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Abstract 

Matthew C. Woody: An Investigation of the Impacts of Aviation Emissions on Current and Future 

Fine Particulate Matter in the U.S. 

“Under the direction of J. Jason West and Saravanan Arunachalam” 

 

The impacts of aviation emissions on current and future year fine particulate matter (PM2.5) 

were investigated using the Community Multiscale Air Quality model, accounting for aviation 

emissions from 99 airports and below 10,000 ft during the landing and takeoff (LTO) cycle. Results 

indicated that current year aviation emissions increased average PM2.5 concentrations by 0.0032 µg 

m
˗3

 (0.05%) in the continental U.S. while projected 2025 aviation emissions increased average PM2.5 

by 0.0116 µg m
-3

 (0.21%). Nitrate aerosol was the largest contributor to the increase in PM2.5 

concentrations due to aircraft emissions, particularly in the future year. Using an indicator of 

inorganic PM2.5 change, we attributed nitrate aerosol contributions to excess free ammonia and higher 

aircraft emissions of NOx (which when converted to HNO3 forms ammonium nitrate aerosol) than 

SO2 (a precursor of sulfate aerosol).  
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Introduction 

Aviation is a vital component of the U.S.’s infrastructure, transporting an average of 2.1 

million passengers and 210,000 short tons of freight per day (Federal Aviation Administration 2009a) 

and comprising 5.6% of the U.S.’s gross domestic product in 2007 (Federal Aviation Administration 

2009b). Furthermore, the aviation sector continues to grow steadily in the U.S. despite the recent 

economic downturn nationally and internationally. The Federal Aviation Administration (FAA) 

projects U.S. passenger enplanements to grow at an average annual rate of 2.5% per year between 

2011 and 2030, with 1 billion passengers expected to fly in 2023 (FAA, 2010a). While important 

economically, aircraft activities are of environmental concern for air quality due to emissions of CO, 

NOx, Volatile Organic Compounds (VOC), SOx, PM2.5, and numerous hazardous air pollutants. 

Considering the level of projected growth and the environmental concern associated with aircraft 

emissions, it is critical to understand the effects of aircraft on air quality from both an environmental 

and public health perspective. Here we present an investigation of the impacts of aviation emissions 

on a current year (2005) and future year scenario (2025), focusing on PM2.5 (fine particulate matter 

less than 2.5 micrometers in diameter), using the Community Multiscale Air Quality (CMAQ) model, 

aiming to quantify aviation’s current contribution to PM2.5 and project how it may change in the 

future. 

PM2.5 is one of six criteria air pollutants regulated by the U.S. Environmental Protection 

Agency (EPA) under the National Ambient Air Quality Standards (NAAQS) section of the Clean Air 

Act (Federal Register, 1997). It has also been linked to adverse health affects, decreasing life 

expectancy by attacking the cardiovascular and respiratory systems due to its small size and ability to 

penetrate deep into the lungs (McMurry et al., 2004). The EPA has set annual average and 24-hour 

average primary standards for PM2.5 of 15.0 µg m
-3

 and 35 µg m
-3
, respectively, as a means of 

protecting public health. Here, we quantify the contribution of aircraft emissions to annual PM2.5 

concentrations because the annual average standard is seen as more restrictive. 
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A number of recent studies have investigated the impacts of aircraft emissions on air quality 

(Kentarchos and Roelofs, 2002; Gauss et al., 2006; Søvde et al., 2007; and Hu et al., 2009). In a study 

performed by Unal et al. (2005), the impacts of aircraft on surface level ozone and PM2.5 

concentrations were quantified and compared at the Hartsfield-Jackson Atlanta International (ATL) 

airport by representing aircraft emissions as point sources at the airport and conversely as mobile 

sources. That study indicated that when aircraft emissions were treated as mobile sources and flight 

paths, mode, and plume rise were considered, the impacts on both ozone and PM2.5 at the surface 

were reduced considerably during a 10-day episode in 2000 (maximum hourly difference of 41 ppb 

and 19 µg m
-3

, respectively), compared to when aircraft emissions were treated as point sources at the 

airport (Unal et al., 2005). The implications of those results are potentially significant when one 

considers the traditional approach for modeling aircraft emissions in regional air quality models. The 

EPA’s National Emission Inventory (NEI) (EPA, 2007a), often used for obtaining emission estimates 

for regional air quality modeling, reports aircraft emissions as ground-level point sources. However, 

this simplification does not accurately reflect aircraft flight trajectories and could therefore 

overestimate the impacts of aircraft emissions as suggested by Unal et al. (2005). 

More recently, efforts have been made to quantify the localized impact of aviation emissions 

on air quality. In work performed by Ratliff et al. (2009), impacts of 2005 aircraft emissions below 

3,000 feet to PM2.5 and ozone concentrations were quantified focusing on non-attainment areas as 

designated by the EPA. Those results indicated that in areas of non-attainment, aircraft emissions 

increased PM2.5 concentrations by 0.01 µg m
-3

 and ozone concentrations by 0.11 ppb on average. A 

similar study performed by Arunachalam et al. (2008, 2010) focused on the ATL, Chicago O’Hare 

(ORD), and Providence T.F. Green (PVD) airports using a multiscale (36-km, 12-km, and 4-km) 

modeling approach. In that work, the EDMS2Inv tool (Baek et al., 2007) was developed and 

implemented as an interface that processes aviation emissions from the FAA’s Emissions and 

Dispersion Modeling System (EDMS) (Federal Register, 1998) and through the Sparse Matrix 

Operator Kernel Emissions (SMOKE) model (Houyoux et al., 2000) to provide a three-dimensional 
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representation of aircraft emissions. Aircraft emissions were based on landing and take-off (LTO) 

cycles, which include startup, taxiing, queuing, takeoff, climb-out, and approach, and account for 

emissions below 10,000 feet (Arunachalam et al., 2008). Results indicated that aircraft emissions 

increased total PM2.5 contributions overall both at and downwind of the 3 airports considered, with 

decreased nitrate and SOA concentrations near the airports but increased concentrations downwind of 

them (Arunachalam et al., 2008).  

Here we aim to model the contributions of aircraft emissions to ground-level PM2.5 in the 

entire continental U.S. in a current and future year. We use a similar approach to that of Arunachalam 

et al. (2008; 2010) to quantify the emissions of aircraft below 10,000 feet but expand from localized 

impacts at three airports to national impacts by including emissions from 99 major U.S. airports in 

2005 and 2025. We simulate the impacts of aircraft emissions on PM2.5 in a current year, determine 

how those effects may change in a future year, and compare contributions from changes in non-

aviation and aviation emissions in both years. 

 

Methodology 

Model and non-aviation emissions description 

We used the Pennsylvania State University/NCAR mesoscale v3.7 model (MM5) (Grell et 

al., 1994), SMOKE v2.5 model, and Community Multiscale Air Quality (CMAQ) (Byun and Ching, 

1999; Byun and Schere, 2006) v4.6 model, which includes the ISORROPIA v1.7 thermodynamic 

equilibrium model (Nenes et al., 1998) for inorganic particulate matter, to estimate the effects of 

current and future aircraft emissions on air quality within the continental U.S. (Figure 1). CMAQ’s 

treatment of particulate matter is described elsewhere (Binkowski and Roselle, 2003) and we will 

focus on all components of PM in this study. We also included treatment of hazardous air pollutants 

in CMAQ for this application, but the results are not presented here. A total of five annual modeling 

simulations were performed at a 36-km horizontal grid resolution (Table 1). Meteorological inputs, 
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which were based on 2005 conditions, were held constant across all model scenarios. Initial and 

boundary conditions (IC/BCs) for current and future years were based on output generated by the 

GEOS-Chem global model (Bey et al., 2001). In the absence of 2025 specific GEOS-Chem 

simulations, we interpolated the IC/BCs from 2000 and 2050 simulations to obtain 2025 

concentrations. Current year base case (base05) emissions from all non-aviation sources were 

estimated using the EPA’s 2005 NEI (EPA, 2007a). Future year base case (base25) emissions were 

based on EPA’s 2020 and 2030 estimated projections, which includes projected growth and controls 

“on the books” for various sectors on the national and state level, interpolated to 2025 (EPA, 2008).  

Table 1. CMAQ modeling scenarios. 

Scenario Name Base Emissions Aircraft Emissions 

base05 2005 --- 

airc05 2005 2004 

b05_a25 2005 2025 

base25 2025 --- 

airc05 2025 2025 

 

Current year aviation emissions description 

Aircraft emissions data, based on LTO cycles, were generated from a research version of 

EDMS, processed through the EDMS2Inv tool, and finally input into SMOKE. Current year aircraft 

emission estimates (air05) included CO, total organic gases (TOG) (comparable but not equivalent to 

VOC) speciated using a more recent chemical speciation profile (EPA, 2009a; EPA, 2009b), NOx, 

SOx, primary elemental carbon (non-volatile component of PM2.5), and hazardous air pollutants 

(HAPS). Note, while aircraft emissions used in this study included HAPS, they are not included in the 

scope of this work. Emissions estimates were based on hourly National Aerospace Standards (NAS) 

activity data from 99 major airports (Figure 1) for February 19, 2004 and scaled up to compute an 

annual inventory (CSSI, 2009). The list of airports along with their full names is also available 

elsewhere (CSSI, 2009). February 19 was identified as a typical day for aircraft activity by CSSI  
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Figure 1. Modeling domain and 99 airports modeled. 

(2009) based on relatively heavy aircraft traffic (71st percentile) and light weather conditions (10th 

percentile for low convective weather). Annual inventory scaling was performed on an individual 

airport basis using scaling factors specific to each airport and based on flight schedules (CSSI, 2009). 

While applying 2004 aviation emissions to 2005 non-aviation emissions presents a slight discrepancy, 

we assume that emissions varied little between the two years. The 99 airports included in this study 

represent 94% of passenger enplanements and 90% of landed cargo weight in 2004 (FAA, 2009a). 

 

Current year aircraft emissions comparison 

To evaluate the 2004 aircraft emissions inventory used here, a comparison was performed 

against aircraft emissions available from the EPA’s 2005 NEI as well as a recent 2006 inventory 

prepared by Wilkerson et al. (2010). While different methodologies were used to create each 

inventory, a comparison of the 3 provides a means to evaluate the aircraft inventories used in this 
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study. For the 2005 NEI, EDMS was used to estimate aircraft emissions by county up to 3,000 feet 

based on LTO cycles from 2002 aircraft activity data reported by the FAA and state and local 

agencies (EPA, 2005). The counties representing the 99 airports used in this study represent 82-94% 

(depending on the species) of the total continental U.S. aircraft emissions from the NEI. The 

Wilkerson et al. inventory used the FAA’s Aviation Environmental Design Tool, which incorporates 

the latest version of the EDMS tool with a number of other FAA environmental tools, and included 

emissions from both LTO cycles and cruise height activity based on daily global aircraft flight 

trajectories from 2006 (Wilkerson et al., 2010). Although each inventory is based on flight activity 

data from different years (2002, 2004, and 2006), passenger enplanements in the U.S. only increased 

by approximately 10% during the 4 year period (FAA 2009a) and likely composes only a small 

portion of the differences between inventories. For the purposes of the comparison, we extracted 

emissions only in the Continental U.S from both the NEI and Wilkerson et al. inventories, and 

emissions below 10,000 feet (removing cruise altitude emissions) from the Wilkerson et al. inventory. 

Additionally, TOG from the 99 airport inventory was converted to VOC since the NEI and Wilkerson 

et al. inventories reported organic gases as VOC. 

Figure 2 indicates the total gas phase aircraft emissions from each of the 3 inventories in tons 

per year and, for the most part, are comparable between the three inventories. The Wilkerson et al. 

inventory indicated higher levels of gas phase emissions for all species, suggesting higher aircraft 

activity than that used in 99 airport inventory. While a portion of this can be attributed to the 

Wilkerson et al. inventory including all airports in the U.S., it would seem that, because the 99 

airports comprise a large percentage of passenger enplanements and the vast majority of NEI 

emissions occur in the counties represented by the 99 airports, this would not fully account for the 

differences. Therefore, impacts determined using the 99 airport inventory would likely be lower than 

impacts determined by the portion of the Wilkerson et al. inventory below 10,000 feet. 

For PM2.5 emissions, each inventory employed a different speciation profile to estimate 

individual components. The speciation profile for the 99 airport inventory was based on the First  
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Figure 2. Comparison of total gas phase emissions from aircraft in the continental U.S. The area 
below the solid black lines for the NEI indicate the portion represented by the counties containing the 

airports in the 99 airport inventory. 

Order Approximation Version 3.0 (Wayson et al., 2009) and is specific for ground level aviation 

activities (CSSI, 2009). Estimates based on FOA3 include a non-volatile portion composed of PEC 

and a volatile portion composed of primary sulfate (PSO4) and primary organic aerosols (POA). 

However, the 99 airport inventory used in this study only includes PEC, excluding PSO4 and POA 

due to uncertainties associated with the volatile portion of aircraft emissions at the time the inventory 

was prepared. The speciation profile used by the NEI is not specific to aircraft emissions but is a 

simplified version of the Heavy Duty Diesel Vehicle speciation profile and includes PEC, POA, 

PSO4, other primary (PMFINE), and primary nitrate aerosols (PNO3). The Wilkerson et al. inventory 

used a speciation profile typical of aircraft emissions at cruise altitude and includes PEC, PSO4, and 

POA. Table 2 summarizes the speciated fraction of PM2.5 as estimated by each inventory using their 

respective speciation profiles. 

Figure 3 indicates PM2.5 aircraft emissions from the 3 inventories as well as the percent 

composition of individual species (Note: while the Wilkerson et al. speciation profile included PSO4 

and indicated higher amounts of PEC than POA emissions, the supplied emissions data used for the  
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Table 2. Speciated fractions for PM2.5 estimated by speciation profiles. 

Inventory PEC POA PSO4 PMFINE PNO3 

99 Airport 
Inventory 

0.461 0.158 0.381 --- --- 

NEI 0.771 0.176 0.003 0.049 0.001 

Wilkerson et 
al. Inventory 

0.312 0.138 0.550 --- --- 

 

comparison did not include PSO4 and indicated higher amounts of POA than PEC emissions). While 

the 99 airport and Wilkerson et al. inventories have comparable emissions of primary elemental 

carbon (PEC), the similarities end there. The NEI contains much higher emissions of PM2.5, 27 times 

higher than the 99 airport inventory and 3.2 times higher than the Wilkerson et al. inventory, 

suggesting that the NEI may overestimate aircraft PM2.5 emissions. The differences in both the totals 

and speciation of PM2.5 emissions from aircraft from the 3 inventories highlight uncertainties in our 

study, and suggest that future work to resolve these differences would be important. 

Figure 4 indicates the percentage of the Wilkerson et al. inventory below 10,000 feet (as 

compared to the total inventory in the continental U.S.) through which we can assess limitations  

 

 

Figure 3. Comparison of total PM2.5 emissions from aircraft in the continental U.S. (left) and the 
PM2.5 speciation profile for aircraft emissions used by each inventory (right). The area below the solid 

black lines for the NEI indicate the portion represented by the counties containing the airports in the 

99 airport inventory. 
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associated with the 99 airport inventory used in this study. Approximately 20% of SO2 and NOx 

emissions occur below 10,000 feet while approximately 50-60% of VOC, PM2.5 and CO emissions 

occur below 10,000 feet. The focus of this paper is to quantify the effects of aircraft emissions in the 

lowest 10,000 feet (during aircraft LTO cycles) on air quality at the surface, necessary to evaluate 

effects on public health. Therefore, the inclusion of aircraft at cruise altitude is outside the scope of 

this paper. However, while the inclusion of emissions below 10,000 feet is a reasonable assumption to 

assess the ground level concentrations, it also suggests that our results will likely underestimate the 

true impact, considering that 40-80% of the emissions in the Wilkerson et al. inventory occurred 

above 10,000 feet. 

 

Figure 4. Portion of Wilkerson et al. inventory below 10,000 feet as a percentage of the total 

inventory in the continental U.S. 

 

Future year aviation emissions description 

Future year aviation estimates (airc25) were scaled up using air traffic data based on the FAA 

Terminal Area Forecasts (TAF) for February 19, 2025. This was one of the several scenarios modeled 

by the Interagency Portfolio and Systems Analysis Division of NextGen’s Joint Planning and 



10 
 

Development Office (JPDO) to assess aviation growth (CSSI, 2009). This future year estimate 

represents a business-as-usual scenario with no mitigation strategies, policies, or changes in 

technology and considers only growth in aviation activity. Table 2 provides the total aircraft emission 

inventory for both the current and future year. 

Table 3. Total annual aircraft emission inventory from 99 airports. 

Year CO (ton yr
-1

) NOx (ton yr
-1

) PEC (ton yr
-1

) SO2 (ton yr
-1

) TOG (ton yr
-1

) 

2004 92,816 68,145 93 8,536 15,593 

2025 188,648 146,842 164 18,071 27,929 

 

Figure 5 summarizes the change in emissions used here from 2005 and 2025 as well as the 

percentage of aviation as part of the total emission budget in both years. While non-aviation 

emissions are reduced in the future year with the exception of NH3 (reductions of 10-37% for gas 

phase species and 2% for PM2.5) due to control and mitigation strategies, aviation emissions increase 

significantly (increases of 79-116% for gas phase species and 77% for PM2.5) due to projected 

growth. This creates a future year scenario where emissions from most sectors are mitigated while 

emissions from the aviation sector grow and thus comprise a larger percentage of total emissions in 

2025 than 2005 (Figure 5).  

 

Model Evaluation 

While the models and methods that we have used in this study are very robust and well 

established, there are a number of uncertainties associated with the aircraft emissions data used in this 

study. Given that future year aircraft emissions are estimated in much the same way as current year 

emissions, any uncertainty in the current year emissions is propagated to the future year. Additionally,  
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Figure 5. Percent change in non-aviation and non-aviation emissions from 2005 to 2005 (left) and 

percentage of aviation emissions as part of the total emissions budget in 2005 and 2025 (right). 

both future year aircraft and non-aircraft emissions can vary depending on assumptions of 

which, if any, control strategies, policies, or changes in technology are included. 

To evaluate the model for the base year application, the Atmospheric Model Evaluation Tool 

(AMET) (Appel and Gilliam, 2008a) was used to compare the base05 model output with ambient air 

quality monitoring data from several networks available within the U.S.; model results from the 

airc05 case are essentially the same, as shown in the next section. Figure 6 indicates that model 

performance was relatively good (< 75% normalized mean error and < ±60% normalized mean bias) 

for O3, SO2 (based on one of two networks) NO2, PM2.5, sulfate, ammonium, elemental carbon, and 

organic aerosols but poor (> 75% normalized mean error and > ±60% normalized mean error) for 

nitrate aerosol (based on 2 of 3 networks). These results are similar to those of other similar studies 

(Appel et al., 2008b; Eder and Yu, 2006; Tesche et al., 2006, Foley et al, 2010). Additional details 

and analysis regarding the model evaluation are provided in the Appendix. 
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Figure 6. Normalized mean error and normalized mean bias for SO2, O3, NO2, sulfate (SO4), nitrate 

(NO3), ammonium (NH4), PM2.5, organic carbon (OC), elemental carbon (EC), total carbon (TC), and 

HNO3. 

 

Results and Discussion 

Spatial Impacts 

Results presented here indicate incremental contributions to annual average PM2.5 

concentrations due to aircraft emissions, and were computed by taking the difference between CMAQ 

simulations with and without aircraft emissions. We considered the contribution of aviation emissions 

in three cases: the contribution of aviation emissions in 2005 (airc05 minus base05), the contribution 

of 2025 aviation emissions in 2005 (b05_a25 minus base05), and the contribution of 2025 aviation 

emissions in 2025 (airc25 minus b05_a25). The purpose of including analysis of 2025 aircraft 

emissions in 2005 was to investigate how changes to non-aviation or background emissions influence 

the effects of aviation emissions on air quality. As the focus is on public health, only surface level 

concentrations over land in the continental U.S. were considered. 

Figure 7 indicates the spatial distribution of contributions from aircraft emissions to PM2.5 in 

the continental U.S. Contributions were highest in the eastern U.S. and California, regions with a high 

density of airports and urban areas, with the maximum impact in all 3 cases occurring in the Los  



13 
 

 

  

 

 

Figure 7. Spatial distribution of annual average contribution from aircraft emissions to PM2.5. (black 

diamonds show locations of 99 airports) 

Angeles metropolitan area (0.037 µg m
-3

, 0.077 µg m
-3

, and 0.113 µg m
-3

). Comparing 

contributions from aircraft in 2025 to those in 2005, the impacts covered greater spatial extents and 

indicated that in the future year, a higher portion of the population would be exposed to PM2.5 from 

aircraft emissions. Additionally, impacts from 2025 aircraft emissions in 2025, as compared to 2025 

aircraft emissions in 2005, covered a larger spatial extent and exhibited a higher maximum value 

(0.113 µg m
-3

 versus 0.077 µg m
-3

) suggesting that the reduction in non-aviation emissions from 2005 

to 2025 (i.e. a reduction in non-aviation emissions) led to greater impacts of aviation emissions to 

PM2.5 in 2025. 

 

airc05-base05 b05_a25-base05 

airc25-base25 
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Continental U.S. Impacts 

Contributions averaged across the continental U.S. indicated that aircraft emissions in 2005 

(airc05 minus base05) increased PM2.5 concentrations by 0.0032 µg m
-3

 (0.05% of total PM2.5), 2025 

aircraft emissions in 2005 (b05_a25 minus base05) increased PM2.5 concentrations by 0.0068 µg m
-3

 

(0.11% of total PM2.5), and 2025 aircraft emissions in 2025 (airc25 minus base25) increased PM2.5 

concentrations by 0.0116 µg m
-3

 (0.21% of total PM2.5) (Figure 8). The contributions of aircraft 

emissions in 2005 were in good agreement with those indicated by Ratliff et al. (2009) (which used 

325 airports in the U.S.) on a percent basis, which reported a 0.06% (0.01 µg m
-3

) contribution to 

PM2.5 concentrations in areas of non-attainment. Nitrate aerosol (ANO3) was the largest speciated 

contributor in all three comparisons, contributing on average 0.0019 µg m
-3

 (0.16%), 0.004 µg m
-3

 

(0.35%), and 0.0074 µg m
-3

 (0.85%), respectively (Figure 8). While aircraft emissions were 

equivalent in the comparisons of 2025 aircraft emissions in 2005 (b05_a25 minus base05) and 2025 

aircraft emissions in 2025 (airc25 minus base25), the 2025 aircraft emissions in 2025 led to 0.0048 µg 

m
-3

 higher contributions to PM2.5 as in Figure 7. Ammonium aerosol (ANH4) and ANO3 were 

responsible for an overwhelming majority (98%) of the difference in contributions from 2025 aircraft 

emissions in 2005 and in 2025. 

 

Local Impacts 

While examining contributions averaged over the entire continental U.S. provides a broad 

snapshot of impacts from aircraft emissions, regional differences are difficult to ascertain from this 

type of analysis. To evaluate how impacts vary regionally, local impacts of aviation emissions on air 

quality are presented from five airports of varying size and geographic regions. The size was based 

upon a ranking of enplanements at all airports located in areas that are in nonattainment for any one 

of the criteria pollutants under the FAA Voluntary Airport Low Emissions Program (VALE) (FAA, 

2010b). The 5 airports identified are: ATL (large airport located in southeast), Los Angeles  
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Figure 8. Annual average speciated contribution of aircraft emissions to PM2.5 in the continental U.S. 
for ammonium (ANH4), sulfate (ASO4), nitrate (ANO3), elemental carbon (AEC), primary organic 

(POA), secondary organic (SOA), and “other” (A25) aerosols. 

International Airport (LAX, large airport located in west), ORD (large airport located in Great Lakes 

region), Albuquerque International Sunport (ABQ) (medium airport located southwest), and PVD 

(medium airport located in northeast). Figure 9 provides the speciated contributions to PM2.5 from 

aircraft emissions in the grid cell containing each of these five airports, with total contributions in the 

range of 0.003 to 0.022 µg m
-3

 in 2005, 0.009 to 0.042 µg m
-3

 for 2025 aircraft emissions in 2005, and 

0.022 to 0.081 µg m
-3

 in 2025. Similar to the continental U.S. results, ANO3 was typically the largest 

speciated contributor to PM2.5 concentrations from aircraft emissions. However, unlike the continental 

U.S. results, AEC, the only PM2.5 species directly emitted by aircraft, was also a large contributor 

from aircraft emissions with contributions in the ranges of 0.0003 to 0.008 µg m
-3

, 0.001 to 0.011 µg 

m
-3

, and 0.001 to 0.012 µg m
-3

, respectively. It is worth noting the reduction of SOA concentrations at 

ATL due to both current year aircraft emissions and 2025 aircraft emissions in 2005. In our previous 

work, we investigated this issue at 36-km, 12-km, and 4-km grid resolutions and showed that at the 

36-km and 12-km resolutions NOx emissions from aircraft remove free radicals and slow the 

production of SOA near the ATL airport (Woody and Arunachalam, 2010).  
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While the continental U.S. analysis highlighted the importance of changes in non-aviation 

emissions, individual airport-level results vary. For example, the impacts of 2025 aircraft emissions in 

2005 and 2025 at LAX increased only minimally (11% increase). Contrast this to a significant 

increase in impacts from 2025 aircraft emissions in 2005 and 2025 at ABQ (77% increase), ATL 

(226% increase), ORD (111% increase), and PVD (253% increase). For these four airports, ANO3 

and ANH4 composed the vast majority of the difference in contributions as was the case with 

continental U.S. results. This suggests that the inorganic PM2.5 species (particularly ANO3 and 

ANH4) exhibit a common response to changes in non-aviation emissions throughout many regions of 

the U.S. 

 

  

 

Figure 9. Annual average speciated contributions of aircraft emissions to PM2.5 at the grid cell 
containing the airport for (a) 2004 aircraft emissions in 2005, (b) 2025 aircraft emissions in 2005, and 

(c) 2025 aircraft emissions in 2025. 

 

a) b) 

c) 
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Inorganic PM2.5 Response 

Ammonium, nitrate, and sulfate concentrations can respond non-linearly to changes in 

emissions and therefore present a difficult challenge in predicting sensitivities (West et al., 1999). 

Here we aim to explain changes to the modeled PM2.5, of which ANO3 was the largest contributor, by 

analyzing the inorganic aerosol system. Tsimpidi et al. (2007) have shown that a 50% uniform 

reduction in SO2 emissions lead to a 26% reduction of PM2.5 concentrations in July but only a 6% 

reduction during January in the eastern U.S. This occurs because, even though SO2 emissions are 

reduced, thus reducing H2SO4 concentrations and ASO4 formation, ANH4 that was previously 

associated with ASO4 is now available to neutralize nitrate in the form of HNO3 and create ANO3. A 

number of studies have developed parameters to determine how the inorganic PM2.5 system at 

equilibrium (appropriate for analyzing modeled results) might respond to changes in emissions 

(Ansari and Pandis, 1998; Blanchard et al., 2000; and Pinder et al., 2008).  

Previously, Ansari and Pandis (1998) developed the Gas Ratio (GR) metric, which is defined 

as 

 �� = ���� �		
���


�� �����
=  ���� � ��

��
 (1) 

where Total Ammonia (TA) = NH3 + NH4
+
, Total Sulfate (TS) = SO4

-2
, and Total Nitrate (TN) = 

HNO3 + NO3
-
 with each expressed in molar concentrations (as are concentrations in all subsequent 

equations). TS is assumed to be fully neutralized by ammonium and therefore multiplied by a value of 

2. A GR value greater than 1 signifies an excess of free ammonia and changes to particle nitrate are 

most sensitive to changes in TN whereas a GR less than 1 signifies an abundance of nitrate and 

particle nitrate is sensitive to changes in TA. Similar to this, Blanchard et al. (2000) developed the 

excess NH3 indicator, which is defined as 

 ������ ��� = �� − 2 � �" − �� − #�$% &'() +  2 #$+,�) +  2 #-',�) +  #�+,) + #.,) + #$%�) (2) 
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Without the minor ions, this formula reduces to an expression similar to the GR indicator but instead 

of a ratio it is the difference in anions and cations. More recently, Pinder et al. (2008) refined the GR 

by replacing the 2 associated with TS with the Degree of Sulfate Neutralization (DSN) to form the 

Adjusted Gas Ratio (AdjGR) defined as 

 �/0�� = ���1�� � ��

��
 (3) 

where DSN is defined as 

 2"� =
#�345) � #�6�7)

8�69
7:;

 (4) 

The AdjGR does not assume TS is fully neutralized but instead calculates sulfate neutralization. The 

use of DSN is based on Atmospheric Inorganic Model (Clegg et al., 1998) results indicating that, at 

typical winter conditions in the eastern U.S., particle nitrate will form prior to sulfate being fully 

neutralized. Others studies have also reported the formation of particle nitrate prior to sulfate being 

fully neutralized using ambient air quality measurements from the Speciated Trends Network (Chu, 

2003) and regional air-quality modeling (Mathur and Dennis, 2003). Contrast this with the 

assumption that ASO4 is fully neutralized, where ammonium will preferentially neutralize sulfate 

prior to neutralizing nitrate.  

 Here, we take a similar approach to that used by Pinder et al. (2008) and replace the 2 

associated with TS in equation 2 with DSN and remove the minor ions from the equation based on 

assumption that their contribution is negligible compared to ammonium, sulfate, and nitrate 

(Christoforou et al., 2000). Using simple substitution, equation (2) simplifies to what we refer to here 

as Free Ammonia (FA) where 

 <� = #���) − #��=�) (5) 

This metric differs from “free ammonia” used by Ansari and Pandis (1998) and Pinder et al. (2008) 

who refer to the amount of ammonia available to form ammonium nitrate after sulfate is neutralized, 
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whereas we refer to the amount of ammonia available to the system after both nitrate and sulfate are 

neutralized.. The FA metric assumes chemical equilibrium and is therefore appropriate for modeling 

applications. A positive FA value indicates free ammonia is available to the system. The advantage to 

the FA indicator is that no aerosol concentrations are required to calculate it, only concentrations of 

NH3 and HNO3. It also has the added advantage of providing an estimate of the amount of aerosol 

that could potentially be formed, where an FA of 1 µmol m
-3

 could potentially form 18 µg m
-3

 of 

ANH4 provided enough sulfate and nitrate are added to the system. 

The FA indicator is applied to analyze the response of inorganic PM2.5 to changes in aircraft 

emissions in an effort to account for the large contributions from ANO3 as compared to ASO4. 

Figure 10 indicates the modeled annual average FA values in the U.S. for the 2005 and 2025 base 

cases. Large portions of the U.S. exhibited a positive FA value indicating that in both years there was 

an excess of free ammonia and that changes to ANO3 were sensitive to changes in TN. These results 

are in agreement with those of a recent study performed by Makar et al. (2009), where model results 

indicated much of the U.S. to have large excess ammonia in 2002. Figure 10 also indicates that a 

larger area of the U.S. had a positive annual average FA value in the 2025 base case, as compared to 

2005. Areas with a negative FA, such as the eastern U.S. in 2005, indicate locations that ammonia is 

limited and nitrate added to the system would remain in the gas phase as HNO3 due to the lack of 

available ammonia to form ammonium nitrate. 

 

Figure 10. Annual average Free Ammonia for the base05 and base25 modeling scenarios. 

base05 base25 



20 
 

 The increase in modeled FA in 2025 relative to 2025 is in agreement with the changes in non-

aviation emission inventories. While NH3 emissions increase by 8% between 2005 and 2025, NOx 

emissions are significantly reduced (35%) (Figure 5). This reduction in NOx emissions translates to 

lower concentrations of HNO3 in the future year. Given that NH3 concentrations increase slightly 

while HNO3 concentrations are reduced, future year FA values are higher and more widespread 

spatially. 

Figure 11 provides the changes in both NOx and SO2 due to aircraft emissions in 2005 and 

2025, showing that the change in NOx concentration is much greater, consistent with the difference in 

emissions (Table 3). Due to an excess of free ammonia (H2SO4 would therefore already be fully 

neutralized in the model), the HNO3 formed from aircraft NOx emissions was readily neutralized by 

ammonia to form ammonium nitrate aerosols. In the event that there was no excess free ammonia,  

 

 

Figure 11. Changes in annual average (a) NOx concentrations and (b) SO2 concentrations due to 

aircraft emissions in 2005 (left) and 2025 (right). (black diamonds show locations of 99 airports) 

a) 

b) 

airc05-base05 airc25-base25 
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HNO3 would remain in the gas phase, being outcompeted by H2SO4 for ammonia, and the 

contribution of aircraft emissions to ANO3 and PM2.5 would likely be much smaller. Aircraft 

contributed more NOx than SO2 (Figure 11), and this increase corresponds spatially with the changes 

in ANO3 and ASO4 (Figure 12). Due to the free ammonia available over much of the country (Figure 

10), and higher NOx emissions than SO2 emissions, ANO3 is a larger contributor to the inorganic 

portion of PM2.5 as compared to ASO4.  

The FA metric also provides insight into the discrepancy between contributions of 2025 aircraft 

emissions in 2005 and 2025. As previously mentioned, 2025 aircraft emissions in 2005 contributed 

0.0068 µg m
-3

 to PM2.5 concentrations while 2025 aircraft emissions in 2025 contributed 0.0116 µg 

m
-3

. Of the 0.0048 µg m
-3

 difference between 2005 and 2025, 0.0047 µg m
-3

 or 98% was comprised of 

ANH4 and ANO3. Figure 10 indicates that FA values are generally more positive (less negative) 

throughout the U.S. in 2025 compared to 2005, particularly in the eastern U.S. (areas with a high 

density of airports). Consequently, NOx emissions from aircraft in 2025, converted to HNO3, 

combined more readily with the more abundant FA, than in 2005, to form ANO3 and ANH4. 

 

Conclusions 

Overall, aircraft emissions below 10,000 feet from 99 airports in the continental U.S. 

contributed on average 0.0032 µg m
-3

 (0.05% of total PM2.5) to PM2.5 in 2005, 0.0068 µg m
-3

 (0.11% 

of total PM2.5) for 2025 aircraft emissions in 2005, and 0.0116 µg m
-3
 (0.21% of total PM2.5) for 2025 

aircraft emissions in 2025, with ANO3 as the largest speciated contributor. Contributions from 

aircraft emissions at five airports of various sizes across the U.S. ranged from 0.003 to 0.022 µg m
-3

 

for 2004 aircraft emissions in 2005, 0.009 to 0.042 µg m
-3

 for 2025 aircraft emissions in 2005, and 

0.022 to 0.081 µg m
-3

 for 2025 aircraft emissions in 2025, with ANO3 and AEC as important 

contributors.  
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Figure 12. Changes in annual average (a) ANO3 concentrations and (b) ASO4 concentrations due to 

aircraft emissions in 2005 (left) and 2025 (right). (black diamonds show locations of 99 airports) 

While these contributions appear small, they likely underestimate the total contributions from 

aircraft on ambient air quality as cruise altitude emissions were not considered. Furthermore, large 

uncertainties associated with estimating aircraft emissions both at ground level and aloft limit the 

ability to quantify total impacts. Therefore, it is important to continue to investigate the contributions 

of total aircraft emissions to both total PM2.5 and speciated components. As aviation’s usage 

continues to grow, impacts on air quality and public health have the potential to grow as well. 

Additionally, understanding the speciated contributions of aircraft emissions to PM2.5 is critical in 

developing effective mitigation strategies. 

We used the Free Ammonia indicator to explain the larger contributions of ANO3 than ASO4 

from aircraft emissions to PM2.5, as well as impacts caused by changes in background emissions. This 

indicator determined that in both the current and future years, excess ammonia was present 

a) 

b) 

airc05-base05 airc25-base25 
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throughout large portions of the U.S. With the addition of more NOx than SO2 from aircraft 

emissions, the subsequent higher amount of HNO3 formed as compared to H2SO4 was neutralized by 

the excess ammonia available to form higher concentrations of ANO3 than ASO4. The indicator was 

also useful in explaining the greater impact of 2025 aircraft emissions in 2025 than in 2005 due to 

increased contributions from ANO3 and ANH4 attributed to more positive FA values in 2025. 

Future expansion of this work could include modeling each aircraft individually using a 

plume-in-grid technique, or other alternate approaches to include sub-grid variability, to track the 

formation of aerosols due to aircraft emissions near the aircraft engine as well as downstream. 

Specifically, this would include obtaining additional information from previous and ongoing field 

campaigns that include measurement of volatile components of PM from aircraft engines (Kinsey, 

2009) and ongoing projects funded by the Transportation Research Board’s Airport Cooperative 

Research Program (ACRP) and the U.S. Department of Defense Strategic Environmental Research 

and Development Program (SERDP), and using this new information to enhance the modeling 

approaches discussed here. A second expansion would involve including aircraft emissions at cruise 

altitude as opposed to only up to 10,000 feet. However, modeling at higher altitudes presents a new 

set of limitations and uncertainties as regional scale models such as the one used here are typically 

designed to predict surface level concentrations. A final consideration would be to include climate 

change as part of the future year scenario to access how changes in climate and meteorology would 

impact the contributions of aviation emissions on future air quality.  

 Additional information regarding this work is located in the appendices. Appendix A 

provides additional spatial plots of various gas and aerosol species. Appendix B indicates the 

speciated contributions of aircraft emissions to PM2.5 at each of the 99 airports. Appendix C provides 

a comparison of CMAQ predicted contributions to PM2.5 from aircraft emissions to CMAQ results 

post-processed using the Speciated Modeled Attainment Test. Finally, Appendix D contains the 

model evaluation used to determine model performance.  
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Appendix A - Additional Spatial Plots 

 

 

 

 

Figure 13. Degree of Sulfate Neutralization where a value of 2 indicates sulfate is fully neutralized by 

ammonium. 

base05 base25 

airc05 airc25 
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Figure 14. Changes in gaseous ammonia concentrations due to aircraft emissions. Lower 
concentrations of ammonia gas correspond to an increase in ANH4 concentrations. 

airc05-base05 b05_a25-base05 

airc25-base25 
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Figure 15. Change in ANH4 concentrations due to aircraft emissions. 

  

airc05-base05 b05_a25-base05 

airc25-base25 
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Figure 16. Changes in ANO3 (left) and ASO4 (right) due to 2025 aircraft emissions in 2005. 

 

 

Figure 17. Changes in NOx (left) and SO2 (right) due to 2025 aircraft emissions in 2005. 
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Appendix B - Contributions from aircraft emissions to PM2.5 at each of the 99 airports 

Table 4. Absolute and percent increases due to aircraft emissions in 2005 at grid cell containing the airport. 

Airport 
A25  

(µg m-3) 

AEC  

(µg m-3) 

ANH4  

(µg m-3) 

ANO3  

(µg m-3) 

SOA  

(µg m-3) 

POA  

(µg m-3) 

ASO4  

(µg m-3) 

PM2.5*  

(µg m-3) 

ABQ 
0.0000 

(0.00%) 

0.0003 

(0.06%) 

0.0006 

(0.15%) 

0.0016 

(0.34%) 
˗0.0001 

(˗0.02%) 

0.0000 

(0.00%) 

0.0006 

(0.09%) 

0.0030 

(0.04%) 

ALB 
˗0.0001 

(0.00%) 

0.0002 

(0.04%) 

0.0012 

(0.09%) 

0.0039 

(0.16%) 
˗0.0001 
(˗0.03%) 

0.0000 

(0.00%) 

0.0004 

(0.02%) 

0.0054 

(0.04%) 

ATL 
˗0.0001 

(0.00%) 

0.0079 

(0.77%) 

0.0012 

(0.07%) 

0.0025 

(0.13%) 

˗0.0062 

(˗0.45%) 

0.0000 

(0.00%) 

0.0025 

(0.07%) 

0.0078 

(0.05%) 

AUS 
˗0.0001 

(0.00%) 

0.0008 

(0.30%) 

0.0015 

(0.14%) 

0.0038 

(0.25%) 

˗0.0001 

(˗0.04%) 

0.0000 

(˗0.01%) 

0.0013 

(0.08%) 

0.0072 

(0.08%) 

BDL 
˗0.0001 

(0.00%) 

0.0007 

(0.12%) 

0.0007 

(0.06%) 

0.0025 

(0.10%) 

˗0.0005 

(˗0.10%) 

0.0000 

(0.00%) 

0.0004 

(0.02%) 

0.0036 

(0.03%) 

BFL 
˗0.0001 

(˗0.01%) 

0.0000 

(˗0.01%) 

0.0022 

(0.33%) 

0.0063 

(0.41%) 

0.0000 

(0.00%) 

˗0.0001 

(˗0.01%) 

0.0010 

(0.16%) 

0.0092 

(0.12%) 

BHM 
˗0.0002 

(0.00%) 

0.0003 

(0.04%) 

0.0010 

(0.06%) 

0.0023 

(0.16%) 

0.0000 

(0.00%) 

0.0000 

(0.00%) 

0.0020 

(0.06%) 

0.0054 

(0.04%) 

BNA 
˗0.0002 

(˗0.01%) 

0.0007 

(0.09%) 

0.0010 

(0.06%) 

0.0028 

(0.12%) 

˗0.0001 

(˗0.03%) 

0.0000 

(0.00%) 

0.0014 

(0.04%) 

0.0055 

(0.04%) 

BOI 
0.0000 

(0.00%) 

0.0002 

(0.02%) 

0.0009 

(0.15%) 

0.0026 

(0.20%) 

0.0000 

(0.00%) 

0.0000 

(0.00%) 

0.0005 

(0.07%) 

0.0041 

(0.03%) 

BOS 
0.0000 

(0.00%) 

0.0022 

(0.16%) 

0.0011 

(0.07%) 

0.0052 

(0.18%) 

˗0.0011 

(˗0.21%) 

0.0000 

(0.00%) 

0.0001 

(0.00%) 

0.0074 

(0.04%) 

BTR 
˗0.0001 

(0.00%) 

0.0000 

(0.00%) 

0.0009 

(0.07%) 

0.0022 

(0.17%) 

0.0001 

(0.02%) 

0.0000 

(0.00%) 

0.0011 

(0.04%) 

0.0042 

(0.04%) 

BUF 
˗0.0002 

(0.00%) 

0.0003 

(0.07%) 

0.0014 

(0.07%) 

0.0049 

(0.14%) 
˗0.0002 

(˗0.04%) 

˗0.0001 

(0.00%) 

0.0005 

(0.02%) 

0.0068 

(0.05%) 

BUR 
˗0.0002 

(˗0.01%) 

0.0005 

(0.05%) 

0.0038 

(0.39%) 

0.0114 

(0.54%) 

˗0.0002 

(˗0.05%) 

˗0.0002 

(˗0.01%) 

0.0014 

(0.14%) 

0.0165 

(0.17%) 
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Airport 
A25  

(µg m-3) 

AEC  

(µg m-3) 

ANH4  

(µg m-3) 

ANO3  

(µg m-3) 

SOA  

(µg m-3) 

POA  

(µg m-3) 

ASO4  

(µg m-3) 

PM2.5*  

(µg m-3) 

BWI 
˗0.0002 

(˗0.01%) 

0.0011 

(0.16%) 

0.0011 

(0.06%) 

0.0041 

(0.14%) 

˗0.0005 

(˗0.12%) 

˗0.0001 

(0.00%) 

0.0002 

(0.01%) 

0.0057 

(0.04%) 

CHS 
˗0.0001 

(0.00%) 

0.0002 

(0.03%) 

0.0005 

(0.05%) 

0.0015 

(0.20%) 

0.0001 

(0.01%) 

0.0000 

(0.00%) 

0.0011 

(0.04%) 

0.0032 

(0.04%) 

CLE 
˗0.0003 

(˗0.01%) 

0.0007 

(0.13%) 

0.0026 

(0.11%) 

0.0085 

(0.19%) 

˗0.0002 

(˗0.07%) 

˗0.0001 

(˗0.01%) 

0.0008 

(0.02%) 

0.0120 

(0.08%) 

CLT 
˗0.0001 

(0.00%) 

0.0016 

(0.06%) 

0.0022 

(0.12%) 

0.0065 

(0.27%) 

˗0.0013 

(˗0.11%) 

˗0.0001 

(0.00%) 

0.0023 

(0.06%) 

0.0111 

(0.06%) 

CMH 
˗0.0002 

(˗0.01%) 

0.0005 

(0.08%) 

0.0020 

(0.09%) 

0.0064 

(0.16%) 

˗0.0001 

(˗0.04%) 

˗0.0001 

(˗0.01%) 

0.0013 

(0.04%) 

0.0099 

(0.06%) 

COS 
0.0000 

(0.00%) 

0.0001 

(0.03%) 

0.0004 

(0.12%) 

0.0017 

(0.47%) 

0.0001 

(0.02%) 

0.0000 

(0.00%) 

0.0005 

(0.08%) 

0.0028 

(0.04%) 

CRP 
˗0.0001 

(0.00%) 

0.0001 

(0.03%) 

0.0005 

(0.07%) 

0.0013 

(0.24%) 

0.0000 

(˗0.01%) 

0.0000 

(0.00%) 

0.0005 

(0.03%) 

0.0023 

(0.04%) 

CVG 
˗0.0003 

(˗0.01%) 

0.0025 

(0.33%) 

0.0017 

(0.07%) 

0.0053 

(0.14%) 

˗0.0002 

(˗0.10%) 

˗0.0001 

(˗0.01%) 

0.0013 

(0.03%) 

0.0102 

(0.06%) 

DAB 
0.0000 

(0.00%) 

0.0001 

(0.03%) 

0.0002 

(0.04%) 

0.0002 

(0.26%) 

0.0000 

(0.01%) 

0.0000 

(0.00%) 

0.0012 

(0.06%) 

0.0016 

(0.04%) 

DAL 
˗0.0002 

(0.00%) 

0.0027 

(0.38%) 

0.0018 

(0.13%) 

0.0039 

(0.21%) 

˗0.0002 

(˗0.10%) 

0.0000 

(0.00%) 

0.0021 

(0.09%) 

0.0100 

(0.07%) 

DAY 
˗0.0002 

(˗0.01%) 

0.0008 

(0.15%) 

0.0018 

(0.08%) 

0.0059 

(0.15%) 

˗0.0001 

(˗0.05%) 

˗0.0001 

(˗0.01%) 

0.0013 

(0.04%) 

0.0095 

(0.06%) 

DCA 
˗0.0002 

(0.00%) 

0.0013 

(0.12%) 

0.0009 

(0.04%) 

0.0032 

(0.10%) 

˗0.0005 

(˗0.10%) 

˗0.0001 

(0.00%) 

0.0001 

(0.00%) 

0.0047 

(0.03%) 

DEN 
˗0.0001 

(0.00%) 

0.0023 

(0.33%) 

0.0017 

(0.31%) 

0.0045 

(0.53%) 

˗0.0006 

(˗0.08%) 

0.0000 

(0.00%) 

0.0008 

(0.11%) 

0.0087 

(0.11%) 

DFW 
˗0.0002 

(0.00%) 

0.0021 

(0.26%) 

0.0017 

(0.13%) 

0.0040 

(0.20%) 

˗0.0001 

(˗0.07%) 

0.0000 

(0.00%) 

0.0019 

(0.09%) 

0.0093 

(0.07%) 

DSM 
˗0.0002 

(˗0.01%) 

0.0002 

(0.06%) 

0.0013 

(0.09%) 

0.0036 

(0.13%) 

0.0000 

(˗0.03%) 

0.0000 

(˗0.01%) 

0.0007 

(0.04%) 

0.0056 

(0.06%) 



 

 
 

3
0

 

Airport 
A25  

(µg m-3) 

AEC  

(µg m-3) 

ANH4  

(µg m-3) 

ANO3  

(µg m-3) 

SOA  

(µg m-3) 

POA  

(µg m-3) 

ASO4  

(µg m-3) 

PM2.5*  

(µg m-3) 

DTW 
˗0.0002 

(˗0.01%) 

0.0042 

(0.46%) 

0.0015 

(0.07%) 

0.0048 

(0.12%) 

˗0.0004 

(˗0.12%) 

˗0.0001 

(˗0.01%) 

0.0007 

(0.03%) 

0.0105 

(0.07%) 

ELP 
0.0000 

(0.00%) 

0.0004 

(0.15%) 

0.0005 

(0.12%) 

0.0011 

(0.24%) 

0.0000 

(0.00%) 

0.0000 

(0.00%) 

0.0006 

(0.07%) 

0.0026 

(0.06%) 

EUG 
0.0000 

(0.00%) 

0.0000 

(0.01%) 

0.0004 

(0.19%) 

0.0013 

(0.31%) 

0.0003 

(0.02%) 

0.0000 

(0.00%) 

0.0002 

(0.06%) 

0.0023 

(0.03%) 

EWR 
˗0.0002 

(0.00%) 

0.0022 

(0.21%) 

0.0015 

(0.08%) 

0.0051 

(0.15%) 

˗0.0007 

(˗0.17%) 

˗0.0001 

(0.00%) 

0.0001 

(0.00%) 

0.0079 

(0.05%) 

FAT 
˗0.0001 

(0.00%) 

0.0002 

(0.03%) 

0.0017 

(0.23%) 

0.0048 

(0.29%) 

0.0000 

(0.00%) 

˗0.0001 

(0.00%) 

0.0009 

(0.13%) 

0.0074 

(0.08%) 

FLL 
0.0000 

(0.00%) 

0.0013 

(0.24%) 

0.0003 

(0.06%) 

0.0007 

(0.51%) 

˗0.0002 

(˗0.13%) 

0.0000 

(0.00%) 

0.0005 

(0.04%) 

0.0027 

(0.05%) 

FNT 
˗0.0002 

(˗0.01%) 

0.0003 

(0.06%) 

0.0012 

(0.07%) 

0.0040 

(0.12%) 

˗0.0001 

(˗0.04%) 

0.0000 

(˗0.01%) 

0.0005 

(0.02%) 

0.0056 

(0.05%) 

GFK 
˗0.0001 

(0.00%) 

0.0000 

(0.00%) 

0.0003 

(0.04%) 

0.0009 

(0.06%) 

0.0000 

(˗0.01%) 

0.0000 

(0.00%) 

0.0001 

(0.02%) 

0.0012 

(0.02%) 

GRR 
˗0.0002 

(˗0.01%) 

0.0002 

(0.04%) 

0.0019 

(0.09%) 

0.0062 

(0.17%) 

˗0.0001 

(˗0.03%) 

0.0000 

(˗0.01%) 

0.0004 

(0.02%) 

0.0084 

(0.06%) 

GSO 
˗0.0001 

(˗0.01%) 

0.0001 

(0.01%) 

0.0021 

(0.11%) 

0.0063 

(0.23%) 

0.0000 

(˗0.01%) 

˗0.0001 

(0.00%) 

0.0013 

(0.04%) 

0.0096 

(0.07%) 

HOU 
˗0.0001 

(0.00%) 

0.0007 

(0.07%) 

0.0009 

(0.07%) 

0.0025 

(0.22%) 

˗0.0002 

(˗0.06%) 

0.0000 

(0.00%) 

0.0006 

(0.02%) 

0.0044 

(0.03%) 

HPN 
˗0.0001 

(0.00%) 

0.0009 

(0.12%) 

0.0007 

(0.04%) 

0.0026 

(0.09%) 

˗0.0006 

(˗0.14%) 

˗0.0001 

(0.00%) 

0.0002 

(0.01%) 

0.0036 

(0.03%) 

IAD 
˗0.0002 

(0.00%) 

0.0032 

(0.35%) 

0.0012 

(0.06%) 

0.0042 

(0.13%) 

˗0.0008 

(˗0.16%) 

˗0.0001 

(0.00%) 

0.0005 

(0.01%) 

0.0081 

(0.05%) 

IAH 
˗0.0001 

(0.00%) 

0.0022 

(0.29%) 

0.0008 

(0.08%) 

0.0017 

(0.15%) 

˗0.0014 

(˗0.19%) 

0.0000 

(0.00%) 

0.0015 

(0.07%) 

0.0048 

(0.03%) 

ICT 
˗0.0002 

(˗0.01%) 

0.0001 

(0.03%) 

0.0012 

(0.11%) 

0.0034 

(0.17%) 

0.0000 

(˗0.01%) 

˗0.0001 

(0.00%) 

0.0007 

(0.04%) 

0.0051 

(0.05%) 



 

 
 

3
1

 

Airport 
A25  

(µg m-3) 

AEC  

(µg m-3) 

ANH4  

(µg m-3) 

ANO3  

(µg m-3) 

SOA  

(µg m-3) 

POA  

(µg m-3) 

ASO4  

(µg m-3) 

PM2.5*  

(µg m-3) 

IND 
˗0.0003 

(0.00%) 

0.0014 

(0.21%) 

0.0017 

(0.07%) 

0.0054 

(0.13%) 

˗0.0003 

(˗0.12%) 

˗0.0001 

(˗0.01%) 

0.0007 

(0.02%) 

0.0087 

(0.05%) 

ISP 
˗0.0001 

(˗0.01%) 

0.0007 

(0.09%) 

0.0007 

(0.05%) 

0.0031 

(0.12%) 

˗0.0004 

(˗0.11%) 

˗0.0001 

(0.00%) 

0.0002 

(0.01%) 

0.0040 

(0.03%) 

JAX 
˗0.0001 

(0.00%) 

0.0003 

(0.07%) 

0.0008 

(0.09%) 

0.0017 

(0.28%) 

0.0013 

(0.10%) 

0.0000 

(0.00%) 

0.0014 

(0.06%) 

0.0053 

(0.06%) 

JFK 
˗0.0001 

(0.00%) 

0.0044 

(0.35%) 

0.0010 

(0.05%) 

0.0036 

(0.12%) 

˗0.0020 

(˗0.38%) 

0.0000 

(0.00%) 

0.0002 

(0.01%) 

0.0071 

(0.05%) 

LAN 
˗0.0002 

(˗0.01%) 

0.0001 

(0.03%) 

0.0019 

(0.09%) 

0.0063 

(0.16%) 

˗0.0001 

(˗0.03%) 

0.0000 

(˗0.01%) 

0.0004 

(0.01%) 

0.0083 

(0.06%) 

LAS 
˗0.0001 

(0.00%) 

0.0023 

(0.25%) 

0.0007 

(0.18%) 

0.0009 

(0.21%) 

˗0.0010 

(˗0.21%) 

0.0000 

(0.00%) 

0.0015 

(0.21%) 

0.0044 

(0.06%) 

LAX 
0.0000 

(0.00%) 

0.0056 

(0.49%) 

0.0039 

(0.29%) 

0.0113 

(0.39%) 

˗0.0008 

(˗0.24%) 

0.0000 

(0.00%) 

0.0023 

(0.16%) 

0.0222 

(0.17%) 

LGA 
˗0.0001 

(0.00%) 

0.0023 

(0.16%) 

0.0014 

(0.07%) 

0.0047 

(0.14%) 

˗0.0009 

(˗0.20%) 

˗0.0001 

(0.00%) 

0.0002 

(0.01%) 

0.0074 

(0.05%) 

LGB 
˗0.0004 

(˗0.01%) 

0.0015 

(0.08%) 

0.0086 

(0.52%) 

0.0278 

(0.76%) 

˗0.0005 

(˗0.12%) 

˗0.0002 

(˗0.01%) 

0.0017 

(0.10%) 

0.0384 

(0.22%) 

LIT 
˗0.0002 

(˗0.01%) 

0.0002 

(0.04%) 

0.0014 

(0.10%) 

0.0035 

(0.20%) 

0.0000 

(0.00%) 

0.0000 

(˗0.01%) 

0.0015 

(0.06%) 

0.0064 

(0.06%) 

MCI 
˗0.0002 

(0.00%) 

0.0010 

(0.15%) 

0.0014 

(0.08%) 

0.0046 

(0.15%) 

˗0.0002 

(˗0.08%) 

˗0.0001 

(0.00%) 

0.0003 

(0.01%) 

0.0068 

(0.05%) 

MCO 
˗0.0001 

(0.00%) 

0.0011 

(0.17%) 

0.0009 

(0.12%) 

0.0016 

(0.36%) 

˗0.0002 

(˗0.05%) 

0.0000 

(0.00%) 

0.0020 

(0.11%) 

0.0051 

(0.07%) 

MDW 
˗0.0003 

(0.00%) 

0.0008 

(0.09%) 

0.0012 

(0.06%) 

0.0042 

(0.13%) 

˗0.0002 

(˗0.10%) 

˗0.0001 

(0.00%) 

0.0001 

(0.00%) 

0.0058 

(0.04%) 

MEM 
˗0.0001 

(0.00%) 

0.0033 

(0.50%) 

0.0007 

(0.05%) 

0.0019 

(0.10%) 

˗0.0005 

(˗0.14%) 

0.0000 

(0.00%) 

0.0015 

(0.05%) 

0.0068 

(0.06%) 

MIA 
0.0000 

(0.00%) 

0.0019 

(0.33%) 

0.0004 

(0.08%) 

0.0005 

(0.38%) 

˗0.0004 

(˗0.32%) 

0.0000 

(0.00%) 

0.0010 

(0.08%) 

0.0032 

(0.07%) 



 

 
 

3
2

 

Airport 
A25  

(µg m-3) 

AEC  

(µg m-3) 

ANH4  

(µg m-3) 

ANO3  

(µg m-3) 

SOA  

(µg m-3) 

POA  

(µg m-3) 

ASO4  

(µg m-3) 

PM2.5*  

(µg m-3) 

MKE 
˗0.0002 

(˗0.01%) 

0.0006 

(0.11%) 

0.0007 

(0.05%) 

0.0027 

(0.10%) 

˗0.0002 

(˗0.07%) 

˗0.0001 

(0.00%) 

0.0000 

(0.00%) 

0.0036 

(0.03%) 

MLB 
0.0000 

(0.00%) 

0.0001 

(0.03%) 

0.0004 

(0.09%) 

0.0008 

(0.52%) 

0.0001 

(0.04%) 

0.0000 

(0.00%) 

0.0013 

(0.08%) 

0.0028 

(0.06%) 

MSN 
˗0.0002 

(˗0.01%) 

0.0003 

(0.06%) 

0.0019 

(0.10%) 

0.0061 

(0.16%) 

˗0.0001 

(˗0.04%) 

˗0.0001 

(0.00%) 

0.0005 

(0.02%) 

0.0084 

(0.06%) 

MSP 
˗0.0002 

(0.00%) 

0.0031 

(0.33%) 

0.0010 

(0.06%) 

0.0032 

(0.12%) 

˗0.0003 

(˗0.09%) 

0.0000 

(0.00%) 

0.0001 

(0.01%) 

0.0069 

(0.05%) 

MSY 
˗0.0001 

(0.00%) 

0.0006 

(0.11%) 

0.0004 

(0.04%) 

0.0007 

(0.14%) 

˗0.0001 

(˗0.02%) 

0.0000 

(0.00%) 

0.0011 

(0.04%) 

0.0026 

(0.03%) 

OAK 
0.0000 

(0.00%) 

0.0024 

(0.23%) 

0.0009 

(0.11%) 

0.0022 

(0.12%) 

˗0.0004 

(˗0.09%) 

0.0000 

(0.00%) 

0.0012 

(0.14%) 

0.0062 

(0.06%) 

OKC 
˗0.0002 

(0.00%) 

0.0003 

(0.08%) 

0.0011 

(0.11%) 

0.0026 

(0.16%) 

0.0000 

(˗0.02%) 

0.0000 

(0.00%) 

0.0011 

(0.07%) 

0.0049 

(0.05%) 

OMA 
˗0.0002 

(˗0.01%) 

0.0002 

(0.06%) 

0.0011 

(0.08%) 

0.0034 

(0.14%) 

0.0000 

(˗0.02%) 

0.0000 

(˗0.01%) 

0.0004 

(0.02%) 

0.0049 

(0.05%) 

ONT 
˗0.0004 

(˗0.01%) 

0.0012 

(0.08%) 

0.0074 

(0.50%) 

0.0233 

(0.66%) 

˗0.0008 

(˗0.16%) 

˗0.0003 

(˗0.01%) 

0.0019 

(0.15%) 

0.0324 

(0.21%) 

ORD 
˗0.0002 

(˗0.01%) 

0.0049 

(0.61%) 

0.0008 

(0.05%) 

0.0028 

(0.09%) 

˗0.0007 

(˗0.25%) 

0.0000 

(0.00%) 

0.0002 

(0.01%) 

0.0078 

(0.06%) 

ORF 
˗0.0001 

(0.00%) 

0.0004 

(0.07%) 

0.0008 

(0.05%) 

0.0021 

(0.11%) 

˗0.0001 

(˗0.03%) 

0.0000 

(0.00%) 

0.0007 

(0.02%) 

0.0038 

(0.03%) 

PBI 
0.0000 

(0.00%) 

0.0005 

(0.12%) 

0.0003 

(0.08%) 

0.0004 

(0.65%) 

0.0000 

(˗0.02%) 

0.0000 

(0.00%) 

0.0011 

(0.08%) 

0.0022 

(0.06%) 

PDX 
0.0000 

(0.00%) 

0.0006 

(0.05%) 

0.0006 

(0.11%) 

0.0016 

(0.15%) 

˗0.0010 

(˗0.05%) 

0.0000 

(0.00%) 

0.0004 

(0.06%) 

0.0023 

(0.01%) 

PHF 
˗0.0001 

(0.00%) 

0.0001 

(0.03%) 

0.0010 

(0.07%) 

0.0033 

(0.17%) 

˗0.0001 

(˗0.02%) 

0.0000 

(˗0.01%) 

0.0007 

(0.03%) 

0.0049 

(0.05%) 

PHL 
˗0.0002 

(0.00%) 

0.0023 

(0.27%) 

0.0017 

(0.07%) 

0.0063 

(0.16%) 

˗0.0006 

(˗0.15%) 

˗0.0001 

(0.00%) 

˗0.0004 

(˗0.01%) 

0.0090 

(0.05%) 



 

 
 

3
3

 

Airport 
A25  

(µg m-3) 

AEC  

(µg m-3) 

ANH4  

(µg m-3) 

ANO3  

(µg m-3) 

SOA  

(µg m-3) 

POA  

(µg m-3) 

ASO4  

(µg m-3) 

PM2.5*  

(µg m-3) 

PHX 
˗0.0001 

(0.00%) 

0.0032 

(0.27%) 

0.0020 

(0.37%) 

0.0046 

(0.43%) 

˗0.0011 

(˗0.22%) 

0.0000 

(0.00%) 

0.0019 

(0.28%) 

0.0106 

(0.12%) 

PIT 
˗0.0002 

(˗0.01%) 

0.0007 

(0.15%) 

0.0011 

(0.05%) 

0.0040 

(0.13%) 

˗0.0002 

(˗0.08%) 

˗0.0001 

(˗0.01%) 

˗0.0007 

(˗0.02%) 

0.0046 

(0.03%) 

PVD 
˗0.0001 

(0.00%) 

0.0004 

(0.08%) 

0.0008 

(0.07%) 

0.0030 

(0.13%) 

˗0.0004 

(˗0.08%) 

0.0000 

(0.00%) 

0.0005 

(0.03%) 

0.0042 

(0.04%) 

RDU 
˗0.0001 

(˗0.01%) 

0.0007 

(0.04%) 

0.0019 

(0.12%) 

0.0067 

(0.27%) 

˗0.0003 

(˗0.04%) 

˗0.0001 

(0.00%) 

0.0013 

(0.05%) 

0.0101 

(0.07%) 

RIC 
˗0.0001 

(0.00%) 

0.0004 

(0.06%) 

0.0014 

(0.07%) 

0.0047 

(0.17%) 

˗0.0002 

(˗0.03%) 

0.0000 

(0.00%) 

0.0009 

(0.02%) 

0.0070 

(0.05%) 

RNO 
0.0000 

(0.00%) 

0.0004 

(0.10%) 

0.0008 

(0.23%) 

0.0021 

(0.39%) 

0.0004 

(0.04%) 

0.0000 

(0.00%) 

0.0008 

(0.15%) 

0.0045 

(0.07%) 

ROC 
˗0.0002 

(˗0.01%) 

0.0003 

(0.08%) 

0.0010 

(0.06%) 

0.0033 

(0.13%) 

˗0.0002 

(˗0.04%) 

˗0.0001 

(˗0.01%) 

0.0005 

(0.02%) 

0.0047 

(0.04%) 

RSW 
0.0000 

(0.00%) 

0.0006 

(0.09%) 

0.0005 

(0.10%) 

0.0007 

(0.40%) 

0.0000 

(˗0.01%) 

0.0000 

(0.00%) 

0.0013 

(0.09%) 

0.0030 

(0.05%) 

SAN 
0.0000 

(0.00%) 

0.0015 

(0.22%) 

0.0008 

(0.13%) 

0.0015 

(0.17%) 

˗0.0003 

(˗0.13%) 

0.0000 

(0.00%) 

0.0019 

(0.15%) 

0.0054 

(0.07%) 

SAT 
˗0.0001 

(0.00%) 

0.0005 

(0.10%) 

0.0011 

(0.11%) 

0.0029 

(0.23%) 

0.0000 

(˗0.03%) 

0.0000 

(0.00%) 

0.0009 

(0.05%) 

0.0051 

(0.05%) 

SBA 
˗0.0001 

(0.00%) 

0.0000 

(0.01%) 

0.0007 

(0.21%) 

0.0016 

(0.34%) 

0.0000 

(0.01%) 

˗0.0001 

(0.00%) 

0.0007 

(0.12%) 

0.0030 

(0.06%) 

SDF 
˗0.0002 

(0.00%) 

0.0011 

(0.07%) 

0.0012 

(0.05%) 

0.0035 

(0.10%) 

˗0.0003 

(˗0.12%) 

0.0000 

(0.00%) 

0.0012 

(0.03%) 

0.0065 

(0.04%) 

SEA 
0.0000 

(0.00%) 

0.0017 

(0.16%) 

0.0003 

(0.06%) 

0.0003 

(0.03%) 

˗0.0019 

(˗0.12%) 

0.0000 

(0.00%) 

0.0006 

(0.10%) 

0.0009 

(0.01%) 

SFO 
0.0000 

(0.00%) 

0.0024 

(0.23%) 

0.0009 

(0.11%) 

0.0022 

(0.12%) 

˗0.0004 

(˗0.09%) 

0.0000 

(0.00%) 

0.0012 

(0.14%) 

0.0062 

(0.06%) 

SJC 
˗0.0001 

(0.00%) 

0.0009 

(0.10%) 

0.0014 

(0.17%) 

0.0044 

(0.24%) 

˗0.0004 

(˗0.08%) 

0.0000 

(0.00%) 

0.0005 

(0.05%) 

0.0068 

(0.07%) 



 

 
 

3
4

 

Airport 
A25  

(µg m-3) 

AEC  

(µg m-3) 

ANH4  

(µg m-3) 

ANO3  

(µg m-3) 

SOA  

(µg m-3) 

POA  

(µg m-3) 

ASO4  

(µg m-3) 

PM2.5*  

(µg m-3) 

SLC 
˗0.0001 

(0.00%) 

0.0018 

(0.35%) 

0.0019 

(0.30%) 

0.0052 

(0.37%) 

˗0.0008 

(˗0.10%) 

0.0000 

(0.00%) 

0.0011 

(0.19%) 

0.0092 

(0.12%) 

SMF 
˗0.0001 

(0.00%) 

0.0006 

(0.08%) 

0.0017 

(0.21%) 

0.0051 

(0.25%) 

˗0.0002 

(˗0.02%) 

0.0000 

(0.00%) 

0.0007 

(0.11%) 

0.0079 

(0.07%) 

SNA 
˗0.0001 

(0.00%) 

0.0017 

(0.15%) 

0.0029 

(0.28%) 

0.0074 

(0.36%) 

˗0.0005 

(˗0.14%) 

0.0000 

(0.00%) 

0.0024 

(0.19%) 

0.0138 

(0.13%) 

STL 
˗0.0002 

(0.00%) 

0.0011 

(0.13%) 

0.0013 

(0.07%) 

0.0036 

(0.12%) 

˗0.0002 

(˗0.08%) 

0.0000 

(0.00%) 

0.0009 

(0.03%) 

0.0064 

(0.04%) 

SWF 
˗0.0001 

(0.00%) 

0.0003 

(0.05%) 

0.0007 

(0.04%) 

0.0022 

(0.08%) 

˗0.0003 

(˗0.07%) 

0.0000 

(0.00%) 

0.0004 

(0.02%) 

0.0031 

(0.02%) 

SYR 
˗0.0002 

(˗0.01%) 

0.0004 

(0.10%) 

0.0013 

(0.08%) 

0.0045 

(0.15%) 

˗0.0001 

(˗0.03%) 

˗0.0001 

(˗0.01%) 

0.0004 

(0.02%) 

0.0062 

(0.05%) 

TPA 
˗0.0001 

(0.00%) 

0.0009 

(0.13%) 

0.0008 

(0.09%) 

0.0020 

(0.38%) 

˗0.0002 

(˗0.05%) 

0.0000 

(0.00%) 

0.0014 

(0.05%) 

0.0049 

(0.06%) 

TUL 
˗0.0002 

(0.00%) 

0.0003 

(0.05%) 

0.0012 

(0.10%) 

0.0033 

(0.16%) 

0.0000 

(˗0.02%) 

˗0.0001 

(0.00%) 

0.0009 

(0.05%) 

0.0054 

(0.04%) 

TUS 
0.0000 

(0.00%) 

0.0003 

(0.08%) 

0.0010 

(0.29%) 

0.0030 

(0.82%) 

0.0000 

(0.00%) 

0.0000 

(0.00%) 

0.0008 

(0.13%) 

0.0051 

(0.11%) 

TVC 
˗0.0001 

(˗0.01%) 

0.0001 

(0.04%) 

0.0003 

(0.03%) 

0.0010 

(0.08%) 

0.0000 

(0.00%) 

0.0000 

(0.00%) 

0.0005 

(0.03%) 

0.0017 

(0.03%) 

TYS 
˗0.0001 

(0.00%) 

0.0002 

(0.04%) 

0.0008 

(0.06%) 

0.0021 

(0.14%) 

0.0001 

(0.01%) 

0.0000 

(0.00%) 

0.0015 

(0.04%) 

0.0045 

(0.04%) 

 

*PM2.5 does not equal the sum of species shown in chart due to a scaling factor (1.167) applied to POA when computing PM2.5. 
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Table 5. Absolute and percent increases due to 2025 aircraft emissions in 2005 at the grid cell containing the airport. 

Airport 
A25  

(µg m-3) 

AEC  

(µg m-3) 

ANH4  

(µg m-3) 

ANO3  

(µg m-3) 

SOA  

(µg m-3) 

POA  

(µg m-3) 

ASO4  

(µg m-3) 

PM2.5*  

(µg m-3) 

ABQ 
0.0000 

(0.00%) 

0.0015 

(0.31%) 

0.0012 

(0.33%) 

0.0025 

(0.52%) 

˗0.0003 

(˗0.05%) 

0.0000 

(0.00%) 

0.0016 

(0.24%) 

0.0065 

(0.08%) 

ALB 
˗0.0002 

(˗0.01%) 

0.0007 

(0.13%) 

0.0023 

(0.17%) 

0.0065 

(0.26%) 

˗0.0119 

(˗2.12%) 

˗0.0001 

(˗0.01%) 

0.0009 

(0.05%) 

˗0.0019 

(˗0.02%) 

ATL 
˗0.0002 

(˗0.01%) 

0.0114 

(1.11%) 

0.0022 

(0.13%) 

0.0051 

(0.25%) 

˗0.0011 

(˗0.08%) 

˗0.0001 

(0.00%) 

0.0040 

(0.12%) 

0.0212 

(0.14%) 

AUS 
˗0.0003 

(˗0.01%) 

0.0016 

(0.61%) 

0.0038 

(0.35%) 

0.0090 

(0.61%) 

˗0.0011 

(˗0.74%) 

˗0.0001 

(˗0.01%) 

0.0039 

(0.22%) 

0.0169 

(0.20%) 

BDL 
˗0.0002 

(˗0.01%) 

0.0027 

(0.52%) 

0.0015 

(0.12%) 

0.0056 

(0.23%) 

˗0.0006 

(˗0.12%) 

˗0.0001 

(˗0.01%) 

0.0011 

(0.06%) 

0.0100 

(0.09%) 

BFL 
˗0.0003 

(˗0.02%) 

˗0.0001 

(˗0.02%) 

0.0052 

(0.77%) 

0.0149 

(0.97%) 

0.0000 

(˗0.01%) 

˗0.0002 

(˗0.01%) 

0.0023 

(0.38%) 

0.0217 

(0.29%) 

BHM 
˗0.0003 

(˗0.01%) 

0.0006 

(0.08%) 

0.0020 

(0.13%) 

0.0049 

(0.34%) 

˗0.0002 

(˗0.01%) 

˗0.0001 

(˗0.01%) 

0.0041 

(0.11%) 

0.0110 

(0.07%) 

BNA 
˗0.0003 

(˗0.01%) 

0.0009 

(0.12%) 

0.0021 

(0.12%) 

0.0060 

(0.25%) 

˗0.0002 

(˗0.05%) 

˗0.0001 

(˗0.01%) 

0.0025 

(0.08%) 

0.0110 

(0.09%) 

BOI 
˗0.0001 

(0.00%) 

0.0010 

(0.10%) 

0.0031 

(0.49%) 

0.0086 

(0.69%) 

˗0.0015 

(˗0.08%) 

0.0000 

(0.00%) 

0.0015 

(0.21%) 

0.0126 

(0.09%) 

BOS 
˗0.0001 

(0.00%) 

0.0044 

(0.32%) 

0.0019 

(0.12%) 

0.0101 

(0.35%) 

˗0.0009 

(˗0.17%) 

˗0.0001 

(0.00%) 

˗0.0003 

(˗0.01%) 

0.0150 

(0.09%) 

BTR 
˗0.0002 

(˗0.01%) 

0.0000 

(0.00%) 

0.0020 

(0.15%) 

0.0049 

(0.39%) 

˗0.0003 

(˗0.05%) 

˗0.0001 

(˗0.01%) 

0.0023 

(0.08%) 

0.0087 

(0.07%) 

BUF 
˗0.0003 

(˗0.01%) 

0.0009 

(0.18%) 

0.0031 

(0.16%) 

0.0109 

(0.32%) 

˗0.0006 

(˗0.13%) 

˗0.0001 

(˗0.01%) 

0.0009 

(0.03%) 

0.0147 

(0.10%) 

BUR 
˗0.0004 

(˗0.02%) 

0.0018 

(0.17%) 

0.0072 

(0.75%) 

0.0209 

(0.98%) 

˗0.0012 

(˗0.28%) 

˗0.0003 

(˗0.02%) 

0.0035 

(0.36%) 

0.0315 

(0.32%) 

BWI 
˗0.0004 

(˗0.01%) 

0.0029 

(0.41%) 

0.0022 

(0.11%) 

0.0087 

(0.29%) 

˗0.0004 

(˗0.09%) 

˗0.0001 

(˗0.01%) 

0.0004 

(0.01%) 

0.0133 

(0.09%) 
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Airport 
A25  

(µg m-3) 

AEC  

(µg m-3) 

ANH4  

(µg m-3) 

ANO3  

(µg m-3) 

SOA  

(µg m-3) 

POA  

(µg m-3) 

ASO4  

(µg m-3) 

PM2.5*  

(µg m-3) 

CHS 
˗0.0002 

(˗0.01%) 

0.0004 

(0.07%) 

0.0009 

(0.09%) 

0.0026 

(0.35%) 

˗0.0002 

(˗0.03%) 

˗0.0001 

(˗0.01%) 

0.0025 

(0.09%) 

0.0059 

(0.07%) 

CLE 
˗0.0006 

(˗0.02%) 

0.0011 

(0.23%) 

0.0052 

(0.21%) 

0.0164 

(0.36%) 

˗0.0022 

(˗0.80%) 

˗0.0001 

(˗0.02%) 

0.0019 

(0.06%) 

0.0217 

(0.15%) 

CLT 
˗0.0003 

(˗0.01%) 

0.0033 

(0.13%) 

0.0042 

(0.22%) 

0.0129 

(0.53%) 

˗0.0004 

(˗0.04%) 

˗0.0001 

(˗0.01%) 

0.0040 

(0.11%) 

0.0235 

(0.14%) 

CMH 
˗0.0005 

(˗0.01%) 

0.0011 

(0.19%) 

0.0039 

(0.17%) 

0.0122 

(0.31%) 

0.0002 

(0.07%) 

˗0.0001 

(˗0.01%) 

0.0026 

(0.08%) 

0.0194 

(0.13%) 

COS 
0.0000 

(0.00%) 

0.0002 

(0.05%) 

0.0010 

(0.29%) 

0.0022 

(0.60%) 

˗0.0001 

(˗0.01%) 

0.0000 

(0.00%) 

0.0013 

(0.20%) 

0.0045 

(0.06%) 

CRP 
˗0.0002 

(˗0.01%) 

0.0001 

(0.03%) 

0.0011 

(0.16%) 

0.0029 

(0.54%) 

˗0.0003 

(˗0.51%) 

0.0000 

(˗0.01%) 

0.0011 

(0.07%) 

0.0047 

(0.07%) 

CVG 
˗0.0005 

(˗0.01%) 

0.0026 

(0.34%) 

0.0034 

(0.14%) 

0.0107 

(0.29%) 

˗0.0002 

(˗0.08%) 

˗0.0001 

(˗0.01%) 

0.0019 

(0.05%) 

0.0177 

(0.11%) 

DAB 
˗0.0001 

(˗0.01%) 

0.0001 

(0.04%) 

0.0004 

(0.08%) 

0.0005 

(0.58%) 

˗0.0002 

(˗0.07%) 

0.0000 

(˗0.01%) 

0.0024 

(0.13%) 

0.0030 

(0.07%) 

DAL 
˗0.0004 

(˗0.01%) 

0.0028 

(0.39%) 

0.0036 

(0.26%) 

0.0082 

(0.44%) 

˗0.0003 

(˗0.13%) 

˗0.0001 

(˗0.01%) 

0.0039 

(0.17%) 

0.0177 

(0.13%) 

DAY 
˗0.0005 

(˗0.01%) 

0.0007 

(0.12%) 

0.0035 

(0.16%) 

0.0112 

(0.28%) 

˗0.0008 

(˗0.32%) 

˗0.0001 

(˗0.01%) 

0.0026 

(0.07%) 

0.0166 

(0.11%) 

DCA 
˗0.0004 

(˗0.01%) 

0.0021 

(0.20%) 

0.0022 

(0.11%) 

0.0079 

(0.25%) 

˗0.0018 

(˗0.35%) 

˗0.0001 

(˗0.01%) 

0.0008 

(0.02%) 

0.0106 

(0.06%) 

DEN 
˗0.0001 

(0.00%) 

0.0051 

(0.75%) 

0.0029 

(0.55%) 

0.0075 

(0.87%) 

˗0.0007 

(˗0.09%) 

0.0000 

(0.00%) 

0.0016 

(0.21%) 

0.0163 

(0.21%) 

DFW 
˗0.0004 

(˗0.01%) 

0.0024 

(0.30%) 

0.0035 

(0.26%) 

0.0083 

(0.42%) 

˗0.0002 

(˗0.08%) 

˗0.0001 

(˗0.01%) 

0.0036 

(0.17%) 

0.0172 

(0.13%) 

DSM 
˗0.0004 

(˗0.01%) 

0.0002 

(0.05%) 

0.0028 

(0.19%) 

0.0079 

(0.28%) 

˗0.0005 

(˗0.31%) 

˗0.0001 

(˗0.02%) 

0.0014 

(0.08%) 

0.0113 

(0.11%) 

DTW 
˗0.0005 

(˗0.01%) 

0.0046 

(0.50%) 

0.0028 

(0.13%) 

0.0087 

(0.23%) 

˗0.0003 

(˗0.09%) 

˗0.0001 

(˗0.01%) 

0.0012 

(0.04%) 

0.0164 

(0.11%) 



 

 
 

3
7

 

Airport 
A25  

(µg m-3) 

AEC  

(µg m-3) 

ANH4  

(µg m-3) 

ANO3  

(µg m-3) 

SOA  

(µg m-3) 

POA  

(µg m-3) 

ASO4  

(µg m-3) 

PM2.5*  

(µg m-3) 

ELP 
0.0000 

(0.00%) 

0.0006 

(0.25%) 

0.0012 

(0.29%) 

0.0026 

(0.55%) 

0.0007 

(0.20%) 

0.0000 

(0.00%) 

0.0013 

(0.17%) 

0.0065 

(0.14%) 

EUG 
0.0000 

(0.00%) 

0.0001 

(0.02%) 

0.0011 

(0.48%) 

0.0033 

(0.79%) 

˗0.0008 

(˗0.04%) 

0.0000 

(0.00%) 

0.0004 

(0.13%) 

0.0041 

(0.06%) 

EWR 
˗0.0003 

(˗0.01%) 

0.0033 

(0.31%) 

0.0028 

(0.14%) 

0.0102 

(0.30%) 

˗0.0008 

(˗0.18%) 

˗0.0001 

(˗0.01%) 

˗0.0004 

(˗0.01%) 

0.0146 

(0.10%) 

FAT 
˗0.0002 

(˗0.01%) 

0.0002 

(0.03%) 

0.0041 

(0.56%) 

0.0115 

(0.69%) 

˗0.0003 

(˗0.04%) 

˗0.0001 

(˗0.01%) 

0.0021 

(0.30%) 

0.0172 

(0.19%) 

FLL 
˗0.0001 

(0.00%) 

0.0028 

(0.49%) 

0.0007 

(0.14%) 

0.0014 

(1.02%) 

˗0.0002 

(˗0.14%) 

0.0000 

(0.00%) 

0.0012 

(0.08%) 

0.0058 

(0.11%) 

FNT 
˗0.0004 

(˗0.01%) 

0.0003 

(0.05%) 

0.0022 

(0.12%) 

0.0075 

(0.23%) 

˗0.0002 

(˗0.06%) 

˗0.0001 

(˗0.01%) 

0.0009 

(0.04%) 

0.0102 

(0.08%) 

GFK 
˗0.0002 

(˗0.01%) 

0.0010 

(0.42%) 

0.0015 

(0.21%) 

0.0043 

(0.28%) 

˗0.0001 

(˗0.06%) 

0.0000 

(˗0.01%) 

0.0006 

(0.09%) 

0.0071 

(0.12%) 

GRR 
˗0.0004 

(˗0.01%) 

0.0003 

(0.06%) 

0.0036 

(0.18%) 

0.0121 

(0.33%) 

˗0.0003 

(˗0.08%) 

˗0.0001 

(˗0.01%) 

0.0007 

(0.03%) 

0.0160 

(0.12%) 

GSO 
˗0.0003 

(˗0.01%) 

0.0002 

(0.03%) 

0.0044 

(0.23%) 

0.0130 

(0.47%) 

˗0.0006 

(˗0.07%) 

˗0.0001 

(˗0.01%) 

0.0027 

(0.09%) 

0.0193 

(0.14%) 

HOU 
˗0.0002 

(0.00%) 

0.0014 

(0.14%) 

0.0020 

(0.16%) 

0.0054 

(0.47%) 

˗0.0008 

(˗0.22%) 

˗0.0001 

(0.00%) 

0.0013 

(0.05%) 

0.0090 

(0.06%) 

HPN 
˗0.0002 

(˗0.01%) 

0.0013 

(0.17%) 

0.0014 

(0.09%) 

0.0057 

(0.20%) 

˗0.0024 

(˗0.53%) 

˗0.0001 

(˗0.01%) 

0.0001 

(0.00%) 

0.0057 

(0.05%) 

IAD 
˗0.0003 

(˗0.01%) 

0.0062 

(0.68%) 

0.0021 

(0.10%) 

0.0075 

(0.23%) 

˗0.0040 

(˗0.82%) 

˗0.0001 

(˗0.01%) 

0.0006 

(0.02%) 

0.0120 

(0.08%) 

IAH 
˗0.0002 

(0.00%) 

0.0057 

(0.75%) 

0.0017 

(0.15%) 

0.0032 

(0.28%) 

˗0.0002 

(˗0.03%) 

˗0.0001 

(0.00%) 

0.0032 

(0.15%) 

0.0133 

(0.10%) 

ICT 
˗0.0005 

(˗0.01%) 

0.0000 

(0.01%) 

0.0027 

(0.23%) 

0.0076 

(0.37%) 

˗0.0004 

(˗0.27%) 

˗0.0001 

(˗0.01%) 

0.0013 

(0.09%) 

0.0107 

(0.10%) 

IND 
˗0.0005 

(˗0.01%) 

0.0025 

(0.37%) 

0.0030 

(0.12%) 

0.0111 

(0.28%) 

˗0.0007 

(˗0.30%) 

˗0.0001 

(˗0.01%) 

0.0001 

(0.00%) 

0.0154 

(0.08%) 
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Airport 
A25  

(µg m-3) 

AEC  

(µg m-3) 

ANH4  

(µg m-3) 

ANO3  

(µg m-3) 

SOA  

(µg m-3) 

POA  

(µg m-3) 

ASO4  

(µg m-3) 

PM2.5*  

(µg m-3) 

ISP 
˗0.0003 

(˗0.01%) 

0.0011 

(0.15%) 

0.0016 

(0.10%) 

0.0062 

(0.24%) 

0.0026 

(0.71%) 

˗0.0001 

(˗0.01%) 

0.0001 

(0.00%) 

0.0111 

(0.10%) 

JAX 
˗0.0002 

(˗0.01%) 

0.0009 

(0.19%) 

0.0019 

(0.22%) 

0.0043 

(0.72%) 

˗0.0030 

(˗0.22%) 

˗0.0001 

(˗0.01%) 

0.0033 

(0.15%) 

0.0072 

(0.08%) 

JFK 
˗0.0002 

(˗0.01%) 

0.0073 

(0.58%) 

0.0017 

(0.09%) 

0.0071 

(0.23%) 

˗0.0028 

(˗0.54%) 

˗0.0001 

(˗0.01%) 

˗0.0006 

(˗0.02%) 

0.0124 

(0.08%) 

LAN 
˗0.0004 

(˗0.01%) 

0.0001 

(0.03%) 

0.0035 

(0.18%) 

0.0117 

(0.30%) 

˗0.0013 

(˗0.47%) 

˗0.0001 

(˗0.01%) 

0.0007 

(0.03%) 

0.0143 

(0.11%) 

LAS 
˗0.0001 

(0.00%) 

0.0038 

(0.40%) 

0.0016 

(0.42%) 

0.0027 

(0.60%) 

˗0.0012 

(˗0.25%) 

0.0000 

(˗0.01%) 

0.0028 

(0.39%) 

0.0095 

(0.14%) 

LAX 
˗0.0001 

(0.00%) 

0.0094 

(0.83%) 

0.0077 

(0.56%) 

0.0220 

(0.75%) 

˗0.0016 

(˗0.50%) 

˗0.0001 

(0.00%) 

0.0043 

(0.30%) 

0.0416 

(0.33%) 

LGA 
˗0.0003 

(˗0.01%) 

0.0027 

(0.20%) 

0.0027 

(0.14%) 

0.0099 

(0.30%) 

˗0.0015 

(˗0.33%) 

˗0.0002 

(˗0.01%) 

0.0000 

(0.00%) 

0.0133 

(0.08%) 

LGB 
˗0.0007 

(˗0.02%) 

0.0029 

(0.16%) 

0.0165 

(1.00%) 

0.0524 

(1.43%) 

˗0.0006 

(˗0.14%) 

˗0.0005 

(˗0.02%) 

0.0037 

(0.23%) 

0.0737 

(0.43%) 

LIT 
˗0.0003 

(˗0.01%) 

0.0006 

(0.13%) 

0.0034 

(0.25%) 

0.0085 

(0.47%) 

˗0.0003 

(˗0.05%) 

˗0.0001 

(˗0.01%) 

0.0035 

(0.14%) 

0.0152 

(0.15%) 

MCI 
˗0.0005 

(˗0.01%) 

0.0022 

(0.34%) 

0.0030 

(0.18%) 

0.0100 

(0.33%) 

˗0.0007 

(˗0.32%) 

˗0.0001 

(˗0.01%) 

0.0002 

(0.01%) 

0.0141 

(0.10%) 

MCO 
˗0.0001 

(˗0.01%) 

0.0029 

(0.46%) 

0.0019 

(0.27%) 

0.0036 

(0.81%) 

˗0.0003 

(˗0.06%) 

˗0.0001 

(˗0.01%) 

0.0045 

(0.25%) 

0.0124 

(0.17%) 

MDW 
˗0.0005 

(˗0.01%) 

0.0014 

(0.16%) 

0.0024 

(0.11%) 

0.0081 

(0.25%) 

˗0.0015 

(˗0.60%) 

˗0.0001 

(˗0.01%) 

0.0003 

(0.01%) 

0.0101 

(0.06%) 

MEM 
˗0.0003 

(˗0.01%) 

0.0054 

(0.81%) 

0.0014 

(0.09%) 

0.0038 

(0.19%) 

˗0.0008 

(˗0.24%) 

˗0.0001 

(˗0.01%) 

0.0028 

(0.10%) 

0.0121 

(0.10%) 

MIA 
0.0000 

(0.00%) 

0.0035 

(0.61%) 

0.0008 

(0.16%) 

0.0010 

(0.82%) 

˗0.0005 

(˗0.36%) 

0.0000 

(0.00%) 

0.0019 

(0.15%) 

0.0066 

(0.14%) 

MKE 
˗0.0004 

(˗0.01%) 

0.0009 

(0.16%) 

0.0015 

(0.10%) 

0.0054 

(0.19%) 

0.0001 

(0.02%) 

˗0.0001 

(˗0.01%) 

0.0001 

(0.01%) 

0.0074 

(0.06%) 
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Airport 
A25  

(µg m-3) 

AEC  

(µg m-3) 

ANH4  

(µg m-3) 

ANO3  

(µg m-3) 

SOA  

(µg m-3) 

POA  

(µg m-3) 

ASO4  

(µg m-3) 

PM2.5*  

(µg m-3) 

MLB 
˗0.0001 

(˗0.01%) 

0.0002 

(0.06%) 

0.0009 

(0.17%) 

0.0016 

(1.00%) 

˗0.0001 

(˗0.02%) 

0.0000 

(˗0.01%) 

0.0029 

(0.17%) 

0.0054 

(0.11%) 

MSN 
˗0.0004 

(˗0.01%) 

0.0002 

(0.04%) 

0.0036 

(0.19%) 

0.0119 

(0.31%) 

˗0.0005 

(˗0.17%) 

˗0.0001 

(˗0.01%) 

0.0007 

(0.03%) 

0.0153 

(0.11%) 

MSP 
˗0.0004 

(˗0.01%) 

0.0052 

(0.57%) 

0.0019 

(0.13%) 

0.0063 

(0.23%) 

˗0.0003 

(˗0.12%) 

˗0.0001 

(˗0.01%) 

0.0002 

(0.01%) 

0.0128 

(0.09%) 

MSY 
˗0.0001 

(˗0.01%) 

0.0011 

(0.22%) 

0.0008 

(0.09%) 

0.0016 

(0.32%) 

˗0.0007 

(˗0.27%) 

0.0000 

(˗0.01%) 

0.0022 

(0.08%) 

0.0048 

(0.06%) 

OAK 
˗0.0001 

(0.00%) 

0.0055 

(0.52%) 

0.0026 

(0.32%) 

0.0066 

(0.35%) 

˗0.0004 

(˗0.09%) 

˗0.0001 

(0.00%) 

0.0026 

(0.31%) 

0.0167 

(0.16%) 

OKC 
˗0.0004 

(˗0.01%) 

0.0007 

(0.16%) 

0.0025 

(0.24%) 

0.0058 

(0.35%) 

˗0.0001 

(˗0.05%) 

˗0.0001 

(˗0.01%) 

0.0024 

(0.16%) 

0.0107 

(0.12%) 

OMA 
˗0.0004 

(˗0.01%) 

0.0007 

(0.19%) 

0.0026 

(0.19%) 

0.0080 

(0.32%) 

˗0.0012 

(˗0.84%) 

˗0.0001 

(˗0.01%) 

0.0009 

(0.05%) 

0.0106 

(0.10%) 

ONT 
˗0.0007 

(˗0.02%) 

0.0031 

(0.20%) 

0.0149 

(1.00%) 

0.0467 

(1.33%) 

˗0.0014 

(˗0.28%) 

˗0.0005 

(˗0.02%) 

0.0040 

(0.30%) 

0.0659 

(0.42%) 

ORD 
˗0.0004 

(˗0.01%) 

0.0044 

(0.54%) 

0.0017 

(0.09%) 

0.0059 

(0.18%) 

˗0.0005 

(˗0.20%) 

˗0.0001 

(˗0.01%) 

0.0002 

(0.01%) 

0.0111 

(0.08%) 

ORF 
˗0.0002 

(˗0.01%) 

0.0010 

(0.17%) 

0.0016 

(0.11%) 

0.0048 

(0.25%) 

˗0.0002 

(˗0.06%) 

˗0.0001 

(˗0.01%) 

0.0013 

(0.04%) 

0.0083 

(0.07%) 

PBI 
˗0.0001 

(˗0.01%) 

0.0009 

(0.23%) 

0.0005 

(0.15%) 

0.0007 

(1.10%) 

˗0.0022 

(˗1.61%) 

0.0000 

(0.00%) 

0.0023 

(0.17%) 

0.0021 

(0.05%) 

PDX 
˗0.0002 

(0.00%) 

0.0018 

(0.14%) 

0.0016 

(0.28%) 

0.0041 

(0.38%) 

˗0.0008 

(˗0.04%) 

˗0.0001 

(0.00%) 

0.0011 

(0.15%) 

0.0076 

(0.04%) 

PHF 
˗0.0002 

(˗0.01%) 

0.0003 

(0.07%) 

0.0018 

(0.13%) 

0.0061 

(0.32%) 

˗0.0013 

(˗0.24%) 

˗0.0001 

(˗0.01%) 

0.0016 

(0.06%) 

0.0081 

(0.08%) 

PHL 
˗0.0003 

(˗0.01%) 

0.0049 

(0.58%) 

0.0028 

(0.12%) 

0.0112 

(0.28%) 

˗0.0024 

(˗0.57%) 

˗0.0001 

(˗0.01%) 

˗0.0018 

(˗0.05%) 

0.0143 

(0.08%) 

PHX 
˗0.0002 

(˗0.01%) 

0.0069 

(0.57%) 

0.0047 

(0.85%) 

0.0110 

(1.03%) 

˗0.0008 

(˗0.16%) 

˗0.0001 

(˗0.01%) 

0.0040 

(0.60%) 

0.0256 

(0.29%) 
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Airport 
A25  

(µg m-3) 

AEC  

(µg m-3) 

ANH4  

(µg m-3) 

ANO3  

(µg m-3) 

SOA  

(µg m-3) 

POA  

(µg m-3) 

ASO4  

(µg m-3) 

PM2.5*  

(µg m-3) 

PIT 
˗0.0004 

(˗0.01%) 

0.0008 

(0.17%) 

0.0024 

(0.12%) 

0.0084 

(0.27%) 

˗0.0007 

(˗0.23%) 

˗0.0001 

(˗0.01%) 

0.0001 

(0.00%) 

0.0104 

(0.07%) 

PVD 
˗0.0002 

(˗0.01%) 

0.0010 

(0.20%) 

0.0017 

(0.14%) 

0.0070 

(0.31%) 

˗0.0011 

(˗0.24%) 

˗0.0001 

(˗0.01%) 

0.0009 

(0.05%) 

0.0092 

(0.09%) 

RDU 
˗0.0003 

(˗0.01%) 

0.0012 

(0.06%) 

0.0038 

(0.23%) 

0.0121 

(0.48%) 

˗0.0005 

(˗0.05%) 

˗0.0001 

(˗0.01%) 

0.0027 

(0.09%) 

0.0188 

(0.13%) 

RIC 
˗0.0003 

(˗0.01%) 

0.0007 

(0.12%) 

0.0031 

(0.16%) 

0.0105 

(0.39%) 

0.0009 

(0.14%) 

˗0.0001 

(˗0.01%) 

0.0019 

(0.05%) 

0.0166 

(0.11%) 

RNO 
0.0000 

(0.00%) 

0.0012 

(0.29%) 

0.0021 

(0.58%) 

0.0050 

(0.93%) 

˗0.0003 

(˗0.02%) 

0.0000 

(0.00%) 

0.0020 

(0.36%) 

0.0099 

(0.15%) 

ROC 
˗0.0004 

(˗0.01%) 

0.0008 

(0.20%) 

0.0020 

(0.13%) 

0.0071 

(0.29%) 

˗0.0003 

(˗0.08%) 

˗0.0001 

(˗0.01%) 

0.0008 

(0.03%) 

0.0100 

(0.08%) 

RSW 
˗0.0001 

(˗0.01%) 

0.0008 

(0.13%) 

0.0010 

(0.21%) 

0.0015 

(0.89%) 

˗0.0002 

(˗0.09%) 

˗0.0001 

(0.00%) 

0.0027 

(0.18%) 

0.0056 

(0.10%) 

SAN 
˗0.0001 

(0.00%) 

0.0029 

(0.42%) 

0.0022 

(0.34%) 

0.0045 

(0.51%) 

˗0.0006 

(˗0.23%) 

˗0.0001 

(˗0.01%) 

0.0042 

(0.33%) 

0.0132 

(0.18%) 

SAT 
˗0.0003 

(˗0.01%) 

0.0009 

(0.19%) 

0.0027 

(0.27%) 

0.0072 

(0.58%) 

0.0000 

(˗0.03%) 

˗0.0001 

(˗0.01%) 

0.0019 

(0.11%) 

0.0123 

(0.13%) 

SBA 
˗0.0002 

(˗0.01%) 

0.0000 

(0.00%) 

0.0018 

(0.52%) 

0.0040 

(0.82%) 

˗0.0006 

(˗0.25%) 

˗0.0001 

(˗0.01%) 

0.0018 

(0.30%) 

0.0066 

(0.13%) 

SDF 
˗0.0004 

(˗0.01%) 

0.0020 

(0.13%) 

0.0022 

(0.09%) 

0.0067 

(0.20%) 

˗0.0042 

(˗1.47%) 

˗0.0001 

(˗0.01%) 

0.0015 

(0.04%) 

0.0076 

(0.04%) 

SEA 
0.0000 

(0.00%) 

0.0036 

(0.33%) 

0.0006 

(0.12%) 

0.0003 

(0.03%) 

˗0.0015 

(˗0.09%) 

0.0000 

(0.00%) 

0.0014 

(0.23%) 

0.0045 

(0.04%) 

SFO 
˗0.0001 

(0.00%) 

0.0055 

(0.52%) 

0.0026 

(0.32%) 

0.0066 

(0.35%) 

˗0.0011 

(˗0.22%) 

˗0.0001 

(0.00%) 

0.0026 

(0.31%) 

0.0160 

(0.15%) 

SJC 
˗0.0001 

(0.00%) 

0.0029 

(0.31%) 

0.0036 

(0.43%) 

0.0109 

(0.59%) 

˗0.0014 

(˗0.31%) 

˗0.0001 

(0.00%) 

0.0013 

(0.15%) 

0.0169 

(0.17%) 

SLC 
˗0.0001 

(˗0.01%) 

0.0029 

(0.56%) 

0.0043 

(0.69%) 

0.0119 

(0.84%) 

˗0.0010 

(˗0.14%) 

˗0.0001 

(˗0.01%) 

0.0024 

(0.42%) 

0.0203 

(0.28%) 
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Airport 
A25  

(µg m-3) 

AEC  

(µg m-3) 

ANH4  

(µg m-3) 

ANO3  

(µg m-3) 

SOA  

(µg m-3) 

POA  

(µg m-3) 

ASO4  

(µg m-3) 

PM2.5*  

(µg m-3) 

SMF 
˗0.0001 

(0.00%) 

0.0023 

(0.28%) 

0.0045 

(0.55%) 

0.0131 

(0.64%) 

˗0.0008 

(˗0.11%) 

˗0.0001 

(0.00%) 

0.0019 

(0.29%) 

0.0209 

(0.20%) 

SNA 
˗0.0001 

(0.00%) 

0.0049 

(0.42%) 

0.0053 

(0.52%) 

0.0129 

(0.62%) 

˗0.0009 

(˗0.25%) 

˗0.0001 

(0.00%) 

0.0052 

(0.41%) 

0.0273 

(0.25%) 

STL 
˗0.0005 

(˗0.01%) 

0.0014 

(0.16%) 

0.0027 

(0.15%) 

0.0079 

(0.26%) 

˗0.0005 

(˗0.19%) 

˗0.0001 

(˗0.01%) 

0.0018 

(0.06%) 

0.0127 

(0.08%) 

SWF 
˗0.0002 

(˗0.01%) 

0.0004 

(0.07%) 

0.0016 

(0.10%) 

0.0058 

(0.21%) 

˗0.0006 

(˗0.13%) 

˗0.0001 

(˗0.01%) 

0.0006 

(0.02%) 

0.0074 

(0.06%) 

SYR 
˗0.0004 

(˗0.01%) 

0.0004 

(0.10%) 

0.0030 

(0.18%) 

0.0100 

(0.35%) 

˗0.0005 

(˗0.12%) 

˗0.0002 

(˗0.01%) 

0.0009 

(0.04%) 

0.0133 

(0.11%) 

TPA 
˗0.0001 

(˗0.01%) 

0.0015 

(0.21%) 

0.0017 

(0.19%) 

0.0041 

(0.77%) 

˗0.0001 

(˗0.03%) 

˗0.0001 

(˗0.01%) 

0.0026 

(0.10%) 

0.0095 

(0.11%) 

TUL 
˗0.0004 

(˗0.01%) 

0.0003 

(0.06%) 

0.0027 

(0.21%) 

0.0072 

(0.35%) 

˗0.0001 

(˗0.03%) 

˗0.0001 

(˗0.01%) 

0.0018 

(0.09%) 

0.0114 

(0.09%) 

TUS 
˗0.0001 

(0.00%) 

0.0006 

(0.13%) 

0.0020 

(0.57%) 

0.0050 

(1.36%) 

0.0000 

(0.00%) 

0.0000 

(0.00%) 

0.0019 

(0.29%) 

0.0093 

(0.20%) 

TVC 
˗0.0002 

(˗0.01%) 

0.0002 

(0.07%) 

0.0006 

(0.06%) 

0.0021 

(0.17%) 

0.0001 

(0.01%) 

0.0000 

(˗0.01%) 

0.0009 

(0.05%) 

0.0034 

(0.05%) 

TYS 
˗0.0002 

(˗0.01%) 

0.0004 

(0.06%) 

0.0015 

(0.11%) 

0.0038 

(0.25%) 

0.0000 

(˗0.01%) 

˗0.0001 

(˗0.01%) 

0.0033 

(0.10%) 

0.0086 

(0.07%) 

 

*PM2.5 does not equal the sum of species shown in chart due to a scaling factor (1.167) applied to POA when computing PM2.5. 
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Table 6. Absolute and percent increases due to aircraft emissions in 2025 at the grid cell containing the airport. 

Airport 
A25  

(µg m-3) 

AEC  

(µg m-3) 

ANH4  

(µg m-3) 

ANO3  

(µg m-3) 

SOA  

(µg m-3) 

POA  

(µg m-3) 

ASO4  

(µg m-3) 

PM2.5*  

(µg m-3) 

ABQ 
0.0000 

(0.00%) 

0.0015 

(0.61%) 

0.0024 

(0.72%) 

0.0057 

(1.42%) 

˗0.0001 

(˗0.01%) 

0.0000 

(0.00%) 

0.0018 

(0.31%) 

0.0113 

(0.14%) 

ALB 
˗0.0009 

(˗0.02%) 

0.0004 

(0.12%) 

0.0060 

(0.58%) 

0.0200 

(1.12%) 

0.0012 

(0.20%) 

˗0.0004 

(˗0.02%) 

0.0008 

(0.05%) 

0.0270 

(0.24%) 

ATL 
˗0.0009 

(˗0.02%) 

0.0121 

(2.56%) 

0.0162 

(1.43%) 

0.0406 

(2.90%) 

˗0.0012 

(˗0.08%) 

˗0.0003 

(˗0.02%) 

0.0130 

(0.66%) 

0.0796 

(0.65%) 

AUS 
˗0.0006 

(˗0.02%) 

0.0017 

(1.21%) 

0.0056 

(0.71%) 

0.0137 

(1.28%) 

˗0.0004 

(˗0.25%) 

˗0.0001 

(˗0.02%) 

0.0045 

(0.35%) 

0.0243 

(0.33%) 

BDL 
˗0.0009 

(˗0.03%) 

0.0025 

(0.87%) 

0.0076 

(0.71%) 

0.0249 

(1.26%) 

˗0.0006 

(˗0.11%) 

˗0.0004 

(˗0.03%) 

0.0021 

(0.15%) 

0.0352 

(0.36%) 

BFL 
˗0.0004 

(˗0.02%) 

0.0000 

(˗0.01%) 

0.0052 

(1.04%) 

0.0144 

(1.47%) 

0.0011 

(0.23%) 

˗0.0002 

(˗0.02%) 

0.0028 

(0.47%) 

0.0228 

(0.35%) 

BHM 
˗0.0006 

(˗0.01%) 

0.0006 

(0.16%) 

0.0048 

(0.43%) 

0.0122 

(1.15%) 

˗0.0001 

(˗0.01%) 

˗0.0002 

(˗0.01%) 

0.0039 

(0.17%) 

0.0206 

(0.16%) 

BNA 
˗0.0008 

(˗0.03%) 

0.0009 

(0.29%) 

0.0055 

(0.43%) 

0.0159 

(0.91%) 

0.0009 

(0.28%) 

˗0.0002 

(˗0.02%) 

0.0032 

(0.15%) 

0.0254 

(0.26%) 

BOI 
˗0.0001 

(0.00%) 

0.0010 

(0.12%) 

0.0041 

(0.80%) 

0.0122 

(1.30%) 

˗0.0023 

(˗0.13%) 

0.0000 

(0.00%) 

0.0015 

(0.24%) 

0.0165 

(0.13%) 

BOS 
˗0.0007 

(˗0.02%) 

0.0044 

(0.56%) 

0.0071 

(0.55%) 

0.0264 

(1.17%) 

˗0.0020 

(˗0.34%) 

˗0.0003 

(˗0.01%) 

˗0.0013 

(˗0.07%) 

0.0336 

(0.23%) 

BTR 
˗0.0003 

(˗0.01%) 

0.0000 

(0.00%) 

0.0027 

(0.23%) 

0.0068 

(0.67%) 

˗0.0003 

(˗0.06%) 

˗0.0001 

(˗0.01%) 

0.0025 

(0.09%) 

0.0111 

(0.11%) 

BUF 
˗0.0008 

(˗0.02%) 

0.0008 

(0.25%) 

0.0058 

(0.39%) 

0.0187 

(0.77%) 

˗0.0007 

(˗0.13%) 

˗0.0003 

(˗0.02%) 

0.0012 

(0.06%) 

0.0247 

(0.19%) 

BUR 
˗0.0005 

(˗0.02%) 

0.0020 

(0.34%) 

0.0067 

(1.01%) 

0.0185 

(1.55%) 

˗0.0012 

(˗0.27%) 

˗0.0003 

(˗0.02%) 

0.0042 

(0.47%) 

0.0293 

(0.37%) 

BWI 
˗0.0014 

(˗0.04%) 

0.0027 

(0.70%) 

0.0097 

(0.65%) 

0.0311 

(1.25%) 

0.0002 

(0.04%) 

˗0.0005 

(˗0.03%) 

0.0029 

(0.13%) 

0.0446 

(0.36%) 
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Airport 
A25  

(µg m-3) 

AEC  

(µg m-3) 

ANH4  

(µg m-3) 

ANO3  

(µg m-3) 

SOA  

(µg m-3) 

POA  

(µg m-3) 

ASO4  

(µg m-3) 

PM2.5*  

(µg m-3) 

CHS 
˗0.0005 

(˗0.02%) 

0.0003 

(0.12%) 

0.0030 

(0.39%) 

0.0079 

(1.39%) 

˗0.0002 

(˗0.03%) 

˗0.0001 

(˗0.02%) 

0.0027 

(0.15%) 

0.0131 

(0.18%) 

CLE 
˗0.0013 

(˗0.04%) 

0.0011 

(0.52%) 

0.0088 

(0.50%) 

0.0290 

(0.91%) 

0.0013 

(0.43%) 

˗0.0003 

(˗0.04%) 

0.0014 

(0.06%) 

0.0400 

(0.35%) 

CLT 
˗0.0007 

(˗0.02%) 

0.0036 

(0.82%) 

0.0113 

(0.93%) 

0.0325 

(2.04%) 

˗0.0004 

(˗0.04%) 

˗0.0002 

(˗0.02%) 

0.0053 

(0.26%) 

0.0513 

(0.46%) 

CMH 
˗0.0012 

(˗0.03%) 

0.0011 

(0.44%) 

0.0082 

(0.49%) 

0.0261 

(0.90%) 

0.0005 

(0.18%) 

˗0.0003 

(˗0.03%) 

0.0020 

(0.09%) 

0.0364 

(0.30%) 

COS 
˗0.0001 

(0.00%) 

0.0004 

(0.13%) 

0.0019 

(0.63%) 

0.0047 

(1.47%) 

˗0.0001 

(˗0.01%) 

0.0000 

(0.00%) 

0.0014 

(0.25%) 

0.0082 

(0.13%) 

CRP 
˗0.0003 

(˗0.01%) 

0.0001 

(0.06%) 

0.0016 

(0.28%) 

0.0040 

(0.97%) 

˗0.0005 

(˗0.76%) 

˗0.0001 

(˗0.02%) 

0.0013 

(0.10%) 

0.0061 

(0.11%) 

CVG 
˗0.0012 

(˗0.03%) 

0.0028 

(1.02%) 

0.0079 

(0.46%) 

0.0254 

(0.91%) 

˗0.0002 

(˗0.07%) 

˗0.0003 

(˗0.03%) 

0.0022 

(0.09%) 

0.0366 

(0.29%) 

DAB 
˗0.0002 

(˗0.02%) 

0.0001 

(0.05%) 

0.0010 

(0.30%) 

0.0013 

(2.15%) 

˗0.0001 

(˗0.05%) 

˗0.0001 

(˗0.01%) 

0.0025 

(0.24%) 

0.0046 

(0.14%) 

DAL 
˗0.0007 

(˗0.01%) 

0.0028 

(0.86%) 

0.0075 

(0.72%) 

0.0196 

(1.42%) 

˗0.0005 

(˗0.22%) 

˗0.0002 

(˗0.01%) 

0.0051 

(0.29%) 

0.0335 

(0.29%) 

DAY 
˗0.0012 

(˗0.03%) 

0.0006 

(0.28%) 

0.0079 

(0.47%) 

0.0255 

(0.88%) 

˗0.0009 

(˗0.37%) 

˗0.0003 

(˗0.03%) 

0.0019 

(0.08%) 

0.0335 

(0.28%) 

DCA 
˗0.0012 

(˗0.03%) 

0.0019 

(0.39%) 

0.0098 

(0.61%) 

0.0317 

(1.23%) 

˗0.0017 

(˗0.33%) 

˗0.0004 

(˗0.02%) 

0.0024 

(0.10%) 

0.0423 

(0.31%) 

DEN 
˗0.0001 

(0.00%) 

0.0052 

(1.75%) 

0.0056 

(1.19%) 

0.0165 

(2.32%) 

˗0.0008 

(˗0.11%) 

0.0000 

(0.00%) 

0.0022 

(0.31%) 

0.0285 

(0.40%) 

DFW 
˗0.0007 

(˗0.01%) 

0.0023 

(0.82%) 

0.0072 

(0.71%) 

0.0192 

(1.33%) 

˗0.0002 

(˗0.11%) 

˗0.0002 

(˗0.01%) 

0.0043 

(0.27%) 

0.0318 

(0.28%) 

DSM 
˗0.0008 

(˗0.03%) 

0.0002 

(0.13%) 

0.0039 

(0.35%) 

0.0121 

(0.61%) 

˗0.0009 

(˗0.61%) 

˗0.0001 

(˗0.03%) 

0.0011 

(0.08%) 

0.0155 

(0.18%) 

DTW 
˗0.0010 

(˗0.03%) 

0.0041 

(1.35%) 

0.0063 

(0.38%) 

0.0210 

(0.71%) 

˗0.0004 

(˗0.12%) 

˗0.0002 

(˗0.02%) 

0.0011 

(0.05%) 

0.0309 

(0.25%) 
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Airport 
A25  

(µg m-3) 

AEC  

(µg m-3) 

ANH4  

(µg m-3) 

ANO3  

(µg m-3) 

SOA  

(µg m-3) 

POA  

(µg m-3) 

ASO4  

(µg m-3) 

PM2.5*  

(µg m-3) 

ELP 
0.0000 

(0.00%) 

0.0007 

(0.46%) 

0.0022 

(0.60%) 

0.0055 

(1.50%) 

0.0012 

(0.33%) 

0.0000 

(0.00%) 

0.0016 

(0.23%) 

0.0112 

(0.25%) 

EUG 
0.0000 

(0.00%) 

0.0001 

(0.02%) 

0.0012 

(0.64%) 

0.0033 

(1.37%) 

˗0.0014 

(˗0.07%) 

0.0000 

(0.00%) 

0.0005 

(0.15%) 

0.0037 

(0.06%) 

EWR 
˗0.0010 

(˗0.03%) 

0.0032 

(0.68%) 

0.0072 

(0.46%) 

0.0262 

(1.00%) 

˗0.0011 

(˗0.24%) 

˗0.0004 

(˗0.02%) 

˗0.0008 

(˗0.04%) 

0.0333 

(0.26%) 

FAT 
˗0.0003 

(˗0.01%) 

0.0002 

(0.06%) 

0.0050 

(0.90%) 

0.0139 

(1.30%) 

˗0.0001 

(˗0.01%) 

˗0.0002 

(˗0.01%) 

0.0025 

(0.38%) 

0.0210 

(0.26%) 

FLL 
˗0.0001 

(˗0.01%) 

0.0028 

(1.07%) 

0.0025 

(0.72%) 

0.0039 

(3.50%) 

˗0.0001 

(˗0.05%) 

˗0.0001 

(˗0.01%) 

0.0040 

(0.44%) 

0.0129 

(0.33%) 

FNT 
˗0.0009 

(˗0.03%) 

0.0003 

(0.13%) 

0.0051 

(0.36%) 

0.0177 

(0.71%) 

˗0.0003 

(˗0.09%) 

˗0.0002 

(˗0.03%) 

0.0003 

(0.02%) 

0.0220 

(0.21%) 

GFK 
˗0.0004 

(˗0.02%) 

0.0011 

(0.91%) 

0.0018 

(0.33%) 

0.0055 

(0.47%) 

˗0.0001 

(˗0.05%) 

˗0.0001 

(˗0.02%) 

0.0007 

(0.11%) 

0.0085 

(0.16%) 

GRR 
˗0.0009 

(˗0.03%) 

0.0004 

(0.17%) 

0.0065 

(0.42%) 

0.0219 

(0.84%) 

0.0002 

(0.08%) 

˗0.0002 

(˗0.03%) 

0.0005 

(0.02%) 

0.0283 

(0.26%) 

GSO 
˗0.0008 

(˗0.03%) 

0.0001 

(0.03%) 

0.0084 

(0.69%) 

0.0254 

(1.41%) 

˗0.0003 

(˗0.03%) 

˗0.0003 

(˗0.02%) 

0.0029 

(0.15%) 

0.0354 

(0.37%) 

HOU 
˗0.0004 

(˗0.01%) 

0.0016 

(0.33%) 

0.0034 

(0.30%) 

0.0095 

(0.91%) 

˗0.0010 

(˗0.27%) 

˗0.0001 

(˗0.01%) 

0.0018 

(0.08%) 

0.0148 

(0.11%) 

HPN 
˗0.0009 

(˗0.03%) 

0.0011 

(0.30%) 

0.0064 

(0.46%) 

0.0224 

(0.86%) 

˗0.0027 

(˗0.56%) 

˗0.0004 

(˗0.02%) 

0.0005 

(0.03%) 

0.0264 

(0.23%) 

IAD 
˗0.0012 

(˗0.03%) 

0.0057 

(1.40%) 

0.0120 

(0.81%) 

0.0379 

(1.47%) 

˗0.0026 

(˗0.50%) 

˗0.0004 

(˗0.03%) 

0.0038 

(0.19%) 

0.0552 

(0.44%) 

IAH 
˗0.0004 

(˗0.01%) 

0.0055 

(1.54%) 

0.0046 

(0.48%) 

0.0098 

(0.89%) 

˗0.0002 

(˗0.02%) 

˗0.0001 

(˗0.01%) 

0.0053 

(0.30%) 

0.0246 

(0.19%) 

ICT 
˗0.0007 

(˗0.02%) 

0.0001 

(0.02%) 

0.0033 

(0.38%) 

0.0098 

(0.66%) 

˗0.0006 

(˗0.36%) 

˗0.0002 

(˗0.02%) 

0.0011 

(0.10%) 

0.0127 

(0.14%) 

IND 
˗0.0014 

(˗0.02%) 

0.0024 

(0.81%) 

0.0089 

(0.47%) 

0.0297 

(1.00%) 

˗0.0012 

(˗0.48%) 

˗0.0002 

(˗0.03%) 

0.0013 

(0.05%) 

0.0395 

(0.26%) 
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Airport 
A25  

(µg m-3) 

AEC  

(µg m-3) 

ANH4  

(µg m-3) 

ANO3  

(µg m-3) 

SOA  

(µg m-3) 

POA  

(µg m-3) 

ASO4  

(µg m-3) 

PM2.5*  

(µg m-3) 

ISP 
˗0.0009 

(˗0.03%) 

0.0009 

(0.26%) 

0.0068 

(0.51%) 

0.0235 

(1.03%) 

0.0062 

(1.57%) 

˗0.0004 

(˗0.03%) 

0.0004 

(0.02%) 

0.0365 

(0.35%) 

JAX 
˗0.0004 

(˗0.02%) 

0.0009 

(0.27%) 

0.0039 

(0.66%) 

0.0091 

(2.11%) 

˗0.0047 

(˗0.38%) 

˗0.0002 

(˗0.01%) 

0.0036 

(0.28%) 

0.0123 

(0.17%) 

JFK 
˗0.0007 

(˗0.02%) 

0.0072 

(1.46%) 

0.0055 

(0.35%) 

0.0231 

(0.86%) 

˗0.0056 

(˗0.99%) 

˗0.0002 

(˗0.01%) 

˗0.0025 

(˗0.11%) 

0.0267 

(0.20%) 

LAN 
˗0.0010 

(˗0.03%) 

0.0001 

(0.07%) 

0.0066 

(0.43%) 

0.0224 

(0.82%) 

˗0.0007 

(˗0.25%) 

˗0.0002 

(˗0.03%) 

0.0005 

(0.03%) 

0.0278 

(0.27%) 

LAS 
˗0.0001 

(0.00%) 

0.0038 

(0.98%) 

0.0045 

(1.18%) 

0.0113 

(2.57%) 

˗0.0018 

(˗0.40%) 

˗0.0001 

(˗0.01%) 

0.0034 

(0.50%) 

0.0211 

(0.32%) 

LAX 
˗0.0002 

(˗0.01%) 

0.0094 

(1.44%) 

0.0099 

(0.88%) 

0.0289 

(1.31%) 

˗0.0024 

(˗0.75%) 

˗0.0001 

(˗0.01%) 

0.0046 

(0.33%) 

0.0500 

(0.45%) 

LGA 
˗0.0010 

(˗0.02%) 

0.0026 

(0.44%) 

0.0081 

(0.50%) 

0.0285 

(1.03%) 

˗0.0025 

(˗0.49%) 

˗0.0004 

(˗0.02%) 

0.0000 

(0.00%) 

0.0352 

(0.25%) 

LGB 
˗0.0007 

(˗0.02%) 

0.0034 

(0.32%) 

0.0160 

(1.25%) 

0.0504 

(2.04%) 

˗0.0006 

(˗0.13%) 

˗0.0005 

(˗0.02%) 

0.0041 

(0.27%) 

0.0720 

(0.50%) 

LIT 
˗0.0007 

(˗0.03%) 

0.0006 

(0.22%) 

0.0049 

(0.50%) 

0.0125 

(1.01%) 

˗0.0003 

(˗0.06%) 

˗0.0002 

(˗0.02%) 

0.0036 

(0.21%) 

0.0204 

(0.25%) 

MCI 
˗0.0008 

(˗0.02%) 

0.0021 

(0.72%) 

0.0049 

(0.37%) 

0.0163 

(0.74%) 

0.0004 

(0.17%) 

˗0.0002 

(˗0.01%) 

0.0005 

(0.03%) 

0.0232 

(0.19%) 

MCO 
˗0.0003 

(˗0.02%) 

0.0030 

(0.91%) 

0.0044 

(0.95%) 

0.0087 

(2.99%) 

˗0.0001 

(˗0.02%) 

˗0.0001 

(˗0.01%) 

0.0054 

(0.52%) 

0.0210 

(0.37%) 

MDW 
˗0.0010 

(˗0.02%) 

0.0015 

(0.43%) 

0.0046 

(0.26%) 

0.0167 

(0.66%) 

˗0.0015 

(˗0.61%) 

˗0.0002 

(˗0.02%) 

˗0.0008 

(˗0.03%) 

0.0192 

(0.13%) 

MEM 
˗0.0008 

(˗0.02%) 

0.0054 

(1.68%) 

0.0052 

(0.44%) 

0.0141 

(0.95%) 

˗0.0005 

(˗0.16%) 

˗0.0002 

(˗0.02%) 

0.0042 

(0.21%) 

0.0275 

(0.27%) 

MIA 
˗0.0001 

(˗0.01%) 

0.0034 

(1.38%) 

0.0032 

(0.93%) 

0.0048 

(5.01%) 

˗0.0002 

(˗0.16%) 

˗0.0001 

(˗0.01%) 

0.0052 

(0.58%) 

0.0162 

(0.43%) 

MKE 
˗0.0009 

(˗0.03%) 

0.0009 

(0.33%) 

0.0044 

(0.34%) 

0.0153 

(0.71%) 

0.0006 

(0.19%) 

˗0.0002 

(˗0.02%) 

0.0003 

(0.02%) 

0.0204 

(0.19%) 
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Airport 
A25  

(µg m-3) 

AEC  

(µg m-3) 

ANH4  

(µg m-3) 

ANO3  

(µg m-3) 

SOA  

(µg m-3) 

POA  

(µg m-3) 

ASO4  

(µg m-3) 

PM2.5*  

(µg m-3) 

MLB 
˗0.0002 

(˗0.02%) 

0.0003 

(0.13%) 

0.0019 

(0.52%) 

0.0030 

(2.86%) 

0.0000 

(0.01%) 

˗0.0001 

(˗0.01%) 

0.0032 

(0.33%) 

0.0081 

(0.22%) 

MSN 
˗0.0009 

(˗0.02%) 

0.0003 

(0.11%) 

0.0058 

(0.39%) 

0.0202 

(0.76%) 

˗0.0008 

(˗0.29%) 

˗0.0002 

(˗0.02%) 

˗0.0003 

(˗0.01%) 

0.0240 

(0.21%) 

MSP 
˗0.0007 

(˗0.01%) 

0.0053 

(1.16%) 

0.0030 

(0.24%) 

0.0084 

(0.40%) 

˗0.0005 

(˗0.18%) 

˗0.0002 

(˗0.01%) 

0.0015 

(0.09%) 

0.0167 

(0.13%) 

MSY 
˗0.0003 

(˗0.01%) 

0.0011 

(0.37%) 

0.0017 

(0.20%) 

0.0034 

(0.74%) 

˗0.0011 

(˗0.41%) 

˗0.0001 

(˗0.01%) 

0.0024 

(0.12%) 

0.0072 

(0.10%) 

OAK 
˗0.0001 

(0.00%) 

0.0056 

(0.95%) 

0.0037 

(0.58%) 

0.0122 

(0.99%) 

˗0.0008 

(˗0.15%) 

˗0.0001 

(0.00%) 

0.0014 

(0.16%) 

0.0219 

(0.24%) 

OKC 
˗0.0007 

(˗0.02%) 

0.0007 

(0.29%) 

0.0038 

(0.49%) 

0.0100 

(0.81%) 

˗0.0001 

(˗0.06%) 

˗0.0002 

(˗0.02%) 

0.0025 

(0.22%) 

0.0160 

(0.20%) 

OMA 
˗0.0007 

(˗0.02%) 

0.0008 

(0.47%) 

0.0035 

(0.33%) 

0.0102 

(0.57%) 

˗0.0018 

(˗1.36%) 

˗0.0001 

(˗0.02%) 

0.0016 

(0.11%) 

0.0134 

(0.15%) 

ONT 
˗0.0007 

(˗0.02%) 

0.0036 

(0.40%) 

0.0152 

(1.27%) 

0.0481 

(1.84%) 

˗0.0020 

(˗0.34%) 

˗0.0005 

(˗0.02%) 

0.0041 

(0.34%) 

0.0676 

(0.50%) 

ORD 
˗0.0009 

(˗0.03%) 

0.0043 

(1.47%) 

0.0046 

(0.31%) 

0.0156 

(0.61%) 

˗0.0008 

(˗0.29%) 

˗0.0002 

(˗0.02%) 

0.0002 

(0.01%) 

0.0228 

(0.20%) 

ORF 
˗0.0006 

(˗0.02%) 

0.0008 

(0.27%) 

0.0058 

(0.46%) 

0.0191 

(1.10%) 

˗0.0002 

(˗0.05%) 

˗0.0002 

(˗0.02%) 

0.0011 

(0.05%) 

0.0260 

(0.26%) 

PBI 
˗0.0001 

(˗0.01%) 

0.0009 

(0.39%) 

0.0016 

(0.59%) 

0.0021 

(4.06%) 

˗0.0022 

(˗1.69%) 

˗0.0001 

(˗0.01%) 

0.0031 

(0.40%) 

0.0053 

(0.17%) 

PDX 
0.0000 

(0.00%) 

0.0019 

(0.24%) 

0.0029 

(0.53%) 

0.0080 

(0.87%) 

˗0.0007 

(˗0.04%) 

0.0000 

(0.00%) 

0.0016 

(0.21%) 

0.0138 

(0.07%) 

PHF 
˗0.0009 

(˗0.04%) 

0.0001 

(0.04%) 

0.0055 

(0.49%) 

0.0178 

(1.10%) 

˗0.0018 

(˗0.35%) 

˗0.0003 

(˗0.04%) 

0.0015 

(0.08%) 

0.0219 

(0.26%) 

PHL 
˗0.0011 

(˗0.03%) 

0.0047 

(1.20%) 

0.0084 

(0.46%) 

0.0301 

(1.00%) 

˗0.0017 

(˗0.38%) 

˗0.0004 

(˗0.03%) 

˗0.0009 

(˗0.03%) 

0.0391 

(0.28%) 

PHX 
˗0.0002 

(˗0.01%) 

0.0068 

(1.62%) 

0.0148 

(3.77%) 

0.0438 

(7.20%) 

˗0.0010 

(˗0.21%) 

˗0.0001 

(˗0.01%) 

0.0057 

(0.97%) 

0.0698 

(0.98%) 
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Airport 
A25  

(µg m-3) 

AEC  

(µg m-3) 

ANH4  

(µg m-3) 

ANO3  

(µg m-3) 

SOA  

(µg m-3) 

POA  

(µg m-3) 

ASO4  

(µg m-3) 

PM2.5*  

(µg m-3) 

PIT 
˗0.0011 

(˗0.03%) 

0.0007 

(0.32%) 

0.0059 

(0.37%) 

0.0204 

(0.82%) 

˗0.0005 

(˗0.19%) 

˗0.0003 

(˗0.03%) 

0.0007 

(0.03%) 

0.0258 

(0.22%) 

PVD 
˗0.0008 

(˗0.03%) 

0.0011 

(0.39%) 

0.0074 

(0.71%) 

0.0245 

(1.29%) 

0.0004 

(0.09%) 

˗0.0003 

(˗0.03%) 

0.0013 

(0.10%) 

0.0336 

(0.38%) 

RDU 
˗0.0008 

(˗0.03%) 

0.0012 

(0.32%) 

0.0080 

(0.73%) 

0.0237 

(1.47%) 

˗0.0001 

(˗0.01%) 

˗0.0003 

(˗0.02%) 

0.0032 

(0.19%) 

0.0349 

(0.37%) 

RIC 
˗0.0010 

(˗0.03%) 

0.0005 

(0.16%) 

0.0085 

(0.61%) 

0.0279 

(1.33%) 

0.0019 

(0.28%) 

˗0.0003 

(˗0.03%) 

0.0017 

(0.08%) 

0.0391 

(0.35%) 

RNO 
0.0000 

(0.00%) 

0.0012 

(0.56%) 

0.0037 

(1.20%) 

0.0101 

(2.69%) 

˗0.0004 

(˗0.04%) 

0.0000 

(0.00%) 

0.0019 

(0.35%) 

0.0164 

(0.26%) 

ROC 
˗0.0009 

(˗0.03%) 

0.0007 

(0.29%) 

0.0049 

(0.39%) 

0.0161 

(0.88%) 

˗0.0002 

(˗0.05%) 

˗0.0003 

(˗0.02%) 

0.0013 

(0.07%) 

0.0215 

(0.21%) 

RSW 
˗0.0002 

(˗0.01%) 

0.0008 

(0.24%) 

0.0019 

(0.57%) 

0.0029 

(2.89%) 

˗0.0001 

(˗0.03%) 

˗0.0001 

(˗0.01%) 

0.0031 

(0.35%) 

0.0083 

(0.19%) 

SAN 
˗0.0001 

(˗0.01%) 

0.0029 

(0.80%) 

0.0037 

(0.66%) 

0.0085 

(1.69%) 

˗0.0006 

(˗0.26%) 

˗0.0001 

(˗0.01%) 

0.0055 

(0.43%) 

0.0197 

(0.29%) 

SAT 
˗0.0005 

(˗0.01%) 

0.0009 

(0.40%) 

0.0041 

(0.51%) 

0.0108 

(1.14%) 

0.0000 

(˗0.01%) 

˗0.0001 

(˗0.01%) 

0.0027 

(0.19%) 

0.0178 

(0.21%) 

SBA 
˗0.0002 

(˗0.01%) 

0.0000 

(0.01%) 

0.0022 

(0.78%) 

0.0050 

(1.43%) 

˗0.0007 

(˗0.29%) 

˗0.0002 

(˗0.01%) 

0.0020 

(0.39%) 

0.0081 

(0.18%) 

SDF 
˗0.0011 

(˗0.02%) 

0.0020 

(0.64%) 

0.0070 

(0.40%) 

0.0226 

(0.87%) 

˗0.0056 

(˗1.95%) 

˗0.0002 

(˗0.02%) 

0.0019 

(0.07%) 

0.0264 

(0.20%) 

SEA 
0.0000 

(0.00%) 

0.0039 

(0.76%) 

0.0018 

(0.34%) 

0.0044 

(0.46%) 

˗0.0022 

(˗0.13%) 

0.0000 

(0.00%) 

0.0013 

(0.20%) 

0.0091 

(0.09%) 

SFO 
˗0.0001 

(0.00%) 

0.0056 

(0.95%) 

0.0037 

(0.58%) 

0.0122 

(0.99%) 

˗0.0015 

(˗0.30%) 

˗0.0001 

(0.00%) 

0.0014 

(0.16%) 

0.0211 

(0.23%) 

SJC 
˗0.0002 

(˗0.01%) 

0.0029 

(0.56%) 

0.0051 

(0.81%) 

0.0176 

(1.50%) 

˗0.0006 

(˗0.12%) 

˗0.0001 

(0.00%) 

0.0002 

(0.03%) 

0.0250 

(0.28%) 

SLC 
˗0.0002 

(˗0.01%) 

0.0029 

(1.13%) 

0.0101 

(1.85%) 

0.0312 

(2.84%) 

˗0.0017 

(˗0.23%) 

˗0.0001 

(˗0.01%) 

0.0029 

(0.47%) 

0.0450 

(0.66%) 
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Airport 
A25  

(µg m-3) 

AEC  

(µg m-3) 

ANH4  

(µg m-3) 

ANO3  

(µg m-3) 

SOA  

(µg m-3) 

POA  

(µg m-3) 

ASO4  

(µg m-3) 

PM2.5*  

(µg m-3) 

SMF 
˗0.0002 

(˗0.01%) 

0.0022 

(0.45%) 

0.0082 

(1.28%) 

0.0254 

(1.83%) 

˗0.0012 

(˗0.18%) 

˗0.0001 

(˗0.01%) 

0.0022 

(0.34%) 

0.0364 

(0.39%) 

SNA 
˗0.0002 

(˗0.01%) 

0.0049 

(0.76%) 

0.0057 

(0.76%) 

0.0135 

(1.06%) 

˗0.0013 

(˗0.33%) 

˗0.0001 

(˗0.01%) 

0.0058 

(0.53%) 

0.0282 

(0.31%) 

STL 
˗0.0010 

(˗0.02%) 

0.0016 

(0.48%) 

0.0054 

(0.36%) 

0.0160 

(0.71%) 

˗0.0005 

(˗0.17%) 

˗0.0002 

(˗0.02%) 

0.0025 

(0.11%) 

0.0237 

(0.17%) 

SWF 
˗0.0009 

(˗0.03%) 

0.0003 

(0.07%) 

0.0064 

(0.48%) 

0.0222 

(0.93%) 

˗0.0009 

(˗0.18%) 

˗0.0004 

(˗0.02%) 

0.0005 

(0.03%) 

0.0272 

(0.23%) 

SYR 
˗0.0010 

(˗0.02%) 

0.0003 

(0.12%) 

0.0055 

(0.42%) 

0.0191 

(0.94%) 

˗0.0003 

(˗0.07%) 

˗0.0003 

(˗0.03%) 

0.0004 

(0.02%) 

0.0237 

(0.20%) 

TPA 
˗0.0003 

(˗0.01%) 

0.0015 

(0.42%) 

0.0038 

(0.62%) 

0.0083 

(2.29%) 

0.0000 

(0.00%) 

˗0.0001 

(˗0.01%) 

0.0041 

(0.29%) 

0.0172 

(0.27%) 

TUL 
˗0.0007 

(˗0.02%) 

0.0003 

(0.07%) 

0.0037 

(0.39%) 

0.0104 

(0.72%) 

0.0001 

(0.05%) 

˗0.0002 

(˗0.01%) 

0.0018 

(0.13%) 

0.0154 

(0.14%) 

TUS 
0.0000 

(0.00%) 

0.0008 

(0.48%) 

0.0028 

(0.98%) 

0.0062 

(2.53%) 

0.0001 

(0.05%) 

0.0000 

(0.00%) 

0.0024 

(0.41%) 

0.0123 

(0.30%) 

TVC 
˗0.0005 

(˗0.03%) 

0.0001 

(0.06%) 

0.0017 

(0.21%) 

0.0058 

(0.54%) 

0.0004 

(0.11%) 

˗0.0001 

(˗0.02%) 

0.0008 

(0.06%) 

0.0083 

(0.14%) 

TYS 
˗0.0005 

(˗0.02%) 

0.0003 

(0.10%) 

0.0040 

(0.37%) 

0.0106 

(0.87%) 

0.0000 

(0.00%) 

˗0.0001 

(˗0.02%) 

0.0032 

(0.16%) 

0.0174 

(0.19%) 

 

*PM2.5 does not equal the sum of species shown in chart due to a scaling factor (1.167) applied to POA when computing PM2.5. 
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Table 7. Absolute and percent increases due to aircraft emissions in 2005 at the 9 grid cells surrounding the airport. 

Airport 
A25  

(µg m-3) 

AEC  

(µg m-3) 

ANH4  

(µg m-3) 

ANO3  

(µg m-3) 

SOA  

(µg m-3) 

POA  

(µg m-3) 

ASO4  

(µg m-3) 

PM2.5*  

(µg m-3) 

ABQ 
0.0000 

(0.00%) 

0.0001 

(0.03%) 

0.0003 

(0.10%) 

0.0006 

(0.22%) 

0.0001 

(0.02%) 

0.0000 

(0.00%) 

0.0005 

(0.09%) 

0.0016 

(0.03%) 

ALB 
˗0.0001 

(0.00%) 

0.0001 

(0.01%) 

0.0008 

(0.06%) 

0.0026 

(0.12%) 

˗0.0001 

(˗0.02%) 

0.0000 

(0.00%) 

0.0004 

(0.02%) 

0.0035 

(0.04%) 

ATL 
˗0.0002 

(0.00%) 

0.0015 

(0.20%) 

0.0010 

(0.07%) 

0.0025 

(0.14%) 

˗0.0007 

(˗0.05%) 

0.0000 

(0.00%) 

0.0026 

(0.08%) 

0.0068 

(0.05%) 

AUS 
˗0.0001 

(0.00%) 

0.0002 

(0.06%) 

0.0013 

(0.12%) 

0.0036 

(0.24%) 

0.0000 

(˗0.01%) 

0.0000 

(˗0.01%) 

0.0009 

(0.05%) 

0.0058 

(0.07%) 

BDL 
˗0.0001 

(0.00%) 

0.0003 

(0.05%) 

0.0006 

(0.05%) 

0.0022 

(0.09%) 

˗0.0003 

(˗0.06%) 

0.0000 

(0.00%) 

0.0003 

(0.02%) 

0.0030 

(0.03%) 

BFL 
˗0.0001 

(˗0.01%) 

0.0000 

(˗0.01%) 

0.0018 

(0.31%) 

0.0052 

(0.38%) 

0.0000 

(0.01%) 

˗0.0001 

(˗0.01%) 

0.0009 

(0.17%) 

0.0077 

(0.13%) 

BHM 
˗0.0001 

(0.00%) 

0.0001 

(0.02%) 

0.0009 

(0.07%) 

0.0022 

(0.16%) 

0.0002 

(0.02%) 

0.0000 

(0.00%) 

0.0019 

(0.06%) 

0.0052 

(0.04%) 

BNA 
˗0.0002 

(˗0.01%) 

0.0001 

(0.03%) 

0.0010 

(0.06%) 

0.0027 

(0.12%) 

˗0.0001 

(˗0.02%) 

0.0000 

(˗0.01%) 

0.0013 

(0.04%) 

0.0049 

(0.04%) 

BOI 
0.0000 

(0.00%) 

0.0000 

(0.01%) 

0.0007 

(0.16%) 

0.0020 

(0.22%) 

0.0003 

(0.02%) 

0.0000 

(0.00%) 

0.0003 

(0.07%) 

0.0033 

(0.04%) 

BOS 
˗0.0001 

(0.00%) 

0.0004 

(0.05%) 

0.0006 

(0.05%) 

0.0027 

(0.13%) 

˗0.0004 

(˗0.07%) 

0.0000 

(0.00%) 

0.0003 

(0.01%) 

0.0035 

(0.03%) 

BTR 
˗0.0001 

(0.00%) 

0.0000 

(˗0.01%) 

0.0011 

(0.08%) 

0.0027 

(0.19%) 

0.0001 

(0.02%) 

0.0000 

(0.00%) 

0.0010 

(0.04%) 

0.0048 

(0.05%) 

BUF 
˗0.0002 

(˗0.01%) 

0.0001 

(0.02%) 

0.0012 

(0.07%) 

0.0042 

(0.14%) 

˗0.0001 

(˗0.02%) 

˗0.0001 

(˗0.01%) 

0.0005 

(0.02%) 

0.0058 

(0.05%) 

BUR 
˗0.0002 

(˗0.01%) 

0.0011 

(0.11%) 

0.0036 

(0.37%) 

0.0107 

(0.51%) 

˗0.0003 

(˗0.08%) 

˗0.0001 

(˗0.01%) 

0.0016 

(0.16%) 

0.0163 

(0.16%) 

BWI 
˗0.0002 

(˗0.01%) 

0.0005 

(0.07%) 

0.0015 

(0.08%) 

0.0054 

(0.16%) 

˗0.0003 

(˗0.07%) 

˗0.0001 

(0.00%) 

0.0005 

(0.01%) 

0.0073 

(0.05%) 
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Airport 
A25  

(µg m-3) 

AEC  

(µg m-3) 

ANH4  

(µg m-3) 

ANO3  

(µg m-3) 

SOA  

(µg m-3) 

POA  

(µg m-3) 

ASO4  

(µg m-3) 

PM2.5*  

(µg m-3) 

CHS 
˗0.0001 

(˗0.01%) 

0.0000 

(0.01%) 

0.0004 

(0.05%) 

0.0012 

(0.18%) 

0.0001 

(0.02%) 

0.0000 

(˗0.01%) 

0.0010 

(0.04%) 

0.0027 

(0.04%) 

CLE 
˗0.0002 

(˗0.01%) 

0.0002 

(0.04%) 

0.0020 

(0.09%) 

0.0063 

(0.16%) 

˗0.0001 

(˗0.04%) 

˗0.0001 

(˗0.01%) 

0.0007 

(0.02%) 

0.0087 

(0.06%) 

CLT 
˗0.0001 

(0.00%) 

0.0003 

(0.03%) 

0.0021 

(0.12%) 

0.0060 

(0.26%) 

0.0000 

(0.00%) 

˗0.0001 

(0.00%) 

0.0018 

(0.05%) 

0.0099 

(0.07%) 

CMH 
˗0.0002 

(˗0.01%) 

0.0001 

(0.03%) 

0.0018 

(0.08%) 

0.0058 

(0.15%) 

˗0.0001 

(˗0.03%) 

˗0.0001 

(˗0.01%) 

0.0012 

(0.03%) 

0.0085 

(0.06%) 

COS 
0.0000 

(0.00%) 

0.0001 

(0.03%) 

0.0003 

(0.12%) 

0.0010 

(0.34%) 

0.0001 

(0.02%) 

0.0000 

(0.00%) 

0.0005 

(0.09%) 

0.0020 

(0.05%) 

CRP 
˗0.0001 

(˗0.01%) 

0.0000 

(0.02%) 

0.0004 

(0.08%) 

0.0011 

(0.22%) 

0.0000 

(˗0.01%) 

0.0000 

(˗0.01%) 

0.0005 

(0.04%) 

0.0020 

(0.04%) 

CVG 
˗0.0002 

(˗0.01%) 

0.0006 

(0.11%) 

0.0015 

(0.07%) 

0.0046 

(0.14%) 

˗0.0001 

(˗0.05%) 

˗0.0001 

(˗0.01%) 

0.0015 

(0.04%) 

0.0077 

(0.05%) 

DAB 
0.0000 

(0.00%) 

0.0001 

(0.02%) 

0.0002 

(0.05%) 

0.0003 

(0.26%) 

0.0001 

(0.03%) 

0.0000 

(0.00%) 

0.0012 

(0.06%) 

0.0018 

(0.04%) 

DAL 
˗0.0002 

(0.00%) 

0.0011 

(0.20%) 

0.0016 

(0.12%) 

0.0038 

(0.21%) 

˗0.0001 

(˗0.06%) 

0.0000 

(0.00%) 

0.0016 

(0.07%) 

0.0078 

(0.06%) 

DAY 
˗0.0002 

(˗0.01%) 

0.0003 

(0.07%) 

0.0023 

(0.10%) 

0.0073 

(0.17%) 

˗0.0001 

(˗0.04%) 

˗0.0001 

(˗0.01%) 

0.0013 

(0.04%) 

0.0109 

(0.07%) 

DCA 
˗0.0002 

(0.00%) 

0.0009 

(0.12%) 

0.0010 

(0.05%) 

0.0034 

(0.12%) 

˗0.0004 

(˗0.08%) 

˗0.0001 

(0.00%) 

0.0005 

(0.01%) 

0.0051 

(0.04%) 

DEN 
0.0000 

(0.00%) 

0.0005 

(0.11%) 

0.0011 

(0.25%) 

0.0027 

(0.39%) 

0.0000 

(0.01%) 

0.0000 

(0.00%) 

0.0007 

(0.12%) 

0.0050 

(0.09%) 

DFW 
˗0.0002 

(0.00%) 

0.0012 

(0.21%) 

0.0017 

(0.13%) 

0.0038 

(0.21%) 

˗0.0001 

(˗0.06%) 

0.0000 

(0.00%) 

0.0017 

(0.08%) 

0.0081 

(0.07%) 

DSM 
˗0.0002 

(˗0.01%) 

0.0000 

(0.01%) 

0.0013 

(0.09%) 

0.0037 

(0.13%) 

0.0000 

(˗0.02%) 

0.0000 

(˗0.01%) 

0.0006 

(0.03%) 

0.0053 

(0.05%) 

DTW 
˗0.0002 

(˗0.01%) 

0.0009 

(0.15%) 

0.0015 

(0.07%) 

0.0048 

(0.13%) 

˗0.0002 

(˗0.06%) 

˗0.0001 

(˗0.01%) 

0.0006 

(0.02%) 

0.0074 

(0.05%) 
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Airport 
A25  

(µg m-3) 

AEC  

(µg m-3) 

ANH4  

(µg m-3) 

ANO3  

(µg m-3) 

SOA  

(µg m-3) 

POA  

(µg m-3) 

ASO4  

(µg m-3) 

PM2.5*  

(µg m-3) 

ELP 
0.0000 

(0.00%) 

0.0001 

(0.04%) 

0.0004 

(0.10%) 

0.0010 

(0.20%) 

0.0000 

(0.01%) 

0.0000 

(0.00%) 

0.0005 

(0.06%) 

0.0020 

(0.04%) 

EUG 
0.0000 

(0.00%) 

0.0000 

(0.01%) 

0.0003 

(0.14%) 

0.0010 

(0.25%) 

0.0003 

(0.01%) 

0.0000 

(0.00%) 

0.0002 

(0.04%) 

0.0018 

(0.02%) 

EWR 
˗0.0001 

(0.00%) 

0.0013 

(0.14%) 

0.0011 

(0.06%) 

0.0038 

(0.12%) 

˗0.0007 

(˗0.15%) 

˗0.0001 

(0.00%) 

0.0002 

(0.01%) 

0.0055 

(0.04%) 

FAT 
˗0.0001 

(0.00%) 

0.0000 

(0.01%) 

0.0020 

(0.26%) 

0.0057 

(0.31%) 

0.0001 

(0.02%) 

˗0.0001 

(0.00%) 

0.0008 

(0.14%) 

0.0084 

(0.11%) 

FLL 
0.0000 

(0.00%) 

0.0005 

(0.12%) 

0.0003 

(0.07%) 

0.0004 

(0.47%) 

˗0.0001 

(˗0.04%) 

0.0000 

(0.00%) 

0.0011 

(0.09%) 

0.0021 

(0.05%) 

FNT 
˗0.0002 

(˗0.01%) 

0.0002 

(0.05%) 

0.0013 

(0.07%) 

0.0045 

(0.13%) 

˗0.0001 

(˗0.03%) 

0.0000 

(˗0.01%) 

0.0004 

(0.02%) 

0.0061 

(0.05%) 

GFK 
˗0.0001 

(0.00%) 

0.0000 

(˗0.02%) 

0.0003 

(0.05%) 

0.0011 

(0.07%) 

0.0000 

(˗0.01%) 

0.0000 

(˗0.01%) 

0.0001 

(0.01%) 

0.0013 

(0.02%) 

GRR 
˗0.0002 

(˗0.01%) 

0.0001 

(0.02%) 

0.0017 

(0.09%) 

0.0056 

(0.16%) 

˗0.0001 

(˗0.03%) 

0.0000 

(˗0.01%) 

0.0005 

(0.02%) 

0.0075 

(0.06%) 

GSO 
˗0.0001 

(˗0.01%) 

0.0000 

(0.01%) 

0.0018 

(0.10%) 

0.0053 

(0.22%) 

0.0000 

(0.00%) 

˗0.0001 

(0.00%) 

0.0013 

(0.04%) 

0.0082 

(0.07%) 

HOU 
˗0.0001 

(0.00%) 

0.0005 

(0.08%) 

0.0009 

(0.08%) 

0.0024 

(0.20%) 

˗0.0002 

(˗0.05%) 

0.0000 

(0.00%) 

0.0009 

(0.04%) 

0.0044 

(0.04%) 

HPN 
˗0.0001 

(0.00%) 

0.0006 

(0.08%) 

0.0008 

(0.05%) 

0.0033 

(0.12%) 

˗0.0005 

(˗0.11%) 

˗0.0001 

(0.00%) 

0.0002 

(0.01%) 

0.0044 

(0.03%) 

IAD 
˗0.0002 

(0.00%) 

0.0008 

(0.11%) 

0.0010 

(0.06%) 

0.0036 

(0.12%) 

˗0.0003 

(˗0.07%) 

˗0.0001 

(0.00%) 

0.0006 

(0.02%) 

0.0054 

(0.04%) 

IAH 
˗0.0001 

(0.00%) 

0.0005 

(0.09%) 

0.0009 

(0.08%) 

0.0023 

(0.19%) 

˗0.0002 

(˗0.03%) 

0.0000 

(0.00%) 

0.0010 

(0.05%) 

0.0044 

(0.04%) 

ICT 
˗0.0002 

(˗0.01%) 

0.0000 

(0.00%) 

0.0011 

(0.10%) 

0.0032 

(0.16%) 

0.0000 

(˗0.01%) 

˗0.0001 

(0.00%) 

0.0006 

(0.04%) 

0.0047 

(0.04%) 

IND 
˗0.0003 

(˗0.01%) 

0.0003 

(0.07%) 

0.0018 

(0.08%) 

0.0058 

(0.15%) 

˗0.0001 

(˗0.05%) 

˗0.0001 

(˗0.01%) 

0.0010 

(0.03%) 

0.0085 

(0.05%) 
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Airport 
A25  

(µg m-3) 

AEC  

(µg m-3) 

ANH4  

(µg m-3) 

ANO3  

(µg m-3) 

SOA  

(µg m-3) 

POA  

(µg m-3) 

ASO4  

(µg m-3) 

PM2.5*  

(µg m-3) 

ISP 
˗0.0001 

(0.00%) 

0.0012 

(0.17%) 

0.0006 

(0.04%) 

0.0024 

(0.10%) 

˗0.0006 

(˗0.16%) 

0.0000 

(0.00%) 

0.0002 

(0.01%) 

0.0035 

(0.03%) 

JAX 
˗0.0001 

(0.00%) 

0.0001 

(0.02%) 

0.0004 

(0.06%) 

0.0008 

(0.22%) 

0.0007 

(0.06%) 

0.0000 

(0.00%) 

0.0012 

(0.05%) 

0.0031 

(0.04%) 

JFK 
˗0.0001 

(0.00%) 

0.0014 

(0.17%) 

0.0009 

(0.06%) 

0.0033 

(0.12%) 

˗0.0007 

(˗0.17%) 

˗0.0001 

(0.00%) 

0.0002 

(0.01%) 

0.0049 

(0.04%) 

LAN 
˗0.0002 

(˗0.01%) 

0.0001 

(0.03%) 

0.0018 

(0.09%) 

0.0060 

(0.16%) 

˗0.0001 

(˗0.03%) 

0.0000 

(˗0.01%) 

0.0003 

(0.01%) 

0.0079 

(0.06%) 

LAS 
0.0000 

(0.00%) 

0.0005 

(0.16%) 

0.0005 

(0.20%) 

0.0005 

(0.27%) 

0.0000 

(˗0.01%) 

0.0000 

(0.00%) 

0.0013 

(0.22%) 

0.0027 

(0.08%) 

LAX 
˗0.0001 

(˗0.01%) 

0.0012 

(0.14%) 

0.0027 

(0.31%) 

0.0076 

(0.44%) 

˗0.0003 

(˗0.09%) 

˗0.0001 

(0.00%) 

0.0017 

(0.16%) 

0.0128 

(0.15%) 

LGA 
˗0.0001 

(0.00%) 

0.0014 

(0.16%) 

0.0009 

(0.05%) 

0.0035 

(0.12%) 

˗0.0007 

(˗0.17%) 

˗0.0001 

(0.00%) 

0.0002 

(0.01%) 

0.0051 

(0.04%) 

LGB 
˗0.0002 

(˗0.01%) 

0.0014 

(0.12%) 

0.0040 

(0.36%) 

0.0116 

(0.49%) 

˗0.0005 

(˗0.11%) 

˗0.0001 

(˗0.01%) 

0.0019 

(0.16%) 

0.0181 

(0.16%) 

LIT 
˗0.0002 

(˗0.01%) 

0.0000 

(0.01%) 

0.0013 

(0.10%) 

0.0033 

(0.18%) 

0.0000 

(0.00%) 

0.0000 

(˗0.01%) 

0.0014 

(0.06%) 

0.0059 

(0.06%) 

MCI 
˗0.0002 

(0.00%) 

0.0002 

(0.04%) 

0.0012 

(0.08%) 

0.0036 

(0.13%) 

˗0.0001 

(˗0.03%) 

0.0000 

(˗0.01%) 

0.0005 

(0.03%) 

0.0051 

(0.04%) 

MCO 
˗0.0001 

(0.00%) 

0.0003 

(0.06%) 

0.0007 

(0.10%) 

0.0013 

(0.32%) 

0.0001 

(0.01%) 

0.0000 

(0.00%) 

0.0014 

(0.08%) 

0.0036 

(0.05%) 

MDW 
˗0.0002 

(˗0.01%) 

0.0009 

(0.14%) 

0.0011 

(0.06%) 

0.0037 

(0.11%) 

˗0.0003 

(˗0.11%) 

0.0000 

(0.00%) 

0.0003 

(0.01%) 

0.0055 

(0.04%) 

MEM 
˗0.0002 

(˗0.01%) 

0.0007 

(0.15%) 

0.0012 

(0.08%) 

0.0033 

(0.16%) 

˗0.0001 

(˗0.03%) 

0.0000 

(0.00%) 

0.0015 

(0.06%) 

0.0064 

(0.06%) 

MIA 
0.0000 

(0.00%) 

0.0005 

(0.15%) 

0.0002 

(0.07%) 

0.0003 

(0.46%) 

˗0.0001 

(˗0.07%) 

0.0000 

(0.00%) 

0.0010 

(0.08%) 

0.0020 

(0.05%) 

MKE 
˗0.0002 

(˗0.01%) 

0.0003 

(0.07%) 

0.0009 

(0.06%) 

0.0035 

(0.12%) 

˗0.0001 

(˗0.05%) 

0.0000 

(0.00%) 

0.0001 

(0.00%) 

0.0045 

(0.04%) 
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Airport 
A25  

(µg m-3) 

AEC  

(µg m-3) 

ANH4  

(µg m-3) 

ANO3  

(µg m-3) 

SOA  

(µg m-3) 

POA  

(µg m-3) 

ASO4  

(µg m-3) 

PM2.5*  

(µg m-3) 

MLB 
0.0000 

(0.00%) 

0.0001 

(0.03%) 

0.0003 

(0.07%) 

0.0006 

(0.38%) 

0.0001 

(0.03%) 

0.0000 

(0.00%) 

0.0012 

(0.07%) 

0.0022 

(0.05%) 

MSN 
˗0.0002 

(˗0.01%) 

0.0001 

(0.03%) 

0.0018 

(0.10%) 

0.0059 

(0.16%) 

˗0.0001 

(˗0.04%) 

0.0000 

(˗0.01%) 

0.0003 

(0.02%) 

0.0077 

(0.06%) 

MSP 
˗0.0002 

(0.00%) 

0.0007 

(0.12%) 

0.0010 

(0.07%) 

0.0033 

(0.12%) 

˗0.0001 

(˗0.05%) 

0.0000 

(0.00%) 

0.0002 

(0.01%) 

0.0049 

(0.04%) 

MSY 
˗0.0001 

(0.00%) 

0.0001 

(0.03%) 

0.0003 

(0.04%) 

0.0005 

(0.12%) 

0.0000 

(0.00%) 

0.0000 

(0.00%) 

0.0011 

(0.04%) 

0.0019 

(0.03%) 

OAK 
0.0000 

(0.00%) 

0.0006 

(0.09%) 

0.0011 

(0.16%) 

0.0033 

(0.19%) 

˗0.0002 

(˗0.03%) 

0.0000 

(0.00%) 

0.0006 

(0.08%) 

0.0053 

(0.07%) 

OKC 
˗0.0002 

(˗0.01%) 

0.0001 

(0.03%) 

0.0011 

(0.11%) 

0.0026 

(0.16%) 

0.0000 

(˗0.01%) 

0.0000 

(˗0.01%) 

0.0010 

(0.07%) 

0.0045 

(0.05%) 

OMA 
˗0.0002 

(˗0.01%) 

0.0000 

(0.01%) 

0.0011 

(0.08%) 

0.0034 

(0.14%) 

0.0000 

(˗0.02%) 

0.0000 

(˗0.01%) 

0.0003 

(0.02%) 

0.0046 

(0.05%) 

ONT 
˗0.0002 

(˗0.01%) 

0.0008 

(0.07%) 

0.0043 

(0.39%) 

0.0129 

(0.52%) 

˗0.0004 

(˗0.08%) 

˗0.0002 

(˗0.01%) 

0.0018 

(0.16%) 

0.0191 

(0.16%) 

ORD 
˗0.0002 

(˗0.01%) 

0.0011 

(0.16%) 

0.0011 

(0.06%) 

0.0035 

(0.11%) 

˗0.0003 

(˗0.11%) 

0.0000 

(0.00%) 

0.0003 

(0.01%) 

0.0053 

(0.04%) 

ORF 
˗0.0001 

(0.00%) 

0.0001 

(0.03%) 

0.0006 

(0.05%) 

0.0017 

(0.11%) 

˗0.0001 

(˗0.02%) 

0.0000 

(0.00%) 

0.0007 

(0.02%) 

0.0030 

(0.03%) 

PBI 
0.0000 

(0.00%) 

0.0002 

(0.04%) 

0.0002 

(0.07%) 

0.0003 

(0.51%) 

0.0000 

(0.03%) 

0.0000 

(0.00%) 

0.0011 

(0.09%) 

0.0018 

(0.04%) 

PDX 
0.0000 

(0.00%) 

0.0001 

(0.02%) 

0.0005 

(0.11%) 

0.0013 

(0.15%) 

0.0000 

(0.00%) 

0.0000 

(0.00%) 

0.0003 

(0.06%) 

0.0021 

(0.02%) 

PHF 
˗0.0001 

(0.00%) 

0.0001 

(0.03%) 

0.0008 

(0.06%) 

0.0022 

(0.12%) 

˗0.0001 

(˗0.01%) 

0.0000 

(0.00%) 

0.0007 

(0.03%) 

0.0037 

(0.04%) 

PHL 
˗0.0002 

(˗0.01%) 

0.0005 

(0.07%) 

0.0018 

(0.08%) 

0.0062 

(0.16%) 

˗0.0003 

(˗0.07%) 

˗0.0001 

(˗0.01%) 

0.0003 

(0.01%) 

0.0081 

(0.05%) 

PHX 
˗0.0001 

(0.00%) 

0.0006 

(0.08%) 

0.0022 

(0.48%) 

0.0060 

(0.75%) 

˗0.0002 

(˗0.05%) 

0.0000 

(0.00%) 

0.0013 

(0.21%) 

0.0099 

(0.16%) 
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Airport 
A25  

(µg m-3) 

AEC  

(µg m-3) 

ANH4  

(µg m-3) 

ANO3  

(µg m-3) 

SOA  

(µg m-3) 

POA  

(µg m-3) 

ASO4  

(µg m-3) 

PM2.5*  

(µg m-3) 

PIT 
˗0.0002 

(˗0.01%) 

0.0002 

(0.04%) 

0.0011 

(0.06%) 

0.0040 

(0.13%) 

˗0.0001 

(˗0.04%) 

˗0.0001 

(˗0.01%) 

0.0005 

(0.01%) 

0.0054 

(0.04%) 

PVD 
˗0.0001 

(0.00%) 

0.0002 

(0.04%) 

0.0008 

(0.06%) 

0.0026 

(0.12%) 

˗0.0002 

(˗0.05%) 

0.0000 

(0.00%) 

0.0004 

(0.02%) 

0.0036 

(0.03%) 

RDU 
˗0.0001 

(˗0.01%) 

0.0001 

(0.01%) 

0.0019 

(0.11%) 

0.0059 

(0.23%) 

0.0000 

(0.00%) 

˗0.0001 

(˗0.01%) 

0.0010 

(0.04%) 

0.0088 

(0.07%) 

RIC 
˗0.0001 

(˗0.01%) 

0.0001 

(0.03%) 

0.0011 

(0.07%) 

0.0033 

(0.14%) 

˗0.0001 

(˗0.01%) 

0.0000 

(˗0.01%) 

0.0008 

(0.03%) 

0.0051 

(0.04%) 

RNO 
0.0000 

(0.00%) 

0.0001 

(0.04%) 

0.0005 

(0.19%) 

0.0010 

(0.28%) 

0.0006 

(0.05%) 

0.0000 

(0.00%) 

0.0006 

(0.15%) 

0.0028 

(0.06%) 

ROC 
˗0.0002 

(˗0.01%) 

0.0001 

(0.02%) 

0.0010 

(0.07%) 

0.0035 

(0.14%) 

˗0.0001 

(˗0.02%) 

˗0.0001 

(˗0.01%) 

0.0005 

(0.02%) 

0.0048 

(0.05%) 

RSW 
0.0000 

(0.00%) 

0.0002 

(0.04%) 

0.0004 

(0.09%) 

0.0005 

(0.42%) 

0.0000 

(0.01%) 

0.0000 

(0.00%) 

0.0012 

(0.08%) 

0.0022 

(0.04%) 

SAN 
˗0.0001 

(˗0.01%) 

0.0004 

(0.07%) 

0.0020 

(0.30%) 

0.0052 

(0.44%) 

˗0.0001 

(˗0.04%) 

˗0.0001 

(˗0.01%) 

0.0017 

(0.17%) 

0.0090 

(0.13%) 

SAT 
˗0.0001 

(0.00%) 

0.0001 

(0.05%) 

0.0010 

(0.11%) 

0.0026 

(0.23%) 

0.0000 

(˗0.02%) 

0.0000 

(0.00%) 

0.0008 

(0.05%) 

0.0044 

(0.06%) 

SBA 
˗0.0001 

(˗0.01%) 

0.0000 

(0.00%) 

0.0007 

(0.24%) 

0.0017 

(0.36%) 

0.0000 

(0.00%) 

0.0000 

(˗0.01%) 

0.0007 

(0.13%) 

0.0031 

(0.08%) 

SDF 
˗0.0002 

(˗0.01%) 

0.0003 

(0.04%) 

0.0013 

(0.06%) 

0.0040 

(0.12%) 

˗0.0001 

(˗0.04%) 

˗0.0001 

(˗0.01%) 

0.0014 

(0.04%) 

0.0066 

(0.05%) 

SEA 
0.0000 

(0.00%) 

0.0003 

(0.05%) 

0.0004 

(0.09%) 

0.0008 

(0.09%) 

˗0.0006 

(˗0.03%) 

0.0000 

(0.00%) 

0.0004 

(0.08%) 

0.0013 

(0.02%) 

SFO 
0.0000 

(0.00%) 

0.0006 

(0.09%) 

0.0011 

(0.16%) 

0.0033 

(0.19%) 

˗0.0002 

(˗0.03%) 

0.0000 

(0.00%) 

0.0006 

(0.08%) 

0.0053 

(0.07%) 

SJC 
0.0000 

(0.00%) 

0.0006 

(0.09%) 

0.0011 

(0.15%) 

0.0030 

(0.18%) 

˗0.0002 

(˗0.04%) 

0.0000 

(0.00%) 

0.0006 

(0.09%) 

0.0050 

(0.06%) 

SLC 
0.0000 

(0.00%) 

0.0004 

(0.11%) 

0.0012 

(0.24%) 

0.0032 

(0.30%) 

0.0000 

(0.00%) 

0.0000 

(0.00%) 

0.0008 

(0.15%) 

0.0056 

(0.10%) 
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Airport 
A25  

(µg m-3) 

AEC  

(µg m-3) 

ANH4  

(µg m-3) 

ANO3  

(µg m-3) 

SOA  

(µg m-3) 

POA  

(µg m-3) 

ASO4  

(µg m-3) 

PM2.5*  

(µg m-3) 

SMF 
0.0000 

(0.00%) 

0.0001 

(0.02%) 

0.0016 

(0.22%) 

0.0047 

(0.27%) 

0.0000 

(0.00%) 

0.0000 

(0.00%) 

0.0006 

(0.10%) 

0.0069 

(0.07%) 

SNA 
˗0.0001 

(˗0.01%) 

0.0014 

(0.14%) 

0.0033 

(0.34%) 

0.0094 

(0.46%) 

˗0.0005 

(˗0.13%) 

˗0.0001 

(˗0.01%) 

0.0020 

(0.18%) 

0.0155 

(0.16%) 

STL 
˗0.0002 

(0.00%) 

0.0002 

(0.05%) 

0.0011 

(0.07%) 

0.0032 

(0.12%) 

˗0.0001 

(˗0.03%) 

0.0000 

(0.00%) 

0.0010 

(0.04%) 

0.0052 

(0.04%) 

SWF 
˗0.0001 

(0.00%) 

0.0003 

(0.05%) 

0.0006 

(0.04%) 

0.0028 

(0.11%) 

˗0.0003 

(˗0.08%) 

0.0000 

(0.00%) 

0.0003 

(0.02%) 

0.0035 

(0.03%) 

SYR 
˗0.0002 

(˗0.01%) 

0.0001 

(0.04%) 

0.0011 

(0.08%) 

0.0039 

(0.15%) 

˗0.0001 

(˗0.02%) 

˗0.0001 

(˗0.01%) 

0.0004 

(0.02%) 

0.0053 

(0.05%) 

TPA 
˗0.0001 

(0.00%) 

0.0002 

(0.05%) 

0.0007 

(0.09%) 

0.0016 

(0.36%) 

0.0000 

(0.00%) 

0.0000 

(0.00%) 

0.0013 

(0.06%) 

0.0037 

(0.05%) 

TUL 
˗0.0002 

(0.00%) 

0.0001 

(0.01%) 

0.0011 

(0.09%) 

0.0029 

(0.15%) 

0.0000 

(˗0.01%) 

0.0000 

(0.00%) 

0.0008 

(0.05%) 

0.0046 

(0.04%) 

TUS 
0.0000 

(0.00%) 

0.0001 

(0.05%) 

0.0006 

(0.20%) 

0.0010 

(0.36%) 

0.0000 

(0.01%) 

0.0000 

(0.00%) 

0.0007 

(0.12%) 

0.0024 

(0.07%) 

TVC 
˗0.0001 

(˗0.01%) 

0.0000 

(0.02%) 

0.0003 

(0.03%) 

0.0009 

(0.08%) 

0.0000 

(0.00%) 

0.0000 

(˗0.01%) 

0.0005 

(0.03%) 

0.0016 

(0.03%) 

TYS 
˗0.0001 

(0.00%) 

0.0001 

(0.02%) 

0.0006 

(0.05%) 

0.0018 

(0.13%) 

0.0001 

(0.01%) 

0.0000 

(0.00%) 

0.0014 

(0.04%) 

0.0038 

(0.04%) 

 

*PM2.5 does not equal the sum of species shown in chart due to a scaling factor (1.167) applied to POA when computing PM2.5. 
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Table 8. Absolute and percent increases due to 2025 aircraft emissions in 2005 at the 9 grid cells surrounding the airport. 

Airport 
A25  

(µg m-3) 

AEC  

(µg m-3) 

ANH4  

(µg m-3) 

ANO3  

(µg m-3) 

SOA  

(µg m-3) 

POA  

(µg m-3) 

ASO4  

(µg m-3) 

PM2.5*  

(µg m-3) 

ABQ 
0.0000 

(0.00%) 

0.0003 

(0.13%) 

0.0007 

(0.24%) 

0.0012 

(0.42%) 

0.0002 

(0.04%) 

0.0000 

(0.00%) 

0.0012 

(0.21%) 

0.0036 

(0.06%) 

ALB 
˗0.0002 

(˗0.01%) 

0.0001 

(0.04%) 

0.0017 

(0.14%) 

0.0056 

(0.25%) 

˗0.0003 

(˗0.05%) 

˗0.0001 

(˗0.01%) 

0.0008 

(0.04%) 

0.0076 

(0.08%) 

ATL 
˗0.0003 

(˗0.01%) 

0.0022 

(0.28%) 

0.0022 

(0.14%) 

0.0054 

(0.31%) 

˗0.0014 

(˗0.10%) 

˗0.0001 

(˗0.01%) 

0.0048 

(0.14%) 

0.0127 

(0.09%) 

AUS 
˗0.0003 

(˗0.01%) 

0.0004 

(0.12%) 

0.0031 

(0.29%) 

0.0084 

(0.57%) 

˗0.0001 

(˗0.04%) 

˗0.0001 

(˗0.01%) 

0.0022 

(0.12%) 

0.0136 

(0.16%) 

BDL 
˗0.0002 

(˗0.01%) 

0.0007 

(0.13%) 

0.0013 

(0.10%) 

0.0048 

(0.20%) 

˗0.0008 

(˗0.16%) 

˗0.0001 

(˗0.01%) 

0.0006 

(0.03%) 

0.0062 

(0.06%) 

BFL 
˗0.0003 

(˗0.02%) 

˗0.0001 

(˗0.02%) 

0.0045 

(0.76%) 

0.0127 

(0.92%) 

0.0000 

(0.01%) 

˗0.0002 

(˗0.02%) 

0.0022 

(0.41%) 

0.0189 

(0.31%) 

BHM 
˗0.0003 

(˗0.01%) 

0.0002 

(0.03%) 

0.0020 

(0.15%) 

0.0049 

(0.36%) 

0.0004 

(0.03%) 

˗0.0001 

(˗0.01%) 

0.0037 

(0.11%) 

0.0107 

(0.09%) 

BNA 
˗0.0003 

(˗0.01%) 

0.0002 

(0.04%) 

0.0020 

(0.12%) 

0.0058 

(0.25%) 

˗0.0001 

(˗0.04%) 

˗0.0001 

(˗0.01%) 

0.0024 

(0.08%) 

0.0099 

(0.09%) 

BOI 
˗0.0001 

(0.00%) 

0.0002 

(0.04%) 

0.0023 

(0.51%) 

0.0066 

(0.71%) 

0.0008 

(0.06%) 

0.0000 

(0.00%) 

0.0009 

(0.20%) 

0.0106 

(0.13%) 

BOS 
˗0.0002 

(˗0.01%) 

0.0009 

(0.12%) 

0.0011 

(0.10%) 

0.0046 

(0.22%) 

˗0.0008 

(˗0.16%) 

˗0.0001 

(0.00%) 

0.0004 

(0.02%) 

0.0060 

(0.05%) 

BTR 
˗0.0002 

(˗0.01%) 

˗0.0001 

(˗0.02%) 

0.0023 

(0.18%) 

0.0059 

(0.41%) 

0.0002 

(0.03%) 

˗0.0001 

(˗0.01%) 

0.0021 

(0.08%) 

0.0102 

(0.10%) 

BUF 
˗0.0003 

(˗0.01%) 

0.0002 

(0.06%) 

0.0027 

(0.15%) 

0.0091 

(0.29%) 

˗0.0002 

(˗0.06%) 

˗0.0001 

(˗0.01%) 

0.0011 

(0.04%) 

0.0123 

(0.10%) 

BUR 
˗0.0004 

(˗0.02%) 

0.0021 

(0.22%) 

0.0072 

(0.74%) 

0.0208 

(0.99%) 

˗0.0008 

(˗0.19%) 

˗0.0003 

(˗0.02%) 

0.0035 

(0.34%) 

0.0321 

(0.32%) 

BWI 
˗0.0004 

(˗0.01%) 

0.0010 

(0.14%) 

0.0032 

(0.16%) 

0.0113 

(0.34%) 

˗0.0007 

(˗0.16%) 

˗0.0001 

(˗0.01%) 

0.0010 

(0.03%) 

0.0152 

(0.10%) 
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Airport 
A25  

(µg m-3) 

AEC  

(µg m-3) 

ANH4  

(µg m-3) 

ANO3  

(µg m-3) 

SOA  

(µg m-3) 

POA  

(µg m-3) 

ASO4  

(µg m-3) 

PM2.5*  

(µg m-3) 

CHS 
˗0.0002 

(˗0.01%) 

0.0001 

(0.02%) 

0.0008 

(0.09%) 

0.0024 

(0.35%) 

0.0003 

(0.03%) 

˗0.0001 

(˗0.01%) 

0.0022 

(0.08%) 

0.0053 

(0.07%) 

CLE 
˗0.0005 

(˗0.02%) 

0.0002 

(0.05%) 

0.0039 

(0.17%) 

0.0123 

(0.31%) 

˗0.0002 

(˗0.08%) 

˗0.0001 

(˗0.02%) 

0.0016 

(0.05%) 

0.0171 

(0.12%) 

CLT 
˗0.0003 

(˗0.01%) 

0.0006 

(0.07%) 

0.0041 

(0.24%) 

0.0121 

(0.52%) 

0.0000 

(0.00%) 

˗0.0001 

(˗0.01%) 

0.0033 

(0.10%) 

0.0198 

(0.15%) 

CMH 
˗0.0005 

(˗0.01%) 

0.0002 

(0.04%) 

0.0034 

(0.16%) 

0.0109 

(0.29%) 

˗0.0002 

(˗0.07%) 

˗0.0001 

(˗0.01%) 

0.0023 

(0.07%) 

0.0161 

(0.11%) 

COS 
0.0000 

(0.00%) 

0.0001 

(0.03%) 

0.0008 

(0.30%) 

0.0022 

(0.79%) 

0.0003 

(0.06%) 

0.0000 

(0.00%) 

0.0012 

(0.21%) 

0.0046 

(0.11%) 

CRP 
˗0.0002 

(˗0.01%) 

0.0000 

(0.02%) 

0.0010 

(0.17%) 

0.0025 

(0.50%) 

0.0000 

(˗0.04%) 

0.0000 

(˗0.02%) 

0.0011 

(0.08%) 

0.0043 

(0.10%) 

CVG 
˗0.0005 

(˗0.01%) 

0.0006 

(0.12%) 

0.0028 

(0.13%) 

0.0090 

(0.27%) 

˗0.0003 

(˗0.12%) 

˗0.0001 

(˗0.01%) 

0.0027 

(0.07%) 

0.0143 

(0.10%) 

DAB 
˗0.0001 

(˗0.01%) 

0.0001 

(0.03%) 

0.0004 

(0.10%) 

0.0007 

(0.59%) 

0.0002 

(0.06%) 

0.0000 

(˗0.01%) 

0.0024 

(0.13%) 

0.0037 

(0.07%) 

DAL 
˗0.0004 

(˗0.01%) 

0.0012 

(0.22%) 

0.0034 

(0.25%) 

0.0082 

(0.45%) 

˗0.0002 

(˗0.10%) 

˗0.0001 

(˗0.01%) 

0.0031 

(0.14%) 

0.0152 

(0.12%) 

DAY 
˗0.0005 

(˗0.01%) 

0.0003 

(0.06%) 

0.0045 

(0.19%) 

0.0140 

(0.33%) 

˗0.0002 

(˗0.10%) 

˗0.0001 

(˗0.01%) 

0.0026 

(0.08%) 

0.0205 

(0.13%) 

DCA 
˗0.0004 

(˗0.01%) 

0.0018 

(0.24%) 

0.0019 

(0.10%) 

0.0071 

(0.25%) 

˗0.0010 

(˗0.20%) 

˗0.0001 

(˗0.01%) 

0.0011 

(0.03%) 

0.0104 

(0.07%) 

DEN 
˗0.0001 

(0.00%) 

0.0011 

(0.26%) 

0.0024 

(0.58%) 

0.0063 

(0.90%) 

0.0000 

(0.00%) 

0.0000 

(0.00%) 

0.0016 

(0.27%) 

0.0114 

(0.21%) 

DFW 
˗0.0004 

(˗0.01%) 

0.0014 

(0.23%) 

0.0035 

(0.26%) 

0.0083 

(0.45%) 

˗0.0002 

(˗0.12%) 

˗0.0001 

(˗0.01%) 

0.0033 

(0.16%) 

0.0157 

(0.13%) 

DSM 
˗0.0004 

(˗0.02%) 

0.0000 

(0.00%) 

0.0027 

(0.19%) 

0.0080 

(0.28%) 

˗0.0001 

(˗0.05%) 

˗0.0001 

(˗0.02%) 

0.0011 

(0.07%) 

0.0112 

(0.12%) 

DTW 
˗0.0005 

(˗0.01%) 

0.0010 

(0.16%) 

0.0028 

(0.13%) 

0.0089 

(0.24%) 

˗0.0003 

(˗0.11%) 

˗0.0001 

(˗0.01%) 

0.0012 

(0.04%) 

0.0130 

(0.09%) 
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Airport 
A25  

(µg m-3) 

AEC  

(µg m-3) 

ANH4  

(µg m-3) 

ANO3  

(µg m-3) 

SOA  

(µg m-3) 

POA  

(µg m-3) 

ASO4  

(µg m-3) 

PM2.5*  

(µg m-3) 

ELP 
0.0000 

(0.00%) 

0.0001 

(0.06%) 

0.0011 

(0.24%) 

0.0025 

(0.51%) 

0.0001 

(0.03%) 

0.0000 

(0.00%) 

0.0011 

(0.14%) 

0.0049 

(0.10%) 

EUG 
0.0000 

(0.00%) 

0.0000 

(0.01%) 

0.0009 

(0.37%) 

0.0025 

(0.64%) 

0.0006 

(0.03%) 

0.0000 

(0.00%) 

0.0004 

(0.11%) 

0.0045 

(0.06%) 

EWR 
˗0.0003 

(˗0.01%) 

0.0019 

(0.22%) 

0.0021 

(0.12%) 

0.0078 

(0.25%) 

˗0.0017 

(˗0.38%) 

˗0.0001 

(˗0.01%) 

0.0001 

(0.00%) 

0.0098 

(0.07%) 

FAT 
˗0.0002 

(˗0.01%) 

0.0000 

(0.00%) 

0.0050 

(0.67%) 

0.0147 

(0.79%) 

0.0003 

(0.04%) 

˗0.0001 

(˗0.01%) 

0.0020 

(0.34%) 

0.0215 

(0.27%) 

FLL 
0.0000 

(0.00%) 

0.0011 

(0.23%) 

0.0006 

(0.15%) 

0.0007 

(0.95%) 

˗0.0001 

(˗0.08%) 

0.0000 

(0.00%) 

0.0022 

(0.18%) 

0.0044 

(0.10%) 

FNT 
˗0.0004 

(˗0.01%) 

0.0002 

(0.04%) 

0.0025 

(0.13%) 

0.0082 

(0.25%) 

˗0.0002 

(˗0.07%) 

˗0.0001 

(˗0.01%) 

0.0009 

(0.04%) 

0.0111 

(0.09%) 

GFK 
˗0.0002 

(˗0.01%) 

0.0002 

(0.08%) 

0.0011 

(0.16%) 

0.0034 

(0.22%) 

0.0000 

(˗0.02%) 

0.0000 

(˗0.01%) 

0.0003 

(0.05%) 

0.0046 

(0.08%) 

GRR 
˗0.0004 

(˗0.01%) 

0.0001 

(0.02%) 

0.0032 

(0.17%) 

0.0105 

(0.30%) 

˗0.0002 

(˗0.06%) 

˗0.0001 

(˗0.01%) 

0.0008 

(0.03%) 

0.0139 

(0.12%) 

GSO 
˗0.0003 

(˗0.01%) 

0.0001 

(0.01%) 

0.0036 

(0.21%) 

0.0109 

(0.44%) 

0.0000 

(0.00%) 

˗0.0001 

(˗0.01%) 

0.0026 

(0.08%) 

0.0168 

(0.14%) 

HOU 
˗0.0002 

(0.00%) 

0.0011 

(0.18%) 

0.0020 

(0.18%) 

0.0052 

(0.42%) 

˗0.0006 

(˗0.13%) 

˗0.0001 

(0.00%) 

0.0019 

(0.09%) 

0.0094 

(0.08%) 

HPN 
˗0.0003 

(˗0.01%) 

0.0009 

(0.12%) 

0.0018 

(0.11%) 

0.0069 

(0.24%) 

˗0.0011 

(˗0.26%) 

˗0.0001 

(˗0.01%) 

0.0002 

(0.01%) 

0.0083 

(0.07%) 

IAD 
˗0.0004 

(˗0.01%) 

0.0015 

(0.21%) 

0.0021 

(0.11%) 

0.0073 

(0.25%) 

˗0.0009 

(˗0.19%) 

˗0.0001 

(˗0.01%) 

0.0013 

(0.04%) 

0.0109 

(0.07%) 

IAH 
˗0.0002 

(0.00%) 

0.0013 

(0.22%) 

0.0019 

(0.17%) 

0.0047 

(0.39%) 

˗0.0005 

(˗0.08%) 

˗0.0001 

(0.00%) 

0.0022 

(0.10%) 

0.0093 

(0.08%) 

ICT 
˗0.0004 

(˗0.01%) 

˗0.0001 

(˗0.02%) 

0.0025 

(0.22%) 

0.0071 

(0.35%) 

0.0000 

(˗0.03%) 

˗0.0001 

(˗0.01%) 

0.0013 

(0.09%) 

0.0102 

(0.10%) 

IND 
˗0.0005 

(˗0.01%) 

0.0005 

(0.11%) 

0.0035 

(0.15%) 

0.0115 

(0.29%) 

˗0.0003 

(˗0.14%) 

˗0.0001 

(˗0.01%) 

0.0017 

(0.05%) 

0.0162 

(0.10%) 
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Airport 
A25  

(µg m-3) 

AEC  

(µg m-3) 

ANH4  

(µg m-3) 

ANO3  

(µg m-3) 

SOA  

(µg m-3) 

POA  

(µg m-3) 

ASO4  

(µg m-3) 

PM2.5*  

(µg m-3) 

ISP 
˗0.0002 

(˗0.01%) 

0.0018 

(0.26%) 

0.0011 

(0.08%) 

0.0047 

(0.20%) 

˗0.0016 

(˗0.42%) 

˗0.0001 

(˗0.01%) 

0.0000 

(0.00%) 

0.0057 

(0.05%) 

JAX 
˗0.0001 

(˗0.01%) 

0.0002 

(0.04%) 

0.0009 

(0.13%) 

0.0021 

(0.54%) 

0.0015 

(0.13%) 

˗0.0001 

(˗0.01%) 

0.0025 

(0.11%) 

0.0070 

(0.09%) 

JFK 
˗0.0003 

(˗0.01%) 

0.0022 

(0.26%) 

0.0017 

(0.11%) 

0.0067 

(0.24%) 

˗0.0018 

(˗0.43%) 

˗0.0001 

(˗0.01%) 

0.0000 

(0.00%) 

0.0084 

(0.07%) 

LAN 
˗0.0004 

(˗0.01%) 

0.0001 

(0.02%) 

0.0033 

(0.17%) 

0.0110 

(0.30%) 

˗0.0002 

(˗0.07%) 

˗0.0001 

(˗0.01%) 

0.0007 

(0.03%) 

0.0144 

(0.12%) 

LAS 
˗0.0001 

(˗0.01%) 

0.0008 

(0.25%) 

0.0010 

(0.39%) 

0.0009 

(0.51%) 

0.0000 

(0.00%) 

0.0000 

(˗0.01%) 

0.0024 

(0.43%) 

0.0050 

(0.15%) 

LAX 
˗0.0002 

(˗0.01%) 

0.0025 

(0.29%) 

0.0054 

(0.62%) 

0.0147 

(0.84%) 

˗0.0006 

(˗0.21%) 

˗0.0002 

(˗0.01%) 

0.0036 

(0.35%) 

0.0252 

(0.29%) 

LGA 
˗0.0003 

(˗0.01%) 

0.0021 

(0.24%) 

0.0018 

(0.11%) 

0.0071 

(0.25%) 

˗0.0018 

(˗0.43%) 

˗0.0001 

(˗0.01%) 

0.0000 

(0.00%) 

0.0088 

(0.07%) 

LGB 
˗0.0003 

(˗0.01%) 

0.0030 

(0.27%) 

0.0079 

(0.72%) 

0.0226 

(0.96%) 

˗0.0011 

(˗0.28%) 

˗0.0002 

(˗0.01%) 

0.0041 

(0.36%) 

0.0359 

(0.32%) 

LIT 
˗0.0003 

(˗0.01%) 

0.0001 

(0.02%) 

0.0032 

(0.23%) 

0.0081 

(0.45%) 

0.0000 

(0.00%) 

˗0.0001 

(˗0.01%) 

0.0031 

(0.13%) 

0.0140 

(0.14%) 

MCI 
˗0.0004 

(˗0.01%) 

0.0004 

(0.08%) 

0.0026 

(0.18%) 

0.0078 

(0.29%) 

˗0.0002 

(˗0.08%) 

˗0.0001 

(˗0.01%) 

0.0011 

(0.06%) 

0.0112 

(0.09%) 

MCO 
˗0.0001 

(˗0.01%) 

0.0008 

(0.16%) 

0.0014 

(0.21%) 

0.0028 

(0.72%) 

0.0001 

(0.02%) 

˗0.0001 

(˗0.01%) 

0.0031 

(0.17%) 

0.0080 

(0.12%) 

MDW 
˗0.0005 

(˗0.01%) 

0.0009 

(0.14%) 

0.0022 

(0.11%) 

0.0075 

(0.23%) 

˗0.0004 

(˗0.18%) 

˗0.0001 

(˗0.01%) 

0.0005 

(0.02%) 

0.0101 

(0.07%) 

MEM 
˗0.0004 

(˗0.01%) 

0.0011 

(0.24%) 

0.0027 

(0.19%) 

0.0076 

(0.38%) 

˗0.0003 

(˗0.10%) 

˗0.0001 

(˗0.01%) 

0.0033 

(0.13%) 

0.0140 

(0.13%) 

MIA 
0.0000 

(˗0.01%) 

0.0011 

(0.28%) 

0.0005 

(0.14%) 

0.0007 

(0.97%) 

˗0.0002 

(˗0.14%) 

0.0000 

(0.00%) 

0.0020 

(0.17%) 

0.0040 

(0.10%) 

MKE 
˗0.0004 

(˗0.01%) 

0.0003 

(0.07%) 

0.0018 

(0.11%) 

0.0063 

(0.22%) 

˗0.0003 

(˗0.10%) 

˗0.0001 

(˗0.01%) 

0.0003 

(0.01%) 

0.0079 

(0.07%) 
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Airport 
A25  

(µg m-3) 

AEC  

(µg m-3) 

ANH4  

(µg m-3) 

ANO3  

(µg m-3) 

SOA  

(µg m-3) 

POA  

(µg m-3) 

ASO4  

(µg m-3) 

PM2.5*  

(µg m-3) 

MLB 
˗0.0001 

(˗0.01%) 

0.0002 

(0.06%) 

0.0006 

(0.14%) 

0.0012 

(0.81%) 

0.0002 

(0.06%) 

0.0000 

(˗0.01%) 

0.0025 

(0.15%) 

0.0045 

(0.10%) 

MSN 
˗0.0004 

(˗0.01%) 

0.0001 

(0.02%) 

0.0034 

(0.19%) 

0.0113 

(0.31%) 

˗0.0002 

(˗0.07%) 

˗0.0001 

(˗0.01%) 

0.0005 

(0.03%) 

0.0146 

(0.12%) 

MSP 
˗0.0004 

(˗0.01%) 

0.0011 

(0.19%) 

0.0020 

(0.14%) 

0.0065 

(0.23%) 

˗0.0003 

(˗0.10%) 

˗0.0001 

(˗0.01%) 

0.0004 

(0.03%) 

0.0093 

(0.08%) 

MSY 
˗0.0001 

(˗0.01%) 

0.0002 

(0.06%) 

0.0006 

(0.08%) 

0.0013 

(0.30%) 

0.0000 

(˗0.01%) 

0.0000 

(˗0.01%) 

0.0022 

(0.09%) 

0.0041 

(0.06%) 

OAK 
˗0.0001 

(0.00%) 

0.0014 

(0.22%) 

0.0030 

(0.42%) 

0.0088 

(0.52%) 

˗0.0004 

(˗0.09%) 

˗0.0001 

(0.00%) 

0.0013 

(0.20%) 

0.0139 

(0.17%) 

OKC 
˗0.0004 

(˗0.01%) 

0.0001 

(0.04%) 

0.0024 

(0.23%) 

0.0058 

(0.36%) 

˗0.0001 

(˗0.03%) 

˗0.0001 

(˗0.01%) 

0.0021 

(0.14%) 

0.0098 

(0.12%) 

OMA 
˗0.0004 

(˗0.01%) 

0.0001 

(0.03%) 

0.0025 

(0.19%) 

0.0078 

(0.31%) 

˗0.0001 

(˗0.05%) 

˗0.0001 

(˗0.02%) 

0.0007 

(0.04%) 

0.0105 

(0.11%) 

ONT 
˗0.0004 

(˗0.02%) 

0.0021 

(0.18%) 

0.0085 

(0.75%) 

0.0246 

(0.99%) 

˗0.0012 

(˗0.24%) 

˗0.0003 

(˗0.01%) 

0.0041 

(0.36%) 

0.0373 

(0.32%) 

ORD 
˗0.0004 

(˗0.01%) 

0.0011 

(0.15%) 

0.0021 

(0.11%) 

0.0070 

(0.22%) 

˗0.0004 

(˗0.18%) 

˗0.0001 

(˗0.01%) 

0.0004 

(0.02%) 

0.0097 

(0.07%) 

ORF 
˗0.0002 

(˗0.01%) 

0.0003 

(0.07%) 

0.0012 

(0.09%) 

0.0034 

(0.22%) 

˗0.0002 

(˗0.05%) 

˗0.0001 

(˗0.01%) 

0.0014 

(0.05%) 

0.0057 

(0.06%) 

PBI 
˗0.0001 

(˗0.01%) 

0.0003 

(0.08%) 

0.0004 

(0.14%) 

0.0006 

(1.04%) 

0.0001 

(0.05%) 

0.0000 

(0.00%) 

0.0023 

(0.18%) 

0.0036 

(0.09%) 

PDX 
˗0.0001 

(0.00%) 

0.0004 

(0.06%) 

0.0012 

(0.29%) 

0.0032 

(0.40%) 

˗0.0001 

(˗0.01%) 

0.0000 

(0.00%) 

0.0007 

(0.15%) 

0.0053 

(0.05%) 

PHF 
˗0.0002 

(˗0.01%) 

0.0003 

(0.06%) 

0.0015 

(0.11%) 

0.0045 

(0.25%) 

˗0.0002 

(˗0.03%) 

˗0.0001 

(˗0.01%) 

0.0015 

(0.05%) 

0.0073 

(0.07%) 

PHL 
˗0.0004 

(˗0.01%) 

0.0009 

(0.14%) 

0.0035 

(0.17%) 

0.0125 

(0.33%) 

˗0.0008 

(˗0.18%) 

˗0.0001 

(˗0.01%) 

0.0003 

(0.01%) 

0.0160 

(0.11%) 

PHX 
˗0.0001 

(˗0.01%) 

0.0013 

(0.17%) 

0.0047 

(1.01%) 

0.0126 

(1.56%) 

˗0.0004 

(˗0.11%) 

˗0.0001 

(˗0.01%) 

0.0028 

(0.44%) 

0.0206 

(0.33%) 
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Airport 
A25  

(µg m-3) 

AEC  

(µg m-3) 

ANH4  

(µg m-3) 

ANO3  

(µg m-3) 

SOA  

(µg m-3) 

POA  

(µg m-3) 

ASO4  

(µg m-3) 

PM2.5*  

(µg m-3) 

PIT 
˗0.0004 

(˗0.01%) 

0.0001 

(0.03%) 

0.0023 

(0.12%) 

0.0081 

(0.27%) 

˗0.0002 

(˗0.06%) 

˗0.0001 

(˗0.01%) 

0.0015 

(0.04%) 

0.0112 

(0.08%) 

PVD 
˗0.0002 

(˗0.01%) 

0.0004 

(0.07%) 

0.0016 

(0.13%) 

0.0059 

(0.27%) 

˗0.0006 

(˗0.14%) 

˗0.0001 

(˗0.01%) 

0.0006 

(0.03%) 

0.0075 

(0.07%) 

RDU 
˗0.0003 

(˗0.02%) 

0.0001 

(0.02%) 

0.0040 

(0.24%) 

0.0123 

(0.48%) 

0.0000 

(0.00%) 

˗0.0001 

(˗0.01%) 

0.0021 

(0.08%) 

0.0180 

(0.15%) 

RIC 
˗0.0003 

(˗0.01%) 

0.0002 

(0.05%) 

0.0022 

(0.13%) 

0.0071 

(0.31%) 

˗0.0003 

(˗0.04%) 

˗0.0001 

(˗0.01%) 

0.0018 

(0.06%) 

0.0107 

(0.09%) 

RNO 
0.0000 

(0.00%) 

0.0003 

(0.13%) 

0.0013 

(0.48%) 

0.0026 

(0.71%) 

0.0014 

(0.12%) 

0.0000 

(0.00%) 

0.0016 

(0.36%) 

0.0071 

(0.15%) 

ROC 
˗0.0003 

(˗0.01%) 

0.0002 

(0.07%) 

0.0022 

(0.15%) 

0.0074 

(0.30%) 

˗0.0002 

(˗0.06%) 

˗0.0001 

(˗0.01%) 

0.0011 

(0.05%) 

0.0102 

(0.10%) 

RSW 
˗0.0001 

(˗0.01%) 

0.0002 

(0.05%) 

0.0007 

(0.17%) 

0.0011 

(0.84%) 

0.0001 

(0.03%) 

0.0000 

(0.00%) 

0.0024 

(0.17%) 

0.0044 

(0.09%) 

SAN 
˗0.0002 

(˗0.01%) 

0.0008 

(0.13%) 

0.0043 

(0.64%) 

0.0111 

(0.94%) 

˗0.0003 

(˗0.10%) 

˗0.0001 

(˗0.01%) 

0.0037 

(0.36%) 

0.0193 

(0.29%) 

SAT 
˗0.0003 

(˗0.01%) 

0.0003 

(0.08%) 

0.0024 

(0.26%) 

0.0063 

(0.54%) 

˗0.0001 

(˗0.05%) 

˗0.0001 

(˗0.01%) 

0.0018 

(0.11%) 

0.0103 

(0.13%) 

SBA 
˗0.0002 

(˗0.02%) 

0.0000 

(0.00%) 

0.0018 

(0.59%) 

0.0042 

(0.87%) 

0.0000 

(0.00%) 

˗0.0001 

(˗0.01%) 

0.0017 

(0.32%) 

0.0074 

(0.20%) 

SDF 
˗0.0005 

(˗0.01%) 

0.0004 

(0.07%) 

0.0026 

(0.12%) 

0.0079 

(0.25%) 

˗0.0003 

(˗0.12%) 

˗0.0001 

(˗0.01%) 

0.0026 

(0.07%) 

0.0126 

(0.09%) 

SEA 
0.0000 

(0.00%) 

0.0007 

(0.12%) 

0.0008 

(0.20%) 

0.0017 

(0.20%) 

˗0.0015 

(˗0.08%) 

0.0000 

(0.00%) 

0.0010 

(0.20%) 

0.0026 

(0.03%) 

SFO 
˗0.0001 

(0.00%) 

0.0014 

(0.22%) 

0.0030 

(0.42%) 

0.0088 

(0.52%) 

˗0.0004 

(˗0.09%) 

˗0.0001 

(0.00%) 

0.0013 

(0.20%) 

0.0139 

(0.17%) 

SJC 
˗0.0001 

(˗0.01%) 

0.0015 

(0.23%) 

0.0027 

(0.39%) 

0.0078 

(0.46%) 

˗0.0006 

(˗0.12%) 

˗0.0001 

(0.00%) 

0.0014 

(0.22%) 

0.0127 

(0.16%) 

SLC 
˗0.0001 

(0.00%) 

0.0006 

(0.18%) 

0.0028 

(0.56%) 

0.0076 

(0.71%) 

0.0000 

(0.00%) 

0.0000 

(˗0.01%) 

0.0018 

(0.34%) 

0.0127 

(0.23%) 
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Airport 
A25  

(µg m-3) 

AEC  

(µg m-3) 

ANH4  

(µg m-3) 

ANO3  

(µg m-3) 

SOA  

(µg m-3) 

POA  

(µg m-3) 

ASO4  

(µg m-3) 

PM2.5*  

(µg m-3) 

SMF 
˗0.0001 

(0.00%) 

0.0005 

(0.08%) 

0.0042 

(0.57%) 

0.0124 

(0.71%) 

˗0.0001 

(˗0.01%) 

˗0.0001 

(0.00%) 

0.0016 

(0.25%) 

0.0184 

(0.20%) 

SNA 
˗0.0003 

(˗0.01%) 

0.0030 

(0.30%) 

0.0065 

(0.67%) 

0.0178 

(0.88%) 

˗0.0011 

(˗0.31%) 

˗0.0002 

(˗0.01%) 

0.0043 

(0.38%) 

0.0300 

(0.31%) 

STL 
˗0.0005 

(˗0.01%) 

0.0003 

(0.06%) 

0.0024 

(0.14%) 

0.0068 

(0.25%) 

˗0.0002 

(˗0.07%) 

˗0.0001 

(˗0.01%) 

0.0020 

(0.07%) 

0.0106 

(0.08%) 

SWF 
˗0.0002 

(˗0.01%) 

0.0004 

(0.07%) 

0.0013 

(0.09%) 

0.0053 

(0.21%) 

˗0.0008 

(˗0.19%) 

˗0.0001 

(˗0.01%) 

0.0005 

(0.02%) 

0.0063 

(0.06%) 

SYR 
˗0.0004 

(˗0.02%) 

0.0001 

(0.02%) 

0.0026 

(0.17%) 

0.0089 

(0.33%) 

˗0.0002 

(˗0.06%) 

˗0.0001 

(˗0.01%) 

0.0009 

(0.04%) 

0.0117 

(0.11%) 

TPA 
˗0.0001 

(˗0.01%) 

0.0004 

(0.08%) 

0.0015 

(0.19%) 

0.0034 

(0.78%) 

0.0000 

(0.01%) 

˗0.0001 

(˗0.01%) 

0.0027 

(0.12%) 

0.0078 

(0.11%) 

TUL 
˗0.0004 

(˗0.01%) 

0.0000 

(0.01%) 

0.0024 

(0.20%) 

0.0065 

(0.34%) 

˗0.0001 

(˗0.03%) 

˗0.0001 

(˗0.01%) 

0.0017 

(0.10%) 

0.0100 

(0.09%) 

TUS 
˗0.0001 

(˗0.01%) 

0.0001 

(0.06%) 

0.0013 

(0.45%) 

0.0024 

(0.90%) 

0.0000 

(0.02%) 

0.0000 

(0.00%) 

0.0017 

(0.27%) 

0.0055 

(0.15%) 

TVC 
˗0.0002 

(˗0.01%) 

0.0001 

(0.04%) 

0.0005 

(0.06%) 

0.0016 

(0.14%) 

0.0000 

(˗0.01%) 

0.0000 

(˗0.01%) 

0.0008 

(0.05%) 

0.0027 

(0.04%) 

TYS 
˗0.0002 

(˗0.01%) 

0.0001 

(0.03%) 

0.0012 

(0.09%) 

0.0032 

(0.23%) 

0.0001 

(0.02%) 

˗0.0001 

(˗0.01%) 

0.0028 

(0.09%) 

0.0072 

(0.07%) 

 

*PM2.5 does not equal the sum of species shown in chart due to a scaling factor (1.167) applied to POA when computing PM2.5. 
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Table 9. Absolute and percent increases due to aircraft emissions in 2025 in the 9 grid cells surrounding the airport. 

Airport 
A25  

(µg m-3) 

AEC  

(µg m-3) 

ANH4  

(µg m-3) 

ANO3  

(µg m-3) 

SOA  

(µg m-3) 

POA  

(µg m-3) 

ASO4  

(µg m-3) 

PM2.5*  

(µg m-3) 

ABQ 
0.0000 

(0.00%) 

0.0004 

(0.22%) 

0.0013 

(0.52%) 

0.0028 

(1.10%) 

0.0005 

(0.10%) 

0.0000 

(0.00%) 

0.0014 

(0.27%) 

0.0064 

(0.12%) 

ALB 
˗0.0009 

(˗0.03%) 

0.0000 

(0.00%) 

0.0049 

(0.52%) 

0.0166 

(1.01%) 

˗0.0001 

(˗0.03%) 

˗0.0004 

(˗0.02%) 

0.0008 

(0.06%) 

0.0209 

(0.23%) 

ATL 
˗0.0007 

(˗0.02%) 

0.0021 

(0.53%) 

0.0082 

(0.77%) 

0.0215 

(1.74%) 

0.0046 

(0.33%) 

˗0.0002 

(˗0.02%) 

0.0060 

(0.31%) 

0.0415 

(0.37%) 

AUS 
˗0.0005 

(˗0.02%) 

0.0004 

(0.24%) 

0.0043 

(0.54%) 

0.0117 

(1.09%) 

˗0.0001 

(˗0.04%) 

˗0.0001 

(˗0.02%) 

0.0025 

(0.19%) 

0.0181 

(0.25%) 

BDL 
˗0.0009 

(˗0.03%) 

0.0005 

(0.17%) 

0.0060 

(0.56%) 

0.0202 

(1.03%) 

˗0.0005 

(˗0.10%) 

˗0.0004 

(˗0.03%) 

0.0011 

(0.07%) 

0.0261 

(0.26%) 

BFL 
˗0.0003 

(˗0.02%) 

0.0000 

(˗0.01%) 

0.0047 

(1.10%) 

0.0129 

(1.56%) 

0.0002 

(0.03%) 

˗0.0002 

(˗0.02%) 

0.0026 

(0.50%) 

0.0197 

(0.38%) 

BHM 
˗0.0006 

(˗0.02%) 

0.0001 

(0.04%) 

0.0045 

(0.46%) 

0.0118 

(1.19%) 

0.0014 

(0.13%) 

˗0.0002 

(˗0.02%) 

0.0034 

(0.18%) 

0.0205 

(0.22%) 

BNA 
˗0.0008 

(˗0.03%) 

0.0001 

(0.04%) 

0.0049 

(0.40%) 

0.0146 

(0.86%) 

˗0.0001 

(˗0.04%) 

˗0.0002 

(˗0.03%) 

0.0024 

(0.11%) 

0.0208 

(0.23%) 

BOI 
˗0.0001 

(0.00%) 

0.0002 

(0.06%) 

0.0026 

(0.74%) 

0.0077 

(1.19%) 

0.0013 

(0.09%) 

0.0000 

(0.00%) 

0.0010 

(0.22%) 

0.0127 

(0.17%) 

BOS 
˗0.0007 

(˗0.02%) 

0.0007 

(0.16%) 

0.0052 

(0.53%) 

0.0177 

(1.06%) 

˗0.0010 

(˗0.20%) 

˗0.0003 

(˗0.02%) 

0.0005 

(0.04%) 

0.0221 

(0.21%) 

BTR 
˗0.0003 

(˗0.01%) 

˗0.0001 

(˗0.03%) 

0.0030 

(0.29%) 

0.0079 

(0.69%) 

0.0004 

(0.07%) 

˗0.0001 

(˗0.01%) 

0.0022 

(0.11%) 

0.0130 

(0.15%) 

BUF 
˗0.0008 

(˗0.03%) 

0.0001 

(0.05%) 

0.0047 

(0.35%) 

0.0153 

(0.71%) 

˗0.0003 

(˗0.05%) 

˗0.0003 

(˗0.02%) 

0.0011 

(0.05%) 

0.0197 

(0.19%) 

BUR 
˗0.0005 

(˗0.02%) 

0.0023 

(0.42%) 

0.0076 

(1.04%) 

0.0220 

(1.59%) 

˗0.0009 

(˗0.22%) 

˗0.0003 

(˗0.02%) 

0.0039 

(0.42%) 

0.0341 

(0.40%) 

BWI 
˗0.0013 

(˗0.04%) 

0.0008 

(0.21%) 

0.0104 

(0.67%) 

0.0337 

(1.28%) 

˗0.0008 

(˗0.18%) 

˗0.0004 

(˗0.03%) 

0.0021 

(0.10%) 

0.0444 

(0.36%) 



 

 
 

6
4

 

Airport 
A25  

(µg m-3) 

AEC  

(µg m-3) 

ANH4  

(µg m-3) 

ANO3  

(µg m-3) 

SOA  

(µg m-3) 

POA  

(µg m-3) 

ASO4  

(µg m-3) 

PM2.5*  

(µg m-3) 

CHS 
˗0.0004 

(˗0.03%) 

0.0000 

(0.02%) 

0.0026 

(0.39%) 

0.0069 

(1.37%) 

0.0007 

(0.11%) 

˗0.0001 

(˗0.02%) 

0.0024 

(0.15%) 

0.0120 

(0.20%) 

CLE 
˗0.0011 

(˗0.04%) 

0.0002 

(0.09%) 

0.0071 

(0.42%) 

0.0239 

(0.82%) 

˗0.0003 

(˗0.11%) 

˗0.0003 

(˗0.03%) 

0.0009 

(0.04%) 

0.0304 

(0.27%) 

CLT 
˗0.0007 

(˗0.03%) 

0.0005 

(0.16%) 

0.0078 

(0.69%) 

0.0229 

(1.56%) 

0.0016 

(0.15%) 

˗0.0002 

(˗0.02%) 

0.0034 

(0.18%) 

0.0354 

(0.36%) 

CMH 
˗0.0012 

(˗0.03%) 

0.0002 

(0.07%) 

0.0073 

(0.45%) 

0.0238 

(0.84%) 

˗0.0003 

(˗0.10%) 

˗0.0003 

(˗0.03%) 

0.0015 

(0.07%) 

0.0310 

(0.27%) 

COS 
˗0.0001 

(˗0.01%) 

0.0001 

(0.09%) 

0.0015 

(0.62%) 

0.0040 

(1.55%) 

0.0006 

(0.11%) 

0.0000 

(0.00%) 

0.0012 

(0.26%) 

0.0074 

(0.20%) 

CRP 
˗0.0003 

(˗0.02%) 

0.0001 

(0.06%) 

0.0014 

(0.31%) 

0.0037 

(0.93%) 

0.0000 

(˗0.04%) 

˗0.0001 

(˗0.03%) 

0.0012 

(0.11%) 

0.0060 

(0.16%) 

CVG 
˗0.0012 

(˗0.03%) 

0.0005 

(0.22%) 

0.0071 

(0.43%) 

0.0230 

(0.87%) 

˗0.0004 

(˗0.18%) 

˗0.0002 

(˗0.03%) 

0.0020 

(0.08%) 

0.0308 

(0.26%) 

DAB 
˗0.0002 

(˗0.02%) 

0.0001 

(0.04%) 

0.0012 

(0.34%) 

0.0018 

(2.22%) 

0.0007 

(0.18%) 

˗0.0001 

(˗0.01%) 

0.0026 

(0.24%) 

0.0060 

(0.16%) 

DAL 
˗0.0007 

(˗0.01%) 

0.0012 

(0.49%) 

0.0062 

(0.63%) 

0.0168 

(1.27%) 

˗0.0003 

(˗0.13%) 

˗0.0001 

(˗0.02%) 

0.0035 

(0.22%) 

0.0266 

(0.26%) 

DAY 
˗0.0012 

(˗0.03%) 

0.0002 

(0.11%) 

0.0088 

(0.50%) 

0.0287 

(0.93%) 

˗0.0003 

(˗0.14%) 

˗0.0002 

(˗0.03%) 

0.0017 

(0.07%) 

0.0375 

(0.31%) 

DCA 
˗0.0012 

(˗0.04%) 

0.0016 

(0.41%) 

0.0095 

(0.66%) 

0.0305 

(1.28%) 

˗0.0011 

(˗0.21%) 

˗0.0004 

(˗0.03%) 

0.0025 

(0.12%) 

0.0412 

(0.35%) 

DEN 
˗0.0001 

(˗0.01%) 

0.0011 

(0.51%) 

0.0038 

(1.03%) 

0.0105 

(1.88%) 

0.0005 

(0.07%) 

0.0000 

(0.00%) 

0.0020 

(0.36%) 

0.0177 

(0.36%) 

DFW 
˗0.0007 

(˗0.01%) 

0.0014 

(0.53%) 

0.0065 

(0.67%) 

0.0175 

(1.29%) 

˗0.0003 

(˗0.14%) 

˗0.0002 

(˗0.02%) 

0.0040 

(0.26%) 

0.0282 

(0.27%) 

DSM 
˗0.0008 

(˗0.03%) 

0.0000 

(˗0.01%) 

0.0037 

(0.34%) 

0.0116 

(0.58%) 

˗0.0001 

(˗0.07%) 

˗0.0001 

(˗0.03%) 

0.0010 

(0.08%) 

0.0153 

(0.19%) 

DTW 
˗0.0010 

(˗0.03%) 

0.0009 

(0.36%) 

0.0059 

(0.36%) 

0.0198 

(0.71%) 

˗0.0006 

(˗0.18%) 

˗0.0002 

(˗0.02%) 

0.0008 

(0.04%) 

0.0257 

(0.21%) 
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Airport 
A25  

(µg m-3) 

AEC  

(µg m-3) 

ANH4  

(µg m-3) 

ANO3  

(µg m-3) 

SOA  

(µg m-3) 

POA  

(µg m-3) 

ASO4  

(µg m-3) 

PM2.5*  

(µg m-3) 

ELP 
0.0000 

(0.00%) 

0.0001 

(0.09%) 

0.0015 

(0.40%) 

0.0035 

(0.91%) 

0.0002 

(0.06%) 

0.0000 

(0.00%) 

0.0013 

(0.18%) 

0.0066 

(0.15%) 

EUG 
0.0000 

(0.00%) 

0.0001 

(0.02%) 

0.0010 

(0.52%) 

0.0029 

(1.21%) 

0.0010 

(0.05%) 

0.0000 

(0.00%) 

0.0005 

(0.12%) 

0.0054 

(0.08%) 

EWR 
˗0.0009 

(˗0.03%) 

0.0018 

(0.45%) 

0.0073 

(0.51%) 

0.0257 

(1.00%) 

˗0.0028 

(˗0.59%) 

˗0.0004 

(˗0.02%) 

0.0000 

(0.00%) 

0.0306 

(0.27%) 

FAT 
˗0.0003 

(˗0.02%) 

0.0001 

(0.03%) 

0.0057 

(1.08%) 

0.0167 

(1.47%) 

0.0004 

(0.07%) 

˗0.0002 

(˗0.01%) 

0.0024 

(0.43%) 

0.0249 

(0.37%) 

FLL 
˗0.0001 

(˗0.01%) 

0.0011 

(0.40%) 

0.0018 

(0.65%) 

0.0022 

(3.79%) 

0.0003 

(0.15%) 

˗0.0001 

(˗0.01%) 

0.0037 

(0.46%) 

0.0089 

(0.24%) 

FNT 
˗0.0009 

(˗0.03%) 

0.0002 

(0.09%) 

0.0053 

(0.37%) 

0.0180 

(0.72%) 

˗0.0003 

(˗0.09%) 

˗0.0002 

(˗0.03%) 

0.0006 

(0.03%) 

0.0227 

(0.22%) 

GFK 
˗0.0003 

(˗0.02%) 

0.0002 

(0.16%) 

0.0013 

(0.24%) 

0.0040 

(0.36%) 

˗0.0001 

(˗0.03%) 

˗0.0001 

(˗0.02%) 

0.0004 

(0.07%) 

0.0055 

(0.11%) 

GRR 
˗0.0010 

(˗0.03%) 

0.0001 

(0.04%) 

0.0059 

(0.41%) 

0.0200 

(0.82%) 

˗0.0002 

(˗0.07%) 

˗0.0002 

(˗0.03%) 

0.0004 

(0.02%) 

0.0250 

(0.26%) 

GSO 
˗0.0007 

(˗0.03%) 

˗0.0001 

(˗0.03%) 

0.0071 

(0.62%) 

0.0216 

(1.33%) 

0.0006 

(0.07%) 

˗0.0002 

(˗0.03%) 

0.0026 

(0.14%) 

0.0308 

(0.34%) 

HOU 
˗0.0004 

(˗0.01%) 

0.0011 

(0.34%) 

0.0035 

(0.37%) 

0.0091 

(0.86%) 

0.0000 

(0.00%) 

˗0.0001 

(˗0.01%) 

0.0025 

(0.14%) 

0.0157 

(0.15%) 

HPN 
˗0.0009 

(˗0.03%) 

0.0007 

(0.20%) 

0.0068 

(0.50%) 

0.0237 

(0.97%) 

˗0.0015 

(˗0.32%) 

˗0.0004 

(˗0.02%) 

0.0005 

(0.03%) 

0.0289 

(0.25%) 

IAD 
˗0.0012 

(˗0.03%) 

0.0013 

(0.34%) 

0.0099 

(0.69%) 

0.0316 

(1.31%) 

˗0.0009 

(˗0.18%) 

˗0.0004 

(˗0.03%) 

0.0025 

(0.13%) 

0.0427 

(0.37%) 

IAH 
˗0.0004 

(˗0.01%) 

0.0013 

(0.40%) 

0.0036 

(0.38%) 

0.0090 

(0.86%) 

0.0004 

(0.07%) 

˗0.0001 

(˗0.01%) 

0.0029 

(0.16%) 

0.0166 

(0.15%) 

ICT 
˗0.0007 

(˗0.02%) 

˗0.0001 

(˗0.02%) 

0.0031 

(0.36%) 

0.0091 

(0.62%) 

0.0000 

(˗0.03%) 

˗0.0002 

(˗0.01%) 

0.0012 

(0.11%) 

0.0124 

(0.14%) 

IND 
˗0.0013 

(˗0.03%) 

0.0005 

(0.23%) 

0.0082 

(0.47%) 

0.0268 

(0.92%) 

˗0.0005 

(˗0.21%) 

˗0.0002 

(˗0.03%) 

0.0015 

(0.06%) 

0.0349 

(0.26%) 
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Airport 
A25  

(µg m-3) 

AEC  

(µg m-3) 

ANH4  

(µg m-3) 

ANO3  

(µg m-3) 

SOA  

(µg m-3) 

POA  

(µg m-3) 

ASO4  

(µg m-3) 

PM2.5*  

(µg m-3) 

ISP 
˗0.0007 

(˗0.03%) 

0.0017 

(0.51%) 

0.0052 

(0.42%) 

0.0189 

(0.89%) 

˗0.0026 

(˗0.65%) 

˗0.0003 

(˗0.02%) 

˗0.0001 

(0.00%) 

0.0221 

(0.22%) 

JAX 
˗0.0003 

(˗0.02%) 

0.0002 

(0.06%) 

0.0023 

(0.42%) 

0.0050 

(1.59%) 

0.0028 

(0.26%) 

˗0.0001 

(˗0.01%) 

0.0026 

(0.20%) 

0.0125 

(0.19%) 

JFK 
˗0.0008 

(˗0.03%) 

0.0020 

(0.55%) 

0.0063 

(0.46%) 

0.0226 

(0.97%) 

˗0.0030 

(˗0.68%) 

˗0.0003 

(˗0.02%) 

˗0.0002 

(˗0.01%) 

0.0264 

(0.25%) 

LAN 
˗0.0010 

(˗0.03%) 

0.0001 

(0.05%) 

0.0064 

(0.43%) 

0.0217 

(0.82%) 

˗0.0002 

(˗0.09%) 

˗0.0002 

(˗0.03%) 

0.0004 

(0.02%) 

0.0272 

(0.27%) 

LAS 
˗0.0001 

(˗0.01%) 

0.0008 

(0.50%) 

0.0018 

(0.75%) 

0.0029 

(1.54%) 

0.0004 

(0.11%) 

˗0.0001 

(˗0.01%) 

0.0028 

(0.55%) 

0.0087 

(0.27%) 

LAX 
˗0.0003 

(˗0.01%) 

0.0026 

(0.52%) 

0.0061 

(0.94%) 

0.0168 

(1.44%) 

˗0.0008 

(˗0.27%) 

˗0.0002 

(˗0.01%) 

0.0040 

(0.44%) 

0.0281 

(0.38%) 

LGA 
˗0.0009 

(˗0.03%) 

0.0020 

(0.50%) 

0.0065 

(0.46%) 

0.0232 

(0.95%) 

˗0.0029 

(˗0.65%) 

˗0.0004 

(˗0.02%) 

˗0.0002 

(˗0.01%) 

0.0273 

(0.24%) 

LGB 
˗0.0004 

(˗0.02%) 

0.0032 

(0.49%) 

0.0085 

(1.03%) 

0.0243 

(1.53%) 

˗0.0014 

(˗0.31%) 

˗0.0003 

(˗0.02%) 

0.0046 

(0.44%) 

0.0385 

(0.40%) 

LIT 
˗0.0007 

(˗0.03%) 

0.0001 

(0.02%) 

0.0045 

(0.46%) 

0.0116 

(0.93%) 

0.0001 

(0.02%) 

˗0.0002 

(˗0.02%) 

0.0031 

(0.19%) 

0.0185 

(0.23%) 

MCI 
˗0.0008 

(˗0.02%) 

0.0004 

(0.15%) 

0.0040 

(0.34%) 

0.0126 

(0.64%) 

˗0.0002 

(˗0.10%) 

˗0.0002 

(˗0.02%) 

0.0009 

(0.06%) 

0.0166 

(0.16%) 

MCO 
˗0.0002 

(˗0.02%) 

0.0008 

(0.27%) 

0.0030 

(0.65%) 

0.0060 

(2.28%) 

0.0010 

(0.23%) 

˗0.0001 

(˗0.01%) 

0.0036 

(0.34%) 

0.0140 

(0.27%) 

MDW 
˗0.0010 

(˗0.02%) 

0.0010 

(0.37%) 

0.0049 

(0.30%) 

0.0169 

(0.65%) 

˗0.0007 

(˗0.27%) 

˗0.0002 

(˗0.02%) 

0.0000 

(0.00%) 

0.0209 

(0.17%) 

MEM 
˗0.0008 

(˗0.03%) 

0.0010 

(0.39%) 

0.0056 

(0.51%) 

0.0157 

(1.06%) 

˗0.0003 

(˗0.09%) 

˗0.0002 

(˗0.02%) 

0.0036 

(0.19%) 

0.0246 

(0.27%) 

MIA 
˗0.0001 

(˗0.01%) 

0.0011 

(0.54%) 

0.0017 

(0.66%) 

0.0021 

(3.98%) 

0.0001 

(0.12%) 

˗0.0001 

(˗0.01%) 

0.0036 

(0.48%) 

0.0085 

(0.28%) 

MKE 
˗0.0008 

(˗0.03%) 

0.0003 

(0.16%) 

0.0043 

(0.33%) 

0.0153 

(0.69%) 

˗0.0003 

(˗0.11%) 

˗0.0002 

(˗0.02%) 

0.0001 

(0.00%) 

0.0187 

(0.19%) 
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Airport 
A25  

(µg m-3) 

AEC  

(µg m-3) 

ANH4  

(µg m-3) 

ANO3  

(µg m-3) 

SOA  

(µg m-3) 

POA  

(µg m-3) 

ASO4  

(µg m-3) 

PM2.5*  

(µg m-3) 

MLB 
˗0.0002 

(˗0.02%) 

0.0002 

(0.08%) 

0.0015 

(0.45%) 

0.0024 

(2.46%) 

0.0006 

(0.23%) 

˗0.0001 

(˗0.01%) 

0.0029 

(0.30%) 

0.0073 

(0.21%) 

MSN 
˗0.0009 

(˗0.03%) 

0.0001 

(0.04%) 

0.0056 

(0.41%) 

0.0194 

(0.76%) 

˗0.0002 

(˗0.08%) 

˗0.0002 

(˗0.02%) 

0.0001 

(0.00%) 

0.0238 

(0.24%) 

MSP 
˗0.0007 

(˗0.02%) 

0.0011 

(0.38%) 

0.0033 

(0.29%) 

0.0100 

(0.47%) 

˗0.0005 

(˗0.16%) 

˗0.0001 

(˗0.01%) 

0.0011 

(0.08%) 

0.0142 

(0.13%) 

MSY 
˗0.0002 

(˗0.01%) 

0.0002 

(0.08%) 

0.0013 

(0.20%) 

0.0028 

(0.74%) 

0.0000 

(0.00%) 

˗0.0001 

(˗0.01%) 

0.0023 

(0.13%) 

0.0064 

(0.11%) 

OAK 
˗0.0001 

(˗0.01%) 

0.0015 

(0.37%) 

0.0049 

(0.91%) 

0.0159 

(1.42%) 

˗0.0005 

(˗0.10%) 

˗0.0001 

(˗0.01%) 

0.0012 

(0.17%) 

0.0226 

(0.32%) 

OKC 
˗0.0007 

(˗0.02%) 

0.0001 

(0.06%) 

0.0035 

(0.46%) 

0.0094 

(0.79%) 

˗0.0001 

(˗0.04%) 

˗0.0002 

(˗0.02%) 

0.0022 

(0.19%) 

0.0143 

(0.20%) 

OMA 
˗0.0006 

(˗0.02%) 

0.0002 

(0.10%) 

0.0032 

(0.32%) 

0.0095 

(0.54%) 

˗0.0001 

(˗0.06%) 

˗0.0001 

(˗0.02%) 

0.0012 

(0.09%) 

0.0132 

(0.16%) 

ONT 
˗0.0005 

(˗0.02%) 

0.0023 

(0.33%) 

0.0093 

(1.09%) 

0.0271 

(1.62%) 

˗0.0012 

(˗0.22%) 

˗0.0004 

(˗0.02%) 

0.0046 

(0.45%) 

0.0412 

(0.41%) 

ORD 
˗0.0009 

(˗0.02%) 

0.0011 

(0.41%) 

0.0047 

(0.31%) 

0.0164 

(0.64%) 

˗0.0007 

(˗0.26%) 

˗0.0002 

(˗0.02%) 

0.0000 

(0.00%) 

0.0204 

(0.17%) 

ORF 
˗0.0007 

(˗0.03%) 

0.0001 

(0.06%) 

0.0048 

(0.46%) 

0.0156 

(1.08%) 

˗0.0002 

(˗0.04%) 

˗0.0002 

(˗0.03%) 

0.0014 

(0.07%) 

0.0208 

(0.27%) 

PBI 
˗0.0001 

(˗0.01%) 

0.0003 

(0.12%) 

0.0011 

(0.46%) 

0.0013 

(3.32%) 

0.0003 

(0.22%) 

˗0.0001 

(˗0.01%) 

0.0028 

(0.36%) 

0.0057 

(0.17%) 

PDX 
˗0.0001 

(0.00%) 

0.0004 

(0.10%) 

0.0020 

(0.52%) 

0.0057 

(0.90%) 

0.0007 

(0.04%) 

0.0000 

(0.00%) 

0.0009 

(0.16%) 

0.0095 

(0.09%) 

PHF 
˗0.0008 

(˗0.04%) 

0.0001 

(0.04%) 

0.0054 

(0.49%) 

0.0175 

(1.12%) 

0.0000 

(0.00%) 

˗0.0003 

(˗0.04%) 

0.0014 

(0.08%) 

0.0233 

(0.28%) 

PHL 
˗0.0012 

(˗0.04%) 

0.0008 

(0.24%) 

0.0094 

(0.60%) 

0.0319 

(1.12%) 

˗0.0010 

(˗0.22%) 

˗0.0004 

(˗0.03%) 

0.0007 

(0.03%) 

0.0401 

(0.33%) 

PHX 
˗0.0001 

(˗0.01%) 

0.0014 

(0.51%) 

0.0085 

(2.65%) 

0.0248 

(5.93%) 

0.0001 

(0.01%) 

˗0.0001 

(˗0.01%) 

0.0035 

(0.65%) 

0.0381 

(0.76%) 
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Airport 
A25  

(µg m-3) 

AEC  

(µg m-3) 

ANH4  

(µg m-3) 

ANO3  

(µg m-3) 

SOA  

(µg m-3) 

POA  

(µg m-3) 

ASO4  

(µg m-3) 

PM2.5*  

(µg m-3) 

PIT 
˗0.0011 

(˗0.04%) 

0.0000 

(0.02%) 

0.0057 

(0.37%) 

0.0192 

(0.80%) 

˗0.0003 

(˗0.09%) 

˗0.0003 

(˗0.04%) 

0.0011 

(0.05%) 

0.0244 

(0.23%) 

PVD 
˗0.0008 

(˗0.03%) 

0.0003 

(0.09%) 

0.0062 

(0.61%) 

0.0208 

(1.15%) 

˗0.0005 

(˗0.12%) 

˗0.0003 

(˗0.02%) 

0.0009 

(0.07%) 

0.0265 

(0.28%) 

RDU 
˗0.0008 

(˗0.04%) 

0.0001 

(0.02%) 

0.0070 

(0.65%) 

0.0214 

(1.35%) 

0.0008 

(0.09%) 

˗0.0003 

(˗0.03%) 

0.0022 

(0.13%) 

0.0303 

(0.35%) 

RIC 
˗0.0010 

(˗0.04%) 

0.0000 

(0.00%) 

0.0072 

(0.59%) 

0.0233 

(1.26%) 

0.0001 

(0.02%) 

˗0.0003 

(˗0.04%) 

0.0016 

(0.08%) 

0.0308 

(0.33%) 

RNO 
0.0000 

(0.00%) 

0.0003 

(0.17%) 

0.0021 

(0.93%) 

0.0052 

(2.13%) 

0.0022 

(0.20%) 

0.0000 

(0.00%) 

0.0016 

(0.38%) 

0.0113 

(0.25%) 

ROC 
˗0.0008 

(˗0.03%) 

0.0001 

(0.05%) 

0.0046 

(0.41%) 

0.0151 

(0.85%) 

˗0.0003 

(˗0.09%) 

˗0.0003 

(˗0.03%) 

0.0010 

(0.06%) 

0.0193 

(0.22%) 

RSW 
˗0.0001 

(˗0.01%) 

0.0002 

(0.08%) 

0.0015 

(0.47%) 

0.0020 

(2.47%) 

0.0003 

(0.14%) 

˗0.0001 

(˗0.01%) 

0.0029 

(0.33%) 

0.0066 

(0.16%) 

SAN 
˗0.0003 

(˗0.02%) 

0.0008 

(0.25%) 

0.0063 

(1.23%) 

0.0172 

(2.40%) 

˗0.0001 

(˗0.05%) 

˗0.0002 

(˗0.02%) 

0.0043 

(0.46%) 

0.0280 

(0.48%) 

SAT 
˗0.0004 

(˗0.01%) 

0.0003 

(0.16%) 

0.0035 

(0.49%) 

0.0094 

(1.08%) 

˗0.0001 

(˗0.04%) 

˗0.0001 

(˗0.02%) 

0.0021 

(0.17%) 

0.0146 

(0.21%) 

SBA 
˗0.0002 

(˗0.02%) 

0.0000 

(0.00%) 

0.0021 

(0.89%) 

0.0050 

(1.60%) 

0.0000 

(0.02%) 

˗0.0001 

(˗0.02%) 

0.0019 

(0.41%) 

0.0086 

(0.26%) 

SDF 
˗0.0012 

(˗0.03%) 

0.0003 

(0.14%) 

0.0065 

(0.41%) 

0.0207 

(0.84%) 

˗0.0004 

(˗0.17%) 

˗0.0002 

(˗0.03%) 

0.0021 

(0.09%) 

0.0278 

(0.24%) 

SEA 
˗0.0001 

(0.00%) 

0.0007 

(0.21%) 

0.0023 

(0.59%) 

0.0066 

(0.90%) 

˗0.0005 

(˗0.03%) 

0.0000 

(0.00%) 

0.0010 

(0.21%) 

0.0100 

(0.13%) 

SFO 
˗0.0001 

(˗0.01%) 

0.0015 

(0.37%) 

0.0049 

(0.91%) 

0.0159 

(1.42%) 

˗0.0005 

(˗0.10%) 

˗0.0001 

(˗0.01%) 

0.0012 

(0.17%) 

0.0226 

(0.32%) 

SJC 
˗0.0002 

(˗0.01%) 

0.0015 

(0.41%) 

0.0050 

(0.98%) 

0.0161 

(1.51%) 

˗0.0006 

(˗0.12%) 

˗0.0001 

(˗0.01%) 

0.0013 

(0.20%) 

0.0231 

(0.33%) 

SLC 
˗0.0001 

(˗0.01%) 

0.0006 

(0.32%) 

0.0054 

(1.21%) 

0.0159 

(1.94%) 

0.0003 

(0.04%) 

˗0.0001 

(˗0.01%) 

0.0020 

(0.37%) 

0.0239 

(0.46%) 
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Airport 
A25  

(µg m-3) 

AEC  

(µg m-3) 

ANH4  

(µg m-3) 

ANO3  

(µg m-3) 

SOA  

(µg m-3) 

POA  

(µg m-3) 

ASO4  

(µg m-3) 

PM2.5*  

(µg m-3) 

SMF 
˗0.0002 

(˗0.01%) 

0.0005 

(0.12%) 

0.0062 

(1.12%) 

0.0192 

(1.67%) 

0.0001 

(0.01%) 

˗0.0001 

(˗0.01%) 

0.0017 

(0.28%) 

0.0276 

(0.34%) 

SNA 
˗0.0003 

(˗0.01%) 

0.0031 

(0.54%) 

0.0077 

(1.01%) 

0.0215 

(1.51%) 

˗0.0013 

(˗0.36%) 

˗0.0002 

(˗0.01%) 

0.0047 

(0.46%) 

0.0351 

(0.41%) 

STL 
˗0.0010 

(˗0.02%) 

0.0002 

(0.11%) 

0.0045 

(0.32%) 

0.0133 

(0.65%) 

˗0.0002 

(˗0.09%) 

˗0.0002 

(˗0.02%) 

0.0021 

(0.09%) 

0.0187 

(0.16%) 

SWF 
˗0.0009 

(˗0.03%) 

0.0003 

(0.09%) 

0.0060 

(0.49%) 

0.0207 

(0.93%) 

˗0.0009 

(˗0.20%) 

˗0.0004 

(˗0.03%) 

0.0006 

(0.04%) 

0.0253 

(0.25%) 

SYR 
˗0.0010 

(˗0.03%) 

0.0000 

(˗0.01%) 

0.0050 

(0.44%) 

0.0170 

(0.91%) 

˗0.0004 

(˗0.09%) 

˗0.0003 

(˗0.03%) 

0.0007 

(0.04%) 

0.0210 

(0.22%) 

TPA 
˗0.0002 

(˗0.02%) 

0.0004 

(0.14%) 

0.0027 

(0.49%) 

0.0058 

(1.92%) 

0.0003 

(0.11%) 

˗0.0001 

(˗0.01%) 

0.0034 

(0.25%) 

0.0123 

(0.23%) 

TUL 
˗0.0007 

(˗0.02%) 

0.0000 

(0.00%) 

0.0033 

(0.37%) 

0.0093 

(0.68%) 

˗0.0001 

(˗0.03%) 

˗0.0002 

(˗0.02%) 

0.0016 

(0.12%) 

0.0132 

(0.14%) 

TUS 
0.0000 

(0.00%) 

0.0003 

(0.19%) 

0.0022 

(0.90%) 

0.0050 

(2.76%) 

0.0002 

(0.08%) 

0.0000 

(0.00%) 

0.0019 

(0.36%) 

0.0096 

(0.29%) 

TVC 
˗0.0005 

(˗0.04%) 

0.0000 

(0.01%) 

0.0016 

(0.21%) 

0.0058 

(0.55%) 

0.0000 

(0.00%) 

˗0.0001 

(˗0.03%) 

0.0006 

(0.04%) 

0.0075 

(0.14%) 

TYS 
˗0.0005 

(˗0.02%) 

0.0000 

(0.02%) 

0.0035 

(0.35%) 

0.0098 

(0.85%) 

0.0004 

(0.07%) 

˗0.0001 

(˗0.02%) 

0.0026 

(0.14%) 

0.0157 

(0.20%) 

 

*PM2.5 does not equal the sum of species shown in chart due to a scaling factor (1.167) applied to POA when computing PM2.5. 
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Appendix C - Comparison of CMAQ Predicted Contributions to PM2.5 from 

Aircraft Emissions to CMAQ Results Post-Processed Using the Speciated 

Modeled Attainment Test 

 

The Speciated Modeled Attainment Test (SMAT) is a model post-processor algorithm 

developed by the U.S. Environmental Protection Agency (EPA) that applies modeling data in a 

relativistic sense rather than an absolute sense to investigate air quality changes between two 

scenarios (EPA, 2007b). To do this, SMAT uses the ratio between two modeling scenarios and 

applies these ratios to ambient monitoring data. SMAT has been used in a number of EPA policy 

relevant studies, such as regulatory impact analyses performed to support the Clear Skies, the Clean 

Air Interstate Rule (CAIR), and Low Sulfur Diesel Rule. Furthermore, the EPA requires states to 

apply SMAT in their State Implementation Plan (SIP) in conjunction with air quality modeling to 

demonstrate attainment of the National Ambient Air Quality Standards (NAAQS) for criteria air 

pollutants, including PM2.5, as part of the Clean Air Act (EPA, 2007b). SMAT is routinely used in 

attainment demonstrations and health impact assessments in the U.S. and therefore we compare the 

air quality concentrations before (CMAQ results) and after applying SMAT to assess the significance 

of SMAT for aviation applications. SMAT was chosen because of its previous use in policy relevant 

work, because it is considered best practice by the EPA, its ability to produce speciated PM2.5 fields, 

and its combination of ambient data and modeling results. The primary objective of this work is to 

quantify the influence of SMAT on the PM2.5 concentrations attributed to aircraft emissions. 

 

Methodology 

MATS is a modeling post-processor tool that uses speciated PM2.5 CMAQ output to 

determine model predicted changes to ambient conditions by applying the SMAT process. SMAT 

results are available as point estimates and spatial estimates. Point estimates are calculated at CMAQ  
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Table 10. Quarterly average PM2.5 concentrations at LAX based on VNA interpolated FRM data from 

2004 to 2006. 

 

grid cells containing Federal Reference Method (FRM) monitoring sites while spatial estimates are 

calculated at each grid cell in the CMAQ domain. 

To illustrate the SMAT process, an example is given for the spatial estimate results for the 

CMAQ grid cell containing the Los Angeles International Airport (LAX). The first step in SMAT is 

to establish a baseline quarterly PM2.5 mass (Table 10). This mass is obtained from the FRM air 

quality monitors and is the quarterly average typically calculated over a three year period. In CMAQ 

grid cells that do not contain a FRM monitor (as is the case with LAX), the FRM monitor data is 

spatially interpolated to the grid cell using Voronoi Neighbor Averaging (VNA), an inverse weighted 

nearest-neighbor technique (Abt Associates Inc., 2009). FRM monitors are used to determine 

attainment of the NAAQS and therefore used in the SMAT process to establish a baseline PM2.5 mass. 

A primary difference in the FRM network and other PM2.5 monitoring networks, such as the 

Speciated Trends Network (STN) and Interagency Monitoring of Protected Visual Environments 

(IMPROVE) network, is that only total PM2.5 mass are available and not PM2.5 speciation. To 

calculate speciated PM2.5 concentrations at FRM monitors, speciated fractions are derived from STN 

and IMPROVE monitoring network data. These speciated fractions are calculated on a quarterly basis 

and are typically based on 3 years of monitoring data. Approximately 80% of FRM monitors are not 

co-located with STN or IMPROVE monitors and again interpolation is required (Figure 18) (EPA, 

2006). For SMAT’s spatial estimates, the VNA technique is used to interpolate speciated data to 

FRM sites. 

There are, however, issues with using speciated data from monitoring networks due to 

limitations of the sampling methodologies. For example, sampling filters do not retain portions of 

volatile compounds, such as ammonium nitrate, and therefore lead to sampling artifacts (Frank,  

Quarter 1 2 3 4 

PM2.5 Mass (µg m-3) 14.6178 12.0437 14.448 16.843 
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Figure 18. Location of Ambient Air Quality Monitors Used in SMAT. 

2006). To alleviate this and other issues with sampling techniques, SMAT uses the sulfate, adjusted 

nitrate, derived water, inferred carbonaceous material balance (SANDWICH) technique (Frank, 2006) 

to calculate speciated PM2.5 concentrations (Table 11). The speciation of SO4, EC, and crustal 

material are relatively straightforward and the data from the speciated monitors can be directly 

applied. For NO3, the reported speciated monitor data are adjusted to account for volatilization using 

a simple thermodynamic model (EPA, 2006). NH4 is derived using a calculation based on the Degree 

of Neutralization (DON), or ratio of NH4 neutralized by SO4. DON is defined as  

 DON =  NH4,SO9  / SO4 (1) 

where NH4,SO9is NH4 associated with SO4 and SO4 is measured SO4. The DON calculation is required 

because NH4 and SO4 can combine to form ammonium sulfate ((NH4)2SO4), ammonium bisulfate 

(NH4HSO4), or letovicite ((NH4)3H(SO4)2), depending on ambient conditions. NH4 and NO3 combine 

to form only ammonium nitrate (NH4NO3) and because of the one to one molar ratio, NH4 associated 

with NO3 can be calculated on a mass basis as 

 NH4,NOH = 0.29 ∗ NO�,RNOPQRNS (2) 
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where NH4,NOH  is the mass of NH4 associated with NO3 and NO3,Retained is the adjusted NO3 mass as 

calculated by the thermodynamic model. NH4 associated with SO4 can then be calculated by taking 

the difference of measured NH4 and NH4 associated with NO3, or 

 NH4,SO9 = NH4,TNPUVWNS −  0.29 ∗ NO�,RNOPQRNS (3) 

Table 11. a) Spatially estimated speciated fractions at the LAX grid cell as calculated by the 

SANDWICH technique using speciated monitoring data from 2004-2006. b) Spatially estimated 
speciated concentrations of FRM PM2.5 mass at the LAX grid cell calculated by 

a) 

Quarter 
Crustal 

(µg m-3) 

EC  

(µg m-3) 

NH4  

(µg m-3) 

OC  

(µg m-3) 

SO4  

(µg m-3) 

NO3  

(µg m-3) 

PBW  

(µg m-3) 

1 0.056 0.09 0.118 0.294 0.124 0.253 0.058 

2 0.069 0.065 0.134 0.243 0.301 0.083 0.1 

3 0.054 0.064 0.131 0.254 0.339 0.029 0.122 

4 0.06 0.104 0.089 0.431 0.122 0.15 0.042 

 

b) 

Quarter 
Crustal 

(µg m-3) 

EC  

(µg m-3) 

NH4  

(µg m-3) 

OC  

(µg m-3) 

SO4  

(µg m-3) 

NO3  

(µg m-3) 

PBW  

(µg m-3) 

PM2.5  

(µg m-3) 

1 0.7906 1.2706 1.6659 4.1506 1.7506 3.5718 0.8188 14.6178 

2 0.7965 0.7503 1.5469 2.8051 3.4747 0.9581 1.1544 12.0437 

3 0.7532 0.8927 1.8272 3.5428 4.7284 0.4045 1.7017 14.448 

4 0.9806 1.6997 1.4545 7.0438 1.9938 2.4515 0.6864 16.843 

  

Finally, NH4 can be calculated using the equation 

 NH4 = DON ∗ SO4 +  0.29 ∗ NO�,RNOPQRNS (4) 

The second speciated interpolation in SMAT is to calculate particle bound water (PBW). 

Ammonium sulfate and ammonium nitrate are hygroscopic and a portion of their mass as measured 

by ambient monitors include PBW (Abt Associates, Inc., 2009). PBW is derived from SO4, NO3, and 

NH4 concentrations using a polynomial regression equation fit to data generated by the Aerosol 

Inorganic Model (AIM) (Clegg et al., 1998) (Abt Associates Inc. 2009.). The AIM PBW calculations 

were performed at ambient conditions of 35% relative humidity and 22 degrees Celsius, the 

conditions at which typical filter equilibration occurs (EPA, 2006). 

Finally, because of uncertainties in estimating carbonaceous mass from carbon measurements 

and differences in carbon measurement protocol between urban (STN) and rural (IMPROVE) 
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monitoring locations, OC is estimated in the SANDWICH technique (Abt Associates, Inc., 2009). To 

estimate OC, a mass balance approach is used that subtracts all other estimated species from the total 

FRM PM2.5 measured mass using the equation 

 OC = PM�.[ − &SO4 + NO�,RNOPQRNS + NH4,RNOPQRNS + PBW + Crustal + EC + Blank Mass + Salt(  (5) 

Because there is a possibility equation 5 could calculate too large or small (or even negative) 

of a value for OC, OC is limited by both floor and ceiling values. The default floor value is set to 1 

times the measured organic mass, based on the assumption that a portion of organic mass is 

volatile/semi-volatile and not completely retained on the filter (Abt Associates, Inc., 2009). The 

default ceiling value is set to 80% of the total PM2.5 mass (Abt Associates, Inc., 2009). In cases where 

either the floor or ceiling values are used, all other PM2.5 species are adjusted up or down by 

equivalent percentages to maintain a mass balance.  

Once quarterly speciated masses are estimated for the base year using the SANDWICH 

technique, sensitivities derived from the model are applied to determine forecasted concentrations. In 

this application, the sensitivity case refers to CMAQ cases that include aircraft emissions (airc05 and 

airc25) and the base case refers to the CMAQ cases without aircraft emissions (base05 and base25). 

Because the only difference between the sensitivity and base cases are the addition of aircraft 

emissions, the differences between the two cases can therefore be defined as the contribution from 

aircraft emissions, or sensitivity of the model to aircraft emissions. In SMAT, this sensitivity is 

expressed as a relative reduction factor (RRF) as 

 RRF =  MjSNklmnl

MjSNkoplm
= ql

qo
   (RRF can be > 1) (6) 

where Modelsens is the speciated concentration as predicted by the model in the sensitivity case and 

Modelbase is the speciated concentration as predicted by the model in the base case (Table 12). The 

CMAQ-based RRF is then applied to SMAT’s estimated baseline Crustal, EC, OC, SO4, and NO3 

masses by multiplying each by their corresponding RRF to estimate SMAT concentrations in the 

sensitivity case (Table 13). For NH4, the default approach for calculating forecasted concentrations is 
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by applying the same DON value used in the base mass calculation to the forecasted SO4 and NO3 

masses. The forecasted PBW is calculated by using the polynomial regression mentioned previously. 

This procedure is applied on a quarterly basis with the average of the four values serving as the 

annual average. Thus, at the end of the SMAT process, we have a difference in monitored values 

from the base year to a forecasted year (or scenario), based upon modeled changes. 

Table 12. a) Quarterly averaged base05 and airc05 model based concentrations at the grid cell 
containing LAX. b) RRFs at the grid cell containing LAX as calculated by taking the ratio of the 

modeled sens case (airc05) concentration to the modeled base case (base05) 

a) 

Quarter 
Crustal  

(µg m-3) 

EC  

(µg m-3) 

OC  

(µg m-3) 

SO4  

(µg m-3) 

NO3  

(µg m-3) 

base05 concentrations (2005 case without aircraft emissions) 

1 3.2855 1.3971 2.7157 1.3949 3.5015 

2 2.4177 0.7919 1.9297 1.5882 2.8364 

3 2.9115 0.9295 2.2282 1.6191 2.5491 

4 4.2934 1.4373 3.4483 1.2118 2.8029 

airc05 concentrations (base05 case plus aircraft emissions) 

1 3.2854 1.4019 2.715 1.3972 3.5117 

2 2.4177 0.7964 1.9289 1.5904 2.8496 

3 2.9115 0.9356 2.2274 1.6218 2.564 

4 4.2933 1.444 3.4474 1.2136 2.8097 

 

b) 

Quarter Crustal EC  OC SO4 NO3 

1 1.0 1.0035 0.9997 1.0017 1.0029 

2 1.0 1.0057 0.9995 1.0014 1.0047 

3 1.0 1.0066 0.9996 1.0017 1.0058 

4 1.0 1.0047 0.9998 1.0014 1.0024 

 

Table 13. Spatially estimated values at LAX in 2005 with aircraft emissions as calculated by 

multiplying the SMAT base values by their estimated RRF. 

Quarter 
Crustal 

(µg m-3) 

EC  

(µg m-3) 

NH4  

(µg m-3) 

OC  

(µg m-3) 

SO4  

(µg m-3) 

NO3  

(µg m-3) 

PBW  

(µg m-3) 

PM2.5  

(µg m-3) 

1 0.7906 1.275 1.6719 4.1496 1.7535 3.5822 0.8226 14.6301 

2 0.7965 0.7546 1.5457 2.8038 3.4795 0.9626 1.1542 12.0662 

3 0.7532 0.8985 1.8231 3.5415 4.7364 0.4069 1.7032 14.4465 

4 0.9806 1.7077 1.4494 7.0422 1.9967 2.4574 0.6914 16.8581 
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Particle Bound Water Adjustment 

Due to the methods for calculating and reporting particle bound water by CMAQ and SMAT, 

a direct comparison of PM2.5 becomes difficult. Typically, CMAQ PM2.5 is reported as dry PM2.5, 

which excludes PBW. SMAT on the other hand, reports PM2.5 as wet PM2.5 mass and includes PBW. 

To further complicate the comparison, CMAQ uses the ISORROPIA thermodynamic model (Nenes et 

al., 1998) to determine inorganic apportionment and particle bound water whereas SMAT uses the 

AIM inorganic model. Particle bound water in CMAQ is calculated at the local ambient conditions 

for each time step and location of the model whereas SMAT calculates PBW at 35% relative 

humidity and 22 degrees Celsius on a quarterly averaged basis. Thus, CMAQ predicted PBW 

estimates are typically much higher than those estimated by SMAT. To better compare CMAQ and 

SMAT estimated PBW, box model simulations were performed using ISOREV (courtesy, Uma 

Shankar, UNC-IE), where ISORROPIA was run in reverse mode using CMAQ predicted 

concentrations of ammonium, sulfate, and nitrate from these scenarios to estimate PBW 

concentrations at the same ambient conditions used in SMAT. We used this mass of PBW to 

apportion between the nitrate-bound and sulfate-bound CMAQ aerosol concentrations (from each 

model simulation) to compute wet PM2.5 concentrations that would be comparable with SMAT 

results. 

 

Results 

Continental U.S. 

Results presented here indicate the change in annual PM2.5 concentrations due to aircraft 

emissions. SMAT results are potential changes in ambient monitored concentrations due to a modeled 

change from the contribution of aviation emissions. For the CMAQ predicted results, which are 

calculated as the difference in modeling scenarios, please refer to the main body of this paper. 
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SMAT point estimate results (at FRM monitored locations alone) for PM2.5 concentrations in the 

continental U.S. indicated aircraft contributed on average 0.0036 µg m
-3

 in 2005 (0.03% increase in 

total PM2.5) and 0.0157 µg m
-3

 (0.13% increase in total PM2.5) in 2025. Sulfate was the largest 

speciated component in 2005, contributing an average of 0.0013 µg m
-3

 (0.04% increase in SO4). In 

2025, nitrate was the largest speciated component, contributing an average of 0.0060 µg m
-3

 (0.88% 

increase in NO3) (Figure 19).  

  

 

Figure 19. Average change in concentrations due to aircraft emissions in 2005 (left) and 2025 (right). 

Spatial estimate SMAT results for PM2.5 concentrations indicated an average increase of 

0.0024 µg m
-3

 (0.03% increase to total PM2.5) due to aircraft emissions in 2005 and an average 

increase of 0.0096 µg m
-3

 (0.11% increase to total PM2.5) from 2025 aircraft emissions in the 

continental U.S. Sulfate was the largest speciated component in both years, contributing on average 

0.0010 µg m
-3

 (0.05% increase to SO4) and 0.0032 µg m
-3

 (0.15% increase to SO4), respectively 

(Figure 19). 

Figure 20 indicates regional differences in CMAQ and SMAT results for 2005 and 2025 by 

plotting the ratio of contributions from aircraft for spatial estimate SMAT results to CMAQ results. 

SMAT estimates of PM2.5 contributions from aircraft are approximately one-fourth to three-fourths of 

those as predicted by CMAQ across much of the central and eastern portions of the U.S. Areas where 
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SMAT results appear larger than CMAQ results occur primarily in the western U.S., notably in areas 

where SMAT predicts higher contributions of NO3 from aircraft than those predicted by CMAQ. 

SMAT contributions from aircraft to NO3 are sharply reduced as compared to CMAQ, particularly in 

the southeastern U.S., where SMAT predicted contributions of aircraft to NO3 are approximately one-

tenth of those as estimated by CMAQ. 

Comparison of Hartsfield-Jackson Atlanta International Airport and Los Angeles International 
Airport 

To better quantify the regional differences in CMAQ results after applying SMAT, presented 

here is a comparison of results from Atlanta Hartsfield International (ATL) (the busiest airport in the 

world based on 2008 passenger traffic) and LAX (the 6
th
 busiest airport in the world based on 2008 

passenger traffic) (Airports Council International, 2010). Additionally, these 2 airports are situated in  

 PM2.5        NO3 

 

  

Figure 20. Ratio of changes due to aircraft as predicted by spatially estimated SMAT results to 

CMAQ results for PM2.5 (left) and NO3.(right), for a) airc05-base05, and b) airc25-base25 

a) 

b) 
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locations that have distinct chemical regimes during the summer and winter seasons. In summer, the 

inorganic portion of PM2.5 is dominated by sulfate in the eastern U.S. while sulfate and nitrate are 

approximately equivalent in the western U.S. (Bell et al., 2007). In winter, sulfate and nitrate are 

approximately equivalent in the eastern U.S. while nitrate dominates in the western U.S. (Bell et al., 

2007). 

At ATL, SMAT spatial estimates of PM2.5 increased by 0.0016 µg m
-3

 (0.01% increase in 

total PM2.5) and 0.0907 µg m
-3

 (0.57% increase in total PM2.5), respectively. EC had the largest 

contribution in 2005 with a concentration of 0.009 µg m
-3

 (0.79% increase to EC). SO4 had the 

highest contribution in 2025, with an increase of 0.0351 µg m
-3

 (0.76% increase to SO4) (Figure 21). 

 

 

 

Figure 21. Change in PM2.5 concentrations due to aircraft emissions in 2005 (left) and 2025 (right) at 

a) LAX, and b) ATL. 

 

a) 

b) 
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Discussion 

On an annual average basis across the continental U.S., one of the primary differences in the 

contributions predicted by CMAQ and SMAT results is in the inorganic (NH4, NO3, SO4) 

apportionment of PM2.5 mass. CMAQ predicted that the largest speciated contribution from aircraft 

emissions was from NO3 while SMAT results indicated that SO4 had the largest speciated 

contributions to total PM2.5 due to aircraft emissions. Although SMAT uses the predicted changes to 

inorganic species from CMAQ (RRF values) to ultimately forecast the concentrations of the 

sensitivity cases, the differences in CMAQ and SMAT results can be attributed to differences in 

monitoring data and CMAQ predicted base concentrations. Figure 22 plots base case CMAQ 

concentrations against spatial estimate SMAT base concentrations for NO3, SO4, and PM2.5 at 

locations where an airport and speciated monitor are collocated within a grid cell. PM2.5 

concentrations are roughly equivalent between the two in 2005 while CMAQ base concentrations 

appear lower than SMAT concentrations in 2025. Sulfate concentrations are typically higher in the 

SMAT base case than in the CMAQ base case while nitrate concentrations are typically lower for 

both 2005 and 2025. Also, SMAT base case estimates exhibit higher sulfate concentrations and lower 

nitrate concentrations overall. While ambient data indicate there are higher concentrations of sulfate 

than nitrate, uncertainties remain (and possible underpredictions) in nitrate measurements due to its 

volatility. This limitation with NO3 measurements has led to a lack of routine speciated PM2.5 mass 

measurements available outside of the U.S. and is one reason as to why SMAT is only applied in the 

U.S. 

CMAQ has typically shown poor performance for predicting nitrate concentrations, 

overpredicting during winter months when conditions favor nitrate aerosol formation (Tesche et al., 

2006). An analysis of the base05 case was performed using the Atmospheric Model Evaluation Tool 

(AMET), which compares modeled data against monitoring data, and indicated that CMAQ 

overpredicted NO3 in winter months with both a high normalized mean bias (~75%) and high 

normalized mean error (~100%).  
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It is this combination of overall higher SO4 to NO3 concentrations in the SMAT base case as 

well as higher predicted SO4 and lower predicted NO3 concentrations as compared to the CMAQ base 

case which leads to the difference in organic apportionment. When an RRF is applied to a higher base 

value (SO4), the contribution from aircraft will be predicted to be higher than if it were applied to a 

lower base value (NO3). Similarly, when an RRF value is applied to a higher base value in SMAT 

than that predicted  

  

Figure 22. CMAQ vs. SMAT scatter plots of NO3, SO4, and PM2.5 base concentrations in 2005 (left) 

and 2025 (right) where airport and speciated monitors are collocated. 

by CMAQ, the overall contribution from aircraft as predicted by SMAT becomes greater than that 

predicted by CMAQ. The opposite is true for a lower value, the overall contribution from aircraft as 

predicted by SMAT becomes less than that predicted by CMAQ. 

Comparing the overall changes in PM2.5 mass, it is noteworthy that CMAQ as well as 

SMAT’s point estimates exhibit larger total changes than those calculated by SMAT’s spatial 

estimate. The larger changes in the point estimate can be attributed to the fact that FRM monitors (the 

points) are typically located in urban areas and lead to an urban bias. Another contributing factor 

associated with the bias in point estimate is that the points are located near airports considered in the 

study.  
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The LAX and ATL comparison illustrates regional differences between CMAQ and SMAT 

results. The contributions of NO3 from aircraft are essentially removed by performing SMAT at ATL, 

while at LAX they are simply reduced. This difference is attributed to ambient nitrate (as measured 

by the monitor) being significantly lower at ATL. Although similar RRF values for NO3 are applied 

(1.0103 at LAX and 1.0194 at ATL for 2025), a smaller base value at ATL propagates to a smaller 

increase in the estimated contribution from aircraft. Also apparent in the comparison is the reduction 

of OC concentrations with the addition of aircraft emissions. Our previous investigations into this 

issue have indicated that aircraft emissions can cause reductions of OC in CMAQ, specifically the 

Secondary Organic Aerosol (SOA) component. Aircraft emissions at the airport react and remove free 

radicals that would otherwise participate in the creation of SOA (Woody and Arunachalam, 2010).  

Results from this work were provided to the PARTNER’s Project 11 team at the Harvard 

School of Public Health to quantify the health impacts of aircraft emissions as it relates to PM2.5 

contributions. Because differences in CMAQ and SMAT results cause changes in the relative 

importance of PM2.5 speciated components, these speciated differences affect the health impact 

analysis. Since the magnitude of potential health impacts are used to identify and develop emissions 

control strategies, the use of CMAQ or SMAT results become significant as to which speciated 

component to prioritize to protect public health. 

 

Conclusions 

Aircraft emissions are found to increase PM2.5 concentrations in 2005 and 2025, using both 

CMAQ output and those output processed by SMAT, with the largest contributions occurring in the 

future year. CMAQ predicted aviation contributions to PM2.5 in the U.S. were on average 0.0037 µg 

m
-3

 in 2005 and 0.0127 µg m
-3 

in 2025 while SMAT spatially adjusted estimates predicted 

contributions of 0.0024 µg m
-3 

in 2005 and 0.0096 in 2025 µg m
-3

. The combination of higher 

amounts of aircraft emissions and lower background emissions in the future lead to the increased 

absolute contributions of PM2.5 from aircraft. 
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The primary differences between predicted PM2.5 contributions from aircraft emissions in 

CMAQ and SMAT are in the inorganic apportionment as CMAQ predicts NO3 to be the largest 

speciated contributor (contributing on average 0.0019 µg m
-3
 and 0.0074 µg m

-3
) to PM2.5 while 

SMAT predicts SO4 as the largest contributor (contributing on average 0.0010 µg m
-3
 and 0.0032 µg 

m
-3

). SMAT also reduces the average PM2.5 contribution from aircraft in its spatial estimate. SMAT 

point estimate results, with its clear urban bias, more closely resembles CMAQ predicted PM2.5 

aviation contributions. Based on these results, one might conclude that either CMAQ results 

overpredict or SMAT results underpredict the impact of aircraft emissions on changes to PM2.5 

concentrations. It is difficult to know which one of these is closer to the actual impacts due to aviation 

emissions. Furthermore, there are a number of obstacles making a direct comparison between the two 

difficult.  

One such obstacle is that SMAT results include PBW in PM2.5 concentrations and calculate 

PBW at standard conditions. However, we were able to address this key issue in this study, and 

facilitate a better comparison of CMAQ and SMAT results by including PBW in CMAQ PM2.5 

concentrations that were calculated at the same standard conditions as those of SMAT.  

One advantage to using SMAT is that it removes some of the uncertainties associated with 

modeling results, by focusing on using models in a relative sense. For example, the accuracy of 

emission inventories used in models is often questioned. By using SMAT, these uncertainties in the 

base emissions are reduced because the baseline PM2.5 mass is based on ambient monitoring data. 

However, SMAT has its own set of uncertainties associated with it, such as the uncertainty involved 

in the volatilization of PM2.5 mass and different sampling protocols between networks.  

SMAT results are based on ambient measurements taken at monitoring locations across the 

U.S. and reflect ambient levels that populations are ultimately being exposed to. Therefore, SMAT 

results could be used to access potential health effects. However, as the results from this case study 

illustrate, the CMAQ contributions as compared to spatial estimated SMAT contributions indicate 

greater impacts on air quality. In fact, the CMAQ results are more in line with the urban biased 
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SMAT point estimate results. Furthermore, the spatial analysis of CMAQ and SMAT results indicate 

that SMAT aviation contributions were smaller in the eastern U.S. (areas with higher population 

densities) and higher in portions of the western U.S. (areas of lower population). Thus, SMAT results 

could cause health impacts to be biased low as compared to CMAQ results due to a higher proportion 

of the population being exposed to lower contributions of aircraft emissions to PM2.5 concentrations. 

There are limitations and assumptions both in CMAQ raw results and those post-processed 

using SMAT. For example, SMAT results are limited by ambient monitoring data available. It would 

be difficult to investigate scenarios where ambient conditions improve or worsen from currently 

sampled ambient conditions (e.g. future year conditions with increased regulations and better ambient 

conditions). CMAQ, on the other hand, represents the current scientific understanding of the 

environment, and while great strides have been made in the past decade and more, all atmospheric 

pathways of particulate matter formation are still not fully understood or incorporated in the model at 

this time.  

Is post-processing CMAQ results using SMAT the best practice for determining contributions 

from aircraft emissions on PM2.5 concentrations for performing health risk assessments? SMAT may 

be a valuable tool in determining current year contributions of aircraft emissions on air quality; 

however, in the case of future year air quality, ambient conditions may change significantly from 

current conditions, nullifying SMAT’s advantage of results based on ambient conditions. 

Furthermore, SMAT is typically used to analyze emission reduction strategies on large scale emission 

sectors. Using it to analyze a relatively smaller emission sector, such as aircraft (compared to other 

anthropogenic sources), may stretch the limits of the tool. This is evident in the limited precision 

available in the algorithms used in SMAT where calculations are typically carried out to only 3 

decimal places. For PM2.5 concentrations, values are reported to 2 decimal places (which may not 

accurately capture the small incremental contribution from aircraft to PM2.5) and require using the 

sum of speciated components instead of the reported PM2.5 values to increase precision. For these 

reasons, while the SMAT process is a valuable tool that provides a better understanding of model 
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results, we have identified several limitations in its current form for determining contributions of 

aircraft emissions to air quality, both present and future. 
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Appendix D - CMAQ Model Evaluation 

 

One of the primary goals of environmental models is to accurately predict real world 

conditions in order to aid in policy decisions, assess impacts, or provide forecasting. A common 

method used to evaluate model performance is to compare model results with observed values from 

ambient air quality monitors. While comparing a grid cell (volumetric) average to a specific location 

presents a fundamental source of uncertainty, particularly in areas with strong subgrid-scale gradients, 

the method is currently considered best practice. Here, the Atmospheric Model Evaluation Tool 

(AMET) (Appel and Gilliam, 2008a) is employed to pair model results and observations in space (no 

spatial interpolation) and time for 1-h and 8-h peak ozone, nitric acid (HNO3), fine particulate matter 

(PM2.5), and sulfate (SO4), nitrate (NO3), ammonium (NH4), organic carbon (OC), and element carbon 

(EC) aerosols.  

A 2005 annual simulation was performed using the Community Multiscale Air Quality 

(CMAQ) (Byun and Ching, 1999; Byun and Schere, 2006) v4.6 model over the contiguous U.S. 

at a 36-km grid resolution. The model simulation utilized the carbon bond 05 (CB05) mechanism and 

aerosol 4 module. Meteorological input was generated using the Pennsylvania State 

University/NCAR mesoscale v3.7 model (MM5) (Grell et al., 1994). Emissions data, based on the 

Environmental Protect Agency’s (EPA) 2005 National Emissions Inventory (NEI) (EPA, 2007a), was 

processed through the Sparse Matrix Operator Kernel Emissions (SMOKE) v2.5 model (Houyoux et 

al., 2000).  

Observational data was used from five monitoring networks, the Air Quality System (AQS) 

network, Clean Air Status and Trends Network (CASTNet), Speciated Trends Network (STN), 

Interagency Monitoring of Protected Visual Environments (IMPROVE) network, and Federal 

Reference Method (FRM) network. AQS collects hourly data nationwide for a number of species with 

ozone the only one considered here. CASTNet collects samples of inorganic aerosols (SO4, NO3, and 
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NH4) and HNO3 at weekly intervals and is located primarily in rural areas in the eastern U.S. (Eder 

and Yu, 2006). STN collects daily average samples of SO4, NO3, NH4, EC, OC as well as PM2.5 every 

third day with most monitors located in urban areas (Eder and Yu, 2006). IMPROVE follows a 

similar sampling pattern to STN and collects daily average samples every third day of PM2.5, SO4, 

NO3, NH4, OC, and EC and is located in National Parks throughout the U.S. with the majority in the 

western U.S. (Eder and Yu, 2006). For IMPROVE, however, only measurements of PM2.5, sulfate, 

nitrate, and ammonium aerosols are considered here. FRM collects daily average samples of PM2.5 

every third day and results are used by the EPA to determine attainment/non-attainment of the EPA’s 

National Ambient Air Quality Standards (NAAQS). No adjustments were made for differences in 

sampling protocols across the various networks and is beyond the scope of this work. 

 

Performance Metrics 

There are a number of performance metrics available when comparing model results with 

observations. Here, the two primary metrics used are the normalized mean error (NME), which ranges 

from -100% to +∞ and normalized mean bias (NMB), which ranges from 0% to +∞, defined as: 
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where Cm is the model estimated concentration at station i, Co is the observed value at station i, and N 

is the number of observation-model pairs for the time period considered (Boylan and Russell, 2006). 

 

 

 

Ozone  
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 Ozone performance was evaluated for May through September, months that typically exhibit 

high ozone concentrations. Figure 23 indicates the NME and NMB for both 1-h and 8-h max ozone. 

Low NME and NMB for both the 1-hand 8-h metrics indicate good model performance.  

 

Figure 23. NME and NMB of 1-h and 8-h max ozone averaged across continental U.S. for May 

through September. 

 While the NME and NMB averaged across the continental U.S. indicate good model 

performance, Figure 24 provides the spatial NME for the 1-h ozone values. CMAQ exhibited poor 

performance in coastal regions by overpredicting 1-h and 8-h max ozone values. Eder and Yu (2006) 

also reported similar results using CMAQ v4.4 attributing the poor performance along the coast to a 

poor representation of coastal boundary layers and interaction with land/sea breezes by MM5 

(Gilliland et al. 2006).  
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Figure 24. NME for 1-h max ozone values as compared to the AQS monitoring network for May 
through September. 

 

Sulfate 

CMAQ performed reasonably well for SO4 with annual average NME values of 45.8%, 42%, 

and 40.9% when compared to observations from IMPROVE, STN, and CASTNet, respectively. NMB 

values (-36.4%, -36%, and -38.8%, respectively) indicate a tendency to underpredict concentrations. 

This underprediction occurred throughout the year (Figure 25) with no seasonal or regional bias. 

However, Figure 26 indicates that CMAQ performed well in the eastern U.S but poorly in the western 

U.S. 
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Figure 25. CMAQ and IMPROVE 2005 monthly average SO4 concentrations at IMPROVE 
monitoring sites across the continental U.S. 

 

Figure 26. 2005 annual average SO4 NME. 
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Nitrate 

CMAQ exhibited poor performance for NO3 when compared against IMPROVE, STN, and 

CASTNet observations with annual average NMEs of 119.8%, 86.1%, and 119.1% and NMBs of 

62.8%, 32.3%, and 81.1%, respectively. Furthermore, CMAQ overpredicted NO3 concentrations 

during winter months when NO3 concentrations are typically higher and underpredicted NO3 

concentrations during summer months (Figure 27). Figure 28 indicates that the overprediction of NO3 

in January occurs primarily in the eastern U.S. Yu et al. (2005) have indicated that errors in model 

predictions of NH4
+
 and NH3, SO4

-2
, and to a lesser extent HNO3 and NO3

-
 hinder CMAQ’s ability to 

accurately predict NO3 across the eastern U.S. 

 

Figure 27. CMAQ and IMPROVE 2005 monthly average NO3 concentrations at IMPROVE 

monitoring sites across the continental U.S. 
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Figure 28. January monthly average NO3 NMB. 

 

Nitric Acid 

While model performance for NO3 was relatively poor, CMAQ performance relative to 

HNO3 was good with a NME of 66.3% and NMB of 33.8% compared against CASTNet observations. 

CMAQ tended to underpredict HNO3 concentrations during winter months and overpredict during 

summer months. This suggests that CMAQ incorrectly predicts nitrate partitioning, predicting excess 

nitrate in the aerosol phase during winter months and excess nitrate in the gas phase during summer 

months. 

 

Ammonium 

Performance for NH4 fell somewhere between that of SO4 and NO3 with annual NME values 

of 67.1%, 45.4%, and 43.5% and NMB values of 20.5%, -12.2%, and -8.6% for IMPROVE, 

CASTNet, and STN, respectively. The high NME and positive NMB associated with the IMPROVE 

network is associated with monitors located in the southeastern U.S. (Figure 29). Temporally, CMAQ 
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overpredicted NH4 during winter months due to overpredictions of NO3 and underpredicted during 

summer months due to underpredictions of both NO3 and SO4.  

 

Figure 29. Annual average NH4 NMB. 

 

Organic Carbon 

Comparisons against observations from STN monitors indicates CMAQ exhibited reasonable 

performance for OC with a NME of 59.5% and a NMB of -48.2. Underprediction occurred 

throughout the year as well as throughout the U.S. with minimal variation in regional performance. 

One possible reason as to the underprediction of OC is uncertainty associated with modeling 

secondary organic aerosols (SOA). Recent updates to CMAQ have attempted to address this issue 

with the addition of several new SOA formation pathways in CMAQ (v4.7) as part of the aerosols 5 

module (Foley et al., 2010).  
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Elemental Carbon 

CMAQ performed relatively well for EC as compared to STN monitors with annual average 

NME of 65.7% and a NMB of 1.3%. While the low annual average NMB suggests CMAQ tended to 

only slightly overpredict EC, the value is in fact a combination of overpredictions and 

underpredictions dispersed spatially and temporally. Given that EC is a primary, non-volatile species 

in CMAQ, performance issues associated with it likely stem from uncertainties in emission 

inventories.  

 

PM2.5 

Given that CMAQ predicted PM2.5 concentrations are the sum of SO4, NO3, NH4, EC, OC, 

and an “other” constituent, it follows that performance is tied to each individual species. Overall 

performance was good with annual average NME values of 56.7%, 42.7%, and 42.9% and NMB 

values of 1.7%, -11.4%, and -10.8% compared against IMPROVE, STN, and FRM monitors, 

respectively. However, the annual average NMB is again misleading, where overpredictions occurred 

during winter months and underpredictions occurred during summer months, similar to NO3 (Figure 

30). Spatially, sites across the U.S. tended to underpredict PM2.5 with IMPROVE sites located in the 

western U.S. as the primary exceptions (Figure 31). 
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Figure 30. CMAQ and IMPROVE monthly average PM2.5 concentrations at IMPROVE monitoring 

sites located through the continental U.S. 

 

Figure 31. Annual average PM2.5 NMB. 
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Summary 

 We used the Atmospheric Model Evaluation Tool to compare CMAQ results from a 2005 

annual simulation against observations from AQS, STN, IMPROVE, CASTNet, and FRM networks. 

Results indicated good agreement of model and observations for 1-h and 8-h ozone maxima, 

reasonable agreement for SO4, NH4, HNO3, OC, EC, and PM2.5, and poor agreement for NO3. Given 

these results are within the range of those reported by comparable studies (Boylan and Russell, 2006; 

Eder and Yu, 2006; Tesche et al. 2006; and Appel et al., 2008b, Foley et al., 2010), we conclude that 

model performance is acceptable. 
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