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ABSTRACT 

Joshua Drucker:  Regional Industrial Dominance and Business Success:   

A Productivity-Based Analysis 

(Under the direction of Edward J. Feser) 

 

The relationship between industrial structure and economic performance has long 

interested researchers in regional science, industrial economics, and economic 

development.  Research on the subject, however, has largely overlooked the influence 

that regional industrial dominance—regional concentration within a specific industry—

may have upon smaller local firms in that industry.  This dissertation investigates the 

links between regional industrial dominance, agglomeration economies, and firm 

performance for selected U.S. industries, focusing on two main hypotheses:  1) plants in 

regional industries dominated by a few relatively large firms are less productive than 

establishments in the same industry located in other regions; 2) small establishments in 

dominated regional industries are less productive because they are limited in their ability 

to take advantage of regionally available external economies.   

Confidential micro-level data from the United States Census Bureau are used to 

estimate a cross-sectional production system at the plant level for three manufacturing 

sectors:  rubber and plastics, metalworking machinery, and measuring and controlling 

devices.  The models incorporate indicators of regional industrial dominance, spatially 

attenuating measures of agglomeration economies, and controls for other relevant
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establishment and regional characteristics.  Estimating production functions at the 

establishment level serves to address many of the methodological drawbacks of earlier 

production function work and supports direct tests of the research hypotheses. 

The primary finding is that regional industrial dominance has substantial negative 

impacts on production, especially for small, dominated establishments.  There is little 

evidence to support the second hypothesis that the diminished productivity of dominated 

businesses stems from reduced capacity to exploit localized agglomeration economies.  

The results demonstrate the importance of regional industrial dominance as a determinant 

of establishment productivity, and indicate that analysts and policymakers should 

examine regional industrial structure as a key component of the external environment that 

helps shape business performance and regional economic adaptability.  Further research 

will be required to understand the precise mechanisms by which regional industrial 

dominance acts to influence economic performance and to guide the design of 

appropriate policies for economic development.
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CHAPTER ONE:  INTRODUCTION 

1.1.  Overview 

The relationship between industrial structure and economic performance has long 

been of interest to researchers in regional science, business and industrial organization, 

and economics, as well as to government officials and practitioners of economic 

development planning.  A highly influential article published by Benjamin Chinitz in 

1961 focused attention on the effects that industry size, structure, and economic 

diversification have on firm performance and regional economic health.  The article also 

implies a related but conceptually distinct issue that has been largely overlooked since:  

the influence that regional concentration within a specific industry has upon smaller local 

establishments in that industry. 

Chinitz suggests that regional concentration may act through input prices, capital 

accessibility, labor sharing or pooling, and the conduct of entrepreneurial activity, to 

reduce the regional availability of agglomeration economies and ultimately diminish 

economic performance.  For instance, major corporate players may set labor market 

conditions with respect to wage rates, benefits, bargaining, and employment stability, 

such that smaller firms have difficulty attracting and retaining skilled workers.  Regional 

lenders accustomed to serving large companies may be less inclined to serve smaller, 

more entrepreneurial, and higher risk businesses.  Local and state government agencies, 

as well as universities and community colleges, may be more responsive to the needs of 
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dominant firms, thereby tilting key institutional and policy conditions toward larger, 

established businesses and away from smaller competitors. 

This study investigates two interrelated research questions.  The first is whether 

manufacturing plants in regions and industries that are dominated by a few relatively 

large businesses are less productive, other things being equal, than establishments in the 

same industries that are located in regions characterized by a broader firm size 

distribution.  The second, more specific, hypothesis postulates that small establishments 

in dominated regional industries are less productive because they are limited in their 

ability to capture regional agglomeration benefits and thus face rigidities in deploying 

and adjusting production factors to maximum advantage. 

The research is performed using the confidential Longitudinal Research Database 

(LRD) of the United States Census Bureau.  Establishment information from the LRD is 

combined with data from publicly available sources to create indicators of regional 

industrial dominance and potential agglomeration economies, along with relevant 

controls.  A cross-sectional establishment-level production function is estimated jointly 

with its associated factor share equations for several industries to model explicitly the 

influence of regional industrial dominance on business performance.  The use of 

establishment-level data avoids many of the theoretical and methodological pitfalls 

encountered in earlier studies of agglomeration and productivity.  In addition, the study 

explicitly examines the geographic dimension of interfirm relationships by incorporating 

spatially attenuating measures of potential agglomeration economies. 
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1.2.  Research Significance 

This research contributes directly to the literature on regional diversity, 

agglomeration, business concentration, and industrial structure.  It does so by 

investigating a heretofore understudied aspect of industrial structure—the influence of 

industrial dominance at the regional level on establishment performance—and 

illuminating key interrelationships among regional industrial dominance, agglomeration 

economies, and the other characteristics of regions and establishments that determine 

economic performance at the plant, industry, and regional levels.  The estimation results 

provide insight into the factors that determine the ability of relatively small 

establishments to take advantage of productivity-enhancing local external economies. 

The dissertation extends the regional science literature by focusing on the intra-

industry aspects of industrial organization, by examining industrial structure using a 

productivity framework, and by considering explicit measures of the sources of 

agglomeration economies that reveal the spatial scale of different interfirm effects.  

Indeed, the topic aims squarely at two subjects recently identified as central to the current 

development of regional science:  the role of agglomeration in economic growth, and the 

spatial extent of localized agglomeration externalities (McCann and Shefer 2005).  The 

results add to the growing body of work that models productivity at the establishment 

level, doing so with a nationwide dataset.  Finally, the analysis helps develop a clearer 

picture of the extent of regional industrial dominance in selected manufacturing 

industries across the United States, providing a baseline for future work on the topic. 
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1.3.  Policy Significance 

The central aim of economic development practice is to create a regional 

economic environment that is nurturing to local businesses and conducive to highly 

productive economic activity.  Accordingly, local access to valuable inputs such as 

inexpensive and/or specialized labor, intermediate suppliers, financial capital, and 

industry-relevant information is crucial to long-term sustainable regional economic 

progress.  Despite a long history of academic research concerning the regional context of 

industrial activity, the specific relationships that join localized business resources with 

firm performance are not well understood.  The largely unexplored area of the interaction 

of regional industrial structure with agglomeration economies carries substantial 

implications for the design of economic development policy.  Without concrete and 

detailed knowledge of the effects that industrial dominance has on firms’ use of localized 

inputs and their resulting economic performance, policy makers lack the information 

necessary to develop effective policy instruments to address issues related to regional 

industrial structure and input accessibility. 

Chinitz suggests that a concentrated regional corporate structure may limit 

business adaptability and performance.  In particular, the hypotheses examined in this 

dissertation argue that regional industrial dominance may act as a limiting factor on the 

ability of local firms to deploy and adjust workforce, capital, and other factors of 

production to maximum advantage and to engage in entrepreneurship.  Because small 

business growth and entrepreneurial activity are vital for regional adaptability and 

economic restructuring, industrial concentration may be a crucial determinant of regional 

adjustment capacity (Audretsch 2001; Acs and Varga 2005).  In effect, industrial 
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dominance may be a specific mechanism by which regions and businesses “lock-in” to a 

particular set of industrial competencies.  As markets evolve and technology changes, 

those competencies—once key regional economic engines—eventually may become 

economic liabilities (Arthur 1989; Grabher 1993; Bergman 2002; Martin and Sunley 

2006).  Conversely, negative lock-in effects might be minimized or avoided to the degree 

that adjustment via new business growth and entrepreneurial activity are maximized.  In 

other words, industrial dominance may be linked with economic adjustment rigidity at 

the regional scale.  Although this research is conducted at the level of the establishment, 

regional industrial dominance is viewed as a key influence on regional-level outcomes. 

The study is particularly relevant to economic development policy in the context 

of the recession of the early 2000s and the subsequent jobless recovery and industrial 

restructuring in many areas of the United States.  American regions continue to face 

major workforce dislocation as labor-intensive industries migrate to Asia, Latin America, 

and other low-cost locations.  Numerous smaller regions, such as “one-company towns”, 

must remake themselves entirely in the face of heightened global competition.  At both 

the regional and national levels, increasing business concentration in many sectors in the 

United States may have serious implications for the capacity of regions to adjust to new 

economic conditions promptly and with a minimum of worker dislocation.  To address 

these challenges, local policymakers require a better understanding of regional capacity 

to adapt to national and global economic shifts.  It is hoped that the findings of this study 

will prove useful to both practitioners and researchers interested in understanding the 

features of establishments and industries that either enhance or limit the capacities of 
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regional economies to adjust continually to changing markets, demand, tastes, and 

technology. 

 

1.4.  Organization 

The next chapter of this dissertation begins by defining regional industrial 

dominance.  The bulk of the chapter then focuses on reviewing two bodies of theoretical 

and empirical literature that constitute the essential background for the subject:  firm size 

distributions and regional agglomeration.  Chapter Three presents the conceptual 

framework guiding the study, describing the relationships hypothesized to exist among 

regional industrial dominance, agglomeration economies, and establishment productivity.  

Following a discussion of the main research designs that have been developed to 

investigate economic productivity, Chapter Four describes the model and statistical 

methodology used in the analysis.  The data sources and variables are detailed in Chapter 

Five, along with related measurement issues.  Chapter Six contains descriptive analyses 

of the samples and model variables.  The heart of the dissertation is Chapter Seven, 

which presents and analyzes the principal modeling results, and Chapter Eight reports on 

three extensions of the primary modeling strategy.  Chapter Nine concludes by 

summarizing the main findings of the study, discussing the implications for research and 

policy, and suggesting possible areas for future research concerning regional industrial 

dominance. 



CHAPTER TWO:  REGIONAL INDUSTRIAL DOMINANCE, 

INDUSTRIAL ORGANIZATION, AND AGGLOMERATION 

2.1.  Introduction 

 As suggested by the designation “regional industrial dominance”, the concept at 

the heart of this dissertation is defined with reference to characteristics of both regions 

and industries.  As such, the appropriate background for the research draws from 

understandings both of industrial structure and of the functional characteristics of 

economies at the regional scale.  This presents a substantial challenge in that research 

efforts in the fields of industrial organization and regional economics mainly have been 

conducted separately from each other.  The ambition in this chapter is to bring together 

the theory and empirical work from both bodies of research that is relevant to the 

investigation of regional industrial dominance. 

Each of the two areas of scholarship—industrial organization and regional 

economics—is immense, ample for years of pure reading and classification labors.  No 

attempt is made here to describe or provide an overview of the large amount of research 

in subjects such as competitive market operation, production strategies, business 

performance, and regional innovation systems that touch only peripherally on the topic of 

regional industrial dominance.  The chapter concentrates instead on the portions of the 

fields of industrial organization and regional economics directly relevant to the issues of 

the regional organization of industries and localized external factors determining business 

performance that are central to this study.
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After introducing the concept of regional industrial dominance, this chapter 

reviews the two topics that form the most appropriate theoretical foundation for this 

research.  The first, drawn primarily from the industrial organization literature, concerns 

regularities in firm or establishment size distributions.  The second, regional 

agglomeration, is the theoretical backing employed by Chinitz.  These two threads form 

the main underpinnings of the empirical analyses designed and conducted in Chapters 

Three through Eight.  Two works that constitute key antecedents to this study are 

described in particular detail. 

 

2.2.  The Concept of Regional Industrial Dominance 

Urban economist Benjamin Chinitz has long emphasized supply-side issues in 

regional economics (for interpretations and discussions of Chinitz’s ideas, see, for 

example, Carlino 1980; Malamud 1987; Netzer 1992; Norton 1992).  In his seminal 

article in the American Economic Review (1961), Chinitz discusses several interesting 

and important issues surrounding regional industrial structure, including the effects that 

one industry’s size has on factor prices in other regional industries, the ways in which 

non-diversified economies differ from diversified economies as locations for industrial 

development, and how overall economic structure impacts the regional availability of 

business services and other inputs.  These topics have since received considerable 

attention in various segments of the literature.  In particular, there is quite a large 

literature on the impacts of industrial diversity, and the body of research that examines 

the relationship between the regional establishment size distribution and growth is 

substantial as well (see sections 2.3  and 3.3). 
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Yet Chinitz’s article also suggests a related but conceptually distinct question:  

how does regional industrial dominance—the extent to which the activity of an industry 

within a particular region is concentrated in a single firm or small number of firms—

influence the competitive performance of other local firms within that industry?  Chinitz 

suggests that the influence of industrial concentration in general may act through input 

prices, financing or capital availability, labor sharing or pooling, and entrepreneurial 

activity.  He also proposes that industrial concentration may influence the regional 

availability of agglomeration economies. 

Little theoretical or empirical work has been conducted directly on the particular 

issue of intra-industry domination.  Debates on the significance of the Chinitz paper have 

focused on industrial diversity or the regional firm size distribution (Evans 1986; Carlino 

1987; Norton 1992).  Although their study has yielded important implications, the 

concepts of industrial diversity and the firm size distribution are not by themselves 

sufficient to adequately test the domination hypothesis.  Industrial diversity pertains to 

sectoral mix (the combination of economic activities in a region) rather than industrial 

structure, and both concepts indicate corporate domination only in aggregate terms.  The 

distinct issue of regional industrial dominance may be crucial for understanding the 

dynamics of regional economies in the vast majority of regions that neither experience 

overriding economic dominance by a single firm or industry nor have approximately 

competitive markets in each industry. 
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2.3.  Firm and Establishment Size Distributions 

Industrial organization and strategy would seem to be a logical discipline within 

which to seek prospects and guidance for examining the issue of regional industrial 

dominance.  The literature concerning industrial organization, competitive market 

operation, production strategies, and business performance is immense and varied, but the 

vast majority does not consider the issues of industrial structure and external factors 

determining business performance at the regional scale.  The line of inquiry that most 

closely relates to the research topic of regional industrial dominance centers around the 

postulate termed Gibrat’s Law. 

In 1931, French economist Robert Gibrat observed that the national distribution of 

the size of manufacturing plants was highly skewed.  His initial interest in examining the 

empirical plant size distribution in French manufacturing was motivated by evidence of 

certain skew patterns arising with some frequency in non-economic fields such as biology 

and astronomy (Sutton 1997a).  In fact, mathematically-related skew distributions such as 

the Yule and Pareto distributions appear in a wide range of diverse biological, social, and 

geographic settings, from the rank-ordering of city populations to the number of species 

per genus to the frequencies of words appearing in prose (Simon 1955; Ijiri and Simon 

1977; Ioannides and Overman 2003; Cordoba 2008).
1
  The skew nature of firm sizes has 

                                                 
1
 The Yule distribution, sometimes termed the Yule-Simon distribution, is discrete with probability mass 

function 
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where k is an integer greater than or equal to one and θ is positive.  The Yule distribution has the property 
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so that the tail of the distribution follows Zipf’s law:  the relative frequency of the k
th

 largest size category 

is inversely proportional to a power of k.  The Pareto distribution, also known as the Bradford distribution, 
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been observed to be robust across industrialized nations, over time, and for different 

definitions of size (Collins and Preston 1961; Ijiri and Simon 1977; Stanley et al. 1995; 

Axtell 2001). 

The surprising commonness of particular skew distributions has led researchers to 

seek broad theoretical mechanisms that may apply across the genera of observed 

phenomena (Ijiri and Simon 1977; Caves 1998; Audretsch 2001).  The dynamics of entry 

and exit present one such mechanism that applies well to a variety of economic as well as 

non-economic phenomena.  Gibrat suggested that the pattern of French manufacturing 

plant sizes might be explained by firm growth rates being independent of the firm size 

already attained, the proposition that has been known since as Gibrat’s Law of 

Proportional Effect (Sutton 1997a). 

Since Gibrat’s initial foray, the subject of the firm size distribution has received 

less attention than many other more prominent topics in industrial organization, in part 

because a thorough investigation requires a hefty amount of data available at a 

disaggregate level (Sutton 1997a; Gans and Quiggin 2003).
2
  Nevertheless, a 

considerable volume of work has offered, refined, and tested theoretical models designed 

to explain the observed skewed distribution of firm sizes, as well as related dynamic 

                                                                                                                                                 
is a continuous analog of Zipf’s law that approximates the tail of the Yule distribution.  The Pareto 

distribution has probability mass function 

1
),,(

+
=

α

αβ
αβα

x
xf  

where α and β are parameters and x is greater than or equal to β.  See Simon (1955), Ijiri and Simon (1977), 

and Fujiwara et al. (2004) for more details on the Yule, Zipf (zeta), and Pareto distributions.  Bottazzi and 

Secchi (2003a) and de Wit (2005) discuss alternative skew distributions. 

 
2
 Some studies have used aggregated data, but their conclusions are subject to possible aggregation bias 

(Bottazzi and Secchi 2003a; Fagiolo and Luzzi 2006). 
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measures such as relative concentration, turnover, and rank mobility (for reviews, see 

Sutton 1997a; Caves 1998; Audretsch et al. 2004). 

Despite the obvious link (via aggregation) between firm behavior and industry-

level (or regional) structure, the literature has for the most part approached the size 

distribution of firms and industries separately.  This partition has some empirical 

justification:  phenomena that evidence regularities across industries, such as turbulence 

in market shares, often have quite distinct behaviors at different scales or levels of 

aggregation (Davies and Geroski 1997; Bottazzi et al. 2007).  In addition, firm size 

distributions are nearly always considered aspatially within the industrial organization 

literature, with firms or plants classified by industry or sector irrespective of geographic 

location. 

At the firm level, the Gibrat proposition has generally been upheld only for a 

particular subset of firms:  those that not only survive an initial period subsequent to 

market entrance but that also attain sufficient size within the initial period to achieve 

minimum efficient scale for production (Becchetti and Trovato 2002).  Studies examining 

large incumbent firms in developed nations report support for Gibrat’s Law (Simon and 

Bonini 1958; Hymer and Pashigian 1962; Hall 1987; Axtell 2001; Bottazzi and Secchi 

2003b; Geroski et al. 2003; Fujiwara et al. 2004; Bottazzi and Secchi 2005; 2006; 

Goddard et al. 2006; Bottazzi et al. 2007; Gupta et al. 2007), whereas myriad 

investigations of broader cross-sections of firms consistently find newer and smaller 

firms to grow faster than Gibrat’s Law would predict and also to suffer from higher 

mortality rates (Evans 1987a; 1987b; Hall 1987; Schmalensee 1989; Dunne and Hughes 

1994; Mata 1994; Hart and Oulton 1996; Sutton 1997a; Harhoff et al. 1998; Dinopoulos 
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and Thompson 1999; Almus and Nerlinger 2000; Audretsch 2001; Hart and Oulton 2001; 

Lotti et al. 2001; Goddard et al. 2002; Hamilton et al. 2002; Correa Rodriguez et al. 

2003; Lotti et al. 2003; Rodriguez et al. 2003; Esteve-Perez et al. 2004; Lotti and 

Santarelli 2004; Persson 2004; Bartelsman et al. 2005; Cefis and Marsili 2005a; 2005b; 

Harris and Trainor 2005; Taymaz 2005; Ushijima 2005; Yasuda 2005; Calvo 2006; 

Rossi-Hansberg and Wright 2006; Cabral 2007; Lotti 2007; Moreno and Casillas 2007; 

Rufin 2007; Strotmann 2007; Petrunia 2008; Box forthcoming).
3,4

  Numerous models of 

firm entry, survival, growth, and exit behavior have been proffered in the industrial 

organization literature to explain these observed dynamics. 

When examined at the industry scale, idiosyncratic or sector-specific mechanisms 

tend to dominate firm size distributions, particularly for smaller industries or sectors, 

suggesting that it is not possible to capture the range of observed empirical regularities in 

a single model or even a single type of model (Schmalensee 1989; Sutton 1997a; 1997b; 

Audretsch et al. 2004; de Wit 2005).
5
  In the Netherlands, Marsili’s (2005; 2006) 

analyses suggest that industry-level departures from Gibrat’s Law in manufacturing 

might be related to the technological or innovation regime of the industry, though no 

                                                 
3
 Although Bottazzi et al. (2001) reject Gibrat’s Law for the world’s largest pharmaceutical firms, 

subsequent studies performed on essentially the same sample (Bottazzi and Secchi 2005; 2006) as well as 

on different samples of pharmaceuticals firms (De Fabritiis et al. 2003; Buldyrev et al. 2007; Pammolli et 

al. 2007) either uphold the proposition or explain observed deviations in terms of behavior regarding 

industrial submarkets.  Cefis et al. (2007) also reject Gibrat’s Law for pharmaceutical companies, finding 

that growth rates differ systematically but seemingly not on the basis of firm size. 

 
4
 Firms in developing or transitional parts of the world may not follow the same patterns as those in 

developed nations.  For example, Bigsten and Gebreeyesus (2007) report that small Ethiopian firms grow 

faster than larger firms in both manufacturing and services, but in a study of nine sub-Saharan African 

nations Van Biesebroeck (2005) finds that large manufacturers experience greater average growth rates 

than small companies.  Siebertova and Senaj (2007) demonstrate a negative association between firm size 

and growth rate in Slovakia, but note that another recent study of that country found no relationship. 

 
5
 This is true despite the logical necessity that there be substantial regularities across industries in order for 

them to aggregate to the whole economy (Ijiri and Simon 1977, p. 19). 
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clear rule can be established.  In the aggregate, the services display much the same 

characteristics as the manufacturing sector (Lotti 2007), yet Audretsch et al. (2004) find 

that hospitality services industries follow Gibrat’s Law much more closely, perhaps due 

to lesser survival bias in the industry.  Substantial differences across industries have been 

uncovered in many other nations as well, with no consistent explanation sufficing for the 

disparities (Tybout 2000; Bottazzi et al. 2002; Lotti and Santarelli 2004; Reichstein and 

Jensen 2005; Bottazzi et al. 2007).  The skewness of firm sizes in individual industries 

may result to some degree from industry-specific processes such as economies of scope; 

another possibility is that the underlying processes yield multiple viable equilibria 

(Sutton 1997a; 1997b).  The particular form of an industry’s firm size distribution may 

even change over time while retaining its essential skewness (Cabral and Mata 2003; 

Gatti et al. 2004; Bertinelli et al. 2006; Marsili 2006). 

There is an additional major impediment to modeling industry-level firm size 

distributions.  Suggesting a precise distribution falls into the class of what are termed by 

Ijiri and Simon to be “extreme hypotheses,” with regard to which standard inferential 

statistics are not appropriate (1977, p. 109).  Extreme hypotheses are those which seek to 

match a particular distribution to a phenomenon rather than support a weaker statement 

of general relationship.  Because inferential statistics cannot differentiate incorrect 

extreme hypotheses from inaccuracies arising from the inherent simplification 

represented by the distributional form, they give little aid in distinguishing invalid 

generalizations from those that are simply approximate (Ijiri and Simon 1977, pp. 113-
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114, 155).
6
  Extreme hypotheses are not subject to explicit confirmation or falsification, 

but only to a process of testing and refining (and perhaps rejecting) through the analysis 

of mechanisms capable of producing the generalization (Ijiri and Simon 1977, pp. 122-

123; Powell 2003). 

One way to avoid the problems of extreme hypotheses is to measure firm size 

distributions with simple indicators rather than fully defined distributions (Needham 

1978; Hay and Morris 1991).  This tactic has several drawbacks.  Summary statistics 

contain less information than a full distribution, and their use may mask pertinent 

information (Golan et al. 1996).  There are numerous possible indicators, possessing 

different properties, with no general agreement upon which are the best or most useful 

(Amato 1995).
7
  Furthermore, fitting a distribution is ultimately more useful than 

employing simple unitary indicators if the distribution may be demonstrated to have a 

theoretical as well as empirical basis, thus allowing for causal modeling and more direct 

analysis of policy implications (Ijiri and Simon 1977, pp. 13, 150). 

Despite the inherent deficits of the strategy, summary statistics are regularly 

substituted for the full specification of the firm size distribution in industrial organization 

studies (examples include Martin 1979; Shepherd 1982; Attaran and Saghafi 1988; 

Kambhampati 1998; Robinson and McDougall 1998; Robinson 1999; Kelly and Gosman 

2000; Pryor 2001; Bottazzi et al. 2007).  Measures of concentration based on size traits 

such as employment or sales have been examined extensively in relation to industry-level 

profit rates, with early research finding that more concentrated industries tend to earn 

                                                 
6
 Ijiri and Simon note that with large enough samples, statistical tests will always reject hypotheses of 

theoretical distributions because the distributions are “approximate theories that do not capture the fine 

structure of phenomena” (1977, p. 4). 
7
 Several of the most commonly employed measures of industrial structure are described in detail in 

Section 5.6. 
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higher profit rates (e.g., Bain 1951; Bradburd and Over 1982).  More recent studies have 

found the reverse generally to be true once market share is included as a control and have 

suggested a much more complex relationship between market power, efficiency, and 

performance (Ravenscraft 1983; Kwoka and Ravenscraft 1986; Hay and Morris 1991; 

Amato 1995; Bennenbroek and Harris 1995; Berger 1995; Azzam 1997; Bajtelsmit and 

Bouzouita 1998; Berger and Hannan 1998; Mueller and Raunig 1999; Azzam and 

Rosenbaum 2001; Choi and Weiss 2005; Kambhampati and McCann 2007; see reviews 

in Schmalensee 1989; Amato and Wilder 1995; Azzam et al. 1996; Cool and Henderson 

1998; Fourie and Smith 1998; 1999). 

Industrial concentration has also been linked to productivity, changes in 

productivity over time, and innovation intensity.  Empirical studies in several nations 

reveal that industrial concentration has a curvilinear relationship with technical 

production efficiency, wherein increases in concentration lead to greater productivity up 

to a point, beyond which further concentration decreases productivity (Caves and Barton 

1990; Green and Mayes 1991; Caves 1992; Nickell 1996; Gumbau-Albert and Maudos 

2002).  In Japan, output growth and industrial concentration are positively related (Cortes 

1998), but productivity in R&D-performing manufacturing firms is lower in industries 

with larger aggregate price-cost margins (an indicator of market power) (Okada 2005).  

Concentration yields lower productivity growth in manufacturing companies in the 

United Kingdom (Nickell 1996; Nickell et al. 1997).  Gopinath et al. (2004) find that 

increases in concentration in U.S. manufacturing industries have an inverted-U-shaped 

relationship with the growth rate of productivity similar to that found for production 

efficiency.  More concentrated U.S. industries obtain smaller marginal productivity 
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benefits from information technology (Melville et al. 2007).  Although early studies 

indicate a similar nonlinear inverted-U association between industrial concentration and 

the intensity of research and development (R&D) activity (the first such analysis being 

Scherer 1967), the consensus in the literature is that the causal relationship is 

bidirectional (i.e., rapid innovation also leads to industrial concentration) and depends on 

industry characteristics (Scherer 1980; Cohen and Levin 1989; Vossen 1999; 

Bhattacharya and Bloch 2004; Rogers 2004).  Moreover, the intensity of R&D efforts 

expended is not necessarily correlated with the innovative output rate achieved. 

The properties of extreme hypotheses and the empirical differences observed 

across industries help to explain why the main thrust of research around Gibrat’s Law has 

treated the distribution of firm or plant sizes as an empirical outcome and focused on the 

task of uncovering and elucidating possible underlying causal mechanisms (Sutton 

1997a).
8
  In contrast, the segment of regional science and economics that has examined 

the sizes of firms or plants has most often approached the size distribution as a regional 

trait that itself affects other regional outcomes of interest, the approach adopted in this 

research.  (The discussion of these findings is postponed to the review of empirical 

research on establishment size and industrial diversity in section 3.3).  Several studies do 

suggest that industrial concentration is positively related to productivity and productivity 

growth for low levels of concentration but detracts from productivity at higher 

concentration levels.  Nevertheless, the relationship of industrial concentration to 

productivity, as well as other outcomes such as profit levels and innovation, is complex 

and depends on industry-specific characteristics.  As a practical consideration, the 

                                                 
8
 This characterization is evident to a much lesser degree with regard to those works utilizing summary 

statistics. 
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difficulties encountered in attempting to fit fully-specified firm size distributions at the 

industry level encourage the careful application of summary statistics in this research.  

Perhaps the most important conclusion to be drawn for this study from the existing 

research on firm size distributions is the necessity of pursuing the investigation of 

regional industrial dominance on the basis of individual industries, as a subject distinct 

from previous investigations of national or industry-level market power.  Regarding the 

question of how exactly to do so, there is much to be gained from the theory of 

agglomeration economies. 

 

2.4.  Agglomeration Economies 

The most suitable theoretical foundation for investigating the effects of regional 

industrial dominance is that used by Chinitz himself, the theory of agglomeration.  

Agglomeration is central to the modern understanding of regional development, and the 

body of research on agglomeration economies is massive and complex, spanning multiple 

subdisciplines within economics, geography, and regional science.  Rather than 

attempting to encapsulate this enormous literature, this section provides a brief overview 

of the development of the subject, linking agglomeration theory with industrial structure, 

and then concentrates on a review of empirical approaches.  For more extensive reviews 

of agglomeration theory, see Malmberg (1996), Feser (1998a), Hanson (2001), Rosenthal 

and Strange (2004), and Renski (2006). 
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2.4.1.  The Theory of Agglomeration Economies 

The earliest basis for postulating that regional industrial context affects firm 

performance is likely Alfred Marshall’s classic analysis of the benefits of firm co-

location in specialized industrial districts.  Marshall ([1890] 1910) identifies three major 

sources of external economies arising from regional co-location of similar businesses.  

The first is improved access to specialized inputs.  The larger the local industry, the more 

feasible and efficient specialization becomes among producers for that industry, and thus 

the less expensive it becomes for firms in the industry to purchase and utilize specialized 

inputs in their production processes.  Marshall discusses the example of highly 

specialized machinery that, while not cost-effective to own and operate within a single 

producing firm, is able to “pay its expenses” if operated for the benefit of many firms 

([1890] 1910, IV.x.3, p. 271).  The concentration of purchasing power urges local 

suppliers to cater to the particular needs of the industry. 

Second, labor advantages accrue analogously to those concerning material inputs.  

A spatial grouping of firms with similar or complementary labor needs creates a sizeable 

local pool of qualified labor, increasing job opportunities for specialized skilled workers 

and raising the chances of a good match between employer labor demand and employee 

skill supply.  In contrast, an isolated firm “is often put to great shifts for want of some 

special skilled labour; and a skilled workman, when thrown out of employment in it, has 

no easy refuge” ([1890] 1910, IV.x.3, pp. 271-2).  This benefit extends to associated 

input producers as well, since larger input markets also allow for a greater division of 

labor among input-producing firms. 
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The third Marshallian external economy relates to simplified diffusion or spillover 

of knowledge and innovations.  Locations with many firms engaged in similar production 

processes have greater potential for information exchange, whether through firm-level 

interactions, interpersonal communication, or employee job switches, that speeds and 

improves technological progress.  Marshall’s famous explanation is that where a 

particular industry is concentrated, “mysteries of the trade become no mysteries; but are 

as it were in the air…if one man starts a new idea, it is taken up by others and combined 

with suggestions of their own; and thus it becomes the source of further new ideas” 

([1890] 1910, IV.x.3, p. 271). 

Although Marshall’s original exposition of the notion of agglomeration 

economies is more than a century old, his conception has proven remarkably durable.  

Theoretical work on the subject has concentrated mainly on further clarifying the original 

three Marshallian sources of externalities (agglomeration economies) and extending the 

list of possible agglomeration economy sources (Feser 1998a).  Many studies adopt the 

distinction proffered by Hoover (1937) between localization and urbanization economies 

(see section 2.4.2.2).  Hoover defines localization economies as those advantages that 

accrue to co-located firms within a particular industry, and urbanization economies as the 

benefits available to all types of firms in a single location.  With respect to knowledge 

spillovers and innovation, Jacobs (1969) stresses that the cross-fertilization of ideas 

across diverse industries is crucial for regional economic dynamism, and Porter (1990) 

argues that competitive rivalry within industries improves innovation and performance.  

These ideas often are termed “Jacobs externalities” and “Porter externalities” in the 

literature and have been tested repeatedly against Marshall’s concept of intra-industry 
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knowledge spillovers (section 2.4.2.3) (Audretsch 2003).
9
  Another commonly raised 

distinction separates static economies (short-term reversible advantages) from dynamic 

economies (benefits realized in the long run, such as heightened technological learning) 

(Glaeser et al. 1992; Harrison et al. 1996; Feser 1998a).  Further conceptual divisions of 

agglomeration economies have been suggested (e.g., Parr 2002a; 2002b; Parr 2004) but 

for the most part have been inessential to the mainstream of agglomeration economy 

research. 

 There is some overlap between the agglomeration economies and industrial 

organization literatures.  Stigler suggested in 1951 that localization economies may 

provide an organizational alternative to vertically integrated firms; a recent empirical 

study supports this contention, albeit weakly (Holmes 1999).  Subsequent authors have 

considered as well the advantages of proximity for gaining external economies of scope 

(multiple goods production) and reducing linkage costs, such as for conducting 

transactions or entering into collaborative agreements (Scott 1986; 1988b; Pudup 1992; 

Enright 1995; Renski 2006).  In all of these cases, agglomeration economies alter the 

optimal firm organizational structure, allowing for greater specialization and efficiency. 

The “new industrial districts” literature departs from pure agglomeration theory 

by embracing sociologist Mark Granovetter’s (1985) critique of classical and neoclassical 

economics as “undersocialized”, i.e., ignoring the fact that economic relationships occur 

within social structures and thus are affected by cultural and historical factors.
10

  Work in 

                                                 
9
 In this context, Marshall’s knowledge spillover agglomeration economy is commonly referred to as the 

Marshall-Arrow-Romer (MAR) type of externality to credit the influential formalizations of the benefits of 

knowledge presented by Arrow (1962) and Romer (1986). 

 
10

 Granovetter also criticized institutional economists for “oversocializing” individual behavior, or 

modeling actors as following the dictates of habit or custom automatically, at the expense of rational choice 

(1985, p. 485). 
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this mode emphasizes the “embeddedness” of economic interactions within the social 

fabric, incorporating theories of social interaction, transaction costs, and trust along with 

Marshallian agglomeration economies to analyze the organization of production in which 

proximity advantages accrue to firms from social and institutional as well as economic 

relationships (Harrison 1992; Feser 1998a; Malmberg and Maskell 2002; Corolleur and 

Courlet 2003).  The Emilia-Romagna region of Italy has become the paradigmatic source 

for examples of such districts, drawing from Piore and Sabel’s (1984) description of a 

flexible production organization based on small manufacturers that simultaneously 

compete for business and learn from each other in formal and informal cooperative 

networks.  Given the importance placed on local history and difficult-to-measure social 

and contextual factors, and the fact that the industrial districts have not become as 

widespread as envisioned by some proponents, it is not surprising that most research on 

new industrial districts has been in the form of case studies (Appold 1995; Feser 1998b; 

Raco 1999; Helmsing 2001; Feser and Sweeney 2002; Essletzbichler 2003; examples 

include Scott 1988b; Saxenian 1994; Enright 1995; Suarez-Villa and Rama 1996; Coe 

2001; Kloosterman and Lambregts 2001; Rantisi 2002; Watts et al. 2003; Molina-

Morales and Martinez-Fernandez 2004; Mota and de Castro 2004; Muscio 2006). 

Aside from these intersections, most industrial organization research concentrates 

on national or industry-specific structural attributes, whereas agglomeration economies 

work focuses specifically on the conditions constituting the regional economic 

environment.  Conceptually, the topic of regional industrial dominance is situated in the 

juncture, defined with reference to both localized environmental conditions and industrial 

structure.  Agglomeration theory nevertheless provides a suitable and logical framework 
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for studying regional industrial structure.  The theories of localization economies and 

new industrial districts presented above cross the disciplinary boundary successfully, 

demonstrating that agglomeration theory is effective in explaining regional- and firm-

level organization and behavior.  The acknowledged importance of local and situational 

factors, however, suggests that to achieve the fullest possible understanding of the 

operation and implications of regional industrial dominance it may be necessary to 

implement more than one research strategy.
11

  This study concentrates on one approach, 

employing the theory of agglomeration economies to develop large-sample quantitative 

analyses of the effects of regional industrial dominance. 

 

2.4.2.  Empirical Studies of Regional Agglomeration Economies 

There is an extensive body of research that investigates the agglomeration 

economies generated by the regional proximity of like as well as dissimilar firms.  

Because external economies cannot be measured directly, empirical analyses instead 

estimate potential agglomeration economies based on observable characteristics 

(Richardson 1974a).  Overall, quantitative research in the area has been substantially 

encumbered by persistent methodological impediments and poor quality data.  One frank 

assessment asserts that empirical research has not managed to keep up with theoretical 

developments in the subject (David 1999).  Yet work on the subject continues unabated, 

                                                 
11

 This dissertation is part of a larger research project funded by the National Science Foundation that 

employs multiple research design strategies.  This micro-level productivity analysis is one aspect; the 

project also includes case study research concerning the same basic questions.  The purpose of conducting 

case studies is to explore the contextual issues that affect the relationships between corporate dominance, 

agglomeration economies, and productivity in more depth and detail than is possible through formal 

productivity analysis.  The quantitative modeling approach taken in this dissertation maximizes external 

validity, whereas case studies permit greater internal validity in investigating complex institutional and 

contextual factors at the obvious expense of generalizability (Yin 1994).  To the degree that the findings are 

consistent, the combination of this analysis with the complementary case studies will yield more robust 

conclusions. 
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and the accumulation of results yields interesting regularities that provide direction to 

continuing research efforts.  Recent approaches, in particular those using data at the 

establishment level, hold substantial promise. 

 

2.4.2.1.  Size, Density, and Productivity 

The most frequently adopted empirical approach to studying agglomeration is to 

examine productivity across a range of business environments, relating differences in 

measured or estimated performance to indicators of local or regional agglomeration 

economies (Moomaw 1983a; Malamud 1987; Glaeser et al. 1992; Gerking 1994; Aji 

1995; Malmberg 1996; Rosenthal and Strange 2004).  By modeling a production function 

that relates output levels to standard production inputs and other factors of interest, the 

effects of external economies may be measured with shift parameters.  As a simplifying 

assumption, most studies specify the parameters as Hicks-neutral.
12

  Through the early 

1990s or so, secondary data were all but unavailable at the firm level, forcing empirical 

analyses to make use of regional or industry measures despite the potential bias 

introduced by insufficiently disaggregate variables.  In addition, because even aggregate 

capital information is not readily available, many researchers have had to introduce 

convoluted econometric strategies to replace the capital input in productivity models.  

More recently, analyses have made use of data at the establishment level to avoid these 

limitations (see section 2.4.2.5; see also sections 4.2.1 and 4.2.2 for further discussion of 

methodological issues in productivity studies). 

                                                 
12

 A Hicks-neutral shift does not alter the levels of use of standard inputs relative to one another.  Factor-

augmenting terms, in contrast, allow the ratios of standard inputs into production to change.  See section 

4.2.1. 
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City or regional size was used to indicate agglomeration economies in early 

productivity-based studies, with population found to be positively related to labor or total 

productivity (Aberg 1973; Sveikauskas 1975; Segal 1976; Fogarty and Garofalo 1978; 

Moomaw 1981b).  Population density has commonly been substituted for size as a proxy 

for agglomeration economies, revealing a similar positive association with production or 

productivity that holds across a range of industrialized nations (e.g., Richardson 1974b; 

Nicholson 1978; Tabuchi 1986; Ciccone and Hall 1996; Ciccone 2002).  Seeking an 

explanation for industrial deconcentration observed in the 1960s and 1970s, Moomaw 

(1985) presents evidence that the manufacturing productivity advantage of urban areas 

declined from 1967 to 1977, positing as a possible cause advances in technology and 

telecommunications that reduced distance costs.  Beeson (1987a) unexpectedly finds U.S. 

states with greater metropolitan population shares to have lower productivity growth, but 

this effect is offset by productivity gains for states containing one of the largest 20 

metropolitan areas.  Similarly, Beeson and Husted (1989) discover metropolitan 

population shares to be associated with greater state-level productive efficiency, but 

larger metropolitan populations with lower productivity.  A simultaneous equations 

approach incorporating labor demand and supply yields evidence of agglomeration 

economies for U.S. metropolitan areas of up to two million residents (Calem and Carlino 

1991).  Carlino and Voith (1992) report that states with greater percentages of their 

population located in metropolitan areas have greater productivity, though a quadratic 

term representing congestion disamenities offsets the effect for relatively high levels of 

urbanization.  Metropolitan or urban counties are more productive than rural locations for 

meat packing and household furniture manufacturing establishments (Martin et al. 1991).  
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Rice et al. (2006) find that the portion of the variation in average regional wages in 

Britain attributable to productivity differences is positively related to the volume of 

population accessible within specified ranges of travel time.  Summarizing across these 

studies, larger or more dense population is generally associated with greater productivity, 

but the extent differs widely by industry, region or country examined, time frame, and 

estimation technique. 

Critics of the simple size proxy for agglomeration have noted that it may 

confound urbanization with localization economies and may also capture urban 

diseconomies along with agglomeration benefits (Carlino 1979; Moomaw 1981a; 1983a; 

1983b; Begovic 1992; Ciccone and Hall 1996).  Several studies have examined 

nonlinearities in the relationship between urbanization and productivity, finding 

increasing disbenefits of urbanization at the large end of the scale that suggest 

accumulating congestion, pollution, or other disamenities (Kawashima 1975; Fogarty and 

Garofalo 1978; 1988).  Sveikauskas et al. (1985) demonstrate a strong agglomeration 

benefit for manufacturing plants in Brazil’s São Paulo state using the unusual 

urbanization measure of travel time to the city of São Paulo, and Graham (2007) and 

Graham and Kim (forthcoming) find that the productivity of small British firms is 

enhanced by agglomeration as indicated by accessibility to other employers. 

 

2.4.2.2.  Urbanization versus Localization 

Another approach incorporates multiple indicators to distinguish urbanization 

from localization economies.  While both types of agglomeration economies are most 

often indicated by level measures (i.e., population size, own-industry employment or 
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value-added), density measures are also common (i.e., population or employment density, 

location quotients).  Shefer (1973) estimates U.S. manufacturing industries to have higher 

productivity both in the presence of larger metropolitan own-industry employment 

(localization economies) and greater regional total manufacturing employment 

(urbanization economies).  Carlino (1979) associates localization economies with the 

ratio of local to national industry employment and includes both population and 

establishment counts to measure urbanization economies and diseconomies.  His results 

indicate that urbanization economies and diseconomies are generally more significant 

than localization economies in U.S. metropolitan areas, but the comparisons vary widely 

across two-digit SIC (Standard Industrial Classification) manufacturing sectors.  

Modifying his earlier (1985) study by adding industry employment and population as 

separate indicators of localization and urbanization economies, respectively, Moomaw 

(1986) finds that for most industries the declining urban productivity differential is more 

closely associated with localization than urbanization economies, but also that several 

industries present the opposite pattern.  Examining manufacturing in both the United 

States and Brazil, Henderson (1986) finds localization but not urbanization economies to 

be significant determinants of productivity.  Four studies by Moomaw (1988; 1998), Lee 

and Zang (1998), and Pan and Zhang (2002) affirm Henderson’s conclusion that 

localization economies are the more important type of agglomeration economy for the 

majority of manufacturing industries, but also reveal substantial urbanization economies 

or diseconomies in several sectors.  In contrast, Sveikauskas et al. (1988) show that once 

raw materials locations are taken into account, the U.S. food products industry evidences 

only urbanization externalities.  They reason that other empirical research may mistake 
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the benefits of natural resource proximity for localization economies.  Nakamura (1985) 

estimates productivity separately for different manufacturing industries in Japan.  

Incorporating the assumption of constant returns to scale at the firm level, any non-

constant returns to scale at the industry level are taken to represent localization 

economies.  Nakamura discovers urbanization economies (population size) to be more 

important for light manufacturing industries and localization economies for heavy 

manufacturing industries.  Using plant-level data, Feser (2001b) finds substantial 

urbanization economies in the high-technology measuring devices industry and 

localization economies in the lower-technology farm and garden machinery equipment 

industry.  Lall et al. (2004) adopt density indicators to study manufacturing industries in 

India, finding that localization economies return larger benefits for higher-technology 

industries and that diseconomies either offset or outweigh the advantages of urbanization.  

In a small-sample study of high-technology firms in Milan, Capello (2002b) produces 

evidence suggesting that urbanization economies are more important for large firms and 

localization economies for smaller firms.  Mukkala (2004) reports greater beneficial 

effects of localization compared to urbanization economies in three Finnish 

manufacturing sectors, measuring both concepts with density measures, and Tveteras and 

Battese (2006) demonstrate the existence of both localization economies and 

diseconomies from own-industry size in Norwegian salmon aquaculture. 

Although productivity is the most common dependent variable in empirical 

agglomeration economy studies, alternative measures of economic performance might be 

considered to be variations on a theme.  Rosenthal and Strange (2004) discuss the merits 

of four possible substitutes for analyzing urban agglomeration benefits:  regional growth, 
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firm births, wages, and rents.  The last two are useful primarily for analyses of city size, 

since wages and rents data generally are not available by industry (Eberts and McMillen 

1999).  One study of New England counties finds urbanization economies to be more 

influential than localization economies in raising average earnings except in the financial 

services, insurance, and real estate sector, with little evidence of agglomeration benefits 

spilling over across counties (Hanink 2006).  Employment growth is the focus of a 

number studies described later (section 2.4.2.3) (namely, Glaeser et al. 1992; Henderson 

et al. 1995; Henderson 1997; Combes 2000; Acs et al. 2002b; Chen 2002; Hoogstra and 

van Dijk 2004).  In addition, several studies of U.S. metropolitan or county employment 

growth conclude that localization is more important to both manufacturing and services 

industries than urbanization economies, though the correspondence between the 

agglomeration concepts and the measures used to operationalize them typically is tenuous 

(O hUallachain 1989; O hUallachain and Satterthwaite 1992; Desmet and Fafchamps 

2005). 

New firm formation is positively associated with a variety of urbanization and 

localization agglomeration factors, including population density, population growth, 

entrepreneurial resources, smaller average plant size, local industry size or concentration, 

transportation infrastructure, more government spending, a larger white-collar workforce, 

and the availability of knowledge capital and spillovers (Audretsch and Fritsch 1994; 

Keeble and Walker 1994; Reynolds et al. 1994; Harhoff 1999; Armington and Acs 2002; 

Figueiredo et al. 2002; Gabe 2003; Hackler 2003; Acs and Armington 2004b; Holl 

2004a; 2004b; 2004c; Lee et al. 2004; Audretsch and Keilbach 2007; Fritsch and Falck 

2007).  Swedish firm birth rates are more closely associated with localization than 
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urbanization economies, and firm deaths are less strongly tied to both sources of 

agglomeration economies (Nystrom 2007).  Renski (2006) reveals that new firm survival 

rates in the United States are enhanced by localization economies, though the effects are 

modest and vary substantially across industries and different sources of agglomeration 

externalities.  According to Acs et al. (2007), the survival of new firms in the United 

States services sector is positively associated with urbanization economies but negatively 

associated with localization economies.  New firm formation has greater long-term 

impacts on employment growth in more densely populated regions (Acs and Mueller 

2008; Fritsch and Mueller 2008; van Stel and Suddle 2008).
13

  Guimaraes et al. (2000) 

find that the locations in Portugal of new establishments owned by foreign firms are 

related to both urbanization and localization economies, and are influenced in particular 

by concentration of activity in the business services sector; similar results have been 

obtained for the United States (Luger and Shetty 1985; Kim et al. 2003).  Foreign-owned 

plants in France are lured in terms of location choice by proximity to other plants in the 

same industry (Crozet et al. 2004).  Although there are differences across industries and 

countries of ownership in terms of the magnitude of the effect, the marginal attraction 

from an existing foreign plant is substantially greater than for a domestic plant, but the 

overall patterns of foreign site investments largely follow the spatial distribution of 

French industry establishments due to their numerical dominance.  Exceptions to the 

trend do exist.  For instance, Reynolds (1994) reports population density to be related to 

lower firm births in the manufacturing sector in the United States, and Arauzo-Carod and 

Teruel-Carrizosa (2005) discover that firm birth rates are greater in smaller-sized Spanish 

                                                 
13

 Mueller et al. (2008) find regional differences in employment impacts in Great Britain according to 

levels of entrepreneurial activity but not population density. 
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municipalities.  Rosenthal and Strange (2003) also concentrate on firm births and new-

firm employment (this study is discussed in detail in section 2.5). 

There are additional possibilities as well.  Localization and urbanization 

economies, measured as the areal density of supplier and purchaser production, lower 

average costs in the U.S. food manufacturing industry (Cohen and Morrison Paul 2005).  

Proximity to agricultural production (suppliers) is beneficial within states and across 

neighboring states.  The profitability of Indian manufacturing firms is boosted by 

localization economies (Kambhampati and McCann 2007).  Harrison et al. (1996) find 

urbanization but not localization influential in predicting the adoption of programmable 

automation technology in U.S. metalworking plants.  For precision machining operations, 

urbanization and localization economies do more to speed the adoption of computer 

numerical control technology for smaller establishments (Kelley and Helper 1999).  The 

intensity of formal interfirm information transactions in the semiconductor industry is 

insensitive to spatial proximity except at the continental scale (Arita and McCann 2000).  

Urbanization does not seem to boost either the incidence or the intensity of private 

research and development activity in Denmark (Smith et al. 2002).  In northern Israel, 

urbanization is positively related to innovation for electronics manufacturers and high-

technology manufacturers in general but not for plastics or metals firms; urbanization 

does not affect the innovation propensity of technology-intensive plants in Ireland 

(Shefer and Frenkel 1998; Frenkel et al. 2003).  Acs and Varga (2005) report that 

urbanization economies facilitate innovation in the form of patent applications in 

European nations.  Evaluating data from several business surveys, Gordon and McCann 

(2005) conclude that patterns of innovation across metropolitan London can best be 
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explained by urbanization externalities rather than the localization of economically-

related activity or networks of interactions.  Localization improves the innovation 

performance of Spanish biotechnology firms (Quintana-Garcia and Benavides-Velasco 

2006).  Although results vary substantially by sector, the intensity of research and 

development in Belgian firms is more frequently positively associated with the R&D 

intensity of firms in the same industry (localization) than firms in all other industries 

(urbanization) (Bertinelli and Nicolini 2005).  The propensity of manufacturers to export 

typically is influenced by both localization and urbanization economies; the extent to 

which this relationship exists depends on the particular industry, nation, and firm size 

(Costa-Campi and Viladecans-Marsal 1999; Malmberg et al. 2000; Chevassus-Lozza and 

Galliano 2003; Belso-Martinez 2006; Becchetti et al. 2007; Silvente and Gimenez 2007).  

In the southern United States, however, the gap between the proportion of urban and rural 

manufacturers that export is better explained by information spillovers and networking 

opportunities than localization economies (Eff and Livingston 2007).  Co-located plants 

within high-technology industries tend to have greater employment growth than isolated 

establishments, a phenomenon that may be due to knowledge spillovers or other 

localization economies (Audretsch and Dohse 2007).  Residents of densely populated and 

fast-growing regions are more likely to become entrepreneurs (Wagner and Sternberg 

2004; 2005).  Strange et al. (2006) postulate that urbanization and localization may be 

responses to different types of uncertainties faced by firms, and test this hypothesis using 

an innovation survey of Canadian manufacturers.  Indeed, they find that plants located in 

larger areas report higher levels of uncertainty concerning technology and innovation, 
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whereas plants that describe substantial uncertainties in terms of future labor skill needs 

tend to be located in metropolitan areas with greater employment in their own industry. 

A number of recent studies examine geographic concentration as an outcome of 

agglomeration economies.  Ellison and Glaeser (1999), Kim (1999), and Dumais et al. 

(2002) observe that the levels of geographic concentration in manufacturing can only 

partially be explained by natural resource endowments, providing indirect evidence of 

agglomeration economies.  Long-run trends in the United States as well as in Ireland and 

Portugal do not show high-technology industries to be more geographically concentrated 

than less technology-intensive sectors, a spatial pattern that might be expected if external 

economies such as knowledge spillovers were the major impetus behind localization 

(Kim 1995; Barrios et al. 2005), but cross-sectional analyses of French, German, and 

Portuguese manufacturing do reveal the expected outcome to some degree (Maurel and 

Sedillot 1999; Alecke et al. 2006; Guimaraes et al. 2007).  Several studies demonstrate 

that plants sited in locations where their industry is concentrated tend to be larger on 

average, particularly in manufacturing industries (Holmes and Stevens 2002; Barrios et 

al. 2006a; Wheeler 2006; Lafourcade and Mion 2007).  This could be evidence of 

localization benefits, though the result may also derive from different locational 

preferences or survival rates of newer, smaller firms.  In a series of papers, Feser and 

Sweeney use a case-control study design to analyze spatial clustering in manufacturing 

industries relative to a control group of randomly selected establishments.  The spatial 

concentration of the controls accounts for the baseline tendency of businesses to follow 

the general clustering patterns of human settlements.  Medium-sized and independent 

establishments are the most likely to co-locate (Sweeney and Feser 1998).  Localization 
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advantages are a likely explanation:  very small plants may have too little production 

volume to benefit from agglomeration, whereas the largest plants and those belonging to 

multi-locational firms may rely more heavily on internal economies.  Furthermore, 

members of more knowledge-intensive industries, those that presumably have the most to 

benefit from knowledge spillovers, are also more likely to co-locate (Feser and Sweeney 

2000; 2002).  Co-location tendencies are evident in the spatial patterns of firm births in 

New York’s advertising industry (Arzaghi and Henderson 2006) and Canadian 

biotechnology (Aharonson et al. 2007).  Roos (2005) conducts an ANOVA 

decomposition analysis, concluding that the influence of agglomeration economies, or 

spatial clustering following established patterns of human activity, are far more important 

in inducing spatial concentration of production in Germany than are features of the 

physical and political geography.  Kim et al. (2000) report that within rural areas, 

industries are more likely to be spatially concentrated (as measured at the county level) if 

they have larger average plant size, higher fractions of non-subsidiary plants, greater 

labor intensity in production, and less reliance on local input markets.  Service, finance, 

insurance, and real estate establishments in Houston, but not manufacturing and energy 

companies, are more likely to be located in employment centers offering greater 

localization and urbanization economies (Kohlhase and Ju 2007).  Examining eight 

manufacturing industries in three Indian metropolises, Chakravorty et al. (2005) find 

little evidence of localization economies from buyer-supplier networks or labor pools at 

the intraurban scale.  Establishments and employment tend to cluster in mixed use 

industrial districts; location choices are limited and are driven mostly by state regulation, 

available land, and generalized urbanization economies.  Viladecans-Marsal (2004) 
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directly relates agglomeration measures with the tendency of Spanish manufacturers to 

concentrate spatially.  Her results are reminiscent of Nakamura’s for Japan twenty years 

prior:  the concentration of high-technology firms is closely related to several measures 

of urbanization economies, including population and employment per capita, whereas 

other companies are more responsive to own-sector employment, i.e., localization 

economies.  She also finds spatial spillovers from neighboring cities to be significant for 

some industries. 

The mass of empirical research considering urbanization and localization 

economies presents a bewildering variety of results.  Some analyses support the 

importance of both types of externalities, some signify greater importance for one type or 

the other, and many have yielded results that differ dramatically across industry sectors.  

Certainly the variety of geographic locations, scales, and methodologies make it tricky to 

reach consistent conclusions across the literature.  The concepts themselves may also be 

to blame, however.  Urbanization and localization may not be adequate classifications 

relative to Marshall’s agglomeration economy concepts of specialized inputs, labor 

pooling, and knowledge spillovers.  First, the urbanization and localization categories are 

adopted for empirical convenience, rather than on the basis of strong theory.  It is not 

proximity to other businesses, per se, that advantages firms, but rather the interactions, 

spillovers, and cost reductions that are enabled by the spatial grouping of businesses.  The 

appropriate application of the concepts of urbanization and localization may vary across 

industries and even firms (Feser 1997; 2001a; 2001b).  At the very least, separating 

urbanization and localization economies does not help to distinguish among Marshall’s 

sources of agglomeration economies since the three types all fall into the localization 
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category.  Second, there is the task of determining what constitutes an industry with 

respect to which localization economies may be measured.  Typical industry 

classifications, including the U.S. Standard Industrial Classification system and its 

successor, the North American Industry Classification System, are based principally on 

primary product similarity, which need not be congruent with production technology or 

labor needs and does not account for secondary products.  Moreover, it is not apparent 

how much aggregation is appropriate.  Industry sectors defined at too aggregate a level 

combine plants that experience agglomeration externalities in different fashions and to 

different degrees, whereas classifications that are too disaggregate exclude firms that are 

similar enough to interact with each other to produce localization benefits (Moomaw 

1998; Renski 2006).  As a practical matter, disaggregate industry definitions also 

diminish working sample sizes. 

 

2.4.2.3.  Marshall-Arrow-Romer, Jacobs, and Porter Externalities 

Instead of focusing on the division between localization and urbanization 

economies, numerous empirical studies test three postulated types of knowledge spillover 

externalities:  Marshall-Arrow-Romer (industrial specialization or localization), Jacobs 

(industrial diversity), and Porter (competitive rivalry).  These concepts often are 

presented not as specifically linked to knowledge spillovers, but as gross measures of 

regional industrial structure.  Industrial diversity is measured as the inverse of 

concentration, most commonly using either a Hirschman-Herfindahl index or a Gini 

coefficient, or by the fraction of employment in the largest few industries (excluding the 

study industry).  Location quotients indicate industrial specialization, and competition is 
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proxied by the ratio of establishments to workers, often also normalized with respect to a 

larger reference region.  The dominant outcome measure is employment change, but 

various other outcomes of interest, such as productivity and patenting, have been 

examined as well. 

Glaeser et al. (1992) analyze employment growth in the largest industries in urban 

conglomerations of counties in the United States from 1956 to 1987, finding support for 

local competition (Porter) and diversity (Jacobs) externalities improving performance, but 

not for own-industry (Marshall-Arrow-Romer) externalities.  Henderson et al. (1995) 

examine eight U.S. manufacturing industries, finding Marshall-Arrow-Romer 

externalities to be key to employment growth in traditional, mature sectors, and both 

Marshall-Arrow-Romer and Jacobs externalities important for high-technology 

industries.  They suggest that industrial diversity is important for attracting new 

industries but that industrial concentration is key for retention.  In a complementary 

study, Henderson (1997) uses panel data for five manufacturing industries to demonstrate 

that knowledge spillover externalities entail significant time lags, with both Marshall-

Arrow-Romer and Jacobs types tending to reach maximum effect only after four or more 

years and Jacobs benefits persisting at substantial levels beyond seven years.  Beardsell 

and Henderson (1999) find significant benefits from Marshall-Arrow-Romer externalities 

but not Jacobs externalities for non-subsidiary plants in the U.S. computer industry; for 

subsidiary plants neither type of externality is important.  Using plant-level panel data 

with fixed establishment effects, Black and Henderson (1999) present evidence only of 

Marshall-Arrow-Romer externalities for high-technology plants, with no agglomeration 

externalities at all in capital-goods industries.  Industrial diversity is one of the variables 
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that determines differences in manufacturing labor productivity across metropolitan 

regions (Essletzbichler and Rigby 2002).  Both Acs et al. (2002b) and Henderson (2003), 

however, fail to uncover evidence of Jacobs-type spillovers for high-technology 

industries in the United States.  Henderson does report significant Marshall-Arrow-

Romer externalities with regard to high-technology productivity (but not for lower-

technology machinery plants), and also finds that independent establishments obtain 

more benefits from agglomeration economies than branch plants.  Lim (2007) finds 

evidence of Marshall-Arrow-Romer externalities from metropolitan specialization in 

technology-intensive industries, but no benefits arising from diversity or competition in 

the high-technology sector. 

Results from other nations are just as varied.  Harhoff reports firm formation in 

German high-technology industries to benefit from industrial diversity and specialization 

(1999).  Examining 94 French manufacturing and service industries at the regional level, 

Combes (2000) discovers that, not surprisingly, industrial diversity typically has a 

positive influence on service employment but negatively impacts manufacturing.  Except 

within a few isolated industries, local sectoral specialization detracts from employment 

growth.  Canadian employment growth is positively associated with industrial diversity 

(Shearmur and Polese 2007).  New firm formation and employment growth in the 

Netherlands benefit from industrial specialization, competition, and diversity, as well as 

urbanization (Hoogstra and van Dijk 2004; van Oort and Atzema 2004; van Soest et al. 

2006; van Oort 2007).  These results differ by broad industry sector, though, and the 

positive effects of agglomeration economies diminish rapidly with distance.  

Distinguishing between two types of industrial diversity, Frenken et al. (2007) 
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demonstrate that diversity within Dutch industrial sectors aids employment growth but 

slows productivity growth, whereas diversity considered across the entire economy is 

more important for insulating employment against shocks.  In the same nation, the 

growth of value-added appears to be aided most by a competitive environment for 

manufacturing and construction firms, and by industrial diversity for the services and 

trade sectors (Van Stel and Nieuwenhuijsen 2004).  In South Korea, Henderson et al. 

(2001a) finds that own-industry concentration benefits labor productivity in all 

manufacturing industries but local industrial diversity only affects plants in technology-

intensive industries.  Urbanization (measured by the logarithm of population) is 

universally unimportant.  Lee et al. (2005) report nearly opposite conclusions:  

competition aids productivity growth, industrial diversity is beneficial for all 

manufacturing industries except the most technology-intensive, and own-industry 

concentration has no significant influence.  Investigating Spanish manufacturers, de 

Lucio et al. (2002) produce no significant evidence of externalities arising from either 

competition or industrial diversity; industrial specialization impacts value-added growth 

positively at relatively high levels but negatively at lower levels of specialization.  

Specialization but not diversity aids productivity growth in Spanish regions (Serrano and 

Cabrer 2004).  In Portugal, industrial diversity and total population but not local 

specialization is associated with firm births, whereas manufacturing plant relocations are 

drawn by sizeable local industry activity (Holl 2004a; 2004c).  Almeida (2007) finds 

industrial concentration to be beneficial and more important in most sectors than 

competition or diversity.  Similar studies in Spain obtain contradictory results concerning 

the relative importance of industrial diversity and specialization vis-à-vis new 
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establishment formation (Holl 2004b; Arauzo-Carod 2005).  Moroccan urban areas 

benefit in terms of production from specialization and industrial diversity but not 

competition (Bun and El Makhloufi 2007).  Local competition has small positive effects 

and industrial diversity large positive effects on employment and wage growth in 

Taiwanese cities (Chen 2002).  In Japanese regions, total factor productivity growth is 

boosted by the spatial density of own-industry output or employment in the finance, 

services, and trades sectors, but manufacturing productivity is unaffected (Dekle 2002).  

Local competition is important in the services and trade sectors only; diversity 

externalities are unimportant.  Industrial diversity but not specialization reduces 

production costs for Indian manufacturers (Lall and Chakravorty 2005).  Foreign firms 

siting manufacturing establishments in Ireland are more likely to select industrially 

diverse counties, and firms in less technology-intensive industries are also drawn to 

locations where the industry is relatively concentrated (Barrios et al. 2006b; Barrios et al. 

2006c).  The resulting coagglomeration of Irish with foreign-owned plants augments 

productivity and employment in the domestic establishments. 

With regard to innovation outcomes, Feldman and Audretsch (1999) make use of 

a Small Business Association (SBA) tally of documented product and process advances 

in the U.S. to reveal that local competition and industrial diversity (restricted to 

complementary industries) promote innovations but that specialization does not; a plant 

survey in the United Kingdom also reveals insignificant influence from industrial 

specialization (Roper et al. 2000).  Lim’s (2004) analysis of patents in high-technology 

industries across U.S. metropolitan areas shows that benefits arise from both 

specialization and diversity but not local competition.  Externalities associated with 



 41 

industrial diversity appear to spill across neighboring regions, whereas those from 

specialization do not.  Similarly, Ketelhohn (2006) reports that specialization and 

diversity, as well as proximity to potential purchasers, increase the numbers of cited 

semiconductor patents in United States counties, but that competition does not.  On the 

other hand, Carlino et al. (2007) find that metropolitan per capita patenting rates are 

positively associated with competition and employment density but not industrial 

diversity.  Patent applications across Europe are positively associated with industrial 

specialization, and though the results for diversity are mixed overall, technology-

intensive sectors gain more benefits from industrial diversity (Paci and Usai 1999; 2000; 

Greunz 2003b; 2004; Parent and Riou 2005; Moreno et al. 2006; Maggioni et al. 2007).  

In Sweden patents are stimulated by all three types of externalities (Andersson et al. 

2005; Ejermo 2005).  European branches of foreign-owned multinational corporations 

patent at higher rates in regions featuring industrial diversity, local specialization in the 

same industry (considering only other foreign-owned firms), and urbanization economies 

(Cantwell and Piscitello 2005).  Dutch labor costs for research employees, a proxy for 

innovation intensity, are higher in municipalities with greater industrial diversity and 

competition (van Oort 2002).  Software development firms in the Netherlands take 

advantage of localization economies that enable innovations to be produced with 

relatively smaller amounts of labor input, whereas regional industrial diversity and 

urbanization do not seem to be helpful (Boschma and Weterings 2005).  Koo (2005b; 

2007) employs a simultaneous equations approach to account for endogeneity among 

agglomeration, technology spillovers, and the rate of technological change, revealing 
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substantial beneficial influences from same-industry and competitive externalities in the 

multiple-equation system. 

Taken together, the plethora of studies comparing the three types of knowledge 

spillovers yields a web of results as intricate as that regarding urbanization and 

localization economies.  Although the preponderance of empirical research shows that 

own-industry specialization, industrial diversity, and local competition can yield 

important benefits, their influences vary substantially depending on the industry, outcome 

measure, and geographic region or spatial scale examined (van Oort 2007).  Nor does this 

branch of research escape the major deficiencies of the urbanization versus localization 

dichotomy:  there is no definitive way to demarcate industry boundaries so as to 

distinguish Marshall (own-industry) from Jacobs (industrial diversity) externalities, the 

concepts themselves may diverge across industries or firms, and the approach does little 

to establish a clearer understanding of the relative influences of the three original 

Marshallian agglomeration economies. 

 

2.4.2.4.  Knowledge Spillovers 

 There has been growing attention paid to dynamic externalities, spillovers that 

create benefits that are realized over the long run (Glaeser et al. 1992; Feser 1998a; 

Feldman 1999; Breschi and Lissoni 2001; Autant-Bernard et al. 2007; Henderson 2007).  

Although these analyses may not be billed as studies of agglomeration economies, they 

aim to explain dynamic outcomes of interest, including innovation, learning, and 

technical progress, on the basis of knowledge spillovers.  Perhaps the strongest evidence 

of knowledge externalities arises using patent information, as one of the few easily 
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measurable outcomes associated with innovation (though certainly not one without flaws; 

see Acs et al. 2002a; Sampat et al. 2003; Hipp and Grupp 2005).  Patent citations reveal 

substantial localization, i.e., a high degree of citing patents originating in the same city, 

state, or region as the cited patent, strong evidence that knowledge diffusion is mediated 

by spatial distance (Jaffe et al. 1993; Adams and Jaffe 1996; Almeida 1996; Jaffe and 

Trajtenberg 1996; Almeida and Kogut 1997; Co 2002; Maurseth and Verspagen 2002; 

Verspagen and Schoenmakers 2004; Koo 2005c; Agrawal et al. 2006; Co 2006; Fischer 

et al. 2006; Koo 2006; LeSage et al. 2007; Sonn and Storper forthcoming).  Co-authored 

patents are also more likely between regions that are geographically proximate (Maggioni 

et al. 2007).  (The importance of distance may be declining over time:  see O hUallachain 

and Leslie 2005; Johnson et al. 2006).  Patterns of patents demonstrate both time and 

spatial lags (Fischer and Varga 2003; Sampat et al. 2003; Bode 2004; Parent and Riou 

2005); institutional and political (national) boundaries hamper but do not halt the 

diffusion of patent knowledge (Jaffe and Trajtenberg 1996; Tijssen 2001; Maurseth and 

Verspagen 2002; Bottazzi and Peri 2003; Cantwell and Iammarino 2003; Greunz 2003a; 

Moreno et al. 2005a; Fischer et al. 2006; LeSage et al. 2007).  Patent concentrations do 

not match industry employment configurations, however, suggesting that knowledge and 

production need not occur in the same location (Kelly and Hageman 1999; Ceh 2001; 

Koo 2005a; Moreno et al. 2006; for a contrary result, see Moreno et al. 2005b).  In a 

study investigating the determinants of technological and macroeconomic change in 

Hungarian counties, Varga and Schalk (2004) find local knowledge spillovers, proxied by 

patents, to be important even after accounting for knowledge spillovers at the domestic 

and international levels.  As a dependent variable signifying innovation, there is evidence 
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that patenting rates are higher in locations possessing greater urbanization economies, 

higher levels of human capital and industrial research and development, and more 

university activity (O hUallachain 1999; Autant-Bernard 2001; Bottazzi and Peri 2003; 

Greunz 2003a; Porter 2003; Riddel and Schwer 2003; Sedgley and Elmslie 2004; 

Andersson and Ejermo 2005; Greunz 2005; Moreno et al. 2005a; Knudsen et al. 2007; 

see Gossling and Rutten 2007 for a contrary finding).  Several studies have used 

patenting rates to compare the effects of Marshall-Arrow-Romer, Jacobs, and Porter 

externalities (section 2.4.2.3 above). 

Alternatives to patents as a source of innovation data are relatively scarce.  The 

one-time (1982) United States Small Business Association innovation database has been 

mined thoroughly.  Researchers examining the database contend that, for appropriate 

industries, innovation counts are at least as a good a measure of innovation as patents; 

analyses substituting innovation counts for patents reach similar conclusions but more 

strongly (Acs and Audretsch 1989; Acs et al. 1992; Feldman and Florida 1994; 

Audretsch and Feldman 1996; Acs et al. 2002a).  Unfortunately, the database has never 

been updated or replicated.  Using the 1999 Canadian Survey of Innovation, Therrien 

(2005) demonstrates that firms located in larger cities have greater production rates of 

world-leading innovations, but when the definition of innovation encompasses both 

technology creation and adoption, firm innovation does not vary systematically with city 

size.  Oerlemans and Meeus (2005) use a survey to relate the innovation performance of 

Dutch firms to networking activity, local purchasing and sales relationships, and 

localized spillovers.  For Finnish technology firms, product innovations are negatively 

associated with population density but process innovations and the number of new 
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products introduced to market are unrelated to population density (McCann and Simonen 

2005).  Wallsten (2001) reveals indications of highly localized knowledge spillovers in 

the spatial patterns of grants awarded by the Small Business Innovation Research (SBIR) 

program.  The number of neighboring recipient firms is a strong predictor of an observed 

firm’s program participation status, but only up to a distance of approximately five miles.  

Rosenbloom (2007) reports substantial geographic concentration at the intermetropolitan 

level in both SBIR and Small Business Technology Transfer (STTR) grants. 

Research and development activity has been documented to be an important 

source of knowledge spillovers.  For example, Sena (2004) finds indirect evidence of 

knowledge spillovers in that the productivity growth of Italian chemical manufacturing 

firms with relatively low investment and R&D expenditures is positively related to 

estimates of technical change in the nearest high-R&D and high-investment chemical 

firms.  The benefits of R&D activity are localized, diminishing with geographic as well 

as technological distance.
14

  This holds for industry, university, and public laboratory 

R&D (Adams and Jaffe 1996; Varga 1997; Jaffe et al. 1998; Anselin et al. 2000; Autant-

Bernard 2001; Bode 2004; Fritsch and Franke 2004; Funke and Niebuhr 2005; Autant-

Bernard 2006; Aharonson et al. 2007; Johansson and Karlsson 2007; Lehto 2007), though 

there is evidence that the externalities arising from university-based R&D are more 

spatially constrained than from industrial research (Adams 2002; Beugelsdijk and Cornet 

2002; Greunz 2003a; 2005).
15

 

                                                 
14

 Technological distance refers to the degree of dissimilarity between the product or field focus of the 

R&D conducted and of the spillover recipient; smaller distances imply greater concordance. 

 
15

 Autant-Bernard (2006) notes that studies of France consistently obtain the opposite result:  while private 

research yields knowledge spillovers that decline with increasing distance, knowledge spillovers from 

public research seem not to be substantially bounded by geographic proximity. 
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Much of the analytical focus has been on the R&D performed by universities and 

federal laboratories, since data are not readily available for private-sector industrial 

research.  University R&D is associated with patenting, innovative activity, and new firm 

formation within U.S. states and metropolitan areas, and also spurs industrial R&D that 

leads to additional innovation and spillovers (Jaffe 1989; Anselin et al. 1997; Kirchhoff 

et al. 2002a; Woodward et al. 2004; Kirchhoff et al. 2007).  University research 

publications and related industrial patents are highly co-located, at least for the specific 

fields of medical imaging, neural networks, and signal processing (Agrawal and 

Cockburn 2003).  Spin-off firms have a very strong likelihood of locating in close 

proximity to the establishing university; the same holds for non-spin-off entrant firms that 

have strong ties to university research (Zucker et al. 1998; Candell and Jaffe 1999).  

Small firms benefit more from university R&D spillovers than large companies (Acs et 

al. 1994); in contrast, larger as well as newly formed firms benefit more from public 

laboratory research (Cohen et al. 2002).  Knowledge externalities from universities have 

a substantial spatial range that can extend well beyond U.S. metropolitan area boundaries 

(Anselin et al. 2000; Woodward et al. 2004; Goldstein and Drucker 2006). 

Knowledge spillovers can arise from other university activities including 

industry-university collaborations, local networking, personnel migration, and the 

creation of human capital, but these sources are much more difficult to document 

(Goldstein et al. 1995; Goldstein and Renault 2004; Moretti 2004; Drucker and Goldstein 

2007).  University knowledge production does tend to raise average regional wages; there 

is mixed evidence, however, as to whether regions must attain a certain overall size or 

assemble a critical mass of private-sector activity in related fields in order to benefit from 
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local university spillovers (Varga 2000; 2001; Goldstein and Renault 2004; Koo 2005c; 

Goldstein and Drucker 2006). 

 

2.4.2.5.  Marshall’s Agglomeration Economies 

Several recent studies have followed a different strategy, employing more refined 

constructs to measure several sources of agglomeration externalities explicitly and 

concurrently.  These indicators tend to be relatively complex, often combining multiple 

data sources in the effort to adequately measure access to specific agglomeration 

economies at the local level.  For instance, Dumais et al. (1997) examine the relationship 

between employment growth and Marshall’s three agglomeration economies.  Supply 

chain externalities are indicated by proximity to plants in supplying and purchasing 

industries, whereas their labor pooling variable incorporates a measure of the similarity 

of occupational mix at the state level to that employed by the industry.  Information 

spillovers are represented both by a technology flow variable and a measure of the degree 

of co-ownership of plants across different industries by the same firm.  They find modest 

benefits from proximity to input suppliers and output purchasers and stronger effects 

from labor pooling and intellectual spillovers. 

Feser (2001a; 2002) calculates six distance-weighted measures of access to 

Marshallian agglomeration economies at the establishment level:  labor pooling, input 

suppliers, producer services, intermediate purchasers, and two indicators of knowledge 

spillovers, patenting rates and university research and development (R&D) expenditures.  

Only the input suppliers variable is significant overall for the farm and garden machinery 

industry, but for the largest establishments producer services are also important.  
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Producer services, labor pooling, and university R&D all enhance productivity for 

manufacturers of measuring devices and instruments, and university proximity benefits 

small independent plants the most.  Feser (2002) also investigates one aspect of regional 

industrial organization by including a control measuring overall concentration in the 

manufacturing sector, finding a strong negative association between manufacturing 

dominance and productivity in the measuring and controlling devices industry, but a 

statistically insignificant relationship for farm and garden equipment establishments.  The 

paper is a crucial precursor of this study:  although Feser does not model industry-

specific dominance or test the intervening effect that dominance might have on firms’ 

realization of agglomeration economies, he sets the stage for this analysis by 

incorporating regional industrial structure as a factor determining plant-level performance 

in a production function context. 

Rigby and Essletzbichler (2002) construct plant-level indicators of supply chain 

concentration, labor pooling, and embodied technological spillovers, and include 

metropolitan size among the control variables in a set of regressions with labor 

productivity as the dependent variable.  They obtain relatively weak results, especially at 

the four-digit SIC level of industry aggregation (for which they blame plant-level 

heterogeneity and outliers), but do establish that each of the three Marshallian 

agglomeration variables is significant and positive in at least a subset of the 

manufacturing sectors tested.  Metropolitan size, proxying urbanization economies, is 

beneficial in several of the sectors that have relatively low levels of technology.  Acs and 

Armington (2004a) track entrepreneurial activity as an observable indicator of knowledge 

spillovers, using new firm births and business proprietors as a share of the workforce as 
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their independent variables.  New firm births are strongly associated with regional 

employment growth in non-manufacturing sectors, but the proprietor measure is 

insignificant.  Renski (2006) relates plant survival to a variety of specific Marshallian 

agglomeration economies, revealing localization measures to have positive but relatively 

modest benefits that differ sharply across industries.  He includes a measure of regional 

dominance by large plants that is not industry-specific, but it demonstrates little impact.  

For the special case of the Netherlands, van der Panne and Dolfsma (2003) report that 

proximity to universities and private research institutes is associated with greater 

numbers of establishments and employment in high-technology firms, but indicators of 

worker education levels in the local labor market, population density, and distance 

between town centers are unimportant.  Koo (2005b; 2007) estimates input pooling, labor 

pooling, and knowledge spillovers, finding input pooling to produce the most significant 

advantages.  In addition, Andersson et al. (2007), Power and Lundmark (2004), and 

Freedman (2006) use data linking workers with firm characteristics to provide unusually 

direct evidence of Marshall’s labor pooling externality. 

In a somewhat different approach, Rosenthal and Strange (2001) concentrate on 

the probable importance of agglomeration economies rather than potential access to them.  

They relate indicators of the value of knowledge spillovers, labor pooling, and input 

sharing to spatial agglomeration of industries at the state, county, and zip code 

geographic levels, while controlling for natural resource location and product transport 

costs.  Labor pooling, measured by net labor productivity, the share of management-type 

workers, and the percentage of workers with college degrees, has the largest impacts on 

concentration at all three geographic levels.  Higher rates of knowledge spillovers 
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(adapted from the SBA innovations database) are positively associated with 

agglomeration only at the smallest (zip code) geography, whereas input availability 

(manufactured and non-manufactured inputs per dollar of shipment) is important at the 

largest (state) level.  Kerr et al. (2007) refine this tactic, relating pairwise 

coagglomeration of manufacturing industries to proxies of possible interindustry 

connections occurring through input-output relationships, labor pooling, and knowledge 

spillovers.  They find that all three sources of agglomeration economies are related to co-

location among pairs of industries, with purchasing and supplying relationships yielding 

the strongest positive association. 

Renski and Feser (2004) explicitly compare proxies for localization and 

urbanization economies with more direct measures of Marshallian agglomeration 

externalities.  They create indicators of labor pooling, specialized input supply networks, 

intermediate goods markets access, and knowledge spillovers and test them against 

population size (urbanization) and own-industry employment (localization).  

Interestingly, the four direct agglomeration measures tend to be more highly correlated 

with urbanization than localization economies, demonstrating that Marshall’s advantages 

may pertain in practice to spatial conglomerations of businesses that are treated as 

dissimilar by standard industrial classification schema. 

Regardless of the theoretical and conceptual advantages, the approach of 

specifying explicit agglomeration indicators entails practical shortcomings, chief among 

them the problems of obtaining suitable data and of encountering substantial 

multicolinearity that makes it difficult to distinguish among multiple agglomeration 

economy measures (Renski and Feser 2004).  It is not coincidental that nearly all of the 
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studies adopting this research strategy use micro-level data.  Not only does information 

on individual establishments support a finer grained analysis, illuminating the influences 

of plant-specific characteristics, it also allows for larger sample sizes and increases the 

variation represented in the constructed measures.  Even so, conceptual parallels and 

statistical overlap (i.e., multicolinearity) among the agglomeration variables remain a 

thorny issue (see section 5.7). 

The chief expansion in research using micro-level data comes from increasing use 

of government-collected datasets.
16

  These data are nearly always confidential, but may 

be used to develop aggregated statistics or analyses.  Gabe (2003) uses Covered 

Employment and Wages  (also known as ES-202) data from the state of Maine; Acs et al. 

(2002b) and Renski (2006) analyze the same data from the U.S. Bureau of Labor 

Statistics on a nationwide basis.  The U.S. Census Bureau’s Longitudinal Employer 

Household Database (LEHD) matches workers with firms (but not establishments) 

(Freedman 2006; Andersson et al. 2007); the Longitudinal Establishment and Enterprise 

Microdata (LEEM) tracks establishments over time (Armington and Acs 2002; Acs and 

Armington 2004a; 2004b; Lee et al. 2004; Acs et al. 2007; Acs and Mueller 2008); and 

the Standard Statistical Establishment List provides physical locations (Arzaghi and 

Henderson 2006).  The Longitudinal Research Database (LRD) is also constructed and 

maintained by the U.S. Census Bureau, and though it is restricted to manufacturing 

                                                 
16

 There are several other potential sources for plant-level data.  Business surveys collecting primary data 

have been used rarely in productivity research due to their expense and potential unreliability (examples 

include Sveikauskas et al. 1985; Ke 1995; Lublinski 2003) but are more common with regard to studies of 

outcomes such as technology adoption or export activity.  Tax returns or other official documents can 

reveal useful information but are generally limited in scope, coverage, and accessibility (e.g., Capello 

2002b).  Within the past fifteen years or so, the Dun & Bradstreet company has improved the coverage and 

accuracy of its MarketPlace (United States) database to the point where the information, publicly available 

for purchase, can (with caveats) support rigorous research (e.g., Reynolds 1994; Rosenthal and Strange 

2001; 2003; Kohlhase and Ju 2007).  Nevertheless, MarketPlace is collected primarily as a marketing 

resource and does not include detailed input data. 
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plants, it covers almost all such establishments in the United States (see section 5.2).  The 

primary advantages of the LRD from a research standpoint are that it contains large and 

statistically representative samples, provides detailed information on outputs and inputs 

including capital, and is easily linked with other datasets (Bartelsman and Doms 2000).  

This database has been used by quite a few of the analyses detailed earlier (Martin et al. 

1991; Adams and Jaffe 1996; Dumais et al. 1997; Black and Henderson 1999; Feser 

2001a; 2001b; Essletzbichler and Rigby 2002; Feser 2002; Rigby and Essletzbichler 

2002; Henderson 2003; Kerr et al. 2007) and supplies the data for this dissertation as 

well.  Establishment- or firm-level datasets are available for many other nations, often 

with fewer confidentiality restrictions than in the United States.
17

 

 

2.4.2.6.  Summary of Empirical Agglomeration Research 

The preponderance of evidence supports the contention that agglomeration 

economies significantly benefit economic performance, whether performance is 

measured via productivity, employment growth, innovation, or any of a number of other 

possibilities (Gerking 1994; Feser 1998a).  Beyond the general affirmation of the 

importance of agglomeration economies, however, it is not easy to draw broad 

conclusions across the wealth of different methodologies, contexts, and industry sectors 

examined.  The variety of empirical results is in itself an important conclusion:  the 

effects of agglomeration economies differ widely by industry sector and by geographic 

                                                 
17

 Of the studies described earlier in this chapter, Pan and Zhang (2002) use firm-level data from China, 

Smith et al. (2002) from Denmark, Lehto (2007) from Finland, Chevassus-Lozza and Galliano (2003) from 

France, Graham (2007) and Graham and Kim (forthcoming) from Great Britain, Lall et al. (2004) and 

Kambhampati and McCann (2007) from India, Becchetti et al. (2007) from Italy, Hoogstra and van Dijk 

(2004) and van Oort (2007) from the Netherlands, Guimaraes et al. (2007) from Portugal, and Malmberg et 

al. (2000) and Nystrom (2007) from Sweden. 



 53 

region, underscoring the crucial role of regional and industry-specific conditions in 

determining the influence of agglomeration.  Establishment-level analyses verify the 

importance of firm- and plant-level characteristics as well. 

There are a few tendencies observed across the empirical literature that are worth 

noting.
18

  Urbanization and localization are for the most part too ambiguous a division to 

reveal consistent results, yet it does seem that localization economies are often the 

stronger influence in the manufacturing sector, particularly for the more mature, heavy 

manufacturing industries (Rosenthal and Strange 2004).  Observed trade-offs between the 

two types of agglomeration externalities (i.e., urbanization economies are weaker for 

industries evidencing stronger localization economies) may be due as much to the 

industry classifications, however, as to distinct externality processes.  Of Marshall’s three 

agglomeration economies, labor pooling is the most commonly reported to be significant; 

knowledge spillovers and specialized inputs may be less straightforward to measure.  

Spatial proximity is essential in the process of knowledge diffusion, though the 

geographic spread of knowledge spillovers from industrial and public research can be 

quite large in extent.  According to studies that take advantage of micro-level data, 

independent plants tend to accrue more agglomeration benefits than branch 

establishments, presumably because the latter can achieve equivalent or superior returns 

by focusing on internal or firm-level economies of scale.  Similarly, small or medium-

                                                 
18

 Non-empirical approaches to studying regional agglomeration are possible as well.  For instance, 

Camagni et al. (1986) construct a simulation model that suggests that industrial diversity at the city level 

supports a higher position within the urban hierarchy.  Chen (1996) features agglomeration economies 

prominently in his model of intraurban growth, and Fingleton (2001) presents an endogenous growth model 

of increasing returns to explain spatial variations in manufacturing productivity change.  Such strategies 

ultimately must be grounded in empirical work to be useful in application. 
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sized establishments benefit from external economies to a greater degree than larger, 

more self-contained enterprises. 

The great majority of empirical agglomeration studies focus on the manufacturing 

sector, largely in response to data limitations, but also because of the conceptual 

difficulty of applying the productivity framework to service and other non-manufacturing 

industries.  A few analyses have been designed to consider the entire economy as a whole 

(e.g., Fogarty and Garofalo 1978; Ciccone and Hall 1996; Ciccone 2002), and some 

works apply the methodologies described above to non-manufacturing industries as data 

are available (e.g., O hUallachain 1989; O hUallachain and Satterthwaite 1992; Reynolds 

1994; Combes 2000; Chen 2002; Dekle 2002; Acs and Armington 2004a; 2004b; Holl 

2004a; Renski 2006).  Overall, much more has been revealed about agglomeration 

economies as they pertain to manufacturing industries than for the remainder of the 

economy. 

 

2.5.  Two Key Studies of Regional Industrial Organization 

Two relatively recent works aim squarely at the relationships between regional 

industrial organization, agglomeration, and performance, and therefore form essential 

precursors for this research.  They do so in entirely different manners, however, making it 

worth examining them in particular detail. 

The first is Saxenian’s (1994) qualitative analysis of the regional organization of 

two high-technology industrial districts and the implications for sustained innovation and 

economic performance.  Through detailed case analyses of the regional and institutional 

structures of the semiconductors and computers industries in the greater Boston and San 
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Francisco-San Jose metropolitan areas, Saxenian demonstrates the importance of factors 

such as formal and informal contact networks, regional industrial organization, and local 

institutional interactions for the creation and maintenance of positive agglomeration 

externalities.  At the time of her analysis, the district centered around Route 128 in the 

Boston region constituted what she terms an independent firms system, dominated by 

large competitive companies with highly centralized corporate hierarchies and vertically 

integrated production systems.  Few non-market interactions existed among firms in the 

industry.  Loyalty, secrecy, and self-sufficiency were highly valued employee traits; the 

physical setting of large, self-contained, spatially separated edifices and campuses 

reinforced these attitudes.  The most active local university in the field, the Massachusetts 

Institute of Technology, focused primarily on obtaining government contracts and 

maintaining its interactions with large firms.  Buyer-supplier relationships tended to be 

adversarial in nature, based on lowest-cost competition, with the larger firms taking 

advantage of their market power over suppliers to sustain a buffer against economic 

fluctuations. 

Silicon Valley, situated in the corridor between Palo Alto and San Jose, featured a 

network-based industrial system according to Saxenian.  The large anchor firms in the 

industrial district (such as Hewlett-Packard and Fairchild) maintained decentralized and 

flat rather than hierarchical corporate governance structures, with loosely organized 

working teams and prevalent informal communication across groups.  There were a 

wealth of independent entrepreneurial enterprises engaging regularly in both formal and 

informal interactions with each other, with the R&D teams of the larger companies, and 

with researchers at Stanford University.  Firm specialization was favored over vertical 
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integration.  Experimentation and risk-taking were openly encouraged, and employees 

moved often from one firm to another.  Many employers preferred hiring workers that 

brought with them the experiences and know-how gleaned from multiple previous 

positions.  Suppliers tended to be treated as production partners and sources of feedback 

about market conditions instead of competitors for a limited pool of profits.  The Silicon 

Valley region was developed more densely than Boston’s Route 128, and the proximity 

of manufacturers supported the frequency of contacts and information exchanges.  The 

social networks were more intensive as well, with entrepreneurs, inventors, financiers, 

and employees habitually communicating with each other on an informal basis.  These 

social interactions and recurrent job switches acted as primary mechanisms for 

knowledge spillovers to occur among firms and research institutions in the area. 

Saxenian contends that the contrasting regional industrial organizations of the two 

regions translated into differential innovation output, adaptability, and ultimately 

economic performance.  The hierarchical, rigid regional industrial structure of Route 128 

limited flexibility.  Large firms found themselves locked in to technologies, markets, 

expensive equipment and other capital, and particular specialized labor skills, unable to 

adjust quickly to respond to shifting market conditions.  Moreover, the inward focus and 

high degree of vertical integration made the entire district vulnerable to the fortunes of 

the largest firms.  In contrast, the open labor market of Silicon Valley helped to develop 

the entrepreneurial skills of the workforce and the ability of managers to cope with rapid 

change.  Regroupings of skills, technology, and capital arose swiftly and often 

spontaneously out of communications and collaborations among workers, firms, industry 

associations, and educational institutions, in order to meet new technical and market 
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challenges.  The fragmentation of production among large firms and numerous smaller 

entrepreneurial ventures yielded novel product niches.  Ultimately, Route 128 proved to 

be the less resilient of the two industrial districts, failing to rebound from the industry 

decline of the 1970s, while Silicon Valley re-emerged in the 1980s as a national and 

international center for software and computer peripherals design and production. 

Saxenian goes further, arguing that the notion of agglomeration externalities is by 

itself insufficient for understanding local interactions and the generation of localized 

productivity benefits in a region such as Silicon Valley where firm structures are flexible 

and interfirm boundaries are porous.  The advantages of the district also involve social 

norms and conventions, trust relationships, and the local industrial culture, regional 

attributes that cannot analyzed at the level of individual firms.  In other words, a regional-

industrial system is not perfectly reducible into its component firms or establishments.  

Saxenian delineates three structural dimensions of interaction:  internal firm organization, 

interfirm industrial structure, and overarching regional institutions and culture.  This 

study focuses squarely on the second of these three dimensions, the organization of the 

industry at the regional level.
19

 

Rosenthal and Strange (2003) stands as a second key antecedent of this research 

study.  The paper explores the influence of regional industrial structure on the realization 

of agglomeration economies and the spatial extent over which agglomeration economies 

operate.  Utilizing Dun & Bradstreet’s Marketplace database, Rosenthal and Strange 

create indicators of industrial diversity and average establishments per worker at the zip 

                                                 
19

 Saxenian’s line of reasoning is a major part of the impetus behind the research design of the larger 

project of which this dissertation forms is an integral part (see footnote 11).  The combination of the 

modeling executed in this study with detailed qualitative case study analyses should illuminate the issues 

posed by regional industrial dominance along all three of the relevant dimensions. 
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code level for six industries:  software, food products, apparel, printing and publishing, 

fabricated metal, and machinery.  They construct concentric ring measures of localization 

and urbanization economies (measured as own-industry and other industry employment, 

respectively) at a variety of distances.  Finally, indicators of industrial and corporate 

structure are also included:  the own-industry employment measure partitioned by three 

establishment size categories and by plant status (independent versus subsidiary).  

Rosenthal and Strange estimate censored tobit regressions using two dependent variables 

signifying entrepreneurial activity, new firm births and employment in new 

establishments per square mile.  Both models incorporate fixed effects for metropolitan 

areas and the non-metropolitan regions of each state. 

The results of their analysis demonstrate that localization effects tend to be 

important at short ranges, but differ markedly in magnitude across industries.  For all 

industries, the benefits of localization attenuate rapidly within the first few miles, 

thereafter continuing to diminish but much more slowly with increasing distance.  The 

estimates of urbanization economies are smaller than for localization, but vary in 

magnitude and direction both with respect to industry sector and distance.  Industrial 

diversity supports new firm births and employment, a result consistent with previous 

studies.  Larger ratios of establishments to workers in the study industry yield greater 

values of the dependent variables, but the ratio of establishments per worker in other 

industries carries a negative association.  As for regional industrial organization, 

localization benefits arising from nearby small firms (those fewer than 25 employees) are 

greater than from medium-sized or large firms, suggesting that a more competitive 

environment yields entrepreneurial advantages.  There is no consistent pattern across 
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industries concerning localization economies from independent versus branch plants.  

Rosenthal and Strange extend past research in the direction of this study by focusing 

specifically on the intra-industry aspects of industrial organization and by modeling 

entrepreneurial activity within a framework incorporating spatially attenuating 

agglomeration effects. 

 

2.6.  Summary 

This chapter reviewed two branches of literature with particular relevance to the 

topic of regional industrial dominance.  Research in the industrial organization field 

demonstrates that though there are observed regularities, firm size distributions and the 

observed relationships between industrial structure and performance differ substantively 

across industries and by level of aggregation.  This empirical conclusion supports 

conducting an analysis of regional industrial dominance at the regional scale and on an 

industry-by-industry basis.  The inherent problems associated with modeling firm size 

distributions suggest using summary measures to indicate regional industrial structure. 

Studies of agglomeration economies have produced an exceptionally wide range 

of results.  This may have as much to do with ubiquitous data shortcomings and the 

inadequacy of classifications of types of agglomeration economies as with actual 

empirical diversity.  Many recent analyses, particularly those taking advantage of micro-

level data, have turned from broad proxies toward more explicit indicators of particular 

localization economies.  One key result produced is that agglomeration effects diminish 

substantially across space even at the intraregional scale. 
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The concept of regional industrial dominance combines elements of industrial 

structure with the local external environment of the firm.  Therefore, agglomeration 

theory, able to explain industrial organization and behavior at both the establishment and 

regional levels, offers the most appropriate and useful theoretical structure in which to 

ground an investigation of the topic.  The next chapter presents the conceptual framework 

for this analysis, elucidating the specific relationships hypothesized to exist among 

regional industrial dominance, agglomeration economies, and establishment performance. 



CHAPTER THREE:  CONCEPTUAL FRAMEWORK 

 

3.1.  Introduction 

Two of the trends in the literature identified in the preceding chapter are the 

movement toward the explicit delineation of the causes of agglomeration advantages and 

the continuing separation of the concepts of industrial structure and agglomeration 

economies in empirical research.  This study embraces the former trend while at the same 

time seeking to bridge the distance that defines the latter tendency.  The current chapter 

translates the ideas presented in the context of the literature review into a theoretical 

framework to support and direct empirical research that has at its center the interaction of 

regional industrial dominance with agglomeration economies.  The ways in which 

regional industrial dominance may affect firm performance are considered in terms of 

theoretical arguments and associated empirical findings.  The closing section presents a 

conceptual diagram that places the relationships to be examined in this analysis within 

their surrounding context. 

 

3.2.  Regional Industrial Dominance and Firm Performance 

Implicitly working within the Marshallian agglomeration economies tradition, 

Chinitz (1961) identifies three pathways by which the regional industrial context affects 

firm performance:  the propensity for taking risks, the availability of specialized inputs 

and services, and the availability of capital.  Although Chinitz does not clarify which 
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regional characteristic in particular—i.e., industrial diversity, average establishment size, 

regional economy-wide dominance, or regional industrial dominance—is the intended 

framework for each idea, each of the three issues applies to the specific context of 

regional industrial dominance.
20

  These three pathways form the basis for the conceptual 

outline at the end of this chapter and the research design presented in Chapter Four. 

 

3.2.1.  Risk-Taking 

The first of the three ways in which regional industrial dominance may impact 

economic performance is by reducing risk-taking behavior.  Chinitz suggested that the 

inclination of would-be entrepreneurs to take risks may be weakened in the presence of 

large, profitable industry leaders that offer stable and lucrative employment.  In contrast, 

a competitive industrial environment encourages risk-taking, and along with it 

entrepreneurial activity and the in-migration of entrepreneurs from other industries and 

regions. 

Subsequent authors have extended this relationship.  Individuals trained in large, 

stable enterprises are less likely to possess skill sets suited to establishing new businesses 

than those previously involved in small, entrepreneurial ventures themselves.  A 

competitive industry environment is more conducive to developing general business 

savvy and honing skills relevant to entrepreneurial activities in related or supporting 

industries (Blair 1978; Booth 1986; Sorenson and Audia 2000).  Large firms are more 

stable, and also generally offer greater compensation, benefits, and job security, reducing 
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 Industrial diversity is the extent to which a region contains a varied mix of types of economic activities.  

Regional industrial dominance is defined in section 2.2 as the degree to which the economic activity of a 

particular industry within a region is concentrated in a single or small number of firms.  In contrast, 

regional economy-wide dominance refers to a small group of firms accounting for a large proportion of all 

regional economic activity.  The notion of average establishment size is straightforward. 
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the incidence of career displacements that provide a common impetus for individual 

entrepreneurialism (Mason 1991; Davis et al. 1996b; Ettlinger 1997; Wagner 2004; Hu et 

al. 2005).  Malecki (1994) notes that entrepreneurial activities are more likely to take 

place in industries possessing low entry barriers, requiring minimal prior experiential 

knowledge, and providing greater opportunities for success.  An environment of small, 

independent establishments is more supportive of entrepreneurial networks, group 

learning, and other entrepreneurial activities than a setting dominated by a small number 

of large firms (Porter 1990; Malecki 1994; Acs 1996; Carree and Thurik 1999; Enright 

2000; Gordon and McCann 2000; Schmitz 2000; Helmsing 2001).  Regional social 

organizations and culture help to determine support for business risk-taking, and are 

shaped partly by the presence of or degree of corporate dominance within regional 

industries (Norton 1992; Rosenfeld 1996). 

The propensity for risk-taking relates to innovation and the adoption of 

innovations within enterprises—the creation and diffusion of knowledge—as well as to 

the establishment of entrepreneurial ventures.  The determinants of innovative activity 

and knowledge exchange have formed a major research topic in recent years, revealing 

implications of regional industrial organization for economic development (Camagni et 

al. 1986; Glaeser et al. 1992; Norton 1992; Saxenian 1994; Malmberg 1996; Capello 

2002a).  Porter (1990; 1998; 2000; 2002) argues from the industrial organization 

perspective that new business formation is essential for rivalry, which in turn is crucial in 

providing the impetus for innovation and improvement as a survival criterion.  (Porter 

discusses these ideas in a national context, but the concept extends to the regional scale 

where rivalry is spatially constrained.)  Knowledge spillovers are thus more important in 
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locally competitive than locally dominated environments (Scherer 1980; Malmberg and 

Maskell 2002), contradicting the earlier notion that innovation is favored in monopolistic 

settings where innovators capture more of the returns (Glaeser et al. 1992; Gort and Sung 

1999).
21

  Bureaucratic management structured to retain control over employees and 

maximize efficiency tends to inhibit innovation and spin-off formation (Booth 1986; 

Saxenian 1994).  Moreover, the establishment of specialized government- or industry-led 

institutes and associations, which help to generate and diffuse knowledge, is more 

probable with numerous rival firms that attract more public attention and have less 

capacity than larger firms to support research functions in-house (Scott 1988b; Porter 

1998). 

 

3.2.2.  Specialized Inputs 

Regional industrial dominance also influences the incidence of localized 

externalities arising from access to specialized inputs.  Not only does a region lacking in 

industrial diversity support only a narrow range of producer inputs and services, but large 

firms are usually more vertically integrated, curtailing accessible markets for specialized 

suppliers to serve other firms within the industry (Young 1928; Stigler 1951; Scott 1986; 

1988a; Scott and Kwok 1989; Enright 1995; Porter 1998; Henderson et al. 2001b; 

Giarratani et al. 2007).  Inputs that are purchased externally by large firms are more 

likely to be from nonlocal suppliers (Mason 1991).  Members of the labor force, 

particularly workers with specialized training, tend to gravitate toward large and stable 

employers (Audretsch 2001).  Analogously, producers of specialized inputs and services 
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 This contradiction is one motivation for testing Marshall-Arrow-Romer externalities against Porter 

externalities. 
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favor the stability of large volume contracts and attend first to those purchasers with 

greater buying power (Nelson and Winter 1982; Booth 1986). 

In contrast, an environment with many rivalrous firms mitigates the bargaining 

power of individual firms and expands supply, increasing competition and thus 

performance and efficiency within the supplier industry or the labor market (Porter 1990; 

Helper 1991).  To the extent that many potential buyers represent less risk to a supplier 

than one large buyer, there will be more incentive for entry into supply industries.  Firms 

supplying several industries may be more willing to adapt products and services for an 

industry with many rivals than for a largely isolated enterprise, even one relatively large 

in size, due to lesser perceived risk.  Public goods and specialized information are more 

likely to be available or tailored toward particular industry needs in regions in which an 

industry is competitively structured (Scott 1988b; Porter 1998; Mukkala 2004).  Porter 

(1990) argues that potential job seekers are more likely to invest in obtaining industry-

specific skills in the presence of rivalrous firms, and that the visibility of these firms 

helps stimulate the establishment of institutes and training centers that further support the 

development of specialized human capital. 

 

3.2.3.  Capital 

Finally, finding adequate financing is crucial for minimizing business costs and 

enabling expansions.  Suitable and attractive financing is more likely to be accessible for 

competitively structured regional industries.  Contrary to the predictions of neoclassical 

theory, there is evidence of differences in the availability of capital across regions as well 

as among different industries and types of ventures (Clark et al. 1986; Mason 1991; 
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Becchetti and Trovato 2002; Beck et al. 2005; Klagge and Martin 2005; Sarno 2005; 

Gilbert et al. 2006).  Larger traditional regional lenders may prefer the greater collateral 

and perceived security of larger, established firms in market segments the lenders have 

come to understand (Cole et al. 2004; Usai and Vannini 2005).  The costs of informing 

potential lenders or investors of the soundness and potential profitability of investments 

are proportionately larger, often prohibitively so, for small firms or for entrepreneurial 

ventures (Berger and Udell 2002).  In contrast, bankers and venture capitalists 

accustomed to entrepreneurial ventures are more accepting of and are better at assessing 

the intrinsic risks of business formation and expansion.  Thus industry financiers are 

more likely to adopt conservative lending patterns in regions and industries dominated by 

large stable employers (Booth 1986; Mason 1991; Norton 1992).  Moreover, external 

financing is typically more important for small firms (and absolutely essential for 

entrepreneurial ventures) since they have minimal capacity for internal financing from 

retained earnings (Clark et al. 1986; Berger and Udell 2002; Gilbert et al. 2006). 

 

3.3.  Empirical Research 

Thus there are three theoretical mechanisms by which regional industrial 

dominance may detract from firm performance:  by reducing risk-taking and knowledge 

spillovers, lessening regional accessibility to industry-specific supplies and inputs, and 

limiting the availability of financing.  As mentioned earlier, empirical research performed 

to date concerning the three mechanisms has focused on regional characteristics other 

than intra-industry dominance, namely establishment size and regional industrial 

diversity. 
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At the individual firm level, small firms are typically found to be less productive 

than large firms, all else being equal, though it is unclear whether this outcome is due to 

oligopolistic collusion, scale efficiencies, or the positive correlation between age and 

survival (Caves and Barton 1990; Hay and Morris 1991; Martin et al. 1991; Caves 1992; 

Haltiwanger et al. 1999; Taymaz 2005).  The LRD has been used to demonstrate that the 

productivity level and growth rate of subsidiary manufacturing establishments are 

positively related to the productivity of the parent firm (Baily et al. 1992; Bartelsman and 

Doms 2000).  Some studies, on the other hand, find no substantial difference between 

small and large establishments in terms of production efficiency or input substitution 

flexibility (e.g., Nguyen and Reznek 1990; Nguyen and Streitwieser 1999; Nguyen and 

Lee 2002), or report that firms with greater market power are less productive (Nickell et 

al. 1992; Klette 1999). 

Early empirical work tended to support the traditional Schumpeterian hypothesis 

that large organizations with greater R&D capacity will have greater innovation rates (per 

employee or per dollar of R&D expenditure) (Schumpeter [1942] 1950).  The consensus 

formed over the last thirty years of research is that small and large firms contribute to 

innovation in different ways that depend on industry-specific characteristics and 

conditions (Scherer 1980; Cohen and Levin 1989; Audretsch 1995; Carree and Thurik 

1999; Audretsch 2001; Gordon and McCann 2005; Therrien 2005; Chang and Robin 

2006; Huergo 2006).  Large firms are more likely to be early adopters of new 

technologies (Benvignati 1982; Rees et al. 1984; Dunne 1994; Harrison et al. 1996; 

Shapira and Rephann 1996; Bergman et al. 1999; Kelley and Helper 1999; Bergman and 

Feser 2001; Chen 2005). 
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A few studies in the industrial strategy and ecology literature support the 

importance of relative size, as opposed to absolute firm size, as a positive influence on 

business performance outcomes.  Bothner (2005) finds relative size has a positive impact 

on sales growth in the U.S. computer industry.  Survival rates of American breweries and 

of automobile firms in the United States, United Kingdom, France, and Germany are 

negatively associated with size differences with respect to competitor firms (Hannan et 

al. 1998; Carroll and Swaminathan 2000; Dobrev and Carroll 2003).  From the 

perspective of an individual firm, larger size relative to direct competitors augments 

economic performance even controlling for overall industry concentration. 

At the level of regional industries, smaller average establishment size is positively 

related to the availability of suppliers and qualified labor; outcomes of risk-taking, such 

as the creation of innovations, capture of knowledge spillovers, technology adoption, and 

entrepreneurial start-ups; and efficiency and firm growth (Blair 1978; Acs and Audretsch 

1990; Audretsch 1995; Harrison et al. 1996; Fritsch and Lukas 1999; Kelley and Helper 

1999; Fritsch and Meschede 2001; Chevassus-Lozza and Galliano 2003).  For example, 

in regional European industries, smaller shares of large firms result in greater value added 

(Carree and Thurik 1999).  Combes (2000) reports that larger average plant size detracts 

from regional employment growth in French manufacturing and service industries, and 

Nystrom (2007) finds that average plant size dampens the rate of firm births as well as 

deaths in Sweden.  In the United States, average establishment size is negatively related 

to firm births (Armington and Acs 2002; Acs and Armington 2004b; Lee et al. 2004), 

household income (Shaffer 2002; 2006a), and employment growth (Shaffer 2006b; 

Loveridge and Nizalov 2007).  There are some contrary indications as well.  According to 
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Acs and Armington (2004a), greater average establishment size is associated with faster 

regional employment growth.  In Texas, mean establishment size is positively related to 

new firm formation rates (Sutaria and Hicks 2004).  Acs et al. (1999) find that industries 

in which employment is more highly concentrated in large firms tend to have greater 

productivity growth, but they cannot distinguish the effect as an inherent productivity 

advantage of large firms as opposed to survival bias. 

Similarly, greater regional industrial diversity supports a number of desirable 

outcomes, including employment, firm formation, wage growth, patenting, regional 

stability, the transfer of beneficial spillovers, and productivity and population growth at 

the city and regional levels (Thompson 1974; Blair 1975; Scherer 1980; Begovic 1992; 

Friedman 1995; Henderson et al. 1995; Bostic et al. 1997; Quigley 1998; Holmes 1999; 

Hanson 2001; Armington and Acs 2002; Capello 2002a; Audretsch 2003; Henderson 

2003; Rosenthal and Strange 2004).  Many studies have found unemployment rates and 

regional employment instability to be moderated by heterogeneous regional industrial 

composition (among them Conroy 1975; Brewer 1985; Garcia-Mila and McGuire 1993; 

Malizia and Ke 1993; Hunt and Sheesley 1994; Wagner and Deller 1998; Mizuno et al. 

2006; Trendle 2006; see Dissart 2003 for a review).  As mentioned in section 2.4.2.3, 

Glaeser et al. (1992) and Feldman and Audretsch (1999) demonstrate employment 

growth and the introduction of innovations, respectively, to be supported by local 

industrial diversity.  These relationships hold for industrialized nations around the globe.  

In France, Combes (2000) finds greater diversity supportive of employment growth.  

Unemployment rates are lower and per capita personal income tends to be higher in U.S. 

states with greater industrial diversity (Izraeli and Murphy 2003).  Chen (2002) reports 
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employment and wage growth positively related to diversity in Taiwanese cities.  A 

diverse regional employment base is associated with a higher patenting rate in Sweden 

(Andersson et al. 2005). 

The role of capital availability has not been investigated separately in these 

empirical analyses of regional characteristics.  The main reason for this research gap is 

the paucity of reliable data on financing accessibility.  Regional capital availability 

generally has been examined only with surveys or case studies of limited geographical 

extent.  For example, Saxenian (1994) describes Silicon Valley venture capitalists as 

regularly engaging with local entrepreneurs, both in regard to business management and 

in social settings, and posits that their hands-on approach and familiarity with local 

entrepreneurs in the semiconductors industry led to their favor for investments in local 

entrepreneurial enterprises.  Becchetti and Trovato (2002) demonstrate that small and 

medium-sized Italian manufacturers receiving grants or soft loans experience higher than 

average employment growth, whereas those that report credit rationing grow more slowly 

than the average.  A few studies explore the differential accessibility of capital.  Smaller 

and newer businesses are less likely than large, established firms to gain credit approval, 

particularly from large banking institutions (Berger and Udell 2002; Cole et al. 2004; 

Hyytinen and Vaananen 2006).  Innovative small businesses may be at a disadvantage in 

obtaining bank loans (Freel 2007).  Smaller regional lenders are more likely than large 

corporate financial institutions to use information gleaned from personal interactions and 

relationships over time to assess credit risks (Berger et al. 2002; Cole et al. 2004; Usai 

and Vannini 2005). Mallett and Sen (2001) exploit a survey database of Canadian small 
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business loans to verify that local lending markets with greater competition do feature 

reduced rates. 

 

3.4.  Conceptual Diagram 

To model the mechanisms identified by Chinitz in a quantitative manner, firm 

performance must be considered in terms of specific, measurable outcomes.  The 

possibilities include direct economic performance (e.g., productivity, growth), the 

creation of knowledge and innovation, and the generation of entrepreneurial activity (e.g., 

business startups).  As illustrated by the empirical literature reviewed in Chapter Two, 

additional relevant outcomes do exist, but these three categories contain the most 

common and useful measures of firm performance. 

Figure 3.1 diagrams the conceptual framework for this research study, 

emphasizing the theoretical linkages among variables that are of the most direct interest.  

The figure is a stylized representation, not exhaustive in its detail but rather intended to 

reflect the thought processes underlying the research design.  The shaded portion of the 

diagram indicates the focus area for this research.  

Business establishments are situated within several layers of context or 

environment that affect performance, displayed in Figure 3.1 as concentric rectangles.  

First, there are characteristics specific to the establishment.  Industry features at the 

regional level, in particular localization economies and regional industrial dominance, 

play a role in firm performance.  Urbanization economies operate at the level of the 

regional economy, interacting with other elements such as the workforce, available 

knowledge assets, and public infrastructure and institutions.  Macroeconomic conditions  
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Figure 3.1.  The Context of Firm Performance 
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and industrial organization operate at the national scale. 

The outcomes of establishment activity, mediated by the economic environment 

at different levels of aggregation, are economic performance, entrepreneurial activity, and 

the creation of knowledge.  These are operationalized as productivity, startups, and 

innovative outputs, respectively.  Establishment decisions, specifically those concerning 

inputs and production techniques, form the link between contexts and outcomes.  

Regional industrial dominance is hypothesized to influence economic activity through 

limiting the possibilities for firms to take advantage of agglomeration economies—capital 
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availability, labor and supply pooling, and risk-taking—otherwise supported by regional 

and national economic conditions and establishment-level traits. 

This study focuses specifically on analyzing the outcome of productivity.  The use 

of a production function estimation framework, focusing attention on the inputs into 

performance at the establishment level, makes it possible to ascertain the impacts of 

regional industrial dominance on productivity in a quantitative manner.  Measures of 

potential regional agglomeration economies are included in the production model to 

estimate the extent to which regional industrial dominance affects the abilities of firms to 

improve their productivity by taking advantage of local and regional agglomeration 

economies.  Other outcomes likely affected by regional industrial dominance and 

agglomeration economies, in particular innovation and entrepreneurial activity, may be 

explored in future research on the topic.  The next two chapters present the details of the 

empirical methodology.



CHAPTER FOUR:  MODELING FRAMEWORK 

 

4.1.  Introduction 

Chapter Three developed a theoretical framework situating the concept of 

regional industrial dominance in relation to localized external economies and other 

influences on firm performance.  This chapter adjoins the economic and statistical 

framework used to conduct the empirical analysis.  There is a long history of empirical 

research involving production functions and related methodologies.  The first two 

sections elaborate on the different techniques that have been developed to investigate 

productivity, paying close attention to the advantages and shortcomings of each 

approach.  The remainder of the chapter describes the research design in detail, including 

assumptions, modeling advantages, and potential validity concerns. 

 

4.2.  Productivity Research Designs 

Productivity is an obvious and natural starting place for examining regional 

industrial dominance, presenting perhaps the most straightforward approach for assessing 

the effects of regional and industry characteristics on (optimal) production decisions 

(Rosenthal and Strange 2004).  Production theory provides a natural link between 

regional factors such as agglomeration economies or industrial dominance and 

establishment- or firm-level performance.  Furthermore, economic production theory 
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grounds empirical analysis in a strong theoretical framework.  This section describes the 

major research designs employed in productivity analyses. 

Production function studies start with the economic theory of production, relating 

inputs to outputs via rational profit maximization, to provide a structure for examining 

the influence of agglomeration economies or other factors on industry output.  Although 

the production function label sometimes is applied to alternative outcomes, most notably 

the production of knowledge or innovation (Griliches 1979; Jaffe 1989; see also section 

2.4.2.4), such analyses do not belong in the same methodological class because economic 

theory does not dictate particular relationships between inputs and production for these 

outcomes.  “Production functions” for these alternatives typically are specified in a form 

convenient for regression analysis, usually a linearly additive equation, perhaps with a 

slight modification to include interaction terms.  As mentioned earlier, alternative 

outcomes hopefully will be the focus of future research on this topic of regional industrial 

dominance. 

 

4.2.1.  Aggregate Production Functions 

The empirical literature that uses production functions to examine agglomeration 

economies along with other influences on productivity is vast (see reviews in Moomaw 

1983a; 1988; Gerking 1994; Feser 1998a; Rosenthal and Strange 2003).  Most of the 

studies can be categorized into one of four broad methodological categories:  aggregate 

regional production functions, establishment-level production functions, changes in 

productivity over time, and production frontiers.  The first of these research designs 

utilizes publicly available regional data to estimate production functions at the aggregate 
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industry level.
22

  Industries are defined most often at a level of aggregation equivalent to 

one- or two-digit SIC codes. 

One way to introduce agglomeration economies within an industry-level 

production function is to estimate a returns-to-scale parameter.  This approach, employed 

by Shefer (1973), Carlino (1979), and Begovic (1992) among others, relies on the 

questionable assumption of constant returns at the establishment level, so that returns to 

scale greater than unity across an industry indicate positive external economies in 

production.  The method has produced few interesting results since industry-wide returns 

usually have been found to be constant or nearly constant (Ke 1992). 

The more common modeling approach is to consider agglomeration economies as 

exogenously shifting the industry production function.  With a production function 

expressed in general form as 

(4.1) )()( XfZgQ ⋅=  

where Q is output and f is a production function with argument vector X, the parameter g 

is a shift in productivity (sometimes called an efficiency parameter) due to factors Z other 

than standard inputs, such as agglomeration economies.  Factor demand or cost share 

functions derived from the particular production function can be estimated 

simultaneously with the production function.  This procedure improves the information 

efficiency of the estimates, but carries the drawback of added complexity, requiring 

greater sample sizes (Christensen and Greene 1976; Ray 1982; Berndt 1991; Feser 

2001a). 

                                                 
22

 In addition to the reasons outlined in section 2.3, wide differences in the determinants of productivity and 

the patterns of intra-industry linkages across both industrial sectors and localities confirm the importance of 

modeling individual industries separately and on a regional basis (Mason 1991; Rigby and Essletzbichler 

2000; Feser and Sweeney 2002; Rosenthal and Strange 2004; Kenney and Patton 2005). 
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The variables contained in the vector Z are usually assumed to enter in a Hicks-

neutral manner, i.e., not affecting the relative levels of the different standard inputs into 

production.  In contrast, factor-augmenting terms that alter the ratios of standard 

production inputs appear in the vector X or are otherwise interacted in the model with the 

standard inputs contained in X.  The Hicks neutrality of external factors to production is 

advantageous for model simplicity but is not logically required; in fact, assuming Hicks 

neutrality denies the possibility that external factors may substitute differentially for 

distinct internal resources in production.  Only a few previous studies have explicitly 

tested factor-augmenting forms of agglomeration economies.  Feser (2001b; 2002) finds 

only occasional and relatively weak support for factor-augmenting urbanization and 

localization economies.  On the other hand, Calem and Carlino (1991) find that technical 

progress is more highly labor-augmenting in larger cities, Martin et al. (1991) report that 

the urbanization level substantially alters estimated input substitution ratios in the meat 

products and household furniture sectors, and Lall et al. (2004) reject Hicks neutrality 

considered jointly for several measures of urbanization and localization economies for 

seven of nine industries examined.  Graham and Kim (forthcoming) report that 

agglomeration, measured with an indicator similar to that typically used to indicate 

market potential, is mainly labor-augmenting but has varying effects on capital. 

There are two major methodological problems encountered in estimating industry 

production functions.  The first applies generally to the use of aggregated data:  

susceptibility to the ecological fallacy of inferring conclusions about plant or firm 

behavior from industry-level attributes.  This fault is frequently labeled “aggregation 

bias” in the production function literature.  Moomaw (1998) investigates empirically the 
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extent of aggregation bias in regional industry production function studies by comparing 

the results from pooling industries at the two-, three-, and four-digit SIC levels.  Finding 

very little difference among the sets of results, he concludes that aggregation bias does 

not appreciably distort the research.  Without access to data at the establishment level, 

however, Moomaw’s conclusion must be limited to comparisons among different levels 

of industry aggregation and cannot illuminate the extent of aggregation bias common to 

all studies using aggregated industry data.  A series of analyses of plant-level information 

shows that there is substantial heterogeneity in production technology, one of the possible 

causes of aggregation bias, within selected manufacturing industries defined at the 

relatively detailed four-digit SIC level (Rigby and Essletzbichler 1997; Essletzbichler et 

al. 1998; Rigby and Haydamack 1998; Essletzbichler and Rigby 2005a; 2005b; Rigby 

and Essletzbichler 2006). 

The second primary obstacle in conducting aggregate regional production 

function estimations is the lack of industry-specific capital data at the regional scale.  

Estimating a production function in a straightforward manner requires quantitative 

information concerning the conventional production inputs.  Unfortunately, data on 

capital stock typically are not available at the regional level in the United States.
23

  There 

are five solutions to this dilemma found in the literature, each with its attendant flaws.  

One strategy is to allocate a national capital figure to regions (Domazlicky and Weber 

2006).  For example, Munnell (1990) apportions U.S. manufacturing capital by state 

                                                 
23

 Capital data do exist at the regional level for some nations.  For instance, Lee and Zang (1998) estimate 

the productivity of South Korean cities and Nakamura (1985) and Dekle (2002) examine productivity and 

productivity growth in Japanese prefectures using publicly available information on regional capital.  

Mukkala (2004) analyzes the relationship between agglomeration economies and regional manufacturing 

productivity in Finland.  Bostic et al. (1997) make use of capital data that were collected for U.S. cities for 

the decade of the 1880s as part of the Census of Manufacturers. 
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gross book value, Garofalo and Yamarik (2002) use income estimates, and Cadot et al. 

(2006) employ a series constructed by partitioning the national capital stock by regional 

corporate tax rates.  Aside from its relative crudity, this method can only account for 

differing regional industry mixes to the extent of industry disaggregation for which the 

allocation variable is available. 

Another response is to construct a regional capital measure from the data that do 

exist.  Nicholson (1978) calculates a measure of capital from gross capital stock and 

leased plant and equipment figures contained in the 1957 Annual Survey of 

Manufactures.  Unfortunately, these data items are not published in later Surveys.  Hsing 

(1996) instead tabulates the total current value of structures and equipment, a measure 

that does not account for past capital investments.  A number of researchers use perpetual 

inventory accounting to calculate capital stock from depreciated investment streams (e.g., 

Segal 1976; Hulten and Schwab 1984; Fogarty and Garofalo 1988; Sveikauskas et al. 

1988; Arayama and Miyoshi 2004; Audretsch and Keilbach 2004; 2005).
24

  This 

technique requires detailed industry knowledge or rules of thumb to calculate appropriate 

industry-specific deflators and technical change rates (Moomaw 1983a), and tends to 

encounter multicolinearity problems (Henderson 1986).  In addition, the approach 

assumes a uniform starting point (usually zero) at the beginning of the stream of 

investment data and thus may incorporate a bias against regions, most likely older 

industrial areas, that contain substantial initial capital stock (Moomaw 1981a; Harrigan 

1999).  More unusually, in a cross-sectional comparison of the United States with Brazil, 

                                                 
24

 Studies that use methodologies other than aggregate production functions may also apply perpetual 

inventory calculations to estimate capital (e.g., Luger and Evans 1988; Beeson and Husted 1989; 

Essletzbichler et al. 1998; Rovolis and Spence 2002; Cohen and Morrison Paul 2005). 
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Henderson (1986) proxies capital costs with the driving times to regional market centers 

(major urban areas). 

A third tactic, employed in early work by Shefer (1973), Kawashima (1975), 

Sveikauskas (1975), and Fogarty and Garofalo (1978), and more recently by De Lucio et 

al. (2002), avoids the need for capital stock data by relying upon the highly suspect 

assumption of an identical capital-to-labor ratio across regions for each industry (Gerking 

1994).
25

  This assumption is probably more reasonable as engaged by Aji (1995) at the 

intrametropolitan level.  Moomaw (1983b; 1988) and Yilmaz et al. (2002) adopt a fourth 

method, treating the capital input into production as the residual after accounting for 

labor inputs.  Specifically, the proxy for capital is value added less payroll costs.  In his 

1988 study, Moomaw exchanges the dependent and independent variables in the 

production function to regress the labor-to-capital ratio against output, arguing that it is 

better to place an imperfect proxy on the dependent side of the equation. 

The fifth solution for the issue of unavailable capital data is to rearrange the 

production function equation or take advantage of side relations derived from the 

production function to allow the replacement of the capital term with an indirect capital 

measurement.  For instance, Moomaw (1981a) and Tabuchi (1986) adopt an additional 

equilibrium condition of equal profits across different size cities.  Aberg (1973) and 

Moomaw (1981b; 1985; 1986) take labor productivity to be the outcome variable in the 

production function, and proxy the rearranged independent variable, capital intensity, 

with value added per labor unit (more precisely, non-labor costs per worker hour).  

Moomaw (1983a) notes that most of the proxies for capital intensity used in the literature 

                                                 
25

 Fogarty and Garofalo (1978) include a dummy variable indicating cities with over 30 percent of earnings 

from the manufacturing sector as a rudimentary adjustment for differences in capital-to-labor intensity. 
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depend upon the assumption of constant prices and rates of return to capital across 

regions.  Moreover, he argues that the use of proxies for capital intensity or other 

independent variables implies stochastic measurement error, and thus can lead to errors-

in-variables bias.  Instead of estimating the production function itself, Carlino and Voith 

(1992), Lobo and Rantisi (1999), and Graham and Spence (2000) model a derived 

aggregate labor demand equation that assumes that (observable) regional wage rates are 

equal to the marginal product of labor.  Ciccone and Hall (1996) and Drennan et al. 

(2002) assume that capital rental prices are uniform across the United States in order to 

use a factor demand function to substitute price for quantity in the regional productivity 

specification. 

While the techniques described above may provide some degree of remedy, the 

methodologies available for estimating regional production functions for aggregated 

industry groups clearly leave much to be desired.  The defects of aggregate production 

function work have led to wide variation and low reliability of results overall 

(Sveikauskas 1975; Moomaw 1983a; Sveikauskas et al. 1988; Gerking 1994; Moomaw 

1998).  Aggregate production functions were estimated extensively through the 1990s, 

but have become less common in recent years as some researchers have been able to 

access micro-level data pertaining to individual firms or establishments. 

A closely related methodology is to investigate cost functions.  Such studies tend 

to focus on the cost-efficiency of production rather than on productivity itself.  The 

selection of a cost rather than a production approach depends heavily on the data 

available as well as the research purpose; cost and price data usually are more difficult to 

obtain at the regional level than input and production quantities.  Using aggregate cost 
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functions, Luger and Evans (1988) demonstrate the existence of technological differences 

within industries across metropolitan areas.  Boscá et al. (2002) investigate the 

importance of public infrastructure investments to regional productivity in Spain, Rovolis 

and Spence (2002) conduct a similar study for Greece, and Cohen and Morrison Paul 

(2005) study spatial spillovers in U.S. food manufacturing. 

 

4.2.2.  Micro-Level Production Functions 

The alternative of plant- or firm-level production function estimation has largely 

supplanted the study of regional industry production functions, despite the fact that the 

only comprehensive and reliable sources for relevant micro-level data in the United 

States are confidential, with relatively few researchers able to obtain convenient and 

continued access.  The primary reason for the recent dominance of micro-level research 

designs is that many of the drawbacks of aggregate production function work, in 

particular aggregation bias and the lack of capital data with its associated econometric 

concerns, can be overcome with the appropriate application of micro-level data (Davis et 

al. 1996a; Essletzbichler and Rigby 2002; Feser 2002; Graham and Kim forthcoming).  

Clearly, the use of establishment-level data eliminates aggregation bias as a potential 

problem.  Capital data often are available for individual plants in confidential datasets, 

obviating the need for unreliable allocations or clever but suspect work-arounds.  The 

potential for endogenous production input quantities or prices is reduced in the context of 

individual establishments possessing limited market power (although there are additional 

endogeneity concerns; see section 4.7). 
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An additional argument sometimes made against industry-level production 

function studies is that the estimation procedures invoke the assumption of profit 

maximization to make inferences about the production technology from observed data, 

and that in turn relies upon either input prices or quantities being fixed (in order to derive 

first-order conditions that allow for an analytical solution) (Sveikauskas 1975; Ke 1995).  

The profit maximization assumption cannot be avoided in either aggregate or 

establishment-level production function studies, and indeed it incorporates additional 

structural definition based on microeconomic theory that improves estimation power.  

Nevertheless, profit maximization perhaps is a more reasonable presumption for 

individual firms or establishments than for entire industries, particularly for those plants 

engaged in manufacturing or other production and processing activities in all but the least 

established sectors.   

Finally, whereas aggregate regional production function studies necessarily have 

to limit spatial exploration of agglomeration effects to the interregional context, research 

using micro-level data can incorporate intraregional spatial variation into measures of 

potential agglomeration economies.  Some authors have taken advantage of micro-level 

data in this manner (Feser 2001a; 2001b; 2002; Henderson 2003) but the approach 

remains the exception rather than the rule.
26

 

Several establishment-level production function analyses that use the 

Longitudinal Research Database to study agglomeration economies were described in 

section 2.4.2.  Martin et al. (1991) compare urban and rural locations for productivity of 

                                                 
26

 Rosenthal and Strange (2001; 2003) model spatial variation in agglomeration economies at the zip code 

level and Hoogstra and van Dijk (2004), Rice et al. (2006), and Rosenthal and Strange (2006) calculate 

agglomeration measures pertaining to a series of concentric distance or travel-time rings.  None of these 

studies involves a production estimation context. 
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meat packing and household furniture manufacturers.  Establishment size does affect 

production technology but not efficiency in five selected four-digit SIC manufacturing 

industries (Nguyen and Reznek 1990).  Feser (2001a; 2001b; 2002) examines both 

urbanization and localization economies as well as more specific Marshallian 

agglomeration economy indicators, whereas Essletzbichler and Rigby (2002) and Rigby 

and Esslitzbichler (2002) relate agglomeration economies, industry mix, and plant entry 

and exit to labor productivity.  Black and Henderson (1999) and Henderson (2003) focus 

on distinguishing Marshall-Arrow-Romer from Jacobs externalities.  Additional LRD 

examples investigate productivity influences ranging from workplace practices to internal 

R&D activity to heterogeneous labor quality to pollution abatement efforts (Nguyen and 

Reznek 1990; Adams and Jaffe 1996; Nguyen and Streitwieser 1999; Black and Lynch 

2002; Nguyen and Lee 2002; Shadbegian and Gray 2003; Hellerstein and Neumark 2004; 

Moretti 2004).  Ke (1995) estimates plant-level production functions from micro-level 

data obtained by mail survey.  With data compiled from CompuStat, Melville et al. 

(2007) research the impact of information technology on firm-level productivity.  

Production studies are conducted with micro-level data from other nations as well.
27

 

 

4.2.3.  Changes in Productivity Over Time 

One of the theoretical drawbacks of estimating cross-sectional production 

functions is that the approach implicitly makes the strong assumption that short-run 

deviations from equilibrium are uncorrelated with the independent variables.  In other 

                                                 
27

 Sveikauskas et al. (1985) use data from Brazil to estimate production functions at the plant level; Pan and 

Zhang (2002) use data from China; Graham (2007) and Graham and Kim (forthcoming) from Great Britain; 

Lall et al. (2004) and Koo and Lall (2007) from India; Capello (2002b) from Milan, Italy; and Harada 

(2004) from Japan. 
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words, the differences observed across units are necessarily presumed to reflect variation 

in long-run equilibria (Schmalensee 1989; Nguyen and Reznek 1990).  Estimating long-

run production functions using panel data is one way to address this issue.  For example, 

Marrocu et al. (2001) use panel data to estimate long-run national production functions 

for Italy between 1970 and 1994, incorporating regional and sectoral heterogeneity.  This 

procedure requires an extensive time series, however, and it is not likely that production 

function parameters remain constant over a protracted period.  An approach more 

widespread in the literature is to examine productivity change explicitly, modeling 

agglomeration economies and other factors as determinants of changes in productivity 

over time.  Although productivity shifts over time still generally are interpreted as 

changes in long-run equilibrium positions rather than shock responses and reversions 

toward a stable equilibrium, the argument can be made that the interpretation is more 

reasonable when considering the causes of differences in productivity across multiple 

time periods.  Nevertheless, the principal advantage of examining changes over time is 

that it permits a closer investigation of causal relationships. 

Productivity growth is a frequent item of investigation at the national level, for 

which data are relatively abundant.  Many studies use a measure of total factor 

productivity, an index that isolates the productivity effects caused by all factors other 

than changes in (standard) inputs (Hulten 2001).  In regional analyses, productivity 

changes can be examined for the entire economy, or at the sectoral or establishment 

levels, depending on the data available.  Beeson (1987b) finds offsetting influences on 

state-level productivity change from overall urbanization levels and the presence of large 

metropolitan areas.  Moomaw and Williams (1991) reveal that state productivity growth 
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is positively related to urbanization, unionization, education levels, and transportation 

infrastructure.  Declining central city densities may account for some of the reduction in 

metropolitan productivity growth observed in the 1960s and 1970s (Fogarty and Garofalo 

1988).  De Lucio et al. (2002) use panel data for Spanish manufacturing industry sectors 

to report significant Marshall-Arrow-Romer externality effects on provincial productivity 

growth.  Dekle (2002) uncovers evidence of mean reversion in productivity growth 

across Japanese prefectures in that productivity in the base year is a significant and 

negative predictor of productivity in the most recent year.  Total factor productivity 

growth in Hungarian counties is strongly affected by knowledge spillovers (Varga and 

Schalk 2004).  Other recent examples investigating regional productivity changes include 

Lee and Zang (1998), Serrano and Cabrer (2004), Destefanis and Sena (2005), Funke and 

Niebuhr (2005), Lee et al. (2005), and Bockerman and Maliranta (2007). 

With plant-level data, changes in productivity over time can be related to 

establishment as well as industry and regional characteristics.  Quite a number of studies 

adapt the LRD into a longitudinal micro-level data panel to track either labor productivity 

(McGuckin and Nguyen 1995; Jensen et al. 2000; Rigby and Essletzbichler 2000; Van 

Biesebroeck 2000; Nguyen and Ollinger 2002) or total factor productivity (Baily et al. 

1992; Nguyen and Kokkelenberg 1992; McGuckin and Nguyen 1995; Bartelsman and 

Doms 2000; Bernard and Jensen 2001; Celikkol and Stefanou 2004a; 2004b; Syverson et 

al. 2005; Lee 2007).  These studies examine a variety of influences on productivity, 

including exporting activity, research and development, technology choice, management 

quality, plant size and age, and mergers.  Ke (1995) and Ke and Bergman (1995) study 

total factor productivity growth with plant-level responses to a unique mail survey.  
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Foster et al. (1998; 2001; 2002) and Doms et al. (2002) use establishment data from the 

Census of Retail Trade to investigate the growth both of overall and of labor-specific 

productivity.  In other nations, Goto and Suzuki (1989) estimate the effects of R&D 

investment on the productivity growth of Japanese manufacturing firms, whereas Graham 

(2001) makes use of a financial database on British firms to track the relationship 

between local industry mix and total productivity growth.  Nickell and his co-authors 

(Nickell et al. 1992; Nickell 1996; Nickell et al. 1997) relate productivity growth to local 

competition, debt levels, shareholder control, and financial market pressure in the United 

Kingdom.  Okada (2005) investigates similar relationships in Japan.  Sena (2004) 

examines knowledge spillovers with data from a small sample of Italian chemical 

manufacturing plants. 

To date, the productivity change approach has recorded only limited success in 

isolating the particular influences on productivity that are of interest for this research 

study.  Data sources with a sufficient longitudinal dimension are not easily come by, and 

agglomeration economies have not been the primary focus of most of the studies 

adopting the method, perhaps because most regional variables tend to exhibit relatively 

little change unless the time periods examined span multiple decades (Gerking 1994; Ke 

1995; Feser 1998a; Rigby and Essletzbichler 2000).  Because the LRD is not designed as 

a panel dataset, productivity change studies using the LRD are restricted to those plants 

included in successive years’ surveys, severely limiting the available samples (see section 

5.2).
28

 

                                                 
28

 Although Black and Henderson (1999) use a panel constructed from the LRD for a production model 

with plant-level fixed effects rather than for examining changes in productivity, their approach similarly 

requires plants to be included in at least two successive censuses.  They report that their industry samples 

include eight percent of the original LRD establishments on average. 
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4.2.4.  Production Frontiers 

Finally, it is possible to estimate stochastic production possibility frontiers, rather 

than production functions themselves.
29

  The idea is to estimate the properties of the 

optimal production technology rather than individual production functions.  Normally, 

panel data are utilized to maximize the number of observations because in empirical 

studies the most efficient unit observed is assumed to be optimally efficient (Battese and 

Coelli 1988).  Regional productive efficiency can then be assessed relative to this “best 

practice” production.  Panel data are also required to avoid particular distributional 

assumptions and to allow the degree of technical inefficiency to be modeled 

independently of the mix of inputs into production. 

The most thorough analysis of this type is likely the international effort described 

in Caves and Barton (1990) and Caves (1992) to compare production and technical 

efficiency across several industrialized countries.  In that research as well as in most 

other studies, production frontiers are estimated at the national scale (e.g., Green and 

Mayes 1991; Harris 1991; Perelman 1995; Hay and Liu 1997; Driffield and Munday 

2001; Alvarez and Crespi 2003; Dilling-Hansen et al. 2003; Taymaz 2005; Kim and Lee 

2006; Lee and Pyo 2007; Liao et al. 2007; Madheswaran et al. 2007; Mahadevan 2007; 

Diaz and Sanchez 2008).  Beeson and Husted (1989) model stochastic production 

frontiers for manufacturing for the different states in the United States across the 1959 to 

1972 time period, finding that much of the variation in efficiency across states can be 

attributed to urbanization and industrial mix.  Mullen et al. (1996) update Beeson and 

                                                 
29

 Data envelopment analysis is the nonparametric counterpart to the stochastic frontier approach.  Because 

it is non-stochastic, data envelopment analysis captures measurement errors as well as any random 

fluctuations in the estimate of inefficiency; this may be why the technique has not been applied to the 

relatively disaggregated units of subsectors of the economy at the regional scale. 
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Husted’s results to 1987 and add a demonstration of the importance of public 

infrastructure for manufacturing efficiency.  Kim et al. (1999) also investigate public 

infrastructure impacts, in the context of South Korean manufacturing.  For Spanish 

regions, Maudos et al. (2000) analyze inefficiency across industrial sectors from 1964 to 

1993, Gumbau-Albert and Maudos (2002) examine the relationship between industrial 

concentration and productive efficiency, and Alvarez (2007) estimates production 

efficiency separately from different regional levels of technology.  Tveteras and Battese 

(2006) study the technical efficiency of salmon farming in Norwegian regions.  At the 

regional level, however, most applications of the approach consider the regional economy 

as a whole rather than particular subsectors or industries (see Puig-Junoy 2001 for a 

review).  Moreover, apart from the study by Beeson and Husted (and the update by 

Mullen et al.), there are no other examples that focus on regional agglomeration 

economies.  Perhaps this is because the optimality assumption and the relative efficiency 

framework are more suitable for the investigation of hypotheses concerning overall 

technical efficiency than the level of productivity resulting from industry- and region-

specific production technologies.  Of course, data limitations are a likely culprit as well. 

 

4.3.  Functional Forms 

Production functions are most often specified in one of three standard forms:  

Cobb-Douglas, constant elasticity of substitution (CES), or transcendental logarithmic 

(translog).  The Cobb-Douglas is the most restrictive of the three specifications.  It can be 

expressed as 

(4.2) ∑=
i

i
iXAQ

γ
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where Q is output, the Xi are production inputs, and A is a constant.  Returns to scale in 

production are indicated by the sum ∑
i

iγ .  Production function studies using the Cobb-

Douglas form abound, examining the influence on productivity of factors ranging from 

pollution regulation to managerial skills to transportation infrastructure to the workplace 

environment (among the studies mentioned earlier in this chapter:  Nicholson 1978; 

Moomaw 1985; Sveikauskas et al. 1985; Moomaw 1986; 1988; Goto and Suzuki 1989; 

Ke 1995; McGuckin and Nguyen 1995; Adams and Jaffe 1996; Marrocu et al. 2001; 

Black and Lynch 2002; Dekle 2002; Drennan et al. 2002; Yilmaz et al. 2002; Shadbegian 

and Gray 2003; Audretsch and Keilbach 2004; Harada 2004; Hellerstein and Neumark 

2004; Moretti 2004; Mukkala 2004; Destefanis and Sena 2005; Okada 2005; Koo and 

Lall 2007; Melville et al. 2007). 

The CES specification is typically written in nonlinear form as 

(4.3) ∑ −−=
i

v

ii XBQ ρρθ /)(  

where Q is output, the Xi are production inputs, B is a constant, and ∑
i

iθ is constrained 

to equal one.  In this representation, the elasticity of substitution between pairs of inputs 

is 
ρ+1

1
, and v is the returns to scale parameter.  The CES reduces to the Cobb-Douglas 

form in the particular linearization with unit elasticity of substitution )0( →ρ .  There are 

numerous examples of analyses using the CES function as well (e.g., Shefer 1973; 

Sveikauskas 1975; Carlino 1979; Tabuchi 1986; Moomaw 1988; Carlino and Voith 1992; 

Hsing 1996; Moomaw 1998; Lobo and Rantisi 1999; Viladecans-Marsal 2004). 
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 The Cobb-Douglas and CES functions are advantageous for their simplicity, but 

the assumption of constant elasticity of factor substitution that simplifies these 

specifications may be unjustifiable, particularly in modeling the production of individual 

establishments (Nguyen and Streitwieser 1999).  The most prominent alternative is the 

transcendental logarithmic production function.  The translog function was originally 

introduced as an alternative for the generalized Leontief flexible form for specifying 

production functions (Berndt and Christensen 1973; Christensen et al. 1973), though 

adaptations to cost functions came soon afterward (Berndt and Wood 1975; Christensen 

and Greene 1976).  Derived from a second-order Taylor series approximation to the 

unknown functional form, the translog specification imposes fewer a priori assumptions 

and asymptotically incorporates both of the Cobb-Douglas and CES functional forms 

(Chung 1994; Bairam 1998).  The translog is flexible in that it does not require the 

assumptions of homotheticity, homogeneity, or constant returns to scale in production, 

but rather allows them to be tested in the modeling framework.
30

  For this reason, the 

translog has become the specification of choice in econometric studies of production with 

sufficient sample size to support the relatively large number of terms in the translog 

equation (Chung 1994; Feser 2002). 

   The translog equation is quadratic in logarithms, so is generally written as 

(4.4) ∑∑∑ ++=
i j

jiij

i

ii XXXQ )ln(ln
2

1
lnln 0 βαα  

where Q is output, the Xi and Xj are production inputs, and α0 and the αi and βij terms are 

constants.  The equation reduces to the Cobb-Douglas specification if the quadratic terms 

                                                 
30

 A functional form is defined to be flexible if it does not impose a priori restrictions on interactions 

among its arguments and thus provides an approximation to an arbitrary true function (Morrison 1993, p. 

164). 
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(the βij) are zero.  The translog equation provides a local second-order approximation of 

the CES specification under a more complex set of conditions.  The quadratic Taylor 

series expansion around 0=ρ of the CES specification given in equation 4.3 is 

equivalent to the translog equation 4.4 with the following three conditions (Hoff 2002): 

(4.5) Bln0 =α  

(4.6) ii νθα =  for each i 

(4.7) 
ν

ρ

αα

β

2
−=

ji

ij
for each i, j pair with i ≠ j. 

Because the translog equation contains a large number of independent variables, it is 

most often estimated jointly with a set of derived factor demand functions to improve 

statistical power (Ray 1982; Chung 1994; Teruel and Kuroda 2004) (see Appendix 1). 

 Many of the studies discussed earlier use translog production functions (e.g., 

Nakamura 1985; Henderson 1986; Sveikauskas et al. 1988; Martin et al. 1991; Lee and 

Zang 1998; Nguyen and Streitwieser 1999; Feser 2001a; 2001b; Graham 2001; Feser 

2002; Nguyen and Lee 2002; Hellerstein and Neumark 2004; Moretti 2004; Graham 

2007; Graham and Kim forthcoming).  Nguyen and Reznek (1990) settle on the translog 

production function after testing and rejecting the Cobb-Douglas specification.  In 

contrast, Henderson (2003) tries the translog form but finds the results nearly identical to 

those from a Cobb-Douglas specification.  The translog form is also commonly applied to 

cost functions (e.g., Babin et al. 1982; Ray 1982; Luger and Evans 1988; Truett and 

Truett 2001; Adkins et al. 2003; Bitzan and Keeler 2003; Frank 2003; Apergis and 

Rezitis 2004; Fraquelli et al. 2004; Teruel and Kuroda 2004; Chua et al. 2005; Truett and 

Truett 2006; Arnberg and Bjorner 2007). 
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There are a few examples of other functional forms being employed in production 

or cost function studies.  For example, Fogarty and Garofalo (1988) and Kouliavtsev et 

al. (2007) experiment with a variable elasticity of substitution (VES) production function, 

and Boscá et al. (2002), Lopez et al. (2002), and Cohen and Morrison Paul (2005) all use 

the generalized Leontief variable cost function.  Brox (2007) combines the CES and 

translog forms in a hybrid specification.  Hsing (1996) tests several forms for production 

functions for U.S. states, favoring the new CES (Box-Cox transformed) specification 

over the more common forms described above. 

Finally, it is also possible to define the production function empirically, 

abandoning the properties of known functional forms in favor of improved model fit.  

Richardson’s influential (1974b) paper relates growth in state gross product to 

agglomeration proxies using a simple linear regression model.  In a methodologically 

similar manner but using micro-level data, Doms et al. (2002) examine the impact of 

information technology investments in the retail sector on labor productivity and 

Beardsell and Henderson (1999) analyze spatial concentration in the U.S. computer 

industry.  The production function in Capello’s study of Milanese high-tech firms 

(2002b) interacts measures of urbanization and localization economies with capital and 

labor in an otherwise linear equation.  Cervero (2001) examines the empirical effects of 

employment density and transportation accessibility on labor productivity at the 

metropolitan level.  Celikkol and Stefanou (2004a; 2004b) fit quadratic polynomial 

production functions in examining productivity growth patterns in the U.S. dairy and 

meat products manufacturing industries.  The semiparametric methods adopted by 

Huergo and Jaumandreu (2004) to trace productivity change in Spanish firms over time 
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do not require specifying a particular functional form.  The choice to avoid standard 

production function forms is sometimes made due to the lack of sufficiently reliable data 

on capital or other inputs, or to escape from having to select and justify a particular 

functional form, but it abandons the hope of explicitly applying economic theory to 

explain the results obtained. 

 

4.4.  Overview of Research Design 

This study analyzes productivity at the micro level using the Longitudinal 

Research Database (LRD), a confidential series compiled by the United States Census 

Bureau from establishment-level records.  The LRD contains detailed information on 

establishment locations (counties), inputs, outputs, and key establishment characteristics 

for nearly all manufacturing plants across the United States.  These data are combined 

with additional information from a variety of publicly available sources, creating a set of 

indicator and control variables at both the establishment and regional levels that includes 

measures of industrial dominance and potential agglomeration economies.  This dataset is 

used to estimate cross-sectional industry-level production functions that model the 

relationship between industry structure, agglomeration economies, and productivity for 

three contrasting industries. 

The micro-level data in the LRD yield numerous advantages for quantitative 

productivity analysis.  Several of these were discussed earlier, in section 4.2.2:  

accessible capital information, diminished likelihood of endogenous input prices, 

avoidance of aggregation bias, and the potential to incorporate spatially varying 

agglomeration economies.  In addition, the sample size available from the LRD is 
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sufficient to support estimation with the flexible but relatively complex translog 

production and cost share system.  Most importantly, estimating production functions 

with establishment-level data allows direct testing of the hypothesis that regional 

industrial dominance reduces the productivity of non-dominant firms by limiting their 

potential to take advantage of local agglomeration economies. 

 

4.5.  Production Model 

The establishment-level production function is modeled as in equation 4.1: 

(4.8) )()( XfZgQ ⋅=  

where Q is establishment output, f is a standard production function with argument vector 

X, and the function g is a productivity shift due to the argument vector Z.  Four inputs 

into production are contained in the vector X:  capital, labor, materials, and energy.  The 

vector Z includes indicators of regional industrial dominance, agglomeration economies 

and spillovers, and relevant regional economic characteristics.  The production function f 

is specified in translog form, expanded from equation 4.4 to include interaction terms 

between the standard inputs and the elements of the productivity shift argument vector Z: 

(4.9) 
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In equation 4.9, i and j index the elements of the production function f(X), k and l index 

the elements of the productivity shift term g(Z), and the indicator functions in the last two 

summands allow for the selective inclusion of interaction terms.  The first set of 

interaction terms permits external factors—the productivity shift variables contained in 

the vector Z—to enter the production function in factor-augmenting form.  The effect of 
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the element Zk on productivity is Hicks-neutral if and only if 0=ikλ  for each standard 

input i, a proposition that is tested empirically.  The second set of interaction terms 

(implemented only with regional industrial dominance as the Zk term) is included to allow 

estimation of the indirect effect that regional industrial dominance has on productivity 

through its influence on agglomeration advantages and to incorporate the square of 

dominance as an independent variable. 

Following Kim (1992) and Feser (2002), a set of cost share equations are derived 

from the standard first order conditions representing profit maximization (see  

Appendix 1): 

(4.10) 
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where the Si are the cost shares of the production inputs Xi and all other variables are as in 

equation 4.9.  The system of equations consisting of the production function (equation 

4.9) and the cost share functions (equation 4.10) are estimated jointly to improve 

estimation power, with additive disturbance terms appended that are assumed to follow a 

multivariate normal distribution with zero mean and constant covariance (Berndt 

1991).
31,32

  Since the cost shares sum to unity by construction, one cost share equation 

                                                 
31

 Feser (2002) and Graham and Kim (forthcoming) are recently published applications of this production 

function system in an agglomeration context. 

 
32

 The cost shares in equation 4.10 are logically limited to the interval between zero and one and therefore 

cannot follow a normal distribution.  The majority of analyses using a translog system ignore this problem; 

most of those that do consider the issue simply acknowledge that the multivariate normal distribution 

serves as an approximation to the true distribution of cost shares, the approach taken in this study.  With 

sufficient sample size, the approximation should be quite close.  Indeed, all of the empirical cost share 

estimates produced by the method in this research fall well within the unit interval at the sample means. 

Alternatively, Rossi (1984) and Kim (1992) assume that the cost shares follow a logistic-normal 

distribution so that a transformation into logarithms of cost share ratios yields dependent variables 

distributed over the whole of the real numbers.  Since this transformation merely exchanges one 
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(energy) is dropped to avoid a singular covariance matrix.  The model system is 

estimated using iterated nonlinear seemingly unrelated regression (also known as Zellner 

efficient estimation) to allow for disturbances to be correlated across equations.  Iterated 

seemingly unrelated regression estimates are asymptotically equivalent to maximum 

likelihood estimates and are invariant to the choice of which cost share equation to omit 

(Berndt 1991; Greene 2003).
33

  The model is implemented with the MODEL procedure in 

SAS.
34

 

The modeling procedure takes advantage of the flexibility of the translog form to 

test for homotheticity, homogeneity, and constant returns to scale, as well as the 

restrictions that reduce the translog specification to the CES and Cobb-Douglas forms.  

These are simplifications that can increase estimation efficiency, but should be justified 

by empirical testing rather than imposed beforehand (Kim 1992).  The translog 

production function is homothetic if, for each standard input i, 

 (4.11) ∑ =
j

ij 0β  

                                                                                                                                                 
assumption, the normal approximation, for the equally unlikely assumption of the logistic-normal 

distribution, it is not clear what advantage is gained.  In addition, because the transformation enlarges the 

ranges of the dependent variables for the cost share equations, the numerical convergence criterion is 

relatively more difficult to attain for these equations, so that more emphasis is placed on the production 

function equation relative to the cost share equations during the estimation procedure and overall system 

convergence is more difficult to achieve.  Nevertheless, the alternative production system with logarithmic 

cost share ratios was estimated for a subset of the industry-year pairs examined in this research, but the 

results obtained were markedly different and not credible. 

 
33

 Translog systems are typically estimated using either iterated seemingly unrelated or full-information 

maximum likelihood (FIML) regression.  Both procedures are invariant to the particular cost share equation 

omitted.  FIML is somewhat less common in empirical studies because it tends to encounter greater 

difficulties in obtaining convergence and identifying globally optimal solutions.  Preliminary testing 

demonstrated that the methods yield similar results for the modeling system in this study. 

 
34

 Lall et al. (2004) substitute a bootstrapping approach for calculating standard errors for the standard 

iterated seemingly unrelated regression procedure implemented with PROC MODEL, reporting that the 

latter produces substantially smaller standard errors in some cases.  To the author’s knowledge, no other 

studies of translog production functions report bootstrapped standard errors. 
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where j also indexes the standard inputs.  In other words, homotheticity is guaranteed if 

the sum of the four estimated parameters corresponding to the cross-input interaction 

terms is zero for each standard input.  Homogeneity requires both homotheticity and, in 

addition, the conditions that 

(4.12) ∑ =
k

ik 0λ  

for each standard input i.  The production function is linearly homogeneous if the 

conditions for homogeneity hold along with constant returns to scale: 

(4.13) ∑ =
i

i 0α . 

From the discussion in section 4.3, the test for the Cobb-Douglas specification is whether 

0=ijβ for each pair of standard inputs ji ≠ .  The translog approximates the CES 

specification in the neighborhood around 0=ρ  if the terms 
ji

ij

αα

β
are equal for each pair 

ji ≠ .
35

 

There are several assumptions inherent in this estimation model.  First, the 

specification assumes that the model variables are exogenous to the production function 

(and factor share functions).  This is reasonable in the context of plant-level observations, 

since establishments following the logic of profit maximization, particularly those 

belonging to small firms with little market power, regard output as endogenous and adjust 

production in response to changes in exogenous input prices (Morrison 1993; Feser 

2002).  As with all cross-sectional production studies, the methodology implicitly 

                                                 
35

 The CES test detailed here is based on an alternative specification of the translog production function and 

cost share system developed by Hoff (2002).  With four standard inputs, there are six distinct 

ji

ij

αα

β
terms, 

so the condition that each is equal to the same unspecified constant represents five restrictions. 
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assumes that the production function represents the long-run profit-maximizing 

equilibrium for the establishment.  The particular derivation of the factor share equations 

relies upon the presumption of competitive input markets, but thereby avoids the a priori 

assumptions of constant returns to scale and Hicks-neutral technical change (see 

Appendix 1). 

 

4.6.  Regularity Conditions 

As with other flexible functional forms, the translog specification does not 

automatically exhibit the properties that ensure theoretical consistency as a production 

function.  The translog may violate two conditions that are necessary for well-behaved 

production functions:  output increases monotonically with all inputs, and all isoquants 

(combinations of inputs that yield identical levels of output) are convex.  Although these 

regularity criteria may be imposed globally, doing so destroys the flexibility of the 

translog form (Sauer and Hockmann 2005; Sauer et al. 2006).
36

  Therefore, both 

monotonicity and convexity must be checked using the actual data as an adjunct to the 

estimation procedure.  These regularity conditions may be evaluated at variable means, at 

individual data points in the sample, at predicted out-of-sample points, or for some 

combination of these points.  Although it is best to check the conditions at each sample 

observation (Berndt and Wood 1975; Morrison 1993; Chung 1994; Sauer and Hockmann 

2005), many translog production function analyses evaluate monotonicity or convexity 

                                                 
36

 Ryan and Wales (2000) describe a procedure for imposing local rather than global concavity.  Although 

the technique guarantees concavity only at the chosen reference point, the authors claim that judicious 

selection of the reference point may lead to the concavity condition being satisfied at most or all other data 

points.  In their empirical application, however, Ryan and Wales report estimation results with local 

concavity imposed that are nearly identical to the results obtained from the original translog production 

function with concavity violations, demonstrating that the local correction of a concavity violation may not 

have a large impact upon the estimated coefficients. 
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only at the sample mean point, and numerous studies fail to report on regularity 

conditions at all.  In this study, monotonicity is checked separately for each standard 

input at each sample observation and at the sample mean point (which is the point of 

approximation).  Convexity is also checked for each sample observation and at the 

sample means, with the inputs necessarily considered together. 

Violations of the regularity conditions inevitably occur in a translog production 

function study using a sizable sample.  Convexity in particular is more difficult to 

confirm with factor-augmenting independent variables because of the increased 

complexity of the production function.  Previous empirical researchers suggest that a low 

frequency of violations is acceptable, though without specifying what percentage may be 

excessive (Nguyen and Streitwieser 1999).  More importantly, the production function 

should be well-behaved at the point of approximation, and the parameter estimates 

obtained should not be construed to apply equally well to all points in the input space, but 

rather primarily in the neighborhood of the point of estimation where the combinations of 

input amounts are such that the production function satisfies the regularity criteria.  Of 

course, caution should guide the interpretation in any case. 

For calculation purposes, the monotonicity criterion is satisfied where the 

marginal products of the inputs are all non-negative.  Convexity is guaranteed if the 

bordered Hessian matrix composed of the first and second derivatives of the production 

function with respect to the inputs is negative semidefinite (Chung 1994).  Because both 

monotonicity and convexity are checked using estimated parameters, they are subject to 

statistical estimation error; therefore, an alternative tally is also reported that evaluates 
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whether the monotonicity and convexity criteria are satisfied to within a small margin of 

error.
37

 

 

4.7.  Endogeneity Concerns 

A challenge common to research on local externalities is simultaneity in the 

relationship between agglomeration and productivity (Black and Henderson 1999; 

Hanson 2001; Ciccone 2002; Rosenthal and Strange 2003; 2004; Koo and Lall 2007; 

Graham and Kim forthcoming).
38

  The firms that are likely to be most productive may 

also be the firms that are most successful in identifying receptive and nurturing regions in 

which to locate (e.g., those with dense activity in the industry or a favorable corporate 

structure).  Thus plant location may underlie observed productivity effects; the issue is 

sometimes referred to as location selectivity.  While the problem is likely to be 

particularly severe in studies that focus on general measures of agglomeration economies, 

such as urban or industry scale, simultaneity may also affect analyses adopting more 

specific agglomeration indicators.  Koo (2005b) addresses the issue using aggregate areal 

                                                 
37

 Because the partial derivatives of the translog production function are nonlinear functions of the 

estimated parameters, there is no practical way to estimate standard errors for them when evaluated at 

particular points.  Instead, a rule of thumb error distance of 0.001 is used throughout to determine whether 

“near” monotonicity and convexity hold. 

 
38

 The issue may be considered as a parallel of the more general problem of unobserved inputs into 

production or inputs selected contemporaneously with productivity shocks leading to simultaneity bias due 

to the correlation of regressors with the error term (Bartelsman and Doms 2000; Van Biesebroeck 2000; 

Ackerberg et al. 2005; Ornaghi 2006).  This broader simultaneity problem is widely acknowledged in 

econometric analyses of production but generally goes unmentioned in agglomeration studies.  Neither the 

instrumental variables nor the fixed effects approach provides a robust solution.  The cost function may be 

estimated in place of the production function to avoid simultaneity but only if factor price data are available 

at the micro level.  The most recent strategies impose a behavioral model, using observed input decisions 

(with investments or intermediate inputs as proxies) to control for unobserved productivity shocks, but 

invoke strong and non-intuitive assumptions and elicit serious colinearity problems.  Moreover, they can 

only be implemented with panel datasets.  At least two investigations of the issue, however, suggest that the 

bias introduced by endogenous inputs in production function estimation may be minimal (Griliches and 

Mairesse 1995; Moretti 2004).  For this analysis, it is assumed that all of the model variables are exogenous 

to the production function; see section 4.5. 
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data by modeling agglomeration and spillovers simultaneously.  Several authors argue 

that studies of new firm formation avoid the simultaneity issue since the choice of 

location is unconstrained by previous decisions and the existing economic environment is 

taken as given (Rosenthal and Strange 2003; Renski 2006; van Soest et al. 2006). 

There are two statistical approaches available to deal with the issue of 

simultaneity:  instrumental variables and fixed effects estimation (van Soest et al. 2006).  

Henderson (2003), in an application of LRD data similar to this research, tries both.  

Unfortunately, there are no powerful instruments available for plant-specific variables or 

even for industry scale or urbanization economies at the regional level (Van Biesebroeck 

2000; Hanson 2001).  Henderson tests completely exogenous metropolitan attributes such 

as county air quality attainment status and market potential but finds these regressors to 

be too weak as instruments for agglomeration economies to produce useful results.  

Instead, he implements a fixed effects approach in the context of a balanced panel dataset 

by including time-invariant dummies for plant locations (and also reports experiments 

with time- and region-specific dummies).  This methodology remains vulnerable to the 

simultaneity problem to the degree that the presence of a given plant in a particular 

region and time period is the outcome of a profit-maximizing choice in an earlier time 

period (Rosenthal and Strange 2004; Ackerberg et al. 2005). 

Neither strategy is appropriate for this analysis.  The practical impossibility of 

obtaining effective instruments for the broad proxies of industry and urban scale, much 

less for specific agglomeration economies, precludes the instrumental variables approach.  

Although Henderson achieves some success with plant fixed effects, the tactic entails 

other limitations.  Using the LRD as a panel data source necessarily limits the sample size 
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significantly by excluding those plants for which data are not available in each year of the 

panel.  By omitting short-lived establishments, the panel sample tends disproportionately 

toward plants belonging to relatively large firms, a fatal flaw for research focusing on 

issues of regional industrial structure.  Furthermore, including plant-location fixed effects 

terms masks the effects of independent variables that are spatially rather than temporally 

variant. 

There are several factors that mitigate the issue of simultaneity in this research.  

The problem is expected to be less acute than in other agglomeration studies given large 

sample sizes and the focus on effects pertaining to relatively small plants that are 

presumably more constrained in their location selection than larger establishments.  By 

modeling the specific sources of agglomeration economies, incorporating spatial 

variation, rather than utilizing broad proxies, plant and regional characteristics affecting 

location selection that were treated as unobservables in previous empirical work are 

measured directly. 

It is also worth exploring the extent of possible bias detected in previous research.  

Comparing the geographic concentration of innovation and production, Audretsch and 

Feldman (1996) find little difference between ordinary least squares results and a three-

stage least squares regression that estimates innovation and production simultaneously.  

Henderson (2003) reports that the estimated effects of agglomeration economies on 

productivity are substantially stronger in the model incorporating plant fixed effects than 

with ordinary least squares, but that the estimated parameters differ only slightly between 

the fixed effects and instrumental variables versions.  In their analysis of the relationship 

of British regional productivity variations with agglomeration, Rice et al. (2006) find that 
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an instrumental variables model yields slightly larger coefficients and upholds the main 

findings of an ordinary least squares estimation.  In studying coagglomeration tendencies 

using the LRD, Kerr et al. (2007) employ versions of proxies for three Marshallian 

sources of agglomeration economies calculated for United Kingdom industries as 

instruments for the same variables pertaining to United States industries at the nationwide 

scale.
39

  They observe that the changes in the results compared to ordinary least squares 

estimations consist mainly of statistically insignificant increases in coefficient values and 

that the principal results are robust to the instrumental variables approach.  Finally, Koo 

and Lall (2007) conduct a direct test of the extent of location selectivity bias for a 

selection of Indian manufacturing industries.  They contrast estimates from a basic Cobb-

Douglas production function incorporating several agglomeration economy measures 

with those from a two-stage Heckman sample selection model that starts with a 

conditional logit estimation of location choice.  The correction factor from the first stage 

of the sample selection model is statistically significant for the majority of industries, and 

the effects of agglomeration economies tend to be overstated in the simple production 

function estimation compared to the two-stage model.  Yet there are also indications that 

the agglomeration parameters are not distorted very much.  None of the agglomeration 

economy parameters that are overestimated in the simple Cobb-Douglas production 

model fall outside of the 95 percent confidence interval of the corresponding estimate 

from the two-stage model.  Moreover, for each industry considered, the rank-order of 

agglomeration economy effects is identical across the two models. 

                                                 
39

 Supposing patterns of industry coagglomeration cause rather than reflect patterns in the agglomeration 

economy measures for the United States, then if there are underlying reasons for industry coagglomeration 

that are common to both the United States and the United Kingdom, such an instrumental variables strategy 

will not eliminate endogeneity bias. 
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From these studies, it seems that simultaneity may cause bias in either direction, 

yet the effects may be relatively small.  For this research, the possible remedies would 

themselves introduce validity threats more severe than the one redressed.  Therefore, the 

statistical methodology of this analysis does not address directly the potential 

simultaneity between agglomeration and productivity.  As with previous agglomeration 

research, the results should be considered with due caution. 

 

4.8.  Summary 

This chapter presented the economic framework of productivity analysis and 

established the statistical framework used to estimate the effects of regional industrial 

dominance and agglomeration economies on plant productivity.  There are advantages 

and drawbacks associated with each of the major research designs for examining 

productivity; these other approaches may provide avenues for complementary research on 

the subject of regional industrial dominance in the future.  Although there are valid 

endogeneity concerns with regard to the methodology employed, there are no solutions 

available that do not raise subsequent, more problematic issues.  Additional validity 

concerns associated with the data sources and the specific variables used in the analysis 

are discussed in the next chapter.



CHAPTER FIVE:  CONCEPTS, VARIABLES, AND DATA SOURCES 

 

5.1.  Introduction 

This chapter describes the dependent and independent variables entering the 

analysis and the data sources used to create them.  Issues related to conceptual validity, 

measurement, and construction are discussed throughout.  The section prior to the 

summary elaborates some of the particular validity concerns that arise from the choice of 

variables. 

 

5.2.  The Longitudinal Research Database 

The primary data source for this research is the Longitudinal Research Database 

(LRD) of the U.S. Bureau of the Census.
40

  The LRD is compiled from confidential 

establishment-level records collected for the quinquennial Census of Manufactures (CM) 

and the Annual Survey of Manufactures (ASM) and housed at the Center for Economic 

Studies.
41

  The LRD contains detailed longitudinal information on establishment 

locations (counties), inputs, outputs, and other establishment characteristics for nearly all 

manufacturing plants across the United States.  The coverage starts in 1963 and at present 

                                                 
40

 See McGuckin and Pascoe (1988) and McGuckin (1990) for details of the construction and contents of 

the LRD.  Davis et al. (1996a), in particular the technical appendix, contains a comprehensive discussion of 

issues related to the use of the LRD for employment research. 

 
41

 The Census of Manufactures is collected in years ending in “2” and “7”, with the exception of the first 

year of collection in 1963.  The Annual Survey of Manufactures is conducted in the remaining four out of 

every five years. 
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stretches to the 2002 Census and the 2005 Survey.
42

 

Because the LRD is compiled from confidential records, the use of the dataset and 

the release of descriptive statistics and results obtained from its analysis are strictly 

regulated.  All of the information contained within this document has been reviewed by 

Census staff to ensure that no confidential data are revealed either directly or in possible 

combination with other publicly available information.  The confidentiality restrictions 

and disclosure screening requirements limit the types and quantity of information 

possible to include in this study.  In places, qualitative descriptions take the place of 

numerical tabulations or other quantitative information.  Some potentially interesting but 

nonessential results are omitted. 

Although the LRD includes information on all establishments in the United States 

reporting under a manufacturing industry code, the coverage is less complete for small 

establishments.  First, though the CM contains information for all manufacturing plants, 

the smallest stand-alone plants are excused from completing the bulk of the census forms 

in order to ease the reporting burdens placed on small enterprises.
43

  The records 

pertaining to these plants are designated as administrative records, and except for data 

derived from Internal Revenue Service and Social Security Administration records 

(employment, gross value of shipments, payroll, and the details of firm name and 

location), the information they contain is imputed from the directly reported items by 

applying industry averages.  Approximately one third of the records in the CM in each 

year are administrative records (McGuckin 1990).  Second, the ASM is a five-year panel 

                                                 
42

 Annual coverage begins in 1972 since the first year of the ASM is 1973. 

 
43

 The criteria for exemption from the filing requirement vary by year, industry, and payroll level, but 

through the 1972 Census the cutoff was generally fewer than ten employees and from 1977 to present the 

implied cutoff is approximately five or fewer employees (Davis et al. 1996a). 
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sample of plants with rotating membership.
44

  Only large plants (normally those with at 

least 250 employees) are included with certainty in each ASM; the remainder of the 

sample is selected randomly to reduce data gathering costs and reporting burdens, with 

the probability of selection inversely related to establishment size.
45

  Sample weights 

support imputations to the national industry or manufacturing sector levels, but in any 

given year the ASM includes less than 20 percent of manufacturing plants in the United 

States.  Third, fewer items are asked of survey than census respondents; many of the data 

items collected in CM years are estimated or unavailable in ASM years. 

Because this study focuses on the interactions among large and small 

establishments, only data from census years of the LRD are used in order to maximize 

sample sizes and obtain the most accurate balance among establishment sizes.  

Restricting the samples to LRD records collected via the CM also maximizes the degree 

to which the indicator and control variables are constructed from reported rather than 

estimated data.  Three years of the LRD are included in the analysis:  1992, 1997, and 

2002.  Administrative records are excluded from the samples; otherwise, the analysis 

would tend to reflect imputation rules rather than establishment-level productivity 

relationships.
46

  Establishments with zero reported employment are also omitted as non-

active.  These steps are common practice in econometric studies employing LRD 

information (e.g., Feser 2001b; Rigby and Essletzbichler 2002; Henderson 2003).  It 

should be emphasized that by excluding these establishments, the results of the analysis 

                                                 
44

 Each ASM panel is surveyed the two years prior to and the two years subsequent to a Census year. 

 
45

 Prior to 1979, the unit determining selection was the firm rather than the establishment (Davis et al. 

1996a). 

 
46

 Administrative records are used in the measurement of regional industrial dominance; see section 5.6. 
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apply not to the complete study industries but rather to the subsets that exclude the very 

smallest producers.  For brevity, the samples often are referenced as the study industries 

without repeating this qualification.  Section 6.2 compares the resulting samples to the 

full set of records in the LRD. 

 

5.3.  Selection of Study Industries 

The research is conducted for establishments in three manufacturing industries:  

rubber and plastics manufacturing (Standard Industrial Classification 30), metalworking 

machinery (SIC 354), and measuring and controlling devices (SIC 382).
47

  The rubber 

and plastics industry manufactures both materials used in other manufacturing sectors 

and finished products made out of rubber or plastic ranging from polyvinyl chloride 

(PVC) pipes to automobile tires to styrofoam cups and beverage bottles.  Petrochemicals 

are the primary raw material in the production of plastics and synthetic rubber.  The 

larger portion of the industry’s output is purchased as intermediate inputs, comprising a 

major input for heavy manufacturing industries including motor vehicles and aircraft. 

Metalworking machinery manufacturers design and construct the equipment that 

is used to form metal into precision shapes, either while it is molten or in its solid phase.  

Metal parts have declined in prevalence and bulk with the growth of plastics as an 

alternative, lighter weight material, but remain essential in a huge variety of 

manufactured products.  The metalworking machinery industry manufactures specialized 

                                                 
47

 Manufacturing represents a declining portion of national economic activity and employment. 

Unfortunately, the LRD covers only the manufacturing sector.  As alluded to in section 2.4.2.6, the scope of 

the database is based on industrial classification templates that do not reflect the production of non-primary 

outputs or inter-establishment linkages such as subsidiary or purchasing relationships.  Productivity 

estimation for non-manufacturing sectors also faces the difficulty of constructing conceptually robust input 

and output measures (Bartelsman and Doms 2000). 
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drills, molds, dies, grinders, and presses, as well as the accessories needed to maintain, 

repair, and customize these metalworking machines.  These products are sold primarily to 

companies operating in other manufacturing sectors.  Metalworking machinery 

establishments tend to be substantially smaller than plants producing specialized 

machinery for particular sectors such as agriculture, construction, mining, and power 

transmission. 

The measuring and controlling devices classification encompasses a variety of 

outputs that involve similar production processes, including analytical laboratory 

apparatus, thermostats and environmental controls, meteorological instruments, fluid 

meters, motor vehicle gauges, aircraft engine and aeronautical navigational instruments, 

electrical signal monitors and testing equipment, and instruments for detecting and 

monitoring radiation.  As with the other two study industries, most of the production of 

the measuring and controlling device manufacturing industry supplies other 

manufacturing sectors.  Many manufacturers in this industry enjoy substantial military 

procurement contracts. 

These three industries satisfy several important criteria.  Each has enough 

establishments located in a sufficient number of regions in each of the three study years 

to present adequate variation in the level of regional industrial dominance and a large 

enough overall sample size to support the translog estimation system.  Establishments in 

these industries have flexibility in location choice; none is closely tied to localized 

natural resources.  The industries present a contrast between traditional, established 

industries producing many relatively stable, standardized products in a capital-intensive 

manner (rubber and plastics and metalworking machinery) and a more technology- and 
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innovation-intensive manufacturing industry (measuring and controlling devices).  

Comparing results among the study industries will provide a preliminary indication of 

whether the impacts of regional industrial dominance differ for traditional versus 

technology-based industries, given that the latter are typically subject to shorter 

innovation cycles. 

Finally, the three industry classifications are relatively homogeneous in terms of 

their production technologies.  Cross-sectional production function modeling necessarily 

assumes identical production technology across establishments.  Compared to other two- 

and three-digit SIC manufacturing sectors, the four-digit SIC components of the three 

selected study industries evidence relatively similar purchasing relationships 

nationwide.
48

  Whereas industries defined at the four-digit (or even more detailed) SIC 

level would more closely satisfy this criterion of homogeneous inputs and production 

technologies, there would be too few regions with a sufficient number of establishments 

or too little variation in domination across regions to support robust estimations for such 

precisely defined industry categories.  In addition, the degree to which plant-specific 

heterogeneity and outliers distort production estimations increases with sectoral 

specificity and the consequently smaller samples (Rigby and Essletzbichler 2002). 

The three study industries are defined according to the 1987 version of the 

Standard Industrial Classification (SIC) system.  This is the classification system used for 

the CM and LRD for 1992 and 1997.  Starting with the 2002 CM, however, plants are 

                                                 
48

 According to data from the Benchmark Input-Output Accounts of the Bureau of Economic Analysis, the 

mean pairwise correlation of purchase vectors among the four-digit SIC subsectors within the rubber and 

plastics industry ranks seventh highest out of the twenty two-digit SIC industries in 1992 and fourth highest 

in 1997.  Measuring and controlling devices ranks tenth and metalworking machinery 37th among the 79 

three-digit SIC industries containing more than one four-digit component in 1992; the two sectors rank 28th 

and 24th, respectively, out of the 76 three-digit SIC industries reported in 1997.  The 2002 data were not 

available publicly at the time of writing. 
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categorized into industries by the newer North American Industrial Classification System 

(NAICS).
49

  Two approaches are used to identify the set of establishments from the 2002 

LRD that fall within the established study industry sectors.  First, the 2002 LRD is cross-

referenced with the 2001 Longitudinal Business Database (LBD), and the SIC industry 

coding from the latter dataset is adopted for establishments appearing in both datasets.
50

  

A large majority of the plants ultimately included in the 2002 study samples are identified 

in this manner.
51

 

Second, the remaining plants are assigned SIC codes according to a crosswalk 

developed from the bridge calculated by the U.S. Census Bureau by cross-classifying 

establishments from the 1997 CM (United States Census Bureau n.d.-a).  Table 5.1 

displays the crosswalk relating the three study industry SIC codes to five- and six-digit 

NAICS codes.  The principal organizational changes introduced with the NAICS are 

within the services sector, so the translation for manufacturing industries is quite good.  

Nevertheless, because the correspondence between the two industry classification schema 

is imperfect even for the detailed two- and three-digit SIC levels in manufacturing, some 

noise is introduced into the samples in the form of establishments included that 

(according to the older SIC classification) should be excluded and conversely plants 

excluded from the sample that should be included (see also section 6.2).  Consequently,  

                                                 
49

 The 1997 and the 2002 versions of the NAICS are identical for the manufacturing industries used in this 

analysis. 

 
50

 The Longitudinal Business Database is a confidential Census Bureau dataset that tracks business 

establishments over time and contains identifiers such as name, location, and industry (but not information 

on inputs and output).  The LBD is constructed from the Standard Statistical Establishment List and is not 

restricted to the manufacturing sector.  For more information about the LBD see Jarmin and Miranda 

(2002).  The most recent version of the LBD available at the time of analysis is from 2001.  Most of the 

manufacturing plants contained in the 2002 LRD are listed in the 2001 LBD. 

 
51

 Establishments founded after the data collection occurred for the 2001 Standard Statistical Establishment 

List appear in the 2002 LRD but not in the 2001 LBD. 



 113 

Table 5.1.  Study Industry Definitions by SIC and NAICS Codes. 

 

Industry SIC NAICS 

rubber and plastics 30 325991 

326113 

32612 

32613 

32614 

32615 

32616 

326191 

326199 

326211 

32622 

32629 

metalworking machinery 354 332997 

333511 

333512 

333513 

333514 

333515 

333516 

333518 

333991 

333992 

measuring and controlling devices 382 333314 

334512 

334513 

334514 

334516 

334517 

334518 

334519 

 

 

the estimations that use the 2002 samples may yield weaker results, though the degree of 

difference should be slight. 

 

5.4.  Regions 

The geographic regions used in this study are Labor Market Areas (LMAs) as 

defined by the United States Department of Agriculture on the basis of 1990 Census 

population counts and county-to-county commuting patterns (United States Department 

of Agriculture 2003).
52

  These are the most appropriate units available for the purpose of 

examining regional industrial interactions across the nation, as they are constructed from 

                                                 
52

 Although the LMA definitions were scheduled to be updated with 2000 Census information, the long-

overdue revision remained unavailable at the time of writing.  Regional definitions based on 1990 data 

arguably are as appropriate for this analysis in any case, being more suitable for analyzing industry 

production choices in 1992 and perhaps in 1997. 
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individual counties to approximate the boundaries of functional economic areas and 

cover the entire United States.  The 1990 LMAs vary from single counties to 

amalgamations of more than 20 counties; most regions contain between four and twelve 

counties (see Appendix 3).  Establishments in Alaska and Hawaii are excluded from the 

samples due to their relatively isolated locations.  The samples also omit establishments 

in the three most populous LMAs as outliers because of those regions’ size, density, and 

volume of international linkages.
53

  Outside of these three, there are 388 LMAs in the 

continental United States. 

 

5.5.  Output and Standard Inputs 

Establishment output and the conventional arguments of the production function 

and cost share equations are based on LRD information, following the methods of 

previous analyses using the dataset (e.g., Nguyen and Reznek 1990; Martin et al. 1991; 

Feser 2001b; 2002; Henderson 2003; Syverson et al. 2005).  All monetary amounts 

contained in the LRD are reported in units of thousands of nominal dollars.  Observations 

with non-positive calculated measures for output, capital, labor, energy, materials, or the 

associated cost shares are dropped from the final samples (see section 6.2). 

Most productivity and industrial organization research considers production in 

terms of the value of output or sales.  In this study, output at plant z, Qz, is defined as the 

total value of shipments adjusted for inventories and work in process: 

(5.1) )()( zzzzzz FIBFIEWIBWIETVSQ −+−+=  

                                                 
53

 The three most populous LMAs contain the city centers of New York, Los Angeles, and Chicago.  The 

removal of the ten largest LMAs (the additional seven comprise the centers of Boston, Detroit, Houston, 

Newark, Philadelphia, San Francisco, and Washington) yields results that are similar in qualitative terms 

but are weaker due to substantially reduced sample sizes. 
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where TVSz is the total value of shipments, WIEz is the value of work in process at the end 

of the year, WIBz is the value of work in process at the beginning of the year, FIEz is the 

end-year value of finished product inventories, and FIBz is the value of finished product 

inventories at the beginning of the year. 

There are four conventional inputs into the production function.  The first, capital 

services, Kz, is the sum of the book values of capital assets and capitalized rentals: 

(5.2) 
MPR

MR

BPR

BR
TAEK zz

zz ++=  

where TAEz is the value of building and machinery assets at the end of the year, BRz is the 

rental expenditures for building assets, MRz is the rental expenditures for machinery for 

the year, and BRP and MPR are industry-specific capital prices.  The latter two terms 

correspond to capitalized building and machinery rentals, derived by dividing the actual 

rental expenditures for each asset category by three-digit SIC capital prices obtained from 

the Bureau of Labor Statistics.
54

  Although measurement of capital stock via perpetual 

inventory accounting arguably is preferable on theoretical grounds, the technique is 

viable only for firms or plants observed continually over a substantial period of time, 

whereas this analysis is restricted to a cross-sectional framework.  Gross capital stock has 

been demonstrated to provide a reasonable alternative approximation in micro-level 

                                                 
54

 The three-digit SIC capital price information originates with an unpublished dataset consisting of 

national productive stocks and rental prices by detailed asset category and by year that was produced by the 

Bureau of Labor Statistics as part of their multifactor productivity estimation program.  Industry-specific 

capital prices are computed by summing prices weighted by national productive stocks across asset 

categories classified either as buildings or machinery.  The overall industry-specific capital price used in 

estimating capital cost is calculated similarly by combining prices across all asset categories.  These data 

are no longer made available publicly and the dataset only extends to 1999.  For the 2002 samples, capital 

prices were estimated in two ways:  by extrapolating building and machinery capital price trends to 2002 

using the best-fit linear regression based on the data for 1987 through 1999, and by simply deflating with 

the latest available (1999) capital prices.  Since the two methods yield little difference in results, the latter 

method is adopted. 
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research using the LRD (Doms 1996; Dwyer 1997; Syverson et al. 2005).  Capital costs, 

CKz, are estimated as 

(5.3) zzzKz MRBRCAPPRTAEC ++⋅= )(  

where CAPPR is the industry-specific overall capital price combining both building and 

machinery assets. 

Labor, Lz, is measured in terms of hours: 

(5.4) 
( )xz

zz

z
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L
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+
=  

where WPz and WNPz are production and nonproduction worker payrolls, respectively, 

PHz is the number of hours worked by production workers, and thus the denominator is 

the average production worker hourly wage.
55

  The measure of labor represents an 

estimate of total production-worker-equivalent hours, since the number of hours worked 

by non-production workers is not available directly.  In the production context, this 

construction presumes that relative wages are proportional to marginal productivity, but 

unlike the direct measure of the number of employees (collected for March 12), it 

presents the advantages of accounting for part-time or part-year employees and reflecting 

labor fluctuations that occur over the entire year (Martin et al. 1991; Syverson et al. 

2005).  Labor cost, CLz, is 

(5.5) zzzLz SLCWNPWPC ++=  

where SLCz is supplemental labor costs. 

                                                 
55

 For a very small number of establishments with records missing the number of production hours worked, 

the denominator was instead taken to be the national industry-year average production wages per hour (i.e., 

the same construction but aggregated across all establishments in the continental United States in the 

industry, weighted by production employment). 
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Some LRD-based studies implement a production function with three standard 

inputs, considering energy and other inputs together as “materials” (e.g., Nguyen and 

Reznek 1990; Henderson 2003).  The data within the LRD are sufficient, however, to 

separate energy from the remaining production components.  The CM includes items 

recording the annual costs of purchased fuels and electricity as well as the quantity of 

electricity purchased in thousands of kilowatt-hours.  Therefore, plant energy 

consumption, Ez, is 

(5.6) 
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where CFz is the cost of fuels, PEz is the quantity of purchased electricity, EPR is the 

average cost per million British Thermal Units (BTUs) of purchased energy measured 

across the industrial sector by state and year, and the constant ratio in the second term 

translates the purchased electricity quantity from thousands of kilowatt-hours to millions 

of BTUs.  The values of EPR come from the State Energy Data System (Energy 

Information Administration n.d.).  Energy cost, CEz, is 

(5.7) zzEz EECFC +=  

where EEz is the cost of purchased electricity.
56

 

Lastly, materials, Mz, is the sum of remaining production expenditures: 

(5.8) ( )zzzzzzzzz MIEMIBRMRBCPCCWCRCPM −++++++=  

where CPz is cost of materials and parts, CRz is expenditures for resales, CWz is the cost 

of contract work, CPCz is purchased communications services, RBz and RMz are building 

and machinery repairs, and MIBz – MIEz is the difference between materials inventories 

                                                 
56

 As with the labor input, the energy quantity or cost was estimated for the handful of establishments 

missing data on purchased electricity quantity or cost by replacing establishment-specific figures with the 

national industry-year average. 
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at the beginning and end of the year.  (Decreases in materials stockpiles represent net 

positive amounts of materials contributed to production.)  The materials input acts as a 

catch-all category for production-related expenses that are not classified as capital, labor, 

or energy.  For the majority of manufacturing plants, the chief components of materials 

costs are parts, resales, contract work, and changes in inventories.  Because materials is 

measured in dollars, it is identical to material cost, CMz. 

The plant cost shares, Siz, are the cost of each conventional input relative to the 

summed cost of all four inputs: 

(5.9) 
∑

=
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for i = K, L, E, and M. 

 

5.6.  Regional Industrial Dominance 

 The operationalization of regional industrial dominance is central to this study, 

but as the concept has not appeared in quantitative empirical research, there is no strong 

theoretical or empirical basis upon which to base the selection of an appropriate measure.  

Previous industrial organization work has sought to fit observed frequencies of 

establishments sizes with well-defined parametric distributions, but this approach is 

inappropriate for the current study for several reasons, including the likelihood of 

distributions varying across industries and over time and the inapplicability of standard 

statistical methodologies for confirming extreme hypotheses (see section 2.3). 

One alternative is to turn to simpler, scalar indicators of industrial structure.  A 

variety of summary statistics pertaining to industrial concentration or market power have 
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been adopted in investigations conducted at the industry scale, including concentration 

ratios, likelihood ratios, the Gini coefficient, the Herfindahl-Hirschman index, entropy 

measures, and the sample variance of firm size (Needham 1978; Hay and Morris 1991; 

Amato 1995; Azzam et al. 1996; Greunz 2003b; Powell 2003; Porter and Sakakibara 

2004; Powell and Lloyd 2005).  As mentioned in section 2.3, summary statistics 

necessarily contain less information than a fully-defined distribution; this is an advantage 

in terms of practicality but complicates selection because individual measures offer 

distinct properties and thus can lead to different conclusions (Leach 1992).  For example, 

most of the indicators listed above are absolute in the sense that they depend in some 

manner on the total number of observations.  The Gini coefficient, however, is a relative 

measure, corresponding only to the degree of inequality among observations rather than 

their count. 

Empirical comparisons conclude that no single measure is superior to the others 

across varied applications (Hay and Morris 1991; Amato 1995).  This study considers 

four different dominance indicators, included separately as the measure of regional 

industrial dominance in different estimations of the production model.
57

  Each indicator is 

constructed for the three study industries at the regional (LMA) level.  Regional industrial 

dominance is calculated with reference to firms rather than plants since the hypothesized 

mechanisms of dominance identified in Chapter Three are most likely to operate at the 

level of strategic decision-making.  Therefore, establishments within a region that are part 

                                                 
57

 An additional reason for using multiple regional industrial dominance indicators is discussed in section 

6.4. 
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of multi-unit firms are first aggregated to the firm level.
58

  The total value of shipments is 

adopted as the measure of firm size.
59

  Because each plant included in the CM reports the 

value of shipments directly, administrative records are included in the calculation of the 

regional industrial dominance measures, ensuring that the measures of regional 

dominance are not skewed by the exclusion of the smallest plants from the industry 

samples. 

Whichever indicator is used, the regional industrial dominance variable enters the 

production function in quadratic form (i.e., with both a linear and a squared component).  

This enables investigation of basic nonlinear impacts, a possibility suggested by earlier 

empirical work on industrial concentration (see section 2.3).  Dominance is also 

interacted both with the standard inputs, to assess factor augmentation, and with 

agglomeration variables, to estimate the indirect impacts of dominance on productivity 

via limiting the advantages obtained from agglomeration economies. 

The primary measure of regional industrial dominance in this study is a 

concentration ratio.  The concentration ratio is an absolute measure, but is insensitive to 

the pattern of firms sizes that occurs at the low end of the distribution, a property that is 

in accord with the theoretical conception of dominance as presented earlier and is 

appropriate given the exclusion of the very smallest plants from the samples used for 

                                                 
58

 Since the LRD only contains manufacturing establishments and the aggregation only occurs within 

regions, the result is not necessarily full firms but rather the same-industry and same-region manufacturing 

components of multi-site firms.  This aggregation is referred to throughout as the “firm” level for the sake 

of concision.  As an extension of the principal analysis, the LBD is used to create alternative dominance 

measures that aggregate regional establishments that are part of the same firm but that may be classified 

into unrelated industrial sectors (see section 8.3). 

 
59

 The total value of shipments may inflate the size of isolated firms relative to those that are more 

vertically integrated by including interfirm sales.  This is much less of an issue, however, with micro-level 

data available at the establishment rather than the firm level.  Other variables standardly used to indicate 

firm size, such as value-added, employment, or assets, carry their own drawbacks (Baily 1986; Hay and 

Morris 1991; Lee and Zang 1998).  Tests of alternative regional industrial dominance measures based on 

employment instead of the value of shipments yield qualitatively similar results. 
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estimation.  Concentration ratios are perhaps the most widely used indicator of industrial 

concentration, in part because they have been made available by the United States Census 

Bureau at the national level in public-release versions of the CM and for equivalent 

datasets by other nations (Golan et al. 1996; Cortes 1998; Kambhampati 1998). 

The concentration ratio indicator of regional dominance for this analysis, DCrx, is 

based on the five largest firms in the industry and region: 

 (5.10) 
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where x indexes the industry, r indexes the region, y is the index for individual firms, Q 

represents output (the value of shipments), and n is the number of firms in the industry in 

the region.  The set T consists of the five firms with the largest output, considered 

regional industry “dominators”.  Thus DCrx is simply the ratio of output in the dominating 

firms to total regional output in the industry.  Only establishments in regions containing 

at least twelve firms in the industry are included in the estimation samples, in order to 

ensure the meaningfulness of the concentration ratio measure. 

Alternative versions of the concentration ratio were tested altering the basic 

parameters:  the number of top firms considered dominators, the minimum number of 

firms in the regional industry to be included in the sample, and substituting employment 

for shipments as the size variable.  Although the results of the estimations do vary to 

some degree with these changes, particularly with the altered sample sizes that follow 

from modifying the minimum allowable number of firms in each regional industry, the 
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conclusions described in the following chapters are qualitatively robust to these 

alternative specifications.
60,61

 

Other than the concentration ratio, market power is most frequently measured 

with indices constructed from the full set of firm size shares.  Some industrial economists 

contend that these indices are preferable to concentration ratios because they take into 

account the entire firm size distribution and are sensitive to both the total number of firms 

and the relative distribution of size among firms; concentration ratios essentially depend 

on only one point in the size distribution (Hay and Morris 1991; Amato 1995).  The 

different indices are distinguished by the ways in which they weight the size shares.  The 

most common is the Herfindahl-Hirschman index, which weights each size share 

proportionately to relative firm size. 

Two indices with contrasting size-share weights provide alternatives to the 

concentration ratio measure in this study.  First, the Herfindahl-Hirschman index, DHrx, is 

constructed by summing the squares of each firm’s share of regional industry output: 
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60

 In other words, models run with the alternative specifications yield figures that differ from those 

presented, in some cases with alterations in the degree of confidence in the conclusions reached, but that do 

not differ enough to invalidate or reverse the substantive findings. 

 
61

 The overriding change observed as the number of top firms considered dominators increases or the 

minimum threshold number of firms in the regional industry rises is that there is a large decline in sample 

sizes and consequently the parameter estimates become much less significant, incapable of supporting 

inferences with any reasonable level of confidence.  The results obtained from employment-based 

dominance measures are generally similar but weaker than those with the dominance variable constructed 

from data on shipments.  Shipment value is ordinarily the more stable datum, since it is an annual total 

whereas employment is reported as of March 15 of the census year. 



 123 

where the notation is as for equation 5.10.  Because the weights emphasize the largest 

firms, the index is quite insensitive to the distribution of size among the smaller firms.  

The Rosenbluth index, DRrx, instead weights by descending firm size rank: 

(5.12)
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where y indexes the firms in the regional industry ordered by the total value of shipments 

and the rest of the notation is the same as for equations 5.10 and 5.11.  By weighting the 

smallest firms the most heavily, the Rosenbluth index puts greater emphasis on the small 

end of the firm size distribution.  Unlike the concentration ratio, these indices can be 

calculated for regional industries with any number of firms.  Nevertheless, the same 

minimum of twelve firms in the industry is imposed to preserve the meaningfulness of 

the intra-industry regional dominance concept.  The firm minimum also serves to 

maintain identical estimation samples across the different dominance measures.  One 

additional index, Theil’s entropy measure, was also tested, but its weighting scheme and 

the results obtained are both quite close to that of the Herfindahl-Hirschman index.
62

 

Finally, the Gini coefficient is included as a representative of the class of relative 

concentration measures.  The Gini coefficient, DGrx, may be measured by the area under a 

Lorenz curve, visually indicating the extent to which the size distribution differs from 

equal apportionment, or may be calculated more simply via the fact that it is the relative 

counterpart of the Rosenbluth index (Needham 1978): 

                                                 
62

 Theil’s entropy measure uses the natural logarithm of the size shares as weights (Attaran and Saghafi 

1988). 
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(5.13) 
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where n again signifies the number of firms in the regional industry.  The Gini coefficient 

is often interpreted as an indicator of the degree of inequality in a distribution.  As with 

the other dominance measures, the Gini coefficient is only considered for those regional 

industries with a minimum of twelve firms. 

 Table 5.2 lists the four dominance measures considered in the analysis and their 

theoretical ranges.  As with the primary concentration ratio measure, versions of the three 

index measures were tested that change the flexible parameters:  the exponent in the 

Herfindahl-Hirschman formula, the minimum number of regional industry firms for 

sample inclusion, and substituting employment for shipments as the size variable.  Again, 

the conclusions reached in Chapters Seven and Eight are qualitatively robust to 

alternative specifications. 

 

Table 5.2.  Measures of Regional Industrial Dominance. 

 

Dominance Range Measure Description 

 
minimum maximum 

DC five-firm concentration 

ratio 

sum of size shares of five largest 

firms 
n5  1 

DH Herfindahl-Hirschman 

index 

sum of squared firm size shares n1  1 

DR Rosenbluth index sum of firm size shares weighted 

by descending size rank 
n1  1 

DG Gini coefficient difference from equal distribution 0 n11−  

Note:  n signifies the number of firms in the regional industry. 
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Each of these dominance measures is constructed to be specific to both the 

particular industry and the region.  Additional measures of regional dominance that are 

not industry-specific but rather consider dominance across the regional manufacturing 

sector or the entire regional economy are investigated as an extension of the principal 

analysis (see section 8.3). 

  

5.7.  Agglomeration Economies 

There are two key dimensions of potential agglomeration:  geographic and 

economic distance.
63

  Geographic distance refers to the attenuation of agglomeration 

benefits with spatial separation, whereas economic distance refers to the degree of 

linkages or similarities in production processes such that businesses may gain advantage 

from the presence or economic activity of other establishments.  The two dimensions may 

be represented dichotomously or continuously, but both should be included in measuring 

external economies. 

Indicators of agglomeration economies may be based either on size (e.g., 

employment) or counts (e.g., number of establishments).  The measurement scale may be 

either absolute (e.g., for labor pooling, the number of potential workers) or relative (e.g., 

the percent of the accessible workforce that are potential workers) (Rosenthal and Strange 

2004; Feser et al. 2005).  In general, absolute measures are favored because they indicate 

the volume as well as the intensity of potential agglomeration benefits.  Although it may 

                                                 
63

 Rosenthal and Strange (2004) identify time as a third dimension.  As Renski (2006) notes, the 

longitudinal limitations of available datasets and the inconsistency of industry definitions and data 

collection practices over time make the direct examination of long-term accumulated or lagged effects of 

agglomeration economies very difficult.  Because of these concerns, as well as the practical consideration 

of limiting the number of independent variables, this analysis includes only contemporary measures of 

potential agglomeration economies.  Two historic indicators of industrial structure are included; see section 

5.8. 
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be preferable from a theoretical standpoint to maintain consistency across measures with 

regard to these aspects, data limitations as well as multicolinearity problems force 

differences in the construction of some of the measures.  Studies that examine multiple 

sources of agglomeration economies must accept the frustrating trade-off between 

individual construct strength and multicolinearity among the several constructs.
64

  The 

difficulties intrinsic to disentangling the different types and mechanisms of external 

economies and spillovers present a common thread throughout the empirical 

agglomeration literature (Breschi and Lissoni 2001; Renski 2006).  Numerous variants of 

each agglomeration measure were tested, with the final versions ultimately selected to 

maximize concept validity and variation within samples while avoiding multicolinearity 

issues as much as possible. 

Five measures of potential agglomeration economies are included in the 

production model, representing possible labor pools, two types of supply pools, and two 

aspects of regional knowledge spillovers.  The measures are conceptually similar to those 

employed successfully in other recent agglomeration economies research (e.g., Feldman 

and Audretsch 1999; Drennan et al. 2002; Feser 2002; Rigby and Essletzbichler 2002; 

Renski and Feser 2004; Koo 2005b; Renski 2006).  As in other studies, the variables 

estimate potential agglomeration economies based on observable characteristics 

(Richardson 1974a).  Unfortunately, there are no adequate data available both at the 

regional scale and on a nationwide basis with which to construct an indicator of capital or 

financing availability.  The five agglomeration variables are interacted in the production 

function equation with the standard inputs to accommodate changes in factor usage and 

                                                 
64

 The conflict between construct validity and multicolinearity is made worse by the urban nature of the 

industry samples; see section 6.2. 
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are also interacted with regional industrial dominance in order to model explicitly the 

effects of dominance upon the ability of establishments to take advantage of 

agglomeration economies. 

All of the agglomeration indicators are based on establishment size rather than 

plant counts, since the external economies being studied are dependent on the scale of 

productive activity rather than the precise division into economic units and are measured 

in the same way for establishments of different sizes.  Four of the five variables use 

absolute measurement scales.  Regional population density, included in the production 

function as a control, also helps to account for the absolute dimension.
65

  All five of the 

agglomeration economy variables adopt continuous versions of economic distance and 

four of the five incorporate continuous geographic distance components rather than being 

calculated at the regional level. 

One of the advantages of micro-level data in terms of modeling potential 

agglomeration economies lies in being able to include the spatial attenuation of 

agglomeration influences with increasing distance.  The LRD provides establishment 

locations by county, allowing for substantial spatial variation at a scale smaller than most 

LMAs, an enormous improvement over regionally-invariant agglomeration measures 

(Wallsten 2001).  Although an effective travel time metric based on road or other 

transportation networks would be better from a theoretical standpoint, data limitations 

restrict the analysis to calculated great circle distances, with county locations 

approximated by their geographic centroids. 

                                                 
65

  The correlation between the logarithms of population and population density is on the order of 0.6 to 0.8 

for each industry-year sample. 
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As with regional industrial dominance, there is no strong theory that suggests a 

particular specification for modeling changes in the influence of agglomeration 

economies with distance (Hoogstra and van Dijk 2004).  One specification in the 

literature is based on the expression for gravitational potential, with the decline in 

influence proportional to the percent change in distance (Anselin 2002; Hu and Pooler 

2002).  This supplies the reasonable property that small differences in distance are more 

important when the separation from the target location is small than when the separation 

is large.  This type of distance decay is modeled with the reciprocal of an exponential 

term, applying a weight factor of d
–α

, where d is distance and α is a parameter that can be 

varied.  The choice of α =1 yields the inverse of distance.  This functional form is 

standard for spatial applications ranging from migration to consumer marketing to 

knowledge spillovers and other agglomeration economies (e.g., Drezner and Drezner 

1996; Fischer and Varga 2003; Tiefelsdorf 2003; Crozet et al. 2004; Lim 2004; van Soest 

et al. 2006).  Figure 5.1 illustrates the decay profiles generated by varying the α 

parameter.  Although it is possible to specify distance decay with any number of 

functional forms that yield varying shapes, this analysis uses only the reciprocal 

exponential specification for the sake of brevity and to help limit the complexity of the 

analysis.  A cutoff distance is imposed beyond which interaction is presumed to be zero.  

Not only does the cutoff simplify the distance computations, but it also permits the 

pattern of decay to begin to approximate more complex functional forms without  
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Figure 5.1.  Alternative Spatial Decay Profiles. 
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requiring additional computational parameters.
66

  Alternative decay parameters were 

tested empirically, with the relatively rapid decay α = 1 selected as the best fit for the 

densely concentrated measuring and controlling devices industry and the more gradual 

decay α = 0.1 preferred for the less highly concentrated rubber and plastics and 

metalworking machinery industries. 

Labor pooling, LPkx, is measured as an establishment’s access to workers with 

skills that roughly match the industry’s expected occupational requirements: 
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 For example, an inverse exponential decay with α =0.1 and a maximum distance of 100 miles roughly 

simulates a concave decay profile. 
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where x is the study industry, c indexes counties, k is the county of the target 

establishment, Ocx is county c’s residential workforce employed in the top 15 occupations 

employed by industry x nationally, OcT is county c’s total residential workforce, and dck is 

the distance between county c and the county of the target establishment, measured 

between county centroids, for distances of 75 miles or less and zero otherwise.
67

  The 

labor pooling measure is relative in that it is based on the fraction of each county’s 

workforce in occupations of interest to the study industry rather than the total size of the 

available labor pool.  Tests of substitute labor pooling variables utilizing absolute scales 

demonstrate serious multicolinearity issues with the other agglomeration indicators.  The 

15 occupations with the most employment in each study industry are identified from the 

National Staffing Patterns matrices of the United States Bureau of Labor Statistics (n.d.-

b) (see Appendix 4).  Values for Ocx and OcT are obtained from the 1990 and 2000 Census 

Equal Employment Opportunity tabulations (United States Census Bureau 1993; 2004).
68

 

 Potential supply pools of manufactured inputs and producer services are 

calculated separately but similarly by weighting the local presence of supplier industries 

by the importance of each industry as a supplier to the study industry at the national level.  

Manufacturing input supply pooling, SPkx, is: 

(5.15) ∑ ∑ 
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 The number of top occupations to include and the cutoff distance were determined empirically by testing 

alternatives.  For the measuring and controlling devices industry, the rapidity of the distance decay means 

that the distance cutoff has little effect on the labor pooling variable.  Alternative decays and cutoff 

distances are investigated in section 8.2. 

 
68

 Census occupational data are based on worker residences rather than workplace locations.  This is 

appropriate because home-to-work commuting preferences rather than distances between worksites 

determine available labor pools. 
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where m indexes manufacturing industries, x signifies the study industry, c indexes 

counties, k is the county of the target establishment, Ecm is county c’s employment in 

industry m, Pxm is the dollar amount that the study industry purchases nationally from 

supplier industry m, PxM is the study industry’s total national purchases from 

manufacturing sector, and dck is again the distance between county c and the county of 

the target establishment, measured between county centroids, for distances of 75 miles or 

less and zero otherwise.  Producer services pooling, SDkx, is given nearly the same 

formula except that purchases and local employment are totaled for suppliers of producer 

services: 

(5.16) ∑ ∑ 
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where s indexes producer services industries and PxS is the study industry’s total national 

purchases of producer services.  The purchase amounts are constructed from the Make 

and Use tables of the Benchmark Input-Output Accounts of the United States from the 

Bureau of Economic Analysis (n.d.) (see Appendix 5).  The Ecm and Ecs are tabulated 

from the Longitudinal Business Database (LBD).
69

 

Knowledge spillovers are typically proxied by input measures such as university 

research expenditures and the density of employment of scientists and engineers, or 

outcome measures such as patents or new inventions (Jaffe et al. 1993; Fritsch and Lukas 

1999; Fritsch and Meschede 2001; Kirchhoff et al. 2002b; Koo 2002).  For this study, the 

relevant construct is access to potential sources of knowledge, rather than aggregate 

                                                 
69

 The Longitudinal Business Database and County Business Patterns are constructed from the same 

underlying confidential data. 
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outcomes.  The measure of potential labor pooling already accounts for the concentration 

of scientists and engineers. 

Two measures indicate different types of knowledge spillovers.  The first, RSkx, 

gauges regional access to relevant basic research and knowledge: 

(5.17) ∑ ∑ 
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where f indexes industry-relevant academic fields, Rcf is the total amount of research 

expenditures in academic field f during the previous five years at research universities 

located in county c, and the other variables are as in equations 5.14, 5.15, and 5.16.  The 

maximum distance is 200 miles, since university-industry interactions in general need 

occur with less frequency and convenience than labor and supply interactions to have 

significant impacts upon firm practices (Matkin 1990; Tornatzky and Fleischer 1990).  

The fields relevant to each industry are identified from a Carnegie Mellon survey of 

industrial research and development managers analyzed in Cohen et al. (2002), along 

with the author’s judgment.
70

  Annual university research expenditures by academic field 

(in nominal dollars) are tabulated from the National Science Foundation’s CASPAR 

database. 

Second, patenting activity provides an indication of the extent of private sector 

research activity and regional innovative culture.  Many studies acknowledge faults with 

patents as a proxy for innovative activity, yet empirical research does suggest that patents 

are related to the market value of knowledge, and in any case there are few viable 

                                                 
70

 For rubber and plastics, the fields are chemistry, materials science, and chemical engineering.  For 

metalworking machinery, the fields are materials science, computer science, mechanical engineering, and 

electrical engineering.  For measuring and controlling devices, the fields are materials science, computer 

science, mechanical engineering, electrical engineering, and physics.  These correspond roughly to the 

fields indicated by 35 percent or more of industry respondents as being “moderately” or “very” important 

to their research and development activities as reported in Table 3 in Cohen et al. (2002). 
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alternatives (Jaffe 1989; Jaffe et al. 1993; Henderson et al. 1998; Acs et al. 2002a; 

Agrawal and Cockburn 2003; Sampat et al. 2003).  The measure of patenting activity, 

PSrx, weights the volume of patents granted in each technology classification by the 

relative importance of those technology categories to the target industry: 

(5.18) ∑
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where g indexes patent technology classifications, r signifies the region, x represents the 

study industry, K is the set of patent technology classifications relevant to the study 

industry, PATgr is the number of utility patents granted within region r in the last five 

years in patent technology class g, POPr is the regional residential population, and Ngx is 

a measure of relevance derived from tabulations of patent citations.  Unlike the other four 

agglomeration variables, the patent measure incorporates geography solely in terms of 

regional boundaries.
71

 

Cross-industry knowledge spillovers are taken into account in determining the set 

of relevant patent classifications by using the inter-industry technology flow matrix 

developed by Koo (2005a) to identify the particular industries that generate patents that 

are cited in at least five percent of the study industry’s patents.  K is then the set of patent 

technology classifications relevant to this group of cited industries.  The relative 

importance of each cited industry is included by multiplying by Ngx, the citation 

frequency taken from the technology flow matrix (see Appendix 6).  The patent counts 

are obtained from CASSIS (Classification and Search Support Information System) of 

                                                 
71

 Although it is theoretically possible to construct relatively sophisticated measures incorporating spatial 

decay as well as industry-specific attributes using publicly available patent data, problems of geographic 

assignation and temporal truncation of citations make such indicators extremely suspect for small spatial 

scales and restricted time periods (Hall et al. 2001). 
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the Information Products Division of the U.S. Patent and Trademark Office (1987-2002).  

The relevancy match is produced by the same agency (2004). 

 

5.8.  Controls 

The production function equation includes several controls to account for 

additional characteristics that may impact productivity and agglomeration economies.  At 

the establishment level, the dummy variable DEz identifies establishments z that are part 

of firms classified as dominators according to the concentration ratio measure of regional 

industrial dominance.  In other words, dominator establishments are those belonging to 

the five largest firms.  Plants within firms reporting less than ten percent of the shipment 

value of the smallest regional industrial dominator firm are identified as small 

establishments with the dummy variable SEz.  The largest and smallest firms in a region 

may evidence different behavior with respect to productivity, regional industrial 

dominance, and agglomeration economies (see section 3.3). 

Census Regions proxy macro-regional levels of development and economic 

conditions.  Three dummies (CR1, CR2, and CR3) identify plants located in the South, 

Midwest, and West; the Northeast is the default region.
72

  Regional unemployment rates 

(UEr) and median household income levels (INCr) signal local economic conditions 

(United States Bureau of Labor Statistics n.d.-a; United States Census Bureau n.d.-b).  

Population density (POPr) helps control for regional size, level of resources, and the 

                                                 
72

 The Northeast region consists of Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New 

York, Pennsylvania, Rhode Island, and Vermont.  The South region is Alabama, Arkansas, Delaware, the 

District of Columbia, Florida, Georgia, Kentucky, Louisiana, Maryland, Mississippi, North Carolina, 

Oklahoma, South Carolina, Tennessee, Texas, Virginia, and West Virginia.  The Midwest region contains 

Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South 

Dakota, and Wisconsin.  The West region is Arizona, California, Colorado, Idaho, Montana, Nevada, New 

Mexico, Oregon, Utah, Washington, and Wyoming. 
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absolute dimension of potential agglomeration economies, as well as urban congestion 

and other agglomeration diseconomies (United States Census Bureau n.d.-c).  The 

unemployment, income, and population density variables are constructed for LMAs by 

combining county-level estimates. 

Regional industrial diversity, like dominance, is an aspect of industrial structure 

theorized to influence establishment-level productivity.  Specifically, Jacobs-type 

externalities benefit regions with diverse economies that generate knowledge spillovers 

across industries and types of economic activity (see sections 2.4.1 and 2.4.2.3).  Large 

urban agglomerations are likely to be those that are industrially diverse, but detailed 

industry data can be used to distinguish diversity from size-based urbanization 

advantages (Duranton and Puga 2000).  As is common in the agglomeration literature, a 

Herfindahl-Hirschman index calculated across regional industries at the four-digit SIC 

level of aggregation, DVr, serves to measure regional industrial diversity: 

(5.19) 
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where r indicates the region, x indexes industries, and E is employment.  The data are 

drawn from the Longitudinal Business Database in order to incorporate all industrial 

sectors in the diversity measure rather than just manufacturing; employment takes the 

place of shipment value because the LBD does not provide plant-level output 

information.  As constructed, DVr actually measures the inverse of diversity—greater 

values of the Herfindahl-Hirschman index in equation 5.19 indicate lesser regional 

industrial diversity. 
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Because the effects of regional industrial dominance or industrial diversity on 

establishment performance may be cumulative or otherwise persist over time, an historic 

version of each measure is included to help distinguish long-term effects.  To avoid 

multicolinearity, historic dominance (DHrx) and historic diversity (DVHr) are expressed 

as the change in dominance and diversity, respectively, over the twenty year period 

leading up to the year of the sample, with the calculation procedure for the historic 

measure matching that of the sample year version.  Also because of multicolinearity 

issues, the productivity estimations contain only one historic measurement for each of 

dominance and diversity, and these two industrial structure variables are the only factors 

for which historic versions are incorporated.  The particular period of twenty years is a 

functional compromise:  representing sufficient time for substantial change to occur yet 

short enough to retain the functional coherence of the industry and regional definitions 

and remain within the period of available data.  Because the LBD is not available for 

1972, the change in diversity is measured over a fifteen-year period for the 1992 samples. 

An additional control variable, the percentage of resident adults (age 25 and 

older) possessing at least a bachelor’s degree (EDr), was originally intended to signify in 

broad terms the depth of the regional human capital base, with educational attainment 

information at the county level taken from the decennial national censuses (United States 

Census Bureau 1990; 2000).  Income and education proved to be highly positively 

correlated, however, leading to substantial multicolinearity in the production function 

regressions.  Preliminary model testing demonstrated that the income variable possesses 

greater interregional variation and yields superior performance in the regression analyses, 

so the education control is omitted from the production function equation. 
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5.9.  Full Model Equations 

All of the variables except dummies are mean centered to enter the production 

function.  This procedure eases the interpretation of model outputs by causing the 

estimated parameters to refer to the direct effects at the sample means of the other 

variables rather than at their zero points.  The coefficients and standard error estimates in 

the translog system are not substantively altered.
73

  In addition, those variables that are 

not already measured in percentage or ratio form are transformed with natural logarithms.  

The resulting coefficient estimates for the transformed variables can be interpreted 

directly as elasticities at the sample means. 

Table 5.3 lists the full set of production function variables.

                                                 
73

 The estimates produced are identical once adjusted for the alteration of the mean points.  Unfortunately, 

mean centering does not reduce variable multicolinearity, despite some claims to the contrary (Aiken and 

West 1991; Gatignon and Vosgerau 2005; Brambor and Clark 2006).   
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Table 5.3.  Production Function Variables. 

 
Category Variable Description Unit 

dependent Q output value of shipments establishment 

standard inputs K capital gross book assets plus capitalized rentals establishment 

 L labor production-worker-equivalent hours establishment 

 E energy quantity of electricity and fuels establishment 

 M materials value of purchased materials and services establishment 

dominance D one of four alternatives: industry-region 

  DC (concentration ratio) percent of shipments in five largest firms  

  DH (Herfindahl-Hirschman) sum of squared firm shipment shares  

  DR (Rosenbluth) sum of firm shipment shares weighted by descending size rank  

  DG (Gini) degree of inequality in firm shipment shares  

agglomeration LP labor pooling percent of local employment in top industry occupations industry-county  

economies SP manufactured input pooling percent of local employment in top manuf. supply industries industry-county 

 SD producer services pooling percent of local employment in producer services industry-county 

 RS research university research expenditures in industry-relevant fields industry-county 

 PS patents industry-relevant patent rate per capita industry-region 

controls DE dominator establishment belongs to one of top five firms (dummy) establishment 

 SE small shipments < 10 percent of smallest dominator firm (dummy) establishment 

 CR1 geographic region South (dummy) region 

 CR2  Midwest (dummy) region 

 CR3  West (dummy) region 

 POP population population density region 

 UE unemployment unemployment rate region 

 INC income median household income  region 

 ED education percent 25 or older with bachelor’s degree or higher  region 

 DV industrial diversity Herfindahl-Hirschman index with industry employment shares region 

 DH historic dominance dominance 20 years earlier (construction matches dominance)  industry-region 

 DVH historic diversity industrial diversity 20 years earlier region 
Note:  ED (educational attainment) dropped from final models due to multicolinearity.
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Using the notation of section 4.5 and suppressing the analysis unit indices, the full 

translog production function equation including all interaction terms is: 

(5.20) 
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and the cost share equations are, for i = K, L, E, and M: 

(5.21)
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5.10.  Additional Validity Concerns 

Beyond the discussion of potential endogeneity in section 4.7, there are further 

validity concerns that arise from the particular selection of variables and methods of 

construction.  The most serious problem is the lack of a measure assessing the availability 

of capital, since constraints on external financing is one of the three postulated 

mechanisms by which regional industrial dominance is hypothesized to affect 

productivity via agglomeration economies.
74

  To the extent that the influence of regional 

industrial dominance on sources of financing follows the patterns of the other measured 

agglomeration economies, the estimated agglomeration parameter coefficients may 

include the effects of capital availability. 

Some researchers investigating agglomeration economies include indicators of 

customer demand proximity or pooling (e.g., Feser 2002; Renski and Feser 2004; Renski 

2006).  There are two chief reasons why demand pooling is not included in this analysis.  

First, the production of each of the three study industries is concentrated on a variety of 

intermediate outputs that are then used as inputs in a broad range of subsequent 

manufacturing.  Demand pooling is likely not as important for these industries as it might 

be for an industry with a relatively limited set of products and purchasers.  Second, 

severe multicolinearity issues arise when a measure of intermediate demand is 

introduced, since many of the establishments that purchase the primary outputs of the 

three study industries are either within the study industry classifications themselves or 

have quite similar labor requirements.  Still, to the degree that demand pooling (or 

another unexplored agglomeration economy) is present and not accounted for by the 

                                                 
74

 One of the key justifications for conducting case studies as part of the larger research project is to enable 

the exploration of credit availability and capital financing in general (see footnote 11 in Chapter 2). 
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included agglomeration measures, there may be an unexplained influence on the 

regression results. 

The independent variables described in this chapter contain measurement flaws.  

For example, the shortcomings of patents as a measure of knowledge spillovers are well 

documented (e.g., Jaffe et al. 1993; Sampat et al. 2003).  Geographic locations are 

assigned to patents by county according to the first listed inventor.  The crosswalk 

between patent technology classifications and industries is approximate at best and, 

because it refers to relationships at the national scale, does not capture local variations in 

innovation propensities and utilization of knowledge resources.  Occupation is an 

imperfect proxy for worker skills, and Census occupational data likely undercount 

available labor pools because they do not include workers that are unemployed, 

underemployed, or inactive in the labor force.  The capital input measure does not reflect 

depreciation over time, and both the capital and labor variables presume full capacity 

utilization.  The standard industrial classification systems (SIC and NAICS) sort 

establishments into industries on the basis of similarities in primary production 

technologies, largely ignoring factors such as similarity in demand markets (i.e., 

substitutability among products manufactured with different production techniques), the 

sales of secondary products, and the distinction between producer and consumer services 

(Hay and Morris 1991; Wernerheim and Sharpe 2001).  The measures of regional 

industrial dominance, potential agglomeration economies, and regional controls such as 

industrial diversity are unavoidably predicated upon the industry classification systems 

and incorporate their limitations.  It is likely that the other independent variables possess 

faults as well.  Nevertheless, the construction of each independent variable is the best that 
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can be accomplished with the data that are available on a national basis and follows 

techniques employed successfully in earlier research.  As with all empirical research, as 

long as the irregularities do not introduce systematic bias, the consequence of imperfect 

variables is a reduction in the clarity and statistical strength of the estimation results.  

This study counters measurement error to some degree with substantial sample size and 

plant-level detail. 

The production output variable for this study is assembled in typical fashion from 

the data items available in the LRD.  Several concerns related to its construction, 

however, are worth specific consideration.  Although the issues may or may not be 

mentioned in publications (usually they are not), they apply to most micro-level empirical 

analyses of productivity.  First, Ciccone and Hall (1996) argue that the production value 

data in the CM are inappropriate for studying productivity and agglomeration economies, 

since they reflect the use of services purchased in the market or transferred from other 

establishments within the same corporation that go unmeasured in the dataset.  

Essentially, increases in service outsourcing that raise production amounts could be 

erroneously perceived as increases in productivity, and, since outsourcing is likely to be 

disproportionately larger in dense urban locations, might be mistaken for urbanization 

economies.  As Henderson (2003) notes, the CM did not record plant services purchases 

prior to 1992.  This analysis, however, incorporates within the material input variable 

several measures of service purchases that are available in the recent CM years.  While 

not necessarily complete, these components track a good portion of plant-level service 

purchases.  Moreover, because this analysis studies direct indicators of potential 

agglomeration economies rather than letting indirect measures such as urban size or 
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population density serve as proxies, it is much less likely that outsourcing availability 

will be confused with agglomeration advantages in relationship to productivity.  Ciccone 

and Hall’s comment does illustrate an additional reason for caution in conducting 

empirical productivity analyses:  even the best data available at the plant level may 

incorporate idiosyncrasies into the measurement of production inputs and output that 

interfere with estimating the influences of interest. 

 Another potential problem arises from using the value of shipments as the 

measure of output for productivity analysis.  Production value data may be influenced by 

differential prices resulting from imperfect competition.  To the extent that plants in the 

same industry offer differentiated products, or engage in price competition, for example 

by using cost advantages to undercut competitors’ prices and expand market share rather 

than accumulate profit, sales value may not reflect equally the production of real output 

across establishments.  Klette and Griliches (1996) suggest addressing this concern by 

including a measure of real output in addition to the value of production, a solution that is 

not possible in the context of the LRD.  Instead, this study follows the lead of most other 

empirical analyses by relying on its initial assumptions—the homogeneity of products 

and production technology within industries, and profit-maximizing behavior—in 

measuring output with shipment value.  These assumptions make sense for the particular 

study industries, are more reasonable at the establishment level and within individual 

regions than at the national scale, and are more likely to hold for smaller firms that 

possess little market power.  Furthermore, whereas Klette and Griliches argue that price 

competition can yield a systematic downward bias in production as measured by sales 
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value, variations in product quality and departures from immediate profit-maximizing 

behavior in the direction of higher prices may occur as well. 

Finally, McCombie (2000; 2001) asserts that the estimation of a production 

function that involves an output variable defined in value rather than quantity terms, 

whether conducted at an aggregate or the individual establishment level, is invalid.  His 

argument is logical rather than empirical:  the value measurement of output relies on the 

accounting identity relating inputs and input prices with output in order to calculate the 

value added by the production process.  The accounting identity is: 

(5.22) rKwLQ +≡  

where Q is output, L and K are labor and capital stocks, w is the wage rate, and r is the 

rate of profit.
75

  Production function estimation thus reproduces the underlying 

accounting identity statistically, rather than approximating an independent production 

function.  McCombie declares that there is no way to independently test the form or even 

the existence of a production function because of this fundamental and confounding 

identity. 

The background of McCombie’s argument lies in the so-called Cambridge Capital 

Theory Controversies of the 1950s through the 1970s, in which the “Cambridge” group 

of economists (mainly associated with either Cambridge, England, or Cambridge, 

Massachusetts, and opposed by a counterpart assembly of academicians dubbed the 

“American” side) argued among other things that capital inputs cannot usefully be 

measured in an aggregate combination of different sorts of capital (Cohen and Harcourt 

2003).  The Cambridge economists also contended that aggregate production functions 

                                                 
75

 Equation 5.22 reproduces equation 6 in McCombie (2000). 
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combining different inputs and outputs are not theoretically meaningful.  These debates 

were never resolved, but rather faded from the spotlight as the scholars prominent in the 

controversies retired from active research and publication.  The body of production 

function research largely accepts the premise of multiform capital inputs and aggregate 

production functions without reference to a solid refutation of the Cambridge criticisms. 

Ultimately, the response to McCombie’s criticism of production function research 

is similar to that of the Capital Controversies:  the literature generally accepts the 

existence of well-behaved production functions even lacking a legitimate formal test, and 

disregards the question of whether statistical estimations measure production functions or 

an accounting identity that presents the same functional form.  The specific 

characteristics of this analysis provide additional responses.  The CM questionnaire 

instructs establishments to report shipment value from actual sales receipts, whereas the 

information regarding input prices used in the production function estimation is collected 

from secondary sources at aggregated levels.  Therefore, the data that enter the 

production function are not produced according to the accounting identity.  Lastly, the 

production function specified in equations 4.9 and 5.20 involves additional factors into 

production other than the standard inputs, including regional industrial dominance and 

possible sources of agglomeration economies along with other regional characteristics, so 

that the form of the estimating production function is distinct from the simple accounting 

identity. 
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5.11.  Summary 

This chapter detailed the data sources, regions, selection of study industries, and 

creation of the variables that populate the estimation model.  The variable construction is 

guided by both theoretical and empirical criteria but is constrained by the available data 

and statistical issues.  The versions described in this chapter represent the outcome of 

substantial consideration and testing of alternatives, undertaken with the goal of adopting 

the most construct valid measures possible that avoid excessively high multicolinearity.  

Four different indicators of regional industrial dominance are included and their results 

contrasted in the succeeding chapters in order to investigate a concept not before 

explicitly operationalized.  Potential agglomeration economies are measured utilizing a 

wide variety of secondary data sources and, except for patenting propensity, incorporate 

distance attenuation as measured between county centroids.  The next chapter examines 

summary statistics for the estimation samples and variables.



CHAPTER SIX:  DESCRIPTIVE INFORMATION 

 

6.1.  Introduction 

Chapter Five described the construction of the industry samples and variables; 

this chapter considers descriptive information concerning their characteristics.  It is 

important to note that the study samples constitute censuses rather than random samples 

of American manufacturing establishments; standard statistical inferences are not as 

meaningful in this context.  The estimation samples are not complete censuses since some 

categories of observations are omitted.  Section 6.2 considers the relationship between the 

estimation samples and the industries on the national scale.  The remainder of the chapter 

focuses on descriptive statistics pertaining to the independent and dependent variables.  

Pearson pairwise correlation coefficients are calculated for the nine industry-year samples 

to investigate possible multicolinearity issues and the degree to which the model 

variables represent distinct concepts. 

 

6.2.  Estimation Samples 

 The nine industry-year sets of establishments are not random samples drawn from 

a larger population.  The samples initially drawn from the LRD each constitute a full 

census of the particular manufacturing industry in the United States.
76

  The final samples

                                                 
76

 More precisely, the portion of the manufacturing industry that is located outside of six excluded LMAs:  

the three LMAs covering central New York, Los Angeles, and Chicago, and the other three LMAs that 

comprise the states of Alaska and Hawaii. 
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used in the regression analyses include all establishments classified in the industry that 

year that report positive employment and meet the criteria required to support production 

estimations and the measurement of regional industrial dominance.  Therefore, the study 

samples are better characterized as a census than as a representative sample.  The 

implication is that less emphasis should be placed on interpreting inferential statistics 

with regard to a hypothetical encompassing population.  Regression analyses typically 

highlight the statistical significance of coefficient estimates to indicate whether repeated 

samples drawn from the sampling frame would on average demonstrate effects different 

from zero.  In the context of a census, however, there are no repeated samples.  

Consequently, though standard errors and statistical significance are still examined in this 

study to gauge the strength of the estimation results, more attention is given to 

interpreting the signs and magnitudes of the estimated parameters. 

The observations excluded from the full population of study industry 

establishments originally drawn from the LRD fall into three categories:  administrative 

records for which most data items are imputed; observations with non-positive input, 

output, or cost share measures; and plants located in regions with an insufficient number 

of firms in the study industry to consider meaningfully the concept of regional industrial 

dominance.  Administrative records constitute by far the largest of these three categories.  

In removing those establishments exempted from standard reporting requirements, 

primarily plants with five or fewer employees, the samples exclude the very smallest 

producers.  Once administrative records are dropped from the samples, only a few 

observations contain invalid output or standard input quantities or cost shares.  A 

substantial number of establishments are located in regions with fewer than twelve firms 
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in the study industries, particularly in the measuring and controlling devices industry 

(SIC 382), and are omitted from the analysis samples. 

Table 6.1 describes the sets of establishments contained in the nine industry-year 

samples.  There are several thousand plants in the rubber and plastics (SIC 30) and 

metalworking machinery (SIC 354) samples in each of the three study years.  The 

measuring and controlling devices (SIC 382) samples are smaller but still possess more 

than 1,200 observations each.  These sample sizes are large in the context of a 

productivity estimation study.  In each industry, the number of plants rises from 1992 to 

1997 but then falls substantially in 2002, likely due to the continuing decline in 

manufacturing combining with the economic downturn of the early part of the new 

century.  It is also possible that the change to NAICS industry definitions affects the total 

number of plants classified within the study industries for the 2002 samples. 

Somewhat more than half of all the original LRD observations are contained in the final 

samples for the rubber and plastics and the metalworking machinery industries, and 

slightly more than a third in the measuring and controlling devices industry.  The lower 

retention rate of measuring and controlling devices plants results mainly from a higher 

proportion of administrative records in that industry.  The measuring and controlling 

devices industry also has a more concentrated geographic distribution, so that many of 

the plants not sited within a major agglomeration are instead located in regions with 

fewer than twelve firms in the industry.  The mean plant sizes, whether measured by 

employment or shipment value, are not very large:  less than 100 employees in rubber 

and plastics and measuring and controlling devices, and fewer than 40 employees in the 

metalworking machinery industry.  Establishment sizes have increased over the time  
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Table 6.1.  Characteristics of Study Samples. 

SIC

Industry

Year 1992 1997 2002 1992 1997 2002 1992 1997 2002

Sample observations 6,747 8,000 6,546 5,189 5,490 4,161 1,384 1,540 1,201

Dropped observations 6,169 6,499 5,128 4,053 4,522 3,982 2,385 2,582 2,211

Percent retained in sample 52.2 55.2 56.1 56.1 54.8 51.1 36.7 37.4 35.2

Mean employment 78 82 91 33 38 36 97 94 111

Mean shipments 9,912 12,789 16,259 3,417 5,191 5,185 12,891 17,603 22,393

Dominator establishments 645 833 901 427 497 505 167 212 202

Percent 9.6 10.4 13.8 8.2 9.1 12.1 12.1 13.8 16.8

Mean employment 286 280 273 148 154 123 410 359 409

Mean shipments 46,714 56,044 60,529 19,014 27,802 22,238 61,399 80,882 92,503

Dominated establishments 3,061 3,701 2,487 2,686 2,886 1,846 658 687 505

Percent 45.4 46.3 38.0 51.8 52.6 44.4 47.5 44.6 42.0

Mean employment 23 24 26 13 15 15 21 23 23

Mean shipments 1,835 2,254 2,835 964 1,462 1,562 1,958 2,800 3,056

Remainder of establishments 3,041 3,466 3,158 2,076 2,107 1,810 559 641 494

Percent 45.1 43.3 48.2 40.0 38.4 43.5 40.4 41.6 41.1

Mean employment 89 97 91 36 41 34 93 82 80

Mean shipments 10,236 13,642 14,199 3,384 4,966 4,122 11,269 12,540 13,491

Note:  Value of shipments reported in thousands of nominal dollars.

30 354 382

rubber & plastics metalworking machinery measuring & controlling devices

 

 

frame of the samples, reflecting the trend of contraction and consolidation throughout the 

manufacturing sector.  The plants retained in the final samples are larger in terms of 

average employment or shipment value than those dropped, an additional reminder that 

the analysis does not include the very smallest manufacturers. 

The fraction of sample observations that are classified as dominators, as defined 

with regard to the five-firm concentration ratio measure detailed in section 5.6, ranges 

from approximately one in twelve in the 1992 metalworking machinery sample to about 

one in six in measuring and controlling devices in 2002.  A greater percentage of 

establishments are part of relatively large firms in the later samples, again due to 

consolidation into relatively large companies accompanying declining total 

manufacturing employment.  The measuring and controlling devices industry sample has 

a somewhat larger percentage of dominators than the other two study industries.  Of the 
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non-dominator plants, roughly half are relatively small, belonging to firms with less than 

ten percent of the shipment value of the smallest dominator firm in their region, and the 

remainder do not belong to either dominator or dominated firms. 

As should be the case given the classification criteria, dominator plants are 

relatively large.  Rubber and plastics establishments that are part of regional dominator 

firms average more than three times the employment and about four times the shipment 

value of the typical plant across the entire sample.  The mean size of the dominator plants 

is ten to twenty times greater than dominated plants across all regions, demonstrating the 

right-skewed nature of the establishment size distribution.  The comparisons hold 

similarly for the other two study industries, with dominators averaging as much as twenty 

to thirty times larger than plants in small firms in the measuring and controlling devices 

industry. 

All three of the study industries evidence substantial spatial concentration.  The 

sample plants are mostly located in relatively dense, urban counties, those that are within 

the boundaries of Metropolitan Statistical Areas (MSAs).  The exclusion of plants in 

regions with fewer than twelve industry firms accounts for a portion of this urban tilt.  

Yet even in the full LRD dataset, establishments in all three industries are sited in 

metropolitan counties well more often than not, following patterns of population and 

sources of production inputs.  The measuring and controlling devices industry has the 

most restricted geographic scope:  only about ten percent of the non-excluded LMAs are 

represented in the final samples, and a substantial fraction of the sample observations are 

situated in a few counties located on the east and west coasts.  A plurality of the 

establishments in the measuring and controlling devices samples are in the Northeast 
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Census Region.  The other two industries contain establishments spread across more than 

100 regions (LMAs), though the Midwest Census Region accounts for close to half of the 

rubber and plastics establishments and a majority of the plants in the metalworking 

machinery samples.  Dominator establishments are less likely than the average plant to be 

located in populous counties, since the definition of regional industrial dominance is 

based on relative size and thus generates a higher threshold in regions with more or larger 

firms.  Conversely, dominated establishments are more frequently sited in heavily 

inhabited counties. 

The fact that the estimation samples are chiefly urban and leave out regions with 

few establishments leads to problems in modeling potential agglomeration economies.  

The fewer regions spanned by the samples, the less variation in regional measures and 

correspondingly the greater tendency toward multicolinearity among the agglomeration 

variables and other regional indicators.  The issue of multicolinearity is discussed further 

in section 6.4.  The urban nature of the samples also means that the results of the analysis 

do not extend generally to establishments located across the entire range of the urban-

rural hierarchy. 

 

6.3.  Variable Characteristics 

 Descriptive statistics for the standard input and output variables are displayed in 

Table 6.2.  Due to restrictions imposed to protect the confidentiality of individual 

responses, it is not possible to present medians or other percentile statistics.  Instead, 

Table 6.2 (as well as Tables 6.3 and 6.4) reports the percentage of observations placing 

above the sample mean for each variable as an indicator of the degree of asymmetry in 



 

 153 

the sample.  Across all three study industries, the small fraction of plants with output and 

standard input quantities greater than the mean again demonstrates the right-skewed 

nature of the samples in terms of size:  there are many more establishments below the 

average than above, and there is greater dispersion (i.e., a longer tail) on the large side of 

the size continuum. 

 The largest portion of production costs in the rubber and plastics industry is due to 

expenditures for materials.  Labor costs predominate in the metalworking machinery 

industry, and the measuring and controlling devices industry spends roughly equally on 

labor and materials, with those two factors constituting the majority of production costs.  

Energy is a only a small fraction of total production expenditures.  The share of capital 

costs rises over the ten years represented in the three samples for each study industry, as 

perhaps another reflection of the consolidation process in manufacturing that results in 

greater concentration in larger and more heavily capital-invested plants.  The 

metalworking machinery industry is more labor-intensive in production than are the other 

two study industries, as evidenced by the high labor cost share and the low output per 

production hour in the samples, yet also has the highest capital-to-labor ratio of the three 

industries.  The capital-to-labor ratio is much lower in the measuring and controlling 

devices manufacturing plants, an industry engaging in relatively technology-intensive 

manufacturing.  Based on these indications, labor pooling advantages might be most 

important to measuring and controlling devices establishments and least important in the 

rubber and plastics industry.  In addition, knowledge spillovers would presumably be the  

most influential for productivity in higher technology economic activities, in this study 

represented by the measuring and controlling devices samples. 
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Table 6.2.  Input and Output Variables:  Descriptive Information. 

Year / Sample observations

mean std dev  %>mean mean std dev  %>mean mean std dev  %>mean

Output Q 9,931 23,685 25.17 12,814 28,614 25.36 16,272 33,279 25.31

Capital K 4,856 16,606 21.73 6,286 19,748 22.16 9,166 24,751 22.53

Labor L 193 322 27.66 201 339 27.91 218 362 28.23

Energy E 18,997 54,866 22.62 22,199 64,385 21.93 28,054 81,757 21.77

Materials M 4,749 11,810 24.14 6,142 14,379 24.15 7,542 16,334 24.17

Capital Cost Share CK 13.82 8.01 39.91 17.81 9.28 48.56 21.13 10.23 46.62

Labor Cost Share CL 35.56 13.81 44.40 32.77 13.29 42.85 31.67 12.80 43.23

Energy Cost Share CE 2.89 2.32 38.34 2.39 1.92 34.91 2.35 1.93 36.80

Materials Cost Share CM 47.74 16.10 53.18 47.03 15.66 54.61 44.85 15.28 53.07

Capital-Labor Ratio K/L 21.70 22.64 31.29 28.70 32.45 31.50 38.97 43.12 32.36

Output per Worker Hour QHR 50.22 49.13 32.61 65.04 59.13 32.06 76.02 71.10 31.64

Year / Sample observations

mean std dev  %>mean mean std dev  %>mean mean std dev  %>mean

Output Q 3,424 11,539 19.31 5,242 19,903 19.00 5,178 18,096 20.04

Capital K 1,922 5,236 21.56 2,597 7,039 21.44 3,526 8,676 23.34

Labor L 81 185 23.38 92 227 23.72 83 171 25.19

Energy E 3,528 13,700 18.87 4,211 16,225 20.56 4,174 13,135 20.60

Materials M 1,220 5,561 15.94 2,086 12,031 15.50 2,015 10,540 16.32

Capital Cost Share CK 8.78 5.03 37.75 12.90 7.00 45.12 14.25 7.46 38.84

Labor Cost Share CL 57.86 13.13 50.34 54.40 13.06 57.12 53.18 13.67 53.86

Energy Cost Share CE 1.65 1.29 38.12 1.43 1.37 34.94 1.36 1.35 33.60

Materials Cost Share CM 31.72 13.92 48.43 31.27 14.52 40.09 31.21 14.96 42.13

Capital-Labor Ratio K/L 24.86 18.59 36.13 30.31 50.84 31.60 44.25 45.21 34.56

Output per Worker Hour QHR 36.63 22.19 36.38 48.82 32.42 32.06 55.37 34.13 31.92

Year / Sample observations

mean std dev  %>mean mean std dev  %>mean mean std dev  %>mean

Output Q 12,852 38,353 20.23 17,611 63,498 17.73 22,181 77,746 18.15

Capital K 4,744 15,682 18.50 5,854 25,133 17.47 8,880 33,063 16.82

Labor L 274 673 22.47 261 667 21.88 320 878 20.57

Energy E 7,787 24,120 17.05 8,065 29,751 17.27 9,039 33,750 16.74

Materials M 4,833 15,570 19.51 6,571 25,789 17.73 9,394 42,542 16.40

Capital Cost Share CK 10.27 6.43 33.38 13.46 7.43 47.08 14.12 7.92 44.88

Labor Cost Share CL 47.41 12.24 47.90 43.98 11.62 42.99 44.19 12.64 44.05

Energy Cost Share CE 1.16 1.06 40.53 1.02 1.28 32.60 0.83 0.80 30.97

Materials Cost Share CM 41.16 13.49 53.47 41.54 13.74 56.04 40.86 14.65 56.37

Capital-Labor Ratio K/L 14.66 15.50 33.02 19.25 16.45 38.12 24.94 23.91 34.47

Output per Worker Hour QHR 44.46 27.64 38.01 60.83 56.26 32.21 67.08 54.40 31.06

1997 (n = 5,490) 2002 (n = 4,161)

1992 (n = 6,747) 1997 (n = 8,000) 2002 (n = 6,546)

Note:  Output, capital, and materials in thousands of nominal dollars; labor in thousands of hours; energy in millions of BTUs.

SIC 30:  Rubber and Plastics

SIC 354:  Metalworking Machinery

1992 (n = 1,384) 1997 (n = 1,540) 2002 (n = 1,201)

SIC 382:  Measuring and Controlling Devices

1992 (n = 5,189)
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The regional industrial dominance variables are detailed in Table 6.3.  It is worth 

emphasizing that the dominance variable means do not represent directly the average 

level of dominance across the LMA regions in the study.  Rather, they are sample means, 

and may be thought of as a weighted average of regional dominance in each study 

industry, where each region’s measure of dominance is weighted by the number of firms 

in that regional industry.  Perhaps the most striking characteristic is that the mean levels 

of absolute dominance reported in each industry sample rise consistently over the three 

study years.  On average, a rubber and plastics establishment in the sample in 1992 is 

located in a region with 39 percent of the total shipment value of the regional industry 

concentrated in the five largest producers.  This ratio rises to 45 percent in 2002 for 

rubber and plastics, is slightly higher in the metalworking machinery, and climbs as high 

as 64 percent in the measuring and controlling devices industry.  The Herfindahl-

Hirschman and Rosenbluth index measures of dominance, though lacking a 

straightforward numerical interpretation, follow the same pattern, indicating greater intra-

industry regional dominance over time.  Again, contraction and consolidation in the 

manufacturing sector likely explains the trend.  The pattern agrees with observations of 

manufacturing industries at the national level (Pryor 2001).  For the most part, the 

Herfindahl-Hirschman and Rosenbluth indices yield the same ordering of dominance 

across the study industries as the concentration ratio measure, with one exception being 

that the Rosenbluth index, which emphasizes smaller establishments, indicates greater 

dominance in rubber and plastics than in metalworking machinery manufacturing. 

The Gini coefficient, which is the regional industrial dominance measure included 

in the study that does not depend on the size of regional industries, evidences much 
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Table 6.3.  Dominance and Agglomeration Economy Variables:  Descriptive Information. 

Year / Sample observations

mean std dev  %>mean mean std dev  %>mean mean std dev  %>mean

Dominance

Concentratio Ratio DC 0.3873 0.1910 47.81 0.4043 0.1945 47.11 0.4493 0.1983 42.27

Herfindahl-Hirschman DH 0.0656 0.0727 34.65 0.0711 0.0759 32.01 0.0787 0.0751 34.68

Rosenbluth DR 0.0411 0.0426 33.29 0.0454 0.0452 33.75 0.0577 0.0566 32.36

Gini DG 0.7203 0.0494 44.12 0.7278 0.0506 50.45 0.7118 0.0550 52.81

Labor Pooling LP 0.0781 0.0129 39.32 0.0974 0.0249 42.76 0.1171 0.0279 44.70

Manufactured Inputs SP 2,913 2,071 42.00 1,807 1,356 40.68 1,635 1,212 40.90

Producer Services SD 25,567 28,550 27.95 12,517 13,345 30.88 13,878 15,073 30.58

Research RS 330,729 242,436 38.94 406,037 274,997 41.69 501,543 322,954 41.87

Patenting PS 21.22 9.61 48.39 21.09 10.71 47.14 23.62 12.42 45.75

Year / Sample observations

mean std dev  %>mean mean std dev  %>mean mean std dev  %>mean

Dominance

Concentratio Ratio DC 0.4135 0.1960 46.98 0.4363 0.2088 48.43 0.4531 0.2011 42.20

Herfindahl-Hirschman DH 0.0790 0.0824 33.22 0.0894 0.0954 34.41 0.0898 0.1010 33.62

Rosenbluth DR 0.0386 0.0481 31.88 0.0442 0.0563 31.68 0.0536 0.0716 32.06

Gini DG 0.7250 0.0723 58.33 0.7482 0.0708 58.21 0.7302 0.0727 58.71

Labor Pooling LP 0.1170 0.0109 47.95 0.1457 0.0145 55.01 0.1221 0.0204 56.28

Manufactured Inputs SP 3,297 1,883 48.20 3,025 1,650 47.74 2,797 1,609 45.61

Producer Services SD 22,113 22,927 31.18 9,866 9,857 30.46 10,660 11,130 30.09

Research RS 497,467 377,447 38.95 725,256 475,313 39.69 924,617 555,602 44.20

Patenting PS 18.37 6.78 48.24 18.52 8.31 46.28 21.02 10.07 48.88

Year / Sample observations

mean std dev  %>mean mean std dev  %>mean mean std dev  %>mean

Dominance

Concentratio Ratio DC 0.5425 0.1837 44.51 0.5915 0.1518 45.52 0.6433 0.1395 38.38

Herfindahl-Hirschman DH 0.1376 0.1493 34.25 0.1453 0.1208 26.10 0.1686 0.1232 30.06

Rosenbluth DR 0.0712 0.0670 37.28 0.0714 0.0589 35.84 0.0889 0.0636 33.97

Gini DG 0.8036 0.0516 41.04 0.8061 0.0566 57.34 0.8101 0.0695 62.86

Labor Pooling LP 0.1369 0.0201 39.45 0.1958 0.0265 42.53 0.1514 0.0259 40.88

Manufactured Inputs SP 1,728 2,167 25.22 2,374 4,113 18.31 2,051 3,194 22.90

Producer Services SD 7,089 4,425 50.51 4,401 3,039 47.79 5,268 3,809 46.54

Research RS 160,186 229,831 22.90 185,002 267,781 29.48 201,325 261,265 27.81

Patenting PS 61.57 24.77 40.25 72.12 39.13 32.21 96.29 70.24 35.97

1997 (n = 8,000) 2002 (n = 6,546)

SIC 30:  Rubber and Plastics

SIC 354:  Metalworking Machinery

1992 (n = 1,384) 1997 (n = 1,540) 2002 (n = 1,201)

SIC 382:  Measuring and Controlling Devices

1992 (n = 5,189) 1997 (n = 5,490) 2002 (n = 4,161)

1992 (n = 6,747)
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smaller standard deviations in comparison to the sample means than the other measures 

of regional industrial dominance.  The relative lack of variation may detract from the 

stability of the measure in regression analyses.  In addition, the sample means of the Gini 

coefficients are more stable over time than the other dominance indicators, even allowing 

for their smaller relative variances.  This suggests that the declines in dominance as 

indicated by the absolute measures may be due as much to changes in the scale of the 

study industries in individual regions as to changes in the firm size distribution.  The 

ordering among the study industries is the same with the Gini coefficient as with the 

other dominance measures:  the measuring and controlling devices industry displays the 

highest degree of regional dominance or inequality in its regional firm size distributions, 

and the rubber and plastics industry exhibits a slightly lower level of dominance than 

metalworking machinery. 

Table 6.3 also shows basic descriptive statistics for the agglomeration economy 

variables.  Establishments in the rubber and plastics industry have the lowest average 

reported values for potential regional labor pooling, as might befit the industry with the 

smallest labor cost share, although because the agglomeration measure is based on the 

particular occupations that are the most employed within each industry, it is not precisely 

comparable across different industries.  Measuring and controlling device plants tend to 

be located in highly innovative regions, with an average regional patenting rate three to 

five times greater than for the other two study industries.  Although the other knowledge 

spillover measure appears to provide contradictory evidence, with larger figures for 

proximate relevant academic research expenditures in the rubber and plastics and 

metalworking machinery industries, this is due to the much sharper spatial decay with 
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which the agglomeration measure is calculated for the measuring and controlling devices 

industry.  For the same reason, it is not useful to contrast the supply pooling variables 

between measuring and controlling devices and the other two industries.  Examining the 

producer services variable over time, however, reveals a marked drop between 1992 and 

1997.  This dive likely represents changed purchasing patterns and the shift in the Input-

Output coding scheme more than altered regional availability of producer services.  A 

modest increase in producer services follows from 1997 to 2002; the producer services 

variable uses identical purchasing matrix and coding systems for these two years (see 

Appendix 5).  The inconsistency of variable construction across study years is 

unavoidable given the available secondary data, and does not affect the cross-sectional 

analyses. 

The control variables are displayed in Table 6.4.
77

  There are several observations 

worth noting.  First, the pattern of rising regional industrial dominance revealed in Table 

6.3 does not occur in the decade between 1972 and 1982.  In fact, the three absolute 

historic dominance measures register declines in the rubber and plastics and measuring 

and controlling devices industries.  Second, dominance is greater historically in the 

rubber and plastics industry than in metalworking machinery, the reverse of the current 

situation.  The metalworking machinery industry shows relatively low levels of regional 

industrial dominance both historically and presently, with little evolution in the 

characteristic over time.  Third, except for metalworking machinery, historic levels of  

dominance are greater than contemporary levels.  Since this statement does not hold for 

the relative dominance measure, the Gini coefficient, the observation might be explained 

                                                 
77

 The measures of historic dominance and industrial diversity are reported as levels rather than changes 

over time. 
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Table 6.4.  Control Variables:  Descriptive Information. 

Year / Sample observations

mean std dev  %>mean mean std dev  %>mean mean std dev  %>mean

Historic Dominance DH

Concentratio Ratio 0.5833 0.2122 44.79 0.5466 0.2161 48.79 0.4929 0.2357 46.52

Herfindahl-Hirschman 0.1469 0.1493 27.92 0.1332 0.1376 31.29 0.1139 0.1222 36.04

Rosenbluth 0.0937 0.0959 33.14 0.0834 0.0907 36.53 0.0748 0.0815 36.51

Gini 0.7548 0.0848 50.63 0.7366 0.0800 51.85 0.7199 0.0736 49.54

Unemployment UE 0.0714 0.0145 52.14 0.0443 0.0135 40.94 0.0566 0.0092 48.41

Income INC 36,028 4,655 44.60 41,339 5,606 46.95 45,419 6,902 47.63

Population Density POP 507.5 405.2 40.36 476.7 397.2 37.95 472.1 408.7 35.20

Diversity DV 0.0147 0.0037 37.02 0.0146 0.0043 37.51 0.0152 0.0055 32.29

Historic Diversity DVH 0.0139 0.0050 34.62 0.0149 0.0066 35.98 0.0161 0.0078 34.91

Year / Sample observations

mean std dev  %>mean mean std dev  %>mean mean std dev  %>mean

Historic Dominance DH

Concentratio Ratio 0.4890 0.2160 50.43 0.5068 0.1995 53.61 0.4940 0.2014 52.75

Herfindahl-Hirschman 0.1031 0.1104 31.41 0.1050 0.1082 27.65 0.1048 0.1089 34.68

Rosenbluth 0.0568 0.0766 33.11 0.0585 0.0783 31.46 0.0557 0.0721 30.59

Gini 0.7401 0.0926 63.58 0.7502 0.0975 63.08 0.7504 0.0911 59.31

Unemployment UE 0.0752 0.0167 50.16 0.0426 0.0087 59.02 0.0575 0.0079 49.34

Income INC 36,088 4,365 48.66 41,967 4,961 51.69 45,518 6,091 48.91

Population Density POP 506.7 351.1 46.68 499.2 355.3 44.77 491.6 361.6 41.82

Diversity DV 0.0153 0.0038 42.57 0.0145 0.0035 49.31 0.0147 0.0047 46.14

Historic Diversity DVH 0.0153 0.0071 38.77 0.0156 0.0075 39.03 0.0157 0.0058 38.84

Year / Sample observations

mean std dev  %>mean mean std dev  %>mean mean std dev  %>mean

Historic Dominance DH

Concentratio Ratio 0.7396 0.1595 51.73 0.6960 0.1687 41.30 0.6459 0.1803 42.38

Herfindahl-Hirschman 0.2596 0.2099 29.91 0.2070 0.1704 32.40 0.1728 0.1565 31.81

Rosenbluth 0.1676 0.1530 34.68 0.1433 0.1382 35.84 0.1205 0.1244 38.47

Gini 0.8169 0.0773 63.44 0.8051 0.0824 62.27 0.7908 0.0726 59.78

Unemployment UE 0.0731 0.0133 57.30 0.0431 0.0084 47.14 0.0575 0.0105 40.97

Income INC 39,442 4,448 53.18 45,485 5,234 54.29 51,215 6,751 48.38

Population Density POP 681.9 390.0 45.66 677.3 391.0 42.34 698.6 396.7 42.63

Diversity DV 0.0134 0.0019 39.60 0.0130 0.0021 26.75 0.0131 0.0024 44.96

Historic Diversity DVH 0.0126 0.0031 36.13 0.0127 0.0035 35.71 0.0134 0.0032 40.30

Note:  Historic dominance and diversity reported as levels for 20 years prior (15 years for historic diversity for 1992 samples), rather than

the changes over time used in regressions.

1997 (n = 5,490) 2002 (n = 4,161)

SIC 30:  Rubber and Plastics

1992 (n = 1,384) 1997 (n = 1,540) 2002 (n = 1,201)

SIC 382:  Measuring and Controlling Devices

1992 (n = 6,747) 1997 (n = 8,000) 2002 (n = 6,546)

SIC 354:  Metalworking Machinery

1992 (n = 5,189)
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by the growth and subsequent decline in the quantity of manufacturing establishments 

and employment during the time periods in question.  Lastly, the regions surrounding 

measuring and controlling device establishments tend to have substantially greater 

household income and population density and slightly greater industrial diversity than the 

regions housing the other two study industries, fitting with the aforementioned 

geographic concentration of the industry in relatively dense and urbanized areas. 

 

6.4.  Variable Correlations 

 One of the more difficult preparatory tasks in this study was to devise measures of 

potential agglomeration economies and relevant regional controls that operationalize the 

ideas in a conceptually valid manner yet are not overly multicolinear with each other.  As 

noted in section 5.7, this is a common challenge for empirical analyses involving multiple 

agglomeration economy indicators.  In this case, the most severe colinearity issues arise 

among the agglomeration economy measures and in the relationship between industry 

scale and regional industrial dominance. 

As Table 6.5 demonstrates, the five agglomeration economy variables are 

sufficiently distinct from one another to include simultaneously in the regression 

analyses.  They do evidence substantial correlations, nearly all positive.  This is expected 

and ironically even serves as a further verification of the concept validity of the 

measures.  The correlation coefficient between the two supply pooling measures, 

manufactured inputs and producer services, exceeds 0.65 in each of the nine industry-

year samples and reaches as high as 0.77 in the 2002 rubber and plastics sample.  

Academic research is associated with the manufactured inputs supply pooling measure as



 

 

1
6
1
 

Table 6.5.  Pearson Pairwise Correlation Coefficients Among Agglomeration Variables. 

LP SP SD RS LP SP SD RS LP SP SD RS

Labor Pooling LP

Manufactured Inputs SP 0.1577 0.0207 -0.0144

Producer Services SD -0.5016 0.6712 -0.4764 0.7617 -0.5395 0.7651

Research RS 0.1602 0.7670 0.4983 0.1587 0.6757 0.4362 0.1165 0.6861 0.4470

Patenting PS -0.0479 0.4774 0.3651 0.3492 0.0167 0.4200 0.3910 0.2913 -0.0215 0.4486 0.3687 0.3085

LP SP SD RS LP SP SD RS LP SP SD RS

Labor Pooling LP

Manufactured Inputs SP 0.6153 0.3716 0.1527

Producer Services SD 0.0638 0.6214 -0.3327 0.6482 -0.5148 0.6486

Research RS 0.0014 0.5203 0.4767 0.0701 0.5551 0.3628 0.0081 0.5523 0.3291

Patenting PS 0.5222 0.4350 0.2830 0.0577 0.2635 0.4670 0.3422 0.0435 0.1596 0.4547 0.3125 -0.0216

LP SP SD RS LP SP SD RS LP SP SD RS

Labor Pooling LP

Manufactured Inputs SP 0.6064 0.6540 0.5817

Producer Services SD 0.1661 0.6837 0.2071 0.6576 0.1074 0.6891

Research RS 0.2686 0.6529 0.5253 0.3120 0.6200 0.5239 0.3308 0.5937 0.5285

Patenting PS 0.5319 0.5230 0.1252 0.3936 0.5748 0.5531 0.0990 0.4006 0.6622 0.5705 0.1545 0.4439

Note:  Correlations measured with natural logarithms of all agglomeration variables except for labor pooling.

1992 1997 2002

SIC 30:  Rubber and Plastics

SIC 382:  Measuring and Controlling Devices

SIC 354:  Metalworking Machinery

1992 1997 2002

1992 1997 2002
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well, again the most strongly for rubber and plastics manufacturers, with correlation 

coefficients ranging from 0.67 to 0.77.
78

  Although there is sufficient independent 

variation for regression analysis, the high correlations suggest that the estimated 

coefficients be evaluated with caution as there may be substantial overlap among the 

impacts of these variables. 

The only sizeable negative correlations are between potential labor pools and 

producer services, occurring in five of the nine samples, indicating that the study 

industries do not tend to employ many workers within the same occupational categories 

as producer services employees.  On the other hand, the consistently positive association 

between academic research and manufactured inputs implies that supplier industries may 

benefit from proximity to the same types of research activity as do the sample 

establishments.  Interestingly, though patenting is positively correlated with 

manufactured inputs in each of the samples, in only four of the samples, three of them 

representing measuring and controlling devices, is patenting substantially positively 

associated with potential labor pools.  If patents in relevant technology classes are 

granted primarily within the immediate region of the sample establishments, then the 

relatively steep distance decay used to construct the labor pooling measure for the 

measuring and controlling devices industry may have focused the labor pooling measure 

on the same nearby counties to a greater degree than for the other two study industries. 

Regional industrial dominance tends to be highly negatively correlated with the 

size of the local industry.  To some degree, this correspondence occurs because the 

concepts overlap.  Just as the idea of economic dominance by a single industry has less 

purchase within a large, diverse economy, so too is the notion of regional industrial 

                                                 
78

 Perhaps this is due to colocation along the product chain over time in this mature industry. 
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dominance more readily applied to a smaller, more isolated region.  Intuitively, is it 

easier to dominate a smaller industry in the sense that there are fewer competitors and it 

requires less absolute size or resources to achieve a particular threshold of dominance.  

The problem is that the association makes it difficult to separate the effects of dominance 

from industry size in an empirical analysis.  This is a pervasive problem in econometric 

studies of industrial concentration at the national scale as well (Hay and Morris 1991, p. 

205).  The theory presented in Chapter Three provides support to a dominance 

interpretation by elucidating particular mechanisms by which dominance may influence 

firm performance.  Although the causal link between industry size and establishment 

productivity is itself less than perfectly clear (see section 2.4.2.2), it is helpful to 

distinguish empirically the impacts of regional industrial dominance from effects due 

solely to the size of the local industry as much as possible. 

Table 6.6 illustrates the relationship between industry size and dominance by 

reporting the Pearson correlation coefficients of the four indicators of regional industrial 

dominance with two measures of local industry scale, employment and the number of 

firms (both in logarithms).  For the majority of the nine industry-year samples, the five-

firm concentration ratio measure covaries almost as the opposite of industry scale as 

measured by the firm count; the relationship holds in the same direction but not as 

strongly with industry employment.  In the context of interpreting regression results, it 

would be problematic to determine whether it is industrial concentration or local industry 

size that affects establishment productivity.  

This obstacle provides an additional incentive for exploring multiple ways of 

measuring regional industrial dominance in this study.  If alternative dominance measures 
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Table 6.6.  Pearson Correlation Coefficients Between Dominance and Industry Scale 

Measures. 

 

Dominance Firms    Employment Firms    Employment Firms    Employment

Concentratio Ratio DC -0.8936 -0.7687 -0.8984 -0.8012 -0.9057 -0.7795

Herfindahl-Hirschman DH -0.6657 -0.5259 -0.6550 -0.5683 -0.7437 -0.6222

Rosenbluth DR -0.8163 -0.6830 -0.8504 -0.7347 -0.8459 -0.7057

Gini DG -0.0581 0.0536 0.1019 0.1384 0.2463 0.2871

Dominance Firms    Employment Firms    Employment Firms    Employment

Concentratio Ratio DC -0.8251 -0.7047 -0.8172 -0.7032 -0.8351 -0.7435

Herfindahl-Hirschman DH -0.6420 -0.5199 -0.5688 -0.4509 -0.6363 -0.5186

Rosenbluth DR -0.7328 -0.6166 -0.7184 -0.6134 -0.6990 -0.5763

Gini DG 0.2598 0.4170 0.2163 0.3596 0.2969 0.4152

Dominance Firms    Employment Firms    Employment Firms    Employment

Concentratio Ratio DC -0.8235 -0.6559 -0.7675 -0.6289 -0.6091 -0.3462

Herfindahl-Hirschman DH -0.6154 -0.4100 -0.5587 -0.4161 -0.4787 -0.2587

Rosenbluth DR -0.7559 -0.5625 -0.8040 -0.6380 -0.7800 -0.5491

Gini DG 0.0467 0.2447 0.3477 0.4721 0.4331 0.6161

Note:  Correlations measured with natural logarithms of firm and employment totals.

1992 1997 2002

SIC 30:  Rubber and Plastics

SIC 382:  Measuring and Controlling Devices

SIC 354:  Metalworking Machinery

1992 1997 2002

1992 1997 2002

 

 

that are less closely related to industry scale demonstrate influences on productivity in 

accordance with those estimated for the concentration ratio indicator, then the effects 

may be more securely attributed to dominance rather than industry size.  The correlations 

among the dominance measures are displayed in Table 6.7.  The three absolute 

measures—concentration ratio, Herfindahl-Hirschman index, and Rosenbluth index—are 

closely associated with each other, whereas the Gini coefficient is positively correlated 

with the other measures of regional industrial dominance but not nearly as strongly.   



 

 165 

Table 6.7.  Pearson Pairwise Correlation Coefficients Among Dominance Measures. 

DC DH DR DC DH DR DC DH DR

Concentratio Ratio DC

Herfindahl-Hirschman DH 0.8409 0.8491 0.8929

Rosenbluth DR 0.8761 0.8954 0.8991 0.8460 0.9099 0.9306

Gini DG 0.4444 0.5401 0.3112 0.2808 0.4379 0.1507 0.1191 0.2756 0.0675

DC DH DR DC DH DR DC DH DR

Concentratio Ratio DC

Herfindahl-Hirschman DH 0.8951 0.8541 0.8509

Rosenbluth DR 0.8217 0.8582 0.7872 0.8472 0.8139 0.9269

Gini DG 0.2772 0.3995 0.1201 0.3300 0.4881 0.1601 0.2093 0.3681 0.1693

DC DH DR DC DH DR DC DH DR

Concentratio Ratio DC

Herfindahl-Hirschman DH 0.8651 0.8722 0.9079

Rosenbluth DR 0.8629 0.9514 0.8745 0.8604 0.8955 0.8894

Gini DG 0.4894 0.6445 0.4538 0.2886 0.4572 0.1367 0.4077 0.4830 0.1556

1997 2002

1992 1997 2002

SIC 30:  Rubber and Plastics

SIC 382:  Measuring and Controlling Devices

SIC 354:  Metalworking Machinery

1992 1997 2002

1992

 

 

 

Returning to Table 6.6, the Rosenbluth index, emphasizing the smaller end of the 

size distribution, is highly negatively correlated with regional industry scale, but not as 

much so as the concentration ratio.  The Herfindahl-Hirschman index displays much 

lower levels of correlation, and the Gini coefficient tends to exhibit a positive but small  

association with local industry size. 

Employing alternative dominance measures is only one approach taken in this 

study to address the issue of the close relationship between regional industrial dominance 

and industry scale.  The four non-relative agglomeration economy variables, along with 

regional population density, help account for the impacts of regional industry scale in the 
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production function.  Additional tests involving size controls, altered samples, and 

variable substitutions are described in section 7.5. 

Finally, it is interesting to examine how closely the five agglomeration economy 

variables correspond to more basic urbanization and localization measures, to place the 

results of this analysis in perspective with respect to previous agglomeration economies 

work as described in section 2.4.2.2.  Table 6.8 demonstrates that producer services is 

related to population density for two of the three study industries, whereas manufactured 

inputs and patenting are more closely associated with industry employment.  Academic 

research is proxied better by population density for the metalworking machinery samples, 

by industry employment for measuring and controlling devices, and almost equally by the 

urbanization and localization indicators within the rubber and plastics samples.  Labor 

pooling, as a relative measure, varies widely in its relationship to urbanization and 

localization.  These results support the conclusions Feser (1997) reaches in a similar 

comparison of specialized agglomeration measures with simpler urbanization and 

localization proxies:  both urbanization and localization contribute to the composition of 

agglomeration economies, and the extent to which each proxy is associated with different 

agglomeration benefits varies across industries. 

 

6.5. Summary 

This chapter examined the characteristics of the study samples and independent 

variables used in the analysis.  All of the study industries are spatially concentrated in 

dense, well-populated regions, but the measuring and controlling devices industry is 

concentrated to a greater degree than the other two industries.  Regional industrial
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Table 6.8.  Pearson Correlation Coefficients Between Agglomeration Variables and 

Urban and Industry Scale. 

 

Labor Pooling LP -0.3828 -0.0357 -0.3008 0.1018 -0.3493 0.0643

Manufactured Inputs SP 0.5973 0.6299 0.6617 0.5600 0.6851 0.5835

Producer Services SD 0.7998 0.5148 0.7923 0.5006 0.7843 0.4717

Research RS 0.4120 0.3978 0.4092 0.4246 0.4528 0.4348

Patenting PS 0.4439 0.5546 0.4742 0.5617 0.5102 0.5844

Labor Pooling LP 0.2396 0.7209 -0.0892 0.4917 -0.2695 0.2952

Manufactured Inputs SP 0.5837 0.6076 0.5861 0.5590 0.6099 0.5604

Producer Services SD 0.7511 0.2558 0.7406 0.2584 0.7515 0.2861

Research RS 0.3178 0.0175 0.2808 0.0759 0.2504 0.0815

Patenting PS 0.3902 0.7107 0.4913 0.7170 0.4877 0.7134

Labor Pooling LP -0.0609 0.4633 -0.1341 0.4768 -0.1929 0.4053

Manufactured Inputs SP 0.0498 0.5220 -0.0108 0.5866 0.0755 0.5114

Producer Services SD 0.2815 0.2541 0.2691 0.2818 0.3266 0.2423

Research RS 0.1891 0.4472 0.1504 0.4489 0.1306 0.3164

Patenting PS 0.0078 0.6155 -0.0581 0.6389 -0.0438 0.6403

 Industry 

Employment

 Population     

Density

 Industry 

Employment

Population 

Density

 Industry 

Employment

Population 

Density

 Industry 

Employment

 Industry 

Employment

Population 

Density

 Industry 

Employment

Population 

Density

SIC 30:  Rubber and Plastics

SIC 382:  Measuring and Controlling Devices
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dominance, as measured by absolute indicators, has risen across the three study years, but 

is at lower levels than experienced twenty years earlier in both the rubber and plastics and 

the measuring and controlling devices industries.  The Gini coefficient acts quite 

differently than the other three measures of regional industrial dominance, with less 

variation across regions and greater stability over time.  The trends observed make it 

evident that the three study industries diverge in terms of attributes and changes over 

time. 
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There are several caveats and cautions that pertain to the study samples and the 

examination of descriptive statistics.  First, because the estimation samples are essentially 

incomplete censuses rather than random draws, inferential statistics are less important 

than for a typical regression analysis.  Second, LRD administrative records constitute the 

largest portion of establishments excluded from the samples.  Therefore, the results of the 

quantitative analysis should be construed as applying to the set of industry establishments 

that does not include the smallest manufacturers.  Lastly, though the agglomeration and 

control variables are conceptually and statistically distinct, some of them covary closely 

enough to merit caution in interpreting their effects independently. 

With the observations in this chapter as background, the next chapter turns to the 

principal findings of this study from the regression analysis of establishment-level 

production and cost share functions.



CHAPTER SEVEN:  DOMINANCE, AGGLOMERATION, AND 

PRODUCTIVITY 

 

7.1.  Introduction 

 The text up to this point has laid the groundwork for the empirical analysis of 

establishment-level productivity, posing the research questions and building from the 

theoretical framework and empirical model through to the sample selection and variable 

construction.  This chapter presents the primary results of the dissertation, including the 

implications of the model estimations for the two research questions posed in Chapter 

One.  There is substantial support for the first hypothesis that regional industrial 

dominance negatively influences the productivity of manufacturing establishments, but 

the bulk of the evidence opposes the second hypothesis that the influence of regional 

industrial dominance on production is due to limitations on the ability of firms to take 

advantage of localized agglomeration economies. 

The chapter starts by detailing several technical aspects of the modeling process, 

including model diagnostics and tests of possible functional simplifications.  The main 

focus is then placed on exhibiting the regression results from the production model and 

interpreting them with regard to the effects of regional industrial dominance and 

agglomeration economies on establishment productivity.  The last portion considers the 

implications of estimating the models with several substitute measures of regional 

industrial dominance.
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7.2.  Model Tests and Functional Restrictions 

 The system of equations consisting of the translog production function (equation 

5.20) and three associated cost share equations (equation 5.21) is estimated jointly using 

iterated nonlinear seemingly unrelated regression.  Hypothesis tests are carried out using 

the Wald, Lagrange multiplier, and likelihood ratio test statistics.  These three tests are 

identical if the log-likelihood function is quadratic and are asymptotically equivalent if it 

is not, with the differences among them depending on the specific departure of the log-

likelihood curve from the quadratic form (Berndt and Savin 1977; Buse 1982).
79

  In many 

economic applications, the Wald test tends to be the most likely, and the likelihood ratio 

the least likely, to reject hypotheses (Berndt 1991).  For the tests conducted as part of this 

study, the substantive conclusions are in almost every case the same with each of the 

three statistics.  Only the likelihood ratio test results are reported unless otherwise noted. 

The model is estimated in close to its most extended form, with no restrictions on 

the production function, with interactions included between dominance and the 

agglomeration economies, and with the dominance and agglomeration variables specified 

as factor-augmenting.  Preliminary specifications also included cross-terms among the 

agglomeration economy variables.  These terms are dropped from the preferred 

specification because they are almost always insignificant, the hypothesis that they are 

jointly equal to zero cannot be rejected, and their exclusion does not appreciably change 

the estimated coefficients for the other parameters. 

 The model is estimated using iterated nonlinear seemingly unrelated regression, 

as described in section 4.5.  Alternative starting values test model convergence, leading to 

                                                 
79

 The likelihood ratio test is the most computationally demanding, as it uses both the restricted and 

unrestricted parameter estimates.  The Wald test is based on the unrestricted estimate only and the 

Lagrange multiplier is calculated using only the restricted estimate. 
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the conclusion that the optima achieved are robust within a reasonably large domain but 

are not global.  The nonlinear nature of the equations and the complexity of the modeling 

system ensure local rather than universal extrema, and caution is recommended in 

applying the estimation results to points distant from the sample means.  In other words, 

the estimated models are most accurate for values of the independent variables that fall 

well within the ranges observed in the samples.  As for residual normality, statistical 

normality tests are not appropriate for large sample sizes (roughly, greater than 1,000 

observations) because they tend to detect small deviations from normality that are 

statistically significant but practically unimportant (Thode 2002).
80

  In addition, larger 

samples make the estimation procedure more robust to departures from normality.  

Instead, the residuals are tested for normality graphically using residual histograms and 

normal quantile plots.  Those diagnostic devices illustrate that the residuals from the four 

model equations follow distributions that are reasonably close to normal.  Although there 

is some excess kurtosis, particularly in the capital cost share equation, it is not enough to 

challenge the validity of the estimation method.  Moreover, since the study samples are 

closer to censuses than random samples, inference is not an issue of overriding 

importance. 

Breusch-Pagan tests conducted under several different assumptions about the 

form of possible heteroskedasticity suggest that there may be substantial 

heteroskedasticity in the error terms.  Uncorrected heteroskedasticity may lead to 

underestimated standard errors and exaggerated coefficient significance levels.  These 

outputs are less crucial to this analysis than in studies that aim to establish generalizations 

                                                 
80

 The MODEL procedure in SAS offers the Shapiro-Wilks and Kolmogorov-Smirnov univariate normality 

tests. 
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to larger populations.  Even the modified version of the Breusch-Pagan test is susceptible 

to deviations from normality in large estimation samples and may simply be picking up 

these divergences.
81

  Nevertheless, it is worth attempting to assess the severity of the 

problem.  As there are no suitable instrumental variables available (see section 4.7), 

heteroskedasticity-corrected standard errors are computed for each model permutation 

using the third of the formulations suggested by Davidson and MacKinnon (1993).
82

  The 

corrections greatly alter the estimated standard errors of the terms involving the standard 

inputs, generally reducing the significance levels of these variables.  In particular, 

coefficients involving the energy variable tend to become insignificant.  These results are 

questionable in light of the outcomes of previous production function work, including 

that using the LRD.  Yet the standard errors pertaining to the remaining coefficients, 

including those measuring the influences of dominance, agglomeration, and the control 

variables, change relatively little.  Most of the significance levels of the estimated 

parameters other than those involving capital, labor, energy, or materials adjust by only a 

few percent.  A few of the estimated standard errors even decrease.  Because the primary 

results of interest are not substantively altered, the uncorrected original models are 

presented in the text.  The heteroskedasticity-corrected versions of the main models 

                                                 
81

 The modified Breusch-Pagan test is more powerful than the unmodified version in the absence of 

normality but remains sensitive to the normality assumption (Greene 2003, p. 224).  The Breusch-Pagan 

test results are available from the author.  White’s test for heteroskedasticity is also sensitive to non-

normality and is inappropriate in this case given the inclusion of squared and product terms in the translog 

production function. 

 
82

 Long and Ervin (2000) find the third, pseudo-jackknife, option to be superior using Monte Carlo 

simulations.  In this study, the differences among the results obtained using the White (1980) correction 

and the three formulations by Davidson and MacKinnon (1993) are negligible. 
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employing the concentration ratio measure of regional industrial dominance are contained 

in Appendix 7.
83

 

The next step is to test several possible types of model restrictions.  The test 

results are displayed in Table 7.1.  The dominance and agglomeration economy variables 

are specified entering the production function in factor-augmenting form, as the most 

general approach.  It is more common in translog studies to specify independent variables 

other than the standard production inputs as Hicks-neutral for model simplicity and 

computational ease.  Earlier research testing for Hicks neutrality has produced mixed 

results (described in section 4.2.1).  The sample sizes in this analysis are sufficient to 

support estimation of the additional cross-term variables, so Hicks neutrality should be 

imposed only if justified by the data.  The test for Hicks neutrality, introduced in section 

4.5, is that, for the variable k, the coefficients ikλ are equal to zero for each standard  

input i.   

For labor pooling and the two knowledge spillover variables, Hicks neutrality is 

rejected at the 90 percent confidence level in each of the nine industry-year models.  The 

Hicks neutrality of regional industrial dominance can also be rejected in all but one case, 

measuring and controlling devices in 2002.  There is more variety in the results for 

manufactured inputs and producer services across the different years and industries, but a 

majority of the models favor factor augmentation by the two supply pooling variables.  

To maintain ready comparisons across all of the variables and samples, the factor-

augmenting form is retained for regional industrial dominance and all five agglomeration 

variables. 

                                                 
83

 Heteroskedasticity-corrected versions of the models with alternative dominance variables are available 

from the author. 
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Table 7.1.  Tests of Model Restrictions. 

SIC

Industry

Year 1992 1997 2002 1992 1997 2002 1992 1997 2002

Hicks-Neutrality Tests

Dominance 44.52 13.25 14.50 31.40 43.39 26.15 21.70 15.30 4.53

(0.000) (0.010) (0.006) (0.000) (0.000) (0.000) (0.000) (0.004) (0.339)

Labor Pooling 14.60 80.24 111.42 10.32 16.45 44.08 71.74 11.93 17.30

(0.006) (0.000) (0.000) (0.035) (0.002) (0.000) (0.000) (0.018) (0.002)

Manufactured Inputs 19.40 7.37 1.97 27.97 2.77 7.80 39.84 3.40 17.59

(0.001) (0.118) (0.741) (0.000) (0.597) (0.099) (0.000) (0.494) (0.001)

Producer Services 23.23 7.54 5.03 49.94 3.44 31.27 21.00 3.16 16.74

(0.000) (0.110) (0.284) (0.000) (0.487) (0.000) (0.000) (0.532) (0.002)

Research 44.69 69.12 57.16 50.54 58.15 38.41 18.82 16.40 11.97

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.003) (0.018)

Patents 24.89 43.61 41.49 8.94 18.47 8.57 9.41 8.31 13.43

(0.000) (0.000) (0.000) (0.063) (0.001) (0.073) (0.052) (0.081) (0.009)

Dominance-Agglomeration 5.95 5.56 22.77 6.35 9.00 9.80 4.86 4.88 17.57

Interaction Terms (0.311) (0.352) (0.000) (0.274) (0.109) (0.081) (0.433) (0.430) (0.004)

Technology Properties

Homotheticity 218.31 247.94 718.42 145.33 164.69 400.55 35.96 63.11 41.06

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Homogeneity 232.58 330.82 820.30 156.35 182.86 440.16 18,346 76.52 61.39

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Constant Returns to Scale 450.50 551.08 1,015.0 224.58 290.37 537.91 24,509 149.31 141.22

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Functional Simplifications

CES 75.55 100.14 53.32 85.38 77.44 6.80 6.28 10.66 14.20

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.2356) (0.2804) (0.0586) (0.0144)

Cobb-Douglas 79,106 99,547 72,025 63,451 74,871 44,755 12,125 15,443 8,537.3

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Note:  All statistics derived from likelihood ratio tests except that the CES test uses the Wald statistic; figures in parentheses are

probability values.

30 354 382

   rubber & plastics     metalworking machinery measuring & controlling devices

 

 

The flexible translog functional form does not require the imposition of 

homotheticity, homogeneity, or constant returns to scale (linear homogeneity), but 

instead allows these technology conditions to be tested as hypotheses.  The test 

procedures for these production technology assumptions were presented earlier in the 

context of the production function model (see section 4.5, equations 4.11 through 4.13).  

If one or more of these properties is upheld empirically, then applying it as a restriction 

on the model may serve as a helpful simplification, improving estimation efficiency.  The 
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three technology conditions are nested:  homogeneity is stricter than homotheticity, and 

constant returns to scale implies both homogeneity and homotheticity.  In a study using 

1992 LRD data (but a smaller sample derived with somewhat different construction 

procedures), Feser (2002) finds that homotheticity and homogeneity do apply to the 

measuring and controlling devices sector, and constant returns to scale can be rejected 

only weakly.  All three properties are upheld for an industry not considered in this study, 

the manufacture of farm and garden machinery and equipment.  In the current analysis, 

however, each of the three conditions of homotheticity, homogeneity, and constant 

returns to scale is strongly rejected in each model.  The reason for the discrepancy with 

Feser’s earlier result is not apparent, though hypotheses are easier to deny with larger 

samples. 

Table 7.1 also shows the results of tests for the simpler Cobb-Douglas and CES 

functional forms that are encompassed by the translog specification.  These tests are 

described in sections 4.3 and 4.5.  Because the CES test entails an alternative 

specification of the translog function in which the restricted parameter estimates fail to 

converge using the study samples, the Wald statistic is displayed in place of the 

likelihood ratio.  The Cobb-Douglas equation, a major simplification of the translog 

form, is strongly rejected in each case.  The CES formulation is rejected strongly in six of 

the nine models, and rejected weakly in one more.  The CES offers a reasonably similar 

specification to the translog for the 1992 measuring and controlling devices and the 2002 

metalworking machinery models.  Nevertheless, it is clear that the Cobb-Douglas and 

CES specifications do not in general suffice to model the relationships indicated by the 

application of the translog form. 
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As mentioned earlier in this section, interactions among the agglomeration 

variables are omitted because they do not substantially impact the estimation results of 

interest.  In contrast, the interaction terms between dominance and agglomeration 

economies are central to the research at hand.  They constitute the principal evidence for 

assessing the second research hypothesis posed in Chapter One, that regional industrial 

dominance limits the abilities of firms to improve their economic productivity by taking 

advantage of local agglomeration possibilities.  Joint tests on the significance of the 

interactions between dominance and agglomeration, however, yield weak results.  Only 

in the 2002 models are the five interaction terms jointly significant at the 90 percent 

confidence level, suggesting that dominance may not have had important effects on the 

availability of agglomeration benefits until relatively recently.  Because of the importance 

of these terms to one of the chief hypotheses of the study, they are retained in each model 

and are examined in more depth in section 7.3.6. 

 

7.3.  Modeling Results 

One of the characteristic features of the translog production function is the large 

quantity of coefficient estimates it produces by including numerous quadratic and 

interaction terms.  For convenience, Table 7.3 reproduces the variables and associated 

coefficients from the full production function model of equation 5.20.  The main model 

results begin with diagnostics in Table 7.2 and continue with coefficient estimates, 

asymptotic standard errors, and associated probability values obtained using the 

concentration ratio measure of dominance presented in Tables 7.4 through 7.6.  All non-

dummy independent variables are mean centered so that the estimated parameters refer to 
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the effects at the sample means of the other variables.  The standard inputs, the 

agglomeration economy variables other than labor pooling, and income and population 

density are transformed by natural logarithms and thus their coefficients may be 

interpreted directly as elasticities at the sample means.  As is standard in cross-sectional 

work, the estimated parameters are interpreted as representing a long-run equilibrium. 

Tables 7.4 through 7.6 display adjusted R
2
 values for each of the four model 

equations.  These figures are included mainly for completeness rather than for judging 

among model specifications since the goodness-of-fit statistic is not guaranteed to be 

well-behaved for nonlinear equations or in a multiple equation system (Basmann 1962; 

Greene 2003, pp. 209, 345).  They may, however, be taken as an indication of the general 

fit of the model to the data and the primacy of the production function in the system 

estimation.  The results tables also contain the generalized system-wide R
2
 statistic 

suggested by Berndt (1991, p. 468), though for this analysis its narrow empirical range 

(all values fall between 0.998 and 1) lends it little utility. 

 

7.3.1.  Production Function Regularity Conditions 

 Assessments of monotonicity and convexity are displayed in Table 7.2.  They 

suggest that the economic regularities required for well-behaved production function 

behavior are satisfied at the point of approximation.  Monotonicity holds at the sample 

means in each model, and convexity does as well with only one exception, measuring and 

controlling devices in 1997.  With regard to the actual data points in the nine samples, 

though monotonicity is satisfied at the large majority of the observations, with most 

violations occurring with respect to just one of the four standard inputs, the isoquant  
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Table 7.2.  Regularity Conditions and Returns to Scale. 

SIC

Industry

Year 1992 1997 2002 1992 1997 2002 1992 1997 2002

Sample observations 6,747 8,000 6,546 5,189 5,490 4,161 1,384 1,540 1,201

Monotonicity

Sample means yes yes yes yes yes yes yes yes yes

Observations (percent) 90.41 91.85 91.86 91.83 91.79 90.53 90.61 87.99 90.93

Standard inputs (percent) 97.46 97.85 97.89 97.91 97.79 97.52 97.56 96.87 97.71

"Near" Monotonicity

Sample means yes yes yes yes yes yes yes yes yes

Observations (percent) 90.58 92.03 91.98 91.97 91.99 90.65 90.97 88.71 91.10

Standard inputs (percent) 97.50 97.89 97.92 97.95 97.84 97.55 97.65 97.05 97.75

Convexity

Sample means yes yes yes yes yes yes yes no yes

Observations (percent) 49.94 47.71 49.08 33.62 27.55 33.09 40.14 33.68 43.18

"Near" Convexity

Sample means yes yes yes yes yes yes yes yes yes

Observations (percent) 76.56 79.17 84.51 72.35 78.44 82.99 70.40 81.77 87.85

Returns to scale

Estimate at sample means 0.9375 0.9415 0.9354 0.9711 0.9577 0.9466 0.9091 0.9070 0.8984
(Probability value) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

30 354 382

   rubber & plastics     metalworking machinery measuring & controlling devices

 

 

convexity criterion fails for a much larger proportion of sample.  This result is not 

unexpected:  as noted in section 4.6, factor-augmenting independent variables make it 

difficult to affirm the convexity criterion due to the number and complexity of the terms 

involving the standard inputs in the production function.  Allowing an error distance to 

account for evaluating the convexity criterion as a function of estimated parameters that 

incorporate estimation error, the proportion of data points at which convexity “nearly” 

holds is much larger, roughly 75 or 80 percent.  Overall, the parameter estimates obtained 

are most reliable in the neighborhood of the point of estimation.  Caution is warranted in 

applying the results to more distant points in the sample spaces. 
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7.3.  Variables and Coefficients in Translog Production Function Model. 

Coefficient Variable Description Coefficient Variable Description

α 0 constant λ lpk LP · ln K

α k ln K capital λ lpl LP · ln L

α l ln L labor λ lpe LP · ln E

αe ln E energy λ lpm LP · ln M

α m ln M materials λ spk ln SP · ln K

β kk (ln K)
2

λ spl ln SP · ln L

β ll (ln L)
2

λ spe ln SP · ln E

β ee (ln E)
2

λ spm ln SP · ln M

β mm (ln M)
2

λ sdk ln SD · ln K agglomeration-

β kl ln K · ln L quadratic input λ sdl ln SD · ln L input

β ke ln K · ln E interaction terms λ sde ln SD · ln E interaction terms

β km ln K · ln M λ sdm ln SD · ln M

β le ln L · ln E λ rsk ln RS · ln K

β lm ln L · ln M λ rsl ln RS · ln L

β em ln E · ln M λ rse ln RS · ln E

γ d D dominance λ rsm ln RS · ln M

γ lp LP labor pooling λ psk ln PS · ln K

γ sp ln SP manufactured inputs λ psl ln PS · ln L

γ sd ln SD producer services λ pse ln PS · ln E

γ rs ln RS research λ psm ln PS · ln M

γ ps ln PS patenting ν de DE dominator

δ dd D
2 dominance squared ν se SE dominated

δ dlp D · LP ν cr1 CR1 South

δ dsp D · ln SP dominance- ν cr2 CR2 Midwest

δ dsd D · ln SD agglomeration ν cr3 CR3 West

δ drs D · ln RS interaction terms ν pop ln POP population density

δ dps D · ln PS ν ue UE unemployment

λ dk D · ln K ν inc ln INC income

λ dl D · ln L dominance-input ν dv DV diversity

λ de D · ln E interaction terms ρ dh DH historic dominance

λ dm D · ln M ρ dvh DVH historic diversity
 

 

7.3.2.  Returns to Scale 

Although it is not a focus of this research, returns to scale are worth examining at 

least briefly as a means to illustrate some of the differences between this research and 

previous micro-level production function studies.  Internal returns to scale are estimated 

to be significantly less than unity for all four samples at the sample means, though the 
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estimates are not far below the level of constant returns in substantive terms (Table 7.2).  

This result accords with the stark rejection of linear homogeneity discussed in section 7.2 

but contradicts the consensus view from earlier studies that constant or even increasing 

returns to scale are the norm at the microeconomic level (Nguyen and Reznek 1990; Kim 

1995; Klette and Griliches 1996; Feser 2001a; Nguyen and Lee 2002).
84

  Klette and 

Griliches (1996) contend that using a value-based measure of output may downward bias 

estimates of economies of scale to the extent that imperfect price competition urges firms 

with an efficiency advantage to undercut competitors’ prices in order to expand market 

share.  As argued in section 5.10, however, the assumption of profit-maximizing behavior 

is reasonable in the context of individual establishments and within the particular study 

industries, and departures from this assumption need not occur only in the direction of a 

downward bias. 

There are at least three ways in which this analysis departs from the work of 

earlier researchers that may explain the estimates of decreasing internal returns to scale.  

First, the omission of administrative records causes the very smallest manufacturing 

plants to be excluded from the samples.  This may influence the findings with regard to 

internal returns to scale at the aggregate industry level.
85

  Second, the production function 

is not restricted to being homothetic and homogeneous.  Strictly defined, internal returns 

to scale refer to the proportion by which plant outputs change in response to changes in 

the quantity of inputs, keeping factor proportions stable.  In this study, factor proportions 

are permitted to vary both with respect to standard input quantities and with levels of  

                                                 
84

 Baldwin et al. (2007), however, report very similar returns to scale estimates in a micro-level analysis of 

Canadian manufacturers.  

 
85

 Nguyen and Reznek (1990), Feser (2001a), and Nguyen and Lee (2002) also omit administrative records. 
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dominance and potential agglomeration economies. 

The most plausible explanation comes from the fact that estimated internal returns 

to scale differ with the point of estimation.  This is fitting in research that, unlike previous 

studies, includes and indeed focuses on the effects of relative establishment size.  

Because of the right-skewed establishment size distribution of the industry samples, 

internal returns to scale calculated at the sample means (as presented in Table 7.2) is 

more closely representative of the larger rather than the smaller plants.  A recalculation 

for smaller ranges of standard inputs yields estimates of constant or increasing returns to 

scale, more in line with earlier work.  Moreover, regressions performed separately on the 

three establishment dominance categories—dominators, dominated plants, and neither 

dominator nor dominated—for each industry-year combination yield estimates of 

increasing or constant returns to scale at the sample mean for those plants that are part of 

dominator firms and decreasing returns to scale for the other two establishment 

classifications.  In other words, internal returns to scale diminish with rising input 

quantities holding relative size constant, but establishments that are relatively small 

within a regional industry tend to have lower internal returns to scale than larger firms. 

 

7.3.3.  Standard Inputs and Control Variables 

 Tables 7.4 through 7.6 present the estimates of the production function and factor 

share system for the rubber and plastics, metalworking machinery, and measuring and 

controlling devices industries for the years 1992, 1997, and 2002.  The first item to notice 

is that the coefficients of the standard inputs and cross-terms (the α and β terms) display 
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the expected signs.  Production is positively related to input quantities, and negative 

cross-products indicate input substitution in each of the nine models.
86

 

Turning next to the control variables, there is a lot of variance in the estimated 

coefficients across the three industries and in some cases over the three study years as 

well.  Higher regional median household incomes are associated with greater productivity 

in the rubber and plastics industry, where income may indicate local workforce skills 

(income is highly correlated with workforce education, see section 5.8).  The effect is 

substantial but not overwhelming.  Holding all other variables constant, a ten percent 

increase in median household income from the sample mean is associated with a 1.4 

percent rise in output in 1992, and somewhat smaller gains in the latter two study years.  

Median income has the opposite effect on productivity in the other two study industries, 

however, and in a couple of instances the estimated impact is quite sizeable.  The labor 

cost share is substantially larger on average in metalworking machinery and measuring 

and controlling device establishments than in the rubber and plastics industry, perhaps 

implying that higher wage rates outweigh regional skill advantages for these two 

manufacturing industries. 

Many of the other control variables, including unemployment and industrial 

diversity, demonstrate contrasts in magnitude and sometimes in sign across the three 

industries.  Differing macroeconomic climates may partially explain the variation in the 

effect of unemployment over time.  For instance, in the rubber and plastics industry, the 

significant positive influence of unemployment on productivity in 1997 may be due to 

                                                 
86

 Note that this is only a face-value examination of the direct coefficient estimates.  Partial elasticity 

measures, such as Morishima or Allen elasticities, are typically employed to evaluate empirical input 

substitution (Chambers 1988; Blackorby and Russell 1989).  Frondel and Schmidt (2002) argue that 

substitution elasticities are driven by factor shares in the translog framework and thus are not very 

informative. 
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Table 7.4.  Parameter Estimates for Rubber and Plastics (SIC 30). 

Year

Variable Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value

α 0 8.2778 0.0112 737.21 0.00 8.4360 0.0105 802.26 0.00 8.7876 0.0124 709.27 0.00

α k 0.1296 0.0007 186.46 0.00 0.1676 0.0007 225.36 0.00 0.1976 0.0010 188.73 0.00

α l 0.3338 0.0016 204.02 0.00 0.3084 0.0013 236.97 0.00 0.2976 0.0016 187.20 0.00

α e 0.0272 0.0002 124.16 0.00 0.0226 0.0002 140.21 0.00 0.0220 0.0002 126.40 0.00

α m 0.4469 0.0020 222.83 0.00 0.4430 0.0017 259.34 0.00 0.4182 0.0020 208.74 0.00

β kk 0.0854 0.0007 129.81 0.00 0.0965 0.0006 151.56 0.00 0.1020 0.0008 128.23 0.00

β ll 0.1421 0.0016 91.12 0.00 0.1380 0.0012 111.34 0.00 0.1188 0.0015 80.39 0.00

β ee 0.0190 0.0002 76.19 0.00 0.0167 0.0002 88.95 0.00 0.0160 0.0002 84.78 0.00

β mm 0.1715 0.0011 154.26 0.00 0.1788 0.0010 173.63 0.00 0.1567 0.0011 141.70 0.00

β kl -0.0317 0.0006 -48.74 0.00 -0.0329 0.0006 -56.27 0.00 -0.0381 0.0007 -52.42 0.00

β ke -0.0026 0.0002 -10.88 0.00 -0.0022 0.0002 -12.63 0.00 -0.0035 0.0002 -18.27 0.00

β km -0.0564 0.0006 -102.16 0.00 -0.0666 0.0005 -123.89 0.00 -0.0731 0.0007 -104.32 0.00

β le -0.0050 0.0003 -16.38 0.00 -0.0048 0.0002 -22.25 0.00 -0.0030 0.0002 -13.68 0.00

β lm -0.1142 0.0010 -118.85 0.00 -0.1081 0.0008 -138.45 0.00 -0.0941 0.0009 -101.73 0.00

β em -0.0123 0.0002 -51.21 0.00 -0.0104 0.0002 -54.84 0.00 -0.0110 0.0002 -58.26 0.00

γ d -0.0447 0.0389 -1.15 0.25 -0.0510 0.0332 -1.53 0.12 -0.0653 0.0369 -1.77 0.08

γ lp 0.9002 0.5934 1.52 0.13 0.0400 0.3240 0.12 0.90 0.6856 0.3441 1.99 0.05

γ sp 0.0055 0.0129 0.43 0.67 -0.0003 0.0111 -0.03 0.98 -0.0105 0.0127 -0.82 0.41

γ sd -0.0053 0.0119 -0.44 0.66 0.0005 0.0118 0.04 0.97 0.0163 0.0133 1.22 0.22

γ rs 0.0016 0.0090 0.17 0.86 0.0066 0.0066 1.00 0.32 0.0055 0.0082 0.67 0.50

γ ps 0.0029 0.0122 0.24 0.81 0.0204 0.0099 2.05 0.04 0.0205 0.0112 1.84 0.07

δ dd -0.4514 0.2592 -1.74 0.08 -0.3009 0.2152 -1.40 0.16 -1.0574 0.2628 -4.02 0.00

δ dlp 0.3716 2.7542 0.13 0.89 -1.3675 1.0299 -1.33 0.18 -0.8496 1.2827 -0.66 0.51

δ dsp 0.0242 0.0612 0.40 0.69 0.0352 0.0454 0.78 0.44 0.0138 0.0532 0.26 0.80

δ dsd -0.0458 0.0509 -0.90 0.37 -0.0442 0.0425 -1.04 0.30 -0.1061 0.0514 -2.06 0.04

δ drs 0.0387 0.0367 1.06 0.29 0.0414 0.0278 1.49 0.14 0.0330 0.0347 0.95 0.34

δ dps -0.0607 0.0453 -1.34 0.18 -0.0137 0.0378 -0.36 0.72 -0.1229 0.0401 -3.07 0.00

λ dk 0.0206 0.0037 5.62 0.00 0.0062 0.0035 1.79 0.07 0.0118 0.0047 2.50 0.01

λ dl 0.0271 0.0077 3.51 0.00 -0.0029 0.0058 -0.50 0.62 0.0229 0.0072 3.18 0.00

λ de 0.0013 0.0014 0.94 0.35 -0.0025 0.0010 -2.59 0.01 0.0007 0.0010 0.74 0.46

λ dm 0.0349 0.0082 4.28 0.00 -0.0062 0.0062 -1.01 0.31 0.0166 0.0077 2.15 0.03

1997 20021992

 

 

lower labor costs or a temporary surfeit of available workers at a time of declining 

national unemployment and a tightening labor market.  In contrast, unemployment has a 

smaller and negative impact in 1992 and 2002, during periods of already high or rising 

unemployment.  In those years, higher unemployment may instead signify regions 

experiencing more difficult times than the average.  This explanation, however, does not 

apply in the same manner to the other two study industries.  Higher unemployment rates 

are associated with substantially higher productivity in metalworking machinery in 1992 

and 2002 but not in 1997, and with lower productivity in measuring and controlling 

device manufacturers in 1992 and 1997 but not in 2002.  Regional unemployment  



 

 184 

 

Table 7.4.  Parameter Estimates for Rubber and Plastics (SIC 30), continued. 

Year

Variable Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value

λ lpk -0.0823 0.0717 -1.15 0.25 0.0253 0.0339 0.75 0.46 0.1586 0.0441 3.60 0.00

λ lpl 0.0560 0.1522 0.37 0.71 -0.1051 0.0566 -1.86 0.06 0.0779 0.0674 1.16 0.25

λ lpe -0.0930 0.0279 -3.34 0.00 -0.0700 0.0093 -7.53 0.00 -0.0671 0.0095 -7.03 0.00

λ lpm 0.0835 0.1653 0.50 0.61 0.1186 0.0620 1.91 0.06 0.3799 0.0730 5.21 0.00

λ spk 0.0037 0.0015 2.41 0.02 0.0035 0.0014 2.48 0.01 0.0011 0.0020 0.57 0.57

λ spl -0.0001 0.0033 -0.04 0.97 0.0004 0.0023 0.15 0.88 -0.0016 0.0031 -0.51 0.61

λ spe 0.0010 0.0006 1.60 0.11 -0.0002 0.0004 -0.42 0.67 0.0004 0.0004 0.91 0.36

λ spm 0.0143 0.0035 4.13 0.00 0.0003 0.0026 0.12 0.90 0.0033 0.0033 0.99 0.32

λ sdk -0.0022 0.0013 -1.67 0.10 -0.0036 0.0015 -2.45 0.01 0.0008 0.0020 0.41 0.68

λ sdl 0.0068 0.0028 2.40 0.02 0.0011 0.0024 0.44 0.66 0.0053 0.0030 1.73 0.08

λ sde 0.0010 0.0005 1.92 0.06 0.0002 0.0004 0.57 0.57 -0.0004 0.0004 -1.04 0.30

λ sdm -0.0068 0.0030 -2.26 0.02 -0.0031 0.0026 -1.17 0.24 0.0030 0.0033 0.92 0.36

λ rsk -0.0006 0.0009 -0.69 0.49 0.0016 0.0008 2.04 0.04 0.0024 0.0012 2.03 0.04

λ rsl 0.0028 0.0019 1.51 0.13 0.0033 0.0013 2.44 0.01 0.0032 0.0018 1.76 0.08

λ rse 0.0012 0.0003 3.59 0.00 0.0017 0.0002 7.68 0.00 0.0016 0.0003 6.32 0.00

λ rsm -0.0073 0.0019 -3.80 0.00 0.0017 0.0014 1.17 0.24 -0.0013 0.0020 -0.67 0.50

λ psk 0.0016 0.0013 1.24 0.22 -0.0028 0.0011 -2.48 0.01 0.0000 0.0015 -0.01 0.99

λ psl 0.0073 0.0027 2.74 0.01 0.0076 0.0019 4.00 0.00 0.0109 0.0023 4.77 0.00

λ pse -0.0003 0.0005 -0.56 0.57 -0.0003 0.0003 -0.97 0.33 0.0007 0.0003 2.20 0.03

λ psm -0.0072 0.0029 -2.52 0.01 -0.0090 0.0021 -4.26 0.00 -0.0041 0.0025 -1.65 0.10

ν de 0.1412 0.0135 10.48 0.00 0.1488 0.0119 12.47 0.00 0.1917 0.0128 14.98 0.00

ν se -0.1908 0.0096 -19.92 0.00 -0.1742 0.0088 -19.69 0.00 -0.1591 0.0102 -15.55 0.00

ν cr1 -0.0191 0.0145 -1.32 0.19 0.0181 0.0120 1.51 0.13 0.0011 0.0145 0.08 0.94

ν cr2 -0.0044 0.0131 -0.34 0.74 0.0030 0.0135 0.22 0.82 -0.0134 0.0156 -0.86 0.39

ν cr3 -0.0227 0.0172 -1.32 0.19 -0.0019 0.0145 -0.13 0.90 -0.0183 0.0196 -0.94 0.35

ν pop 0.0238 0.0082 2.91 0.00 0.0060 0.0068 0.87 0.38 0.0008 0.0083 0.10 0.92

ν ue -0.4854 0.3069 -1.58 0.11 0.6835 0.2865 2.39 0.02 -0.2514 0.4870 -0.52 0.61

ν inc 0.1387 0.0508 2.73 0.01 0.0949 0.0430 2.21 0.03 0.0898 0.0460 1.95 0.05

ν dv 1.6090 1.1121 1.45 0.15 -1.4940 0.8522 -1.75 0.08 0.5539 0.8155 0.68 0.50

ρ dh -0.0119 0.0275 -0.43 0.67 -0.0020 0.0257 -0.08 0.94 -0.0595 0.0349 -1.71 0.09

ρ dvh -0.1477 0.9609 -0.15 0.88 -0.3487 0.5809 -0.60 0.55 0.7349 0.6548 1.12 0.26

Generalized R
2

0.9992 0.9995 0.9990

Equation Adjusted R
2

Production Function 0.9569 0.9630 0.9485

Capital Cost Share 0.7785 0.7963 0.7807

Labor Cost Share 0.7506 0.7646 0.6964

Materials Cost Share 0.8753 0.8842 0.8577

1992 1997 2002

 

 

appears to be industry-specific in its association with establishment-level productivity 

outcomes. 

The measure of industrial diversity is inverted, so that negative coefficients 

indicate a productivity benefit to being located in a more industrially diverse region.  The 

estimated coefficients are large and negative in the measuring and controlling devices 
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Table 7.5.  Parameter Estimates for Metalworking Machinery (SIC 354). 

Year

Variable Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value

α 0 7.1519 0.0144 497.15 0.00 7.3822 0.0163 453.86 0.00 7.5604 0.0167 451.89 0.00

α k 0.0855 0.0006 152.77 0.00 0.1239 0.0007 174.73 0.00 0.1354 0.0010 134.41 0.00

α l 0.5615 0.0031 179.99 0.00 0.5197 0.0025 208.85 0.00 0.5048 0.0034 149.88 0.00

α e 0.0161 0.0002 104.29 0.00 0.0138 0.0001 94.75 0.00 0.0128 0.0002 79.87 0.00

α m 0.3080 0.0017 177.82 0.00 0.3004 0.0015 204.72 0.00 0.2936 0.0020 148.85 0.00

β kk 0.0635 0.0006 109.09 0.00 0.0805 0.0007 112.13 0.00 0.0803 0.0009 90.96 0.00

β ll 0.1827 0.0023 78.69 0.00 0.1749 0.0021 81.96 0.00 0.1413 0.0024 57.79 0.00

β ee 0.0131 0.0002 63.41 0.00 0.0131 0.0002 66.07 0.00 0.0112 0.0002 59.24 0.00

β mm 0.1701 0.0012 141.10 0.00 0.1739 0.0011 157.19 0.00 0.1540 0.0013 116.10 0.00

β kl -0.0379 0.0007 -54.58 0.00 -0.0458 0.0009 -53.85 0.00 -0.0474 0.0010 -47.01 0.00

β ke -0.0009 0.0002 -4.88 0.00 -0.0013 0.0002 -6.91 0.00 -0.0012 0.0002 -6.64 0.00

β km -0.0286 0.0004 -64.30 0.00 -0.0379 0.0005 -72.50 0.00 -0.0400 0.0006 -62.21 0.00

β le -0.0059 0.0003 -21.65 0.00 -0.0060 0.0003 -21.97 0.00 -0.0048 0.0003 -17.58 0.00

β lm -0.1400 0.0014 -96.83 0.00 -0.1313 0.0012 -108.05 0.00 -0.1194 0.0015 -81.48 0.00

β em -0.0061 0.0002 -31.82 0.00 -0.0060 0.0002 -32.91 0.00 -0.0056 0.0002 -31.33 0.00

γ d -0.0875 0.0413 -2.12 0.03 -0.2001 0.0407 -4.91 0.00 -0.1900 0.0518 -3.67 0.00

γ lp -0.5118 0.9727 -0.53 0.60 -2.8258 0.9361 -3.02 0.00 0.0596 0.6300 0.09 0.92

γ sp 0.0245 0.0171 1.43 0.15 0.0303 0.0176 1.72 0.09 -0.0404 0.0181 -2.23 0.03

γ sd -0.0116 0.0128 -0.91 0.36 -0.0458 0.0158 -2.89 0.00 0.0252 0.0170 1.48 0.14

γ rs -0.0288 0.0097 -2.97 0.00 0.0049 0.0106 0.46 0.65 -0.0194 0.0111 -1.76 0.08

γ ps 0.0760 0.0168 4.53 0.00 0.0832 0.0146 5.72 0.00 0.1058 0.0175 6.05 0.00

δ dd 0.2874 0.2866 1.00 0.32 0.8210 0.2773 2.96 0.00 -0.0518 0.3284 -0.16 0.87

δ dlp -1.3681 4.7337 -0.29 0.77 -2.7493 3.2652 -0.84 0.40 0.8008 2.5847 0.31 0.76

δ dsp -0.0953 0.0798 -1.19 0.23 0.0227 0.0846 0.27 0.79 -0.0993 0.0836 -1.19 0.24

δ dsd 0.0513 0.0497 1.03 0.30 0.0410 0.0600 0.68 0.49 0.1315 0.0729 1.80 0.07

δ drs 0.0128 0.0371 0.34 0.73 -0.0402 0.0368 -1.09 0.27 -0.0178 0.0437 -0.41 0.68

δ dps 0.0349 0.0760 0.46 0.65 0.0289 0.0574 0.50 0.62 -0.1208 0.0677 -1.78 0.07

λ dk 0.0040 0.0026 1.51 0.13 0.0080 0.0034 2.34 0.02 0.0193 0.0045 4.28 0.00

λ dl -0.0252 0.0114 -2.21 0.03 -0.0302 0.0096 -3.14 0.00 -0.0003 0.0123 -0.02 0.98

λ de -0.0015 0.0009 -1.65 0.10 0.0010 0.0009 1.12 0.26 0.0008 0.0010 0.81 0.42

λ dm 0.0226 0.0070 3.21 0.00 0.0285 0.0061 4.63 0.00 0.0314 0.0081 3.85 0.00

1992 1997 2002

 

 

industry, and are substantial for metalworking machinery establishments as well, 

suggesting Jacobs externality benefits arising from cross-industry knowledge or 

technology spillovers.  The rubber and plastics models show mixed results, with 

productivity positively associated with industrial diversity in 1997 but instead paired with 

lesser levels of industrial diversity in 1992 and 2002.  The contrast between the 

measuring and controlling devices and rubber and plastics industries is consistent with an 

industry lifecycle interpretation that holds that whereas more technology- and innovation-

intensive industries benefit from local diversity of thought and spillovers across industry 

sectors, more traditional manufacturing sectors may instead profit from having local  
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Table 7.5.  Parameter Estimates for Metalworking Machinery (SIC 354), continued. 

Year

Variable Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value

λ lpk -0.0502 0.0680 -0.74 0.46 -0.0719 0.0762 -0.94 0.35 0.0476 0.0610 0.78 0.44

λ lpl 0.4071 0.2908 1.40 0.16 0.1668 0.2172 0.77 0.44 0.5938 0.1700 3.49 0.00

λ lpe 0.0553 0.0233 2.37 0.02 -0.0660 0.0193 -3.41 0.00 -0.0627 0.0128 -4.90 0.00

λ lpm -0.0204 0.1809 -0.11 0.91 0.0397 0.1366 0.29 0.77 0.1275 0.1079 1.18 0.24

λ spk 0.0031 0.0011 2.67 0.01 0.0006 0.0019 0.32 0.75 -0.0008 0.0021 -0.38 0.70

λ spl 0.0082 0.0049 1.66 0.10 0.0044 0.0054 0.83 0.41 -0.0149 0.0060 -2.49 0.01

λ spe -0.0010 0.0004 -2.52 0.01 0.0005 0.0005 0.94 0.35 0.0003 0.0005 0.65 0.52

λ spm 0.0099 0.0030 3.23 0.00 -0.0010 0.0034 -0.29 0.77 -0.0045 0.0038 -1.18 0.24

λ sdk -0.0020 0.0008 -2.61 0.01 -0.0023 0.0015 -1.56 0.12 0.0030 0.0017 1.74 0.08

λ sdl -0.0056 0.0033 -1.72 0.08 0.0024 0.0042 0.57 0.57 0.0228 0.0048 4.71 0.00

λ sde 0.0012 0.0003 4.58 0.00 0.0001 0.0004 0.22 0.82 -0.0004 0.0004 -1.03 0.30

λ sdm -0.0063 0.0020 -3.15 0.00 -0.0005 0.0027 -0.19 0.85 0.0104 0.0030 3.45 0.00

λ rsk 0.0003 0.0006 0.47 0.64 0.0006 0.0009 0.63 0.53 -0.0023 0.0012 -1.96 0.05

λ rsl 0.0049 0.0027 1.78 0.08 -0.0103 0.0025 -4.05 0.00 -0.0098 0.0032 -3.05 0.00

λ rse 0.0014 0.0002 6.65 0.00 0.0015 0.0002 6.42 0.00 0.0011 0.0002 4.39 0.00

λ rsm 0.0015 0.0017 0.87 0.38 0.0018 0.0016 1.11 0.27 -0.0042 0.0021 -2.00 0.05

λ psk -0.0011 0.0012 -0.94 0.35 0.0028 0.0014 1.94 0.05 0.0009 0.0018 0.53 0.60

λ psl 0.0017 0.0051 0.33 0.74 0.0036 0.0040 0.88 0.38 0.0120 0.0049 2.46 0.01

λ pse 0.0008 0.0004 1.97 0.05 0.0014 0.0004 3.98 0.00 0.0005 0.0004 1.42 0.16

λ psm -0.0037 0.0032 -1.16 0.25 0.0048 0.0026 1.87 0.06 0.0002 0.0031 0.05 0.96

ν de 0.1779 0.0174 10.24 0.00 0.2099 0.0156 13.42 0.00 0.2165 0.0184 11.80 0.00

ν se -0.1732 0.0113 -15.32 0.00 -0.1249 0.0105 -11.87 0.00 -0.1583 0.0137 -11.60 0.00

ν cr1 -0.0248 0.0222 -1.11 0.26 0.0774 0.0228 3.40 0.00 -0.0139 0.0276 -0.51 0.61

ν cr2 0.0145 0.0158 0.92 0.36 0.0665 0.0193 3.45 0.00 0.0345 0.0200 1.72 0.09

ν cr3 -0.0848 0.0250 -3.39 0.00 0.0069 0.0227 0.30 0.76 -0.0969 0.0307 -3.16 0.00

ν pop 0.0359 0.0093 3.85 0.00 0.0156 0.0084 1.87 0.06 0.0215 0.0121 1.77 0.08

ν ue 0.5893 0.3471 1.70 0.09 -0.1135 0.6295 -0.18 0.86 2.1589 0.7531 2.87 0.00

ν inc -0.0238 0.0752 -0.32 0.75 -0.1051 0.0722 -1.46 0.15 -0.1869 0.0829 -2.26 0.02

ν dv -3.1462 1.3903 -2.26 0.02 -4.0410 1.3425 -3.01 0.00 -4.0307 1.2933 -3.12 0.00

ρ dh -0.0179 0.0367 -0.49 0.63 -0.0143 0.0357 -0.40 0.69 0.2221 0.0425 5.23 0.00

ρ dvh 0.5574 1.0236 0.54 0.59 -0.9196 0.7557 -1.22 0.22 -0.4974 1.0646 -0.47 0.64

0.9989 0.9991 0.9986

0.9420 0.9517 0.9351

0.7612 0.7576 0.7535

0.7445 0.7388 0.7367

0.8512 0.8784 0.8576

1992 1997 2002

Labor Cost Share

Materials Cost Share

Generalized R
2

Equation Adjusted R
2

Production Function

Capital Cost Share

 

 

resources targeted more specifically to a restricted set of regional industrial strengths.  

(The metalworking machinery industry, however, does not fit the profile as a technology-

intensive industry.)  It should be noted that the effects of industrial diversity are small 

despite the sizeable coefficient values:  the Herfindahl-Hirschman index measuring 

industrial diversity has mean values ranging from 0.013 to 0.015 across the nine samples 

and correspondingly small standard deviations (see Table 6.4).  Even in the model  
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Table 7.6.  Parameter Estimates for Measuring and Controlling Devices (SIC 382). 

Year

Variable Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value

α 0 8.2787 0.0270 306.14 0.00 8.4910 0.0269 315.55 0.00 8.7729 0.0478 183.58 0.00

α k 0.0935 0.0014 68.31 0.00 0.1222 0.0016 78.34 0.00 0.1280 0.0021 61.57 0.00

α l 0.4313 0.0055 78.83 0.00 0.3983 0.0046 86.53 0.00 0.3958 0.0057 69.51 0.00

α e 0.0105 0.0002 45.58 0.00 0.0093 0.0002 37.35 0.00 0.0075 0.0002 42.99 0.00

α m 0.3737 0.0047 79.87 0.00 0.3772 0.0043 88.41 0.00 0.3670 0.0052 70.77 0.00

β kk 0.0720 0.0013 54.65 0.00 0.0731 0.0013 55.54 0.00 0.0649 0.0015 42.26 0.00

β ll 0.1354 0.0039 35.10 0.00 0.1208 0.0035 34.70 0.00 0.1208 0.0040 30.20 0.00

β ee 0.0083 0.0003 30.45 0.00 0.0091 0.0003 30.26 0.00 0.0064 0.0002 31.78 0.00

β mm 0.1458 0.0026 55.62 0.00 0.1583 0.0025 63.09 0.00 0.1451 0.0029 49.70 0.00

β kl -0.0356 0.0014 -25.22 0.00 -0.0258 0.0014 -18.25 0.00 -0.0264 0.0017 -15.71 0.00

β ke -0.0002 0.0003 -0.79 0.43 -0.0020 0.0003 -6.89 0.00 -0.0008 0.0002 -4.70 0.00

β km -0.0397 0.0011 -36.80 0.00 -0.0485 0.0011 -43.07 0.00 -0.0431 0.0014 -31.35 0.00

β le -0.0031 0.0004 -8.53 0.00 -0.0016 0.0004 -3.66 0.00 -0.0019 0.0002 -7.57 0.00

β lm -0.1080 0.0027 -40.68 0.00 -0.1075 0.0023 -45.78 0.00 -0.1049 0.0028 -37.01 0.00

β em -0.0051 0.0003 -17.62 0.00 -0.0053 0.0003 -16.56 0.00 -0.0037 0.0002 -19.23 0.00

γ d -0.3532 0.1832 -1.93 0.05 -0.2499 0.1441 -1.73 0.08 0.1184 0.1793 0.66 0.51

γ lp 1.3261 0.8434 1.57 0.12 0.3648 0.6146 0.59 0.55 -0.2681 0.8890 -0.30 0.76

γ sp -0.0222 0.0265 -0.84 0.40 0.0285 0.0189 1.51 0.13 -0.0036 0.0224 -0.16 0.87

γ sd 0.0029 0.0227 0.13 0.90 -0.0173 0.0184 -0.95 0.34 -0.0166 0.0238 -0.70 0.48

γ rs 0.0238 0.0118 2.01 0.04 0.0174 0.0103 1.69 0.09 0.0111 0.0131 0.84 0.40

γ ps 0.0907 0.0443 2.05 0.04 0.0820 0.0393 2.09 0.04 0.0607 0.0421 1.44 0.15

δ dd 1.2189 0.9506 1.28 0.20 2.7059 1.2170 2.22 0.03 -3.0457 1.7200 -1.77 0.08

δ dlp 7.8619 4.0158 1.96 0.05 -3.2199 3.8251 -0.84 0.40 -6.7057 5.8258 -1.15 0.25

δ dsp -0.1091 0.1404 -0.78 0.44 0.1146 0.1183 0.97 0.33 -0.3717 0.1824 -2.04 0.04

δ dsd 0.0706 0.1074 0.66 0.51 -0.1726 0.1092 -1.58 0.11 0.1565 0.1318 1.19 0.24

δ drs -0.0127 0.0532 -0.24 0.81 0.0575 0.0624 0.92 0.36 -0.1388 0.0760 -1.83 0.07

δ dps 0.0251 0.2747 0.09 0.93 0.1176 0.2618 0.45 0.65 0.6262 0.3055 2.05 0.04

λ dk 0.0074 0.0067 1.11 0.27 -0.0029 0.0085 -0.33 0.74 -0.0053 0.0116 -0.45 0.65

λ dl 0.0640 0.0215 2.98 0.00 0.0349 0.0213 1.64 0.10 0.0236 0.0273 0.86 0.39

λ de -0.0039 0.0015 -2.68 0.01 -0.0055 0.0019 -2.88 0.00 -0.0021 0.0012 -1.75 0.08

λ dm 0.0360 0.0179 2.01 0.04 0.0235 0.0190 1.24 0.22 -0.0037 0.0240 -0.15 0.88

1992 1997 2002

 

 

boasting the largest industrial diversity coefficient, measuring and controlling devices in 

1992, an drop in industrial diversity of an entire standard deviation from the sample mean 

is associated with a decline of only about four percent in output.  The effects of historic 

diversity, i.e., the change in the industrial diversity measure from the historical period to 

the sample year, are negligible and never rise to conventional levels of significance.  In 

alternative models omitting the historic diversity variable, the estimated coefficients for 

current-period industrial diversity remain nearly the same, verifying that the effect of 

industrial diversity is current and does not depend on the relationship with past industrial 

diversity. 
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Table 7.6.  Parameter Estimates for Measuring and Controlling Devices (SIC 382),  

continued. 

Year

Variable Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value

λ lpk -0.5054 0.0666 -7.59 0.00 -0.0970 0.0587 -1.65 0.10 0.1686 0.0870 1.94 0.05

λ lpl -1.3694 0.2119 -6.46 0.00 0.0100 0.1486 0.07 0.95 0.3340 0.1988 1.68 0.09

λ lpe -0.0015 0.0142 -0.11 0.91 -0.0112 0.0129 -0.87 0.38 -0.0253 0.0091 -2.78 0.01

λ lpm -1.3705 0.1801 -7.61 0.00 -0.4166 0.1340 -3.11 0.00 -0.0436 0.1757 -0.25 0.80

λ spk 0.0096 0.0020 4.88 0.00 0.0030 0.0018 1.65 0.10 0.0032 0.0025 1.27 0.20

λ spl 0.0283 0.0063 4.48 0.00 0.0045 0.0046 0.98 0.33 0.0040 0.0058 0.69 0.49

λ spe 0.0013 0.0004 3.08 0.00 0.0002 0.0004 0.39 0.70 0.0011 0.0003 4.15 0.00

λ spm 0.0295 0.0054 5.48 0.00 0.0057 0.0041 1.38 0.17 0.0101 0.0052 1.94 0.05

λ sdk -0.0053 0.0016 -3.21 0.00 -0.0028 0.0017 -1.60 0.11 -0.0043 0.0024 -1.76 0.08

λ sdl -0.0160 0.0052 -3.05 0.00 -0.0006 0.0043 -0.14 0.89 -0.0013 0.0057 -0.23 0.82

λ sde -0.0006 0.0004 -1.83 0.07 0.0001 0.0004 0.23 0.82 -0.0009 0.0003 -3.59 0.00

λ sdm -0.0190 0.0045 -4.19 0.00 -0.0046 0.0038 -1.20 0.23 -0.0139 0.0052 -2.69 0.01

λ rsk -0.0006 0.0010 -0.62 0.54 -0.0015 0.0011 -1.37 0.17 0.0009 0.0013 0.71 0.48

λ rsl 0.0129 0.0032 3.98 0.00 0.0086 0.0027 3.15 0.00 0.0048 0.0031 1.56 0.12

λ rse -0.0002 0.0002 -0.92 0.36 -0.0002 0.0002 -0.84 0.40 0.0004 0.0001 3.09 0.00

λ rsm 0.0032 0.0027 1.19 0.23 -0.0022 0.0024 -0.90 0.37 0.0010 0.0028 0.38 0.71

λ psk 0.0002 0.0034 0.05 0.96 -0.0009 0.0034 -0.27 0.79 0.0042 0.0040 1.05 0.29

λ psl 0.0271 0.0110 2.46 0.01 0.0169 0.0085 1.99 0.05 0.0281 0.0093 3.04 0.00

λ pse -0.0009 0.0007 -1.23 0.22 0.0013 0.0007 1.82 0.07 0.0005 0.0004 1.10 0.27

λ psm -0.0033 0.0091 -0.36 0.72 0.0023 0.0074 0.30 0.76 -0.0022 0.0081 -0.28 0.78

ν de 0.2313 0.0351 6.58 0.00 0.2507 0.0318 7.88 0.00 0.2750 0.0356 7.72 0.00

ν se -0.2715 0.0286 -9.51 0.00 -0.2542 0.0264 -9.63 0.00 -0.2216 0.0315 -7.04 0.00

ν cr1 0.0188 0.0373 0.51 0.61 -0.0078 0.0324 -0.24 0.81 -0.0892 0.0514 -1.73 0.08

ν cr2 -0.0066 0.0395 -0.17 0.87 -0.0243 0.0393 -0.62 0.54 -0.1172 0.0428 -2.74 0.01

ν cr3 0.0150 0.0331 0.45 0.65 0.0769 0.0309 2.48 0.01 -0.0804 0.0533 -1.51 0.13

ν pop -0.0132 0.0321 -0.41 0.68 0.0486 0.0214 2.27 0.02 0.0765 0.0271 2.82 0.00

ν ue -0.8074 1.3198 -0.61 0.54 -2.8199 1.3475 -2.09 0.04 1.5269 2.0725 0.74 0.46

ν inc -0.3069 0.1365 -2.25 0.02 -0.0912 0.1289 -0.71 0.48 -0.0915 0.1583 -0.58 0.56

ν dv -22.1439 7.8192 -2.83 0.00 -9.5446 5.6585 -1.69 0.09 -5.8544 8.8070 -0.66 0.51

ρ dh -0.0642 0.1100 -0.58 0.56 0.1107 0.0863 1.28 0.20 0.0283 0.1033 0.27 0.78

ρ dvh 1.1099 6.5078 0.17 0.86 3.9798 3.7599 1.06 0.29 -4.1376 6.5063 -0.64 0.52

0.9983 0.9984 0.9975

0.9409 0.9455 0.9372

0.7461 0.7629 0.6756

0.6553 0.6463 0.6209

0.8026 0.8371 0.7896

1992 1997 2002

Capital Cost Share

Labor Cost Share

Materials Cost Share

Generalized R
2

Equation Adjusted R
2

Production Function

 

 

Population density, introduced into the model partly to help control for regional 

size effects such as absolute levels of resources and agglomeration economies, 

demonstrates consistently positive effects on productivity, suggesting that urban 

economies outweigh congestion and other diseconomies of density.  The magnitude of 

the influence is quite small in practical terms.  It would require an increase in population 

density of more than 13 percent to increase average output by one percent for measuring 
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and controlling devices plants in 2002.  The analogous figure is larger for the other 

sample industry-years that exhibit smaller estimated coefficients of population density. 

The three Census Region dummies evidence a surprising degree of variation over 

time.    The Midwest is the most productive area of the nation for metalworking 

machinery establishments in 1992 and again in 2002, though it is slightly surpassed by 

the South in 1997.  The differences between the Census Regions are substantial:  

establishments in the West are eight percent less productive in 1992, Midwestern and 

Southern plants are six to eight percent more productive in 1997, and Western 

metalworking machinery plants are nearly ten percent less productive in 2002 than the 

average Northeastern establishment.  There are large contrasts in the measuring and 

controlling devices sector as well, with the West the most productive area in 1997 and the 

Northeast in 2002.  Shifts in military contracting may play an considerable role in 

creating these patterns.  In the rubber and plastics industry, none of the coefficients are 

significant at the 90 percent level or more, and the productivity ordering of the Census 

Regions shifts by study year, but still there is as much as a two percent difference in 

average output across regions.  Although the patterns of relative productivity across 

Census Regions change more than expected, perhaps it is an indication that the dummies 

are indeed capturing macro-regional differences in economic conditions that are not 

apparent in examining the three industries at the national scale. 

 

7.3.4.  Regional Industrial Dominance 

 With regional industrial dominance the concept at the heart of this research, the 

most striking and important result reported in the estimations in Tables 7.4 through 7.6 is 
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that regional industrial dominance is an influential negative factor in determining 

establishment-level productivity.  In the metalworking machinery manufacturing 

industry, all else equal, a rise of 20 percent in the total industry shipment value accounted 

for by the top five firms in an LMA in 1992 is associated with a two percent decline in 

output at the sample means.
87

  The figure grows to approximately four percent in 1997 

and 2002.  The effect is even greater for measuring and controlling device manufacturers:  

a hike of 20 percent in the concentration ratio yields a seven percent dropoff in 

production in the 1992 sample and a five percent drop in 1997.  The estimated coefficient 

of dominance is positive but not significant in 2002.  The rubber and plastics industry 

evidences smaller but substantial effects from regional industrial dominance:  declines of 

about 1.0 to 1.3 percent in output associated with a 20 percent rise in the concentration 

ratio.  These observations provide the start of an answer to the first research question 

driving this study:  other things being equal, manufacturing plants are less productive in 

regions where the industry is locally dominated. 

As far as the author is aware, there is only one previous empirical result that can 

be used for comparison.  The coefficient of regional industrial dominance calculated here 

for the 1992 measuring and controlling devices model is roughly three times larger than 

the estimated effect of a four-firm manufacturing-wide concentration ratio reported by 

Feser (2002) for the same industry and year but across a somewhat different sample.  

Feser’s study does not include dummy variables for plant dominance status and does not 

examine nonlinearities or interactions in the effects of dominance. 

                                                 
87

 Note that since the dominance variable is a ratio by construction, it is not transformed by natural 

logarithm to enter the production function.  The estimated coefficient is interpreted as the percent change in 

output associated with a rise in the concentration ratio of 100 percent from the sample mean.  The figure of 

20 percent used as an illustration represents approximately one standard deviation of the concentration ratio 

dominance measure in the estimation samples (see Table 6.3). 
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It is important to make clear that because the production function specification 

includes dummy variables that indicate relatively large and small firms in a regional 

industry, the estimated coefficients of the regional industrial dominance measure do not 

simply reflect dominating companies outperforming locally dominated enterprises.  

Rather, regional industrial dominance influences the productivity of plants in the three 

study industries independently of their status as part of a dominator or a dominated 

firm.
88

  The dummy terms indicate that in all nine of the industry-year samples, 

establishments belonging to dominator firms outperform, and dominated firms 

underperform, the sample averages.  The margins by which this occurs are very 

substantial:  dominators enjoy a 14 to 19 percent productivity advantage in rubber and 

plastics manufacturing, 18 to 22 percent in metalworking machinery, and 23 to 28 

percent in measuring and controlling devices.  Dominated plants suffer a production 

deficit below the industry averages of similar magnitude.  In each model, these dummy 

variables are among the most significant regressors, and whether a plant belongs to a 

dominator firm, a dominated firm, or neither is the strongest single influence on output 

other than input quantities.  These impacts—both the direction and the scale—are to be 

expected.  Dominator firms have more resources at their disposal and generally can take 

advantage of economies of scale, whereas dominated firms have access to fewer 

resources and economies of scale than the average industry establishment.  In the cross-

sectional modeling context, the causal direction of the effects indicated by the dummy 

variables is ambiguous; dominant firms may have achieved their relative size due to 

                                                 
88

 Interactions between dominance and the dominance classification dummies tested in alternative 

specifications are inconsistent and insignificant.  Either regional industrial dominance affects plants of all 

types equally or, more likely, the regression does not possess sufficient statistical power to distinguish 

among dominance productivity effects according to establishment dominance status. 



 

 192 

unobserved firm-specific efficiencies. 

The figures in the preceding paragraphs are direct effects, equivalent to the 

marginal effects of dominance evaluated at the sample means of all the variables.  For 

variables that enter the production function nonlinearly, the estimated marginal effects 

vary according to where in the sample space they are evaluated.  Regional industrial 

dominance enters in quadratic form and is interacted in the production function with both 

the standard input and agglomeration economy variables.  Therefore, the estimated 

marginal effects of dominance vary with the levels of inputs and potential agglomeration 

economies and with the base level of dominance.  The nonlinearities modeled via 

interactions in this way are simple, just an increasing or decreasing trend in relation to the 

interacted variable (Aiken and West 1991).
89

  (Although it is possible to calculate the 

marginal effect of dominance at any point within or even external to the sample set, the 

sheer volume of possibilities makes such an exploration intractable.) 

The degree to which changes in regional industrial dominance are associated with 

modifications in the levels of production depends on the level of dominance itself.  For 

the rubber and plastics industry, and in 2002 for the measuring and controlling devices 

industry, the estimated coefficient of the square of dominance is large and negative, so 

that the negative impact of dominance on performance increases as the level of 

dominance rises.  The opposite, however, is true in 1992 and 1997 for the metalworking 

machinery and the measuring and controlling devices industries:  a positive dominance-

squared term indicates that the deleterious effects of dominance on production are felt 

                                                 
89

 Given the number of variables included in this translog production function model, more complex 

specifications would quickly surpass the statistical power of the estimation procedure. 
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most acutely in those regions with moderate levels of industrial dominance.
90

  Figure 7.1 

illustrates the estimated marginal effects of dominance in each model accounting for both 

the linear and squared terms. 

 The influence of dominance on establishment-level productivity also changes 

with the levels of standard inputs and agglomeration economies.  These nonlinearities are 

highly relevant to understanding the effects of regional industrial dominance in a manner 

useful for policymaking, since potential agglomeration economies vary widely across 

regions and the quantities of standard inputs are a useful proxy for establishment size.  

Again, since it is not feasible to examine the effects of dominance at all combinations of 

agglomeration economies and inputs, the scope of the analysis is restrained to contrasting 

regions with less than average potential agglomeration economies with better endowed 

LMAs, and considering the range of plant sizes as indicated by the volume of inputs.  

Also, it is worth reiterating that the point of estimation is at the sample means, and that 

interpretations are less reliable moving further away from the means.
91

  Therefore, the 

variation in the effects of regional industrial dominance according to the levels of 

interacted model variables is interpreted qualitatively, emphasizing broad trends rather 

than specific results.  The following paragraphs investigate the interaction between 

dominance and input levels; the interaction between dominance and agglomeration is 

considered in section 7.4.6.  

Examined individually, the interaction terms between dominance and the standard  

                                                 
90

 At low levels of dominance, the impact on production is small because there is very little dominance.  At 

high levels of dominance, the negative contribution to production represented by the linear dominance term 

is balanced by the positive quadratic term. 

 
91

 This is reflected in part by the increasing width of the confidence intervals moving away from the means 

in Figures 7.2 and 7.3. 
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Figure 7.1.  Marginal Impacts of Regional Industrial Dominance by Level of Dominance.  
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inputs reveal that dominance is labor-augmenting for measuring and controlling devices, 

is materials-augmenting in metalworking machinery, and tends to lead to greater use of 

all four factor inputs in the rubber and plastics industry.  The manner in which the effects 

of dominance on production adjust as the levels of the inputs change together—a proxy 

for plant size—is more interesting (Braumoeller 2004; Brambor and Clark 2006).  Figure 

7.2 displays the estimates of the marginal impacts of regional industrial dominance on 

output and their 90 percent confidence intervals for different amounts of standard inputs.  

The graphs require some explanation.  The vertical axes represent the estimated marginal 

impact of dominance, interpreted in the same way as the estimated coefficients of 

dominance reported in Tables 7.4 through 7.6 and the vertical axes in Figure 7.1:  the 

percent change in output associated with a rise in the concentration ratio of 100 percent 

from the sample mean, with all other variables held constant.  The horizontal axes 

provide six points that describe the range from low to high quantities of the four standard 

inputs.  The point labeled “mean” is defined by the sample mean values for the four 

standard inputs:  capital, labor, energy, and materials.  The disclosure restrictions that 

protect the confidentiality of data pertaining to individual establishments preclude the use 

of percentiles to populate the rest of the input range.  Instead, the five points labeled “A” 

through “E” are constructed as percentages of the sample means.  A, B, and C are smaller 

than the mean and D and E are larger than the mean.  At each of these points, the sample 

means for capital, labor, energy, and materials are multiplied by selected fractions and the 

estimated marginal impact of regional dominance is calculated for the resulting input 

quantities.  The five fractions for points A through E are chosen separately for each of the 

four inputs in each of the nine samples to approximate the range observed for that 



 

 196 

industry and year.  For example, point B for rubber and plastics (SIC 30) in 1992 refers to 

50 percent of the sample mean for capital, 40 percent for labor, 60 percent for energy, 

and 50 percent for materials.
92

  The purpose of this procedure is to ensure that the points 

along the horizontal axes that together approximate the range of standard inputs represent 

hypothetical combinations of inputs rather than actual sample observations and thus 

uphold confidentiality requirements.  Note that the horizontal axes are not to scale; the 

six points are not necessarily equally spaced along the continuum from low to high input 

quantities. 

As described earlier, the effects of regional industrial dominance at the sample 

means in the rubber and plastics industry are small but negative.  From Figure 7.2, it is 

evident that in the 1997 model, as plant size shifts away from the mean amounts of the 

four standard inputs, the effect of dominance changes only slowly and the significance of 

the estimated coefficients decreases (the confidence intervals widen and include zero).  In 

the 1992 and 2002 models, however, small plants experience greater and more significant 

negative effects of dominance.  In other words, dominance acts as more of a hindrance to 

productivity performance for the lower throughput, smaller rubber and plastics plants in 

1992 and in 2002.  The largest establishments instead benefit from industrial dominance 

in their regions.  Scanning the other graphs in Figure 7.2, the latter pattern is replicated in 

most of the rest of the models:  the estimated marginal effect of dominance is greater in 

magnitude (a larger negative number) and more significant for smaller plants.  Only the 

2002 measuring and controlling devices (SIC 382) and the 1992 metalworking machinery 

(SIC 354) models display a result more like that for rubber and plastics in 1997, wherein 

the effect of dominance is stable across establishment sizes.  Industry-specific conditions 

                                                 
92

 The precise fractions for each input, industry, and year are available from the author. 
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Figure 7.2.  Marginal Impacts of Regional Industrial Dominance Across Range of Standard Inputs. 
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in these particular years may have favored the smaller firms in dominated regional 

industries. 

The influence of dominance on establishment productivity appears to be primarily 

a current phenomenon.  The estimated coefficients of the historic dominance term are 

mostly insignificant and quite small, particularly in comparison to the magnitude of the 

typical change in the concentration ratio measure of dominance over the twenty-year 

period.
93

  Only the 2002 models for metalworking machinery and for rubber and plastics 

demonstrate significant impacts from the change in dominance.  For the metalworking 

machinery plants, the positive coefficient indicates that an increase in measured 

dominance (i.e., a low historical level of dominance) boosts productivity, but in the 

rubber and plastics industry the effect is in the opposite direction.  Omitting the historic 

dominance variable entirely leaves the current dominance coefficients about the same, so 

that as with industrial diversity it is possible to conclude that the predominant effects are 

current and do not depend on past levels of dominance.  The minimal influence of 

historic as opposed to current dominance is certainly reasonable given the changes in 

industry composition, products and production technologies, and national economic 

conditions over the intervening period. 

 

7.3.5.  Agglomeration Economies 

 Although the results for regional industrial dominance are strong and largely 

consistent across industries and years, the same does not hold true for agglomeration 

economies.  As noted in Chapter Six, labor pooling advantages might be expected to be 
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 Note that the change in dominance is not displayed in Table 6.4 (instead the table contains descriptive 

statistics for the level of dominance twenty years prior). 
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the most important in the measuring and controlling devices industry and least important 

to plants in the rubber and plastics industry, judging from the industries’ relative reliance 

on labor inputs.  In fact, the benefits of potential regional labor pools on production seem 

to vary across the sample years for each industry.  Labor pools confer productivity 

advantages for measuring and controlling devices in the 1992 model, such that a two 

percent rise in the distance-weighted fraction of the local workforce employed in the top 

15 occupations is associated with a 2.7 percent increase in output.
94

  That figure drops to 

less than one percent in 1997 and becomes negative in 2002, perhaps reflecting the 

industry becoming more capital-intensive.  Two of the three sample years show negative 

impacts from labor pooling for metalworking machinery establishments.  Rubber and 

plastics plants do benefit from potential labor pools in 1992 and 2002, but in 1997 the 

effect is negligible.  As the only one of the agglomeration economies to be measured by a 

relative rather than an absolute indicator, some of benefits that arise due to the size of the 

suitable local labor force may be captured in the model by the other size-sensitive 

agglomeration variables and the population density control. 

 The two supply pooling measures also demonstrate few discernible and 

unambiguous impacts on production.  The measure of potential manufactured input 

supply is significant in only one of the nine models, measuring and controlling devices in 

2002, and there, against expectations, it is negative.  The coefficient of the producer 

services variable only reaches conventional significance levels in two models (the other 

                                                 
94

 Like the concentration ratio measure of dominance, labor pooling is constructed as a ratio and enters the 

production function directly, without a logarithmic transformation.   The estimated coefficient is interpreted 

as the percent change in output associated with a 100 percent rise from the sample mean in the distance-

weighted fraction of the regional workforce employed in the top 15 occupations employed by that industry 

nationally.  Two percent is roughly one standard deviation (see Table 6.3).  The other four agglomeration 

economies are included in logarithmic form so their coefficients are elasticities. 
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two study industries in 2002) and is of opposite sign for those two industries.  In most of 

the models, the coefficients of the two supply pooling variables are of opposite sign.  

Since the two variables are positively correlated (section 6.4 and Table 6.5), the most 

likely conclusion is that substantial colinearity between these two variables obscures the 

individual effects on establishment productivity.
95

  Only in the 1997 model for 

metalworking machinery do both variables display positive estimated coefficients as 

expected and even for that sample the calculated impacts are slight. 

 Stronger results are obtained for the two knowledge spillover variables.  Rubber 

and plastics plants located in regions with greater private sector innovative activity, as 

indicated by local patenting rates in relevant technology fields, are more productive, all 

else being equal, than plants sited in less innovative regions.  The estimated effects are 

not huge but are large enough to be substantively important.  In 1997 and 2002 a 

doubling of the regional patent rate in technology fields germane to rubber and plastics 

production is associated with a two percent surge in output.  The estimated coefficient in 

1992, approximately one eighth as large, may be an aberration, an artifact of changing 

assignment propensities for patent technology classifications, or else may indicate that 

the industry has only begun to benefit substantially from the private sector innovative 

climate in the last fifteen years or so. 

The other two study industries display greater responses to regional patenting 

activity than the rubber and plastics industry.  For 1992, the productivity gain to 

metalworking machinery establishments from a doubling of regional patenting is shy of 

eight percent; in 2002 the figure climbs past ten percent.  The estimated impact on 

                                                 
95

 Neither several alternative formulae for these two variables nor the replacement of both measures with a 

single encompassing supply pool variable improves the quality or insightfulness of the model results. 
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production in the measuring and controlling devices industry has trended downward, 

from a nine percent improvement in 1992 to six percent in 2002 associated with twice the 

sample mean rate of patent approvals.  Even considering the smallest of the estimated 

impacts for these two industries, the influence of regional patenting is enough to suggest 

a possible route by which local or regional policy measures might be able to influence 

productivity. 

Academic research is considerably less important to the three study industries.  A 

location proximate to research expenditures in those academic fields germane to the 

industry has a substantially smaller impact on production than the regional patenting rate.  

In the metalworking machinery models, local academic research is actually a negative 

factor.  The high correlation between the academic research and manufactured input 

supply variables may obscure the results for rubber and plastics establishments (see 

section 6.4).  Only for plants employed in manufacturing measuring and controlling 

devices does academic research yield a notable productivity improvement:  doubling the 

index of nearby academic research raises output by one to two percent depending on the 

year of the sample.  Higher technology industries, in this study represented by the 

measuring and controlling devices sector, may have more to gain from localized 

knowledge spillovers of basic research.  It is also possible that the academic research 

indicator acts partially as a proxy for higher local land or employment costs, a factor that 

varies less across the samples of measuring and controlling device manufacturing 

establishments that are located primarily in dense and urban counties. 

The relatively small influence of academic research recorded in these models is 

not entirely unexpected.  Researchers generally have found it difficult to quantify the 
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process of producing new knowledge.  A large portion of the total impact of basic 

research is realized only in the very long term.  Moreover, the measure of academic 

research expenditures used in this research pertains only to the knowledge creation 

function of universities and does not attempt to track the numerous other means (such as 

human capital creation and attraction, technology transfer, and local leadership) by which 

research universities influence economic performance in the surrounding region. 

The absence of strong and consistent results for the agglomeration measures may 

be related to the over-representation in the samples of establishments located in regions 

with relatively substantial agglomeration possibilities.  As discussed in section 6.2, the 

omission of plants located in regions with few industry establishments reduces the 

variation in the agglomeration measures and increases the tendency toward 

multicolinearity.  Perhaps more importantly for the investigation of agglomeration 

influences, plants at the low end of the range of potential intra-industry agglomeration 

advantages are not included in the analysis.  Although this exclusion is necessary to 

accommodate the principal research aim of examining regional industrial dominance, 

truncating the lower tail of the distribution of agglomeration potential may affect the 

estimation results pertaining to agglomeration economies.   

Quite a few of the myriad interaction terms between agglomeration economies 

and standard inputs are significant, particularly those involving the labor pooling and 

knowledge spillover variables.  These factor-altering characteristics of the agglomeration 

variables are somewhat more consistent over time than across industries, but vary in sign 

and significance between samples of the same industry as well.  A couple of the more 

consistent effects are that labor pooling seems to restrain energy usage and local 
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patenting tends to stimulate the use of additional labor inputs.  The pattern of the 

interaction terms involving the two supply pooling variables reinforces the supposition of 

colinearity in that a significant positive interaction with one of the variables usually 

opposes a significant negative interaction between the same input and the other supply 

pooling variable. 

Four of the five measures of potential agglomeration economies are defined 

spatially using the default distance decays and cutoffs established for each study industry 

(see section 5.7).  Yet there is no reason to expect that spatial agglomeration economy 

effects should be identical across different spatial scales.  Section 8.2 investigates how 

the estimated agglomeration influences vary with modifications of the default distance 

decay and cutoff parameters as an extension to the analysis presented in this chapter. 

 

7.3.6.  Dominance-Agglomeration Interactions 

Turning to the interactions between dominance and agglomeration economies, the 

terms are small and mostly insignificant, not altogether a surprise given the mixed 

performance of the agglomeration variables as described in the preceding section.  Few 

patterns emerge.  In most of the models, the two supply pooling variables yield 

interaction terms with regional dominance that are of similar magnitude but opposite 

sign, again symptomatic of colinearity.  For rubber and plastics plants, the interaction 

between dominance and private sector knowledge spillovers as indicated by local 

patenting rates is consistently negative whereas the interaction with academic research is 

positive.  In locally dominated regions, small rubber and plastics plants may shift their 

attention from private sector to academic research, perhaps because the former is less 
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accessible to non-dominators.  The pattern does not hold for the other two study 

industries, however. 

Figure 7.3 is constructed to be identical to Figure 7.2 except that it contains points 

that vary across the observed range of the agglomeration economy variables rather than 

the production inputs for each industry-year sample.  As with the graphs in Figure 7.2, 

the points on the horizontal axes do not represent actual combinations of the 

agglomeration economies present in particular LMAs, but rather hypothetical regional 

endowments that approximate the spectrum from minimal to maximal available 

agglomeration economies.
96

  The estimated impacts of regional industrial dominance 

vary less with the agglomeration regime than they do with input quantities.  In two of the 

models, dominance has positive productivity effects in regions with few available 

agglomeration economies and negative effects where the levels of agglomeration 

economies are large.  Regional industrial dominance may have the effect of hindering 

local establishments from accessing agglomeration economies, lowering productivity 

from expected levels primarily in those regions offering greater potential agglomeration 

benefits.  Perhaps locally dominant firms in those areas that lack agglomeration 

economies create alternative advantages through local economic power (such as 

specialized training programs or applied research institutes) that then spill over to smaller 

firms in the regional industry.  The 2002 models for rubber and plastics and measuring 

and controlling devices display this phenomenon.  In one model, measuring and 

controlling devices in 1992, the opposite pattern occurs:  the negative influence of 

dominance on production wanes with greater levels of agglomeration economies. 

                                                 
96

 While it might be interesting to consider combinations of dissimilar levels of the measured 

agglomeration economies, exploring the resulting volume and complexity of results would necessitate a 

second dissertation. 
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Figure 7.3.  Marginal Impacts of Regional Industrial Dominance Across Range of Agglomeration Economies.  
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Most of the nine industry-year samples, however, demonstrate little change in 

dominance with different levels of potential agglomeration economies.  Together with the 

observations and interpretations in the previous section pertaining to the impacts of 

agglomeration economies, this provides an answer to the second research question posed 

in the introduction.  At least for the majority of study industries and years, it does not 

seem to be the case that regional industrial dominance inhibits the advantages that firms 

obtain from localized agglomeration economies.  Because dominance and agglomeration 

are both explanatory variables in the production function model, the implications 

observed are symmetric with regard to the interaction between regional industrial 

dominance and agglomeration:  the potential benefits of regional agglomeration 

economies are not dampened by regional industrial dominance, and the lower 

productivity of plants located in regionally dominated industries is not explained by their 

inability to benefit from agglomeration economies. 

There are several possible explanations for the negative result.  The most direct 

conclusion is that dominance does reduce establishment-level productivity, but the 

mechanism by which that outcome is realized is not the restriction of the ability of 

regional manufacturers to access local benefits of agglomeration.  It is also possible that 

the samples may be too small, the translog model too complex, or the sought-after effects 

too subtle to perceive in the model results.  The agglomeration economy indicators may 

not gauge their intended concepts adequately, may be weakened by the omission of plants 

in small regional industries, or may be indicative of the wrong agglomeration economies 

(for example, none of the five agglomeration variables measure capital or financing 

availability, one of the three pathways identified in Chapter Three as a possible 
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mechanism for the influence of regional industrial dominance).  Any one of these 

explanations, or all in combination, may be true to various degrees.  Overall, however, 

this study does not support the idea that regional industrial dominance limits the abilities 

of manufacturers to capture local agglomeration economies. 

 

7.4.  Alternative Measures of Regional Industrial Dominance 

Up to this point in the chapter, regional industrial dominance has been measured 

by the five-firm concentration ratio.  Section 5.6 discussed three alternative measures of 

regional industrial dominance:  the Herfindahl-Hirschman and Rosenbluth indices and the 

Gini coefficient.  There are two main motives for investigating how substituting these for 

the concentration ratio measure of dominance alters the estimation results.  First, there is 

no single accepted indicator of dominance.  The concentration ratio is insensitive to the 

small end of the firm size distribution.  The Rosenbluth index emphasizes small firms, 

whereas the Herfindahl-Hirschman index places extra weight on the largest firms.  The 

Gini coefficient, unlike the three absolute measures, is a relative measure, corresponding 

to the degree of inequality in the firm size distribution irrespective of the number of firms 

in the regional industry.  Testing different measures helps to gauge the robustness of the 

results with regard to the operationalization of the concept of regional industrial 

dominance.  Second, the alternative indicators of dominance, in particular the Herfindahl-

Hirschman index and the Gini coefficient, are less closely associated than the 

concentration ratio with regional industry scale.  Their performance helps to ascertain 

whether it is reasonable to attribute the influence of the dominance variable observed in 

the model results to dominance rather than industry size. 
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Table 7.7 shows the estimates obtained by replacing the concentration ratio 

measure of dominance in the model with the three alternative indices.  The original 

concentration ratio figures from Tables 7.4 through 7.6 are included for comparison.  

Only the coefficients of dominance, the square of dominance, and historical dominance 

are displayed.  For the most part, the other variables change only slightly in response to 

the substitution of alternative measures of regional industrial dominance.
97

  Note that the 

definitions of the dummy variables DEz and SEz remain unchanged, signifying the 

relatively large and small firms in each regional industry with reference to the five firms 

with the greatest value of shipments. 

The coefficients of the three absolute measures of dominance match each other in 

terms of sign.  They are negative in every estimated model but for measuring and 

controlling devices in 2002, for which the three estimated coefficients are positive.  There 

are some discrepancies in the levels of significance, though overall there is far more 

agreement than disagreement.  In the eight models in which absolute dominance 

negatively influences output, the coefficients of the Rosenbluth index are generally more 

significant than those of the Herfindahl-Hirschman index or the concentration ratio 

measure.  In emphasizing the small end of the firm size distribution the Rosenbluth 

measure may more closely reflect the relationships among the smaller plants that tend to 

be more negatively affected by regional industrial dominance, or may reveal finer 

distinctions in industrial structure across regions.  The single exception is that for 

metalworking machinery plants in 1992, only the concentration ratio measure of  

                                                 
97

 Some of the interaction term coefficients do change substantially, but without consistency or apparent 

patterns in terms of value or significance across the study industries, years, or dominance measures, 

suggesting random fluctuations rather than coherent relationships with respect to the alternative dominance 

measures.  The model results including all regressors, as well as heteroskedasticity-corrected versions, are 

available from the author. 
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Table 7.7.  Parameter Estimates for Alternative Measures of Regional Industrial  

Dominance. 

Year

Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value

DC γ d -0.0447 0.0389 -1.15 0.25 -0.0510 0.0332 -1.53 0.12 -0.0653 0.0369 -1.77 0.08

δ dd -0.4514 0.2592 -1.74 0.08 -0.3009 0.2152 -1.40 0.16 -1.0574 0.2628 -4.02 0.00

ρ dh -0.0119 0.0275 -0.43 0.67 -0.0020 0.0257 -0.08 0.94 -0.0595 0.0349 -1.71 0.09

DH γ d -0.1616 0.1119 -1.44 0.15 -0.0457 0.0856 -0.53 0.59 -0.4631 0.1047 -4.42 0.00

δ dd 0.2926 0.6952 0.42 0.67 -0.6452 0.6275 -1.03 0.30 -0.9326 0.9690 -0.96 0.34

ρ dh -0.0127 0.0283 -0.45 0.65 -0.0162 0.0298 -0.54 0.59 -0.1170 0.0424 -2.76 0.01

DR γ d -0.9101 0.2383 -3.82 0.00 -0.5765 0.1863 -3.09 0.00 -1.0107 0.1676 -6.03 0.00

δ dd 3.5088 2.7137 1.29 0.20 1.7082 2.3833 0.72 0.47 1.9123 1.7470 1.09 0.27

ρ dh -0.0752 0.0595 -1.26 0.21 -0.0605 0.0623 -0.97 0.33 -0.2060 0.0871 -2.36 0.02

DG γ d 0.3673 0.0832 4.41 0.00 0.3341 0.0741 4.51 0.00 0.3499 0.0868 4.03 0.00

δ dd 0.9850 1.8003 0.55 0.58 -3.4604 1.4608 -2.37 0.02 -4.2601 1.3611 -3.13 0.00

ρ dh -0.1467 0.0463 -3.17 0.00 -0.0747 0.0437 -1.71 0.09 -0.1850 0.0549 -3.37 0.00

Year

Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value

DC γ d -0.0875 0.0413 -2.12 0.03 -0.2001 0.0407 -4.91 0.00 -0.1900 0.0518 -3.67 0.00

δ dd 0.2874 0.2866 1.00 0.32 0.8210 0.2773 2.96 0.00 -0.0518 0.3284 -0.16 0.87

ρ dh -0.0179 0.0367 -0.49 0.63 -0.0143 0.0357 -0.40 0.69 0.2221 0.0425 5.23 0.00

DH γ d -0.1121 0.1055 -1.06 0.29 -0.1830 0.0796 -2.30 0.02 -0.2661 0.1012 -2.63 0.01

δ dd -0.1567 0.8082 -0.19 0.85 -0.0867 0.5846 -0.15 0.88 -0.4970 0.5132 -0.97 0.33

ρ dh -0.0235 0.0478 -0.49 0.62 -0.0732 0.0449 -1.63 0.10 0.1579 0.0588 2.69 0.01

DR γ d -0.2563 0.2254 -1.14 0.26 -0.6614 0.1731 -3.82 0.00 -0.7175 0.1757 -4.08 0.00

δ dd -1.3148 1.7497 -0.75 0.45 2.3597 1.3853 1.70 0.09 0.4639 0.9159 0.51 0.61

ρ dh -0.0419 0.0887 -0.47 0.64 -0.2542 0.0883 -2.88 0.00 0.1205 0.1348 0.89 0.37

DG γ d 0.2912 0.0895 3.25 0.00 0.2169 0.0775 2.80 0.01 0.3920 0.1000 3.92 0.00

δ dd -1.6921 1.2923 -1.31 0.19 -3.8613 1.1141 -3.47 0.00 -1.9572 1.4029 -1.40 0.16

ρ dh -0.1956 0.0639 -3.06 0.00 -0.1670 0.0542 -3.08 0.00 0.0914 0.0724 1.26 0.21

Year

Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value

DC γ d -0.3532 0.1832 -1.93 0.05 -0.2499 0.1441 -1.73 0.08 0.1184 0.1793 0.66 0.51

δ dd 1.2189 0.9506 1.28 0.20 2.7059 1.2170 2.22 0.03 -3.0457 1.7200 -1.77 0.08

ρ dh -0.0642 0.1100 -0.58 0.56 0.1107 0.0863 1.28 0.20 0.0283 0.1033 0.27 0.78

DH γ d -0.6369 0.2724 -2.34 0.02 -0.1969 0.2141 -0.92 0.36 0.5532 0.2702 2.05 0.04

δ dd 4.0213 1.3407 3.00 0.00 2.8435 1.2456 2.28 0.02 -4.1594 2.2360 -1.86 0.06

ρ dh -0.0533 0.0673 -0.79 0.43 0.0101 0.0776 0.13 0.90 -0.1831 0.1056 -1.73 0.08

DR γ d -2.0502 0.6850 -2.99 0.00 -1.8161 0.6050 -3.00 0.00 0.0582 0.5339 0.11 0.91

δ dd 13.6820 5.8300 2.35 0.02 16.7564 5.9710 2.81 0.01 -4.4937 7.5179 -0.60 0.55

ρ dh -0.1494 0.1097 -1.36 0.17 0.0119 0.1147 0.10 0.92 -0.1495 0.1384 -1.08 0.28

DG γ d 0.4963 0.3390 1.46 0.14 1.1763 0.2813 4.18 0.00 0.4634 0.3075 1.51 0.13

δ dd -2.3220 6.9458 -0.33 0.74 3.5000 3.6310 0.96 0.34 -6.6184 3.7694 -1.76 0.08

ρ dh -0.3463 0.1946 -1.78 0.08 -0.1458 0.1428 -1.02 0.31 -0.1941 0.2258 -0.86 0.39

Note:  DC refers to the concentration ratio dominance measure, DH to the Herfindahl-Hirschman index, DR to the Rosenbluth index,

and DG to the Gini coefficient.

SIC 30:  Rubber and Plastics

1992 1997 2002

SIC 354:  Metalworking Machinery

1992 1997 2002

SIC 382:  Measuring and Controlling Devices

1992 1997 2002
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dominance is significant at conventional levels.  Nevertheless, it is clear that the answer 

to the first research question supplied in section 7.3.4 holds using either the Rosenbluth 

or the Herfindahl-Hirschman index in place of the concentration ratio measure:  regional 

industrial dominance is substantially and negatively associated with plant-level 

production. 

The Gini coefficient yields results that contrast starkly with the other three 

measures of dominance.  The estimated coefficients of the Gini measure are positive in 

each model, are generally highly significant and, save for the 1997 measuring and 

controlling devices sample, are relatively consistent in magnitude across the three study 

years.  This corresponds with the observation made in Chapter Six that the sample means 

of the Gini coefficient are more stable over time than the means of the three absolute 

dominance indicators.  The Gini coefficient, though used almost interchangeably with the 

Herfindahl-Hirschman index to measure industrial diversity (see section 2.4.2.3), carries 

distinct implications as an indicator of industrial dominance.  Regional industrial 

inequality, operationalized independently of the local size of the industry, is positively 

associated with establishment production at the sample means of the other variables.
98

 

The estimated coefficients are not easily compared directly across the four 

measures of regional industrial dominance because of the contrast in the methods of 

construction as well as differing sample properties (see Table 6.3).  Table 7.8 presents the 

effect of an increase of one standard deviation in each dominance measure, reported as 

                                                 
98

 One possible explanation for the contrast in outcomes between the Gini coefficient and the other 

dominance indicators is that the lesser degree of variation of the Gini coefficient across regions may reduce 

the stability of the regression results and thus produce estimates that differ widely from those obtained 

using absolute measures of regional industrial dominance.  The consistency of the parameter estimates for 

the Gini coefficient measure across the nine industry-year samples, however, does not suggest such 

instability. 
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the percent change in output produced, calculated at the sample means of each of the 

independent variables.  Table 7.8 also replicates the probability values of each dominance 

coefficient from Table 7.7 for convenience.  In this format, it is straightforward to 

observe the consistently negative effects of the absolute dominance variables and the 

positive impact of inequality as measured by the Gini coefficient. 

The greater significance of the Rosenbluth coefficients translates into larger 

estimated marginal effects.  An increase of one standard deviation in the Gini coefficient 

shifts production by a percentage similar to that resulting from the corresponding change 

in the concentration ratio or Herfindahl-Hirschman measures, but, as noted earlier, the 

Gini coefficient tends to be less volatile over time than the other two measures.  Overall, 

the magnitude of the figures in Table 7.8 emphasizes the importance of the influence that 

regional industrial dominance exerts on establishment productivity. 

 

 

Table 7.8.  Marginal Impacts of Alternative Dominance Indicators. 

SIC

Industry

Year 1992 1997 2002 1992 1997 2002 1992 1997 2002

Dominance

Concentration Ratio (DC) -0.85 -0.99 -1.30 -1.72 -4.18 -3.82 -6.49 -3.79 1.65

(0.251) (0.125) (0.076) (0.034) (0.000) (0.000) (0.054) (0.083) (0.509)

Herfindahl-Hirschman (DH) -1.17 -0.35 -3.48 -0.92 -1.75 -2.69 -9.51 -2.38 6.81

(0.149) (0.593) (0.000) (0.288) (0.022) (0.009) (0.020) (0.358) (0.041)

Rosenbluth (DR) -3.87 -2.60 -5.72 -1.23 -3.73 -5.14 -13.74 -10.70 0.37

(0.000) (0.002) (0.000) (0.256) (0.000) (0.000) (0.003) (0.003) (0.913)

Gini (DG) 1.81 1.69 1.92 2.11 1.54 2.85 2.56 6.66 3.22

(0.000) (0.000) (0.000) (0.001) (0.005) (0.000) (0.143) (0.000) (0.132)

Note:  Figures are percent changes in production with one standard deviation increase in dominance measure from sample mean.

Figures in parentheses are probability values of estimated coefficients of dominance, from Table 7.7.

30 354 382

   rubber & plastics     metalworking machinery measuring & controlling devices
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Returning to Table 7.7, there is extensive variation in the squared dominance 

parameter, with swings in both sign and magnitude across the different dominance 

indicators.  The coefficient of the square of dominance determines how the marginal 

effect of dominance changes with the level of dominance itself (i.e., the slopes of the 

lines in the graphs in Figure 7.1).  For example, the positive coefficient for the square of 

the Rosenbluth dominance measure in the rubber and plastics models is responsible for 

reducing to some degree the impact of dominance on productivity in regions experiencing 

high levels of dominance compared to areas with intermediate regional industrial 

dominance.  As with the concentration ratio measure, the estimated coefficients of the 

quadratic dominance term are not consistent across samples even within the same 

industry.  It is possible that the nonlinear effects of dominance shift substantively over 

time.  The statistical methods are most reliable, however, in the neighborhood of the 

point of approximation, the sample means.  With the dominance variables mean-centered, 

the estimation procedures offer the greatest accuracy where the marginal effect of the 

square of dominance is zero. 

The importance of historic dominance is relatively consistent across samples and 

dominance measures.  For those industry-year samples which evidence little influence 

from historic concentration ratio dominance, the coefficients of the historic Herfindahl-

Hirschman and Rosenbluth dominance terms normally also are small and insignificant.  

Metalworking machinery and rubber and plastics plants in 2002 are significantly 

impacted by the change in the five-firm concentration ratio over the prior 20 years; the 

change in the Herfindahl-Hirschman and Rosenbluth indices is correspondingly 

influential.  One exception is the 1997 metalworking machinery sample, in which the 
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negative but negligible influence of an historical increase in dominance on current 

productivity is amplified when the concentration ratio measure is replaced with the other 

absolute indicators of dominance.  The Gini measure again displays distinctive behavior.  

For both rubber and plastics and metalworking machinery establishments, declines in 

regional industrial inequality over the past two decades (or historically high levels of 

inequality) are significantly associated with expanded productivity.
99

  The same 

relationship holds in the measuring and controlling devices industry, though it reaches the 

90 percent significance level only in 1992.  The relative stability of the Gini coefficient 

over time suggests an explanation:  absent fluctuations in the dominance measure arising 

from changes in the size of the local industry, adjustments in the Gini coefficient are less 

frequent, smaller, and may more commonly reflect substantive alterations in the structure 

of the regional industry than do shifts in the other three dominance measures.  Finally, as 

with the concentration ratio measure of dominance, omission of the historic dominance 

variable does not alter the current dominance estimates to any great degree using the 

alternative indicators of dominance.  The current effects of regional industrial dominance 

are not reliant on prior dominance levels. 

 So far, this section has examined regional industrial dominance only at the sample 

means of the other variables.  Although it introduces additional complexity to the 

analysis, it is worth considering briefly how the estimated effects of the alternative 

dominance variables change with the volume of standard inputs and potential 

agglomeration economies.  With respect to input quantities, the alternative dominance 

variables tend to behave in much the same way as the concentration ratio.  The 

predominant pattern is that the marginal effects of dominance are more negative for 
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 The 2002 metalworking machinery sample is an exception. 
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smaller plants, those purchasing smaller quantities of capital, labor, energy, and 

materials.
100

  The 1992 rubber and plastics model industry displayed in Figure 7.4 is 

representative.  (Because there are so many permutations, the full set of graphs equivalent 

to Figures 7.2 and 7.3 for the other dominance measures is placed in Appendix 8.).  The 

relationship also holds for the Gini dominance measure:  the estimated marginal effects 

of dominance on productivity rise with increases in the volume of inputs.  In the case of 

the Gini coefficient, since the marginal effects at the sample means are positive, the 

interpretation is that larger establishments obtain greater productivity enhancements with 

regional industrial inequality than the average plant, and smaller plants experience either 

a lesser increase or a decrease in production.  The result confirms that the Gini coefficient 

does not indicate an entirely different phenomenon from the three absolute dominance 

variables, but rather a facet of regional industrial dominance measured on a different 

scale.  The average plant’s productivity is affected negatively by regional industrial 

dominance as measured by the concentration ratio, Herfindahl-Hirschman index, and 

Rosenbluth index, and positively as measured by the Gini coefficient.  Yet for each 

indicator, the smaller the plant, the greater the negative outcome of dominance on 

productivity. 

The alternative dominance measures also exhibit behavior similar to the 

concentration ratio with varying levels of agglomeration economies.  For the most part, 

the estimated marginal impacts of the alternative dominance measures do not change very 

much with modifications in the levels of agglomeration economies, especially at the 

points nearest the mean that possess the greatest statistical validity and reliability.   

                                                 
100

 There are a few exceptions:  rubber and plastics in 1997 and measuring and controlling devices in 1997 

and 2002 for the Herfindahl-Hirschman index, and measuring and controlling devices in 2002 for the 

Rosenbluth index. 
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Figure 7.4.  Marginal Impacts of Alternative Regional Industrial Dominance Indicators 

Across Levels of Inputs and Agglomeration Economies for Rubber and Plastics (SIC 30), 

1992. 
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The 1992 rubber and plastics model in Figure 7.4 typifies the prevailing pattern.  

There are more exceptions than with changes in input quantities, but the magnitude and 

direction of the shifts in the impacts of dominance that accompany variations in 

agglomeration economies are not consistent across industries, sample years, or 

dominance measures.  The 2002 measuring and controlling devices and rubber and 

plastics samples are the only ones to evidence a dependable and substantive relationship, 

with absolute dominance of all three types (and Gini dominance as well for measuring 

and controlling devices) yielding negative productivity effects in regions with relatively 

large levels of available agglomeration economies.  Nevertheless, the answer to the 

second research question remains the same for most of the industry-year pairs examined, 

that plants located in regionally dominated industries do not have reduced capacity to 

take advantage of local agglomeration economies. 

 

7.5.  Regional Dominance versus Industry Scale 

 As discussed in section 6.4, the five-firm concentration ratio measure of 

dominance is strongly negatively correlated with local industry scale as indicated by the 

count of firms.  The estimated dominance coefficients by themselves are insufficient to 

ascertain empirically whether regional industrial dominance affects establishment-level 

productivity independently of local industry size.
101

  There is, however, supplemental 

evidence useful in that assessment. 

First, if the observed productivity effect of the concentration ratio measure of 

regional industrial dominance is an artifact of the negative correlation of dominance with 
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 As mentioned in Chapter Six, the theory presented earlier in the dissertation supports the dominance-

based interpretation by suggesting direct causal links between dominance and firm performance. 
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local industry scale, then industry scale must act as a positive influence on production at 

individual plants.  The most likely explanation for such a phenomenon is localization 

economies, or perhaps more general benefits of urbanization.  But there are five variables 

in the models that measure agglomeration economies from localization, four of them also 

indirectly (via industry size) corresponding to urbanization.  The population density 

control variable proxies urbanization levels directly.  Therefore, the models already 

account for the effects of industry scale on establishment productivity through these 

independent variables. 

 Second, the alternative dominance indices provide additional indicators of the 

possible relationship between dominance and productivity.  Although the Rosenbluth 

index is negatively correlated with industry size, the Herfindahl-Hirschman index is 

substantially less so.  Yet the conclusion reached in the previous section is the same for 

all three absolute measures of regional industrial dominance:  at the sample means, 

dominance yields strong negative effects on plant-level production.  Neither the 

concentration ratio nor the Herfindahl-Hirschman index measure of dominance 

consistently exhibits a greater magnitude of estimated impacts than the other.  Since it is 

a relative measure, the Gini coefficient does not exhibit a close association with regional 

industry scale (see Table 6.6), but it does display strong impacts on establishment 

productivity, in the positive direction at the sample means.  If the regression relationship 

between dominance and output were due to the association of dominance with industry 

scale, then the Herfindahl-Hirschman index should result in smaller estimated marginal 

effects than the concentration ratio, and the Gini coefficient should be insignificant. 
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 Additional tests corroborate the conclusion that regional industrial dominance 

rather than local industry size is responsible for the observed effects on plant production.  

Regressions conducted on samples created by increasing the minimum threshold number 

of firms in each regional industry reveal that the effects of dominance remain substantial 

and usually significant as well, implying that the effects regional industrial dominance 

are not due to an issue of minimum industry size.  Substituting regional industrial 

employment for dominance in the model yields very different results for the variable 

directly and for the interaction terms with the standard inputs and agglomeration 

economies, suggesting that the association between dominance and industry scale does 

not direct the model outcomes.  There is substantial multicolinearity introduced into the 

model if a direct measure of industry size (either regional industry employment or the 

number of firms) is added to the model as a control while the concentration ratio measure 

of dominance is retained.  Yet the agglomeration economy variables that are significant 

without the industry size control decrease considerably in significance, and do not regain 

their significance if the variables involving dominance are omitted while the industry size 

measure is retained.  This outcome indicates that the agglomeration variables successfully 

control for industrial size and localization economies in the preferred models.  All of 

these experiments are indirect but further substantiate the claim that regional industrial 

dominance importantly influences establishment productivity independently of regional 

industry scale. 
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7.6.  Summary 

 This chapter presented the results of the primary productivity model estimations.  

The approach extends previous production function research by examining the direct 

effects of regional industrial dominance on productivity and the indirect influence of 

dominance via imposing constraints on the capacity to benefit from localized 

agglomeration economies.  Model tests justify the adoption of the relatively complex 

translog framework, decisively rejecting simpler functional forms as well as Hicks-

neutral dominance and agglomeration economies throughout the nine industry-year 

samples. 

In estimating models for three contrasting manufacturing industries, the analysis 

confirms that the industries exhibit distinct productivity patterns, particularly with regard 

to variables that control for local economic conditions such as unemployment, household 

income, and industrial diversity.  The study industries are concentrated in different 

Census Regions, and the way in which productivity varies across the nation is specific to 

the particular industry.  Urbanization, on the other hand, demonstrates a consistently 

positive though relatively small influence on production across all three industries.  The 

measures of potential labor and supply pooling agglomeration economies display only 

weak and inconsistent effects on output.  Either these measures fail to capture the 

agglomeration possibilities relative to the three study industries or the potential for local 

labor and supply pools does little to enhance production at the establishment level.  In 

addition, it may be the case that the model estimates pertaining to the agglomeration 

variables are affected by the exclusion of plants located in regional industries with few 

firm members.  The two knowledge spillover variables, patenting and academic research, 
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do show beneficial effects on productivity.  The influence of knowledge spillovers is 

strongest in the technology-intensive measuring and controlling device industry. 

The most central and important results span the three study industries and the 

three sample years.  The evidence decisively fails to reject the first research hypothesis:  

regional industrial dominance does reduce manufacturing productivity.  Higher levels of 

absolute regional industrial dominance as indicated by the concentration ratio, 

Herfindahl-Hirschman index, or Rosenbluth index are associated with substantially lower 

levels of production calculated at the sample means for the plant and regional 

characteristics.  The extent to which regional industrial dominance hampers production is 

greatest in the measuring and controlling industry and smallest for rubber and plastics 

establishments, suggesting that dominance may retard the production of more 

technology-intensive sectors to a greater degree.  Small plants are more vulnerable than 

larger plants in each of the three study industries.  When indicated with the Gini 

coefficient, a relative measure, regional industrial dominance has a positive effect on 

productivity at the sample means, but retains the pattern of having a more negative effect 

on smaller plants.  Historic dominance conditions have only minimal impacts on 

production, and do not drive the contemporary effects of regional industrial dominance. 

The estimation results do reject the second research hypothesis.  Only in two of 

the nine samples do the interactions between dominance and agglomeration show the 

anticipated relationship of greater regional industrial dominance lowering productivity in 

regions with greater potential agglomeration economies.  Establishments manufacturing 

rubber and plastics or measuring and controlling devices exhibit lower productivity than 

expected in regions with both substantial agglomeration potential and relatively high 
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regional industrial dominance in the most recent sample year, but for the majority of the 

industry-year pairs there is little measured interaction between dominance and 

agglomeration.  The alternative explanation that the data or the methodology are 

inadequate for detecting the connection between dominance and agglomeration cannot be 

ruled out as a possibility, particularly since three of the five agglomeration economy 

measures demonstrate little or no direct influence on establishment-level productivity, but 

the proposition that the second research hypothesis is incorrect is both substantive and 

consistent with the other results obtained throughout the analysis. 

This study demonstrates the importance of regional industrial dominance in 

restraining the productivity of manufacturing plants, particularly those small enough to be 

dominated within their regional industry.  Although most of the potential agglomeration 

economies exhibit little positive effect on establishment output, private sector knowledge 

spillovers do exert a large influence on production in metalworking machinery and 

measuring and controlling devices plants.  Programs that encourage private research and 

support networks among regional knowledge producers and private sector consumers 

may provide a payback in terms of regional productivity.  The conclusion regarding the 

second research question is unfortunate from the viewpoint of devising economic 

development policy.  This analysis does not isolate the mechanism or set of mechanisms 

by which dominance generally influences productivity.  Efforts to aid small firms in 

accessing regional agglomeration benefits or to substitute alternative methods of support 

may succeed in promoting production in particular industries and in certain economic 

circumstances, but may be ineffective in other settings.  Additional research is required to 
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determine the best and most widely applicable policy approaches for boosting plant 

productivity in dominated regional industries.



CHAPTER EIGHT:  EXTENSIONS: 

DISTANCE DECAY, REGION-WIDE DOMINANCE, AND PLANT SIZE 

 

8.1.  Introduction 

This chapter extends the main analyses presented in Chapter Seven in three 

directions.  The first examines the implications of varying the spatial decay and distance 

cutoff parameters for four of the agglomeration economy variables.  The default decay 

specifications for the labor and supply pooling and academic research variables were 

chosen based on preliminary empirical testing of the nine industry-year samples, yet the 

estimated effects of potential agglomeration economies may vary with the spatial scale.  

The analysis reveals evidence that the labor pooling and academic research knowledge 

spillover agglomeration economies exist at broad spatial scales, but the results reported in 

the previous chapter hold, at least in qualitative terms, with regard to agglomeration 

economy variables defined using alternative spatial decay profiles. 

The second extension considers the impacts of overall regional economic 

dominance, wherein a small group of firms dominates an entire regional economy.  It is 

beyond the scope of this dissertation to analyze overall regional economic dominance 

separately from regional industrial dominance, as that task would merit a completely new 

modeling framework.  The section focuses more narrowly on how overall economic 

dominance may condition the relationship between regional industry-specific dominance 

and productivity.  The primary finding is that regional industrial and economy-wide



 

 224 

dominance impact plant productivity separately from each other, such that the estimated 

effects of regional industrial dominance are not diminished by the inclusion of economy-

wide dominance measures. 

The final segment of the chapter investigates how the influences of regional 

industrial dominance and potential agglomeration economies on production vary with 

establishment size, with size measured either in absolute terms or relative to other 

regional plants.  The empirical distributions of absolute versus relative establishment size 

are compared across the industry samples.  Then the production function is modified to 

incorporate interaction terms between the dominance and agglomeration economy 

measures and dummy variables representing plant size categories and the models are re-

estimated.  The section demonstrates that relative size is beneficial for plant production, 

and that both large and very small establishments measured on an absolute size basis are 

more productive than industry averages.  Yet it seems that these disparities are an 

intrinsic outcome of size, perhaps due to discrepancies in production technology, rather 

than the result of differential influences of external factors. 

 

8.2.  Extension One:  Alternative Distance Decay Specifications 

 In the models described in the previous chapter, the same decay factor α  was 

applied across agglomeration variables, and the maximum distance cutoff for each 

variable was set identically for each of the three study industries, in order to facilitate 

comparisons.  It is possible, however, that agglomeration economy measures calculated 

under alternative decay profiles perform differently.  In fact, as noted in section 7.3.5, the 

estimated effects of potential agglomeration economies are likely to vary with the spatial 
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scale, as contrasting degrees of proximity reveal differences in the pattern of interfirm 

interactions.  The extent of this variation also serves to indicate the robustness of the 

results detailed in Chapter Seven with regard to the spatial definition of the 

agglomeration variables. 

The formulae for the labor pooling, manufactured input supplies, producer 

services, and academic research agglomeration variables each contain the distance decay 

factor 
α−

ckd , in which dck is the great circle distance (measured in miles) between the 

centroids of county c and the county k containing the target establishment, and α is the 

decay parameter that controls the rate at which the agglomeration influence is modeled as 

declining with distance (see section 5.7).  The smaller the parameter α, the more gradual 

the decay.  For the rubber and plastics and metalworking machinery industries, the 

default is α = 0.1; the default decay of α = 1.0 is much steeper for the measuring and 

controlling devices industry.  For all three study industries, the default distance cutoff is 

75 miles for the labor and supply pooling variables and 200 miles for academic research.  

Beyond this distance, the agglomeration influence on productivity is assumed to be zero.  

(The fifth agglomeration variable, based on patent data, is constructed at the regional 

level with no spatial decay.) 

 The models for each of the nine industry-year samples are re-estimated using 

agglomeration variables calculated under six spatial decay profiles.
102

  Dominance is 

measured using the five-firm concentration ratio.
103

  Three decay factors of 0.1, 0.5, and 

                                                 
102

 A large number of decay and distance cutoff parameters were tested that together span the spectrum 

from very narrow to broad patterns of spatial decay.  These six profiles serve to illustrate the trends 

observed. 
103

 The patterns depicted in this section are generally accurate in describing the models estimated with the 

alternative dominance measures as well.  Those results are available from the author. 
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1.0 are imposed.  Three different distance cutoffs are applied to the broadest decay factor 

(α = 0.1):  50, 75, and 100 miles for the three labor and supply pooling variables, and 50, 

200, and 300 miles for academic research.  The maximum distance cutoff is unimportant 

with the steeper decays because the decay factor discounts the influence of agglomeration 

economies severely at intermediate to large distances.  The sixth profile keeps the default 

distances of 75 miles for the labor and supply pooling measures and 200 miles for 

research, and combines the gradual decay factor of 0.1 for producer services with the 

strong decay factor of 1.0 for the remaining three spatially attenuating agglomeration 

variables.  This final profile is the only one presented that incorporates dissimilar decay 

factors across agglomeration variables.  It is included to test the observation made by 

Feser (2002) that proximity to producer services is important at a regional scale whereas 

proximity to manufactured inputs is not. 

Tables 8.1 through 8.3 report the estimated coefficients for the four spatially 

attenuating agglomeration variables as the model is reevaluated under the six alternative 

spatial decay profiles, and Appendix 9 contains the descriptive statistics for the relevant 

permutations of the four agglomeration measures.
104

  The manufactured inputs, producer 

services, and academic research (knowledge spillover) variables enter the model in 

logarithmic form, so the estimated coefficients are interpreted directly as elasticities at 

the sample means.  Labor pooling is included in the production function directly because 

it is already in ratio form, so the estimated coefficients represent the percent change in 

output associated with a doubling of the labor pooling measure from the sample mean 

(see footnote 93 in Chapter Seven).  Since the labor pooling measure is a ratio, the mean 

                                                 
104

 The other parameter coefficients are for the most part only slightly altered from the figures reported in 

Chapter Seven. 
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and standard deviation are not affected much by the spatial decay specification, and the 

coefficients may be compared usefully across the different decays. 

 As discussed in section 7.3.5, labor pooling is rarely significant under the default 

spatial decay profiles for the nine industry-year models.  Altering the spatial decay or 

cutoff parameters typically does not increase the significance of the labor pooling 

variable.  The explanation for the two counterexamples contained in Tables 8.1 through 

8.3 is uncertain, though, since the estimated effects switch signs to become negative, 

perhaps spatially constrained concentrations of suitable labor (situated alongside 

employment opportunities) exert upward pressure on wages.
105

  For those industry-year 

pairs in which the default labor pooling variable is significant and indicates a substantial 

impact on productivity, the alternative spatial decay profiles do not improve upon the 

strength of the coefficients or the magnitude of the effects.  Within the measuring and 

controlling devices samples, there does seem to be a greater tendency for the estimated 

labor pooling coefficient to be negative with the tight decay factor of α = 1.0 or a 

maximum distance restricted to 50 miles than when a broader gradient and larger cutoff 

distance are applied.  This finding suggests that when they are large enough to be 

important, labor pooling advantages occur at the regional scale, contradicting earlier 

indications that labor pooling effects in this industry are relatively narrow in spatial 

extent (Feser 2002), or else labor pooling generally yields diseconomies rather than 

benefits.  In light of additional research reporting labor pooling to be equally important 

(or equally insignificant) at both small and large spatial scales, albeit across a range of 

manufacturing industries and with different outcome measures and modeling techniques 

                                                 
105

 The two exceptions are with the maximum cutoff distance reduced to 50 miles for the 1997 measuring 

and controlling devices model, and with the combined decay factors (the sixth decay profile) for 

metalworking machinery establishments in 2002. 
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Table 8.1.  Alternative Agglomeration Economy Spatial Decay Profiles for Rubber and Plastics (SIC 30). 

Year:  1992

α  = 0.1,  distance = 50, 50 0.518 (0.297) 0.011 (0.278) 0.005 (0.654) 0.000 (0.795)

α  = 0.1,  distance = 75, 200 (default) 0.900 (0.129) 0.005 (0.670) -0.005 (0.657) 0.002 (0.862)

α  = 0.1,  distance = 100, 300 0.596 (0.345) -0.007 (0.585) -0.011 (0.356) 0.021 (0.045)

α  = 0.5,  distance = 75, 200 -1.440 (0.463) 0.238 (0.000) -0.192 (0.000) 0.041 (0.138)

α  = 1.0,  distance = 75, 200 0.540 (0.180) 0.008 (0.362) 0.006 (0.401) 0.004 (0.334)

α  = 1.0 except 0.1 for γ sd , distance = 75, 200 0.289 (0.301) 0.014 (0.016) -0.012 (0.121) 0.005 (0.227)

Year:  1997

α  = 0.1,  distance = 50, 50 0.150 (0.587) 0.000 (0.971) 0.001 (0.936) 0.001 (0.467)

α  = 0.1,  distance = 75, 200 (default) 0.040 (0.902) 0.000 (0.976) 0.000 (0.967) 0.007 (0.315)

α  = 0.1,  distance = 100, 300 0.050 (0.889) -0.003 (0.804) -0.004 (0.743) 0.011 (0.214)

α  = 0.5,  distance = 75, 200 0.048 (0.870) -0.006 (0.527) 0.009 (0.377) 0.012 (0.049)

α  = 1.0,  distance = 75, 200 -0.035 (0.869) 0.001 (0.869) 0.005 (0.435) 0.005 (0.179)

α  = 1.0 except 0.1 for γ sd , distance = 75, 200 -0.163 (0.295) 0.007 (0.173) -0.008 (0.281) 0.004 (0.218)

Year:  2002

α  = 0.1,  distance = 50, 50 0.681 (0.017) -0.007 (0.524) 0.029 (0.009) -0.002 (0.383)

α  = 0.1,  distance = 75, 200 (default) 0.686 (0.046) -0.011 (0.410) 0.016 (0.222) 0.005 (0.502)

α  = 0.1,  distance = 100, 300 0.696 (0.067) -0.010 (0.486) 0.014 (0.337) 0.015 (0.163)

α  = 0.5,  distance = 75, 200 0.772 (0.014) -0.016 (0.201) 0.030 (0.012) 0.010 (0.180)

α  = 1.0,  distance = 75, 200 0.479 (0.037) -0.011 (0.246) 0.022 (0.009) 0.007 (0.109)

α  = 1.0 except 0.1 for γ sd , distance = 75, 200 0.064 (0.700) 0.010 (0.075) -0.008 (0.284) 0.009 (0.041)

Note:  the first distance is the cutoff for labor pooling, manufactured inputs, and producer services; the second is for research.

Labor Pooling 

(γ lp )

Manufactured 

Inputs (γ sp )

Producer Services 

(γ sd )

Research 

(γ rs )
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Table 8.2.  Alternative Agglomeration Economy Spatial Decay Profiles for Metalworking Machinery (SIC 354). 

Year:  1992

α  = 0.1,  distance = 50, 50 0.738 (0.355) 0.002 (0.896) 0.003 (0.837) 0.002 (0.232)

α  = 0.1,  distance = 75, 200 (default) -0.512 (0.599) 0.024 (0.152) -0.012 (0.364) -0.029 (0.003)

α  = 0.1,  distance = 100, 300 -0.781 (0.480) 0.019 (0.318) -0.009 (0.523) -0.026 (0.046)

α  = 0.5,  distance = 75, 200 -0.224 (0.756) 0.014 (0.342) 0.001 (0.930) -0.016 (0.084)

α  = 1.0,  distance = 75, 200 -0.199 (0.680) 0.010 (0.304) 0.000 (0.995) -0.001 (0.911)

α  = 1.0 except 0.1 for γ sd , distance = 75, 200 -0.188 (0.667) 0.010 (0.142) -0.011 (0.232) 0.002 (0.767)

Year:  1997

α  = 0.1,  distance = 50, 50 -1.602 (0.029) 0.013 (0.365) -0.020 (0.145) 0.000 (0.987)

α  = 0.1,  distance = 75, 200 (default) -2.826 (0.003) 0.030 (0.086) -0.046 (0.004) 0.005 (0.646)

α  = 0.1,  distance = 100, 300 -2.098 (0.057) 0.020 (0.356) -0.033 (0.091) 0.003 (0.811)

α  = 0.5,  distance = 75, 200 -2.338 (0.003) 0.011 (0.490) -0.026 (0.059) 0.013 (0.184)

α  = 1.0,  distance = 75, 200 -0.804 (0.132) -0.001 (0.943) -0.005 (0.622) 0.007 (0.184)

α  = 1.0 except 0.1 for γ sd , distance = 75, 200 -0.762 (0.030) -0.002 (0.733) -0.020 (0.016) 0.008 (0.167)

Year:  2002

α  = 0.1,  distance = 50, 50 -0.196 (0.718) -0.034 (0.030) 0.034 (0.032) -0.005 (0.012)

α  = 0.1,  distance = 75, 200 (default) 0.060 (0.925) -0.040 (0.026) 0.025 (0.138) -0.019 (0.079)

α  = 0.1,  distance = 100, 300 -0.227 (0.754) -0.063 (0.003) 0.021 (0.255) 0.017 (0.244)

α  = 0.5,  distance = 75, 200 0.231 (0.686) -0.034 (0.046) 0.030 (0.049) -0.024 (0.026)

α  = 1.0,  distance = 75, 200 -0.165 (0.707) -0.016 (0.194) 0.018 (0.116) -0.014 (0.037)

α  = 1.0 except 0.1 for γ sd , distance = 75, 200 -0.778 (0.019) -0.003 (0.679) 0.003 (0.736) -0.013 (0.043)

Note:  the first distance is the cutoff for labor pooling, manufactured inputs, and producer services; the second is for research.

Labor Pooling 

(γ lp )

Manufactured 

Inputs (γ sp )

Producer Services 

(γ sd )

Research 

(γ rs )
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Table 8.3.  Alternative Agglomeration Economy Spatial Decay Profiles for Measuring and Controlling Devices (SIC 382). 

Year:  1992

α  = 0.1,  distance = 50, 50 -0.311 (0.864) 0.008 (0.037) -0.045 (0.139) 0.046 (0.003)

α  = 0.1,  distance = 75, 200 -0.934 (0.777) -0.013 (0.057) -0.060 (0.265) 0.040 (0.286)

α  = 0.1,  distance = 100, 300 1.032 (0.843) -0.029 (0.081) -0.066 (0.307) 0.061 (0.132)

α  = 0.5,  distance = 75, 200 1.398 (0.344) -0.015 (0.036) -0.033 (0.292) 0.050 (0.032)

α  = 1.0,  distance = 75, 200 (default) 1.326 (0.116) -0.022 (0.026) 0.003 (0.896) 0.024 (0.044)

α  = 1.0 except 0.1 for γ sd , distance = 75, 200 1.293 (0.107) -0.023 (0.020) -0.026 (0.435) 0.023 (0.052)

Year:  1997

α  = 0.1,  distance = 50, 50 -2.186 (0.065) 0.053 (0.027) -0.035 (0.179) 0.028 (0.040)

α  = 0.1,  distance = 75, 200 -1.648 (0.414) 0.069 (0.043) -0.047 (0.198) 0.005 (0.840)

α  = 0.1,  distance = 100, 300 0.571 (0.813) 0.058 (0.132) -0.055 (0.136) 0.015 (0.549)

α  = 0.5,  distance = 75, 200 0.226 (0.821) 0.044 (0.076) -0.023 (0.346) 0.029 (0.130)

α  = 1.0,  distance = 75, 200 (default) 0.365 (0.553) 0.028 (0.131) -0.017 (0.345) 0.017 (0.092)

α  = 1.0 except 0.1 for γ sd , distance = 75, 200 0.571 (0.337) 0.021 (0.199) -0.032 (0.308) 0.015 (0.158)

Year:  2002

α  = 0.1,  distance = 50, 50 -1.344 (0.348) -0.010 (0.746) -0.026 (0.517) 0.017 (0.363)

α  = 0.1,  distance = 75, 200 -0.462 (0.842) -0.009 (0.809) -0.024 (0.655) 0.030 (0.228)

α  = 0.1,  distance = 100, 300 0.567 (0.859) -0.003 (0.944) 0.034 (0.629) 0.001 (0.976)

α  = 0.5,  distance = 75, 200 -0.166 (0.904) -0.007 (0.815) -0.026 (0.450) 0.030 (0.243)

α  = 1.0,  distance = 75, 200 (default) -0.268 (0.763) -0.004 (0.872) -0.017 (0.484) 0.011 (0.398)

α  = 1.0 except 0.1 for γ sd , distance = 75, 200 0.209 (0.801) -0.011 (0.515) -0.014 (0.673) 0.005 (0.684)

Note:  the first distance is the cutoff for labor pooling, manufactured inputs, and producer services; the second is for research.

Labor Pooling 

(γ lp )

Manufactured 

Inputs (γ sp )

Producer Services 

(γ sd )

Research 

(γ rs )
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than this study (Rosenthal and Strange 2001; Renski 2006), there is as yet no general 

conclusion that can be stated with any degree of confidence. 

 The analysis of the two supply pooling measures across the differing spatial decay 

profiles continues to be disrupted by substantial colinearity.  The additional spatial 

permutations add little to the results obtained under the default profiles.  In most cases, 

the coefficients imply negligibly small impacts on production.  In the few instances in 

which the manufactured input or producer services variable has a substantial influence, 

the estimated coefficients of the two supply pooling variables carry opposite signs. 

The sixth spatial decay profile combines gradual decay in producer services with 

much sharper decay of the other three spatial agglomeration variables.  The intention is to 

test Feser’s (2002) finding that pools of producer services significantly aid productivity 

only with a relatively broad spatial decay, suggesting importance at a regional scale, 

whereas proximity to input suppliers is more important when highly localized.  

Unfortunately, the results obtained are inadequate to either support or deny the earlier 

discovery.  The estimated coefficients with the combined spatial decay profile are similar 

to the others reported in Tables 8.1 through 8.3 in that they indicate minor impacts of 

opposing sign for the two supply pooling variables.  The producer services coefficient is 

negative for all but one of the nine models.  Whatever substantive effects may exist with 

regard to these two agglomeration economies are obscured by the colinearity between the 

measures.  Nor does the combined decay profile yield superior results (in the sense of 

larger magnitudes or consistently positive signs) for the estimated coefficients of the 

other two agglomeration economies, labor pooling and research, in comparison to the 

default distance cutoffs and decay factors. 
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Proximity to academic research expenditures does not yield productivity benefits 

to the two traditional manufacturing industries studied in this analysis (see section 7.3.5).  

Measuring and controlling devices is the only one of the three industries to realize 

nontrivial benefits from nearby academic research calculated under the default spatial 

profiles, with a one or two percent gain associated with doubling the research measure 

from the sample mean.
106

  The effect increases in importance with a less precipitous (i.e., 

a moderate rather than steep) distance decay.  When the decay parameter α is reduced 

from 1.0 to 0.5, the magnitude of the impact approximately doubles.  Further reduction to 

a decay factor of 0.1, however, diminishes the effect.  In the rubber and plastics industry, 

though the default coefficients are quite small and may be complicated by correlation 

between the academic research and manufactured input supply measures, moderate 

spatial decay also maximizes the estimated benefits from research proximity.  The 

different distance cutoffs do not form a completely consistent pattern across the nine 

industry-year samples, but larger spatial ranges are associated with greater elasticities 

more often than not.  These findings are at odds with the result reported by Feser (2002) 

that changing the rate of distance decay affects the productivity influence of research 

very little.  This research implies that proximity to academic research expenditures in 

fields related to the manufacturing industry in question is important, but benefits in 

productivity are produced over quite sizeable distances. 

Although the estimated coefficients of the interaction terms between regional 

industrial dominance and agglomeration do change with the alternative decays and cutoff 

parameters used to construct the agglomeration measures, they vary within a very 
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 The productivity advantages gained in the other two industries from a doubling of the index of academic 

research are smaller than one percent or are negative. 
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restricted range, remaining small and mostly insignificant, and no particular patterns are 

discernible across the agglomeration decay profiles.  There also is little change in the 

estimated marginal impact of other variables, such as regional industrial dominance or 

private sector knowledge spillovers (patenting).
107

 

 This extension demonstrates that the influence of potential agglomeration 

economies on production does not vary greatly according to the particular spatial decay 

contour imposed.  Although not decisive, the empirical evidence suggests that the 

advantages from labor pooling and knowledge spillovers from academic research operate 

at relatively broad regional scales.  The results obtained under the default specifications 

and reported in Chapter Seven are robust to the imposition of alternative spatial decay 

profiles.  The qualitative interpretations of the model variables and interactions, and 

certainly the inferences regarding the main research hypotheses, do not change with 

alterations of the decay and distance cutoff parameters used to construct the four spatially 

attenuating agglomeration economy measures.  This may be due in part to the lack of 

significance of many of the agglomeration economy measures. 

 

8.3.  Extension Two:  Economy-Wide Dominance Controls 

Regional economy-wide dominance may substantially impact the economic 

performance of individual establishments throughout the region.  Indeed, the case Chinitz 

highlights in his original article concerns the domination of the Pittsburgh economy by 

large steel firms and the effects on firms in other industries located in the region.  Like 

regional industrial dominance, the phenomenon of regional economy-wide dominance, 

                                                 
107

 Since these estimates are not central to the focus of this extension, they are not presented here, but they 

are available from the author. 
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with a single or small number of firms dominating an entire regional economy, has not 

been widely investigated in quantitative fashion.  As described in section 2.2, previous 

quantitative empirical studies concerning concentration at the regional level primarily 

focus on average establishment size and regional industrial diversity.  One exception, 

Renski (2006), finds that regional economy-wide dominance decreases the survival 

chances of new firms in several manufacturing industries, but increases survival rates 

slightly for professional services and data processing firms.  This section operationalizes 

the notion of regional economy-wide dominance in a manner similar to industry-specific 

regional dominance and investigates how including regional economy-wide dominance 

as a control variable affects the modeling results presented in Chapter Seven. 

 Eight indicators of regional economy-wide dominance (DMr, where r indexes the 

region) are calculated using the methods detailed in section 5.6 for regional industrial 

dominance.  First, all the establishments within the Longitudinal Research Database that 

are part of the same multi-unit firm in a region (LMA) are aggregated, regardless of their 

industrial classification, in effect treating all regional manufacturing plants that are part 

of the same company as a single firm.  Concentration ratio (DMCr), Herfindahl-

Hirschman index (DMHr), Rosenbluth index (DMRr), and Gini coefficient (DMGr) 

measures of regional manufacturing dominance are then calculated using this population 

of regional firms, according to equations 5.10 through 5.13.  Because there are many 

more firms in the manufacturing sector than in a single industry, the concentration ratio 

measure is calculated considering the 15 largest firms to be dominators.
108

  Second, the 

                                                 
108

 As with the indicator for regional industrial dominance, the robustness of the concentration ratio 

measure of regional manufacturing dominance was tested by varying the number of top firms considered 

dominators.  The results differed somewhat but not enough to alter the substance of the findings presented 

in this section (see also footnote 61 in Chapter Five).  Alternative results are available from the author. 
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Longitudinal Business Database is used in precisely the same manner to create four 

additional measures of overall regional dominance (DOCr, DOHr, DORr, and DOGr) that 

are also analogous to the regional industrial dominance indicators but incorporate both 

the manufacturing and non-manufacturing components of multi-plant firms within each 

region.
109,110

  For these overall regional dominance measures, establishment employment 

is used to indicate firm size since the LBD does not contain the value of shipments.  

Appendix 10 provides descriptive information corresponding to the eight regional 

economy-wide dominance measures for each industry-year sample.
111

 

As a preliminary step, Table 8.4 displays the Pearson correlation coefficients 

between the regional industry-specific and economy-wide dominance variables included 

in each model.  The associations are chiefly positive, as would be expected for any 

regional industry that comprises a substantial portion of the manufacturing sector or the 

entire regional economy.  In this study, such is normally (but not always) the case, due to 

the requirement that there be a minimum number of firms in the regional industry.  The 

concentration ratio and Rosenbluth index measures of regional industrial dominance 

exhibit the strongest associations with the economy-wide dominance variables.  For the 

most part, the correlations are not large enough to be troublesome for estimating and 

interpreting the regression system.  The only coefficients exceeding 0.7 are for the 

                                                 
109

 The 2001 LBD is the latest version available at the time of analysis. 

 
110

 The concentration ratio measure of overall regional dominance also considers the top 15 firms as 

dominators.  Different numbers of top firms classified as dominators were also tried for the LBD-based 

concentration ratio, with results available from the author. 

 
111

 These descriptive statistics are not useful for substantive interpretation.  The means do not represent the 

average level of manufacturing dominance or overall dominance across the LMA regions in the study.  The 

sample means are weighted averages of the level of manufacturing or overall dominance in each region, but 

because the units of analysis remain the firms in the study industries, the regions are effectively weighted 

by the number of firms they contain in the particular study industries. 
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Table 8.4.  Pearson Correlation Coefficients Between Regional Industrial and Economy-Wide Dominance Variables. 

Concentratio Ratio DC 0.4617 0.5965 0.5150 0.6537 0.5389 0.6859

Herfindahl-Hirschman DH 0.1175 0.3404 0.1618 0.4690 0.2404 0.4962

Rosenbluth DR 0.7179 0.6483 0.7897 0.6743 0.7503 0.6510

Gini DG 0.1867 0.0525 0.2311 0.1315 0.1708 0.2301

Concentratio Ratio DC -0.0815 -0.0136 -0.1063 0.0900 0.1194 0.3098

Herfindahl-Hirschman DH -0.0408 0.0004 -0.0467 0.1051 0.0333 0.2053

Rosenbluth DR 0.5605 0.5103 0.5039 0.4346 0.4267 0.4194

Gini DG -0.0452 0.2387 -0.0201 0.2238 0.1539 0.3694

Concentratio Ratio DC 0.5150 0.4902 0.4019 0.4715 0.2426 0.4607

Herfindahl-Hirschman DH 0.3070 0.3784 0.4096 0.3678 0.2057 0.4024

Rosenbluth DR 0.4623 0.4823 0.3663 0.5448 0.3233 0.5565

Gini DG 0.1571 -0.0137 0.2078 0.1818 -0.0224 0.0376

SIC 30:  Rubber and Plastics

SIC 382:  Measuring and Controlling Devices

Overall 

Dominance

Overall 

Dominance

Overall 

Dominance

Manufacturing 

Dominance

Manufacturing 

Dominance

Manufacturing 

Dominance

2002

2002

Overall 

Dominance

Overall 

Dominance

Manufacturing 

Dominance

Overall 

Dominance

Overall 

Dominance

Overall 

Dominance

SIC 354:  Metalworking Machinery

1992 1997

Manufacturing 

Dominance

Manufacturing 

Dominance

Manufacturing 

Dominance
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Overall 

Dominance

1992 1997

1992 1997

Manufacturing 

Dominance

Manufacturing 
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Rosenbluth index measures of industrial and manufacturing-sector regional dominance in 

rubber and plastics industry samples. 

Interestingly, the metalworking machinery samples demonstrate much weaker 

associations between industrial and economy-wide dominance than for the other two 

study industries, with many correlations close to zero.  The explanation lies in the 

particular spatial pattern and plant size distribution of the industry.  The spatial dispersion 

of metalworking machinery establishments makes it less likely that the industry’s largest 

firms are located in regions that are home to the largest firms of other industries, 

producing relatively small correlations between the industry-specific and economy-wide 

dominance measures.  In addition, metalworking machinery manufacturing 

establishments tend to be much smaller on average than rubber and plastics or measuring 

and controlling devices plants.  The inequality is exaggerated in the estimation samples 

by the relatively dispersed geographic distribution of plants in the metalworking 

machinery industry:  the elimination of regions with fewer than twelve establishments in 

the industry removes a much smaller percentage of the small plants in the metalworking 

machinery industry than in the other two industries examined in this analysis.  The 

average plant size in the metalworking machinery samples is less than half that of rubber 

and plastics and only a third as large as for measuring and controlling devices (see Table 

6.1).  Firms that may dominate the metalworking machinery manufacturing industry in a 

region are rarely sizeable enough to be dominators with respect to the entire 

manufacturing sector or the regional economy as a whole. 

For each industry-year pair and type of regional industrial dominance measure, 

two variations of the four-equation system combining the translog production function 
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and the three associated cost share equations are estimated.  The first version adds a 

control variable for regional manufacturing dominance to the production function, and 

the second adds overall regional dominance instead.  The economy-wide dominance 

indicators match the type used for regional industrial dominance in each model, in order 

to keep the number of permutations within a reasonable range for analysis.  Table 8.5 

reveals the estimated impact on output of an increase of one standard deviation in each 

dominance measure, with all other variables maintained at the sample means.  The effects 

are compared with those from the base models (repeated from Chapter Seven) that do not 

contain an economy-wide dominance variable.  Only the dominance variable coefficients 

are displayed.  The inclusion of an economy-wide dominance variable does not 

substantially change the quadratic regional industrial dominance term, or the interactions 

between regional industrial dominance and the agglomeration economies and standard 

production inputs.
112

  The remaining variables are essentially unaffected as well.  The 

coefficient estimates are provided in Appendix 10. 

The first result of interest is that the effects of regional industrial dominance on 

production are fairly robust with respect to the inclusion of economy-wide dominance 

control variables.  Declines in the magnitude of the influence of intra-industry dominance 

on production are relatively small in most of the models and do not drastically affect 

significance levels; in some cases, the industry-specific dominance coefficients even 

increase in absolute value.  The largest reductions occur when the Rosenbluth index is 

used to measure dominance, and these are likely the consequence of colinearity between 

                                                 
112

 In the regression for measuring and controlling devices in 1992 using concentration ratio dominance 

measures, the coefficient of the dominance-squared term does change sign when the overall regional 

dominance control is included, but neither estimated parameter is significant.  These estimates are available 

from the author. 
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Table 8.5.  Marginal Impacts of Regional Industrial and Economy-Wide Dominance. 

SIC 30:  Rubber and Plastics

Year 1992 1997 2002

Economy-Wide Dominance Type

DC industry-specific -0.85 (0.251) -0.69 (0.366) -0.49 (0.547) -0.99 (0.125) -1.20 (0.071) -1.02 (0.141) -1.30 (0.076) -1.41 (0.060) -1.08 (0.153)

economy-wide -0.48 (0.326) -0.74 (0.247) 0.55 (0.174) 0.07 (0.914) 0.31 (0.485) -0.75 (0.275)

DH industry-specific -1.17 (0.149) -1.10 (0.179) -1.13 (0.187) -0.35 (0.593) -0.29 (0.652) -0.28 (0.680) -3.48 (0.000) -3.54 (0.000) -3.25 (0.000)

economy-wide -0.47 (0.200) -0.09 (0.871) -0.28 (0.404) -0.18 (0.731) 0.22 (0.549) -0.72 (0.177)

DR industry-specific -3.87 (0.000) -2.72 (0.025) -2.81 (0.011) -2.60 (0.002) -2.48 (0.006) -1.45 (0.117) -5.72 (0.000) -5.73 (0.000) -5.26 (0.000)

economy-wide -1.06 (0.084) -1.75 (0.018) -0.22 (0.700) -2.00 (0.003) 0.01 (0.987) -0.99 (0.150)

DG industry-specific 1.81 (0.000) 1.81 (0.000) 1.82 (0.000) 1.69 (0.000) 1.61 (0.000) 1.66 (0.000) 1.92 (0.000) 1.85 (0.000) 1.95 (0.000)

economy-wide 0.08 (0.860) 1.90 (0.001) 0.56 (0.121) 1.35 (0.003) 0.45 (0.245) 2.02 (0.001)

SIC 354:  Metalworking Machinery

Year 1992 1997 2002

Economy-Wide Dominance Type

DC industry-specific -1.72 (0.034) -1.82 (0.027) -1.76 (0.030) -4.18 (0.000) -4.28 (0.000) -4.13 (0.000) -3.82 (0.000) -3.59 (0.001) -3.70 (0.000)

economy-wide -0.51 (0.443) -1.09 (0.240) -0.39 (0.532) -2.27 (0.007) 1.42 (0.045) -2.56 (0.026)

DH industry-specific -0.92 (0.288) -0.97 (0.267) -0.97 (0.269) -1.75 (0.022) -1.75 (0.022) -1.62 (0.035) -2.69 (0.009) -2.31 (0.024) -2.65 (0.009)

economy-wide -0.42 (0.461) -0.41 (0.683) -0.02 (0.971) -0.97 (0.219) 2.29 (0.000) -1.21 (0.204)

DR industry-specific -1.23 (0.256) 0.31 (0.787) -0.07 (0.951) -3.73 (0.000) -3.03 (0.003) -3.05 (0.002) -5.14 (0.000) -5.09 (0.000) -4.42 (0.000)

economy-wide -3.94 (0.000) -3.71 (0.000) -2.59 (0.004) -2.68 (0.000) -0.78 (0.460) -4.38 (0.000)

DG industry-specific 2.11 (0.001) 2.11 (0.001) 1.97 (0.003) 1.54 (0.005) 1.36 (0.013) 0.95 (0.091) 2.85 (0.000) 2.57 (0.000) 2.79 (0.000)

economy-wide 0.84 (0.090) 0.78 (0.281) 1.77 (0.001) 3.23 (0.000) 2.39 (0.000) 0.84 (0.369)

SIC 382:  Measuring and Controlling Devices

Year 1992 1997 2002

Economy-Wide Dominance Type

DC industry-specific -6.49 (0.054) -6.97 (0.039) -5.76 (0.088) -3.79 (0.083) -4.89 (0.028) -4.13 (0.061) 1.65 (0.509) 0.53 (0.835) 1.76 (0.484)

economy-wide -3.39 (0.077) -6.85 (0.018) -3.99 (0.016) -2.81 (0.143) -3.27 (0.033) -1.25 (0.574)

DH industry-specific -9.51 (0.020) -10.15 (0.032) -4.28 (0.338) -2.38 (0.358) -2.30 (0.387) -2.32 (0.370) 6.81 (0.041) 6.68 (0.049) 6.98 (0.039)

economy-wide 0.36 (0.794) -6.60 (0.005) -0.15 (0.894) -1.11 (0.473) -0.27 (0.835) -0.50 (0.782)

DR industry-specific -13.74 (0.003) -13.64 (0.003) -13.62 (0.003) -10.70 (0.003) -10.73 (0.003) -9.35 (0.011) 0.37 (0.913) -0.43 (0.902) 0.29 (0.931)

economy-wide -1.30 (0.557) -0.76 (0.694) -1.08 (0.471) -2.93 (0.152) -1.84 (0.241) -1.58 (0.476)

DG industry-specific 2.56 (0.143) 2.84 (0.106) 2.35 (0.219) 6.66 (0.000) 6.66 (0.000) 6.06 (0.000) 3.22 (0.132) 3.19 (0.136) 3.61 (0.101)

economy-wide -2.03 (0.132) 0.51 (0.784) 0.49 (0.691) 1.33 (0.349) -1.89 (0.210) -1.28 (0.459)

Note:  Figures are percent changes in production with one standard deviation increase in dominance measure from the sample mean.  Figures in parentheses are probability values of estimated

coefficients of dominance, from Tables A.10.2, A.10.3, and A.10.4.
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Overall OverallManufacturing None
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the industry-specific and economy-wide dominance variables.
113

  The lack of connection 

between the effects of the two types of dominance is especially evident in the 

metalworking machinery industry, which, because of the low correlations present in the 

estimation samples, yields perhaps the best indication of the interplay between industrial 

and economy-wide dominance.  The introduction of economy-wide dominance measures 

affects the estimated impacts of regional industrial dominance on the production of 

metalworking machinery establishments very little. 

Regional economy-wide dominance is an important influence on establishment 

productivity in its own right in many of the models, though the results vary widely across 

the sample years and industries.  Measured with concentration ratios, regional 

manufacturing dominance negatively impacts production in measuring and controlling 

devices plants.  The magnitude of the effect rivals that of regional industrial dominance 

(and exceeds it for the 2002 sample), with production declines of three to four percent 

associated with a standard deviation increase in regional manufacturing dominance (a rise 

of about 12 percent in the total manufacturing shipment value represented by the top 15 

firms).  The estimated coefficients for the other two industries, however, are much 

smaller, are not significant, and are positive more often than not for the latter two study 

years.  Overall regional dominance demonstrates a more consistently negative connection 

with output across the nine industry-year samples, though the magnitude of the effects is 

still largest in the measuring and controlling devices industry.
114

 

                                                 
113

 The 1992 measuring and controlling devices model using the Herfindahl index may be considered to be 

the exception that proves the rule. 

 
114

 When the number of top firms used to calculate the concentration ratio measures is varied, the prevailing 

pattern is for the estimated coefficient of economy-wide dominance to be greater in magnitude and more 

significant with a greater number of firms considered dominators, but there are exceptions.  The estimations 

demonstrating this relationship are not included in Table 8.5 but may be obtained from the author. 
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The relationships change to some degree when the three alternative dominance 

indicators are considered.  The signs of the estimated coefficients for the three absolute 

dominance measures normally coincide for a particular industry-year pair, but often are 

of disparate magnitudes.  This is especially true for the Rosenbluth index indicator of 

dominance as compared to the concentration ratio and Herfindahl measures.  For 

instance, in the 1992 metalworking machinery model, the impact of a standard deviation 

rise in regional manufacturing dominance as measured by the concentration ratio is a 

decline in output of about one half of one percent; when measured with the Rosenbluth 

index, the drop is nearly four percent.  For measuring and controlling devices plants in 

1992, the estimated influence of overall regional dominance on production is nearly ten 

times as large calculated with the concentration ratio or Herfindahl index than with the 

Rosenbluth measure. 

As is true throughout the analysis, the Gini coefficient displays markedly different 

behavior.  The influence of regional inequality on production at the sample means 

typically is positive.  Although the magnitude of the impact is insignificant within the 

measuring and controlling devices samples, the effects on establishments within the other 

two industries are substantial.  For all three study years, a rise in overall regional 

dominance as measured with the Gini coefficient yields significant production benefits in 

the rubber and plastics industry, and regional manufacturing dominance positively affects 

metalworking machinery output. 

The evidence demonstrates that regional industrial dominance and regional 

economy-wide dominance are distinct phenomena.  Economy-wide dominance influences 

plant-level productivity independently of regional industrial dominance, but the 
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relationship presents considerable complexities.  For example, within the nine industry-

year samples, there is no clear indication as to whether economy-wide dominance across 

the manufacturing sector or across both the manufacturing and non-manufacturing 

portions of the economy is more influential.  It is possible that a portion of the difference 

between the measured influence of regional manufacturing dominance and overall 

regional dominance may be the result of the latter variable being based on employment 

rather than total shipment value data.  Regional economy-wide dominance probably 

deserves to be investigated more thoroughly as the primary variable of interest in a 

separate quantitative study.  Within this dissertation, however, the focus is on regional 

industrial dominance.  In that respect, the qualitative conclusions regarding the 

importance of regional industrial dominance reached in Chapter Seven hold up against 

competition from the concept of economy-wide dominance. 

 

8.4.  Extension Three:  Plant Size Interactions 

 The importance of regional industrial dominance for plant productivity may 

depend on the size of a particular establishment.  For instance, larger plants possess 

greater internal resources and thus may benefit to a lesser degree than smaller 

establishments from localized advantages arising from external agglomerations of 

activity.  Small firms that support less job specialization and offer fewer promotion 

opportunities may be more susceptible to employee poaching by a locally dominant 

company, so that their productivity is hampered by regional industrial dominance more 

than larger neighboring firms (see section 3.3).  It is worth investigating whether plant 
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size helps to determine the influence that regional industrial dominance and potential 

regional agglomeration economies have on production.   

 The production function modeling framework is easily modified to accommodate 

an examination of the possible conditioning relationships that plant size may have with 

regard to regional industrial dominance and agglomeration economies.  Two dummy 

variables signifying dominator and dominated firms (DE and SE) are already included in 

the production function detailed in equation 5.20; equation 8.1 adds multiplicative terms 

that interact the binary indicators with the dominance and agglomeration variables: 

(8.1)
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Once the model is estimated substituting equation 8.1 for equation 5.20 in the four-

equation system (the cost share equations do not change from equation 5.21), the 

marginal effects of regional industrial dominance and agglomeration economies may be 

calculated for each of the three size groups:  establishments within dominator firms, 

establishments within dominated firms, and plants that do not belong to either category.  

The effects of the two dummy variables may also be computed to produce a measure of 

the average cost or benefit to productivity of belonging to each dominance classification. 

 Plant size may be measured either relative to competitor enterprises or in absolute 

terms.  Some studies do adopt relative size measures, such as Feser (2001a), in which size 

categories are defined by sample quartiles (see section 3.3 for additional examples).  

Absolute size classifications are more common in research applications, however, and are 

used nearly exclusively in policy settings, chiefly because measuring relative size 

requires detailed knowledge pertaining to the entire sample or population.  It may be 

reasonable on theoretical grounds to suppose that relative size affects the influence of 

regional industrial dominance on production whereas absolute size is more pertinent to 

the benefits to be gained from localized agglomeration economies, but there is no direct 

empirical evidence available as to whether this conjecture holds in practice. 

The dummy variables DE and SE that classify establishments as part of dominator 

or dominated firms signify relative size within the regional industry.  Equation 8.2 

modifies the production function again, replacing the two binary variables with a single 

dummy indicator (SM) that identifies the small plants in each estimation sample: 
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(8.2)

 

( ) ( )

εκκκ

κκκκ

ρρ

νννν

νννν

λλλλ

λλλλ

λλλλ

λλλλ

λλλλ

λλλλ

δδδ

δδδ

γγγγγγ

βββ

βββ

ββββ

ααααα

+⋅+⋅+⋅+

⋅+⋅+⋅+⋅+

++

++++

++++

++++

++++

++++

++++

++++

++++

+++

+⋅++

++++++

+++

+++

++++

++++=

SMPSSMRSSMSD

SMSPSMLPSMDSMD

DVHDH

DVINCUEPOP

CRCRCRSM

MPSEPSLPSKPS

MRSERSLRSKRS

MSDESDLSDKSD

MSPESPLSPKSP

MLPELPLLPKLP

MDEDLDKD

PSDRSDSDD

SPDLPDD

PSRSSDSPLPD

MEMLEL

MKEKLK

MELK

MELKQ

pssmrssmsdsm

spsmlpsmddsmdsm

dvhdh

dvincuepop

crcrcrsm

psmpsepslpsk

rsmrserslrsk

sdmsdesdlsdk

spmspesplspk

lpmlpelpllpk

dmdedldk

dpsdrsdsd

dspdlpdd

psrssdsplpd

emlmle

kmkekl

mmeellkk

melk

lnlnln

ln

lnln

321

lnlnlnlnlnlnlnln

lnlnlnlnlnlnlnln

lnlnlnlnlnlnlnln

lnlnlnlnlnlnlnln

lnlnlnln

lnlnlnln

lnlnln

ln
2

1

lnlnlnln

lnlnlnlnlnln

lnlnlnlnlnln

)(ln
2

1
)(ln

2

1
)(ln

2

1
)(ln

2

1

lnlnlnlnln

2

321

2

2222

0

.

 

The marginal effects of regional industrial dominance and agglomeration economies may 

be computed separately for small and large (i.e., not small) establishments using equation 

8.2 as the production function. 

There are several reasons to test a range of absolute size criteria for determining 

which establishments are “small”.  There is substantial variety in definitions of small 

businesses across various nations and policies.
115

  The way in which establishment scale 

                                                 
115

 Within the United States, the small business size standards of the Small Business Administration are 

industry-specific, but for most manufacturing industries the criterion is that a small establishment employs 

no more than 500 full-time equivalent workers (United States Small Business Administration 2006).  For 

compliance purposes, the Environmental Protection Agency considers small businesses to be those with a 

maximum of 100 employees (United States Environmental Protection Agency 2000).  The Small Business 

Job Protection Act of 1996 defines small businesses as having 100 or fewer employees for the purpose of 

establishing employee savings options, whereas the maximum size for companies to gain exemption from 



 

 246 

conditions the influence of dominance and agglomeration opportunities on productivity 

may differ according to the size threshold considered.  In addition, altering the definition 

of “small” may yield a sense of the robustness of the results obtained.  The models in this 

extension are estimated with three different definitions of small establishments based on 

absolute size:  those plants employing no more than 15, 50, or 250 employees.
116,117

 

Table 8.6 presents sample descriptive information about the size categories used 

in this section.
118

  Very few plants in any of the industries qualify as large when the 

criterion is to employ more than 250 workers.  This is due partly to considering 

establishment-specific rather than firm-wide employment totals, but the main reason is 

that the three study industries have highly skewed plant size distributions (as do most 

industries).  The great majority of businesses fall within the definitions of “small” used in 

many policy contexts.  Small business applicability thresholds are often set high in order 

to boost the population of firms included in a program or subject to a set of guidelines.  

Even when the maximum size is reduced to 50 employees, more than 80 percent of the 

sample metalworking machinery manufacturing establishments fit into the small  

                                                                                                                                                 
the 1993 Family and Medical Leave Act is 49 workers (United States Department of Labor 2002; n.d.).  

The European Commission and the United Kingdom categorize enterprises with fewer than 50 employees 

as small and those with less than 250 employees as medium-sized (European Commission 2005; United 

Kingdom Department for Business Enterprise and Regulatory Reform 2005).  Smaller nations not 

surprisingly tend to maintain smaller maximum sizes for small business classifications.  For example, the 

threshold for eligibility for government small business programs is 19 or fewer employees in Australia and 

New Zealand (New Zealand Ministry of Economic Development 2005; Australia Department of Industry 

Tourism and Resources 2007).  Note that these are illustrative examples that do not cover the breadth of 

policies and definitions found in the United States or worldwide. 

 
116

 These are the number of employees, both full-time and part-time, reported by each establishment as part 

of the Census of Manufactures.  The exclusion of administrative records omits the very smallest stand-

alone establishments, typically those with five or fewer employees. 

 
117

 Two additional size categories were also tested (less than or equal to 500 and 100 employees), with 

results that generally follow the patterns detailed in this section. 

 
118

 The data concerning the domination classifications are repeated from Table 6.1. 
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Table 8.6.  Sample Descriptive Information for Absolute and Relative Size  

Classifications. 

SIC

Industry

Year 1992 1997 2002 1992 1997 2002 1992 1997 2002

Sample observations 6,747 8,000 6,546 5,189 5,490 4,161 1,384 1,540 1,201

Mean employment 78 82 91 33 38 36 97 94 111

Small (250 or fewer employees) 6,351 7,474 6,081 5,110 5,397 4,101 1,271 1,422 1,088

Percent 94 93 93 98 98 99 92 92 91

Small (50 or fewer employees) 4,037 4,650 3,552 4,459 4,585 3,482 886 969 718

Percent 60 58 54 86 84 84 64 63 60

Small (15 or fewer employees) 1,415 1,688 1,099 2,717 2,603 1,921 362 376 299

Percent 21 21 17 52 47 46 26 24 25

Dominator establishments 645 833 901 427 497 505 167 212 202

Percent 9.6 10.4 13.8 8.2 9.1 12.1 12.1 13.8 16.8

Mean employment 286 280 273 148 154 123 410 359 409

Dominated establishments 3,061 3,701 2,487 2,686 2,886 1,846 658 687 505

Percent 45.4 46.3 38.0 51.8 52.6 44.4 47.5 44.6 42.0

Mean employment 23 24 26 13 15 15 21 23 23

Remainder of establishments 3,041 3,466 3,158 2,076 2,107 1,810 559 641 494

Percent 45.1 43.3 48.2 40.0 38.4 43.5 40.4 41.6 41.1

Mean employment 89 97 91 36 41 34 93 82 80

30 354 382

   rubber & plastics     metalworking machinery measuring & controlling devices

 

 

classification, as do some 60 percent of the rubber and plastics and measuring and 

controlling devices plants.  Despite the fact that 15 employees is considerably smaller 

than most absolute size thresholds used in the United States, nearly half of the 

metalworking machinery plants and between a fifth and a quarter of the establishments in 

the other two study industry samples meet the criterion. 

The absolute and relative size criteria demarcate separate partitions within the 

estimation samples.  The average employment in plants belonging to dominator and 

dominated firms varies by industry, with the metalworking machinery establishments 

substantially smaller than their counterparts in the other two study industries.  Although 

the tabulations are not presented in Table 8.6 due to confidentiality considerations, there 
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are small establishments that are classified as dominators and there are also a few 

dominated plants within the largest absolute size categories in most of the samples. 

With four different size partitions, four measures of regional industrial dominance, and 

nine industry-year samples, the models estimated for this extension produce an enormous 

volume of results, most of which are not printed in the text proper (the full marginal 

effects are reported in Appendix 11, and the estimated model coefficients are available 

from the author).  Tables 8.7, 8.8, and 8.9 summarize the marginal effects of regional 

industrial dominance, the five agglomeration economies, and the plant size dummies, 

obtained from the models that use the concentration ratio dominance measure.
119

  The 

tables simplify the information by presenting only the signs and estimated significance 

ranges of the effects.  As before, the analysis context is akin to a census rather than a 

random sample, and statistical significance is less important than the signs and 

magnitudes of the variables.  Yet, because in this case the significances pertain to 

marginal effects, they coincide with magnitude, and serve as a normalized measure of the 

influence strength.  The size partitions subdivide the estimation samples (while 

maintaining the complexity of the translog production function), so that conventional 

significance levels are more difficult to obtain than in the primary models.  Therefore, 

Tables 8.7 through 8.9 report marginal effects that are significant at the 80 percent 

confidence level or greater.  As a final caveat, the substantive conclusions reached within 

this section are based upon prevailing trends and patterns rather than unfailing rules.  An 

examination of the coefficient estimates and marginal effects for each model permutation, 

especially including those adopting the alternative dominance measures (contained in 

                                                 
119

 The marginal effects are calculated with the other variables held at the means of each relative or 

absolute size category. 
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Appendix 11), will reveal exceptions.  Nevertheless, there are interesting tendencies that 

permeate the mass of data and hold for the most part across models that use different 

measures of regional industrial dominance. 

There are definite productivity advantages and disadvantages accompanying 

relative establishment size.  As noted in section 7.3.4, plants that belong to dominated 

firms substantially underperform in terms of production, whereas establishments that are 

part of dominator firms enjoy a productivity advantage.  The distinction is not as clear cut 

in terms of absolute size.  Small rubber and plastics establishments are less productive, all 

else equal, when small is defined so as to include all plants up to 250 employees, but are 

more productive on average than other establishments when small is restricted to 15 or 

fewer workers.  If the absolute size threshold is set at 100 employees, the overall 

productivity difference between small and large is insubstantial.  The pattern does not 

hold exactly for the other two study industries, but the same general conclusion is 

supported:  very small size is advantageous, but when defined more broadly, such as is 

common in policy definitions, small establishments are at a productivity disadvantage in 

comparison with the other plants in the industry.  The smallest plants may have assets 

other than those measured in this analysis that create production advantages, such as links 

to parent firms, proprietary production processes, or differentiated products (i.e., they 

may more commonly function as specialized or boutique manufacturers rather than 

competitive mass producers). 

Although both effects are highly significant, the impact of absolute size on 

production is typically much weaker than that of relative size.  For example, in the 1992 

rubber and plastics sample, small plants with 15 or fewer employees produce 
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Table 8.7.  Significance of Marginal Impacts Including Plant Size Interactions for Rubber and Plastics (SIC 30). 

Dom. Sm.≤250 Sm.≤50 Sm.≤15 Dom. Sm.≤250 Sm.≤50 Sm.≤15 Dom. Sm.≤250 Sm.≤50 Sm.≤15

+++ +++ +++

−−− −−− +++ −−− −−− +++ −−− −−− +++

Dominance dominator ++

neither      /   large −−− +++ −−− −−− +++ + +

dominated / small −

Labor dominator −−

Pooling neither      /   large +++ +++ + +

dominated / small + ++ +

Manufactured dominator

Inputs neither      /   large +

dominated / small

Producer dominator

Services neither      /   large ++ +

dominated / small +

Research dominator +

neither      /   large +++ −

dominated / small −− −

Patents dominator

neither      /   large − +++ + +++ + +

dominated / small +++ ++

Notes:  A single plus or minus sign indicates significance at the 80 percent confidence level, a double sign 90 percent confidence level, and a triple sign 95 percent confidence

level.  Dom. refers to the model with two dummy variables for dominator and dominated plants.  Sm. refers to the models with a single dummy variable for small plants.

"Neither" and "dominated" label the dominance models, and "large" and "small" pertain to the small establishment models.  The shaded cells are not required for the small

establishment models.

Dominators

Dominated / Small

1992 1997 2002
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Table 8.8.  Significance of Marginal Impacts Including Plant Size Interactions for Metalworking Machinery (SIC 354). 

Dom. Sm.≤250 Sm.≤50 Sm.≤15 Dom. Sm.≤250 Sm.≤50 Sm.≤15 Dom. Sm.≤250 Sm.≤50 Sm.≤15

+++ +++ +++

−−− −−− −−− −−− −−− +++ −−− − −−− +++

Dominance dominator −

neither      /   large −−− +++ + −−− −−−

dominated / small −− −−− −−− −−− −−− −− − − −−

Labor dominator +++ −−− +

Pooling neither      /   large + −−− −−− −

dominated / small −−− −−− −− −−−

Manufactured dominator ++ −−

Inputs neither      /   large + +++ −−− −−−

dominated / small + −−− −−− −

Producer dominator −− +++

Services neither      /   large − −−− ++ +++

dominated / small + + −−− −− +

Research dominator −− −

neither      /   large −−− − −−− −− + −

dominated / small −−

Patents dominator +++ +++ +++

neither      /   large +++ +++ ++ +++ +++ +++ +++

dominated / small + +++ ++ + +++ +++ ++

Notes:  A single plus or minus sign indicates significance at the 80 percent confidence level, a double sign 90 percent confidence level, and a triple sign 95 percent confidence

level.  Dom. refers to the model with two dummy variables for dominator and dominated plants.  Sm. refers to the models with a single dummy variable for small plants.

"Neither" and "dominated" label the dominance models, and "large" and "small" pertain to the small establishment models.  The shaded cells are not required for the small

establishment models.

Dominators

Dominated / Small

1992 1997 2002
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Table 8.9.  Significance of Marginal Impacts Including Plant Size Interactions for Measuring and Controlling Devices (SIC 382). 

Dom. Sm.≤250 Sm.≤50 Sm.≤15 Dom. Sm.≤250 Sm.≤50 Sm.≤15 Dom. Sm.≤250 Sm.≤50 Sm.≤15

+++ +++ +++

−−− −−− −−− −−− −−− ++ −−− − +

Dominance dominator −

neither      /   large −−

dominated / small −−− − −− −−− −−

Labor dominator −

Pooling neither      /   large +++

dominated / small +++ +++ + +

Manufactured dominator +++

Inputs neither      /   large −−− + − −

dominated / small − − − −

Producer dominator −− −

Services neither      /   large ++

dominated / small

Research dominator

neither      /   large ++ + ++ ++

dominated / small ++ ++

Patents dominator +++

neither      /   large + ++ + ++ +

dominated / small − +

Notes:  A single plus or minus sign indicates significance at the 80 percent confidence level, a double sign 90 percent confidence level, and a triple sign 95 percent confidence

level.  Dom. refers to the model with two dummy variables for dominator and dominated plants.  Sm. refers to the models with a single dummy variable for small plants.

"Neither" and "dominated" label the dominance models, and "large" and "small" pertain to the small establishment models.  The shaded cells are not required for the small

establishment models.

Dominators

Dominated / Small

1992 1997 2002
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approximately eight percent more output on average than other establishments.  The 

output of establishments with up to 250 employees averages four percent less than larger 

plants.  Dominator plants, on the other hand, produce nearly 14 percent greater output 

and dominated plants 19 percent less than establishments that are neither dominators nor 

dominated.  Similar comparisons hold for the other industry-year pairs.  In terms of 

overall output, the size status of a manufacturing plant relative to other regional 

establishments in the industry carries more influence than absolute size. 

The influence of regional industrial dominance on production tends to be the most 

negative for those establishments in the rubber and plastics and the metalworking 

machinery industries that do not belong to either dominator nor dominated parent firms.  

In the measuring and controlling devices samples, dominated plants rather than those in 

the “neither dominator nor dominated” category are the most negatively affected by 

dominance.  The marginal effects of regional industrial dominance are more clearly 

delineated by the relative than the absolute size classifications.  This is as might be 

expected, since the conceptual framework in Chapter Three suggests that relative size 

defines interactions between regional establishments within the same industry.  Small 

establishments are usually negatively affected by regional industrial dominance, or 

equivalently large establishments are positively influenced, but none of the size 

definitions tested produces a noticeably stronger demarcation of the conditioning effect 

of absolute size.  Many of the calculated marginal effects for each of the three absolute 

different size partitions are small enough in magnitude that they fail to reach even the 80 

percent confidence level plateau. 
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There are fewer patterns with respect to the agglomeration economy measures 

that hold across different study years and industries.  Labor pooling possibilities, for 

example, seem to favor both large and small measuring and controlling devices 

establishments in 1992, but provide almost no productivity advantages for any size 

category within the industry in 1997 or 2002.  The influence of labor pooling is almost 

uniformly negative in the metalworking machinery industry for subsets of establishments 

defined by both absolute and relative size classifications, but only for the 1997 model.  

Rubber and plastics plants that employ between 15 and 250 workers seem to benefit from 

locally available labor pools only in 1992.  The two supply pooling variables exhibit 

inconsistent behavior with respect to establishment size as well.  This finding is not very 

surprising given the ambiguous direction and insignificant magnitude of the calculated 

direct effects of these agglomeration economies on plant production. 

The two measured types of knowledge spillovers demonstrate conditioning 

influences that fit better with the direct effects observed earlier (see section 7.3.5).  In two 

of the three study years (1992 and 1997), measuring and controlling device 

manufacturers benefit from proximity to related academic research, particularly those of 

intermediate size:  smaller than 250 but greater than 15 employees.  Metalworking 

machinery plants tend to exhibit a negative influence on production from research, 

particularly with regard to the “neither dominator nor dominated” relative size 

classification.  Patenting has a highly significant positive effect on productivity for 

metalworking machinery establishments in all three dominance classifications, and in 

1997 and 2002 also benefits plants employing from 15 to 250 workers. 
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Overall, relative size is more appropriate than absolute size for indicating the way 

in which plant size conditions the influence of regional industrial dominance on 

production, but the evidence pertaining to the agglomeration economy variables is 

decidedly mixed.  Most of the marginal effects of potential agglomeration advantages are 

insignificant, and those that are substantial do not obviously favor either the absolute or 

relative size classifications.  None of the three definitions of “small” establishments 

outperforms the others in terms of revealing meaningful interactions between plant size 

and agglomeration influences, yet the differences observed between small and large 

plants certainly are not robust to the range of “small” considered in this extension. 

Finally, it is worth noting that a thorough comparison of the plant size interaction 

terms involving regional industrial dominance or a particular agglomeration economy 

variable with the corresponding marginal effects on the different size categories (both 

contained in Appendix 11) demonstrates that the patterns, defined by either magnitude or 

significance, do not match.  In other words, the plant size classifications that evidence 

substantial effects on productivity from either regional industrial dominance or potential 

agglomeration advantages are not necessarily those for which there are significant 

interaction terms between the size classification dummy variable and the measure of 

regional industrial dominance or agglomeration.  The implication is that the substantial 

differences among plant size groups illustrated in Tables 8.7 through 8.9 may arise more 

from divergences between category means than the interaction coefficients themselves.  

The ways in which small and large plants exhibit distinct productivity behavior may be 

intrinsically related to their size and production technology and not pertain specifically to 

the influences of environmental influences such as dominance and agglomeration.



CHAPTER NINE:  SUMMARY AND IMPLICATIONS 

 

9.1.  Study Summary and Principal Findings 

 This study examines the relationship between regional industrial dominance and 

economic performance by focusing on the productivity of individual establishments.  A 

production function system is estimated for cross-sectional samples using confidential 

nationwide establishment-level data.  The nine cross-sections represent three contrasting 

manufacturing industries and three years that span a 15-year time period.  Measures of 

regional industrial dominance and five types of potential localized agglomeration 

economies, four of which are modeled as attenuating in influence with increasing 

distance from each plant’s location, are included in the estimation system along with 

controls for various regional characteristics. 

Two primary research hypotheses guide the analysis.  The first is that 

manufacturing plants located in regions in which their industries are dominated by a 

single or a few relatively large companies are less productive than establishments in the 

same industries that are located in regions exhibiting a broader distribution of firm sizes.  

The empirical results uphold this contention.  Regional industrial dominance is a large 

negative influence on production for all three of the studied manufacturing industries, 

particularly for establishments belonging to companies small enough to be dominated
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within their regional industry.
120

  The effect of dominance is due to current rather than 

historic dominance conditions, though there are indications that high levels of dominance 

may lead to lower productivity in the future. 

The second hypothesis posits that small establishments in regionally dominated 

industries have reduced productivity because they are less able to exploit external 

economies available in the regional environment in order to boost production and 

maximize their capacity to adapt to shifting local economic conditions.  The research 

largely denies this hypothesis, finding few strong relationships between regional 

industrial dominance and potential agglomeration economies.  In six out of nine industry-

year samples, the estimated interactions between dominance and agglomeration are 

essentially inconsequential.  The interpretation is that regional industrial dominance does 

not prevent firms from benefiting from localized agglomeration economies, and the lower 

productivity estimated for plants in regionally dominated industries is not the result of an 

inability to take advantage of agglomeration economies.  Because other explanations are 

possible, the second research hypothesis cannot be definitively rejected.  The direct 

impacts of the three labor and supply pooling agglomeration variables are themselves 

estimated to be small and inconsistent, so that it is not surprising that their interactions 

with regional industrial dominance are relatively weak.  The agglomeration variables may 

lack sufficient construct validity to reveal subtle effects or may be weakened by the 

exclusion of plants in regional industries with relatively few firms (necessary for the 

regional industrial dominance concept to be meaningful).  Regional industrial dominance 

may interact with different sources of external economies than those measured in this 
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 Regional industrial inequality, as indicated by the Gini coefficient, positively affects productivity, but its 

influence is substantially diminished for small plants. 
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analysis.  Still, the conclusion most consistent with the model outcomes is that regional 

industrial dominance hampers productivity in small plants by means other than limiting 

the ability of small plants to benefit from localized agglomeration economies. 

Three extensions to the main modeling analysis yield further detail while 

corroborating the main findings of the study.  Estimates obtained by changing the pattern 

of spatial decay imposed on the labor pooling, supply pooling, and academic research 

variables suggest that labor pools and spillovers from academic research confer 

production advantages at relatively broad spatial scales.  The productivity impacts of 

supply pooling remain slight across various spatial scales; high colinearity disrupts the 

estimation of the two supply pooling variables.  Regional dominance measured across the 

entire private sector economy influences productivity at the establishment level, but does 

so independently of industry-specific regional dominance, signifying the need for a 

separate analysis of the phenomenon.  Dominated plants underproduce and dominator 

plants produce more than the average establishment.  Considering absolute size, the very 

smallest establishments, those with 15 or fewer workers, tend to be more productive than 

larger manufacturers, but if the term “small” is defined to encompass establishments as 

large as 100 or 250 employees, as is common in policy applications, then small plants are 

less productive.  Relative size relates more closely than absolute size to the productivity 

effects of regional industrial dominance, whereas neither absolute nor relative size 

presents a consistently clearer delineation among establishments in terms of considering 

agglomeration effects.  The differences among plants of various sizes appear to be more 

the result of divergent category sample means than interactions between plant size and 

environmental characteristics, suggesting that differences in production are intrinsic 
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rather than determined by external factors.  The conclusions stated above in respect to the 

two main research questions are robust to alternative spatial specifications of the 

agglomeration variables, the inclusion of regional economy-wide dominance measures, 

and partition by different plant size categories. 

It is worth considering briefly the issue of causality in light of the primary 

conclusions reached in this analysis.  The cross-sectional regression methodology yields 

evidence of substantial association between regional industrial dominance and 

establishment productivity, but cannot directly specify causation.  Is it possible that 

instead of dominance reducing the productivity of small businesses in the regional 

industry, regional industrial dominance itself arises as an outcome of inferior business 

performance, perhaps via relatively high failure or merger rates for small and medium-

sized firms?  Although such a reversal of the assumed causal direction of the relationship 

may be feasible theoretically, it is not plausible.  The production function in this study is 

specifically designed to include the regional environmental factors, including specific 

sources of agglomeration economies, that might lead to differential failure rates (see 

section 4.7).  Mergers and acquisitions do not follow from substandard productivity.  If 

the causal direction ran from productivity to dominance, productivity should be 

substantially correlated with decreases in regional industrial dominance over time.  In 

most of the models, however, the estimated coefficients of the historic dominance 

variable are negligibly small.  Moreover, the structure of the regional industrial 

dominance phenomenon itself makes the proposition highly improbable.  Dominance 

develops over long periods of time.
121

  Even if dominance were caused by relatively poor 
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 This would be the case especially if regional industrial dominance resulted from differential firm failure 

rates. 
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production among small establishments, contemporary productivity differences across 

regions would not necessarily relate to the levels of regional industrial dominance 

observed concurrently.  Given the high degree of skewness of the firm size distribution in 

most regional industries, the considerable differences in the level of industrial dominance 

observed across regions are very unlikely to result from the differential survival 

probabilities of small and medium-sized businesses alone.  It is reasonable to conclude 

that it is regional industrial dominance that negatively influences small business 

productivity. 

 

9.2.  Research Contributions 

This dissertation extends previous research in a number of ways.  First and 

foremost is the close examination of regional industrial dominance, a topic that has not 

been investigated before in systematic fashion.  The subject of regional industrial 

dominance points attention toward issues of industrial organization at the regional scale, 

the effects of industrial structure on production, and the manner in which the successes 

and failures of individual plants combine to determine regional economic performance.  

The estimation results demonstrate the importance of regional industrial dominance in 

shaping establishment productivity, highlight the linkage between the regional 

environment and economic performance at the firm level, and encourage further research 

on the subject of dominance and its possible linkages with other characteristics of regions 

and establishments. 

 Chapters Six through Eight provide a baseline analysis of regional industrial 

dominance that covers three industries across the contiguous United States and enlarges 
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the body of research modeling productivity at the level of individual plants.  The 

modeling procedures incorporate several advances from earlier methods.  By drawing on 

the plant-level data contained in the Longitudinal Research Database, the statistical 

framework bypasses many of the econometric concerns and issues of inadequate or 

incomplete information that plague earlier production function estimations.  The 

agglomeration variables indicate specific sources of potential agglomeration economies 

rather than acting as broad proxies, and measure the spatial dimension of interfirm 

relationships in a continuous rather than regionally aggregate fashion.  The flexible 

translog form permits a wide variety of functional properties to be tested within the 

modeling framework:  homotheticity, homogeneity, constant returns to scale, the Hicks-

neutrality of regional industrial dominance and agglomeration economies, and the 

reduction to the Cobb-Douglas and CES functional forms.  The fact that these simplifying 

properties that are commonly assumed a priori are rejected empirically in this analysis 

validates the selection of the more accommodating translog specification. 

The analysis connects two separate threads of investigation contained within 

distinct fields of research.  Concepts and theoretical background are drawn from previous 

work on both firm size distributions and agglomeration economies.  While not the first 

attempt to analyze industrial structure and regional economic characteristics 

simultaneously (e.g., Feser 2002; Rosenthal and Strange 2003; Renski 2006), this study 

focuses directly on the intersection of the two areas and substantially extends the 

approach. 



 

 262 

9.3.  Implications for Regional Development Policy 

The results of this analysis yield new perspectives and also raise questions for 

economic developers and others responsible for directing regional development policy.  

The primary conclusion is that regional industrial structure matters in determining the 

efficiency of local manufacturers.  Small businesses are less productive when their 

industry is dominated within the regional economy by a single or small group of 

manufacturers.  As mentioned above, this study does not successfully ascertain the exact 

manner in which the relationship between regional dominance and productivity unfolds.  

The estimation results indicate relatively little interaction between dominance and 

agglomeration, leading to the conclusion that regional industrial dominance does not 

hinder productivity by preventing manufacturing plants from taking advantage of 

regional agglomeration economies. 

The outcome is unfortunate for the practice of economic development.  A clearer 

understanding of the mechanism by which dominance relates to establishment-level 

productivity is needed to design and predict the effects of regional policies.  Without this 

knowledge, the success of policies intended to help small businesses take advantage of 

regional agglomeration possibilities or to provide accessible substitutes may be expected 

to vary with the setting or to fluctuate over time, or such efforts might be ineffective in 

general.  Moreover, dominance is a phenomenon that by its nature is likely to endure over 

time and is difficult to alter with the policy tools available at the local and regional levels.  

Additional research that aims to detail the means by which dominance influences 

economic performance will aid the design of policy instruments to counter the negative 

effects of regional industrial dominance. 
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Nevertheless, simply understanding that regional industrial dominance is an issue 

that affects economic performance may engender creativity, both in designing policies to 

counter the influence of dominance and in shaping policies to work within local 

economic conditions.  This study reinforces the notion that regional industrial structure, 

both industry-specific and economy-wide, is an important characteristic of a regional 

economy.  It is to the advantage of regional economic analysts and economic 

development practitioners that currently examine overall regional concentration, and 

sometimes industrial concentration at the national level, to pay attention to concentration 

and dominance at the level of regional industries.  Both analysts and policymakers should 

note the distinction between relative and absolute size, and the sensitivity of economic 

performance to the particular definition of small business.  Locally dominated firms are 

particularly vulnerable to the influence of regional industrial dominance and thus may 

require extra support.  The benefits of potential agglomeration economies shift 

substantially across different absolute size categories of establishments, so that 

inappropriate policy definitions may cause economic development programs to be 

unfaithful to their intentions. 

The study suggests that regional industrial dominance restricts economic 

adaptability, despite the uncertainty of the pathway by which dominance influences 

establishment output.  Although the idea that dominance directly inhibits individual firms 

from allocating internal and external resources efficiently receives little empirical 

support, it is apparent that regional industrial dominance is associated with diminished 

small business productivity.  The growth and dynamism of small businesses are argued to 

be crucial elements of regional adjustment capacity.  To the extent that regional industrial 
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dominance hinders the productivity and expansion of fledgling businesses, and perhaps 

local innovation and entrepreneurial activity as well, the local economy possesses less 

flexibility to react to changing economic conditions.  Restructuring in the face of a major 

technological advance or economic upheaval may prove impossible.  The goal of 

developing effective policies to address the issues that arise from disadvantageous 

regional industrial structures should provide further impetus for conducting research on 

the question of how regional industrial dominance acts to influence economic 

performance. 

Finally, the results pertaining to the effects of agglomeration economies provide 

information directly useful to economic development policymakers.  Locational factors 

that affect economic performance are more susceptible to policy influence than are firm-

specific traits (Hoogstra and van Dijk 2004).  Although potential labor and supply pools 

seem to have little effect on manufacturing output, spillovers of knowledge and 

information from private sector innovative activity do benefit production.  Academic 

research in relevant fields improves the productivity of measuring and controlling device 

establishments, and may have a similar influence for other technology-intensive 

industries.  Programs that support private research, ranging from technology grants and 

research and development tax subsidies to developing networks among regional 

knowledge producers and manufacturers, may boost regional productivity and enhance 

competitive advantage.  It may be more effective to assist research efforts than to attempt 

to establish or mediate local supplier-purchaser relationships.  The broad spatial scales at 

which these knowledge externalities operate mean that establishments need not rely 

solely on local knowledge producers.  Policymakers may find it to be more cost-effective 
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to concentrate public research efforts at large laboratories or universities that are only 

near enough to manufacturers to sustain occasional contact, and to connect peripheral 

districts with more centrally located areas (Phelps et al. 2001).  In general, agglomeration 

advantages are more likely to benefit economic development efforts if encouraged and 

promoted at the regional rather than local or municipal levels (Scott and Storper 2003).  

Extending the scope of the current analysis to cover additional industries will provide 

further guidance to policymakers along these lines. 

 

9.4.  Future Research Directions 

 There are several directions in which the research in this study can be extended or 

refined.  Although the particular industries are selected carefully with the goal of 

providing optimal contrast (see section 5.3), the results ultimately are based on 

information that pertains to only a small subset of private sector establishments, all 

classified within the manufacturing sector.  Expanding the analysis of regional industrial 

dominance to other manufacturing industries, and, with suitable modifications in terms of 

data sources and constructs, to other economic sectors as well, would enhance the 

generalizability of the inferences that can be made.  Adding time periods would also 

increase external validity, and modifying the methodology from strictly cross-sectional to 

an approach suitable for a short time series might enhance the depth of information 

gained as well as test the sensitivity of the conclusions to the particular mode of statistical 

analysis.  The brief examination of economy-wide dominance contained in section 8.3 

indicates that a full quantitative analysis combining both intra- and inter-industry 

dominance may be enlightening.  As mentioned in Chapter Three, economic performance 
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may be investigated with regard to outcomes other than productivity, such as innovation, 

business survival, or entrepreneurial activity.  It would be interesting to compare the 

influence of regional industrial dominance within the United States with the experiences 

of establishments located in other nations. 

In light of the generally disappointing performance of the agglomeration economy 

variables, developing and incorporating additional externality indicators either would 

corroborate the denial of the second research hypothesis or perhaps would succeed in 

identifying the more elusive sources of agglomeration economies that translate the 

influence of regional industrial dominance into negative effects on small business 

performance.  These might include knowledge spillovers originating from government 

and private research laboratories, customer or market demand pooling, and capital 

financing availability.  Locating supplementary sources of data adequate for 

implementation with the current approach is a prerequisite that may prove difficult to 

meet, and variable colinearity is likely to be problematic.  Perhaps the most important 

constraint is the restricted degree of variation in potential agglomeration within the plant 

samples, a limitation exacerbated by the imposition of a minimum regional industry scale 

to support the notion of regional industrial dominance.
122

  The agglomeration economy 

measures may be modeled with different or more complex decay functions or at a finer 

spatial grain (specifying locations and distances more precisely than by county centroids).  

The weakness and inconsistency of the agglomeration variable coefficients estimated in 

this analysis imply, however, that the returns to conducting such an exercise are not likely 

to be commensurate with the additional effort required. 

                                                 
122

 Additional possible sources of agglomeration economies are factors that can be emphasized in 

qualitative case studies (see footnote 11 in Chapter Two). 
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 More general investigation of the processes and implications of regional industrial 

dominance is in order as well.  This study does not confirm the hypothesis that the 

negative association of dominance with the production of small establishments arises 

from constraints on the exploitation of potentially beneficial local agglomeration 

economies.  Therefore, the question remains:  by what mechanism or mechanisms does 

regional industrial dominance influence economic performance?  Examining connections 

such as the inter- and intrafirm relationships among establishments, the interactions 

between small and large firms within a regional industry, and the aggregation of 

individual establishment characteristics into regional industrial structures may lead to an 

explanation.  These topics have been and continue to be the subject of research in 

industrial organization and business, as well as regional science and economic 

development; adding the concept and perspective of regional industrial dominance to the 

mix may elicit new insights and innovative directions.
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APPENDICES 

Appendix 1.  Derivation of Factor Share Equations and Production System 

Let the production function be expressed as in equation (4.8): 

(A1.1)  )()( XfZgQ ⋅=  

where Q is plant output, X is a vector of conventional inputs, and Z is a vector of other 

relevant regional characteristics.  The establishment then seeks to maximize the profit 

function 
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where Π is total profits, QC ∂∂  is the marginal cost of output, and Pi is the input price of 

the i
th

 input Xi.  Given that the production function satisfies the typical regularity 

conditions (see section 4.6), and that input markets are competitive, the first-order 

condition for profit maximization states that 
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for each input Xi, and, rearranging, 

(A1.4)
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where λ is a Lagrange multiplier that is the reciprocal of the marginal cost of output.  

Since the relation expressed in equation (A1.4) holds for each input, both sides may be 

multiplied by the quantity of the i
th

 input, Xi, and summed over the inputs to yield a 

multiple of the total input cost C: 
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Rearranging equation (A1.5) to isolate λ and substituting into equation (A1.4) yields 
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or, rearranging again, 

(A1.6) 
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Equation (A1.6) is the inverse input demand function, representing the unit input 

price that results in the particular input demand Xi associated with total output Q and total 

cost C.  It can be rewritten in terms of logarithmic input and outputs as 

(A1.7) 
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Finally, by rearranging once again, an equation for the cost share, Si, for the i
th

 input, is 

obtained: 
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Reprinting equation (4.9), the translog form of the production function is: 

(A1.9) 
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The logarithmic marginal products of each input are obtained by differentiating (A1.9) 

with respect to Xi: 

(A1.10) 
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Substituting (A1.10) into the formula (A1.8), the cost shares, Si, for the translog 

production function are expressed as: 

(A1.11)  
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which is equivalent to equation (4.10) in the text. 

The only assumptions required for this derivation are the production function 

regularity conditions, establishment-level profit maximization, and competitive input 

markets.  This differs from many production function studies that use factor demand 

functions derived directly from the (logarithmic marginal) production or cost function 

using Shephard’s lemma (Chung 1994; Lall et al. 2001).  Such factor demand functions 

are, under the assumptions of constant returns to scale and Hicks-neutral technical 

change, equivalent to the cost share functions derived here.  In contrast, this derivation, 

first outlined by Kim (1992), derives the cost shares from the (inverse) input demand 

functions and first-order profit maximization conditions and thus does not require 

assuming constant returns to scale or Hicks-neutral technical change. 
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Appendix 2.  Calculation of Monotonicity and Convexity Regularity Criteria 

The marginal product of input Xi, derived by differentiating equation (3.9), is 

(A2.1) 
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The second-order derivatives are 
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for ji ≠ .  The bordered Hessian matrix is 





































∂

∂

∂∂

∂

∂∂

∂

∂∂

∂

∂

∂

∂∂

∂

∂

∂

∂∂

∂

∂∂

∂

∂

∂

∂∂

∂

∂∂

∂

∂

∂

∂∂

∂

∂

∂

∂∂

∂

∂∂

∂

∂∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

=

2

4

2

43

2

42

2

41

2

4

43

2

2

3

2

32

2

31

2

3

42

2

32

2

2

2

2

21

2

2

41

2

31

2

21

2

2

1

2

1

4321

0

X

Q

XX

Q

XX

Q

XX

Q

X

Q

XX

Q

X

Q

XX

Q

XX

Q

X

Q

XX

Q

XX

Q

X

Q

XX

Q

X

Q

XX

Q

XX

Q

XX

Q

X

Q

X

Q

X

Q

X

Q

X

Q

X

Q

H  

for four standard inputs into production.  The Hessian matrix H is negative semidefinite 

if each principal minor alternates in sign or is zero, with the smallest (two-by-two) 

principal minor being negative or zero. 
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Appendix 3.  1990 Labor Market Areas 

Figure A.3.1 displays the 1990 Labor Market Areas for the continental United 

States.  For the details of their construction and the individual county components, see 

United States Department of Agriculture (2003). 

 

Figure A.3.1.  1990 Labor Market Areas. 
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Appendix 4.  Occupational Data for Labor Pooling 

The occupational data for the labor pooling variable come from the National 

Staffing Patterns matrices (United States Bureau of Labor Statistics n.d.-b).  These 

matrices provide estimates of employment by occupation constructed from survey 

responses for industries at the national level.  The 1997 and 2002 matrices are used to 

calculate the labor pooling variable for 1997 and 2002.  Prior to 1996 industries were 

surveyed on a rotating basis once every three years, but since manufacturing was 

surveyed in 1992, the 1992 staffing patterns are applicable for constructing the 1992 

version of the labor pooling variable. 

The staffing patterns data are classified into industries by three-digit SIC codes 

for 1992 and 1997.  The 2002 staffing patterns matrix uses NAICS codes but at the four-

digit level of disaggregation, so the crosswalk in Table 5.1 cannot be applied directly.  

Table A.4.1 approximates the crosswalk from Table 5.1 for the level of four-digit NAICS 

codes. 

Occupational codes present a trickier translation issue.  The 1992 and 1997 

staffing patterns data use Occupational Employment Statistics (OES) codes, and the 2002 

matrix employs Standard Occupational Codes (SOC).  The Census Bureau uses its own 

occupational coding structure in the Equal Employment Opportunity tabulations, 

 

Table A.4.1.  Study Industry Definitions by SIC and Four-Digit NAICS Codes. 

 

Industry SIC NAICS 

rubber and plastics 30 3261 

3262 

metalworking machinery 354 3335 

measuring and controlling devices 382 3345 
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however, and the classification system was updated between the 1990 and 2000 censuses.  

Thus combining the staffing patterns with the Census occupational data requires three 

crosswalks:  OES to 1990 Census, OES to 2000 Census, and SOC to 2000 Census.  These 

translations are created with the help of occupational descriptions from the Bureau of 

Labor Statistics and the Census Bureau but rely substantially on the judgment of the 

author.  Because they are long, the crosswalks are not printed here, but are available from 

the author.  The output is arranged according to the Census codes. 

The OES and SOC codes do not match the Census occupational codes from either 

census year on a one-to-one basis.  The crosswalks include numerous instances both of 

single OES or SOC codes mapping to multiple Census codes and multiple OES or SOC 

codes mapping into a single Census code.  Since the combined data are expressed in 

Census occupational codes, the one-to-many relationship from OES or SOC to Census 

coding is not of concern, but the many-to-one mapping from several OES or SOC codes 

to a single Census occupational code creates an ambiguity in determining how to 

apportion the Census occupational employment.  The procedure used is to map the OES 

and SOC codes to the Census occupational code in proportion to the amount of 

employment in that occupation for each study industry. 

Table A.4.2 displays the total number of Census occupational codes and the 

approximate percentage of total employment in the study industries represented by the 

top 15 occupations for each of the study years.  Because the 1990 Census classification 

system contains fewer occupational codes than the 2000 system, the top 15 occupations 

might be expected to represent a larger fraction of the total employment in the study 

industries in 1992.  This supposition holds true comparing 1992 and 1997, but the largest  



 

 275 

Table A.4.2. Census Occupational Codes and Study Industry Employment. 

 

Year Number of Census 

Occupational Codes 

Range of Percent of Employment in Top 15 

Occupations for Study Industries (SICs 30, 354, 382) 

1992 253 (1990 Census) 48-52 

1997 279 (2000 Census) 44-51 

2002 279 (2000 Census) 50-61 

 

 

percentage accounted for by the top 15 occupations occurs in 2002, perhaps because 

employment in the study industries is increasingly concentrating over time in occupations 

that are not as highly disaggregated by the classification scheme. 
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Appendix 5.  SIC and Input-Output Codes for Supply Pooling 

The Benchmark Input-Output Accounts of the United States are used to calculate 

the percent of manufacturing and producer services inputs that each of the three study 

industries purchases from each supplier industry on a nationwide basis (United States 

Bureau of Economic Analysis n.d.).  The Bureau of Economic Analysis prepares the 

Accounts from data collected every five years as part of the Economic Census, in the 

same years as the Census of Manufactures.  The Accounts classifies industries by Input-

Output (IO) codes, a system that is not identical to the SIC or the NAICS but corresponds 

closely, particularly within the manufacturing sector (for which the IO codes are more 

disaggregated than in most other sectors).  In addition, the IO coding system was updated 

between 1992 and 1997.  The 2002 Accounts were not available at the time of writing, so 

the purchasing amounts from 1997 are applied to both the 1997 and 2002 study years. 

In order to examine interindustry relationships, the Make and Use tables of the 

Accounts are first transformed into an interindustry transactions matrix.  The Use table 

(U) contains the dollar amount of each commodity used by each industry; the Make (M) 

table contains the dollar amount of each commodity produced by each industry.  The 

transactions matrix (T), which presents the dollar value of sales made by each (row) 

industry to each (column) industry, is constructed from the Make and Use tables as 

(A5.1)  ( ) UOMT ⋅⋅= −1)(diag  

where O is a vector of total commodity output, calculated by summing the columns of the 

Make table (or the rows of the Use table).  After eliminating commodities not produced 

domestically by private industry, such as government services, household production, and 
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imports, the 1992 tables have 491 industries and 479 commodities, and the 1997 versions 

include 511 industries and 512 commodities. 

Table A.5.1 displays the 1992 and 1997 IO codes linked to each of the study 

industries.  Table A.5.2 lists the IO codes classified as manufacturing input and producer 

service suppliers. 

 

Table A.5.1.  Input-Output Codes for Study Industries. 

 

Industry SIC 1992 IO 1997 IO  

rubber and plastics 30 320100 

320200 

320300 

320400 

320500 

320600 

326110 

326120 

326130 

326160 

326192 

32619A 

3261A0 

326210 

326220 

326290 

339991 

metalworking machinery 354 470100 

470200 

470300 

470401 

470402 

470404 

470405 

470500 

332997 

333511 

333512 

333513 

333514 

333515 

33351A 

333991 

333992 

measuring and controlling devices 382 620102 

620200 

620300 

621000 

621100 

333314 

334512 

334513 

334514 

334515 

334515 

334516 

33451A 

339111 
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Table A.5.2.  Input-Output Codes for Manufacturing and Producer Services. 

 

Industry Sector 1992 IO 1997 IO 

manufacturing 130100 through 641200 113300 

311111 through 33451A 

334612 through 339115 

339910 through 33999A 

511110 through 5111A0 

512200 

   
producer services 650701 

670000 

700100 through 700500 

710201 

730102 through 730303 

334611 

48A000 

511200 

513100 

514100 through 531000 

532400 

532A00 

541100 through 541920 

5419A0 through 561400 

561600 through 561900 
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Appendix 6.  Patents and Technology Classes 

Table A.6.1 displays the list of industries cited in at least five percent of the target 

industry’s patents along with the citation frequency from the technology flow matrix 

developed by Koo (2005a).  Table A.6.2 lists the patent technology classes relevant to the 

study industries and the industries cited by the study industries’ patents (modified from 

United States Patent and Trademark Office 2004). 

 

Table A.6.1.  Industries Cited in Patents and Relative Importance (Citation Frequency). 

 

Industry SIC Cited Industries 

(Relevance Weight) 

rubber and plastics 30  30 

 34 

 282 

 38 

 32 

(.3061) 

(.1088) 

(.0631) 

(.0628) 

(.0563) 

metalworking machinery 354  354 

 34 

 355 

 38 

(.4880) 

(.0845) 

(.0831) 

(.0578) 

measuring and controlling devices 382  38 

 367 

(.6935) 

(.0564) 

 

Table A.6.2.  Patent Technology Classes. 
 

SIC Patent Technology Classes 

282 008 

528 

106 

976 

428 502 508 520 521 523 525 526 

           
30 002 

040 

116 

160 

221 

264 

416 

523 

004 

047 

119 

165 

223 

267 

422 

524 

005 

049 

126 

168 

224 

280 

427 

525 

008 

052 

128 

181 

229 

285 

428 

527 

012 

059 

135 

188 

238 

294 

429 

604 

015 

062 

137 

204 

239 

301 

441 

968 

016 

081 

138 

205 

242 

383 

474 

024 

106 

150 

206 

248 

384 

482 

029 

108 

152 

215 

251 

403 

492 

036 

114 

156 

220 

256 

411 

521 



 

 280 

Table A.6.2.  Patent Technology Classes, continued. 

 

SIC Patent Technology Classes 

32 004 

110 

205 

267 

428 

008 

119 

215 

277 

451 

015 

126 

220 

285 

454 

029 

131 

222 

335 

501 

040 

138 

238 

349 

502 

047 

156 

239 

359 

523 

051 

166 

242 

405 

524 

052 

174 

251 

411 

968 

065 

181 

256 

422 

976 

106 

188 

264 

427 

           
34 002 

030 

059 

104 

126 

156 

186 

222 

246 

269 

300 

410 

454 

004 

037 

062 

105 

131 

160 

188 

223 

248 

280 

301 

411 

464 

005 

038 

069 

109 

134 

165 

193 

224 

249 

285 

310 

413 

474 

007 

040 

070 

110 

135 

166 

204 

232 

250 

289 

312 

414 

482 

014 

043 

072 

111 

137 

168 

205 

237 

251 

292 

359 

416 

492 

015 

047 

075 

114 

138 

172 

206 

238 

254 

293 

376 

419 

968 

016 

049 

076 

116 

140 

180 

211 

239 

256 

294 

403 

427 

976 

024 

052 

079 

119 

141 

181 

215 

242 

258 

295 

404 

428 

028 

054 

081 

122 

144 

182 

220 

244 

261 

296 

405 

431 

029 

056 

099 

125 

148 

185 

221 

245 

267 

297 

407 

441 

           
354 029 

108 

221 

307 

470 

030 

116 

226 

335 

483 

059 

134 

228 

356 

492 

072 

140 

239 

388 

505 

073 

157 

242 

408 

901 

074 

163 

249 

409 

968 

076 

164 

254 

413 

081 

173 

266 

414 

082 

204 

269 

427 

083 

219 

279 

451 

           
355 012 

062 

099 

141 

196 

241 

300 

428 

019 

065 

100 

142 

199 

242 

312 

451 

026 

066 

101 

144 

202 

249 

376 

452 

028 

068 

112 

147 

204 

254 

407 

492 

029 

069 

117 

156 

205 

261 

408 

493 

030 

074 

125 

157 

206 

264 

412 

505 

034 

079 

127 

159 

209 

270 

414 

526 

040 

083 

131 

162 

223 

271 

422 

968 

055 

087 

134 

164 

225 

276 

425 

976 

057 

096 

139 

181 

226 

289 

427 
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Table A.6.2.  Patent Technology Classes, continued. 

 

SIC Patent Technology Classes 

367 029 

136 

205 

244 

327 

340 

361 

380 

439 

049 

148 

206. 

246 

329 

341 

362 

381 

445 

052 

156 

211 

250 

330 

342 

365 

385 

455 

073 

160 

216 

257 

331 

343 

367 

386 

505 

083 

165 

219 

264 

332 

345 

369 

414 

700 

116 

174 

221 

307 

333 

348 

370 

427 

704 

117 

178 

228 

313 

334 

349 

372 

428 

706 

118 

181 

236 

314 

335 

358 

375 

429 

714 

125 

187 

241 

315 

336 

359 

377 

434 

725 

134 

204 

242 

326 

338 

360 

379 

438 

           
38 002 

044 

110 

156 

202 

226 

249 

312 

349 

368 

399 

432 

505 

700 

004 

052 

116 

165 

203 

227 

250 

318 

351 

369 

408 

433 

523 

701 

005 

062 

122 

166 

204 

228 

252 

322 

352 

372 

414 

434 

526 

702 

015 

065 

126 

169 

205 

234 

264 

330 

353 

374 

416 

435 

528 

706 

027 

073 

128 

178 

206 

235 

266 

335 

355 

376 

417 

436 

600 

968 

029 

074 

134 

180 

210 

236 

269 

337 

356 

377 

422 

439 

602 

976 

033 

083 

135 

181 

215 

237 

271 

340 

359 

379 

427 

441 

604 

034 

091 

136 

182 

219 

239 

280 

342 

361 

381 

428 

451 

606 

036 

099 

137 

184 

221 

242 

294 

346 

362 

385 

430 

492 

607 

040 

100 

144 

188 

222 

246 

297 

348 

367 

396 

431 

494 

623 
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Appendix 7.  Heteroskedasticity-Corrected Versions of Primary Model Results 

Tables A.7.1, A.7.2, and A.7.3 contain the model results with regional industrial 

dominance measured as a concentration ratio and with heteroskedasticity-corrected 

standard errors.  The three tables correspond to tables 7.2, 7.3, and 7.4 in the main body 

of the text. 

 

Table A.7.1.  Parameter Estimates for Rubber and Plastics (SIC 30) with 

Heteroskedasticity-Corrected Standard Errors. 

 
Year

Variable Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value

α 0 8.2778 0.0127 652.56 0.00 8.4360 0.0120 704.22 0.00 8.7876 0.0149 588.84 0.00

α k 0.1296 0.0022 59.58 0.00 0.1676 0.0021 80.62 0.00 0.1976 0.0026 74.72 0.00

α l 0.3338 0.0026 129.91 0.00 0.3084 0.0021 148.22 0.00 0.2976 0.0034 87.43 0.00

α e 0.0272 0.0033 8.35 0.00 0.0226 0.0031 7.22 0.00 0.0220 0.0036 6.18 0.00

α m 0.4469 0.0031 142.24 0.00 0.4430 0.0028 157.74 0.00 0.4182 0.0036 116.70 0.00

β kk 0.0854 0.0038 22.57 0.00 0.0965 0.0052 18.62 0.00 0.1020 0.0134 7.59 0.00

β ll 0.1421 0.0033 43.34 0.00 0.1380 0.0025 54.41 0.00 0.1188 0.0047 25.08 0.00

β ee 0.0190 0.0052 3.68 0.00 0.0167 0.0045 3.70 0.00 0.0160 0.0059 2.72 0.01

β mm 0.1715 0.0039 44.45 0.00 0.1788 0.0039 46.24 0.00 0.1567 0.0104 15.13 0.00

β kl -0.0317 0.0025 -12.70 0.00 -0.0329 0.0027 -12.15 0.00 -0.0381 0.0074 -5.16 0.00

β ke -0.0026 0.0032 -0.80 0.43 -0.0022 0.0035 -0.65 0.52 -0.0035 0.0062 -0.57 0.57

β km -0.0564 0.0032 -17.79 0.00 -0.0666 0.0029 -22.69 0.00 -0.0731 0.0064 -11.37 0.00

β le -0.0050 0.0032 -1.54 0.12 -0.0048 0.0027 -1.78 0.08 -0.0030 0.0051 -0.60 0.55

β lm -0.1142 0.0027 -41.73 0.00 -0.1081 0.0022 -49.99 0.00 -0.0941 0.0062 -15.07 0.00

β em -0.0123 0.0035 -3.55 0.00 -0.0104 0.0030 -3.43 0.00 -0.0110 0.0048 -2.29 0.02

γ d -0.0447 0.0402 -1.11 0.27 -0.0510 0.0365 -1.40 0.16 -0.0653 0.0377 -1.73 0.08

γ lp 0.9002 0.6089 1.48 0.14 0.0400 0.3483 0.11 0.91 0.6856 0.3750 1.83 0.07

γ sp 0.0055 0.0138 0.40 0.69 -0.0003 0.0118 -0.03 0.98 -0.0105 0.0130 -0.81 0.42

γ sd -0.0053 0.0128 -0.41 0.68 0.0005 0.0127 0.04 0.97 0.0163 0.0142 1.15 0.25

γ rs 0.0016 0.0093 0.17 0.87 0.0066 0.0066 1.00 0.32 0.0055 0.0086 0.64 0.52

γ ps 0.0029 0.0128 0.23 0.82 0.0204 0.0103 1.99 0.05 0.0205 0.0112 1.84 0.07

δ dd -0.4514 0.2650 -1.70 0.09 -0.3009 0.2514 -1.20 0.23 -1.0574 0.2987 -3.54 0.00

δ dlp 0.3716 2.9745 0.12 0.90 -1.3675 1.1486 -1.19 0.23 -0.8496 1.5320 -0.55 0.58

δ dsp 0.0242 0.0649 0.37 0.71 0.0352 0.0517 0.68 0.50 0.0138 0.0620 0.22 0.82

δ dsd -0.0458 0.0504 -0.91 0.36 -0.0442 0.0479 -0.92 0.36 -0.1061 0.0617 -1.72 0.09

δ drs 0.0387 0.0388 1.00 0.32 0.0414 0.0296 1.40 0.16 0.0330 0.0423 0.78 0.44

δ dps -0.0607 0.0484 -1.25 0.21 -0.0137 0.0459 -0.30 0.76 -0.1229 0.0491 -2.50 0.01

λ dk 0.0206 0.0150 1.37 0.17 0.0062 0.0182 0.34 0.73 0.0118 0.0257 0.46 0.65

λ dl 0.0271 0.0159 1.71 0.09 -0.0029 0.0122 -0.24 0.81 0.0229 0.0174 1.32 0.19

λ de 0.0013 0.0250 0.05 0.96 -0.0025 0.0238 -0.10 0.92 0.0007 0.0300 0.02 0.98

λ dm 0.0349 0.0212 1.65 0.10 -0.0062 0.0163 -0.38 0.70 0.0166 0.0262 0.63 0.53

1992 1997 2002
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Table A.7.1.  Parameter Estimates for Rubber and Plastics (SIC 30) with 

Heteroskedasticity-Corrected Standard Errors, continued. 

 
Year

Variable Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value

λ lpk -0.0823 0.3216 -0.26 0.80 0.0253 0.1725 0.15 0.88 0.1586 0.2396 0.66 0.51

λ lpl 0.0560 0.2961 0.19 0.85 -0.1051 0.1179 -0.89 0.37 0.0779 0.1616 0.48 0.63

λ lpe -0.0930 0.5194 -0.18 0.86 -0.0700 0.2172 -0.32 0.75 -0.0671 0.2794 -0.24 0.81

λ lpm 0.0835 0.3825 0.22 0.83 0.1186 0.1391 0.85 0.39 0.3799 0.1939 1.96 0.05

λ spk 0.0037 0.0076 0.49 0.62 0.0035 0.0068 0.51 0.61 0.0011 0.0096 0.12 0.91

λ spl -0.0001 0.0067 -0.02 0.98 0.0004 0.0046 0.08 0.94 -0.0016 0.0067 -0.23 0.81

λ spe 0.0010 0.0115 0.08 0.93 -0.0002 0.0089 -0.02 0.99 0.0004 0.0124 0.03 0.97

λ spm 0.0143 0.0075 1.90 0.06 0.0003 0.0057 0.06 0.96 0.0033 0.0098 0.34 0.73

λ sdk -0.0022 0.0058 -0.38 0.70 -0.0036 0.0069 -0.51 0.61 0.0008 0.0094 0.09 0.93

λ sdl 0.0068 0.0055 1.24 0.22 0.0011 0.0049 0.22 0.83 0.0053 0.0070 0.75 0.45

λ sde 0.0010 0.0096 0.10 0.92 0.0002 0.0091 0.03 0.98 -0.0004 0.0120 -0.04 0.97

λ sdm -0.0068 0.0069 -0.98 0.33 -0.0031 0.0057 -0.54 0.59 0.0030 0.0098 0.31 0.76

λ rsk -0.0006 0.0048 -0.12 0.90 0.0016 0.0034 0.48 0.63 0.0024 0.0051 0.47 0.64

λ rsl 0.0028 0.0043 0.66 0.51 0.0033 0.0030 1.11 0.27 0.0032 0.0037 0.86 0.39

λ rse 0.0012 0.0084 0.14 0.89 0.0017 0.0051 0.32 0.75 0.0016 0.0066 0.24 0.81

λ rsm -0.0073 0.0049 -1.49 0.14 0.0017 0.0033 0.52 0.60 -0.0013 0.0048 -0.27 0.79

λ psk 0.0016 0.0054 0.29 0.77 -0.0028 0.0066 -0.43 0.67 0.0000 0.0055 0.00 1.00

λ psl 0.0073 0.0049 1.48 0.14 0.0076 0.0042 1.81 0.07 0.0109 0.0049 2.22 0.03

λ pse -0.0003 0.0083 -0.03 0.97 -0.0003 0.0078 -0.04 0.97 0.0007 0.0080 0.09 0.93

λ psm -0.0072 0.0063 -1.14 0.25 -0.0090 0.0048 -1.88 0.06 -0.0041 0.0059 -0.70 0.49

ν de 0.1412 0.0150 9.40 0.00 0.1488 0.0141 10.58 0.00 0.1917 0.0168 11.39 0.00

ν se -0.1908 0.0113 -16.82 0.00 -0.1742 0.0116 -15.00 0.00 -0.1591 0.0134 -11.88 0.00

ν cr1 -0.0191 0.0161 -1.19 0.23 0.0181 0.0134 1.34 0.18 0.0011 0.0162 0.07 0.95

ν cr2 -0.0044 0.0138 -0.32 0.75 0.0030 0.0147 0.21 0.84 -0.0134 0.0170 -0.79 0.43

ν cr3 -0.0227 0.0191 -1.19 0.23 -0.0019 0.0163 -0.12 0.91 -0.0183 0.0213 -0.86 0.39

ν pop 0.0238 0.0089 2.67 0.01 0.0060 0.0079 0.75 0.45 0.0008 0.0094 0.09 0.93

ν ue -0.4854 0.3200 -1.52 0.13 0.6835 0.3251 2.10 0.04 -0.2514 0.5332 -0.47 0.64

ν inc 0.1387 0.0559 2.48 0.01 0.0949 0.0459 2.07 0.04 0.0898 0.0508 1.77 0.08

ν dv 1.6090 1.2634 1.27 0.20 -1.4940 1.0273 -1.45 0.15 0.5539 0.9075 0.61 0.54

ρ dh -0.0119 0.0293 -0.41 0.69 -0.0020 0.0284 -0.07 0.94 -0.0595 0.0377 -1.58 0.11

ρ dvh -0.1477 0.9970 -0.15 0.88 -0.3487 0.6419 -0.54 0.59 0.7349 0.7450 0.99 0.32

Generalized R
2

0.9992 0.9995 0.9990

Equation Adjusted R
2

Production Function 0.9569 0.9630 0.9485

Capital Cost Share 0.7785 0.7963 0.7807

Labor Cost Share 0.7506 0.7646 0.6964

Materials Cost Share 0.8753 0.8842 0.8577

1992 1997 2002
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Table A.7.2.  Parameter Estimates for Metalworking Machinery (SIC 354) with 

Heteroskedasticity-Corrected Standard Errors. 

 
Year

Variable Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value

α 0 7.1519 0.0157 455.23 0.00 7.3822 0.0171 431.14 0.00 7.5604 0.0170 445.24 0.00

α k 0.0855 0.0021 40.00 0.00 0.1239 0.0023 53.14 0.00 0.1354 0.0026 51.96 0.00

α l 0.5615 0.0046 121.42 0.00 0.5197 0.0040 130.49 0.00 0.5048 0.0050 101.72 0.00

α e 0.0161 0.0040 4.00 0.00 0.0138 0.0041 3.34 0.00 0.0128 0.0043 2.96 0.00

α m 0.3080 0.0029 107.93 0.00 0.3004 0.0028 107.67 0.00 0.2936 0.0036 82.05 0.00

β kk 0.0635 0.0035 18.01 0.00 0.0805 0.0066 12.16 0.00 0.0803 0.0050 16.15 0.00

β ll 0.1827 0.0064 28.66 0.00 0.1749 0.0067 26.03 0.00 0.1413 0.0056 25.21 0.00

β ee 0.0131 0.0081 1.63 0.10 0.0131 0.0084 1.56 0.12 0.0112 0.0053 2.13 0.03

β mm 0.1701 0.0046 37.22 0.00 0.1739 0.0087 19.98 0.00 0.1540 0.0049 31.44 0.00

β kl -0.0379 0.0035 -10.79 0.00 -0.0458 0.0053 -8.71 0.00 -0.0474 0.0039 -12.20 0.00

β ke -0.0009 0.0038 -0.23 0.82 -0.0013 0.0040 -0.31 0.75 -0.0012 0.0034 -0.36 0.72

β km -0.0286 0.0025 -11.67 0.00 -0.0379 0.0032 -11.77 0.00 -0.0400 0.0034 -11.86 0.00

β le -0.0059 0.0046 -1.28 0.20 -0.0060 0.0063 -0.95 0.34 -0.0048 0.0041 -1.18 0.24

β lm -0.1400 0.0037 -37.42 0.00 -0.1313 0.0058 -22.47 0.00 -0.1194 0.0044 -26.86 0.00

β em -0.0061 0.0047 -1.30 0.19 -0.0060 0.0070 -0.87 0.39 -0.0056 0.0034 -1.67 0.10

γ d -0.0875 0.0416 -2.10 0.04 -0.2001 0.0405 -4.94 0.00 -0.1900 0.0530 -3.59 0.00

γ lp -0.5118 0.9997 -0.51 0.61 -2.8258 0.9456 -2.99 0.00 0.0596 0.6272 0.10 0.92

γ sp 0.0245 0.0183 1.34 0.18 0.0303 0.0191 1.58 0.11 -0.0404 0.0186 -2.17 0.03

γ sd -0.0116 0.0132 -0.88 0.38 -0.0458 0.0165 -2.78 0.01 0.0252 0.0171 1.48 0.14

γ rs -0.0288 0.0105 -2.74 0.01 0.0049 0.0115 0.43 0.67 -0.0194 0.0109 -1.78 0.08

γ ps 0.0760 0.0189 4.02 0.00 0.0832 0.0154 5.40 0.00 0.1058 0.0189 5.59 0.00

δ dd 0.2874 0.3057 0.94 0.35 0.8210 0.2771 2.96 0.00 -0.0518 0.3657 -0.14 0.89

δ dlp -1.3681 5.1171 -0.27 0.79 -2.7493 3.4558 -0.80 0.43 0.8008 2.5915 0.31 0.76

δ dsp -0.0953 0.0869 -1.10 0.27 0.0227 0.0899 0.25 0.80 -0.0993 0.0882 -1.13 0.26

δ dsd 0.0513 0.0536 0.96 0.34 0.0410 0.0629 0.65 0.51 0.1315 0.0733 1.79 0.07

δ drs 0.0128 0.0414 0.31 0.76 -0.0402 0.0404 -0.99 0.32 -0.0178 0.0472 -0.38 0.71

δ dps 0.0349 0.0868 0.40 0.69 0.0289 0.0589 0.49 0.62 -0.1208 0.0727 -1.66 0.10

λ dk 0.0040 0.0145 0.27 0.78 0.0080 0.0149 0.53 0.59 0.0193 0.0190 1.02 0.31

λ dl -0.0252 0.0194 -1.30 0.19 -0.0302 0.0180 -1.68 0.09 -0.0003 0.0245 -0.01 0.99

λ de -0.0015 0.0253 -0.06 0.95 0.0010 0.0282 0.04 0.97 0.0008 0.0295 0.03 0.98

λ dm 0.0226 0.0151 1.50 0.13 0.0285 0.0190 1.50 0.13 0.0314 0.0213 1.48 0.14

1992 1997 2002
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Table A.7.2.  Parameter Estimates for Metalworking Machinery (SIC 354) with 

Heteroskedasticity-Corrected Standard Errors, continued. 

 
Year

Variable Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value

λ lpk -0.0502 0.3853 -0.13 0.90 -0.0719 0.3777 -0.19 0.85 0.0476 0.2326 0.20 0.84

λ lpl 0.4071 0.5156 0.79 0.43 0.1668 0.3873 0.43 0.67 0.5938 0.3251 1.83 0.07

λ lpe 0.0553 0.6585 0.08 0.93 -0.0660 0.5836 -0.11 0.91 -0.0627 0.3875 -0.16 0.87

λ lpm -0.0204 0.4381 -0.05 0.96 0.0397 0.3035 0.13 0.90 0.1275 0.2743 0.46 0.64

λ spk 0.0031 0.0064 0.48 0.63 0.0006 0.0108 0.06 0.96 -0.0008 0.0089 -0.09 0.93

λ spl 0.0082 0.0093 0.87 0.38 0.0044 0.0104 0.42 0.67 -0.0149 0.0110 -1.35 0.18

λ spe -0.0010 0.0114 -0.09 0.93 0.0005 0.0159 0.03 0.98 0.0003 0.0127 0.02 0.98

λ spm 0.0099 0.0074 1.33 0.18 -0.0010 0.0089 -0.11 0.91 -0.0045 0.0089 -0.50 0.62

λ sdk -0.0020 0.0040 -0.49 0.63 -0.0023 0.0083 -0.28 0.78 0.0030 0.0070 0.43 0.67

λ sdl -0.0056 0.0061 -0.93 0.35 0.0024 0.0085 0.28 0.78 0.0228 0.0089 2.56 0.01

λ sde 0.0012 0.0072 0.16 0.87 0.0001 0.0123 0.01 0.99 -0.0004 0.0104 -0.04 0.97

λ sdm -0.0063 0.0048 -1.29 0.20 -0.0005 0.0064 -0.08 0.94 0.0104 0.0075 1.39 0.17

λ rsk 0.0003 0.0035 0.08 0.93 0.0006 0.0048 0.12 0.91 -0.0023 0.0052 -0.44 0.66

λ rsl 0.0049 0.0053 0.92 0.36 -0.0103 0.0047 -2.19 0.03 -0.0098 0.0061 -1.62 0.10

λ rse 0.0014 0.0064 0.22 0.82 0.0015 0.0071 0.21 0.84 0.0011 0.0075 0.14 0.89

λ rsm 0.0015 0.0036 0.42 0.68 0.0018 0.0040 0.45 0.66 -0.0042 0.0050 -0.85 0.40

λ psk -0.0011 0.0064 -0.18 0.86 0.0028 0.0063 0.44 0.66 0.0009 0.0071 0.13 0.89

λ psl 0.0017 0.0098 0.17 0.86 0.0036 0.0075 0.47 0.64 0.0120 0.0090 1.34 0.18

λ pse 0.0008 0.0119 0.07 0.95 0.0014 0.0105 0.14 0.89 0.0005 0.0099 0.05 0.96

λ psm -0.0037 0.0070 -0.53 0.60 0.0048 0.0063 0.76 0.45 0.0002 0.0074 0.02 0.98

ν de 0.1779 0.0205 8.69 0.00 0.2099 0.0193 10.86 0.00 0.2165 0.0240 9.00 0.00

ν se -0.1732 0.0136 -12.77 0.00 -0.1249 0.0131 -9.51 0.00 -0.1583 0.0172 -9.18 0.00

ν cr1 -0.0248 0.0250 -0.99 0.32 0.0774 0.0237 3.27 0.00 -0.0139 0.0278 -0.50 0.62

ν cr2 0.0145 0.0173 0.83 0.40 0.0665 0.0202 3.30 0.00 0.0345 0.0194 1.77 0.08

ν cr3 -0.0848 0.0263 -3.23 0.00 0.0069 0.0241 0.28 0.78 -0.0969 0.0311 -3.12 0.00

ν pop 0.0359 0.0103 3.49 0.00 0.0156 0.0092 1.71 0.09 0.0215 0.0133 1.61 0.11

ν ue 0.5893 0.3663 1.61 0.11 -0.1135 0.6947 -0.16 0.87 2.1589 0.8288 2.60 0.01

ν inc -0.0238 0.0789 -0.30 0.76 -0.1051 0.0760 -1.38 0.17 -0.1869 0.0971 -1.92 0.05

ν dv -3.1462 1.2815 -2.46 0.01 -4.0410 1.4463 -2.79 0.01 -4.0307 1.4058 -2.87 0.00

ρ dh -0.0179 0.0410 -0.44 0.66 -0.0143 0.0368 -0.39 0.70 0.2221 0.0513 4.33 0.00

ρ dvh 0.5574 1.0978 0.51 0.61 -0.9196 0.8130 -1.13 0.26 -0.4974 1.1745 -0.42 0.67

0.9989 0.9991 0.9986

0.9420 0.9517 0.9351

0.7612 0.7576 0.7535

0.7445 0.7388 0.7367

0.8512 0.8784 0.8576Materials Cost Share

Generalized R
2

Equation Adjusted R
2

Production Function

Capital Cost Share

1992 1997 2002

Labor Cost Share
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Table A.7.3.  Parameter Estimates for Measuring and Controlling Devices (SIC 382) with 

Heteroskedasticity-Corrected Standard Errors. 

 
Year

Variable Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value

α 0 8.2787 0.0417 198.59 0.00 8.4910 0.0289 294.04 0.00 8.7729 0.0484 181.34 0.00

α k 0.0935 0.0059 15.72 0.00 0.1222 0.0054 22.69 0.00 0.1280 0.0058 22.09 0.00

α l 0.4313 0.0082 52.82 0.00 0.3983 0.0083 48.16 0.00 0.3958 0.0089 44.36 0.00

α e 0.0105 0.0127 0.83 0.41 0.0093 0.0084 1.10 0.27 0.0075 0.0107 0.70 0.48

α m 0.3737 0.0141 26.51 0.00 0.3772 0.0078 48.62 0.00 0.3670 0.0086 42.53 0.00

β kk 0.0720 0.0351 2.05 0.04 0.0731 0.0081 9.06 0.00 0.0649 0.0210 3.09 0.00

β ll 0.1354 0.0213 6.35 0.00 0.1208 0.0084 14.31 0.00 0.1208 0.0134 9.01 0.00

β ee 0.0083 0.0442 0.19 0.85 0.0091 0.0108 0.85 0.40 0.0064 0.0236 0.27 0.79

β mm 0.1458 0.0213 6.83 0.00 0.1583 0.0123 12.89 0.00 0.1451 0.0132 10.99 0.00

β kl -0.0356 0.0306 -1.16 0.24 -0.0258 0.0042 -6.19 0.00 -0.0264 0.0152 -1.73 0.08

β ke -0.0002 0.0414 -0.01 1.00 -0.0020 0.0080 -0.25 0.80 -0.0008 0.0135 -0.06 0.95

β km -0.0397 0.0284 -1.40 0.16 -0.0485 0.0080 -6.05 0.00 -0.0431 0.0171 -2.52 0.01

β le -0.0031 0.0276 -0.11 0.91 -0.0016 0.0068 -0.23 0.82 -0.0019 0.0102 -0.18 0.85

β lm -0.1080 0.0248 -4.36 0.00 -0.1075 0.0058 -18.54 0.00 -0.1049 0.0136 -7.69 0.00

β em -0.0051 0.0312 -0.16 0.87 -0.0053 0.0057 -0.94 0.35 -0.0037 0.0086 -0.44 0.66

γ d -0.3532 0.1761 -2.01 0.05 -0.2499 0.1440 -1.74 0.08 0.1184 0.1734 0.68 0.49

γ lp 1.3261 0.8182 1.62 0.11 0.3648 0.6008 0.61 0.54 -0.2681 0.9055 -0.30 0.77

γ sp -0.0222 0.0261 -0.85 0.39 0.0285 0.0179 1.59 0.11 -0.0036 0.0201 -0.18 0.86

γ sd 0.0029 0.0209 0.14 0.89 -0.0173 0.0168 -1.03 0.30 -0.0166 0.0222 -0.75 0.45

γ rs 0.0238 0.0103 2.32 0.02 0.0174 0.0092 1.89 0.06 0.0111 0.0132 0.84 0.40

γ ps 0.0907 0.0418 2.17 0.03 0.0820 0.0380 2.16 0.03 0.0607 0.0466 1.30 0.19

δ dd 1.2189 0.9634 1.27 0.21 2.7059 1.3996 1.93 0.05 -3.0457 1.6421 -1.85 0.06

δ dlp 7.8619 4.7448 1.66 0.10 -3.2199 3.4837 -0.92 0.36 -6.7057 6.2829 -1.07 0.29

δ dsp -0.1091 0.1722 -0.63 0.53 0.1146 0.1092 1.05 0.29 -0.3717 0.1813 -2.05 0.04

δ dsd 0.0706 0.1129 0.63 0.53 -0.1726 0.1011 -1.71 0.09 0.1565 0.1366 1.15 0.25

δ drs -0.0127 0.0530 -0.24 0.81 0.0575 0.0579 0.99 0.32 -0.1388 0.0719 -1.93 0.05

δ dps 0.0251 0.2832 0.09 0.93 0.1176 0.2678 0.44 0.66 0.6262 0.3207 1.95 0.05

λ dk 0.0074 0.0751 0.10 0.92 -0.0029 0.0442 -0.06 0.95 -0.0053 0.0471 -0.11 0.91

λ dl 0.0640 0.0625 1.02 0.31 0.0349 0.0364 0.96 0.34 0.0236 0.0556 0.42 0.67

λ de -0.0039 0.1173 -0.03 0.97 -0.0055 0.0675 -0.08 0.94 -0.0021 0.0781 -0.03 0.98

λ dm 0.0360 0.0421 0.86 0.39 0.0235 0.0384 0.61 0.54 -0.0037 0.0458 -0.08 0.94

1992 1997 2002
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Table A.7.3.  Parameter Estimates for Measuring and Controlling Devices (SIC 382) with 

Heteroskedasticity-Corrected Standard Errors, continued. 

 
Year

Variable Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value

λ lpk -0.5054 0.5992 -0.84 0.40 -0.0970 0.2257 -0.43 0.67 0.1686 0.7130 0.24 0.81

λ lpl -1.3694 0.5377 -2.55 0.01 0.0100 0.2734 0.04 0.97 0.3340 0.4975 0.67 0.50

λ lpe -0.0015 0.9373 0.00 1.00 -0.0112 0.4146 -0.03 0.98 -0.0253 0.7521 -0.03 0.97

λ lpm -1.3705 0.4876 -2.81 0.01 -0.4166 0.2441 -1.71 0.09 -0.0436 0.4786 -0.09 0.93

λ spk 0.0096 0.0121 0.80 0.43 0.0030 0.0073 0.41 0.68 0.0032 0.0084 0.37 0.71

λ spl 0.0283 0.0136 2.09 0.04 0.0045 0.0078 0.58 0.56 0.0040 0.0091 0.44 0.66

λ spe 0.0013 0.0208 0.06 0.95 0.0002 0.0122 0.01 0.99 0.0011 0.0148 0.07 0.94

λ spm 0.0295 0.0132 2.24 0.03 0.0057 0.0102 0.56 0.58 0.0101 0.0097 1.04 0.30

λ sdk -0.0053 0.0099 -0.54 0.59 -0.0028 0.0067 -0.42 0.68 -0.0043 0.0123 -0.35 0.73

λ sdl -0.0160 0.0088 -1.80 0.07 -0.0006 0.0066 -0.09 0.93 -0.0013 0.0115 -0.11 0.91

λ sde -0.0006 0.0138 -0.05 0.96 0.0001 0.0103 0.01 0.99 -0.0009 0.0180 -0.05 0.96

λ sdm -0.0190 0.0081 -2.35 0.02 -0.0046 0.0098 -0.47 0.64 -0.0139 0.0102 -1.36 0.17

λ rsk -0.0006 0.0049 -0.13 0.90 -0.0015 0.0039 -0.38 0.70 0.0009 0.0107 0.09 0.93

λ rsl 0.0129 0.0059 2.19 0.03 0.0086 0.0041 2.08 0.04 0.0048 0.0078 0.61 0.54

λ rse -0.0002 0.0084 -0.02 0.98 -0.0002 0.0060 -0.03 0.97 0.0004 0.0165 0.03 0.98

λ rsm 0.0032 0.0060 0.53 0.60 -0.0022 0.0041 -0.53 0.59 0.0010 0.0072 0.14 0.89

λ psk 0.0002 0.0349 0.00 1.00 -0.0009 0.0153 -0.06 0.95 0.0042 0.0347 0.12 0.90

λ psl 0.0271 0.0245 1.11 0.27 0.0169 0.0137 1.23 0.22 0.0281 0.0271 1.04 0.30

λ pse -0.0009 0.0444 -0.02 0.98 0.0013 0.0221 0.06 0.95 0.0005 0.0604 0.01 0.99

λ psm -0.0033 0.0234 -0.14 0.89 0.0023 0.0172 0.13 0.90 -0.0022 0.0250 -0.09 0.93

ν de 0.2313 0.0457 5.06 0.00 0.2507 0.0470 5.34 0.00 0.2750 0.0402 6.85 0.00

ν se -0.2715 0.0517 -5.26 0.00 -0.2542 0.0431 -5.90 0.00 -0.2216 0.0344 -6.45 0.00

ν cr1 0.0188 0.0380 0.50 0.62 -0.0078 0.0375 -0.21 0.83 -0.0892 0.0524 -1.70 0.09

ν cr2 -0.0066 0.0378 -0.17 0.86 -0.0243 0.0415 -0.59 0.56 -0.1172 0.0454 -2.58 0.01

ν cr3 0.0150 0.0317 0.47 0.64 0.0769 0.0359 2.14 0.03 -0.0804 0.0547 -1.47 0.14

ν pop -0.0132 0.0316 -0.42 0.68 0.0486 0.0227 2.14 0.03 0.0765 0.0272 2.81 0.01

ν ue -0.8074 1.1795 -0.68 0.49 -2.8199 1.3128 -2.15 0.03 1.5269 2.1250 0.72 0.47

ν inc -0.3069 0.1418 -2.16 0.03 -0.0912 0.1360 -0.67 0.50 -0.0915 0.1666 -0.55 0.58

ν dv -22.1439 8.5591 -2.59 0.01 -9.5446 5.8248 -1.64 0.10 -5.8544 9.6580 -0.61 0.54

ρ dh -0.0642 0.1126 -0.57 0.57 0.1107 0.0763 1.45 0.15 0.0283 0.0994 0.28 0.78

ρ dvh 1.1099 7.8768 0.14 0.89 3.9798 4.0100 0.99 0.32 -4.1376 7.3760 -0.56 0.57

0.9983 0.9984 0.9975

0.9409 0.9455 0.9372

0.7461 0.7629 0.6756

0.6553 0.6463 0.6209

0.8026 0.8371 0.7896

Labor Cost Share

Materials Cost Share

Generalized R
2

Equation Adjusted R
2

Production Function

1992 1997 2002

Capital Cost Share
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Appendix 8.  Marginal Impacts of Alternative Regional Industrial Dominance  

Indicators Across Ranges of Standard Inputs and Agglomeration Economies 

Figures A.8.1, A.8.2, and A.8.3 are the equivalents of Figure 7.2 in the text for the 

Herfindahl-Hirschman, Rosenbluth, and Gini measures of regional industrial dominance, 

respectively.  Figures A.8.4, A.8.5, and A.8.6 are equivalent to Figure 7.3. 
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Figure A.8.1.  Marginal Impacts of Herfindahl-Hirschman Regional Industrial Dominance Across Range of Standard Inputs. 
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Figure A.8.2.  Marginal Impacts of Rosenbluth Regional Industrial Dominance Across Range of Standard Inputs.  
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Figure A.8.3.  Marginal Impacts of Gini Regional Industrial Dominance Across Range of Standard Inputs. 
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Figure A.8.4.  Marginal Impacts of Herfindahl-Hirschman Regional Industrial Dominance Across Agglomeration Economies Range. 
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Figure A.8.5.  Marginal Impacts of Rosenbluth Regional Industrial Dominance Across Agglomeration Economies Range. 
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Figure A.8.6.  Marginal Impacts of Gini Regional Industrial Dominance Across Agglomeration Economies Range. 
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Appendix 9.  Alternative Agglomeration Economy Spatial Decay Profiles 

Tables A.9.1, A.9.2, and A.9.3 display the information equivalent to that in Table 

6.3 in the text for the labor pooling, manufactured input supply pooling, producer 

services pooling, and academic research expenditures measures calculated with the 

alternative spatial decay profiles described in Chapter Eight.  All distances are in miles.
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Table A.9.1.  Alternative Agglomeration Economy Variables for Rubber and Plastics (SIC 30):  Descriptive Information. 

Year / Sample observations

mean std dev  %>mean mean std dev  %>mean mean std dev  %>mean

Labor Pooling

α  = 0.1, distance = 50 0.0784 0.0147 35.27 0.0979 0.0277 41.56 0.1180 0.0311 44.23

α  = 0.1, distance = 75 (default) 0.0781 0.0129 39.32 0.0974 0.0249 42.76 0.1171 0.0279 44.70

α  = 0.1, distance = 100 0.0773 0.0113 44.89 0.0962 0.0224 44.98 0.1156 0.0251 46.96

α  = 0.5, distance = 75 0.0778 0.0134 40.91 0.0968 0.0255 41.16 0.1165 0.0286 43.95

α  = 1.0, distance = 75 0.0794 0.0161 42.06 0.0989 0.0295 40.28 0.1193 0.0333 42.21

Manufactured Inputs

α  = 0.1, distance = 50 1,904 1,565 34.15 1,157 996 38.18 1,036 909 37.37

α  = 0.1, distance = 75 (default) 2,913 2,071 42.00 1,807 1,356 40.68 1,635 1,212 40.90

α  = 0.1, distance = 100 4,141 2,683 49.36 2,585 1,759 42.76 2,356 1,554 44.01

α  = 0.5, distance = 75 1,031 897 34.50 633 534 37.66 565 503 39.47

α  = 1.0, distance = 75 561 751 34.79 342 437 33.46 301 415 30.87

Producer Services

α  = 0.1, distance = 50 17,821 22,137 29.98 8,567 10,138 32.24 9,256 11,184 32.86

α  = 0.1, distance = 75 (default) 25,567 28,550 27.95 12,517 13,345 30.88 13,878 15,073 30.58

α  = 0.1, distance = 100 34,738 35,059 29.67 17,312 16,754 27.26 19,315 18,776 26.93

α  = 0.5, distance = 75 9,005 8,499 35.27 4,511 4,141 36.19 4,903 4,747 34.56

α  = 1.0, distance = 75 4,701 4,979 37.22 2,461 2,735 34.63 2,627 3,203 32.83

Research

α  = 0.1, distance = 50 71,605 83,042 34.27 80,817 90,614 39.63 91,193 104,659 39.38

α  = 0.1, distance = 200 (default) 330,729 242,436 38.94 406,037 274,997 41.69 501,543 322,954 41.87

α  = 0.1, distance = 300 531,526 320,542 50.44 657,110 378,881 51.38 823,065 449,876 51.36

α  = 0.5, distance = 200 68,816 53,056 37.28 83,401 59,327 41.20 99,783 68,342 43.26

α  = 1.0, distance = 200 22,600 34,996 28.04 27,315 41,560 26.05 30,717 48,011 24.43

1992 (n = 6,747) 1997 (n = 8,000) 2002 (n = 6,546)
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Table A.9.2.  Alternative Agglomeration Economy Variables for Metalworking Machinery (SIC 354):  Descriptive Information. 

Year / Sample observations

mean std dev  %>mean mean std dev  %>mean mean std dev  %>mean

Labor Pooling

α  = 0.1, distance = 50 0.1187 0.0118 46.73 0.1473 0.0157 55.43 0.1246 0.0229 55.30

α  = 0.1, distance = 75 (default) 0.1170 0.0109 47.95 0.1457 0.0145 55.01 0.1221 0.0204 56.28

α  = 0.1, distance = 100 0.1156 0.0103 44.96 0.1446 0.0140 51.91 0.1202 0.0190 56.79

α  = 0.5, distance = 75 0.1187 0.0126 46.41 0.1465 0.0152 54.68 0.1228 0.0211 53.40

α  = 1.0, distance = 75 0.1212 0.0158 41.53 0.1491 0.0179 49.95 0.1263 0.0246 51.77

Manufactured Inputs

α  = 0.1, distance = 50 2,233 1,513 38.81 2,026 1,330 42.28 1,845 1,261 41.41

α  = 0.1, distance = 75 (default) 3,297 1,883 48.20 3,025 1,650 47.74 2,797 1,609 45.61

α  = 0.1, distance = 100 4,650 2,399 54.83 4,311 2,143 55.23 4,030 2,112 52.30

α  = 0.5, distance = 75 1,238 805 40.10 1,119 714 40.86 1,014 658 41.65

α  = 1.0, distance = 75 722 637 35.36 644 577 38.09 571 517 39.17

Producer Services

α  = 0.1, distance = 50 14,840 17,005 36.89 6,591 7,279 38.00 6,954 8,031 38.02

α  = 0.1, distance = 75 (default) 22,113 22,927 31.18 9,866 9,857 30.46 10,660 11,130 30.09

α  = 0.1, distance = 100 31,771 29,590 26.31 14,119 12,604 24.75 15,587 14,594 24.35

α  = 0.5, distance = 75 7,992 6,878 34.69 3,573 3,078 35.37 3,801 3,556 34.17

α  = 1.0, distance = 75 4,386 4,199 36.37 1,973 2,044 34.77 2,068 2,358 33.12

Research

α  = 0.1, distance = 50 90,523 119,538 38.27 126,233 157,162 35.81 142,452 178,397 35.38

α  = 0.1, distance = 200 (default) 497,467 377,447 38.95 725,256 475,313 39.69 924,617 555,602 44.20

α  = 0.1, distance = 300 951,010 530,637 34.92 1,355,860 697,026 42.39 1,736,869 814,152 49.15

α  = 0.5, distance = 200 97,856 82,525 34.26 140,113 101,366 35.92 173,752 118,158 41.43

α  = 1.0, distance = 200 28,966 58,476 22.26 39,650 74,452 21.64 47,170 87,304 20.33

1992 (n = 5,189) 1997 (n = 5,490) 2002 (n = 4,161)
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Table A.9.3.  Alternative Agglomeration Economy Variables for Measuring/Controlling Devices (SIC 382):  Descriptive Information. 

Year / Sample observations

mean std dev  %>mean mean std dev  %>mean mean std dev  %>mean

Labor Pooling

α  = 0.1, distance = 50 0.1307 0.0112 47.90 0.1887 0.0161 47.27 0.1464 0.0169 50.46

α  = 0.1, distance = 75 0.1275 0.0077 47.69 0.1845 0.0119 49.09 0.1438 0.0139 61.95

α  = 0.1, distance = 100 0.1258 0.0066 50.58 0.1822 0.0104 52.14 0.1422 0.0126 61.62

α  = 0.5, distance = 75 0.1322 0.0133 38.01 0.1904 0.0190 43.12 0.1476 0.0198 43.38

α  = 1.0, distance = 75 (default) 0.1369 0.0201 39.45 0.1958 0.0265 42.53 0.1514 0.0259 40.88

Manufactured Inputs

α  = 0.1, distance = 50 4,029 2,863 40.82 4,683 4,771 30.13 4,396 3,922 34.39

α  = 0.1, distance = 75 5,271 3,275 47.76 5,775 4,800 40.00 5,468 3,991 43.96

α  = 0.1, distance = 100 6,658 3,724 50.36 6,971 4,806 44.81 6,647 4,143 47.96

α  = 0.5, distance = 75 2,445 2,172 31.14 3,063 4,100 22.92 2,746 3,201 27.56

α  = 1.0, distance = 75 (default) 1,728 2,167 25.22 2,374 4,113 18.31 2,051 3,194 22.90

Producer Services

α  = 0.1, distance = 50 22,171 18,588 35.91 13,041 10,158 35.32 15,391 11,760 42.71

α  = 0.1, distance = 75 29,855 24,932 33.38 17,418 13,974 31.95 20,658 16,416 37.72

α  = 0.1, distance = 100 38,327 31,018 23.84 22,230 17,705 21.49 26,050 20,572 30.89

α  = 0.5, distance = 75 11,816 6,746 44.22 7,084 4,055 48.64 8,428 5,014 46.54

α  = 1.0, distance = 75 (default) 7,089 4,425 50.51 4,401 3,039 47.79 5,268 3,809 46.54

Research

α  = 0.1, distance = 50 351,894 324,155 36.49 404,162 359,165 39.42 455,715 369,934 42.80

α  = 0.1, distance = 200 976,528 693,341 42.56 1,168,589 827,246 39.61 1,349,064 878,821 44.13

α  = 0.1, distance = 300 1,508,751 971,866 46.17 1,849,187 1,211,985 45.78 2,166,647 1,325,504 49.71

α  = 0.5, distance = 200 287,981 237,962 42.41 338,027 277,223 40.58 379,065 270,459 40.13

α  = 1.0, distance = 200 (default) 160,186 229,831 22.90 185,002 267,781 29.48 201,325 261,265 27.81

1997 (n = 1,540) 2002 (n = 1,201)1992 (n = 1,384)

 



 

 299 

Appendix 10.  Economy-Wide Dominance 

Table A.10.1 displays the mean, standard deviation, and percent of observations 

above the mean for the measures of regional manufacturing dominance and regional 

economy-wide dominance.  Tables A.10.2, A.10.3, and A.10.4 contain the coefficient 

estimates, standard errors, t-statistics, and probability values obtained from re-evaluating 

the four-equation system with a manufacturing or overall regional dominance control 

added to the production function, along with a repeat of the base model results that do not 

include an economy-wide dominance variable. 
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Table A.10.1.  Economy-Wide Dominance Variables:  Descriptive Information. 

Year

mean std dev  %>mean mean std dev  %>mean mean std dev  %>mean

Manufacturing Dominance

Concentratio Ratio DMC 0.4410 0.1410 44.79 0.4529 0.1448 46.79 0.4804 0.1442 46.93

Herfindahl-Hirschman DMH 0.0447 0.0586 30.74 0.0456 0.0535 32.41 0.0523 0.0593 33.41

Rosenbluth DMR 0.0053 0.0054 31.42 0.0062 0.0072 32.91 0.0076 0.0083 30.72

Gini DMG 0.8860 0.0299 47.95 0.8942 0.0286 49.28 0.8930 0.0279 43.54

Economy-Wide Dominance

Concentratio Ratio DOC 0.1440 0.0453 41.81 0.1385 0.0438 45.13 0.1450 0.0518 41.57

Herfindahl-Hirschman DOH 0.0030 0.0021 33.42 0.0026 0.0018 37.84 0.0030 0.0029 30.78

Rosenbluth DOR 0.0003 0.0002 34.42 0.0003 0.0003 34.81 0.0003 0.0003 35.01

Gini DOG 0.8485 0.0152 53.43 0.8478 0.0152 57.54 0.8266 0.0218 56.02

Year

mean std dev  %>mean mean std dev  %>mean mean std dev  %>mean

Manufacturing Dominance

Concentratio Ratio DMC 0.4779 0.1576 48.85 0.4699 0.1541 48.49 0.4886 0.1542 47.20

Herfindahl-Hirschman DMH 0.0589 0.0651 36.81 0.0554 0.0608 33.59 0.0549 0.0562 37.61

Rosenbluth DMR 0.0055 0.0073 30.47 0.0055 0.0070 32.15 0.0065 0.0085 28.86

Gini DMG 0.8902 0.0319 49.22 0.8959 0.0306 45.25 0.8956 0.0312 45.33

Economy-Wide Dominance

Concentratio Ratio DOC 0.1558 0.0482 44.36 0.1394 0.0403 50.22 0.1399 0.0420 48.11

Herfindahl-Hirschman DOH 0.0038 0.0031 36.71 0.0027 0.0020 40.64 0.0026 0.0022 35.30

Rosenbluth DOR 0.0003 0.0003 32.70 0.0003 0.0003 32.40 0.0003 0.0003 33.81

Gini DOG 0.8474 0.0169 58.60 0.8459 0.0165 59.69 0.8239 0.0231 56.91

Year

mean std dev  %>mean mean std dev  %>mean mean std dev  %>mean

Manufacturing Dominance

Concentratio Ratio DMC 0.3909 0.1184 42.56 0.3975 0.1248 42.01 0.4214 0.1168 42.30

Herfindahl-Hirschman DMH 0.0317 0.0492 29.77 0.0324 0.0419 25.58 0.0400 0.0568 28.31

Rosenbluth DMR 0.0025 0.0016 41.33 0.0027 0.0022 37.34 0.0030 0.0026 35.89

Gini DMG 0.8903 0.0268 45.66 0.8987 0.0254 43.51 0.8967 0.0248 41.72

Economy-Wide Dominance

Concentratio Ratio DOC 0.1215 0.0326 45.38 0.1129 0.0262 40.97 0.1160 0.0293 36.89

Herfindahl-Hirschman DOH 0.0020 0.0013 35.55 0.0016 0.0008 38.51 0.0017 0.0009 36.89

Rosenbluth DOR 0.0001 0.0001 47.83 0.0001 0.0001 39.03 0.0001 0.0001 42.55

Gini DOG 0.8546 0.0115 67.92 0.8550 0.0108 58.70 0.8386 0.0157 58.37

SIC 382:  Measuring and Controlling Devices.

1992 (n = 1,384) 1997 (n = 1,540) 2002 (n = 1,201)

SIC 354:  Metalworking Machinery.

1992 (n = 5,189) 1997 (n = 5,490) 2002 (n = 4,161)

SIC 30:  Rubber and Plastics.

1992 (n = 6,747) 1997 (n = 8,000) 2002 (n = 6,546)
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Table A.10.2.  Parameter Estimates with Economy-Wide Dominance Controls for Rubber and Plastics (SIC 30). 

Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value

1992
DC γ d -0.0447 0.0389 -1.15 0.25 -0.0361 0.0399 -0.90 0.37 -0.0255 0.0423 -0.60 0.55

τ -0.0343 0.0349 -0.98 0.33 -0.1623 0.1402 -1.16 0.25

DH γ d -0.1616 0.1119 -1.44 0.15 -0.1509 0.1122 -1.34 0.18 -0.1555 0.1180 -1.32 0.19

τ -0.0804 0.0627 -1.28 0.20 -0.4396 2.7119 -0.16 0.87

DR γ d -0.9101 0.2383 -3.82 0.00 -0.6390 0.2851 -2.24 0.03 -0.6595 0.2607 -2.53 0.01

τ -1.9654 1.1372 -1.73 0.08 -70.6891 29.9143 -2.36 0.02

DG γ d 0.3673 0.0832 4.41 0.00 0.3672 0.0832 4.41 0.00 0.3685 0.0832 4.43 0.00

τ 0.0263 0.1487 0.18 0.86 1.2539 0.3654 3.43 0.00

1997
DC γ d -0.0510 0.0332 -1.53 0.12 -0.0616 0.0341 -1.81 0.07 -0.0524 0.0355 -1.47 0.14

τ 0.0382 0.0281 1.36 0.17 0.0149 0.1387 0.11 0.91

DH γ d -0.0457 0.0856 -0.53 0.59 -0.0387 0.0860 -0.45 0.65 -0.0369 0.0894 -0.41 0.68

τ -0.0515 0.0618 -0.83 0.40 -0.9819 2.8585 -0.34 0.73

DR γ d -0.5765 0.1863 -3.09 0.00 -0.5490 0.1996 -2.75 0.01 -0.3216 0.2052 -1.57 0.12

τ -0.3124 0.8114 -0.38 0.70 -79.6381 26.8141 -2.97 0.00

DG γ d 0.3341 0.0741 4.51 0.00 0.3182 0.0748 4.25 0.00 0.3279 0.0741 4.42 0.00

τ 0.1960 0.1262 1.55 0.12 0.8858 0.3016 2.94 0.00

2002
DC γ d -0.0653 0.0369 -1.77 0.08 -0.0711 0.0378 -1.88 0.06 -0.0546 0.0381 -1.43 0.15

τ 0.0216 0.0310 0.70 0.48 -0.1438 0.1318 -1.09 0.28

DH γ d -0.4631 0.1047 -4.42 0.00 -0.4717 0.1056 -4.46 0.00 -0.4333 0.1070 -4.05 0.00

τ 0.0377 0.0629 0.60 0.55 -2.4466 1.8113 -1.35 0.18

DR γ d -1.0107 0.1676 -6.03 0.00 -1.0122 0.1904 -5.32 0.00 -0.9302 0.1767 -5.27 0.00

τ 0.0130 0.7960 0.02 0.99 -31.9736 22.1891 -1.44 0.15

DG γ d 0.3499 0.0868 4.03 0.00 0.3367 0.0876 3.85 0.00 0.3553 0.0868 4.09 0.00

τ 0.1619 0.1394 1.16 0.25 0.9286 0.2783 3.34 0.00

Note:  τ  indicates the regional manufacturing dominance or overall regional dominance control variable.

Base Model Manufacturing Dominance Overall Dominance
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Table A.10.3.  Parameter Estimates with Economy-Wide Dominance Controls for Metalworking Machinery (SIC 354). 

Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value

1992
DC γ d -0.0875 0.0413 -2.12 0.03 -0.0928 0.0419 -2.22 0.03 -0.0899 0.0414 -2.17 0.03

τ -0.0323 0.0421 -0.77 0.44 -0.2251 0.1915 -1.18 0.24

DH γ d -0.1121 0.1055 -1.06 0.29 -0.1175 0.1058 -1.11 0.27 -0.1175 0.1063 -1.11 0.27

τ -0.0651 0.0883 -0.74 0.46 -1.3255 3.2463 -0.41 0.68

DR γ d -0.2563 0.2254 -1.14 0.26 0.0644 0.2380 0.27 0.79 -0.0142 0.2304 -0.06 0.95

τ -5.3770 1.2941 -4.15 0.00 -133.7777 27.2244 -4.91 0.00

DG γ d 0.2912 0.0895 3.25 0.00 0.2924 0.0895 3.27 0.00 0.2729 0.0911 3.00 0.00

τ 0.2642 0.1560 1.69 0.09 0.4635 0.4302 1.08 0.28

1997
DC γ d -0.2001 0.0407 -4.91 0.00 -0.2050 0.0415 -4.94 0.00 -0.1977 0.0407 -4.85 0.00

τ -0.0251 0.0402 -0.62 0.53 -0.5628 0.2072 -2.72 0.01

DH γ d -0.1830 0.0796 -2.30 0.02 -0.1829 0.0796 -2.30 0.02 -0.1695 0.0804 -2.11 0.03

τ -0.0030 0.0806 -0.04 0.97 -4.7396 3.8558 -1.23 0.22

DR γ d -0.6614 0.1731 -3.82 0.00 -0.5371 0.1784 -3.01 0.00 -0.5420 0.1754 -3.09 0.00

τ -3.7020 1.2986 -2.85 0.00 -93.3752 23.1525 -4.03 0.00

DG γ d 0.2169 0.0775 2.80 0.01 0.1924 0.0777 2.48 0.01 0.1342 0.0793 1.69 0.09

τ 0.5794 0.1665 3.48 0.00 1.9566 0.4193 4.67 0.00

2002
DC γ d -0.1900 0.0518 -3.67 0.00 -0.1784 0.0521 -3.43 0.00 -0.1839 0.0518 -3.55 0.00

τ 0.0918 0.0458 2.01 0.04 -0.6096 0.2733 -2.23 0.03

DH γ d -0.2661 0.1012 -2.63 0.01 -0.2287 0.1014 -2.26 0.02 -0.2626 0.1012 -2.60 0.01

τ 0.4084 0.1037 3.94 0.00 -5.4188 4.2631 -1.27 0.20

DR γ d -0.7175 0.1757 -4.08 0.00 -0.7103 0.1760 -4.04 0.00 -0.6172 0.1763 -3.50 0.00

τ -0.9185 1.2426 -0.74 0.46 -143.2220 28.1862 -5.08 0.00

DG γ d 0.3920 0.1000 3.92 0.00 0.3540 0.1003 3.53 0.00 0.3840 0.1004 3.82 0.00

τ 0.7658 0.2020 3.79 0.00 0.3623 0.4031 0.90 0.37

Note:  τ  indicates the regional manufacturing dominance or overall regional dominance control variable.

Base Model Manufacturing Dominance Overall Dominance

 



 

 

3
0
3
 

Table A.10.4.  Parameter Estimates with Economy-Wide Dominance Controls for Measuring and Controlling Devices  

(SIC 382).  

 

Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value

1992
DC γ d -0.3532 0.1832 -1.93 0.05 -0.3792 0.1836 -2.07 0.04 -0.3136 0.1835 -1.71 0.09

τ -0.2859 0.1616 -1.77 0.08 -2.1023 0.8862 -2.37 0.02

DH γ d -0.6369 0.2724 -2.34 0.02 -0.6800 0.3171 -2.14 0.03 -0.2864 0.2986 -0.96 0.34

τ 0.0722 0.2760 0.26 0.79 -52.3674 18.6142 -2.81 0.00

DR γ d -2.0502 0.6850 -2.99 0.00 -2.0364 0.6857 -2.97 0.00 -2.0334 0.6866 -2.96 0.00

τ -8.1894 13.9361 -0.59 0.56 -135.0667 343.1008 -0.39 0.69

DG γ d 0.4963 0.3390 1.46 0.14 0.5506 0.3405 1.62 0.11 0.4554 0.3701 1.23 0.22

τ -0.7569 0.5022 -1.51 0.13 0.4421 1.6112 0.27 0.78

1997
DC γ d -0.2499 0.1441 -1.73 0.08 -0.3222 0.1469 -2.19 0.03 -0.2718 0.1448 -1.88 0.06

τ -0.3200 0.1322 -2.42 0.02 -1.0739 0.7329 -1.47 0.14

DH γ d -0.1969 0.2141 -0.92 0.36 -0.1903 0.2199 -0.87 0.39 -0.1921 0.2142 -0.90 0.37

τ -0.0357 0.2688 -0.13 0.89 -14.5603 20.3077 -0.72 0.47

DR γ d -1.8161 0.6050 -3.00 0.00 -1.8215 0.6051 -3.01 0.00 -1.5870 0.6254 -2.54 0.01

τ -4.8748 6.7612 -0.72 0.47 -494.9902 345.2949 -1.43 0.15

DG γ d 1.1763 0.2813 4.18 0.00 1.1760 0.2814 4.18 0.00 1.0692 0.3037 3.52 0.00

τ 0.1920 0.4836 0.40 0.69 1.2329 1.3161 0.94 0.35

2002
DC γ d 0.1184 0.1793 0.66 0.51 0.0382 0.1830 0.21 0.83 0.1258 0.1798 0.70 0.48

τ -0.2796 0.1312 -2.13 0.03 -0.4260 0.7569 -0.56 0.57

DH γ d 0.5532 0.2702 2.05 0.04 0.5426 0.2749 1.97 0.05 0.5663 0.2745 2.06 0.04

τ -0.0478 0.2299 -0.21 0.84 -5.3943 19.5346 -0.28 0.78

DR γ d 0.0582 0.5339 0.11 0.91 -0.0668 0.5448 -0.12 0.90 0.0462 0.5345 0.09 0.93

τ -6.9670 5.9418 -1.17 0.24 -274.0474 383.9616 -0.71 0.48

DG γ d 0.4634 0.3075 1.51 0.13 0.4584 0.3075 1.49 0.14 0.5198 0.3170 1.64 0.10

τ -0.7632 0.6090 -1.25 0.21 -0.8769 1.1834 -0.74 0.46

Note:  τ  indicates the regional manufacturing dominance or overall regional dominance control variable.

Base Model Manufacturing Dominance Overall Dominance
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Appendix 11.  Plant Size Interactions 

Table A.11.1 through A.11.9 present the coefficient estimates, standard errors, t-

statistics, and probability values for the marginal impacts obtained by re-evaluating the 

four-equation production and cost share system partitioned by absolute and relative plant 

size categories, using the four measures of regional industrial dominance. 
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Table A.11.1.  Marginal Impacts Including Plant Size Interactions for Rubber and Plastics (SIC 30), 1992. 

Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value

0.1389 0.0171 8.14 0.00
-0.1879 0.0116 -16.19 0.00 -0.0415 0.0209 -1.98 0.05 0.0034 0.0119 0.29 0.77 0.0752 0.0132 5.71 0.00

Dominance dominator 0.1274 0.0686 1.86 0.06
neither      /   large -0.0923 0.0457 -2.02 0.04 0.2187 0.1028 2.13 0.03 0.0056 0.0498 0.11 0.91 -0.0154 0.0421 -0.37 0.71
dominated / small -0.0225 0.0546 -0.41 0.68 -0.0480 0.0409 -1.17 0.24 -0.0531 0.0463 -1.15 0.25 -0.1001 0.0667 -1.50 0.13

Labor dominator -0.3656 1.3993 -0.26 0.79
Pooling neither      /   large 0.8273 0.7739 1.07 0.29 0.0902 2.0237 0.04 0.96 1.0326 0.8463 1.22 0.22 1.2888 0.6561 1.96 0.05

dominated / small 1.3223 0.8186 1.62 0.11 1.1143 0.6233 1.79 0.07 1.1678 0.7253 1.61 0.11 0.1987 1.1220 0.18 0.86

Manufactured dominator 0.0342 0.0327 1.05 0.30
Inputs neither      /   large 0.0241 0.0175 1.38 0.17 0.0319 0.0478 0.67 0.50 -0.0066 0.0194 -0.34 0.73 -0.0162 0.0144 -1.12 0.26

dominated / small -0.0113 0.0165 -0.69 0.49 -0.0142 0.0134 -1.05 0.29 -0.0168 0.0152 -1.11 0.27 -0.0041 0.0221 -0.18 0.85

Producer dominator -0.0157 0.0258 -0.61 0.54
Services neither      /   large -0.0120 0.0152 -0.79 0.43 -0.0087 0.0380 -0.23 0.82 0.0075 0.0162 0.46 0.65 0.0073 0.0130 0.56 0.57

dominated / small 0.0035 0.0156 0.22 0.82 0.0053 0.0125 0.42 0.67 0.0055 0.0143 0.38 0.70 -0.0048 0.0210 -0.23 0.82

Research dominator -0.0080 0.0182 -0.44 0.66
neither      /   large -0.0058 0.0110 -0.53 0.60 -0.0167 0.0252 -0.66 0.51 -0.0013 0.0120 -0.11 0.91 0.0023 0.0098 0.23 0.81
dominated / small 0.0093 0.0111 0.84 0.40 0.0014 0.0094 0.15 0.88 0.0017 0.0102 0.17 0.87 -0.0014 0.0136 -0.10 0.92

Patents dominator 0.0279 0.0231 1.21 0.23
neither      /   large -0.0201 0.0151 -1.33 0.18 0.0144 0.0351 0.41 0.68 -0.0107 0.0162 -0.66 0.51 -0.0066 0.0133 -0.50 0.62
dominated / small 0.0167 0.0160 1.04 0.30 -0.0083 0.0127 -0.66 0.51 -0.0047 0.0143 -0.33 0.74 -0.0093 0.0205 -0.46 0.65

0.1518 0.0157 9.65 0.00
-0.1943 0.0100 -19.40 0.00 -0.0555 0.0184 -3.02 0.00 -0.0033 0.0108 -0.31 0.76 0.0632 0.0118 5.36 0.00

Dominance dominator 0.3673 0.2122 1.73 0.08
neither      /   large -0.2501 0.1383 -1.81 0.07 0.6442 0.3455 1.86 0.06 0.0594 0.1593 0.37 0.71 -0.0109 0.1261 -0.09 0.93
dominated / small -0.1740 0.1881 -0.93 0.35 -0.1201 0.1200 -1.00 0.32 -0.1387 0.1421 -0.98 0.33 -0.2822 0.2312 -1.22 0.22

Labor dominator -0.6206 1.4108 -0.44 0.66
Pooling neither      /   large 0.9091 0.7542 1.21 0.23 -0.0833 2.0735 -0.04 0.97 1.1427 0.8260 1.38 0.17 1.4759 0.6178 2.39 0.02

dominated / small 1.4926 0.7818 1.91 0.06 1.3332 0.5810 2.29 0.02 1.3970 0.6894 2.03 0.04 0.4990 1.1073 0.45 0.65

Manufactured dominator 0.0403 0.0327 1.23 0.22
Inputs neither      /   large 0.0329 0.0173 1.90 0.06 0.0346 0.0478 0.72 0.47 -0.0032 0.0191 -0.17 0.87 -0.0121 0.0141 -0.86 0.39

dominated / small -0.0054 0.0163 -0.33 0.74 -0.0104 0.0131 -0.79 0.43 -0.0135 0.0149 -0.91 0.36 0.0006 0.0220 0.03 0.98

Producer dominator -0.0227 0.0258 -0.88 0.38
Services neither      /   large -0.0164 0.0149 -1.10 0.27 -0.0137 0.0379 -0.36 0.72 0.0064 0.0159 0.41 0.68 0.0070 0.0125 0.56 0.57

dominated / small -0.0017 0.0150 -0.11 0.91 0.0065 0.0120 0.54 0.59 0.0069 0.0138 0.50 0.62 -0.0003 0.0206 -0.02 0.99

Research dominator -0.0060 0.0180 -0.33 0.74
neither      /   large -0.0063 0.0106 -0.59 0.56 -0.0149 0.0248 -0.60 0.55 -0.0014 0.0116 -0.12 0.90 0.0017 0.0093 0.18 0.86
dominated / small 0.0080 0.0106 0.76 0.45 -0.0001 0.0088 -0.01 0.99 -0.0003 0.0096 -0.03 0.98 -0.0061 0.0131 -0.46 0.64

Patents dominator 0.0174 0.0226 0.77 0.44
neither      /   large -0.0251 0.0138 -1.82 0.07 0.0065 0.0339 0.19 0.85 -0.0095 0.0148 -0.64 0.52 -0.0051 0.0118 -0.43 0.67
dominated / small 0.0102 0.0147 0.69 0.49 -0.0053 0.0112 -0.47 0.64 -0.0011 0.0129 -0.09 0.93 -0.0012 0.0195 -0.06 0.95

Note:  "Neither" and "dominated" label the dominance models, "large" and "small" pertain to the small establishment models.

Concentration Ratio Dominance (D C )

Dominators
Dominated / Small

Dominators
Dominated / Small

Herfindahl-Hirschman Dominance (D H )

Dominance Categories Small ≤ 250 Employees Small ≤ 15 EmployeesSmall ≤ 50 Employees
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Table A.11.1.  Marginal Impacts Including Plant Size Interactions for Rubber and Plastics (SIC 30), 1992, continued. 

Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value

0.1443 0.0164 8.82 0.00
-0.1993 0.0102 -19.59 0.00 -0.0528 0.0185 -2.85 0.00 -0.0041 0.0109 -0.38 0.70 0.0593 0.0120 4.96 0.00

Dominance dominator -0.0711 0.3425 -0.21 0.84
neither      /   large -0.9726 0.2888 -3.37 0.00 0.5664 0.6325 0.90 0.37 -0.1621 0.3241 -0.50 0.62 -0.2769 0.2748 -1.01 0.31
dominated / small -1.3400 0.4200 -3.19 0.00 -0.5326 0.2721 -1.96 0.05 -0.6561 0.3062 -2.14 0.03 -1.3928 0.4743 -2.94 0.00

Labor dominator 0.0099 1.4108 0.01 0.99
Pooling neither      /   large 0.7811 0.7554 1.03 0.30 0.7921 2.0735 0.38 0.70 1.2039 0.8266 1.46 0.15 1.4765 0.6218 2.37 0.02

dominated / small 1.3330 0.7840 1.70 0.09 1.2901 0.5863 2.20 0.03 1.3483 0.6943 1.94 0.05 0.5153 1.1073 0.47 0.64

Manufactured dominator 0.0272 0.0327 0.83 0.41
Inputs neither      /   large 0.0284 0.0173 1.64 0.10 0.0225 0.0476 0.47 0.64 -0.0059 0.0191 -0.31 0.76 -0.0146 0.0142 -1.04 0.30

dominated / small -0.0112 0.0162 -0.69 0.49 -0.0127 0.0132 -0.96 0.34 -0.0160 0.0149 -1.07 0.28 -0.0047 0.0219 -0.22 0.83

Producer dominator -0.0080 0.0260 -0.31 0.76
Services neither      /   large -0.0113 0.0151 -0.75 0.46 0.0015 0.0384 0.04 0.97 0.0117 0.0161 0.72 0.47 0.0117 0.0127 0.92 0.36

dominated / small -0.0008 0.0153 -0.05 0.96 0.0083 0.0122 0.68 0.50 0.0071 0.0141 0.51 0.61 -0.0053 0.0209 -0.25 0.80

Research dominator -0.0071 0.0181 -0.39 0.70
neither      /   large -0.0060 0.0107 -0.56 0.58 -0.0177 0.0251 -0.70 0.48 -0.0024 0.0117 -0.21 0.84 0.0010 0.0094 0.11 0.91
dominated / small 0.0113 0.0108 1.05 0.29 0.0004 0.0089 0.05 0.96 0.0012 0.0098 0.12 0.91 -0.0012 0.0133 -0.09 0.93

Patents dominator 0.0174 0.0230 0.76 0.45
neither      /   large -0.0258 0.0144 -1.80 0.07 0.0097 0.0353 0.27 0.78 -0.0080 0.0155 -0.51 0.61 -0.0036 0.0124 -0.29 0.77
dominated / small 0.0015 0.0154 0.10 0.92 -0.0065 0.0117 -0.56 0.58 -0.0049 0.0135 -0.36 0.72 -0.0142 0.0201 -0.71 0.48

0.1483 0.0152 9.77 0.00
-0.1911 0.0106 -17.99 0.00 -0.0419 0.0196 -2.14 0.03 -0.0029 0.0111 -0.26 0.80 0.0627 0.0122 5.16 0.00

Dominance dominator 0.8050 0.1842 4.37 0.00
neither      /   large 0.2107 0.1069 1.97 0.05 0.7202 0.2912 2.47 0.01 0.2899 0.1183 2.45 0.01 0.1308 0.0904 1.45 0.15
dominated / small 0.3748 0.1260 2.98 0.00 0.0776 0.0865 0.90 0.37 0.0061 0.1032 0.06 0.95 0.0850 0.1662 0.51 0.61

Labor dominator -0.1548 1.3895 -0.11 0.91
Pooling neither      /   large 0.6749 0.7447 0.91 0.36 0.4029 1.9943 0.20 0.84 0.9470 0.8109 1.17 0.24 1.1836 0.6022 1.97 0.05

dominated / small 1.7644 0.7672 2.30 0.02 0.9419 0.5644 1.67 0.10 0.9376 0.6732 1.39 0.16 -0.1297 1.0975 -0.12 0.91

Manufactured dominator 0.0301 0.0324 0.93 0.35
Inputs neither      /   large 0.0359 0.0173 2.07 0.04 0.0200 0.0468 0.43 0.67 -0.0038 0.0191 -0.20 0.84 -0.0117 0.0141 -0.83 0.41

dominated / small -0.0075 0.0162 -0.46 0.65 -0.0071 0.0132 -0.54 0.59 -0.0085 0.0149 -0.57 0.57 0.0070 0.0218 0.32 0.75

Producer dominator -0.0244 0.0257 -0.95 0.34
Services neither      /   large -0.0165 0.0150 -1.11 0.27 -0.0160 0.0378 -0.42 0.67 0.0042 0.0160 0.26 0.79 0.0045 0.0126 0.36 0.72

dominated / small 0.0044 0.0152 0.29 0.77 0.0046 0.0121 0.38 0.70 0.0044 0.0139 0.32 0.75 -0.0013 0.0206 -0.06 0.95

Research dominator 0.0048 0.0178 0.27 0.79
neither      /   large -0.0025 0.0106 -0.24 0.81 -0.0013 0.0249 -0.05 0.96 0.0035 0.0116 0.30 0.76 0.0048 0.0093 0.52 0.61
dominated / small 0.0133 0.0107 1.24 0.22 0.0010 0.0088 0.12 0.91 -0.0007 0.0096 -0.07 0.95 -0.0066 0.0132 -0.50 0.61

Patents dominator 0.0075 0.0216 0.35 0.73
neither      /   large -0.0221 0.0130 -1.70 0.09 -0.0153 0.0317 -0.48 0.63 -0.0143 0.0140 -1.02 0.31 -0.0082 0.0110 -0.75 0.46
dominated / small 0.0075 0.0137 0.55 0.58 -0.0048 0.0105 -0.46 0.65 0.0002 0.0121 0.02 0.98 0.0071 0.0183 0.39 0.70

Note:  "Neither" and "dominated" label the dominance models, "large" and "small" pertain to the small establishment models.

Rosenbluth Dominance (D R )

Dominance Categories Small ≤ 250 Employees Small ≤ 15 EmployeesSmall ≤ 50 Employees

Dominators
Dominated / Small

Dominators
Dominated / Small

Gini Dominance (D G )
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Table A.11.2.  Marginal Impacts Including Plant Size Interactions for Rubber and Plastics (SIC 30), 1997. 

Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value

0.1524 0.0153 9.95 0.00
-0.1783 0.0107 -16.66 0.00 -0.0643 0.0190 -3.38 0.00 0.0084 0.0107 0.78 0.43 0.0758 0.0124 6.13 0.00

Dominance dominator -0.0641 0.0553 -1.16 0.25
neither      /   large -0.1249 0.0402 -3.11 0.00 0.0800 0.0852 0.94 0.35 0.0103 0.0423 0.24 0.81 0.0175 0.0358 0.49 0.62
dominated / small 0.0166 0.0466 0.36 0.72 0.0197 0.0347 0.57 0.57 0.0333 0.0395 0.84 0.40 0.0189 0.0559 0.34 0.74

Labor dominator -1.0979 0.5820 -1.89 0.06
Pooling neither      /   large -0.2573 0.3852 -0.67 0.50 -0.8546 0.7782 -1.10 0.27 -0.2714 0.3959 -0.69 0.49 -0.3765 0.3459 -1.09 0.28

dominated / small 0.4773 0.4005 1.19 0.23 -0.2565 0.3365 -0.76 0.45 -0.2469 0.3754 -0.66 0.51 0.0641 0.5108 0.13 0.90

Manufactured dominator 0.0229 0.0221 1.04 0.30
Inputs neither      /   large 0.0098 0.0145 0.67 0.50 -0.0322 0.0329 -0.98 0.33 -0.0142 0.0152 -0.93 0.35 0.0022 0.0122 0.18 0.86

dominated / small -0.0080 0.0144 -0.56 0.58 0.0053 0.0116 0.45 0.65 0.0139 0.0131 1.07 0.29 0.0080 0.0189 0.43 0.67

Producer dominator -0.0062 0.0221 -0.28 0.78
Services neither      /   large -0.0174 0.0152 -1.15 0.25 -0.0035 0.0328 -0.11 0.92 0.0039 0.0157 0.25 0.80 -0.0027 0.0129 -0.21 0.84

dominated / small 0.0120 0.0154 0.78 0.44 -0.0007 0.0123 -0.06 0.95 -0.0023 0.0140 -0.17 0.87 0.0052 0.0201 0.26 0.79

Research dominator 0.0096 0.0133 0.72 0.47
neither      /   large 0.0189 0.0083 2.28 0.02 0.0097 0.0206 0.47 0.64 0.0088 0.0092 0.95 0.34 -0.0015 0.0073 -0.20 0.84
dominated / small -0.0031 0.0086 -0.36 0.72 -0.0043 0.0068 -0.63 0.53 -0.0127 0.0075 -1.71 0.09 -0.0159 0.0100 -1.60 0.11

Patents dominator 0.0089 0.0179 0.50 0.62
neither      /   large 0.0067 0.0124 0.54 0.59 0.0685 0.0272 2.52 0.01 0.0043 0.0128 0.33 0.74 0.0086 0.0107 0.81 0.42
dominated / small 0.0342 0.0128 2.68 0.01 0.0048 0.0103 0.46 0.64 0.0109 0.0116 0.94 0.35 0.0027 0.0166 0.16 0.87

0.1509 0.0135 11.15 0.00
-0.1765 0.0095 -18.61 0.00 -0.0728 0.0165 -4.40 0.00 0.0008 0.0097 0.08 0.94 0.0729 0.0117 6.24 0.00

Dominance dominator -0.0302 0.1543 -0.20 0.84
neither      /   large -0.1488 0.1116 -1.33 0.18 0.4303 0.2811 1.53 0.13 0.1623 0.1271 1.28 0.20 0.1263 0.0972 1.30 0.19
dominated / small 0.1501 0.1724 0.87 0.38 0.1313 0.0919 1.43 0.15 0.1475 0.1075 1.37 0.17 -0.0434 0.2019 -0.21 0.83

Labor dominator -1.0317 0.5811 -1.78 0.08
Pooling neither      /   large -0.1055 0.3796 -0.28 0.78 -0.6978 0.7799 -0.89 0.37 -0.2470 0.3877 -0.64 0.52 -0.2789 0.3370 -0.83 0.41

dominated / small 0.6070 0.3937 1.54 0.12 -0.1828 0.3266 -0.56 0.58 -0.1864 0.3664 -0.51 0.61 0.1112 0.5052 0.22 0.83

Manufactured dominator 0.0215 0.0222 0.96 0.33
Inputs neither      /   large 0.0081 0.0143 0.57 0.57 -0.0397 0.0336 -1.18 0.24 -0.0149 0.0150 -0.99 0.32 0.0007 0.0119 0.06 0.96

dominated / small -0.0098 0.0141 -0.70 0.48 0.0039 0.0112 0.35 0.73 0.0117 0.0128 0.92 0.36 0.0063 0.0189 0.34 0.74

Producer dominator -0.0030 0.0221 -0.14 0.89
Services neither      /   large -0.0106 0.0150 -0.71 0.48 0.0067 0.0331 0.20 0.84 0.0067 0.0155 0.43 0.66 0.0013 0.0126 0.11 0.92

dominated / small 0.0130 0.0152 0.86 0.39 0.0025 0.0121 0.21 0.83 0.0007 0.0138 0.05 0.96 0.0058 0.0201 0.29 0.77

Research dominator 0.0104 0.0132 0.78 0.43
neither      /   large 0.0195 0.0081 2.41 0.02 0.0111 0.0203 0.55 0.58 0.0102 0.0089 1.15 0.25 -0.0014 0.0070 -0.20 0.84
dominated / small -0.0017 0.0083 -0.20 0.84 -0.0040 0.0064 -0.63 0.53 -0.0124 0.0071 -1.75 0.08 -0.0135 0.0097 -1.40 0.16

Patents dominator 0.0116 0.0172 0.67 0.50
neither      /   large 0.0127 0.0116 1.10 0.27 0.0787 0.0264 2.99 0.00 0.0130 0.0118 1.09 0.27 0.0159 0.0097 1.64 0.10
dominated / small 0.0349 0.0119 2.93 0.00 0.0111 0.0093 1.20 0.23 0.0170 0.0108 1.58 0.11 0.0052 0.0162 0.32 0.75

Note:  "Neither" and "dominated" label the dominance models, "large" and "small" pertain to the small establishment models.

Concentration Ratio Dominance (D C )

Herfindahl-Hirschman Dominance (D H )

Dominators
Dominated / Small

Dominators
Dominated / Small

Dominance Categories Small ≤ 250 Employees Small ≤ 50 Employees Small ≤ 15 Employees
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Table A.11.2.  Marginal Impacts Including Plant Size Interactions for Rubber and Plastics (SIC 30), 1997, continued. 

Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value

0.1602 0.0154 10.42 0.00
-0.1770 0.0096 -18.39 0.00 -0.0592 0.0172 -3.45 0.00 0.0052 0.0100 0.52 0.60 0.0823 0.0116 7.10 0.00

Dominance dominator -0.4368 0.2556 -1.71 0.09
neither      /   large -0.9643 0.2461 -3.92 0.00 -0.2178 0.5100 -0.43 0.67 0.1091 0.2602 0.42 0.68 0.1846 0.2214 0.83 0.40
dominated / small -0.1383 0.3327 -0.42 0.68 0.2456 0.2173 1.13 0.26 0.2544 0.2490 1.02 0.31 0.1854 0.3615 0.51 0.61

Labor dominator -1.1325 0.5797 -1.95 0.05
Pooling neither      /   large -0.2014 0.3804 -0.53 0.60 -0.9372 0.7628 -1.23 0.22 -0.2174 0.3908 -0.56 0.58 -0.2942 0.3416 -0.86 0.39

dominated / small 0.4180 0.3959 1.06 0.29 -0.1990 0.3328 -0.60 0.55 -0.1971 0.3719 -0.53 0.60 0.1171 0.5078 0.23 0.82

Manufactured dominator 0.0245 0.0220 1.11 0.27
Inputs neither      /   large 0.0088 0.0140 0.63 0.53 -0.0235 0.0327 -0.72 0.47 -0.0163 0.0147 -1.11 0.27 -0.0015 0.0116 -0.13 0.90

dominated / small -0.0086 0.0138 -0.63 0.53 0.0023 0.0110 0.21 0.83 0.0113 0.0125 0.90 0.37 0.0072 0.0185 0.39 0.70

Producer dominator -0.0066 0.0220 -0.30 0.76
Services neither      /   large -0.0156 0.0149 -1.04 0.30 -0.0142 0.0322 -0.44 0.66 0.0064 0.0155 0.42 0.68 0.0011 0.0127 0.09 0.93

dominated / small 0.0123 0.0151 0.81 0.42 0.0029 0.0121 0.24 0.81 -0.0001 0.0138 0.00 1.00 0.0067 0.0201 0.33 0.74

Research dominator 0.0108 0.0132 0.81 0.42
neither      /   large 0.0206 0.0081 2.54 0.01 0.0125 0.0205 0.61 0.54 0.0105 0.0090 1.16 0.25 -0.0006 0.0071 -0.08 0.93
dominated / small -0.0028 0.0084 -0.33 0.74 -0.0033 0.0066 -0.50 0.62 -0.0120 0.0072 -1.66 0.10 -0.0143 0.0098 -1.45 0.15

Patents dominator 0.0082 0.0180 0.45 0.65
neither      /   large 0.0062 0.0119 0.53 0.60 0.0549 0.0280 1.96 0.05 0.0100 0.0123 0.82 0.41 0.0148 0.0100 1.49 0.14
dominated / small 0.0363 0.0121 3.00 0.00 0.0110 0.0095 1.16 0.25 0.0160 0.0110 1.45 0.15 0.0076 0.0163 0.46 0.64

0.1326 0.0134 9.88 0.00
-0.1862 0.0095 -19.51 0.00 -0.0759 0.0172 -4.41 0.00 -0.0054 0.0098 -0.56 0.58 0.0732 0.0111 6.60 0.00

Dominance dominator 0.3640 0.1575 2.31 0.02
neither      /   large 0.2215 0.0964 2.30 0.02 0.6902 0.2513 2.75 0.01 0.2214 0.1042 2.12 0.03 0.1269 0.0808 1.57 0.12
dominated / small 0.3598 0.1119 3.22 0.00 0.1266 0.0767 1.65 0.10 0.1349 0.0913 1.48 0.14 0.3144 0.1410 2.23 0.03

Labor dominator -0.7789 0.5770 -1.35 0.18
Pooling neither      /   large 0.0923 0.3776 0.24 0.81 -0.8077 0.7816 -1.03 0.30 -0.4652 0.3858 -1.21 0.23 -0.5419 0.3344 -1.62 0.11

dominated / small 0.6929 0.3937 1.76 0.08 -0.3720 0.3248 -1.15 0.25 -0.3779 0.3627 -1.04 0.30 -0.0678 0.4979 -0.14 0.89

Manufactured dominator 0.0152 0.0216 0.70 0.48
Inputs neither      /   large -0.0015 0.0135 -0.11 0.91 -0.0249 0.0326 -0.76 0.44 -0.0123 0.0142 -0.86 0.39 0.0011 0.0111 0.10 0.92

dominated / small -0.0094 0.0136 -0.69 0.49 0.0048 0.0104 0.46 0.64 0.0121 0.0121 1.00 0.32 0.0044 0.0180 0.24 0.81

Producer dominator 0.0059 0.0210 0.28 0.78
Services neither      /   large -0.0016 0.0140 -0.11 0.91 -0.0072 0.0310 -0.23 0.82 0.0015 0.0146 0.10 0.92 -0.0032 0.0119 -0.27 0.79

dominated / small 0.0136 0.0145 0.94 0.35 0.0005 0.0113 0.04 0.97 -0.0007 0.0129 -0.05 0.96 0.0113 0.0188 0.60 0.55

Research dominator 0.0079 0.0132 0.60 0.55
neither      /   large 0.0234 0.0080 2.93 0.00 0.0181 0.0202 0.90 0.37 0.0135 0.0088 1.53 0.13 0.0022 0.0069 0.31 0.75
dominated / small 0.0018 0.0083 0.22 0.83 -0.0026 0.0064 -0.41 0.68 -0.0112 0.0071 -1.59 0.11 -0.0117 0.0098 -1.20 0.23

Patents dominator 0.0090 0.0173 0.52 0.60
neither      /   large 0.0094 0.0111 0.84 0.40 0.0485 0.0257 1.89 0.06 0.0094 0.0114 0.82 0.41 0.0167 0.0093 1.80 0.07
dominated / small 0.0206 0.0114 1.81 0.07 0.0133 0.0089 1.50 0.13 0.0200 0.0104 1.93 0.05 0.0149 0.0154 0.97 0.33

Note:  "Neither" and "dominated" label the dominance models, "large" and "small" pertain to the small establishment models.

Rosenbluth Dominance (D R )

Dominance Categories Small ≤ 250 Employees Small ≤ 50 Employees Small ≤ 15 Employees

Dominators
Dominated / Small

Dominators
Dominated / Small

Gini Dominance (D G )
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Table A.11.3.  Marginal Impacts Including Plant Size Interactions for Rubber and Plastics (SIC 30), 2002. 

Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value

0.2073 0.0165 12.60 0.00
-0.1695 0.0128 -13.25 0.00 -0.1221 0.0224 -5.45 0.00 -0.0030 0.0127 -0.24 0.81 0.1367 0.0155 8.82 0.00

Dominance dominator 0.0245 0.0597 0.41 0.68
neither      /   large -0.1484 0.0439 -3.38 0.00 0.3485 0.0942 3.70 0.00 0.0767 0.0470 1.63 0.10 0.0525 0.0392 1.34 0.18
dominated / small 0.0188 0.0612 0.31 0.76 0.0143 0.0386 0.37 0.71 0.0164 0.0451 0.36 0.72 0.0184 0.0747 0.25 0.81

Labor dominator -0.3009 0.6117 -0.49 0.62
Pooling neither      /   large 1.2067 0.4153 2.91 0.00 -0.5022 0.8354 -0.60 0.55 0.6857 0.4283 1.60 0.11 0.5007 0.3679 1.36 0.17

dominated / small 0.1340 0.4592 0.29 0.77 0.4252 0.3610 1.18 0.24 0.0571 0.4157 0.14 0.89 -0.5207 0.6198 -0.84 0.40

Manufactured dominator 0.0199 0.0269 0.74 0.46
Inputs neither      /   large -0.0124 0.0170 -0.73 0.46 0.0133 0.0423 0.32 0.75 -0.0113 0.0182 -0.62 0.54 -0.0100 0.0142 -0.70 0.48

dominated / small -0.0089 0.0180 -0.49 0.62 -0.0126 0.0133 -0.95 0.34 -0.0081 0.0157 -0.52 0.61 -0.0109 0.0250 -0.44 0.66

Producer dominator -0.0164 0.0249 -0.66 0.51
Services neither      /   large 0.0293 0.0171 1.71 0.09 0.0119 0.0393 0.30 0.76 0.0243 0.0180 1.35 0.18 0.0210 0.0146 1.44 0.15

dominated / small 0.0016 0.0192 0.08 0.93 0.0189 0.0141 1.35 0.18 0.0089 0.0166 0.54 0.59 -0.0042 0.0262 -0.16 0.87

Research dominator 0.0229 0.0164 1.39 0.16
neither      /   large 0.0047 0.0100 0.47 0.64 -0.0340 0.0261 -1.31 0.19 -0.0082 0.0109 -0.75 0.45 -0.0087 0.0089 -0.98 0.32
dominated / small 0.0038 0.0116 0.33 0.74 -0.0050 0.0085 -0.59 0.56 -0.0051 0.0099 -0.51 0.61 0.0082 0.0152 0.54 0.59

Patents dominator 0.0192 0.0189 1.02 0.31
neither      /   large 0.0178 0.0134 1.33 0.18 0.1025 0.0293 3.50 0.00 0.0225 0.0140 1.61 0.11 0.0188 0.0119 1.57 0.12
dominated / small 0.0273 0.0161 1.70 0.09 0.0073 0.0117 0.63 0.53 0.0045 0.0137 0.33 0.74 -0.0041 0.0213 -0.19 0.85

0.2266 0.0155 14.58 0.00
-0.1678 0.0114 -14.78 0.00 -0.1388 0.0190 -7.32 0.00 -0.0145 0.0115 -1.26 0.21 0.1277 0.0138 9.25 0.00

Dominance dominator 0.0360 0.1588 0.23 0.82
neither      /   large -0.8388 0.1382 -6.07 0.00 0.8419 0.2958 2.85 0.00 0.0622 0.1516 0.41 0.68 -0.0364 0.1205 -0.30 0.76
dominated / small -0.3579 0.2504 -1.43 0.15 -0.2024 0.1191 -1.70 0.09 -0.2141 0.1402 -1.53 0.13 -0.3104 0.2435 -1.27 0.20

Labor dominator -0.2817 0.6124 -0.46 0.65
Pooling neither      /   large 1.1899 0.4043 2.94 0.00 -0.5632 0.8366 -0.67 0.50 0.5836 0.4166 1.40 0.16 0.4098 0.3543 1.16 0.25

dominated / small 0.1704 0.4447 0.38 0.70 0.3313 0.3458 0.96 0.34 -0.0449 0.4023 -0.11 0.91 -0.6344 0.6098 -1.04 0.30

Manufactured dominator 0.0130 0.0270 0.48 0.63
Inputs neither      /   large -0.0057 0.0168 -0.34 0.73 0.0062 0.0425 0.15 0.88 -0.0106 0.0180 -0.59 0.55 -0.0105 0.0140 -0.75 0.45

dominated / small -0.0067 0.0178 -0.38 0.71 -0.0122 0.0131 -0.93 0.35 -0.0077 0.0156 -0.49 0.62 -0.0103 0.0250 -0.41 0.68

Producer dominator -0.0161 0.0250 -0.64 0.52
Services neither      /   large 0.0233 0.0168 1.39 0.17 0.0072 0.0396 0.18 0.86 0.0190 0.0178 1.07 0.28 0.0166 0.0143 1.16 0.25

dominated / small -0.0022 0.0189 -0.12 0.91 0.0148 0.0137 1.08 0.28 0.0043 0.0162 0.26 0.79 -0.0098 0.0259 -0.38 0.71

Research dominator 0.0265 0.0164 1.61 0.11
neither      /   large 0.0027 0.0099 0.27 0.78 -0.0276 0.0260 -1.06 0.29 -0.0063 0.0107 -0.59 0.56 -0.0069 0.0087 -0.79 0.43
dominated / small 0.0019 0.0113 0.16 0.87 -0.0037 0.0083 -0.44 0.66 -0.0046 0.0098 -0.48 0.63 0.0086 0.0150 0.57 0.57

Patents dominator 0.0167 0.0187 0.89 0.37
neither      /   large 0.0126 0.0128 0.98 0.33 0.0948 0.0290 3.27 0.00 0.0208 0.0134 1.56 0.12 0.0181 0.0112 1.61 0.11
dominated / small 0.0232 0.0155 1.49 0.13 0.0072 0.0110 0.66 0.51 0.0044 0.0131 0.34 0.74 -0.0040 0.0208 -0.19 0.85

Note:  "Neither" and "dominated" label the dominance models, "large" and "small" pertain to the small establishment models.

Concentration Ratio Dominance (D C )

Herfindahl-Hirschman Dominance (D H )

Dominators
Dominated / Small

Dominators
Dominated / Small

Dominance Categories Small ≤ 250 Employees Small ≤ 50 Employees Small ≤ 15 Employees
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Table A.11.3.  Marginal Impacts Including Plant Size Interactions for Rubber and Plastics (SIC 30), 2002, continued. 

Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value

0.2271 0.0157 14.48 0.00
-0.1753 0.0118 -14.86 0.00 -0.1326 0.0189 -7.03 0.00 -0.0180 0.0114 -1.57 0.12 0.1277 0.0139 9.17 0.00

Dominance dominator -0.4432 0.2152 -2.06 0.04
neither      /   large -1.6250 0.2274 -7.15 0.00 0.9655 0.4040 2.39 0.02 0.1216 0.2294 0.53 0.60 -0.1418 0.1979 -0.72 0.47
dominated / small -1.5279 0.4263 -3.58 0.00 -0.3807 0.2029 -1.88 0.06 -0.5725 0.2319 -2.47 0.01 -0.6245 0.3831 -1.63 0.10

Labor dominator -0.2854 0.6119 -0.47 0.64
Pooling neither      /   large 1.2125 0.4080 2.97 0.00 -0.5518 0.8306 -0.66 0.51 0.6404 0.4213 1.52 0.13 0.4721 0.3606 1.31 0.19

dominated / small 0.1627 0.4494 0.36 0.72 0.3959 0.3527 1.12 0.26 0.0263 0.4076 0.06 0.95 -0.5566 0.6127 -0.91 0.36

Manufactured dominator 0.0109 0.0271 0.40 0.69
Inputs neither      /   large -0.0174 0.0169 -1.03 0.30 0.0082 0.0423 0.19 0.85 -0.0135 0.0180 -0.75 0.46 -0.0125 0.0141 -0.89 0.37

dominated / small -0.0133 0.0178 -0.75 0.46 -0.0154 0.0133 -1.16 0.25 -0.0108 0.0157 -0.69 0.49 -0.0144 0.0251 -0.57 0.57

Producer dominator -0.0152 0.0251 -0.60 0.55
Services neither      /   large 0.0310 0.0170 1.82 0.07 0.0100 0.0393 0.25 0.80 0.0257 0.0179 1.44 0.15 0.0204 0.0145 1.41 0.16

dominated / small 0.0019 0.0190 0.10 0.92 0.0188 0.0139 1.35 0.18 0.0056 0.0164 0.34 0.73 -0.0077 0.0261 -0.29 0.77

Research dominator 0.0277 0.0164 1.69 0.09
neither      /   large 0.0072 0.0099 0.72 0.47 -0.0314 0.0260 -1.21 0.23 -0.0073 0.0108 -0.68 0.50 -0.0080 0.0087 -0.91 0.36
dominated / small 0.0040 0.0114 0.35 0.73 -0.0043 0.0084 -0.51 0.61 -0.0046 0.0098 -0.47 0.64 0.0090 0.0151 0.60 0.55

Patents dominator 0.0147 0.0192 0.77 0.44
neither      /   large 0.0105 0.0131 0.80 0.42 0.1019 0.0300 3.40 0.00 0.0249 0.0138 1.80 0.07 0.0168 0.0115 1.46 0.14
dominated / small 0.0121 0.0164 0.74 0.46 0.0042 0.0112 0.37 0.71 -0.0026 0.0133 -0.19 0.85 -0.0113 0.0216 -0.52 0.60

0.1925 0.0145 13.27 0.00
-0.1555 0.0109 -14.31 0.00 -0.1242 0.0197 -6.29 0.00 -0.0132 0.0114 -1.17 0.24 0.1331 0.0137 9.73 0.00

Dominance dominator 0.7243 0.1469 4.93 0.00
neither      /   large 0.2392 0.1054 2.27 0.02 0.8530 0.2443 3.49 0.00 0.2932 0.1118 2.62 0.01 0.1467 0.0910 1.61 0.11
dominated / small 0.1560 0.1422 1.10 0.27 0.0151 0.0896 0.17 0.87 -0.0721 0.1099 -0.66 0.51 -0.2172 0.1844 -1.18 0.24

Labor dominator -0.2319 0.6090 -0.38 0.70
Pooling neither      /   large 1.4011 0.3999 3.50 0.00 -0.6945 0.8279 -0.84 0.40 0.4340 0.4113 1.06 0.29 0.2930 0.3479 0.84 0.40

dominated / small 0.2460 0.4445 0.55 0.58 0.2858 0.3384 0.84 0.40 -0.1259 0.3925 -0.32 0.75 -0.6997 0.5997 -1.17 0.24

Manufactured dominator 0.0410 0.0268 1.53 0.13
Inputs neither      /   large -0.0003 0.0167 -0.02 0.99 0.0253 0.0420 0.60 0.55 -0.0024 0.0178 -0.14 0.89 -0.0040 0.0138 -0.29 0.77

dominated / small 0.0038 0.0179 0.21 0.83 -0.0076 0.0131 -0.58 0.56 -0.0042 0.0155 -0.27 0.79 -0.0073 0.0249 -0.29 0.77

Producer dominator -0.0316 0.0242 -1.31 0.19
Services neither      /   large 0.0310 0.0164 1.90 0.06 -0.0256 0.0381 -0.67 0.50 0.0056 0.0171 0.33 0.74 0.0066 0.0137 0.48 0.63

dominated / small -0.0118 0.0185 -0.64 0.52 0.0104 0.0132 0.79 0.43 0.0005 0.0156 0.03 0.98 -0.0121 0.0251 -0.48 0.63

Research dominator 0.0089 0.0162 0.55 0.59
neither      /   large -0.0059 0.0097 -0.61 0.54 -0.0288 0.0259 -1.11 0.27 -0.0073 0.0105 -0.69 0.49 -0.0088 0.0085 -1.04 0.30
dominated / small -0.0055 0.0113 -0.49 0.63 -0.0072 0.0081 -0.89 0.38 -0.0074 0.0095 -0.78 0.44 0.0055 0.0148 0.38 0.71

Patents dominator -0.0216 0.0180 -1.20 0.23
neither      /   large -0.0125 0.0124 -1.01 0.31 0.0222 0.0272 0.82 0.41 -0.0030 0.0130 -0.23 0.82 0.0017 0.0109 0.16 0.87
dominated / small -0.0153 0.0153 -1.00 0.32 -0.0022 0.0107 -0.21 0.84 -0.0004 0.0125 -0.03 0.97 -0.0046 0.0199 -0.23 0.82

Note:  "Neither" and "dominated" label the dominance models, "large" and "small" pertain to the small establishment models.

Rosenbluth Dominance (D R )

Dominance Categories Small ≤ 250 Employees Small ≤ 50 Employees Small ≤ 15 Employees

Dominators
Dominated / Small

Dominators
Dominated / Small

Gini Dominance (D G )

 



 

 

3
1
1
 

Table A.11.4.  Marginal Impacts Including Plant Size Interactions for Metalworking Machinery (SIC 354), 1992. 

Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value

0.2139 0.0223 9.60 0.00
-0.1984 0.0154 -12.84 0.00 -0.0411 0.0492 -0.84 0.40 -0.0879 0.0193 -4.55 0.00 0.0132 0.0140 0.94 0.35

Dominance dominator 0.0724 0.0761 0.95 0.34
neither      /   large -0.1224 0.0484 -2.53 0.01 0.4446 0.2063 2.16 0.03 0.1059 0.0790 1.34 0.18 0.0112 0.0523 0.21 0.83
dominated / small -0.1210 0.0663 -1.83 0.07 -0.0174 0.0427 -0.41 0.68 -0.0331 0.0444 -0.75 0.46 -0.0422 0.0518 -0.81 0.42

Labor dominator 4.7249 2.3084 2.05 0.04
Pooling neither      /   large -0.4848 1.2325 -0.39 0.69 -0.6734 5.7337 -0.12 0.91 1.5686 1.9355 0.81 0.42 1.8349 1.2188 1.51 0.13

dominated / small -0.4572 1.3373 -0.34 0.73 0.7503 1.0059 0.75 0.46 0.4334 1.0497 0.41 0.68 -0.6534 1.2484 -0.52 0.60

Manufactured dominator -0.0164 0.0370 -0.44 0.66
Inputs neither      /   large 0.0333 0.0209 1.60 0.11 0.0132 0.0851 0.16 0.88 0.0369 0.0308 1.20 0.23 -0.0078 0.0206 -0.38 0.70

dominated / small 0.0166 0.0219 0.76 0.45 -0.0141 0.0176 -0.80 0.42 -0.0148 0.0182 -0.81 0.42 -0.0091 0.0211 -0.43 0.67

Producer dominator 0.0105 0.0247 0.43 0.67
Services neither      /   large -0.0136 0.0154 -0.88 0.38 0.0160 0.0707 0.23 0.82 -0.0037 0.0227 -0.16 0.87 0.0161 0.0152 1.06 0.29

dominated / small -0.0060 0.0156 -0.39 0.70 0.0182 0.0131 1.39 0.17 0.0177 0.0134 1.32 0.19 0.0163 0.0150 1.09 0.28

Research dominator -0.0364 0.0193 -1.89 0.06
neither      /   large -0.0417 0.0114 -3.65 0.00 -0.0872 0.0539 -1.62 0.11 -0.0435 0.0192 -2.26 0.02 -0.0123 0.0122 -1.01 0.31
dominated / small -0.0219 0.0128 -1.72 0.09 -0.0070 0.0100 -0.70 0.48 -0.0053 0.0101 -0.53 0.60 -0.0069 0.0112 -0.62 0.54

Patents dominator 0.0974 0.0335 2.91 0.00
neither      /   large 0.1076 0.0204 5.28 0.00 0.0449 0.0986 0.46 0.65 0.0146 0.0327 0.45 0.66 0.0037 0.0207 0.18 0.86
dominated / small 0.0378 0.0230 1.64 0.10 -0.0025 0.0167 -0.15 0.88 -0.0052 0.0172 -0.30 0.76 -0.0131 0.0197 -0.66 0.51

0.2134 0.0215 9.94 0.00
-0.1939 0.0135 -14.35 0.00 -0.0465 0.0401 -1.16 0.25 -0.0918 0.0175 -5.26 0.00 0.0034 0.0128 0.27 0.79

Dominance dominator 0.2776 0.1818 1.53 0.13
neither      /   large -0.2656 0.1203 -2.21 0.03 1.1208 0.5101 2.20 0.03 0.3628 0.2196 1.65 0.10 0.0774 0.1324 0.58 0.56
dominated / small -0.1223 0.1931 -0.63 0.53 -0.0690 0.1018 -0.68 0.50 -0.1228 0.1071 -1.15 0.25 -0.1744 0.1334 -1.31 0.19

Labor dominator 4.5212 2.2692 1.99 0.05
Pooling neither      /   large 0.1291 1.1656 0.11 0.91 -3.8595 5.0309 -0.77 0.44 1.3305 1.7767 0.75 0.45 2.0542 1.1115 1.85 0.06

dominated / small 0.4264 1.1442 0.37 0.71 0.7870 0.9073 0.87 0.39 0.5631 0.9456 0.60 0.55 -0.7182 1.1234 -0.64 0.52

Manufactured dominator -0.0105 0.0367 -0.29 0.77
Inputs neither      /   large 0.0371 0.0202 1.83 0.07 0.0398 0.0825 0.48 0.63 0.0324 0.0301 1.08 0.28 -0.0128 0.0196 -0.66 0.51

dominated / small 0.0153 0.0201 0.76 0.45 -0.0168 0.0163 -1.03 0.30 -0.0184 0.0169 -1.08 0.28 -0.0097 0.0199 -0.49 0.63

Producer dominator 0.0021 0.0244 0.09 0.93
Services neither      /   large -0.0178 0.0149 -1.20 0.23 -0.0187 0.0688 -0.27 0.79 -0.0084 0.0218 -0.39 0.70 0.0147 0.0146 1.00 0.32

dominated / small -0.0055 0.0146 -0.37 0.71 0.0150 0.0126 1.19 0.23 0.0153 0.0129 1.19 0.23 0.0120 0.0143 0.84 0.40

Research dominator -0.0359 0.0192 -1.86 0.06
neither      /   large -0.0444 0.0112 -3.95 0.00 -0.0898 0.0537 -1.67 0.09 -0.0428 0.0188 -2.27 0.02 -0.0138 0.0117 -1.18 0.24
dominated / small -0.0244 0.0120 -2.04 0.04 -0.0080 0.0093 -0.86 0.39 -0.0056 0.0095 -0.59 0.55 -0.0082 0.0106 -0.77 0.44

Patents dominator 0.0999 0.0331 3.02 0.00
neither      /   large 0.1107 0.0195 5.67 0.00 0.0486 0.0976 0.50 0.62 0.0242 0.0315 0.77 0.44 0.0108 0.0193 0.56 0.57
dominated / small 0.0321 0.0211 1.52 0.13 0.0047 0.0150 0.32 0.75 0.0021 0.0156 0.13 0.90 -0.0052 0.0183 -0.28 0.78

Note:  "Neither" and "dominated" label the dominance models, "large" and "small" pertain to the small establishment models.

Concentration Ratio Dominance (D C )

Herfindahl-Hirschman Dominance (D H )

Dominators
Dominated / Small

Dominators
Dominated / Small

Dominance Categories Small ≤ 250 Employees Small ≤ 50 Employees Small ≤ 15 Employees

 



 

 

3
1
2
 

Table A.11.4.  Marginal Impacts Including Plant Size Interactions for Metalworking Machinery (SIC 354), 1992, continued. 

Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value

0.2026 0.0220 9.21 0.00
-0.2006 0.0127 -15.78 0.00 -0.0419 0.0385 -1.09 0.28 -0.0885 0.0168 -5.27 0.00 0.0043 0.0123 0.35 0.73

Dominance dominator 0.2666 0.3443 0.77 0.44
neither      /   large -0.5433 0.2926 -1.86 0.06 1.9704 1.1418 1.73 0.08 0.6633 0.4669 1.42 0.16 0.3938 0.3320 1.19 0.24
dominated / small -0.5522 0.4222 -1.31 0.19 0.1623 0.2733 0.59 0.55 0.1075 0.2826 0.38 0.70 0.0240 0.3162 0.08 0.94

Labor dominator 4.1744 2.2515 1.85 0.06
Pooling neither      /   large 0.9641 1.1524 0.84 0.40 -3.9318 4.9529 -0.79 0.43 1.1202 1.7285 0.65 0.52 2.3968 1.0900 2.20 0.03

dominated / small 0.9585 1.1023 0.87 0.38 1.3070 0.8959 1.46 0.14 1.2134 0.9302 1.30 0.19 -0.0272 1.0939 -0.02 0.98

Manufactured dominator -0.0064 0.0369 -0.17 0.86
Inputs neither      /   large 0.0291 0.0200 1.46 0.15 0.0578 0.0844 0.69 0.49 0.0472 0.0303 1.56 0.12 -0.0061 0.0197 -0.31 0.76

dominated / small 0.0133 0.0202 0.66 0.51 -0.0154 0.0164 -0.94 0.35 -0.0177 0.0169 -1.05 0.30 -0.0116 0.0197 -0.59 0.56

Producer dominator 0.0065 0.0245 0.26 0.79
Services neither      /   large -0.0096 0.0149 -0.64 0.52 -0.0078 0.0694 -0.11 0.91 -0.0096 0.0217 -0.44 0.66 0.0168 0.0147 1.15 0.25

dominated / small -0.0013 0.0146 -0.09 0.93 0.0195 0.0127 1.53 0.12 0.0205 0.0130 1.58 0.11 0.0175 0.0143 1.23 0.22

Research dominator -0.0404 0.0198 -2.03 0.04
neither      /   large -0.0438 0.0113 -3.89 0.00 -0.0988 0.0555 -1.78 0.08 -0.0486 0.0191 -2.55 0.01 -0.0168 0.0117 -1.44 0.15
dominated / small -0.0242 0.0119 -2.05 0.04 -0.0094 0.0094 -1.01 0.31 -0.0076 0.0095 -0.80 0.43 -0.0102 0.0107 -0.96 0.34

Patents dominator 0.0943 0.0352 2.68 0.01
neither      /   large 0.0974 0.0201 4.84 0.00 0.0490 0.1063 0.46 0.64 0.0251 0.0335 0.75 0.45 0.0116 0.0201 0.58 0.56
dominated / small 0.0272 0.0219 1.24 0.22 0.0044 0.0155 0.28 0.78 0.0010 0.0162 0.06 0.95 -0.0062 0.0192 -0.32 0.75

0.1925 0.0209 9.23 0.00
-0.1982 0.0133 -14.92 0.00 -0.0168 0.0481 -0.35 0.73 -0.0939 0.0176 -5.32 0.00 0.0006 0.0129 0.05 0.96

Dominance dominator 0.4523 0.1602 2.82 0.00
neither      /   large 0.1375 0.0940 1.46 0.14 0.7485 0.6597 1.13 0.26 0.4711 0.1720 2.74 0.01 0.1408 0.1037 1.36 0.17
dominated / small 0.1260 0.1282 0.98 0.33 0.0020 0.0857 0.02 0.98 -0.0719 0.0893 -0.81 0.42 -0.1281 0.1050 -1.22 0.22

Labor dominator 4.5950 2.2798 2.02 0.04
Pooling neither      /   large 0.6323 1.2189 0.52 0.60 -3.2085 5.0449 -0.64 0.52 1.8697 1.8122 1.03 0.30 2.4402 1.1631 2.10 0.04

dominated / small 0.3481 1.1679 0.30 0.77 1.2744 0.9672 1.32 0.19 0.8563 1.0022 0.85 0.39 -0.2788 1.1562 -0.24 0.81

Manufactured dominator -0.0271 0.0373 -0.73 0.47
Inputs neither      /   large 0.0235 0.0208 1.13 0.26 0.0103 0.0843 0.12 0.90 0.0164 0.0309 0.53 0.60 -0.0223 0.0198 -1.13 0.26

dominated / small 0.0054 0.0203 0.27 0.79 -0.0207 0.0162 -1.28 0.20 -0.0212 0.0169 -1.26 0.21 -0.0109 0.0199 -0.55 0.58

Producer dominator -0.0024 0.0241 -0.10 0.92
Services neither      /   large -0.0151 0.0148 -1.02 0.31 -0.0255 0.0681 -0.37 0.71 -0.0098 0.0220 -0.45 0.66 0.0195 0.0149 1.31 0.19

dominated / small 0.0006 0.0149 0.04 0.97 0.0196 0.0128 1.53 0.13 0.0191 0.0131 1.46 0.14 0.0160 0.0144 1.11 0.27

Research dominator -0.0228 0.0194 -1.17 0.24
neither      /   large -0.0381 0.0114 -3.36 0.00 -0.0801 0.0554 -1.44 0.15 -0.0370 0.0189 -1.95 0.05 -0.0170 0.0117 -1.45 0.15
dominated / small -0.0217 0.0122 -1.79 0.07 -0.0126 0.0093 -1.36 0.17 -0.0110 0.0095 -1.16 0.25 -0.0149 0.0106 -1.40 0.16

Patents dominator 0.0654 0.0338 1.93 0.05
neither      /   large 0.1165 0.0207 5.62 0.00 -0.0438 0.0932 -0.47 0.64 -0.0291 0.0324 -0.90 0.37 0.0016 0.0197 0.08 0.93
dominated / small 0.0177 0.0220 0.80 0.42 0.0108 0.0155 0.70 0.48 0.0143 0.0161 0.89 0.37 0.0155 0.0186 0.83 0.41

Note:  "Neither" and "dominated" label the dominance models, "large" and "small" pertain to the small establishment models.

Rosenbluth Dominance (D R )

Dominance Categories Small ≤ 250 Employees Small ≤ 50 Employees Small ≤ 15 Employees

Dominators
Dominated / Small

Dominators
Dominated / Small

Gini Dominance (D G )

 



 

 

3
1
3
 

Table A.11.5.  Marginal Impacts Including Plant Size Interactions for Metalworking Machinery (SIC 354), 1997. 

Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value

0.2254 0.0199 11.30 0.00
-0.1470 0.0142 -10.38 0.00 -0.1750 0.0470 -3.72 0.00 -0.0351 0.0172 -2.04 0.04 0.0306 0.0132 2.32 0.02

Dominance dominator 0.0244 0.0764 0.32 0.75
neither      /   large -0.1649 0.0487 -3.39 0.00 -0.1251 0.1763 -0.71 0.48 0.0840 0.0682 1.23 0.22 -0.0400 0.0479 -0.83 0.40
dominated / small -0.3104 0.0585 -5.30 0.00 -0.1101 0.0416 -2.65 0.01 -0.1383 0.0434 -3.19 0.00 -0.1804 0.0501 -3.60 0.00

Labor dominator -3.6442 1.7737 -2.05 0.04
Pooling neither      /   large -2.2124 1.0843 -2.04 0.04 -11.0570 4.5390 -2.44 0.01 -1.8475 1.5569 -1.19 0.24 -1.4533 1.0792 -1.35 0.18

dominated / small -3.5986 1.1913 -3.02 0.00 -1.8869 0.9587 -1.97 0.05 -1.8421 0.9950 -1.85 0.06 -2.7240 1.1534 -2.36 0.02

Manufactured dominator 0.0750 0.0422 1.78 0.08
Inputs neither      /   large 0.0154 0.0224 0.68 0.49 0.2356 0.1156 2.04 0.04 0.0090 0.0356 0.25 0.80 -0.0010 0.0222 -0.05 0.96

dominated / small 0.0346 0.0242 1.43 0.15 0.0033 0.0181 0.18 0.85 0.0079 0.0191 0.42 0.68 0.0211 0.0231 0.91 0.36

Producer dominator -0.0590 0.0333 -1.77 0.08
Services neither      /   large -0.0254 0.0193 -1.32 0.19 -0.2409 0.0895 -2.69 0.01 -0.0224 0.0295 -0.76 0.45 -0.0078 0.0192 -0.41 0.68

dominated / small -0.0637 0.0211 -3.01 0.00 -0.0166 0.0162 -1.02 0.31 -0.0168 0.0169 -1.00 0.32 -0.0339 0.0201 -1.69 0.09

Research dominator -0.0131 0.0200 -0.66 0.51
neither      /   large 0.0017 0.0127 0.13 0.89 -0.0072 0.0491 -0.15 0.88 -0.0093 0.0184 -0.51 0.61 0.0027 0.0127 0.21 0.83
dominated / small 0.0108 0.0130 0.83 0.41 0.0047 0.0109 0.43 0.67 0.0040 0.0112 0.36 0.72 0.0042 0.0123 0.35 0.73

Patents dominator 0.0959 0.0288 3.33 0.00
neither      /   large 0.1032 0.0179 5.77 0.00 -0.0592 0.0842 -0.70 0.48 0.0457 0.0261 1.75 0.08 0.0378 0.0174 2.18 0.03
dominated / small 0.0671 0.0192 3.49 0.00 0.0257 0.0145 1.78 0.08 0.0202 0.0152 1.34 0.18 0.0107 0.0176 0.61 0.54

0.2217 0.0177 12.52 0.00
-0.1348 0.0118 -11.47 0.00 -0.1272 0.0358 -3.55 0.00 -0.0303 0.0149 -2.03 0.04 0.0260 0.0116 2.24 0.03

Dominance dominator 0.1957 0.1548 1.26 0.21
neither      /   large -0.1491 0.1032 -1.45 0.15 -0.1969 0.3965 -0.50 0.62 0.2756 0.1552 1.78 0.08 0.0207 0.0997 0.21 0.84
dominated / small -0.4435 0.1291 -3.44 0.00 -0.1212 0.0790 -1.53 0.12 -0.1915 0.0838 -2.28 0.02 -0.2662 0.1032 -2.58 0.01

Labor dominator -2.8230 1.6876 -1.67 0.09
Pooling neither      /   large -0.9240 1.0273 -0.90 0.37 -12.3913 3.8904 -3.19 0.00 -1.5370 1.4226 -1.08 0.28 -0.3385 0.9717 -0.35 0.73

dominated / small -1.6515 1.0525 -1.57 0.12 -0.4790 0.8597 -0.56 0.58 -0.3662 0.8939 -0.41 0.68 -1.0781 1.0412 -1.04 0.30

Manufactured dominator 0.0714 0.0413 1.73 0.08
Inputs neither      /   large 0.0094 0.0221 0.42 0.67 0.3053 0.1098 2.78 0.01 0.0118 0.0351 0.34 0.74 -0.0066 0.0214 -0.31 0.76

dominated / small 0.0285 0.0230 1.24 0.21 -0.0044 0.0171 -0.26 0.80 -0.0006 0.0181 -0.04 0.97 0.0118 0.0220 0.54 0.59

Producer dominator -0.0569 0.0321 -1.77 0.08
Services neither      /   large -0.0141 0.0187 -0.76 0.45 -0.2726 0.0817 -3.33 0.00 -0.0244 0.0279 -0.87 0.38 0.0032 0.0181 0.18 0.86

dominated / small -0.0402 0.0195 -2.06 0.04 -0.0009 0.0152 -0.06 0.95 0.0004 0.0159 0.02 0.98 -0.0139 0.0187 -0.74 0.46

Research dominator -0.0166 0.0198 -0.84 0.40
neither      /   large -0.0042 0.0124 -0.34 0.74 -0.0147 0.0490 -0.30 0.76 -0.0130 0.0179 -0.73 0.47 -0.0044 0.0118 -0.37 0.71
dominated / small -0.0028 0.0116 -0.24 0.81 -0.0032 0.0098 -0.33 0.74 -0.0031 0.0101 -0.30 0.76 -0.0033 0.0113 -0.29 0.77

Patents dominator 0.0979 0.0277 3.53 0.00
neither      /   large 0.1123 0.0173 6.49 0.00 -0.0205 0.0849 -0.24 0.81 0.0480 0.0250 1.92 0.05 0.0421 0.0162 2.60 0.01
dominated / small 0.0767 0.0177 4.33 0.00 0.0324 0.0133 2.44 0.01 0.0296 0.0140 2.12 0.03 0.0243 0.0164 1.47 0.14

Note:  "Neither" and "dominated" label the dominance models, "large" and "small" pertain to the small establishment models.

Concentration Ratio Dominance (D C )

Herfindahl-Hirschman Dominance (D H )

Dominators
Dominated / Small

Dominators
Dominated / Small

Dominance Categories Small ≤ 250 Employees Small ≤ 50 Employees Small ≤ 15 Employees

 



 

 

3
1
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Table A.11.5.  Marginal Impacts Including Plant Size Interactions for Metalworking Machinery (SIC 354), 1997, continued. 

Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value

0.2172 0.0179 12.14 0.00
-0.1362 0.0119 -11.46 0.00 -0.1374 0.0347 -3.96 0.00 -0.0254 0.0148 -1.72 0.09 0.0255 0.0115 2.22 0.03

Dominance dominator -0.3494 0.2641 -1.32 0.19
neither      /   large -0.6428 0.2166 -2.97 0.00 -0.5697 0.6785 -0.84 0.40 -0.0489 0.3246 -0.15 0.88 0.1434 0.2269 0.63 0.53
dominated / small -1.0087 0.3777 -2.67 0.01 -0.1885 0.1915 -0.98 0.33 -0.2064 0.1992 -1.04 0.30 -0.5522 0.2298 -2.40 0.02

Labor dominator -2.5182 1.6881 -1.49 0.14
Pooling neither      /   large -0.4776 1.0317 -0.46 0.64 -11.1809 3.8187 -2.93 0.00 -1.8250 1.4032 -1.30 0.19 -0.1140 0.9745 -0.12 0.91

dominated / small -0.6766 1.0190 -0.66 0.51 -0.1160 0.8633 -0.13 0.89 0.1466 0.8946 0.16 0.87 -0.5844 1.0288 -0.57 0.57

Manufactured dominator 0.0639 0.0417 1.53 0.13
Inputs neither      /   large 0.0026 0.0219 0.12 0.91 0.2571 0.1084 2.37 0.02 0.0206 0.0348 0.59 0.55 -0.0040 0.0214 -0.19 0.85

dominated / small 0.0088 0.0227 0.39 0.70 -0.0114 0.0170 -0.67 0.50 -0.0109 0.0180 -0.61 0.54 -0.0049 0.0217 -0.23 0.82

Producer dominator -0.0536 0.0320 -1.67 0.09
Services neither      /   large -0.0096 0.0186 -0.52 0.60 -0.2464 0.0793 -3.11 0.00 -0.0294 0.0274 -1.07 0.28 0.0061 0.0179 0.34 0.73

dominated / small -0.0238 0.0188 -1.27 0.21 0.0057 0.0151 0.38 0.70 0.0100 0.0157 0.64 0.52 -0.0040 0.0183 -0.22 0.83

Research dominator -0.0181 0.0201 -0.90 0.37
neither      /   large -0.0081 0.0123 -0.66 0.51 -0.0068 0.0495 -0.14 0.89 -0.0164 0.0179 -0.91 0.36 -0.0085 0.0117 -0.73 0.47
dominated / small -0.0081 0.0116 -0.70 0.48 -0.0059 0.0097 -0.61 0.54 -0.0058 0.0100 -0.57 0.57 -0.0046 0.0113 -0.41 0.68

Patents dominator 0.0768 0.0281 2.73 0.01
neither      /   large 0.0978 0.0176 5.56 0.00 -0.0376 0.0797 -0.47 0.64 0.0299 0.0256 1.17 0.24 0.0432 0.0168 2.58 0.01
dominated / small 0.0667 0.0187 3.57 0.00 0.0313 0.0139 2.25 0.02 0.0312 0.0146 2.14 0.03 0.0177 0.0171 1.03 0.30

0.2371 0.0191 12.40 0.00
-0.1361 0.0128 -10.67 0.00 -0.1432 0.0419 -3.42 0.00 -0.0326 0.0159 -2.06 0.04 0.0257 0.0122 2.11 0.04

Dominance dominator 0.6917 0.1458 4.74 0.00
neither      /   large 0.1364 0.0902 1.51 0.13 -0.1503 0.5432 -0.28 0.78 0.4827 0.1500 3.22 0.00 0.0275 0.0933 0.29 0.77
dominated / small -0.0320 0.1119 -0.29 0.78 -0.0546 0.0760 -0.72 0.47 -0.1272 0.0791 -1.61 0.11 -0.1202 0.0933 -1.29 0.20

Labor dominator -2.2299 1.6689 -1.34 0.18
Pooling neither      /   large -0.2620 1.0450 -0.25 0.80 -11.0142 4.1391 -2.66 0.01 -0.6185 1.4448 -0.43 0.67 -0.2360 0.9939 -0.24 0.81

dominated / small -0.5874 1.0865 -0.54 0.59 -0.3608 0.8933 -0.40 0.69 -0.1746 0.9231 -0.19 0.85 -0.6767 1.0665 -0.63 0.53

Manufactured dominator 0.0632 0.0406 1.56 0.12
Inputs neither      /   large 0.0026 0.0221 0.12 0.90 0.2576 0.1108 2.33 0.02 -0.0194 0.0355 -0.55 0.58 -0.0127 0.0217 -0.59 0.56

dominated / small 0.0073 0.0233 0.31 0.75 -0.0081 0.0175 -0.46 0.64 -0.0026 0.0183 -0.14 0.89 0.0055 0.0221 0.25 0.81

Producer dominator -0.0571 0.0318 -1.80 0.07
Services neither      /   large -0.0022 0.0188 -0.12 0.91 -0.2437 0.0836 -2.91 0.00 -0.0096 0.0279 -0.35 0.73 0.0060 0.0184 0.32 0.75

dominated / small -0.0146 0.0198 -0.74 0.46 0.0025 0.0156 0.16 0.87 0.0046 0.0162 0.28 0.78 -0.0049 0.0190 -0.26 0.79

Research dominator -0.0167 0.0198 -0.85 0.40
neither      /   large -0.0115 0.0124 -0.93 0.35 -0.0152 0.0496 -0.31 0.76 -0.0043 0.0179 -0.24 0.81 -0.0060 0.0117 -0.52 0.61
dominated / small -0.0089 0.0117 -0.76 0.45 -0.0047 0.0097 -0.49 0.62 -0.0066 0.0100 -0.66 0.51 -0.0065 0.0113 -0.58 0.56

Patents dominator 0.0643 0.0271 2.37 0.02
neither      /   large 0.1078 0.0172 6.27 0.00 -0.0307 0.0747 -0.41 0.68 0.0154 0.0241 0.64 0.52 0.0357 0.0163 2.19 0.03
dominated / small 0.0704 0.0185 3.81 0.00 0.0386 0.0139 2.78 0.01 0.0413 0.0145 2.85 0.00 0.0381 0.0169 2.26 0.02

Note:  "Neither" and "dominated" label the dominance models, "large" and "small" pertain to the small establishment models.

Rosenbluth Dominance (D R )

Dominance Categories Small ≤ 250 Employees Small ≤ 50 Employees Small ≤ 15 Employees

Dominators
Dominated / Small

Dominators
Dominated / Small

Gini Dominance (D G )
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Table A.11.6.  Marginal Impacts Including Plant Size Interactions for Metalworking Machinery (SIC 354), 2002. 

Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value

0.1785 0.0238 7.49 0.00
-0.1649 0.0197 -8.37 0.00 -0.0865 0.0613 -1.41 0.16 -0.0627 0.0228 -2.75 0.01 0.0505 0.0173 2.91 0.00

Dominance dominator -0.1127 0.0839 -1.34 0.18
neither      /   large -0.2016 0.0605 -3.34 0.00 0.1612 0.2153 0.75 0.45 -0.0621 0.0990 -0.63 0.53 -0.0340 0.0641 -0.53 0.60
dominated / small -0.1906 0.1039 -1.84 0.07 -0.0752 0.0532 -1.41 0.16 -0.0726 0.0552 -1.32 0.19 -0.1145 0.0660 -1.73 0.08

Labor dominator 1.7215 1.1977 1.44 0.15
Pooling neither      /   large 0.1833 0.7385 0.25 0.80 -2.4017 4.4641 -0.54 0.59 -0.3869 1.1214 -0.35 0.73 0.9169 0.7586 1.21 0.23

dominated / small -0.4248 0.9386 -0.45 0.65 0.0918 0.6503 0.14 0.89 0.2242 0.6781 0.33 0.74 -0.7844 0.8104 -0.97 0.33

Manufactured dominator -0.0807 0.0417 -1.93 0.05
Inputs neither      /   large -0.0474 0.0232 -2.05 0.04 -0.1448 0.1389 -1.04 0.30 0.0105 0.0382 0.28 0.78 -0.0524 0.0229 -2.29 0.02

dominated / small -0.0278 0.0272 -1.02 0.31 -0.0433 0.0187 -2.32 0.02 -0.0501 0.0196 -2.56 0.01 -0.0382 0.0249 -1.54 0.12

Producer dominator 0.1027 0.0348 2.95 0.00
Services neither      /   large 0.0385 0.0208 1.85 0.06 0.0703 0.1347 0.52 0.60 0.0130 0.0322 0.41 0.68 0.0448 0.0205 2.19 0.03

dominated / small 0.0015 0.0234 0.07 0.95 0.0215 0.0176 1.23 0.22 0.0238 0.0182 1.31 0.19 0.0014 0.0221 0.06 0.95

Research dominator -0.0293 0.0214 -1.37 0.17
neither      /   large -0.0263 0.0136 -1.94 0.05 0.0890 0.0657 1.35 0.18 -0.0297 0.0218 -1.37 0.17 -0.0148 0.0139 -1.06 0.29
dominated / small -0.0121 0.0158 -0.76 0.45 -0.0048 0.0114 -0.42 0.67 -0.0007 0.0117 -0.06 0.95 0.0086 0.0137 0.63 0.53

Patents dominator 0.1279 0.0308 4.16 0.00
neither      /   large 0.1027 0.0208 4.93 0.00 0.0726 0.1082 0.67 0.50 0.0677 0.0324 2.09 0.04 0.0579 0.0210 2.76 0.01
dominated / small 0.1107 0.0260 4.25 0.00 0.0361 0.0173 2.08 0.04 0.0305 0.0180 1.70 0.09 0.0150 0.0213 0.70 0.48

0.2133 0.0207 10.31 0.00
-0.1656 0.0150 -11.06 0.00 -0.1705 0.0495 -3.44 0.00 -0.1138 0.0187 -6.07 0.00 0.0321 0.0148 2.17 0.03

Dominance dominator 0.0294 0.1650 0.18 0.86
neither      /   large -0.1092 0.1257 -0.87 0.39 0.6063 0.3963 1.53 0.13 0.5670 0.2121 2.67 0.01 0.2119 0.1334 1.59 0.11
dominated / small -0.1529 0.2104 -0.73 0.47 0.0453 0.1082 0.42 0.68 -0.0315 0.1123 -0.28 0.78 -0.1052 0.1391 -0.76 0.45

Labor dominator 2.1953 1.1966 1.83 0.07
Pooling neither      /   large 0.2152 0.7134 0.30 0.76 1.5045 4.1662 0.36 0.72 0.3046 1.0402 0.29 0.77 0.9159 0.7064 1.30 0.19

dominated / small -0.7294 0.8419 -0.87 0.39 -0.0008 0.6077 0.00 1.00 0.0254 0.6395 0.04 0.97 -0.9799 0.7723 -1.27 0.20

Manufactured dominator -0.0729 0.0422 -1.73 0.08
Inputs neither      /   large -0.0462 0.0232 -1.99 0.05 -0.1837 0.1397 -1.31 0.19 0.0138 0.0384 0.36 0.72 -0.0536 0.0230 -2.33 0.02

dominated / small -0.0322 0.0275 -1.17 0.24 -0.0410 0.0189 -2.16 0.03 -0.0488 0.0198 -2.46 0.01 -0.0354 0.0252 -1.40 0.16

Producer dominator 0.0977 0.0350 2.79 0.01
Services neither      /   large 0.0354 0.0206 1.72 0.09 0.1387 0.1324 1.05 0.30 0.0169 0.0319 0.53 0.60 0.0460 0.0201 2.29 0.02

dominated / small 0.0021 0.0231 0.09 0.93 0.0214 0.0172 1.24 0.21 0.0230 0.0179 1.28 0.20 0.0015 0.0220 0.07 0.94

Research dominator -0.0354 0.0213 -1.66 0.10
neither      /   large -0.0316 0.0133 -2.37 0.02 0.0805 0.0671 1.20 0.23 -0.0412 0.0214 -1.93 0.05 -0.0201 0.0134 -1.50 0.13
dominated / small -0.0158 0.0150 -1.05 0.29 -0.0083 0.0108 -0.77 0.44 -0.0040 0.0112 -0.36 0.72 0.0059 0.0132 0.45 0.65

Patents dominator 0.1301 0.0302 4.31 0.00
neither      /   large 0.0982 0.0201 4.87 0.00 0.1309 0.1138 1.15 0.25 0.0687 0.0311 2.21 0.03 0.0537 0.0199 2.69 0.01
dominated / small 0.0994 0.0248 4.01 0.00 0.0329 0.0163 2.01 0.04 0.0248 0.0170 1.46 0.15 0.0157 0.0204 0.77 0.44

Note:  "Neither" and "dominated" label the dominance models, "large" and "small" pertain to the small establishment models.

Concentration Ratio Dominance (D C )

Herfindahl-Hirschman Dominance (D H )

Dominators
Dominated / Small

Dominators
Dominated / Small

Dominance Categories Small ≤ 250 Employees Small ≤ 50 Employees Small ≤ 15 Employees
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Table A.11.6.  Marginal Impacts Including Plant Size Interactions for Metalworking Machinery (SIC 354), 2002, continued. 

Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value

0.2048 0.0211 9.71 0.00
-0.1637 0.0149 -11.01 0.00 -0.1896 0.0468 -4.05 0.00 -0.1117 0.0185 -6.04 0.00 0.0330 0.0146 2.26 0.02

Dominance dominator -0.1380 0.2460 -0.56 0.57
neither      /   large -0.1965 0.2238 -0.88 0.38 1.2213 0.6504 1.88 0.06 0.8642 0.3279 2.64 0.01 0.3863 0.2290 1.69 0.09
dominated / small -0.7526 0.3765 -2.00 0.05 0.0598 0.2010 0.30 0.77 -0.0703 0.2077 -0.34 0.73 -0.2340 0.2490 -0.94 0.35

Labor dominator 2.1883 1.1889 1.84 0.07
Pooling neither      /   large 0.2740 0.7189 0.38 0.70 1.1499 4.1736 0.28 0.78 0.1593 1.0449 0.15 0.88 0.8967 0.7206 1.24 0.21

dominated / small -0.5989 0.8526 -0.70 0.48 0.0756 0.6249 0.12 0.90 0.1475 0.6559 0.22 0.82 -0.8292 0.7844 -1.06 0.29

Manufactured dominator -0.0712 0.0423 -1.68 0.09
Inputs neither      /   large -0.0441 0.0232 -1.90 0.06 -0.1600 0.1398 -1.14 0.25 0.0216 0.0386 0.56 0.58 -0.0461 0.0231 -2.00 0.05

dominated / small -0.0389 0.0276 -1.41 0.16 -0.0377 0.0189 -2.00 0.05 -0.0464 0.0198 -2.34 0.02 -0.0349 0.0253 -1.38 0.17

Producer dominator 0.0954 0.0348 2.74 0.01
Services neither      /   large 0.0344 0.0206 1.67 0.10 0.1479 0.1319 1.12 0.26 0.0183 0.0319 0.58 0.57 0.0455 0.0202 2.25 0.02

dominated / small 0.0043 0.0232 0.19 0.85 0.0220 0.0174 1.26 0.21 0.0235 0.0181 1.30 0.19 0.0014 0.0221 0.06 0.95

Research dominator -0.0367 0.0214 -1.72 0.09
neither      /   large -0.0291 0.0135 -2.16 0.03 0.0840 0.0667 1.26 0.21 -0.0414 0.0215 -1.93 0.05 -0.0204 0.0136 -1.50 0.13
dominated / small -0.0145 0.0152 -0.95 0.34 -0.0093 0.0110 -0.84 0.40 -0.0049 0.0114 -0.43 0.67 0.0053 0.0134 0.39 0.69

Patents dominator 0.1274 0.0311 4.10 0.00
neither      /   large 0.0990 0.0208 4.76 0.00 0.1152 0.1111 1.04 0.30 0.0758 0.0322 2.35 0.02 0.0596 0.0207 2.88 0.00
dominated / small 0.0868 0.0257 3.38 0.00 0.0334 0.0170 1.97 0.05 0.0232 0.0177 1.31 0.19 0.0097 0.0213 0.46 0.65

0.2352 0.0223 10.55 0.00
-0.1800 0.0166 -10.87 0.00 -0.1243 0.0660 -1.88 0.06 -0.1052 0.0199 -5.29 0.00 0.0290 0.0156 1.86 0.06

Dominance dominator 0.7003 0.1612 4.34 0.00
neither      /   large 0.2037 0.1137 1.79 0.07 1.9177 0.7542 2.54 0.01 0.9129 0.2016 4.53 0.00 0.2291 0.1195 1.92 0.06
dominated / small 0.3164 0.1615 1.96 0.05 0.0664 0.0966 0.69 0.49 -0.0171 0.1008 -0.17 0.87 -0.0066 0.1234 -0.05 0.96

Labor dominator 2.6541 1.1881 2.23 0.03
Pooling neither      /   large 0.7146 0.7260 0.98 0.33 2.1393 4.2975 0.50 0.62 1.1607 1.0808 1.07 0.28 1.0239 0.7276 1.41 0.16

dominated / small -0.5881 0.9139 -0.64 0.52 -0.1240 0.6306 -0.20 0.84 -0.0265 0.6625 -0.04 0.97 -1.0928 0.7932 -1.38 0.17

Manufactured dominator -0.0742 0.0412 -1.80 0.07
Inputs neither      /   large -0.0438 0.0233 -1.88 0.06 -0.1551 0.1385 -1.12 0.26 -0.0107 0.0382 -0.28 0.78 -0.0533 0.0237 -2.25 0.02

dominated / small -0.0304 0.0281 -1.08 0.28 -0.0302 0.0195 -1.55 0.12 -0.0344 0.0204 -1.69 0.09 -0.0114 0.0254 -0.45 0.65

Producer dominator 0.0825 0.0343 2.41 0.02
Services neither      /   large 0.0322 0.0204 1.58 0.11 0.1192 0.1341 0.89 0.37 0.0209 0.0320 0.65 0.51 0.0434 0.0204 2.13 0.03

dominated / small -0.0026 0.0238 -0.11 0.91 0.0167 0.0176 0.95 0.34 0.0194 0.0183 1.06 0.29 -0.0054 0.0223 -0.24 0.81

Research dominator -0.0201 0.0215 -0.94 0.35
neither      /   large -0.0314 0.0140 -2.24 0.03 0.0687 0.0652 1.05 0.29 -0.0287 0.0216 -1.33 0.18 -0.0178 0.0137 -1.30 0.19
dominated / small -0.0181 0.0152 -1.19 0.23 -0.0098 0.0111 -0.88 0.38 -0.0069 0.0115 -0.60 0.55 0.0017 0.0136 0.13 0.90

Patents dominator 0.1025 0.0290 3.53 0.00
neither      /   large 0.0698 0.0200 3.49 0.00 -0.0026 0.1029 -0.03 0.98 0.0001 0.0301 0.00 1.00 0.0243 0.0198 1.22 0.22
dominated / small 0.0535 0.0263 2.04 0.04 0.0185 0.0162 1.14 0.25 0.0176 0.0170 1.04 0.30 0.0100 0.0199 0.50 0.61

Note:  "Neither" and "dominated" label the dominance models, "large" and "small" pertain to the small establishment models.

Rosenbluth Dominance (D R )

Dominators
Dominated / Small

Dominators
Dominated / Small

Gini Dominance (D G )

Dominance Categories Small ≤ 250 Employees Small ≤ 50 Employees Small ≤ 15 Employees
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Table A.11.7.  Marginal Impacts Including Plant Size Interactions for Measuring and Controlling Devices (SIC 382), 1992. 

Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value

0.2256 0.0514 4.39 0.00
-0.3221 0.0393 -8.19 0.00 -0.0535 0.0580 -0.92 0.36 -0.1577 0.0403 -3.91 0.00 -0.0860 0.0437 -1.97 0.05

Dominance dominator -0.4002 0.2614 -1.53 0.13
neither      /   large -0.3731 0.2149 -1.74 0.08 -0.2907 0.3164 -0.92 0.36 -0.1736 0.2315 -0.75 0.45 -0.1940 0.2236 -0.87 0.39
dominated / small -0.5132 0.2333 -2.20 0.03 -0.1695 0.1931 -0.88 0.38 -0.2934 0.2119 -1.38 0.17 -0.4761 0.2549 -1.87 0.06

Labor dominator 0.5425 2.1364 0.25 0.80
Pooling neither      /   large 0.8845 1.1551 0.77 0.44 6.1252 2.9753 2.06 0.04 1.2334 1.3056 0.94 0.34 0.7206 1.0801 0.67 0.50

dominated / small 0.5153 1.2268 0.42 0.67 2.0907 0.8883 2.35 0.02 1.2975 1.0662 1.22 0.22 3.4284 1.5833 2.17 0.03

Manufactured dominator -0.0249 0.0609 -0.41 0.68
Inputs neither      /   large 0.0361 0.0354 1.02 0.31 -0.1948 0.0865 -2.25 0.02 -0.0388 0.0423 -0.92 0.36 -0.0408 0.0346 -1.18 0.24

dominated / small 0.0216 0.0401 0.54 0.59 -0.0395 0.0281 -1.40 0.16 -0.0414 0.0330 -1.25 0.21 -0.0563 0.0475 -1.19 0.24

Producer dominator 0.0007 0.0472 0.01 0.99
Services neither      /   large -0.0133 0.0299 -0.45 0.66 0.1189 0.0657 1.81 0.07 0.0266 0.0343 0.78 0.44 0.0288 0.0290 1.00 0.32

dominated / small -0.0107 0.0339 -0.32 0.75 0.0200 0.0241 0.83 0.41 0.0303 0.0284 1.07 0.29 0.0178 0.0413 0.43 0.67

Research dominator 0.0157 0.0302 0.52 0.60
neither      /   large 0.0063 0.0166 0.38 0.70 0.0371 0.0359 1.03 0.30 0.0193 0.0199 0.97 0.33 0.0262 0.0155 1.68 0.09
dominated / small 0.0089 0.0175 0.51 0.61 0.0220 0.0126 1.75 0.08 0.0136 0.0147 0.92 0.36 0.0071 0.0223 0.32 0.75

Patents dominator 0.0689 0.1032 0.67 0.50
neither      /   large 0.0724 0.0643 1.13 0.26 0.1171 0.1124 1.04 0.30 0.1015 0.0641 1.58 0.11 0.0409 0.0547 0.75 0.45
dominated / small 0.0188 0.0617 0.30 0.76 0.0308 0.0474 0.65 0.52 0.0081 0.0579 0.14 0.89 -0.1274 0.0890 -1.43 0.15

0.2646 0.0486 5.45 0.00
-0.3158 0.0330 -9.56 0.00 -0.0644 0.0557 -1.16 0.25 -0.1785 0.0364 -4.91 0.00 -0.1239 0.0390 -3.18 0.00

Dominance dominator -0.2800 0.3792 -0.74 0.46
neither      /   large -0.4016 0.3266 -1.23 0.22 -0.6178 0.6363 -0.97 0.33 -0.2585 0.3983 -0.65 0.52 -0.3046 0.3861 -0.79 0.43
dominated / small -0.5746 0.4551 -1.26 0.21 -0.2955 0.3190 -0.93 0.35 -0.5616 0.3536 -1.59 0.11 -0.9030 0.4127 -2.19 0.03

Labor dominator 0.9869 2.1288 0.46 0.64
Pooling neither      /   large 1.0036 1.1420 0.88 0.38 6.3945 2.9509 2.17 0.03 1.1654 1.2739 0.91 0.36 0.6785 1.0327 0.66 0.51

dominated / small -0.0616 1.1870 -0.05 0.96 2.0320 0.8466 2.40 0.02 1.5038 1.0289 1.46 0.14 3.6224 1.5815 2.29 0.02

Manufactured dominator -0.0688 0.0660 -1.04 0.30
Inputs neither      /   large -0.0074 0.0365 -0.20 0.84 -0.2158 0.0875 -2.47 0.01 -0.0404 0.0425 -0.95 0.34 -0.0480 0.0340 -1.41 0.16

dominated / small 0.0270 0.0392 0.69 0.49 -0.0479 0.0279 -1.72 0.09 -0.0575 0.0329 -1.75 0.08 -0.0721 0.0492 -1.46 0.14

Producer dominator 0.0208 0.0472 0.44 0.66
Services neither      /   large 0.0139 0.0295 0.47 0.64 0.1112 0.0649 1.71 0.09 0.0216 0.0336 0.64 0.52 0.0279 0.0281 0.99 0.32

dominated / small -0.0089 0.0329 -0.27 0.79 0.0201 0.0233 0.86 0.39 0.0334 0.0276 1.21 0.23 0.0200 0.0409 0.49 0.62

Research dominator 0.0321 0.0300 1.07 0.29
neither      /   large 0.0112 0.0163 0.69 0.49 0.0489 0.0353 1.38 0.17 0.0229 0.0192 1.19 0.24 0.0284 0.0149 1.90 0.06
dominated / small 0.0112 0.0166 0.67 0.50 0.0235 0.0120 1.97 0.05 0.0199 0.0140 1.42 0.16 0.0087 0.0216 0.40 0.69

Patents dominator 0.1411 0.1103 1.28 0.20
neither      /   large 0.1444 0.0695 2.08 0.04 0.1391 0.1145 1.21 0.22 0.1147 0.0678 1.69 0.09 0.0711 0.0580 1.23 0.22
dominated / small 0.0786 0.0625 1.26 0.21 0.0455 0.0508 0.90 0.37 0.0355 0.0604 0.59 0.56 -0.1061 0.0925 -1.15 0.25

Note:  "Neither" and "dominated" label the dominance models, "large" and "small" pertain to the small establishment models.

Concentration Ratio Dominance (D C )

Herfindahl-Hirschman Dominance (D H )

Dominance Categories Small ≤ 250 Employees Small ≤ 50 Employees Small ≤ 15 Employees

Dominators
Dominated / Small

Dominators
Dominated / Small
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Table A.11.7.  Marginal Impacts Including Plant Size Interactions for Measuring and Controlling Devices (SIC 382), 1992,  

continued. 

Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value

0.2749 0.0509 5.40 0.00
-0.3105 0.0329 -9.43 0.00 -0.0505 0.0548 -0.92 0.36 -0.1614 0.0362 -4.46 0.00 -0.0464 0.0354 -1.31 0.19

Dominance dominator -1.6258 0.7994 -2.03 0.04
neither      /   large -1.9202 0.7285 -2.64 0.01 -1.9777 1.3802 -1.43 0.15 -1.3522 0.8848 -1.53 0.13 -0.9661 0.7540 -1.28 0.20
dominated / small -2.1572 1.0268 -2.10 0.04 -0.8999 0.7003 -1.29 0.20 -1.6709 0.7894 -2.12 0.03 -1.4889 0.8194 -1.82 0.07

Labor dominator -0.2130 2.1685 -0.10 0.92
Pooling neither      /   large 0.2014 1.1370 0.18 0.86 6.1776 2.9406 2.10 0.04 1.2136 1.2769 0.95 0.34 1.1947 0.9277 1.29 0.20

dominated / small 0.0528 1.1708 0.05 0.96 2.1487 0.8380 2.56 0.01 1.4391 1.0208 1.41 0.16 3.5400 1.4092 2.51 0.01

Manufactured dominator -0.0090 0.0637 -0.14 0.89
Inputs neither      /   large 0.0376 0.0356 1.06 0.29 -0.2007 0.0864 -2.32 0.02 -0.0353 0.0421 -0.84 0.40 -0.0452 0.0301 -1.50 0.13

dominated / small 0.0189 0.0388 0.49 0.63 -0.0419 0.0272 -1.54 0.12 -0.0486 0.0324 -1.50 0.13 -0.0553 0.0429 -1.29 0.20

Producer dominator -0.0108 0.0474 -0.23 0.82
Services neither      /   large -0.0186 0.0291 -0.64 0.52 0.0971 0.0649 1.50 0.13 0.0168 0.0336 0.50 0.62 0.0279 0.0250 1.12 0.26

dominated / small -0.0070 0.0327 -0.22 0.83 0.0165 0.0229 0.72 0.47 0.0278 0.0274 1.02 0.31 0.0006 0.0362 0.02 0.99

Research dominator 0.0201 0.0306 0.66 0.51
neither      /   large 0.0034 0.0165 0.21 0.84 0.0453 0.0358 1.27 0.21 0.0191 0.0195 0.98 0.33 0.0228 0.0136 1.68 0.09
dominated / small 0.0133 0.0169 0.78 0.43 0.0217 0.0122 1.78 0.08 0.0162 0.0144 1.13 0.26 0.0222 0.0196 1.13 0.26

Patents dominator 0.0226 0.1103 0.20 0.84
neither      /   large 0.0537 0.0693 0.77 0.44 0.1022 0.1144 0.89 0.37 0.0835 0.0682 1.22 0.22 0.0633 0.0523 1.21 0.23
dominated / small 0.0670 0.0624 1.07 0.28 0.0354 0.0505 0.70 0.48 0.0190 0.0609 0.31 0.76 -0.0840 0.0829 -1.01 0.31

0.2874 0.0439 6.54 0.00
-0.3110 0.0343 -9.07 0.00 -0.0815 0.0487 -1.67 0.09 -0.1651 0.0354 -4.66 0.00 -0.0690 0.0367 -1.88 0.06

Dominance dominator 0.7845 0.5995 1.31 0.19
neither      /   large 0.7545 0.4786 1.58 0.12 0.7047 0.9027 0.78 0.44 0.3516 0.5405 0.65 0.52 0.0602 0.5222 0.12 0.91
dominated / small 0.2521 0.5891 0.43 0.67 -0.1632 0.4455 -0.37 0.71 -0.3052 0.4936 -0.62 0.54 -1.1483 0.6016 -1.91 0.06

Labor dominator 0.6720 2.0941 0.32 0.75
Pooling neither      /   large 0.8096 1.1411 0.71 0.48 6.8112 2.9447 2.31 0.02 1.6619 1.2574 1.32 0.19 1.0483 1.0107 1.04 0.30

dominated / small 0.2041 1.1681 0.17 0.86 2.1539 0.8407 2.56 0.01 1.6629 1.0093 1.65 0.10 3.7794 1.5524 2.43 0.02

Manufactured dominator -0.0311 0.0602 -0.52 0.61
Inputs neither      /   large 0.0187 0.0346 0.54 0.59 -0.1981 0.0861 -2.30 0.02 -0.0442 0.0404 -1.09 0.27 -0.0416 0.0327 -1.27 0.20

dominated / small 0.0209 0.0380 0.55 0.58 -0.0382 0.0268 -1.42 0.15 -0.0403 0.0314 -1.28 0.20 -0.0350 0.0457 -0.77 0.44

Producer dominator 0.0087 0.0456 0.19 0.85
Services neither      /   large -0.0097 0.0292 -0.33 0.74 0.1185 0.0644 1.84 0.07 0.0178 0.0327 0.54 0.59 0.0140 0.0270 0.52 0.61

dominated / small -0.0062 0.0319 -0.19 0.85 0.0133 0.0227 0.59 0.56 0.0253 0.0267 0.95 0.34 0.0041 0.0398 0.10 0.92

Research dominator 0.0413 0.0309 1.34 0.18
neither      /   large 0.0256 0.0168 1.52 0.13 0.0508 0.0354 1.43 0.15 0.0284 0.0195 1.45 0.15 0.0350 0.0151 2.32 0.02
dominated / small 0.0177 0.0167 1.06 0.29 0.0219 0.0122 1.79 0.07 0.0193 0.0142 1.35 0.18 0.0056 0.0216 0.26 0.79

Patents dominator 0.1435 0.0959 1.50 0.13
neither      /   large 0.1709 0.0602 2.84 0.00 0.1250 0.1091 1.15 0.25 0.1388 0.0610 2.27 0.02 0.0870 0.0526 1.65 0.10
dominated / small 0.0976 0.0624 1.56 0.12 0.0617 0.0456 1.35 0.18 0.0722 0.0551 1.31 0.19 -0.0698 0.0831 -0.84 0.40

Note:  "Neither" and "dominated" label the dominance models, "large" and "small" pertain to the small establishment models.

Rosenbluth Dominance (D R )

Dominators
Dominated / Small

Dominators
Dominated / Small

Gini Dominance (D G )

Dominance Categories Small ≤ 250 Employees Small ≤ 50 Employees Small ≤ 15 Employees

 



 

 

3
1
9
 

Table A.11.8.  Marginal Impacts Including Plant Size Interactions for Measuring and Controlling Devices (SIC 382), 1997. 

Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value

0.2338 0.0453 5.16 0.00
-0.3102 0.0355 -8.73 0.00 -0.1392 0.0596 -2.33 0.02 0.0441 0.0355 1.24 0.21 0.0701 0.0368 1.91 0.06

Dominance dominator -0.2194 0.2116 -1.04 0.30
neither      /   large -0.1369 0.1660 -0.82 0.41 0.0509 0.3208 0.16 0.87 0.1055 0.1833 0.58 0.56 0.0840 0.1570 0.53 0.59
dominated / small -0.5347 0.2038 -2.62 0.01 -0.0320 0.1510 -0.21 0.83 -0.1519 0.1591 -0.95 0.34 -0.3804 0.2032 -1.87 0.06

Labor dominator -0.6915 1.4030 -0.49 0.62
Pooling neither      /   large 0.3999 0.8070 0.50 0.62 1.1181 2.1853 0.51 0.61 0.0652 0.9406 0.07 0.94 0.6430 0.6974 0.92 0.36

dominated / small 0.7921 0.8830 0.90 0.37 0.8433 0.6447 1.31 0.19 1.1624 0.7234 1.61 0.11 0.9978 1.0687 0.93 0.35

Manufactured dominator 0.0831 0.0375 2.21 0.03
Inputs neither      /   large 0.0389 0.0242 1.61 0.11 0.0095 0.0688 0.14 0.89 -0.0038 0.0295 -0.13 0.90 -0.0081 0.0217 -0.37 0.71

dominated / small -0.0022 0.0302 -0.07 0.94 -0.0055 0.0197 -0.28 0.78 -0.0006 0.0223 -0.03 0.98 0.0103 0.0328 0.31 0.75

Producer dominator -0.0632 0.0350 -1.81 0.07
Services neither      /   large -0.0085 0.0233 -0.36 0.72 -0.0172 0.0542 -0.32 0.75 0.0183 0.0264 0.69 0.49 0.0113 0.0207 0.54 0.59

dominated / small -0.0021 0.0283 -0.08 0.94 0.0120 0.0194 0.62 0.53 0.0015 0.0224 0.07 0.95 0.0079 0.0329 0.24 0.81

Research dominator 0.0190 0.0240 0.79 0.43
neither      /   large 0.0213 0.0139 1.53 0.13 -0.0097 0.0360 -0.27 0.79 0.0290 0.0166 1.75 0.08 0.0220 0.0121 1.82 0.07
dominated / small 0.0109 0.0158 0.69 0.49 0.0208 0.0110 1.89 0.06 0.0118 0.0127 0.93 0.35 0.0082 0.0191 0.43 0.67

Patents dominator 0.0527 0.0780 0.68 0.50
neither      /   large 0.1021 0.0531 1.92 0.05 0.1902 0.1210 1.57 0.12 0.0890 0.0522 1.71 0.09 0.0419 0.0432 0.97 0.33
dominated / small 0.0687 0.0512 1.34 0.18 0.0116 0.0412 0.28 0.78 -0.0359 0.0475 -0.76 0.45 -0.0497 0.0664 -0.75 0.45

0.2498 0.0394 6.33 0.00
-0.2810 0.0309 -9.09 0.00 -0.1052 0.0501 -2.10 0.04 0.0629 0.0312 2.02 0.04 0.0801 0.0328 2.44 0.01

Dominance dominator -0.3730 0.3343 -1.12 0.26
neither      /   large -0.3495 0.2507 -1.39 0.16 -0.4349 0.5723 -0.76 0.45 -0.0002 0.3197 0.00 1.00 0.1502 0.2600 0.58 0.56
dominated / small -0.6864 0.3962 -1.73 0.08 0.0285 0.2459 0.12 0.91 -0.1160 0.2568 -0.45 0.65 -0.5229 0.3396 -1.54 0.12

Labor dominator -0.3858 1.4197 -0.27 0.79
Pooling neither      /   large 0.4619 0.8063 0.57 0.57 1.9183 2.2036 0.87 0.38 0.2776 0.9512 0.29 0.77 0.7261 0.6905 1.05 0.29

dominated / small 0.7960 0.8866 0.90 0.37 0.8799 0.6361 1.38 0.17 1.1949 0.7199 1.66 0.10 1.0970 1.0741 1.02 0.31

Manufactured dominator 0.0692 0.0400 1.73 0.08
Inputs neither      /   large 0.0393 0.0245 1.61 0.11 -0.0442 0.0708 -0.62 0.53 -0.0079 0.0300 -0.26 0.79 -0.0100 0.0215 -0.46 0.64

dominated / small 0.0044 0.0305 0.14 0.89 -0.0044 0.0195 -0.23 0.82 0.0035 0.0223 0.16 0.88 0.0142 0.0329 0.43 0.67

Producer dominator -0.0666 0.0348 -1.91 0.06
Services neither      /   large -0.0124 0.0231 -0.54 0.59 -0.0056 0.0527 -0.11 0.92 0.0161 0.0261 0.62 0.54 0.0070 0.0202 0.35 0.73

dominated / small -0.0116 0.0278 -0.42 0.68 0.0073 0.0189 0.39 0.70 -0.0039 0.0220 -0.18 0.86 0.0043 0.0327 0.13 0.89

Research dominator 0.0266 0.0247 1.08 0.28
neither      /   large 0.0225 0.0139 1.62 0.10 -0.0076 0.0357 -0.21 0.83 0.0285 0.0165 1.73 0.08 0.0260 0.0119 2.18 0.03
dominated / small 0.0165 0.0155 1.06 0.29 0.0249 0.0108 2.31 0.02 0.0166 0.0125 1.33 0.18 0.0110 0.0192 0.57 0.57

Patents dominator 0.0383 0.0830 0.46 0.64
neither      /   large 0.0715 0.0563 1.27 0.20 0.2346 0.1248 1.88 0.06 0.0655 0.0542 1.21 0.23 0.0247 0.0461 0.54 0.59
dominated / small 0.0448 0.0524 0.85 0.39 -0.0021 0.0441 -0.05 0.96 -0.0518 0.0504 -1.03 0.30 -0.0661 0.0680 -0.97 0.33

Note:  "Neither" and "dominated" label the dominance models, "large" and "small" pertain to the small establishment models.

Concentration Ratio Dominance (D C )

Herfindahl-Hirschman Dominance (D H )

Dominance Categories Small ≤ 250 Employees Small ≤ 50 Employees Small ≤ 15 Employees

Dominators
Dominated / Small

Dominators
Dominated / Small
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Table A.11.8.  Marginal Impacts Including Plant Size Interactions for Measuring and Controlling Devices (SIC 382), 1997,  

continued. 

 

Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value

0.2198 0.0445 4.94 0.00
-0.2770 0.0293 -9.45 0.00 -0.1056 0.0532 -1.98 0.05 0.0642 0.0316 2.03 0.04 0.0814 0.0326 2.49 0.01

Dominance dominator -1.8172 0.6336 -2.87 0.00
neither      /   large -1.3102 0.6401 -2.05 0.04 -1.0165 1.3444 -0.76 0.45 -0.1302 0.7732 -0.17 0.87 0.0957 0.6733 0.14 0.89
dominated / small -1.8468 0.9099 -2.03 0.04 -0.1496 0.6399 -0.23 0.82 -0.3671 0.6674 -0.55 0.58 -0.8903 0.8175 -1.09 0.28

Labor dominator -0.9206 1.4090 -0.65 0.51
Pooling neither      /   large 0.3089 0.8044 0.38 0.70 0.6478 2.1893 0.30 0.77 0.0540 0.9312 0.06 0.95 0.6075 0.6835 0.89 0.37

dominated / small 0.6199 0.8639 0.72 0.47 0.7140 0.6288 1.14 0.26 1.0189 0.7104 1.43 0.15 0.6696 1.0599 0.63 0.53

Manufactured dominator 0.0704 0.0381 1.85 0.06
Inputs neither      /   large 0.0356 0.0239 1.49 0.14 -0.0025 0.0672 -0.04 0.97 -0.0093 0.0293 -0.32 0.75 -0.0096 0.0212 -0.46 0.65

dominated / small 0.0086 0.0297 0.29 0.77 -0.0057 0.0192 -0.30 0.77 0.0021 0.0221 0.10 0.92 0.0147 0.0326 0.45 0.65

Producer dominator -0.0685 0.0352 -1.94 0.05
Services neither      /   large -0.0094 0.0233 -0.40 0.69 -0.0169 0.0537 -0.31 0.75 0.0166 0.0261 0.64 0.53 0.0067 0.0206 0.33 0.74

dominated / small -0.0132 0.0278 -0.47 0.64 0.0061 0.0192 0.32 0.75 -0.0055 0.0225 -0.25 0.81 -0.0037 0.0332 -0.11 0.91

Research dominator 0.0178 0.0237 0.75 0.45
neither      /   large 0.0232 0.0137 1.70 0.09 -0.0165 0.0357 -0.46 0.64 0.0288 0.0161 1.79 0.07 0.0250 0.0117 2.14 0.03
dominated / small 0.0147 0.0153 0.97 0.33 0.0258 0.0107 2.42 0.02 0.0178 0.0124 1.43 0.15 0.0184 0.0189 0.97 0.33

Patents dominator -0.0393 0.0810 -0.49 0.63
neither      /   large 0.0572 0.0521 1.10 0.27 0.2102 0.1238 1.70 0.09 0.0834 0.0523 1.59 0.11 0.0302 0.0428 0.71 0.48
dominated / small 0.0358 0.0497 0.72 0.47 0.0020 0.0400 0.05 0.96 -0.0446 0.0465 -0.96 0.34 -0.0496 0.0660 -0.75 0.45

0.2832 0.0368 7.69 0.00
-0.2849 0.0288 -9.90 0.00 -0.1231 0.0462 -2.66 0.01 0.0721 0.0300 2.40 0.02 0.1023 0.0304 3.37 0.00

Dominance dominator 1.2329 0.4622 2.67 0.01
neither      /   large 0.8229 0.3450 2.39 0.02 0.2553 0.9739 0.26 0.79 0.8834 0.4040 2.19 0.03 0.7174 0.3342 2.15 0.03
dominated / small 0.8935 0.4476 2.00 0.05 0.5916 0.3194 1.85 0.06 0.3471 0.3445 1.01 0.31 0.0696 0.4579 0.15 0.88

Labor dominator -0.8597 1.4176 -0.61 0.54
Pooling neither      /   large 0.4902 0.8015 0.61 0.54 0.3019 2.2556 0.13 0.89 0.1310 0.9266 0.14 0.89 0.6394 0.6806 0.94 0.35

dominated / small 0.9282 0.8842 1.05 0.29 0.7882 0.6271 1.26 0.21 1.0679 0.7117 1.50 0.13 0.8448 1.0640 0.79 0.43

Manufactured dominator 0.0416 0.0397 1.05 0.29
Inputs neither      /   large 0.0186 0.0243 0.77 0.44 0.0049 0.0667 0.07 0.94 -0.0094 0.0296 -0.32 0.75 -0.0089 0.0216 -0.41 0.68

dominated / small 0.0053 0.0305 0.17 0.86 -0.0076 0.0197 -0.39 0.70 0.0024 0.0223 0.11 0.91 0.0114 0.0324 0.35 0.72

Producer dominator -0.0679 0.0360 -1.89 0.06
Services neither      /   large -0.0158 0.0230 -0.68 0.49 -0.0125 0.0524 -0.24 0.81 0.0138 0.0258 0.54 0.59 0.0013 0.0200 0.06 0.95

dominated / small -0.0224 0.0268 -0.83 0.40 0.0054 0.0186 0.29 0.77 -0.0062 0.0217 -0.29 0.77 0.0028 0.0324 0.09 0.93

Research dominator 0.0478 0.0245 1.95 0.05
neither      /   large 0.0332 0.0134 2.48 0.01 -0.0059 0.0332 -0.18 0.86 0.0275 0.0158 1.74 0.08 0.0223 0.0115 1.95 0.05
dominated / small 0.0213 0.0148 1.44 0.15 0.0235 0.0103 2.28 0.02 0.0147 0.0119 1.24 0.21 0.0183 0.0177 1.03 0.30

Patents dominator 0.1373 0.0690 1.99 0.05
neither      /   large 0.1634 0.0486 3.36 0.00 0.2890 0.1157 2.50 0.01 0.0863 0.0477 1.81 0.07 0.0277 0.0398 0.70 0.49
dominated / small 0.0897 0.0500 1.80 0.07 0.0186 0.0386 0.48 0.63 -0.0203 0.0447 -0.46 0.65 -0.0125 0.0632 -0.20 0.84

Note:  "Neither" and "dominated" label the dominance models, "large" and "small" pertain to the small establishment models.

Rosenbluth Dominance (D R )

Dominators
Dominated / Small

Dominators
Dominated / Small

Gini Dominance (D G )

Dominance Categories Small ≤ 250 Employees Small ≤ 50 Employees Small ≤ 15 Employees
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Table A.11.9.  Marginal Impacts Including Plant Size Interactions for Measuring and Controlling Devices (SIC 382), 2002. 

Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value

0.2789 0.0472 5.91 0.00
-0.1849 0.0392 -4.72 0.00 -0.1025 0.0623 -1.65 0.10 0.0149 0.0387 0.38 0.70 0.0641 0.0424 1.51 0.13

Dominance dominator 0.0995 0.2436 0.41 0.68
neither      /   large 0.1667 0.1906 0.87 0.38 -0.3288 0.3592 -0.92 0.36 0.0722 0.2182 0.33 0.74 -0.0432 0.1980 -0.22 0.83
dominated / small 0.1824 0.2624 0.70 0.49 0.0544 0.1884 0.29 0.77 0.0218 0.1959 0.11 0.91 0.0556 0.2254 0.25 0.81

Labor dominator -2.6861 1.6870 -1.59 0.11
Pooling neither      /   large -1.1657 1.2206 -0.96 0.34 0.8088 2.2595 0.36 0.72 0.6876 1.1926 0.58 0.56 0.8094 0.9749 0.83 0.41

dominated / small 0.4882 1.1892 0.41 0.68 0.7021 0.9332 0.75 0.45 1.0152 1.0423 0.97 0.33 1.2422 1.4418 0.86 0.39

Manufactured dominator 0.0096 0.0413 0.23 0.82
Inputs neither      /   large -0.0131 0.0295 -0.44 0.66 -0.0910 0.0637 -1.43 0.15 -0.0306 0.0333 -0.92 0.36 -0.0334 0.0256 -1.30 0.19

dominated / small 0.0136 0.0357 0.38 0.70 -0.0321 0.0236 -1.36 0.17 -0.0377 0.0268 -1.41 0.16 -0.0546 0.0374 -1.46 0.14

Producer dominator -0.0672 0.0441 -1.52 0.13
Services neither      /   large -0.0090 0.0310 -0.29 0.77 -0.0301 0.0615 -0.49 0.62 0.0012 0.0324 0.04 0.97 0.0199 0.0263 0.76 0.45

dominated / small -0.0395 0.0346 -1.14 0.25 0.0188 0.0251 0.75 0.45 0.0245 0.0289 0.85 0.40 0.0083 0.0409 0.20 0.84

Research dominator 0.0118 0.0249 0.47 0.64
neither      /   large 0.0199 0.0178 1.12 0.26 0.0066 0.0326 0.20 0.84 0.0180 0.0183 0.99 0.32 0.0069 0.0148 0.46 0.64
dominated / small 0.0042 0.0181 0.23 0.82 0.0107 0.0140 0.76 0.44 0.0036 0.0159 0.23 0.82 0.0233 0.0216 1.08 0.28

Patents dominator 0.2442 0.0776 3.15 0.00
neither      /   large 0.0632 0.0531 1.19 0.23 0.1877 0.1154 1.63 0.10 0.0401 0.0559 0.72 0.47 0.0232 0.0468 0.50 0.62
dominated / small 0.0033 0.0616 0.05 0.96 0.0111 0.0444 0.25 0.80 0.0139 0.0500 0.28 0.78 0.0420 0.0667 0.63 0.53

0.2525 0.0509 4.96 0.00
-0.1946 0.0386 -5.04 0.00 -0.1084 0.0627 -1.73 0.08 0.0134 0.0401 0.33 0.74 0.0414 0.0431 0.96 0.34

Dominance dominator 0.3008 0.3278 0.92 0.36
neither      /   large 0.4930 0.2992 1.65 0.10 -0.1980 0.6655 -0.30 0.77 0.2038 0.3610 0.56 0.57 0.3404 0.3032 1.12 0.26
dominated / small 0.5160 0.4544 1.14 0.26 0.3355 0.2826 1.19 0.24 0.2450 0.3037 0.81 0.42 -0.0051 0.3854 -0.01 0.99

Labor dominator -2.1192 1.7641 -1.20 0.23
Pooling neither      /   large -1.0534 1.2453 -0.85 0.40 1.3123 2.3951 0.55 0.58 1.0201 1.1895 0.86 0.39 0.8703 0.9514 0.91 0.36

dominated / small 1.1482 1.1591 0.99 0.32 0.9446 0.9034 1.05 0.30 1.2509 1.0201 1.23 0.22 1.7628 1.4417 1.22 0.22

Manufactured dominator 0.0199 0.0415 0.48 0.63
Inputs neither      /   large -0.0115 0.0297 -0.39 0.70 -0.0873 0.0635 -1.38 0.17 -0.0283 0.0330 -0.86 0.39 -0.0367 0.0251 -1.46 0.14

dominated / small 0.0025 0.0352 0.07 0.94 -0.0365 0.0231 -1.58 0.11 -0.0442 0.0263 -1.68 0.09 -0.0558 0.0372 -1.50 0.13

Producer dominator -0.0562 0.0441 -1.27 0.20
Services neither      /   large -0.0055 0.0314 -0.18 0.86 -0.0250 0.0626 -0.40 0.69 0.0028 0.0326 0.09 0.93 0.0230 0.0265 0.87 0.39

dominated / small -0.0311 0.0348 -0.89 0.37 0.0235 0.0255 0.92 0.36 0.0253 0.0293 0.86 0.39 0.0145 0.0414 0.35 0.73

Research dominator 0.0008 0.0252 0.03 0.98
neither      /   large 0.0134 0.0177 0.76 0.45 0.0037 0.0334 0.11 0.91 0.0130 0.0183 0.71 0.48 0.0038 0.0147 0.26 0.80
dominated / small -0.0018 0.0179 -0.10 0.92 0.0068 0.0139 0.49 0.62 0.0029 0.0158 0.18 0.85 0.0163 0.0216 0.75 0.45

Patents dominator 0.2594 0.0785 3.31 0.00
neither      /   large 0.1043 0.0532 1.96 0.05 0.1721 0.1161 1.48 0.14 0.0296 0.0538 0.55 0.58 0.0359 0.0442 0.81 0.42
dominated / small 0.0534 0.0565 0.94 0.34 0.0220 0.0420 0.52 0.60 0.0278 0.0476 0.58 0.56 0.0205 0.0645 0.32 0.75

Note:  "Neither" and "dominated" label the dominance models, "large" and "small" pertain to the small establishment models.

Concentration Ratio Dominance (D C )

Herfindahl-Hirschman Dominance (D H )

Dominance Categories Small ≤ 250 Employees Small ≤ 50 Employees Small ≤ 15 Employees

Dominators
Dominated / Small

Dominators
Dominated / Small

 



 

 

3
2
2
 

Table A.11.9.  Marginal Impacts Including Plant Size Interactions for Measuring and Controlling Devices (SIC 382), 2002,  

continued. 

 

Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value Coeff. Std. Err. t Stat. p Value

0.2839 0.0525 5.41 0.00
-0.2003 0.0370 -5.41 0.00 -0.1113 0.0603 -1.85 0.06 0.0189 0.0385 0.49 0.62 0.0489 0.0421 1.16 0.25

Dominance dominator 0.4409 0.6276 0.70 0.48
neither      /   large 0.6857 0.6229 1.10 0.27 -1.6178 1.1993 -1.35 0.18 -0.3089 0.7183 -0.43 0.67 0.1689 0.6184 0.27 0.78
dominated / small -0.0940 0.9116 -0.10 0.92 0.2047 0.5874 0.35 0.73 0.2247 0.6269 0.36 0.72 -0.0806 0.7648 -0.11 0.92

Labor dominator -2.8047 1.7715 -1.58 0.11
Pooling neither      /   large -0.9541 1.2175 -0.78 0.43 1.5917 2.2889 0.70 0.49 1.2309 1.1996 1.03 0.31 0.6153 0.9762 0.63 0.53

dominated / small 0.6278 1.1573 0.54 0.59 0.6094 0.9347 0.65 0.51 0.8330 1.0517 0.79 0.43 1.6208 1.4726 1.10 0.27

Manufactured dominator 0.0204 0.0420 0.49 0.63
Inputs neither      /   large -0.0074 0.0297 -0.25 0.80 -0.0826 0.0638 -1.29 0.20 -0.0298 0.0333 -0.90 0.37 -0.0246 0.0254 -0.97 0.33

dominated / small 0.0179 0.0351 0.51 0.61 -0.0235 0.0233 -1.01 0.31 -0.0260 0.0264 -0.98 0.33 -0.0493 0.0373 -1.32 0.19

Producer dominator -0.0786 0.0451 -1.74 0.08
Services neither      /   large -0.0104 0.0310 -0.34 0.74 -0.0586 0.0622 -0.94 0.35 -0.0050 0.0326 -0.15 0.88 0.0058 0.0263 0.22 0.83

dominated / small -0.0488 0.0343 -1.42 0.15 0.0072 0.0250 0.29 0.78 0.0066 0.0289 0.23 0.82 0.0018 0.0414 0.04 0.97

Research dominator 0.0089 0.0247 0.36 0.72
neither      /   large 0.0160 0.0174 0.92 0.36 0.0078 0.0329 0.24 0.81 0.0165 0.0180 0.92 0.36 0.0093 0.0143 0.65 0.52
dominated / small 0.0027 0.0177 0.15 0.88 0.0120 0.0135 0.89 0.37 0.0081 0.0155 0.53 0.60 0.0222 0.0214 1.04 0.30

Patents dominator 0.2728 0.0820 3.33 0.00
neither      /   large 0.0878 0.0535 1.64 0.10 0.1062 0.1164 0.91 0.36 0.0101 0.0549 0.18 0.85 0.0285 0.0450 0.63 0.53
dominated / small 0.0497 0.0566 0.88 0.38 0.0176 0.0424 0.42 0.68 0.0237 0.0486 0.49 0.63 0.0295 0.0672 0.44 0.66

0.2789 0.0452 6.17 0.00
-0.1817 0.0353 -5.14 0.00 -0.1491 0.0572 -2.61 0.01 -0.0041 0.0366 -0.11 0.91 0.0908 0.0369 2.46 0.01

Dominance dominator 0.8234 0.4319 1.91 0.06
neither      /   large 0.5073 0.3364 1.51 0.13 0.7001 0.9251 0.76 0.45 0.5471 0.3835 1.43 0.15 0.0285 0.3143 0.09 0.93
dominated / small -0.5641 0.4278 -1.32 0.19 -0.1222 0.2952 -0.41 0.68 -0.3796 0.3286 -1.16 0.25 -0.3086 0.4401 -0.70 0.48

Labor dominator -1.2828 1.7247 -0.74 0.46
Pooling neither      /   large -0.1333 1.1964 -0.11 0.91 1.2361 2.1785 0.57 0.57 1.7748 1.1947 1.49 0.14 1.8233 0.9744 1.87 0.06

dominated / small 1.5973 1.1360 1.41 0.16 1.8973 0.9355 2.03 0.04 2.2960 1.0378 2.21 0.03 2.6251 1.4249 1.84 0.07

Manufactured dominator 0.0057 0.0415 0.14 0.89
Inputs neither      /   large -0.0086 0.0302 -0.29 0.78 -0.0904 0.0648 -1.39 0.16 -0.0303 0.0340 -0.89 0.37 -0.0232 0.0261 -0.89 0.38

dominated / small 0.0091 0.0358 0.25 0.80 -0.0227 0.0246 -0.92 0.36 -0.0268 0.0277 -0.97 0.33 -0.0383 0.0386 -0.99 0.32

Producer dominator -0.0515 0.0434 -1.19 0.24
Services neither      /   large -0.0151 0.0319 -0.47 0.64 -0.0353 0.0618 -0.57 0.57 -0.0012 0.0330 -0.04 0.97 0.0151 0.0270 0.56 0.58

dominated / small -0.0398 0.0354 -1.12 0.26 0.0146 0.0263 0.55 0.58 0.0182 0.0300 0.61 0.54 0.0039 0.0424 0.09 0.93

Research dominator 0.0142 0.0254 0.56 0.58
neither      /   large 0.0220 0.0182 1.21 0.23 0.0119 0.0322 0.37 0.71 0.0127 0.0184 0.69 0.49 -0.0008 0.0150 -0.05 0.96
dominated / small 0.0066 0.0176 0.38 0.71 0.0051 0.0143 0.36 0.72 0.0010 0.0161 0.06 0.95 0.0167 0.0218 0.76 0.45

Patents dominator 0.2175 0.0749 2.91 0.00
neither      /   large 0.0536 0.0519 1.03 0.30 0.2149 0.1003 2.14 0.03 0.0330 0.0521 0.63 0.53 0.0395 0.0439 0.90 0.37
dominated / small 0.0361 0.0548 0.66 0.51 0.0154 0.0422 0.36 0.72 0.0209 0.0473 0.44 0.66 0.0094 0.0621 0.15 0.88

Note:  "Neither" and "dominated" label the dominance models, "large" and "small" pertain to the small establishment models.

Rosenbluth Dominance (D R )

Dominance Categories Small ≤ 250 Employees Small ≤ 50 Employees Small ≤ 15 Employees

Dominators
Dominated / Small

Dominators
Dominated / Small

Gini Dominance (D G )
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