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Abstract

SWARNAVA MUKHOPADHYAY: Rank-Level Duality of Conformal Blocks
(Under the direction of Prakash Belkale)

Classical invariants for representations of one Lie group can often be related to in-

variants of some other Lie group. Physics suggests that the right objects to consider for

these questions are certain refinements of classical invariants known as conformal blocks.

Conformal blocks appear in algebraic geometry as spaces of global sections of line bundles

on moduli stacks of parabolic bundles on a smooth curve. Rank-level duality connects a

conformal block associated to one Lie algebra to a conformal block for a different Lie al-

gebra. In this dissertation we discuss a general approach to rank-level duality questions.

The main result of the dissertation is a rank-level duality for so(2r+ 1) conformal blocks

on the pointed projective line which was suggested by T. Nakanishi and A. Tsuchiya. As

an application of the general techniques developed in the thesis, we prove new symplectic

rank-level dualities.
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Introduction

The main goal of this dissertation is to study the rank-level duality of conformal blocks

from a general Lie theoretic view point. We consider rank-level dualities arising out of

special embeddings of Lie algebras known as conformal embeddings. In this introduction,

we put our work in its proper context by explaining the genesis and the recent history

of research done on rank-level duality. In Section 0.1, we discuss the motivation and

historical background for rank-level duality. We describe the main result obtained in the

dissertation in Section 0.2 and in Section 0.3 we discuss the general context of rank-level

duality. The main ideas of the proof of rank-level duality are briefly described in Section

0.4. Section 0.5 provides a thumbnail sketch of the general body of the dissertation.

0.1. The context of the problem

It has been known for a long time that invariant theory of GLr and the intersection

theory of Grassmannians are related. This relation gives rise to some interesting isomor-

phisms between invariants of SLr and SLs for some positive integer s. To make it precise

recall that the irreducible polynomial representations of GLr are indexed by r tuples of

integers λ = (λ1 ≥ · · · ≥ λr ≥ 0) ∈ Zr. Let Vλ denote the corresponding irreducible

GLr-module.

Consider λ = (λ1 ≥ · · · ≥ λr ≥ 0) an r tuple of integers such that λ1 ≤ s. The set of

all such λ’s is in bijection with Yr,s, the set of all Young diagrams with at most r rows

and s columns. For λ, µ, ν in Yr,s such that |λ|+ |µ|+ |ν| = rs we know that

dimC(Vλ ⊗ Vµ ⊗ Vν)SLr = dimC(VλT ⊗ VµT ⊗ VνT )SLs ,



where |λ| denote the number of boxes in the Young diagram of λ and λT denotes the

transpose of the Young diagram of λ. The above is not only a numerical “strange” duality

but the vector spaces are canonically dual to each other (see [7]).

Physics suggests that to understand the above kind of relation for other groups the

correct objects to consider are certain refinements of the co-invariants known as conformal

blocks. Consider a finite dimensional simple complex Lie algebra g, a Cartan subalgebra

h and a non-negative integer ` called the level. Let ~λ = (λ1, . . . , λn) be an n tuple of

dominant weights of g of level `. To n distinct points ~p = (P1, . . . , Pn) with coordinates

~z = (z1, . . . , zn) on P1, one associates a finite dimensional vector space V~λ(g, `, ~z) known

as the space of covacua. The dual of V~λ(g, `, ~z) is called a conformal block and is denoted

by V†~λ(g, `, ~z). We refer the reader to Chapter 1 for more details. More generally, one can

define conformal blocks associated to n distinct points on curves of arbitrary genus with

at most nodal singularities (see Chapter 1). Conformal blocks form a vector bundle on

Mg,n, the moduli stack of stable n pointed curves of genus g.

Rank-level duality is a duality between conformal blocks associated to two different

Lie algebras. In [27], T. Nakanishi and A. Tsuchiya proved that on P1, certain conformal

blocks of sl(r) at level s are dual to conformal blocks of sl(s) at level r. In [2], T. Abe

proved rank-level duality statements between conformal blocks of type sp(2r) at level s

and sp(2s) at level r. It is important to point out that there are no known relations

between the classical invariants for the Lie algebras sp(2r) and sp(2s).

The rank-level duality of conformal blocks has a geometric perspective under the

identification of conformal blocks with the space of non-abelian G-theta functions. This

is known as strange duality. The strange duality conjecture for SLn says that the space

of generalized theta functions associated to the pairs (p, q), (q, p) are naturally dual to

each other, the duality being induced from the tensor product of vector bundles. This

conjecture was proved by P. Belkale (see [8] and [9]) and also by A. Marian and D.

Oprea [23]. The symplectic strange duality conjecture in [6] was proved by T. Abe

(see [2]). For a survey of these results we refer e.g. to [24], [29], [31].
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0.2. Rank-level duality for odd orthogonal Lie algebras

The paper [27] (Section 6, page 368) suggests that one can try to answer similar

rank-level duality questions for orthogonal Lie algebras on P1. Furthermore, it is pointed

out in [27] that one should only consider the tensor representations, i.e. representations

that lift to representations of the special orthogonal group (see Section 6 in [27]). In the

following we answer the above question for odd orthogonal Lie algebras.

Throughout this dissertation we assume that r, s ≥ 3. Let P 0
2s+1(so(2r + 1)) de-

note the set of tensor representations of so(2r + 1) of level 2s + 1. We can realize the

set P 0
2s+1(so(2r + 1)) as a disjoint union of Yr,s and σ(Yr,s), where σ is an involution

P 0
2s+1(so(2r+ 1)) that corresponds to the action of a diagram automorphism of the affine

Lie algebra ŝo(2r + 1) (see Chapter 2). Our main theorem is the following:

Theorem 0.2.1. Let ~λ = (λ1, . . . , λn) ∈ Ynr,s be an n tuple of weights in P 0
2s+1(so(2r+

1)).

(1) If
∑n

i=1 |λi| is even, then

V~λ(so(2r + 1), 2s+ 1, ~z) ' V†~λT (so(2s+ 1), 2r + 1, ~z),

where ~z is a tuple of n distinct points on P1.

(2) If
∑n

i=1 |λi| is odd, then

V~λ,0(so(2r + 1), 2s+ 1, ~z) ' V†~λT ,σ(0)
(so(2s+ 1), 2r + 1, ~z),

where ~z is a tuple of (n+ 1) distinct points on P1.

(3) If
∑n

i=1 |λi| is even, then

V~λ,σ(0)(so(2r + 1), 2s+ 1, ~z) ' V†~λT ,σ(0)
(so(2s+ 1), 2r + 1, ~z),

where ~z is a tuple of (n+ 1) distinct points on P1.

Remark 0.2.2. The above statements are independent of each other.
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0.3. General set up of rank-level duality

We briefly discuss the general context of rank-level duality maps. We closely follow

the methods used in [27], [2] and [4] but there are significant differences in key steps.

Let g1, g2 and g be simple Lie algebras and consider an embedding of Lie algebras

φ : g1⊕ g2 → g. We extend it to a map of affine Lie algebras φ̂ : ĝ1⊕ ĝ2 → ĝ. Consider a

level one integrable highest weight module HΛ(g), and restrict it to ĝ1⊕ ĝ2. The module

HΛ(g) decomposes into irreducible integrable ĝ1 ⊕ ĝ2-modules of level ` = (`1, `2) in the

following way:

⊕
(λ,µ)∈B(Λ)

mΛ
λ,µHλ(g1)⊗Hµ(g2) ' HΛ(g),

where ` = (`1, `2) is the Dynkin multi-index of φ and mΛ
λ,µ is the multiplicity of the

component Hλ(g1) ⊗ Hµ(g2). In general, the number of components |B(Λ)| may be

infinite. We only consider those embeddings such that |B(Λ)| is finite. These embeddings

are known as conformal embeddings (see [19] for more details).

Further assume that mΛ
λ,µ = 1 for any level 1 weight Λ. Thus, for an n tuple ~Λ =

(Λ1, . . . ,Λn) of level one dominant weights of g we have an injective map:

n⊗
i=1

(Hλi(g1)⊗Hµi(g2))→
n⊗
i=1

HΛi(g).

We consider a tuple of n distinct points ~z on P1 and taking “coinvariants” we get a map

α : V~λ(g1, `1, ~z)⊗ V~µ(g2, `2, ~z)→ V~Λ(g, 1, ~z),

where ~λ = (λ1, . . . , λn) and ~µ = (µ1, . . . , µn). We refer the reader to Chapter 1 for

more details. If dimC(V~Λ(g, 1, ~z)) = 1, we get a map V~λ(g1, `1, ~z) → V†~µ(g2, `2, ~z). This

map is known as the rank-level duality map. The above analysis with the embedding

ŝo(2r+1)⊕ ŝo(2s+1)→ ŝo((2r+1)(2s+1)) gives the maps considered in Theorem 0.2.1.

In Chapter 3, we define the rank-level duality for conformal blocks on n pointed nodal

curves of arbitrary genus.
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Remark 0.3.1. Note that the conformal blocks in Theorem 0.2.1 can be identified

with the space of global sections of a line bundle on the moduli stack of Spin-bundles

over P1 with parabolic structures on marked points, we have not been able to define the

rank-level duality map in Theorem 0.2.1 geometrically.

0.4. Idea of Proof

We now discuss the main body of the proof of Theorem 0.2.1. This can be broken up

into several steps:

0.4.1. Dimension Check. Using the Verlinde formula we show that the dimensions of

the source and the target of the conformal blocks in Theorem 0.2.1 are the same. Unlike

the case in [2] we do not have a bijection between P2s+1(so(2r+1)) and P2r+1(so(2s+1))

but we get around the problem by considering bijection of the orbits of P2s+1(so(2r+ 1))

and P2r+1(so(2s + 1)) under the involution σ as described in [28]. Let ~λ ∈ Ynr,s and

Γ = {1, σ} is the group of diagram automorphism of ŝo(2r+1) acting on P2s+1(so(2r+1)).

The Verlinde formula in this case takes the form

∑
µ∈P2s+1(so(2r+1))/Γ

f(µ,~λ)|Orbµ |,

where f(µ,~λ) is a function, constant on the orbit of µ and |Orbµ | denotes the cardinality

of the orbit of µ under the action of Γ. Using a non-trivial trigonometric identity in [28]

and a generalization of Lemma A.42 in [10], we show that f(µ,~λ)|Orbµ | is same for the

corresponding orbit for the Lie algebra so(2s+ 1) at level 2r + 1.

0.4.2. Flatness of rank-level duality. The rank-level duality map has constant rank

when ~z varies (see [9]). The conformal embedding is important in this case as it ensures

that the rank-level duality map is flat with respect to the KZ/Hitchin/WZW connection

(see [9]) on sheaves of vacua over any family of smooth curves.

0.4.3. Degeneration of a smooth family. Let C1 ∪ C2 be a nodal curve, where C1

and C2 are isomorphic to P1 intersecting at one point. A conformal block on C1 ∪ C2 is

5



isomorphic to a direct sum of conformal blocks on the normalization of C1 ∪ C2. This

property is known as factorization of conformal blocks. A key ingredient in the proof of

rank-level duality in [2] is the compatibility of the rank-level duality with factorization.

T. Abe uses it to conclude that the rank-level duality map is an isomorphism on certain

nodal curves.

This property for nodal curves is no longer true for our present case due to the presence

of “non-classical” components (i.e. components that do not appear in the branching of

finite dimensional irreducible modules) in the branching of highest weight integrable

modules. We refer the reader to Chapter 3 for more details.

We consider a family of smooth curves degenerating to a nodal curve X0. Instead

of looking at the nature of the rank-level duality map on the nodal curve, we study the

nature of the rank-level duality map on nearby smooth curves of the nodal curve X0

under any conformal embedding. We use the “sewing procedure” of [36] to understand

the decomposition of the rank-level duality map near the nodal curve X0. The methods

used in this step are similar to [4]. This degeneration technique and the flatness of the

rank-level duality enable us to use induction similar to [27] and [2] to reduce to the

case for one dimensional conformal blocks on P1 with three marked points. We refer the

reader to Chapter 9 for more details.

0.4.4. Minimal Cases. We are now reduced to showing that the rank-level duality

maps for one dimensional conformal blocks on P1 with three marked points are non-zero.

Our proof of this step differs significantly from that in [2] as we were not able to use

any geometry of parabolic vector bundles with a non-degenerate form. This is again due

to the presence of non-classical components. Using [17], we construct explicit vectors

v1 ⊗ v2 ⊗ v3 in the tensor product of three highest weight modules and show by using

gauge symmetry (see Chapter 1) that Ψ(v1 ⊗ v2 ⊗ v3) 6= 0. It will be very interesting

if one can define the rank-level duality map purely in language of vector bundles with a

non-degenerate form.
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0.5. Overview of dissertation

A brief description of the remainder of the dissertation is as follows: In Chapter 1, we

introduce important notations, conventions, results and definitions. Chapter 2 is devoted

to the action of diagram automorphisms on conformal blocks. The rank-level duality

map in the general context arising from conformal embeddings is constructed in Chapter

3. In Chapter 4, we study extensions of multi-shift automorphisms under embeddings

of Lie algebras. As an application we prove new symplectic rank-level dualities. We

discuss the compatibility of the rank-level duality map with factorization in Chapter 5.

The branching rules for the conformal embeddings of the orthogonal Lie algebras are

described in Chapter 6, and in Chapter 7, we show the equality of the dimensions of the

source and the target of the rank-level duality map. Following the works of K. Hasegawa

and I. Frenkel, the highest weight vectors of the components that appear in the branching

rule are explicitly described in Chapter 8. In Chapter 9, we give a proof of the main

result of the dissertation.

7



CHAPTER 1

Basic definitions in the theory of conformal blocks

In this chapter, we recall some basic definitions from [36] in the theory of conformal

blocks. Let g be a simple Lie algebra over C and h be a Cartan subalgebra of g. We fix

the decomposition of g into root spaces

g = h⊕
∑
α∈∆

gα,

where ∆ is the set of roots decomposed into a union of ∆+∪∆− of positive and negative

roots. Let (, ) denote the Cartan Killing form on g normalized such that (θ, θ) = 2, where

θ is the longest root and we identify h with h∗ using the form (, ).

1.1. Affine Lie algebras

We define the affine Lie algebra ĝ to be

ĝ := g⊗ C((ξ))⊕ Cc,

where c belongs to the center of ĝ and the Lie bracket is given as follows:

[X ⊗ f(ξ), Y ⊗ g(ξ)] = [X, Y ]⊗ f(ξ)g(ξ) + (X, Y ) Resξ=0(gdf).c,

where X, Y ∈ g and f(ξ), g(ξ) ∈ C((ξ)).

Let X(n) = X ⊗ ξn and X = X(0) for any X ∈ g and n ∈ Z. The finite dimensional

Lie algebra g can be realized as a subalgebra of ĝ under the identification of X with

X(0).



1.2. Representation theory of affine Lie algebras

The finite dimensional irreducible modules of g are parametrized by the set of dom-

inant integral weights P+ ⊂ h∗. Let Vλ denote the irreducible module of highest weight

λ ∈ P+ and vλ denote the highest weight vector.

We fix a positive integer ` which we call the level. The set of dominant integral

weights of level ` is defined as follows

P`(g) := {λ ∈ P+|(λ, θ) ≤ `}

For each λ ∈ P`(g) there is a unique irreducible integrable highest weight ĝ-module Hλ(g)

which satisfies the following properties:

(1) Vλ ⊂ Hλ(g),

(2) The central element c of ĝ acts by the scalar `,

(3) Let vλ denote a highest weight vector in Vλ, then

Xθ(−1)`−(θ,λ)+1vλ = 0,

where Xθ is a non-zero element in the weight space of gθ. Moreover Hλ(g) is

generated by Vλ over ĝ with the above relation. When λ = 0, the corresponding

ĝ-module H0(g) is known as the vacuum representation.

1.3. Conformal blocks

We fix a n pointed curve C with formal neighborhood η1, . . . , ηn around the n points

~p = (P1, . . . , Pn), which satisfies the following properties :

(1) The curve C has at most nodal singularities,

(2) The curve C is smooth at the points P1, . . . , Pn,

(3) C − {P1, . . . , Pn} is an affine curve,

(4) A stability condition (equivalent to the finiteness of the automorphisms of the

pointed curve),

(5) Isomorphisms ηi : ÔC,Pi ' C[[ξi]] for i = 1, . . . , n.

9



We denote by X = (C; ~p; η1, . . . , ηn) the above data associated to the curve C. We define

another Lie algebra

ĝn :=
n⊕
i=1

g⊗C C((ξi))⊕ Cc,

where c belongs to the center of ĝn and the Lie bracket is given as follows:

[
n∑
i=1

Xi ⊗ fi,
n∑
i=1

Yi ⊗ gi] :=
n∑
i=1

[Xi, Yi]⊗ figi +
n∑
i=1

(Xi, Yi) Resξi=0(gidfi)c.

We define the current algebra to be

g(X) := g⊗ Γ(C − {P1, . . . , Pn},OC).

By local expansion of functions using the chosen coordinates ξi we get the following

embedding:

g(X) ↪→ ĝn.

Consider an n tuple of weights ~λ = (λ1, . . . , λn) ∈ P n
` (g). We set H~λ = Hλ1(g) ⊗

· · · ⊗ Hλn(g). The algebra ĝn acts on H~λ. For any X ∈ g and f ∈ C((ξi)), the action of

X ⊗ f(ξi) on the i-th component is given by the following:

ρi(X ⊗ f(ξi))|v1 ⊗ · · · ⊗ vn〉 = |v1 ⊗ · · · ⊗ (X ⊗ f(ξi)vi)⊗ · · · ⊗ vn〉,

where |vi〉 ∈ Hλi(g) for each i.

Definition 1.3.1. We define the space of conformal blocks

V†~λ(X, g) := HomC(H~λ/g(X)H~λ,C).

We define the space of dual conformal blocks, V~λ(X, g) = H~λ/g(X)H~λ. These are both

finite dimensional C-vector spaces which can be defined in families. The dimensions of

these vector spaces are given by the Verlinde formula.

The elements of V†~λ(X, g) (or H∗~λ) will be denoted by 〈Ψ| and those of the dual con-

formal blocks (or H~λ) by |Φ〉. We will denote the natural pairing by 〈Ψ|Φ〉.

10



Remark 1.3.2. Let X ∈ g and f ∈ Γ(C − {P1, . . . , Pn},OC), then every element of

〈Ψ| ∈ V†~λ(X, g) satisfies the following gauge symmetry:

n∑
i=1

〈Ψ|ρi(X ⊗ f(ξi))Φ〉 = 0.

1.4. Propagation of vacua

Let Pn+1 be a new point on the curve C with coordinate ηn+1 and X′ denote the new

data. We associate the vacuum representation H0 to the point Pn+1 and ~λ′ = ~λ∪{λn+1 =

0}. The “propagation of vacuum” gives an isomorphism

f : V†~λ(X
′, g)→ V†~λ(X, g)

by the formula

f(〈Ψ′|)|Φ〉 := 〈Ψ′|Φ⊗ 0〉,

where |0〉 is a highest weight vector of the representation H0, |φ〉 ∈ H~λ and 〈Ψ′| is an

arbitrary element of V†~λ(X
′, g).

1.5. Conformal blocks in a family

Let g be a simple Lie algebra over C and ~λ ∈ P n
` (g). Consider a family F = (π :

C → B; s1, . . . , sn; ξ1, . . . , ξn) of nodal curves on a base B with sections si and formal

coordinates ξi. In [36], a locally free sheaf V†~λ(F , g) known as the sheaf of conformal

blocks is constructed over the base B. The sheaf V†~λ(F , g) commutes with base change.

Similarly one can define another locally free sheaf V~λ(F , g) as a quotient of OB ⊗H~λ.

Moreover, if F is a family of smooth projective curves, then the sheaf V†~λ(F , g) carries

a projectively flat connection known as the KZ/Hitchin/WZW connection. We refer

the reader to [36] for more details.

Remark 1.5.1. When the level ` becomes unclear we also include it in the notation

of conformal blocks. Let X be the data associated to a n pointed curve with chosen

coordinates. We consider an n tuple of level ` weights ~λ of the Lie algebra g. The

11



conformal block is denoted by V†~λ(X, g, `) and the dual conformal block is denoted by

V~λ(X, g, `).
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CHAPTER 2

Action of center on conformal blocks

A diagram automorphism of a Dynkin diagram is a permutation of its nodes that

leaves the diagram invariant. For every diagram automorphism, we can construct a finite

order automorphism of the Lie algebra associated to the Dynkin diagram. These auto-

morphisms are known as outer automorphisms. In the following, we restrict ourselves to

affine Kac-Moody Lie algebras ĝ and to those diagram automorphisms which correspond

to the center Z(G) of the simply connected group G associated to a finite dimensional

simple Lie algebra g.

2.1. Diagram automorphisms of symmetrizable Kac-Moody algebras.

Consider a symmetrizable generalized Cartan matrix A = (ai,j) of size n and let

g(A) denote the associated Kac-Moody algebra. To a symmetrizable generalized Cartan

matrix, one can associate a Dynkin diagram which is a graph on n vertices, see [K] for

details. A diagram automorphism of a Dynkin diagram is a graph automorphism, i.e. it

is a bijection ω from the set of vertices of the graph to itself such that for 1 ≤ i, j ≤ n,

aωi,ωj = ai,j.

We will now construct an automorphism of the Kac-Moody algebra g(A) from a

diagram automorphism ω of the Dynkin diagram of g(A). We start by defining the

action of ω on the generators ei and fj in the following way:

ω(ei) := eωi and ω(fi) := fωi



Since ω is a Lie algebra automorphism, it implies the following:

ω(α∨i ) = ω [ei, fi] = [eωi, fωi ] = α∨ωi,

where α∨i are the simple coroots.

In this way, we have constructed an automorphism of the derived algebra g(A)′ =

[g(A), g(A)]. The extension of this action of ω to g(A) follows from Lemma 1.3.1 in [17].

The automorphism ω of the Lie algebra g(A) has the same order as that of the corre-

sponding diagram automorphism. We will refer to these automorphisms as outer auto-

morphisms.

We restrict to the case when g(A) is an untwisted affine Lie algebra. Let h(A)′ be a

Cartan subalgebra of g(A)′. The map ω restricted to the Cartan subalgebra h(A)′ defines

an automorphism of h(A)′. The adjoint action of ω∗ on h(A)′∗ is given by ω∗(λ)(x) =

λ(ω−1x) for λ ∈ h(A)∗ and x ∈ h(A)′. For 0 ≤ i ≤ n, let Λi be the affine fundamental

weight corresponding to the i-th coroot. Then, ω∗(Λi) = Λωi.

2.2. Single-shift automorphisms of ĝ

Consider a finite dimensional complex simple Lie algebra g and h be a Cartan sub-

algebra of g. Let ∆ be the root system associated to (g, h) and ∆+ be a set of positive

roots. In this section, we denote by 〈, 〉 the normalized Cartan killing form such that

〈θ, θ〉 = 2 for the longest root θ. For each α ∈ ∆, choose a non-zero element Xα ∈ gα.

Then, we have the following:

[Xα, Xβ] =


Nα,βXα+β if α + β ∈ ∆,

0 if α + β /∈ ∆,

where Nα,β is a non-zero scalar. The coefficients Nα,β completely determine the multi-

plication table of g. However, they depend on the choice of the elements Xα. We refer

the reader to [33] for a proof of the following proposition:
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Proposition 1. One can choose the elements Xα is such a way so that

[Xα, X−α] = Hα for all α ∈ ∆,

Nα,β = −N−α,−β for all α, β, α + β ∈ ∆,

where Hα is the coroot corresponding to α. The basis {Xα, X−α, Hα : α ∈ ∆+} is

known as Chevalley basis.

To every αi ∈ ∆+, the simple coroot Xi ∈ h is defined by the property Xi(αj) = δij

for αj ∈ ∆+. The lattice generated by {Xi : 1 ≤ i ≤ rank(g)} is called the coweight

lattice and is denoted by P∨. We identify h with h∗ under the normalized Cartan killing

form and let hα denote the image of α under the identification.

For every µ ∈ P∨, we define an map σµ of the Lie algebra ĝ

σµ(c) := c,

σµ(h(n)) := h(n) + δn,0〈µ, h〉.c where h ∈ h and n ∈ Z,

σµ(Xα(n)) := Xα(n+ 〈µ, α〉).

Proposition 2. The map

σµ : ĝ→ ĝ,

is a Lie algebra automorphism.

Proof. We only need to verify that σµ is a Lie algebra homomorphism. It is enough

to check that σµ respects the following relations:

[
Hαi(m), Hαj(n)

]
= 〈Hαi , Hαj〉.m.δm+n,0c,

[Hαi(m), Xα(n)] = α(Hαi)Xα(m+ n),

[Xα(m), Xβ(n)] = Nα,βXα+β(m+ n) if α + β ∈ ∆,

[Xα(m), X−α(n)] = Hα(m+ n) + 〈Xα, X−α〉.mδm+n,0c.
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It is trivial to see that σµ respects the first three relations. We only need to verify that

σµ respects the last relation. Let us calculate the following:

[σµ(Xα(m)), σµ(X−α(n))] = [Xα(m+ 〈µ, α〉), X−α(n− 〈µ, α〉)] ,

= Hα(m+ n) + 〈Xα, X−α〉.(m+ 〈µ, α〉)δm+n,0c.

If we apply σµ to the right hand side of the last relation, we get the following:

σµ(Hα(m+ n) + 〈Xα, X−α〉.mδm+n,0c)

= Hα(m+ n) + (〈µ,Hα〉+ 〈Xα, X−α〉.m.)δm+n,0c,

= Hα(m+ n) + (〈µ, 〈Xα, X−α〉hα〉+ 〈Xα, X−α〉.m.)δm+n,0c,

= Hα(m+ n) + (〈Xα, X−α〉〈µ, hα〉+ 〈Xα, X−α〉.m.)δm+n,0c,

= Hα(m+ n) + (〈Xα, X−α〉〈µ, α〉+ 〈Xα, X−α〉.m.)δm+n,0c,

= [σµ(Xα(m)), σµ(X−α(n))] .

This completes the proof. 2

The automorphism σµ was studied in [16], [20] and [11] and is called a single-shift

automorphism. It is easy to observe that single-shift automorphisms are additive, i.e. for

µ1, µ2 ∈ P∨, we have σµ1+µ2 = σµ1 ◦ σµ2 .

2.3. Multi-shift automorphisms

We recall the definition of multi-shift automorphisms following [12]. Let us fix a

sequence of pairwise distinct complex numbers zs for s ∈ {1, · · · , n}, the coroot Hα cor-

responding to the roots α. Let P∨ and Q∨ denote the coweight and the coroot lattice of g

respectively and Γg
n = {(µ1, . . . , µn)|µi ∈ P∨and

∑n
i=1 µi = 0}. Consider a Chevalley ba-

sis given by {X−α, Xα, Hα : α ∈ ∆+}. For ~µ ∈ Γg
n, we define a multi-shift automorphism
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σ~µ,t(~z) of ĝ as follows:

σ~µ,t(~z)(c) := (c),

σ~µ,t(~z)(h)⊗ f := h⊗ f +

( n∑
s=1

〈h, µs〉Res(ϕt,s.f)

)
.c,

σ~µ,t(~z)(Xα ⊗ f) := Xα ⊗ f.
n∏
s=1

ϕ
−α(µs)
t,s ,

where f ∈ C((ξ)), ϕt,s(ξ) = (ξ + (zt − zs))−1, h ∈ h.

Let us now recall some important properties of the multi-shift automorphisms.

(1) The multi-shift automorphism σ~µ,t(~z) has the same outer automorphism class as

the single shift automorphism σµt .

(2) It is shown in [FS] that σ~µ,t is a Lie algebra automorphism of ĝ and can be easily

extended to an automorphism of ĝn.

(3) Multi-shift automorphisms of ĝn preserve the current algebra g⊗Γ(P1−~p,OP1),

where ~p = (P1, . . . , Pn) are n distinct points with coordinates z1, . . . , zn.

Remark 1. If one of the chosen points Pi is infinity, the formula of the multi-shift

automorphism needs a minor modification to accommodate the new coordinate at infinity.

This has been considered in [12].

2.4. Action of center on conformal blocks

In [12], the conformal blocks V†~λ(X, g, `) and V†
~ω~λ

(X, g, `) are identified via an isomor-

phism which is flat with respect to the KZ connection, where ~ω = (ω1, ω2, · · · , ωn) ∈

Z(G)n such that
∏n

s=1 ωs = id, ~ω~λ = (ω∗1λ1, . . . , ω
∗
nλn) and ω∗ is a permutation of level

` weights P`(g) corresponding to the diagram automorphism ω.

We briefly recall the construction of the above isomorphism in [12]. For ~z ∈ P1, a

positive integer s and ~µ ∈ Γg
n, a multi-shift automorphism σ~µ,s(~z) of ĝ is constructed

in [12]. To implement the action of σ~µ(~z) on tensor product of highest weight modules,

a map from Θ~µ(~z) : ⊗ni=1Hλi → ⊗ni=1Hω∗i λi
is given, where Hλ is an integrable irreducible

highest weight module of weight λ and ωi is the image of µi in Z(G) under the exponential
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map. Since the automorphism σ~µ(~z) preserves the current algebra g ⊗ Γ(P1 − ~z,OP1),

the map descends to a map of conformal blocks. It is easy to see that the map is an

isomorphism. Moreover the map Θ~µ(~z) is chosen such that the induced map between

the conformal blocks is flat with respect to the KZ connection. The above discussion is

summarized in the following proposition from [12].

Proposition 2.4.1. Let X be the data associated to n distinct points with chosen

coordinates on P1. Then there is an isomorphism

V~λ(X, g, `)→ V~ω~λ(X, g, `).

Moreover the isomorphism is flat with respect to the KZ/Hitchin connection.
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CHAPTER 3

Conformal subalgebras and rank-level duality

In this chapter, we discuss conformal embeddings of Lie algebras and give a general

formulation of the rank-level maps.

3.1. Conformal embedding

Let s, g be two simple Lie algebras and φ : s → g an embedding of Lie algebras.

Let (, )s and (, )g denote the normalized Cartan killing forms such that the the length of

the longest root is 2. We define the Dynkin index of φ to be the unique integer dφ such

satisfying

(φ(x), φ(y))g = dφ(x, y)s

for all x, y ∈ s. When s = g1 ⊕ g2 is semisimple, we define the Dynkin multi-index of

φ = φ1 ⊕ φ2 : g1 ⊕ g2 → g to be dφ = (dφ1 , dφ2).

If g is simple, we define for any level ` and a dominant weight λ of level ` the conformal

anomaly c(g, `) and the trace anomaly ∆λ(g) as

c(g, `) =
` dim g

g∗ + `
and ∆λ =

(λ, λ+ 2ρ)

2(g∗ + `)
,

where g∗ is the dual Coxeter number of g and ρ denotes the half sum of positive roots,

also known as the Weyl vector. If g = g1 ⊕ g2 is semisimple, we define the conformal

anomaly and trace anomaly by taking sum of the conformal anomalies over all simple

components.

Definition 3.1.1. Let φ = (φ1, φ2) : s = g1⊕g2 → g be an embedding of Lie algebras

with Dynkin multi-index k = (k1, k2). We define φ to be a conformal embedding s in g at

level ` if c(g1, k1`) + c(g2, k2`) = c(g, `).



It is shown in [19] that the above equality only holds if ` = 1. Many familiar and

important embeddings are conformal. For a complete list of conformal embeddings we

refer the reader to [3]. Next we list two important properties which makes conformal

embeddings special.

(1) We recall the following from [18]. Since s = g1⊕ g2 is semisimple, φ : s→ g is a

conformal subalgebra if and only if any irreducible ĝ-module HΛ(g) of level one

decompose into a finite sum of irreducible ŝ-modules of level ` = (`1, `2), where

` is the Dynkin multi-index of the embedding φ.

(2) If φ : s→ g is a conformal embedding, then the action of the Virasoro operators

are the same, i.e. for any n the following equality holds

Ls
n = Lg

n ∈ End(HΛ(g)),

where Ls
n and Lg

n are n-th Virasoro operators of s and g acting at level ` and

one respectively. We refer the reader to [18] for more details.

Example 1. Consider the following embedding of Lie algebras induced from the tensor

product of vector spaces equipped with a symmetric non-degenerate bilinear form. The

Dynkin multi-index is (s, r).

sp(2r)⊕ sp(2s) ⊂ so(4rs).

c(sp(2r), s) + c(sp(2s), r)

=
s(2r + 1)r

s+ r + 1
+
r(2s+ 1)s

s+ r + 1
,

= 2rs,

=
2rs(4rs− 1)

4rs− 2 + 1
,

= c(so(4rs), 1).
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Example 2. Consider the embedding of Lie algebras given by the tensor product of

vector spaces. The Dykin multi-index of the embedding is (s, r).

sl(r)⊕ sl(s) ⊂ sl(rs).

c(sl(r), s) + c(sl(s), r)

=
(r2 − 1)s

r + s
+

(s2 − 1)r

r + s
,

=
(rs+ 1)(r + s)

r + s
,

= rs+ 1,

=
(rs)2 − 1

rs− 1
,

= c(sl(rs), 1).

3.2. General context of rank-level duality

Consider a level one integrable highest weight ĝ-module HΛ(g) and restrict it to

ĝ1 ⊕ ĝ2. The module HΛ(g) decomposes into irreducible integrable ĝ1 ⊕ ĝ2-modules of

level ` = (`1, `2) as follows:

⊕
(λ,µ)∈B(Λ)

mΛ
λ,µHλ(g1)⊗Hµ(g2) ' HΛ(g),

where ` is the Dynkin multi-index of φ and mΛ
λ,µ is the multiplicity of the component

Hλ(g1)⊗Hµ(g2). Since the embedding is conformal, we know that both |B(Λ)| and mΛ
λ,µ

are finite.

We consider only those conformal embeddings such that for every Λ ∈ P1(g) and

(λ, µ) ∈ B(Λ), the multiplicity mΛ
λ,µ = 1. Let ~Λ = (Λ1, . . . ,Λn) be a n-tuple of level

one dominant weights of g. We consider H~Λ(g) and restrict it to ĝ1 ⊕ ĝ2. Choose

~λ = (λ1, . . . , λn) and ~µ = (µ1, . . . , µn) such that (λi, µi) ∈ B(Λi) for all 1 ≤ i ≤ n. We
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get an injective map

n⊗
i=1

(Hλi(g1)⊗Hµi(g2))→
n⊗
i=1

HΛi(g).

Let X denote the data associated to a curve C of genus g with n distinct points

~p = (P1, . . . , Pn) with chosen coordinates ξ1, . . . , ξn. Taking coinvariants with respect to

g(X), we get the following map:

α : V~λ(X, g1, `1)⊗ V~µ(X, g2, `2)→ V~Λ(X, g, 1),

If dimC(V~Λ(X, g, 1)) = 1, we get a map well defined up to constants

α∨ : V~λ(X, g1, `1)→ V†~µ(X, g2, `2).

This map is known as the rank-level duality map.

Definition 3.2.1. Let ~λ ∈ P n
`1

(g1) and ~µ ∈ P n
`2

(g2). The pair (~λ, ~µ) is called ad-

missible if one can define a rank-level duality map between the corresponding conformal

blocks.

Let F = (π : C → B; s1, . . . , sn; ξ1, . . . , ξn) be a family of nodal curves on a base B

with sections si and local coordinates ξi. The map α can be easily extended to a map of

sheaves

α(F) : V~λ(F , g1, `1)⊗ V~µ(F , g2, `2)→ V~Λ(F , g, 1).

3.3. Properties of rank-level duality

In this section we recall some interesting properties of the rank-level duality maps.

The following proposition tells us about the behavior of the rank-level duality map in a

smooth family of curves. For a proof we refer the reader to [9].

Proposition 3.3.1. Let F = (π : C → B; s1, . . . , sn; ξ1, . . . , ξn) be a family of smooth

projective curves on a base B with sections si and local coordinates ξi. Then the rank-level

duality map α is projectively flat with respect to the KZ/Hitchin/WZW connection.
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The rank-level duality map commutes with the propagation of vacua. The following

has a direct proof.

Proposition 3.3.2. Let Q be a point on the curve C distinct from ~p = (P1, . . . , Pn)

and X′ be the data associated to the n pointed curve. Consider ~λ′ = (λ1, . . . , λn, 0)

and ~µ′ = (µ1, . . . , µn, 0). The rank-level duality map V~λ(X, g1, `1) → V†~µ(X, g2, `2) is an

isomorphism if and only if the rank-level duality map V~λ′(X′, g1, `1) → V†~µ′(X′, g2, `2) is

an isomorphism.
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CHAPTER 4

Diagram automorphisms and rank-level duality

We show that, under certain conditions, the single-shift and multi-shift automor-

phisms extend under embeddings of Lie algebras (see Section 4.1). As a corollary we

prove new symplectic rank-level dualities (see Section 4.2) on genus zero smooth curves

with marked points. We also show that the rank-level dualities (see Section 4.3) for the

pair sl(r), sl(s) in genus 0 arising from conformal embeddings can be obtained from the

rank-level duality of [32].

4.1. Extension of shift automorphisms

Let g1, g2 and g be simple Lie algebras and h1, h2 and h be their Cartan subalgebras.

For i ∈ {1, 2}, let φi : gi → g be an embedding of Lie algebras such that φi(hi) ⊂ h.

Further let us denote the normalized Cartan Killing form on g1, g2 and g by 〈 , 〉g1 ,

〈 , 〉g2 , 〈 , and 〉g respectively, and let (`1, `2) be the Dynkin multi-index of the embedding

φ = (φ1, φ2). We can extend the map φ = (φ1, φ2) to a map φ̂ of ĝ1 ⊕ ĝ2 → ĝ as follows:

φ̂1 : ĝ1 → ĝ,

X ⊗ f + a.c → φ1(X)⊗ f + a.`1.c,

where X ∈ g1, f ∈ C((ξ)) and a is a constant. We similarly map

φ̂2 : ĝ2 → ĝ,

Y ⊗ g + b.c → φ2(Y )⊗ g + b.`2.c,



where Y ∈ g2, g ∈ C((ξ)) and b is a constant. We define φ̂ to be φ̂1 + φ̂2. Consider an

element µ ∈ P∨1 such that µ̃ = φ1(µ) ∈ P∨, where P∨1 and P denote the coweight lattices

of g1 and g respectively.

Let α be a root in g1 with respect to a Cartan subalgebra h1 and Xα be a non-zero

element of g1 in the root space α. If φ1(Xα) =
∑dim h

i=1 aihi +
∑

γ∈Iα aγXγ, where hi’s be

any basis of h. We have the following lemma:

Lemma 1. For all i, we claim that ai = 0.

Proof. For any element h ∈ h1, we consider the following Lie bracket.

[φ(h), φ(Xα)] = φ([h,Xα]),

= φ(α(h)Xα),

=

dim h∑
i=1

aiα(h)hi +
∑
γ∈Iα

aγα(h)Xγ.

On the other hand [φ(h), φ(Xα)] =
∑

γ∈Iα aγγ(φ(h))Xγ. Comparing, we see that ai = 0

for all i and γ(φ(h)) = α(h) for all h in h1. 2

Next, we prove the following lemma:

Lemma 2. If γ ∈ Iα, then for all h2 ∈ h2

γ(φ(h2)) = 0.

Proof. For h2 ∈ h2, we have the following:

φ [h2, Xα] = [φ(h2), φ(Xα)] ,

=
∑
γ∈Iα

aγγ(φ(h2))Xγ,

= 0.

Thus comparing, we get γ(φ(h2)) = 0 for all h2 ∈ h2. 2

The following proposition is about the extension of single-shift automorphisms:
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Proposition 3. The single-shift automorphism σµ̃ restricted to φ̂1(ĝ1) is the auto-

morphism σµ. Morever σµ̃ restricts to identity on φ̂2(ĝ2).

Proof. Let n be an integer and h, h1 be elements of h1 and h2. We need to show

the following identities:

σµ̃(φ̂1(h1(n))) = φ̂1(σµ(h1(n))),

σµ̃(φ̂1(Xα(n))) = φ̂1(σµ(Xα(n))),

σµ̃(φ̂2(h2(n))) = φ̂2((h2(n))),

σµ̃(φ̂2(Xβ(n))) = φ̂2((Xβ(n))),

where α, β are roots of g1, g2 respectively, and Xα, Xβ are non-zero elements in the root

space of α, β respectively. Let h ∈ h1, we have the following:

σµ̃(φ̂1(h(n))) = φ̂1(h(n)) + δn,0.〈µ̃, φ1(h)〉g.c,

= φ̂1(h(n)) + δn,0.〈φ1(µ), φ1(h)〉g.c,

= φ̂1(h(n)) + δn,0.`1.〈µ, h〉g1 .c,

= φ̂1(σµ(h(n))).

This completes the proof of the first identity. For the second identity, we use Lemma 1.

For any non-zero element Xα in the root space of α, consider the following:

φ̂1(σµ(Xα(n))) = φ̂1(Xα(n+ α(µ))),

=
∑
γ∈Iα

aγXγ(n+ α(µ)),

=
∑
γ∈Iα

aγXγ(n+ γ(φ(µ))),

= σµ̃(φ̂1(Xα(n))).
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To prove the fourth identity we use Lemma 2. For a non-zero element Xβ in the root

space β, consider the following:

σµ̃(φ̂2(Xβ(n))) = σφ1(µ)(
∑
γ∈Iβ

Xγ(n)),

=
∑
γ∈Iβ

σφ1(µ)(Xγ(n)),

=
∑
γ∈Iβ

Xγ(n+ γ(φ(µ))),

=
∑
γ∈Iβ

Xγ(n),

= φ̂2(Xβ(n)).

We are only left to show that σµ̃(φ̂2(h2(n))) = φ̂2(h2(n)) for h2 ∈ h2, which follows from

the following lemma. 2

Lemma 3. 〈φ1(h1), φ2(h2)〉g = 0 for any element h1, h2 of h1 and h2 respectively.

Proof. It is enough to proof the result for all Hβ, where β is a root of g2. Let

φ(Xβ) =
∑

λ∈Iβ aλXλ and φ(X−β) =
∑

γ∈I−β aγXγ. Since φ2(h2) ⊂ h, we get φ(Hβ) =∑
γ∈Iβ∩(−I−β) aγb−γHγ.

Now [φ(h1), φ(Xβ)] =
∑

γ∈Iβ aγγ(φ(h1))Xγ = 0. Thus for γ ∈ Iβ, we get γ(φ(h1)) =

〈hγ, φ(h1)〉g = 0 which implies 〈φ1(h1), Hγ〉g = 0. Thus, we have the following:

〈φ1(h1), φ2(Hβ)〉g =
∑

γ∈Iβ∩(−I−β)

aγb−γ〈φ1(h1), Hγ〉g,

= 0.

2

Next, we restate the extension proposition for multi-shift automorphisms. The fol-

lowing proposition follows directly from the proof of Proposition 3.
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Proposition 4.1.1. Consider ~µ = (µ1, · · · , µn) ∈ Γg1
n such that the n tuple of

coweights ~̃µ = {φ1(µ1), · · · , φ1(µn)} ∈ Γg
n. Consider the multi-shift automorphism from

σ~̃µ,t : ĝ→ ĝ.

For x ∈ ĝ1, σ~̃µ,t(φ̂1(x)) = φ̂1(σ~µ,t(x)) and for y ∈ ĝ2, σ~̃µ,t(φ̂2(y)) = φ̂2(y).

The isomorphism Θµ(~z) in [12] have the following functorial property under embed-

dings of Lie algebras. Let G1, G2 and G be simply connected Lie groups with simple

Lie algebras g1, g2 and g respectively. Consider a map φ : G1 × G2 → G and let

dφ : g1⊕ g2 → g be the map of Lie algebras. For any simply connected, simple Lie group

G, consider

Γ(G) = {(σ1, . . . , σn) ∈ Z(G)n|
n∏
i=1

σi = id}.

The following proposition follows from Proposition 4.1.1.

Proposition 4.1.2. Let ~Σ ∈ Γ(G), ~σ ∈ Γ(G1) be such that φ(~σ) = ~Σ, then the

pairing

V~λ(X, g1, `1)⊗ V~µ(X, g2, `2)→ V~Λ(X, g, 1)

is non-degenerate if and only if the following pairing is non-degenerate

V~σ~λ(X, g1, `1)⊗ V~µ(X, g2, `2)→ V~Σ~Λ(X, g, 1).

4.2. Branching Rules and new rank-level dualities for sp(2r)

In this section, we discuss the branching rules of the conformal embedding sp(2r) ⊕

sp(2s) → so(4rs) and prove some new rank-level dualities. Let Yr,s denote the set

of Young diagrams with at most r rows and s columns. For a Young diagram Y =

(a1, a2, · · · , ar) ∈ Yr,s, we denote by Y T the Young diagram obtained by exchanging the

rows and columns. For a Young diagram Y ∈ Yr,s, we denote by Y c the Young diagram

given by the conjugate (s− ar, s− ar−1, · · · , s− a1). The Young diagram Y ∗ is defined

to be (Y T )c. It is easy to see (Y T )c = (Y c)T , where Y ∈ Yr,s.
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4.2.1. The case g = so(2N) with level 1. Let V be a 2N dimensional vector space

with a non-degenerate symmetric bilinear form B. The Lie algebra

so(2N) := {T : V → V |B(Tv, w) +B(v, Tw) = 0}.

If we choose a basis {e1, · · · , e2N} of V such that B(ei, ej) = B(eN+i, eN+j) = 0 and

B(ei, eN+j) = δij, then the Lie algebra so(V ) is identified with matrices

so(2N) := {X ∈ Mat2N×2N |X tM2N +M2NX = 0},

where M2N is the matrix

 0 IN

IN 0

. The Cartan subalgebra is generated by Hi =

Ei,i − EN+i,N+i and let {Li} ⊂ h∗ be the dual basis of {Hi}’s. A basis of positive roots

is given by

L1 − L2, L2 − L3, · · · , LN−1 − LN , LN−1 + LN .

The level one weights of so(4rs) are given by the following:

P1(so(4rs)) := {0,Λ1, α, β},

where 0 is the vacuum representation, Λ1 is the first fundamental weight, α = 1
2
(L1 +

· · ·+ LN) and β = 1
2
(L1 + L2 + · · ·+ L(N−1) − LN).

4.2.2. The case g = sp(2r) with level s. Let V be a 2r dimensional vector space with

a non-degenerate alternating bilinear form B. The Lie algebra sp(2r) is

sp(2r) := {T : V → V |B(T (v), w) +B(v, T (w)) = 0}.

We choose a basis (v1, · · · , v2r) of V such that

(vi, vj) = (vr+i, vr+j) = 0, (vi, vr+j) = −(vr+j, vi) = δij for 1 ≤ i, j ≤ r.

We identify sp(V ) with

sp(2r) := {X ∈ Mat2r×2r |X tM +MX = 0},
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where M =

 0 Ir

−Ir 0

 .
The Cartan subalgebra of sp(2r) is generated by the matrices Hi = Ei,i − Er+i,r+i.

Let Li ∈ h∗ be dual to Hi. The positive simple roots of g are Li − Li+1 for 1 ≤ i < r

and 2Lr. The weight lattice P is {a1L1 + · · · arLr|ai ∈ Z}. A weight λ =
∑r

i=1 aiLi is

dominant if a1 ≥ a2 ≥ · · · ≥ ar ≥ 0. Thus the set of dominant weights of level s is given

by

Ps(sp(2r)) = {a1L1 + · · · arLr ∈ P+|a1 ≤ s}.

There is a one to one correspondence between Ps(sp(2r)) and Young diagrams Yr,s.

For λ =
∑r

i=1 aiLi ∈ Ps(sp(2r)), the corresponding Young diagram (a1, a2, · · · , ar) is

denoted by Y (λ). The dominant weight of sp(2s) of level r, corresponding to the Young

diagram Y (λ)∗ will be denoted by λ∗ and that of Y (λ)T by λT . It is easy to observe that

λ→ λ∗ gives a bijection of Ps(sp(2r)) with Pr(sp(2s)). Also λ→ λT gives a bijection of

Ps(sp(2r)) with Pr(sp(2s)).

We now describe the action of the center of Sp(2r) as diagram automorphisms on

Ps(sp(2r)). Let ω be the outer automorphism that corresponds to the diagram automor-

phism which sends the i-th vertex to r − i-th vertex of the Dynkin diagram of ŝp(2r),

where 0 ≤ i ≤ r. Then the Young diagram of ω∗λ is given by Y (λ)c, where Y (λ) is the

Young diagram corresponding to λ ∈ Ps(sp(2r)). The following is proved in [17] and

describes the branching rules.

Proposition 4. We have an isomorphism of (ŝp(2r)⊕ ŝp(2s))-modules,

Hα '
⊕

|Y (λ)|:even

Hλ ⊗Hλ∗ ,

H0 '
⊕

|Y (λ)|:even

Hλ ⊗HλT ,

Hβ '
⊕

|Y (λ)|:odd

Hλ ⊗Hλ∗ ,
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HΛ1 '
⊕

|Y (λ)|:odd

Hλ ⊗HλT ,

where Y (λ) runs through over the set Yr,s with |Y (λ)| even and odd in the respective

cases.

4.2.3. New symplectic rank-level duality. Let us fix n distinct smooth points ~p =

(P1, · · · , Pn) on the projective line P1. Let ~z = (z1, . . . , zn) be the local coordinates of ~p.

We denote the above data by X. Consider an n tuple of level s weights ~λ = (λ1, · · · , λn)

and ~λ∗ := (λ∗1, · · · , λ∗n). As described in Chapter 3, we get a map

(4.1) V~λ(X, sp(2r), s)⊗ V~λ∗(X, sp(2s), r)→ V~ε(X, so(4rs), 1),

where ~ε := ((−1)|Y (λ1)|, · · · , (−1)|Y (λn)|). Here we understand that +1 = α and −1 = β.

If both n and
∑n

j=1 |Y (λi)| are even, then Corollary 3.4 in [2] tells us that

dimC V~ε(X, so(4rs), 1) = 1.

Hence the above morphism induces the following rank-level duality map

V~λ(X, sp(2r), s)→ V†~λ∗(X, sp(2s), r).

With the above assumption and notation, the following is the main result in [2]:

Proposition 5. The rank-level duality map

V~λ(X, sp(2r), s)→ V†~λ∗(X, sp(2s), r),

is an isomorphism.

The action of the non-trivial element ω ∈ Z(Sp(2s)) on Pr(sp(2s)) gives us the

following:

Lemma 4. For λ ∈ Yr,s, we get

ω(λ∗) = λT .
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From the branching rule described in [17], we also get a map

Ψ : V~λ(X, sp(2r), s)⊗ V~λT (X, sp(2s), r)→ V~Λ(X, so(4rs), 1),

where ~Λ = (Λ1, . . . ,Λn) and Λi is the unique level one dominant weight of so(4rs) such

that λi and λTi appear in the branching of Λi. Assume that both n and
∑n

i=1 |λi| are

even. We choose ~µ ∈ Γ
sp(2s)
n such that for 1 ≤ i ≤ n, µi ∈ P (sp(2s))∨\Q(sp(2s))∨, and

use Proposition 5 and Proposition 4.1.2 to get more symplectic rank-level dualities. More

precisely we get the following rank-level dualities of conformal blocks.

Proposition 4.2.1. There is a linear isomorphism of the following spaces:

V~λ(X, sp(2r), s)→ V†~λT (X, sp(2s), r).

4.3. Branching rules and rank-level dualities for sl(r)

We describe the branching rules of the conformal embedding sl(r) ⊕ sl(s) ⊂ sl(rs)

following [1]. Let P+(sl(r)) denote the set of dominant integral weights of sl(r) and

Λ1, · · · ,Λr−1 denote the fundamental weights of sl(r). If λ =
∑r−1

i=1 k̃iΛi for non-negative

integers k̃i, we rewrite λ as λ =
∑r−1

i=0 k̃iΛi, where

r−1∑
i=0

k̃i = s,

where Λ0 is the affine 0-th fundamental weight.

Let ρ̂ = g∗(sl(r))Λ0 + 1
2

∑
α∈∆+

α, where g∗(sl(r)) is the dual Coxeter number of sl(r)

and ∆+ is the set of positive roots respect to a chosen Cartan subalgebra of sl(r). We

get

λ+ ρ̂ =
r−1∑
i=0

kiΛi,
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where ki = k̃i + 1 and
∑r−1

i=0 ki = r + s. The center of SL(r) is Z/rZ. The action of Z/rZ

induced from outer automorphisms on Ps(sl(r)) is described as follows:

Z/rZ× Ps(sl(r)) −→ Ps(sl(r)),

(σ,Λi) −→ Λ((i+σ)mod(r)).

Let Ωr,s = Ps(sl(r))/(Z/rZ) be the set of orbits under this action and similarly let Ωs,r

be the orbits of Pr(sl(s)) under the action of Z/sZ.

The following map β parametrizes the bijection in the above lemma.

β : Ps(sl(r))→ Pr(sl(s))

Set

aj =
r∑
i=j

ki, for 1 ≤ j ≤ r and kr = k0.

The sequence ~a = (a1, a2, · · · , ar) is decreasing. Let (q1, q2, q3, · · · , qs) be the complement

of ~a in the set {1, 2, · · · , (r + s)} in decreasing order. We define the following sequence:

bj = r + s+ qs − qs−j+1 for 1 ≤ j ≤ s.

The sequence bj defined above is also decreasing. The map β is given by the following

formula:

β(a1, · · · , ar) = (b1, b2, · · · , bs).

Thus when λ runs over an orbit of Ωr,s, γ = σ.β(λ) runs over an orbit of Ωs,r if σ

runs over Z/sZ.

The elements λ of Ps(sl(r)) can be parametrized by Young diagrams Y (λ) with at

most r−1 rows and at most s columns. Let Y (λ)T be the modified transpose of Y (λ). If

Y (λ) has rows of length s, then Y (λ)T is obtained by taking the usual transpose of Y (λ)

and deleting the columns of length s. We denote by λT the dominant integral weight

of sl(s) of level r that corresponds to Y (λ)T . With this notation we recall the following

proposition from [1]:
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Proposition 6. Let λ ∈ Ps(sl(r)) and c(λ) be the number of columns of Y (λ).

Suppose σ = c(λ) mod s. Then

σ.β(λ) = λT .

The weights of sl(rs) at level one are given by

P1(sl(rs)) = {Λ0, · · · ,Λrs−1}.

We identify it with the set {1, 2, · · · , rs− 1}.

For Λ ∈ P1(sl(rs)), let HΛ be the unique irreducible highest weight integrable ŝl(rs)-

module of level one. Now we can decompose HΛ as a ŝl(r)⊕ ŝl(s)-module. Let

HΛ '
⊕
B(Λ)

mΛ
λ,γHλ ⊗Hγ,

where B(Λ) is as defined in Chapter 3.

Consider the following:

r∑
j=1

aj =
r∑
j=1

r∑
i=j

ki and kr = k0,

= (sum of length of rows of Y (λ)) +
1

2
r(r + 1) + rk̃o.

For λ ∈ Ps(sl(r)) and σ ∈ Z/(sZ), we define

δ(λ, σ) =

( r∑
j=1

aj

)
+ rσ − 1

2
r(r + 1),

= (sum of length of rows of Y (λ)) +
1

2
r(r + 1) + rk̃o + rσ − 1

2
r(r + 1),

= (sum of length of rows of Y (λ)) + rk̃0 + rσ,

= (sum of length of rows of Y (λ)) + r(k̃0 + σ),

= |Y (λ)|+ rs+ r(σ − c(Y (λ))).

Next we state the main result that describes mΛ
λ,γ. See [1] for a proof.
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Proposition 7. Let Λ ∈ P1(sl(rs)), λ ∈ Ps(sl(r)) and γ ∈ Pr(sl(s)). Then the

multiplicity mΛ
λ,γ of Hλ ⊗Hγ in HΛ has the value

mΛ
λ,γ = 1 if γ = σβ(λ), σ ∈ Z/sZ and Λ = δ(λ, σ) mod(rs),

mΛ
λ,γ = 0 otherwise.

4.3.1. Rank-level duality of sl(r). Let us fix n distinct points ~p = (P1, · · · , Pn) on

the projective line P1. Let ~z = (z1, . . . , zn) be the local coordinates of ~p. We denote the

above data by X. Consider an n tuple ~Λ = (Λi1 , · · · ,Λin) of level one dominant integral

weights of sl(rs). Let ~λ = (λ1, · · · , λn) and ~γ = (γ1, . . . , γn) be such that λk, γk appear

in the branching of Λik for 1 ≤ k ≤ n. We get a map

V~λ(X, sl(r), s)⊗ V~γ(X, sl(s), r)→ V~Λ(X, sl(rs), 1),

If rs divides
∑n

k=1 ik, it is well known that dimC V~Λ(X, sl(rs), 1) = 1. We get the following

morphism well defined up to scalars:

Ψ : V~λ(X, sl(r), s)→ V
†
~γ(X, sl(s), r).

The rest of the section is devoted to the proof that Ψ is an isomorphism. Without

loss of generality we can assume that σi − c(Y (λi)) is non-negative for all i. Let Q1 be

a new point distinct from P1, . . . , Pn on P1 and η1 be the new coordinate. Let X̃ be the

data associated to the points P1, . . . , Pn, Q1 on P1. We have the following proposition:

Proposition 8. The following are equivalent:

(1) The rank-level duality map

V~λ(X, sl(r), s)→ V
†
~γ(X, sl(s), r),

is an isomorphism.
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(2) The rank-level duality map

V~λ∪0(X̃, sl(r), s)→ V†~γ∪0(X̃, sl(s), r),

is an isomorphism.

(3) The rank-level duality map

V~λ∪0(X̃, sl(r), s)→ V†~λT∪γ(X̃, sl(s), r),

is an isomorphism, where γ = rωσ, σ =
∑n

i=1(σi − c(Y (λi))) mod(s) and ωσ is

the σ-th fundamental weight.

Proof. The equivalence of (1) and (2) follows from Proposition 3.3.2. The equiva-

lence of (2) and (3) follows directly from Proposition 4.1.2.

2

The proof that Ψ is non-degenerate follows from the following (see Theorem 4.10 [32]):

Proposition 9. The following rank-level duality map is an isomorphism

V~λ∪0(X̃, sl(r), s)→ V†~λT∪β(X̃, sl(s), r),

where β = rωσ, σ =
∑n

i=1(σi − c(Y (λi))) mod(s) and ωσ is the σ-th fundamental weight.

Remark 2. The rank-level duality for sl(r) was first proved by T. Nakanishi and

A. Tsuchiya. Our result shows that the rank-level dualities for the pair sl(r), sl(s) that

appears from conformal embeddings can also be obtained from the geometric rank-level

dualities of [32]. An alternative proof of rank-level duality of sl(r) without using the

result of [32] can be obtained using the same strategy of the proof of the rank-level duality

result in [25].
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CHAPTER 5

Sewing and compatibility under factorization

In this chapter, we recall the sewing construction from [36]. We consider a family

of curves degenerating to a curve with one node. We study the compatibility of the

rank-level duality map with factorization of the nodal curve following [4].

We will use Proposition 5.2.1 to reduce rank-level duality questions on n pointed

curves to rank-level duality for certain one dimensional conformal blocks on P1 with

three marked points. Our strategy is inspired by Proposition 5.2 in [30]. We refer the

reader to Chapter 9 for more details.

5.1. Sewing

First we recall the following lemma from [36].

Lemma 5.1.1. There exists a bilinear pairing

(, )λ : Hλ ×Hλ† → C

unique up to a multiplicative constant such that

(X(n)u, v)λ + (u,X(−n)v)λ = 0.

for all X ∈ g, n ∈ Z, u ∈ Hλ and v ∈ Hλ†. Moreover, the restriction of the form (, )λ to

Hλ(m)×Hλ†(m
′) is zero if m 6= m′ and is non-degenerate if m = m′.

Since the restriction of the bilinear form (, )λ to Hλ(m)×Hλ†(m) is non-degenerate,

we obtain an isomorphism of Hλ†(m) with Hλ(m)∗. Let γλ(m) be the distinguished

element of Hλ(m)⊗Hλ†(m) given by (, )λ. Let t be a formal variable. Given λ ∈ P`(g),

we construct an element γ̃λ =
∑∞

m=0 γλ(m)tm of Hλ ⊗Hλ† [[t]].



We are now ready to describe the sewing procedure in [36]. Throughout the chapter,

let B = SpecC[[t]]. We consider a family of curves X → B with n marked points with

chosen coordinates such that its special fiber X0 is a curve X0 over C with exactly one

node and its generic fiber Xt is a smooth curve. Consider the sheaf of conformal blocks

V†~λ(X , g) for the family of curves X . The sheaf of conformal blocks commutes with base

change and the fiber over any point t ∈ B coincides with V†~λ(Xt, g), where Xt is the data

associated to the curve Xt over the point t ∈ B.

Let X̃0 be the normalization of X0. For λ ∈ P`(g), the following isomorphism is

constructed in [36]

⊕ιλ :
⊕

λ∈P`(g)

V†
λ,λ†,~λ

(X̃, g)→ V†~λ(X, g),

where X̃ is the data associated to the (n+ 2) points of the smooth pointed curve X̃0 with

chosen coordinates.

In [36], a sheaf version of the above isomorphism is also proved. We briefly recall the

construction. For every λ ∈ P`(g) there exists a map

sλ : V†
λ,λ†,~λ

(X̃, g)→ V†~λ(X , g),

where sλ(ψ) = ψ̃ and ψ̃(ũ) := ψ(ũ ⊗ γ̃λ) ∈ C[[t]] for any ũ ∈ H~λ[[t]]. This map extends

to a map sλ(t) of coherent sheaves of C[[t]]-modules

sλ(t) : V†
λ,λ†,~λ

(X̃, g)⊗ C[[t]]→ V†~λ(X , g).

With the above notation, the following is proved in [36]. We also refer the reader to

Theorem 6.1 in [22].

Proposition 5.1.2. The map

⊕sλ(t) :
⊕

λ∈P`(g)

V†
λ,λ†,~λ

(X̃, g)⊗ C[[t]]→ V†~λ(X , g).

is an isomorphism of locally free sheaves on B.
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5.2. Factorization and compatibility of rank-level duality

Consider a conformal embedding s → g. Assume that all level one highest weight

integrable modules of ĝ decompose with multiplicity one as ŝ-modules.

Let ~λ = (λ1, . . . , λn) be an n tuple of level one weights of g and ~µ ∈ B(~λ). We get a

map H~µ(s)→ H~λ(g). As discussed in Chapter 3, we get a C[[t]]-linear map

α(t) : V†~λ(X , g)→ V†~µ(X , s).

For µ ∈ B(λ), we denote by αλ,µ the map induced from branching as discussed in Chapter

3

V†
λ,λ†,~λ

(X̃0, g)→ V†
µ,µ†,~µ

(X̃0, s)

and the extension of αλ,µ to a C[[t]]-linear map is denoted as follows:

αλ,µ(t) : V†
λ,λ†,~λ

(X̃0, g)⊗ C[[t]]→ V†
µ,µ†,~µ

(X̃0, s)⊗ C[[t]].

The following proposition from [4] describes how α(t) decomposes under factorization.

Proposition 5.2.1. On B, we have

α(t) ◦ sλ(t) =
∑

µ∈B(λ)

tnµsµ(t) ◦ αλ,µ(t),

where nµ are positive integers given by the formula:

nµ = ∆µ −∆λ.

Remark 5.2.2. The integers nµ are non-zero if the finite dimensional s-module Vµ

does not appear in the decomposition of the finite dimensional g-module Vλ.
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CHAPTER 6

Branching rules for conformal embedding of odd orthogonal Lie

algebras

In this chapter, we discuss the branching rule for the conformal embedding so(2r +

1) ⊕ so(2s + 1) → so((2r + 1)(2s + 1)). Our discussions follow closely the discussions

in [17].

6.1. Representation of so(2r + 1)

Let Ei,j be a matrix whose (i, j)-th entry is one and all other entries are zero. The

Cartan subalgebra h of so(2r + 1) is generated by diagonal matrices of the form Hi =

Ei,i − Er+i,r+i for 1 ≤ i ≤ r. Let Li ∈ h∗ be defined by Li(Hj) = δi,j. The normalized

Cartan killing form on h is given by (Hi, Hj) = δij. Under the identification of h∗ with h

using the Cartan Killing form the image of Li is Hi for all 1 ≤ i ≤ r.

We can choose the simple positive roots of so(2r + 1) to be α1 = L1 − L2, α2 = L2 −

L3, . . . , αr−1 = Lr−1−Lr, αr = Lr. The highest root is θ = L1 +L2 = α1 +2α2 + · · ·+2αr.

The fundamental weights of the Bn are ωi = L1 + L2 + · · · + Li for 1 ≤ i < r and

ωr = 1
2
(L1 + L2 + · · ·+ Lr).

The dominant integral weights, P+, of so(2r + 1) can be written as

P+ = P 0
+ t P 1

+,

where P 0
+ is the set of dominant weights λ =

∑r
i=1 aiωi such that ar is even and P 1

+ :=

P 0
+ +ωr. Let Yr be the set of Young diagrams with at most r rows and Yr,s denote the set

of Young diagrams with at most r rows and s columns. Then the set P 0
+ is in bijection

with Yr.



Combinatorially any dominant weight λ of P+ can be written as Y + tωr, where

t = {0, 1} and Y ∈ Yr. If t = 0, then λ ∈ P 0
+ and if t = 1, then λ ∈ P 1

+.

Let λ =
∑r

i=1 aiωi be a dominant integral weight. Then,

(θ, λ) = a1 + 2(a2 + · · ·+ ar−1) + ar.

The set of level 2s+ 1 dominant weights are described below:

P2s+1(so(2r + 1)) = {λ ∈ P+|a1 + 2(a2 + · · ·+ ar−1) + ar ≤ 2s+ 1}.

6.2. The action of center on weights

An element σ of the center of the group Spin(2r+ 1) acts as an outer automorphism

on affine Lie algebra ŝo(2r + 1). For details we refer the reader to [17]. The action of σ

on the P2s+1(so(2r + 1)) is given by σ(λ) = (2s+ 1− (a1 + 2(a2 + · · ·+ ar−1) + ar))ω1 +

a2ω2 + · · ·+arωr. We denote the intersection P 0
+∩P2s+1(so(2r+1)) by P 0

2s+1(so(2r+1)).

The following lemma can be proved by direct calculation:

Lemma 6.2.1. The action of σ preserves the set P 0
2s+1(so(2r+ 1)) and P 0

2s+1(so(2r+

1)) = Yr,s t σ(Yr,s).

Following [28], we describe the orbits of P2s+1(so(2r + 1)) under the action of the

center. Let ρ =
∑r

i=1 ωi be the Weyl vector. For λ =
∑r

i=1 aiωi, the weight λ + ρ =∑r
i=1 tiωi, where ti = ai + 1. Put ui =

∑r−1
j=i tj + tr

2
for 1 ≤ i ≤ r, ur = tr

2
and ur+1 = 0.

The set P2s+1(so(2r + 1)) is identified with the collection of sets U = (u1 > u2 >

· · · > ur > 0) such that

• ui ∈ 1
2
Z.

• ui − ui+1 ∈ Z.

• u1 + u2 ≤ 2(r + s).

Let P+
2s+1(so(2r+ 1)) denote the set of weights in P2s+1(so(2r+ 1)) such that ui ∈ Z.

Let us set k = 2(r+s), and we rewrite the action of the center Γ on P2s+1(so(2r+ 1))

as exchanging t1 with t0 = k−t1−2t2−· · ·−2tr−1−tr; or in other words changing u1 with
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k−u1. We observe that the action of Γ preserves P+
2s+1(so(2r+1)) and P 0

2s+1(so(2r+1)).

Then, we can identify the orbits of the action of Γ as follows :

P2s+1(so(2r+ 1))/Γ = {U = (u1, . . . , ur)|
k

2
≥ u1 > · · · > ur > 0, ui ∈

1

2
Z, ui− ui+1 ∈ Z}.

and the length of the orbits are given as follows:

• |Γ(U)| = 2 if u1 <
k
2
.

• |Γ(U)| = 1 if u1 = k
2
.

For any number a and a set U = (u1 > u2 > · · · > ur) we denote by U − a and

a− U , the set {u1 − a > u2 − a > · · · > ur − a} and {a− ur > a− ur−1 > · · · > a− u1}

respectively. Further, the set {1, 2, . . . , r + s} is denoted by [r + s]. The following two

lemmas from [28] give a bijection of orbits.

Lemma 6.2.2. Let P2r+1(so(2s + 1)) denote the weights of so(2s + 1) of level 2r +

1. Then there is a bijection between the orbits of P+
2s+1(so(2s + 1)) and the orbits of

P+
2r+1(so(2s+ 1)) given by

U = (u1 > u2 > · · · > ur)→ U c = (uc1 > · · · > ucs),

where U ⊂ [r + s] of cardinality r and U c is the complement of U in [r + s].

For λ ∈ P 0
2s+1(so(2r+ 1)), we write λ+ ρ =

∑r
i=1(u′i− 1

2
)Li, where u′i are all integers.

We identify the identify the orbits of P 0
2s+1(so(2r + 1)) under Γ as subsets U ′ = (u′1 >

u′2 > · · · > u′r) of [r + s].

Lemma 6.2.3. There is a bijection between the orbits of P 0
2s+1(so(2s + 1)) and the

orbits of P 0
2r+1(so(2s+ 1)) given by

U ′ = (u′1 > u′2 > · · · > u′r)→ ((r + s) + 1− U ′c) = (u′′1 > · · · > u′′s),

where U ′ ⊂ [r + s] of cardinality r and U ′c is the complement of U ′ in [r + s].
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6.3. Branching rules

We now describe the branching rules for the conformal embedding so(2r+1)⊕so(2s+

1) ⊂ so((2r + 1)(2s + 1)). Let N = (2r + 1)(2s + 1) = 2d + 1. The level one highest

weights of ŝo(N) are 0, ω1 and ωd. The following proposition gives the decomposition

of level one integrable highest weight modules of weight 0 and ω1. We refer the reader

to [17] for a proof.

Proposition 6.3.1. Let H0(so(N)) and H1(so(N)) denote the highest weight inte-

grable modules of the affine Lie algebra ŝo(2r+1) with highest weight 0 and ω1 respectively.

Then the module H := H0(so(N))⊕H1(so(N)) breaks up as a direct sum of highest weight

integrable modules of ŝo(2r + 1)⊕ ŝo(2s+ 1) of the form:

• Hλ(so(2r + 1))⊗HλT (so(2s+ 1)),

• Hλ(so(2r + 1))⊗HσλT (so(2s+ 1)),

• Hσλ(so(2r + 1))⊗HλT (so(2s+ 1)),

• Hσλ(so(2r + 1))⊗HσλT (so(2s+ 1)),

where λ ∈ Yr,s and σ is an automorphism associated to the center of Spin(2r+ 1). More

over all of the above factors appear with multiplicity one.

We need to determine which factor in the above decomposition rules comes from

H0(so(N)) and which factor comes from H1(so(N)). The following lemma gives the

trace anomaly of the level one weights 0 and ω1 of ŝo(2d+ 1).

Lemma 6.3.2.

∆0(so(N)) = 0 ∆ω1(so(N)) =
1

2
.

In order to determine the components we need to know the trace anomalies for the

weight (λ, λT ).

Lemma 6.3.3. For λ ∈ Yr,s, we have the following equality

∆λ(so(2r + 1)) + ∆λT (so(2s+ 1)) =
1

2
|λ|.

43



Corollary 6.3.4. Let H0(so(N)) denote the level one highest weight integrable

ŝo(N)-module of weight 0 and λ ∈ Yr,s. Then the following factors appear as the de-

composition of H0(so(N)) as ŝo(2r + 1)⊕ ŝo(2s+ 1)-modules.

• Hλ(so(2r + 1))⊗HλT (so(2s+ 1)), when |λ| is even.

• Hσλ(so(2r + 1))⊗HσλT (so(2s+ 1)), when |λ| is even.

• Hσλ(so(2r + 1))⊗HλT (so(2s+ 1)), when |λ| is odd.

• Hλ(so(2r + 1))⊗HσλT (so(2s+ 1)), when |λ| is odd.

Corollary 6.3.5. Let H1(so(N)) denote the level one highest weight integrable

ŝo(N)-module of weight ω1 and λ ∈ Yr,s. Then the following factors appears as the

decomposition of H0(so(N)) as ŝo(2r + 1)⊕ ŝo(2s+ 1) modules.

• Hλ(so(2r + 1))⊗HλT (so(2s+ 1)), when |λ| is odd.

• Hσλ(so(2r + 1))⊗HσλT (so(2s+ 1)), when |λ| is odd.

• Hσλ(so(2r + 1))⊗HλT (so(2s+ 1)), when |λ| is even.

• Hλ(so(2r + 1))⊗HσλT (so(2s+ 1)), when |λ| is even.

Remark 6.3.6. Unlike the embedding sp(2r)⊕sp(2s)→ so(4rs), the only components

that appear in the decomposition of standard and trivial representations of the finite

dimensional Lie algebra so(2d+ 1) into so(2r + 1)⊕ so(2s+ 1)-modules are λ = ω1 and

λ = 0. This is the main obstruction to construct the rank-level duality map in Theorem

0.2.1 geometrically. It is important to study this map geometrically to understand rank-

level duality on curves of higher genus. This will be considered in a subsequent project.

6.4. Rank-level duality map.

In this section, we describe the rank-level duality map using the branching rule. We

consider the following weights:

• ~λi = (λi1 , λi2 , . . . , λin1 ) and ~λTi = (λTi1 , λ
T
i2
, . . . , λTin1 ), where λia ∈ Yr,s such that

|λia | is odd for each 1 ≤ a ≤ n1.

• ~λj = (σλj1 , . . . , σλjn2 ) and ~λTj = (σ(λTj1), . . . , σ(λTjn2 )), where λja ∈ Yr,s such that

|λja| is odd for all 1 ≤ a ≤ n2
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• ~λk = (σλk1 , . . . , σλkn3 ) and ~λTk = (λTk1 , . . . , λ
T
kn3

), where λja ∈ Yr,s such that |λka|

is even for all 1 ≤ a ≤ n3.

• ~λl = (λl1 , λl2 , . . . , λln4 ) and ~λTl = (σ(λTl1), . . . , σ(λTln4 )), where λla ∈ Yr,s such that

|λla| is even for each 1 ≤ a ≤ n4.

• ~βi = (βi1 , . . . , βim1
) and ~βTi = (βTi1 , β

T
i2
, . . . , βTim1

), where λia ∈ Yr,s such that |λia|

is even for each 1 ≤ a ≤ m1.

• ~βj = (σβj1 , . . . , σβjm2
) and ~βTj = (σ(βTj1), . . . , σ(βTjm2

)), where βja ∈ Yr,s such

that |βja| is even for all 1 ≤ a ≤ m2

• ~βk = (σβk1 , . . . , σβkm3
) and ~βTk = (βTk1 , . . . , β

T
km3

), where λja ∈ Yr,s such that

|βka| is odd for all 1 ≤ a ≤ m3.

• ~βl = (βl1 , βl2 , . . . , βlm4
) and ~βTl = (σ(βTl1), . . . , σ(βTlm4

)), where βla ∈ Yr,s such

that |βla| is odd for each 1 ≤ a ≤ m4.

Let n =
∑4

i=1(ni+mi) be a positive integer, ~λ = ~λi∪~λj∪~λk∪~λl, ~λT = ~λTi ∪~λTj ∪~λTk ∪~λTl ,

~β = ~βi ∪ ~βj ∪ ~βk ∪ ~βl, ~βT = ~βTi ∪ ~βj ∪ ~βTk ∪ ~βTl and X be the data associated to n distinct

points on P1 with chosen coordinates. Then we have the following map between conformal

blocks:

α : V~λ∪~β(X, so(2r + 1), 2s+ 1)⊗ V~λT∪~βT (X, so(2s+ 1), 2r + 1)→ V~ω1∪~0(X, so(N), 1),

where ~ω1 = (ω1, . . . , ω1) is an (n1 + n2 + n3 + n4) tuple of ω1’s and ~0 = (0, . . . , 0) be an

(m1 +m2 +m3 +m4) tuple of 0’s.

Assume that (n1 + n2 + n3 + n4) is even, then dimC V~ω1∪~0(X, so(N), 1) = 1. Thus, we

have the following map:

(6.1) α∨ : V~λ∪~β(X, so(2r + 1), 2s+ 1)→ V†~λT∪~βT (X, so(2s+ 1), 2r + 1)

This map α∨ is called the rank-level duality map. The main result of this thesis is the

following:

Theorem 6.4.1. The rank-level duality map defined above is an isomorphism.
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The rest of the dissertation is devoted to the proof of Theorem 6.4.1. First we

observe that by Proposition 4.1.2 and Proposition 3.3.2, we can reduce the statement of

Theorem 6.4.1 into the following non-equivalent statements. We will use these to check

the equality of dimensions of the source and the target of the following rank-level duality

maps.

(1) Let
∑n

i=1 |λi| is even.

V~λ(X, so(2r + 1), 2s+ 1)→ V†~λT (X, so(2s+ 1), 2r + 1).

(2) Let
∑n

i=1 |λi| is odd.

V~λ,0(X, so(2r + 1), 2s+ 1)→ V†~λT ,σ(0)
(X, so(2s+ 1), 2r + 1).

(3) Let
∑n

i=1 |λi| is even.

V~λ,σ(0)(X, so(2r + 1), 2s+ 1, ~z)→ V†~λT ,σ(0)
(X, so(2s+ 1), 2r + 1).

Remark 6.4.2. The decomposition of the highest weight integrable module Hωd of

ŝo(N) is given in [17]. Furthermore, the decomposition of all level one highest weight

integrable modules for the conformal pairs (Br, Ds) and (Dr, Ds) are given in [17]. In all

of the above cases, the rank-level duality map is not well defined.
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CHAPTER 7

Verlinde formula and equality of dimensions

In this chapter, we give a complete proof of the equality of dimensions (see Section

7.3) of the source and the target of the rank-level duality maps discussed in Chapter 6.

Our key tool is the Verlinde formula for the dimensions of the conformal blocks. Another

key ingredient in comparing the traces of representations that arise out of the Verlinde

formula is a generalization of a lemma from [10].

7.1. Dimensions of some conformal blocks

In this section, we calculate the dimensions of some conformal blocks which we use

later in the proof of the rank-level duality. Let g be any simple Lie algebra and sθ denote

the Lie subalgebra of g isomorphic to sl2 generated by Hθ, gθ and g−θ. A g-module V of

level ` decomposes as a direct sum of sθ-modules as follows:

V ' ⊕`i=1V
i,

where V i is a direct sum of sl2 modules isomorphic to SymiC2. We recall the following

description of conformal blocks on three pointed P1 from [5].

Proposition 7.1.1. Let X be the data associated to the three pointed P1 with chosen

coordinates and λ, µ, ν ∈ P`(g). Then the conformal block V†λ,µ,ν(X, g) is canonically

isomorphic to the space of g-invariant forms φ on Vλ ⊗ Vµ ⊗ Vν such that φ restricted to

V p
λ ⊗ V q

µ ⊗ V r
ν is zero when ever p+ q + r > 2`.

7.1.1. The case g = so(2r + 1) with level 1. Let ~p = (P1, P2, P3) be three distinct

points on P1 with chosen coordinates and X be the associated data. The level one

dominant integral weights of so(2r + 1) are 0, ω1 and ωr. Let V†λ1,λ2,λ3(X, so(2r + 1))

denote the conformal blocks on P1 with three marked points and weights λ1, λ2, λ3 at

level one. The following are proved in [13]:

• dimC V†ω1,ω1,0
(X, so(2r + 1), 1) = 1.

• dimC V†ω1,ω1,ω1
(X, so(2r + 1), 1) = 0.

• dimC V†ω1,ω1,ωr
(X, so(2r + 1), 1) = 0.

• dimC V†ω1,ωr,ωr
(X, so(2r + 1), 1) = 1.



Lemma 7.1.2. Let P1, . . . , Pn be n distinct points on P1 with chosen coordinates and X

be the associated data. Assume that ~λ = (ω1, . . . , ω1). Then, dimC V†~λ(X, so(2r + 1), 1) =

1, if n is even, and zero if n is odd.

Proof. The proof follows from above and factorization of conformal blocks. 2

7.1.2. The case g = so(2r+1) at level `. We calculate the dimensions of some special

conformal blocks on three pointed P1 at any level `. We first recall the following tensor

product decomposition from [21]:

Proposition 7.1.3. Let λ =
∑r

i=1 aiωi ∈ P 0
+. Then,

Vλ ⊗ Vω1 ' ⊕γVγ,

where γ is either λ if ar 6= 0 or is obtained from λ by adding or deleting a box from the

Young diagram of λ.

We use the above proposition to calculate the dimensions of the following conformal

blocks.

Proposition 7.1.4. Let λ =
∑r

i=1 aiωi ∈ P 0
+. Assume that λ ∈ P`(so(2r+ 1)). Then

the dimension of the conformal block V†λ,γ,ω1
(X, so(2r + 1), `) of level ` is one, where γ

is either λ if ar 6= 0 or is obtained from λ by adding or deleting a box of the the Young

diagram of λ, and 0 otherwise.

Proof. The otherwise part follows from Proposition 7.1.3. Assume that ar 6= 0 and

γ is either λ or obtained from λ by adding or deleting a box. For a so(2r+1)-equivariant

form φ on Vλ⊗Vω1 ⊗Vγ, it’s restriction to V 1
ω1
⊗V `

λ ⊗V `
γ is zero, since C2⊗Sym`C2 does

not contain Sym`C2 as an sl2(C)-submodule. Thus by Proposition 7.1.1, the dimension

of V†λ,γ,ω1
(X, so(2r + 1), `) is one. The case when ar = 0 follows similarly.

2
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7.2. Verlinde formula

In this section, we recall the Verlinde formula that calculates dimensions of conformal

blocks. First we start with the Weyl character formula.

7.2.1. Weyl character formula. Here, we first state a basic matrix identity which is

an easy generalization of Lemma A.42 from [10]. Suppose A = (aij) is an (r+s)× (r+s)

matrix and U = (u1, . . . , ur) and T = (t1, . . . , tr) are two sequences of r distinct integers

from {1, 2, . . . , (r + s)}. Let AU,T denote the (r× r) matrix whose (i, j)-th entry is aui,tj

Similarly define the (s × s) matrix BT c,Uc , where U c and T c are the complements of U

and T respectively.

Lemma 7.2.1. Let A and B be two (r + s) × (r + s) matrices whose product is a

diagonal matrix D. Suppose the (i, i)-th entry of D is ai. Let π = (U,U c) and (T, T c)

be permutations of the sequence (1, . . . , r + s), where |U | = |T | = r. Then the following

identity of determinants holds:

(
aπ(r+1) . . . aπ(r+s)

)
detAU,T = sgn(U,U c) sgn(T, T c) detA detBT c,Uc .

Proof. Consider the permutation matrices P , Q−1 associated to the permutation

(U,U c) and (T, T c) respectively. Then,

PAQ =

 A1 A2

A3 A4

 , where AU,T = A1

and similarly

Q−1BP−1 =

 B1 B2

B3 B4

 , where BT c,Uc = B4.

Now  A1 A2

A3 A4

×
 Ik B2

0 B4

 =

 A1 0

A3 Λ.


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where Λ is a diagonal matrix whose (i, i)-th entry is aπ(r+i). Taking determinant of both

sides of the above matrix equation we get the desired equality. 2

We are now ready to state the Weyl character formula for so(2r + 1) following [10].

Let µ ∈ P 0
2s+1(so(2r+1)) and µ+ρ =

∑r
i=1 uiLi, where ui is as defined in Chapter 6. Let

λ =
∑r

i=1 λ
iLi be any dominant integral weight of so(2r + 1) and Vλ be the irreducible

highest weight module of so(2r+ 1) with weight λ. Then by the Weyl character formula

TrVλ(expπ
√
−1

µ+ ρ

(r + s)
) =

det
(
ζui(λj+r−j+

1
2

) − ζ−ui(λj+r−j+ 1
2

)
)

det
(
ζui(r−j+

1
2

) − ζ−ui(r−j+ 1
2

)
) ,

where µ+ ρ is considered as element of h under the identification of h with h∗, exp is the

exponential map from so(2r + 1) to SO2r+1, ζ = exp
(
π
√
−1

r+s

)
.

7.2.2. Verlinde Formula. Let us first recall the Verlinde formula in full generality. Let

C be a nodal curve of genus g and P1, . . . , Pn be n distinct smooth points on C and X

be the associated data. We fix a Lie algebra g, and ~λ = (λ1, λ2, . . . , λn), an n tuple of

dominant integral weights of g of level `. We refer the reader to [5], [14], [36] for a proof

of the following:

Theorem 7.2.2. The dimension of the conformal block V†~λ(X, g, `) is

{(`+ g∗)rank g|P/Qlong|}g−1
∑

µ∈P`(g)

TrV~λ(exp 2π
√
−1

µ+ ρ

`+ g∗
)
∏
α>0

∣∣∣∣2 sinπ
(µ+ ρ, α)

`+ g∗

∣∣∣∣2−2g

,

where exp is the exponential map from g to the simply connected Lie group G, Qlong is

the lattice of long roots and g∗ is the dual Coxeter number of g.

Let us now specialize to the case g = 0, g = so(2r+1), ` = 2s+1 and ~λ = (λ1, . . . , λn)

an n tuple of weights in P 0
2s+1(so(2r + 1)). The dual Coxeter number of so(2r + 1) is

2r − 1 and {(` + g∗)rank g|P/Qlong|} = 4(k)r, where k = 2(r + s). Then, we can rewrite

the Verlinde formula as follows:

(7.1)
∑

U∈P2s+1(so(2r+1))

n∏
q=1

det
(
ζui(λ

j
q+r−j+ 1

2
) − ζ−ui(λ

j
q+r−j+ 1

2
)
)

det
(
ζui(r−j+

1
2

) − ζ−ui(r−j+ 1
2

)
) (

Φk(U)

4kr

)
,
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where µ + ρ =
∑r

i=1 uiLi, the set U = (u1 > u2 > · · · > ur), λq = (λ1
q, λ

2
q, . . . , λ

r
q) and

Φk(U) are as in Section 2 of [28]. We recall the definition of Φk(U) in Section 7.5 for

completeness.

7.3. Equality of dimensions

Lemma 7.3.1. Let σ be the non-trivial element of the center of Spin(2r + 1). The

element σ acts by diagram automorphism on P 0
2s+1(so(2r + 1)). Then,

TrV~λ(expπ
√
−1

σµ+ ρ

r + s
) = TrV~λ(expπ

√
−1

µ+ ρ

r + s
),

where exp is the exponential map form so(2r+1) to the special orthogonal group SO(2r+

1).

Proof. Let µ =
∑r

i=1 aiωi ∈ P2s+1(so(2r + 1)). Then the weight σ(µ) is given by

the formula (2s+ 1−2(a1 + · · ·+ar) +a1 +ar)ω1 +
∑r

i=2 aiωi. We calculate the following

weight:

σ(µ) + ρ = (2s+ 2− 2(a1 + · · ·+ ar) + a1 + ar)ω1 +
r∑
i=2

(ai + 1)ωi,

= ((2s+ 1)− (a1 + · · ·+ ar−1)− ar
2

+
2r − 1

2
)L1 +

((a2 + a3 + · · ·+ ar−1) + (r − 2) +
ar + 1

2
)L2 + · · ·+ ar + 1

2
Lr.

Let w be an element of the Weyl group of so(2r + 1) which sends L1 → −L1. Then,

w.(σµ+ ρ) = (a1 + a2 + · · ·+ ar
2
− (2s+ 1)− (2r − 1) + r − 1

2
)L1 +

((a2 + a3 + · · ·+ ar−1) + (r − 2) +
ar + 1

2
)L2 + · · ·+ ar + 1

2
Lr,

= µ+ ρ− 2(r + s)L1.
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Thus, we get the following identity:

exp(2π
√
−1

w.(σµ+ ρ)

2(r + s)
) = exp(2π

√
−1

µ+ ρ

2(r + s)
).

2

Remark 3. We refer the reader to [6] for a general discussion of the action of the

center of the simply connected group G on P`(g). The action of the center for all classical

Lie algebras is also given in [28].

Consider µ ∈ P+
2s+1(so(2r + 1)) and µ′ ∈ P 0

2s+1(so(2r + 1)). Let µ + ρ =
∑r

i=1 uiLi

and µ′ + ρ′ =
∑r

i=1(u′i − 1
2
)Li. Consider the sets U = (u1 > u2 > · · · > ur) , and

U ′ = (u′1 > · · · > u′r) and let [U ] and [U ′] denote the class of µ, µ′ in P+
2s+1(so(2r+ 1))/Γ

and P 0
2s+1(so(2r + 1))/Γ respectively.

Without loss of generality, we can assume that Vλ1⊗· · ·⊗Vλn has non-trivial invariants

since this is a necessary condition for the conformal block to be non-zero. Since the

function Φk is invariant under the action of center, by Lemma 7.3.1 we can rewrite the

Verlinde formula in 7.1 as the sum of the following terms:

(1)

∑
[U ]∈P+

2s+1(so(2r+1))/Γ

|OrbU |
n∏
q=1

det
(
ζui(λ

j
q+r−j+ 1

2
) − ζ−ui(λ

j
q+r−j+ 1

2
)
)

det
(
ζui(r−j+

1
2

) − ζ−ui(r−j+ 1
2

)
) (

Φk(U)

4kr

)
,

(2)

∑
[U ′]∈P 0

2s+1(so(2r+1))/Γ

|OrbU ′ |
n∏
q=1

det
(
ζ(u′i−

1
2

)(λjq+r−j+ 1
2

) − ζ−(u′j−
1
2

)(λjq+r−j+ 1
2

)
)

det
(
ζ(u′i−

1
2

)(r−j+ 1
2

) − ζ−(u′i−
1
2

)(r−j+ 1
2

)
) (

Φk(U
′ − 1

2
)

4kr
)
,

where |OrbU |, |OrbU ′ | denote the length of the orbits of µ and µ′ under the action

of Γ on P+
2s+1(so(2r + 1)) and P 0

2s+1(so(2r + 1)). The sets P+
2s+1(so(2r + 1))/Γ and

P 0
2s+1(so(2r + 1))/Γ denote the orbits of P+

2s+1(so(2r + 1)) and P 0
2s+1(so(2r + 1)) under

the action of Γ respectively.

52



7.3.1. Final Step of Dimension check. Let us recall the following two lemmas

from [28]. We refer the reader to [28], Corollary 1.7 and Corollary 1.8 for a proof.

Lemma 7.3.2. For a positive integer a, let V and V c be complementary subsets of

{1, . . . , a− 1}. Then,

(2a)|V |

Φ2a(V )
=

2(2a)|V
c∪{a}|

Φ2a(V c ∪ {a})
.

Lemma 7.3.3. Let V ′ ⊂ S = {1
2
, . . . a − 1

2
} and V ′c be the complement. Then, we

have:

(2a)|V
′|

Φ2a(V ′)
=

(2a)V
′c

Φ2a(a− V ′c)
.

Let λi ∈ Yr,s such that
∑n

i=1 |λi| is even and X be the data associated to n distinct

points on P1 with chosen coordinates. Denote by ~λ, an n tuple of weights (λ1, . . . , λn)

and ~λT the n tuple of weights (λT1 , . . . , λ
T
n ). Consider the conformal blocks V†~λ(X, so(2r+

1), 2s+ 1) and V†~λT (X, so(2s+ 1), 2r + 1).

Proposition 7.3.4. If
∑n

i=1 |λ| is even, then the following equality of dimensions

holds:

dimC V†~λ(X, so(2r + 1), 2s+ 1) = dimC V†~λT (X, so(2s+ 1), 2r + 1).

Proof. By Lemma 6.2.2, it is enough to show that the following equalities hold

|OrbU |
n∏
q=1

det
(
ζui(λ

j
q+r−j+ 1

2
) − ζ−ui(λ

j
q+r−j+ 1

2
)
)

det
(
ζui(r−j+

1
2

) − ζ−ui(r−j+ 1
2

)
) (

Φk(U)

4kr

)

= |OrbUc |
n∏
q=1

det
(
ζu

c
i ((λ

T
q )j+r−j+ 1

2
) − ζ−uci ((λTq )j+r−j+ 1

2
)
)

det
(
ζu

c
i (r−j+

1
2

) − ζ−uci (r−j+ 1
2

)
) (

Φk(U
c)

4ks

)
,
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where U = {u1 > · · · > ur)} ∈ P+
2s+1(so(2r + 1))/Γ and r + s ∈ U and uci is same as in

Section 6.2.

|OrbU ′ |
n∏
q=1

det
(
ζ(u′i−

1
2

)(λjq+r−j+ 1
2

) − ζ−(u′i−
1
2

)(λjq+r−j+ 1
2

)
)

det
(
ζ(u′i−

1
2

)(r−j+ 1
2

) − ζ−(u′i−
1
2

)(r−j+ 1
2

)
) (

Φk(U
′ − 1

2
)

4kr

)
= |Orb((r+s+1)−U ′c) | ×

n∏
q=1

det
(
ζ(u′′i −

1
2

)((λTq )j+r−j+ 1
2

) − ζ−(u′′i −
1
2

)((λTq )j+r−j+ 1
2

)
)

det
(
ζ(u′′i −

1
2

)(r−j+ 1
2

) − ζ−(u′′i −
1
2

)(r−j+ 1
2

)
) (

Φk((r + s+ 1
2
)− U ′c)

4ks

)
,

where U ′ = {u′1 > u′2 > · · · > u′r} ∈ P 0
2s+1(so(2r + 1))/Γ and u′′i is same as defined in

Section 6.2. Now by Lemma 7.3.2 and Lemma 7.3.3 we know that

|OrbU |
(

Φk(U)

4kr

)
= |OrbUc |

(
Φk(U

c)

4ks

)
.

(
Φk(U

′ − 1
2
)

4kr

)
=

(
Φk((r + s+ 1

2
)− U ′c)

4ks

)
.

We are reduced to showing the following identity of determinants for the pair (U,U c).

n∏
q=1

det
(
ζui(λ

j
q+r−j+ 1

2
) − ζ−ui(λ

j
q+r−j+ 1

2
)
)

det
(
ζui(r−j+

1
2

) − ζ−ui(r−j+ 1
2

)
) =

n∏
q=1

det
(
ζu

c
i ((λ

T
q )j+r−j+ 1

2
) − ζ−uci ((λTq )j+r−j+ 1

2
)
)

det
(
ζu

c
i (r−j+

1
2

) − ζ−uci (r−j+ 1
2

)
) .

This follows directly from Lemma 7.4.2. We also need to show the following equality of

determinants for the pair (U ′, U ′c), where λTq = ((λTq )
1 ≥ · · · ≥ (λTq )

s
).

n∏
q=1

det
(
ζ(u′i−

1
2

)(λjq+r−j+ 1
2

) − ζ−(u′i−
1
2

)(λjq+r−j+ 1
2

)
)

det
(
ζ(u′i−

1
2

)(r−j+ 1
2

) − ζ−(u′i−
1
2

)(r−j+ 1
2

)
)

=
n∏
q=1

det
(
ζ(u′′i −

1
2

)((λTq )j+r−j+ 1
2

) − ζ−(u′′i −
1
2

)((λTq )j+r−j+ 1
2

)
)

det
(
ζ(u′′i −

1
2

)(r−j+ 1
2

) − ζ−(u′′i −
1
2

)(r−j+ 1
2

)
) ,

This also follows from Lemma 7.4.5. 2

With the same notation and assumptions as in Proposition 7.3.4, we have the following

proposition.
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Proposition 7.3.5. If
∑n

i=1 |λ| is even, then

dimC V†~λ∪σ(0)
(X, so(2r + 1), 2s+ 1) = dimC V†~λT∪σ(0)

(X, so(2s+ 1), 2r + 1).

Proof. The proof follows from the proof of Proposition 7.3.4, Lemma 7.4.6 and

Lemma 7.4.7 2

For each 1 ≤ i ≤ n, let λi ∈ Yr,s be such that
∑n

i=1 |λi| is odd. Let X be the data

associated to the n distinct points on P1 with chosen coordinates. Denote by ~λ the n

tuple of weights (λ1, . . . , λn) and ~λT the n tuple of weights (λT1 , . . . , λ
T
n ). Consider the

conformal blocks V†~λ∪0
(X, so(2r+ 1), 2s+ 1) and V†~λT∪σ(0)

(X, so(2s+ 1), 2r+ 1). Then, we

have the following equality of dimensions:

Proposition 7.3.6.

dimC V†~λ∪0
(X, so(2r + 1), 2s+ 1) = dimC V†~λT∪σ(0)

(X, so(2s+ 1), 2r + 1).

Remark 7.3.7. These equalities of the dimensions of the conformal blocks give rise

to some new interesting relations between the fusion ring ( [34]) of SO(2r + 1) at level

2s+ 1 with the fusion ring of SO(2s+ 1) at level 2r + 1.

7.4. Key lemmas

Lemma 7.4.1. Let ξ = exp( π
√
−1

2(r+s)
). Consider the matrix W whose (i, j)-th entry is

the complex number (ξi(2j−1) − ξ−i(2j−1)). Then,

WW T =


c

. . .

c

2c


,

where c = −2(r + s).
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Let U be a partition of {1, . . . , r + s} such that r + s ∈ U and |U | = r. Let P be the

permutation matrix associated to the permutation (U,U c).

PWW TP−1 =


2c

c

. . .

c


.

Let A = W and B = W T and U , T as in Lemma 7.2.1. Then, we have the following:

(7.1) cs detAU,T = sgn(U,U c) sgn(T, T c) detA detBT c,Uc .

Let [r + s] denote the set {1, 2, . . . , r + s}. We define the following sets:

(1) Consider λ = (λ1 ≥ λ2 ≥ · · · ≥ λr) ∈ Yr,s. We define αi = λi + r + 1 − i and

[α] = {α1 > α2 > · · · > αr}.

(2) Consider the complement [β] = (β1 > β2 > · · · > βs) of [α] in [r+ s]. We define

another set [γ] = (γ1 > γ2 > · · · > γs) where γi = ((r + s)− (β(s+1−i) − 1
2
)).

(3) Let T = (t1 > t2 > · · · > tr) where ti = r+ 1− i; T ′ = (t′1 > t′2 > · · · > t′s) where

t′i = s+ 1− i and T c = (tc1 > tc2 > · · · > tcs) is the complement of T in [r + s].

(4) U = (u1 > u2 > · · · > ur) be a subset of [r + s] of cardinality r such that

r + s ∈ U and U c = (uc1 > uc2 > · · · > ucs) be the complement of U in [r + s].

Then, for λ ∈ Yr,s, we can write

TrVλ(expπ
√
−1

µ+ ρ

r + s
) =

det(ζui(α
j− 1

2
) − ζ−ui(αj− 1

2
))

det(ζui(tj−
1
2

) − ζ−ui(tj− 1
2

))
,

=
det(ξui(2α

j−1) − ξ−ui(2αj−1))

det(ξui(2tj−1) − ξ−ui(2tj−1))
,

where µ+ ρ =
∑r

i=1 uiLi.
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For λT ∈ Yr,s, µ′ + ρ′ =
∑s

i=1 u
c
iLi and ρ′ the Weyl vector of so(2s+ 1), we can write

TrV
λT

(expπ
√
−1

µ′ + ρ′

r + s
) =

det(ζu
c
i (γ

j) − ζ−uci (γj))
det(ζu

c
i (t
′
j−

1
2

) − ζ−uci (t′j−
1
2

))
,

=
det(ζu

c
i ((r+s)−(βj− 1

2
)) − ζ−uci ((r+s)−(βj− 1

2
)))

det(ζu
c
i ((r+s)−(tcj−

1
2

)) − ζ−uci ((r+s)−(tcj−
1
2

)))
,

=
det(ζ−u

c
i (r+s)(ζu

c
i (β

j− 1
2

) − ζ−uci (βj− 1
2

)))

det(ζ−u
c
i (r+s)(ζu

c
i (t

c
j−

1
2

) − ζ−uci (tcj−
1
2

)))
,

=
det(ζu

c
i (β

j− 1
2

) − ζ−uci (βj− 1
2

))

det(ζu
c
i (t

c
j−

1
2

) − ζ−uci (tcj−
1
2

))
,

=
det(ξu

c
i (2β

j−1) − ξ−uci (2βj−1))

det(ξu
c
i (2t

c
j−1) − ξ−uci (2tcj−1))

.

By applying Equation 7.1, we get the following:

Lemma 7.4.2.

TrVλ(expπ
√
−1

µ+ ρ

r + s
) =

sgn([α], [β])

sgn(T, T c)
TrV

λT
(expπ

√
−1

µ′ + ρ′

r + s
).

The following can be checked by a direct calculation:

Lemma 7.4.3.

sgn([α], [β]) = (−1)
r(r−1)

2
+
s(s−1)

2
+|λ|.

sgn(T, T c) = (−1)
r(r−1)

2
+
s(s−1)

2 .

Thus we have the following equality:

TrVλ(expπ
√
−1

µ+ ρ

r + s
) = (−1)|λ|TrV

λT
(expπ

√
−1

µ′ + ρ′

r + s
).

Let ξ = exp π
√
−1

4(r+s)
. Then the following equality holds for any integers a and b:

ξ(2(r+s)−(2a−1))(2(r+s)−(2b−1)) = (−1)(a+b)ξ(2a−1)(2b−1).
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Lemma 7.4.4. Let ξ = exp( π
√
−1

4(r+s)
). Consider the matrix W whose (i, j)-th entry is

the complex number (ξ(2i−1)(2j−1) − ξ−(2i−1)(2j−1)). Then the following holds:

WW T =


c

. . .

c

c


,

where c = −2(r + s).

Let U be a partition of {1, . . . , r + s} such that |U | = r. Let A = W , B = W T and

U , T as in Lemma 7.2.1. Then,

(7.2) cs detAU,T = sgn(U,U c) sgn(T, T c) detA detBT c,Uc .

Let U ′ = (u′1 > u′2 > · · · > u′r) be a subset of [r + s] of cardinality r, U ′c = (u′c1 >

· · · > u′cs ) be the complement of U ′ in [r + s] and µ + ρ =
∑r

i=1(u′i − 1
2
)Li. Then, for

λ ∈ Yr,s, we can write

TrVλ(expπ
√
−1

µ+ ρ

r + s
) =

det(ζ(u′i−
1
2

)(αj− 1
2

) − ζ−(u′i−
1
2

)(αj− 1
2

))

det(ζ(u′i−
1
2

)(tj− 1
2

) − ζ−(u′i−
1
2

)(tj− 1
2

))
,

=
det(ξ(2u′i−1)(2αj−1) − ξ−(2u′i−1)(2αj−1))

det(ξ(2u′i−1)(2tj−1) − ξ−(2u′i−1)(2tj−1))
.

For λT ∈ Yr,s, µ′ + ρ′ =
∑s

i=1((r + s + 1
2
) − u′ci )Li and ρ′ be the Weyl vector of

so(2s+ 1), we can write the following:

TrV
λT

(expπ
√
−1

µ′ + ρ′

r + s
) =

det(ζ((r+s)−(u′ci −
1
2

))((r+s)−(βj− 1
2

)) − ζ((r+s)−(u′ci −
1
2

))((r+s)−(βj− 1
2

)))

det(ζ((r+s)−(u′ci −
1
2

))((r+s)−(tcj−
1
2

)) − ζ((r+s)−(u′ci −
1
2

))((r+s)−(tcj−
1
2

)))
,

=
(−1)

∑s
i=1(u′ci +βi)

(−1)
∑s
i=1(u′ci +tci )

det(ξ(2u′ci −1)(2βj−1) − ξ−(2u′ci −1)(2βj−1))

det(ξ(2u′ci −1)(2tcj−1) − ξ−(2u′ci −1)(2tcj−1))
,

=
(−1)

∑s
i=1(βi)

(−1)
∑s
i=1(tci )

det(ξ(2u′ci −1)(2βj−1) − ξ−(2u′ci −1)(2βj−1))

det(ξ(2u′ci −1)(2tcj−1) − ξ−(2u′ci −1)(2tcj−1))
,

= (−1)|λ|
det(ξ(2u′ci −1)(2βj−1) − ξ−(2u′ci −1)(2βj−1))

det(ξ(2u′ci −1)(2tcj−1) − ξ−(2u′ci −1)(2tcj−1))
.
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From Equation 7.2, we get the following lemma:

Lemma 7.4.5.

TrVλ(expπ
√
−1

µ+ ρ

r + s
) = TrV

λT
(expπ

√
−1

µ′ + ρ′

r + s
).

7.4.1. Some Trace calculations. Let ζ = exp(π
√
−1

r+s
) and U = (u1 > u2 > · · · > ur)

be a subset of [r + s] of cardinality r. Then, we have the following

ζ(ui− 1
2

)((2r+1)+s− 1
2

) − ζ−(ui− 1
2

)((2r+1)+s− 1
2

) = ζ(ui− 1
2

)(2(r+s)−(s− 1
2

)) − ζ−(ui− 1
2

)(2(r+s)−(s− 1
2

)),

= −
(
ζ−(ui− 1

2
)(s− 1

2
) − ζ(ui− 1

2
)(s− 1

2
)
)
,

= ζ(ui− 1
2

)(s− 1
2

) − ζ−(ui− 1
2

)(s− 1
2

).

The above calculation and the Weyl character formula gives us the following lemma.

Lemma 7.4.6. Consider the dominant weight λ = (2s + 1)ω1 of so(2r + 1) of level

2s + 1. Let U = (u1 > u2 > · · · > ur) be a subset of [r + s] of cardinality r and

µ+ ρ =
∑r

i=1(ui − 1
2
)Li. Then,

Trλ(exp(π
√
−1

µ+ ρ

r + s
)) = 1.

Let ζ = exp(π
√
−1

r+s
) and U = (u1 > u2 > · · · > ur) be a subset of [r + s] of cardinality

r. Then, we have the following:

ζui((2r+1)+s− 1
2

) − ζ−ui((2r+1)+s− 1
2

) = ζui(2(r+s)−(s− 1
2

)) − ζ−ui(2(r+s)−(s− 1
2

)),

= ζ−ui(s−
1
2

) − ζui(s−
1
2

),

= −
(
ζui(s−

1
2

) − ζ−ui(s−
1
2

)
)
.

The proof of the next lemma also follows from the above calculation and the Weyl

character formula gives us the following lemma.

Lemma 7.4.7. Consider the dominant weight λ = (2s + 1)ω1 of so(2r + 1) of level

2s + 1. Let U = (u1 > u2 > · · · > ur) be a subset of [r + s] of cardinality r and
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µ+ ρ =
∑r

i=1 uiLi. Then,

Trλ(exp(π
√
−1

µ+ ρ

r + s
)) = −1.

7.5. Some trigonometric functions

We recall from [28] a family of trigonometric functions which has surprising identities.

These identities are fundamental to the reciprocity laws of the Verlinde formula in [28].

Consider a positive integer k and let

fk(r) = 4 sin2(
rπ

k
).

Given a finite set U = {u1, . . . , ur} of rational numbers, we consider the following

functions defined in Section 1 of [28] (where an empty product is deemed to be 1):

Pk(U) =
∏

1≤i<j≤r

(
fk(ui − uj)fk(ui + uj)

)
,

Nk(U) =
r∏
i=1

fk(ui),

Φk(U) = Pk(U)Nk(U).

We use the function Φk(U) to rewrite the Verlinde formula. The identities of Φk(U)

are among the key ingredients in the proof of the equality of the dimensions as discussed

in Section 7.3.
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CHAPTER 8

Highest Weight Vectors

In this chapter, we briefly summarize the construction of the highest weight integrable

modules H0(so(2r+1)) and H1(so(2r+1)). We use this to explicitly describe the highest

weight vectors (see Section 8.2) of the components that appear in the branching. Our

discussions closely follow the discussions in [17].

8.1. Spin modules

We first recall the definition of the Clifford algebra. Let W be a vector space (not

necessarily finite dimensional) with a non-degenerate bilinear form {, }.

Definition 8.1.1. We define the Clifford Algebra associated to W and {, } to be

C(W ) := T (W )/I,

where T (W ) is the tensor algebra of W and I is the two sided ideal generated by elements

of the form v ⊗ w + w ⊗ v − {v, w}.

8.1.1. Spin Module of C(W ). Suppose there exists an isotropic decomposition W =

W+⊕W−, i.e. {W±,W±} = 0 and {, } restricted to W+⊕W− is non-degenerate. Then

the exterior algebra
∧
W− can be viewed as a

∧
W−-module by taking wedge product

on the left. This gives rise to the structure of an irreducible C(W )-module on
∧
W− by

defining

w+.1 = 0,

for all w+ ∈ W+ and 1 ∈
∧
W−.

Next if W = W ′ ⊕ Ce is an orthogonal direct sum with {e, e} = 1 and W ′ has an

isotropic decomposition of the form W+ ⊕W−(we refer this as quasi-isotropic decom-

position of W). Then the C(W ′)-module
∧
W− described above becomes an irreducible

C(W )-module by defining

√
2e.v := ±(−1)pv for v ∈

p∧
W−.

Any element of W−(respectively W+) is called a creation operator (respectively an-

nihilation operator).



8.1.2. Root Spaces and basis of so(2r + 1). Consider a finite dimensional vector

space Wr of dimension 2r + 1 with a non-degenerate symmetric bilinear form {, }. Let

{ei}ri=−r be an orthonormal basis of Wr. For j > 0, we set

φj =
1√
2

(ej +
√
−1e−j); φ−j =

1√
2

(ej −
√
−1e−j) and φ0 = e0.

Let φ1, . . . , φr, φ0, φ−r, . . . , φ−1 be the chosen ordered basis of Wr. For any i, j, we define

Ei
j(φ

k) := δk,jφ
i.

We identify the Lie algebra so(2r + 1)(Wr) with so(2r + 1) as follows:

so(2r + 1) := {A ∈ sl(2r + 1)|ATJ + JA = 0},

where J is the following (2r + 1)× (2r + 1) matrix:

J =



1 . . . r 0 −r . . . −1

1 1

... 0 1

r 1

0 1

−r 1

... 1 0

−1 1


.

We put Bi
j = Ei

j − E−j−i and take the Cartan subalgebra h to be the subalgebra

of diagonal matrices. Clearly, h = ⊕rj=1CB
j
j . The corresponding dual basis of h∗ is

Lj, where Lj(B
k
k) = δj,k. The simple positive roots {αi}ri=1 of so(2r + 1) are given by

L1 −L2, . . . , Lr−1 −Lr, Lr. The root spaces of so(2r+ 1) are of the form gLi±Lj = CBi
∓j

and gLi = CBi
0.

Remark 8.1.2. The basis of the vector space Wr chosen here is different than the

basis in [10]. In this section, we prefer this basis because the branching formulas that we

describe in the next section become simpler.
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8.1.3. Spin module
∧
W

Z+ 1
2
,−

r of ŝo(2r + 1). Consider as before Wr to be a 2r + 1

dimensional complex vector space with a non-degenerate symmetric bilinear form {, }.

Let

W±
r = ⊕ri=1Cφ±.

A quasi-isotropic decomposition of Wr given by the following:

Wr = W+
r ⊕W−

r ⊕ Cφ0.

We define a new vector space W
Z+ 1

2
r with an inner product {, } as follows:

W
Z+ 1

2
r := Wr ⊗ t

1
2C[t, t−1] with {w1(a), w2(b)} = {w1, w2}δa+b,0,

where w1, w2 ∈ Wr; a, b ∈ Z + 1
2

and w1(a) = w1 ⊗ ta. We choose a quasi-isotropic

decomposition of W
Z+ 1

2
r given as follows:

W
Z+ 1

2
r = W

Z+ 1
2
,+

r ⊕W Z+ 1
2
,−

r ,

where W
Z+ 1

2
,±

r := Wr ⊗ t±
1
2C[t±1]. We define the normal order o

o
o
o for w1(a), w2(b) ∈

W
Z+ 1

2
r by the following formula:

o
ow1(a)w2(b)oo =


−w2(b)w1(a) if a > 0 > b,

1
2
(w1(a)w2(b)− w2(b)w1(a)) if a = b = 0,

w1(a)w2(b) otherwise.

We now describe the action of ŝo(2r + 1) on
∧
W

Z+ 1
2
,−

r and explicitly describe the

level one ŝo(2r + 1)-modules H0(so(2r + 1)) and H1(so(2r + 1)). For a proof, we refer

the reader to [13].
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Proposition 8.1.3. The following map is a Lie algebra monomorphism:

ŝo(2r + 1) → End(
∧

W
Z+ 1

2
,−

r ),

Bi
j(m) →

∑
a+b=m

0
0φ

i(a)φ−j(b)0
0,

c → id .

Proposition 8.1.4. Suppose r ≥ 1, then the following are isomorphic as ŝo(2r+ 1)-

modules:

(1)
∧even(W

Z+ 1
2
,−

r ) ' H0(so(2r + 1)),

(2)
∧odd(W

Z+ 1
2
,−

r ) ' H1(so(2r + 1)).

The highest weight vectors are given by 1 and φ1(−1
2
).1 respectively.

8.2. Highest weight vectors

Let Ws be a 2s + 1 dimensional vector space over C with a non-degenerate bilinear

form {, }, and let {ep}sp=1 be an orthonormal basis of Ws. Let φ1, . . . , φs, φ0, φ−s, . . . , φ−1

be an ordered isotropic basis of Ws. The tensor product of Wd = Wr ⊗ Ws carries a

non-degenerate symmetric bilinear form {, } given by the product of the forms on Wr

and Ws. Clearly the elements ej,p := ej ⊗ ep for −r ≤ j,≤ r, −s ≤ p ≤ s} form an

orthonormal basis of Wd. By (j, p) > 0, we mean j > 0 or j = 0, p > 0 and put

φj,p =
1√
2

(ej,p −
√
−1e−j,−p); φ−j,−p =

1√
2

(ej,p +
√
−1e−j,−p)

for (j, p) > 0. The form {, } on Wd is given by the formula

{φj,p, φ−k,−q} = δj,kδp,q, for − r ≤ j, k ≤ r;−s ≤ p, q ≤ s.

Let as before W±
d =

⊕
(j,p)>0 Cφ±j,±p and φ0,0 = e0,0. The quasi-isotropic decomposition

of Wd is given as follows:

Wd = W+
d ⊕W

−
d ⊕ Cφ0,0.
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We define the operators Ej,p
k,q by Ej,p

k,q(φ
i,l) = δi,kδl,qφ

j,p. We put

Bj,p
k,q = Ej,p

k,q − E
−k,−q
−j,−p .

Consider the Cartan subalgebra H of so(2d + 1) to be the subalgebra generated by the

diagonal matrices. Clearly H = ⊕(j,p)>0CBj,p
j,p . Let {Lj,p} for (j, p) > 0 be a dual basis.

Thus H∗ = ⊕(j,p)>0CLj,p.

8.2.1. Highest weight vectors as wedge product. To every Young diagram in Yr,s,

we associate an (2r + 1) × (2r + 1) matrix as follows. First, to every Young diagram λ

we associate a (r × s) matrix Y (λ) as follows:

Y (λ)i,j =

 0 if λ has a box in the (i, j)-th position,

1 otherwise.

Finally to Y (λ), we associate the following matrix:

Ỹ (λ) =



1 . . . s 0 −s . . . −1

1 1 1 . . . 1

... Y (λ)
...

... . . .
...

r 1 1 . . . 1

0 1 . . . 1 1 1 . . . 1

−r ...
...

...
...

...
...

...

...
...

...
...

...
...

...
...

−1 1 1 1 1 1 1 1


.

For λ ∈ Yr,s, let Ỹ (λ) be the image of Y (λ). We define the following operations on

Ỹ (λ) which produces a new matrix:

σL(Ỹ (λ))j,p := Ỹ (λ)j,p − δj,1δỸ1,|p|,1,(8.1)

σR(Ỹ (λ))j,p := Ỹ (λ)j,p − δp,1δỸ|j|,1,1.(8.2)
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The following proposition in [17] gives the highest weight vectors for the branching rules

described in Section 6.3.

Proposition 8.2.1. The vector
(∧

ỹj,p=0 φ
j,p(−1

2
)
)
.1 well defined up to a sign for each

of the matrices Ỹ (λ), σL(Ỹ (λ)), σR(Ỹ (λ)), σL(σR(Ỹ (λ))) gives a highest weight vector

of the components with highest weight (λ, λT ), (σ(λ), λT ), (λ, σ(λT )) and (σ(λ), σ(λT ))

Next, we describe the highest vectors for some of the components in the “Kac-Moody”

form. We use this explicit descriptions to prove the basic cases of the rank-level duality.

8.2.2. Highest weight vectors in Kac-Moody form. Let λ, λ′ ∈ Yr,s and assume

that λ is obtained from λ′ ∈ Yr,s by adding two boxes. In terms of the matrices described

in Section 8.2.1, Y (λ) is obtained from Y (λ′) by changing 1 to 0 in exactly two places

of Y (λ′), say at (a, b) and (c, d). Assume that (a, b) < (c, d) under the lexicographic

ordering.

Remark 8.2.2. Let Vλ be the finite dimensional rep g-module inside Hλ(g), where

g is a finite-dimensional semisimple Lie algebra. Every finite dimensional irreducible

representation of g has a lowest weight vector vλ. This vector is a highest weight vector

for the affine Lie algebra ĝ if we had chosen the opposite Borel as the Borel for g. We

call the vector vλ as the opposite highest weight vector of Hλ(g).

The following proposition describes the highest weight vectors in the “Kac-Moody”

form, i.e. as elements of universal enveloping of ŝo(2d + 1) acting on the highest weight

vectors of H0(so(2d+ 1)) and H1(so(2d+ 1)).

Proposition 8.2.3. Let λ and λ′ be as before. Then the following holds:

(1) If vλ′ ∈ End(
∧
W

Z+ 1
2
,−

d ) is the highest weight vector of the componentHλ′(so(2r+

1)) ⊗ Hλ′T (so(2s + 1)), then the highest weight vector vλ of the component

Hλ(so(2r + 1))⊗HλT (so(2s+ 1)) is given by the following:

vλ = Ba,b
−c,−d(−1).vλ′ .
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(2) If vλ
′

is the opposite highest weight vector of Hλ′(so(2r+ 1))⊗Hλ′T (so(2s+ 1)),

then the opposite highest weight vector vλ of the component Hλ(so(2r + 1)) ⊗

HλT (so(2s+ 1)) is:

vλ = B−a,−bc,d (−1).vλ
′
.

Proof. The proof of the above easily follows from Proposition 8.2.1 and Proposi-

tion 8.1.3. 2

Remark 8.2.4. There is no uniqueness in building a Young diagram λ starting from

the empty Young diagram. So there is no uniqueness in the expressions of the highest

weight vectors described in Proposition 8.2.3.
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CHAPTER 9

Proof of rank-level duality

In this chapter, we give a proof of Theorem 6.4.1. The main steps of the proof are

summarized below.

9.1. Key steps

The strategy of the proof of Theorem 6.4.1 closely follows [2] and [27] but has some

significant differences in the individual steps.

9.1.1. Step I. We study the degeneration of the rank-level duality map on P1 with n

marked points. We use proposition 9.4.1 to reduce to the case for conformal blocks on P1

with three marked points and the representation attached to one of the marked points

in ω1. The details of this step are explained in Section 9.4.

9.1.2. Step II. We are now reduced to proving rank-level dualities for admissible pairs

of the form ((ω1, λ2, λ3), (ω1, β1, β2)). We use Proposition 7.1.4 to determine which con-

formal blocks on P1 with three marked points with representations of the form (ω1, λ2, λ3)

are non-zero.

9.1.3. Step III. We use Proposition 4.1.2 and further reduce to proving the rank-duality

for three pointed curves for admissible pairs of the following forms:

(1) (ω1, λ2, λ3), (ω1, λ
T
2 , λ

T
3 ), where λ2, λ3 ∈ Yr,s and λ2 is obtained from λ3 either by

adding or deleting a box. The rank-level duality for these cases are proved in

Section 9.2.

(2) (ω1, λ, λ), (ω1, λ
T , σ(λT )), where λ ∈ Yr,s and (λ, Lr) 6= 0. These rank-level

dualities are proved in Section 9.3.

9.2. The minimal three point cases

In this section, we prove rank-level dualities for some special one dimensional confor-

mal blocks on P1 with three marked points. We use these cases to prove the rank-level

duality isomorphism in the general case.



The finite dimensional irreducible so(2d + 1) module Vω1 can be realized inside∧oddW
Z+ 1

2
,−

d as linear span of vectors of the form φi,j(−1
2
). On Vω1 there is a canon-

ical so(2d+ 1) invariant bilinear form Q given by the following formula:

Q(φj,p(−1

2
), φ−k,−q(−1

2
)) = δj,kδp,q.

For notational convenience we write φi,j(−1
2
) as vi,j.

Throughout this section, we will assume that (P1, P2, P3) = (1, 0,∞) with coordinates

ξ1 = z − 1, ξ2 = z and ξ3 = 1
z
, where z is a global coordinate on C. We denote by X the

associated data. Let λ2, λ3 ∈ Yr,s, ~λ = (ω1, λ2, λ3), ~λT = (ω1, λ
T
2 , λ

T
3 ), ~Λ = (ω1, ω1, 0) and

λ2 is obtained from λ3 is adding or deleting a box.

Remark 9.2.1. The following strategy is influenced by the proof of Proposition 6.3

in [2].

Let us summarize our main steps to prove these minimal cases. Let 〈Ψ′| ∈ V†~Λ(X, so(2d+

1), 1) be a non-zero element. It is enough to produce |Φ1⊗Φ2⊗Φ3〉 ∈ H~λ(so(2r+ 1))⊗

H~λT (so(2s+ 1)) such that

〈Ψ′|Φ1 ⊗ Φ2 ⊗ Φ3〉 6= 0.

9.2.1. Step I. We always choose |Φ2〉( respectively |Φ3〉) to be the highest (respectively

opposite highest) weight vector of the module with highest weight (λ2, λ
T
2 ) (respectively

(λ3, λ
T
3 )).

9.2.2. Step II. If λ3 is obtained from λ2 by adding a box in the (a, b)-th coordinate,

then we choose |Φ1〉 to be va,b. If λ2 is obtained from λ3 by adding a box in the (a, b)-

th coordinate, then we choose |Φ1〉 to be v−a,−b. With this choice, it is clear that the

H-weight of |Φ1 ⊗ Φ2 ⊗ Φ3〉 is zero.

9.2.3. Step III. We use induction on max(|λ2|, |λ3|). The base cases of induction are

proved in Section 9.2.5. Assume that |λ2| = |λ3|+ 1. Let λ′2 ∈ Yr,s be such that

(1) λ2 is obtained by adding two boxes from λ′2,
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(2) λ3 is obtained by adding a box to λ′2. ( The other case |λ3| = |λ2|+ 1 is handled

similarly.)

9.2.4. Step IV. We use gauge symmetry (see Chapter 1) to reduce to the case for

the admissible pair ((ω1, λ
′
2, λ3), (ω1, λ

′T
2 , λ

T
3 )). This is done in Proposition 9.2.6. Now

max(|λ′2|, |λ3|) < |λ2|. The other case is handled similarly. Hence we are done by induc-

tion.

Remark 9.2.2. The minimal cases here are similar to the minimal cases in [2].

In the case of symplectic rank-level duality, T. Abe identified the rank-level duality map

with the symplectic strange duality map and used the geometry of parabolic bundles with

a symplectic form to show that the rank-level duality maps are non-zero. As remarked

earlier, we were not able to describe the map in Theorem 6.4.1 geometrically. However

the steps described above can be used to tackle minimal cases in [2].

9.2.5. The base cases for induction. We think of P1 as C ∪ {∞} and let z be a

global coordinate of C. We will assume that (P1, P2, P3) = (1, 0,∞) with coordinates

ξ1 = z− 1, ξ2 = z and ξ3 = 1
z

respectively, and denote by X the associated data. Further

we let ~Λ = (ω1, ω1, 0).

Lemma 9.2.3. Let ~λ = (ω1, ω1, 0). Then the following map

V~λ(X, so(2r + 1), 2s+ 1)⊗ V~λT (X, so(2s+ 1), 2r + 1)→ V~Λ(X, so(2d+ 1), 1),

is non-zero.

Proof. Let 〈Ψ′| ∈ V†~Λ(X, so(2d + 1), 1) be a non-zero element and 〈Ψ| is the image

of 〈Ψ′| under the propagation of vacua. It is enough to produce |Φ1 ⊗ Φ2 ⊗ Φ3〉 ∈

H~λ(so(2r + 1))⊗H~λT (so(2s+ 1)) such that

〈Ψ′|Φ1 ⊗ Φ2 ⊗ Φ3〉 6= 0.

70



We choose |Φ1〉 = v−1,−1, |Φ2〉 = v−1,−1 and |Φ3〉 = 1. By propagation of vacua, we get

〈Ψ′|v−1,−1 ⊗ v1,1 ⊗ 1〉 = 〈Ψ|v−1,−1 ⊗ v1,1〉,

= Q(v−1,−1, v1,1),

= 1.

2

Lemma 9.2.4. Let ~λ = (ω1, ω1, 2ω1) or (ω1, ω1, ω2). Then the following map

V~λ(X, so(2r + 1), 2s+ 1)⊗ V~λT (X, so(2s+ 1), 2r + 1)→ V~Λ(X, so(2d+ 1), 1),

is non-zero.

Proof. First let ~λ = (ω1, ω1, 2ω1). We choose |Φ3〉 to be the opposite highest weight

vector of the module H2ω1(so(2r + 1)) ⊗ Hω2(so(2s + 1)), |Φ2〉 = v1,1. We choose |Φ1〉

such that the H-weight of |Φ1 ⊗ Φ2 ⊗ Φ3〉 is zero. In this case, |Φ1〉 = v1,2. By gauge

symmetry, we get the following:

〈Ψ′|v1,2 ⊗ v1,1 ⊗B−1,−1
1,2 (−1).1〉

= 〈Ψ′|v1,2 ⊗ v1,1 ⊗B−1,−1
1,2 (

1

ξ3

).1〉,

= −〈Ψ′|B−1,−1
1,2 v1,2 ⊗ v1,1 ⊗ 1〉 − 〈Ψ′|v1,2 ⊗B−1,−1

1,2 (1).v1,1 ⊗ 1〉,

= −〈Ψ′|v−1,−1 ⊗ v1,1 ⊗ 1〉 [Since B−1,−1
1,2 (1).v1,1 = 0],

6= 0. [By Lemma 9.2.3]

The case ~λ = (ω1, ω1, ω2) follows similarly.

2

Lemma 9.2.5. Let ~λ = (ω1, ω1 +ω2, 2ω1) or (ω1, ω1 +ω2, ω2). Then the following map:

V~λ(X, so(2r + 1), 2s+ 1)⊗ V~λT (X, so(2s+ 1), 2r + 1)→ V~Λ(X, so(2d+ 1), 1),

71



is non-zero.

Proof. Consider λ′2 = ω1 and λ2 = ω1 +ω2 and let λ2 is obtained from λ′2 by adding

two boxes in the (1, 2) and (2, 1) coordinate. Thus by Proposition 8.2.3, we get

vλ2 = B1,2
−2,−1(−1)v1,1.

As in Lemma 9.2.4, the vector |Φ3〉 = B−1,−1
1,2 (−1).1. We choose |Φ2〉 = vλ2 and |Φ1〉

such that the H-weight of |Φ1 ⊗ Φ2 ⊗ Φ2〉 is zero. In this case |Φ1〉 = v−2,−1. By gauge

symmetry, we get the following:

〈Ψ′|v−2,−1 ⊗B1,2
−2,−1(−1)v1,1 ⊗B−1,−1

1,2 (−1).1〉

= −〈Ψ′|B1,2
−2,−1v

−2,−1 ⊗ v1,1 ⊗B−1,−1
1,2 (−1).1〉

−〈Ψ′|v−2,−1 ⊗ v1,1 ⊗B1,2
−2,−1(1)B−1,−1

1,2 (−1).1〉,

= −〈Ψ′|B1,2
−2,−1v

−2,−1 ⊗ v1,1 ⊗B−1,−1
1,2 (−1).1〉

−〈Ψ′|v−2,−1 ⊗ v1,1 ⊗B−1,−1
1,2 (−1)B1,2

−2,−1(1).1〉

−〈Ψ′|v−2,−1 ⊗ v1,1 ⊗ [B1,2
−2,−1(1), B−1,−1

1,2 (−1)].1〉,

= −〈Ψ′|v1,2 ⊗ v1,1 ⊗B−1,−1
1,2 (−1).1〉,

6= 0. [By Lemma 9.2.4]

2

9.2.6. The inductive step.

Proposition 9.2.6. Let |λ2| = |λ3|+1 and λ2 be obtained from λ3 by adding a box in

the (c, d)-th coordinate. Further, assume that λ3 is obtained from λ′2 by adding a box in

the (a, b)-th coordinate. Then the rank-level duality isomorphism for the admissible pair

((ω1, λ
′
2, λ3), (ω1, λ

′T
2 , λ

T
3 )) implies rank-level duality isomorphism for the admissible pair

((ω1, λ2, λ3), (ω1, λ
T
2 , λ

T
3 )).
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Proof. Without loss of generality assume that (a, b) < (c, d). Consider a non-zero

element 〈Ψ′| ∈ V†~Λ(X, so(2d + 1), 1). We choose |Φ1〉 = v−a,−b, |Φ2〉 = Ba,b
−c,−d(−1)vλ′2

and |Φ3〉 to be the opposite highest weight vector of the component with highest weight

(λ3, λ
T
3 ). Then, we have the following:

〈Ψ′|Φ1 ⊗ Φ2 ⊗ Φ3〉

= 〈Ψ′|v−a,−b ⊗Ba,b
−c,−d(−1)vλ′2 ⊗ Φ3〉,

= −〈Ψ′|Ba,b
−c,−dv

−a,−b ⊗ vλ′2 ⊗ Φ3〉

−〈Ψ′|v−a,−b ⊗ vλ′2 ⊗B
a,b
−c,−d(1)Φ3〉,

= 〈Ψ′|vc,d ⊗ vλ′2 ⊗ Φ3〉. ( By Lemma 9.2.7 below)

The last expression is exactly the one that we consider to prove the rank-level duality

for the admissible pair ((ω1, λ
′
2, λ3), (ω1, λ

′T
2 , λ

T
3 )). Hence we are done. 2

Lemma 9.2.7. With the above notation, we have the following:

Ba,b
−c,−d(1)|Φ3〉 = 0.

Proof. Since |λ3| is even, the opposite highest weight vector |Φ3〉 can be chosen

to be of the form B−a,−be,f (−1)v. Moreover v has the form
∏

α∈I X−α(−1).1 such that

(La,b, α) = 0, where I is a subset of positive root of so(2d + 1) and X−α is a non-zero
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element in the weight space of the negative root −α.

Ba,b
−c,−d(1)|Φ3〉 = Ba,b

−c,−d(1)B−a,−be,f (−1)v,

= B−a,−be,f (−1)Ba,b
−c,−d(1)v + [Ba,b

−c,−d(1), B−a,−be,f (−1)]v,

= B−a,−be,f (−1)Ba,b
−c,−d(1)

∏
α∈I

X−α(−1).1 + [Ba,b
−c,−d, B

−a,−b
e,f ]

∏
α∈I

X−α(−1).1,

= B−a,−be,f (−1)
(∏
α∈I

X−α(−1)
)
Ba,b
−c,−d(1).1

+
(∏
α∈I

X−α(−1)
)
[Ba,b
−c,−d, B

−a,−b
e,f ].1,

= 0.

Hence the lemma follows.

2

The following proposition has a similar proof to Proposition 9.2.6 and tackles the case

|λ3| = |λ2|+ 1.

Proposition 9.2.8. Let |λ3| = |λ2|+1 and λ3 is obtained from λ2 by adding a box in

the (c, d)-th coordinate. Further, assume that λ2 is obtained from λ′3 by adding a box in

the (a, b)-th coordinate. Then the rank-level duality isomorphism for the admissible pair

((ω1, λ2, λ
′
3), (ω1, λ

T
2 , λ

′T
3 )) implies rank-level duality isomorphism for the admissible pair

((ω1, λ2, λ3), (ω1, λ
T
2 , λ

T
3 )).

9.3. The remaining three point cases

As before, we will assume that (P1, P2, P3) = (1, 0,∞) with coordinates ξ1 = z − 1,

ξ2 = z and ξ3 = 1
z
. We denote by X the associated data. Let ~λ = (ω1, λ, λ), ~Λ =

(ω1, ω1, 0), where λ ∈ Yr,s such that (λ, Lr) 6= 0. The proof of the next proposition

follows the same pattern as the proof of Proposition 9.2.6. We give a proof of the first

part of the proposition for completeness.

Proposition 9.3.1. The following maps are non-zero:
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(1) Let |λ| be odd and ~λT = (ω1, λ
T , σ(λT )).

V~λ(X, so(2r + 1), 2s+ 1)⊗ V~λT (X, so(2s+ 1), 2r + 1)→ V~Λ(X, so(2d+ 1), 1).

(2) Let |λ| be even and ~λT = (ω1, σ(λT ), λT ).

V~λ(X, so(2r + 1), 2s+ 1)⊗ V~λT (X, so(2s+ 1), 2r + 1)→ V~Λ(X, so(2d+ 1), 1).

Proof. Let λ′ ∈ Yr,s be such that σ(λ) is obtained by adding boxes in (0, 1) and

(r, a) to λ′ and λ is obtained by adding a box in the (r, a)-th position. Since |λ| is odd,

the module with highest weight (λ, σ(λT )) appears in the branching of H0(so(2d + 1)).

By Proposition 8.2.1, the opposite highest weight vector is given by B0,−1
r,a (−1)vλ

′
, where

vλ
′

is the opposite highest weight vector of the irreducible module with highest weight

(λ′, λ′T ).

As before, we choose |Φ3〉 to be the opposite highest weight vector of the module with

highest weight (λ, σ(λT )). We set |Φ2〉 to be the highest weight vector vλ and |Φ1〉 to be

such that the H-weight of |Φ1 ⊗ Φ2 ⊗ Φ3〉 is zero. In this case |Φ1〉 is v0,1.

Let 〈Ψ′| ∈ V†~Λ(X, g, 1) be a non-zero element. We use gauge symmetry as before to

get the following:

〈Ψ′|Φ1 ⊗ Φ2 ⊗ Φ3〉

= 〈Ψ′|v0,1 ⊗ vλ ⊗B0,−1
r,a (−1)vλ

′〉,

= −〈Ψ′|B0,−1
r,a (−1)v0,1 ⊗ vλ ⊗ vλ

′〉

−〈Ψ′|v0,1 ⊗B0,−1
r,a (1)vλ ⊗ vλ

′〉,

= 〈Ψ′|v−r,−a ⊗ vλ ⊗ vλ
′〉. (By Lemma similar to 9.2.7)

Now we know that 〈Ψ′|v−r,−a ⊗ vλ ⊗ vλ
′〉 6= 0, since rank-level duality holds for the

admissible pair ((ω1, λ, λ
′), (ω1, λ

T , λ′T )). This completes the proof.

2

75



9.4. The proof in the general case

In this section, we finish the proof of Theorem 6.4.1. We now formulate and prove

a key degeneration result using the compatibility of rank-level duality and factorization

discussed earlier. Let ~λ1, ~λ2 be n1, n2 tuples of weights in P 0
2s+1(so(2r+ 1)). Consider an

n tuple ~λ = (~λ1, ~λ2) of weights in P 0
2s+1(so(2r + 1)). Similarly, consider ~µ = (~µ1, ~µ2) an

(n1 + n2) tuple of weights in P 0
2r+1(so(2r + 1)) such that (~λ, ~µ) is an admissible pair.

Proposition 9.4.1. With the above notation, the following statements are equivalent:

(1) The rank-level duality map for the admissible pair (~λ, ~µ) is an isomorphism for

conformal blocks on P1 with n marked points.

(2) The following rank-level duality maps for the admissible pairs are all isomorphic.

• The rank-level duality maps are isomorphisms for all admissible pairs of

the form (~λ1 ∪ λ, ~µ1 ∪ µ) for conformal blocks on P1 with (n1 + 1) marked

points.

• The rank-level duality maps are isomorphisms for all the admissible pairs

of the form (λ∪~λ2, µ∪~µ2) for conformal blocks on P1 with (n2 +1) marked

points.

We first start with a lemma. We give a proof of Proposition 9.4.1 using this lemma

and Proposition 5. Let B = SpecC[[t]]. Suppose V and W are vector bundles on B of

same rank and let L be a line bundle on B. Consider a bilinear map f : V ⊗W → L.

Assume that on B, there are isomorphisms

⊕si : V →
⊕
i∈I

Vi,

⊕tj : W →
⊕
j∈I

Wj.

Further assume that Vi and Wi have the same rank. Let fi,j be maps from Vi⊗Wj → L

such that fi,j = 0 for i 6= j and f =
∑

i∈I t
mi(fi,i ◦ (si⊗ ti)). The following lemma is easy

to prove.
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Lemma 5. The map f is non-degenerate on B∗ = B \ {t = 0} if and only if for all

i ∈ I the maps fi,i’s are non-degenerate.

We now return to the proof of Proposition 9.4.1. Let X → B be a family of curves of

genus 0 such that the generic fiber is a smooth curve and the special fiber X0 is a nodal

curve. In our case, we let V , W and L be locally free sheaves V~λ(X , so(2r + 1), 2s + 1)

and V~µ(X , so(2s+ 1), 2r + 1) and V~Λ(X , so(2d+ 1), 1) respectively, where ~λ and ~µ as in

Proposition 9.4.1 and ~Λ ∈ (P 0
1 (so(2d+ 1))n be such that (~λ, ~µ) ∈ B(~Λ).

We consider Vi’s to be a locally free sheaves of the form

V~λ1∪λ(X1, so(2r + 1), 2s+ 1)⊗ Vλ∪~λ2(X2, so(2r + 1), 2s+ 1)⊗ C[[t]],

where λ ∈ P 0
2s+1(so(2r+1)), X1, X2 be the data associated to disjoint copies of P1 (which

are obtained from normalization of X0) with n1, n2 points respectively. Similarly, we let

Wj’s to be a locally free sheaves of the form

V~µ1∪µ(X1, so(2s+ 1), 2r + 1)⊗ Vµ∪~µ2(X2, so(2s+ 1), 2r + 1)⊗ C[[t]],

where µ ∈ P 0
2r+1(so(2s+ 1)).

Since there are bijections (the bijections depend on the factorization of V~Λ(X , so(2d+

1), 1) into n1 and n2 parts) between P 0
2s+1(so(2r + 1)) and P 0

2r+1(so(2s + 1)), we can

choose the indexing set I in Lemma 5 to be Yr,s t σ(Yr,s). It is also important to point

out that fi,j = 0 for i 6= j is guaranteed by the fact that given λ ∈ P 0
2s+1(so(2r + 1)),

Λ ∈ P 0
1 (so(2d + 1)), there exists exactly one µ ∈ P 0

2r+1(so(2s + 1)) such that (λ, µ) ∈

B(Λ). The proof of Proposition 9.4.1 now follows from Proposition 5.2.1, Lemma 5 and

Proposition 3.3.1.

Remark 9.4.2. The situation in Proposition 9.4.1 should be compared to Proposition

5.2 in [30].

An immediate corollary of the Proposition 9.4.1 is the following:
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Corollary 9.4.3. If the rank-level duality holds for P1 with three marked points,

then it holds for P1 with an arbitrary number of marked points.

By Proposition 4.1.2, we can further reduce to prove the rank-level duality for an

admissible pair of the form ((λ1, λ, λ2), (λT1 , β, λ
T
2 )), where λ1, λ2 ∈ Yr,s, λ ∈ P 0

2r+1(so(2r+

1)) and β ∈ P 0
2s+1(so(2s+1)). Let ~λ = (ω1, . . . , ω1, λ, λ2) and ~µ = (ω1, . . . , ω1, β, λ

T
2 ), the

number of ω1’s is |λ1|. Clearly the pair (~λ, ~µ) is admissible. The following corollary is a

direct consequence of Proposition 9.4.1 and Lemma 9.4.5.

Corollary 9.4.4. Let λ1, λ2 ∈ Yr,s. If the rank-level duality is an isomorphism for

any P1 with |λ1| + 2 marked points for the admissible pair ~λ = (ω1, . . . , ω1, λ, λ2) and

~µ = (ω1, . . . , ω1, β, λ
T
2 ), then the rank-level duality on P1 is also an isomorphism for the

admissible pair ((λ1, λ, λ2), (λT1 , β, λ
T
2 )).

Lemma 9.4.5. Let λ ∈ Yr,s, and ~λ = (λ, ω1, . . . , ω1), where the number of ω1 is |λ|,

then

dimC V†~λ(X, so(2r + 1), 2s+ 1) 6= 0.

Proof. The proof follows directly by factorization of fusion coefficients and induction

on |λ|. 2

9.4.1. Reduction to the one dimensional cases. In the previous section, we re-

duced Theorem 6.4.1 for admissible pairs of the form ~λ = (ω1, . . . , ω1, λ, λ2) and ~µ =

(ω1, . . . , ω1, β, λ
T
2 ), where λ ∈ P 0

2s+1(so(2r + 1)), the number of ω1’s are |λ1|, λ2 ∈ Yr,s

and β ∈ P 0
2r+1(so(2s+ 1)). The following lemma shows that we can further reduce to the

case for certain one dimensional conformal blocks on P1 with three marked points.

Lemma 9.4.6. Let λ1, λ2 ∈ P 0
2s+1(so(2r + 1)) and β1, β2 ∈ P 0

2r+1(so(2s + 1)). If the

rank-level duality holds for admissible pairs of the form ((λ1, ω1, λ2), (β1, ω1, β2)), then

the rank-level duality holds for admissible pairs on P1 with arbitrary number of marked

points.
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Proof. The proof follows from Proposition 9.4.1. 2

We use Proposition 4.1.2 and Proposition 7.1.2 to further reduce to the following ad-

missible pairs for certain one dimensional conformal blocks on P1 with three marked

points.

(1) (ω1, λ2, λ3), (ω, λT2 , λ
T
3 ), where λ2, λ3 ∈ Yr,s and λ2 is obtained by λ3 either by

adding or deleting a box.

(2) (ω1, λ, λ), (ω1, λ
T , σ(λT )), where λ ∈ Yr,s and (λ, Lr) 6= 0.

The rank-level duality in these cases has been proved in Section 9.2 and Section 9.3.

This completes the proof of Theorem 6.4.1.
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