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ABSTRACT 

 

Michael Charles Salling: A Role for CaMKII and ERK1/2 Pathways in Alcohol  
Self-Administration and Relapse-like Behavior 

(Under the direction of Dr. Clyde Hodge) 
 

Alcoholism is a debilitating neuropsychiatric disorder that adversely affects many 

people worldwide. Understanding the neurobiological mechanisms that cause 

alcohol addiction is paramount to its treatment. New evidence suggests that 

addictive behaviors emerge as a result of plastic changes in the neural circuitry that 

mediates drug reinforcement and reward-learning. The goal of this dissertation was 

to identify changes in neuroplasticity-related proteins following alcohol consumption 

in areas of the brain that mediate alcohol reward. Initially, we analyzed the amygdala 

proteome following chronic alcohol consumption and found 26 proteins that showed 

differential protein expression. Several of these proteins are involved in synaptic 

plasticity including CaMKIIα, a protein kinase that modulates receptor activity and is 

required for the induction of long-term synaptic plasticity. We further characterized 

CaMKII expression in the amygdala, and found that it is specifically increased in the 

central and lateral amygdala following twenty-eight days of alcohol-drinking at the 

start of the dark cycle when there were no detectable blood alcohol levels. 

Consistent with CaMKII’s role in AMPAR trafficking, we found a concomitant 

increase in AMPA/NMDA ratio in the central amygdala. We extended these findings 

by measuring CaMKII expression following operant self-administration and found
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that phosphorylated CaMKII was increased in the amygdala of alcohol-drinking mice. 

To determine if increased CaMKII activation played a role in alcohol’s reinforcing 

properties, we infused CaMKII inhibitors into the amygdala prior to self-

administration sessions. We found that CaMKII inhibition attenuates alcohol but not 

sucrose operant self-administration and concluded that CaMKII activity in the 

amygdala functionally regulates the reinforcing properties of alcohol. Lastly, we 

developed a mouse protocol for relapse-like behavior and tested the role of ERK1/2, 

a protein kinase that plays a role in plasticity, in relapse-like behavior. We found that 

inhibition of ERK1/2 phosphorylation potentiates cue-induced reinstatement of 

alcohol-seeking and induces sucrose-seeking. Collectively, these experiments 

demonstrate that inhibiting the activity of protein kinases that are involved in synaptic 

plasticity can affect alcohol-related behaviors in a reinforcer-specific manner and 

suggest that modulating these pathways has the potential for pharmacotherapeutic 

intervention in alcoholics.
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CHAPTER 1: INTRODUCTION 
 

Societal impact of alcoholism 

Alcohol is routinely consumed by many people and its use pervades many 

aspects of society. In the United States, most people will try alcohol in their lifetime, 

often in a social setting where drinking is encouraged to facilitate social interaction. It 

is estimated that 80% of Americans will try alcohol and 60% of them will continue 

drink alcohol throughout the duration of their life [1]. Although moderate alcohol use 

is common, 18% of people will abuse alcohol at some point [2]. Alcohol abuse 

engaging in daily use or repeated heavy drinking episodes called binge drinking that 

can pose problems like missed work, strained relationships, or criminal offenses [3-

5]. In some individuals, continued alcohol abuse can progress to alcohol 

dependence, described in the DSM IV by several factors including alcohol tolerance, 

somatic symptoms related to alcohol withdrawal, inability to limit or abstain from 

drinking, and increased time spent obtaining alcohol or recovering from its effects. 

Alcoholism shares features with other addictive disorders, namely, that alcohol is 

continually abused despite serious, negative consequences.  

The cause of alcoholism not fully understood. However, many variables have 

been identified that contribute to alcohol dependence, including family history, age of 

onset, drinking patterns, and complex factors like environmental and psychiatric 

illnesses [6, 7]. Biomedical research has identified emerging changes in brain 
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function following alcohol abuse that are thought to contribute to its behavioral 

symptoms. In the clinic, an alcoholic’s lack of control over their drinking is treated a  

symptom of a larger disease, and not as a personal shortcoming, with treatment 

directed at medical and psychological interventions [8]. 

The consequences of alcohol use on the American public are enormous 

along the lines of both cost and an individual’s well-being. The overall economic 

impact of alcohol abuse in the United States has been estimated at $235 billion 

annually [5]. Health-related costs, loss of productivity, and law enforcement are cited 

as 3 major factors contributing to this debt. Strikingly, there are an estimated 85,000 

deaths attributed to alcohol use annually, more than four times the deaths related to 

illicit drug use [9]. Furthermore, alcohol use impacts others and accounts for of a 

large proportion of reported incidences of harassment, property damage, domestic 

violence, and murders, among other problems which have their own lasting 

consequences [10].  

A major problem with alcoholism is that there are limited treatment options. 

Currently there are only three FDA approved medications available for the treatment 

of alcohol use disorders: disulfiram, aimed at preventing drinking by causing 

aversive hangover-like symptoms following alcohol ingestion, naltrexone, shown to 

reduce relapse frequency and severity by antagonizing opioid receptors and likely 

decreasing dopamine release, and acamprosate, shown to prolong abstinence 

possibly through a reduction in excitatory glutamate neurotransmission [11, 12]. 

These medications are not prescribed very often due to their high rate of attrition, 

negative side effects and uncertainty regarding their mechanism of action [11, 13]. 
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Therefore, it is a major goal of alcohol research to better understand the 

neurobiological underpinnings of alcoholism. Due to alcohol’s complex actions on 

the brain, identification of its effects has proven challenging, however, decades of 

alcohol research coupled with new approaches in molecular biology and physiology 

are elucidating these neurobiological mechanisms and moving the field closer to 

comprehensive treatment of alcohol use disorders. 

Alcohol’s effect on the human brain  

 Human research has established several lines of evidence that demonstrates 

brain dysfunction in alcoholics. Postmortem studies have shown significant loss of 

white matter in human alcoholics, as well as grey matter in the frontal lobes [14]. 

Examining volumetric changes in the brains of living alcoholics using neuroimaging 

techniques like magnetic resonance imaging has confirmed significant loss in the 

frontal lobe [15] and led to the identification of several additional brain regions 

affected by chronic alcohol use including the corpus callosom, thalamus, 

hypothalamus, hippocampus, and cerebellum [16]. Additionally, brain imaging 

performed in concert with neuropsychological testing has revealed that alcoholics 

showing decreased brain volume have deficits in impulsivity, memory, and motor 

disturbances compared to healthy controls [17]. The cause of this loss is not fully 

understood, but evidence supports the hypothesis that neuroinflammation [18] and 

glutamate excitotoxicity [19, 20] are consequences of chronic alcohol abuse which 

can lead to axonal demyelination, synapse loss, and cell death [21]. 

In addition to the neurodegenerative effects of alcohol, chronic alcohol use 

and subsequent withdrawals can lead to a hyper-excitable central nervous system. 
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Associated symptoms appear upon withdrawal and include insomnia and anxiety. 

These symptoms are believed to be a result of alcohol-induced neurochemical 

adaptations that include inhibitory desensitization through the down regulation of 

alpha containing gamma-aminobutyric acid receptors (GABAA) [22, 23] and 

excitatory sensitization through the up regulation of N-Methyl-D-aspartic acid 

(NMDA) sensitive glutamate receptors [24, 25]. An escalation in the severity of these 

symptoms is thought to occur through a phenomenon referred to as the kindling 

effect, where repeated alcohol withdrawals exacerbate withdrawal symptoms. For 

instance, in binge drinking an individual will cycle between heavy drinking episodes 

and detoxifications that increase seizure susceptibility and anxiety-like behavior 

through an accumulation of neurotransmitter adaptations [26-28]. 

Neurodegeneration and neuroexicitability are outcomes of chronic alcohol 

consumption and can be directly measured; however, why an individual continually 

abuses alcohol despite its negative consequences is unclear. A good starting point 

is to understand how individuals maintain behaviors related to obtaining natural 

rewards. Sensory stimuli in the environment are encoded and used to detect the 

presence of rewards like food. Successful stimulus-reward outcomes are encoded 

via associative memory neural mechanisms. Associative memory has been shown 

to be crucial to maintaining these fundamental behaviors when it is related to 

obtaining rewards like food, water, and sex it is called appetitive conditioning. Data 

obtained from functional magnetic resonance imaging studies have demonstrated 

that mesocorticolimbic structures are activated following a form of appetitive 

conditioning where cues are paired with food rewards [29]. In human alcoholics, 
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exposure to alcohol cues activates several mesocorticolimbic regions including the 

ventral tegmental area (VTA), prefrontal cortex (PFC), basal ganglia, orbitofrontal 

cortex, nucleus accumbens (NAc), and amygdala to a greater extent than in 

abstinent or social drinkers [30-33] and to a greater degree of activation than 

appetitive controls (juice versus alcohol taste) [30]. In other drugs of abuse like 

cocaine and nicotine [34, 35], similar findings have been reported and shared 

adaptations to this neurocircuitry may underlie common addictive behaviors 

including compulsive drug-use and relapse.  

Alcohol and animal models 

 To further our understanding of alcohol’s effects on the brain, rodent models 

have been employed to elucidate the cellular and molecular actions of alcohol on the 

brain. Using myriad experimental approaches, researchers have delineated many of 

alcohol’s effects on neurotransmitter receptor expression and activity. These findings 

have revealed several neuroadaptations that occur in mesocorticolimbic structures 

like the VTA, NAC, amygdala, and PFC, brain regions involved in reward 

processing. The use of behavioral models has led to significant progress in 

determining the neural circuitry involved and permits the testing of hypotheses 

regarding the functional consequence of these adaptations on addictive behaviors. 

Alcohol is a polar molecule that freely passes the blood-brain barrier to 

access many central nervous system targets. At behaviorally-relevant doses (0-70 

mM), acute alcohol enhances GABA transmission by acting as a positive allosteric 

modulator of the GABAA receptor [36] and inhibits a specific subset of excitatory 

glutamate receptors like NMDA receptors (5-50 mM) [37]. These two actions 
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decrease neuronal depolarization and cause alcohol’s depressant effects like 

intoxication and sedation. Other neurotransmitter receptors affected by alcohol 

include acetylcholine (10 mM, [38]), serotonin (>25 mM, [39]), glycine (>35 mM, [40]) 

and the potassium channels GIRK ( >20 mM, [41]) and BK ( >20 mM, [42]). Acute 

alcohol has also been shown to alter neurotransmitter release through several 

mechanisms [43] including increased dopamine release from the VTA to the NAc 

[44, 45]. This effect on dopamine release is shared by many other drugs of abuse, is 

believed to be indicative of reward value, and is known to contribute to the 

development of addiction through associative learning mechanisms [46]. The 

mechanism(s) by which alcohol causes dopamine release is the subject of enduring 

debate. Several candidate mechanisms include 1) disinhibition of circuitry affecting 

dopamine neurons in the VTA through its actions on GABA and NMDA receptors, 2) 

affecting presynaptic mechanisms on dopamine neurons, or 3) through the 

pharmacological actions of the alcohol metabolite acetaldehyde [47]. Overall, the 

complexity of alcohol’s interactions make it a very challenging to study especially 

compared to other drugs of abuse like cocaine which have a more specific 

pharmacological effects. Alternatively, it may be more important to focus on how 

repeated exposures to alcohol affect neurotransmission as these adaptations are 

thought to underlie addictive behaviors. 

 Chronic exposure paradigms have led to the discovery of several adaptations 

in neurotransmitter systems caused by alcohol. In animal models, prolonged alcohol 

exposure can be accomplished by administering alcohol directly (e.g. systemic 

injection, intragastric delivery, or exposure to alcohol vapor) or by using a mouse or 
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rat line that will consume alcohol voluntarily. Studies using these methods have 

demonstrated that chronic alcohol exposure causes homeostatic adaptations related 

to alcohol’s acute actions. Chronic alcohol exposure reorganizes GABAA receptor 

expression and increases the expression of specific glutamate receptors including 

NMDA, AMPA, and metabatropic glutamate receptors (mGluRs) [48-50]. The end 

result of these adaptations is a hypeglutamatergic state that has been described 

previously in humans upon alcohol withdrawal [19, 43] and that has been measured 

through electrophysiological techniques [43] and microdialysis in rodents [51]. 

Neurochemical adaptations in neurotransmitter systems are thought to 

underlie specific behavioral aspects of alcohol addiction. One group of behavioral 

assays used to quantify anxiety in rodents involves assessing the performance on 

validated tasks like the elevated plus maze.  When performing these tasks, alcohol-

dependent animals experiencing withdrawal will demonstrate increased anxiety-like 

behavior [52]. Treatment with GABA agonists such as benzodiazepines or NMDA 

inhibitors have been shown to oppose the anxiogenic like effects of alcohol 

withdrawal, suggesting that alcohol withdrawal symptoms are mediated by GABA- 

and NMDA-specific pathways [53, 54]. In addition, causing dependence in rats using 

alcohol vapor exposure potentiates the reinforcing effects of alcohol [55, 56]. Thus, 

alcohol exposure may cause maladaptive activation of neurotransmitter systems and 

improper encoding of neural information. These physiological adaptations appear to 

mediate the positive (reward) and negative (withdrawal) behaviors in alcohol 

addiction.  
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 For many receptors, neurotransmitter binding leads to the activation of 

downstream signaling cascades including protein kinases which can affect gene 

transcription. Several protein kinases are altered by drugs of abuse. These 

alterations can have a dynamic and lasting impact on neurotransmission, and have 

are proposed as potential molecular mechanisms underlying addiction [57]. Several 

protein kinases that modulate receptor activity, gene transcription and synapse 

maturation are affected by drugs of abuse. Two of these protein kinases, calcium-

calmodulin dependent kinase II (CaMKII) and extracellular regulated kinase 1 and 2 

(ERK1/2), are phosphorylated following increased levels of intracellular calcium 

caused by depolarization and through g-protein mediated release from internal 

calcium stores .  

Addiction is believed to be caused by maladaptive changes to neural circuits 

that regulate reward and motivation. Repeated drug exposures are believed to 

cause aberrant synaptic plasticity in these regions that leads to improper encoding of 

drug-related cues, and shifts an individual’s behavior towards the obtaining and 

using drugs despite its negative consequences [58, 59]. Heavy drinking can produce 

a hyperactive state in which increased glutamate release and upregulation of 

glutamate receptors occur in several brain regions that regulate reward behavior 

[60]. Increased glutamate activity activates both the CaMKII and ERK1/2 signaling 

pathways [61] which have multiple effector molecular targets including transcription 

factors like cAMP response element-binding (CREB) and Elk-1 that are involved in 

synaptic plasticity [62]. These pathways have been shown to be required in some 

forms of long-term plasticity, where synaptic connections of neurons are 
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strengthened through increased surface expression of glutamate receptors. As a 

result of these properties, CaMKII and ERK1/2 have been investigated as molecular 

candidates that underlie drug-induced adaptations that contribute to addictive 

behaviors. 

Calcium/calmodulin dependent protein kinase II (CaMKII) 

 CaMKII is a serine-threonine protein kinase activated by the presence of 

calcium-calmodulin. It constitutes 1-2% of brain total protein and is the most 

abundant protein of the post-synaptic density (PSD). Four genes have been 

identified (α, β, γ, and δ) that form a CaMKII 12 subunit heteromeric complex [63]. 

The α and β subunits of CaMKII are the most highly expressed in the brain [64].  

Each subunit can be activated by the association of calcium-bound calmodulin to its 

catalytic domain, autophosphorylate its neighboring subunit, and remain active for 

up to several hours after calcium levels have decreased [65]. Following activation, 

CaMKII is able to localize to the PSD where it can modulate receptor activity by 

interacting with several receptors including NMDA, AMPA, dopamine, GABA and L-

type voltage gated channels [66, 67]. In addition, phosphorylated CaMKII can 

translocate to the nucleus and phosphorylate multiple transcription factors including 

Neurogenic differentiation factor 1 (NeuroD), Nf-κB, and CREB, transcription factors 

that have been implicated in regulating mechanisms of neuroplasticity [68]. Other 

complex actions of CaMKII emerge from crosstalk among kinase pathways [69]. For 

instance, CaMKII can bind and directly activate map kinase kinase 1 (MEK1) which 

phosphorylates extracellular regulated kinase 1/2 (ERK1/2), another calcium-

signaling protein kinase involved in gene transcription [70, 71].  



	  20	  

The ability of CaMKII to switch on, remain active, and have dynamic actions 

on receptor activity and gene transcription has led to extensive characterization of its 

role in synaptic plasticity. Importantly, it is required for the induction of NMDA-

dependent long-term-potentiation (LTP), a leading candidate mechanism for the 

physiological basis of memory formation [72]. Following pre- and postsynaptic 

activation and calcium influx, CaMKII is thought to initiate LTP by phosphorylating 

AMPAR GLUR1 subunits on serine 831 which has been shown to increase AMPAR 

conductance [73]. In addition, CaMKII regulates LTP by increasing AMPAR delivery 

to the synapse through its interactions with the PSD [74]. NMDA-dependent LTP 

induction is blocked by preventing CaMKII phosphorylation using CaMKII 

antagonists that block the binding of calcium/calmodulin and the generation of 

transgenic mice with a point mutation that blocks phosphorylation of the threonine 

286 site on CaMKIIα [75]. Bathing postsynaptic cells with a constitutively activated 

form of CaMKII, CaMKII T286D can induce LTP. Further, mutant mice that express 

CaMKII T286D occludes LTP induction as the LTP response is already maximized 

[76]. Additional in vivo work demonstrated that rewiring of cortical networks of the 

visual system does not occur in CaMKIIα thr286 mutants [77]. Collectively, these 

results demonstrate that CaMKII is necessary and sufficient for LTP induction in vitro 

and in vivo and is required for experience-dependent plasticity.  

CaMKII’s involvement in LTP makes it a major molecular target of learning 

and memory research, a notion that is supported by behavioral data collected from 

genetic and pharmacological manipulation of CaMKII activity. Heterozygous mutant 

mice deficient in CaMKIIα protein expression have memory deficits and higher 
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thresholds for LTP induction [78-80]. The CaMKIIα thr286A mutant mouse which 

lacks CaMKIIα autophosphorylation and hippocampal LTP has severe spatial 

memory deficits on the Morris water maze, a hippocampal-dependent task. 

Overexpression of CaMKIIα in the forebrain, including the amygdala, leads to 

enhanced fear conditioning and increased anxiety in mice,  two behaviors mediated 

by the amygdala [81].  Furthermore, pharmacological inhibition of CaMKIIα T286 

phosphorylation in the lateral amygdala using site-specific infusions of a CaMKII 

inhibitor KN-62 prevents the acquisition, but not expression of fear conditioning in 

rats [82]. Due to the amygdala’s role in encoding drug-related cues [83], amygdala 

CaMKII may play an important role in drug conditioning as well. 

CaMKII’s dual roles in plasticity and learning have made it an intriguing 

candidate for the actions of drugs of abuse. Pharmacological inhibition of CaMKII 

phosphorylation with KN-93 decreases amphetamine self-administration [84] and 

blocks cue-induced reinstatement of cocaine-seeking when injected into the NAc 

[85]. Surprisingly, alcohol’s actions on CaMKII are not well understood despite the 

many known actions of alcohol on receptors that regulate the CaMKII pathway. 

Previous work with alcohol demonstrated that CaMKII is upregulated in rats with 

prenatal exposure to alcohol [86] and CaMKII sensitizes BK channels to alcohol [87] 

which may modulate alcohol tolerance. Overall, very few studies have investigated 

the effects of alcohol on CaMKII and no studies exist that examine the role of 

CaMKII in alcohol-specific behaviors. 
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Extracellular-Regulated Kinase 1 and 2 (ERK1/2) 

 The mitogen activated protein kinase (MAPK) system is a complex set of 

signal transduction pathways that are conserved among all eukaryotic organisms. 

These kinases form sequential cell signaling pathways that integrate the activity of 

diverse extracellular signals within the cell [88]. MAP kinases are activity-dependent 

modulators of rapid cellular responses and short- or long-term changes in gene 

transcription [89]. It is this ability to modulate cellular responses to extracellular 

signals that underscores the ability of MAP kinases to transduce neuronal activity 

into enduring changes in functional activity of the CNS such as those seen during 

chronic alcohol use or abstinence.   

The ERK/MAPK pathway integrates activity of a variety of extracellular and 

intracellular factors to produce coordinate changes in gene transcription that lead to 

long-term changes in CNS structure and function, including cell growth, 

neuroplasticity and addiction [88, 90-93].  The two closely related isoforms of ERK 

(ERK1 and ERK2, or ERK1/2) are phosphorylated within the activation loop of the 

kinase on both a threonine and a tyrosine residue by MEK1/2. ERK1/2 activity requires 

phosphorylation of both of these sites [94].  Activated ERK1/2 phosphorylates cellular 

targets or translocates to the nucleus where it activates specific gene transcription 

factors [95]. By regulating gene transcription, the ERK/MAPK pathway transduces 

cellular events into long-term changes in neural and behavioral functions, such as 

those seen in learning, memory, and addiction.  
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Role of Amygdala in Self-administration and Relapse-like Behavior 

 The amygdala is major structure of the limbic system that mediates reward-

related learning. The neurocircuitry of the amygdala lends itself to the integration of 

information related to the reward valence and procurement [83]. It receives primary 

afferent dopaminergic terminals from the VTA and reciprocal glutamatergic 

connections between the hippocampus, NAc, and PFC [96]. Acute exposures to 

drugs of abuse including alcohol cause an increase of dopamine release from the 

VTA into the NA and amygdala [97, 98]. Dopamine release from the VTA is believed 

to be indicative of reward value and can modulate amygdala activity [99]. Sensory 

information specific to environmental cues is processed by glutamatergic projections 

to amygdala neurons [100] and inhibition of amygdala activity is regulated by its 

glutamatergic afferents on amygdala interneurons from the PFC [101, 102]. 

Amygdala circuitry has been proposed to be critical for the formation and 

maintenance of addictive behaviors like operant self-administration and cue-induced 

reinstatement of drug seeking [103]. 

 A critical role of the amygdala is learning which stimuli predict the availability 

of a reward. The amygdala is made up of several nuclei including the central (CeA), 

basal (BA) and lateral nucleus (LA), with the BA and LA often described together as 

basolateral nucleus (BLA), that have been shown to contribute to distinct behavioral 

functions using models of associative memory, including fear-conditioning and 

reward-learning. The BLA has been shown to process incoming sensory information 

regarding cues, including auditory, visual, gustatory, and olfactory, that predict the 

onset of an unconditioned stimulus, like rewarding stimuli [104-108]. Moreover, 
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neuronal firing in the BLA is altered prior to encounters with food rewards which 

varies according to reward size [109]. The CeA has been shown to be necessary for 

conditioned stimulus output, like freezing following fear conditioning [110]. These 

behavioral functions are relevant to drug addiction as they can signal the availability 

of a drug and mediate drug-specific behaviors. For instance, functional inactivation 

of the BLA by excitotoxic lesions [111], microinjection of tetrodotoxin [112] or 

lidocaine [113] have all been shown to inhibit relapse-like behavior in rats. 

Additionally, lesions and NMDA receptor blockade attenuate behavioral sensitization 

to cocaine or amphetamine [114, 115]. Therefore, amygdala subregions appear to 

be critical substrates for drug conditioning and drug reinforcement. 

The amygdala is particularly relevant to alcohol addiction as it is highly 

sensitive to its pharmacological actions and plays an important role in mediating its 

behavioral effects.  Acute alcohol exposure inhibits NMDA receptors and enhances 

GABA transmission in the amygdala [116]. It is known that the discriminative 

stimulus properties of alcohol are modulated by GABAA receptors in the amygdala 

[117] and multiple site injections of the GABA antagonist, SR 95531, have revealed 

that the most sensitive region for decreasing alcohol self-administration is the CeA 

[118]. This evidence suggests that the amygdala plays a major role mediating 

alcohol’s rewarding properties. In experiments using the conditioned place 

procedure (CPP), ethanol conditioning and expression is disrupted by amygdala 

lesions and dopamine antagonism disrupts CPP expression [119, 120]. Long-term 

exposure to alcohol causes neuroadaptations to occur in the amygdala. Following 

chronic exposure to alcohol, the amygdala compensates to alcohol’s acute effects 
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by increasing NMDA receptor sensitivity and releasing additional glutamate [60, 

121]. Increased glutamate activity is likely to influence amygdala function including 

associative learning. Supporting this idea, chronic alcohol has been shown to cause 

deficits in fear conditioning, possibly by blocking the encoding of new information as 

LTP induction is occluded following this treatment [122]. Alternatively, acute alcohol 

has been shown to enhance consolidation of reactivated fear memories [123]. An 

interpretation of these results may be that alcohol increases synaptic efficiency 

during the consolidation time period, but reduces the capacity for further plasticity 

and learning [122]. Collectively, these studies demonstrate that the amygdala is 

critical to behaviors implicated in addiction including alcohol reinforcement and 

relapse-like behavior. 

Behavioral Models 

Although the human condition is not entirely reproducible in animals, 

behavioral features of addiction can be effectively modeled in rodents. The models 

used in this dissertation include the two-bottle choice procedure, the operant self-

administration procedure, and the reinstatement procedure. The two-bottle 

procedure is useful in examining the long-term neurobiological consequences of 

alcohol consumption. It has inherent face validity and requires common neural 

circuitry between species [124]. One drawback of this procedure is that the 

reinforcing effects of alcohol cannot be measured in most paradigms. A 

complementary approach is the operant self-administration procedure where mice 

perform a response like a lever press to receive an alcohol reward with an inactive 

or water lever present. Increased responding on the alcohol lever is a definitive and 
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quantitative demonstration of alcohol’s reinforcing properties in mice which can then 

be experimentally manipulated. An advantage to this procedure over the two-bottle 

procedure is its temporal acuity related to alcohol specific behaviors. It can used to 

assess the maintenance of self-administration and may be useful in determining 

adaptations following a discrete number of sessions. In reinstatement models, self-

administering mice are given a period of extinction and then exposed to stimuli that 

are thought to promote relapse in humans including stress, cues or contexts 

associated with alcohol, or a priming dose of alcohol [124]. This paradigm can be 

use to examine the neurobiological consequences of stimulus-induced alcohol-

seeking independent of alcohol’s pharmacological actions. 

Rationale 

 Aberrant synaptic plasticity has been proposed to play a major role in 

addiction.  Protein kinase activity regulates plasticity and may be an important 

molecular mechanism in the development of addictive behaviors [58]. The 

experiments in this dissertation were designed to characterize and investigate the 

role of two protein kinases, CaMKII and ERK1/2, in alcohol-related behaviors. 

Initially, we focused on the amygdala due to its role in alcohol reinforcement and 

associative memory. Using and unbiased proteomics approach, CaMKIIα and a 

network of proteins involved in CaMKII synthesis were identified as having a higher 

level of expression in the amygdala of mice following chronic alcohol consumption at 

the start of the dark cycle when there were no detectable blood alcohol levels. 

CaMKII expression was further characterized and the electrophysiological properties 

of amygdala neurons were measured to determine if increased CaMKII 
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corresponded with increased glutamate activity in alcohol-drinking mice. To 

determine if increased CaMKII in the amygdala had a functional consequence, its 

role in the reinforcing effects of alcohol was tested by training mice to self-administer 

alcohol in operant chambers and then infusing CaMKII inhibitors into the amygdala 

prior to operant sessions. Finally, relapse is a major issue in treating alcoholics that 

is dependent on the learning of associations between environmental cues and 

alcohol availability. To address this issue, a mouse model of relapse-like behavior 

was developed and used to test the role of ERK1/2 in cue-induced reinstatement of 

alcohol-seeking.



	  
	  

CHAPTER II: CHRONIC ALCOHOL CONSUMPTION INCREASES CAMKII 
EXPRESSION IN THE AMYGDALA 

 

INTRODUCTION 

 Human alcohol consumption is a pervasive and enduring practice integrated 

into many aspects of society. In developed countries, nearly 50% of adults drink 

alcohol in a manner that imparts little risk of abuse or dependence [125]. 

Approximately 7% of the population, however, transitions from moderate use to 

dependence [1], contributing to serious physical, psychiatric, and social problems 

[126-131]. Although the transition from moderate alcohol drinking to addiction is 

undeniably influenced by complex psychosocial factors [132] chronic alcohol use 

produces discernable physiological adaptations in neural systems that regulate 

adaptive behaviors of the organism, such as alterations in synaptic plasticity ([58, 

133]. The adaptations that occur during the transition to alcohol dependence are 

thought to underlie the long-term persistent nature of addiction and their 

identification is crucial to treatment of the disorder [134]. 

Alcohol-induced synaptic modifications may have their most profound 

consequences on the neural circuitry of the amygdala, a central component of the 

brain’s reward system uniquely positioned to process alcohol reward, alcohol-related 

cues, and influence alcohol-seeking behavior [83, 135]. The amygdala is an 

assembly of interconnected anatomically and physiologically defined nuclei that 
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include the CeA, LA, and BA [100, 136, 137]. Evidence from aversive and appetitive 

learning experiments has delineated unique contributions to associative memory for 

several of these subregions [100]. The LA integrates sensory information related to 

environmental cues and primary reinforcers transmitted via thalamic and cortical 

afferents [138] whereas the BLA has been implicated in cue-induced reinstatement 

of reward-seeking behavior through projections to the nucleus accumbens (NAc) 

[139]. The CeA is widely regarded as being critical for the expression of anxiety [83], 

but perhaps more importantly, it has been identified as a primary neural substrate of 

alcohol reinforcement [118]. 

To evaluate alcohol’s effects on the amygdala, unbiased proteomic analysis 

provides an objective approach for identifying molecular networks that underlie long-

term adaptations to alcohol exposure. Here, we evaluated changes in the amygdala 

proteome induced by chronic alcohol consumption using 2D- differential in gel 

electrophoresis (2D-DIGE) followed by identification of affected proteins by mass 

spectrometry (MALDI-TOF/TOF). We successfully identified 26 proteins that were 

significantly altered by long-term voluntary drinking and focused on the alpha subunit 

of calcium/calmodulin dependent kinase II (CaMKIIα), and several proteins involved 

in its local synthesis. CaMKII is a dynamic protein kinase that has been described as 

a molecular candidate for learning and memory due to its unique properties [65]. 

CaMKII is phosphorylated following increased intracellular levels of Ca2+ that can 

occur following neuronal depolarization and remain phosphorylated long after 

increased Ca2+ levels have subsided ([140, 141]. It can influence the activity of 

multiple neurotransmitter receptors including increasing glutamate transmission by 
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phosphorylating AMPA and NMDA receptor subunits and modulating the trafficking 

of AMPA receptors to the synapse [142]. Importantly, CaMKII is required for multiple 

forms of synaptic plasticity including the induction of LTP ([78, 143] and the 

structural remodeling of dendritic spines [144], effects that demonstrate its ability to 

cause enduring changes in synaptic signaling. Pharmacological and transgenic 

inhibition of CaMKII has established that it regulates several forms of learning and 

memory, including Pavlovian conditioning in the amygdala [145-147]. These 

properties of CaMKII make it an intriguing target for the induction of long-term 

synaptic changes that contribute to the persistent nature of addiction, particularly in 

subregions of the amygdala which mediate the consolidation of stimulus-reward 

learning as well as the reinforcing effects of alcohol [118]. 

Following the identification of CaMKIIα, we sought to further characterize its 

expression and functional properties following voluntary alcohol consumption. To 

determine if CaMKIIα is increased globally, we measured its expression in multiple 

brain regions. As amygdala subregions have unique roles in behavior, we looked at 

CaMKIIα expression in the CeA, LA, and BA and found that it demonstrated its 

largest effect in the CeA. CaMKII has many effects on synaptic plasticity; therefore, 

we measured the electrophysiological properties of CeA neurons following voluntary 

consumption of alcohol, and in agreement with known functions of CaMKII, we 

observed increased AMPA/NMDA ratio in CeA neurons following the two-bottle 

procedure. 
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METHODS 

Subjects: Adult male C57BL/6J mice (7-8 weeks old, Jackson Laboratories) were 

maintained on a 12 hour reverse light dark cycle. Mice were single-housed in 

Plexiglas chambers with food and water available ad libitum except where noted. All 

animals were treated in accordance with the Institutional Animal Care and Use 

Committee at the University of North Carolina at Chapel Hill and NIH guidelines for 

the Care and use of Laboratory Animals (National Research Council, 1996). 

 

2-bottle choice procedure: Initially, mice were given either one bottle of alcohol (10% 

v/v) or water for 3 days. On the 4th day, all mice were given a second bottle of water. 

Every other day, bottles and mice were weighed and the position (left or right) of the 

bottles were switched to prevent side bias. Daily g/kg (alcohol), fluid intake and 

bottle preference were calculated for each mouse. On the 28th day, at the end of the 

light cycle, mice were injected with sodium pentobarbital (6 mg per mouse), trunk 

blood was collected for blood alcohol concentration and mice were perfused with ice 

cold phosphate buffered saline (0.1 M) before being processed for 2D-DIGE, 

immunoblotting, or immunohistochemistry. 

 

Blood collection and assays: For tail blood collection, mice were briefly immobilized 

(<1 min) in a restraint tube (Braintree Scientific, Braintree, MA) and a scalpel was 

used to make a small nick at the end of their tail. Trunk blood was collected from the 

body cavity during perfusions prior to PBS flush. All blood was collected in 

heperanized tubes and immediately centrifuged to separate and collect plasma. BAC 
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of plasma collected (5 µl) was measured via Analox G-5 analyzer (Analox 

Instruments, Lunenburg, MA). Corticosterone concentration was quantified from 

plasma (10 µl) using a Radioimunnoassay Kit (MP Biomedicas, Solon, OH) and 

calculated as ng/ml. 

 

2D-DIGE: To reduce variations in alcohol dose, mice demonstrating consistent 

levels of alcohol consumption (n = 12) throughout the drinking period and control 

mice (n = 12) that had similar fluid consumption were selected for the proteomics 

experiment. To obtain enough tissue for six gels (4 2D-DIGE gels, 1 phosphostain 

gel, and 1 gel for protein collection), mice were matched on fluid preference and 

alcohol consumption and then pooled into samples (3 mice per sample, 4 alcohol 

and 4 water samples). Following perfusions to eliminate blood contamination, mice 

brains were rapidly removed and frozen on dry ice. Using a cryostat, coronal 

sections (0.5 mm) that included the majority of the amygdala were collected (1.0 mm 

posterior to bregma, Franklin and Paxinos, 2008) and bilateral tissue punches (1 mm 

diameter) were directed at the amygdala region. Tissue punches were submerged in 

homogenization buffer that contained protease and phosphatase inhibitors I and II 

(Sigma Aldrich, St. Louis, MO). Remaining tissue was fixed by submerging in 4% 

paraformaldehyde overnight, mounted using super glue on slides and observed 

under a light microscope to confirm correct location of amygdala punches. 

2D-DIGE was performed by Applied Biomics (Hayward, Ca) using the 

following method. Tissue punches were washed (10mM Tris-HCl, 5 mM magnesium 

acetate, pH= 8.0), resuspended in 2D cell lysis buffer (30mM Tris-HCl, pH= 8.8 with 
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7 M urea, 2M thiourea and 4% CHAPS) and sonicated at 4 °C. Tubes were spun at 

14,000 rpm for 30 min to collect supernatant and protein concentration was 

determined using the Bio-Rad protein assay method. CyDye (1:5 diluted with DMF 

from 1 nmol/µl stock) was then added 30 µg of cell lysate along with 10 mM lysine. 

Cy2, Cy3, and Cy5 labeled samples were mixed and diluted with 2X 2D sample 

buffer (8 M urea, 4% CHAPS, 20 mg/ml DTT, 2% pharmalytes and trace amount of 

bromophenol blue). Next, 100 µl of destreak solution and rehydration buffer 7 M 

urea, 2 M thiourea, 4% CHAPS, 20 mg/ml DTT, 1% pharmalytes and trace amount 

of bromophenol blue) was added to 250 µl for the 13 cm IPG strip. Samples were 

mixed well and spun before loading into strip holder with 1 ml mineral oil on top of 

face down 13 cm strip. The IEF was run following the protocol provided (Amersham 

Biosciences, Buckinghamshire, UK) under dark at 20° C. Next, IPG strips were 

incubated in fresh equilibration buffer (50 mM Tris-HCl, pH 8.8, containing 6 M urea, 

30% glycerol, 2% SDS, trace amount of bromophenol blue and 10 mg/ml DTT) for 

10 minutes with slow shaking, rinsed in SDS gel running buffer, transferred into 

gradient SDS-Gel (9-12% SDS), and ran at 15° C. 

Immediately following SDS-PAGE, image scans were obtained with Typhoon 

Trio (Amersham Biosciences, Buckinghamshire, UK) using the provided protocols. 

Images were analyzed using QuantL software (GE-Healthcare, Buckinghamshire, 

UK) and in-gel analysis and cross-gel analysis was performed using DeCyder 

software 6.5 (GE-Healthcare, Buckinghamshire, UK) and changes were expressed 

as ratio. All protein spots that met the following a priori criterion (average change 

greater than 25%, change appeared in all 4 gels, significance determined by t-test, p 
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< 0.05) were picked up by Ettan Spot Picker (GE-Healthcare, Buckinghamshire, UK). 

Selected spots were digested in-gel with trypsin, peptides were extracted, desalted 

and subjected to MALD-TOF/TOF (Applied Biosystems, Foster City, CA) analysis to 

identify each protein. 

 

Immunoblotting: Additional mice (n = 12) underwent the 2-bottle choice procedure 

where tissue was collected in the same manner as the 2D-DIGE experiment with the 

exceptions that individual amygdala samples were collected and homogenized 

(Branson Sonifier 5000) in buffer that contained SDS, protease and phosphatase 

inhibitors I and II (Sigma Aldrich, St. Louis, MO). Protein concentration was 

determined using a BCA assay (Invitrogen, Carlsbad, CA). Western blots were 

performed by loading 8 ug of protein on 8-12% bis tris minigels (Invitrogen, 

Carlsbad, CA) and transferring protein to PVDF membranes using iblot semi dry 

blotting system (Invitrogen, Carlsbad, CA). Blots were initially blocked with 1% BSA 

in buffer solution and probed with the following primary antibodies overnight in 

blocking buffer at 4 °C: monoclonal mouse anti-CaMKIIα (Millipore, 1:10,000), 

polyclonal rabbit anti-pCaMKIIthr286 (Abcam, 1:1500), monoclonal rabbit anti 

pGLUR1ser831 (1:2000), polyclonal rabbit anti-NSF (Cell Signaling, 1:2000), and 

monoclonal mouse anti-GAPDH (1:10,000)). Blots were washed several times and 

incubated in horseradish peroxidase-conjugated secondary antibodies (rabbit anti-

mouse (1:10,000) or goat anti-rabbit (1:10,000) in blocking buffer) for one hour and 

visualized using a chemiluminescent ECL kit (Thermoscientific, Waltham, MA). 

Optical density of each band at corresponding molecular weight was measured 
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using Scion imaging software and values were calculated as percent GAPDH 

(loading control). All values were calculated as percent control (water) from each 

individual blot. 

 

Immunohistochemistry: Coronal sections (40 microns) were collected using a 

vibratome (Leica) and stored in cryoprotectant at -20°C. Sections were washed with 

phosphate buffer solution (0.1 M PBS), followed by inhibition of endogenous 

peroxidase activity with 1% H2O2, antigen retrieval using citra buffer at 70°C, blocked 

with 5% goat serum in PBS with 0.1% Triton-x (Sigma, ) and then incubated with 

primary antibodies (phospho-GluR1ser831 1:1500 (Abcam) or CaMKIIα (Millipore) 

1:10,000) overnight in blocking buffer. Antibody bound protein was visualized using 

ABC vectastain kit (Vector labs, Burlingame, CA) or mouse on mouse kit (Vector 

labs, Burlingame, CA) with DAB as chromagen. Sections were mounted on slides, 

cover slipped with cytoseal and images were taken using a camera mounted on a 

light microscope. Quantification of positive cells and pixels was performed using 

Bioquant software. Pixel density and cell count measurements was calculated from a 

circumscribed field (e.g., brain region) and divided by the area of the region and 

expressed as pixels/mm2 and cells/mm2.  All analyses were carried out by 

experimenters blind to each condition. 

 

Brain Slice Preparation: Following the 2-bottle choice procedure, male C57BL/6J 

mice were decapitated under anesthesia (Isoflurane) 0-6 hours following the final 

exposure to alcohol. The brains were quickly removed and placed in ice-cold 
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sucrose-artificial cerebrospinal fluid (ACSF): (in mM) 194 sucrose, 20 NaCl, 4.4 KCl, 

2 CaCl2, 1 MgCl2, 1.2 NaH2PO4, 10.0 glucose, and 26.0 NaHCO3 saturated with 

95% O2/5% CO2. Slices of 300 µm in thickness were prepared using a Tissue Slicer 

(Leica). Slices were then stored in a heated (approximately 28°C), oxygenated (95% 

O2–5% CO2) holding chamber containing ‘normal’ ACSF [ACSF: (in mM) 124 NaCl, 

4.4 KCl, 2 CaCl2, 1.2 MgSO4, 1 NaH2PO4, 10.0 glucose, and 26.0 NaHCO3] or 

transferred to a submerged recording chamber where they were perfused with 

heated (28–30°, unless otherwise noted), oxygenated ACSF at a rate of about 

2 ml/min. Slices were allowed to equilibrate in normal ACSF for 1 h before 

experiments began. 25 µM picrotoxin was included in the extracellular solution in all 

experiments to block GABAergic transmission. 

 

Whole-Cell Voltage Clamp Recordings (Performed by Tom Kash’s Lab): Slices were 

placed in a submerged chamber (Warner Instruments, Hamden, CT) and neurons of 

the CeA were directly visualized with infrared video microscopy (Olympus, Tokyo, 

Japan).  In general, recordings were focused on the medial aspect of the CeA, 

where the greatest change in CaMKIIα immunohistochemistry occurred. Recording 

electrodes (3–6 MΩ) were pulled on a Flaming-Brown Micropipette Puller (Sutter 

Instruments, Novato, CA) using thin-walled borosilicate glass capillaries. Following 

successful break in, spontaneous excitatory post synaptic currents (sEPSCs) were 

recorded at -70mV. Immediately following this, we evaluated the paired pulse ratio of 

evoked EPSC in the same neuron using a 50 ms interstimulus interval.  EPSCs were 

evoked by local fiber stimulation with bipolar ni–chrome electrodes. Stimulating 
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electrodes were placed 100–500 µm lateral from the recorded neuron, and electrical 

stimuli (5–40 V with a 100–150 µs duration) was applied at 0.2 Hz unless otherwise 

noted. Paired-pulse ratios are defined as EPSC2/EPSC1. AMPA/NMDA ratios were 

calculated as the ratio of the magnitude of the EPSC at +40 mV at 50 ms following 

stimulation (NMDA) to the peak of the EPSC at –70 mV (AMPA) similar to the 

approach used in [148]. Recording electrodes were filled with (in mM) Cs+-gluconate 

(135), NaCl (5), HEPES (10), EGTA (0.6), ATP (4), GTP (0.4), pH 7.2, 290–

295 mOsmol. Signals were acquired through a Multiclamp 700B amplifier (Axon 

Instruments), digitized and analyzed through pClamp 10.2 software (Axon 

Instruments). Input resistance, holding current, and series resistance were all 

monitored continuously throughout the duration of experiments. Experiments in 

which changes in series resistance were greater than 20% were not included in the 

data analysis.  

RESULTS 

Chronic drinking increases CaMKII pathway in the amygdala 

In our initial experiment, we sought to identify changes in the amygdala proteome 

following chronic alcohol consumption using the standard 2-bottle choice procedure. 

Male C57BL/6J mice (n = 40) consumed 10% alcohol (v/v) or water for 28 days. We 

selected a subset of alcohol-drinking mice (n = 24) that drank alcohol consistently 

throughout the experiment, demonstrated a preference for the alcohol solution 

compared to water (alcohol preference = 75%), and voluntarily consumed large 

amounts of daily alcohol (averaged 11.55 g/kg per day) (Figure 1a). Tail bloods 

were taken at 2 time points to measure BACs: at the beginning of the dark cycle 
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BACs were not different then water drinking mice and 6 hours into the dark mice 

obtained moderate blood alcohol levels (BACs = 39.1 mg/dl) (Figure 1b). On the 

28th day, at the start of the light cycle when there were no detectable BACs (Figure 

1b), differences in corticosterone levels or differences in withdrawal and anxiety 

measures (unpublished data), amygdala tissue from water and alcohol drinkers was 

collected and compared using 2D-DIGE.  

 

Figure 1: The 2-bottle choice procedure. C57BL/6J mice selected for the proteomics experiment 
drank 10% alcohol (v/v) for 28 days (a) showing consistent levels of alcohol consumption (mean 
=11.55 g/kg per day). (b) Mice demonstrated a pattern of drinking where and no detectable levels at 
the start of the dark cycle and they showed moderate blood alcohol levels (39.1±7.08 mg/dl) 6 hours 
into dark cycle. 

A total of 28 proteins met a priori criterion for identification and 27 of them were 

successfully identified using mass spectrometry (MALDI TOF/TOF) (Figure 2b). Due 

to our initial hypothesis that alcohol consumption alters plasticity-related proteins, 

our focus shifted to the significantly increased expression (+35%) in CaMKIIα (F(1,7) 

= , p = 0.0048) (Figure 3), a regulator of synaptic strength as well as other identified 

proteins that regulate its local synthesis including kinesin heavy chain 5C (KIF5C) 

(+35%, p = 0.004, t-test),  [149], a retrograde transporter of CaMKIIα mRNA, and 

eukaryotic elongation factor 2 (EEF2) (+31%, p = 0.0009, t-test) which locally 
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translates CaMKIIα mRNA [150] (Figure 4). Additionally, N-ethylmaleimide sensitive 

factor (NSF), a postsynaptic stabilizer of AMPA receptors [151] was increased 

(+45%, p = 0.0051, t-test) and, collectively, this network of proteins suggests an 

enhancement of glutamatergic signaling in the amygdala following chronic alcohol 

consumption. 

 
Figure 2:	  Proteomics identification of altered protein expression following alcohol consumption. Amygdala 
tissue from each group was labeled, combined and ran on 4 gels. (a) Representative gel showing protein 
staining in water (Cy2, green), alcohol (Cy3, red), and merged image with protein spots exhibiting differential 
protein abundance between groups numerically labeled (white circles). Molecular weight decreases from top to 
bottom and isolelectric point increases from left to right. (b) A list of proteins categorized by function shows 
corresponding spot on gel, significance level (p-value, t-test) and fold change.	   

	   Gene	  ID	   Spot	  #	   p	  Value	   Change	  
Alcohol	  Metabolism	   	   	   	   	  
Aldehyde	  dehydrogenase	  	   Aldh1	   7	   0.0052	   1.26	  	  
	  Malate	  dehydrogenase,	  
cytosolic	  

Mdh1	   26	   0.0007	   -‐1.31	  

Glycolysis	   	   	   	   	  
Hexokinase,	  type	  1	   Hk1	   6	   0.0052	   1.72	  
ATP	  Citrate	  Lyase	   Acly	   5	   0.002	   1.42	  
Adenylate	  kinase	   Ak1	   28	   0.00083	   -‐1.28	  
Phosphoglycerate	  mutase	  1	   Pgm	   27	   0.021	   -‐1.32	  
Aldolase	  1,	  A	  isoform	   Aldoa	   24	   0.0017	   -‐1.35	  
Cytidine	  monophosphate	  
(UMP-‐CMP)	  kinase	  1	  

Cmpk1	   29	   0.016	   -‐1.35	  

Fumarate	  hydratase	   Fh1	   23	   0.021	   -‐1.41	  
Enolase	  1	   Eno1a	   20	   0.012	   -‐1.45	  
Mitochondrial	   	   	   	   	  
Mitofilin	   Immt	   11	   0.01	   1.45	  
Leucine-‐rich	  ppr	  motif	  
containing	  protein	  

Lrppc	   2	   0.044	   1.43	  

Chaperone	  Proteins	   	   	   	   	  
Chaperonin	  subunit	  7	   Cct7	   16	   0.003	   1.34	  
Heat	  shock	  protein	  90	  beta	   Hsp90	   9	   0.00088	   1.29	  
Heat	  shock	  protein	  70	  	   Hsp70	   12	   0.004	   -‐1.42	  
Development/Plasticity	   	   	   	   	  
N-‐ethylmaleimide	  sensitive	  
fusion	  protein	  

Nsf	   10	   0.0051	   1.45	  

Syntaxin	  binding	  protein	  1A	   Stxbp1	   13	   0.0022	   1.44	  
Kinesin	  heavy	  chain	  5C	   Kif5c	   4	   0.004	   1.35	  
Calcium/calmodulin	  
dependent	  kinase	  2	  alpha	  	  

Camk2a	   19	   0.0038	   1.35	  

brain	  abundant,	  membrane	  
attached	  signal	  protein	  1	  	  

Basp1	   18	   0.0084	   1.33	  

Eukaryotic	  elongation	  factor	  2	   EeF2	   8	   0.0009	   1.31	  
Adenylate	  cyclase-‐associated	  
protein	  1	  

Cap1	   17	   0.0096	   -‐1.27	  

Dihydropyrimidinase-‐like	  2	   Crmp2	   14	   0.024	   -‐1.29	  
G-‐protein	  beta	  2	  subunit	   Gnb2	   25	   0.0007	   -‐1.31	  

Down	  syndrome	  cell	  adhesion	  
like	  protein	  

Dscam	   15	   0.014	  
	  

-‐1.33	  
	  

Truncated	  	  platelet-‐activated	  
factor	  1	  

Lis1	   21	   0.034	   -‐1.39	  

Cannabanoid	  receptor	  
interacting	  protein	  1A	  

Crip1a	   30	   0.0012	   -‐2.03	  
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Figure 3: Proteomics analysis revealed increased CaMKIIα in the amygdala of alcohol-drinking mice. 
(a) Image taken of an amygdala punch (right) used in proteomics experiment with amygdala 
subreginos identified (left). (b) Top panel shows representative gels of water (left) and alcohol (right) 
conditions depicted in black and white 2D gels of amygdala tissue with CaMKIIα spot circled in 
yellow. Other proteins meeting criterion for selection were circled in pink. Lower panels illustrate 3D 
rendition of CaMKIIα flourescence, indicative of protein abundance, between groups and 
demonstrating increased levels in alcohol-drinking group. (c) Graph of CaMKIIα protein abundance 
revealed by 2D DIGE analysis, *** p < 0.005, t-test.  

Alcohol increases CaMKIIα, not CaMKIIβ in the amygdala 

To validate findings from the proteomics study, additional two-bottle mice (n =  28) 

were ran and tissue was collected using similar methods for western blot analyses to 

confirm protein changes. To increase our chances at replicating our results, we 

selected mice (n = 14) that matched the drinking patterns, preference and volumes 

as the proteomics experiment (12.85±0.9 g/kg daily, 69.5±3.0% preference). 

Immunoblots confirmed that CaMKII α (+60%, p = 0.0154, t-test), and not CaMKIIβ, 

had increased expression in the amygdala of alcohol drinking mice (Figure 4a,b). 

Levels of p-CaMKIIthr286 and p-GLUR1ser831 were elevated (+33% and +52%, 

respectively) in alcohol drinkers, but not significantly different between groups 

(Table 1). Additionally, NSF was probed and shown to have increased expression in 

the amygdala of alcohol-drinking mice (+41%, p < 0.049, Student’s t-test) (Figure 

4c). To determine if increased CaMKII expression is specific to the amygdala, the 

nucleus accumbens (NAc), striatum (STR), and motor cortex (MCTX) were probed 
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for CaMKIIa expression. The NAc demonstrated increased CaMKIIα (p = 0.026, t-

test), but not CaMKIIβ expression, and alternatively, the PFC, STR, and MCTX did 

not exhibit changes in either CaMKII protein levels (Table 1). Our data demonstrate 

that alcohol-drinking increased CaMKIIα expression in brain regions that form the 

greater amygdala (a region known to regulate reward and associative memory 

processing) compared to brain regions involved in motor activity. As a result, these 

effects are likely to have functional consequences related to alcohol consumption. 

 

Figure 4: Western blot analyses was used to confirm altered protein expression seen in proteomics 
experiment. Comparison of amygdala tissue from water and alcohol drinking mice demonstrated 
increased CaMKIIα and NSF expression (a,c) but not CaMKIIβ (b) expression in alcohol-drinking 
mice as evidenced by representative blots with optical density (OD) measurements below that were 
calculated as loading control (GAPDH) ratio and as the percentage of their levels in water-drinking 
mice. *, P< 0.05, Student’s t-test.  
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Table 1: Western blot results 

 

 

Increased CaMKIIα and p-GluR1 in specific subregions of the amygdala 

The amygdala is a heterogeneous structure comprised of several subregions with 

diverse projections and neuronal subtypes. Accordingly, they are known to mediate 

different aspects of reward-seeking behavior. Using immunohistochemistry, our first 

goal was to determine if increased CaMKIIα expression in the amygdala showed 

subregional specificity. Second, despite a lack of p-GLUR1 Ser831 effect found in 

western blot analysis, we observed increased expression, but not significant in 

alcohol-drinking mice. Because tissue punches lack regional specificity and likely 

include some neighboring brain region tissue, we examined p-GLUR1 Ser831 

expression using immunohistochemistry to reveal subregional effects. Tissue was 

collected from an additional group of 2-bottle mice that exhibited similar drinking 

patterns alcohol preference and fluid consumption as prior experiments. 

	  
  

H2O EtOH 
PFC CaMKIIα 100 ±4.3 101.6 ±10.2 
  CaMKIIβ 100 ±5.6 94 ±4.7 

    NAC CaMKIIα 100 ±4.3 136.6 ±10.8* 
  CaMKIIβ 100 ±10.2 142 .8 ±33.0 

    STR CaMKIIα 100 ±3.0 108.3 ±9.5 
  CaMKIIβ 100 ±3.8 109.2 ±12.0 

    AMY CaMKIIα 100  ±10.5 160.0 ±21.4* 
  CaMKIIβ 100  ±13.2 96.2 ±14.0 
  pCaMKII 100  ±15.4 132.9  ±37.8 
  pGLUR1 100  ±20.3 152.0 ±35.1 
  NSF 100  ±11.3 139.6 ±17.4 

    MCTX CaMKIIα 100  ±11.9 120.1  ±20.3 
  CaMKIIβ 100  ±11.4 114.4  ±11.4 
	  
*, p < 0.05, Student’s t-test 



	  43	  

Immunoperoxidase staining and quantification revealed that CaMKIIα IR (CaMKIIα 

positive cell counts per mm2) was significantly increased in the CeA (p = 0.011, t-

test) and the LA (p = 0.045, t-test) (Figure 5), but not the BA substructures of 

alcohol-drinking mice. In addition, p-GluR1Ser831 IR (positive pixels per mm2) was 

increased in the CeA of alcohol drinking mice, but not the LA, or BA (Figure 6). 

 

Figure 5: CaMKIIα immunohistochemistry reveals increased expression in specific amygdala 
subregions. (a, c) Representative micrographs (20X) demonstrating that chronic alcohol consumption 
increased expression of CaMKIIα in the CeA and LA. (b,d) Immunoreactivity (IR) was measured as 
positive cells per mm² and quantified in subregional fields. Significant increases were seen in the CeA 
(b) and LA (d) of alcohol-drinking mice. *, p< 0.05, **, p < 0.01; Student’s t-test. 

CeA CaMKIIα IR

Water Alcohol

LA CaMKIIα IR  

Water Alcohol

a b

c d

20X

20X

CeA

H2O EtOH
0

200
400
600
800

1000
1200

**

Drinking History
C

aM
K

IIα
 IR

(c
el

ls
 / 

m
m

2 )
LA

H2O EtOH
0

200
400
600
800

1000
1200 *

Drinking history

C
aM

K
IIα

 IR
(c

el
ls

 / 
m

m
2 )



	  44	  

 
Figure 6: p-GLUR1Ser831 immunohistochemistry reveals increased expression in the central amygdala 
(CeA). (a) Representative micrographs (20X) depicting expression pattern of p-GLUR1Ser831 in the 
CeA water and alcohol-drinking mice. (b) Immunoreactivity (IR) was measured as positive pixels per 
mm² and quantified in subregional fields. Significant increases were seen in the CeA of alcohol-
drinking mice. *, p< 0.05; Student’s t-test.  

 

Alcohol drinking led to increased glutamatergic transmission in CeA 

Growing evidence indicates that chronic alcohol exposure alters synaptic 

activity in the sub-regions of the amygdala [43, 60, 121, 152].  Evidence is lacking, 

however, regarding the influence of chronic voluntary alcohol self-administration. 

Given, the observed alcohol-induced increases in CaMKIIα and the known role of 

these proteins in excitatory synaptic activity [153], we predicted that a history alcohol 

drinking would increase AMPAR-mediated synaptic activity in the CeA. Additional 

alcohol and water drinking mice under the same two-bottle drinking protocol 

(n=6/group) were used. [154, 155]. Alcohol-drinking mice showed a significantly 

higher AMPA/NMDA ratio compared to water drinking controls (p < 0.005, Student’s 

t-test) (Figure 7a,b). When taken together with the observed increase in p-

GluR1Ser831, this result suggests that chronic voluntary alcohol drinking increases 

synaptic strength/AMPAR function in the CeA. Since exposure to chronic ethanol 

vapor increases ethanol-induced glutamate levels in CeA [60], we measured 
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response to paired pulses as an index of the probability of transmitter release [156].  

Paired-pulse ratio was not different between alcohol (1.293±0.19) and water controls 

(1.45±0.13) (Figure7c), a result that suggests alcohol drinking did not alter 

probability of transmitter release. We also examined stimulated EPSCs (sEPSC) to 

further characterize potential synaptic sites of action. Alcohol drinking mice showed 

an increase in sEPSC frequency (p < 0.01, Student’s t-test) (Figure 7d,e) but no 

change in amplitude (alcohol: 21.4±1.2, water: 21.0±1.3) (Figure 7f). An increase in 

the frequency of sEPSCs in the absence of change in paired-pulse ratio has been 

interpreted to reflect a potential increase in the number of functional AMPARs at 

previously silent post-synaptic synapses [155, 157]. Combined with results shown 

above, these results suggest that voluntary drinking leads to post-translational 

adaptations in AMPAR receptor activation (e.g., phosphorylation at GluR1Ser831, the 

CaMKII phosphorylation site) that are associated with increased AMPAR-mediated 

synaptic activity in the CeA.  
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Figure 7: Electrophysiological properties of central amygdala neurons. (a) Representative tracings of 
AMPA and NMDA currents taken from whole cell patched central amygdala in water and alcohol 
drinking mice. (b) Alcohol drinking mice show increased AMPA/NMDA ration compared to water 
drinking mice, but without an changes in PPR (c). (d) Representative tracings of sEPSCs from each 
group demonstrating increase in sEPSC frequency, but not amplitude and quantified in (e) and (f)  (*, 
p<.05; **, p < 0.01; Student’s t-test).  

	  

DISCUSSION 

 An understanding of the molecular mechanisms by which alcohol use causes 

long-term changes to reward-related neurocircuitry may lead to novel 

pharmacotherapeutic interventions for addictive behaviors. Here, we demonstrate 

using multiple techniques that expression of the protein kinase CaMKIIα is increased 

in the amygdala, particularly the CeA, following chronic alcohol self-administration. 

As CaMKII is known to have a requisite role in many forms of synaptic plasticity [69], 

we measured electrophysiological properties of CeA neurons and found they 

200 ms

20
 p

A

H2O	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  EtOH

H2O	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  EtOH

a

H2O EtOH
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

Drinking History

Pa
ire

d 
pu

ls
e 

ra
tio

H2O EtOH
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5 **

Drinking History

A
M

PA
/N

M
D

A
 R

at
io

H2O EtOH
0

1

2

3

4

5 *

Drinking History

sE
PS

C
 F

re
qu

en
cy

 (H
z)

H2O EtOH
0

5

10

15

20

25

Drinking History

sE
PS

C
 A

m
pl

itu
de

 (p
A

)

b c

d e f

Drinking History



	  47	  

exhibited an increased AMPA/NMDA ratio in alcohol-drinking mice in agreement with 

evidence that CaMKII promotes the delivery of AMPARs to the synapse [64].  

In our initial screen, we identified 26 proteins exhibiting differential protein 

abundance with an unbiased proteomics approach in the amygdala of alcohol- 

compared to water-drinking mice. An intriguing subset of these proteins included 

CaMKIIα and related proteins implicated in CaMKIIα translation and AMPA receptor 

trafficking. This subset comprised KiF5C, a transport molecule that shuttles cargos 

that include CaMKIIα and GluR2 subunits to the PSD [158], EEF2, an elongation 

factor that, when phosphorylated, participates in direct CaMKIIα mRNA translation 

[150] and NSF, an ATPase that binds to GluR2 and stabilizes surface expression of 

AMPA receptors in the synapse [159]. Collectively, these proteins represent 

potential cellular machinery for increasing CaMKII expression and the insertion and 

stabilization of AMPA receptors in the synapse. Their concomitant increase in 

amygdala expression following voluntary alcohol consumption points to an 

enhancement of glutamate transmission. In addition to this subset, previous 

proteomics studies on brains of human alcoholics revealed several homologous 

proteins that we identified including Aldh1, Crmp2, Gnbp, Immt, Eno1a, and Hsp70 

[160], suggesting that our findings may translate to the human condition. Our largest 

change was a 2-fold decrease in the expression of cannabanoid interacting protein 

1A (Crip1a), a relatively understudied protein which has been suggested as a novel 

target for substance abuse disorders [161] through its actions on CB1 activity, a 

receptor known to affect alcohol consumption [162]. 
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Figure 8: Schematic depicting glutamatergic synapse and relation to proteins identified by 2D-DIGE 
as being upregulated in the amygdala. CaMKII is activated following increased levels of calcium 
(Ca2+) and the binding of the calcium/calmodulin (Ca2+/CaM) complex. Once phosphorylated at its 
thr286 site, CaMKII has multiple actions, including phosphorylation of several substrates involved in 
plasticity including NR2B NMDA subunit, GLUR1 AMPA subunit, and CREB, following translocation 
to the nucleus. In addition to CaMKIIα, proteins involved in its synthesis were also upregulated by 
alcohol including KIF5C, which transports CaMKII mRNA and AMPAR subunits towards dendrites, 
and EEF2, which directly participates in local CaMKIIα translation. NSF plays a role in stabilizing 
AMPARs in the synapse. In addition to postsynaptic actions, several identified proteins affect 
presynaptic glutamate activity (CaMKIIα, CRMP2, STXBP1, NSF). 

We focused our efforts on CaMKII because it is an ideal molecular candidate 

for initiating and sustaining maladaptive plasticity following drug exposure. The 

CaMKII pathway is affected by many drugs of abuse and has been proposed as a 

downstream converging point for multiple neurotransmitter systems [85]. In addition, 

it regulates surface expression of inhibitory and excitatory neurotransmitter receptors 
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[163, 164] as well as phosphorylating transcription factors associated with long-term 

neuroplasticity and synapse maturation including CREB and NeuroD [68, 165]. 

Previous work has identified increased CaMKII expression in the nucleus 

accumbens following cocaine and morphine exposure [166, 167]. However, much 

less is known about how drug exposure affects CaMKII expression in the amygdala, 

and only a few studies overall have tested how alcohol affects CaMKII expression 

[86]. Therefore, we sought to further characterize the effect of chronic alcohol 

consumption on CaMKII expression in multiple brain regions using immunochemical 

methods. We found that total expression of CaMKIIα, but not CaMKIIβ, was 

increased in the amygdala and NAc of alcohol-drinking mice, but not the striatum or 

motor cortex. Increased CaMKIIα compared to CaMKIIβ expression found in these 

regions has been reported following increased synaptic activity and learning [168]. 

To determine CaMKII activity, we probed for pCaMKIIThr286 and pGLUR1Ser831 and 

although we saw increased protein levels in alcohol-drinking mice, these changes 

were not significant using western blot analysis. Additionally, we confirmed that the 

ATPase NSF was increased in the amygdala of alcohol-drinking mice as found in the 

proteomics experiment. In addition to AMPAR stabilization, NSF is involved in 

GABAR endocytosis and presynaptic vesicular release [169, 170] which may 

contribute to the increased electrophysiological activity observed in the amygdala. 

Finally, our method for collecting amygdala tissue was not specific to amygdala 

subregions, so we used immunohistochemistry and found that CaMKIIα is increased 

in the CeA and LA, with the largest change occurring in the CeA. In addition, we 

determined that pGluR1Ser831 is increased in the CeA of alcohol-drinking mice. 
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 Adaptations of glutamate transmission are a consequence of exposure to 

many drugs of abuse including alcohol. Behaviorally relevant doses of alcohol in 

acute preparations inhibit glutamate receptors with NMDARs being primarily affected 

in the brain regions that have been studied [37]. Alternatively, chronic exposure to 

alcohol has been widely shown to result in hyperglutamatergic adaptations 

throughout the brain. Compensatory increases in NMDA subunit expression and 

subsequent sensitization to NMDA agonists have been reported in many limbic 

structures including the amygdala [43]. Following prolonged exposure to alcohol 

vapor, the CeA shows increased expression of NMDA subunits as well as increased 

glutamate release in response to acute alcohol [43, 60, 171, 172]. Our finding that 

chronic alcohol consumption increases synaptic response in the CeA as indicated by 

increased sEPSC frequency and AMPA/NMDA is consistent with findings that 

chronic alcohol exposure enhances glutamate in the CeA. However, our specific 

findings that AMPA currents are increased relative to NMDA currents and that there 

were no detectable changes in PPR differ from previous reports in the CeA [60, 171] 

and BLA [121, 173]. This may be explained by the increased BACs seen in these 

studies or may be due other methodological issues. A key difference in exposure 

methods is that these studies use forced alcohol exposure and which has inherent 

motivational differences compared to voluntary alcohol consumption. Additionally, 

the unique circumstance that acute alcohol inhibits AMPAR EPSCs in the CeA as 

opposed to what has been reported in the BLA may lend itself to adaptive increases 

in AMPAR function [173]. Similar findings to our own have been reported in the VTA 

following voluntary alcohol consumption in rats, where increased AMPA/NMDA ratio 
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and spontaneous and miniature EPSC frequency were found in the absence of 

alterations in EPSC amplitude or PPR [174]. To address these discrepancies, direct 

comparisons of voluntary and involuntary alcohol exposure would need to be 

accomplished possibly through intra-catheter self-administration of alcohol and 

yoked controls, however this would be difficult to accomplish. Lastly, it is important to 

note that we did not establish a clear link between increased CaMKII activity and 

increased AMPA currents in the CeA, however, previous research has shown that 

CaMKII inhibition decreases NMDA dependent synaptic insertion of AMPA receptors 

[175]. 

 In summary, voluntary drinking upregulated CaMKII and a network of proteins 

involved in its synthesis as well as the functional properties of amygdala neurons. 

These initial adaptations are likely to contribute to increased excitatory transmission 

through plastic changes in glutamatergic synapses that causes the 

hyperglutamatergic state seen in alcohol dependence.  Disrupted glutamate 

homeostasis has been viewed as an adaptation that underlies the loss of control 

over drug-seeking seen in addicts [176]. New therapies are being developed to 

reverse synaptic glutamate including targeting pre- and postsynaptic mGLuRs, 

which can decrease neuronal glutamate release and receptor activity, as well as 

targeting cysteine-glutamate exchange proteins on glia like GLT1 which regulate 

extracellular glutamate levels [176]. Both of these approaches have been successful 

in reducing drug-seeking in preclinical models [177-180]. A second strategy is to 

regulate glutamate receptor activity through intracellular mechanisms, like the 

modulation of CaMKII, which has had its own success in reducing drug-seeking in 
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animal models [85]. A potential drawback of targeting CaMKII is that it regulates a 

wide array of cellular functions and could likely lead to undesirable side effects. 

While additional research is needed to better understand CaMKII’s role in addiction, 

the results presented here indicate that it may regulate alcohol-related behaviors.  



	  
	  

CHAPTER III: CAMKII ACTIVITY FUNCTIONALLY REGULATES 
ALCOHOL REINFORCEMENT 

 

INTRODUCTION 

The development of alcohol addiction is a complex multiphasic process that is 

characterized initially by repeated intoxication episodes that give way to compulsive 

drug intake and later stages of addiction that include dependence/withdrawal 

syndromes [181]. Contemporary theories of addiction suggest that alcohol produces 

maladaptive changes in molecular cell signaling pathways that lead to enduring 

changes in the function of specific neural circuits, such as the mesocorticolimbic 

system [182-184]. Accordingly, these drug-induced adaptations are thought to 

regulate behavioral pathologies that occur in alcoholism [57, 185, 186]. In spite of 

these widely held views, the extent to which initial alcohol use during the intoxication 

stage produces functionally significant changes in molecular signaling systems, and 

whether these neural targets of alcohol regulate motivation to consume the alcohol, 

remain to be fully characterized. 

Emerging evidence has established that CaMKII activity is altered by drugs of 

abuse and that it plays a role in addictive behaviors [57]. CaMKII is a family of Ca2+-

activated Ser/Thr protein kinases that mediates many intracellular responses in the 

brain including regulation of membrane current, neurotransmitter synthesis and 

release, cytoskeletal organization, gene expression, and synaptic plasticity
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[64, 187, 188]. CaMKII is activated when neuronal depolarization leads to Ca2+ entry 

into the cell through multiple sources including ionotropic glutamate receptors, L-

type voltage-gated calcium channels, and via release from internal stores following 

G protein receptor activation. Following activation, CaMKII can translocate to the 

membrane and/or postsynaptic density where it regulates receptor (i.e., NMDA, 

AMPA) activity [142]. Thus, the CaMKII pathway is a candidate molecular 

mechanism for the drug-induced neurodaptations thought to contribute to addictive 

behaviors.  

A number of targets of CaMKII, including NMDA and AMPA receptors, PSD 

proteins, CREB, BDNF, and the MAPKs are known to regulate alcohol-related 

behaviors including self-administration and relapse (e.g., [186, 189-193]). Thus, 

CaMKII may represent a molecular point of convergence in the dynamic regulation 

of maladaptive behaviors associated with alcoholism, but it is unknown if CaMKII 

functionally regulates these critical behaviors. In view of this concept, research 

suggests that the development of addiction involves dysregulated glutamate 

transmission in neural circuits that regulate normal adaptive functions of the 

organism [176, 194-196]. These ideas are supported by numerous studies showing 

dependence-induced changes in glutamate-mediated biochemical, physiological, 

and behavioral functions (e.g., [59, 60, 121, 197-200]). However, it remains a 

significant goal for research to identify molecular and cellular adaptations in 

glutamate systems induced by initial alcohol use that mechanistically regulate self-

administration behavior.  
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In chapter II, we found that CaMKII expression is increased in the CeA 

following alcohol consumption. In agreement with CaMKII’s actions on glutamate 

receptor trafficking and synaptic plasticity [201], we found that alcohol drinking 

increased the AMPA/NMDA ratio in CeA neurons.  The amygdala is a 

heterogeneous set of nuclei consisting of several anatomically and functionally 

distinct structures. The lateral structures (LA and BLA) appear cortex-like and send 

major glutamatergic projections to the CeA, which consists primarily of striatum-like 

GABAergic projection neurons [202]. Processing of primary reinforcement is directed 

via the CeA and lateral structures regulate associative learning [203, 204]. 

Accordingly, current evidence indicates that the CeA is an integral part of the neural 

circuitry that underlies the intoxication/binge stages of addiction, which involve a 

major influence by positive reinforcement mechanisms [181]. For example, 

amygdala activity correlates with craving in alcoholics [33] and a variety of 

transmitter systems in the CeA have been shown to regulate alcohol reinforcement 

in rodent models [118, 205-208]. Interestingly, electrolytic lesions of the CeA 

reduced limited-access alcohol drinking (two-bottle procedure) in C57BL/6J mice but 

had no effect in mice that were made dependent on alcohol via vapor inhalation 

[209], providing strong support for involvement of the CeA in the pre-dependent 

stage of alcohol addiction. It is unknown if CaMKII activity in the amygdala regulates 

alcohol-seeking behavior. 

To address this question, we first examined adaptations in CaMKII activation 

(phosphorylation) in the CeA following operant alcohol vs. sucrose self-

administration. We found that operant self-administration of sweetened alcohol 
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elevated levels of p-CaMKIIthr286 and its receptor target p-GLUR1ser831 in the CeA 

and LA. Enhanced glutamate activity in the amygdala has been shown to occur 

following alcohol exposure [43, 121] and play a role in alcohol-related behaviors 

including conditioned-place preference [171] and increased anxiety-related behavior 

during withdrawal from chronic alcohol exposure [121]. Due to CaMKII’s effects on 

glutamate activity, we hypothesized that increased CaMKII activity plays a role in 

alcohol self-administration and influences operant self-administration of alcohol 

differently than sucrose. Therefore, we performed mechanistic studies to evaluate 

regulation of operant alcohol self-administration behavior by CaMKII in the 

amygdala.  We found that inhibition of CaMKII phosphorylation in the amygdala 

attenuates alcohol- but not sucrose-self-administration in the absence of 

spontaneous locomotor deficits. This finding led us to conclude that CaMKII 

functionally and selectively regulates alcohol reinforcement. A better understanding 

of how changes in CaMKII signaling regulates behavioral pathologies in alcohol 

addiction has the potential to lead to new pharmacotherapeutic strategies for the 

treatment of alcohol addiction. 

 

METHODS 

Animals: Male C57BL/6J mice (Jackson Labs, Bar Harbor, ME) were group housed 

in a colony maintained at 27ºC on a reverse 12 hour light-dark cycle. Experiments 

were conducted during the dark cycle. Mice were 8-10 weeks at the onset of 

experiments. Food and water are available ad lib in the home cage unless otherwise 

noted.  
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Apparatus: Operant self-administration sessions were conducted in two-lever 

operant chambers (Med Associates, Georgia, VT). Chambers were interfaced to 

Windows-based PCs for control of experimental sessions and data recording. 

Responses on the “active” lever were reinforced by delivery of a liquid solution 

(0.014 ml) into an adjacent drinking trough. Reinforcement delivery was paired with 

4-sec visual (light above the lever) and auditory (pump sound) stimuli. Responses on 

the “inactive” lever were recorded but produce no programmed consequence. Head 

entries into the trough were recorded when an infrared photo beam is broken. 

 

Operant self-administration: To facilitate acquisition of the lever-pressing behavior, 

mice were deprived of fluids for ~20 hours prior to initial training in the operant 

chamber. The first 3 training sessions lasted 16 hours and began with 5% sucrose 

(w/v) as the reinforcing solution. During the 1st session, one lever press on the active 

lever results in a reinforcer delivery (FR1). For the 2nd session, the response 

requirement is increased from FR1 to FR2 to FR4 following completion of 15 

reinforcements at each response requirement and for the 3rd session the response 

requirement is FR4. The response requirement for all subsequent sessions is FR4 

and each daily session is 1 hour. Mice were then trained to self-administer alcohol 

using a sucrose fading procedure [189] during which the concentration of alcohol 

was gradually increased from 0% to 9% (v/v) and sucrose is decreased from 5% to 

2% (w/v). A minimum of 2 testing sessions were conducted at each concentration. 

Mice drank a final sweetened alcohol solution of 9% ethanol (v/v) and 2% sucrose 
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(w/v) for the number of sessions outlined in each experiment. Sucrose mice were 

trained similarly, but did not have alcohol faded into their solutions. 

 

Immunohistochemistry: Immediately following the self-administration session mice 

were euthanized with sodium pentobarbital, perfused with first ice cold PBS and then 

fixed with 4% paraformaldehyde. Coronal sections (40 microns) were collected using 

a vibratome (Leica) and stored in cryoprotectant (30% glycerol, 30% ethylene glycol 

in 0.1 PBS) at -20°C. Sections were washed with phosphate buffer solution (PBS), 

followed by inhibition of endogenous peroxidase activity with 1% H2O2, antigen 

retrival using citra buffer  at 70°C, blocked with 5% goat serum  in PBS with 0.1% 

Triton-x (Sigma, St. Louis, MO) and then incubated with primary antibodies 

(phospho-CaMKIIthr286 1:1500 (Abcam), phosphor-GLUR1Ser831 or CaMKIIα 

(Millipore) 1:10,000) overnight in blocking buffer. Positively labeled cells were 

visualized using DAKO kit (Carpinteria, CA) or mouse on mouse kit (Vector labs, 

Burlingame, CA) each using DAB as chromagen.  

Immunoreactivity was visualized using an Olympus CX41 light microscope 

(Olympus America, Center Valley, PA).  Images were acquired using a digital 

camera (Regita model, QImaging, Burnaby, BC) interfaced to a computer (Dell, 

Round Rock, TX). Image analysis software (Bioquant Nova Advanced Image 

Analysis; R&M Biometric, Nashville, TN) was used to quantify immunoreactivity. The 

microscope, camera, and software were background corrected and normalized to 

preset light levels to ensure fidelity of data acquisition.  Pixel density and cell count 

measurements were calculated from a circumscribed field (e.g., brain region) and 
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divided by the area of the region and expressed as pixels/mm2 and cells/mm2.  Data 

were acquired and analyzed by a researcher blind to group condition from a 

minimum of 4 sections/brain region/animal and averaged to obtain a single value per 

subject. 

 
Surgery: At least 24 hours following their 30th operant session, mice were 

anesthesized with a cocktail of ketamine (90 mg/kg, i.p.) and xylazine (10 mg/kg, 

i.p.), placed in a stereotaxic instrument (Kopf Instruments, Tujunga, CA) and a 

midline incision was made over the skull using aseptic techniques. Two bilateral 

holes were drilled in the skull and bilateral injector guide cannulae (26 gauge; 

Plastics One, Roanoke, VA) were implanted and secured to the skull with dental 

cement directed. Guide cannulae were aimed 2 mm above their amygdala (A-P: -1.1 

mm, M-L: ±3.0 mm, and D-V: -2.5 mm D-L (Paxinos and Franklin, 2008) to prevent 

damage to the amygdala and allow space for drug diffusion. The wound was treated 

with bacitracin ointment, and closed with 3-0 silk. Obturators (33 gauge) that extend 

0.5 mm beyond the tip of the guide were inserted into the guide cannulae following 

surgery and were moved daily to prevent cannulae blockage and scarring. Mice 

were given 4 days to recover from surgery before returning to operant sessions 

where they had at least 10 sessions before beginning microinjection experiments. 

 

Microinjection Procedure: After lever pressing returned to pre-surgical baseline 

levels, sham injections were conducted to habituate mice to the microinjection 

procedure. Here, mice were hand restrained and shortened injectors were inserted 

into their guide cannulae for 5 minutes prior to sessions and injection pumps were 
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operated, but no fluid was infused. Mice were given repeated sham injections prior 

to operant sessions until they demonstrated total response values in 2 consecutive 

sessions that was equal to their baseline performance. Next, mice were given one 

microinjection of ACSF prior to an operant session before beginning drug injections 

that were ordered pseudorandomly and included an additional ACSF microinjection 

that was used as the control value for each dose response. Injectors were 2.0 mm 

longer than the cannulae and were directed at the amygdala. ACSF, CaMKII or 

AMPA inhibitors (see Drugs) were infused (0.5 µl of solution per side injected over 4 

minutes) in the amygdala immediately before operant sessions. Mice received no 

more than 8 injections during the experiment. Following completion of the 

experiment, mice were fixed using procedures described above and placements 

were verified visually using a large magnifying glass to identify placements while 

brains were being sectioned. Experimenters identifying placements were blind to the 

results. 

 

Locomotor Activity: To determine if drug-induced changes in operant behavior were 

due to nonspecific motor effects of the drugs, locomotor activity was assessed 

following operant self-administration testing. Mice were initially habituated to 

chambers for two hours following a sham injection. Seven and 14 days later, mice 

were counterbalanced and infused drug (KN-93 (10 ug/per side), m-AIP (1 ug/per 

side), or ACSF prior to 1 hour locomotor sessions.  
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Drugs: Cell-permeable CaMKII inhibitors used in these studies were: 1) KN-93, 2-[N-

(2-hydroxyethyl)]-N-(4-methoxybenzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-

methyl benzylamine; EMD Biosciences; Gibbstown, NJ), a widely-used inhibitor of 

CaMKII that selectively binds to the CaM binding site of CaMKII and thereby 

prevents Ca2+/CaM from activating CaMKII [210]; 2) m-AIP (myristoylated 

autocamtide-2 inhibitory peptide; N-Myr-Lys-Lys-Ala-Leu-Arg-Arg-Gln-Glu-Ala-Val-

Asp-Ala-Leu-OH ; Biomol Research Labs, USA), a highly selective and potent cell-

permeable inhibitor of CaMKII that selectively inhibits the phosphorylation and 

activation of CaMKII [211] . This compound binds directly to the calmodulin binding 

site of the enzyme; 3) NBQX (2,3-Dioxo-6-nitro-1,2,3,4-

tetrahydrobenzo[f]quinoxaline-7-sulfonamide) a potent inhibitor of AMPA and 

kainate receptors. Dose ranges for these studies were based on the literature [84, 

212-214] and preliminary data. All drugs were dissolved in ACSF prior to test 

sessions. 

 

Data Analyses: Data from all behavioral and IHC studies were analyzed statistically 

by t-test or repeated measures analysis of variance (RM ANOVA) where 

appropriate. Significant main effects of interactions were followed by post-hoc 

multiple comparisons (Dunnet’s) using SigmaStat (SPSS, Chicago, IL, USA).  

 

RESULTS 

Operant self-administration increases CaMKII activity 
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Following chronic alcohol consumption, synaptic strengthening in amygdala 

neurons may enhance alcohol’s reinforcing properties and the salience of alcohol-

related cues. In chapter II, we showed that voluntary alcohol consumption increases 

CaMKII expression and glutamate transmission in the CeA. Here we sought to 

extend these findings by measuring the active (or phosphorylated) form of CaMKII 

(p-CamKIIthr286) and its primary substrate on AMPA receptors GluR1ser831 (p-

GluR1ser831) immediately following operant self-administration in mice (n = 16). 

Protein expression was compared between groups of mice that self-administered a 

sweetened alcohol solution (9% alcohol/2% sucrose) and mice that self-

administered sucrose alone (2% sucrose), upon completion of their 30th operant 

session. Importantly, there were no differences between alcohol and sucrose 

reinforcement groups in total reinforced responding, which includes active and 

inactive lever responses, percent active lever presses, or reinforcers delivered 

during operant sessions. These findings control for the potential confound of overall 

activity (Figure 9). On the 30th session, alcohol mice consumed an average of 

1.14±0.1 g/kg during the hour long session and had an average BAC of 53.1±11.8.   
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Figure 9: Mice self-administered alcohol or sucrose in operant chambers for 30 sessions following 
training. (a) Mice in each group pressed the active lever similarily throughout the 30 sessions. In the 
last operant session, mice from each group received a similar number of reinforcers delivered (b), did 
not differ on total lever responses (c) or in the percentage of active levers pressed (d) demonstrating 
similar activity and performance on their last session.    

To compare CaMKII activity between alcohol and sucrose mice, we probed for p-

CaMKII thr286 and p-GluR1 ser831 in amygdala sections using immunoperoxidase 

methods. Results showed that p-CaMKIIthr286 IR (positive cells per mm2) was 
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significantly increased in the CeA (p < 0.05, Student’s t-test) and LA (p < 0.05, 

Student’s t-test), (Figure 10a-b) but not BA (data not shown). p-GluR1ser831 

immunoreactivity (IR) was significantly increased in the CeA (p < 0.05, Student’s t-

test) and LA (p < 0.05, Student’s t-test), (Figure 11a-b) but not BA (data not shown) 

of alcohol-self administering mice. 

 

Figure 10: p-CaMKIIthr286 immunohistochemistry reveals increased expression in specific amygdala 
subregions. (a, c) Representative micrographs (20X) demonstrating that chronic alcohol consumption 
increased expression of p-CaMKIIthr286 in the central amygdala (CeA) and lateral amygdala (LA). (b,d) 
Immunoreactivity (IR) was measured as positive cells per mm² and quantified in subregional fields. 
Significant increases were seen in the CeA (b) and LA (d) of alcohol compared to sucrose-drinking 
mice. *, p< 0.05; Student’s t-test.  
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Figure 11: p-GLUR1ser831  immunohistochemistry reveals increased expression in specific amygdala 
subregions. (a, c) Representative micrographs (20X) demonstrating that chronic alcohol consumption 
increased expression of p-GLUR1ser831  in the CeA and LA. (b,d) Immunoreactivity (IR) was measured 
as positive pixels per mm² and quantified in subregional fields. Significant increases were seen in the 
CeA (b) and LA (d) of alcohol compared to sucrose-drinking mice. *, p< 0.05; Student’s t-test.  

CaMKII inhibition in amygdala decreases alcohol reinforcement 

The finding that alcohol self-administration increased phosphorylation of 

CaMKII and its kinase substrate GluR1ser831 in the CeA and LA lead us to 

hypothesize that increased CaMKII activity regulates alcohol reinforcement. To 

determine the functional role of CaMKII activity, we inhibited calcium-dependent 

CaMKII phosphorylation using microinjections of the inhibitors KN-93 and a 

myristoylated version of the autoinhibitory domain of CaMKII (m-AIP) into the 

amygdala. Of the 13 mice that received surgery, 8 recovered successfully from 

surgery, completed the experiment and had correct placements (Figure 15). We 

found that the compound KN-93 (10 ug/per side) decreased alcohol reinforced 
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responding (-35%, p<0.05, paired t-test) without producing significant deficits in 

locomotor spontaneous activity (p > 0.05, paired t-test) (Figure 14a). Due to KN-93’s 

known off-target effects, we tested another CaMKII inhibitor, m-AIP (1.0 ug/per side) 

and found that alcohol self-administration was decreased (-35%, p < 0.05, paired t-

test) to near identical levels as KN-93 (Figure 12a-b). Interestingly, there were no 

overall effects of the CaMKII inhibitors on alcohol reinforced responses from mice 

with placements outside of the amygdala (data not shown), but alcohol reinforced 

responding decreased during the last 15 minutes of the session, possibly a 

consequence of delayed diffusion of the peptide into the amygdala from the distal 

sites.  
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Figure 12: Microinjections of KN-93, m-AIP, and NBQX decrease alcohol self-administration. (a) 
Representative micrograph of cannula placed in amygdala at Bregma -1.22 mm. Image demonstrates 
injector placement into the amygdala via guide cannula track and amygdala subregions targeted. 
Microinjections of the CaMKII inhibitors, KN-93 (10 ug/per side) (b) and m-AIP (1.0 ug/per side) (c), 
as well as the AMPA/kainate receptor antagonist, NBQX (3.0 ug/per side)  all significantly decreased 
responding for alcohol relative to ACSF microinjction. Data are comprised of mice with correct 
amygdala placements. *, p< 0.05; paired t-test.  

In the amygdala, CaMKII may regulate alcohol self-administration behavior 

through its role in modulating AMPAR activity. In previous experiments, systemic 

AMPAR/kainate inhibition was shown to reduce alcohol self-administration, but with 

the caveat that it reduces locomotor activity [215]. By infusing NBQX, a potent 

AMPA/kainate antagonist, into the amygdala of 6 of the same mice (n = 6, two mice 

were removed due to clogged cannulae) that previously showed reductions following 

CaMKII inhibition, we sought to determine if these receptors regulate alcohol self-

administration. Infusion of NBQX (3.0 ug/per side) into the amygdala significantly 

reduced (p < 0.05, paired t-test) responding for alcohol by 56% (Figure 12d), a 

finding indicating a role for AMPARs in the reinforcing effects of alcohol. 

These results suggest that the amygdala is a specific neuronal substrate 

where CaMKII activity regulates alcohol reinforcement. However, these data do not 

discern whether this effect is specific for alcohol. To determine reinforcer specificity, 

effects of CaMKII inhibition in the amygdala using m-AIP (0.3, 1.0, 10.0 µg/per side) 

were compared independently in groups of alcohol and sucrose self-administering 

mice. For placements, out of 13 alcohol mice, 8 recovered from surgery and had 

correct placements and in the sucrose group, 8 had surgery and 6 had correct 

placements (Figure 15). For behavioral measures, groups were analyzed separately 

using a repeated measures ANOVA. For alcohol group, we found a main effect for 

drug (F(3,21) = 10.3, p < 0.001) on active lever presses and post-hoc analyses 
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revealed that two doses (1.0 and 10.0 ug/per side) significantly decreased alcohol-

reinforced responding (p < 0.05, Dunnet’s). Importantly, inactive lever presses were 

not changed (F(3,21) = 0.90, p = 0.457). Data are graphed as percentage ACSF 

responses (Figure 13a). Other behavioral measures were not changed. For sucrose 

self-administering mice, there was no drug effect found on active (F(3,15)=0.574, p = 

0.641) or (Figure 13b) inactive lever presses (F(3,15)=0.559, p = 0.65) in sucrose 

self-administering mice as well as other behavioral variables. Additionally, we tested 

potential nonspecific effects of m-AIP on motor activity and found the 1.0 dose of m-

AIP had no effect on spontaneous locomotor activity in either alcohol (n = 8) or 

sucrose (n = 5) mice condition (p > 0.05, paired t-test). Data for alcohol and sucrose 

groups are graphed together (Figure 14b). 

 

Figure 13: m-AIP dose dependently decreases alcohol but not sucrose self-administration. (a) 
Microinjections of three doses of m-AIP (0.3, 1.0, or 10 ug/per side) were tested in (a) alcohol and (b) 
sucrose self-administering mice. Two concentrations of m-AIP (1.0, or 10 ug/per side) significantly 
decreased responding for alcohol relative to the ACSF microinjection. Data are from mice with correct 
amygdala placements. *, p< 0.05; RM-ANOVA, followed by Dunnets post-hoc analysis.  
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Figure 14: Microinjections of CaMKII inhibitors do not affect spontaneous locomotor activity. 
Microinjection of KN-93 (10 ug/per side) (a) or m-AIP (1.0 ug/per side) (b) did not significantly alter 
locomotor activity on the open-field test where total distance traveled (mm) over 1 hour was 
measured. 

 

Figure 15: Injector placements in the amygdala. Schematic demonstrating anatomical specificity of 
cannulae placements in amygdala subregions and distance (mm) posterior to Bregma. Placements 
are identified with circles for both KN-93/m-AIP/NBQX (red) and m-AIP dose response curve (Blue, 
alcohol:closed, sucrose:open) experiments. Missed placements  are not included.  
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DISCUSSION 

 The purpose of this study was to extend prior findings showing the effects of 

alcohol drinking on CaMKII expression to include evaluation of activation (e.g., 

phosphorylation) and function. Initially, we sought to determine if operant alcohol 

self-administration, which evaluates the reinforcing effects of the drug, is associated 

with altered CaMKII activation in the amygdala. In this behavioral procedure, mice 

are trained to press a lever with auditory and visual cues signaling the delivery of a 

contingent reinforcer. In mice matched to their operant activity (i.e. lever presses), 

sweetened alcohol self-administration increased p-CaMKIIthr286 immunoreactivity in 

the CeA and LA compared to sucrose self-administration alone a finding that 

supports the notion that alcohol enhances synaptic activity in amygdala subregions 

that mediate learning and motivational behaviors. Moreover, the unique structure 

and localization of CaMKII allows it to remain phosphorylated long after Ca2+ levels 

have decreased permits continuous modulation of receptor function including the 

phosphorylation of the AMPAR subunit GLUR1, a proposed mechanism for the 

strengthening of synapses and consolidating associative memory [216]. Therefore, 

we measured protein levels of phosphorylated GLUR1 at the CaMKII 

phosphorylation site, serine 831 (p-GLUR1ser831), and found elevated levels in 

alcohol self-administering mice, which suggests increased CaMKII activity in the 

CeA and LA. In addition, p-GLUR1ser831 shows increased conductance of calcium 

and has been associated with the presence of LTP [217]. Enhancement of CaMKII 

and AMPA activity in these regions may refine and stabilize synaptic connections 

that encode primary and secondary reinforcers. Evidence from cocaine self-
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administration experiments has shown that CaMKII and p-GLUR1ser831 expression in 

the NAc, a region critical to psychostimulant reward, is increased following cocaine 

self-administration and that it functionally and selectively regulates motivation for 

cocaine self-administration [85]. Thus, due to the amygdala’s primary role in the 

reinforcing properties of alcohol, we proposed that increased CaMKII activity in the 

amygdala plays a key role in alcohol self-administration. 

 Our previous experiments established a link between alcohol self-

administration and its effects on CaMKII expression and activity in the amygdala. 

Emerging research supports a functional role for CaMKII in addictive behaviors [57]. 

To date, studies directly investigating the role of CaMKII in alcohol-related behaviors 

have not been conducted. We hypothesized that observed increases in p-

CaMKIIthr286 in the CeA and LA are required for the maintenance of alcohol self-

administration. To determine the role of CaMKII in the reinforcing effects of alcohol, 

we infused inhibitors of CaMKII activity, KN-93 and m-AIP into the amygdala prior to 

alcohol self-administration sessions. KN-93 is a compound that prevents 

phosphorylation of CaMKII by blocking the Ca2+/calmodulin binding site on CaMKII’s 

catalytic domain with reported off-target actions on L-type channels [218]. A more 

selective inhibitor, m-AIP is a synthetic cell permeable peptide designed to mimic the 

autoinhibitory region of CaMKII. Each inhibitor significantly reduced responding for 

alcohol by approximately 30%. These results suggest that CaMKII activity in the 

amygdala is required for the full expression of the reinforcing effects of alcohol.  

Alternative explanations should be considered. First, there is an extensive 

literature supporting a role for CaMKII in learning and memory. Thus, an alternative 
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hypothesis is that CaMKII inhibition may have produced deficits in task memory. 

However, there were no significant changes in response accuracy or sucrose self-

administration, which argues against this interpretation.  Second, CaMKII regulates 

glutamate transmission and may cause deficits in locomotor activity, yet 

spontaneous locomotor activity was not affected in a dose that decreased 

responding.  To assess reinforcer specificity, a dose response curve of m-AIP was 

carried out on mice self-administering sweetened alcohol and sucrose alone and two 

doses of m-AIP selectively decreased responding for the alcohol solution, but not 

sucrose. This study provides additional conformation that CaMKII specifically and 

functionally regulates the reinforcing effects of alcohol.   

 Our results complement a growing collection of studies implicating CaMKII in 

the regulation of drug-specific behaviors.  Exposure to several drugs of abuse 

including cocaine, amphetamine, and morphine increase CaMKII expression. In 

addition, drug-specific behaviors regulated by CaMKII have been identified. KN-93 

injected into the VTA [219] or NAc [220] decreased sensitization to cocaine. Using a 

model for motivation to cocaine reinforcement, it was shown that CaMKIIα 

expression was positively correlated with motivation for cocaine and lentiviral 

knockdown of CaMKIIα in the NAc attenuated motivation for cocaine reinforcement 

[221]. Cocaine reinstatement increases pCaMKIIthr286 and GLUR1ser831 in the NAc 

[85] which was blocked by either CaMKII inhibition or blockade of GluR1 surface 

expression [85]. Conditioned place preference (CPP) is a model of drug 

reinforcement and CPP training with amphetamine increases CaMKII activity in the 

hippocampus [222, 223] and infusion of KN-93 into the hippocampus decreased 
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amphetamine CPP [222, 223]. CaMKII has also been shown to regulate addictive 

behaviors caused by morphine. Naloxone-induced morphine withdrawal symptoms 

are decreased by the CaMKII antagonist KN-62 infused into the hippocampus. 

Additionally, the development of morphine CPP is blocked by infusion of KN-62 into 

either the hippocampus or amygdala [224].  Importantly, the maintenance and 

reactivation of morphine CPP is prevented by amygdala injections of KN-62 [224], a 

result consistent with our finding that CaMKII inhibitors decreased alcohol self-

administration. 

 The features of the CaMKII molecule make it a promising candidate for the 

aberrant plasticity that is thought to underlie addiction. CaMKII is activated by 

neuronal depolarization via Ca2+ entry and release from intracellular stores, can 

remain phosphorylated for long periods of time after the Ca2+ signal diminishes, and 

can reorganize synapses towards increased glutamate activity and increased Ca2+ 

entry. Thus, altered CaMKII activity is likely to be affected by and to contribute to 

increased brain activity in through positive feedback mechanisms. Increased CaMKII 

activity caused by alcohol could very well contribute to the enhancement of 

glutamate signaling that is a characteristic of alcoholism.  Our finding that alcohol-

self-administration increases CaMKII activity in the amygdala differently than self-

administration of a natural reward provides evidence that alcohol differentially 

affecting brain regions involved in reward processing through its effects on CaMKII 

activation. Accordingly, inhibiting this activity leads to specific reductions in the 

reinforcing effects of alcohol and may be useful as a strategy for treating alcoholism. 

These findings support the hypothesis that CaMKII activity may functionally regulate 
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enduring pathological behaviors associated with alcoholism, such as chronic self-

administration.  

As an individual develops alcohol dependence, increased alcohol intake is 

influenced by the positive reinforcing effects of alcohol. In preclinical models, the 

amygdala is critical to the associative memory processes required to maintain 

alcohol self-administration. Following alcohol consumption, plastic changes in 

amygdala neurons may enhance alcohol’s reinforcing properties and the salience of 

alcohol-related cues, which may in turn narrow the behavioral repertoire towards 

alcohol procurement and away from natural rewards. This study shows for the first 

time that that CaMKII is a potential molecular mechanism of drug-induced behavioral 

pathologies that occur during the initial stages of addiction. Understanding the 

molecular mechanisms behind alcohol’s effects on neuroplasticity, and delineating 

whether those mechanisms contribute to alcohol reinforcement may give way to 

therapeutic interventions that could prevent the transition to alcohol abuse to alcohol 

dependence.



	  
	  

CHAPTER IV: SYSTEMIC INHIBITION OF ERK1/2 PHOSPHORYLATION 
POTENTIATES ALCOHOL-SEEKING AND INITIATES SUCROSE-

SEEKING IN C57BL/6J MICE 

 

INTRODUCTION 

Relapse to alcohol-seeking after abstinence is a hallmark of alcoholism and a 

major clinical problem. It has been estimated that approximately 80% of abstinent 

alcoholics relapse [225], a phenomenon adding permanence to the already 

substantial economic and social burden of alcoholism. Emerging evidence indicates 

that chronic alcohol exposure produces maladaptive changes in molecular cell 

signaling pathways that lead to long-term changes in brain function [116, 182-184]. 

Accordingly, these drug-induced adaptations are thought to regulate enduring 

behavioral pathologies that occur in alcoholism [57, 185, 186], such as relapse. A 

better understanding of the molecular and cellular mechanisms that regulate the 

behavioral pathologies in alcoholism has the potential to lead to new 

pharmacotherapeutic strategies. 

Research has suggested that associative learning and memory processes 

(i.e., forms of neuroplasticity) may play a principal role in relapse as evidenced by 

the fact that exposure to environmental cues associated with alcohol drinking 

promote craving and relapse in abstinent alcoholics [226, 227]. For these reasons, 

recent theories of addiction emphasize the importance of determining if alcohol and 
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other drugs of abuse usurp basic mechanisms of neuroplasticity to produce cue-

induced relapse [134, 228]. Moreover, cell signaling systems that subserve synaptic 

plasticity are primary candidate mechanisms because they transduce pleiotropic 

drug effects, such as changes in membrane receptor activity, into enduring 

modifications in neural function [46]. Thus, a key challenge for the field is to 

determine if cell signaling systems that regulate normal associative learning and 

memory also regulate maladaptive cue-induced alcohol-seeking behavior.   

Animal models of relapse can be divided into two subcategories: those that 

fully express relapse and involve alcohol-drinking and models that are directed at the 

initiation of relapse, often described as craving [229]. The basic criterion for relapse 

models is straightforward: rodents consume alcohol for an allotted time period, are 

given a period of abstinence, and then the rodents consume alcohol or perform 

actions that previously rewarded them with alcohol at a higher rate than during the 

abstinence phase. One commonly used procedure of relapse expression that 

produces an escalation of alcohol drinking is called the alcohol deprivation effect 

(ADE). In ADE procedures, rodents are given a period of access to alcohol, then a 

period of abstinence followed by a re-exposure to alcohol self-administration. During 

this re-exposure, a number of animal models (mice, rats, monkeys, and humans) will 

show an escalation of alcohol intake compared to previous levels [229]. This 

increase is the phenomenon known as the ADE. Alternatively, in reinstatement 

experiments, rodents are trained to self-administer alcohol by performing an action 

like lever pressing with a contextual or explicit cue that signals the availability of 

alcohol. They then undergo extinction sessions in which the operant behavior does 
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not have any consequences, and subsequently, the rodents decrease responding. 

Finally, in a reinstatement session, the conditioned stimulus is presented. This 

conditioned stimulus, typically a cue, an associated context, or a priming exposure, 

is presented. In reinstatement experiments, reinstatement behavior is operationally 

defined as increased responding compared to extinction responding in the absence 

of alcohol delivery. Importantly, an advantage of reinstatement tests over tests like 

ADE is that they allow the researcher to evaluate conditioned reinforcement 

separately from alcohol’s direct behavioral and pharmacological effects. Therefore, 

the neurobiological activity proceeding relapse that underlies associated drug-cue 

memories and drug-seeking can be studied independently. 

The mitogen-activated protein kinase (MAPK) cell signaling pathway is 

receiving growing attention as a potential molecular mechanism of alcohol-related 

behavioral pathologies [230]. In particular, the extracellular-regulated kinase (ERK) 

MAPK pathway is of interest because it integrates activity of a variety of extracellular 

and intracellular factors to produce coordinated changes in gene transcription that 

lead to long-term changes in CNS structure and function. These include cell growth, 

neuroplasticity and addiction [88, 90-93].  The two closely related isoforms of ERK 

(ERK1 and ERK2, or ERK1/2) are phosphorylated within the activation loop of the 

kinase on both a threonine and a tyrosine residue by MEK [231]. ERK1/2 activity 

requires phosphorylation of both of these sites [94].  Activated ERK phosphorylates 

cellular targets or translocates to the nucleus where it activates specific gene 

transcription factors [95]. By regulating gene transcription, the ERK/MAPK pathway 
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can transduce cellular events into long-term changes in neural and behavioral 

functions, such as those seen in learning, memory, and addiction. 

The MAP kinases have been associated with many of the negative health 

effects of ethanol including liver disease, pancreatitis, cancer risk, neurotoxicity, and 

cardiovascular disease [230].  Recent in vivo evidence indicates that ethanol may 

alter activity of the ERK/MAPK signaling cascade in brain regions that are of 

behavioral significance.  Acute injection of alcohol (1.5 – 3.5 g/kg) produces a dose- 

and time-dependent decrease in p-ERK1/2 in mouse cortex [232].  The ability of 

acute ethanol to reduce p-ERK1/2 levels in brain is not dependent on age and found 

from postnatal day 7 through adulthood [232, 233].  Interestingly, blockade of p-

ERK1/2 with a MEK/ERK1/2 inhibitor prevented ethanol-induced increases in c-Fos 

expression in the Edinger-Westphal nucleus [234], a finding that suggests ethanol-

mediated changes in gene expression are regulated by the ERK/MAPK system.  

Taken together, these studies demonstrate that alcohol produces rapid changes in 

the active form of ERK1/2 in specific brain regions. 

Recent evidence also shows that the ERK/MAPK system is altered by chronic 

alcohol and relapse.  Exposure to chronic ethanol vapor (BAL of approximately 200 

mg/dl) suppressed p-ERK1/2 immunoreactivity in the amygdala, cortex, cerebellum, 

and dorsal striatum.  Conversely, withdrawal from ethanol vapor resulted in a time-

dependent increase in p-ERK1/2 levels that peaked at 13-h post withdrawal and 

remained elevated at 24-h, which was the last time point measured [235].  These 

data are consistent with findings from our lab showing that cue-induced 

reinstatement of alcohol-seeking behavior is associated with increased pERK1/2 
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immunoreactivity in the basolateral amygdala and nucleus accumbens shell [178].  

When taken together with our finding that the ERK1/2 inhibition produces dose-

dependent biphasic effects of alcohol self-administration [189], these data suggest 

that ERK/MAPK activity may underlie behavioral pathologies in alcohol addiction, 

including chronic drug use and relapse.  

 The purpose of this experiment is to determine the mechanistic role of 

ERK1/2 in cue-induced reinstatement using a specific pharmacologic inhibitor of the 

upstream kinase MEK1/2, α-[Amino[(4-aminophenyl)thio]methyle 

ne]-2-(trifluoromethyl)benzeneacetonitrile (SL327). To do this, we developed a 

model of reinstatement for C57BL/6J mice using an adapted version of the cue-

induced reinstatement procedure previously described [178] that demonstrated 

significant responding on an alcohol lever compared to extinction session 

responding. To determine the role of ERK1/2 in alcohol reinstatement, mice were 

pretreated with SL327 (30 mg/kg), a dose that has previously not been associated 

with locomotor effects [189], or vehicle prior to reinstatement sessions. Mice given 

vehicle reliably demonstrated response-contingent cue-induced reinstatement of 

alcohol-seeking behavior. In mice pretreated with SL327, cue-induced reinstatement 

of alcohol-seeking was potentiated compared to vehicle and, interestingly, cue-

induced reinstatement of sucrose-seeking was also observed in a separate group of 

sucrose drinking mice. Our finding that C57BL/6J mice demonstrate cue-induced 

reinstatement of alcohol but not sucrose seeking behavior and that systemic ERK1/2 

inhibition potentiates cue-induced responding for both alcohol and sucrose, lead us 

to conclude that ERK1/2 functionally modulates relapse-like behavior. 
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METHODS 

 
Animals: Male C57BL/6J mice (n = 80), 8 weeks old, were housed in groups of four 

in standard Plexiglas cages (17.8 W x 29.2 L x 12.7 H cm). Cages were lined with 

corn cob bedding, contained a PVC tube for environmental enrichment, and had a 

wire stainless steel top. Food and water were available ad libitum unless otherwise 

noted. The mouse vivarium was maintained on a reverse 12 h light-dark cycle (lights 

off at 8:00 a.m.). All animals were treated in accordance with the Institutional Animal 

Care and Use Committee at the University of North Carolina at Chapel Hill and NIH 

guidelines for the care and use of laboratory animals (National Research Council, 

1996). 

 
Self-administration apparatus: Alcohol and sucrose self-administration, extinction 

and reinstatement sessions were conducted in Plexiglas operant chambers 

designed for mice (Med Associates, Georgia, VT) measuring 15.9 x 14 x 12.7 cm 

with stainless steel grid floors. Each chamber was housed in a sound-attenuating 

cubicle equipped with a house fan that provided ventilation and helped mask 

external noise. The left and right wall of each operant chamber was equipped with 

one ultra-sensitive stainless steel response lever and a liquid delivery system with a 

stimulus light located above each lever. Solutions were delivered via a syringe 

mounted to a programmable pump (PHM-100, Med Associates), which delivered 

0.014 ml per activation into a stainless steel cup located to the right of the 

associated response lever. The inactive lever was located on the opposite wall 

relative to the active lever. Pressing this lever did not produce any programmed 
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consequence, but responses on it were recorded. The operant conditioning 

chambers were interfaced (Med Associates) to an IBM compatible PC, which was 

programmed to record all lever presses, port entries, and liquid deliveries.  

Self-administration, extinction, and reinstatement procedure: Following one week of 

acclimation to housing conditions, mice were deprived of fluids for 20 hours prior to 

initial training in the operant chamber. The first three days of training were 16 hr 

sessions with a 5% sucrose reward on FR1, FR1-FR4 progressive ratio, and FR4 

schedules respectively. All subsequent sessions followed a FR4 schedule and lasted 

1 hr. Mice were then trained to self-administer either sucrose (2% w/v) or a 

sweetened alcohol solution (9% alcohol (v/v)/2% sucrose (w/v)) by using a sucrose 

fading procedure where sucrose was decreased from 5% to 2% in both groups and 

alcohol concentration was gradually increased from 0% to 9% for the alcohol group. 

The solutions used (9% alcohol/2% sucrose and 2% sucrose) were chosen because 

in previous experiments, mice self-administering 9% alcohol would frequently leave 

large amounts of residual fluid in cup. With sweetened alcohol, residual fluid is rarely 

seen, and because 2% sucrose leads to similar levels of active lever presses as the 

sweetened alcohol solution it can serve as a natural reinforcer control with the 

percentage of sucrose remaining constant.   Mice were maintained on these 

solutions for 35 sessions and after all sessions, fluid cups were monitored for 

residual fluid to ensure fluid consumption. 

The extinction sessions were similar to self-administration sessions except for 

the absence of programmed consequences (no light, sound, or liquid deliveries) 

following active lever presses. Matching to reinstatement and drug groups was 
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carried out by averaging active and inactive lever presses over the last 5 training 

sessions and the last 5 extinction sessions and ensuring that these values did not 

have significant differences. For each measure, mice with outlier values were 

determined by Grubb’s test (Graphpad software). Mice were given habituation 

injections of vehicle following the 29th self-administration session and 2 hours prior to 

the 34th self-administration session, and extinction sessions 7 and 13. 

Two hours prior to either a reinstatement test or a 15th day of extinction, mice 

were injected intraperitoneally with either vehicle (15% DMSO) or 30 mg/kg SL327. 

For the reinstatement test, 28 µl of the solution (sucrose or sweetened alcohol) was 

placed in the cup prior to the session and the light cue and the pump sound were 

reactivated and followed an FR4 schedule. Importantly, the reinforcing solution was 

not delivered during reinstatement sessions. 

 

Drugs: Alcohol solutions were prepared by diluting 95% Ethyl Alcohol (Pharma, CT 

(v/v)) with tap water to the desired concentration. Sucrose solutions were made by 

dissolving granulated sugar into tap water (w/v). SL327 (Tocris Bioscience, Ellisville, 

MO) was dissolved in 100% DMSO and diluted with DI H2O (final concentration 15% 

DMSO) and injected intraperitoneally (i.p.) in a volume of 10 ml/kg body weight with 

a 27 gauge needle.The SL327 dose used (30 mg/kg) was chosen because it 

previously was found to have no significant effects on spontaneous locomotor 

activity in C57BL/6J mice [189].  
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Data analysis: For each self-administration, extinction and reinstatement session, 

multiple behavioral parameters were collected. Specifically, # of reinforcers 

delivered, active lever presses, inactive lever presses, percent active lever presses, 

and port entries were recorded for all sessions. Matching to treatment groups was 

needed to ensure that extinction and reinstatement groups responded similarly. For 

experiment 1, data used to match groups (average active and inactive lever presses 

over last 5 days of alcohol self-administration and extinction sessions) and used to 

compare reinstatement test sessions (test session dependent variables/average last 

5 days extinction for those variables) were analyzed using an independent t-test. 

Extinction data for experiment 1 were analyzed using a repeated measures ANOVA.  

In experiment 2 and 3, data used to match groups were similar to experiment 1 

except it was analyzed using a two-way analysis of variance (ANOVA) for 

comparison of each subgroup. Extinction data were analyzed using two way 

repeated measures ANOVA for lever (active vs. inactive) and session. For matching 

data in all experiments, Grubb’s test was used to test for active or inactive lever 

presses, and outliers were removed. Test session data were analyzed using two-

way ANOVA followed by post hoc comparisons (Tukey test). Significance was 

assigned for all p values < 0.05 for all analyses.  

 
RESULTS 
	  
Protocol promoted relapse-like behavior in mice  

 Initially, our goal was to create a mouse model of reinstatement using operant 

self-administration procedures. Mice (n=16) were successfully trained using the 
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sucrose fading procedure to self-administer alcohol for 45 days. One mouse was 

removed from the experiment due to high levels of inactive lever presses during 

extinction identified using an outlier criterion. Throughout the alcohol self-

administration sessions, mice pressed the active lever significantly more on the 

inactive lever and this demonstrates that the alcohol solution has reinforcing 

properties. Over the last 5 days of alcohol self-administration, mice averaged 

136.5±6.0 active lever presses, 60.7±8.7 inactive lever presses, 31.5±1.3 alcohol 

deliveries, 74.2±2.2 % active lever presses and consumed an average of 1.17±0.05 

g/kg of alcohol during the 1 hr session.  

 During the last 5 days of extinction, mice averaged 44.1±2.7 active lever 

presses, 68% reduction in responding compared to the last 5 days of alcohol self-

administration sessions. In addition, mice averaged 39.3±4.6 inactive lever presses 

and responded on the active lever 61.2±3.2% of their total responses. Following 

alcohol-self administration sessions, mice began 14 daily extinction sessions in 

which levers were extended, but there were no programmed consequences. Data 

from extinction sessions were analyzed using a repeated measures two-way 

ANOVA. There was a main effect for lever (F(1,182) = 9.837, p < 0.01) and 

extinction session (F(13,182) = 20.717, p < 0.001) as lever responses decreased 

over time which is due to the decreased responding on the active lever (Figure 16a) 

indicated by the lever x extinction session interaction (F(13,182) = 8.821, p < 0.001). 

Post hoc analyses (Tukey test) revealed that responding on active and inactive were 

significantly different on extinction session 1-6.  
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 After matching mice to conditions so that their last 5 days of self-

administration and extinction in terms of active and inactive lever presses were 

similar, mice were placed in either reinstatement (n=7) or extinction groups (n=8). 

Because mice were matched to their last 5 days of extinction, reinstatement test 

session lever presses were calculated as a percentage of the average lever presses 

from the last 5 extinction sessions. Mice in the reinstatement group had a 

significantly higher number of active lever presses expressed as percentage of last 

five days of responding (p < 0.01, Student’s t-test), but not inactive lever presses 

(Figure 16b). This finding demonstrated cue-induced reinstatement of alcohol-

seeking behavior. Other behavioral measures, including number of headpokes and 

percent responding on the active lever, did not differ significantly between groups of 

mice. 

 

Figure 16: Cue-induced reinstatement of alcohol-seeking behavior in the mouse. (a) Graph showing 
active and inactive lever presses during reinstatement procedure where mice are initially trained 
using sucrose fading (first 10 days), then drink a sweetened alcohol solution for 45 days, enter an 
extinction phase. During extinction, active and inactive lever presses were significantly different until 
day 7 ((*, p < 0.05;Two-way RM ANOVA, followed by Tukey’s post hoc,  (b) Mice were divided into a 
15th day of extinction or reinstatement session. Mice in the reinstatement test responded on the active 
lever significantly more than in the extinction session. (*, p< 0.05; **, p < 0.01; Student’s t-test).  
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SL327 potentiated relapse-like behavior in alcohol self-administering mice 

  In experiment 1, mice demonstrated high active lever presses by day 35. 

Therefore in experiments 2 & 3, the number of self-administration sessions was 

reduced from 45 to 35.  In experiment 2, a separate group of mice (n=41) acquired 

lever pressing behavior following sucrose fading and self-administered alcohol 

solution for 35 days (Figure 17a). One mouse was excluded from the experiment 

due to outlier inactive lever presses during the extinction sessions. Over the last 5 

self-administration sessions, the remaining mice (n=40) averaged 134.5±8.9 active 

lever presses and 43.6±5.2 inactive lever presses, and a 78% preference of the 

active lever. During this time, mice received on average 30.6±2.0 deliveries of 

alcohol solution, averaged 63.6±5.5 port entries, and did not leave residual fluid at 

the end of the sessions. After correcting for differences in bodyweight, it was 

determined that the mice averaged 1.0±0.2 g/kg of alcohol over these last 5 days.  

 Following alcohol-self administration sessions, mice began 14 daily extinction 

sessions in which levers were extended, but there were no programmed 

consequences. There was a main effect for the extinction session as lever 

responses decreased over time (F(13,39) = 17.104, p < 0.001), which is due to the 

decreased responding on the active lever indicated by the lever x extinction session 

interaction (F(13,39) = 21.148, p < 0.001). Post hoc analyses (Tukey test) revealed 

that active and inactive lever presses ceased to be significantly different on 

extinction session 6 -14. In addition, there were no significant differences of inactive 

lever presses between groups throughout the extinction sessions, a finding 
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demonstrating that responding on this lever was quite stable, while the active lever 

differed significantly for multiple extinction sessions.  

Following the 14th extinction session, mice were matched to four separate 

groups using average active and inactive lever presses over the last 5 extinction 

sessions. Matching data from each alcohol group are summarized (Table 2) and 

importantly there were no significant differences in the averages of active lever 

responses, inactive lever responses, and percent active lever responses over the 

last 5 days of self-administration and the last 5 days of extinction. 

Table 2: Alcohol matching to groups 

Alcohol	  
Matching	  

	  
Active	  Lever	  

	   Inactive	  
Lever	  

	   	  
%	  Active	  

	  

Subgroup	   Last	  5	  SA	   Last	  5	  Ext	   Last	  5	  SA	   Last	  5	  Ext	   Last	  5	  SA	   Last	  5	  Ext	  
Vehicle	  
Extinction	  

142.1±18.4	   45.5±10.1	   49.0±12.0	   47.9±13.2	   75.5±3.8	   55.3±5.8	  

Vehicle	  
Reinstatement	  

121.6±18.0	   38.8±4.0	   46.1±9.0	   44.4±9.2	   74.2±3.5	   51.5±4.7	  

SL327	  
Extinction	  

135.9±20.9	   50.1±13.0	   35.3±9.4	   39.5±12.9	   77.8±4.4	   60.3±3.4	  

SL327	  
Reinstatement	  

140.3±12.3	   36.3±5.7	   41.1±13.5	   39.5±15.5	   79.0±5.6	   56.2±6.7	  
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Figure 17.	  ERK1/2 inhibition potentiates reinstatement of alcohol-seeking behavior.  (a) Graph 
depicting lever presses during acquisition and extinction phases of reinstatement procedure. Mice 
pressed significantly more on the active lever for the first 5 extinction sessions. *, p< 0.05; RM-
ANOVA (b) Lever responses shown as percent last 5 days of extinction. Two-way ANOVA revealed a 
significant main effect for both drug and reinstatemnt test as well as an interaction. Post-hoc analyses 
revealed that vehicle-treated mice successfully reinstated alcohol-seeking behavior and that mice that 
were pretreated with SL327 displayed a potentiation of active lever responding.	  

	  

As mice were matched on the average of their last 5 extinction sessions,  

reinstatement results are calculated as a percentage of this average. Active and 

inactive lever presses are shown (Figure 17a). Following a two-way ANOVA on 

active lever responses as a percentage of the last 5 days of extinction, it was 

determined that there was a main effect for drug (F(1,36) = 12.074, p = 0.001) as 

SL327 active lever responding was increased over vehicle. In addition, there was a 

main effect of test session (F(1,36) = 41.34, p < 0.001) as reinstatement mice 

responded significantly more on the active lever. There was also a significant 

interaction (F(1,36) = 5.042, p = 0.031). Post-hoc analysis using (Tukey’s) revealed 

that within vehicle, reinstatement mice had increased active lever responses, which 
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demonstrated a proof of principle of the reinstatement procedure. Drug within 

extinction sessions did not differ significantly. However, drug within reinstatement 

session was significantly different. Specifically, SL327 significantly enhanced 

reinstatement of alcohol-seeking behavior by 86%. (Figure 17b) A two-way ANOVA 

on inactive lever responses as a percentage change from the last 5 days of 

extinction revealed that there were no significant differences between groups. 

SL327 induced relapse-like behavior in sucrose self-administering mice 

For the sucrose group, 1 mouse was excluded from the experiment due to 

outlier values of inactive lever presses over the last 5 days of extinction. Mice (n=36) 

acquired lever pressing behavior following sucrose fading and self-administered 

sucrose for 35 days as shown in figure 2A. Over the last 5 self-administration 

sessions, mice averaged 121.4±13.5 active lever presses and 51.0±7.5 inactive 

lever presses demonstrating a 69% preference for the active lever.  Mice averaged 

27.1±3.0 deliveries of sucrose and 58.0±6.2 port entries.  

For extinction sessions, sucrose self-administering mice showed decreased 

responding for the active lever a seen in Figure 2A which was confirmed by 

statistical analysis. A RM two way ANOVA revealed that there was a main effect of 

extinction session on lever responding (F(13,35) = 3.646, p < 0.001) as responding 

decreased over the extinction sessions. In addition, there was a significant 

interaction of lever x extinction session F(13,35)= 7.501, p < 0.001) and post hoc 

analysis (Tukey test) revealed that active lever pressing was significantly higher than 

inactive lever presses until extinction session 4. 

Table 3: Sucrose matching to groups 
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Sucrose	  
Matching	  

	  
Active	  
Lever	  

	   Inactive	  
Lever	  

	   	  
%	  Active	  

	  

Subgroup	   Last	  5	  SA	   Last	  5	  Ext	   Last	  5	  SA	   Last	  5	  Ext	   Last	  5	  SA	   Last	  5	  Ext	  
Vehicle	  
Extinction	  

127.5±24.9	   46.8±7.8	   67.0±19.3	   71.4±27.3	   65.9±5.1	   48.5±6.6	  

Vehicle	  
Reinstatement	  

119.1±29.0	   39.4±11.2	   60.0±19.1	   49.4±21.2	   65.8±6.7	   49.4±7.5	  

SL327	  
Extinction	  

95.8±21.2	   33.6±7.3	   37.8±6.8	   27.4±7.7	   69.8±2.6	   56.1±4.3	  

SL327	  
Reinstatement	  

136.2±30.3	   47.6±11.2	   37.0±6.3	   29.7±8.6	   74.5±3.5	   62.9±5.8	  

 

Matching data from each group are summarized in table 2 and analyses using 

one-way ANOVA demonstrated that there were no significant differences among 

roups. Similar to the alcohol group, reinstatement results are calculated as a 

percentage of lever presses over last the last 5 days of extinction. Active and 

inactive lever presses are shown (Figure 18a). A two-way ANOVA on active lever 

presses, revealed a main effect for test (F(1,32)= 10.672, p = 0.003) indicating 

increased responding in the reinstatement group. There was no main effect for drug, 

(p = 0.064), and no statistically significant interaction (p = 0.059). In the alcohol 

reinstatement experiment, relapse-like behavior was potentiated by SL327 and this 

experiment was designed to determine if the effect was specific to alcohol. Due to 

our a priori hypothesis that SL327 modulates reinstatement, a planned comparison 

(Student’s t-test) was applied to drug within reinstatement condition which revealed 

a significant (p = 0.0156) increase in active lever responding in the SL327 group, 

suggesting that ERK/12 inhibition potentiates cue-induced reinstatement seeking of 

sucrose as well as alcohol. A two-way ANOVA on inactive lever response (% last 5 

days extinction) was performed and revealed that there was a main effect for drug 

(F(1,32)=4.855). Planned comparisons (Tukey test) show that this effect is due to 
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increased inactive lever responding in the SL327 reinstatement group compared to 

extinction (p = 0.027) and within reinstatement groups (p = 0.009) (Figure 18b). 

 

Figure	  18:	  ERK1/2	  inhibition	  potentiates	  reinstatement	  of	  sucrose-‐seeking	  behavior.	  	  (a)	  Graph	  depicting	  lever	  presses	  
during	  acquisition	  and	  extinction	  phases	  of	  reinstatement	  procedure	  for	  sucrose	  self-‐administering	  mice.	  Mice	  pressed	  
significantly	  more	  on	  the	  active	  lever	  for	  the	  first	  3	  extinction	  sessions.	  *,	  p	  <	  0.05;	  RM-‐ANOVA	  (b)	  Lever	  responses	  shown	  
as	  percent	  last	  5	  days	  of	  extinction.	  Two-‐way	  ANOVA	  revrelaed	  a	  significant	  main	  effect	  for	  reinstatement.	  A	  planned	  
comparison	  revealed	  that	  mice	  that	  were	  pretreated	  with	  SL327	  displayed	  a	  potentiation	  of	  cue-‐induced	  active	  lever	  
responding.	  	  

 

DISCUSSION 

 This study had two primary goals. First, we sought to develop a mouse 

behavioral model of response-contingent cue-induced reinstatement of alcohol 

seeking behavior.  C57BL/6J mice were first trained to self-administer alcohol in 

operant chambers.  Then, following an extinction phase, mice were tested for cue-

induced reinstatement.  Results showed that alcohol-reinforced responses by 

C57BL/6J mice extinguished to levels of responding that occurred on an inactive 

lever, indicating full extinction of performance. Presentation of alcohol-associated 

cues resulted in a significant increase in responding on the lever that formerly 
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produced an alcohol solution, demonstrating relapse-like behavior.  Second, given 

the prominent role of ERK1/2 MAPK in neural and behavioral plasticity [91], we 

hypothesized that modulating this critical cell signaling pathway regulates cue-

induced reinstatement of alcohol-seeking. Our results showed that ERK1/2 inhibition 

by SL327 potentiated reinstatement of alcohol-seeking behavior.  Interestingly, 

ERK1/2 inhibition promoted reinstatement in sucrose controls that did not otherwise 

demonstrate reinstatement. Overall, these findings demonstrate a reliable method 

for evaluating cue-induced reinstatement of alcohol-seeking behavior in mice and 

suggest that ERK/MAPK activity may regulate aspects of relapse-like behavior. 

 Our finding that ERK1/2 inhibition modulates alcohol-seeking behavior adds 

to a growing list of experiments linking drugs of abuse to ERK1/2 activity. Previous 

research has implicated ERK1/2 in cue-induced reinstatement of drug-seeking 

behavior. Similar to other psychostimulants, cocaine has been shown to increase 

levels of pERK1/2 in the mesocorticolimbic circuitry [71, 236] and has been 

proposed as a neuroadaptive mechanism involved in addictive behavior. To 

determine the role of ERK1/2 in cocaine relapse-like behavior, a reinstatement 

model in rats was developed where reinstatement-responding was time-dependent 

[237]. In this procedure, following 10 days of cocaine self-administration, rats will 

reliably reinstate after 30 days, but not 1 day, of withdrawal. At the 30 day cue-

induced reinstatement test, rats were found to have increased levels of 

phosphorylated pERK1/2 in the CeA. At this time point, infusion of the ERK1/2 

inhibitor, U0126, into the CeA blocked the increased reinstatement responding, 

demonstrating that ERK1/2 activity functionally regulates drug-seeking behavior 
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[237]. ERK1/2 expression has also been shown to be affected by alcohol 

reinstatement. Our lab has shown that reinstatement of alcohol-seeking behavior 

increased levels of pERK1/2 in the BLA and NAc shell compared to extinction 

behavior in rats [178]. Systemic mGluR5 inhibition by MPEP attenuated 

reinstatement behavior as well as decreased pERK1/2 expression in the BLA and 

NAc. Alternatively, we found in mice that direct inhibition of pERK1/2 with SL327 

enhanced cue-induced reinstatement of alcohol- and sucrose-seeking behavior. 

Several experimental differences may explain these discrepancies. First, mGluR5 is 

expressed in specific brain regions compared to the global expression pattern of 

ERK1/2 and its modulation has multiple downstream effects including influencing 

NMDA receptor activity [238]. On the contrary, the effect of directly modulating 

ERK1/2 systemically using the MEK1/2 inhibitor, SL327 on alcohol self-

administration is more consistent with our findings. Using the same SL327 dose (30 

mg/kg) and pretreatment time, ERK1/2 potentiated alcohol self-administration in 

mice without affecting motor activity or motivation using a progressive-ratio paradigm 

[189]. They conclude that this effect is most likely due to a reduction in alcohol’s 

reinforcing properties, and subsequent escalation of responding to obtain alcohol’s 

reinforcing effects similar to what is observed in D1 inhibition and cocaine self-

administration [239]. Second, systemic inhibition of ERK1/2 could lead to a 

disinhibition of the neural circuitry that regulates reinstatement behavior by causing 

increased activity in the amygdala, NAc, or VTA. Similarly, ERK1/2 inhibition in the 

VTA has been shown to block GDNF-mediated decreases in alcohol self-

administration and thus suggest that decreased alcohol consumption is related to 
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increased activity of pERK in this region [240]. Systemic ERK1/2 inhibition may lead 

to increased dopamine release from the VTA into the NAc, a phenomenon observed 

in cocaine-seeking behavior [241], or could affect other neural systems like 

decreasing PFC function which is known to regulate drug extinction and would be 

predicted to increase NAc and amygdala activity [122, 242]. Follow-up experiments 

should determine the brain regional expression pattern of pERK1/2 after 

reinstatement tests in mice. The use of site-specific microinjections into discrete 

brain regions like the NAc and amygdala that show increased levels of pERK1/2 

expression or that are known to regulate reinstatement behavior would obviate many 

of the potential problems related to systemic inhibition. 

 Due to the high incidence of relapse in alcoholics, a variety of rodent 

behavioral models have been developed for the evaluation of behavior that 

corresponds conceptually with human relapse. To date, only a few mouse models of 

reinstatement have been described, despite the need to test this behavior in mice. 

The lack of these models has prevented reinstatement testing in genetic models and 

limits many researchers interested in reinstatement to working with rats. Additionally, 

positive findings regarding mechanisms behind other alcohol-related behaviors in 

mice cannot be extended to relapse-like behavior. To our knowledge, only two other 

mouse protocols of reinstatement have been described [243, 244]. One protocol has 

been successful in causing high levels of alcohol reinstatement using an FR1 

schedule and has been used to demonstrate that GLUR3 mutant mice do not 

reinstate the same levels as their littermates [243]. In the second protocol, mice 

were trained to self-administer on a FR3 schedule and contextual and multimodal 
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cues were used to promote reinstatement [244]. In our model, we also used a 

complex multimodal cue (cue light, pump sound, and single delivery of the alcohol or 

sucrose solution as an olfactory/gustatory cue, which seems to be necessary in 

mouse models of reinstatement, but not rats [178]. Some key difference between the 

protocols is training length, the use of discriminative contextual cues, and lower 

levels of alcohol consumption (0.55 vs 1.17 g/kg alcohol).  An advantage of both of 

these alternative methods is that mice do not require the addition of sucrose to 

consume alcohol which in our procedure presents a potential confound as our 

sucrose control mice did not demonstrate significant reinstatement behavior. 

Nevertheless, the development of reinstatement models in mice has many 

advantages and should open up a number of opportunities, including the 

assessment of the many genetic models of mice and the use of optogenetics to 

determine the precise neural circuitry involved in reinstatement. 

 ERK1/2 serves as a point of convergence for a large array of neuronal events 

and integrates extracellular signals that affect gene transcription that leads to 

synapse modification. The ability of ERK1/2 to cause long-term synaptic changes 

has made it a molecular candidate for the neuroadaptations believed to underlie 

addictive behaviors. Chronic alcohol exposure affects the activity of ERK1/2 in brain 

regions that regulate the enduring behavioral pathologies that define alcoholism, 

such as relapse. In a mouse model of cue-induced reinstatement of alcohol-seeking, 

ERK1/2 inhibition led to the potentiation of relapse-like behavior, an effect that 

generalized to a natural reinforcer. The results from these experiments further 
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implicate the MAPK pathway as a regulator of addictive behavior, yet the neural 

circuitry involved remains unclear, and should be the focus of future experiments.



	  
	  

CHAPTER V: LIMITATIONS AND FUTURE DIRECTIONS 
	  

 Over the last decade, research aimed at identifying the molecular 

mechanisms behind addiction have increasingly focused on proteins that play a role 

in synaptic plasticity. The studies presented here examined the role of two plasticity-

related protein kinase pathways, CaMKII and ERK1/2, in multiple behavioral models 

of addiction.  

First, the alpha subunit of CaMKII was identified using 2D-DIGE proteomics 

as being significantly increased in mice that voluntarily drank alcohol for 28 days in 

the two-bottle choice procedure. Further analyses of amygdala subregions revealed 

that the largest increase in CaMKIIα expression occurred in the CeA along with 

concomitant increased levels of the CaMKII phosphorylation site pGluR1Ser831. 

Altered CaMKII activity in the CeA suggested physiological differences in alcohol 

dinking mice and whole cell patch electrophysiology performed in amygdala slices 

revealed an increase in the AMPA/NMDA ratio of alcohol-drinking mice in the CeA.  

Through a wide array of experimental methodologies, CaMKII has been 

established as a regulator of synaptic plasticity, and this action likely occurs through 

its effects on AMPAR trafficking [64]. In the present experiment, increased AMPAR 

activity was consistent with increased expression of CaMKIIα and pGLUR1, 

however, the direct relationship between the two was not addressed. The following 

strategy could prove useful in establishing this relationship. First, co-expression of 
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CaMKII and AMPAR in central amygdala neurons needs to be demonstrated in 

alcohol-drinking mice. Second, biochemical methods can determine membrane 

insertion of phosphorylated and total AMPAR subunits. Third, patched neurons 

should be visualized via fluorescent dye tracer assays and fixed for 

immunohistochemistry of CaMKIIα and pCaMKIIThr286. Lastly, a mechanistic link 

would be established by the disruption of increased AMPAR activity by CaMKII 

inhibition. This could be accomplished by microinjecting a CaMKII inhibitor into the 

amygdala prior to recordings or infusing the inhibitor into the bath solution, however, 

direct infusion of an inhibitor directly into the patched neuron would more clearly 

establish a postsynaptic CaMKII mechanism for unsilencing synapses through 

increased AMPAR function. Alternatively, other proteins identified that play a role in 

CaMKII mRNA transport, (KIF5C), and translation, (EEF2), as well as AMPAR 

transport, (KIF5C), and stabilization in the synapse, (NSF), may be targeted to 

disrupt this mechanism. Additionally, increased CaMKII and AMPAR activity 

suggests that chronic alcohol consumption has established LTP in CeA neurons. 

Occlusion of LTP induction would be predicted in alcohol-consuming mice if LTP is 

already established and could be interpreted as a mechanism for the persistent 

nature of alcohol behaviors regulated by the CeA. As CaMKII and AMPA are 

involved in synapse maturation, a demonstration of increased dendritic spine density 

would further support this mechanism and have a high impact regarding the idea 

that chronic alcohol use causes synaptic rigidity in the emotional part of the brain. 

Finally, we found that CaMKIIα was also increased in the NAc, a brain region known 

to process reward and to have major inputs from the amygdala. Additional 
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experiments should characterize these effects in a similar fashion to the present 

study due to its important role in regulating addictive behaviors.    

Due to its role in plasticity, research has been primarily focused on CaMKII’s 

role in learning and memory, and in the case of addiction, aberrant learning and 

memory. Alternatively, the strengthening of synapses through imbalances in CaMKII 

activity could have a number of maladaptive consequences including generating 

anxiety and seizures, symptoms that present in alcohol withdrawal. The two-bottle 

procedure used here did not produce overt signs of withdrawal (i.e open field, tail 

spin, or increased corticosterone levels) at the start of the light cycle, however 8 

hours later these symptoms emerge (unpublished data). Follow up experiments 

should evaluate CaMKII expression and the electrophysiological properties of CeA 

neurons at this time point or using a model that causes dependence such as alcohol 

vapor exposure or forced alcohol ingestion. Mice that overexpress CaMKIIα in the 

forebrain display increased anxiety-like behavior [81] and given recent work 

demonstrating the CeA’s role in anxiety [245], we predict that increased CaMKIIα 

would contribute to withdrawal-related anxiety.  

Second, findings from the two-bottle procedure suggested that alcohol 

exposure caused increased glutamate activity in the CeA, a subregion known to play 

a central role in the reinforcing effects of alcohol, which may be a consequence of 

increased CaMKII activity that were found. To determine the role of CaMKII in 

alcohol reinforcement, these findings were extended to the operant self-

administration paradigm. Comparison of alcohol and sucrose self-administering mice 

revealed that pCaMKII and pGLUR1 had increased expression levels in the CeA and 
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LA of alcohol self-administering mice. Preventing CaMKII activity, accomplished by 

infusing inhibitors in the amygdala, decreased alcohol but not sucrose self-

administration in the absence of locomotor deficits and lead to the conclusion 

alcohol reinforcement is functionally and selectively regulated by CaMKII. 

Elevated CaMKII and GluR1 phosphorylation seen in alcohol compared to 

sucrose self-administering mice supports the induction of long-term plasticity by 

alcohol. Electrophysiology experiments would be useful in determining synaptic 

activity including measuring AMPA/NMDA ratio and LTP in this eparadigm in the 

CeA and LA and may be related to alcohol reinforcement and cue processing 

respectively. For instance, enhanced activity in the LA may be related to increasing 

the salience of alcohol-related cues, a finding consistent with learning and memory 

hypotheses on addiction [58]. 

Here we found that large reductions of alcohol self-administration occurred 

through AMPA/kainate inhibition with NBQX. Because CaMKII was the focus of this 

experiment, AMPA modulation was not fully characterized. Future experiments can 

address this by determining if the reduction is reinforcer specific. Additionally, other 

AMPA subunit selective antagonists like the AMPA non-GluR2 subunit inhibitor 

NASPM would provide more compelling evidence of AMPA regulation. Additional 

evidence for AMPA regulation would be through specific agonists. Other 

considerations would be to block the phosphorylation site of GluR1 with synthetic 

inhibitory peptides directed at this site.  

Third, mouse models of alcohol relapse are uncommon, despite extensive 

research characterizing the effect of alcohol on mouse brain and behavior and the 
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relevance of relapse to alcoholism. To address this deficiency, a mouse model of 

cue-induced reinstatement was developed. In this behavioral paradigm, mice were 

trained to self-administer alcohol in operant chambers where audio and visual cues 

signaled the delivery of the alcohol reinforcer. Once high levels of drinking were 

established, response contingent alcohol delivery and cues were removed. Mice 

demonstrated a reliable extinction of active lever presses demonstrated by similar 

response levels on the previously active and inactive levers and following the 

reinstatement test, mice given cues had significantly more active lever responses 

than the extinction group, an effect demonstrating cue-induced reinstatement of 

alcohol-seeking behavior. In a follow-up experiment, the role of ERK1/2 was 

evaluated by pretreating mice with SL327, an ERK1/2 inhibitor, prior to alcohol 

reinstatement tests. Reinstatement was observed in vehicle-treated mice reinstated 

and a potentiation of reinstatement was seen mice treated with SL327. To determine 

reinforcer specificity, a second group of mice was trained to self-administer sucrose 

and tested on reinstatement using the same procedure. Vehicle-treated mice did not 

reinstate sucrose-seeking behavior, however, SL327 pretreatment led to robust 

levels of reinstatement in sucrose mice. We concluded that reinstatement behavior 

can be modulated by ERK1/2 activity. 

 The procedure used was successful in promoting cue-induced reinstatement 

of alcohol-seeking behavior. In the second experiment, this result did not appear true 

for sucrose-seeking behavior when looking at vehicle-pretreated reinstatement tests 

between alcohol and sucrose groups. Adjusting the behavioral parameters, like 

lowering the response requirement or using a discriminate context for extinction 
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sessions, could promote this behavior as it possible with SL327 injections. Although 

a limitation of this procedure, this phenomenon does appear consistent with the idea 

that alcohol causes long-term changes to appetitive conditioning resulting in an 

enduring vulnerability to relapse. Similar findings have occurred in cocaine 

reinstatement where environmental stimuli paired with a single injection of cocaine 

elicited drug-seeking behavior even up to one year later while the highly palatable 

natural reinforcer sweetened condensed milk could not produce reinstatement 

behavior immediately after extinction [246]. These findings demonstrate that drug-

related cues exert stronger and more persistent control over behavior than those 

related to natural reinforcers. The neurobiological mechanism for this phenomenon 

is likely mediated by aberrant synaptic plasticity that leads to maladaptive learning.  

Collectively, the preclinical studies reported here support a growing literature 

on protein kinase regulation of addictive behaviors. Several protein kinases have 

been shown to modulate alcohol-specific behaviors including FYN, PKC, PKA, 

ERK1/2 [57] and from our data, CaMKII. CaMKII and ERK1/2 are especially 

intriguing because they are activated by increased intracellular calcium levels, are 

known regulators of LTP, and can enter the nucleus and affect transcription factors 

involved in plasticity [247]. Thus, they are candidate mechanisms for immediate 

effects such as receptor modulation and long-term functional changes that contribute 

to addictive behaviors. A large scale meta-analysis of literature pertaining to drug 

effects on protein translation and gene transcription determined that CaMKII and 

MAPK pathways are the 1st and 3rd most common pathways affected by drugs of 

abuse and that CaMKII represented a positive feedback loop that could be induced, 
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persist long-term, and be resistant to noise [248]. Furthermore, crosstalk between 

the two pathways occurs, activation of ERK1/2 by nicotine [249] and amphetamine 

[250] is blocked by CaMKII inhibition. Collectively, these findings along with our own, 

demonstrate that CaMKII and ERK1/2 are candidate mechanisms for the 

development and expression of addiction and indicate a need for further study.  

Lastly, drug therapies that target protein kinases are difficult to achieve, 

especially in the case of CaMKII and ERK1/2. These kinases have a number of roles 

throughout the body including cell proliferation and survival [247] and their inhibition 

would likely cause a number of side effects. Alternative treatment strategies include 

identifying and inhibiting the specific interaction between protein kinases and their 

brain-specific substrates. For instance, from our studies the CaMKII substrate 

pGLUR1Ser831 was increased in the amygdala of alcohol-drinking mice and inhibiting 

the specific interaction between CaMKII and p-GluR1 would potentially target the 

alcohol elevated CaMKII and pGluR1 activity. This target may have potential as 

clinical trials have shown that more general AMPAR antagonists appear to be well-

tolerated and their use in treating addiction is being considered [251]. Another 

treatment strategy is aimed at breaking cue-drugs associations like enhancing the 

extinction of drug-related cues. For instance, repeatedly exposing an addict to drug 

cues without giving them the drug may disrupt the ability for the cue to promote 

craving and relapse. Targeting the consolidation of drug-cue memories by activating 

a drug memory and then interfering with memory consolidation is another strategy. 

As both CaMKII and ERK1/2 play roles in associative memory and memory 

consolidation, modulating their activity directly or through upstream targets during 
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these interventions would likely accelerate extinction or arrest consolidation 

mechanisms, and promote long-term abstinence.
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