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Abstract 

 
DAVID G. WALKER: A 3D Imaging and Biological Marker Analysis of TMJ OA: A new 

Modeling Technique 
(Under the direction of Dr. Lucia Cevidanes) 

To investigate 3D morphology and biomarker profiles in a population of early onset TMJ 

Osteoarthritis (TMJ OA) subjects.  Twelve subjects and controls underwent an exam and 

obtained a Cone beam CT (CBCT), as well as TMJ arthrocentesis and venipuncture.  CBCT 

Datasets were used to construct 3D models of all condyles.   Average OA and health models 

were created.  3D Shape Correspondence determined areas of statistically significant 

difference between models. Protein microarrays were used to analyze the synovial fluid 

(SF) and plasma samples.  Shape Analysis MANCOVA was used to look for statistical 

correlations between biomarker levels and variations in surface morphology.  The average 

OA model demonstrated a smaller size with areas of statistically significant difference.  32 

biomarkers were measured in the plasma and/or SF samples.  Shape Analysis MANCOVA 

successfully mapped variations in 10 SF and 20 plasma biomarkers to specific regions of 

anatomic variability in the OA group. 
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1. Introduction 

Osteoarthritis is a common degenerative condition with an exploding prevalence 

estimated to double between 2000 and 2020.1  The CDC estimates 13.9% of adults aged 

25 and older and 33.6% of those over 65 are affected by OA.7  In general, it is believed 

TMD symptoms, including limited range of motion, facial pain, and TMJ sounds, occur in 

6 to 12 percent of the population, and based on the Research Diagnostic Criteria (RDC), 

42.6% of patients with TMJ disorders present with evidence of TMJ OA.8,9,10,11,12  Some 

have postulated that TMJ OA is the most common pathological condition of the TMJ.13  

Despite the prevalence of TMJ OA, the pathophysiological processes of this disease are 

still poorly understood. 

The purpose of the first paper, A 3D Imaging Assessment of TMJ OA, was to 

qualitatively analyze condylar morphology in a group of clinically diagnosed TMJ OA 

subjects as compared to a group of non-OA controls.  The specific aims were to: 1) 

generate 3D correspondent models of a group of subjects and controls; 2) generate an 

average model from the non-OA controls and an average model from the TMJ OA 

subjects; 3) utilize shape correspondence to detect areas of statistically significant 

differences between the two average models. 

The purpose of the second paper, Local and Systemic Biomarkers in TMJ OA with 

an Integrated Biomolecular and 3D Model, was to evaluate the association between 
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morphologic characteristics and plasma and synovial fluid biomarkers in an early onset 

TMJ OA population, thereby initiating the process of developing a comprehensive OA 

model.  Specifically, the aims of this study were: 1) determine local and systemic levels 

of pre-selected biomarkers in TMJ OA and control populations; 2) use Shape Analysis 

multivariate analysis of covariance (MANCOVA) to investigate potential correlations 

between variations in biomarker levels between the OA and control groups and 

variations in the morphology within the OA and control groups. 
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2. A 3D Imaging Assessment of TMJ OA 

 
 

2.1 Introduction: 

Osteoarthritis is a common degenerative condition with an exploding prevalence 

estimated to double between 2000 and 2020.1  Because of the complex nature of this 

disease, therapeutic interventions have been limited primarily to analgesics and 

monitoring, with little existing evidence base for other treatment decisions.1,2  Though 

commonly associated with knee, hip, and hand dysfunction, in the dental field, and in 

particular the Orofacial pain specialty, osteoarthritis of the temporomandibular joint 

(TMJ OA) has increased in focus as a form of temporomandibular joint disorder.  

The term “temporomandibular disorder(s)” (TMD) refers to a myriad of specific 

conditions affecting the temporomandibular joint and associated structures, the 

muscles of mastication, or both.  Though in clinical practice the generic term TMD is 

often used to describe all forms of disease/malfunction of the TMJ or associated 

structures, this is a drastic and dangerous oversimplification of an intricate group of 

conditions with inseparable organic and psychological components.  The complexity in 

identifying, evaluating and treating the various forms of this complex group of 

disorders led to an effort to develop a diagnostic framework with a focus on providing a 

standardized assessment of the most common forms of TMD.  The result of this project 
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was the establishment of the Research Diagnostic Criteria for Temporomandibular 

Disorders (RDC/TMD) which has been validated, modified, and critiqued in numerous 

studies and publications since first being published in 1992. 3, 4, 5, 6 

RDC/TMD is broadly divided into Axis I and Axis II diagnoses.  Axis I is used to 

classify the physical pathological process or processes associated with a particular 

diagnosis, while Axis II classifies the psychological component of the disorder which is 

often paramount in diagnosis and treatment decisions.  Axis I classifications include 

forms of muscle disorders, disc displacements, and degenerative joint diseases, the 

latter of which includes TMJ OA. 

The CDC estimates 13.9% of adults aged 25 and older and 33.6% of those over 

65 are affected by OA.7  In general, it is believed TMD symptoms, including limited 

range of motion, facial pain, and TMJ sounds, occur in 6 to 12 percent of the population, 

and based on the Research Diagnostic Criteria (RDC), 42.6% of patients with TMJ 

disorders presented with evidence of TMJ OA.8,9,10,11,12  Some have postulated that TMJ 

OA is the most common pathological condition of the TMJ.13   

Like, many TMJ disorders, the symptomatic prevalence of OA differs greatly from 

the actual prevalence with only a fraction of patients complaining of pain or 

dysfunction.14,15  While the absence of symptoms in the face of disease superficially 

seems benign or even beneficial for a patient, the reality is that such symptoms are 

useful in alerting a patient to seek medical attention, and without such an alarm, many 

patients fail to seek treatment until significant destruction has taken place. 
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Several classification schemes for describing OA degeneration have been 

described in the medical literature, however, it is unclear whether or not these systems 

are directly applicable to the TMJ, and given the uniqueness of the temporomandibular 

joint this should not be surprising.6,16  Ahmed, et al have described a classification 

scheme for assessing the presence of OA changes in condyles and categorizing them as 

OA, indeterminate, or normal.  In this system, a classification of indeterminate means 

there are some bony changes of the condyle consistent with OA, but not enough 

distinguishing features of the disease are present for a definitive diagnosis.6 

Currently, diagnosis of TMJ OA focuses on the use of clinical exams and two- 

dimensional radiography; however, because of the great heterogeneity of TMJ OA and 

the diverse risk factors associated with the disease, identification is 

challenging.1,5,8,17,18,19 Like in all cases, the use of conventional radiography in 

diagnosing TMJ OA is limited by the fact that it is a two-dimensional representation of a 

three-dimensional object and the superimposition of structures makes the diagnosis of 

early osteoarthritic defects impossible for all but the most skilled radiologist. 

Cone-beam computed tomography (CBCT) is a rapidly advancing area of imaging 

with the capability to provide three dimensional images of hard and soft tissue 

structures, and has recently become the imaging modality of choice to study bony 

change in TMJ OA.6,13,17,18,20-23.  As determined through the RDC/TMD validation project, 

revised clinical criteria alone without the use of imaging is inadequate for a valid 

diagnosis of OA.  Furthermore, this project concluded that the prevalence of TMJ OA 

heretofore has been underestimated partially due to inadequate imaging techniques.5,6  
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TMJ OA is most commonly represented radiographically as flattening, erosions, 

scleroris, and osteophyte formation in the condylar head, as well as changes in the joint 

space and condylar fossa.10,13,24  The increase in popularity of 3D imaging modalities, 

such as CBCT, in the dental field has greatly improved the ability of clinicians to visually 

assess many of these phenotypic characteristics of TMJ OA.6,13,18,21 

Recently, the use of novel 3D imaging techniques using CBCT in conjunction with 

shape analysis using SPHARM-PDM has been validated for use in identifying and 

measuring simulated discrete, bony defects in condyles as well as in identifying various 

forms of osteoarthritic condylar changes such as flattening erosions and osteophyte 

formation and establishing a subjective possible continuum of pathologic change in TMJ 

OA (Figure 2.1).17,20,22,23,25-27 

The focus of the present study was to objectively compare condylar morphology 

in a group of TMJ OA subjects to age and gender matched controls as determined by 

clinical diagnosis.  Specifically, this study was implemented to do shape analysis of 3D 

surface models generated from CBCTs to investigate the specific phenotypic qualities of 

TMJ OA.  
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2.2 Methods: 

Twelve subjects (average age 44.4 years) with a recent initial diagnosis of OA 

were recruited from the UNC Orofacial Pain and OMFS Clinics.  Twelve controls 

(average age 41.3 years) were recruited through advertisement.  All subjects were age 

and gender matched to a control (Table 2.1).  Eleven females and one male were 

recruited for each group (91.7%% female), which is comparable to the 10:1 female to 

male ratio of TMD patients seen in the clinical setting, as reported in the literature.8,9  

All participants were between 21 and 66 years of age.  Volunteers were excluded from 

the study based on the following criteria: refusal to consent to arthrocentesis or CBCT, 

history of malignancies, TMJ or jaw surgery, past trauma to the TMJ, intra-articular 

injection in the TMJ in the past 3 months, presence of a congenital craniofacial 

syndrome or anomaly, systemic condition involving the immune system, degenerative 

musculoskeletal or neuropathic sequelae, pregnancy, or a diagnosis of any form of 

arthritis of another joint in the body. 

All participants underwent a comprehensive examination by an Orofacial pain 

specialist experienced in the use of the RDC/TMD protocol.  Each exam included at least 

measurement of mandibular range of motion, palpation of the TMJ and muscles of 

mastication, evaluation of current pain status, and investigation of joint sounds.  Based 

on the findings of this examination, and using the RDC/TMD guidelines, a subject was 

given a diagnosis of TMJ OA, a healthy TMJ, or inconclusive.  An inconclusive diagnosis 

designated those individuals with pathology of the TMJ or associated structures that did 
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not appear to be osteoarthritic in origin.  All subjects in this study were classified as 

having TMJ OA and all controls as having a healthy joint.  Diagnosis of TMJ OA signs and 

symptoms would also include an opinion by the specialist as to whether the right or left 

TMJ was most affected.  No radiographic images of any kind were used in making these 

determinations. 

Following clinical examination, a Cone beam CT scan was obtained of all 

participants using a NewTom 3G imaging system.  The NewTom 3G images patients in a 

supine position using a large field of view.  The datasets obtained consist of 

approximately 300 axial cross-sectional slices with voxels reformatted to an isotropic 

0.5x0.5x0.5mm.   

All CBCTs were independently reviewed by two blinded, experienced oral and 

maxillofacial radiologists.  Signs of flattening, localized sclerosis, generalized sclerosis, 

subchondral cysts, erosions, osteophytes, overall condylar resorption, and overall 

condylar proliferations were classified as absence, mild change, moderate change, or 

severe change.  These results were used to apply the RDC guidelines for radiographic 

TMJ OA diagnosis, as described by Ahmad, et al., and a diagnosis was made for each 

subject.6   These findings were not used to categorize participants as either OA or 

controls but were utilized at the completion of the study to help further elucidate the 

intricacies of the condylar morphology in these two groups.   

CBCT datasets were de-identified and then converted from DICOM to ITK-

compatible (Insight Segmentation and Registration Toolkit) format, specifically gipl 

format.28 Using gipl files,  3D models were created through a process called 
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segmentation using the publicly available software ITK-Snap  and utilizing 

methodologies adapted by Cevidanes, et al (Figure 2.2).17,20,22,23,25-29  The process of 

segmentation has been described in detail elsewhere, and, in essence, consists of 

outlining the cortical boundaries of a desired region using manual and semi-automatic 

discrimination procedures to produce a 3D model that can be rotated 360 degrees in all 

directions. 

After generating all 3D surface models, 24 for each group (48 total), left condyles 

were mirrored in the sagittal plane using image-converting software to form right 

condyles to facilitate comparisons.  All condylar models were then cropped to a more 

defined region of interest consisting of only the condyle and a portion of the ramus.  To 

approximate the condylar surfaces to one another in space, 25 surface points were 

selected on each condyle at corresponding (homologous) areas.  The purpose of this 

registration was not to establish the final relationship of one model to the next, but to 

merely closely approximate the various anatomic regions of all condyles which have 

marked morphological variability. One observer identified 25 surface points on each  

condylar  surface model: 4 points  evenly spaced along the superior surface of the 

sigmoid notch, 4 on the medial and lateral portions of the ramus adjacent to the sigmoid 

notch, 3 along the posterior neck of the condyle, 3 on the medial and 3 on the lateral 

portion of the condylar neck, and on the medial, lateral, anterior, and posterior 

extremes of the condylar head (Figure 2.3).   

After registration and normalization of the cropping areas across 3D models, 

binary segmentation volumes were created from the surface models. SPHARM-PDM 
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was then used to generate a mesh approximation from the segmentation volumes, 

whose points were mapped to a “spherical map”. In that spherical map, 

parameterization of 4002 surface mesh points was optimized for each condylar model. 

The parameterization determines coordinate poles on each condylar model that allow 

the models to be related to one another in a consistent manner and identifies 4002 

homologous or correspondent surface mesh points for statistical comparisons and 

detailed phenotypic characterization (Figure 2.4). Once the 4002 correspondent points 

were established for all individual condylar models, an average 3D condylar shape was 

generated for the TMJ OA group and control group. Comparisons were made between 

these two average models as well as between each individual OA model and the control 

average model.  Statistical shape analysis was used to compare condylar morphologies, 

and differences between models were reported using vector distance maps and signed 

distance maps computed locally at each correspondent point (Figure 2.5).   
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2.3 Results: 

Mean condylar models for both the TMJ OA and control groups produced a 

smoothly contoured surface.  A comparison of means was performed for the two 

average models using multivariate analysis of covariance (MANCOVA).30 The mean OA 

model was of smaller size in all dimensions and areas of statistically significant 

difference were localized to the anterior and superior portion of the lateral pole, as well 

as the anterior, superior, and medial portions of the medial pole (Figures 2.6).   

Commonly, the individual OA models demonstrated areas of bony excess and 

deficiency in comparison to the average control model, and great variability between 

the individual models was evident (Figure 2.7, 2.8). 

In the examination of the Cone beam CT datasets by the OMF Radiologists, only 

one condyle was classified as healthy, 8.3% of the study population.  Radiographically, 

35.4% of condyles were classified as indeterminate, and 56.3% as having signs of OA.  

These radiographic results are in comparison to the clinical diagnosis, which by design 

consisted of 50% OA and 50% normal.  Flattening was the most prevalent finding, 

evident in 85.4% of the study population.  In the OA group, 70.8% of condyles were 

given a radiographic diagnosis of OA while 25% were indeterminate based on the RDC 

criteria.  For the control group, 41.7% of condyles were classified as having OA, 4.58% 

as indeterminate and 12.5% as normal (Table 2.2). 

 

 



 

12 
 

Discussion: 

This investigation provided detailed information on the radiographic findings of 

an early onset TMJ OA and a clinically healthy control population.  Characteristic areas 

of bony excess and deficiency were identified in the OA population, and localized for 

each specific case.  Wide variation existed in both the OA and control groups in both 

overall condylar size and shape.  Vector and signed distance maps proved successful in 

allowing easy visualization of the individual variation in both groups. 

Average OA and control models were successfully generated.  The average OA 

model was found to have a smaller overall morphology with areas of statistically 

significant difference localized to various regions of the medial and lateral poles.   

Perhaps one of the most surprising findings in this study was the high incidence 

of OA signs and even radiographic diagnosis of OA in both the OA group and the control 

group.  Individuals included in the control group reported no signs or symptoms of TMJ 

dysfunction and were given a clinical diagnosis of a healthy joint.  The discrepancy in 

the clinical and radiographic findings underscores the need for a combined clinical and 

radiographic assessment in evaluating the TMJ for diseases such as osteoarthritis as 

well as the often surreptitious nature of early OA. 

The increased popularity of CBCT in the dental setting has met with some 

criticism of late.  Some argue the data acquired using a large field of view is more than 

what is needed for most dental procedures and therefore the routine use of such 

imaging is in violation of the ALARA (as low as reasonably achievable) principle 

espoused by OMF radiologists.  However, one can hardly argue with the increased 
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diagnostic capabilities provided the clinician in certain cases.  In the development of a 

phenotypic library and comprehensive phenotypic description of TMJ OA, CBCT will 

likely prove indispensable as the ability to view condylar morphology in 3D is becoming 

critical for the accurate assessment of these joints. 

Previous studies which utilized 2D radiography were forced to rely on subjective 

grading scales which were often modified from those present in the medical literature 

and varied from study to study.  The use of 3D models and shape analysis allows one to 

make localized quantitative measurements of the bony changes which have taken place 

while minimizing subjective factors and eliminating the problem of superimposition 

which is inescapable when using 2D methods.  By using 3D surface models, this study 

has undoubtedly provided a more accurate description of TMJ OA morphology than 

previously described. 

Ultimately, this study has served to expound on the present knowledge 

regarding the morphologic variability in TMJ OA and to further elucidate some of the 

intricacies associated with osteoarthritic destruction in the temporomandibular joint.  

This new evidence will aid the development of more precise classifications of this 

condition and help pave the way for future studies investigating genetic and 

biochemical aspects of this disease in a more targeted manner than previously possible. 
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2.5 Conclusions: 

In summary, the following conclusions can be drawn from this investigation: 

1. There was great variability in individual condylar morphology seen in both the 

OA and control groups. 

2. There was a trend for OA condyles to demonstrate bony excess on the anterior 

surface and bony deficiency on the superior surface of the condylar head, with 

respect to the average control model. 

3. The mean OA model had a smaller overall morphology with areas of statistically 

significant difference localized to the regions of the lateral and medial poles. 

4. Despite a thorough clinical exam to divide participants into OA and control 

groups, radiographic signs of OA were still detected in both groups. 
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 Table 2.1:  Subject and Control Demographics 

  Subjects Controls   

M/
F 

ID Age 
(years) 

Age 
(years) 

ID Age Difference 
(years) 

F O1 51 44 C1 7 
F O6 66 65 C2 1 
F O3 61 49 C3 12 
F O4 29 29 C7 0 
F O9 62 57 C6 5 
F O15 51 39 C4 12 
M O8 36 36 C8 0 
F O12 46 44 C9 2 
F O10 38 39 C10 1 
F O11 26 29 C11 3 
F O13 21 22 C13 3 
F O14 46 43 C14 3 
Average  44.4 41.3 4.1 
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Table 2.2: OMFR Findings for Subjects and Controls  

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Condyle Subject Radiographic     
Impression 

Control 

Left O1 OA OA C1 
Right  OA OA  
Left O6 OA Indeterminate C2 
Right  OA Indeterminate  
Left O3 OA Indeterminate C3 
Right  OA Indeterminate  
Left O4 OA Indeterminate C7 
Right  OA Indeterminate  
Left O9 OA OA C6 
Right  OA OA  
Right O15 OA OA C4 
Left  Healthy OA  
Left O8 Indeterminate Indeterminate C8 
Right  Indeterminate Indeterminate  
Left O12 OA OA C9 
Right  OA OA  
Left O10 OA Indeterminate C10 
Right  Indeterminate Indeterminate  
Left O11 Indeterminate Healthy C11 
Right  Indeterminate Healthy  
Left O13 Indeterminate Indeterminate C13 
Right  OA Healthy  
Left O14 OA OA C14 
Right  OA OA  
Percent   OA: 70.8% 

Indeterminate: 
25%              

Healthy: 4.2% 

OA: 41.7%   
Indeterminate: 
45.8   Healthy: 
12.5% 
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Figure 2.1: Possible continuum of pathologic change 

generated using 3D surface models from CBCT images.23 

Figure 2.2: Segmentation of the CBCT to generate a 3-D model. 
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Figure 2.3: Establishing 25 surface points for registering condyles 

North Pole 

Anterior 

view 

South Pole 

North Pole 

Meridian 

North Pole 

Anterior 

view 

Lateral 

view 

Meridian 

Figure 2.4: SPHARM-PDM mapping coordinates the 4002 surface points 

in the mesh models to individual points on a spherical map for each 3D 

segmentation model. 
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Figure 2.5: (left) Alignment of an OA condyle (grey) and the average control 

model (red) using the SPHARM-PDM correspondent points. (right) Signed 

difference maps depicting areas of morphologic difference between the average 

control model and an individual OA model (red represents bony excess and blue 

represents bony deficiency of the OA model with respect to the control average 

model) 

Figure 2.6: Comparison of the mean control and mean OA models.  

Color maps depict areas of statistically significant difference 

(p<0.05). 
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Figure 2.7: Anterior view of signed distance 

maps comparing individual OA and average 

control models. 

Figure 2.8: Superior view of signed distance maps 
comparing individual OA and average control models. 
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3. Local and Systemic Biomarkers in TMJ OA and an Integrated 
Biomolecular and 3D Model 

 

 

3.1 Introduction 

Osteoarthritis is one of the leading causes of disability with symptomatic knee 

OA being present in 13% of persons over 60 year of age.31 According to the Research 

Diagnostic Criteria (RDC), 42.6% of patients with TMJ disorders present with evidence 

of TMJ OA.6,4,5,19 

Subchondral bone remodeling plays an important role in the pathogenesis of 

OA.32  While OA has been primarily known as a cartilage disorder, this disease also 

involves early increases in the subchondral bone remodeling and subsequent 

osteophyte formation.33, 34 An important emerging theme in osteoarthritis is a 

broadening of focus from a disease of cartilage to one of the 'whole joint'.  Its etiology is 

largely unknown, but is most likely multi-factorial. A variety of etiologic risk factors and 

pathophysiologic processes contribute to the progressive nature of the disease and 

serve as targets of behavioral and pharmacologic interventions. Risk factors such as 

age, sex, trauma, overuse, genetics, and obesity can each make contributions to the 

process of degeneration in different compartments of the joint. Such risk factors can 

serve as initiators that promote abnormal biochemical processes involving the 

cartilage, bone, and synovium, with cross-talk among molecular mediators in these 
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components of the joint, which over a period of years result in the characteristic 

features of OA: degradation of articular cartilage, osteophyte formation, subchondral 

sclerosis, disc degeneration, bone lesions, and synovial proliferation.33 

Because adult cartilage is both avascular and aneural, it is possible for extensive 

damage to take place in a joint space like the TMJ before a patient complains of 

symptoms of the disorder. The great challenge in understanding and treating 

osteoarthritis is that it often begins attacking different joint tissues long before middle 

age, but cannot be diagnosed until it becomes symptomatic decades later, at which 

point structural alterations are already quite advanced. No proven disease-modifying 

therapy exists for osteoarthritis and current treatment options for chronic 

osteoarthritic pain are insufficient.35  

Currently, diagnosis of TMJ OA focuses on the use of clinical exams and two- 

dimensional radiography; however, because of the great heterogeneity of TMJ OA and 

the diverse risk factors associated with the disease, identification and treatment is 

challenging.1, 2, 14, 36-41  Like in all cases, the use of conventional radiography in 

diagnosing TMJ OA is limited by the fact that it is a two-dimensional representation of a 

three-dimensional object and the superimposition of structures makes the diagnosis of 

early osteoarthritic defects such as erosions or osteophyte formation impossible for all 

but the most skilled radiologist. 

Cone beam computed tomography (CBCT) is a rapidly advancing area of imaging 

with the capability to provide three dimensional images of hard and soft tissue 

structures, and CBCT has recently become the imaging modality of choice to study bony 
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change in TMJ OA.13, 18, 21, 22, 42-44 As determined through the RDC/TMD validation 

project, revised clinical criteria alone without the use of imaging is inadequate for a 

valid diagnosis of OA.  Furthermore, this project concluded that the prevalence of TMJ 

OA heretofore has been underestimated partially due to inadequate imaging 

modalities.45-47 

Recently, the use of novel 3D imaging techniques using CBCT in conjunction with 

SPHARM-PDM shape analysis has been validated for use in identifying and measuring 

simulated discrete, bony defects in condyles as well as being used to identify various 

forms of osteoarthritic condylar changes such as flattening erosions and osteophyte 

formation and establishing a possible continuum of pathologic change in TMJ OA.17, 23, 25, 

26, 48  

Biomarkers have been defined as “objective indicators of normal biologic 

processes, pathogenic processes, or pharmacologic responses to therapeutic 

interventions.”31 The shift towards focusing on biomarker levels as indicators of 

physiologic or pathophysiologic processes represents a true paradigm shift in the study 

of TMJ OA.   The NIH-funded OA Biomarkers Network established a system for 

categorizing OA biomarkers known as the BIPED system, where BIPED stands for 

burden of disease, investigative, prognostic, efficacy of intervention, and diagnostic.31  

Over 100 cytokine mediators of various aspects of OA, such as nociception and bone 

resorption, have been identified.8, 15, 40, 41, 49-59  The recent work of Slade et al suggests 

that not only local synovial fluid may play a role in the cross-talk among the different 

joint tissues, but also circulating levels of pro-inflammatory cytokines and more 
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generalized systemic processes may contribute to the pathophysiology of disorders of 

the temporomandibular joint.60 Cytokines are proteins synthesized by nearly all 

nucleated cells that are in turn capable of responding to them.61 Their synthesis is 

initiated by gene transcription and their mRNAs are short lived. They are produced as 

needed in immune responses. Individual cytokines are produced by and act on many 

cell types (i.e., they are pleiotropic) and in many cases cytokines have similar actions 

(i.e., they are redundant).   

With three affected tissues in TMJ OA, cartilage, bone and synovium, it is unlikely 

one biomarker will provide a comprehensive description of this intricate disease.31, 40, 59, 

62  It will be the goal of this study to work towards a paradigm shift from looking for one 

specific biomarker to identify a disease process to the concept of looking for sets of 

biomarkers to categorize a complex disease.63  The ability to identify biomarkers 

associated with early-onset OA may lead to the ability to identify patients at risk for 

developing more severe stages of the disease and highlight targets for future 

mechanism-based therapies.  

The implications for providing a comprehensive model of a complex disease 

process such as TMJ OA that integrates clinical, morphological and biomolecular 

assessments are far reaching.  Establishing connections between specific biomarker 

data and 3D imaging will possibly result in treatment modalities more specifically 

targeted towards the prevention or even reversal of joint destruction.   

The aim of the second portion of this two part pilot study was to elucidate 

contributions of various biomarkers to characteristic phenotypes of an early onset 
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temporomandibular joint osteoarthritis population, while advancing towards 

developing a comprehensive OA model. We hypothesized that variations in cytokine 

protein levels would correspond with the pattern of resorption of the supero-lateral 

surface of the condyles and the bone apposition in the mid-anterior surface of the 

condyles that are characteristic of condylar morphology in TMJ OA. To test these 

hypotheses, we determined associations of (1) circulating cytokines with condylar 

morphology and case status of OA and healthy controls; and (2) synovial fluid cytokines 

with condylar morphology and case status of OA and healthy controls.  Specifically, we 

aimed to evaluate the association between morphologic characteristics and plasma and 

synovial fluid biomarkers in an early onset TMJ OA population, thereby initiating the 

process of developing a comprehensive OA model (Figure 3.1). 
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3.2 Methods:  

Twelve subjects (average age 44.4 years) with a recent initial diagnosis of OA 

were recruited from the UNC Orofacial Pain and OMFS Clinics.  Twelve controls 

(average age 41.3 years) were recruited through advertisement.  All subjects were age 

and gender matched to a control (Table 3.1).  Eleven females and one male were 

recruited for each group (91.7%% female), which is comparable to the 10:1 female to 

male ratio of TMD patients seen in the clinical setting, as reported in the literature.8, 9  

All participants were between 21 and 66 years of age.  Volunteers were excluded from 

the study based on the following criteria: refusal to consent to arthrocentesis or CBCT, 

history of malignancies, TMJ or jaw surgery, past trauma to the TMJ, intra-articular 

injection in the TMJ in the past 3 months, presence of a congenital craniofacial 

syndrome or anomaly, systemic condition involving the immune system, degenerative 

musculoskeletal or neuropathic sequelae, pregnancy, or a diagnosis of any form of 

arthritis of another joint in the body. 

All participants underwent a comprehensive examination by an Orofacial pain 

specialist experienced in the use of the RDC/TMD protocol.  Each exam included at least 

measurement of mandibular range of motion, palpation of the TMJ and muscles of 

mastication, evaluation of current pain status, and investigation of joint sounds.  Based 

on the findings of this examination, and using the RDC/TMD guidelines, a subject was 

given a diagnosis of TMJ OA, a healthy TMJ, or inconclusive.  An inconclusive diagnosis 

designated those individuals with pathology of the TMJ or associated structures that did 

not appear to be osteoarthritic in origin.  All subjects in this study were classified as 
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having TMJ OA and all controls as having a healthy joint.  Diagnosis of TMJ OA signs and 

symptoms would also include an opinion by the specialist as to whether the right or left 

TMJ was most affected.  No radiographic images of any kind were used in making these 

determinations. 

Following clinical examination, a Cone beam CT scan was obtained of all 

participants using a NewTom 3G imaging system.  The NewTom 3G images patients in a 

supine position and using a large field of view.  The datasets obtained consist of 

approximately 300 axial cross-sectional slices with voxels reformatted to an isotropic 

0.5x0.5x0.5mm.   

CBCT datasets were de-identified and then converted from DICOM to ITK-

compatible (Insight Segmentation and Registration Toolkit) format , specifically gipl 

format.28 Using gipl files,  3D models were created through a process called 

segmentation using the publicly available software ITK-Snap  and utilizing 

methodologies adapted by Cevidanes, et al.17,20,22,23,25-29  The process of segmentation 

has been described in detail elsewhere, and, in essence, consists of outlining the cortical 

boundaries of a desired region using manual and semi-automatic discrimination 

procedures to produce a 3D model that can be rotated 360 degrees in all directions. 

Models were generated of the condyle sampled using arthrocentesis (the more 

affected condyle of each OA subject), for a total of 24 condyles. After generating all 3D 

surface models, left condyles were mirrored in the sagittal plane using image-

converting software to form right condyles to facilitate comparisons.  All condylar 

models were then cropped to a more defined region of interest consisting of only the 
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condyle and a portion of the ramus.  To approximate the condylar surfaces to one 

another in space, 25 surface points were selected on each condyle at corresponding 

(homologous) areas.  The purpose of this registration is not to establish the final 

relationship of one model to the next, but merely closely approximate the various 

anatomic regions of all condyles which present marked morphological variability. One 

observer identified 25 surface points on each condylar surface model: 4 points  evenly 

spaced along the superior surface of the sigmoid notch, 4 on the medial and lateral 

portions of the ramus adjacent to the sigmoid notch, 3 along the posterior neck of the 

condyle, 3 on the medial and 3 on the lateral portion of the condylar neck, and on the 

medial, lateral, anterior, and posterior extremes of the condylar head .   

After registration and normalization of the cropping areas across 3D models, 

binary segmentation volumes were created from the surface models. SPHARM-PDM 

was then used to generate a mesh approximation from the segmentation volumes, 

whose points were mapped to a “spherical map”. In that spherical map, 

parameterization of 4002 surface mesh points was optimized for each condylar model. 

The parameterization determines coordinate poles on each condylar model that allow 

the models to be related to one another in a consistent manner and identifies 4002 

homologous or correspondent surface mesh points for statistical comparisons and 

detailed phenotypic characterization. Once all individual condylar models had 4002 

correspondent points, an average 3D condylar shape was generated for the TMJ OA 

group and control group.  
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TMJ arthrocentesis was performed by an experienced OMF surgeon using a 

validated protocol.65-73  The joint chosen for arthrocentesis was selected based on the 

opinion of the pain specialist as to which joint was most affected.  If both joints are 

equally affected, or if neither joint appeared to be affected (as with the control 

patients), the right joint was chosen.  Arthrocentesis was performed using a push/pull 

technique in which 4ml of a saline solution was injected into the joint and then 4ml of 

solution withdrawn under local anesthesia.  The saline solution consisted of 78% saline 

and 22% hydroxocobalamin, which is included in order to determine the volume of 

synovial fluid recovered in the aspirate by comparing the spectrophotometric 

absorbance of the aspirate with that of the washing solution.  Venipuncture was 

performed on the median cubital vein of each patient’s left arm and 5ml of blood was 

obtained.  Intravenous sedation for the aforementioned procedures was offered to each 

participant. 

Custom quantibody protein microarrays (RayBiotech) were used to evaluate the 

synovial fluid and plasma samples for 50 biomarkers.  The biomarkers chosen were 

known to be associated with bone repair and degradation, inflammation or nociception, 

common processes seen in OA.  Quantibody arrays use pairs of antibodies to capture 

the protein of interest, similar to an ELISA assay. The use of biotinylated antibodies and 

a streptavidin-conjugated fluor allow detection levels for the specific proteins to be 

visualized using a fluorescence laser scanner.74 Preprocessing steps for these samples 

were completed at the University Of Michigan School Of Dentistry and then shipped to 

RayBiotech (Norcross, GA) for analysis.   All samples were measured in duplicate using 

2 separate slides with 19 and 31 proteins respectively, to control for proteins with 
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cross-reactivity (Table 3.2). Shape analysis MANCOVA (Multivariate Analysis of 

Covariance) was used to test interactions between protein levels and individual 

condylar morphology in the OA subjects’ plasma and synovial fluid samples.30 Shape 

analysis MANCOVA operates by testing the Pearson Correlations between alterations in 

each of the various biological marker levels and differences in each one of the 

correspondent 4002 surface points obtained with SPHARM-PDM in the morphology of 

each of the control and OA condyles with p-values significance set at 0.05. Because the 

condylar surface mesh data is recorded in three dimensions (x, y, and z) at 4002 

locations, and the sample size is only 12 condyles in each group, which represents high 

dimensional low sample size data, these findings are corrected for multiple 

comparisons using a false discovery rate of 0.2. 
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3.3 Results: 

Of the 50 biomarkers, the levels of 32 were consistently measured within the 

standard curve of detection in either blood and/or synovial fluid as presented in Table 

3.3. Proteins levels below the limit of detection in either blood and/or synovial fluid are 

shown with red borders. Ten synovial fluid biomarkers and one serum biomarker 

highlighted in Table 3.3 demonstrated close to two-fold or greater variation between 

the OA and control groups. Because of the high variability in detection levels and small 

sample size of 12 matched pairs, median values rather than mean values for the 

biomarker detection levels are presented.  

Of the 32 proteins detected above threshold, associations with the variability in 

condylar morphology at specific anatomic regions (p < 0.05) shown by Pearson 

Correlation color maps using the MANCOVA analysis were observed for 22 proteins: 10 

in the synovial fluid, 8 of these same proteins in plasma, and another 12 proteins in 

plasma samples (Figures 3.3- 3.5). The general functions of these proteins are 

presented in Table 3.4 and Table 3.5. 

In the synovial fluid of patients with a clinical diagnosis of OA, 6ckine and ENA-

78 levels showed small areas of correlations with morphological differences in the 

lateral pole morphology. ANG, GDF15, TIMP-1, CXCL16, MMP-7 and MMP-3 showed 

small areas of correlations with morphological differences in the anterior surface of the 

condyle. MMP-3 levels were more than 2 fold lower in OA compared to controls in 

synovial fluid and presented significant correlations with condylar surfaces that 

present bone proliferation. ENA-78, CXCL14 and MMP-9 levels were correlated to 

morphological differences in the posterior surface of the condyle. Statistically 
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significant correlations in the control group were observed in much smaller and 

different anatomic areas than in the OA group. Only ENA-78 still presented significant 

correlations when the findings were corrected for false discovery rate of 0.2 (Figure 

3.6). 

In the plasma of patients with clinical diagnosis of OA, ANG and GDF15 levels 

were significantly correlated   with morphological differences in the anterior surface of 

the condyle. CXCL14 levels were correlated to morphological differences in the 

posterior surface of the condyle. 6ckine, ENA-78, TIMP-1, CXCL16, MMP-3, PAI-1, VE-

Cadherin, VEGF, MIP-1b, EGF, GM-CSF, TGFb1, TNFa, IFNg, IL-1a, IL-6 and BDNF levels  

were significantly correlated to morphological variability in the latero-superior surface 

of the condyle. ENA-78, MMP-3, PAI-1, VE-Cadherin, VEGF, GM-CSF, TGFb1, IFNg, IL-1a 

and IL-6 levels still presented significant correlations when the findings were corrected 

for false discovery rate of 0.2 (Figure 3.6). 

In the control subjects for both synovial fluid and plasma samples, the protein 

levels presented small interactions with condylar morphology that were not present 

with false discovery rate correction except for ANG in plasma. ANG plasma levels were 

significantly correlated with the superior surface of the condyle (p-value < 0.05) and 

even when corrected for a false discovery rate of 0.2 ( Figures 3.4 and 3.6). 
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3.4 Discussion:  

This study is the first to report a statistically significant association between 

specific OA biomarkers and TMJ condylar surface morphological variability at specific 

anatomic regions in 3D.  Advances in proteomics and 3D shape analysis have brought 

expectations for application of increased knowledge about mechanisms of 

osteoarthritis toward more effective and enduring therapies. This study highlights 

metrics and methods that may prove instrumental in charting the landscape of 

evaluating individual molecular and imaging markers so as to improve diagnosis, 

prognosis, and mechanism-based therapy.   

In the first part of this two-part investigation we aimed to improve the 

understanding of the morphology of TMJ OA through the use of 3D models and shape 

correspondence.  The results of that study included the description of distinct regions of 

statistically significantly different morphology between a mean OA and mean control 

model developed from clinically diagnosed OA and healthy groups.  This study also 

demonstrated an overall smaller condylar average for the OA group as compared to the 

control average and great variability in individual condylar form.   

The second part of this investigation aimed to use systemic (plasma) and local 

(synovial fluid) fluid samples to detect levels of known inflammatory biomarkers and 

then correlate those biomarkers which were altered in the disease state to 3D models of 

OA derived in part one.  The semi-transparent overlays and signed distances between 

average OA and control condylar models, in Figure 3.2, revealed that bone 

apposition/reparative proliferation, shown as the white areas in the antero-superior 

surface of the OA condyle, were characteristic of OA morphology , leading to variability 
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in condylar torque in OA patients. Bone resorption was more marked in the latero-

superior surfaces of the condyles.  

In the synovial fluid samples, two of the most striking results of the MANCOVA 

analysis show that the levels of MMP-3 in synovial fluid, that were ~2 fold lower in the 

OA group compared to the controls, were correlated to areas of bone 

apposition/reparative proliferation that occurs in the anterior surface of the condyles, 

and ENA-78 was strongly correlated (p<0.01) to changes in the lateral pole and the 

posterior surface of the medial pole in the TMJ OA group (Figure 3.3).  

As a member of the chemokine family, CXCL14/BRAK induces chemotaxis of 

monocytes, however it has been suggested that it is involved more in the homeostasis of 

monocyte-derived macrophages, which are associated with pathologic changes in OA.75 

It is interesting to note that in this study local and systemic levels of CXCL14/BRAK 

show the same pattern of morphologic correlations (Figures 3.3. and 3.4).  

The biomarkers for which no association with morphology was established 

serve various physiologic and pathophysiologic processes and have been implicated in 

other studies as playing a role in arthritis.59, 81  For example, MMP-2, which 

demonstrated differences in detection level between the OA and control groups in the 

synovial fluid, is involved in the degradation of type IV collagen, the major structural 

component of basement membranes and plays a role in the inflammatory response.75 

Neither of these processes necessarily correlate to bony changes in OA, but might be 

more involved in the pathology of associated tissues (ie. the lining of the synovial 

membrane). 

Also, TIMP-2, which again was elevated in the synovial fluid samples for the OA 
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group, is an inhibitor of MMPs, and is thought to be critical in maintaining tissue 

homeostasis through interactions with angiogenic factors and by inhibiting protein 

breakdown processes, an activity associated with tissues undergoing remodeling of the 

ECM.   

Interestingly, protein level measurements were much higher in plasma than in 

synovial fluid. It could be questioned that arthritis localized in small joints such as the 

TMJs may not lead to changes in systemic levels of proteins and that possibly 

undiagnosed arthritis of other joints in the body may be confounders in plasma protein 

expression. However, systemic levels in plasma of proteins in OA patients were 

significantly correlated with condylar morphologic variability, as shown in figures 3.4 

to 3.6. The most striking patterns of interactions was between levels of 17 proteins in 

plasma with the resorption in the antero-superior surfaces of condylar lateral pole as 

shown in Figures 3.4 and 3.5.: 6ckine, ENA-78, TIMP-1, CXCL16, MMP-3, PAI-1, VE-

Cadherin, VEGF, MIP-1, EGF, GM-CSF, TGFb1, IFNg, TNFa, IL-1a, IL-6 and BDNF. Because 

these pilot study findings represent high dimensional low sample size data, after 

correction of findings using a false discovery rate of 0.2, ENA78, MMP3, PAI1, VE-

Cadherin, VEGF, GM-CSF, TGFb1, IFNg, IL-1a and IL-6 levels still presented significant 

correlations which indicates that 20% of the significant locations of interactions are 

expected to be falsely significant, but the overall pattern represents the interaction 

protein levels and morphology (Figure 3.6). 

In the control subjects both in synovial fluid and plasma, protein levels 

presented small interactions with condylar morphology in condylar surface regions that 

differ from the OA group. However, those small interactions cannot be verified when 
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use false discovery rate correction. ANG levels were significantly correlated with the 

superior surface of the condyle (p-value < 0.05) even when corrected for false discovery 

of 0.2 (Figures 3.4 and 3.6). 

This investigation limited inclusion in the OA group to those individuals with a 

recent diagnosis and onset.  Several of the biomarkers investigated did not demonstrate 

significantly variable expression between the two groups, and those for which no 

morphological association could be established, have been previously investigated by 

other groups and found to be associated with clinical diagnosis of OA, either in the TMJ 

or another joint.  It is possible that by limiting this investigation to recent onset OA, the 

disease had not progressed to a stage where these biomarkers play as paramount of a 

role. 

A limitation of this pilot study was the inability to test biomarkers in pairs or 

groups to evaluate whether or not there is cross-reactivity between them that is 

associated with condylar morphology.  This should be an aim of future investigations in 

this area, as testing biomarkers in groups or pairs will likely be a more accurate 

representation of the in vivo state.38 However, the study of 50 proteins, expressed in 

previous studies of the complex clinical conditions of inflammation, angiogenesis and 

neuroception that may lead to bone resorption and/or reparative proliferation in 

osteoarthritis, revealed that 22 cytokines presented interactions with morphological 

variability.  

In summary, 22 cytokines presented interactions with early signs of bone 

remodeling in the articular surfaces of the condyles that are already observed at the 

first clinical diagnosis. The levels of MMP-3 in synovial fluid, that were ~2 fold lower in 
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the OA group compared to the controls, were correlated to the bone apposition that 

occurs in the anterior surface of the condyles and leads to characteristic changes in 

condylar torque and morphology. Other proteins in plasma and synovial fluid that may 

play a role in the bone apposition of the anterior surface of the condyles include ANG, 

GDF15, TIMP-1, CXCL16 and MMP-7. Bone resorption with flattening and reshaping of 

the lateral pole of the condyle involves molecular pathways with interaction of 17 

proteins measured in this study: 6ckine, ENA-78, TIMP-1, CXCL16, MMP-3, PAI-1, VE-

Cadherin, VEGF, MIP-1, EGF, GM-CSF, TGFb1, IFNg, TNFa, IL-1a, IL-6 and BDNF. 
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3.5 Conclusions: 

1. This study developed a protocol for mapping statistically significant interactions 

between alterations in biomarker levels and alterations in condylar morphology 

in a clinically diagnosed TMJ OA population. 

2. A total of 22 biomarkers demonstrated a statistically significant association with 

morphologic variability as determined using the MANCOVA analysis (10 

biomarkers from the synovial fluid sample, and 10 of the same proteins plus an 

additional 12 from the plasma sample). 

3. Levels of ANG, GDF15, TIMP-1, CXCL16, MMP-3 and MMP-7 presented 

interactions with the bone apposition of the anterior surface of the condyles. 

4. Levels of 6ckine, ENA-78, TIMP-1, CXCL16, MMP-3, PAI-1, VE-Cadherin, VEGF, 

MIP-1, EGF, GM-CSF, TGFb1, IFNg, TNFa, IL-1a, IL-6 and BDNF presented 

interactions with bone resorption and flattening reshaping of the lateral pole of 

the condyle. 
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    Table 3.1:  Subject and Control Demographics 

  Subjects Controls   

M/F ID Age (years) Age (years) ID Age Difference (years) 

F O1 51 44 C1 7 
F O6 66 65 C2 1 
F O3 61 49 C3 12 
F O4 29 29 C7 0 
F O9 62 57 C6 5 
F O15 51 39 C4 12 
M O8 36 36 C8 0 
F O12 46 44 C9 2 
F O10 38 39 C10 1 
F O11 26 29 C11 3 
F O13 21 22 C13 3 
F O14 46 43 C14 3 
Average  44.4 41.3 4.1 
 
 
 
Table 3.2: Separate slides of microarrays to measure 50 proteins while controlling for 
cross-reactivity 
 

19 protein slide 31 protein slide 

aFGF MMP-3 6ckine IFNg NT-4 

ANG MMP-7 bFGF IGF-I OPG 

BDNF MMP-9  BLC IL-1a TGF-b1 

BMP-2 NT-3 CXCL16 IL-1b TGF-b2 

CXCL14/BRAK PAI-I EGF IL-6 TGF-b3 

GDNF RANK ENA-78 LIF TIMP-2 

ICAM-1 TIMP-1 FGF-7 MCP-1 TNFa 

ICAM-3 VE-Cadherin G-CSF MIP-1a TNFb 

MIP-1b   GDF-15 MMP-1  VEGF 

MMP-10    GM-CSF MMP-13    

MMP-2    HB-EGF NGF R    
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Biomarker 

Serum Data Synovial Fluid Data 
Limit of 

Detection  
Highest 

Standards Control 
Median 

OA    
Median 

Control 
Median 

OA    
Median 

ANG 2,070.90 1,952.20 350.5 884.5 1.22 3,000.00 

BDNF 6,616.40 4,761.50 0.9 4.5 11.03 15,000.00 

BMP-2 5,331.30 5,304.20 2,085.20 2,398.90 1,182.83 60,000.00 

CXCL14/BRAK 822.6 1,564.50 1,298.10 902 682.39 150,000.00 

MIP-1b 349.2 290.6 4.3 5 3.31 1,500.00 

MMP-10  1.2 1.4 90.4 85.4 1.72 3,000.00 

MMP-2  5,708.10 6,233.00 843.9 402.4 311.68 150,000.00 

MMP-3 13,843.60 13,980.10 19,266.60 9,949.60 120.83 45,000.00 

MMP-7 1,221.00 1,316.60 2,930.60 1,452.00 974.10 1,200,000.00 

MMP-9  22,069.70 14,406.00 386.7 272.4 11.82 15,000.00 

PAI-I 32,243.50 29,660.30 999.5 818.3 198.00 60,000.00 

RANK 760.4 734.6 241.5 242.1 242.18 150,000.00 

TIMP-1 136,076.60 110,599.80 13,998.10 21,937.50 48.99 60,000.00 

VE-Cadherin 31,692.80 29,712.60 2,342.60 2,120.30 2,190.16 300,000.00 

6ckine 6,056.60 4,224.00 1,241.20 705.4 888.52 60,000.00 

BLC 28.6 36.9 1.2 1 8.04 15,000.00 

CXCL16 4,245.20 4,392.20 18.2 160.6 11.52 15,000.00 

EGF 776.7 525.2 2 1.8 1.33 600.00 

ENA-78 8,010.20 6,807.10 12.3 26.5 23.59 15,000.00 

GDF-15 1,013.60 926.3 2.6 6.1 1.80 3,000.00 

GM-CSF 16.3 16 1.2 1.8 4.10 1,500.00 

IFNg 49.7 39.2 8.2 8 30.76 15,000.00 

IL-1a 9.3 9.6 2.4 1.9 6.29 3,000.00 

IL-6 40.8 42.4 5.4 5.8 10.42 3,000.00 

MCP-1 134.3 106.9 8 7 7.00 3,000.00 

MIP-1a 26.8 21.2 8.5 9.2 16.27 15,000.00 

OPG 1,010.50 1,021.70 353.8 328.9 31.80 30,000.00 

TGF-b1 7,383.70 7,147.00 949.9 898.6 1,240.87 150,000.00 

TIMP-2 8,582.90 9,129.90 547.2 2,236.20 10.65 15,000.00 

TNFa 307.6 286.8 35 39.3 53.95 3,000.00 

VEGF 105.6 76.2 17.6 20.8 5.31 3,000.00 

ICAM-1 22,786.40 18,286.20 747.6 814.5 165.84 150,000.00 

 
 

Table 3.3: Median levels for Serum and SF.  Levels below the limit of detection are 

shown with red borders and variations of approximately 2x or greater between groups 

are highlighted 
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Biomarker Protein Family General Functions 

6ckine (CCL21) Chemokine responsible for stimulating chemotaxis for 
thymocytes and activated T-cells75 

MMP-3, 7 and 9 Matrix 
Metalloproteinases 

involved in the breakdown of ECM in normal 
and diseased states; degrade proteoglycans, 
fibronectin, elastin, laminin, collagens III, IV, 
IX, and X and casein; associated with wound 
healing59, 75 

CXCL14 and 
CXCL16 

Chemokines CXCL14 is a potent chemoattractant for 
neutrophils, and weaker for dendritic cells.76 

CXCL16 is a strong  chemoattractant for 
macrophages.77 

ANG 
(Angiogenin) 

Ribonuclease mediates blood vessel formation; involved in 
decreasing protein synthesis75, 78 

ENA-78 

(CXCL5) 

Chemokine responsible for neutrophil activation 
associated with acute inflammatory 
response75 

GDF-15 TGF-beta part of the TGF-beta family; plays a role in 
regulating inflammatory and apoptotic 
pathways in injured tissues and during 
disease processes75, 79 

TIMP-1 Tissue Inhibitor of 
Metalloproteinase 

a natural inhibitor of MMPs; promotes cell 
proliferation; "expression from some but not 
all inactive x-chromosomes suggests that 
this gene inactivation is polymorphic in 
human females"52, 59, 75 

 

 

 

 

 

 

 

 

Table 3.4: Synovial fluid (SF) and plasma biomarkers for which a statistically significant 

relationship with morphology existed, and their general functions 
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Biomarker Protein Family General Functions 

PAI-1 
(Plasminogen 
Activator 
Inhibitor) 

Proteinase inhibitor An inhibitor of fibrinolysis75 

VE (vascular 
endothelium)-
Cadherin 

Cadherin A cell-cell adhesion glygoprotein75 

VEGF (vascular 
endothelial 
growth factor) 

Growth factor associated with increased vascular 
permeability, inducing angiongenesis, 
vasculogenesis, endothelial cell growth75 

MIP1b (CCL4) Chemokine Chemokinetic and inflammatory functions75 

EGF  Growth factor A potent mitogenic factor with a role in 
growth, proliferation, and differentiation of 
numerous cell types75 

GM-CSF Colony stimulating 
factor 

High affinity receptor for IL-3, IL-5 and CSF75 

TGFB1 TGF-beta Regulates proliferation, differentiation, 
adhesion, migration and other functions in 
many cell types 75 

IFNg Interferon Potent activator of macrophages 75 

TNF-alpha Tumor Necrosis 
Factor 

Proinflammatory; secreted by 
macrophages75 

IL1a Interleukin Involved in various inflammatory processes; 
produced by monocytes and macrophages in 
response to cell injury75 

IL6 Interleukin Functions in inflammation and maturation of 
B cells; produced at sites of acute and 
chronic inflammation75 

BDNF Growth factor Induced by cortical neurons; may play a role 
in the regulation of the stress response75 

Table 3.5: Additional Plasma biomarkers for which a statistically significant relationship 

with morphology existed, and their general functions 



 

43 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1:  The emerging paradigm shift in the understanding, diagnosis, 

and treatment of OA will integrate the skills of a trained clinician, advanced 

imaging techniques, and an understanding of effects of biomarkers. 
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Figure 3.2: a) Average control and OA 3D correspondent models obtained using SPHARM-

PDM; b) semitransparent overlays; c) signed difference map between each correspondent 

point (color map displayed over OA average model) 

Figure 3.3: Results of Shape Analysis MANCOVA for 10 Proteins in the synovial fluid that 

presented statistically significant Pearson correlations between biomarker levels and 

morphology: 6ckine,ANG, CXCL14, CXCL16, ENA-78, GDF15, MMP-3, MMP-7, MMP-9, 

TIMP-1. 
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Figure 3.4: Shape Analysis MANCOVA for levels of the same 10 Proteins in figure 3.2 in the 

plasma that presented significant Pearson correlations between biomarker levels and 

morphology: 6ckine, ANG, CXCL14, CXCL16, ENA-78, GDF15, MMP-3, MMP-7, MMP-9, TIMP-1. 
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Figure 3.5: Shape Analysis MANCOVA for 12 Proteins in the plasma that presented 

statistically significant Pearson correlations between biomarker levels and morphology 

of the superior  surface of the lateral pole of the condyle in the OA groups: PAI-1, VE-

Cadherin, VEGF, MIP-1b, EGF, GM-CSF, TGFb1, IFNg, TNFa, IL-1a, IL-6, and BDNF .   
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Figure 3.6: Shape Analysis MANCOVA for 12 Proteins that presented statistically 

significant Pearson correlations at 0.05 corrected with a false discovery rate of 0.2. This 

means that 20% of significant locations are expected to be false positives, but confirm 

the overall pattern of the correlations between biomarker levels and morphology in the 

OA group: ENA-78, PAI-1, VE-Cadherin, VEGF, MMP-3, EGF, GM-CSF, TGFb1, IFNg, TNFa, 

IL-1a and IL-6.   ANG appears to be important in the  physiologic  remodeling in control  

subjects. 
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