
ABSTRACT

JAMES M. SAMET. Role of Mucus in the Pulmonary Toxicology of Inhaled

Pollutants. (Under the direction of Dr. Louise M. Ball)

Lung mucus is a complex airway secretion whose primary function as part of

the mucociliary clearance system is to serve as a renewable and transportable barrier

against inhaled particulates and toxicants. The rheologic properties necessary for this

function of mucus are imparted by glycoproteins, or mucins. Some respiratory disease

states e.g., asthma, cystic fibrosis and bronchitis are characterized by quantitative and

qualitative changes in mucus biosynthesis that contribute to pulmonary pathology.

Similar alterations in various aspects of mucin biochemistry and biophysics, leading to

altered mucus rheology and hypersecretion, result from inhalation of certain air

pollutants such as SO2, O3, NO2 and cigarette smoke. The consequences of these

pollutant-induced alterations in mucus biology are discussed in the context of

pulmonary pathophysiology and toxicology.
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SECTION I

INTRODUCTION

The lung is a unique organ in that it represents a very large epithelial surface
that is continuously exposed to the outside world. Unlike the skin, the lung cannot
make use of multiple layers of relatively impermeable cells as a barrier to harmful
substances in the outside environment because its very function, i.e., gas exchange,
demands that there be a minimal thickness of gas permeable cell membranes between
the airspace and the blood. Instead, the lung uses specialized secretions produced by the
airways to provide a renewable and transportable protective layer to interact with,
neutralize and remove inhaled toxic materials. Mucus is the main airway secretion with
this function.

As discussed below, airway mucus is a viscous solution with defined physical
and chemical properties that enable it to be transported out of the lungs by ciliated cells
lining the airways. Thus airway mucus is part of the mucociliary clearance mechanism,
also known as the mucociliary escalator, that continuously sweeps trapped or
neutralized inhaled materials out of the airways. This system also provides a vehicle for
the removal of alveolar macrophages, the principal resident phagocytic cell in the lung,
whose function is to ingest microorganisms and other particulates that reach the
alveolar space. Alterations in mucus biosynthesis, structure and function can occur as
result of certain disease states and exposure to inhaled toxic compounds. As will be
seen, these alterations can cause impaired pulmonary clearance and a number of
conditions leading to and resulting from excessive mucus secretion.
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The focus of this report is the role of mucus in the pulmonary toxicology of air

pollutants. Included are sections describing current concepts in mucus biology, i.e., its

biochemistry, biophysics and histology of mucus, as well as its function in normal and

pathophysiology. This is followed by a review of effects on mucus biology that are

relevant to the pulmonary toxicology of inhaled pollutants.
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SECTION II

MUCUS COMPOSITION

The classic model of the airway mucociliary system depicts mucus as a layer of

highly viscoelastic luminal secretion floating on a layer of fluid of low viscosity (the sol

or periciliary fluid layer). Mucus from healthy subjects is difficult to obtain because, in

the absence of trauma or disease, very little is produced by the lung (Silberberg, 1988,

Thornton et al,, 1990). Furthermore, even under carefully controlled conditions normal

mucus contains significant quantities of cellular debris and airborne materials that

confound analyses. Largely due to the lack of sufficient uncontaminated material

available for study, the composition of normal human mucus is still uncertain (Phipps,

1984, Silberberg, 1988). Analysis of sputum from diseased subjects, normal sputum

induced with hypertonic saline and recovered secretions from laryngectomized patients

has yielded the consensus that mucus is 95 % water, 2 % glycoproteins, 1 % proteins,

1 % lipids and 1 % inorganic salts.

In contrast to normal airway secretions, mucus produced in the airways of

patients with respiratory disease contains significant amounts of serum proteins. These

proteins are believed to be responsible for alterations in the rheology of airway

secretions characteristic of some pathologic conditions such as bronchitis and

bronchiectasis (Phipps, 1984). Some studies have suggested that at least part of the

lipid in intestinal mucus is in the form of fatty acids covalently attached to

glycoproteins (Witas et al., 1983, Slomiany et al., 1984). Airway glycoproteins,

however, appear to contain small amounts of fatty acids that are non-covalently

associated with hydrophobic regions of these molecules (Hanson et al., 1988).
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A. Water Content- Regulation of water content is crucial to maintaining viscoelasticity
that is optimal for the transfer of momentum from the beating cilia of the airway
epithelium to the mucus blanket of the mucociliary clearance system (Silberberg,
1988). A considerable fraction of the water in mucus is found bound to the
macromolecules or physically trapped inside the interstices formed by the dissolved
glycoproteins (Phipps, 1984). The amount of water in mucus is determined by the
availability of water in the airway, which is tightly linked to the movement of the ions
that make up the inorganic salts found in mucus.

The source of mucus water, and for that matter all airway water, is vascular
transudation from the blood (Phipps, 1984). This transudation results, in part, from the
difference in hydrostatic pressure between the vascular bed and the airspace. However,
the main mechanism for moving water into the airway is provided by an osmotic
gradient established by vectorial transport of ions into the lumen carried out by the
airway epithelium. The tracheobronchial epithelium secretes CI" ions and absorbs Na"*"
ions. Under normal conditions, the amount of CI' ion secreted exceeds the amount of
Na+ ion taken in, establishing an ionic gradient for net water secretion into the airway
(Welsh, 1991). Water lost by evaporation during the humidification of inspired air also
increases the osmotic gradient and, thus, the water movement into the airway lumen
(Mautone and Cataletto, 1990). As will be discussed in later sections, the ability to
maintain the proper ionic composition of airway secretions is essential to maintaining
normal mucociliary clearance. A defect in the mechanisms that regulate ion balance in
the airway lumen is the central pathogenic feature of cystic fibrosis (Welsh, 1991).
B. Mucus Rheology- In terms of both normal and pathophysiology, viscosity and
elasticity are the most important physical properties of mucus, enabling it to be
ti-ansported by ciliary movement (Sheehan et al., 1991). The principal determinant of
the viscoelastic properties of mucus are the glycoproteins, or mucins. Mucins are
structural and secretory products of all secretory epithelia, including the airway
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epithelium. These glycoproteins are normally found as a dissolved, entangled network
in mucus. When dissolved in purified form, mucins have been shown to recreate the
rheologic properties of mucus (Silberberg, 1988). It is for these reasons that mucins
and the factors that affect their structure and expression in health and disease have been
extensively studied. Many modem methodological approaches to the study of the
physicomechanical properties of this complex material have been developed, as recently
reviewed (Braga and Allegra, 1988). They range from models that seek to
mathematically describe and predict the behavior of mucins in solution (Braga et al.,
1988), to nuclear magnetic resonance (Odeblad, 1988), two-phase gas-liquid flow
(Clarke, 1988), magnetic rheometry (King, 1988) and sinusoidal oscillation methods
(Braga, 1988).

C. Biochemical Analysis- Chemical analysis and description of mucins is also difficult
because of the great complexity and heterogeneity of these molecules. Mucins are
either acidic or neutral in character, depending on their content of acidic functional
groups. These acidic functional groups can be either esterified sulfate or sialic acid.
Sialic acid-containing mucins are further classified on the basis of their sensitivity to
deglycosylation by the enzyme sialidase (neuraminidase). Thus based on this scheme,
there are four identifiable groups of mucins: neutral, sulfated, and the sialidase
sensitive and resistant varieties of sialic acid-containing mucins (Jones, 1977). Acid and
neutral glycoproteins can be distinguished histochemically with Alcian blue-periodic
acid Schiff stain, with which acidic glycoproteins stain blue and neutral ones appear red
(Abraham, 1984). As will be discussed in later sections, this classification scheme is
useful in evaluating mucin histochemistry changes that occur in a variety of disease
processes.

Mucins are polydisperse and highly glycosylated peptide molecules
approximately 700 amino acids in length with molecular weights varying from a few
hundred thousand to more than a million daltons (Roussel et al., 1988). The classic
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structural representation of mucin is that of the "bottle brush", which depicts hundreds
of carbohydrate chains attaches to a peptide core (Lamblin et al., 1991). Typical
methodology for the analysis of mucin (Carlstedt et al., 1983) involves extraction with
a chaotropic agent such as 6 M guanidinium chloride in the presence of endogenous
protease inhibitors. After low speed centrifugation to remove insoluble material, to the
extractant is added a gradient forming salt such as CsCl. Gradient centrifugation

permits the fractionation of the mucins according to their density. Characterization of
mucin glycoproteins is accomplished by polyacrylamide gel electrophoresis with silver
staining and analytical ultracentrifugation (Creeth, 1978, Sheehan et al., 1991).
Electron microscopy is also widely used for the analysis of mucin glycoproteins and has
revealed that these molecules are flexible random coils with lengths ranging from 0.2 to

5 um (Jensen et al., 1980, Rose et al., 1984, Sheehan et al., 1986), although variations
between studies exists, apparently due to differences in sample preparation (Mikkelsen

et al., 1985). Sample handling and preparation has a significant effect on the integrity
of mucins analyzed by other methodologies as well. In addition to the mentioned use of
protease inhibitors, the once standard high-shear extraction methods and covalent bond-
breaking reagents such as dithiothreitol are now avoided (Sheehan et al., 1991).
D. Mucin Peptides- Until relatively recently, mucins were thought to have relatively
conserved amino acid sequences (Silberberg 1988). However, recent evidence obtained

using methodologies that preserve the protein core of these glycoproteins, as well as
new gene sequence information, suggests that there are multiple and polydisperse
peptides, or apomucins (Porchet et al., 1991). Protease-sensitive, non-glycoslylated
regions are found at both or one end of the peptide and are rich in aspartate and
cysteine (approximately 13-16). These cysteine residues form disulfide bonds within
and between peptides and appear to dictate the folding of the assembled mucins

(Silberberg, 1988). The glycosylated regions of mucin are protease-resistant segments
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rich in serine and threonine residues linked to carbohydrate chains. Strictly speaking,

these are the mucin glycopeptides (Lamblin et al., 1991).

E. Carbohydrate Content- Approximately 80 % of the weight of the mucin molecule is

carbohydrate (Porchet et al., 1991), and it is these covalently-attached sugars that

confer mucins with most of their polydispersity and structural complexity (Lamblin et

al., 1991). These carbohydrates are arranged in chains, called O-glycans, that include

fucose, galactose, N-acetylglucosamine, N-acetylgalactosamine and N-acetylneuramic

acid. O-glycans are always linked to the mucin peptide at a serine or threonine residue

by N-galactosamine that is base-labile (Lamblin et al., 1991). Reductive elimination

frees the 0-glycan from the peptide and produces chains that range in size from 1 (N-

galactosamine) to 20 carbohydrate residues (Roussel et al., 1975). Free O-glycans are

classified into 4 groups of increasing acidity: neutral, mainly sialylated, sulfated and

highly sulfated (Roussel et al., 1975). Since each of these groups can be further

subdivided chromatographically according to their size, 12 subgroups are obtained,

only 3 of which (2 neutral and the smallest sialylated) have been studied extensively

(Lamblin et al., 1991). To date, study of just these 3 subgroups has produced over 100

0-glycan species, 81 from one subject alone (Lamblin et al., 1991, Klein et al., 1988,

Breg et al., 1988, Van Halbeek et al., 1988).

Structurally, there are 3 parts to an O-glycan: the core (not to be confused with

the peptide core), the backbone and the periphery (Hounsell and Feizi, 1982). The core

is simply the first one or two sugar residues that are bound to the N-

acetylgalactosamine. The most common core is galactose B1-3 N-acetylgalactosamine,

which consists of a galactose residue bound at its 1 position to the 3 position of N-

acetylgalactosamine via a B linkage. This core may be further substituted by N-

acetylglucosamine linked Bl-6 to the N-acetylgalactosamine, or, alternatively, by N-

acetylneuraminic acid linked by an A2-6 bond to the N-acetyigalactosamine. The later

occurrence forms a sialylated core (Lamblin et al., 1991, Hounzel and Feizi, 1982).
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0-glycan backbones consist of disacchande's of galactose and N-

acetylglucosamine, several of which can be linked to the core at the galactose or N-

acetylglucosamine. These disaccharide units may be added to the core linearly or can

branch using Bl-3 and Bl-6 linkages on galactose residues of the backbone. The

periphery contains the sugar residues fucose, galactose, N-acetylglucosamine, N-

acetylgalactosamine and N-acetylneuraminic acid, added via A-linkages or,

alternatively, sulfate substituted on the backbones (Lamblin et al., 1991).

Thus, mucin O-glycans alone can vary extensively in their overall structure,

based on the possible permutations of the cores with the many different backgrounds

and possible peripheries. When one considers that the mucus glycoproteins consist of

peptide chains covered in sections with this vastly heterogeneous spectrum of O-

glycans, it can be readily appreciated that these are very large and highly complex
molecules.
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SECTION III

FUNCTIONAL HISTOLOGY

A. Glycoprotein-Secreting Cell Types- The lungs of a typical healthy adult secrete

mucus at a rate of 0.1 to 0.3 ml/kg body weight per day. Lung mucus is produced and

secreted by several different cell types. Perhaps the most specialized cell for this task is

the goblet cell, found mainly scattered among ciliated cells in the trachea and, in fewer

numbers, in the bronchi (Wheater et al., 1979). Goblet cells are the only example of a

unicellular gland in mammals, their main secretory product being mucin. As its name

implies, this is a vessel-shaped cell with an expanded apical end that is filled with

glycoprotein droplets, called mucigen droplets. These droplets are secreted from the

cell as the membrane surrounding individual droplets or coalesced groups of droplets

fuses with the plasma membrane, spilling their contents out of the cell. Under certain

stimuli, goblet cells are capable of secreting all of their granules at once (Fawcett,

1986). Goblet cells secrete mainly acidic glycoproteins (Mautone and Cataletto, 1989).

Clara cells are the most prevalent cell type found in the small airways and are

capable of differentiating into other cell types of airway epithelium such as goblet cells

(Sleigh et al., 1988). Clara cells are known contributors to the sol, or periciliary, fluid

layer and are also the principal site of xenobiotic metabolism in the lung (Mautone and

Cataletto, 1989). Serous cells are another type of glycoprotein-secreting cell. These

cells produce mainly neutral glycoproteins which are found packaged in distinct,

electron-dense granules (Forrest and Lee, 1991). Interestingly, serous cells appear to

secrete N-glycosylated glycoproteins (Aubert et al., 1991), a type of glycoprotein

related to but distinct from the O-glycans. Serous cells are known to be capable of
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responding to inhaled irritants by undergoing a form of metaplasia to become goblet

cells (Jefferey and Reid, 1975, Sleigh et al., 1988).

Serous cells are arranged within the terminal portion of the acini (an acinus is a

rounded exocrine secretory unit) of submucosal glands (Fawcett, 1986). The

approximately 5000 submucosal glands found under the airway epithelium between the

trachea and the subsegmental bronchi are the major source of mucus in the normal lung

(Mautone and Cataletto, 1989). The proximal terminus of the submucosal glands are

lined by mucus-secreting cells. These cells are packed with confluent, electron-lucent

mucigen granules (Fawcett, 1986). Mucus acini in submucosal glands secrete mainly

glycoprotein, while serous acini also secrete antibacterial compounds and antiproteases

(Jeffery, 1991). The size of submucosal glands increases when the airway is exposed to

environmental irritants such as tobacco smoke (Fawcett, 1986).

Morphometric studies on airway goblet cells and gland cells have shown that

mucus is secreted from these cells as droplets 1-2 um in diameter (Wu and Carlson,

1991). The droplets are believed to be made up of concentrated glycoproteins, which in

a matter of seconds absorb several hundred-fold their weight and volume in water

drawn from the periciliary fluid (Verdugo, 1984). As the glycoprotein droplets swell,

they begin to form plaques or "rafts" of mucus that move over the periciliary fluid. As

the diameter of the airways increases, these rafts coalesce into larger islands of mucus,

to eventually form a sheet of mucus (Iravani and van As, 1972).

All secreted mucus is eventually transported out of the airways to the top of the

trachea where it is swallowed. This process is referred to as the mucociliary apparatus

or mucociliary function. It is estimated that 10 ml of mucus reaches the top of the

trachea in a healthy adult every day (Toremalm, 1960). The mucus layer over the

airway epithelium is approximately 5-10 um thick and flows towards the trachea at a

rate of 4.2 to 7 mm per minute (Casarett, 1960). Mucus flow at the trachea is between

7 and 25 mm per minute (Mautone and Cataletto, 1990). Factors affecting the rate of

NEATPAGEINFO:id=D30FAA62-CDE7-4AC5-9817-6D48D584B608



11

mucus flow include the thickness of the periciliary fluid layer and the relative humidity

of inspired air.

B. Periciliary Fluid- Surprisingly little is known about the periciliary fluid layer. It is

believed to be an epithelial cell exudate (Widdicombe, 1984 ), 6 um in depth (Mautone

and Cataletto, 1990), having low viscosity and an ionic content that is tightly

maintained by the movement of sodium and chloride by the airway cells (Nadel et al.,

1979). The periciliary layer in the distal airways and respiratory bronchioles probably

contains some surfactant and other alveolar components (Sleigh, 1991). A phospholipid

layer appears to exist between the periciliary fluid layer and the mucus sheet, and may

serve to lower the surface tension between the two layers (Yoneda, 1976). The

thickness of the periciliary fluid layer provides a low viscosity medium between the cell

surface and the mucus layer in which the cilia can beat and propel the mucus blanket

(Sleigh etal., 1988).

The relative humidity of inspired air determines the rate of evaporation of fluid

from the mucus sheet. This effect is most evident in the upper airways and the trachea,

where incomplete humidification of inspired air is more likely (Man et al., 1979). The

effect that the evaporative loss that takes place in the airways has on the depth of the

periciliary fluid layer is not known (Mautone and Cataletto, 1990).

C. Mucociliary Transport- Another key determinant of the rate of mucus flow is the

ciliary beat frequency. The movement of secreted mucus is carried out by the

predominant cell type in the airways, the ciliated airway epithelial cell. Ciliated cells in

the airway are arranged in close juxtaposition, forming a field of cilia, interrupted by

islands of goblet cells and the openings of mucus glands (Wheater et al., 1979). The

cilia beat in a synchronized, wavelike manner to propel the mucus towards the trachea.

Each ciliated cell has 200 to 300 uniformly spaced cilia about 6 um in length (Mautone

and Cataletto, 1990). The cilia project into the periciliary fluid, with only their tips

embedded in the mucus layer. Each cilium is 0.25 um in diameter and is composed of
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an axoneme surrounded by a special process of the plasma membrane called the ciliary

membrane (Wheater et al., 1979, Rhodin, 1966 ). The axoneme itself is made up of 9

interconnected doublets of microtubules surrounding a pair of central microtubules. The

axoneme is anchored via the basal body to the network of microtubules of the cell

cortex. The basal body is composed of 9 interconnected triplet microtubules. Each

microtubule is made of tubulin protofilaments of tubulin, a self-assembling cellular

protein. The microtubule doublets are linked to each other via arms of dynein, a protein

with ATP-ase activity (Fawcett, 1986). The length of the cilium of the respiratory

epithelium is a compromise between the bioenergetic advantages offered by a longer

dynein arm and the required stiffness imparted by minimal length ( Sleigh, 1991).

During ciliary movement, the axoneme microtubule doublets slide past each

other. The binding of ATP to dynein releases and shortens the arm linking the

doublets. As the ATP is hydrolyzed, the linkage between the doublets reforms at a

more proximal site (Fawcett, 1986). This cycle of attachment and reattachment of

dynein arms between microtubule doublets is repeated many times during each ciliary

beat. The beating of groups of neighboring cilia is synchronized into "metachronal

waves" as a result of a similarity in viscous forces experienced by the cilia at a given

location (Sleigh, et al., 1988). A similar self-regulating mechanism is responsible for

enlisting the number of beating cilia necessary to keep mucus flowing at a steady rate.

A given patch of mucus is propelled by a group of many cilia beating in a coordinated

fashion. As the movement of the cilium is slowed down by the inertia of the slower-

moving mucus blanket, other cilia catch up with it and transfer their energy to the

mucus as well. The net effect is that the slower the mucus blanket moves over a given

area of the epithelium, the greater the number of synchronized cilia propelling it

(Sleigh etal., 1988).

Due to its high glycoprotein content, mucus behaves as a non-Newtonian fluid,

with elastic properties that cause it to temporarily absorb energy by changing its shape
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(Sleigh, 1991). The amount of time elapsed between the deformation of mucus and its

recoil to its original shape is the relaxation time, which has been measured to be

approximately 30 seconds for mucus (Gilboa and Silberberg, 1976). Efficient transfer

of energy from the beating cilia to the viscoelastic mucus layer requires that the ciliary

beat frequency be faster than the relaxation time (Sleigh, 1991). This requirement is

easily met since typical ciliary beat frequencies range from 7 cycles per second in the

peripheral airways to 25 cycles per second in the trachea (Sleigh, 1977). This variation

in ciliary beat frequency is reflected in the above mentioned increased rate of mucus

flow that takes place in the trachea. The surface area over which mucus flows in the

peripheral airways has been calculated to be approximately 70 square meters, compared

to 0.6 square meters in the trachea (Mautone and Cataletto, 1990). This means that the

proportionate volume of mucus reaching the trachea is increased over 100-fold with

respect to the airways. Thus higher tracheal ciliary beat frequencies are needed to

prevent mucus accumulation and clogging of the airways.

Studies on the regulation of ciliary beat frequency have suggested a dual control

mechanism. A direct neurohormonal effect seems to be mediated by B-adrenergic

stimulus and transduced via cAMP, with an ultimate effect on the axoneme itself

(Sanderson and Dirksen, 1989). A second, possibly independent, effect is based on

mechanical stimulation of the cilia by foreign particles or by mucus itself. (Sleigh,

1991, Sanderson and Dirksen 1989). Calcium flux experiments have shown that

mechanostimulation of ciliary activity may involve the opening of calcium channels and

the elevation of intracellular calcium concentrations (Sleigh, 1991). It is clear that

many stimuli of mucus secretion also stimulate mucus transport, i.e., increase ciliary

beat frequency. Whether the ciliary response to these stimuli is secondary to the

presence of increased amounts of mucus on the cell or is independent from it is an issue

that has yet to be resolved (Sleigh, 1991).
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In addition to optimized ciliary beat frequencies, efficient mucus mobilization

requires proper contact between the cilia and the mucus blanket. Under normal

conditions, the cilia beat while completely immersed in periciliary fluid, with only the

tips of the cilia coming in contact with the mucus blanket (Fawcett, 1986). Each ciliary

beat consists of a propulsive stroke, a rest phase and a preparatory stroke. During the

propulsive stroke the cilium reaches its maximum extension, causing the ciliary crown

to penetrate the mucus layer and transfering momentum to it (Sleigh, 1991, Sleigh et

al., 1988). The rest phase may merely reflect a metabolic recovery period or serve as a

reserve period that enables increased beat frequency when needed (Mautone and

Cataletto, 1990). Ciliary movement during the recovery period is backwards and

downwards, with a clockwise rotation in a plane parallel to the cell surface (Sleigh,

1991, Sleigh et al., 1988). The combined effect of the different phases of the ciliary

beat is to propel the mucus unidirectionaly, with a minimal amount of energy spent

repositioning the cilium for the next stroke. As mentioned earlier, the thickness of the

periciliary layer provides the critical distance that allows optimal ciliary contact with

the mucus layer. The cilium itself appears to have a regulatory effect on the depth of

the periciliary fluid. If the fluid is too deep, excess fluid may be swept away by ciliary

beating. When the layer is too shallow, ciliary contact with the mucus layer will be

stronger and this may stimulate ionic transport by the ciliated epithelium which in turn

results in increased fluid secretion into the airway (Sleigh, 1991).

Several techniques for the measurement of mucus clearance rates have been

devised over the years, as recently reviewed by Schlesinger, 1990. In their simplest

form, these methods involve monitoring the movement of endogenous or artificial

markers (inhaled, blown in or placed on the airway) from the periphery toward central

areas of the respiratory tract. Artificial markers commonly used include pollen. Teflon

disks, dyes, colored beads or technetium-99-radiolabeled iron particles. Detection

methods depend on the type of marker used, but typically involve bronchoscopy, serial
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sampling or imaging with a gamma camera. An elegantly simple method for measuring

mucus velocity in the nose is the saccharine test, in which the time elapsed before a

subject is able to taste a saccharine tablet placed in his nose is measured (Schlesinger,

1990, Sleigh etal., 1988).

Additional factors affecting mucociliary transport include gravity and air flow

(Mautone and Cataletto, 1990). Gravity can impair the efficiency of ciliary activity

significantly when the thickness of the periciliary layer is greater than 10 um or when

the fluid becomes less viscous due to dilution (Proctor, 1986). In large airways,

turbulent airflow can contribute to mucus clearance (Proctor, 1986). This is in fact the

mechanical basis for the cough reflex, the only alternative mechanism for removing

mucus from the airways when mucociliary clearance is impaired (Mautone and

Cataletto, 1990).

NEATPAGEINFO:id=91E9B17B-EEB7-403F-823D-A8FCE4C5C5A4



16

SECTION IV

MUCIN BIOCHEMISTRY

Given that glycoproteins are responsible for the physiologically relevant

characteristics of mucus, it has naturally followed that research efforts directed at

understanding the metabolic and genetic aspects of lung mucus biology have focused on

mucins. Accordingly, the following section will consist of a review of current mucin

biochemistry and molecular biology.

A. Mucin Genes and Transcription- Present understanding of the organization and

regulation of genes coding for mucin peptides, or apomucins, is rudimentary, as this

field is very much in its developing stages. Human tracheobronchial apomucin genes

have been mapped by Aubert and colleagues to chromosomes lip 15, 13 and 3 (Nguyen

et al., 1990, Porchet et al., 1991). In addition, a cystic fibrosis tracheal apomucin gene

has been mapped to llpl3-llTer (Gerard et al., 1990). The presence of multiple

nucleotide sequence homologies between chromosomes 11 and 13 have hampered

efforts to determine whether there are multiple apomucin genes on chromosome llpl5.

However, at present, at least 2 or 3 other chromosomes are implicated as containing

apomucin genes.

Only partial cDNA sequences of tracheobronchial apomucins have been

published in the literature to date. Aubert and co-workers screened a lambda-gtll

cDNA library from human bronchial mucosa with antibodies prepared against

chemically denuded airway glycoproteins. Immunohistochemical studies carried out

with these antisera showed specific labeling of goblet and mucous glands that was

limited to the perinuclear area and did not include mucus granules, which contain the
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glycosylated product (Aubert et al., 1991). Upon screening of the cDNA library with

these antisera, the nucleotide sequences of positive clones were examined (Porchet et

al., 1991). This work has so far produced 3 families of human tracheobronchial

glycoprotein genes, suggesting that human airway apomucins are considerably more

heterogeneous than once thought. The first family is described as consisting of

repetitive sequences of 8 and 16 amino acids. This pattern of multiple repeated

sequences appears to be a characteristic of apomucin genes. The second family contains

two clones with near identical amino and carboxy termini that share perfect homology

with 14 of a 22 amino acid stretch of a human tracheobronchial apomucin previously

published by a separate group (Rose et al., 1989). Furthermore, this second family

contains a third clone that has sequences coding for 30 uninterrupted hydroxy amino

acids. The third family described by Aubert and associates features hydrophobic and

hydrophilic regions arranged in alternating patterns. All of the tracheobronchial mucin

cDNA sequences described by Aubert's group exhibit a repeated pattern consisting of a

domain of hydrophilic amino acids flanked by a histidine-rich sequence and a proline-

rich sequence. Presumably, these flanking sequences code for non-glycosylated an

glycosylated regions of the peptide, respectively.

In addition to the extensive heterogeneity of apomucin genes, it is also evident

that there is much variation at the transcriptional level. Northern hybridization of

mucosal epithelium with mucin probes produces smears instead of discreet bands,

indicating that there is extensive heterogeneity in the size of mucin mRNAs (Crepin et

al., 1990, Perini et al., 1991, Jany and Basbaum, 1991). On the basis of sequence

alignments and comparisons, Aubert and colleagues have reported that tracheobronchial

mucin exons are relatively small and may be derived from complex alternative splicing

(Porchet etal., 1991, Aubert, etal., 1991).

B. Glvcosvlation- As with any peptide, apomucin translation takes place in the rough

endoplasmic reticulum and involves the initiation, elongation and termination of the
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peptide product. From the cistemae of the rough endoplasmic reticulum, the peptide

passes through the smooth endoplasmic reticulum into the lamellae of the Golgi

apparatus. During this passage, initial glycosylation as well as the formation of

disulfide bonds takes place. The Golgi lamellae are the site of most glycosylation and

sulfation of the mucin peptide, as evidenced by cytochemical, histochemical and

autoradiographic data (Phelps, 1978). Assembled mucin glycoproteins are then

packaged inside vesicles formed from the Golgi lamellae. Mucin secretory granules are

made up of coalesced vesicles, and migrate towards the apical aspect of the cell where

they release their contents into the extracellular environment (Spicer and Martinez,

1984).

As presented by Phelps, 1978, glycosylation of the mucin peptide consists of

two phases: synthesis of the oligosaccharide units and conjugation of these units to the

peptide. The sugar molecules needed for the synthesis of the oligosaccharide units are

derived from the hexose monophosphate shunt. Sugar molecules are activated at the

expense of nucleotide triphosphates to form the following nucleotide sugar products

which participate in the conjugation reactions directly: UDP-galactose, GDP-fucose,

CMP-silate, UDP-N-acetylglucosamine and UDP-N-acetylgalactosamine. Sulphate is

similarly activated via the synthesis of adenosine phosphosulphate which is then

converted to the direct donor molecule, phosphoadenosine phosphosulphate (Phelps,

1978).

The conjugation reactions are carried out by a family of highly specific enzymes

called glycosyltransferases. Although Ropp and associates, 1991, have succeeded in

purifying and characterizing a specific B6N-acetylglucosaminyltransferase from bovine

tracheal epithelium, little about these enzymes is currently known. Glycosyltransferases

add the nucleotide sugars one at a time to the peptide at the hydroxyl group of serine or

threonine residues on the peptide (Phelps, 1978, Silberberg, 1988). Because the

number of hydroxy amino acids available is in large excess of the number that will be
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glycosylated, the choice of a specific amino acid is one source of heterogeneity during
0-glycosylation. The sequence of addition of sugars to the apomucin is another source
of heterogeneity, and is determined by the availability of nucleotide sugars, the
availability of individual glycosyltransferases, and an apparent set of rules that restrict
the order in which sugars may be added. These rules are reflected in the ultimate
structure of the 0-glycans (See previous section). For instance as mentioned earlier, the

first sugar to be added is always N-acetylgalactosamine. Some sugars can only be

linked to a specific point on certain sugars already part of the 0-glycan, while others
allow two sites, permitting branching. Fucose and neuraminic acid are terminal sugar

residues in glycoprotein oligosaccharide synthesis because no additional sugars may be
linked to them, and thus their addition contributes of the size heterogeneity of

oligosaccharide chains (Schachter, 1977, Silberberg, 1988).

To a yet undetermined degree, the amino acid sequence, length and composition
of the apomucin itself appears to dictate the activity of the glycosyltransferases. Recent
work by Brockhausen et al., 1990, has demonstrated that glycosyltransferases are able

to recognize the peptide environment near the glycosylated amino acid of synthetic O-

glycans. This work suggests that O-glycosylation sites have characteristic O-glycan core
structures.

B. Glycoprotein Release- As reviewed by Verdugo, 1991, there have been several
recent advances in our understanding of the complex processes that lead up to the

release of mucins from the cell and the formation of the continuous mucus gel over the
airway epithelium. The attachment of a secretory granule containing mucins in a

condensed state to the plasma membrane at the apical end of the epithelial cell is the

first step in mucin exocytosis. The expansion of a fusion pore on the plasma membrane

leads to increased water and ionic permeability and release of the granule contents into
the airway. Until relatively recently it was thought that membrane tension established

by osmotic swelling of the secretory granule was responsible for the formation and
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widening of the pore. However, recent evidence has shown that pore formation

precedes, and can be uncoupled from, granule swelling (Verdugo, 1991).

The explosive rate of swelling undergone by mucins upon exocytosis cannot be

accounted for by a simple osmotic process. Moreover, condensed mucin granules fail to

decondense when placed in water free of ions (Fernandez et al., 1991). These and other

findings have led to the "jack-in-the-box" model of glycoprotein exocytosis (Verdugo,

1991). This theory proposes that glycoprotein exocytosis is the result of rapid swelling

of the glycoprotein polymer inside the secretory granule. While inside the granule,

glycoproteins are in a condensed state that is maintained by the presence of a shielding

species, such as calcium ion in the case of mucin. Increased permeability due to pore

formation and widening results in the exchange of calcium for sodium inside the

granule. This causes the mucin molecules to undergo a rapid phase transition to a

hydrated, decondensed state (i.e., to swell) and be released.

Once released, airway mucins serve as the key rheologic assembly component

of airway mucus. As pointed out by Verdugo, 1991, it is the ability of mucins to form

entaglements rather than crosslinked networks allows mucus to expand in an

unconstrained manner while absorbing water to form the mucus gel. Determinants of

mucus hydration include water availability, the concentration of ions and polycations,

and the pH of the airway liquid (Verdugo, 1991).

NEATPAGEINFO:id=0992D80F-673E-4C06-8C70-2F5FF2FFE6B1



21

SECTION V

PHYSIOLOGIC AND PHARMACOLOGIC CONTROL OF MUCUS RELEASE

A. Neurogenic Control- Basal production and release of lung mucus in humans is

believed to be spontaneous and independent of ennervation, since neurotransmitter

antagonists and vagotomy have no effect on secretion (Gallagher, 1975). Furthermore,

tracheobronchial explants continue to secrete mucus in vitro (Phipps, 1984). However,

stimulation of mucin production above basal levels by submucosal glands is clearly

under autonomic control. Parasympathetic control is evidenced by studies showing that

electrical stimulation of the vagus nerve results in increased mucus secretion by

submucosal glands. Vagal control of submucosal glands is cholinergic, since it can be

reproduced with cholinergic agonists like pilocarpine and blocked with cholinergic

antagonists such as atropine (Widdicombe, 1978).

There is also evidence of sympathetic control of airway mucus secretion via beta

receptors (Widdicombe, 1978). Alpha and beta adrenergic sympathomimetic agents

have specific effects on submucosal glands. Mucus and serous cells are stimulated

through alpha receptors to secrete mainly fluid and some glycoprotein. In contrast,

specific beta agonists target mucus cells to release chiefly glycoprotein. This implies

that mucus composition is at least partly under autonomic control, and is thus

susceptible to pharmacologic intervention (Phipps, 1984).

As reviewed by Phipps (1984), airway mucus secretion can also be stimulated

via reflex mechanisms. Both fluid and glycoprotein secretion by submucosal glands can

be increased by mechanical and chemical irritation of the airway epithelium. Reflex-
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mediated release of glycoprotein from submucosal glands involves, but may not be

limited to, sympathetic and parasympathetic ennervation.

B. Humoral Control- A variety of bioactive peptides and lipids also stimulate mucus

secretion in the airways under certain experimental conditions. Histamine is effective in

the cat and goose trachea (Widdicombe, 1978), but not human airways in vitro (Nadel

et al., 1979), while substance P, kallidin are stimuli of the dog and rat trachea (Spicer

and Martinez, 1984). Prostaglandins Al, El, E2, Flalpha and F2alpha are also stimuli

of mucin tracheal secretion (Parke, 1978, Spicer and Martinez, 1984). The potent

phospholipid inflammatory mediator platelet activating factor also stimulates mucin

secretion of tracheal explants in vitro (McManus and Deavers, 1989).

C. Mechanism of Glycoprotein Release- Very little is known about the cellular and

biochemical mechanisms that mediate the release of glycoprotein in airway cells. As

reviewed by Spicer and Martinez, 1984, there is evidence to suggest that these

mechanisms are similar to those of other exocrine glands (Spicer and Martinez, 1984).

Cyclic nucleotides have been shown to stimulate mucin release in rat tracheal explants

(Spicer and Martinez, 1984), suggesting their role in a signal transduction mechanism.

Similarly, the phosphodiesterase inhibitor theophiline causes glycoprotein secretion in

human airways in vitro (Widdicombe, 1978). A calcium dependency, possibly with a
role in signal transduction, has also been demonstrated in rat trachea stimulated with

acetylcholine (Spicer and Martinez, 1984).

D. Differential Control of Glycoprotein Release- The study of selective release of

glycoprotein from submucosal glands and goblet cells in the airways is complicated
since both are present in airway tissue. Recentiy, studies of goblet cells in tissue culture

have yielded insightful information, as reviewed by Kim, 1991. While stimulation of
glycoprotein release from submucosal glands is neurogenic, goblet cells appear to be
under local humoral control (Widdicombe, 1978). No efferent ennervation occurs

above the level of the submucosal glands of the airway (Wheater et al., 1979).
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Furthermore, direct neurogenic stimulation, such as stimulation of the vagus nerve does

not alter mucin release in the goblet cell (Spicer and Martinez, 1984). Consistent with

these findings, many effective submucosal autonomic agents that stimulate mucin

release in explants have no effect on goblet cells in vitro. These include acetylcholine,

norepinephrine and isoproterenol (Kim, 1991). This contrast in the pharmacology of

mucin release by submucosal glands and goblet cells seems to extend to pro¬

inflammatory humoral mediators as well. For example, prostaglandins E2 and F2alpha

have no effect on goblet cells in vitro, yet they induce mucus secretion in animal

trachea (Spicer and Martinez, 1984, Kim, 1991).

Release of glycoproteins by goblet cells in vitro can be stimulated by ATP,

proteases, or by physicochemical manipulations, such as alteration in pH, mechanical

stress, and hypoosmolanty (Kim, 1991). The response to ATP is receptor-mediated and

specific. In contrast, glycoprotein release induced by physicochemical stimuli, such as

pH changes, is believed to be the result of damage of the cell membrane. Hypoosmotic

conditions are analogous to mechanical stress on the cell in that both types of stimulus

seem to work through pressures exerted on the cells. Similarly, the effect of mast cell

and neutrophil proteases (e.g., elastase, chymase and cathepsin G) is also non-specific,

being the result of cleavage of membrane-bound glycoproteins as well as damage

caused by hydrolysis of cell membrane proteins (Nadel, 1991, Kim, 1991).
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SECTION VI

ROLE OF MUCUS IN DISEASE

Pathophysiologic changes involving lung mucus are a feature of many

pulmonary diseases. These changes can be either qualitative, i.e., changes in mucus

composition or structure, or quantitative i.e., changes in the amount of mucus in the

lung. A change in mucus composition could be due to altered glycoprotein

biosynthesis, electrolyte transport or water content. Alternatively, structural

modifications can be the result of interactions between normal mucus and pathogens or

reactive chemicals.

Typically, quantitative changes in lung mucus involve hypersecretion of airway

mucin. Hypersecretion can be due to increased biosynthesis by goblet cells or

submucosal glands, or to increased numbers of mucin-secreting cells brought about by

faster cell division (hyperplasia) or by differentiation of non-secreting cells

(metaplasia)(Robbins, 1981, Lundgren et al., 1990). Another mechanism leading to

increased mucus volume in the lung is leakage of plasma components into the airspace

as a result of increased vascular permeability (Lundgren et al., 1990). A brief review

of pulmonary diseases in which some of these underlying mechanism contribute to the

pathologic role played by mucus now follows.

A. Chronic Bronchitis- Bronchitis is basically an inflammatory disease of the airways

characterized by persistent chronic cough with sputum production. Most patients with

chronic bronchitis are smokers or ex-smokers (Wanner, 1984a). Microbial and viral

infections, as well as urban and industrial air pollutants, are believed to exacerbate the

condition, but are not likely initiators of bronchitis (Robbins, 1981). The pathologic
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hallmark of bronchitis consists of hypertrophy and hyperplasia of submucosal glands,

as well as hyperplasia and metaplasia of goblet cells (Robbins, 1981). Mucus

hypersecreted in bronchitis is apparently normal in composition, although it can contain

a higher content of plasma components which may inhibit ciliary activity (Wanner,

1984a, Lopez-Vidriero and Reid, 1978). Mucus from bronchitic patients is more

viscous during flare-ups of the disease (Wanner, 1984a). In addition, persistent

reductions in the rate of mucociliary clearance have been reported in patients with

bronchitis (Wanner, 1984a).

B. Cystic Fibrosis- Cystic fibrosis is a disease that illustrates in compelling terms the

importance of mucociliary clearance to normal lung function. The most common lethal

genetic disease among Caucasians (Welsh, 1991), cystic fibrosis is characterized by a

systemic defect in exocrine gland secretion. Expression of the disease varies

considerably, but sweat and mucus glands are involved most frequently. The most

serious manifestation of the disease is the retention within the airways of abnormally

viscous mucus (Robbins, 1981). The inability of the mucociliary system to remove this

thick mucus, along with trapped microorganisms and debris, results in enlargement of

airway caliber and persistent infection. Chronic infections with Staphylococcus aureus

and Pseudomonas aeruginosa are responsible for the vast majority of the deaths in

cystic fibrosis (Robbins, 1981).

As reviewed by Welsh, 1991, the basic defect in cystic fibrosis is an alteration

in electrolyte transport by the airway epithelium which leads to insufficient hydration of

glycoproteins. Airway epithelial cells secrete CI" into the airway and absorb Na"*" from

the airway. Cr and Na"*" ions are first co-transported into the basolateral side of the

cell in an electrically neutral process that allows intracellular transport of CI" against its

concentration gradient. This process is made possible by the action of a Na'''/K"^

ATPase which exports Na+ through the basolateral membrane of the cell, thus keeping

its intracellular concentration low. This ATPase activity also moves K+ into the cell,
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which indirectly contributes to a favorable gradient for apical CI" secretion and Na+
absorption through specific regulated channels. Many neuropeptides (e.g., bradykinin),

hormones (e.g., aldosterone) and mediators (prostaglandins) influence the permeability

of the CI' channel(s), apparently by increasing cAMP levels in the cell (Welsh, 1991).

Airway epithelial cells from cystic fibrosis patients secrete considerably less CI'

ion and absorb more Na+ through their apical membrane than cells from normal
subjects (Welsh, 1991, Boucher et al., 1986). This is due, at least in part, to a

defective cAMP-regulated CI' transport channel (Welsh, 1991, Davis, 1991). The

putative gene responsible for this defect was identified in 1989 (Rommens et al., 1989,

Riordan et al., 1989, Kerem et al., 1989). A 3-base pair deletion in the "cystic fibrosis

transmembrane conductance regulator" (CFTR) gene codes for the deletion of a

phenylalanine at amino acid position 508 of the protein. This single mutation in CFTR

accounts for 70 % of cystic fibrosis genes (Kerem et al., 1989). The identity and

function the CFTR gene product is still unknown. One possibility is that CFTR is a CI'

channel that cannot be activated by cAMP. Alternatively, CFTR could be an integral or

separate regulatory protein that interacts with the CI' channel (Davis, 1991). The

biochemical complexity of cystic fibrosis pathogenesis demonstrates the great number

and variety of possible susceptible targets that can lead to disruption of normal

mucociliary function.

C. Asthma- Bronchial asthma is essentially a chronic respiratory disease that manifests

itself intermittently as attacks of dyspnea (shortness of breath) and wheezing caused by

bronchial spasms. Nearly all characteristics of the disease such as its severity, course,

aggravating factors and frequency and duration of attacks varies widely among patients

with asthma. Most patients have a familial predisposition to atopic disease. Several

different types of asthma are recognized based on apparent etiologic factors. These

include exercise asthma, cold air asthma cmd industrial (chemically-induced) asthma.

(Robbins, 1981). While the basic mechanism of the disease is still poorly understood,
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all asthma attacks seem to involve a predisposing airway hyperreactivity and the release

of a battery of inflammatory mediators that cause bronchoconstriction and mucus

hypersecretion (Robbins, 1980). A great deal of attention has been focused on the

possible link between air pollution and an alarming rise in the number of cases of fatal

asthma attacks (Whitelaw, 1991).

Gross pathology findings in the airways of victims of fatal asthma attacks (status

asthmaticus) include the presence of a tenacious mixture of mucus, exudate, epithelial

cells, lymphocytes and eosinophils (Jeffery, 1991). Mucoid impactions in the airways

of asthmatics may be present even in the absence of infection (Anderson, 1990). Also

evident are hyperplasia and hypertrophy of submucosal glands and hypertrophy,

hyperplasia and metaplasia of goblet cells in peripheral airways (Wanner, 1984b,

Robbins, 1981). The same histologic changes are reported in patients with stable

asthma, but to a lesser degree (Wanner, 1984b). Mucus plugs and impaired mucociliary

clearance may be found even in patients with mild asthma or during remission of the

disease (Bateman et al., 1983, Pavia et al., 1985). In addition to hypersecretion,

changes in mucus secretion in bronchial asthma include increased permeability to serum

constituents and altered water transport into the airway (Wanner, 1984b).

Increased endothelial permeability is believed to mediate the airway edema

observed in cases of fatal asthma. Similarly, increased epithelial permeability is likely

to be responsible for the leakage of serum components into the airway, changes in the

periciliary fluid layer which can lead to inhibition of ciliary function, and increased

mucus volume in the lung (Wanner, 1984b, Lopez-Vidriero and Reid, 1978). In

addition, changes in water transport by the airway epithelium, possibly mediated by

histamine, have been reported in experimental asthma models and may also contribute

to these effects (Wanner, 1984b).

D. Sputum Analysis- Mucus samples are often obtained for clinical analysis and

diagnosis as expectorated sputum. Sputum is a chemically unstable mixture of mucus,
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saliva, surfactant, cells and plasma constituents that is not present in the normal lung

(Lopez-Vidriero and Reid, 1978). A further complication of inferences made from

sputum analysis is the need to distinguish between purulent and non-purulent sputum.

Purulent sputum is recovered from patients with an overt or underlying infection and

usually has increased amounts of glycoprotein, DNA and a higher content of plasma

constituents than non-purulent sputum (Lopez-Vidriero and Reid, 1978). In spite of

these limitations, sputum samples can yield useful information about pathologic

changes involving mucus production in disease. For instance, an increase in the N-

acetylneuraminic acid: fucose ratio in the sputum is believed to reflect leakage of plasma

constituents into the airway, which in turn, may be indicative of a relatively more

severe inflammatory reaction in the airways. An elevated N-acetylneuraminic

acid:fucose ratio is observed in sputum samples obtained from patients with asthma;

however, the absolute concentration of these compounds is low. This suggests that

plasma constituents contribute significantly to the increased volume of mucus present in

asthmatic lungs. Sputum obtained from bronchitis patients, on the other hand, have

high amounts of N-acetylneuraminic acid and fucose but the ratio is normal, indicating

that the increased amounts of mucus produced in bronchitis is mainly the result of

hypersecretion. In sputum from patients with cystic fibrosis the reverse is found, i.e.,

relatively normal amounts of N-acetylneuraminic acid and fucose but a high N-

acetylneuraminic acid:fucose ratio. This suggests that in cystic fibrosis there is an

inflammatory process that results in leakage of plasma components into the airway

without hypersecretion of mucus (Lopez-Vidriero and Reid, 1978).

The DNA content of sputum is a similar marker of the severity of lung

inflammation. Normal lung secretions and non-purulent bronchitis sputum do not

contain detectable amounts of DNA. In contrast, purulent bronchitis sputum contains

detectable amounts of DNA, and even non-purulent cystic fibrosis sputum contains
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significant quantities. This finding may well attest to the relative severity of airway

inflammation present in cystic fibrosis (Lopez-Vidriero and Reid, 1978).

E. Morphologic Changes in Disease- Although hypertrophy of submucosal glands is

evident in both bronchitis and asthma, a relatively greater increase in mucus acini

compared to serous acini occurs in bronchitis, but is not observed in asthma (Glynn and

Michaels, 1960, Jeffery, 1991). Since the serous acini of submucosal glands secrete

antibacterial and antiprotease compounds in addition to glycoprotein, the dilution of

these components by an increased volume of mucus could result in diminished

resistance to both infection and proteolytic attack in bronchitis (Jeffery, 1991).

The mechanism responsible for the development of submucosal gland

hypertrophy and hyperplasia in asthma and bronchitis is presently unknown. However,

neutrophil-derived proteases such as elastase have been implicated in goblet cell

hyperplasia, as reviewed by Lundgren and associates, 1990. These authors have also

proposed a possible mechanism wherein chemotactic lipid mediators such as leukotriene

B4 are secreted by epithelial cells during the initial stages of airway inflammation.

These mediators could recruit neutrophils into the airway which could then release

elastase, causing goblet cell hyperplasia. In support of this scenario is the finding that

glucocorticoids, which inhibit the synthesis of lipid inflammatory mediators, can

prevent goblet cell hyperplasia induced by neutrophil products (Lundgren et al., 1988).
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SECTION VII

EFFECTS OF AIR POLLUTANTS ON MUCUS STRUCTURE AND FUNCTION

Inhalation of a variety of ambient and occupational air pollutants is known to

result in a number of untoward effects in the lung. These include changes in pulmonary

function, diminished lung defense and impaired mucociliary clearance, as well as

obstructive, inflammatory and neoplastic disease. These topics have been the subject of

several excellent recent reviews (Gordon and Amdur, 1991, Mauderly and Samet,

1991, Cross and Halliwell, 1991, Graham, 1989, Koenig et al., 1989). This section

will focus on specific effects of air pollutants on lung mucus function, secretion and

biosynthesis, as they pertain to the development of pulmonary toxicology and disease.

A. Effects on Mucociliary Function- Impairment of mucociliary function is a

consequence of exposure to a variety of air pollutants. The effects of inhaled toxicants

on respiratory tract clearance mechanisms, was recently reviewed by Schlesinger,

1990. Essentially, mucociliary targets of inhaled air pollutants are the ciliated

epithelium, the periciliary fluid and the mucus layer (Schlesinger, 1990).

In addition to the outright epithelial desquamation or destruction of cilia induced

by high concentrations of SO2, NO2 and O3 (Watanebe et al., 1973, Boucher, 1981),

ciliary activity in the airway epithelium is susceptible to alteration by toxic agents.

Agents that impair ciliary beat rate (i.e., induce ciliary dyskinesia or ciliostasis) include

H2SO4, O3 (Grose et al., 1980), SO2, NO2, ammonia, (Dalhamn and Sjoholm,

1963), wood dust, ammonia, cadmium, nickel, hairspray, (Pedersen, 1990) cigarette

smoke (Kensler et al., 1963) formaldehyde (Morgan et al., 1986) and cadmium (Adalis

et al., 1977), The mechanism of action of ciliostatic compounds can involve structural
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damage of the cilium, as induced by NO2 (Ranga and Kleinerman, 1981), or altered

energy metabolism caused by heavy metals (Pedersen, 1990, Schlesinger, 1990).

In spite of these findings, the relevance of the ciliostatic effect of inhaled

pollutants as a mechanism responsible for impaired mucociliary activity is thrown into

question by two factors. First, as noted by Schlesinger and others, the dose of toxicant

required to induce ciliostatic changes usually far exceeds that required to produce a

reduction in mucociliary clearance (Schlesinger, 1990, Abraham, 1986). Second, a

study conducted by Battista and colleagues, showed that 10 % of the ciliated epithelium

in chicken trachea could carry out 30-50 % of particle transport activity seen in control

animals, suggesting that ciliary activity is present in large excess of that needed for

normal ciliary function (Battista et al., 1973). Thus changes involving mucus

production and function may be more likely mechanisms of the impaired mucociliary

clearance induced by inhaled toxicants (Abraham, 1986).

B. Physico-chemical Alterations- Another way in which an inhaled pollutant can alter

mucociliary clearance is by altering mucus rheology by interacting with its constituents

directly or by influencing its biosynthesis. An alteration of mucus rheology, such as a

decrease or increase in viscosity, can diminish the efficiency with which energy is

transferred from the beating cilia to the mucus blanket. As presented by Holma, 1989,

variations in mucus pH, such as those caused by SO2 can have a profound effect on

mucus rheology. Although factors such as protein concentration and ionic strength also

come into play, a reduction in pH generally increases mucus viscosity (Holma, 1989).

Glycoproteins appear to be the principal acid-reactive component in mucus, and, in

fact, have been demonstrated to be largely responsible for the buffering capacity of

mucus (Holma, 1989).

Schlesinger, 1990, discusses chemical cross-linking of glycoproteins as a

mechanism via which inhaled toxicants can alter mucus viscosity. Exposure to

formaldehyde, a compound known to form chemical cross-links in proteins and nucleic
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acids (Auerbach et al., 1977), reportedly results in increased mucus viscosity (Morgan

et al., 1984). Similarly, reduced viscosity resulting from exposure to O3 is proposed to

be caused by a decrease in the number of chemical cross-links (Last, 1982,

Schlesinger, 1990). However, Verdugo has recently argued that the rheologic

properties of mucus are imparted not by cross-links between glycoprotein moieties, but

by networks of entanglements between glycoprotein strands (Verdugo, 1991). Thus,

while formaldehyde may indeed increase mucus viscosity by forming cross-links, the

reduction in mucus viscosity may not be due to the destruction of existing cross-links

between glycoproteins.

C. Biosynthetic Alterations- Certain inhaled toxicants induce qualitative changes in

glycoprotein biosynthesis. Exposure to cigarette smoke, SO2 or H2SO4 induces a shift

in the type of glycoprotein secreted by the airway to produce a relatively more acidic

mucin (Jones, 1977, Jones et al., 1978, Abraham, 1984, Schlesinger, 1990). This

phenomenon is also seen in chronic bronchitis and cystic fibrosis, where the degree of

sulfation of secreted glycoproteins is increased (Jones and Reid, 1978), suggesting that

it is an adaptive response to cellular injury. With cigarette smoke, the increase in acidic

mucin seen in submucosal glands and goblet cells is due to an increase in sialic acid-

containing mucins (Jones, 1977). Normal rat tracheal epithelium preferentially secretes

neutral glycoprotein, while in the peripheral airways there is a bias for the production

of acidic glycoprotein. Acute exposure to cigarette smoke abolishes these regional

differences within 24 hours, resulting in dominance by a cell that produces both acid

and neutral glycoprotein throughout the rat respiratory tract. Sustained exposure to

cigarette smoke eventually results in a population of cells that produces only acidic

glycoprotein (Jones and Reid, 1978, Jones, 1977). Unlike goblet cell hyperplasia, the

change towards secretion of acidic mucin is apparently not blocked by the anti¬

inflammatory compound phenylmethyloxadiazole (Jones, 1977). Whether increased

secretion of acidic mucin is due to secretion of molecules with a higher acid content or
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more molecules with acid moieties is unclear (Jones and Reid, 1978). Interestingly,

induction of acid glycoprotein secretion was not observed using O3 as a toxicant in a

recent studies by Hotchkiss and associates, who found an increase in both acid and

neutral glycoprotein in rat and primate nasal epithelium (Hotchkiss et al., 1991,

Harkema, et al., 1987). Whether this reflects a difference in the response by nasal and

tracheobronchial epithelium or the nature of the stimulus is not clear.

D. Effects on Ciliary Fluid- As discussed in a previous section, the depth of the

periciliary fluid layer largely determines the quality of the interaction between the cilia

and the mucus blanket over the airways. Optimal periciliary fluid depth and

composition are necessary for efficient transfer of energy from the tips of the cilia to

the mucus during the propulsive stroke, and for the recovery stroke to take place

unimpaired (Sleigh, 1991). Periciliary fluid depth and composition can be affected by

compounds that affect ion transport by the airway epithelium or increase epithelial

permeability to serum components which can affect mucus rheology and secretion of

glycoproteins (Schlesinger, 1990, Abraham, 1984a, Phippsetal., 1986). For example,

in vitro exposure to O3 results in increased Na"'" ion permeability across guinea pig

airway epithelium (Stutts and Bromberg, 1987), while O3 inhalation produces increased

water and CI" ion secretion in sheep tracheal explants in vitro (Phipps et al., 1986).

Similarly, O3 inhalation results in increased epithelial permeability to macromolecules

in humans (Kerhl, et al., 1987). Exposure to NO2 caused increased mucosal

permeability to large protein molecules in guinea pigs (Abraham, 1984). As discussed

earlier, increased epithelial permeability to water and serum components is also a

feature of the pathology of cystic fibrosis and asthma (See preceding section).

E. Mechanisms of Hypersecretion- Mucus hypersecretion is an important part of the

sequelae induced by a number of toxic insults to the lung. Possible mechanisms of

hypersecretion include increased release of existing glycoprotein stores, hypertrophy of

submucosal glands, hyperplasia of goblet cells, metaplasia of non-secreting cells into
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goblet cells, and a higher rate of mucin biosynthesis by goblet cells or cells in the

submucosal glands.

Inhalation of some toxic compounds produces acute, mucus secretion into the

airways. For example, NH3, (Widdicombe, 1978), and O3 (Abraham, 1984) induce

glycoprotein discharge from glycoprotein-secreting cells in the airways. Exposure to

acidic and alkaline media also stimulate mucin release, albeit secondary to cell

membrane damage (Kim et al., 1989). Similarly, inhalation of dusts (e.g., charcoal or

barium sulfate) provokes release of mucus from cat tracheal explants via a neurogenic

reflex pathway as well as a direct stimulation of the mucosa (Abraham, 1984). Both

myelinated and unmyelinated (C-fibers) neuronal pathways may be involved in the

discharge of mucus in the airway (Phipps, 1984, Schlesinger, 1990). Eicosanoids such

as leukotrienes C4 and D4 and hydroxyeicosatetraenoic acids, also been shown to

mediate glycoprotein release from human airway explants (Marom et al., 1982, Marom

et al., 1983), and may be involved in mucus secretion in response to toxicant exposure

(Phipps et al., 1986). A study by Jones et al. showed that acute exposure of rats to

cigarette smoke causes extensive degranulation of mucus-secreting cells, to the point

that there is a transient decrease in the number of cells staining positive for

glycoprotein content in the airways. In the same study, the anti-inflammatory

phenylmethyloxadiazole did not prevent tobacco smoke-induced discharge of mucus-

secreting cells (Jones et al., 1978). However, in a similar study the same drug was

shown to be effective in preventing an increase in the basal rate of mucin discharge

induced by tobacco smoke, possibly reflecting a difference in the time of administration

of the drug between these studies (Coles et al., 1979). The balance between

glycoprotein synthesis and release in secretory cells is reportedly altered as a result of

chronic inhalation of tobacco smoke or SO2. This is evidenced by a decrease in the

number of intracellular glycoprotein granules in exposed cells, suggesting a higher rate
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of secretion of glycoprotein granules relative to their storage time inside these cell

(Jones and Reid, 1978, Spicer and Martinez, 1984).

An increase in the number of airway mucin-secreting cells can be induced by

inhalation of SO2 (Spicer et al., 1974), O3 (Phipps et al., 1986), CI2 (Elmes and Bell,

1963), NO2 (Freeman and Haydon, 1964) or cigarette smoke (Rogers and Jeffery,

1986). SO2 and Tobacco smoke-induced hyperplasia have been studied as animal

models of bronchitis. As reviewed by Spicer and Martinez, 1984, and Abraham, 1984,

submucosal gland cell and goblet cell hyperplasia is readily apparent in the airways of

dogs and rats chronically exposed to SO2. The response of the goblet cell population in

the bronchi and bronchioles of dogs exposed to SO2 is characterized by an increase in

both size and number (Spicer et al., 1974). The expansion of the goblet cells population

is partially due to metaplasia of other epithelial cell types into goblet-like cells with

enhanced mucus-secreting capabilities (Spicer and Martinez, 1984). Submucosal gland

hypertrophy is apparently also due to both increased replication rate and a metaplastic

change of serous cells into mucus cells (Spicer and Martinez, 1984, Jany and Basbaum,

1991). SO2 inhalation in dogs has also been shown to induce higher rates of

glycosyltransferase activity in lung homogenates, although it was not possible to

determine whether this was merely a reflection of the histologic changes also observed

in these animals (Baker and Sawyer, 1975). A recent study has tentatively suggested

that there is an induction in mucin mRNA levels in the airways of rats chronically

exposed to SO2 (Jany and Basbaum, 1991).

Exposure to cigarette smoke also produces submucosal gland hypertrophy,

goblet cell hyperplasia and evidence of serous-to-mucus cell metaplasia (Coles et al.,

1975, Rogers and Jeffery, 1986, Jany and Basbaum, 1991). Tobacco smoke-induced

hyperplasia of secretory cells can occur within hours of a single exposure and may also

involve basal cells (Jones and Reid, 1978). Metaplastic changes in the airways of rats

exposed to cigarette smoke are evidenced by increased rates of mitosis among basal
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cells and serous cells but not mucus cells (Jany and Basbaum, 1991). Tobacco smoke-

induced secretory cell hyperplasia in rats can be inhibited with indomethacin and

steroidal anti-inflammatory drugs (e.g., dexamethasone, hydrocortisone), suggesting

that cyclooxygenase products are involved (Rogers and Jeffery, 1986b). Mucolytic

drugs such as N-acetylcysteine are also inhibitors of the hyperplastic response, perhaps

by preventing glutathione depletion in cigarette smoke-exposed cells (Rogers and

Jeffery, 1986a, 1986b).

O3 exposure also induces hypertrophy of submucosal glands and hyperplasia of

goblet cells (Phipps et al., 1986). In this study, the morphologic changes induced in the

airways of sheep by chronic O3 inhalation were correlated with decreased glycoprotein

and increased water secretion. However, increased glycoprotein secretion with

continued water secretion was observed following a period of recovery after exposure,

suggesting that the initial decrease in glycoprotein secretion was due to depletion of

mucin stores (Phipps et al., 1986). Similar kinetics i.e., decreased glycoprotein

secretion followed by a rebound to increased secretion, was seen in rat tracheal explants

from rats exposed to O3 in vivo (Last et al., 1977).

It has been proposed that metaplasia may play a larger role in toxicant-induced

hypersecretion than previously thought (Jany and Basbaum, 1991, Hotchkiss et al.,

1991). Evidence for this hypothesis is based on studies showing increased numbers of

goblet cell in areas of the lung where they are normally scarce or absent, such as the

lung periphery (Lamb and Reid, 1968), and an increase in the population of mucus

cells without an apparent change in the mitotic rate of these cells (Nygre et al., 1984).

Hotchkiss and associates have demonstrated similar evidence of metaplastic changes

responsible for the increased number of goblet cells in nasal epithelium from rats

exposed to O3 (Hotchkiss et al., 1991).

The possible role of inflammatory cell-derived proteases such as elastase in the

development of metaplastic changes in the airway induced by tobacco smoke or SO2
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was recently reviewed by Jany and Basbaum, 1991 and Lundgren et al., 1990. A study

by Christensen et al., 1977, showed that a single dose of pancreatic elastase causes an

apparently irreversible goblet cell metaplasia in guinea pigs. In a more recent study, the

steroidal anti-inflammatory drug dexamethasone was effective in inhibiting neutrophil

elastase-induced goblet cell hyperplasia in rat trachea, suggesting the involvement of

lipid mediators (Lundgren et al., 1988). Prostaglandin El has also been shown to

induce increased numbers of mucus cells, without preceding DNA synthesis, in the

airways of mice, a process apparently mediated through cAMP since the analog

dibutyryl cAMP had the same effect (Nygren et al., 1984). These findings are

intriguing in light of studies by Koren and colleagues showing that O3 inhalation

produces neutrophil infiltration into the airways, as well as increased levels of

eicosanoids and neutrophil-derived elastase in bronchoalveolar lavage fluid from human

subjects (Koren et al., 1989). Interestingly, no increase in elastase activity was found in

this study. The authors suggest that this is possibly due to inactivation by antiproteases

such as A-1-antitrypsin (Smith and Johnson, 1985), and also that microfocal secretion

by neutrophils could permit some elastase to escape antiproteases (Witz et al., 1987,

Koren etal., 1989).
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SECTION VIII

SUMMARY AND CONCLUSIONS

Lung mucus is essentially a glycoprotein solution produced by the airways,

whose function is to serve as a dynamic, replenishable barrier against inhaled

particulate and gaseous contaminants in the lung. Key to the role of mucus as a

component of both lung defense and pathology are its viscosity and elasticity which,

under normal conditions, permit mucus to act as an efficient "biologic conveyor belt",

removing trapped and dissolved materials that enter the lung with inspired air. These

rheologic properties of lung mucus are imparted by glycoproteins synthesized and

released by specialized cells in the airways.

Mucins are complex, heavily glycosylated peptide macromolecules whose

biosynthesis and secretion appear to be under close regulatory control, yet able to

respond quantitatively and qualitatively to alterations in lung homeostasis, such as those

resulting from respiratory disease or inhalation of toxic materials. An example of such

a biosynthetic response is the increased secretion of acidic glycoproteins seen in

patients with chronic bronchitis or cystic fibrosis, and in animals exposed to cigarette

smoke, SO2 or H2SO4. Since changes in the pH of mucus are associated with

alterations in its rheology, it is tempting to speculate that increased mucus acidity is

behind the increase in mucus viscosity and reduced mucociliary clearance that are also

associated with these diseases and exposures.

The finding of changes in mucus pH are also intriguing in light the fact that

Holma, 1989, has suggested a link between inflammatory airway diseases such as

asthma and alterations in the pH of mucus in the airway resulting from inhalation of
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acid aerosols. Individuals producing mucus with low pH or low buffering capacity ,

e.g., some asthmatics and smokers, may have an elevated risk for developing untoward

respiratory sequelae with exposure to acid aerosols. In addition to alterations in mucus

Theology, acidification of mucus may lead to increased epithelial permeability, and

could therefore be a mechanism leading to the airway edema seen with asthma (Holma,

1989).

Increased epithelial and endothelial permeability to serum constituents is a

hallmark of inflammation in any tissue and a pathologic feature of cystic fibrosis and

asthma (Robbins, 1981). Leakage of serum proteins and fluid is also thought to produce

changes in mucus rheology and affect the periciiiary fluid layer. One possible effect of

these alterations is impaired mucociliary transport (Schlesinger, 1990). Another

consequence of the presence of serum components in the airway is the propagation of

inflammatory reactions that could potentially involve dozens of known inflammatory

mediators and cytokines.

The eicosanoids are one class of inflammatory mediators strongly suspected of

being involved in the pulmonary response to toxic insult, possibly including those

affecting mucus physiology. These oxidized derivatives of arachidonic acid are

produced in response to a wide variety of cellular perturbations by a myriad of cells

types, apparently each able to produce a characteristic spectrum of these compounds.

Eicosanoids such as leukotrienes C4 and D4 and hydroxyeicosatetraenoic acids, as well

as the related lipid inflammatory mediator platelet activating factor, are known stimuli

of glycoprotein release (Marom et al, 1982, 1983, McManus and Deavers, 1989)

whose levels have been shown to increase in cells exposed to O3 (Madden et al., 1991,

Samet et al., 1992). In addition bronchoalveolar lavage fluid from subjects exposed to

O3 contain elevated levels of various eicosanoids (Koren et al., 1989). Thus it is

possible that these bioactive lipids act as mucus secretagogues in response to toxicant
inhalation.
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An equally important role of eicosanoids may be to signal the recruitment of

immune cells into the airways during the early stages of inflammation. Inhalation of

some pollutants e.g., O3, results in the recruitment of neutrophils into the airways.

Similarly, increased numbers of lymphocytes and eosinophils are found in airway

secretions of asthmatics (Robbins, 1981). Several eicosanoids, most notably leukotriene

B4, are potent chemotaxins for neutrophils (Lundgren et al., 1990), while platelet

activating factor administration produces neutrophil and eosinophil infiltration into the

airways (McManus and Deavers, 1989). These effects are relevant to the role of mucus

in the toxicology of inhaled toxicants vis a vis reports demonstrating morphologic

changes induced by mast cell and neutrophil proteases.

The development of hyperplasia and metaplasia of glycoprotein-secreting airway

tissues is a phenomenon that certain respiratory diseases and inhaled toxicants have in

common. The hypertrophy of submucosal glands and hyperplasia of goblet cells that is

seen in bronchitis, cystic fibrosis and asthma is also induced by inhalation of O3, SO2

and tobacco smoke. Increased secretory capacity is the major mechanism responsible

for mucus hypersecretion in the lung, and it is likely a cause of increased mucus

volumes produced in response to chronic toxicant inhalation.

The mechanism via which hyperplastic and metaplastic changes are induced in

the lung are unknown. However, there is growing evidence that implicates the cationic

protease elastase in these responses, as reviewed by Lungren and associates, 1989,

1990. Direct instillation of elastase is known to produce goblet cell hyperplasia in the

lungs of rodents. In addition, airway secretions from cystic fibrosis patients and

subjects exposed to O3 contain elevated levels of elastase which, if active, could

participate in the generation of morphologic changes leading to hyperplasia and mucus

hypersecretion in the airway (Nadel, 1991, Koren et al., 1989). The fact that

hyperplasia induced by neutrophil-derived products in rats can be inhibited by steroidal

NEATPAGEINFO:id=C56CFC77-8132-4134-9B8B-195047E2DC24



41

antiinflammatory agents suggests that, here too, lipid inflammatory compounds such as

eicosanoids could act as mediators of pathologic changes induced by inhaled pollutants.

Recently, much attention has been placed on the role of metaplasia in

morphologic changes leading to hypersecretion in disease states and as a consequence

of toxic insults (Jany and Basbaum, 1991, Hotchkiss et al., 1991). The hypothesis is

that the increase in numbers of glycoprotein-secreting cells in disease or following

toxicant inhalation is an adaptive response to airway injury that largely involves

differentiation of non-secreting cells. Evidence supporting this notion is based on

histochemical findings of increased goblet cell populations in areas of the lung where

they are normally rare and in the absence of changes in the mitotic rate of cells in the

airway. Preliminary work also indicates that exposure of rats to SO2 can result in

mucin gene expression changes that presumably would be required in order for non-

secreting cells to transform into mucin-secreting cells (Jany and Basbaum, 1991).

As reviewed in this report, the targets of toxicants on mucus biochemistry and

physiology are numerous, and it is certain that new ones will be identified as a result of

ongoing research. The role of mucus as a mediator of lung injury is less clear, as the

induction of acute and chronic mucus hypersecretion by environmentally relevant

concentrations of pollutants needs to be established. One exception is cigarette smoke,

for which clear evidence demonstrating the relationship between tobacco smoke-

induced alterations in airway morphology, mucus hypersecretion and bronchitis already

exists. It seems particularly important to determine whether pollutant-induced mucus

hypersecretion contributes to the alarming rise in the number of asthma deaths that has

been reported in recent years.

Many other important issues surrounding the role of mucus in the pulmonary

toxicology of inhaled pollutants remain unresolved. A few are listed below.
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- One basic question involves whether mucin gene expression can truly be induced by

toxicant exposure. If so, is this induction part of a metaplastic response or independent

from it?

- Our understanding of mucus biophysics also needs enhancing. Is mucus a cross-linked

mucin polymer, an entangled mucin network or both? What is the true composition and

function of periciliary fluid?

- The role of inflammatory mediators in the generation and progression of

inflammatory processes in the lung is one of the most exciting and promising areas of

investigation in lung biology and pulmonary medicine. What mediators are involved in

mucus hypersecretion induced by toxicant inhalation?

- For practical reasons, in most studies with inhaled pollutants the exposures are acute

and at high dose. What are the effects of the more relevant chronic exposures to low

dose? Similarly, What are the effects of exposure to low levels of multiple pollutants?

In summary, essentially all aspects of lung pathophysiology involving toxicant-
induced alterations in mucus structure and function can be viewed in the context of the

role of mucus in a stereotypical, generalized response of the lung to cellular injury.

Based on our current understanding of lung physiology, it is clear that the lung can

secrete mucus in response to perceived environmental challenges such as irritation of

the airway mucosa. This response can be described as graded in that it seems to be

proportional to the magnitude of the stimulus and its duration. Thus a minor or brief

irritant exposure may produce a localized and transient discharge of mucus from

existing stores in a section of the lung, while a stronger or chronic irritation may result

in a full blown response involving a long-lasting or permanent increase in the secretory

capacity of the lung as a whole.

One teliologic rationale of this response is that it is an effort by the lung to

neutralize and remove the offending stimulus in order to minimize tissue injury. It is

somewhat ironic then that this protective mechanism of the lung can itself be both a
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target of inhaled pollutants and a potential source of injury to the lung. From the point

of view of the organism, the distinction between injury resulting from effects of the

toxicant on mucus biochemistry and physiology and that resulting from the adaptive

secretory response to the toxicant may well be academic.
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