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ABSTRACT 

Carrie Blomquist Doyle:  Contribution of bacterial cells to the fluorescence spectra of Natural 
Organic Matter in freshwaters 

(Under the direction of Rose M. Cory) 

Aquatic Natural Organic Matter (NOM) fuels heterotrophic respiration. The fraction 

Dissolved Organic Matter (DOM) is operationally defined as material in water samples passing 

through 0.45 – 0.7 micron filters.  Amino acid fluorescence of DOM serves as a proxy for DOM 

bioavailability.  However, bacterial cells, only largely removed by filtration, also demonstrate 

amino acid fluorescence.  The objective of this study was to determine contributions of bacterial 

cells to amino acid fluorescence in freshwaters.  Unfiltered bacterial suspensions demonstrated 

amino acid fluorescence proportional to bacterial cell concentration; however, 0.22 micron 

filtration removed most fluorescence.  For freshwaters, losses in amino acid fluorescence (up to 

60%) with varying pore size filtration largely paralleled losses in particulate material.  Using 

reported retention efficiencies for 0.7 micron filters, bacterial cells in natural waters may account 

for 5 – 50% of amino acid fluorescence in freshwaters, thereby potentially confounding the 

interpretation of amino acid fluorescence as a proxy for labile DOM. 



iv 

 

  

 

 

ACKNOWLEDGEMENTS 

I would like to thank Rose Cory, Steve Whalen, and Jill Stewart for their time, attention, 

and patience during my masters.  Lou Kaplan kindly provided the bacterial cell samples.   

  



v 

 

 

 

TABLE OF CONTENTS 

LIST OF TABLES……………………………………………………………………………….vi 

LISTS OF FIGURES……………..………………………………………………………….….vii 

LIST OF ABBREVIATIONS…………………………………………………………………..viii 

BACKGROUND AND INTRODUCTION...................................................................................1 

METHODS………………………………………………………………………………………..8 

 Preparation of bacterial cell suspensions…………………….…..……………………….8 

 Analysis of bacterial cell suspensions……………………………………………….…..10 

 Analysis of aquatic NOM………..………………………………………………………11 

  Site Descriptions…….…………………………………………………………...11 

  Sample collection, storage, and analysis…………………………………..…….13 

RESULTS………………………………………………………………………………………..15 

 Fluorescence characterization of bacterial cell suspensions…………………………..…15 

 Absorbance and fluorescence characterization of NOM in surface freshwaters……...…15 

Effect of filter pore size on NOM absorbance and fluorescence……………………..….17 

DISCUSSION……………………………………………………………………………………19 

CONCLUSIONS………………………………………………………………………………...25 

TABLES AND FIGURES……………………………………………………………………….26 

REFERENCES…………………………………………………………………………………..34 



vi 

 

LIST OF TABLES 

Table 1 – Characteristics of filters used……………………………………………………….....26 

Table 2 – Characteristics of natural waters sampled…………………..………………………...27 

Table 3 – TOC and SUVA averages for the five filter treatments………………………….……28 

Table 4 – Relationships between peaks A, C, and T with a305...…………………………………29 

  



vii 

 

LIST OF FIGURES 

Figure 1 – Characteristic EEMs of bacterial cell suspensions…………………………………...30 

Figure 2 – Peak T intensity (RU) vs. cell density (cells/mL) in Log-Log scales………………..31 

Figure 3 – Representative natural water EEMs (Eno River)…………………………………….32 

Figure 4 – Absorbance and fluorescence measures of filtrates by pore size and by site, 
 as % of initial whole water…………………………………………………………….....33 
 

  



viii 

 

LIST OF ABBREVIATIONS 

CDOM Colored or Chromophoric Dissolved Organic Matter 

DOC  Dissolved Organic Carbon 

DOM  Dissolved Organic Matter 

EEM  Excitation Emission Matrix 

FDOM  Fluorescent Dissolved Organic Matter 

NOM  Natural Organic Matter 

POM  Particulate Organic Matter 

SUVA  Specific Ultra Violet Absorbance 

TOC  Total Organic Carbon 

UV  Ultra Violet 

WCC  White Clay Creek 



1 

 

 

 

BACKGROUND AND INTRODUCTION 

Soils, sediments, freshwaters, and marine waters contain natural organic matter (NOM) – 

a complex, heterogeneous mixture of organic compounds exhibiting a broad range of chemical 

properties.  Derived from all living things, this mixture includes as the byproducts of 

biomolecules: carbohydrates, amino acids and proteins, lipids, lignin, cellulose, and chitin.   

NOM is a critical component of natural waters, functioning as a control on photic zone depth and 

as C and energy fueling heterotrophic respiration.  Because NOM’s roles depends on its size, 

which spans a continuum from large particulate matter to operationally defined “dissolved” 

molecules (nm in size), filtration has been widely used to separate and classify fractions of 

NOM.    

In the mid-nineteen hundreds, available glass fiber and silver filters were used to separate 

NOM into two fractions:  Particulate Organic Matter (POM) and Dissolved Organic Matter 

(DOM); for this reason, an operational definition for DOM based on minimal filter pore sizes of 

0.45 micron – 1.0 micron was established (Hedges, 2002).  Small bacteria and viruses were 

known to be part of the dissolved fraction of organic matter; all other living matter was believed 

to be in the particulate fraction.  The dissolved fraction included colloids as well as truly 

dissolved molecules; the upper limit of 1.0 micron precluded from the dissolved fraction 

substances prone to sink (Hedges, 2002).  Today, the standard classification of dissolved 

constituents in natural waters is often 0.45 micron; however, analysis of organic matter typically 

requires preference for a binder-free glass fiber filter, of which 0.7 micron is the smallest 
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nominal pore size available.  Therefore, the 0.45 micron or 0.7 micron filter fraction (Yamashita 

& Tanoue, 2004; Stedmon et al., 2003) of natural waters is often analyzed to characterize DOM 

– the complex, heterogeneous fraction of NOM important in the global C cycle due to its role in 

heterotrophic respiration.    

 As well as a major participant in the global carbon cycle (Fisher & Likens, 1973; Kling et 

al., 1991), DOM is an important determinant of water quality.  DOM is a source of nutrients for 

aquatic organisms (Kaplan et al., 2008) and fosters bacterial regrowth in distribution systems 

(Page et al., 2002).  DOM sorbs pollutants and influences their fate (Chin, 2003).  Another aspect 

of water quality is color; as concentrations of dissolved organic carbon (DOC) increase, the more 

sunscreen there is to shade aquatic organisms from harmful UV sunlight.  

 Not all DOM (~20-70%, depending on the system) is colored, but the portions rich in 

aromatic rings and double bonds account for colored DOM (CDOM).  CDOM absorbs UV 

radiation and attenuates light in the water column.  Light absorption also can result in photolysis 

of DOM, altering its chemical composition and causing evolution of carbon dioxide (Moran & 

Covert, 2003; Coble, 2007). The UV-Vis absorbance spectrum for DOM is an exponentially 

decaying curve with increasing wavelength; there are no discernible peaks.  Nevertheless, DOM 

can be partially characterized – by source and molecular weight, for example – simply by how it 

absorbs light.  Ratios of the spectral slopes of different sections of the curve are used as proxies 

of DOM molecular weight and thereby source and diagenesis (Helms et al., 2008). The specific 

UV absorbance (SUVA, with units L mg C-1 m-1) of CDOM, which is the absorbance coefficient 

at 245 nm divided by DOC concentration, is a measure of relative aromaticity of DOM 

(Weishaar et al., 2003).  DOM derived from terrestrial sources is rich in aromatic, high 
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molecular weight lignin-like compounds; DOM derived from autochthonous sources is rich in 

low molecular weight amino-acid like compounds (Cory et al., 2007).  

  Some CDOM emits light, known as fluorescence; while this fluorescent DOM (FDOM) 

is a small percentage (~1%) of the DOM pool, it is representative of the bulk properties and 

source of DOM (Mopper & Schultz, 1993; McKnight et al., 2003; Cory et al., 2007). Therefore, 

CDOM and FDOM are often measured to characterize DOM in natural waters.  A three 

dimensional contour plot of DOM fluorescence – with emission wavelength (nm) on the x-axis,  

excitation wavelength (nm) on the y-axis, and fluorescence intensity (raman units or RU) on the 

z-axis – is known as an Excitation-Emission Matrix (EEM).  Peaks in different regions of an 

EEM are associated with different DOM components.  For example, both peak A, in the EEM 

region 260nm/400-460nm (Ex/Em), and peak C, in the EEM region 320-360nm/420-460nm, are 

associated with fulvic acids.   In contrast, peak T, in the EEM region 275nm/340nm is associated 

with tryptophan and amino acid-like DOM (Coble et al., 1998; McKnight et al., 2001).  While 

fulvic acids are generally associated with more recalcitrant DOM and vegetative sources, amino-

acid like material is associated with autochthonous production.  The amino-acid rich DOM is 

considered to be more bioavailable to microorganisms in the water column.  (Hudson et al., 

2008; Fellman et al., 2009; Cory & Kaplan, 2012)  Thus, EEMs of natural water samples are 

widely analyzed for the abundances of peaks A, C, and T especially to infer the source and 

lability of DOM.    

 Studying DOM quality includes a constant challenge in distinguishing the non-living 

organic matter from intimately associated bacteria and viruses (Minor & Nallathamby, 2004).  

Bacteria inhabit organic particles as they are also producing organic matter, creating an intricate 

relationship between OM and bacteria in both freshwater and marine waters.  Bacteria degrade 
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POM to DOM, and simultaneously produce organic material from organic molecules that they 

consume (Azam et al., 1993; Pomeroy et al., 2007).  POM converts to DOM by photolysis; 

concurrently, DOM converts to POM by mixing and settling, as well as by activity of bacterial 

cells.  There is an arbitrary aspect to the operational definition of DOM in identifying the point at 

which the complex mixture is truly dissolved; there is also a difficulty in knowing when 

physically entwined substances have been separated from each other for analysis.  Therefore, 

challenges arise when assuming that a 0.45 micron filter, or often in practice a 0.7 micron filter, 

separates bacteria from non-living DOM.  

 This same methodological issue received some attention in the marine science literature 

in the 1990s.  Studying DOM fluorescence in seawater, Determann and fellow researchers 

expressed the problem of the arbitrary cut-off of 0.45 micron this way:  “the so-called dissolved 

fraction includes bacteria, colloids, and other aggregates in addition to the true dissolved 

monomers and macromolecules (Determann et al., 1994, p. 659).”  In the 1990s, fluorescence 

was attributed to the dissolved fraction, and because of concern over contamination from the 

filters themselves, samples analyzed for fluorescence were not always filtered (Determann et al., 

1994; Mopper & Schultz, 1993).  However, while identifying three fluorophores in near-surface 

samples of the eastern Atlantic Ocean, Determann et al. (1994) observed that the amino acid-like 

signals (tyrosine-like, and a more dominant tryptophan-like) were blue-shifted to shorter 

wavelengths from those of free amino acids, suggesting the amino acids were protein-bound in 

the particulate phase.  This preliminary conclusion was confirmed (Determann et al., 1996) upon 

analyzing deep-water samples from the eastern Atlantic.  The humic-like fluorescence was at a 

minimum in surface waters, where photo-bleaching was believed to be significant, and at a 

constant level in deeper waters (~4800m).  In contrast, the tryptophan-like (and to a lesser extent, 



5 

 

the tyrosine-like) fluorescence was high in surface waters down to 50 m depth, and low in the 

deeper waters.  It was concluded that the surface waters had greater bacterial biomass, and that 

the tryptophan was largely bound to bacteria and associated with the particulate fraction.  

Therefore, the amino acid-like fluorescence attributed to DOM was likely intimately associated 

with bacterial cells in the particulate phase.   

Determann et al. (1998) further investigated the relationship between fluorescence of 

particulate matter and unfiltered cultures of algae and bacteria.  Cultivated bacterial cells were 

cleaned and counted by epi-fluorescence microscopy.  Similarly, the algae species were 

cultivated, not cleaned due to potential breakage, and then the algal particles were counted.  

Following these preparations, fluorescence spectra of the bacteria species, and fluorescence 

spectra of the algae species, were compared to fluorescence spectra of free tryptophan.  

Fluorescence intensities were standardized to the integrated water Raman scatter band, and for 

the algae samples spectra had to be corrected for scattering with a barium sulfate suspension.  

The bacteria fluorescence analysis revealed the following excitation/emission pairs in an average 

EEM:  230nm/325nm; 225nm/340nm; and, 280nm/340nm.  Blue shifting of the emission spectra 

versus free dissolved tryptophan suggested protein-bound tryptophan, as previously.  Then using 

only the 230 nm/325 nm peak, fluorescence was found to increase linearly with increasing total 

bacteria number (TBN).  This relationship was true for each of the 16 bacteria species (22 

cultures), and each species displayed a linear relationship with a unique slope.  Similarly, though 

noting that bacteria might be attached to the phytoplankton, the algae fluorescence showed linear 

relationships for fluorescence vs. cell number.  Based on these results, Determann et al. (1998) 

attributed amino acid-like UV fluorescence in the ocean photic zone not to DOM but to algae 

and bacteria.   
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Also during this time, other researchers considered the impact of inconsistent pore sizes 

in separating cells in sea water from dissolved materials.  Lee et al. (1995) filtered bacterial cells 

from sea water and determined a large range in retention efficiencies for 0.7 micron glass fiber 

filters; the amount of cells passing through the filters ranged from 35% to 43% and included cells 

as large as 0.8 microns in diameter.  By determining similar cell-size frequency distributions of 

both the material trapped by the filters and the filtrate, they discovered that the filters do not have 

a strict cut-off size.  In other words, the glass fiber matrix in these and similar filters do not have 

consistently shaped pores, and the problem is aggravated by commonly used pre-combustion 

technique (Lee).  Inconsistent pore sizes may contribute to the problem of separating DOM from 

POM and bacterial cells in natural waters.   

Despite these concerns that bacterial cells may not be completely removed during 

filtration, amino acid-like fluorescence in filtered natural waters has become an accepted proxy 

for amino acid-like carbon within the DOM pool.  In fresh waters (Balcarczyk et al., 2009; Lutz 

et al., 2012) as well as in marine waters, separating DOM from whole water samples using a 0.7 

micron (GF/F) filter is an accepted method for isolating the DOM fraction.   

The goal of this study is to investigate the concern that bacterial cells contribute to the 

peak T fluorescence of DOM in freshwater using two approaches:   

(1) First, the fluorescence properties of unfiltered bacterial cell suspensions were analyzed to 

confirm the linear relationship between cell concentration and peak T fluorescence for 

freshwater.  Next, it was evaluated whether using 0.22 micron filter removed peak T 

fluorescence from cell suspensions, or whether residual cells or substantial cell lysis 

products resulted in significant peak T fluorescence for filtered cell samples.   
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(2) Secondly, a robust filtering scheme was used to separate freshwater samples into five 

filter fractions, in order to compare and contrast absorbance and fluorescence 

characteristics of the whole and filtered waters.  The filter scheme covered a range of 

pore sizes from 3.0 micron to 0.22 micron to identify the changes in absorbance and 

fluorescence that occur along the particulate to operationally dissolved continuum.   

Finally, peak T fluorescence was compared between bacterial cell suspensions and whole or 

filtered waters.  This final step helped to constrain the concerns regarding the contributions 

of bacterial cell fluorescence to peak T fluorescence attributed to DOM, potentially 

interfering with this proxy of DOM bioavailability.   

  



8 

 

 

 

METHODS 

Preparation of bacterial cell suspensions  

Three different isolates of bacterial cell cultures were investigated: Pseudomonas 

fluorescens (P-17; species from the American Type Culture Collection) and two isolates of 

natural bacterial communities from the sediment of White Clay Creek in southeastern PA 

(WCC2 and WCC4). The watershed of White Clay Creek is predominantly agricultural lands 

(74%) with an intact riparian zone forest (23%).  This third-order stream previously described in 

detail (Newbold et al., 1997), is enriched in nutrients from agriculture within the basin, with 

most N present as 3 to 5 mg nitrate-N L-1 at baseflow conditions.  Orthophosphate is present at 

10 to 30 µg of orthophosphate-P L-1.  Seasonal average baseflow concentrations of DOC range 

from 1.3 mg C L-1 in the winter to 1.7 mg C L-1 in the summer (Hullar et al., 2006).  Baseflow 

POC concentrations in White Clay Creek range from 200 µg C L-1 to 300 µg C L-1, and the 

density of cells in the streamwater range from 105 to 106 cells mL-1.  Estimated contribution of 

organic carbon from typical baseflow cell densities is approximately 20 µg C L-1 (Kaplan, 

unpublished).   

The three isolates were streaked on R2A plates to create the inoculum colonies for 

growing the cultures.  The inocula were each grown in 100 mL of culture broth; upon reaching 

stationary phase, they were then used to inoculate 6 L volumes of broth.  The batch cultures were 

grown for 48 hours at 28o C in a shaking water bath before harvesting by centrifugation.  The 

cultures were harvested by centrifugation using the SLC 1500 head and 200 mL autoclaved 
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centrifuge bottles, spinning at 6000 RPM for 15 minutes.  Each 6 L of culture was processed in 

200 mL portions; when all 6 L of culture were processed, the resulting pellets were consolidated 

into one pellet and washed two times in sterile PBS buffer.  After the final wash, the pellet was 

resuspended in 200 mL of PBS and then fixed with 10 mL of 37% formaldehyde; this suspension 

was then refrigerated overnight.  Each of the three harvested suspensions was then washed 

several times with Nanopure water to reduce carbon background.  The consolidated, resuspended 

pellet for each isolate was split into four equal volumes, each rinsed with about 150 mL of 

Nanopure water after centrifugation at 6000 RPM.  A total of 15 washes were done, with carbon 

measurements taken at several points of the process.  For each isolate, the carbon level remained 

constant after the 13th or 14th rinse step.  The DOC final readings after the 15th rinse are as 

follows:  1.05 ppm for P-17; 2.51 ppm for WCC4; 1.95 ppm for WCC2.  The pellets were again 

consolidated and resuspended in 150 mL Nanopure.  Each suspension was sub-sampled for cell 

counts:  2x108 cells/mL for P-17; 2x1010 cells/mL for WCC2; and 1x1010 cells/mL for WCC4.  

The remaining volume of 147 mL was frozen and freeze-dried; the material from each freeze-

dried culture was collected and placed into muffled glass vials with the following weights:  

0.4275 g for P-17; 1.0822 g for WCC2; and 0.6864 g for WCC4.    Relating cell count values in 

cells/mL to the volume (mL) and mass (g) of the freeze dried cultures, cell densities were 

calculated in cells/gram of freeze-dried powder to be 8x1010 cells/g, 3x1012 cells/g, and 2x1012 

cells/g for P-17, WCC2, and WCC4, respectively.   

Aqueous cell suspensions of each isolate were prepared by dissolving the freeze-dried 

bacterial powder in 30 mL of laboratory grade DI to yield a stock concentration of ~ 4x107 

cells/mL.  Aliquots of each stock solution were used to generate a dilution series of resuspended 

bacterial cells in DI over a range of cell densities from 3x104 cells/mL to 1x107 cells/mL to 
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overlap with cell densities in White Clay Creek (105 to 106 cells/mL; Kaplan, unpublished), with 

similarly studied bacteria in marine systems (106 to 107 cells/mL, Determann, 1998) and 

freshwaters in general (104 to 106 cells/mL, Daley and Hobbie, 1975; 106 to 107 cells/mL, 

Berman et al., 2001).  The pH of filtered and unfiltered cell suspensions ranged from 5.0 to 6.8.   

Analysis of bacterial cell suspensions 

The dilution series of each bacterial cell suspension was analyzed the same day the stock 

and dilution samples were prepared.  Triplicate fluorescence spectra were collected from two 

treatments at each concentration of a cell suspension: (1) unfiltered (“as is”) cell suspensions and 

(2) filtered cell suspensions via 0.22 µm filter (Table 1).  Unfiltered samples were gently shaken 

for 30-60 seconds to make sure cells were suspended in DI water; then, 3 mL aliquots of the 

sample were pipetted into a quartz cuvette for fluorescence analysis. Following analysis of the 

unfiltered treatment, the cuvette was rinsed with DI ~ 20x and prior to adding 3 mL of the 

filtered treatment.    

Fluorescence spectra from all bacterial cell samples were measured as excitation-

emission matrices (EEMs) using a Fluorolog-321 (Horiba Scientific) fluorometer equipped with 

a CCD detector over excitation wavelengths of 240-450 nm (in 5 nm increments) with emission 

detected from 300-600 nm.   Integration times varied with the concentration of bacterial cells and 

ranged from 0.2 to 5.0 seconds, for a total analysis time of 8.4 seconds to 3.5 minutes per EEM.  

EEMs were corrected for instrument bias, and intensities were Raman normalized (Cory et al., 

2010) using a user-generated rhodamine spectrum for excitation correction (DeRose et al., 2009) 

and a manufacturer-provided emission correction spectrum (Horiba Scientific).  Similarly- 

analyzed blank EEMs, of laboratory-grade DI water and free of detectable fluorescence 

emission, were subtracted from sample EEMs to minimize the influence of water Raman peaks.  
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All EEM-post processing was done in Matlab (Version 7.12).  Fluorescence intensities were 

reported as the mean ± standard error (SE; N = 3).    

Analysis of aquatic NOM   

Site descriptions  

Surface water was collected from various freshwaters in central North Carolina, USA, 

selected to cover a range of NOM concentration and source (Table 2).    

Eno River – The Eno River is a 3rd order stream in the upper portion of the Neuse River 

drainage basin.  The Eno River travels through mixed agricultural, forested, and urban areas 

from Cedar Grove to Falls Lake.  The Eno River is managed by Orange County to control water 

availability and use at three small reservoirs, supplying water to Hillsborough Water System, the 

Orange-Alamance Water System, Piedmont Minerals, Durham Water System, and other smaller 

operations.  The river is classified as normal to moderately-elevated in terms of nutrient status.  

Surface water was sampled at this stream at Few’s Ford near Cox’s Mountain in Orange County 

in October 2012 (Eno River Capacity Use Investigation Management Operations Plan, 1990; 

Lake and Reservoir Assessments:  Neuse River Basin, 2011; Eno River Watershed Surface 

Water Quality Monitoring Project In and Around Hillsborough, NC, 2011).   

Jordan Lake – Jordan Lake, formally known as B. Everett Jordan Reservoir, impounds a 

5th order stream in the upper portion of the Cape Fear River drainage basin.  Upstream of Jordan 

Lake are mixed agricultural, forested, and urban areas, including numerous wastewater treatment 

facilities.  Designed originally for flood control, Jordan Lake serves as the primary drinking 

water source for the towns of Cary, Morrisville, Apex, as well as for Northern Chatham County; 

Jordan Lake also serves as a recreational site.   The lake, with a watershed areas of 1689 mi2, is 
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classified as eutrophic.  Surface water was sampled at this lake at Seaforth Recreation Area in 

Chatham County in November 2012 (Lake and Reservoir Assessments Cape Fear River Basin, 

2009; B. Everett Jordan Lake TMDL Watershed Development, 2003).          

Haw River – The Haw River is a 5th order stream in the upper portion of the Cape Fear 

River drainage basin.  The Haw River travels through mixed agricultural, forested, and urban 

areas from north of Burlington to Jordan Lake, receiving runoff and wastewater.  The Haw River 

provides hydropower in Saxapahaw.  The river is classified as nutrient-sensitive or impaired.  

Surface water was sampled at this stream at Saxapahaw in Alamance County, in January 2013 

(Lake and Reservoir Assessments Cape Fear River Basin, 2009; B. Everett Jordan Reservoir 

Phase 1 Nutrient TMDL Final Report, 2007).   

Lake Orange – Lake Orange impounds a 2nd order stream in the upper portion of the 

Neuse River drainage basin.  Upstream of Lake Orange are historically agricultural and forested 

areas, today including a residential community.  Designed as a privately managed drinking water 

source, Lake Orange provides additional drinking water to the town of Hillsborough; it is also a 

privately accessed recreation site.  The lake with a watershed area of 10 mi2 is classified as 

eutrophic.  Surface water was sampled at this lake near the earthen dam in Orange County in 

January 2013 (Lake and Reservoir Assessments:  Neuse River Basin, 2011). 

Little Contentnea Creek – Little Contentnea Creek is a 3rd order stream in the central 

portion of the Neuse River drainage basin.  Little Contentnea Creek travels through agricultural 

areas from the north to the south of Farmville, receiving the town’s treated wastewater before 

joining Contentnea Creek.  The creek is classified as an impaired swamp.  Surface water was 

sampled at this stream at Ballard’s Crossroad in Pitt County in February 2013 (Vähätalo et al., 
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2005; Interbasin Transfer Petition:  From the Tar River to Contentnea and Neuse River 

Subbasins, 2009). 

Sample collection, storage and analysis 

Surface water samples were collected in triplicate in amber HDPE bottles prepared for 

the field by acid and DI rinses in triplicate; the clean bottles were triple-rinsed with sample water 

before gathering.  Water samples were transported on ice to the laboratory where splits of 

unfiltered “whole water” were set aside from each of the triplicate bottles and stored at 4 ºC until 

filtration. Splits from each replicate bottle were filtered within 36 hours of collection in the field.  

There were five filter treatments: 3.0 µm, 1.2 µm, 0.7 µm, 0.45 µm, and 0.22 µm pore-size filters 

(Table 1).  Immediately following sample collection and filtration, sample splits were  analyzed 

for CDOM and FDOM by absorbance and fluorescence spectroscopy, respectively.  The total 

time from sample collection to CDOM and FDOM analysis was at most 72 hours, during which 

the samples were kept in the dark and near  4 º C until warmed to room temperature (20-25 º C) 

just prior to analysis.   

 UV-Vis absorbance spectra of CDOM were collected using 1-cm path length quartz 

cuvettes on a HP 8452 Diode Array Spectrophotometer or on an Aqualog CDOM fluorometer.   

Sample absorption was measured against laboratory-grade water blanks.  The spectral slope (SR) 

ratio was calculated from the absorbance spectrum of each sample following Helms et al. (2008).  

Naperian absorption coefficients, aλ, were calculated at 254 and 350 nm as follows:  

303.2
l

A
a λ

λ
=  (1) 
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where A is the absorbance reading and l is the path length in meters.  SUVA254 (L mg C-1 m-1)  

was calculated following Weishaar et al. (2003) where absorbance readings at 254 nm were 

divided by the cuvette pathlength (m) and then divided by the DOC concentration (mg C L-1).   

Excitation-emission matrices (EEMs) were measured on a Fluorolog-321 (Horiba 

Scientific) or on an Aqualog fluorometer following the same protocols as described for the 

Fluorolog-321 fluorometer (Cory et al. 2010).    The fluorescence index (FI, McKnight et al., 

2001) was calculated from the corrected EEM as the ratio of emission intensity at 470 nm over 

the emission intensity at 520 nm at an excitation wavelength of 370 nm (Cory et al., 2010).  

Filter blank EEMs were analyzed using a DI rinse of the syringe, filter housing + filter  to 

identify potential contamination or background fluorescence leaching from the filtration 

components or sample bottles.    

Splits of each treatment filtered were set aside in a borosilicate bottle for total organic 

carbon (TOC) analysis and subsequently spiked with 100 µL of 6 N HCl. Splits for TOC were 

stored at 4 ºC until analysis.   TOC concentrations were analyzed as non-purgeable organic 

carbon (NPOC) on a Total Carbon Analyzer (Shimadzu Model 5000).  Calibration curves were 

prepared using potassium hydrogen phthalate in DI water over concentration range of 0.5 – 10 

mg C L-1.  Blanks (DI water) and check standards were analyzed every 6 and 12 samples, 

respectively.   
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RESULTS 

Fluorescence characterization of bacterial cell suspensions 

Bacterial cell suspensions shared a common peak characterized by maximum excitation 

and emission wavelengths of 280 nm and 330 nm, respectively (Fig. 1).  Fluorescence in this 

peak region is labeled “peak T”, by convention, based on similar excitation and emission 

maxima to fluorescent amino acids tyrosine and tryptophan (Coble, 1990; Determann, 1998).   

Peak T emission intensity increased linearly with increasing cell density in unfiltered cell 

suspensions (Fig. 2) with slopes significantly different from zero (p < 0.05).  In addition, P-17 

bacterial strain had a significantly higher slope compared to the stream cell suspensions (WCC2 

and WCC4, Fig. 2).  Stream cell suspensions WCC2 and WCC4 had similar slopes for peak T 

intensity vs. cell density (no significant difference at p < 0.05).  When cell suspensions were 

filtered (0.22 µm), peak T intensities were below the limit of detection for all samples except P-

17 at the highest cell density tested (Fig. 2).   

Absorbance and fluorescence characterization of NOM in surface freshwaters 

All water samples exhibited an UV-Visible absorption spectrum characterized by an 

exponential decay of absorption coefficients with increasing wavelength.  An exponentially 

decaying absorption spectrum in natural waters is attributed to chromophoric dissolved organic 

matter (CDOM), the main UV and visible light-absorbing constituent in natural waters (Bricaud 

et al., 1981; Green and Blough, 1994).   CDOM absorption coefficients of unfiltered, whole 
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water at 305 nm, a305, a measure of the concentration of CDOM, ranged from 24.00 ± 0.18 m-1 to 

50.69 ± 0.20 m-1, depending on source water. CDOM concentrations were lowest in the Eno and 

Haw rivers (as indicated by the lowest absorption coefficients, Table 2), followed by the two 

lakes, while the black water swamp Little Contentnea Creek had the greatest concentration of 

CDOM (Table 2).  The spectral slope ratio, SR, a proxy for average DOM molecular weight 

(MW), was lowest for Eno River and Little Contentnea Creek, 0.74 ± 0.01, and 0.80 ± 0.01, 

respectively, indicating higher molecular weight associated with terrestrial sources of DOM. The 

highest SR was observed in Jordan Lake (2.18 ± 0.03, Table 2) suggesting that Jordan Lake 

DOM had the lowest molecular weight, associated with autochthonous sources of DOM or 

processing of DOM in the water column (Helms et al. 2008).     

In contrast to the bacterial cell suspensions which exhibited fluorescence only in the peak 

T region, the natural water samples exhibited fluorescence in each of the three characteristic 

peak regions, T, A, C,  common in streams, lakes, and marine waters (Coble, 1990;  Stedmon et 

al., 2003; Cory & McKnight, 2005).  Consistent with typical natural water samples, fluorescence 

intensities of the whole water samples in this study were usually highest for peak A which is 

associated with terrestrially-derived fulvic and humic acids rich in aromatic carbon (Fig. 3).  The 

exception was Haw River, which had higher fluorescence for peak T than for peak A.  Peak T 

intensities from whole water samples were on average approximately half of the intensities of 

peak A, and were on average greater than peak C intensities.  However, the ratio of peak T to 

peak A intensity (T/A) varied among the whole water samples (Table 2).  The lowest T/A ratios 

were observed in Little Contentnea Creek (0.139 ± 0.001), and Eno River (0.17 ± 0.01).  Higher 

T/A ratios were observed in the larger, more anthropogenically-impacted waters receiving more 



17 

 

urbanized and agricultural run-off, including the fifth-order stream (Haw River, 1.240 ± 0.005) 

and the reservoir that impounds it (Jordan Lake, 0.565 ± 0.002).   

Effect of filer pore size on NOM absorbance and fluorescence  

Filtration of the whole water samples effected a significant reduction in a305 and the 

magnitude of the decrease in a305 varied by site and by the pore-size cut-off of the filter.  

Generally, there was a decrease in a305 relative to the whole water with decreasing pore-size.  For 

example, in Eno River and Little Contentnea Creek, filtration of the whole water decreased a305 

by 5-8% for the 3.0 µm filter and up to 44% for the 0.22 µm (Fig. 4).   Filtration of Haw River, 

Jordan Lake and Lake Orange whole waters through 3.0 µm filter caused a greater decrease in 

a305 compared to Eno River and Little Contentnea Creek; however, unlike the Eno and Little 

Contentnea Creek, there was not always a successive decrease in a305 with decreasing pore size 

(Fig. 4).  For example, both the Haw River and Lake Orange filtration through 3.0 µm resulted in 

greater loss a305 compared to filtration through the 1.2 µm.  Jordan Lake differed from the other 

waters in that it exhibited the greatest loss of a305 upon filtration (~ 60% decrease in a305), and 

loss of a305 was nearly the same (losses of 58% to 64%) for all filters, and thus independent of 

pore-size cut off (Fig. 4).  

Filtering whole water through different pore size filters decreased or did not change the 

spectral slope (SR) of CDOM depending on the whole water and the pore-size cut-off of the filter 

(Fig. 4).  For example, the greatest decrease in SR with filtration was observed for Jordan Lake, 

which exhibited 35-52% decrease in SR upon filtration of the whole water, with the 0.45 µm 

filter yielding the largest percent difference relative to the whole water.  Filtration led to a 

smaller decrease in SR (8-15%) for Eno River, Haw River, and Lake Orange; consistent with 

Jordan Lake, the largest decrease in SR for these waters was observed by filtering the whole 
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water through the smallest pore size filters (0.45 µm or 0.22 µm). In contrast to the other whole 

waters, there was no significant change in the SR of Little Contentnea Creek upon filtration of the 

whole water through any pore size (Fig. 4).    

Filtering whole water samples caused a decrease in fluorescence intensity, with the 

magnitude of the decrease varying by pore size and by peak (A, C, T) and thus by carbon type.  

Humic peaks A and C exhibited smaller decreases in intensity (up to 20%) in response to 

filtration, compared to peak T intensities which decreased up to 60% (Fig. 4).  For example, all 

whole waters except Jordan Lake had less than 10% decrease in peak A intensity and less than 

15% decrease in peak C intensity upon filtration through any pore size.  Jordan Lake was 

different from the other whole waters in that it exhibited up to 20% decrease in both peaks A and 

C intensities upon filtration.  Filtration of the whole water from Jordan Lake exhibited the largest 

change in peak T intensity (50-60%), with the greatest loss observed between the whole water 

and the 0.45 µm filtrate (Fig. 4).  Filtration of the other whole waters led to smaller differences in 

peak T intensities (4-53%), and like Jordan Lake, the largest difference was observed between 

the whole water and the smallest pore size (0.45 µm or 0.22 µm).   
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DISCUSSION 

Peak T fluorescence of filtered natural waters has become a widely accepted proxy for 

amino acid-like carbon within the DOM pool, and for the labile carbon fraction of DOM fueling 

bacterial respiration (Yamashita & Tanoue, 2003; Stedmon et al., 2003; Cory & McKnight, 

2005; Fellman et al., 2009; Balcarczyk et al., 2009; Cory & Kaplan, 2012).  However, because 

bacterial cells may exhibit fluorescence in the peak T region (Determann 1998), an increase in 

peak T intensity may indicate increased bacterial abundance (Mladenov et al., 2011), thereby 

confounding the use of peak T as a marker for DOM substrates that feed bacterial respiration.  

The results confirmed that bacterial cells fluoresce in the peak T region(Fig. 1) in proportion to 

their abundance (Fig. 2), while the effects of filtration on cell suspensions and natural waters 

constrained the conditions in which bacterial cells may contribute to peak T fluorescence in 

aquatic ecosystems.     

Peak T fluorescence intensity increased linearly with cell concentration in all unfiltered 

cell suspensions (Fig. 2), consistent with previous relationships between peak T fluorescence and 

bacterial cells in marine waters (Determann et al., 1998).   In addition to bacterial cell 

concentration, bacterial cell type also affected levels of peak T fluorescence.   Pseudomonas 

fluorescens cells emitted more peak T fluorescence than did native freshwater WCC2 and WCC4 

cells, as indicated by the significantly higher slope of peak T intensity with increasing cell 

concentration for P. fluorescens compared to the WCC2 and WCC4 cells (Fig.2).  Determann et 

al. (1998) also demonstrated that the slope of peak T fluorescence vs. cell abundance varied by 
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bacterial species; similarly, Leblanc and Dufour (2002) were able to identify bacteria at the 

genus, species, and strain level on the basis of cellular fluorescence, for which tryptophan 

residues were the primary contributors.  Together, these studies confirm that while bacterial cells 

consistently fluoresce in the peak T region in proportion to their abundance, the nature of this 

relationship will depend strongly on the community of cells present.   

The results also demonstrated that bacterial cells may contribute to peak T fluorescence 

in unfiltered natural waters.  Peak T intensities of unfiltered cell suspensions ranged from 

detection limit (~0.005 RU) to ~ 1 RU, overlapping the range of peak T intensities in natural 

waters (Fig. 2; Table 2).  Because the range of bacterial cell densities tested spanned the range of 

cell densities observed in freshwaters (Kaplan, unpublished; Daley and Hobbie, 1975; Berman et 

al., 2001), bacterial cells could account for peak T intensities observed in the unfiltered water 

samples in this study (Table 2; Fig. 3).  These findings are consistent with a recent study 

demonstrating a linear relationship between bacterial cell abundance and total fluorescence 

measured in alpine lakes (Mladenov et al., 2011).   

However, standard procedure for analysis of DOM in most studies is filtration of whole 

water samples, and thus the objective was to constrain the likelihood of bacterial cell 

contribution to operationally defined fluorescent DOM (FDOM).   A 0.22 µm filter reduced peak 

T intensities from cell suspensions to below detection limit for all cells tested at all abundances 

except for P. fluorescens at the highest cell abundance (107 cells mL-1, Fig. 2).  Given that P. 

fluorescens was more fluorescent than other native bacterial cell communities in natural waters 

(Fig. 2 and Determann et al., 1998), these results suggest that bacterial cells likely cannot 

account for the peak T intensities observed in 0.22 µm filtered waters (Fig. 3).  However, over 

the range of cell abundances tested, using a filter of larger pore sizes may have allowed more 
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bacterial cells, and associated peak T intensity, to remain in the filtrate.  For example, Lee et al. 

(1995) found that 0.7 µm (e.g. GF/F) filtration of seawater removed 57-65% of the bacterial cells 

present in the whole water.   The range in retention efficiencies was attributed to the irregularly 

shaped and sized pores of the glass fiber matrices, a problem aggravated by the commonly used 

pre-combustion technique intended to eliminate background concentrations (Lee et al., 1995).  

Although we didn’t test the effect of 0.45 or 0.7 µm (GF/F) filtration on retention of 

bacterial cells in this study, we estimated the contribution of bacterial cells to GF/F-filtered water 

based on the relationship between peak T intensity and cell abundance in Fig. 2.   Assuming that 

up to 40% of natural cell communities from White Clay Creek cells can pass through GF/F pores 

based on the findings of Lee et al. (1995) with no change in fluorescence per cell, peak T 

intensity would be decreased by 60% compared to the unfiltered cell suspensions.  In that case, 

peak T intensities would be above the detection limit for cell abundances greater than 106 cells 

mL-1 and range from 0.007 RU to 0.1 RU (Fig. 2).   This range is on the low end of peak T 

intensities observed from filtered waters in this study and in other studies (Murphy et al., 2010; 

Cory & Kaplan, 2012), but nonetheless suggested that at least for the natural waters tested in this 

study, incomplete removal of bacterial cells during filtration could account for 5-50% of peak T 

intensities in GF/F filtered samples.    

Another application of the results suggested that bacterial cells may contribute peak T 

fluorescence to natural waters disproportionately to their carbon concentration.  Assuming a 

carbon content of 20 fg per bacterial cell (Troussellier et al., 1997), the estimated concentration 

of carbon in cell suspensions in this study ranged from 0.5 to 200 µg C L-1, much lower than the 

DOC concentration in freshwaters in general and in this study (~ 5 mg C L-1, Table 2).   Despite 

a much lower concentration of C, bacterial cells exhibited fluorescence in the peak T region 
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spanning the same magnitude as natural water samples (Table 2, Fig. 2), indicating that the 

efficiency of fluorescence is higher for peak T emission from bacterial cells compared to the 

amino acid-like moieties in natural waters.  Thus, while POM, including bacterial cells, may 

contribute only a small fraction of the carbon concentration relative to DOM in a GF/F filtered 

sample (< 10%, Meybeck, 1982), POM may nevertheless contribute a disproportionate amount 

of the measured peak T fluorescence signal.  Therefore, while incomplete removal of cells during 

filtration does not influence the DOC concentration of a filtered water sample, incomplete 

filtration of cells may influence the fluorescence characterization of the operationally defined 

“DOM” pool.   In this way, the peak T contribution of bacterial cells in natural waters would be 

greater on a per mass C basis than the corresponding contribution from DOM.   

Further evidence in support of bacterial cell contribution to peak T intensities in natural 

waters was that the effect of filtration was largest on peak T intensities compared to peaks A and 

C (Fig. 4).  That peak T decreased by 10-60% upon filtration of the whole water, depending on 

the pore size and water sample tested, strongly suggests a large fraction of amino acid-like 

FDOM associated with particulate organic matter.  A large loss of amino acid-like fluorescence 

intensity from freshwaters has previously been observed upon removal of particulate matter 

larger than 1.2 and 0.45 µm (Baker et al., 2007).  These findings are consistent with recent work 

showing that extracts of particulate organic matter along a riverine to estuary transect were 

enriched in peak T fluorescence compared to the corresponding water sample (Osburn et al., 

2012). The latter study attributed amino acid-like FDOM in particulate organic matter to 

autochthonous production in the water column.   

The variability in the removal of peak T intensity by filtration with pore size and natural 

water was likely due to differences in the chemical composition and size of the particulate 
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organic matter in the whole water sample.  The freshwaters characterized in this study included 

third to fifth order streams,  a small lake impounding a second order stream, and a large lake 

impounding a fifth order stream.  All these waters had inputs from forested, agricultural, and 

residential catchments, with the largest order stream (Haw River) and the larger impounded lake 

(Jordan Lake) receiving more industrial and wastewater inputs (Table 2).  As expected, optical 

proxies indicated a range of size and source of the CDOM and FDOM in the GF/F fraction – the 

fraction for which these proxies have been developed (e.g. McKnight et al., 2001; Helms et al., 

2008).  For example, the SUVA254 ranged from 4.33 ± 0.05 L mg C-1 m-1  in Little Contentnea 

Creek to 1.22 ± 0.08 L mg C-1 m-1  in Jordan Lake, suggesting a range of sources to the DOM 

pool, from terrestrial soil organic matter enriched in aromatic C in Little Contentnea Creek to a 

predominance of autochthonous organic matter in Jordan Lake (McKnight et al., 2001; Jaffé et 

al. 2008).  There was relatively small effect of filtration on peak T for Little Contentnea Creek 

(~30%, Fig. 4) compared to eutrophic Jordan Lake (~60%, Fig. 4).  This difference was expected 

given  that the sources of larger particulate matter enriched in peak T fluorescence – such as 

bacterial cells (this study, Determann, 1998; Cotner et al., 2004; Mladenov, 2011) or the 

degradation products from autochthonous production (Osburn et al., 2012) – are relatively low in 

a blackwater swamp compared to a eutrophic lake (Vähätalo et al., 2005).  Surprisingly, the 

effect of filtration on peak T intensity was lowest in the Haw River, a river augmented by 

wastewater inputs (Table 2), which may be expected to result in proportionally greater fraction 

of particulate organic matter enriched in peak T fluorescence.   However, given that each site 

was sampled only once and on different dates (Table 2), it was not possible to generalize how the 

effect of filtration on peak T fluorescence may vary across water types, except to hypothesize 
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that waters with high autochthonous production relative to terrestrial inputs from the catchment 

may likely exhibit high peak T fluorescence associated with larger particulate material.  

In comparison to the effect of filtration on peak T fluorescence, the much smaller effect 

of filtration on peak A and C intensities confirmed that even in unfiltered waters, the majority of 

fluorescence associated with peak A and peak C is attributed to operationally defined dissolved 

humic and fulvic acids (Yoshioka et al., 2007).  All waters tested except for Jordan Lake reduced 

peak A and C intensities by less than 10% or 15%, respectively (Fig. 4) consistent with a 

previous study showing no significant change in humic fluorescence observed upon filtration 

(Baker et al., 2007).  The higher loss of peak A and peak C intensities (~20%, Fig. 4) in Jordan 

Lake was likely due to the eutrophic status of Jordan Lake, resulting in elevated bacterial 

abundances or particulates associated with the degrading autochthonous organic matter.   While 

Lake Orange was also eutrophic, its smaller (three orders of magnitude) size relative to Jordan 

Lake may mean that Orange Lake is more strongly influenced by inputs of soil organic matter 

relative to Jordan Lake, and thus the organic matter signature was not as strongly dominated by 

autochthonous organic matter.   
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CONCLUSIONS 

Bacterial cells exhibit peak T fluorescence in proportion to their abundance.  For my 

“native” freshwater cells, filtration by 0.22 µm filters removed virtually all peak T fluorescence; 

however, caution is warranted given that the relationship between cells and peak T fluorescence 

varies by community.  Also, for my natural water samples, filtration in general reduced peak T 

fluorescence more than peaks A or C, consistent with the fact that peak T fluorescence is 

associated with POM in natural waters.  POM includes both cells and degraded OM, so for 

studies proposing in-situ monitoring of FDOM without pre-filtration, consideration should be 

given to the possibility that peak T could be dominated by cells.  For studies relying on the 

traditional GF/F filter to remove particulates from DOM, peak T fluorescence may be 

significantly influenced by bacterial cells.  My results suggest that the peak T fluorescence of 

filtered natural waters may not always be an accurate measure of amino acid-like DOM, 

depending on bacterial cell abundance and type, filter pore size and on the natural water source.       
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TABLES AND FIGURES 

Table 1:  Characteristics of filters used. 

Pore size and name Manufacturer Diameter Material 

3.0 µm MF Millipore Corp 47 mm mixed cellulose esters 

1.2 µm GF/C Whatman 47 mm glass microfiber - combusted 

0.7 µm GF/F Whatman 25 mm glass microfiber - combusted 

0.45 µm GDX Whatman 13 mm glass microfiber with membrane layer 

0.22 µm Millex GV Millipore Corp 13 mm hydrophilic PVDF 
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Table 2:  Characteristics of natural waters sampled (mean ± SE, N=3). 

 Eno River Jordan Lake Haw River Lake Orange Little Contentnea 
Creek 

Date 
October 14, 2012 November 3, 2012 January 11, 2013 January 25, 2013 February 2, 2013 

Water Type 
stream lake stream lake Blackwater stream 

or swamp 

Nutrient Status 
Normal to 
moderately 

elevated 

eutrophic Nutrient sensitive 
to impaired 

eutrophic Impaired 

pH whole water 7.67 ± 0.07 7.72 ± 0.09 7.29 ± 0.21 7.19 ± 0.20 7.17 ± 0.05 

TOC (mgC L-1) 
3.0 µm 3.85 ± 0.02 5.48 ± 0.02 4.79 ± 0.01 6.30 ± 0.04 8.07 ± 0.09 

 
a305 (m

-1)      

whole water 24.00 ± 0.18 32.68 ± 0.78 27.47 ± 0.13 37.11 ± 0.17 50.69 ± 0.20 

0.7 µm 20.42 ± 0.28 13.75 ± 1.09 20.81 ± 0.08 26.59 ± 0.52 43.84 ± 0.30 

0.22 µm 13.49 ± 1.17 12.02 ± 0.15 14.30 ± 0.91 16.77 ± 0.12 31.09 ± 0.29 

SR      

whole water 0.74 ± 0.01 2.18 ± 0.03 0.94 ± 0.02 1.20 ± 0.02 0.80 ± 0.01 

0.7 µm 0.65 ± 0.02 1.40 ± 0.21 0.838 ± 0.003 1.035 ± 0.005 0.789 ± 0.001 

0.22 µm 0.64 ± 0.03 1.16 ± 0.06 0.88 ± 0.01 1.00 ± 0.01 0.818 ± 0.002 

FI      
whole water 1.64 ± 0.01 1.517 ± 0.004 1.81 ± 0.01 1.55 ± 0.01 1.487 ± 0.004 

0.7 µm 1.58 ± 0.02 1.52 ± 0.02 1.800 ± 0.004 1.54 ± 0.01 1.48 ± 0.01 

0.22 µm 1.52 ± 0.01 1.51 ± 0.01 1.78 ± 0.01 1.53 ± 0.01 1.49 ± 0.01 

peak A (RU)      

whole water 1.28 ± 0.03 1.47 ± 0.02 1.60 ± 0.01 1.37 ± 0.01 2.57 ± 0.02 

0.7 µm 1.22 ± 0.01 1.22 ± 0.03 1.57 ± 0.01 1.315 ± 0.005 2.49 ± 0.02 

0.22 µm 1.17 ± 0.01 1.20 ± 0.04 1.55 ± 0.02 1.290 ± 0.005  2.56 ± 0.01 

peak C (RU)      

whole water 0.468 ± 0.003 0.399 ± 0.002 0.698 ± 0.002 0.564 ± 0.001 1.187 ± 0.003 

0.7 µm 0.448 ± 0.003 0.34 ± 0.01 0.689 ± 0.001 0.540 ± 0.001 1.164 ± 0.003 

0.22 µm 0.426 ± 0.003 0.324 ± 0.004 0.674 ± 0.003 0.537 ± 0.004 1.178 ± 0.003 

peak T (RU)      

whole water 0.231 ± 0.004 0.86 ± 0.01 2.00 ± 0.01 0.49 ± 0.01 0.38 ± 0.02 

0.7 µm 0.20 ± 0.01 0.42 ± 0.04 1.893 ± 0.002 0.307 ± 0.004 0.33 ± 0.01 

0.22 µm 0.15 ± 0.01 0.36 ± 0.01 1.83 ± 0.01 0.23 ± 0.01 0.272 ± 0.003 

T/A whole water 0.17 ± 0.01 0.565 ± 0.002 1.240 ± 0.005 0.36 ± 0.01 0.139 ± 0.001 
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Table 3:  TOC and SUVA averages (mean ± SE, N = 3) for the five filter treatments.   
 
TOC averages (mg C L-1) 

Treatment  Eno R  Jordan L Haw R Lake Orange Little Cont. Cr 

3.0 micron 3.89 ± 0.02 5.46 ± 0.04 4.79 ± 0.01 6.38 ± 0.08 8.20 ± 0.03 

1.2 micron 3.90 ± 0.02 5.50 ± 0.04 4.81 ± 0.03 6.30 ± 0.02 8.18 ± 0.03 

0.7 micron 3.81 ± 0.02 5.42 ± 0.03 4.76 ± 0.01 6.39 ± 0.03 8.14 ± 0.06  

0.45 micron 3.86 ± 0.05 5.50 ± 0.02 4.80 ± 0.02 6.28 ± 0.01 8.06 ± 0.05  

0.2 micron 3.81 ± 0.05 5.54 ± 0.03 4.76 ± 0.04 6.17 ± 0.05 7.74 ± 0.04 

 

SUVA averages (L mg C-1m-1) 

Treatment Eno R Jordan L Haw R Lake Orange Little Cont. Cr 

3.0 micron 2.636 ± 0.005 1.22 ± 0.02 3.56 ± 0.05 3.59 ± 0.08 4.58 ± 0.03 

1.2 micron 2.55 ± 0.03 1.174 ± 0.002 3.67 ± 0.06 3.85 ± 0.03 4.56 ± 0.03  

0.7 micron 2.49± 0.03 1.22 ± 0.08 3.53 ± 0.02 3.49 ± 0.06 4.33 ± 0.05  

0.45 micron 2.18 ± 0.09 1.05 ± 0.01 3.13 ±  0.06 3.19 ± 0.08 3.98 ± 0.10 

0.2 micron 1.68 ± 0.13 1.06 ± 0.01 2.72 ± 0.13 2.66 ± 0.04 3.52 ± 0.02 
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Table 4. Relationships Between Peaks A, C, and T with a305. 

Regression coefficients (R2 for linear relationships where the slope  

was significantly different than zero (p>0.05). 

 

 

  

    
 Peak A Peak C Peak T 

Eno R NS 0.9 1 

Jordan L 1 1 1 
Haw R NS NS 0.7 

L Orange 0.8 0.8 1 
Little Cont. Cr NS NS 0.9 
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Fig. 1 Characteristic EEMs of bacterial cell suspensions (a) P-17 and (b) WCC2. 

Bacterial cell suspensions shared a common peak characterized by maximum excitation 
and emission wavelength of 280 nm and 330 nm, respectively.   

  

A. B. 

Peak T 



 

Fig. 2  Peak T intensity (RU) vs. cell density (cells/mL) in Log
unfiltered bacterial cell suspensions; and (bottom) filtered cell suspensions.  Dotted line 
marks the limit of detection.  
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2  Peak T intensity (RU) vs. cell density (cells/mL) in Log-Log scales for:  (top) 
acterial cell suspensions; and (bottom) filtered cell suspensions.  Dotted line 

Log scales for:  (top) 
acterial cell suspensions; and (bottom) filtered cell suspensions.  Dotted line 



 

 

 

 

 

Fig. 3.  Representative Natural Water EEMs (Eno River).  
Peak C region is in 320-360nm/420-460nm; Peak T is in 275nm/340nm.  

 

Fig. 3.  Representative Natural Water EEMs (Eno River).  Peak A region of EEMs are in 260nm/400-460nm (Ex/Em); 
460nm; Peak T is in 275nm/340nm.  

 

460nm (Ex/Em); 

3
2

  



 

 

 

Fig. 4. Absorbance and fluorescence measures of filtrates by pore size and by site, as % of 
initial whole water; from top: (a) a
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Fig. 4. Absorbance and fluorescence measures of filtrates by pore size and by site, as % of 
(a) a305 (b) SR (c) peak A (d) peak C (e) peak T

Fig. 4. Absorbance and fluorescence measures of filtrates by pore size and by site, as % of 
(c) peak A (d) peak C (e) peak T 
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