.  The local depletion 

of nasal IgA, and not IgG or IgM, abrogated the protection observed in immune animals, 

providing strong evidence that mucosal IgA antibodies directly at the mucosal surface are 

critical for mucosal defense.  Together, these studies are consistent with a model in which 



 36

IgA antibodies are produced at the local mucosal surface following mucosal delivery, are 

transported into mucosal secretions, and provide a protective effect. 

 

 Stimulation of the natural pathway by bacterial enterotoxins.  In earlier sections of 

this review we have introduced the concepts of adjuvants as well as mucosal antigen 

delivery.  As we have now reviewed the anatomical basis of mucosal immune induction, here 

we summarize what has been learned regarding the natural pathway for mucosal immune 

induction using mucosal delivery of the bacterial enterotoxins: cholera toxin (CT) and labile 

toxin (LT).  The use of CT and LT as mucosal adjuvants has set the benchmark by which 

mucosal immune induction is measured, and serves as the “gold standard” for the evaluation 

of mucosal immunity in new experimental systems (33).  CT is used as an example of the 

mechanisms regulating mucosal immune induction, as well as a further example of the 

paucity of knowledge regarding the critical mechanisms of adjuvant activity.   

 CT, from Vibrio cholerae, is comprised of an A subunit with adenosine-diphosphate 

(ADP)-ribosly-transferase activity, and a pentameric B subunit (CTB) which mediates 

receptor binding to the cellular receptor, GM1-ganglioside (87).  The ADP ribosyl-

transferase activity of the A subunit has dramatic effects on vesicular membrane trafficking 

and organelle integrity in vivo (193).    Adjuvant experiments performed with CT enzymes 

harboring mutations in either the A subunit active site, B subunit active site, or both, 

suggested that both subunits were required to generate a full adjuvant effect (88); however 

other studies have demonstrated adjuvant activity with the B subunit alone, albeit not as 

strong as with the complete enzyme (149). 
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 As mucosal CT delivery is the most potent stimulator of the natural pathway, its 

adjuvant activity is typically studied under the assumption that its immunomodulatory effects 

are likewise the most efficient means of stimulating mucosal immune responses.  Therefore, 

the characterization of CT-induced immunomodulation provides a target level for induction 

with new adjuvants, in lieu of a single mucosal inductive mechanism.   CT, like most 

adjuvants, affects multiple aspects of the immune environment which alone, or in 

combination are responsible for immune induction.  These effects likely occur by multiple, 

overlapping mechanisms, as outline for systemic adjuvants (see above).  CT appears to 

induce a Th2-biased cytokine profile with strong production of IL-4, IL-5, IL-6, IL-10 and 

the production of IgA and IgG1 antibodies (147).  Further analysis has led to the conclusion 

that the B subunit has a more profound effect on Th2 polarization than either the A subunit 

alone, or delivery of the holoenzyme (32).  A role for Th2 cytokines in the adjuvant effect of 

CT is supported by the observation that CT failed to exert a mucosal adjuvant effect in IL-4 

deficient animals (371); however, IL-6 appears not to be necessary, as normal adjuvant 

effects were observed in IL-6 deficient mice (45).  As is true in IgA deficiency models, 

caution must be exercised in the interpretation of adjuvant activity in specific cytokine 

deficient models, as compensatory effects may occur in such animals.   

 In addition to cytokine production, CT induces recruitment and activation of DCs at 

the mucosal surface (9).  These effects may partially explain the strong effect of CT by 

modulating the cellular antigen presentation pathway.  In humans, CT is quite toxic and to 

date is inappropriate for inclusion in human vaccines.  However, much work has gone into 

the development of genetically detoxified mutants which lack the toxic effects while 

retaining adjuvant activity (2, 216).  The utilization of CT as a mucosal adjuvant has shed 
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new light on the mechanisms by which mucosal immune responses are activated, and if non-

toxic mutants still retain adjuvant activity in humans, should enable the development of 

mucosal vaccines in humans.   

 

An Alternative Pathway for Mucosal Immune Induction 

 There is no disputing that, to date, the strongest mucosal immune responses are 

observed following stimulation of the natural pathway for mucosal immune induction.  

Indeed, it has been suggested that localization of antigen to the MALT following mucosal 

antigen delivery is a prerequisite for mucosal immune induction (230-232).  However, 

protection from mucosal challenge, and production of local mucosal immune responses 

following nonmucosal delivery has been demonstrated in a number of experimental systems, 

suggesting the presence of an alternative pathway(s) for mucosal immune induction 

[reviewed in (30, 366)].  Unlike the natural pathway, antigen delivery across a luminal 

barrier appears not to be required for immune induction via this alternative pathway.  Here 

we briefly review the evidence supporting the existence of such a pathway and attempt to 

identify the commonalities amongst the individual examples as a means to determine the 

specific immunological mechanism(s) at work.   

The examples presented here are extremely varied, and a common unifying 

mechanism responsible for mucosal immune induction under all circumstances is not readily 

evident upon initial review.  Both virus infections as well as bacterial infections appear 

capable of promoting mucosal immunity through the stimulation of an alternative mucosal 

inductive pathway.  Peripheral, or nonmucosal delivery of a diverse class of viruses or viral 

vaccine vectors including rotavirus (59, 60), canarypox vectors (256), Venezuelan equine 
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encephalitis virus (51) and replicon particles (131, 212, 358), and Rubella virus (271) results 

in the presence of antigen-specific antibodies in mucosal secretions and/or the activation of 

antigen-specific T cells located at the mucosal surface.  Likewise, bacterial antigens/vectors 

derived from Listeria monocytogenes (285) and Haemophilus influenzae type  b (171) 

stimulate immunity at the mucosal surface following nonmucosal delivery. 

The examples cited above suggest that traditional nonmucosal delivery methods are 

capable of stimulating mucosal immunity.  In addition, several specialized nonmucosal 

delivery approaches have been developed which likewise promote mucosal immune 

induction.  One example is parenteral targeting of mucosal lymphoid tissues by the use of 

anti-MAdCAM-1 antibodies, which dramatically augment mucosal IgA production (235).  

As mentioned above, TCI in the presence of CT also induces potent mucosal immunity 

following delivery through the skin in both mice and humans (113, 115, 391).  Interestingly, 

an approach termed targeted lymph node immunization, which relies on direct antigen 

inoculation into a peripheral lymph node, also stimulates mucosal immunity in non-human 

primates (172, 201).   

Whether mucosal immune induction, following either traditional nonmucosal delivery 

or one of the specialized approaches outlined above, is in fact due to an intrinsic signal 

provided by a direct effect of the infectious agent/antigen itself or, instead, is due to an 

indirect effect, such as the induction of an immunoregulatory agent is unclear at this point.    

A number of candidate immunomodulatory factors have been identified including various 

forms of vitamin D3 (89) as well as a group of specific cytokines and chemokines (85) which 

potentially provide a mechanistic explanation for mucosal immune induction following 

nonmucosal antigen delivery. 
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The exact mechanisms underlying mucosal immune induction following nonmucosal 

antigen delivery have yet to be clearly elucidated.  The identification of such inductive 

mechanisms is an active area of inquiry in our laboratory, as well as several others.  In our 

estimation, the definition of the exact lymphoid tissues which serve as the critical 

components of the alternative pathway for mucosal immune induction is a crucial first step in 

defining the operative mechanisms.  In this report (Chapter 3), we provide supportive 

evidence for the inclusion of the draining lymph node in the alternative pathway for mucosal 

immune induction following footpad delivery of VEE replicon particles.  Whether the 

involvement of this lymphoid tissue in such an alternative pathway is common to the other 

examples remains to be determined.  In the next section of this review, we describe our 

current understanding of a peripherally-induced mucosal inductive pathway, as revealed by  

nonmucosal delivery of alphaviruses and alphavirus-derived vectors (see below).  The 

elucidation of the immunological mechanisms operative in an alternative mucosal inductive 

pathway may allow mucosal immune induction with parenterally-delivered vaccines, and 

therefore more efficacious vaccination protocols.   
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VENEZUELAN EQUINE ENCEPHALITIS VIRUS 

 

Overview 

 VEE is a member of the Togaviridae family and the alphavirus genus.  Further, VEE 

is a member of the New World alphaviruses, along with Eastern equine encephalitis virus 

and Western equine encephalitis virus.  These viruses possess the capability to cause a febrile 

illness and encephalitis in equines and humans (123).  The Old World alphaviruses, including 

SIN, SFV, Ross River virus (RRV), Chikungunya virus, and O’nyong-nyong virus, produce 

an arthritic and/or arthralgic disease characterized by fever and rash in humans (123).  All of 

the alphaviruses are arthropod-borne infections and are transmitted in nature by the bite of an 

infected mosquito (376).    

 VEE is maintained in nature in an enzootic cycle between mostly Culex mosquitoes 

and small rodents in North and south America (377).  Epizootics and epidemics are possible, 

especially with specific subtypes (I-AB and I-C) and can have a dramatic effect on equines, 

including as an amplification host for the generation of a high titer viremia (377).  VEE was 

first identified as the etiologic agent of equine encephalitis in Venezuela in 1938 when it was 

isolated from the brains of fatal cases of encephalitis in horses (184).  The first documented 

cases of naturally acquired human disease was identified in the 1950s in Colombia (321).  

Infection in equines results in a severe disease with mortality rates ranging between 20-80%; 

however; severe disease is much less common in humans with a neurological symptoms 

apparent in 5-15% of infections and mortality in less than 1% (377).  The implementation of 

the TC-83 vaccine, a live attenuated I-AB strain passaged in guinea pig heart cells 83 times 

(18), has gone a long way to curb VEE outbreaks where vaccination of equines is extensively 
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utilized (377).  The potential of epizootic outbreaks, as evidenced by the 1995 epidemic 

which affected up to 100,000 people in South America (378), along with the previous history 

of VEE as a potential agent of biological warfare (377), has stimulated great interest in 

understanding the biology of VEE infection. 

 

Genome Organization and Replication 

 Much of the knowledge of VEE biology and replication has stemmed from 

comparative studies with SIN in cultured cells.  VEE contains a message-sense, single 

stranded RNA genome of 11, 477 nucleotides which contains a 5’ methylguanosine cap and a 

3’ polyadenlyated tail.  The genome has considerable secondary structure and is divided into 

two regions:  the viral non-structural proteins (nsPs 1-4), responsible for RNA replication, 

are encoded at the 5’ two-thirds of the genome, while the structural components, the capsid, 

E3, E2, 6K, and E1 proteins, are encoded at the 3’ one-third of the genome, expressed from a 

separate subgenomic 26S promoter  (342).  The genome is encapsidated into an icosohedral 

nucleocapsid containing 240 copies of the capsid protein with T=4 symmetry (50) following 

specific interactions with the capsid protein and the encapsidation signal found in the nsP1/2  

gene region (102).  The nucleocapsid is engulfed in a lipid bilayer which harbors the viral 

glycoprotein spikes, composed of trimers of E1/E2 heterdimers, also with T=4 symmetry 

(342).   

 The receptor for VEE is currently unknown; however, c-type lectins (178), the 

laminin receptor (213), and heparin sulfate (HS) proteoglycans (21) have all been proposed 

as attachment receptors for VEE.  Binding to HS represents a tissue culture adaptation and 

most likely is not a natural receptor, as HS-binding viruses are all attenuated in vivo (21).  
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Following receptor-mediated endocytosis and fusion of viral and endosomal membranes 

triggered by low pH, or alternatively, the direct release of the genome through the plasma 

membrane after attachment (278), the viral RNA is directly translated by the host translation 

machinery into the precursor P123 or P1234, depending upon a low efficiency read through 

event at an opal termination codon just prior to nsP4 (342).  The P123 precursor and free 

nsP4, the RNA-dependent RNA polymerase, mediate the production of minus sense RNA 

during the first 3-4 hours post infection (342).  Following cleavage of the P123 complex into 

the individual nsP proteins, a shift occurs, driving the production of positive sense messages, 

including 5-10 fold molar excess of the subgenomic RNA over the genomic.  This ensures 

adequate production of the structural components required for assembly of new virions (342).  

Budding of newly assembled virions occurs at the plasma membrane following encapsidaton 

of full length genomic RNA and transport of newly made E1 and E2 glycoproteins through 

the endoplasmic reticulum (342).  Infection has dramatic effects on host cells including 

cessation of host RNA and protein synthesis and eventual apoptosis (119, 123). 

 

Pathogenesis and Control 

 A range of symptoms are exhibited in humans following VEE infection from little or 

no disease, to a fatal encephalitis (377).  A number of factors affect disease severity 

including age and genetic factors of the patient as well as the virus serotype (86).  Infection 

of humans with VEE results in fever, malaise, vomiting, and acute retro-orbital pain, 

following a 2-5 day incubation period.  In most cases, these symptoms subside within one 

week; however, in a minority of cases severe complications develop including convulsions, 

coma, and neurological sequelae.  In the <1% of fatal human cases, disease is accompanied 
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by diffuse congestion, edema with hemorrhage in the brain, lungs, and gastrointestinal tract 

(79, 86).  Interestingly, VEE infection causes a severe lymphopenia in humans, equines, and 

rodents (86, 377), which may result from either lymphocyte apoptosis or lymphocyte 

retention in peripheral tissues.  (79, 86, 377).  

 Several animal models of VEE pathogenesis have been developed over the years 

including macaques (246, 309), rabbits (68), and guinea pigs (68); however, the mouse 

model, in combination with the development of the infectious clone of the Trinidad donkey 

strain (78), has proven the best model to date.  In the mouse model, much like the disease 

course in equines, VEE exhibits a bi-phasic disease, with an early lymphotropic phase 

involving replication in peripheral lymphoid tissues, followed by a neurotropic phase, which 

ultimately culminates in a lethal encephalitis by day 6-8 post-infection (110).  The stepwise 

pathogenesis of virulent VEE, as well as molecularly cloned mutants, was recently 

demonstrated by Johnston and colleagues in the mouse model of VEE disease (11, 76, 121).   

The initial targets of VEE infection following footpad inoculation were identified by 

MacDonald and Johnston as DCs; specifically, LCs (218).  Infected DCs migrated to the 

draining lymph node (DLN) as early as 4 hours post infection (hpi) following footpad 

infection, where viral replication was detected at 6 hpi (121).  Viremia peaked at 12 hpi, and 

by 18 hpi, virus replication was rampant in numerous peripheral organs including the spleen, 

kidney, lung, and heart; although viral RNA was restricted to a subset of these tissues, 

suggesting the VEE serum viremia is a major source of virus at early times (121).  Peripheral 

titers peaked between 24-48 hpi; a time at which the virus begins to seed infection in the 

central nervous system (CNS) (76, 121).  CNS invasion likely occurs through infection of the 
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olfactory neuroepithelium and the trigeminal nerve (53), resulting in fatal encephalitis by day 

6-7 post infection (121).   

 Both innate and adaptive components of the immune system play a critical role in 

mediating protection from natural VEE infection.  A role for the type I interferon system is 

demonstrated by the observation that mice genetically deficient in the type I interferon 

receptor succumb to lethal VEE disease between 24-48 hpi (122, 383).  VEE-specific IgM 

and/or IgG antibodies appear to play an important role in clearance of VEE from the 

periphery (52) as well as the induction of protection following vaccination (123); however, 

antibody responses initiated during infection are not sufficient to prevent neuroinvasion and a 

lethal outcome following primary infection (123).  Infection with VEE, SIN, and SFV results 

in immunopathology in the CNS; although VEE, unlike the other alphaviruses, induces a 

lethal spongiform encephalopathy in animals devoid of functional lymphocytes, 

demonstrating the ability of VEE to directly damage neurons in the CNS (52). 

 

Protection from Mucosal Challenge and Mucosal Immune Induction 

 Mucosal immune induction and/or protection from mucosal challenge have been 

described in several VEE systems including attenuated virus mutants, as well as both 

replication-competent and replication-deficient viral vectors.  Here we review the evidence of 

mucosal immune induction, and discuss the putative inductive mechanisms under all three 

conditions. 

 

 Venezuelan equine encephalitis virus vectors.  In addition to attenuated VEE, two 

additional VEE vectors have been described.  The first, termed double promoter vectors, 
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contains a second cloned 26S subgenomic promoter expressing a foreign antigen, 

downstream of the authentic 26S promoter expressing the viral structural proteins (74).  

These replication-competent vectors express the foreign antigen in virus-infected cells and 

induce strong humoral and cell-mediated immune responses (74).  The other vaccine vectors 

are VRP, which are engineered such that the heterologous antigen is cloned in place of the 

viral structural genes.  These vectors express high levels of the heterologous transgene in 

infected cells; however, they fail to spread beyond the first infected cell as no new progeny 

virions are produced due to the lack of structural components (303).  VRP have proved to be 

effective inducers of protective immunity in several experimental models [reviewed in (77, 

214, 215, 297, 307, 312, 325)].  Here we describe the ability of VEE, VEE-based double 

promoter vectors, and VRP to induce protection from mucosal challenge and to induce 

mucosal immune responses, as well as discuss the putative inductive mechanisms in each 

scenario 

 

 Attenuated VEE mutants.  In nature, VEE is spread through mosquito bite, 

representing a subcutaneous challenge (377).  However, aerosol exposure of laboratory 

workers as well as threats of VEE as a bioterrorism agent warrant, the development of 

vaccines which are capable of protecting from a mucosal VEE exposure as well.  

Interestingly, nonmucosal delivery of attenuated mutants of VEE have been shown to induce 

protection from lethal aerosol challenge with virulent VEE in mice (51, 132-134, 286, 299), 

hamsters (299), and  monkeys (299, 308).  While attractive to speculate that peripheral 

delivery of attenuated VEE induced protection from mucosal challenge through the induction 

of a local mucosal immune response, this is not necessarily demonstrated by this observation.  
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However, VEE-specific IgG and/or IgA antibodies were in fact present in mucosal secretions 

following subcutaneous delivery of VEE mutants in mice (51, 132-134, 286) and monkeys 

(299), providing strong support for the notion that VEE stimulates an alternative pathway for 

mucosal immune induction which does not require delivery across a mucosal surface.  Hart et 

al. demonstrated that two attenuated mutants of VEE, the vaccine strain TC-83, as well as a 

virus harboring a mutation in the PE2 cleavage domain, V3526, both induced protection from 

aerosol challenge with virulent VEE, and likewise both induced VEE-specific IgA antibodies 

in bronchial lavage samples (133).  Interestingly, V3526 induced a stronger mucosal IgA 

response than TC-83, which correlated with stronger protection from mucosal challenge, 

suggesting that virus-induced mucosal IgA antibodies may mediate protection from virulent 

mucosal VEE challenge (133).   

 

 VEE-based double promoter vectors.  The examples cited above demonstrate that 

VEE induces local mucosal immune responses directed against itself following nonmucosal 

delivery, a response that likely mediates protection from a lethal mucosal challenge.  Double 

promoter vectors derived from VEE likewise induce protection from mucosal challenge and 

IgA antibody production at mucosal surfaces following nonmucosal delivery.  Davis et al. 

demonstrated that a VEE double promoter construct expressing the hemagglutinin (HA) gene 

from influenza virus not only protected mice from overt signs of clinical disease following a 

mucosal challenge with influenza virus, but also significantly reduced challenge virus 

replication in the URT, suggesting that local mucosal immune induction inhibited the earliest 

stages of challenge virus infection (74).  Additionally, Caley et al. demonstrated induction of 

matrix capsid (MA/CA)-specific IgA antibodies present in vaginal lavage fluids following 
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subcutaneous delivery of a double promoter VEE vector expressing the MA/CA gene from 

HIV-1.  Thus, VEE appears to be capable of inducing mucosal immune responses to the virus 

itself, as well as to antigens which are expressed from genetically modified virus vectors. 

 The mechanisms by which VEE and replicating VEE vectors induce mucosal 

immunity remains to be fully determined; however, Charles et al. (51) recently proposed a 

model to explain such an observation.  The central thesis of the natural pathway for mucosal 

immune induction suggests mucosal antigen delivery, as occurs following nasal or oral 

inoculation, is required to target antigen to the MALT, and to induce mucosal immunity.  

However, VEE induces mucosal immunity without the necessity of mucosal delivery.  

Charles et al. suggested that VEE induces mucosal immunity by delivering viral antigens to 

the MALT not across the mucosal barrier, but instead from the anatomical interior of the 

animal (51).  Consistent with this hypothesis, VEE efficiently replicates in the MALT tissues 

of the gut, providing a plausible mechanism by which viral antigens gain access to the 

mucosal immune system in the absence of mucosal delivery (51).  In further support of this 

notion, attenuated VEE mutants efficiently replicate in the PPs and mesenteric lymph node 

following subcutaneous vaccination, and not only protect animals from nasal challenge with 

virulent VEE, but also reduce challenge virus replication in the mucosal epithelium to below 

background levels (Richmond E. M., and Johnston, R. E., unpublished).  These observations 

are consistent with mucosal immune induction from the “inside out” as opposed to the 

natural “outside in” pathway.  Further experimentation will be required to validate such an 

hypothesis.   
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VEE replicon particles.  While studies with replicating VEE mutants and double 

promoter vectors have clearly demonstrated mucosal immune induction following 

nonmucosal delivery, the VRP system provides an opportunity to study mucosal immune 

induction with VEE under conditions in which the infection is limited to the first infected 

cells.  Protection from mucosal challenge with VRP has been demonstrated with influenza 

virus in mice (303) and chickens (329), Simian immunodeficiency virus in non-human 

primates (166), and Equine arteritis virus in horses (15).  Additionally, results from intranasal 

challenge of HA-VRP-immunized mice suggested that VRP reduced challenge virus 

replication in the URT to below the limits of detection (Richmond, E. M., Davis, N. L., 

Brown, K., West, A. C., and Johnston, R. E., unpublished).  These observations are 

consistent with a model of local mucosal immune induction; however, they are not definitive.  

Recently, mucosal immune responses have in fact been observed in animals immunized 

parenterally with VRP.  Antigen-specific IgG and IgA antibodies were present in gut 

mucosal secretions in two separate studies utilizing VRP expressing the major capsid protein 

from Norwalk virus (131, 212).  Likewise, analysis of immune responses in animals 

immunized in the footpad with VRP expressing influenza virus HA revealed production of 

HA-specific IgG and IgA antibodies both in the URT (358) and in vaginal secretions 

(Thompson, J. M., Richmond, E. M., Davis, N. L., and Johnston, R. E., unpublished) as well 

as antigen-specific IFN-γ-secreting cells in the URT (Thompson, J. M., Whitmore, A. C., 

Heise, M. T., and Johnston, R. E., unpublished).   

Replicon particles derived from SIN and SFV also have demonstrated induction of 

mucosal antibody and/or T cell responses, but only after a protocol involving mucosal 

delivery, not following nonmucosal delivery alone (19, 370).  Comparative immunogenicity 
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studies between SIN and VEE replicon particles have been performed recently.  Stronger 

antigen-specific CD8+ T cell responses were present in animals immunized with VEE 

replicon particles as compared to animals immunized with SIN replicon particles expressing 

the same antigen (283).  Interestingly, analysis of systemic immune induction with chimeric 

particles derived from VEE and SIN suggested that the increased immunogenicity phenotype 

was dependent upon the VEE RNA, regardless of whether the VEE RNA was enveloped in 

VEE capsid and glycoproteins or the SIN capsid and glycoproteins (283).   

Nonmucosal delivery of chimeric particles in which the RNA was derived from VEE, 

and the structural components derived from SIN resulted in antigen-specific IFN-γ-secreting 

cells at the local vaginal mucosal surface following heterologous vaginal boost (125), as well 

as strong protection in a mouse HIV challenge model (125).  Combined parenteral/mucosal 

delivery of VEE/SIN chimeras results in antigen-specific mucosal immunity in macaques as 

well (126).  Interestingly, Greer et al. recently demonstrated that parenteral delivery of 

chimeric particles expressing parainfluenza virus (PIV) antigens not only protected animals 

from clinical signs associated with mucosal challenge with PIV, but also reduced early 

challenge virus replication in the URT and LRT to levels below the limits of detection in 

both mice and hamsters (120), consistent with immune induction at the local mucosal level.  

While these examples warrant the further investigation of VEE/SIN chimeras, local mucosal 

immune induction following nonmucosal delivery has as yet only been observed with 

alphavirus replicon particles derived from VEE.   

Understanding the mechanism by which replication-defective VEE vectors promote 

mucosal immune induction represents an active area of inquiry.  Replication-competent VEE 

appears to access the MALT following nonmucosal delivery; it is possible that VRP-infected 
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DCs also target VEE antigens to the mucosal lymphoid tissues.  VRP promote the migration 

of infected DCs to the DLN.  It is possible that free VRP, or VRP-infected DCs, could 

migrate to the MALT and present antigen to the mucosal inductive sites in a manner similar 

to replication competent virus.  However, to date, there is no evidence of VRP-infected cells 

within mucosal lymphoid tissues following footpad inoculation (Thompson, J. M., 

Richmond, E. M., and Johnston, R. E., unpublished).   

 It is plausible that instead of targeting MALT following peripheral delivery, VRP set 

in motion the events required to activat mucosal immune responses in a non-mucosa-draining 

lymph node.  If this hypothesis were true, one would predict such a lymph node to exhibit 

markers of mucosal lymphoid tissues following VRP infection.  In fact, recent work supports 

such a notion (Thompson et al., in preparation, Chapter 3).  The DLN of VRP-immunized 

animals appears to serve as the earliest site of antigen-specific IgA antibody production, 

including production of polymeric forms of IgA.  Additionally, B cells present in the VRP 

DLN upregulate expression of the mucosal homing receptor, and MAdCAM-1 is expressed 

on the HEVs of the VRP-targeted DLN.  Moreover, analysis of cytokines present in the VRP 

DLN suggests the activation of a massive inflammatory response, with expression of several 

cytokines with documented roles in mucosal immune induction, including IL-6 and TNF-α.  

While further experimentation is required to validate such an hypothesis, all of these 

observations are consistent with a model in which the VRP-infected draining lymph node is 

converted into the functional equivalent of a mucosal inductive site.   

 

 Adjuvant effects.  Studies performed as early as the 1960s suggested that viral 

infection could dramatically affect the magnitude and duration of a concomitant immune 
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response to an unrelated antigen (263).  At the same time, a similar effect was demonstrated 

with an attenuated VEE in both mice (151) and guinea pigs (65).  This work demonstrated 

the adjuvant effect of replicating VEE on the generation of a humoral immune response to an 

antigen present in virus-infected animals.  Interestingly, the strongest adjuvant effect was 

observed when attenuated VEE was delivered 24 hours prior to antigen delivery (65).  In fact 

only a very modest increase in humoral immunity was observed when VEE was delivered 5 

minutes prior to antigen inoculation.  These observations suggest that VEE possess inherent 

immunostimulatory properties and strong adjuvant activity for the induction of humoral 

immunity. 

 Little, to no follow up work has been performed with replicating VEE adjuvants; 

however, we have recently demonstrated that the adjuvant effect of VEE is not dependent 

upon propagation and spread in vivo, as VRP likewise possess adjuvant activity (358).  

Further characterization of this effect demonstrated robust adjuvant activity for both systemic 

and mucosal antibody responses (358) as well as T cell responses in mice (Thompson et al, 

in preparation, Chapter 4).  The adjuvant effect was sensitive to ultraviolet (UV) light, 

suggesting that elements of VRP RNA replication play a critical role in immune induction 

(358).  Recently, replicon particles derived from SFV were also shown to possess adjuvant 

activity for systemic humoral immunity (142).  While the mechanistic explanation for the 

adjuvant effect appears to differ between the two systems in terms of sensitivity to UV, and 

dependence upon type I interferon signaling (discussed in Chapter 5), these observations 

suggest that alphavirus replicon particles possess intrinsic immunostimulatory properties 

independent of antigen expression and provide the basis for a novel vaccine technology.   
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DISSERTATION OBJECTIVES 

 

The purpose of the studies described here are the following: 

 

1) Identify the critical immunological and virological components responsible for VRP 

systemic and mucosal adjuvant activity, 

 

2) Define the mechanism(s) by which VRP promote mucosal immune induction 

following nonmucosal delivery, and  

 

3) Evaluate the efficacy of VRP adjuvants in protective vaccines 
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ABSTRACT 

Vaccination represents the most effective control measure in the fight against 

infectious diseases. Local mucosal immune responses are critical for protection from, and 

resolution of, infection by numerous mucosal pathogens. Antigen processing across mucosal 

surfaces is the natural route by which mucosal immunity is generated, as peripheral antigen 

delivery typically fails to induce mucosal immune responses. However, we demonstrate in 

this article that mucosal immune responses are evident at multiple mucosal surfaces after 

parenteral delivery of Venezuelan equine encephalitis virus replicon particles (VRP). 

Moreover, coinoculation of null VRP (not expressing any transgene) with inactivated 

influenza virions, or ovalbumin, resulted in a significant increase in antigen-specific systemic 

IgG and fecal IgA antibodies, compared with antigen alone. Pretreatment of VRP with UV 

light largely abrogated this adjuvant effect. These results demonstrate that alphavirus replicon 

particles possess intrinsic systemic and mucosal adjuvant activity and suggest that VRP RNA 

replication is the trigger for this activity. We feel that these observations and the continued 

experimentation they stimulate will ultimately define the specific components of an 

alternative pathway for the induction of mucosal immunity, and if the activity is evident in 

humans, will enable new possibilities for safe and inexpensive subunit and inactivated 

vaccines. 

 

INTRODUCTION 

The control of a number of important infectious diseases by immunization is arguably 

one of the most significant accomplishments of the 20th century (2). However, other 

infectious diseases remain intractable, causing devastating morbidity and mortality in human 
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populations, especially in resource-poor countries. Control of these diseases will depend on 

an expanded array of affordable and effective vaccine technologies, such as propagative and 

nonpropagative expression vectors based on viral and bacterial genomes. One such 

technology uses replicon particles based on the alphavirus Venezuelan equine encephalitis 

virus (VEE). VEE replicon particles (VRP) are potent inducers of antigen-specific immune 

responses and/or protection after pathogen or toxin challenge in various animal species 

including mice (31, 45), rabbits (17), cats (9), chickens (47), horses (3), guinea pigs (44), and 

nonhuman primates (25). Currently, VRP expressing the gag gene from HIV clade C are in 

phase-I clinical trials in the United States and Africa.  

VEE virions contain a positive sense RNA genome of 11.5 kb. The four viral 

nonstructural proteins, which constitute the enzymatic activity required for RNA replication, 

are encoded in the 5' two-thirds of the genome, whereas the viral structural proteins (capsid, 

E1, and E2) are expressed from a 26S subgenomic mRNA and encoded in the 3' one-third of 

the genome (27, 49). VRP are propagation-defective viral particles carrying a modified VEE 

genome. The VRP system takes advantage of the high-level expression of 26S mRNA by 

replacing the viral structural genes with a cloned antigen gene (45). Progeny virions are not 

produced in VRP-infected cells, as the viral structural genes are absent from the replicon 

RNA; however, the replicon RNA and the mRNA encoding the antigen are expressed at high 

levels after infection (20, 45). To facilitate assembly of VRP, the replicon RNA is 

coelectroporated into permissive cells with two defective helper RNAs that lack the viral 

packaging signal and provide the structural genes in trans (20, 45).  

VRP display a number of attractive features as vaccine delivery vehicles, including 

high-level antigen expression in infected cells (45), efficient in vivo targeting of mouse (34), 
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and primate (A. West and R.E.J., unpublished work) dendritic cells (DCs), efficient ex vivo 

infection of human DCs (40), and safety, as the vectors are incapable of synthesizing new 

virion particles in infected cells (20, 45). One of the most intriguing properties of VRP is their 

ability to induce significant protective immunity in mucosal challenge models, even when the 

immunization is at a nonmucosal site (3, 22, 25, 45, 47).  

The natural pathway of mucosal immune induction involves the direct delivery of 

immunogen to a mucosal surface and local processing of antigen in specialized aggregates of 

lymphoid tissue, termed mucosal inductive sites (35, 55). Stimulated lymphocytes then 

migrate to the corresponding mucosal surface where antigen-specific IgA and IgG are locally 

produced, and specific T cells reside to protect that mucosal surface from pathogen attack 

(10, 30). We show in this article that, unlike many vaccine vector systems that rely on 

mucosal delivery to access the natural inductive pathway, VRP are capable of inducing 

mucosal immune responses after nonmucosal delivery. Moreover, we demonstrate that this 

property is experimentally separable from VRP-driven immunogen production, as soluble or 

particulate immunogens can be simply mixed with VRP expressing an irrelevant transgene, or 

no transgene at all, to induce a mucosal response. Therefore, VRP exploit an alternative 

pathway for mucosal immune induction that is distinct from the natural pathway and suggest 

important applications of VRP as mucosal and systemic adjuvants in protein subunit or whole 

inactivated prophylactic vaccines and in immunomodulatory therapies for chronic diseases. 

 

MATERIALS AND METHODS 

VEE Replicon Constructs. The construction and packaging of VRP have been described 

(15, 45). Briefly, monolayers of baby hamster kidney (BHK) 21 cells (American Type 
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Culture Collection, passages 55-65) were coelectroporated with three RNAs transcribed in 

vitro: one replicon RNA, and two defective helper RNAs that lack the viral-specific 

packaging signal and drive the expression of the viral structural genes. The replicon 

constructs used in this study were (i) replicons expressing GFP (GFP-VRP), (ii) replicons 

expressing the HA gene from mouse-adapted influenza virus A/PR/8/34 (HA-VRP), and (iii) 

replicons that lack a functional transgene downstream of the 26S promoter (null VRP). Null 

VRP contain the viral nonstructural genes, 14 nt of VEE sequence downstream of the 26 

mRNA transcription start site, an inserted 43-nt-long multiple cloning site, and the 118-nt 3' 

UTR. All VRP were quantitated by infection of BHK cells followed by detection of infected 

cells by using either immunofluoresence (GFP-VRP), immunocytochemistry with antisera 

against HA for HA-VRP, or sera collected from animals immunized with null VRP for null 

VRP. Titers are expressed as IU. All replicon particles used in this study were packaged in 

the wild-type (V3000) envelope (45).  

Animals and Immunizations. Seven- to 8-week-old female BALB/c mice (Charles River 

Laboratories) were immunized with a 10-µl volume containing various VRP and/or soluble 

antigens either in the rear footpad by using a Hamilton syringe and a 30-gauge needle or 

intranasally by using a micropipette. Grade V chicken egg albumin (OVA) was purchased 

from Sigma, CT was purchased from List Biological Laboratories (Campbell, CA), and CpG 

DNA (ODN 1826) was purchased from Invivogen (Montreal). Formalin-I-Flu (Charles River 

Laboratories) was dialyzed against PBS in a Slidalyzer cassette (Pierce) according to the 

manufacturer’s guidelines before immunization. Diluent consisted of endotoxin-free, filter-

sterilized PBS, except for the experiment described in Fig. 1, in which 110 mM Ca2+, 50 mM 
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Mg2+, and 0.1% (vol/vol) donor calf serum were included. All animals were primed and then 

boosted 4 weeks later, either in the footpad or intranasally.  

Inactivation of VRP by UV Treatment. Null VRP preparations were diluted to a 

concentration of 106 units/ml, and 0.2-ml aliquots were placed in individual wells in a 48-well 

tissue culture plate. The plates were exposed to a UV lamp (Sun-Kraft, Chicago) at a distance 

of 5 cm for 20 min. This procedure ablated infectivity of two related alphaviruses (R. 

Shabman and M. Heise, personal communication). The effect of UV treatment was assessed 

by immunocytochemistry after infection of BHK cells. No VRP-infected cells were 

detectable in vitro after infection of baby hamster kidney cells with undiluted UV-VRP (data 

not shown).  

Sample Collection. Animals were bled either from the tail vein or after cardiac puncture, and 

sera were analyzed by ELISA (see below). Preparation of fecal extracts was modified from 

Bradney et al. (7). Briefly, ≈100-150 mg (5-8 pellets) of fecal material was freshly isolated 

from individual animals and placed into fecal extract buffer [PBS containing10% (vol/vol) 

normal goat serum and 0.1% (vol/vol) Kathon CG/ICP (Supeleco)] and vortexed for 10-20 

min until pellets were completely disrupted. Samples were then centrifuged at 12,000 × g for 

20 min and supernatants were transferred to new tubes and stored at -20°C. Although 

sampling variability may have been introduced by not directly weighing each sample, this 

variability was small relative to differences in immune responses between experimental 

groups and is considered in the statistical analysis comparing inoculation groups. Vaginal 

lavage was performed by washing the exterior vaginal opening with 0.07 ml of PBS 8–10 
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times. Wash fluid was stored at -20°C and centrifuged at 12,000 x g for 10 min before 

analysis.  

Lymphoid Organ Cultures. Lymphoid cultures, originally developed by Cebra and 

colleagues (33), were modified from Coffin et al. (12). Briefly, spleen and nasal tissue (tissue 

remaining after removal of nasal-associated-lymphoid tissue) were dissected from 

immunized animals and placed into Eppendorf tubes containing 1 ml of wash buffer (Hanks’ 

balanced salt solution containing 100 units/ml penicillin, 100 µg/ml streptomycin, 110 mM 

Ca2+, 50 mM Mg2+, and 15 mM Hepes) and washed three times by aspiration and 

resuspension. Nasal tissue from each individual animal was placed in a well of a 48-well 

tissue culture plate containing 300 µl of media [RPMI medium 1640 (GIBCO) containing 15 

mM Hepes, 10% FBS, 100 units/ml penicillin, 100 µg/ml streptomycin, 50 µg/ml 

gentamicin, 2 mM L-glutamine (GIBCO), and 0.25 µg/ml amphotericin B]. Plates were 

incubated at 37°C for 7 days to allow antibody secretion from B cells localized in the given 

tissue. After incubation, supernatants were collected, clarified, and analyzed for the presence 

of antigen-specific antibodies by ELISA (see below). 

ELISA. ELISAs for influenza- and OVA-specific antibodies were performed according to 

standard ELISA methods (45). Briefly, antigen solutions (either 250 ng/ml of influenza virus 

in carbonate buffer, or 1 mg/ml of OVA in PBS) were used to coat 96-well plates (Costar) 

overnight at 4°C. Antigen was removed, and blocking solution [PBS containing 5% milk for 

flu, or 1× Sigmablock (Sigma) for OVA] was added for 2 h for flu or overnight for OVA at 

room temperature. Blocking solution was removed, and plates were incubated at room 

temperature for 2 h (flu) or overnight (OVA) with 2-fold serial dilutions of samples. Plates 
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were washed and incubated for 1 h with horseradish peroxidase-conjugated secondary goat 

anti-mouse γ or α chain-specific antibodies (Southern Biotechnology Associates or Sigma). 

Plates were washed, and O-phenylenediamine dihydrochloride substrate was added for 30 

min and then stopped with the addition of 0.1 M NaF. Antibody endpoint titers are reported 

as the reciprocal of the highest dilution that resulted in an OD450 0.2. In lymphoid culture 

supernatants, endpoint titers for flu-specific IgA are reported as the reciprocal of the highest 

dilution that results in an OD450 reading at least 2 SDs greater than values obtained from 

mock-vaccinated animals. Data are presented as the geometric mean ± SEM.  

ASC ELISPOT.  To evaluate the presence of OVA-specific ASCs, single-cell suspensions 

were prepared from both spleen and the nasal epithelium. Whole spleens were disrupted 

between frosted glass slides, and red blood cells were lysed either under hypoosmotic 

conditions or after addition of ammonium chloride buffer. Cells were washed and placed on a 

Lympholyte-M density gradient (Accurate Scientific, Westbury, NY). Banded cells were 

harvested, washed, and counted. For preparation of nasal lymphocytes, nasal tissue from the 

tip of the nose to just anterior of the eye sockets was harvested from immunized animals, and 

the upper palate, including the nasal-associated lymphoid tissue, was carefully removed. 

Nasal tissue was physically disrupted and incubated at 37°C for 2 h in a 50-ml Erlenmeyer 

flask in complete R-10 media [RPMI medium 1640 containing 10% (vol/vol) FBS, 2 mM L-

glutamine, 50 µg/ml gentamicin, 100 units/ml penicillin, 100 µg/ml streptomycin, and 15 

mM Hepes] containing 2.5 mg/ml Collagenase A (Roche Applied Science), 17 µg/ml DNase 

I (Roche Applied Science), and glass beads. After digestion, cells were filtered through a 40-

µm cell strainer (BD Falcon), washed, resuspended in 44% Percoll (Amersham Pharmacia), 

and layered on Lympholyte-M as described for spleen cells above. Banded cells were 
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harvested, washed, and counted. Cells were pooled from two animals, and typical yields were 

≈2.5 × 105 to 1 × 106 cells per animal. ASC ELISPOT analysis was modified from previous 

reports (14, 53). Briefly, 96-well nitrocellulose membrane plates (Millipore) were incubated 

with 1 mg/ml OVA in PBS overnight at 4°C. Plates were then washed and blocked for 2 h 

with complete R-10 (10% serum). Two-fold dilutions of single-cell suspensions were then 

added to plates in duplicate in R-10 and incubated overnight. Plates were washed, and bound 

spots were detected by the addition of horseradiush peroxidase-conjugated secondary goat 

anti-mouse γ or α chain-specific antibodies (Southern Biotechnology Associates), followed 

by addition of 3-amino-9-ethylcarazole (Sigma), and enumerated with a computerized 

ELISPOT plate reader (Immunospot). Data are presented as the number of antigen-specific 

ASCs per 106 cells plated.  

Statistical Analysis. Antibody titers and ASC numbers were evaluated for statistically 

significant differences by either the ANOVA or Mann–Whitney tests (INSTAT; GraphPad, San 

Diego). P 0.05 was considered significant.  

RESULTS 

VRP Induce Mucosal Immune Responses. Previous reports have documented the ability of 

peripherally inoculated VRP to induce significant protection from virulent mucosal challenge 

with influenza virus in mice and chickens (45, 47), simian immunodeficiency virus in 

macaques (25), and equine arteritis virus in horses (3). Also, results obtained with intranasal 

influenza virus challenge of hemagglutinin (HA)-VRP-immunized mice showed significantly 

decreased influenza virus replication in the nasal epithelium, as determined by influenza-

specific plaque assay and in situ hybridization. (N.L.D., K. Brown, E.M.B.R., A. West, and 
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R.E.J., unpublished work). Although VRP induced protection of the mucosal tissue, it was 

not directly determined whether local mucosal immune responses contributed to the observed 

protection. Typically, mucosal immunity is induced only when antigens are processed and 

presented across mucosal surfaces (36); however, VRP induced protection in these mucosal 

challenge models after immunization by a nonmucosal route.  

We wanted to determine whether nonmucosal VRP delivery resulted in the induction 

of locally produced, mucosal immunity. Groups of female BALB/c mice were immunized in 

the rear footpad at weeks 0 and 4 with diluent, 105 infectious units (IU) of HA-VRP or 10 µg 

of formalin-inactivated influenza virus (I-Flu), as a non-VRP-vectored influenza antigen. 

Another group of animals was immunized in the rear footpad with 10 µg of I-Flu mixed with 

105 IU of GFP-VRP, as an irrelevant VRP control. At various times after the second 

inoculation (days 3, 7, 10, 14, 18, 21, and 28), groups of three animals were killed, and the 

nasal mucosa were harvested for analysis in a lymphoid culture assay originally developed by 

Cebra and colleagues (33). Detection of flu-specific antibody in supernatant fluids from ex 

vivo nasal epithelium organ cultures was used as a measure of mucosal immune induction. 

Significant antibody production was not observed in supernatants from nasal epithelium until 

day 7 postboost and was detectable from day 7 to day 28 postboost. In comparing nasal 

antibody production across the range of time points, we found that VRP-containing inocula 

induced a statistically significant increase in flu-specific IgA antibodies in organ cultures 

from the nasal epithelium, compared with cultures from animals inoculated with I-Flu alone 

(HA-VRP compared with I-Flu, P < 0.001; GFP-VRP + I-Flu compared with I-Flu, P < 

0.001, data not shown). Shown in Fig. 1 is the day-21 time point. All three antigen delivery 

methods were capable of stimulating local flu-specific IgG antibody production in nasal 
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mucosa as detected in the ex vivo supernatants, although VRP-induced responses were 

significantly increased compared with responses induced by delivery of I-Flu alone (Fig. 1A). 

HA-VRP and the delivery of I-Flu mixed with GFP-VRP, but not delivery of I-Flu alone, 

induced flu-specific, mucosal IgA antibodies (Fig. 1B). Also, VRP induced a statistically 

significant increase in flu-specific IgG and IgA antibodies present in nasal washes of 

immunized animals compared with inoculation of I-Flu alone (data not shown). These results 

indicate that (i) VRP are capable of inducing local, antigen-specific antibody production in 

mucosal tissues after nonmucosal delivery, (ii) mucosal immune induction is a property of 

VRP, as antigen alone fails to induce significant mucosal IgA responses, and (iii) VRP are 

capable of inducing mucosal immunity either when the immunogen is expressed by the VRP, 

or when the immunogen is simply mixed with an irrelevant VRP that appears to serve as an 

adjuvant. 

The mucosal response observed in the nasal epithelium did not result from an 

inordinately high systemic response in the VRP-containing groups. The experimental system 

was designed such that the systemic IgG response induced in I-Flu-immunized animals, as 

measured by flu-specific IgG antibodies in ex vivo spleen cultures, was statistically equivalent 

to the systemic responses induced by VRP-containing inocula (Fig. 1C). Therefore, any 

differences in the mucosal responses could not simply be attributed to higher immune 

responses in general. However, HA-VRP and I-Flu mixed with GFP-VRP induced 

significantly greater levels of flu-specific, systemic IgA antibodies than I-Flu alone, as 

measured in spleen culture supernatant fluids (Fig. 1D). Preliminary results with analogous 

vectors based on Girdwood virus and A.R.86 virus, alphaviruses in the Sindbis group, also 
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suggest induction of mucosal immune responses (J.M.T., A.C.W., and M. Heise, unpublished 

work).   

VRP Possess Systemic and Mucosal Adjuvant Activity. The results reported in Fig. 1 

strongly suggest that VRP themselves, independent of the expressed gene, are capable of 

serving as both a systemic and mucosal adjuvant after nonmucosal delivery. To confirm this 

hypothesis, groups of eight animals were immunized in the rear footpad with 106 IU of VRP 

not expressing any transgene (null VRP) mixed with either 0.1 or 1.0 µg of I-Flu at weeks 0 

and 4. Although null VRP do not express an inserted gene behind the 26S promoter, a short 

175-nt noncoding mRNA is predicted from the sequence. Animals were bled 2 weeks 

postboost, and flu-specific serum IgG antibodies were analyzed by ELISA. As shown in Fig. 

2, the presence of null VRP in the inoculum increased the flu-specific systemic antibody 

response by up to 44-fold (1.0 µg dose of I-Flu). To assess mucosal antibody responses, fecal 

extracts were prepared and analyzed for the presence of flu-specific mucosal antibodies by 

ELISA (Fig. 2 B and C). Antibodies present in fecal extracts are almost exclusively locally 

produced, with minimal contribution from serum-derived antibodies (38). Flu-specific fecal 

IgA antibodies were barely detectable after immunization with I-Flu alone; however, the 

inclusion of null VRP as an adjuvant augmented those responses by 60 fold (1.0-µg dose of 

I-Flu, IgA). These data confirm that VRP possess systemic and mucosal adjuvant activity for 

a particulate antigen.  

To further characterize the adjuvant properties of VRP, the following experiments 

used null VRP and a soluble test antigen, ovalbumin (OVA), rather than a particulate antigen 

(I-Flu). Groups of six female BALB/c mice were immunized at weeks 0 and 4 with 10 µg of 

OVA, either alone or coinoculated with 106 IU of null VRP, by both parenteral (footpad) and 
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mucosal (intranasal) delivery. As shown in Supplemental Fig. 2-1, both footpad and nasal 

delivery of OVA alone resulted in detectable OVA-specific serum IgG titers 3 weeks 

postboost. The coinoculation of null VRP with OVA increased OVA-specific serum IgG 

responses by 60- and 1,400-fold after footpad and nasal delivery, respectively. To assess 

mucosal antibody responses, fecal extracts were prepared from vaccinated animals before the 

booster inoculation and at weeks 1, 2, and 3 postboost, and analyzed for the presence of 

OVA-specific mucosal IgG and IgA antibodies by ELISA. Delivery of OVA alone failed to 

consistently induce detectable levels of OVA-specific fecal antibodies over background after 

either footpad or nasal immunization 3 weeks postboost. However, the inclusion of null VRP 

in the inoculum resulted in an 20- to 60-fold increase in OVA-specific fecal IgG and IgA 

antibody titers (Supplemental Fig. 2-1 B and C), regardless of the route of immunization. 

Taken together, the observations using I-Flu and OVA confirm the systemic and mucosal 

adjuvant activity of VRP after either mucosal or nonmucosal delivery of soluble or 

particulate immunogens. 

VRP RNA Replication Is a Trigger for Adjuvant Activity/Immune Induction. The 

critical VRP-specific parameters that mediate adjuvant activity are currently undefined. 

Numerous molecular sensors are capable of recognizing viral products in virus-infected cells 

(48), including members of the toll-like receptor family (1, 23), and a number of IFN-

inducible proteins (46, 54). We hypothesize that one or more of these pathways might be 

involved in recognizing RNA products produced after VRP infection and might play a critical 

role in VRP adjuvant activity. To test the hypothesis that VRP RNA replication is necessary 

for adjuvant activity, we treated null VRP with UV light before inoculation. UV treatment 

causes the formation of uridine dimers in the replicon RNA, which blocks both RNA 
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replication and translation of the input RNA, and allows evaluation of replication-defective 

VRP as molecular adjuvants.  

Groups of six BALB/c mice were inoculated in the rear footpad at weeks 0 and 4 with 

10 µg of OVA alone or 10 µg of OVA mixed with (i) 1.0 µg of cholera toxin (CT), a known 

systemic and mucosal adjuvant used here as a positive control (52), (ii) 104 IU of null VRP, 

(iii) 104 IU of null VRP treated with UV light (UV-VRP), or (iv) 106 IU of null VRP. At 1 

week postboost, serum was harvested from immunized animals and analyzed for the presence 

of OVA-specific IgG antibodies by ELISA. OVA-specific serum IgG titers were increased by 

64- and 114-fold after the codelivery of OVA plus 104 or 106 IU of VRP, respectively 

(Supplemental Table 2-1). In contrast, codelivery of OVA and 104 IU of UV-VRP failed to 

induce a statistically significant increase in OVA-specific serum IgG antibodies (P > 0.05). 

These results suggest that viral RNA replication was required for the immune stimulation 

observed with null VRP. Importantly, the adjuvant effect of VRP was comparable to 

responses induced by 1.0 µg of the control adjuvant, CT, under these conditions.  

To quantitate the number of OVA-specific IgG- and IgA-secreting cells in spleen and 

nasal epithelium of the same animals, single-cell suspensions were prepared and analyzed in 

an antibody-secreting cell (ASC) enzyme-linked immunospot assay (ELISPOT). Increased 

levels of IgG (Fig. 3A) and IgA (Fig. 3B) ASCs were present in spleen and nasal epithelium 

in the OVA-plus-VRP inoculated animals, compared with the OVA-alone group, again 

demonstrating a clear systemic and mucosal VRP adjuvant activity leading to the local 

production of antigen-specific antibodies in both systemic and mucosal tissues. UV treatment 

of VRP before inoculation largely abrogated this effect, indicating the importance of VRP 

RNA function and also suggesting that contaminants potentially present in the VRP 
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preparations (such as LPS) were not responsible for the observed adjuvant activity. Again, 

VRP adjuvant activity as measured by ASC ELISPOT was comparable with that of CT. 

These results demonstrate that null VRP can act as a true mucosal adjuvant, and VRP RNA 

replication is likely the molecular trigger for the adjuvant activity.  

VRP Adjuvant Activity as Compared with Adjuvant Activity of CpG DNA. We sought 

to determine how the VRP adjuvant compared with another known adjuvant, CpG DNA. 

Unmethylated CpG motifs found in bacterial genomes are recognized by the innate immune 

system through interactions with TLR9 and increase immunity to coimmunized antigens in 

numerous experimental systems [reviewed in ref. (28)]. To further characterize the relative 

strength of VRP adjuvant activity, groups of eight BALB/c mice were inoculated in the rear 

footpad at weeks 0 and 4 with 10 µg of OVA alone, 10 µg of OVA mixed with 105 IU of null 

VRP, or 10 µg of OVA mixed with 1.0 µg of CpG DNA. Two weeks after the second 

inoculation, sera, fecal extracts, and vaginal lavage samples were prepared from individual 

animals and analyzed for the presence of OVA-specific antibodies by ELISA. Also at 2 

weeks postboost, single-cell suspensions were prepared from spleen and nasal epithelium and 

analyzed for OVA-specific ASCs by ASC ELISPOT. As shown in Fig. 4, both VRP and CpG 

augmented OVA-specific spleen IgG ASCs compared with OVA alone (P < 0.001 and P < 

0.05, respectively). Although VRP adjuvanted systemic OVA responses to a greater extent 

than CpG, as measured by spleen ASC, measurement of OVA-specific serum IgG titers 

suggested that the CpG and VRP systemic adjuvant effects were comparable (Supplemental 

Table 2-2). However, VRP induced a significant adjuvant effect on mucosal IgA responses in 

fecal extracts and vaginal washes and in IgA ASCs in the nasal epithelium (Fig. 4 and 

Supplemental Table 2-2). By each of these assays, VRP-adjuvanted OVA responses in 
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mucosal tissues were superior to OVA plus CpG. These data suggest that the systemic 

adjuvant activity of VRP is at least as strong as that of CpG and that VRP possess 

significantly stronger mucosal adjuvant activity. 

DISCUSSION 

Alphavirus replicon vectors expressing pathogen-derived immunogens have been 

used extensively as vaccine delivery vehicles and have proven effective at inducing 

significant protection from challenge with a number of important pathogens in experimental 

and natural hosts. However, the mechanisms that govern immune induction after vector 

delivery remain largely unexplored.  

We demonstrate in this article that VRP possess inherent immunostimulatory 

properties that are independent of protein production. Either irrelevant or null VRP, simply 

codelivered with soluble OVA protein or inactivated influenza virions, dramatically 

augmented antigen-specific antibody production in both the systemic and mucosal 

compartments, compared with inoculation of antigen alone. In work not presented here, VRP 

systemic and mucosal adjuvant activity also has been demonstrated with Norwalk virus-like 

particles (A. LoBue, J.M.T., R. Baric, and R.E.J., unpublished work), cowpox B5R protein 

(N. Thornburg, J.M.T., and R.E.J., unpublished work), and simian immunodeficiency virus 

gp120 (A. West, J.M.T., and R.E.J., unpublished work), suggesting that the VRP adjuvant 

functions without respect to the antigen. In the present study we have measured only short-

term immunity with VRP adjuvants. However, VRP used as expression vectors elicited 

responses that endured throughout the lifetime of the animal. If we assume that the 

immunological parameters that govern VRP as expression vectors are the same as those that 
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govern immune induction with VRP as adjuvants, then it is likely that adjuvant-induced 

immunity will be equally long-lived.  

We demonstrate the adjuvant property of alphavirus replicon particles for both 

systemic and mucosal immunity, even when administered by a nonmucosal route. A number 

of recent reports have identified other viral (5, 8, 24, 43) and bacterial (39) particles that 

possess various types of adjuvant activity when codelivered with antigen. We speculate that 

such activity is also likely to play an important role in immune induction under conditions in 

which such particles (including VRP) are engineered as vectors to express a given 

immunogen. Although those other reports document the ability of microbial particles to serve 

as adjuvants, no other system has demonstrated mucosal immune induction after nonmucosal 

delivery, as is observed with VRP. It will be of interest to determine whether other viruses 

are capable of augmenting mucosal antibody responses after nonmucosal delivery, or if this 

property is unique to VEE.  

The natural pathway of mucosal immune induction relies on antigen processing and 

presentation at mucosal surfaces and results in the local production of IgA antibodies at those 

surfaces (29, 36). VRP were capable of immune induction via the natural pathway, as nasal 

delivery resulted in the induction of mucosal immunity. However, VRP were also capable of 

exploiting an alternative pathway that resulted in mucosal immunity after nonmucosal 

inoculation. Although there have been a limited number of examples where induction of 

mucosal immunity occurred after inoculation at a parenteral site [reviewed in refs. (6) and 

(50)] there is little consistency among the several examples, and none of them is analogous to 

the null VRP adjuvant activity described here (11, 13, 16, 18, 19, 21, 26, 37, 41, 42). 

Likewise, induction of mucosal immunity has been demonstrated with alphavirus expression 
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vectors, but only after immunization (4, 51) or boost (22) at a mucosal surface, and in none of 

these instances was the potential for mucosal adjuvant activity examined.  

The mechanism by which VRP trigger mucosal immunity after nonmucosal delivery 

is undefined at present. One potential explanation is that either free VRP, or cells infected by 

VRP in the skin (34) or lymph node migrate to a traditional mucosal inductive site, such as 

Peyer’s patches or mesenteric lymph node, and induce local antibody production (6). 

However, experiments using GFP-VRP have failed to consistently demonstrate VRP-infected 

cells in such tissues (E.M.B.R., J.M.T., and R.E.J., unpublished work). We favor the 

hypothesis that the lymph node draining the site of VRP inoculation develops at least some 

functions characteristic of a mucosal inductive site. In support of this idea, preliminary 

experiments demonstrate the production of antigen-specific, multimeric IgA in the draining 

lymph node (DLN) in response to inoculation of VRP (J.M.T. and R.E.J., unpublished work). 

It needs to be determined whether additional characteristics of a true mucosal inductive site 

are present in the DLN of VRP-inoculated mice. We feel that detailed examination of this 

alternative pathway for the induction of mucosal immunity in the VRP experimental system 

will contribute to a greater understanding of alphavirus-induced immunity, in particular, and 

mucosal immunity in general.  

The molecular basis for the adjuvant activity likely resides in the ability of the VRP 

genome to replicate, given the sensitivity of adjuvant activity to UV inactivation. We suggest 

that an element present during virus replication is recognized in infected host cells and that 

this recognition initiates a cascade of events that ultimately leads to the induction of 

immunity to codelivered antigens. The most prominent candidates include viral RNA and/or 

replicative intermediates and their interactions with components of the innate immune 
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system. A variety of cellular sentinel molecules exist, such as TLR3 (1), TLR7 (23), RIG-I, 

MDA-5 (54), protein kinase R, and RNaseL (46), which are capable of recognizing viral 

replicative molecules. In fact, a recent report (32) implicates RNaseL in immune induction to 

a tolerant melanoma antigen in an alphavirus replicon system.  

Both transgene-expressing particles and particles lacking a transgene possess adjuvant 

activity, suggesting that adjuvant activity neither depends on, nor is inhibited by, the presence 

of a particular transgene protein. The VRP constructs lacking a transgene are predicted to 

express a short, noncoding RNA. It is unlikely that this truncated subgenomic RNA, or the 

presence or activity of the 26S promoter itself, is responsible for the observed adjuvant 

activity. Another formal possibility is that translation of the replicase proteins is responsible 

for the activity.  

One potential trivial explanation for the adjuvant effect is that it is mediated by a 

contaminant present in VRP preparations (such as LPS). However, two observations strongly 

suggest that a contaminant is not the predominant mechanism of immune activation: (i) no 

adjuvant activity was observed after codelivery of identically treated media from a mock 

VRP preparation (data not shown), and (ii) UV treatment of VRP ablated adjuvant activity.  

We have compared VRP adjuvant activity to that of CT and CpG DNA. Results from 

such comparisons suggest that systemic responses induced by VRP are at least equivalent to 

that of both CT and CpG DNA. Moreover, after nonmucosal delivery VRP mucosal adjuvant 

activity appears to be comparable to that of CT and superior to CpG DNA. A number of 

important questions regarding VRP adjuvant activity remain to be answered, such as how 

VRP-induced systemic and mucosal immune responses compare with those of other 

peripherally delivered adjuvants, such as alum, and mucosally delivered CT and whether 
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VRP act as a systemic and mucosal T cell adjuvant. These additional comparisons will allow 

more accurate evaluations of the relative efficiency of VRP-induced immune stimulation.  

In summary, we have demonstrated two activities of alphavirus-derived viral vectors: 

(i) induction of local mucosal immune responses after inoculation at a remote, nonmucosal 

site and (ii) systemic and mucosal adjuvant activity with codelivered soluble and particulate 

immunogens. We feel that these observations and the continued experimentation they 

stimulate will advance a search for adjuvant activity among other viruses and viral vectors, 

will ultimately define the specific components of an alternative pathway for the induction of 

mucosal immunity, and if the activity is evident in humans, will enable new possibilities for 

safe and inexpensive subunit and inactivated vaccines.  
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Figure 2-1 
 

 
 

 
 
 
 
Fig. 2-1. VRP induce mucosal immune responses. Groups of animals were immunized in 
the rear footpad with diluent, 10 µg of I-Flu (solid bars), 105 IU of HA-VRP (open bars), or 
10 µg of I-Flu plus 105 IU of GFP-VRP (hatched bars) at weeks 0 and 4. Three weeks after 
the second inoculation, lymphoid organ cultures were established from the nasal epithelium 
(A and B) and spleen (C and D). Culture supernatants were evaluated for flu-specific IgG (A 
and C) and IgA antibodies (B and D) by ELISA. Data are presented as the geometric mean ± 
SEM. *, P < 0.05; **, P < 0.01; ***, P < 0.001 compared with I-Flu alone, as determined by 
ANOVA. 
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Figure 2-2 
 
 

 
 
 
 
 
 

 
 
 
Fig. 2-2. VRP adjuvant activity for particulate antigens. Groups of eight animals were 
immunized in the rear footpad with 0.1 or 1.0 µg of I-Flu in the presence (hatched bars) or 
absence (solid bars) of 106 IU of null VRP at weeks 0 and 4. Two weeks after the second 
inoculation, flu-specific IgG antibodies were measured in sera (A) and fecal extracts (B), and 
flu-specific IgA antibodies were measured in fecal extracts (C) by ELISA. Data are presented 
as the geometric mean ± SEM. *, P < 0.02; **, P < 0.005; ***, P < 0.0003 compared with I-Flu 
alone, as determined by Mann–Whitney. 
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Figure 2-3 
 
 

 
 

 
 
Fig. 2-3. Systemic and mucosal adjuvant activity of UV-treated VRP. Groups of six 
animals were immunized in the rear footpad with 10 µg of OVA alone or coinoculated with 
1.0 µg of CT, 104 IU of null VRP, 104 IU of UV-VRP, or 106 IU of null VRP at weeks 0 and 
4. One week after the second inoculation, splenocytes (open bars) and nasal lymphocytes 
(solid bars) were isolated from immunized animals and analyzed for the presence of OVA-
specific IgG-secreting cells (A) and IgA-secreting cells (B) by ELISPOT. Data are presented 
as the geometric mean ± SEM. *, P < 0.05; **, P < 0.01; ***, P < 0.001 compared with OVA 
alone, as determined by ANOVA. 
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Figure 2-4 
 
 

 
 
 
 
 
 
 
Fig. 2-4. Systemic and mucosal adjuvant activity of VRP compared with CpG DNA. 
Groups of eight animals were immunized in the rear footpad with 10 µg of OVA alone (solid 
bars) or coinoculated with 105 IU of null VRP (hatched bars) or 1.0 µg of CpG DNA (open 
bars) at weeks 0 and 4. Two weeks after the second inoculation, splenocytes were isolated 
and analyzed for the presence of OVA-specific IgG ASCs, and nasal lymphocytes were 
isolated and analyzed for the presence of OVA-specific IgA ASCs by ELISPOT. Data are 
presented as the geometric mean ± SEM. *, P < 0.001 compared with OVA alone; , P < 0.01 
compared with CpG; , P < 0.05 compared with CpG. 
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Supplemental Figure 2-1 
 
 

 
 
 
 
 
Supplemental Fig. 2-1.  VRP adjuvant activity for soluble antigens. Groups of six 
animals were immunized in the rear footpad or intranasally with 10 µg of OVA in the 
presence (hatched bars) or absence (solid bars) of 106 IU of null VRP at weeks 0 and 4. 
Three weeks after the second inoculation, OVA-specific IgG antibodies were measured in 
sera (A) and fecal extracts (B), and OVA-specific IgA antibodies were measured in fecal 
extracts (C) by ELISA. Data are presented as the geometric mean ± SEM. *, P < 0.003 
compared with OVA alone, as determined by Mann-Whitney. 
 
 
 
 
 
 
 
 
 
 
 



 118

Supplemental Table 2-1.   
 

 
 
Systemic adjuvant activity of UV-treated VRP. Groups of six animals were immunized in 
the rear footpad with 10 µg of OVA alone or coinoculated with 1.0 µg of CT, 104 IU of null 
VRP, 104 IU of UV-VRP, or 106 IU of null VRP at weeks 0 and 4. One week after the second 
inoculation, sera were analyzed for OVA-specific IgG antibodies by ELISA. Data are 
presented as the geometric mean +/- SEM. *, P < 0.05; **, P < 0.001 compared with OVA 
alone, as determined by ANOVA. 
 
 
 
 
 
 
Supplemental Table 2-2.   
 

 
 
Systemic and mucosal adjuvant activity of VRP compared with CpG DNA. Groups of 
eight animals were immunized in the rear footpad with 10 µg of OVA alone or coinoculated 
with 105 IU of null VRP or 1.0 µg of CpG DNA at weeks 0 and 4. Two weeks after the 
second inoculation, sera, fecal extracts, and vaginal wash samples were prepared and 
analyzed for OVA-specific antibodies by ELISA. Data are presented as the geometric mean 
+/- SEM. 
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ABSTRACT 

  The strongest mucosal immune responses are induced following mucosal antigen 

delivery and antigen processing in the lymphoid tissues of the mucosal immune system.  

Much is known regarding the immunological parameters which regulate immune induction 

via this pathway.  Recently, a number of experimental systems have been identified in which 

mucosal immune responses are induced following nonmucosal antigen delivery.  One such 

system, footpad delivery of Venezuelan equine encephalitis virus replicon particles (VRP) 

led to the production of IgA antibodies directed against both expressed and co-delivered 

antigens at multiple mucosal surfaces in mice.  In contrast to the mucosal delivery pathway, 

little is known regarding the lymphoid structures and immunological components which are 

responsible for mucosal immune induction following nonmucosal delivery.  Here we have 

utilized peripheral VRP delivery to probe the inner workings of this alternative pathway for 

mucosal immune induction.  Following nonmucosal VRP delivery, IgA antibodies, and 

polymeric or mucosal forms of IgA antibodies, were first detected in the peripheral draining 

lymph node (DLN), prior to IgA detection at the mucosal surfaces.  Further analysis of the 

DLN revealed upregulated expression of the α4β7 integrin on DLN B cells, expression of 

MAdCAM-1, the ligand for the α4β7 integrin, and production of IL-6 and CC chemokines, all 

characteristics of mucosal lymphoid tissues.  Taken together, these results implicate the 

peripheral DLN as an integral component of an alternative pathway for mucosal immune 

induction.  An understanding of the critical immunological and viral components of this 

pathway may significantly improve both our knowledge of viral-induced immunity and the 

efficacy of viral-based vaccines.   
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INTRODUCTION 

The mammalian immune system has evolved two minimally overlapping arms: the 

systemic immune system which relies upon lymphoid cells and structures in the skin, spleen, 

bone marrow and peripheral lymph nodes for immune induction; and the mucosal immune 

system with its coupled mucosa-associated lymphoid tissue (MALT) responsible for immune 

activation at the mucosal level (8, 10, 23, 30). This distinctive segregation allows focused 

immune induction in the compartment in which the relevant antigen predominates.  As the 

vast majority of harmful pathogens rely on penetration of a mucosal barrier as an integral 

step in the initiation of infection, innate and adaptive immune mechanisms which uphold the 

integrity of the mucosal surface are paramount for mediating protection from invading 

microbes (48).  To date, vaccination has proven to be one of the most effective strategies of 

prophylactic immunomodulation against mucosal pathogens; however, mucosal infections 

with agents such as human immunodeficiency and highly virulent influenza viruses still pose 

a significant threat to human health.  Therefore, the development of vaccine regimens 

capable of stimulating protective mucosal immunity would represent a powerful opportunity 

to intercede in the disease course of many infectious organisms (57).   

It is well established in the literature that the strongest mucosal immune responses are 

induced following mucosal antigen delivery and antigen processing in the lymphoid tissues 

of the mucosal immune system (6, 48, 57).  This natural pathway of mucosal immune 

induction following mucosal antigen delivery in the presence of immunomodulatory agents, 

such as the enterotoxins from various gram negative bacteria, has been studied extensively 

(1, 12, 48, 57, 65). Following nasal or oral delivery, antigens are captured by specialized 

epithelial cells termed M cells, or microfold cells of the follicle associated epithelium (FAE) 
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(25, 35).  The FAE envelopes the lymphoid cell component of the mucosal inductive sites 

such as the Peyer’s patches (PPs) in the gut.   PPs contain dendritic cells (DCs), 

macrophages, B lymphocytes, T lymphocytes, and endothelial cells which all work in concert 

to chaperone luminal antigens from harmful organisms into an immunostimulatory 

environment, culminating in the activation of antigen-specific B cells and T cells which 

mediate protection of the mucosal surface (38, 39, 56).  

A cascade of events is initiated following lymphocyte activation in mucosal inductive 

tissues in the presence of appropriate inflammatory signals (49).  As a consequence of B cell 

activation in mucosa-draining-lymphoid tissues, activated B cells migrate from the PPs 

through the mesenteric lymph node and ultimately enter systemic circulation via the thoracic 

duct.  These B cells differentiate along an activation pathway as a result of priming signals 

received in the mucosal lymphoid tissues, and upregulate a group of surface molecules which 

direct their migration back to the mucosal surface from which they were originally activated 

(7, 8).  One of the most important mediators of mucosal homing is the α4β7 integrin, also 

termed the mucosal homing receptor (9).  This heterodimeric integrin pair is upregulated on 

mucosally-activated B and T cells and binds to its ligand, mucosal addressin cell adhesion 

molecule-1 (MAdCAM-1), which is expressed on the high endothelial venules (HEVs) of 

mucosal lymphoid tissues (2, 9).  MAdCAM-1 expression is a discriminating characteristic 

of mucosal lymphoid tissues and is abundant on the HEVs of PPs and MLN.  In contrast, 

very little MAdCAM-1 is detectable in systemic lymphoid structures such as the spleen and 

peripheral lymph nodes.  Instead, the HEVs of systemic lymphoid tissue express the 

peripheral lymph node addressin (PNAd), which binds to CD62L and mediates migration of 

lymphocytes throughout the systemic lymphoid tissues (7).  Additionally, chemokine 
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receptors CCR9 and CCR10 mediate lymphocyte migration into the mucosal compartment 

following migration towards mucosal chemokines TECK and MEC respectively (29, 40, 41). 

Following integrin/chemokine-mediated migration back to the mucosa lamina 

propria, mucosally-activated B cells undergo further differentiation and activation in the 

mucosal environment directed by numerous cytokines and growth factors (31).  The mucosal 

inflammatory milieu promotes the activation of antigen-specific B cells and orchestrates 

antibody isotype class switch towards the IgG and IgA isotypes (47).  IgA is the most 

prominent antibody isotype present at mucosal surfaces (52).  In fact, in humans more IgA is 

produced in the intestinal tract each day than all other isotypes in the body combined (15).  

Mucosal IgA antibodies exist as dimeric or polymeric forms by inclusion of the joining 

chain, or J chain protein during antibody secretion from mucosally-activated B cells (32).  J 

chain-containing IgA molecules are transported onto mucosal surfaces following a specific 

interaction with the poly immunoglobulin receptor (pIgR) expressed on the basolateral 

surface of mucosal epithelial cells (32).  Following transport through mucosal epithelial cells, 

dimeric/polymeric IgA is released into/onto the mucosal surface and retains a portion of the 

pIgR.  This complex is subsequently termed secretory IgA (33).   

As mentioned above, mucosal antigen delivery is the most efficient method of 

inducing local mucosal antibody responses; however, a growing body of evidence supports 

the existence of an additional pathway capable of stimulating mucosal antibody synthesis 

following nonmucosal antigen delivery [reviewed in (5, 71)].  The examples are varied and a 

common unifying mechanism responsible for mucosal immune induction under all 

circumstances is not readily evident upon initial review.  Peripheral, or nonmucosal delivery 

of a diverse class of viruses or viral vaccine vectors including rotavirus (13, 14), canarypox 
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vectors (55), Venezuelan equine encephalitis virus (11) and replicon particles (28, 45, 70), 

and Rubella virus (58) potentate either mucosal antibody or T cell activation.  Likewise, 

nonmucosal delivery of bacterial antigens/vectors derived from Listeria monocytogenes (59) 

and Haemophilus influenzae type  b (36) promote mucosal immunity, suggesting that both 

viral and bacterial particles are capable of stimulating this pathway. 

While traditional nonmucosal delivery methods are clearly capable of stimulating 

mucosal immunity, several specialized nonmucosal delivery approaches have been developed 

which likewise promote mucosal immune induction.  One example is parenteral targeting of 

mucosal lymphoid tissues using anti-MAdCAM-1 antibodies, which dramatically augment 

mucosal antibody responses (50).  In an alternative strategy, antigens are delivered through 

the skin in the presence of known mucosal adjuvants in a technique termed transcutaneous 

immunization (26).  This technique results in significantly increased mucosal antibody 

responses both in mice and in humans (27, 72).  Interestingly, an approach termed targeted 

lymph node immunization, which relies on direct antigen inoculation into a peripheral lymph 

node, also stimulates mucosal immunity in non-human primates (37, 42).   

At this point it is unclear whether mucosal immune induction following either 

traditional nonmucosal delivery or following one of the specialized approaches outlined 

above of is in fact due to an intrinsic signal provided by the viral/bacterial particle itself or 

instead is due to the induction of a specific cellular factor or group of factors following.  A 

number of candidate immunomodulatory factors have been identified including various 

forms of vitamin D3 (22) as well as a group of specific cytokines and chemokines (19) which 

potentially provide a mechanistic explanation for mucosal immune induction following 

nonmucosal antigen delivery. 
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The identification of the components of a peripheral mucosal immune induction 

pathway will provide valuable insights into the regulatory networks involved in mucosal 

immune induction, as well as the potential to significantly improve mucosal vaccines.  We 

have recently demonstrated the ability of modified viruses derived from the alphavirus, 

Venezuelan equine encephalitis virus (VEE), to promote IgG and IgA antibody synthesis at 

multiple mucosal surfaces (28, 45, 70).  The particles utilized in these studies, termed VEE 

replicon particles (VRP), express only the viral non-structural, or replicase components 

responsible for replication of the genomic RNA (60).  VRP efficiently infect dendritic cells 

(DCs) following footpad inoculation in mice and replicate the viral genome to high levels 

(46).  However, VRP fail to propagate beyond the first infected cell, as progeny virions are 

not produced following infection (24).  In this study, we have utilized nonmucosal delivery 

of VRP as a model system to dissect the individual components of the peripheral mucosal 

immune induction pathway.  Here we demonstrate several markers of mucosal lymphoid 

tissues including antigen-specific multimeric IgA antibodies, increased levels of mucosal 

cytokines such as IL-6 and TNF-α, a population of B cells with upregulated mucosal homing 

receptor expression, and expression of MAdCAM-1 on the HEVs of the DLN of VRP-

inoculated animals.  These observations are consistent with a model in which, following 

nonmucosal VRP delivery, the DLN is converted into the functional equivalent of a mucosal 

inductive site and serves as a component of an alternative pathway for mucosal immune 

induction.  These studies provide a framework for the identification of the critical 

components of the alternative pathway for mucosal immune induction and the potential to 

improve mucosal vaccination strategies.   
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MATERIALS AND METHODS 

VEE replicon constructs.  The construction and packaging of VRP was performed as 

previously described (16, 60).  Briefly, confluent monolayers of BHK-21 cells were co-

electroporated with three separate in-vitro-transcribed RNAs, the replicon RNA, and two 

defective helper RNAs which drive the expression of the viral structural genes in trans.  Only 

the replicon RNA is packaged into VRP as the helper RNAs lack the viral packaging signal.  

In this study, three different replicon constructs were utilized:  1) replicons expressing GFP 

(GFP-VRP); 2) replicons expressing the HA gene from influenza virus (HA-VRP); and 3) 

replicons which lack a functional transgene downstream of the 26S promoter (null VRP) 

(70).  Null VRP contain the viral nonstructural genes, a  14 nt stretch  of VEE sequence 

downstream of the 26S mRNA transcription start site, a heterologous 43-nt long cassette 

containing multiple restriction sites for cloning into the replicon backbone, and the 118-nt 3' 

UTR. HA-VRP and null VRP were quantitated by immunocytochemistry of infected BHK 

cells with anti-sera against HA (60) and null VRP (70), respectively.  GFP-VRP were 

quantitated by immunofluoresence of infected BHK cells.  All replicon particles utilized in 

this study were packaged in the wild-type (V3000) envelope.   

Animals and immunizations.  Seven-to-10-week-old female BALB/c mice were immunized 

in a 0.01 ml volume in the rear footpad/s as previously described (70).  Briefly, animals were 

immunized at week 0 and week 4 with antigen alone or antigen co-inoculated with either 

VRP or CpG DNA as an adjuvant.   Chicken egg albumin (OVA) was purchased from 

Sigma; inactivated influenza virus (I-Flu) was purchased from Charles River Laboratories 

and was dialyzed against PBS in a Slidalyzer cassette (Pierce) according to manufacturer’s 

guidelines prior to use.  CpG DNA (ODN 1826) was purchased from Invivogen.  Diluent 



 127

consisted of low endotoxin, filter-sterilized PBS, except for the lymphoid organ culture 

experiments (see below), in which 110 mM Ca2+, 50 mM Mg2+, and 0.1% (vol/vol) donor 

calf serum were included. 

Lymphoid Organ Cultures.  Lymphoid cultures were prepared as previously described (45, 

70).  Briefly, spleen, nasal tissue, and draining popliteal lymph nodes were harvested from 

immunized animals and placed in Eppendorf tubes containing 1 ml of wash buffer (Hanks’ 

balanced salt solution containing 100 units/ml penicillin, 100 µg/ml streptomycin, 110 mM 

Ca2+, 50 mM Mg2+, and 15 mM Hepes) and washed three times by aspiration and 

resuspension.  Spleen and nasal tissue were placed in individual wells of a 48-well tissue 

culture plate in 0.3 mls of media [RPMI medium 1640 (GIBCO) containing 15 mM Hepes, 

10% FBS, 100 units/ml penicillin, 100 µg/ml streptomycin, 50 µg/ml gentamicin, 2 mM L-

glutamine (GIBCO), and 0.25 µg/ml amphotericin B], and DLNs were placed in individual 

wells in a 96-well tissue culture plate in 0.1 mls of media.  Plates were incubated at 37ºC for 

7 days to allow antibody secretion from tissue-resident B cells into the supernatant.  

Following incubation, supernatants were collected, clarified by centrifugation at 4ºC, and 

analyzed for the presence of antigen-specific antibodies by ELISA and/or large molecular 

weight IgA antibodies by western blot. A limited set of tissue samples from an additional 

timepoint (day 21 post-boost) was previously published in Thompson et al (70) (figure 1) as 

evidence of VRP-induced mucosal immune induction.   

Preparation of DLN extracts.  Draining popliteal lymph nodes were dissected from 

immunized animals, and each lymph node was placed in a 1.5 ml tube (Kontes) with 0.1 mls 

of PBS containing protease inhibitors (PIs) [complete mini protease inhibitor cocktail tablet 

(Roche)].  DLNs were physically homogenized with a plastic pestle (Kontes) with the aid of 
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a hand-held motor and were frozen at -20ºC.  Following thaw, debris was pelleted by 

centrifugation at 4ºC, and supernatants were analyzed for IgA antibodies by ELISA, or for 

cytokine production by Beadlyte multiplex LUMINEX custom analysis performed by 

Millipore/Upstate (see below).  Extracts were compared from individual lymph nodes across 

the various immunization groups.  As a control, lymph node extracts were prepared from 

individual Peyer’s patches (PPs) exactly as described for the popliteal lymph nodes 

(homogenized in 0.1 mls of PBS).   

Sera, Fecal Extracts, and Vaginal Washes.  All sample collection was performed as 

previously described (70).  Blood was harvested from either the tail vein, following cardiac 

puncture, or from the submandimular plexus from individual animals, and sera were 

collected following centrifugation in microtainer serum separator tubes (Becton Dickinson).  

For fecal extracts, fresh fecal pellets (5-8, ≈ 100-150 mg) were isolated from individual 

animals and placed in a 1.5 ml Eppendorf tube containing 1 ml of fecal extract buffer [PBS 

containing10% (vol/vol) normal goat serum and 0.1% (vol/vol) Kathon CG/ICP (Supeleco)].  

Samples were vortexed for at least 10 mins until all pellets were disrupted into a homogenous 

mixture.  Samples clarified by centrifugation at 4ºC, and supernatants were transferred to 

fresh tubes and stored at -20 ºC prior to analysis by ELISA assay (see below).  Vaginal 

washes were performed by lavage of the exterior vaginal opening with 0.07 mls of PBS 8-10 

times.  Lavage samples were stored at -20 ºC and clarified at 4ºC prior to ELISA analysis 

(see below).   

Flow Cytometric Analysis.  DLNs were harvested from immunized animals, and the overall 

mass of the lymph nodes was determined by weighing individual lymph nodes on an 

analytical balance (Mettler).  Each lymph node was next disrupted with a razor blade and a 
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hemostat, and single cell suspensions were created by agitating each lymph node in complete 

RPMI media [RPMI medium 1640 containing 10% (vol/vol) FBS, 2 mM L-glutamine, 50 

µg/ml gentamicin, 100 units/ml penicillin, 100 µg/ml streptomycin, and 15 mM Hepes] 

containing 2.5 mg/ml Collagenase A (Roche Applied Science), 17 µg/ml DNase I (Roche 

Applied Science) for 30 minutes at 37ºC.  Single cell suspensions were then stained with 

antibodies directed against CD3, CD19, CD45 (B220), CD11c, CD11b (all purchased from 

ebioscience) as well as α4β7 integrin (LPAM-1, clone DATK32) purchased from BD 

Pharmingen and examined on a Becton Dickinson Facscaliber Flow cytometer.  Stained cells 

were analyzed using Cellquest software. 

Enzyme Linked Immunosorbant Assay (ELISA). ELISAs for influenza- and OVA-

specific antibodies were performed on serum, fecal extracts, vaginal washes, and lymphoid 

culture supernatants as previously described (70).   Briefly, antigen solutions (either 250 

ng/ml of influenza virus in carbonate buffer, or 1 mg/ml of OVA in PBS) were incubated in 

96-well plates (NUNC Immulon 4) overnight at 4°C to allow antigens to bind to the plate. 

Excess antigen was removed, and blocking solution [PBS containing 5% milk for flu, or 1× 

Sigmablock (Sigma) for OVA] was added for 2 h for flu or overnight for OVA at room 

temperature. Following removal of blocking solution, plates were incubated at room 

temperature for 2 h (flu) or overnight (OVA) with serial dilutions of individual samples 

diluted in the appropriate blocking buffer. Plates were washed with a multi-channel plate 

washer (NUNC) and incubated for 1 h with horseradish peroxidase-conjugated secondary 

goat anti-mouse γ or α chain-specific antibodies (Southern Biotechnology Associates or 

Sigma). Finally, plates were again washed, O-phenylenediamine dihydrochloride substrate 

was added for 30 min, and the reaction was stopped with the addition of 0.1 M NaF. 
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Antibody endpoint titers are reported as the reciprocal of the highest dilution that resulted in 

an OD450 ≥ 0.2. In lymphoid culture supernatants, endpoint titers for flu-specific IgA are 

reported as the reciprocal of the highest dilution that results in an OD450 reading at least 2 

SDs greater than values obtained from mock-vaccinated animals (figure 1). Data are 

presented as the geometric mean ± standard error of the mean (SEM). 

Analysis of Polymeric IgA.  Lymph node (popliteal and PP) extracts were assayed for the 

presence of polymeric IgA antibodies by non-reducing western blot analysis.  Proteins were 

separated in Laemmli buffer in the absence of reducing agent (no β-ME) by 6% SDS-PAGE 

and transferred to polyvinlyidene difluoride membrane (Bio-Rad) in transfer buffer (48mM 

Tris, 39mM Glycine, 10% Methanol) at 12V for 1 hour.  Membranes were subsequently 

blocked in PBS with 5% dry milk, 0.1% Tween-20 (Sigma) at room temperature overnight.  

Blocked membranes were next washed in PBS with 1% dry milk, 0.1% Tween-20 and 

incubated with a goat anti-IgA antibody (Sigma and/or Southern Biotechnology Associates) 

at room temperature for 2 hours.  Membranes were again washed and then incubated with a 

rabbit anti-goat horseradish peroxidase (HRP)-conjugated secondary antibody (Sigma) at 

room temperature for 1 hour.  Membranes were washed again, and HRP-conjugated 

antibodies were detected via chemiluminesence with ECL detection reagents (Amersham 

Pharmacia).  For analysis of influenza-specific, polymeric IgA, lymphoid culture 

supernatants or lymph node extracts were mixed with either influenza virus or an irrelevant 

virus (Girdwood virus) for 2 hours at 4ºC, and virus-antibody complexes were centrifuged at 

100,000 x g for 1 hour through a sucrose cushion.  Pelleted virus-antibody complexes were 

resuspended in non-reducing sample buffer and analyzed by IgA western blotting as 

described above.   
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Statistical Analysis. Antibody titers and cytokine values were evaluated for statistically 

significant differences by either the ANOVA or Mann-Whitney test (GraphPad INSTAT). A P 

value of ≤0.05 was considered significant. 

Immunofluoresent staining of DLNs.  To examine the addressin profile present in the DLN 

of immunized animals, DLNs were harvested, snap frozen in liquid nitrogen and sectioned.  

Frozen sections were stained with antibodies against PNAd and MAdCAM-1 as previously 

described (67, 73) and analyzed by confocal microscopy (Zeiss LSM510; Oberkochen, 

Germany). 

Cytokine/Chemokine analysis  PBS homogenates of lymph nodes (see above) were 

analyzed for the presence of IL-1β, TNF-α, IL-5, IL-6, IFN-γ, RANTES, GM-CSF, MIP-1 β, 

TGF-β1, TGF-β2, and TGF-β3 on a Luminex machine.  Samples were analyzed by the 

Upstate/Millipore Custom Multiplex cytokine analysis service.  DLN samples were diluted 

1:10 in PBS plus PIs (see above) and were analyzed by Upstate.  At least 4 individual lymph 

nodes for each inoculaum and timepoint were analyzed.  For statistical purposes, any analyte 

with a value below the assay limit of detection (LOD) was assigned a value of the LOD 

minus 1 pg/ml.   

 
 
RESULTS 
 
The DLN is an early site of IgA production following VRP infection.  In this study we 

have utilized nonmucosal delivery of VRP to probe the cellular components and molecular 

basis of an alternative pathway for mucosal immune induction.  IgA antibodies are the most 

prominent antibodies present at mucosal surfaces in both small rodents and humans, and 
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represent a critical component of the mucosal immune system (52).  Therefore, the kinetics 

and anatomical localization of IgA production following VRP delivery were determined. 

Groups of female BALB/c mice were immunized in a rear footpad at week 0 and 

week 4 with diluent, 1x105 infectious units (IU) of HA-VRP, or 10 µg of formalin-

inactivated-influenza virus (I-Flu) which serves as a non-VRP-vectored antigen control.  In 

order to evaluate the ability of VRP to induce mucosal immunity to a co-delivered antigen, 

an additional group of animals received 10 µg of I-Flu mixed with 1x105 IU of VRP 

expressing green fluorescent protein (GFP) as an adjuvant (GFP-VRP).  Groups of 3 animals 

were sacrificed on days 3, 7, 14, and 28 post-boost, and lymphoid organ cultures (45, 70) 

were established from the spleen, as a characteristic systemic lymphoid tissue, the nasal 

epithelium, as a characteristic mucosal surface, as well as the draining popliteal lymph node, 

as a candidate component of an alternative mucosal immune induction pathway.  Organ 

culture supernatants were evaluated for the presence of influenza (flu)-specific IgG and IgA 

antibodies by ELISA.  In general, the appearance of flu-specific IgG and IgA antibodies in a 

given tissue were similar in terms of kinetics of induction (Fig 3-1).  The dose of I-Flu 

utilized in this study (10 µg) was chosen so as to induce an antigen-specific systemic IgG 

response similar to that of HA-VRP, allowing assessment of the role of VRP in IgA 

production under conditions of equivalent overall immune stimulation.  Following delivery 

of I-Flu alone, flu-specific IgG (Fig. 3-1A) and IgA (Fig 3-1B) antibodies were detectable in 

spleen organ culture supernatants, however, flu-specific IgA antibodies were significantly 

increased following either delivery of HA-VRP or when GFP-VRP were co-administered 

with I-Flu.    Likewise, significantly increased flu-specific IgG (Fig. 3-1C) and IgA (Fig. 3-

1D) antibodies also were detected in the nasal epithelium of animals immunized with VRP-
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containing inocula.  Flu-specific IgG (Fig. 3-1E) and IgA (Fig. 3-1F) antibodies also were 

detected in the supernatants from the DLN following delivery of antigen alone.  These values 

were again significantly increased in animals immunized with VRP as expression vectors and 

as adjuvants.  Taken together, these results further validate the use of VRP as both expression 

vectors and adjuvants for the induction of pathogen-specific immunity 

Additionally, in this study we sought to determine the anatomical location in which 

IgA antibodies were first produced in VRP-immunized animals.  Flu-specific IgA antibody 

responses peaked in the DLN at day 3 post-boost (Fig. 3-1F), a time at which  such 

antibodies were essentially undetectable at the mucosal surface (Fig 3-1D).  These results 

suggest that VRP-induced IgA production occurs in the DLN prior to production at mucosal 

surfaces and provides a foundation for the further study of VRP-stimulated IgA synthesis in 

the DLN in the context of mucosal immune induction. 

The data presented in figure 3-1 suggested that IgA antibodies were produced in the 

DLN following VRP delivery, and that such production was dependent upon signals 

provided by the VRP and/or VRP infection, as equivalent levels of antigen-specific IgA 

antibodies were not produced in the DLN following delivery of antigen alone.  However, the 

issue of whether DLN IgA antibodies are produced in vivo in the absence of ex vivo culture 

was not addressed in the previous study.  Therefore, groups of female BALB/c mice were 

immunized in a rear footpad at week 0 and week 4 with 1 µg I-Flu alone, or 1 µg I-Flu alone 

co-delivered with 1x105 IU of null VRP.  Null VRP genomes express the viral nonstructural 

genes which drive RNA replication.  However, they do not encode a heterologous transgene 

downstream of the subgenomic promoter, but nevertheless provide a strong adjuvant signal 

(70).  To evaluate the kinetics of IgA synthesis following VRP delivery in the absence of ex 
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vivo culture, DLNs were harvested at day 1, 3, 7, and 14 post-boost, and homogenized in 0.1 

mls of PBS.  Supernatants were evaluated for the presence of flu-specific IgA antibodies by 

ELISA.  Fecal extracts also were prepared from immunized animals as a measure of mucosal 

immune induction (28, 70).  As demonstrated in figure 3-2, antigen-specific IgA antibodies 

were in fact produced in the DLN in vivo; and were detectable in DLN homogenates (Fig 3-

2A).  IgA antibody levels peaked at day 3 post-boost, similar to the kinetics of IgA 

production in the DLN in the lymphoid culture system, and likewise decreased over the 

timecourse.  Conversely, antigen-specific IgA antibodies peaked in fecal extracts at day 7 

post-boost, a time after peak production in the DLN (Fig 3-2B).   

The contribution of components of the conventional pathway for the mucosal immune 

induction also were evaluated in the VRP system.  As a first step, we harvested a single PP 

from each of six individual animals and prepared PBS homogenates as described for DLNs.  

PP homogenates were evaluated for the presence of flu-specific antibodies by ELISA; 

however, the mean values produced in PP homogenates at all four timepoints tested were 

below the limits of detection of the ELISA assay, and were not statistically distinct from the 

assay background (Fig 3-2C).  Taken together, these results suggest that antigen-specific IgA 

antibodies are produced in vivo in the DLN prior to production at mucosal surfaces following 

stimulation of the alternative pathway by VRP. 

VRP stimulate high molecular weight IgA antibody production in the DLN.    IgA-

producing B cells in the mucosal lamina propria secrete large amounts of dimeric or 

polymeric forms of IgA, a defining characteristic of IgA antibodies produced at mucosal 

surfaces (52).  IgA dimer/polymer formation is mediated by the inclusion of the J chain 



 135

protein during antibody secretion.  Thus, mucosal IgA antibodies are high molecular weight 

antibodies as a result of J chain incorporation (32). 

 While delivery of VRP-containing inocula clearly increased the levels of antigen-

specific-IgA antibodies produced in the DLN, antigen-specific IgA antibodies also were 

produced at detectable levels following delivery of I-Flu alone.  Based on the idea that 

mucosal IgA antibodies are polymeric, the molecular size of the IgA species produced in the 

DLN was determined following delivery of both VRP and non-VRP inocula.  Monomeric 

IgA antibodies run at a molecular weight of approximately 150 kilodaltons (kDa) (2 heavy 

chains of 50 kDa, and 2 light chains of 25 kDa), while polymeric IgA molecules have a 

molecular weight of 300 kDa or higher (32).  Supernatants from day 3 DLN cultures were 

analyzed by SDS-PAGE under non-reducing conditions for the presence of IgA antibodies.  

As shown in Figure 3-3A, the IgA antibodies in the DLN following delivery of I-Flu alone 

were predominantly monomeric, with a molecular weight of approximately 160 kDa.  

Interestingly, the delivery of both HA-VRP and I-Flu in the presence of a VRP adjuvant 

resulted in the production of monomeric forms of DLN IgA as well as large molecular 

weight (greater than 250 kDa) forms not present at substantial levels following delivery of 

antigen alone.  IgA antibodies were not produced in the contralateral popliteal lymph node.    

To determine whether VRP-induced high molecular weight IgA antibodies were 

specific for the influenza antigen, day 3 DLN supernatants were incubated with influenza 

virus, or an irrelevant virus (Girdwood virus) to allow the formation of virus-antibody 

complexes.  The complexes were pelleted through a sucrose cushion by ultracentrifugation.  

This procedure utilized co-sedimentation of influenza virions as a means to affinity purify 

virus-specific antibodies from non-flu-specific antibodies prior to western blot analysis.  As 
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shown in figure 3-3B, the flu-specific IgA antibodies present in the DLN following delivery 

of I-Flu were predominantly monomeric.  Immunization with either HA-VRP or I-Flu plus 

GFP-VRP resulted in the production of both a monomeric species of flu-specific IgA, as well 

as two high molecular weight forms not present at appreciable levels following delivery of I-

flu alone.  Taken together, these results suggest that VRP provide a signal which promotes 

the production of high molecular weight IgA molecules in the DLN. 

While production of polymeric forms of IgA in the DLN was clearly dependent upon 

the presence of the VRP, the question of whether such antibodies are produced in the DLN in 

vivo was not evaluated in the preceding study.  To evaluate the presence of polymeric IgA 

antibodies in the DLN in vivo, groups of female BALB/c mice were immunized at week 0 

and week 4 with 10 µg OVA alone, or OVA mixed with either 1x105 IU of null VRP or 1 µg 

of CpG DNA.  At day 3 post-boost, DLNs were harvested, and homogenates in PBS were 

prepared.  Homogenates were evaluated for the presence of IgA antibodies by non-reducing 

western blot analysis as described above.  As shown if figure 3-3C, IgA antibodies were not 

detectable in the DLN following delivery of OVA alone or following co-delivery of OVA 

with CpG DNA.  In contrast, both monomeric and dimeric forms of IgA were produced in 

the VRP DLN, suggesting that high molecular weight IgA antibodies are in fact produced in 

the DLN in vivo.   

Antigen stimulation is required for DLN polymeric IgA production.  To determine 

whether the production of polymeric IgA antibodies in the DLN was dependent upon 

exogenous antigen stimulation, or if antigens naturally present in the DLN have the capacity 

to promote IgA production during a concomitant VRP infection an additional experiment was 

performed.  Groups of female BALB/c mice were immunized at week 0 and week 4 with 10 
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µg OVA alone, 10 µg of OVA mixed 1x105 IU of null VRP, PBS, or 1x105 IU of null VRP 

alone and DLN homogenates in PBS were prepared at day 3 post-boost and analyzed for the 

presence of IgA by western blot under non-reducing conditions.  As shown in figure 3-4, 

VRP induced the production of both monomeric and polymeric forms of IgA following co-

delivery with antigen.  In contrast, only a monomeric species was present following delivery 

of the same VRP in the absence of exogenous antigen, suggesting that antigenic stimulation, 

in addition to VRP infection is required to promote polymeric IgA synthesis in the DLN. 

Characterization of DLN cells following VRP delivery.  The fact that the DLN appeared to 

serve as the earliest site of IgA production, and high molecular weight antigen-specific IgA 

was synthesized there following VRP delivery, led us to further characterize the general 

characteristics of the DLN under these conditions.  The overall mass of the DLN, as a general 

marker of inflammation as well as the global cellularity of the DLN were determined.  

Groups of animals were immunized with 1 µg of I-Flu alone, 1 µg of I-Flu mixed with 1x105 

IU null VRP, or 1x105 IU null VRP alone, and DLNs were harvested at days 0, 1, and 3 post-

boost.  DLNs were carefully weighed on an analytical balance to determine overall mass, and 

single cell suspensions were created by collagenase digestion.  Total cell counts were 

performed by trypan blue exclusion, and cells were analyzed by flow cytometry for the 

presence of B cells, T cells, and dendritic cells (DCs) following staining with antibodies 

directed against the appropriate cell surface markers (CD19, CD3, and CDllc respectively).  

As shown in figure 3-5A, VRP delivery in the presence or absence of co-delivered antigen 

resulted in a 2-4 fold increase in the overall mass of the DLN depending upon the timepoint 

examined.  Moreover, the total cellularity of the VRP DLN was increased by 4-6 fold (Fig 3-

5B).  The increase in cellularity most likely represents a significant proportion of the 
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increased mass of the lymph node.  This is of interest as Soderberg et al. recently 

demonstrated that viral signals increase arterial blood feed to inflamed lymph nodes, which 

also would result in a lymph node with increased mass (68).   VRP induced a proportional 3-

10 fold increase in B cells, T cells, and CD11c positive, CD11b negative DCs in the DLN at 

days 1 and 3 post-boost (Fig 3-5C-3-5E). Conversely, VRP infection led to an approximately 

20-40 fold increase in the number of CD11c positive, CD11b positive DCs in the DLN at 

days 1 and 3 post-boost, both in the presence and absence of exogenous antigen (Fig 3-5F).  

These results suggest that VRP delivery results in a significant increase of numerous cell 

types to the inflamed DLN independent of exogenous antigen delivery, as well as a 

preferential recruitment of a CD11b positive DC subset to the DLN. 

VRP induce the expression of the mucosal homing receptor on DLN B cells.  Analysis of 

the kinetics of IgA synthesis following VRP delivery suggested that the DLN serves as one 

of the earliest sites of IgA production following VRP immunization, and that a significant 

portion of DLN IgA displayed characteristics typical of mucosal IgA antibodies.  

Additionally, VRP induced a significant increase in the number of B cells present within the 

DLN concomitant with IgA production.  Here we sought to further characterize the 

phenotype of DLN B cells for markers characteristic of mucosal B cells.  A number of 

investigators have demonstrated that the α4β7 integrin, also known as the mucosal homing 

receptor, plays a significant role in licensing lymphocyte migration into the mucosal 

compartment, especially in the gut (9). This heterodimeric integrin binds to mucosal 

addressin cell adhesion molecule-1 (MAdCAM-1) expressed on the high endothelial venules 

of mucosal lymphoid structures such as Peyer’s patches and the mesenteric lymph node, and 

retains α4β7 positive cells at the mucosal surface (4).   Therefore, we wanted to determine 
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whether B cells present in the DLN following nonmucosal VRP delivery expressed the α4β7 

integrin.   

  Groups of female BALB/c mice were immunized in a rear footpad at week 0 and 

week 4 with 10 µg OVA alone or co-inoculated with 1x105 IU null VRP, and DLNs were 

harvested at day 1 and day 3 post-boost.  Single cell suspensions were generated by 

collagenase digestion, and DLN B cells were analyzed for expression of CD19, B220, and 

the α4β7 integrin by flow cytometry.  Additionally, single cell suspensions prepared from the 

MLN were also analyzed as a representative mucosal lymphoid tissue.  As shown in figure 3-

6A, the α4β7 integrin was in fact expressed to similar levels on B cells isolated from the 

mesenteric lymph node at both day 1 and day 3, regardless of the immunizing inoculum.  

Analysis of DLN B cells revealed two populations of B cells according to B220 expression 

levels; a B220 high, CD19 high population, and a B220 low, CD19 high population.  

Expression levels of the α4β7 integrin were analyzed on both populations at day 1 and day 3 

post-boost.  As shown in figure 3-6B, a small B220 low population of B cells was present in 

the DLN of animals inoculated with OVA alone at day 1 post-boost.  Increased α4β7 integrin 

expression was observed in a subset of these B220 low B cells (see inset).  Delivery of OVA 

in the presence of VRP resulted in a significantly increased population of B220 low B cells 

with upregulated α4β7 integrin expression at day 1 post-boost.  The α4β7 integrin levels were 

comparable to those of MLN B cells.  Interestingly, while a B220 high population was still 

present in the DLN following delivery of OVA in the presence and absence of VRP at day 3 

post-boost, this population of cells no longer expressed increased levels of the α4β7 integrin.  

Increased α4β7 integrin expression was detected on a subset of B220 high B cells at day 3 

following delivery of OVA alone.  
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 To determine the proportion of B220 low DLN B cells with upregulated α4β7 integrin 

expression, as well as to evaluate the role of exogenous antigen delivery in the activation of 

mucosal homing receptor, an additional experiment was performed.  Groups of mice were 

immunized at week 0 and week 4 with 1 µg of I-Flu alone, 1 µg of I-Flu plus 1x105 IU null 

VRP, or 1x105 IU null VRP alon, and α4β7 integrin expression was evaluated on DLN B cells 

at days 0 (prior to boost), 1, and 3 post-boost.  As shown in figure 3-6C, α4β7 integrin 

expression was induced only in the B220 low population at day 1 post-boost and was again 

undetectable at day 3.  Moreover, VRP induced an upregulation of the α4β7 integrin either 

when co-inoculated with a viral antigen or when delivered in the absence of any exogenous 

antigen, suggesting that the signals which drive increased mucosal homing receptor 

expression are provided exclusively by the VRP.   Taken together, these results suggest that 

peripheral inoculation of VRP results in a mucosal homing profile of DLN B cells that is 

similar to the homing profile of B cells isolated from mucosal lymphoid tissues (MLN). 

VRP induce MAdCAM-1 expression on the HEVs of the DLN.  MAdCAM-1 expression 

is characteristic of mucosal lymphoid tissues, and this marker also was present in the DLN of 

mice immunized with VRP.  Female BALB/c mice were immunized in both rear footpads 

with 1 µg of I-Flu alone, 1 µg of I-Flu plus 1x105 IU null VRP, or 1 µg of I-Flu plus 1 µg of 

CpG DNA at weeks 0 and 4.  DLNs were harvested from immunized animals at day 1, day 2, 

and day 3 post-boost, snap frozen in liquid nitrogen, sectioned, and analyzed for expression 

of MAdCAM-1 and peripheral lymph node addressin (PNAd) by confocal microscopy (67, 

73)  PNAd is expressed on the HEV of systemic and mucosal lymphoid tissues and binds to 

CD62L, or L-selectin (2, 9).  Sections derived from MLN served as a mucosal lymphoid 

tissue positive control.  As expected, expression of both PNAd (green) and MAdCAM-1 
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(red) were readily detectable on the HEV of the MLN, including double positive cells 

(yellow, figure 3-7A).  PNAd staining was abundant in the DLN following delivery of I-Flu 

alone at all timepoints examined, consistent with a systemic lymphoid tissue phenotype.  

Interestingly, MAdCAM-1 expression was detected in the DLN following delivery of I-Flu 

in the presence of VRP beginning at day 2 post-boost, with increased expression at day 3 

post-boost.  Analysis of MAdCAM-1 staining suggested that endothelial cells lining the HEV 

upregulated MAdCAM-1, similar to expression in mucosal lymphoid tissues, such as the 

MLN (figure 3-7C).  Both “1st type” staining, in which a single cell inside the vessel is 

detected (these cells could be endothelial cells), as well as “2nd type,” in which MAdCAM-1 

is clearly expressed by the endothelial cells is appearant in the VRP DLN (figure 3-7C).  

Positive staining was also detected in the DLN following delivery of I-Flu plus CpG DNA at 

day 3, however to a lesser extent.  These results suggest that stimulation of an alternative 

mucosal inductive pathway by VRP results in an HEV profile in the DLN which is distinct 

from traditional systemic lymphoid tissues, but instead more accurately resembles the profile 

of mucosal lymph nodes.   

VRP drive mucosal cytokine/chemokine production in the DLN.   Mucosal antigen 

delivery in the presence of a number of important cytokines and chemokines significantly 

augments mucosal antibody and T cell responses (reviewed in (51).  As VRP induced a 

mucosal phenotype in the DLN in terms of IgA antibody production, homing receptor 

expression, and addressin profile, the cytokine/chemokine profile in the DLN following VRP 

infection was analyzed for mucosally-relevant lymphokines.  Groups of female BALB/c mice 

were immunized in the rear footpads at week 0 and week 4 with 10 µg of OVA alone, 10 µg 

of OVA co-inoculated with 1x105 IU null VRP, or 10 µg of OVA plus 1 µg of CpG DNA 
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and DLNs were harvested at 6 hrs, 12 hrs, and 24 hrs post-boost. DLN homogenates in PBS 

were prepared as described above.  Homogenates were analyzed for expression of IL-1β, IL-

5, IL-6, TNF-α, IFN-γ, MIP-1β, RANTES, TBF-β1, 2, and 3 in a LUMINEX assay by 

UPSTATE/Millipore (figure 3-8).  In general, VRP-induced cytokine/chemokine production 

peaked at 6 hrs post-boost and decreased over the timecourse.  However, subtle differences 

existed between the kinetics of expression of the individual proteins.  The inclusion of VRP 

in the inoculum significantly increased expression of IL-1β (11 fold), IL-5 (3.5 fold), IL-6 

(16.5 fold), TNF-α (7 fold), IFN-γ (5 fold), MIP-1β (27 fold), and RANTES (6.5 fold) at the 

6 hr and/or 12 hr timepoints compared to delivery of antigen alone.  Although significant 

levels of all 3 subtypes of TGF-β were present in the DLN at 6 hrs, VRP infection did not 

induce a statistically significant increase in these proteins, and responses were quite variable 

(data not shown).  This analysis suggests that VRP significantly augment the production of 

numerous mucosally-relevant cytokines and chemokines in the DLN compared with 

immunization with antigen alone. 

 

DISCUSSION 

Of the infectious agents causing morbidity and mortality in humans, the 

overwhelming majority, including HIV, initiate infection at a mucosal surface.  While the 

correlates of protection differ with individual diseases, it is logical that induction of immune 

responses active at the site of virus challenge would represent a substantial obstacle to 

infection (44, 66), and that the induction of mucosal immune responses by vaccination has 

the potential to dramatically curtail the spread of mucosal pathogens.  Therefore, an 

understanding of the basic parameters which regulate mucosal immune induction in the 
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numerous existing experimental systems represents a meaningful accomplishment, and may 

considerably promote the efficacy of mucosal vaccines. 

 An extensive body of work supports the notion that the strongest mucosal immune 

responses are present following mucosal antigen delivery and antigen processing in the 

specialized mucosal lymphoid tissues lining the various mucosal surfaces (57).  The strongest 

support for this comes from studies of mucosal antibody and T cell activation which have 

revealed the components and the immune inductive requirements of the natural pathway of 

mucosal immune induction.  It has been suggested that mucosal delivery of foreign antigens  

in the presence of bacterial enterotoxins such as cholera toxin and labile toxin (20, 61) is 

required for the stimulation of the natural pathway of mucosal immune induction.  However, 

it has become increasingly clear that nonmucosal antigen delivery also can result in mucosal 

immune induction under specific conditions.  The molecular mechanisms which regulate 

peripherally-induced mucosal immunity are poorly understood at present.  The examples are 

varied and suggest either a consistent unifying mechanism is responsible for such induction 

under all circumstances, or conversely, that numerous diverse signals have the capacity to 

drive mucosal immunity following nonmucosal delivery.   

It is possible that mucosal immune induction following nonmucosal delivery is 

merely a result of stimulating components of the natural pathway, such as has been proposed 

by McKenzie et al., following peripheral delivery of anti-MAdCAM-1 antibodies (50).  

Conversely, mucosal immune induction following nonmucosal delivery may be a result of 

stimulation of an alternative pathway for mucosal immune induction; a pathway with 

components distinct from those of the natural pathway.  A third possibility is that specific 

vaccine signals promote the generation of a “mucosal-like” site outside of the mucosal 
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compartment.  We hypothesize that this is the mechanism by which VRP promote mucosal 

immune induction following nonmucosal delivery, as several characteristics of mucosal 

lymphoid tissues are observed in the DLN of VRP-immunized mice.   

 We feel that the combined examples of mucosal immune induction following 

nonmucosal delivery in the literature support the notion that other immunizations, other than 

VRP also stimulate an alternative pathway (5, 11, 14, 17, 19, 22, 27, 28, 36, 37, 42, 45, 55, 

58, 59, 71).  In order to test the “conversion” hypothesis in the VRP system, we first sought 

to determine the anatomical location in which IgA antibodies are produced following VRP 

delivery.  Such analysis revealed that antigen-specific IgA antibodies were first detected in 

the popliteal lymph node draining the site of VRP infection, prior to antibody production at 

mucosal surfaces. Moreover, further characterization of DLN IgA antibodies revealed the 

presence of polymeric forms present in the DLN.  Such antibodies are typically absent from 

systemic lymphoid tissues, and instead found at mucosal lymphoid sites.  These results are 

supportive of a model in which the DLN serves as the primary inductive tissue for the 

activation of mucosal immune responses following footpad VRP delivery.   

 The peripheral draining lymph node has been implicated in three other models of 

mucosal immune activation following nonmucosal delivery.  Enioutina et al. demonstrated 

the presence of IgA antibodies at multiple mucosal surfaces following co-delivery of antigen 

in the presence o the active form of vitamin D3 (22).  Interestingly, IgA-producing cells were 

also present in the DLN following vitamin D delivery; however, the presence of polymeric 

IgA was not evaluated in that study.  Following intramuscular rotavirus delivery, cells 

isolated from the draining lymph node induced gut IgA and IgG responses following 

adoptive transfer into naïve recipients (13).  An additional approach, further implicates a 
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peripheral lymph node as a component of the alternative pathway.  In targeted lymph node 

immunizations, antigens are inoculated directly into the lymph node itself, promoting antigen 

acquisition and processing by lymph node resident cells.  This inoculation regimen induces 

IgA antibody synthesis in the local inoculated lymph node as well as in mucosal secretions in 

the absence of antigen processing in other peripheral lymphoid structures (42).  The precise 

mechanism underlying mucosal immune induction in this system remains elusive.  However, 

Lehner et al. demonstrated antigen-specific IgA antibody production in the targeted lymph 

node and proposed that the affected lymph node in fact serves as an inductive site for the 

generation of cells with protective properties at the local mucosal surface (43).  These 

examples, together with the data presented here in the VRP system, are consistent with a 

model in which the DLN serves as an integral component of an alternative pathway for 

mucosal immune induction. 

The role of the DLN in mucosal immune induction in the VRP system may derive 

from the cell populations induced in or recruited to the DLN.  The DLN contains numerous 

cell types and a significant increase in B cells, T cells, and DCs occurs in the VRP-infected 

DLN.   It was of interest that VRP infection resulted in a significant increase in the number 

of B cells present in the DLN, as IgG and IgA antibodies were also present in the DLN.  

Further characterization revealed a population of B cells which express the α4β7 integrin in 

the DLN.  This observation is significant as α4β7 integrin expression is thought to be 

restricted to cells activated at a mucosal surface, and represents a characteristic marker of 

mucosal lymphocytes (9).  These results potentially implicate the mucosal homing receptor 

in the alternative pathway for mucosal immune induction and suggest that components of the 

alternative pathway, α4β7-MAdCAM-1 interactions, overlap with the natural pathway.   It is 
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important to consider the commonalities between the natural and alternative pathways within 

the VRP experimental system, as well as the commonalities in the alternative pathway 

amongst the various examples of peripherally-induced mucosal immunity. 

It is attractive to speculate that VRP infection provides a specific signal leading to 

increased mucosal homing receptor expression on DLN B cells, and as a result, such cells 

eventually migrate to the mucosal surface where they continue to secrete antigen-specific 

IgG and IgA antibodies.  It will be important to determine definitively the relationship 

between the α4β7 positive DLN B cells and the B cells secreting antigen-specific antibodies at 

the mucosal surface some days later.  The exact viral signal responsible for α4β7 integrin 

upregulation remains undefined to date; however, data presented here suggest that the signal 

is antigen-independent, as increased α4β7 integrin expression was observed following 

delivery of both antigen plus null VRP and null VRP alone.   

  The observation that DLN B cells harbor a mucosal homing phenotype provides a 

potential mechanistic explanation for the inclusion of the DLN in the alternative pathway for 

mucosal immune induction.  However, whether α4β7 integrin positive B cells are generated in 

the DLN or are recruited to the DLN from another site remains to be determined.  The ligand 

for the α4β7 integrin, MAdCAM-1, also is expressed in the DLN at day 3 post-boost, 

consistent with a model in which the DLN serves as the functional equivalent of a mucosal 

inductive site, and a potential mechanism by which α4β7 integrin positive cells are recruited 

to the VRP DLN.  However, α4β7 integrin expression was detected at day 1 post-boost, a time 

which MAdCAM-1 expression was not detected.  Instead, MAdCAM-1 expression kinetics 

correlated with the kinetics of IgA antibody production in the DLN, suggesting that the 
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involvement of MAdCAM-1 may not be in the recruitment of IgA-producing cells to the 

DLN but rather in the retention of such cells in the DLN 

An additional marker of mucosal lymphoid tissues, polymeric IgA antibodies, was 

also detected in the DLN of VRP-immunized animals.  The production of polymeric IgA in 

the DLN again suggests that VRP provide a qualitatively distinct signal driving the 

production of large molecular weight forms of IgA than that provided by antigen alone.  

Whether the viral signal driving polymeric IgA production is the same as the signal for α4β7 

integrin upregulation remains to be fully determined; however, we speculate that such signals 

are distinct, as α4β7 integrin upregulation occurred following VRP delivery in the absence of 

antigen but high molecular weight IgA antibodies were not detected following delivery of 

VRP alone.  Polymeric IgA was produced following delivery of HA-VRP, suggesting that 

specific B cell activation or antigenic stimulation in some fashion is a prerequisite.  It will be 

interesting to determine whether delivery of BCR cross-linking agents in the presence of null 

VRP rescue high molecular weight IgA production. 

 The α4β7 integrin and high molecular weight IgA phenotype in the DLN potentially 

implicate DLN B cells as components of the alternative pathway in the VRP system.  

However, whether DLN B cells are programmed by soluble mediators present in the DLN 

alone or require additional signals provided by other DLN-resident cells is unclear.   As 

presented here, VRP infection resulted in a significant increase in DLN B cells, T cells, and 

DCs.  All cell populations increased in proportion to the total cell increase in the DLN with 

the exception of CDllb+ DCs, which were increased by up to 40 fold.   

A large body of evidence supports the notion that mucosal DCs are qualitatively 

distinct from systemic DCs in terms of their ability to prime mucosally-relevant B cell and T 
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cell responses (18, 34, 54, 69), reviewed in (63).  For example, von Andrian and colleagues 

recently demonstrated that mucosal DCs co-cultured in vitro with CD8 T cells significantly 

increased α4β7 integrin expression on antigen-specific T cells compared to systemic DCs, 

promoting homing to the mucosal surface (53).  Likewise, Sato et al demonstrated the ability 

of mucosal DCs to promote increased IgA synthesis in vitro compared to systemic DCs (62).  

In fact, this ability was mapped to mucosal DC production of IL-6, as mucosal DCs cultured 

in the presence of an anti-IL-6 antibody failed to stimulate IgA production.  VRP infection 

resulted in the production of strong IL-6 responses in the DLN; however, whether DCs, and 

in particular CDllb+ DCs were fully responsible for DLN IL-6 production has not been 

determined.   

Interestingly, the mucosal DCs responsible for driving IgA production in the 

experimental system described by Sato et al. were CDllb+, the same population of DCs that 

were dramatically increased in the DLN of VRP-immunized mice.  Indeed, preliminary 

experiments suggest that the CDllb+ DC population represents the major target of VRP 

infection (data not shown); however, whether these cells represent a migratory population 

originating in the skin or elsewhere, or represent a lymph node-resident population remains 

to be determined.   It is attractive to speculate that VRP not only rely upon the DLN as a 

component of the alternative mucosal immune induction pathway, but that VRP infection 

promotes a “mucosal DC-like” phenotype in DLN CD11b positive DCs, potentially through 

IL-6 production.   It will be interesting to determine if VRP-infected DCs possess the 

capacity to drive both increased α4β7 integrin expression as well as IgA production following 

in vitro lymphocyte co-culture.   
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VRP delivery significantly increased the levels of numerous cytokines and 

chemokines in the DLN, in addition to IL-6, which potentially play a role in the alternative 

mucosal immune induction pathway.  It will be interesting to determine the exact role of such 

cytokine production in directly modulating the DLN mucosal environment.  For example, 

Sikorski et al. demonstrated the ability of both Il-1 and TNF-α to upregulate MAdCAM-1 

expression (64).  Additionally, expression of RANTES and MIP-1β, both of which were 

highly upregulated in the DLN by VRP, correlated with lymph node IgA production in the 

DLN in the targeted lymph node immunization model (43).  The question of which cell type 

is responsible for the DLN proinflammatory response has yet to be determined as many of 

the observed cytokines and chemokines examined in the present study can be secreted by 

numerous cell types which are present in the VRP DLN including endothelial cells, DCs, and 

infiltrating T lymphocytes.  Irrespective of the cell type(s) responsible for the lymph node 

inflammatory environment, we propose that the VRP-induced DLN cytokine milieu is critical 

role for both the mucosal phenotype of the DLN, as well as the VRP-induced mucosal 

immune response.   

The data presented here suggest that the DLN of VRP-inoculated animals develops 

numerous characteristics of a mucosal lymphoid tissue including antigen-specific polymeric 

IgA production, mucosal homing receptor expression, and MAdCAM-1 expression.  

However, it is possible that components of the natural pathway of mucosal immune induction 

also play a role following nonmucosal VRP delivery.  VRP specifically target DCs following 

footpad delivery (46) and it is possible that VRP-infected DCs migrate beyond the DLN to 

PPs and/or MLN following footpad delivery.  These VRP-infected DCs may initiate mucosal 

immune induction following migration to known mucosal inductive tissues as has been 
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proposed following both transcutaneous immunization (3) and antigen delivery in the 

presence of vitamin D3 (21).  However, a series of experiments have failed to experimentally 

support such an hypothesis.  Analysis of PP, MLN, and nasal-associated lymphoid tissue 

following peripheral delivery of GFP-VRP has failed to reproducibly detect VRP-infected 

cells in these tissues (Thompson, Richmond, and Johnston, unpublished).  Additionally, 

antigen-specific antibodies were not detected in PP homogenates from VRP-immunized 

animals under conditions where antigen-specific polymeric IgA was readily detectable in the 

DLN.  Thus, we feel it is unlikely that infection of mucosal lymphoid tissues represents the 

predominant mechanism of immune induction in the VRP system 

In summary, nonmucosal delivery of alphavirus replicon particles has been employed  

as a model system to dissect the organization of an alternative pathway for mucosal immune 

induction.  The draining peripheral lymph node appears to be the central component of this 

pathway, as the VRP-infected DLN produced polymeric forms of IgA, increased mucosal 

cytokines, a population of B cells harboring a mucosal homing phenotype, and ‘mucosal-

like’ HEVs.  Identification of the essential viral and immunological factors which regulate 

mucosal immune induction following nonmucosal VRP delivery may shed new light on an 

alternative pathway for mucosal immune induction.  Moreover, such insights may allow for 

robust stimulation of this alternative pathway, resulting in vaccines with protective efficacy 

against mucosal pathogens and consequent reduced morbidity/mortality associated with such 

infections.   
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Figure 3-1 
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Figure 3-1.  The DLN is an early site of IgA production following VRP infection. 
Groups of BALB/c mice were immunized in the rear footpad with 1x105 IU of HA-VRP, 10 
µg of I-Flu alone, or 10 µg of I-Flu plus 1x105 GFP-VRP at weeks 0 and 4.  At the indicated 
timepoints, lymphoid organ cultures were established from the spleen (A and B), nasal 
epithelium (C and D), and DLN (E and F) and evaluated for the presence of flu specific IgG 
(A, C, E) and IgA antibodies (B, D, F) by ELISA.  Values represent Mean+/- SEM. 
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Figure 3-2 
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Figure 3-2.  VRP induce IgA antibody production in the DLN in vivo.   
Groups of BALB/c mice were immunized in the rear footpad with 1 µg of I-Flu alone, or I-
Flu plus of I-Flu plus 1x105  null VRP at weeks 0 and 4.  At the indicated timepoints, flu-
specific IgA antibodies were evaluated in DLN homogenates (A),  fecal extracts (B), and PP  
homogenates (C) by ELISA.  Values represent Mean+/- SEM. 
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Figure 3-3 
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Figure 3-3.  VRP induce the production of large molecular weight IgA antibodies in the  
DLN.  Groups of BALB/c mice were immunized in the rear footpad with 1x105 IU of HA- 
VRP, 10 µg of I-Flu alone, or 10 µg of I-Flu plus 1x105 GFP-VRP at weeks 0 and 4.  At day  
3 post-boost DLN and contralateral lymph node (CLN) culture supernatants were evaluated  
for IgA antibodies by non-reducing western blot analysis (A).  D3 DLN supernatants were  
then mixed with influenza virus to form virus-antibody complexes and complexes were  
purified via ultracentrifugation prior to non-reducing western blot analysis for IgA (B).   
Groups of BALB/c mice were immunized in the rear footpads with 10 µg of OVA alone, or  
co-inoculated with 1x105 null VRP, or 1 µg of CpG DNA at weeks 0 and 4 and DLNs were  
harvested at day 3 and DLN PBS homogenates were evaluated for IgA antibodies by non- 
reducing western blot analysis as in A (C). 
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Figure 3-4 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 3-4.  Antigen stimulation is required for DLN polymeric IgA production.  Groups 
of BALB/c mice were immunized in the rear footpads with at weeks 0 and 4 with10 µg of 
OVA, 10 µg of OVA co-inoculated with 1x105 IU of null VRP, PBS, or 1x105 IU of null 
VRP alone.  At day 3 post-boost, DLNs were harvested and PBS extracts were prepared and 
analyzed for the presence of IgA antibodies western blot under non-reducing conditions.   
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Figure 3-5 
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Figure 3-5.  Characterization of VRP DLN cells.  Groups of BALB/c mice were 
immunized in the rear footpads with at weeks 0 and 4 with1 µg of I-Flu alone, 1 µg of I-Flu 
co-inoculated with 1x105 IU of null VRP, or 1x105 IU of null VRP alone.  At day 0, 1, and 3 
post-boost, DLNs were harvested and weighed on an analytical balance and single cell 
suspensions were prepared by collagenase digestion.   The mass of each lymph node was 
determined (A), and total number of cells was determined by trypan blue exclusion (B).  The 
number of B cells (C), T cells (D), CD11b- DCs (E), and CD11b+ DCs (F) was evaluated by 
flow cytometry.    Values are presented as geometric mean +/- SEM.  
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Figure 3-6 
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Figure 3-6 
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Figure 3-6 
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Figure 3-6.  VRP induce the expression of the mucosal homing receptor on DLN B cells.  
Groups of animals were immunized in the rear footpad at weeks 0 and 4 with 10 µg of OVA 
alone of co-inoculated with 1x105 IU null VRP.  At days 1 and 3 post-boost, DLNs were 
harvested and stained with antibodies directed against CD19, B220, and the α4β7 integrin and 
analyzed by flow cytometry.  As a positive control, α4β7 integrin expression was examined on 
mesenteric lymph node (MLN) cells (A).  α4β7 integrin expression in both the B220 high and 
B220 low populations in the DLNs is shown in (B).  To confirm the upregulation of α4β7 
integrin expression specifically in the B220 low population following delivery of a viral 
antigen, α4β7 integrin expression was analyzed on DLN cells at day 0, 1, and 3 post-boost 
following delivery of 1 µg of I-flu alone, 1 µg of I-flu plus 1x105 IU null VRP, or 1x105 IU 
null VRP alone (C).  Values are presented as geometric mean +/- SEM. 
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Figure 3-7 
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Figure 3-7 
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Figure 3-7 
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Figure 3-7.  VRP upregulate MAdCAM-1 in the DLN.   
Groups of female BALB/c mice were immunized with at weeks 0 and 4 with 1 µg of I-Flu  
alone, 1 µg of I-Flu co-inoculated with 1x105 IU of null VRP, or 1 µg of I-Flu co-inoculated  
with 1 µg of CpG DNA and DLNs were harvested and snap frozen in OCT in liquid nitrogen  
at day 1, 2, and 3 post-boost.   MLN (A) and DLN sections were stained with antibodies  
directed against MAdCAM-1 (red) and PNAd (green) analyzed by confocal microscopy and  
visualized at 10 x (B) and 40x (C). 
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Figure 3-8 
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Figure 3-8.  VRP upregulate mucosal cytokine/chemokine production in the DLN.   
Groups of female BALB/c mice were immunized with at weeks 0 and 4 with 10 µg of OVA  
alone, OVA co-inoculated with 1x105 IU of null VRP, or 1 µg of CpG DNA and PBS  
homogenates were created from the DLN at 6 hrs, 12 hrs, and 24 hrs post-boost.  DLN  
homogenates were evaluated for the presence of IL-1β (A), IL-5 (B), IL-6 (C), TNF-α (D),  
IFN-γ (E), MIP-1 α (F), and RANTES (G) via LUMINEX.  Values are presented as  
geometric mean +/- SEM.   
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ABSTRACT 

 Alphavirus replicon particles induce potent antibody and CD8+ T cell responses to 

expressed antigens in numerous experimental systems.  We have recently demonstrated that 

Venezuelan equine encephalitis virus replicon particles (VRP) possess adjuvant activity for 

the activation of systemic and mucosal antibody responses.  In this report, we demonstrate 

that VRP induced a balanced serum IgG subtype response, with simultaneous induction of 

antigen-specific IgG1 and IgG2a antibodies and increased both systemic and mucosal CD8+ 

T cell responses directed towards a co-delivered antigen.  These responses significantly 

delayed the onset of tumor formation following challenge in a B16 melanoma model.  

Additionally, VRP further increased antigen-specific T cell immunity in an additive fashion 

following co-delivery with the TLR ligand, CpG DNA.    Moreover, VRP-induced immune 

activation appeared to function downstream of antigen acquisition/processing, as increased 

immunity also was observed following delivery of VRP with a processed peptide as antigen.  

VRP infection led to recruitment of CD8+ T cells into the mucosal compartment, potentially 

utilizing the mucosal homing receptor, as this integrin was upregulated on CD8+ T cells in 

the draining lymph node of VRP-infected animals.  This represents a novel activity of VRP, 

an adjuvant-mediated increased T cell response towards co-delivered antigen, and provides 

the potential to both define the molecular basis of alphavirus-induced immunity, as well as to 

improve alphavirus-based vaccines.   
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INTRODUCTION 

 Vaccination is the most effective strategy for protection against morbidity and 

mortality associated with numerous infectious agents (3).  The exact immunological 

mechanisms which serve as the critical protective factor/s vary widely depending upon the 

specific pathogen (38).  Likewise, the nature and makeup of the particular vaccine shapes the 

qualitative and quantitative aspects of the host immune response.  In general terms, 

protection is traditionally associated with either the induction of a neutralizing antibody 

response, the induction of a cell mediated immune response, or both (38).  There are a 

number of examples in which the immune correlates of protection has been identified 

[reviewed in (38)]; however, correlates have not been defined for important pathogens, such 

as human immunodeficiency virus (HIV) (23, 31).  Therefore, vaccination regimens capable 

of stimulating both broadly active antibody and cell mediated immunity represent a potential 

opportunity to intercede in the spread of such diseases.   

 Immunogen delivery systems based upon the alphaviruses have proven to be potent 

inducers of both neutralizing antibody responses as well as cell mediated immune responses 

to multiple antigens, including HIV antigens, expressed from the viral genome [reviewed in 

(14, 33, 34, 39, 41, 42, 46)].  The most promising results have come from replicon systems 

based upon Sindbis virus, Semliki forest virus (SFV), and Venezuelan equine encephalitis 

virus (VEE).  All three of these systems are actively under investigation as candidate HIV 

vaccine vectors in several laboratories.  Replicon particles harbor a modified genome; the 

viral non-structural genes which encode the proteins required to replicate the RNA genome 

are expressed from the 5’ two thirds of the genome, while the viral 26S subgenomic promoter 

catalyzes the transcription of the 3’ one third of the genome into a subgenomic mRNA (20).  
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The genome of replication-competent virus contains the viral structural genes, the capsid and 

E1 and E2 glycoprotein genes, expressed from the 26S promoter. This structural gene 

cassette has been replaced with a cloned antigen of interest in the vaccine replicon constructs 

(48).  In order to package replicon genomes into virus-like particles, the replicon RNA is co-

electroporated into permissive cells with two defective helper RNAs which together drive the 

expression of the structural components in trans.  However only the replicon RNA is 

incorporated into replicon particles, as the viral-specific packaging signal is deleted from the 

helper constructs (40).  VEE replicon particles (VRP) are currently under development as an 

HIV vaccine platform in a animal model systems (8, 13, 15, 16, 27).   

 We have recently identified a novel activity of VRP; they act as adjuvants for both 

systemic and mucosal antibody responses to antigens that were simply mixed with VRP that 

encode either an irrelevant or not transgene (49).  VRP significantly increased the systemic 

and mucosal IgG and IgA antibody responses to co-delivered antigen, however; the potential 

to increase T cell activation was not evaluated in that study.  Here we sought to determine 

whether VRP were capable of a T cell adjuvant effect, augmenting T cell mediated immune 

responses to co-delivered antigens.  As mentioned above, VRP induce potent T cell 

activation directed towards antigens expressed from the VRP genome.  When VRP are 

utilized as expression vectors, essentially all antigen positive cells are also VRP positive, and 

vice versa.  Following delivery of antigen mixed with VRP adjuvants, both VRP and antigen 

are likely to be sequestered to the same draining lymph node.  However, antigen may or may 

not be taken up by the same cells as those that are targets of VRP infection.  VRP target 

dendritic cells (DCs) following footpad delivery in mice (35); however, the precise subset of 

DCs that are initially infected has not yet been clearly determined.  Theoretically, it is quite 
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possible that co-delivered antigen could be processed in a very different manner compared to 

VRP-expressed antigen in the context of CD8+ T cell activation. 

CD8+ T cells are activated following presentation of peptide fragments in the context 

of major histocompatibility complex I (MHC I) and co-stimulatory molecule expression on 

antigen presenting cells (APCs) (7).  Understanding the factors which regulate antigen 

processing and presentation is an active area of investigation.  In general terms, endogenous 

cytosolic proteins are degraded by the 26S proteosome and ubiquitin pathways and gain 

access to the endoplasmic reticulum (ER) following transport via the transporter associated 

with antigen processing (TAP) (21).  Once in the ER these peptides are further processed by 

a number of ER-resident proteases, and are loaded into the peptide binding groove in MHC I 

molecules, displacing the peptide binding complex which protects “empty” class I molecules 

(28, 52).  Loaded peptide-MHC (pMHC) complexes are then transported to the cell surface 

for presentation to cognate CD8+ T cells (52).  An additional pathway of exogenous antigen 

loading, termed cross-presentation, also has been identified and involves the presentation of 

exogenous antigens into the class I pathway as a means to induce CD8+ T cell responses 

against pathogens which do not directly infect APCs (11, 44).   

Toll-like receptors (TLRs) are pattern recognition receptors which recognize 

conserved motifs, or pathogen associated molecular patterns (PAMPs) (1).  Recent evidence 

suggests that TLRs play a critical role in shaping both innate and adaptive immune responses 

(18, 26). Delivery of numerous TLR ligands promotes pro-inflammatory cytokine secretion 

and cross-priming (17).  Interestingly, simultaneous delivery of multiple TLR ligands 

synergistically activates both cytokine production and/or cross presentation (4, 37, 45, 51) at 

least in part through the type I interferon (IFN) pathway (17).  In this report we have assessed 
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the ability of VRP, either alone or in combination with a representative TLR ligand (CpG 

DNA), to activate cell-mediated immunity to a co-delivered antigen.  VRP infection 

produced an adjuvant effect, promoting increased CD8+ T cell immunity to co-delivered 

protein antigen, and an additive increase to both protein and peptide antigen in the presence 

of CpG DNA, as measured by IFN-γ secretion and antigen-specific pentamer analysis.  

Moreover, VRP-induced CD8+ T cell activation significantly delayed tumor onset in a B16-

OVA melanoma model.  Interestingly, nonmucosal VRP delivery resulted in a recruitment of 

CD8+ T cells into the mucosal compartment, as well as an increase in expression of the 

mucosal homing receptor on CD8+ T cells in the peripheral draining lymph node (DLN).  

Taken together these results suggest that VRP promote not only increased antibody responses 

(49), but also T cell responses to co-delivered antigens in both the systemic and mucosal 

compartments. 

 

MATERIALS AND METHODS 

VEE replicon constructs.  The VRP constructs utilized in this study were prepared and 

packaged as previously described (12, 40).  Briefly, in vitro-transcribed replicon RNA, along 

with two defective helper RNAs, which drive the expression of the viral structural genes in 

trans, were co-electroporated  into BHK-21 cells.  The viral-specific packaging signal is 

absent from the helper RNAs, therefore, only the replicon RNA is packaged into particles.  In 

this study, we have utilized a replicon which lacks a functional transgene downstream of the 

26S promoter (null VRP) (49).  Null VRP contain the viral nonstructural genes and the 26S 

promoter, a  14 nt stretch of VEE sequence downstream of the 26S mRNA transcription start 

site, a heterologous 43-nt long multiple cloning site, and the 118-nt 3' UTR (49).  Null VRP 
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were quantitated by immunocytochemistry of infected BHK cells with sera from mice 

inoculated with null VRP (49).  All replicon particles utilized in this study were packaged in 

the wild-type VEE (V3000) envelope.   

Animals and immunizations.  Seven-to-10-week-old female BALB/c or C57BL/6 mice 

were immunized in a 0.01 ml volume in the rear footpad(s) as previously described (49).  

Briefly, animals were immunized at week 0 and week 4 with antigen alone or antigen co-

inoculated with either VRP or CpG DNA as an adjuvant.   Chicken egg albumin (OVA) was 

purchased from Sigma and CpG DNA (ODN 1826) was purchased from Invivogen.  Diluent 

consisted of low endotoxin, filter-sterilized PBS.  For the peptide immunization experiments 

(presented in Figure 4-4), animals were immunized in both rear footpads in a 0.02 ml volume 

with the class I-restricted OVA peptide (SIINFEKL, New England Peptide) at weeks 0, 4, 

and 8.  Single cell suspensions were prepared from immunized animals 2 weeks following 

the last immunization and were analyzed for the presence of OVA-specific CD8+ T cells by 

IFN-γ ELISPOT and pentamer staining (see below). 

Serum collection.  All sample collection was prepared as previously described (49).  Blood 

was harvested from either the tail vein, following cardiac puncture, or from the 

submandibular plexus from individual animals and sera collected following centrifugation in 

microtainer serum separator tubes (Becton Dickinson).   

Flow Cytometric Analysis.  DLNs were harvested from immunized animals and the overall 

mass of the lymph nodes was determined by weighing individual lymph nodes on an 

analytical balance (Mettler).  Each lymph node was next disrupted with a razor blade and a 

hemostat, and single cell suspensions were created by agitating each lymph node in complete 

RPMI media [RPMI medium 1640 containing 10% (vol/vol) FBS, 2 mM L-glutamine, 50 
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µg/ml gentamicin, 100 units/ml penicillin, 100 µg/ml streptomycin, and 15 mM Hepes] 

containing 2.5 mg/ml Collagenase A (Roche Applied Science), 17 µg/ml DNase I (Roche 

Applied Science) for 30 minutes at 37ºC.  Single cell suspensions were then stained with 

antibodies directed against CD3, CD19, CD45 (B220), CD11c, CD11b (all purchased from 

ebioscience) as well as α4β7 integrin (LPAM-1, clone DATK32) purchased from BD 

Pharmingen and examined on a Becton Dickinson Facscaliber Flow cytometer and analyzed 

using Cellquest software. 

Enzyme Linked Immunosorbant Assay (ELISA). ELISAs for OVA-specific antibodies 

were performed on serum as previously described (49).   Briefly, a 1 mg/ml OVA solution (in 

PBS) was incubated in 96-well plates (Costar) overnight at 4°C to allow antigen to bind to 

the plate. Excess antigen was removed, and blocking solution [PBS 1x Sigmablock (Sigma)] 

was added overnight at room temperature. Following removal of blocking solution, plates 

were incubated at room temperature (RT) overnight with serial dilutions of individual 

samples diluted in the appropriate buffer. Plates were washed with a multi-channel plate 

washer (NUNC) and incubated for 1 hr with horseradish peroxidase-conjugated secondary 

goat anti-mouse IgG1 or IgG2a chain-specific antibodies (Southern Biotechnology 

Associates or Sigma). Finally, plates were again washed, and O-phenylenediamine 

dihydrochloride substrate was added for 30 mins, and the reaction was stopped with the 

addition of 0.1 M NaF. Antibody endpoint titers are reported as the reciprocal of the highest 

dilution that resulted in an OD450 ≥0.2. Data are presented as the geometric mean ± standard 

error of the mean (SEM). 

IFN-γ enzyme-linked immunospot assay (ELISPOT).  To evaluate the presence of OVA-

specific IFN-γ-secreting cells, single cell suspensions were prepared from both spleen and 
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the nasal epithelium.  Whole spleens were disrupted between frosted glass slides, and red 

blood cells were lysed either under hypo-osmotic conditions, or following addition of 

ammonium chloride buffer.  Cells were washed and banded on a Lympholyte-M density 

gradient (Accurate).  Banded cells were harvested, washed and counted. 

Nasal lymphocytes were prepared as previously described (49).  Briefly, nasal tissue 

from the tip of the nose to just anterior of the eye sockets was harvested from immunized 

animals, and the upper palate, including the NALT, was carefully removed prior to further 

processing.  Nasal tissue was physically and enzymatically disrupted by incubation at 37ºC 

for 2 hrs in a 50 ml Erlenmeyer flask in complete R-10 media [RPMI-1640 containing 10% 

(v/v) fetal bovine serum, 2 mM L-glutamine, 50 µg/ml gentamicin, 100 U/ml penicillin, 100 

µg/ml streptomycin, and 15mM HEPES] containing 2.5mg/ml Collagenase A (Roche), 17 

µg/ml DNase I (Roche) and glass beads.  Following digestion, cells were filtered through a 

40 µm cell strainer (BD Falcon), washed, resuspended in 44% Percoll (Amersham) and 

layered on Lympholyte-M as described for spleen cells above.  Banded cells were harvested, 

washed, and counted.  Cells were pooled from two animals and typical yields were 

approximately 2.5x105 to 1x106 cells per animal.  Nitrocellulose membrane plates (96 well; 

Millipore) were incubated with 5 µg/ml of an anti-IFN-γ antibody (AN18, Mabtech) sodium 

bicarbonate buffer (pH 9.6) overnight at 4˚C.  Plates were then washed and blocked for 2 hrs 

with complete R-10 (10% serum) at RT.  Single cell suspensions from either spleen or nasal 

epithelium were then added to plates in duplicate in R-10 and incubated in the presence and 

absence of the class I-restricted OVA peptide (SIINFEKL, New England Peptide) for 24 hrs.  

Cells were removed from plates, plates were washed, a biotinylated anti-IFN-γ antibody (R4-

6A2, 1 µg/ml, Mabtech) was added to the plates, and the plates were incubated for 18 hours 
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at 4˚C.  Membranes were again washed, incubated with a streptavidin-alkaline phosphotase 

conjugate for 2 hrs at RT.  Plates were washed, and spots were developed following addition 

of BCIP/NBT substrate.  Spots were enumerated with a computerized ELISPOT plate reader 

(Immunospot).   Assay background values were obtained following incubation with either no 

peptide or an irrelevant peptide and were subtracted from specific peptide stimulated values.  

Data are presented as the number of antigen-specific IFN-γ-secreting-cells per 106 cells 

plated.  

Intracellular cytokine staining.  Single cell suspensions were prepared from spleen and 

nasal epithelium as described.  2x105 to 2x107 cells were incubated for 6-8 hours in 24 well 

or 48 well tissue culture plates with either media, 2 µg/ml of the class I-restricted OVA  

peptide (SIINFEKL), 2 µg/ml of an irrelevant peptide, or 5 µg/ml conA in the presence of 10 

µg/ml of Brefeldin A.  Cells were then washed and stained with antibodies against 

extracellular markers (CD8, CD4, CD3, etc) for 30 mins.  Cells were washed, fixed and 

permeabilized (Bectin Dickinson cytofix cytoperm), and stained with an antibody against 

IFN-γ (Mabtech).  Cells were washed and stored at 4˚C prior to analysis by flow cytometry. 

Pentamer staining.  Single cell suspensions prepared from animals immunized with the 

class I OVA peptide (SIINFEKL) were analyzed for the presence of OVA-specific cells via 

cell surface staining with antibodies against CD3, CD8, and the Kb-restricted SIINFEKL 

pentamer (Proimmune) according to manufacturer guidelines.  Stained cells were examined 

on a Becton Dickinson Facscaliber Flow cytometer and analyzed using Cellquest software.  

Data are reported as the percentage of CD3+, CD8+ cells which also stain positive with the 

OVA pentamer.  Values are presented as geometric mean +/- SEM. 
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Tumor challenge.  Protective OVA-specific CD8+ T cell responses were analyzed in the 

B16-OVA melanoma system.  Briefly, animals were immunized with OVA and VRP 

constructs as described above, and subsequently challenged subcutaneously with 5 x 104 

B16-OVA tumor cells in the flank.  Animals were examined and scored for the presence of 

tumors.   

Statistical Analysis. Antibody titers and cytokine values were evaluated for statistically 

significant differences by either the ANOVA or Mann-Whitney test (GraphPad INSTAT).  

Results are reported without adjustment for multiple comparisons.  A P value of ≤0.05 was 

considered significant. 

 

 
RESULTS 
 
VRP promote a balanced Th1/Th2 antibody profile.  We have previously demonstrated 

the ability of VRP to increase the systemic and mucosal antibody response to co-delivered 

antigens (Thompson et al., in preparation; (49).  Additionally, both Th1 and Th2 cytokines 

were induced in the VRP-draining lymph node at early times following VRP delivery 

(Thompson et al., in preparation).  Here we have further characterized the antigen-specific 

serum IgG antibody profile for the presence of IgG1 and IgG2a antibodies as an indirect 

measure of the Th1/Th2 cytokine profile following VRP immunization.  Groups of female 

Balb/c mice were immunized in the rear footpad at week 0 and week 4 with 10 µg OVA 

alone, or 10 µg of OVA mixed with either 1x105 IU of null VRP or 1 µg of CpG DNA.  Two 

weeks following the second inoculation, sera were collected and analyzed for the presence of 

OVA-specific IgG antibodies by ELISA.  These results were previously published online as 

supporting information in (49) in a different format, and are reprinted here for clarity.  As 
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shown in figure 4-1A, the inclusion of null VRP in the inoculum increased the OVA-specific 

IgG antibody response by approximately 40 fold.  Delivery of OVA plus CpG DNA as an 

adjuvant likewise induced an approximately 40 fold increase in the systemic IgG antibody 

response.  We next analyzed the same sera for the presence of OVA-specific IgG1 and IgG2a 

antibodies by ELISA.  Delivery of OVA alone resulted in a strong OVA-specific IgG1 

response relative to the IgG2a response, with an IgG1: IgG2a ratio of >20 (Figure 4-1B).  In 

contrast, inclusion of VRP as an adjuvant significantly increased the OVA-specific IgG2a 

response, while still inducing an OVA-specific IgG1 antibody titer similar to that of antigen 

delivery alone.  This resulted in a balanced IgG1: IgG2a ratio of 0.8 (Figure 4-1B).  A similar 

IgG1: IgG2a ratio was observed following delivery of OVA and CpG DNA (0.5), indicating 

a balanced Th1/Th2 response induced by both adjuvants.  These results suggest that VRP 

delivery significantly alters the systemic IgG subtype profile compared to delivery of antigen 

alone, and results in a balanced antibody response with the production of both Th1 and Th2 

IgG profiles (6, 43).   

VRP adjuvant activity for CD8+ T cell responses to co-delivered protein antigen.  As 

mentioned above, robust CD8+ T cell-mediated immune responses are evident following 

delivery of VRP as expression vectors, where the antigen of interest is encoded within the 

viral genome and therefore, expressed in all infected cells.  Here we sought to determine if 

VRP possess the ability to stimulate CD8+ T cell responses to co-delivered antigens.  Groups 

of female C57BL/6 mice were immunized in the rear footpad at week 0 and week 4 with 100 

µg OVA alone, 100 µg of OVA mixed with 1x105 IU of null VRP, 1 µg of CpG DNA, or 

both 1x105 IU of null VRP and 1 µg of CpG DNA simultaneously.  Two weeks following the 

second immunization, animals were sacrificed and single cell suspensions were prepared 
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from the spleen, as a characteristic systemic lymphoid organ, and from the nasal epithelium 

as a characteristic mucosal tissue.  Splenocytes and nasal lymphocytes were evaluated for the 

presence of IFN-γ-secreting cells following stimulation with the class I-restricted OVA 

peptide (SIINFEKL) in an IFN-γ ELISPOT assay.  As shown in figure 4-2, delivery of OVA 

alone resulted in low, but detectable levels of OVA-specific CD8+ T cell responses in both 

the spleen (figure 4-2A) and the nasal epithelium (figure 4-2B).  This response was increased 

approximately 12-fold in the spleen, and 7-fold in the nasal epithelium when VRP were 

included as an adjuvant.  Coimmunization with VRP induced a significant increase in 

antigen-stimulated IFN-γ producing cells compared to immunization with antigen alone in 

both the spleen and the nose (Mann-Whitney, p=0.0286).  CpG DNA also demonstrated an 

adjuvant effect in the systemic and mucosal compartments (Mann-Whitney, p=0.0286).  

When both VRP and CpG were combined as adjuvants, the OVA ELISPOT response was 

increased further, compared to either VRP or CpG DNA alone (Mann-Whitney, p=0.0286).  

Taken together, these results suggest that VRP as an adjuvant increases the CD8+ T cell 

response to soluble protein antigen and that combining VRP and CpG DNA provides and 

additive adjuvant effect. 

Functional activity of VRP-induced CD8+ T cells.  The data presented above, implicate 

VRP in the activation of CD 8 T cells specific for co-delivered antigens.  To determine if the 

T cell response to VRP-adjuvanted antigens was functional in vivo, we employed a B16-

OVA melanoma challenge model.  Groups of female C57BL/6 mice were immunized with 

100 µg of OVA protein alone, either 10 µg of OVA or 100 µg of OVA mixed with 1x105 IU 

of null VRP, or 1x105 IU of null VRP alone at week 0 and week 4.  Two weeks following the 

second inoculation, animals were challenged subcutaneously in the flank with 5 x 104 B16-
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OVA tumor cells and monitored for tumor formation.  As shown in figure 4-3, 100% of the 

animals immunized with either OVA alone, or VRP alone formed palpable tumors by day 25 

post challenge.  However, co-delivery of either the low or high dose of OVA in the presence 

of VRP induced a significant delay in tumor formation, with either 25% of animals (low 

OVA dose) or 50% of animals (high OVA dose) remaining tumor free.  These results suggest 

that VRP in fact induced a CD8+ T cell adjuvant effect in vivo that was functional in tumor 

suppression.     

VRP adjuvant activity for CD8+ T cell responses to co-delivered peptide antigen.  

Potential mechanism(s) by which VRP augmented CD8 T cell immunity include modulating 

antigen acquisition by antigen-presenting cells (APCs), promoting expression of MHC class I 

molecules on APCs, processing of whole protein into the immunogenic peptide fragments, 

enhancing expression of costimulatory molecules on APCs required for robust T cell 

activation, increasing the precursor frequency/activation status of antigen-specific CD8+ 

cells, as well as increasing the precursor frequency/activation status of Th1 CD4+ cells.  As a 

first step characterizing the T cell activation pathway in which VRP and CpG were active, 

the ability of VRP to augment CD8+ T cell responses was examined under experimental 

conditions which do not require antigen processing to individual peptides.  Groups of female 

C57BL/6 mice were immunized in the rear footpad at week 0 and week 4 with  20 µg of 

OVA peptide (SIINFEKL) alonefollowed by a third inoculation of 10 µg of peptide in hopes 

of boosting a CD8+ T cell response with peptide antigen alone.  In addition, mice were 

immunized with OVA peptide in the same amounts, and on the same dosing schedule mixed 

with either 1x105 IU of null VRP, 1 µg of CpG DNA, or both 1x105 IU of null VRP and 1 µg 

of CpG DNA.  Two weeks following the third immunization, animals were sacrificed and 
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single cell suspensions were prepared from the spleen and nasal epithelium.  Splenocytes 

were first examined for IFN-γ secretion by ELISPOT.  As shown in figure 4-4A, delivery of 

OVA peptide alone failed to induce a significant IFN-γ response the spleen, as measured by 

IFN- γ ELISPOT.  However, when VRP were co-inoculated with OVA peptide, IFN-γ-

secreting cells were detectable in the spleen at approximately 10-fold higher levels then 

present following delivery of peptide alone (Mann-Whitney, p=0.0286).  A similar increase 

was also observed following use of CpG as an adjuvant.  Moreover, delivery of OVA peptide 

in the presence of both VRP and CpG DNA resulted in a significantly stronger response than 

delivery of either adjuvant alone (Mann-Whitney, p=0.0286).  To further characterize the 

OVA-specific T cell response following peptide delivery, the OVA specific CD8+ T cells 

were evaluated by SIINFEKL/MHC I pentamer analysis.  Delivery of OVA peptide in the 

presence of both VRP and CpG resulted in an increased proportion of OVA-specific CD8+ T 

cells in both the spleen (figure 4-4B) and nasal epithelium (figure 4-4C); however, neither 

adjuvant alone induced a significant increase in antigen-specific cells as compared to OVA 

peptide alone.   Taken together, these results suggest that VRP, either alone or in 

combination with CpG DNA, increase the antigen-specific CD8+ T cell response to a peptide 

antigen.  

Nonmucosal VRP delivery results in increased numbers of mucosal CD8+ T cells.  Our 

initial experiments aimed at evaluating the role of VRP as T cell adjuvants entailed delivery 

of 10 µg of OVA in the presence and/or absence of 1x105 IU null VRP, and subsequent 

evaluation of spenocytes and nasal lymphocytes for the production of IFN-γ by intracellular 

cytokine staining following OVA peptide stimulation.  IFN-γ positive CD8+ T cells were 

detected in the nasal epithelium following low dose OVA administration in the presence of 
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VRP; however, the proportion of IFN-γ positive CD8+ T in the nasal epithelium was not 

significantly increased as compared to responses induced following delivery of OVA alone 

(0.010% +/- 0.004 vs. 0.016% +/- 0.002).   

Although the proportion of OVA-specific IFN-γ+ cells was not increased in the 

presence of VRP, the absolute number of such cells was increased.  Groups of female 

C57BL/6 mice were immunized with 10 µg of OVA in the presence and/or absence of 1x105 

IU null VRP at week 0 and week 4 and lymphocytes were prepared from the upper 

respiratory tract (URT) at two weeks post boost.  Interestingly, the inclusion of VRP in the 

inoculum resulted in a an approximately 5-fold increase in the proportion of viable nasal 

lymphocytes which were CD8+ (figure 4-5) (Mann-Whitney, p=0.0286).  This would result 

in an increase in the absolute number of OVA-specific CD8+ T cells in the nasal mucosa, 

even under conditions where the proportion of OVA-specific IFN-γ-secreting cells was not 

increased.  The proportion of viable spleen cells that were CD8+ was unaffected by VRP 

delivery (data not shown).  These results suggest that CD8+ T cells are recruited into the 

mucosal compartment when VRP are utilized as adjuvants.   

Nonmucosal VRP delivery upregulates the mucosal homing receptor on CD8+ T cells in 

the draining lymph node.  Local production of mucosal IgG and IgA antibodies has been 

demonstrated at multiple mucosal surfaces, including the nasal epithelium, following 

nonmucosal delivery of VRP and antigen (49).  Here we likewise demonstrate the stimulation 

of mucosal CD8+ T cell responses directed towards co-delivered antigen following 

nonmucosal VRP delivery.  VRP-induced IgA antibodies are first produced in the peripheral 

draining lymph node (DLN) following footpad inoculation (Thompson et al., in preparation, 

Chapter 3).  Furthermore, upregulated expression of the α4β7 integrin, or mucosal homing 
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receptor, also was demonstrated on DLN B cells, suggesting a potential mechanism by which 

VRP-activated cells gain access to the mucosal compartment.  In this study, levels of the α4β7 

integrin expressed on T cells present in the DLN were evaluated.  Groups of female Balb/c 

mice were immunized in the rear footpads with 10 µg of OVA in the presence and/or absence 

of 1x105 IU null VRP at week 0 and week 4.  DLNs were harvested at day 1 and day 3 

following the second inoculation (α4β7 integrin expression was upregulated on DLN B cells 

at day 1), and single cell suspensions were created by collagenase digestion.  Single cell 

suspensions were stained with antibodies against CD3, CD4, CD8, and the α4β7 integrin 

(LPAM-1).  As shown in figure 4-6, α4β7 integrin expression was increased on DLN CD8+ T 

cells at day 3 post boost following OVA plus VRP delivery, compared to delivery of OVA 

alone.  In contrast, expression levels of the α4β7 integrin were unchanged on DLN CD4 

positive T cells.  These results suggest that peripheral VRP immunization results in 

upregulation of proteins involved in licensing lymphocyte migration into the mucosal 

compartment.   

 

DISCUSSION 

Cell-mediated immune responses play a crucial role in protecting the host from 

invading pathogens.  Thus, the development of vaccination strategies which are capable of 

activating CD8+ T cells possess the potential to significantly influence the outcome of 

infection with harmful pathogens.  Viruses, and viral vectors induce potent CD8+ T cell-

mediated immunity in a number of experimental systems.  More importantly, gaining a 

mechanistic understanding of both the immunological and virological basis of T cell 
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activation may in the long run allow for the optimization of viral vectors as vaccine delivery 

tools.   

Alphavirus expression vectors based on Sindbis virus, Semliki forest virus, and 

Venezuelan equine encephalitis virus induce strong CD8+ T cell responses against antigens 

which are expressed from the viral genome [reviewed in (14, 33, 34, 39, 41, 42, 46)].  Under 

these conditions, all productively infected cells would also be antigen positive, providing a 

means for virally-expressed proteins/peptide fragments to gain access to the MHC class I 

pathway in the same cells that receive viral activation signals.  Viral signals in general, and 

alphavirus signals specifically (10, 47), appear to stimulate cross priming, or loading of 

exogenous antigens into the class I pathway in DCs.  The activation of cross priming by SFV 

is dependent upon the TLR adaptor molecule MyD88, suggesting that TLR signaling is 

critical for licensing exogenous antigen delivery into the class I pathway.  Production of type 

I IFN, which occurs following TLR ligation, appears to be at least partially responsible for 

viral-induced cross priming (17, 29, 30).   

Here we demonstrate the ability of VRP, as an adjuvant, to induce activation of CD8+ 

T cell responses to a co-delivered antigen.  It is possible that this T cell activation results 

from the interaction of CD8+ T cells with APCs that were both infected by VRP, and had 

taken up exogenous antigen.  VRP are known to upregulate both co-stimulatory molecule 

expression and pro-inflammatory cytokine production in infected human DC cultures (36) 

and promote CD8+ T cell responses to antigens which are encoded in the VRP genome.  

Conversely, as VRP and OVA may target distinct APC subsets, VRP may provide an 

adjuvant signal for CD8+ T cells through the secretion of soluble mediators in the DLN.   

Consistent with this idea, VRP induce the production several inflammatory mediators in the 
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DLN including IFN-β, TNF-α, IL-6, RANTES, and MIP1-β (Thompson et al., in preparation, 

Konopka et al., in preparation).  Virus-induced type I interferon is known to mediate cross-

priming in DCs (30), suggesting a potential mechanism by which VRP may increase CD8+ T 

cell responses to co-delivered antigens. 

We have demonstrated that VRP specifically infect DCs in the lymph node draining 

the infection site (35), and preliminary experiments suggest that CD11b+ DCs represent the 

major target of VEE infection (West, A., Whitmore, A., and Johnston, R., unpublished).  

Interestingly, CD11b+ DCs have been implicated in the induction of Th1 CD4+ T cell 

responses in a number of model systems (19, 25, 53), [reviewed in (24, 26)], raising the 

possibility that VRP-infected CD11b+ DCs promote the activation of CD8+ T cell-mediated 

immunity by driving helper CD4+ T cells towards a Th1 phenotype in vivo.  We have recently 

demonstrated that incubation of peripheral blood mononuclear cells with VRP-infected DCs 

in vitro represents a potent method for expanding antigen-specific CD8+ T cell responses 

(36).  We are currently evaluating the capacity of various subsets of DCs isolated from the 

DLN of VRP-infected animals to stimulate co-cultured, antigen-specific CD8+ T cells, in an 

attempt to define the exact DC subsets involved in immune induction in the VRP system (2, 

5). 

 The increased stimulation of CD8+ T cell responses in the VRP adjuvant system 

could occur at various steps in the activation pathway including enhanced antigen acquisition 

by APCs, increased expression of MHC class I molecules on APCs, enhanced antigen 

processing, increased expression of costimulatory molecules on APCs, increased precursor 

frequency and/or activation status of antigen-specific CD8+ T cells.  While the precise 

explanation has yet to be elucidated, we suggest that VRP potentially act downstream of 
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antigen acquisition and antigen processing, as increased IFN-γ secretion by CD8+ T cells was 

observed following delivery of OVA peptide in the presence of VRP.  This delivery 

circumvents both antigen uptake and processing to the immunogenic peptide, narrowing our 

focus on the events occurring subsequent to peptide loading into MHC molecules following 

delivery of VRP adjuvants.   

Our studies clearly demonstrate that VRP possess intrinsic T cell adjuvant activity; 

however, the question of whether our experimental system is optimized for T cell activation 

has not been fully addressed.  The inoculation regimen utilized in these studies was based 

upon our experience with using VRP to induce serum IgG responses directed against 

expressed antigens.  We have not yet explored the possibility that the optimal dosing 

schedule for the induction of T cell adjuvant activity may be different than that for serum 

antibody responses; such experimentation may allow for the optimization of VRP T cell 

adjuvant activity.  We are actively pursuing methods to augment the VRP T cell adjuvant 

effect. 

One such method has been the utilization of VRP as adjuvants in combination with 

other known T cell adjuvants.  Our studies demonstrated stronger T cell adjuvant effects 

following co-delivery of both VRP and CpG together, as compared to delivery of either 

adjuvant alone.  Synergy has been documented following delivery of multiple TLR agonists 

in terms of either proinflammatory cytokine production or T cell activation  (4, 37, 45, 51).  

However, increased CD8+ T cell responses appeared to be additive as opposed to synergistic 

following co-delivery of VRP and CpG DNA.  One possible explanation of this result that 

VRP induced a more robust stimulation of the signaling pathways which lead to T cell 

activation in the presence of CpG DNA, suggesting that the signaling pathways induced by 
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both stimuli may be partially, or completely overlapping.  Conversely, it is possible that the 

additive effect of VRP and CpG results from stimulation of intracellular signaling pathways 

by VRP which are distinct from those activated by CpG DNA.  It will be interesting to 

determine whether VRP activate intracellular signaling pathways which are similar to those 

induced by CpG DNA.  Another possibility is that VRP- and CpG-induced signaling occurs 

in distinct temporal waves, and delivery of VRP and CpG in a different temporal fashion may 

provide a synergistic effect.  In support of this idea, the kinetics of proinflammatory cytokine 

production in the DLN appeared to differ between VRP and CpG DNA, with VRP-induced 

responses peaking approximately 18 hours prior to the peak induced by CpG DNA 

(Thompson et al., in preparation, Chapter 3)  We are currently evaluating the stimulatory 

effect of antigen delivery in the presence of VRP and CpG when delivered simultaneously, as 

compared to staggering the timing of delivery of the two adjuvants.  Additionally, it will be 

interesting to determine whether synergistic T cell activation occurs following delivery of 

VRP in the presence of other TLR ligands.   

Here we demonstrate that nonmucosal VRP delivery resulted in a significant increase in the 

proportion of viable cells in the nasal mucosa that were CD8+, suggesting that VRP mobilize 

CD8+ T cell migration into the mucosal compartment.  The mechanism underlying this 

phenomenon is unclear at present.  One explanation is that VRP delivery induces the antigen-

independent migration of CD8+ T cells into the mucosal compartment.  An alternative 

explanation is that the increase in mucosal CD8+ T cells in the mucosal compartment is in 

fact due to the influx of antigen-specific cells, specific for antigens other than OVA.  While 

VRP preparations are purified over a sucrose gradient, “contaminating” proteins may in fact 

be present in VRP preps at levels sufficient for such proteins to serve as an antigen.  VRP 
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may in turn adjuvant the antigen-specific CD8+ T cell response to “contaminating” antigens, 

accounting for CD8+ cell influx into the mucosal compartment.  Additional experiments will 

be required to distinguish between these possibilities.  It will be interesting to determine the 

ratio of mucosal CD8+ T cells in the nasal epithelium following delivery of ultra purified 

VRP.  Additionally, antigen-independent migration may be evaluated by determining the 

ability VRP to induce mucosal migration of adoptively transferred CD8+ T cells with a 

specificity distinct from that of the immunizing antigen.  Regardless of mechanism, it will be 

important to determine whether this property is unique to the nasal mucosa, or if other 

mucosal surfaces likewise harbor increased numbers of CD8+ T cells. 

 Activation of mucosal IgA responses following nonmucosal VRP delivery has also 

been observed (22, 32, 49).  Interestingly, IgA antibodies were first produced in the 

peripheral draining lymph node, consistent with a model in which tissue plays a role in the 

inductive process following nonmucosal VRP delivery (Thompson et al., in preparation, 

Chapter 3).  Upon further characterization of the VRP DLN, a population of B cells with 

increased expression of the α4β7 integrin was discovered, suggesting a role for the mucosal 

homing receptor in VRP-induced mucosal antibody activation (Thompson et al., in 

preparation).  This integrin promotes lymphocyte migration into the mucosal compartment, 

especially in the gut (9).   

Here we demonstrate that CD8+ T cells present in the VRP DLN also upregulated the 

α4β7 integrin, here by approximately 3-fold.  Furthermore, Gupta et al. demonstrated α4β7 

integrin expression on antigen-specific, IFN-γ-secreting cells both in the DLN and at the 

vaginal mucosal surface following nonmucosal prime and mucosal boost of an alphavirus 

replicon chimera encoding the VEE RNA, providing additional support for this pathway in 
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alphavirus replicon mucosal immune induction.   Further experimentation, such as VRP 

adjuvant experiments in β7 integrin knock out mice (50), will be required to definitively 

implicate this pathway in VRP-induce mucosal immunity; however, we speculate that the 

α4β7 integrin pathway plays a significant role in VRP-induced mucosal T cell immunity.   

 In summary, we describe a novel activity of VRP to augment CD8+ T cell responses 

to co-delivered antigen alone and in concert with a TLR agonist.  To our knowledge, this is 

the first demonstration of T cell adjuvant activity with alphavirus vectors.  VRP-induced 

activation in the presence of CpG DNA appeared to occur downstream of antigen processing, 

as increased immunity was observed following delivery of peptide antigens.  Additionally, 

VRP delivery resulted in increased homing of CD8+ T cells into the mucosal compartment, 

potentially via the mucosal homing receptor.  These studies provide a framework which 

should allow for the identification of the critical viral factors and signaling pathways which 

are responsible for the activation of T cell responses to co-delivered antigens.  In turn, such 

knowledge could lead to more efficacious vaccines based on viral vectors.   
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Figure 4-1 
 
 
 
 

 
 
 
 
 
 
 
Figure 4-1.  VRP promote a balanced Th1/Th2 antibody profile.  Groups of female  
Balb/c mice were immunized in the rear footpad at week 0 and week 4 with 10 µg OVA  
alone, or 10 µg of OVA mixed with either 1x105 IU of null VRP or 1 µg of CpG DNA.  Two  
weeks following the second inoculation, sera were collected and analyzed for the presence of  
OVA-specific total  IgG antibodies (A) or OVA-specific IgG1 and IgG2a antibodies (B) by  
ELISA.  Values represent the geometric mean +/- SEM. 
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Figure 4-2 
 
 

 
 
 
 
 
 
 
 
 
 
Figure 4-2.  VRP promote CD8+ T cell immunity to co-delivered soluble antigen. Groups  
of female C57BL/6 mice were immunized in the rear footpad at week 0 and week 4 with 100  
µg OVA alone, or 100 µg of OVA mixed with either 1x105 IU of null VRP, 1 µg of CpG  
DNA, both 1x105 IU of null VRP and 1 µg of CpG DNA .  Two weeks following the second  
inoculation, splenocytes (A) and nasal lymphocytes (B) were analyzed for the presence of  
IFN-γ-secreting cells following stimulation with the OVA class I-restricted peptide in an  
IFN-γ ELISPOT assay.  Values represent the geometric mean +/- SEM. 
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Figure 4-3 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4-3.  VRP-induced CD8+ T cells delay tumor onset.  Groups of female C57BL/6  
mice were immunized with 100 µg of OVA protein alone, both 10 µg and 100 µg of OVA  
mixed with 1x105 IU of null VRP, or 1x105 IU of null VRP alone at week 0 and week 4.   
Two weeks following the second inoculation, animals were challenged subcutaneously in the  
flank with TM 1/5 x 104 B16-OVA tumor cells and monitored for tumor formation.   
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Figure 4-4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4-4.  VRP promote CD8+ T cell immunity to co-delivered peptide antigen.   
Groups of female C57BL/6 mice were immunized in the rear footpad at weeks 0, 4, and 8 
with OVA peptide (SIINFEKL, 20 µg /20 µg/10 µg respectively) alone, or mixed with either  
1x105 IU of null VRP, 1 µg of CpG DNA, both 1x105 IU of null VRP and 1 µg of CpG  
DNA.  Two weeks following the last inoculation, splenocytes (A) were analyzed for the  
presence of IFN-γ-secreting cells following stimulation with the OVA class I-restricted  
peptide in an IFN-γ ELISPOT assay.  Additionally, splenocytes (B) and nasal lymphocytes  
(C) were analyzed for the presence pMHC-specific CD8+ T cells by pentamer staining.   
Values represent the geometric mean +/- SEM. 
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Figure 4-5 
 
 
 

 
 
 
 
 
 
 
 
Figure 4-5.  VRP recruit CD8+ T cells to the upper respiratory tract (URT).  Groups of  
Female C57BL/6 mice were immunized in the rear footpad at weeks 0 and 4 with 10 µg of  
OVA alone, or mixed with either 1x105 IU of null VRP, 1 µg of CpG DNA, both 1x105 IU of  
null VRP and 1 µg of CpG DNA .  Two weeks following the last inoculation, splenocytes  
(A) and nasal lymphocytes (B) were analyzed for the presence pMHC-specific CD8+ T cells 
 by pentamer staining.  Values represent the geometric mean +/- SEM. 
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Figure 4-6 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 4-6.  VRP upregulate the mucosal homing receptor on DLN CD8+ T cells.   
Groups of female Balb/c mice were immunized in the rear footpads at weeks 0 and 4 with 10  
µg of OVA alone, or mixed with either 1x105 IU of null VRP.  Day 3 following the last  
inoculation, single cell suspensions were prepared from the DLN and CD4 and CD8+ T cells  
were analyzed for the presence of the α4β7 integrin and CCR9 by flow cytometry.  Shown are  
the proportion of α4β7 integrin positive cells.   
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ABSTRACT 

The type I interferon (IFN) system is critical for protecting the mammalian host from 

numerous virus infections.  Much is known regarding the signal transduction pathways and 

antiviral effector genes which are activated by IFN, and a growing body of evidence suggests 

that IFN also plays a key role in shaping anti-viral adaptive immune response.  In this report, 

the importance of type I IFN signaling was assessed in a mouse model of alphavirus-induced 

humoral immune induction. Venezuelan equine encephalitis virus replicon particles (VRP) 

expressing the hemagglutinin (HA) gene from influenza virus (HA-VRP) were used to 

vaccinate both wildtype and IFN α/β receptor knockout (RKO) mice.  HA-VRP vaccination 

induced equivalent levels of flu-specific systemic IgG antibodies, mucosal IgG antibodies, 

and systemic IgA antibodies in both wildtype and IFN RKO mice.  In contrast, HA-VRP 

vaccination of IFN RKO mice failed to induce significant levels of flu-specific mucosal IgA 

antibodies at multiple mucosal surfaces, including the upper respiratory tract, the 

gastrointestinal tract, and the urogenital tract.  We have recently demonstrated that VRP 

which do not encode a foreign antigen in the replicon genome (null VRP) activate systemic 

and mucosal immune responses to co-delivered antigens.  The role of IFN signaling was also 

analyzed with respect to the VRP adjuvant effect.  Delivery of ovalbumin (OVA) protein in 

the presence of null VRP increased levels of both OVA-specific systemic IgG antibodies and 

mucosal IgA antibodies in both wildtype and RKO mice, suggesting that type I IFN signaling 

is not required for the VRP adjuvant effect.  Taken together, these results suggest that, 1) at 

least in regard to IFN signaling, the mechanisms which regulate VRP-induced responses in 

the expression vector system differ from those that regulate responses in the presence of VRP 

used as an adjuvant, and 2) type I IFN signaling is required for the induction of mucosal IgA 
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antibodies directed against VRP-expressed antigen.  These results potentially shed new light 

on the regulatory networks which promote immune induction, and specifically mucosal 

immune induction, with alphavirus vaccine vectors. 

 

INTRODUCTION 

The type I interferons (IFNs) are a family of pleiotropic cytokines which were 

originally classified as proteins that interfere with virus replication (14), and are now known 

to provide the first line of defense against numerous viral pathogens (43).   Type I IFNs, 

which include IFNα and IFNβ, signal through a common receptor, the type I IFN receptor, 

expressed on almost all cell types (44).  Signaling through the IFN receptor involves a 

complex cascade of events which translates extracellular signals into an increased antiviral 

state by upregulating the expression of interferon-stimulated genes, or ISGs (11).  The 

importance of IFN signaling in antiviral defense is evidenced by the fact that animals with an 

engineered genetic deficiency in the IFNα/β receptor (IFNα/β receptor knockouts, or RKOs) 

are acutely susceptible to numerous viral infections (7, 13, 34, 49).   

Recent evidence suggests that in addition to affecting innate immunity, type I IFN 

signaling also plays an important role in the activation of adaptive immune responses (2, 15, 

22, 45, 47).  Type I IFN promotes the differentiation of human monocytes into dendcritic 

cells (DCs) (40) and provides a powerful activation signal to differentiated DCs, promoting 

co-stimulatory molecule expression and their antigen-presenting-cell (APC) function (22).  

Interferon-treated DCs upon interacting with B cells, activate immunoglobulin (Ig) class 

switch recombination and Ig secretion (20) to multiple isotypes, including IgA.  This effect is 

due, at least in part, to the release of TNF family ligands from IFN-activated DCs (25).   IFN 
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also promotes cross-priming, the activation of CD8+ T cell responses directed against 

exogenous antigens, in DCs (19).  In addition to effects on DCs, IFN signaling is directly 

required for complete activation of B cells (21), CD4+ T cells (9), CD8+ T cells (17), and 

natural killer cell activity (3).   

The goal of vaccination is to stimulate an immune response within an individual 

which will protect that individual from morbidity and mortality associated with a natural 

pathogen challenge.  Vaccine vectors based on the alphavirus, Venezuelan equine 

encephalitis virus (VEE), have proven to be potent inducers of antigen-specific immunity in 

several pre-clinical vaccination models (6, 27, 28, 35, 38, 39, 42), and are currently under 

evaluation in human clinical trials.  The alphaviruses contain a message-sense, single-

stranded RNA genome of approximately 12 kb (46).  The viral nonstructural genes, which 

encode the enzymatic activity required for RNA replication are encoded at the 5’ end of the 

genome, while the viral structural genes are expressed from a subgenomic 26S promoter at 

the 3’ one third of the genome.  The most well characterized members of this family are 

Sindbis virus (SIN), Semliki forest virus (SFV), and VEE.  Several types of VEE-based 

vaccine technologies have been developed.  One such technology, termed VEE replicon 

particles (VRP), functions as an expression vector, encoding a modified genome in which the 

structural genes are replaced with a heterologous antigen (37).  Following VRP infection, the 

replicon RNA encoding the transgene is expressed at very high levels; however, progeny 

virions are not produced as the structural components are absent from the genome.  Thus, 

VRP are single-cycle vectors capable of only one round of replication.  VRP are potent 

inducers of both systemic and mucosal antibody responses directed against the antigen which 

is carried in the viral genome (8, 26, 48).   
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We have recently identified a novel activity of VRP; to serve as adjuvants for the 

activation of humoral immune and cell-mediated immune responses directed against a co-

delivered antigen (48) (Thompson et al., in preparation, Chapter 4).  Null VRP, which lack a 

heterologous transgene downstream of the 26S promoter, acting as adjuvants, were capable 

of stimulating systemic and mucosal immune responses following nonmucosal delivery, 

similar to our observations with VRP expression vectors (8, 26, 48).  The finding that VRP, 

acting as both expression vectors and as adjuvants, stimulate local antibody synthesis 

following nonmucosal vaccination is significant, as nonmucosal vaccine delivery methods 

typically fail to induce authentic mucosal immunity (30-32).  We have recently demonstrated 

the presence of several characteristics of mucosal lymphoid tissues, including antigen-

specific polymeric IgA antibodies, in the draining lymph node (DLN) of VRP-vaccinated 

mice, suggesting that this lymphoid tissue may serve as a component of the mucosal 

inductive pathway stimulated by nonmucosal VRP delivery (Thompson et al., in preparation, 

Chapter 3).  These results suggest that VRP are potent stimulators of the adaptive immune 

system. 

A specific role for type I IFN signaling in alphavirus-induced adaptive immunity has 

previously been established.  The activation of B and T lympocytes (as measured by 

upregulated CD69 expression) was significantly impaired in IFNα/β RKO mice, suggesting 

that alphavirus-induced lymphocyte activation is incomplete in the absence of IFN signaling 

(1).  An additional alphavirus vaccine technology has been developed in which the replicon 

RNA is delivered, not from a virus particle, but instead encoded on a bacterial plasmid as a 

DNA replicase-based vaccine [reviewed in (41)].  These alphavirus vaccines are highly 

immunogenic in several mouse models, including murine models of tolerance.  Leitner et al. 
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demonstrated a role for type I IFN signaling in a replicase-based vaccine, as this vaccine 

induced immunity to a “self” tolerant antigen in wildtype animals; however, failed to induce 

immunity to the same tolerant antigen in IFNα/β RKO mice (23).  An additional study 

performed by Restifo and colleagues suggested that the ability of replicase-based vaccines to 

break immunological tolerance was dependent upon a single ISG, RNaseL (24).  Moreover, 

Hidmark et al. recently demonstrated that the systemic IgG adjuvant effect of SFV replicon 

particles was dependent upon type I IFN signaling, as SFV replicons failed to augment serum 

IgG responses in IFNα/β RKO mice.     

In this report we have evaluated the role of type I IFN signaling in the stimulation of 

systemic and mucosal antibody responses by VRP as expression vectors, expressing the 

hemagglutinin (HA) gene from influenza (flu) virus (HA-VRP), and as adjuvants, following 

co-delivery of null VRP with soluble ovalbumin (OVA).  HA-VRP induced equivalent flu-

specific systemic IgG and systemic IgA antibody responses in both wildtype (wt) and IFNα/β 

RKO mice.  In contrast, while HA-VRP vaccinated, wt mice produced strong flu-specific 

IgA responses at several mucosal surfaces, mucosal IgA responses were barely detectable in 

IFNα/β RKO mice. Interestingly, null VRP significantly augmented OVA-specific serum 

IgG and fecal IgA antibodies in both wt and IFNα/β RKO mice.  These results suggest that 

type I IFN signaling plays an important role in VRP expression vector-induced mucosal IgA 

responses; however, only a minimal role in the VRP adjuvant effect.  This analysis should 

allow for a more basic understanding of the precise role of IFN in alphavirus-induced 

immunity.   
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MATERIALS AND METHODS 

VEE replicon constructs.  The construction and packaging of VRP was performed as 

previously described (5, 37).  Briefly, confluent monolayers of BHK-21 cells were co-

electroporated with three separate in-vitro-transcribed RNAs; namely the replicon genome 

RNA, and two defective helper RNAs which drive the expression of the viral structural genes 

in trans.  Only the replicon genome RNA is packaged into VRP, as the helper RNAs lack the 

viral packaging signal.  In this study, two different replicon constructs were utilized: 1) 

replicons expressing the HA gene from the A/PR/8/34 strain of influenza virus (HA-VRP); 

and 2) replicons which lack a functional transgene downstream of the 26S promoter (null 

VRP) (48).  Null VRP contain the viral nonstructural genes, a  14 nt stretch  of VEE 

sequence downstream of the 26S mRNA transcription start site, a heterologous 43-nt long 

cassette containing multiple restriction sites for cloning into the replicon backbone, and the 

118-nt 3' UTR.  HA-VRP and null VRP were quantitated by immunocytochemistry of 

infected BHK cells with anti-sera against HA (37) and null VRP (48), respectively.  All 

replicon particles utilized in this study were packaged in the wild-type (V3000) envelope.   

Animals and immunizations.  Eight-to-16-week-old 129 Sv/Ev and 129 Sv/Ev IFN α/β 

receptor knockout (RKO) mice were immunized in a 0.01 ml volume in the rear footpad as 

previously described (48).  129 Sv/Ev animals were bred under specific pathogen free 

conditions.  Breeder pairs were obtained from Dr. Barbara Sherry, North Carolina State 

University, or were purchased from Taconic Laboratories.  Breeder pairs of the RKO animals 

were obtained from Dr. Herbert Virgin, Washington University, and bred under specific 

pathogen free conditions.   Animals were immunized at week 0 and week 4 with either HA-

VRP or antigen (chicken egg albumin, ovalbumin) in the presence or absence of null VRP as 
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an adjuvant.   Ovalbumin (OVA) was purchased from Sigma.  Diluent consisted of low 

endotoxin, filter-sterilized PBS. 

Antibody-Secreting-Cell enzyme-linked immunospot assay (ASC ELISPOT).  To 

evaluate the presence of OVA-specific ASCs, single cell suspensions were prepared from 

both spleen and the nasal epithelium.  Whole spleens were disrupted between frosted glass 

slides, and red blood cells were lysed either under hypo-osmotic conditions, or following 

addition of ammonium chloride buffer.  Cells were washed and placed on a Lympholyte-M 

density gradient (Accurate).  Banded cells were harvested, washed and counted. 

For preparation of nasal lymphocytes, nasal tissue from the tip of the nose to just 

anterior of the eye sockets was harvested from immunized animals, and the upper palate, 

including the NALT, was carefully removed prior to further processing.  Nasal tissue was 

physically disrupted and incubated at 37ºC for 2 hrs in a 50 ml Erlenmeyer flask in complete 

R-10 media [RPMI-1640 containing 10% (v/v) fetal bovine serum, 2 mM L-glutamine, 50 

µg/ml gentamicin, 100 U/ml penicillin, 100 µg/ml streptomycin, and 15mM HEPES] 

containing 2.5mg/ml Collagenase A (Roche), 17 µg/ml DNase I (Roche) and glass beads.  

Following digestion, cells were filtered through a 40 µm cell strainer (BD Falcon), washed, 

resuspended in 44% Percoll (Amersham) and layered on Lympholyte-M as described for 

spleen cells above.  Banded cells were harvested, washed, and counted.  Cells were pooled 

from two animals, and typical yields were approximately 2.5x105 to 1x106 cells per animal.  

ASC ELISPOT analysis was modified from previous reports (24),(25).  Briefly, 96-well 

nitrocellulose membrane plates (Millipore) were incubated with 1 mg/ml OVA in PBS 

overnight at 4˚C.  Plates were then washed and blocked for 2 hrs with complete R-10 (10% 

serum).  Two fold dilutions of single cell suspensions were then added to plates in duplicate 
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in R-10 and incubated overnight.  Plates were washed, and bound spots were detected by the 

addition of HRP-conjugated secondary goat anti-mouse γ or α chain-specific antibodies 

(Southern Biotechnology Associates), followed by addition of 3-amino-9-ethylcarazole 

(AEC, Sigma), and enumerated with a computerized ELISPOT plate reader (Immunospot).   

Data are presented as the number of antigen-specific ASCs per 106 cells plated.  

Lymphoid Organ Cultures.  Lymphoid cultures were prepared as previously described (26, 

48).  Briefly, draining popliteal lymph nodes were harvested from immunized animals and 

placed in Eppendorf tubes containing 1 ml of wash buffer (Hanks’ balanced salt solution 

containing 100 units/ml penicillin, 100 µg/ml streptomycin, 110 mM Ca2+, 50 mM Mg2+, and 

15 mM Hepes) and washed three times by aspiration and resuspension.  Draining lymph 

nodes (DLNs) were placed in individual wells in a 96-well tissue culture plate in 0.1 mls of 

media [RPMI medium 1640 (GIBCO) containing 15 mM Hepes, 10% FBS, 100 units/ml 

penicillin, 100 µg/ml streptomycin, 50 µg/ml gentamicin, 2 mM L-glutamine (GIBCO), and 

0.25 µg/ml amphotericin B] Plates were incubated at 37ºC for 7 days to allow antibody 

secretion from tissue-resident B cells into the supernatant.  Following incubation, 

supernatants were collected, clarified by centrifugation at 4ºC, and analyzed for the presence 

of antigen-specific antibodies by ELISA (see below).  

Sera, Fecal Extracts, and Vaginal Washes.  All sample collection was prepared as 

previously described (48).  Blood was harvested from individual animals either from the tail 

vein, following cardiac puncture, or from the submandibular plexus, and sera collected 

following centrifugation in microtainer serum separator tubes (Becton Dickinson).  For fecal 

extracts, fresh fecal pellets (5-8, ≈ 100-150 mg) were isolated from individual animals and 

placed in a 1.5 ml Eppendorf tube containing 1 ml of fecal extract buffer buffer [PBS 
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containing10% (vol/vol) normal goat serum and 0.1% (vol/vol) Kathon CG/ICP (Supeleco)].  

Samples were vortexed for at least 10 mins until all pellets were disrupted into a homogenous 

mixture.  Samples were vortexed and clarified by centrifugation at 4ºC, and supernatants 

were transferred to fresh tubes and stored at -20 ºC prior to analysis in ELISA assay (see 

below).  Vaginal washes were performed by lavaging the exterior vaginal opening with 0.07 

mls of PBS 8-10 times.  Lavage samples were stored at -20 ºC and clarified at 4ºC prior to 

ELISA analysis (see below).   

Enzyme Linked Immunosorbant Assay (ELISA).  ELISAs for influenza- and OVA-

specific antibodies were performed on serum, fecal extracts, vaginal washes, and lymphoid 

culture supernatants as previously described (48).   Briefly, antigen solutions (either 250 

ng/ml of influenza virus in carbonate buffer, or 1 mg/ml of OVA in PBS) were incubated in 

96-well plates (Costar) overnight at 4°C to allow antigens to bind to the plate. Excess antigen 

was removed, and blocking solution [PBS containing 5% milk for flu, or 1× Sigmablock 

(Sigma) for OVA] was added for 2 h for flu or overnight for OVA, at room temperature. 

Following removal of blocking solution, plates were incubated at room temperature for 2 h 

(flu) or overnight (OVA) with serial dilutions of individual samples diluted in the appropriate 

blocking buffer. Plates were washed with a multi-channel plate washer (NUNC) and 

incubated for 1 h with horseradish peroxidase-conjugated secondary goat anti-mouse γ or α 

chain-specific antibodies (Southern Biotechnology Associates or Sigma). Finally, plates were 

again washed, and O-phenylenediamine dihydrochloride substrate was added for 30 min.  

The reaction was stopped with the addition of 0.1 M NaF. Antibody endpoint titers are 

reported as the reciprocal of the highest dilution that resulted in an OD450 ≥ 0.2. Data are 

presented as the geometric mean ± standard error of the mean (SEM). 
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Statistical Analysis. Antibody titers and cytokine values were evaluated for statistically 

significant differences by either the ANOVA or Mann-Whitney test (GraphPad INSTAT). A P 

value of ≤0.05 was considered significant. 

RESULTS 

Type I IFN signaling is not required for expression-vector-induced systemic immunity.  

Systemic and mucosal immunity can be induced by VRP used in two different modalities.  In 

the first instance, VRP express an antigen encoded in the VRP genome (expression vectors).  

In the second, the antigen is supplied separately with the VRP contributing a mucosal and 

systemic adjuvant effect.  We have examined the requirement for a functional type I IFN 

system for systemic and mucosal immunity induced by both VRP modalities.  Groups of 

wildtype 129 Sv/Ev and IFN receptor knockout (RKO) mice were immunized in the rear 

footpad at weeks 0 and 4 with 1x105 infectious units (IU) of VRP expressing the HA gene 

from influenza virus (HA-VRP).  Two weeks following the second immunization, animals 

were sacrificed, and flu-specific systemic immune responses were measured by serum IgG 

ELISA and by IgG and IgA spleen ASC ELISPOT assay (figure 5-1).  As shown in figure 5-

1A, HA-VRP induced equivalent levels of flu-specific IgG antibodies in the serum of both 

wildtype and RKO mice.  Consistent with this finding, similar numbers of flu-specific IgG- 

and IgA-secreting cells were evident in the spleens of both wildtype and RKO mice (figure 

5-1B and 5-1C).  Together, these results suggest that type I IFN signaling is not required for 

the induction of systemic immunity, both IgG and IgA, directed against VRP-expressed 

antigens. 
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Type I IFN signaling is required for expression-vector-induced mucosal IgA responses.  

We have recently demonstrated that VRP expression vectors induce local mucosal IgA 

responses at multiple mucosal surfaces in mice including the upper respiratory tract (URT) 

(48), the gastrointestinal tract (8, 26, 48), and the urogenital tract (48) even when inoculated 

at a nonmucosal site.  Mucosal antibody responses were measured in wildtype and IFN RKO 

animals in the URT (ASC ELISPOT), gastrointestinal tract (ELISA on fecal extracts), and 

urogenital tract (ELISA on vaginal washes) (figure 5-2).  As with systemic IgG, mucosal IgG 

appeared to be unaffected by the absence of type I IFN signaling with VRP expression 

vectors, evidenced by the observation that HA-VRP induced equivalent levels of flu-specific 

IgG-secreting cells in the URT in both wildtype and RKO mice.  In RKO mice however, HA-

VRP induced significantly reduced levels of IgA-secreting cells in the upper respiratory tract 

of RKO mice (figure 5-2B).  To determine if the mucosal IgA defect in the URT of RKO 

mice was limited to this single mucosal surface or was also true of other mucosal surfaces, 

flu-specific mucosal IgA responses were analyzed at two additional mucosal surfaces.  HA-

VRP-inoculated RKO mice also generated reduced IgA antibody responses in fecal extracts 

(figure 5-2C) and vaginal wash fluids (figure 5-2D), representative of the gastrointestinal and 

urogenital tracts, respectively.  These results suggest that type I IFN signaling plays a critical 

role in VRP expression-vector-induced mucosal IgA immunity, while playing only a minimal 

role, if any, in systemic immunity under the same experimental conditions.   

VRP expression-vector-induced IgA production in the draining lymph node.  The 

immunological mechanism(s) underlying the induction of mucosal IgA after nonmucosal 

inoculation of VRP expressing an antigen, remain unclear.  One hypothesis suggests that 

cytokines induced by the replication of VRP RNA convert the DLN into the functional 



 224

equivalent of a mucosal inductive site (Thompson et al., in preparation, Chapter 3).  A 

cardinal feature of such sites is the production of antigen-specific IgA antibodies, and this 

characteristic is observed in the DLN following inoculation of VRP expressing an antigen.  

 Here we sought to determine if type I IFN signaling affects the production of DLN 

IgA antibodies.  Groups of wildtype 129 Sv/Ev and RKO mice were immunized in the rear 

footpad at weeks 0 and 4 with 1x105 IU of HA-VRP.  At day 3 post boost (the timepoint at 

which VRP-induced IgA antibodies peaked in the DLN of BALB/c mice; Thompson et al., in 

preparation), DLNs were harvested and incubated in media in a lymphoid organ culture assay 

as described (48).  DLN culture supernatants were evaluated for the presence of flu-specific 

IgA antibodies by ELISA (figure 5-3).  As shown in figure 5-3A, equivalent levels of flu-

specific IgA antibodies were produced in wildtype and RKO mice.  In the same experiment, 

HA-VRP also induced similar levels of flu-specific IgG antibodies in the DLNs of both 

wildtype and RKO mice (data not shown).  These results suggest that the defect in mucosal 

IgA production at the mucosal surface following VRP expression vector delivery is not due 

to a lack of antigen-specific IgA antibodies in the DLN. 

Type I IFN signaling is not required for VRP adjuvant-induced immunity.  VRP, when 

used as an adjuvant, enhance systemic and mucosal antibody responses to co-delivered 

antigen (48).  The systemic adjuvant effect of replicon particles derived from a related 

alphavirus, Semliki forest virus, was dependent upon type I IFN signaling (10).  Therefore, 

the role of type I IFN signaling on VRP adjuvant activity was also evaluated.  Groups of 

wildtype and RKO animals were immunized at week 0 and week 4 with 10 µg of OVA alone, 

or with 10 µg of OVA co-immunized with 1x105 IU null VRP (no transgene) as an adjuvant.  

Two weeks following the boost, animals were evaluated for the presence of OVA-specific 
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IgG antibodies in the serum and OVA-specific IgA antibodies in fecal extracts (Table 5-1).  

The inclusion of VRP in the inoculum as an adjuvant significantly increased the OVA-

specific systemic IgG response in both wildtype and RKO mice, suggesting that IFN 

signaling does not play a critical role in systemic immune induction with VRP adjuvants.  

Likewise, VRP significantly increased fecal IgA responses to the same extent in both 

wildtype and RKO animals, suggesting that while IFN clearly plays a critical role in mucosal 

IgA induction when the antigen is expressed from the VRP genome, IFN signaling is not 

required for the induction of either mucosal IgA or systemic IgG when VRP are utilized as an 

adjuvant.  

 

DISCUSSION 

 Alphavirus replicon particles are potent stimulators of adaptive immune responses, 

and provide a powerful model system for the study of host factors involved in the regulation 

of viral immunity.  While the utility of VRP as a component of successful vaccines has 

clearly been established, little is known regarding the critical immunological factors which 

regulate VRP-induced immune induction.  The type I IFN system has been implicated in 

several models of alphavirus-induced immunity.  Here we present evidence that type I IFN 

signaling plays an important role in VRP-induced immune stimulation; specifically in the 

induction of mucosal IgA responses directed towards VRP-expressed antigen.   

 Our studies suggest that, at least in regard to the IFN system, the mechanisms which 

regulate immune induction to antigens expressed from alphavirus replicon particles are 

distinct from the immunoregulatory mechanisms operative when replicon particles are 

utilized as adjuvants.  This notion is supported by the results presented here that mucosal IgA 
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responses induced by VRP expression vectors are significantly impaired in RKO mice; 

however, mucosal IgA responses directed against VRP adjuvanted antigen in RKO were 

equivalent to wildtype mice.  Although Hidmark et al. did not measure mucosal IgA 

responses, they also report a different effect of the RKO defect on replicon expressed 

compared to replicon adjuvanted vaccines.  The authors demonstrated that serum IgG 

responses directed against expressed antigen were equivalent between wildtype and RKO 

animals; however, the serum IgG adjuvant effect with SFV replicon particle was abrogated in 

RKO mice (10).  Together, these results are consistent with a model in which alphavirus 

replicon particles rely on distinct mechanisms for immune induction when utilized as 

expression vectors as compared to adjuvants.   

 While work with both the VEE replicon particles and SFV replicon particles reveals a 

distinction between their use as expression vectors and adjuvants, there are important 

differences between results obtained with the two systems as well. The SFV replicon 

adjuvant effect in serum IgG was abrogated in RKO mice (10).  This was not the case in the 

VEE system, as serum adjuvant activity was observed in RKO mice.  To date, the 

mechanistic explanation regarding the differences between VEE and SFV have yet to be 

determined; however, several possibilities exist.  One plausible explanation is that the initial 

targets of infection shape the IFN dependence for immune induction.  VRP efficiently infect 

DCs both in vitro (33) and in vivo (29), (West, A., Whitmore, A., Moran, T., and Johnston, 

R., unpublished).  In contrast, SFV does not appear to efficiently infect DCs in vitro, even at 

an MOI as high as 1000 (12).  Additionally, while SFV infection has been shown to induce 

DC migration in vivo (16), infection of DCs by SFV has yet to be reported.   
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Other more subtle effects could also account for the differences observed between 

VEE and SFV.  For example, both viruses induce type I IFN, however a careful comparison 

of the absolute levels induced by both viruses has not been carried out. Additionally, 

mammals encode multiple IFN α genes (47) and it is unclear exactly what role each 

individual α gene plays both in antiviral defense and activation of adaptive immunity.  It is 

possible that both the absolute amount of IFN induced by VEE and SFV, as well as the 

distribution of the different α genes is different between the two viruses.  Future 

experimentation will be required to fully elucidate the role of IFN in vaccine-induced 

immunity with VEE and SFV replicon particles. 

 Further study is required to discover the mechanism by which IFN specifically 

promotes mucosal IgA responses following delivery of VRP expression vectors.  We have 

recently demonstrated that nonmucosal VRP delivery induces numerous characteristics of 

mucosal lymphoid tissues in the peripheral draining lymph, node including antigen-specific 

polymeric IgA antibodies, a population of B cells which express upregulated levels of the 

mucosal homing receptor, increased mucosal cytokine/chemokine expression, and expression 

of the mucosal addressin cell adhesion molecule-1 (MAdCAM-1) (Thompson et al., in 

preparation, Chapter 3).  These results are supportive of a model in which the draining lymph 

node is converted into the functional equivalent of a mucosal inductive site.   

The question of whether IFN exerts its effect at the level of the draining lymph node 

is still unclear; however, results presented here suggest that IFN is operative downstream of 

IgA class switch, as levels of both antigen-specific systemic IgA and DLN IgA were 

unaffected in RKO mice following VRP delivery.  Instead, IFN may play a role in regulating 

VRP-induced cytokine responses in general, upregulation of the α4β7 integrin, MAdCAM-1, 
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or a yet unidentified critical component.  These results are consistent with a model in which 

IFN regulates the migration of VRP-activated IgA-secreting cells, promoting migration of 

IgA-secreting cells into the mucosal compartment.  It has been reported that IgA-secreting 

cell migration occurs via the selective upregulation of specific integrins and chemokine 

receptors which may be affected by the production of type I IFN (18).  It will be important to 

examine the VRP DLN in RKO mice for additional characteristics of mucosal lymphoid 

tissue, such as expression of MAdCAM-1 on the high endothelial venules and the α4β7 

integrin on DLN B cells as a means to identify the precise mechanism by which IFN 

promotes VRP expression vector-induced mucosal IgA responses.   

 The observation that IFN serves as a potent adjuvant for the induction of antibody 

responses to co-immunized antigen is consistent with a role for IFN in alphavirus-induced 

immunity (4, 20, 36); however, whether IFN plays a direct or indirect role in the VRP system 

remains to be determined.  The direct role of IFN has been examined in studies using 

recombinant IFN as an adjuvant.  In one report, increased IgA responses were not observed 

following IFN adjuvant treatment (20).  It is possible that a specific subset of IFN α genes 

directly promote mucosal IgA responses in the VRP system, and this subset was not present 

in the recombinant preparations studied as an adjuvant in Le Bon et al. (20).   In another 

study, recombinant IFN did promote mucosal IgA responses following nasal delivery in an 

influenza vaccine model (4, 36).  It will be interestesting to examine the role of individual 

IFN α genes in the activation of mucosal IgA responses in general, and specifically in the 

VRP expression vector system.    

An important point to consider in the interpretation of immune induction experiments 

in RKO mice is the differences in the level of antigen expression between wildtype and RKO 
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mice.  It is known that alphavirus vector-expressed antigen is markedly increased in animals 

lacking the type I receptor [(23) and White et al., in preparation], suggesting that, in wt mice, 

autocrine and paracrine IFN signaling limit alphavirus vector antigen expression (23).  In 

experiments presented here, we concluded that IFN was not required for expression-vector-

induced systemic immunity; however, this interpretation includes the caveat that equivalent 

systemic immune responses against the encoded antigen were induced under conditions in 

which antigen expression levels were markedly different.  However, in the case of mucosal 

IgA responses induced in RKO mice with VRP expression vectors, a significant defect was 

observed in RKO mice even though much more antigen was present, demonstrating that 

increased antigen levels cannot replace the function of IFN signaling in this system. 

In this report we provide further evidence for the role of the type I IFN system in 

regulating virus-induced adaptive immunity.  Type I IFN played a critical role in the 

activation of mucosal IgA responses following delivery of VRP expression vectors.  These 

results suggest a specific role for type I IFN in VRP-induced immunity, potentially the 

regulation of migration of IgA-secreting-cells into the mucosal compartment.  Identification 

of the precise mechanism by which IFN promotes VRP-induced mucosal IgA should lead to 

both a basic understanding of the factors involved in virus-induced immunity as well as new 

strategies to increase the efficacy of VRP as mucosal vaccine vectors.   
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Figure 5-1 
 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 5-1.  Type I IFN signaling is dispensable for expression-vector-induced systemic  
immunity.  Groups of wildtype (wt) and IFN α/β receptor knockout (RKO) mice were 
immunized in the rear footpad at weeks 0 and 4 with 1x105 IU of HA-VRP.  Two weeks 
following the boost, flu-specific serum IgG (A) antibodies were evaluated by ELISA.  
Additionally, flu-specific IgG- (B) and IgA (C) -secreting cells were evaluated by ASC 
ELISPOT.  Values represent the geometric mean +/- SEM.  No statistically-significant 
differences exist between responses induced in wt and RKO animals. 
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Figure 5-2 
 

 

 
 
 
 
Figure 5-2.  Type I IFN signaling is required for expression-vector-induced mucosal 
IgA responses.  Groups of wildtype (wt) and IFN α/β receptor knockout (RKO) mice were 
immunized in the rear footpad at weeks 0 and 4 with 1x105IU of HA-VRP.  Two weeks 
following the boost, flu-specific IgG- (A) and IgA- (B) were analyzed by ASC ELISPOT of 
URT cells.  Also, flu-specific IgA antibodies were evaluated in fecal extracts (C) and vaginal 
washes (D) by ELISA.  Values represent the geometric mean +/- SEM.  IgA responses in wt 
mice are all statistically greater than IgA responses in RKO mice (Mann-Whitney). 
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Figure 5-3 
 
 
 
 

 
 
 
 
 
 
 
 
Figure 5-3.  Type I IFN signaling is not necessary for expression-vector-induced DLN 
IgA.  Groups of wildtype (wt) and IFN α/β receptor knockout (RKO) mice were immunized 
in the rear footpad at weeks 0 and 4 with 1x105 IU of HA-VRP.  Three days following the 
boost lymphoid cultures where established from the DLNs and supernatants were assayed for 
the presence of flu-specific IgA antibodies by ELISA.  Values represent the mean +/- SEM.   
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Table 5-1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 5-1.  Type I IFN signaling is not required for VRP adjuvant-induced immunity.  
Groups of wildtype (wt) and IFN α/β receptor knockout (RKO) mice were immunized in the 
rear footpad at weeks 0 and 4 with OVA alone, or OVA plus 1x105 IU of nullVRP.  Two 
weeks following the boost, OVA-specific serum IgG and fecal IgA- antibody responses were 
evaluated by ELISA.  Values represent the geometric mean +/- SEM.   
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 The development of successful vaccines against human pathogens, such as smallpox 

and polio, is one of the most significant accomplishments in the field of medical intervention 

in the last 200 years.  While traditional vaccination methods have proven effective in 

numerous cases, new vaccine technologies will be required to combat the continued threats 

posed by infectious diseases.  Here we describe one such technology, alphavirus replicon 

particles, and present the viral and cellular components involved in alphavirus-induced 

immunity.  A paucity of information exists regarding the definitive mechanisms by which 

vaccines induce protective immunity.  Thus, we have attempted to delineate the viral 

trigger(s) of immune induction as well as the immunological pathways which lead to 

protection/immunity following vaccination.   

 

Molecular Mechanisms of Alphavirus-induced Immunity 

 Role of DC targeting in VRP-induced immunity.  Infection with alphaviruses, as is 

the case with most infectious agents, initiates a multi-pronged, overlapping cascade of events 

in infected cells, and in the animal or vaccinee.  Because of this, defining a causative 

relationship between a single cellular pathway and the induction of an immunological 

response has proved elusive.  Venezuelan equine encephalitis virus replicon particles display 

several features which potentially contribute to their potent immunogenicity.  Targeting 

experiments in the mouse model suggest that VRP preferentially infect DCs following 

parenteral inoculation (26).  Indeed, MacDonald and Johnston proposed that skin-derived 

Langerhans cells represent the early targets of VEE infection.  An understanding of the 

specific cellular targets of VEE infection may provide valuable information regarding the 

critical immune inductive mechanisms operating in the context of VRP vaccines.  The studies 
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presented here suggest that VRP infection promotes a massive influx of DCs into the VRP-

infected draining lymph node.  VRP infection promoted a preferential recruitment of CD11b+ 

DCs to the DLN, although CD11b- DCs were also significantly increased.  Interestingly, this 

increase was manifested by a significant increase in both the total cellularity of the DLN (8-

fold), as well as a 10-fold increase in the proportion of CD11b+ DCs in the DLN.  Combined, 

these effects result in a dramatic increase in the total number of CD11b+ DCs in the VRP-

infected DLN.   

 While VRP infection dramatically affects the APC makeup in the DLN, it will be 

important to determine which cells are targeted by VEE.  Our initial studies suggest that 

CD11b+ DCs represent the major early target of VRP infection.  Next, it will be important to 

determine the relationship between the VRP-infected DCs in the DLN and the DCs which 

present viral antigen and activate viral immunity.  Interestingly, following skin infection of 

mice with HSV, influenza virus, and vaccinia virus, Langerhans cells, while critical for 

transferring viral antigens to the DLN, were incapable of stimulating antigen-specific CD8+ 

T cells in vitro.   Instead, the CD8+ dermal DCs were found to be the only DC subset in the 

lymph node capable of stimulating antigen-specific CD8+ T cells in vitro (2, 3).  Belz et al. 

suggested a model in which Langerhans cells take up and transport viral antigens to the DLN 

following cutaneous viral infection and transfer these antigens to the dermal DCs where they 

initiate adaptive immunity (5).  We are currently testing this model in the VRP system by 

evaluating the subset of DCs which are targeted by VRP and comparing this to the DC 

subset(s) capable of stimulating in vitro CD8+ T cell responses specific for both encoded and 

co-delivered antigens.  It is possible that the DC subsets involved in the activation of CD8+ T 

cell responses under conditions in which antigens are encoded in the viral genome are 
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different than when VRP are used as an adjuvant, and antigen is not necessarily present in 

every VRP-infected cell.  Such analysis should shed new light on the role of DC targeting 

and DC APC function in alphavirus-induced immunity. 

 

 Immunostimulatory properties of VRP.  In addition to targeting vaccine antigens to 

DCs in vivo, VRP possess several other properties which may also play a role in their potent 

immunogenicity, including high level antigen expression in infected cells.  Alphavirus 

replicons express heterologous antigens under the control of the 26S subgenomic promoter, 

which is significantly stronger than the commonly utilized cytomegalovirus (CMV) promoter 

(13).  It is possible that high level transgene expression is the dominant mechanism of 

replicon-induced immune induction.  However, here we demonstrate that VRP possess 

intrinsic immunostimulatory properties which are independent of antigen expression, as VRP 

promote potent immune induction to non-VRP-expressed antigens.  These observations 

suggest that while high level antigen expression most likely does play a role in alphavirus 

expression-vector-induced immunity, the host innate immune response to the infection is 

critical for immune induction to both expressed and co-delivered antigens.   

 The induction of strong innate immune responses as a means to stimulate adaptive 

immunity is a developing theme in several experimental systems (15, 20, 23, 33).  Here we 

have begun to characterize the early inflammatory pathways which are activated by 

alphavirus infection.  VRP infection resulted in a significant increase in several 

proinflammatory and immunoregulatory factors in the DLN such as IL-1β, IL-6, TNF-α, 

IFN-γ, MIP-1β, and RANTES, consistent with the idea that VRP activate a strong innate 

immune response.  Whether immune induction with VRP is dependent upon any or all of 
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these cytokines and/or chemokines remains to be determined.  It is possible that VRP-

induced immunity is dependent upon the induction of a single cytokine or chemokine, or 

conversely, it is more likely that immune induction is a cumulative property of a suite of 

inflammatory responses.  It is also important to consider in this context that an individual 

cytokine or group of cytokines may play a more dominant role in the activation of one arm of 

the adaptive response versus another.  For example, VRP-induced IFN-γ, while critical for 

the activation of T cell responses to either VRP-expressed or co-delivered antigens, may or 

may not be required for activation of humoral immunity.  An additional consideration in this 

regard is the idea that a single cytokine or group of cytokines may have differential 

requirements for immune induction when using VRP as expression vectors as compared to 

VRP adjuvants.  Consistent with this idea, type I interferon signaling was required for the 

induction of mucosal IgA responses with VRP expression vectors, but not with VRP 

adjuvants.  The next step in the process should involve further immune induction 

experiments with both alphavirus expression vectors and adjuvants in animals either 

genetically devoid, or antibody depleted, of candidate cytokines involved in immune 

induction.  These studies should allow the identification of critical host responses involved in 

alphavirus-induced immune induction.  Any host immunological factors implicated in 

alphavirus-induced immunity in these studies would also serve as prime targets for cellular 

components which contribute to alphavirus pathogenesis (see below). 

 

 Alphavirus PAMP recognition.  While we are beginning to understand the 

inflammatory mediators that are induced by alphavirus infection, the upstream recognition 

and signaling pathways which initiate these responses have yet to be determined.  We have 
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speculated that an alphavirus-specific pathogen-associated molecular pattern (PAMP) is 

contained within replicon particles, or produced within replicon-infected cells (39).  We first 

sought to address this question by evaluating the role of VRP RNA replication in the 

adjuvant effect.  It is not feasible to evaluate RNA replication as a component of immune 

induction in the expression vector system, as mutations and/or treatments which would affect 

RNA replication, would also impact antigen expression, clouding the interpretation of such 

studies.  We found that UV-treated VRP failed to induce an adjuvant effect in both the 

systemic and mucosal compartments.  These results are consistent with a model in which 

VRP RNA replication is recognized by a cellular sentinel molecule which, once activated, 

initiates an immunological cascade which ultimately culminates in immune induction to co-

delivered antigen.  We are currently evaluating VRP-induced immunity, both in the adjuvant 

and expression vector systems, in animals genetically deficient for several candidate sentinel 

molecules such as TLR3 (1), MyD88 (7, 17), MDA5 (43), and MAVS (37).  Such analysis 

should allow us identify an alphavirus PAMP(s) and to assess the role of both the major 

intracellular viral RNA recognition pathways in alphavirus-induced immunity, as well as in 

alphavirus pathogenesis. 

 Our studies with UV-treated VEE replicon particles suggest that the alphavirus 

adjuvant effect is UV sensitive, and therefore most likely dependent upon VRP RNA 

replication as a trigger for immune induction.  However, Hidmark et al. recently 

demonstrated a serum IgG adjuvant effect with UV-treated replicons derived from the related 

alphavirus, Semliki forest virus (18).  The mechanistic explanation for this discrepancy in the 

VEE and SFV systems is unclear at this point; however, several explanations are plausible.  

A significant complication in the interpretation is the fact that it is impossible to determine 
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the exact amounts of UV applied to both replicon particles, as they were treated under 

different experimental conditions.  One potential explanation is that the UV treatment in the 

VEE system was sufficiently strong as to affect not only the structure of the nucleic acid, but 

also the conformation of the glycoproteins on the particle surface, functionally inhibiting 

binding, entry, and/or uncoating.  Conversely, it is possible that the UV treatment in the SFV 

system, while sufficient to inhibit the viral protein expression in vitro, did not fully abrogate 

RNA replication in vivo.   In support of this idea, we have demonstrated that the mouse is at 

least 10-fold more sensitive to VRP than cell lines in vitro.  This conclusion stems from the 

observation that, following subcutaneous delivery of 0.1 BHK cell IUs of HA-expressing 

VRP, seroconversion occurred in 100% of the immunized animals.  This observation is 

consistent with a model in which animals did not seroconvert to less then 1 IU of VRP, but 

instead, at least 10 times more mouse infectious units are present in VRP preparations than 

BHK cell infectious units.  Therefore, it will be important to assess the effects of a UV dose 

titration on VEE and SFV replicon RNA replication in vivo to clarify this issue.  A third 

explanation is that New World and Old World alphaviruses rely on distinct immunological 

pathways for immune induction.  Support for this idea stems from the VEE and SFV studies 

in type I interferon receptor knockout mice.  In the SFV system, type I interferon signaling 

was critical for the serum IgG adjuvant effect (18); however, VEE replicons exerted an 

adjuvant effect in type I interferon receptor knockout mice (Thompson et al., in preparation, 

Chapter 5).  It is possible that VEE induces additional cytokines which substitute for type I 

interferon whereas SFV does not.  Further experimentation will be necessary to clarify these 

issues and should provide important insights into alphavirus-induced immune induction in 

general, and the potential to optimize alphavirus-vectored vaccines.   
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The VRP Alternative Pathway for Mucosal Immune Induction 

 While we have performed the initial characterization of both the early targets of VRP 

infection, as well as the phenotype of the VRP-induced mucosal immune response, the 

molecular details of the intervening events have yet to be fully elucidated.  We are currently 

attempting to define the individual steps which occur following infection of DCs and prior to 

the presence of antibodies in mucosal secretions.  Although mucosal antigen delivery appears 

to be the most efficient method for generating a mucosal immune response (28, 29), a 

growing body of evidence supports the existence of a pathway capable of inducing mucosal 

immune responses following nonmucosal delivery [reviewed in (8, 40), (Thompson et al., in 

preparation, Chapter 3)].  Our studies suggest that the VRP DLN is a critical component of 

the alternative mucosal immune induction pathway (Thompson et al., in preparation, Chapter 

3).  Several markers of mucosal lymphoid tissues were present in the VRP-infected DLN 

including antigen-specific polymeric IgA antibodies, B and T lymphocytes bearing the 

mucosal homing receptor, expression of MAdCAM-1 on the high endothelial venules, and 

increased mucosal cytokine secretion.  However, the precise mechanism by which the VRP 

DLN activates mucosal immune responses has not been fully elucidated. 

 

VRP-induced mucosal homing.  The migration of lymphocytes into the mucosal 

compartment represents a critical regulatory step in the mucosal inductive pathway (10).  

Much is known regarding the individual components which promote mucosal homing (10).  

As mentioned previously, the α4β7 integrin, termed the mucosal homing receptor plays a 

dominant role in homing to the gut mucosa.  Our studies demonstrate that VRP induce a 

significant increase in α4β7 integrin expression on B cells and CD8+ T cells present in the 
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DLN.  This suggests that the α4β7 integrin-MAdCAM-1 pathway plays a role in mediating 

mucosal migration in the VRP system; however, this has not been proven.  It will be 

interesting to determine whether VRP promote mucosal immune induction in β7 integrin-

deficient animals (41) or if this pathway is not functionally required, despite the fact that it 

appears to be activated in the DLN.  If β7 integrin-deficient animals do in fact have defects in 

VRP-induced mucosal immunity, it would suggest that at least some components of the 

peripheral VRP pathway and the natural pathway are overlapping.  Other mediators of 

mucosal migration, especially in the gut, include CCR9-TECK and CCR10-MEC 

interactions. Evaluation of VRP mucosal immune induction in both CCR9 and CCR10 

knockouts would likewise provide important insights into the VRP alternative pathway.   

Again, the finding of a defect in mucosal immune induction with VRP in one or more of 

these mouse models would warrant the further evaluation of such proteins in VEE 

pathogenesis.   

Classical mucosal homing experiments involved harvesting lymphocytes from 

mucosal inductive tissues, such as the PPs and/or MLN, and monitoring homing to the 

mucosal compartment following adoptive transfer.  In fact, lympocytes of mucosal origin do 

repopulate the mucosal compartment following adoptive transfer (27, 35).  If the VRP DLN 

is truly converted into the functional equivalent of a mucosal inductive site, then one might 

predict that cells isolated from the DLN of VRP-immunized mice may have the capacity to 

home to mucosal tissues following adoptive transfer.  These experiments are underway and, 

if positive, will provide a strong functional significance for the role of the VRP-infected 

DLN in mucosal immune induction. 
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VRP-induced DLN IgA.  Our studies suggest that the DLN is a very early source of 

VRP-induced IgA antibodies, as antigen-specific IgA is detected in the DLN prior to 

detection in mucosal secretions.  A significant proportion of the DLN IgA antibodies were 

found to be dimeric or polymeric in nature.  These are characteristics of IgA antibodies 

produced at mucosal sites (6, 12, 31) and further support the notion of the DLN as part of a 

mucosal inductive pathway.  It will be interesting to determine if the VRP-induced DLN 

polymeric IgA antibodies are functionally transported into mucosal secretions.  We are 

currently evaluating the ability of DLN IgA to be recognized and transported through 

polarized epithelial cells expressing the pIgR (19) as a model system for in vivo mucosal 

transport.  Additionally, it would be interesting to measure the ability of VRP to induce IgA 

antibodies in both the DLN as well as at the local mucosal surface in animals which have 

been genetically engineered to produce an increased monomeric to polymeric IgA ratio, such 

as J chain knockout mice or pIgR knockout mice.  The results of such studies should further 

characterize the mucosal characteristics of DLN IgA and provide an additional test to the 

VRP alternative pathway model (21). 

While the presence of IgA in the DLN of VRP-vaccinated mice is not disputed, the 

anatomical location in which IgA class switch occurs has yet to be determined.  It is 

theoretically possible that the cells producing IgA antibodies in the DLN at day 3 post boost 

received the IgA class switch signals somewhere other then the DLN (such as the PP) and 

then migrated back to the inflamed DLN to initiate IgA secretion.  Or conversely, that IgA 

class switch occurred in the DLN just prior to IgA secretion.  As a first step in addressing 

whether IgA class switch occurs in the VRP-infected DLN, we are evaluating whether the 

cytokines present in the DLN of VRP-immunized mice possess the capacity to promote IgA 
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class switch in vitro.  Several cytokines which we have shown to be present in the DLN, such 

as IL-5 (22), IL-6 (22), and TNF-α, are known to promote either IgA class switch or 

secretion from IgA-switched cells.  We are currently utilizing DLN PBS extracts as a source 

of cytokines driving IgA class switch of LPS-treated B cells in culture (4).  If VRP DLN 

extracts in fact promote IgA class switch, the stimulating cytokine(s) will be identified in a 

series of blocking studies with monoclonal antibodies directed against specific cytokines 

(32).   

 

VRP-induced mucosal IgG/IgA ratio.  A large body of evidence supports the notion 

that antibodies of the IgA isotype are the most abundant antibodies present in mucosal 

secretions, although IgG and IgM antibodies are also found in mucosal secretions at much 

reduced levels compared to IgA  (11, 28-30).  Our studies clearly demonstrate that VRP 

stimulate the production of antigen-specific IgA antibodies at the mucosal surface.  However, 

an interesting finding in our analysis of VRP-induced mucosal immune induction is that VRP 

consistently stimulate the production of greater than 10-fold more antigen-specific IgG 

antibodies than IgA antibodies in mucosal secretions.  This observation holds true in the 

upper respiratory tract (nasal washes, nasal lymphocyte ASC ELISPOT, nasal epithelium 

lymphoid cultures), the gastrointestinal tract (fecal extracts, LPL ASC ELISPOT, gut 

lymphoid cultures), the urogenital tract (vaginal lavage fluids) (16, 24, 39), (Thompson J. M., 

Richmond, E. M., and Johnston, R. E., unpublished) as well as in the VRP DLN (Thompson 

et al., in preparation, Chapter 3).  It has been proposed that IgG antibodies in mucosal 

secretions may play an important role in mucosal defense (9, 36).  In fact, significant levels 

of IgG antibodies are found in secretions from the female reproductive tract  (9, 36).  The 
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exact signals which promote an increased ratio of mucosal IgG to IgA in the VRP system as 

compared to the IgG to IgA ratio following, for example, nasal antigen delivery in the 

presence of CT remain to be determined.   

Irrespective of the inductive mechanism(s) responsible for mucosal IgG production, 

we speculate that VRP-induced mucosal IgG antibodies may play a significant role in 

mediating protection from mucosal challenge in the alphavirus system.  We have 

demonstrated recently that HA-expressing VRP not only protect animals from the overt signs 

of disease following intranasal challenge with influenza virus, but also limit challenge virus 

replication to levels below the limits of detection by plaque assay as well as HA-specific in 

situ hybridization (Richmond E. M., Thompson, J. M., Davis, N. L., Brown, K., West, A. C., 

and Johnston, R. E., unpublished).  It will be interesting to determine what respective roles 

nasal IgG and IgA antibodies play in mediating this protective effect.  Several models of 

mucosal IgA deficiency exist including J chain knockouts (25) and pIgR knockouts (21); 

however, we propose to utilize local depletion of either nasal IgG and/or IgA by intranasal 

installation of anti-mouse IgG and/or IgA antibodies as developed by Renegar and Small 

(34), in combination with our nasal influenza challenge model, to identify the protective 

isotype(s).  The results of these studies should significantly improve our knowledge of VRP-

induced protective immunity.   

 

Implications for VEE Pathogenesis 

Role of DC targeting in VEE pathogenesis.  The studies described here clearly 

demonstrate the utility of VRP as components of successful vaccines and provide a powerful 

model system for the study of viral immunology.  Our findings may also have implications 
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for the pathogenesis of VEE as well.  While a thorough examination of all the individual 

APC subsets present in the lymph node following VRP delivery has yet to be performed, our 

studies clearly demonstrate that VRP infection leads to a significant recruitment of DCs to 

the DLN.  One possibility is that recruitment is a generalized host response to an 

inflammatory environment in the DLN.  Consistent with this idea, VEE promotes the strong 

induction of several inflammatory mediators in the DLN such as IL-1β, TNF-α, and IL-6.  A 

second possibility is that VEE specifically recruits its own cellular targets of infection to the 

DLN as a means to promote spread in the animal.  However, it is not immediately apparent 

exactly why this would be advantageous to the virus, as virus replication occurs in nearly 

every organ in the animal at later times post infection, suggesting the cellular targets of 

infection are not limiting.  Why the first round of infection, as modeled by VRP delivery, 

demonstrates preferential infection of DCs and not infection of the downstream visceral 

organs is unclear at this point.  It is possible that DC-derived viruses are somehow better 

suited for either infection of, or replication within, downstream tissues in vivo.  Glycosylation 

patterns in DCs could potentially give rise to viruses with an altered infectivity profile for 

downstream tissues, an enhanced ability to cross the blood-brain barrier, or the capability to 

evade the next wave of host innate immune responses.  Shabman et al. recently demonstrated 

that the cell type in which alphaviruses are grown dramatically affects both the infectivity of 

progeny virions for DCs as well as their ability to interfere with the type I interferon response 

(38).  This hypothesis presents a testable model.  It would be interesting to evaluate the 

replication kinetics and in vivo pathogenesis of DC-grown virus as compared to fibroblast-

grown virus following intraveneous inoculation to bypass the DC targeting steps. 
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It is also possible that VEE recruits DCs to the lymph node as a means to cripple their 

APC function.  VEE causes significant apoptosis in DC cultures (Moran et al., submitted), 

and recruitment of DCs to the pro-inflammatory environment of the DLN could hinder APC 

function directly through the activation cell death pathways in infected cells, or indirectly 

through cytokine and/or chemokine signals to neighboring, uninfected cells.  Alternatively, 

virus-induced recruitment may not affect the viability or functionality of DCs, but instead 

provide a mechanism to sequester DCs in the DLN, blocking their function in anti-viral 

defense by limiting access to viral antigen and cells of the adaptive immune system in 

downstream tissues.  Consistent with this idea, recruitment of DCs to the DLN following 

VRP delivery continued through day 3 post infection; a timepoint in which downstream 

tissues are already infected following delivery of replicating virus.  A more careful 

examination of the kinetics of DC recruitment to the DLN following VRP delivery may help 

to determine what role, if any, viral recruitment of DCs to the DLN plays in VEE 

pathogenesis.   

 

Role of lymphocyte migration in VEE pathogenesis.  One of the most common 

clinical manifestations of VEE disease in humans, horses, and mice is an acute lymphopenia 

(42).   The exact mechanisms responsible for this clinical outcome have not been clearly 

elucidated (14).  One potential explanation is that lymphocytes undergo programmed cell 

death as a result of direct or indirect signals provided by virus infection.  Alternatively, 

clinical presentation of lymphopenia could also occur following virus-induced lymphocyte 

migration to sites which would preclude their detection systemically.  Our studies suggest the 

VRP infection dramatically affects cellular migration and trafficking patterns of lymphocytes 
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in vivo.  VRP induced a significant influx of lymphocytes into the draining lymph node at 

early times post infection (Chapter 3) and migration of lymphocytes into the mucosal 

compartment at later times post infection (Chapter 4).  These results are consistent with the 

idea that VEE infection dramatically affects the migratory properties of lymphocytes and 

begs the question of whether VRP promote the mobilization of lymphocyte migration into 

the mucosal compartment in a non-specific manner.  It remains to be determined if this is 

really the case.  It will be interesting to determine if VRP infection promotes mucosal 

migration of lymphocytes with a defined, unrelated specificity, to the VRP-associated 

antigen or if the observed migration is activation of cells specific for “contaminating” 

antigens in VRP preparations.  While the quantitative analysis of cells present in the URT 

following VRP delivery does suggest that the URT is the single reservoir of systemic 

lymphocytes, it is possible that mucosal lymphocyte migration contributes to the 

lymphopenia observed following natural VEE infection.  We are currently evaluating 

whether VRP infection promotes lymphocyte migration to other mucosal surfaces in addition 

to the URT.  Further experimentation will be required to evaluate the role of mucosal 

lymphocyte homing in VEE pathogenesis; however, these studies typify the interplay 

between pathogenesis and vaccine development in the alphavirus system. 

 

Optimization of VRP Vaccines 

 The primary focus of the studies presented here has been the identification of the viral 

and immunological factors which regulate alphavirus-induced immunity.  The discovery of 

the alphavirus adjuvant effect has provided a powerful experimental system which has turned 

out to be extremely useful in this regard.  We are also pursuing VRP as vaccines in a number 
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of systems.  In fact, a phase I human trial has recently been completed utilizing VRP 

expressing HIV antigens.  Therefore, regardless of the immune inductive pathways 

stimulated by VRP, the ability of VRP to promote protective immunity may significantly 

improve human vaccines.  Thus, the optimization of VRP-induced immunity represents an 

important area of development.   

 The dosing schedule utilized in these studies was based upon our experience 

optimizing serum IgG responses induced by VRP expression vectors.  Additional schedules 

including multiple dosing as well as combining several routes should be explored as a means 

to improve the utility of VRP vaccines, with special emphasis on induction of mucosal 

immunity.  Additionally, here we have focused on the characterization of VRP adjuvant 

activity.  Future work should combine the various alphavirus vaccine platforms (expression 

vectors, adjuvants, DNA-launched expression vectors) into a single immunization protocol.  

Furthermore, in order to identify immunological mechanisms involved with alphavirus-

mediated immune induction we have focused on single modality studies; however, VRP may 

prove to perform better as components of successful combination vaccines.  In support of this 

idea, VRP and CpG worked together in an additive manner to increase immunity to co-

delivered antigen.  Future studies should expand to test other modalities in combination with 

VRP in search of synergistic effects.  This search should include other TLR agonists, both 

old and new vaccine technologies, as well as potentially delivering VRP in the skin through 

transcutaneous immunization.  We believe that further dosing and combinational 

optimization has the potential to significantly improve the utility of VRP-based vaccines and 

adjuvants, and may enable successful vaccination protocols for the production of anti-

pathogen immunity in humans.   
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