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ABSTRACT 

JIN LI: Genetic association studies: application in the investigation of biomarkers related to 

cardiovascular diseases and study design 

(Under the direction of Ethan M. Lange) 

 

             Cardiovascular disease (CVD) is the No. 1 cause of death in the United States, killing 

about 610,000 people every year. Biomarkers are important tools to identify vulnerable 

individuals at high risk of CVD. Investigation of the genetic architecture for biomarkers and 

other risk factors related to CVD is of critical importance in the prevention and treatment of 

CVD. 

            For my first chapter, I conducted genome-wide admixture and association studies for 

iron-related traits in 2347 African Americans (AAs) participants from the Jackson Heart Study 

(JHS). I identified, for the first time, a second independent genome-wide significant signal in the 

TF region associated with total iron binding capacity levels. I also identified a novel functional 

missense variant in the G6PD-GAB3 region significantly associated with ferritin levels. Both 

results were replicated in a second AA cohort with iron measures. 

           For my second chapter, I conducted genome-wide admixture and association studies, and 

gene-based exome-wide association studies of rare variants, to identify variants or genes, 

harboring a high burden of rare functional variants, associated with lipoprotein(a) [Lp(a)] 

cholesterol levels in 2895 AAs participating in the JHS. I observed significant evidence for 

association between Lp(a) and both local ancestry and hundreds variants spanning ~10Mb the 
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LPA gene region on chromosome 6q. Of note, the region containing associated variants became 

much narrower, centered over the LPA gene (<1Mb), after adjusting for local ancestry. I also 

observed a single significant non-synonymous SNP in APOE and a high burden of coding 

variants in LPA and APOE significantly associated with Lp(a) levels 

            For my third chapter, I investigated the genetic association of four candidate variants with 

blood pressure and tested the modifying effects of environmental factors in 7,319 Chinese adults 

from the China Nutrition and Health Survey (CHNS). I observed that rs1458038 exhibited a 

significant genotype-by-BMI interaction affecting blood pressure measures, with the strongest 

variant effects in those with the highest BMI. 

           Finally, for my last chapter, I described a multistage GWAS study design that uses 

selective phenotyping to increase power for studies with existing genome-wide genotypic data 

and to-be-measured quantitative phenotypes that are under a sample-size constraint. The 

approach uses simulated annealing to identify the optimal subset of subjects to be phenotyped in 

Stage 2 of a two-stage GWAS. I showed that our approach has greater statistical power than the 

conventional approach of randomly selecting a subset of subjects for phenotyping. We 

demonstrate the gains in power for both directly genotyped and imputed genetic variants. 

          Together, these studies further our understanding of the genetic architecture of risk factors 

for CVD, suggest some candidates for future genetic and molecular studies, and also shed some 

light on the study design of future large-scale genetic association studies where the cost 

constraints will be determined by the expense of measuring new biomarkers in studies that have 

existing genetic data. 
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CHAPTER I: INTRODUCTION 

 

Cardiovascular diseases 

               Cardiovascular disease (CVD) is the No. 1 cause of death in the United States, 

killing about 610,000 people every year (1). It is the leading cause of death for both 

American men and women, and for people of most ethnicities in the United States, including 

African Americans, Hispanics, and whites. The 2011 overall rate of death attributable to 

CVD was 229.6 per 100 000 Americans, 275.7 for males and 192.3 for females, 271.9 for 

white males, 352.4 for black males, 188.1 for white females, and 248.6 for black females (2). 

CVD claims more lives than all forms of cancer combined. On the basis of 2011 death rate 

data, approximately 155 000 Americans who died of CVD in 2011 were <65 years of age, 

and 34% of deaths attributable to CVD occurred before the age of 75 years, which is younger 

than the current average life expectancy of 78.7 years. Worldwide, the Global Burden of 

Disease study estimated that in 2001, 12.45 million of >56 million total worldwide deaths 

were caused by CVD, and the number of deaths caused by CVD increased to 17 million in 

2008 (3, 4). High blood pressure, high LDL cholesterol, and smoking are key risk factors for 

heart disease. Several other important risk factors include diabetes, obesity, poor diet, high 

stress, physical inactivity, and excessive alcohol use (5). Despite these environmental factors, 

genetic factors are also significant contributors to CVD. The familial clustering of CVD and 

its heritability are well established, with the heritability of CVD estimated at about 40% (6).  
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Biomarkers 

            Biomarkers are defined as measurable and quantifiable biological parameters that are 

objectively measured and evaluated as indicators for disease trait (risk factor or risk marker), 

disease state (preclinical or clinical), or disease rate (progression) (7). Biomarkers are important 

tools to identify vulnerable individuals at high risk of CVD, and to diagnose disease conditions 

promptly and accurately. Traditional risk factors (cigarette smoking, diabetes, hyperlipidaemia 

and hypertension) are observed in only a subset of individuals who develop CVD. Up to 20% of 

patients have no traditional risk factors, and 40% have only one (8). Thus, identifying novel risk 

markers for CVD has significant potential to improve the selection of individuals for 

preventative strategies. Furthermore, biomarkers are typically more proximal to gene products 

than disease outcomes, and thus, they can serve as a surrogate for end points of CVD and help 

better understand the genetic contribution to CVD (9). Classical CVD biomarkers included lipid 

profiles, inflammation factors, coagulation factors, cytokines, etc (7). In this dissertation, 

biomarkers that were specifically investigated included iron-related measures and lipoprotein(a).  

 

Iron-related measures 

    Iron is critical to an array of metabolic functions, such as oxygen transport and oxidative 

phosphorylation. Normally, small daily losses of iron in the feces and through menstruation are 

balanced by its regulated intestinal absorption and its recovery from heme after phagocytosis of 

senescent red blood cells (10). Controversies have existed for some time regarding the 

association between iron status and CVD. A recent review suggested that in the reference range, 

iron status has a neutral effect, while extreme conditions of iron deficiency, as well as of iron 

overload, are associated with modestly increased CVD risk, although with different proposed 
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mechanisms (11). A study showed that trivalent iron (FeIII) initiates a hydroxyl radical-catalyzed 

conversion of fibrinogen into a fibrin-like polymer (parafibrin) that is remarkably resistant to the 

proteolytic dissolution and thus promotes its intravascular deposition (12). Another possible 

mechanism underlying the association between iron overload and CVD is that of oxidative stress 

(13). Ferrous iron catalyzes a variety of free-radical oxidative reactions which generate reactive 

oxygen species (ROS). ROS may seriously damage cellular integrity and contribute directly to 

plaque disruption and thrombosis. A study on a Finnish cohort showed that serum ferritin was 

associated with most of the measured oxysterols, independently of major confounders, and also 

associated with an increased risk of myocardial infarction, independent of major cardiovascular 

risk factors (14, 15). On the other hand, iron deficiency can also lead to increased CVD risk. 

Since iron can inhibit thrombopoiesis, iron deficiency can lead to thrombocytosis due to lack of 

inhibition of thrombopoiesis (16). In addition, iron deficiency can cause anemia.  Anemia 

increases work load of the heart due to increased heart rate and stroke volume, and this may 

cause ischemia, myocardial cell death and heart failure (17). 

  Laboratory tests typically used to assess iron transport and storage include serum iron, total 

iron binding capacity (TIBC), transferrin saturation (SAT), and serum ferritin. Genetic factors 

could affect iron metabolism through gastrointestinal absorption, transport, tissue uptake, storage, 

or remobilization from tissue stores, and thus could have a large impact on the variation of these 

iron-related measures (18, 19). Previous genetic analyses of iron metabolism have identified 

several variants associated with markers of iron status, including HFE variants with serum 

ferritin, transferrin, and SAT (20), TF variants with serum ferritin levels (20), TMPRSS6 variants 

with hemoglobin, serum iron and SAT (21, 22), PCSK7 variants with soluble transferrin receptor 
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(23), TFR2 variants with hemochromatosis type 3 (24), and a locus on chromosome 2p14, tagged 

by SNP rs2698530, with iron deficiency (25).  

 

Lipoprotein(a) 

          Lipoprotein (a) [Lp(a)]  is a low-density lipoprotein (LDL)-like particle that consists of 

an apolipoprotein(a) covalently linked to apolipoprotein B100 by a disulfide bond (26).  Lp(a) is 

an independent risk factor for CVD (27, 28). The association of elevated Lp(a) and coronary 

heart disease (CHD) has been reviewed recently in a 2009 meta-analysis (20). In the 24 cohort 

studies, the risk ratio for CHD was 1.13 (95% CI 1.09-1.18) after adjustment for lipids and other 

conventional risk factors. Lp(a) excess is observed in 18.6% patients with premature CHD 

(includes 12.7% with no other dyslipidemias) (29). Elevated Lp(a) predicts 15-year CVD 

outcomes and improves CVD risk prediction, and the hazard ratio for incident CVD was 1.37 per 

1-SD higher Lp(a) level (30). Lp(a) is believed to both promote atherosclerosis and enhance 

thrombosis by multiple mechanisms. Like other lipoproteins, Lp(a) is bound by VLDL receptors 

in atherosclerotic macrophage and is detected in larger amounts in tissue from culprit lesions  in 

patients with unstable coronary artery disease (31). More importantly, Lp(a) plays a role in 

enhancing thrombotic events through its anti-fibrolytic activity. The final vascular obstruction 

that occurs in atherosclerosis in myocardial infarction and stroke is due to sudden thrombosis at 

the sight of a narrowed artery. Since Lp(a) contains a region (Kringle IV) that mimics 

plasminogen, it has been proposed to prevent the inhibition of clot lysis (32), leading to an 

increased susceptibility to CVD. Other studies have found that Lp(a) may enhance 

atherosclerosis by the formation of circulating immune complexes with IgG antibodies specific 

for Chlamydia pneumonia (33), although the specific mechanisms of this have not been reported. 
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        Genetic factors have a large impact on the variation of Lp(a) levels and approximately 

70-90% of the total variance of Lp(a) can be attributed to variation within the LPA locus across 

worldwide populations(34, 35). Genetic variants in LPA gene are strongly associated with both 

an increased level of Lp(a) and an increased risk of coronary disease(36). In the LPA locus, a 

copy-number variation (CNV) which encodes a Kringle(IV) type 2 domain accounts for 

approximately half of variance explained by LPA locus(37, 38). Recent genome-wide association 

studies (GWAS) in subjects of European descent have identified multiple polymorphisms 

spanning 12.5 Mb on chromosome 6q26-27, which includes LPA, that are significantly 

associated with Lp(a) levels independent of each other and of the Kringle IV size polymorphism 

in LPA (p<5x10
-8

) (37).  A candidate gene study on multi-ethnic populations suggested both 

SNPs at 6q26-27 and the Kringle IV CNV were genomic determinants of Lp(a) level, and the  

proportion of total variance explained by each determinant differ across ethnic groups (39). 

 

Hypertension 

Hypertension is a conventional and important risk factor for CVD (40). Globally, 

complications of hypertension are responsible for 9.4 million deaths every year (41). 

Hypertension is responsible for at least 45% of deaths due to heart disease, and 51% of deaths 

due to stroke. In 2008, worldwide, approximately 40% of adults aged 25 and above had been 

diagnosed with hypertension; the number of people with the condition rose from 600 million in 

1980 to 1 billion in 2008 (42). Overall, low- and middle- income countries have a higher 

prevalence and larger number of hypertension patients who are undiagnosed, untreated and have 

their blood pressure uncontrolled compared to high-income countries (42). Hypertension 

adversely impacts heart and blood vessels in various ways (43, 44). An increased pressure in 
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blood vessels will cause the heart to work harder in order to pump blood, thus, hypertension can 

lead to a heart attack, an enlargement of the heart and heart failure (43). A consistent high blood 

pressure will result in weak spots on the blood vessels, making them more vulnerable to clog and 

burst, which leads to strokes when blood leaks out into the brain (45).  

It is well established that hypertension is determined by both genetic factors and 

environmental factors, including tobacco use, salt and alcohol intake, body mass index (BMI), 

and physical activity, and their complex interactions (46) (47). Blood pressure has long been 

established as an inheritable trait (48), and an estimated 30-60% of blood pressure variation is 

explained by genetic factors (49). Longitudinal data of Framingham Heart Study suggested that 

57% and 56% of inter-individual variability in systolic (SBP) and diastolic blood pressure (DBP), 

respectively, were due to genetic factors (50) in Caucasians. Data from Nigerian families suggest 

heritabilities of 40% and 36% for SBP and DBP in Africans (51), and data from the Chinese 

population suggest heritabilities of 31% and 32% for SBP and DBP, respectively, in Asians (52). 

Through GWAS meta-analyses in recent years, numerous loci have now been identified to be 

associated with blood pressure variation in different populations.   

 

Genetic association studies 

           It is well established that genetic variation, including single nucleotide polymorphisms 

(SNPs), insertion/deletion polymorphisms, variable number tandem repeats, microsatellites, etc, 

could lead to important biological changes in protein production and/or structure, which provides 

biochemical basis for much of the diversity in the physiological characteristics of individuals, 

and also susceptibilities to various diseases and other disorders. Genetic association studies aim 

to compare the frequencies of the alleles or genotypes at each genomic site of interest between 
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populations of cases and controls to determine whether genotype at the site is associated with 

susceptibility to certain diseases. A higher frequency of the less-common variant allele in cases 

is taken as evidence that the allele or genotype is associated with increased risk of disease (53). 

For quantitative traits, we assess whether genotype is associated with higher/lower levels of the 

trait in a cohort of individuals. Genetic association studies include many different study designs 

ranging from family studies to studies on tens of thousands of unrelated participants. Studies of 

quantitative traits can include either randomly selected individuals or highly selected individuals 

selected for having extreme phenotype values. 

 

Candidate gene association studies 

             Candidate gene association studies have been a powerful approach to discover genetic 

variants associated with complex traits.  Candidate gene studies are relatively cheap and quick to 

perform, and are focused on the selection of genes that, presumably, have some relevance in the 

mechanism of the disease being investigated. The selection of candidate genes often comes from 

prior knowledge about gene function (54). To date, candidate genes have been confirmed for 

many different diseases and traits (55). However, many published candidate gene association 

studies have been limited by small sample sizes, reducing statistical power, and inadequate 

correction for multiple testing, where the multiple test correction for a study only reflects the 

number of variants tested in the reported gene and not all variants tested across all previous 

genes considered but not reported. Thus, historically, few candidate gene studies have achieved 

robust results that could be replicated by other investigators. Despite its decreasing popularity, 

candidate gene studies are still being used as a complementary approach for GWAS, particularly 

for replication analyses. Further, because GWAS commercial arrays have often been agnostic 
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with respect to variant function when selecting variants for inclusion and preference is given to 

linkage disequilibrium tagging variants, the coverage of biologically functional variants is often 

poor in GWAS studies. The poor coverage of functional variants on many GWAS panels has led 

to the development of gene-centric arrays that facilitate the investigation of a large number of 

variants, including uncommon functional variants, in genes involved in relevant biological 

pathways (56, 57), As a result, recent candidate gene association studies have achieved success 

in identifying genetic associations that are often replicated in independent samples. One 

successful example is the identification of blood pressure-related SNPs using the HumanCVD 

BeadChip, which includes approximately 50,000 SNPs from 2000 genes known to be associated 

with CVD-related traits, based on a discovery-stage sample of 25118 subjects and a replication-

stage sample of 59349 subjects (57). 

Genome-wide association studies  

            With the emergence of high-throughput genotyping techniques, array-based GWAS has 

become a widely used approach to identify genetic variants associated with common complex 

diseases. GWAS is a comprehensive discovery-driven approach to systematically test SNPs 

across the genome for association with dichotomous or continuous traits. By taking advantage of 

linkage disequilibrium (LD) and genotype imputation technology to capture most of genome’s 

variation, a group of tag SNPs can be genotyped and used to evaluate the majority of genome-

wide common genetic variation. Since the first GWAS reported in 2005 (58), more than 1500 

GWAS have been conducted leading to the successful identification of susceptibility loci for a 

wide range of human complex diseases.  In order to increase statistical power to detect some 

associations with variants having modest effects, consortia, with the purpose of conducting 

GWAS meta-analyses in very large samples, have been formed (59). Despite the huge success it 
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has achieved, GWAS still has some limitations. Since GWAS evaluates a large number of 

individual SNPs (>10
6
), the threshold of statistical significance is usually set to be very stringent 

(P<5x10
-8

) in order to avoid false-positive associations, thus some variants with modest effects 

are not easy to be detected unless large-scale GWAS meta-analyses are conducted. More 

importantly, the majority of loci identified by GWAS are in the intergenic or intronic region of 

the genome, and the function of these variants are largely unknown. Post hoc investigations need 

to be conducted in order to learn whether these variants of unknown function have effects on 

mRNA expression or any other physiological activities on a molecular, cellular, or systematic 

level.  Although a large number of variants were identified by GWAS, they collectively explain a 

limited proportion of the total variation of most of the traits being studied, leaving a large 

proportion of heritability unexplained. Therefore, new approaches are being developed to help 

explain the missing heritability.   

 

Exome sequencing and Exome Beadchip 

          It has been hypothesized that much of the missing heritability that GWAS fails to explain 

may reside in low-frequency or rare variants (60). The successful identification of rare variants 

that have a large influence on lipid traits, found by sequencing extremes of the population 

distribution, is one example of the large role that rare variants can play on complex diseases (61). 

While early sequencing studies typically only sequenced a limited number of genes, the 

emergence of next-generation sequencing (NGS) technology has now enabled investigators to 

deeply sequence large stretches of DNA, whole exomes, and even entire genomes in large 

population-based studies (62). The National Heart, Lung, and Blood Institute launched a whole-

exome sequencing project based on >6500 individuals to identify low-frequency and rare 
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variants associated with heart, lung, and blood disorders (63). Exome sequencing has led to the 

discovery of thousands of rare functional variants that have now been included on genotyping 

arrays such as the Illumina HumanExome BeadChip. The Illumina HumanExome BeadChip is a 

genotyping array containing 247,870 variants discovered through exome sequencing in ~12,000 

individuals, with ~75% of the variants with a MAF<0.5%. The main content of the chip 

comprises protein-altering variants (nonsynonymous coding, splice-site and stop gain or loss 

codons) seen at least three times in a single study and in at least two studies (64). So far, it has 

enabled identification of several rare functional variants associated with fasting glucose, insulin 

processing, and type 2 diabetes susceptibility (65) (66). 

 

Gene-gene and Gene-environment interactions 

             It is widely believed that human complex traits are influenced by the interaction between 

genetic and environmental (G-E) factors. It is also widely held that such interactions will help 

explain some of the missing heritability of GWAS and provide better insight into pathway 

mechanisms for complex diseases (67). Quantifying G-E interactions may help develop 

improved predictive models, either for disease onset or for response to treatment. Improved 

predictive models of disease risk can enable preventive strategies, particularly when the risk 

factors include modifiable environmental exposures, and can advance individualized medicine 

by assessing a patient’s chance of responding to a particular treatment regimen (68). To date, 

most interaction studies are conducted after main effects have been identified, as current methods 

for detecting interactions on a genome-wide scale suffer from a lack of power due to the high 

cost of multiple test correction (69). However, scanning for the main effects might miss 

important genetic variants specific to subgroups of the population. In fact, interactions with 
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opposite effects in 2 different exposure groups (cross-interactions) will not show a main effect 

and will, therefore, not be identified using standard approaches (67). Therefore, there is a need 

for the further development of methods to identify gene-environment interactions in the context 

of genome-wide association studies. 

 

Genetic admixture mapping 

          While early GWAS were performed mostly on Caucasians, nowadays more and more 

GWAS studies are being conducted in other populations, including admixed populations. The 

fact that many of the significant variants discovered in Caucasians are also found to reach 

genome-wide significance in other populations suggests that the physiologic effects of many 

common variants may be generalized across populations with diverse genetic backgrounds (70). 

Admixed populations are populations that have variable levels of inherited ancestry from more 

than one ancestral population. Publically available genotype data (e.g. from HapMap) from 

contributing parental ancestral populations to the admixed population allows us to 

probabilistically infer the ancestral origin of alleles in a given individual at a given marker 

location. For example, for AAs, with available genetic data we can accurately infer at any given 

location the probability that the participant inherited 0, 1 or 2 copies of an African derived 

chromosome using HapMap CEU (Northern European) and YRI (Nigerian) haplotype data. 

Genetic admixture mapping is an approach to investigate whether genomic factors specific to 

one contributing ancestral population disproportionately influences certain traits in admixed 

population (71, 72). Since traditional admixture mapping has typically a substantially lower 

mapping resolution than association analysis (73), due to the often long stretches of ancestral 

haplotypes kept intact from the relatively recent admixture events, and the increasing availability 
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of high-density genetic data that includes variants specific to one ancestral population or another, 

the analysis of admixed populations is now moving from admixture mapping towards SNP 

association.  

          In admixed populations, population stratification (the confounding between background 

ancestry and individual variant allele frequencies on traits with ancestry-variable prevalence) can 

lead to false associations. In order to control for this population stratification, several methods 

have been developed in the past decade, including genomic control (74), structured association 

(75), and principal components-based methods (76). The general idea of these methods is to use 

markers across the genome to capture the global population structure within the study subjects. 

These methods may be ineffective in removing the effect of population stratification if it is 

induced by natural selection that occurs only at certain genomic regions. Thus, for admixed 

populations, controlling for local ancestry, in addition to global ancestry, provides an additional 

layer of protection from reporting false associations.  

 

Multistage association studies 

            Historically, the cost of genotyping 100 000’s of variants using commercial genotyping 

arrays has limited the available sample sizes for GWAS studies.  To remedy these costs, 

multistage GWAS studies were often utilized, where a subset of participants were included on 

the GWAS commercial array (Stage 1) and the remaining samples were genotyped on 

considerably smaller, and cheaper, arrays (Stage 2) containing a subset of variants demonstrating 

evidence for association in Stage 1. Data from both stages are combined for the overlapping set 

of variants to assess the overall significance of any discoveries.  It has been shown, under careful 
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design, that the two-stage study has similar statistical power to conventional single-stage studies 

but at a fraction of the cost.  

  As of today, hundreds of thousands of subjects with available GWAS data exist and 

much of the focus is now on measuring and analyzing novel biomarkers in cohorts with these 

existing GWAS data. As a result, the burden of expense is now shifting from the cost of 

genotyping to the cost of additional phenotyping, especially when phenotyping involves mRNA 

abundance data obtained from microarray or RNA-seq experiments, novel blood-based 

biomarkers or complex physiological and behavioral trait scale variables. Often it is not feasible, 

due to cost constraints, to phenotype all subjects with available genetic data. Selective 

phenotyping is a way of capturing the benefits of large population sizes without the need to carry 

out large-scale phenotyping (77). It utilizes available genetic information to select subsets of 

individuals to be phenotyped in a manner to increase overall power for the study. Methods to 

maximize power using selective phenotyping have been developed for a long time (78-81). The 

common rationale behind these methods is to identify the subset of subjects who are as 

genetically dissimilar as possible with respect to distributions of the genotype data for the 

specific markers of interest.  

         Selective phenotyping designs in genetic studies have been proposed for one-stage genetic 

association studies where there is an established set of variants of interest for study. 

Unfortunately, for most novel traits the identity of the “interesting” variants is unknown. GWAS 

studies are largely discovery-based studies. A reasonable approach to increase statistical power 

under fixed cost constraints is to randomly phenotype a subset of subjects and test across all 

variants (Stage 1) in order to identify a subset of “interesting” variants that can be targeted for 

selective phenotyping (Stage 2) in the remaining participants with genetic data. The results from 
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Stages 1 and 2 are then combined to assess significance of all variants (genotyped or imputed), 

where power has been enriched, by using selective phenotyping, for the subset of variants 

demonstrating strong evidence for association in Stage 1.     

           This dissertation consists of four chapters. The first two chapters aimed to identify the 

genetic variants associated with levels of iron-related measures and Lp(a) in a population of 

African Americans (AAs)  from JHS using genome-wide admixture mapping, GWAS, and rare-

coding-variant analyses using Exome Beadchip data. The third chapter aimed to assess the 

interaction between genetic factors and BMI on affecting blood pressure levels in a population- 

and household-based cohort study from China using a targeted candidate gene association study. 

The fourth chapter aimed to describe a two-stage GWAS using selective phenotyping for cohorts 

with existing genetic data who are subject to budgetary constraints when measuring new traits of 

interest.  

.  
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CHAPTER II: GENOME-WIDE ADMIXUTRE AND ASSOCIATION STUDY OF 

SERUM IRON, FERRITIN, TRANSFERRIN SATURATION, AND TOTAL IRON 

BINDING CAPACITY IN AFRICAN AMERICANS 
1
 

 

Introduction 

Iron is critical to an array of metabolic functions, such as oxygen transport and oxidative 

phosphorylation. Normally, small daily losses of iron in the feces and through menstruation are 

balanced by its regulated intestinal absorption and its recovery from heme after phagocytosis of 

senescent red blood cells (10). Iron deficiency can cause anemia, while iron overload may lead to 

increased risk for cardiovascular disease including cardiomyopathy, diabetes mellitus, arthritis, 

and liver disease (18). Laboratory tests typically used to assess iron transport and storage 

included serum iron, total iron binding capacity (TIBC), transferrin saturation (SAT), and serum 

ferritin. Ferritin, the predominant iron storage protein, reflects the cumulative iron stores in the 

bone marrow and tissues. Transferrin functions in iron transport, and the concentration of 

transferrin is proportional to the total iron binding capacity (TIBC) in serum. Transferrin 

saturation (SAT), calculated as (serum iron/TIBC) × 100, is affected by the rate of iron 

absorption in the small bowel as well as the sufficiency of tissue iron stores. Genetic factors 

could affect iron metabolism through gastrointestinal absorption, transport, tissue uptake, storage, 

or remobilization from tissue stores, and thus could have a large impact on the variation of these 

iron-related measures (18, 19).  

                                                 
1
 A version of this work was previously published as Li J et al. Hum Mol Genet. 2015 Jan 15; 24(2): 572-81. Epub 

2014 Sep 15. 
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Genome-wide association studies (GWAS) have identified seven loci associated with these 

measures in subjects of European descent (p<5x10
-8

) (20, 82-84), including the variants in or 

near TF-SRPRB, SLC17A1, HFE, HIST1H2BJ, SIK3, PCSK7, TMPRSS6. Here we present a 

genome-wide admixture and association study of serum iron, TIBC, SAT, and ferritin among 

African Americans (AA) enrolled in the JHS and HANDLS cohorts.  

 

Materials and methods 

Study Subjects  

Discovery Stage – The Jackson Heart Study (JHS) is a longitudinal, population-based cohort 

designed to identify risk factors for the development of CVD, T2D, obesity, chronic kidney 

disease and stroke in more than 5000 AAs from the Jackson, metropolitan area(85). The design, 

recruitment and initial characterization of this study have been described previously (86). The 

JHS participants for the current study included 1012 AA males and 1335 AA females with 

available iron-related measures and genome-wide genotype data.  

Replication Stage - The Healthy Aging in Neighborhoods of Diversity across the Life Span 

study (HANDLS) is a community-based, longitudinal epidemiological study that aims to 

examine the influences of race and socioeconomic status on the development of age-related 

diseases in African and European Americans from the city of Baltimore. The study consists of 

2200 AAs and 1522 European Americans aged 30-64. The design, recruitment, and initial 

characterization of this study have been described previously (87). The HANDLS participants 

for the current study included 329 AAs with iron measures and genome-wide genotype data.  
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    JHS and HANDLS participants provided written informed consent. The study protocols and 

consent forms for these studies were approved by the responsible research ethics committees and 

institutional research boards.  

Phenotypes  

All phenotype measures came from blood samples that were collected from fasting blood 

during the baseline examination, which occurred during 2000-2004 for JHS and 2004-2009 for 

HANDLS. Iron measures included total levels of serum iron (μg/dL), serum ferritin (ng/mL), 

TIBC (μg/dL) and SAT (%). Serum iron in JHS participants was measured by the FerroZine 

colorimetric assay (Roche), standardized to NIST traceable iron standards and calibrated against 

control sera from the manufacturer. TIBC was determined by colorimetric (FerroZine) 

measurement of iron that remains unbound after addition of a known amount of iron to the serum. 

The assay was standardized and calibrated as for serum iron. Ferritin was measured by an 

immunoturbidimetric assay (Roche) based on agglutination of anti-ferritin-latex conjugates, 

standardized with human spleen ferritin and calibrated against a standard protein solution 

provided by the manufacturer. For HANDLS, serum iron and TIBC were measured using 

standard clinical laboratory spectrophotometric assays. Serum ferritin was measured using 

chemiluminescence assays. For both studies, SAT was calculated as: (serum iron/TIBC)*100%.  

Participants were excluded if they were taking iron supplements or not fasting at time of 

blood draw and if they had known chronic infectious or inflammatory disease, or residual 

cancer.  Additional exclusions included hematocrit <35%, hemoglobin <11 g/dl, mean red cell 

volume >100 fL, white blood cell count >11,000 /mm
3
, platelet count >400,000 /mm

3
, C-reactive 

protein > 3 standard deviations above the mean, or transferrin saturation < 15% (indicates iron 

deficiency likely due to blood loss). 
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Genotyping and Imputation 

A total of 3030 JHS participants were genotyped using the Affymetrix Genome-Wide Human 

SNP Array 6.0. 874,712 SNPs, with a call rate greater than 0.95, minor allele frequency (MAF) 

greater than 0.01, and genotype distributions consistent with Hardy-Weinberg equilibrium (HWE 

p >1x10
-5

) were included for further analysis. Following pre-phasing using MACH 1.0.18 

software (88), thirty-eight million SNPs, excluding SNPs monomorphic in CEU/YRI, were 

imputed using minimac (89) based on 1000 Genome Project phase I reference samples (Nov 

2010, Version 3). Analyses were limited to the ~17 million imputed SNPs with estimated 

imputation quality of r
2
 greater than 0.3.  

 A total of 1024 HANDLS participants were genotyped using the Illumina 1M SNP array, 

including 329 AAs with iron measures. SNPs with HWE p >1x10
-7

, MAF > 0.01, and call rate > 

95% were included for further analysis. 2,939,993 SNPs were imputed using MACH (88) and 

Minimac (89) software based on combined reference haplotype data from HapMap Phase 2 

CEU+YRI samples that includes monomorphic SNPs in either of the two constituent populations 

(release 22, build 36.3). Chromosome X variants were imputed based on 1000 Genomes Project 

EUR+AFR+AMR+ASN reference samples. Only index variants demonstrating significant 

evidence for association in JHS (p<5x10
-8

) were subsequently analyzed for the relevant iron 

phenotype in HANDLS. 

Statistical Analyses 

To assess the impact of genetic admixture on iron measures within the AA population, we 

first estimated the genome wide average of African ancestry for each JHS participant (“global 

ancestry”). We used the software ADMIXTURE (90) with K=2 clusters and tested, using linear 

models implemented in R, whether this estimated global ancestry proportion was associated with 
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each of our iron measures after covariate adjustments for age, sex, and BMI. Values of serum 

ferritin, total iron and SAT were natural log-transformed to achieve approximate normality of 

residuals. 

ANCESTRYMAP (72) was used to estimate local ancestry (probabilities of whether an 

individual has 0, 1, or 2 alleles of European ancestry) at 738,831 autosomal SNPs across the 

genome, for each participant in JHS, as previously described (91).  In brief, local ancestry was 

inferred using a hidden Markov model based on the genotypes from a panel of densely spaced 

markers differentiated in frequency between African and European populations. To assess 

whether there were any regions where local ancestry was associated with iron-related measures, 

we performed admixture mapping across the whole genome by regressing each of our iron 

measures on the local ancestry estimates at each SNP location, including covariate adjustment 

for age, sex, BMI and estimated global ancestry. The conventionally reported LOD score, 

defined as the log, base 10, ratio of the maximum likelihood of the data under a local-ancestry-

associated model divided by the likelihood of the data under the null model (with no local 

ancestry predictor), was computed at each SNP location. For regions showing association of 

increased African ancestry with higher levels of iron measures, the LOD scores were assigned 

positive values, and for regions showing association of increased African ancestry with lower 

level of iron measures, the LOD scores were assigned negative values. The LOD scores were 

plotted across the genome, and a LOD score of 5 was assumed to be the threshold of statistical 

significance (72).  

Individual genotyped and imputed SNPs were tested for association using multivariable 

linear regression models in PLINK (92) and MACH2QTL v.1.08 (88), respectively; adjusted for 

age, sex, BMI and 10 principal components that we constructed using the software EIGENSOFT 
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(93)  to model background ancestry. A second level of covariate adjustment for log-ferritin 

additionally included self-reported menopausal status, which was available on a large subset of 

JHS subjects and has been shown previously to be a strong predictor of serum ferritin levels (94, 

95). We assumed an additive mode of inheritance and reported  coefficients representing the 

estimated change in the raw or transformed trait value, associated with each additional copy of 

the effect allele. For chromosome X SNPs, hemizygous males were modeled so that males with 

the minor allele had the same value as females homozygous for the minor allele.  We used a 

significance threshold of p =5x10
-8

 to maintain an overall type 1 error rate of ~5% for each 

phenotype.  

Manhattan plots were made to illustrate the association results across the genome and 

quantile-quantile (Q-Q) plots were made to assess any systematic inflation of the regression test 

statistics across the genome. In regions demonstrating significant evidence for association, we 

examined multivariable regression models that included the genotype data of the most strongly 

associated SNP as a covariate to assess whether there was any evidence for multiple 

independently associated SNPs in a particular region. If a second signal also reached genome-

wide significance after conditioning on the top variant, multivariable regression models were 

repeated to include the genotypes of both SNPs as covariates. The relevant SNP-SNP 

interactions were also tested. Region-specific (“locus-zoom”) plots were made to show the 

magnitude of association between all SNPs and the relevant iron phenotype as well as the LD 

between each SNP in the region and the most strongly associated SNP. Finally, to control for 

possible confounding between SNP genotype and local ancestry in any observed iron trait-SNP 

associations, we identified the genetic position of the most strongly associated SNP, selected the 

local ancestry estimate at the location closest to that SNP (either the SNP itself if genotyped or 
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the closest genotyped SNP), and examined multivariable regression models as described above, 

but now including estimated local ancestry proportion as an additional covariate. 

SNPs that reached genome-wide significance in JHS were selected for testing in the 

replication study of HANDLS. At each associated region, only the single SNP with the most 

significant P value (index SNP) was selected to avoid over adjustment for multiple testing. For 

the TF region, where conditional analyses revealed a second independently associated SNP with 

TIBC, the second independent SNP was also included in the replication analyses.  A GWAS 

result was considered replicated if the effect in the replication was in the same direction as in the 

discovery stage, and if the association in the replication stage was statistically significant after 

Bonferroni correction adjusting for the number of SNPs tested.  

Ethnic differences in iron related measures have also been observed between subjects of 

European and African descent (96). Thus, we compared our association results in JHS with 

established variants from GWASs in populations of European descent in order to assess the 

importance of these same variants in an AA population. For each prior GWAS-established SNP, 

we identified and tested all genotyped or imputed proxy SNPs in JHS that were estimated to be 

in high LD (r
2
 > 0.8 in CEU based on 1000 Genomes data) with the GWAS index SNPs for 

association with the reported iron phenotype.  

 

Results 

Descriptive statistics for the JHS and HANDLS participants included in this study are 

detailed in Table 2.1. The correlations between these four phenotypes in JHS are shown in 

Table 2.2.  
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Admixture Analyses 

A higher level of estimated overall average African ancestry was significantly associated 

(p<0.05) with lower levels of TIBC, iron and SAT (Table 2.3). The estimated proportions of 

overall average African ancestry obtained from ADMIXTURE were highly correlated with the 

first principal component from EIGENSOFT (correlation = 0.998). No individual region had 

local ancestry significantly associated with the iron measures. Three regions (DZIP1L on chr 3, 

TRDN on chr 6, and TMCO5B-RYR3 on chr 15) had a LOD score >3 for TIBC, one region 

(DEFB129-DEFB132 on chr 20) had a LOD score >3 for iron. The plots of the LOD scores 

across the whole genome are shown in Figure 2.1. 

 

Summary GWAS Results in JHS 

One-hundred-fifty-seven SNPs reached genome-wide significance (p<5x10
-8

) for TIBC (153 

SNPs on chromosome 3, 3 SNPs on chromosome 6, and 1 SNP on chromosome 16); five SNPs 

were significant for ferritin (all on chromosome X). Top SNPs that reached genome-wide 

significance in JHS was shown in Table 2.4. No SNPs reached genome-wide significance for 

serum iron or SAT. Top results for all four traits are listed in Tables 2.5-2.8. Manhattan plots 

and Q-Q plots for the four traits are shown in Figure 2.2 and Figure 2.3. Q-Q plots revealed no 

substantial evidence for inflated results, due to population stratification, residual relatedness 

among subjects, or experimental outliers.  

 

TIBC GWAS Results on Chromosome 3 

All top SNPs on chromosome 3 clustered within a region spanning less than 150 kb 

containing 3 genes: TOPBP1, TF, and SRPRB (Figure 2.4). The strongest signal (rs8177253, 
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p=1.8×10
-47

, MAF=0.24) mapped to the TF gene, which encodes transferrin. Rs8177253 was 

also nominally associated with SAT (p=3.0x10
-7

). Thirty-six TF region SNPs were genome-wide 

significant for TIBC levels after conditional analysis including rs8177253 as a covariate (Table 

2.9). The top SNP in the conditional analysis was rs9872999 (p=5.4x10
-20

, MAF=0.38), which 

was not significant (p=1.0x10
-6

) prior to the adjustment for rs8177253 (Table 2.9; Figure 2.4). 

There was no evidence of an interaction between the rs8177253 and rs9872999 (p=0.11). No 

SNPs remained genome-wide significant after covariate adjustment for both rs8177253 and 

rs9872999, though a large number of SNPs remained nominally significant. SNP rs8177253 and 

rs9872999 together explained an estimated 11.2% of the total variance of TIBC after accounting 

for age, gender, BMI, and the first 10 PCs. 

Higher local African ancestry in the TF region was nominally associated with lower TIBC 

levels (p=0.0012). The association between TIBC and rs8177253 remained robust after the 

adjustment for local African ancestry at rs8177253. When stratified by the estimated local 

number of European versus African chromosomes, the rs8177253-TIBC association was present 

among 1579 AA who were predicted to carry two African chromosomes (β= 19.64 ± 1.70; 

p=8.5x10
-30

) as well as the 768 AA who were predicted to carry at least one European 

chromosome (β = 19.68 ± 2.26; p=1.8x10
-17

). The rs9872999-TIBC association also remained 

significant after adjustment for both rs8177253 and local African ancestry at the genotyped 

marker nearest its location (data not shown). 

 

TIBC GWAS Results on Chromosome 6 

The three genome-wide significant SNPs on chromosome 6 mapped near the HDGFL1 gene 

(Figure 2.5). The strongest signal (rs115923437, p=1.1x10
-8

) mapped ~100Kb distal to 
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HDGFL1, which is a gene that encodes hepatoma derived growth factor-like 1 and is associated 

with glycosylated hemoglobin level, and ~3.5Mb proximal to the known iron gene HFE. After 

conditioning on rs115923437, the remaining SNPs within 1Mb of the SNP no longer showed 

strong evidence for association (all p>1x10
-4

). SNP rs115923437 explained 1.3% of the total 

variance of TIBC after accounting for the covariates. 

Local African ancestry in the HDGFL1 region also showed a nominally significant 

association with TIBC, though this time higher local African ancestry was associated with higher 

TIBC levels (p=0.0083). The associations between TIBC and rs115923437 remained significant 

after the adjustment for local African ancestry at the genotyped marker nearest its location. 

When stratified by the estimated local number of European versus African chromosomes, the 

rs115923437-TIBC association was present among the 1569 AA who were predicted to carry 

two African chromosomes (β = -14.11 ± 2.95; p=2.0x10
-6

), as well as the 778 AA who were 

predicted to carry at least one European chromosome (β = -15.42 ± 5.78; p=0.0070). 

 

TIBC GWAS results on chromosome 16 

A single SNP (rs16951289, p=2.0x10
-8

) on chromosome 16, an intronic variant in 

uncharacterized gene LOC102467146 that is ~150Kb distal to the MAF gene (Figure 2.6), 

reached genome-wide significance. MAF encodes v-maf musculoaponeurotic fibrosarcoma 

oncogene homolog. Local African ancestry in this region was not associated with TIBC (p=0.97) 

and did not modify the evidence for association with rs16951289. Rs16951289 explained 1.2% 

of the total variance of TIBC. 
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Ferritin GWAS results on chromosome X 

 Five SNPs on chromosome X near the GAB3 gene reached genome-wide significance for 

association with ferritin levels (Figure 2.7). The strongest signal (rs141555380, p=1.1x10
-8

), 

mapped to the UTR-3 region of the GAB3 gene. GAB3 encodes GRB2-associated binding protein 

3, which is involved in several growth factor and cytokine signaling pathways. After 

conditioning on rs141555380, the remaining SNPs within 1Mb of rs141555380 no longer 

showed significant evidence for association (all p>1x10
-4

). The effect estimates for carriers of the 

rs141555380 minor allele in stratified analysis were similar for hemizygous males and 

homozygous females (hemizygous males: β = 0.17±0.04, p = 5.05 x 10
-6

; homozygous females: 

β = 0.14±0.05, p = 0.002). SNP rs141555380 explained 1.2% of the total variance of ferritin after 

accounting for age, gender, BMI and the first 10 PCs.  

 

Menopause status-Adjusted analyses of association with ferritin 

Association analysis for serum ferritin was conducted by including menopausal status as an 

additional covariate. Menopausal status was significantly associated with serum ferritin levels p= 

5.3x10
-17

, however, the effect size and significance of SNP-ferritin associations did not change 

considerably after adjusting for menopausal status. The top SNP rs141555380 (p=1.1x10
-8

) 

continued to be the most significant SNP after adjusting for menopause status (p=1.4x10
-8

). The 

effect sizes and P-values of top SNPs (p<10
-7

) before and after adjusting for menopause status 

are shown in Table 2.10 This result is consistent with previous findings that the effects of 

variation in menstrual blood loss, although significant, were small when compared to the genetic 

effects that influence the iron reserves (94).  
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Replication Results in HANDLS 

      Four regions contained SNPs that reached genome-wide significance in GWASs in JHS, 

including one region, the chromosome 3 TF region, which contained a second significant SNP 

(rs9872999) after covariate adjustment for the top SNP (rs8177253). Five SNPs (rs8177253, 

rs9872999, chromosome 6 top SNP rs115923437 and chromosome 16 top SNP rs16951289 for 

TIBC; chromosome X top SNP rs141555380 for ferritin) were selected and tested for association 

in HANDLS to determine whether the associations could be replicated (Table 2.4). Rs9872999 

was tested before and after adjustment for rs8177253. Both associations in the TF region with 

TIBC were replicated (p=1.1x10
-7 

for rs8177253; p=0.0012 for rs9872999 before adjusting for 

rs8177253). As with JHS, the association between rs9872999 and TIBC became more significant 

after adjusting for the primary signal at rs8177253 (p=6.2x10
-6

). The association between the 

GAB3 region SNP rs141555380 and ferritin also replicated (p=5.7x10
-3

). The associations 

between TIBC and SNPs rs115923437 and rs16951289 did not replicate in HANDLS; 

rs16951289 was nominally significant (p=0.04), but the direction of the effect went in the 

opposite direction to that observed in JHS.  

Prior European GWAS-established signals at p<5x10
-8

 that are replicated in JHS at p<0.05 

GWAS have reported five regions to contain SNPs to be significantly associated (p<5x10
-8

) 

with at least one of the following iron-related traits: iron, ferritin, SAT and transferrin, including 

TF-SRPRB (rs3811647, rs1830084), SLC17A1 (rs17342717), HFE (rs1799945 [H63D] and 

rs1800562 [C282Y]), HIST1H2BJ (rs13194491), and TMPRSS6 (rs855791 [V736A] and 

rs4820268) in subjects of European descent (Table 2.11). Iron, ferritin, and SAT are directly 

reported in the current study while TIBC is proportional to transferrin [TIBC (μmol/L) = 25.1 × 

transferrin (g/L)]. All five regions contained a SNP, either the index SNP in the prior report or a 
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SNP in strong linkage disequilibrium (defined as estimated r
2
>0.8 with the index SNP based on 

CEU 1000 Genomes subjects) with the index SNP, that was nominally associated with at least 

one corresponding iron measure in JHS at p<0.05. For HFE rs1800562, only the associations 

with ferritin and transferrin were replicated, but not the associations with iron and SAT. For  

HIST1H2BJ rs13194491 and TMPRSS6 rs855791, the associations with the index SNPs were not 

replicated, but nearby SNPs, which are estimated to be in high LD with index SNPs in European 

populations, did reach nominal significance in JHS, suggesting a narrowing of the candidate 

regions for the causal variants if the causal variants are the same for the two populations.  

 

Discussion 

We conducted genome-wide admixture and association studies for iron-related phenotypes 

including serum iron, serum ferritin, SAT, and TIBC in 2347 AAs participating in the Jackson 

Heart Study. We observed significant associations between SNPs around TF, a well-established 

region on chromosome 3, and two novel regions: near HDGFL1 on chromosome 6 and MAF on 

chromosome 16, and TIBC levels. Conditional analyses revealed a second significant SNP 

associated with TIBC in the TF region that was independent of the top SNP from the 

unconditional analyses. We also observed significant associations between SNPs around GAB3, 

a novel region on chromosome X, and ferritin levels. The two independent associations for TIBC 

at TF and the association for ferritin at GAB3 were successfully replicated in HANDLS. The 

associations between the JHS index SNPs near HDGFL1 and MAF were not replicated. The 

available sample size in HANDLS (N=329) was considerably smaller than for JHS. If we assume 

the index variants at HDGFL1 and MAF each explain an estimated 1.3% of the total variance of 

TIBC, then we only had power of 0.34 to observe these associations at p<0.01 in HANDLS.  
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Thus, larger replication studies will be necessary to make more decisive statements regarding the 

overall evidence in these other regions. We did not observe any significant SNP associations for 

the other iron measures, though we were able to replicate associations from previous studies 

based on subjects of European descent using a less stringent significance threshold (p<0.05).  

The estimated average (“global”) proportion of African ancestry was significantly associated 

with lower levels of TIBC, serum iron, and SAT - which are entirely consistent with previous 

findings reporting lower levels of these same measures, on average, in AAs compared to 

European Americans (96, 97).  Subjects with higher levels of global African ancestry were 

observed to have higher levels of ferritin, also consistent with prior reported differences between 

individuals of European and African ancestry (96, 97), although this result was not statistically 

significant. These results implicate novel genetic risk factors in AAs and underscore the 

importance of studying this population for genetic risk factors that uniquely/disproportionately 

impact them. Local ancestry was not significantly associated with any iron measures, though a 

couple regions containing our GWAS top results were nominally significant. 

Variants in and around TF have been observed to be associated with serum ferritin levels 

(20), transferrin levels (20, 83, 84), serum transferrin saturation (22), and serum levels of 

carbohydrate-deficient transferrin (CDT) (98) in subjects of European descent. In JHS, the top 

SNP at TF, rs8177253, was associated with TIBC (p=1.8x10
-47

) and nominally associated with 

SAT (p=3.0x10
-7

). SNP rs8177253 is located in an intronic region of TF, and is in high LD (r
2
=1, 

D’=1 in 1000 Genomes CEU) with GWAS index SNP rs3811647 previously reported to be 

associated with transferrin in European Americans (rs3811647 is also associated with TIBC 

[p=9.7x10
-35

] and nominally associated with SAT [p=2.2x10
-6

]
 
in JHS). After conditioning on 
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rs8177253, all SNPs, including rs3811647, previously reported to be significantly associated 

with TIBC became non-significant in JHS.  

Our study is the first study to report a second significant independently associated SNP in the 

TF region for TIBC. Interestingly, this second signal (index SNP rs9872999 which maps to an 

intergenic region approximately 10Kb proximal to TF) only became significant at the genome-

wide level after conditioning on our top TF region SNP rs8177253. Rs8177253 and rs9872999 

are in modest LD in 1000 YRI Genomes subjects (r
2
=0.07,D’=0.58) and in stronger LD in 1000 

Genomes CEU subjects (r
2
=0.27,D’=0.71). The allele associated with an increase in TIBC for 

rs8177253 is preferentially on the same haplotype with the allele associated with a decrease in 

TIBC for rs9872999. Thus, the mean effects for rs9872999 are shrunk towards the null when not 

factoring in genotype for rs8177253. There is no evidence for an interaction between these SNPs 

on TIBC levels, thus the results indicate a second independent signal in the TF region. It is 

unclear if this second signal is specific to African Americans, as results from conditional 

analyses in other populations have not been reported. Conditional analyses would likely be 

especially important in populations of European descent given the stronger LD between the two 

SNPs in this population. The minor allele frequency for rs9872999 is 0.39 in 1000 Genomes YRI 

subjects and 0.50 in 1000 Genomes CEU subjects.  

Variants in HDGFL1 have been reported previously to be associated with glycosylated 

hemoglobin levels (p=2.4x10
-5

) in European type 1 diabetic subjects (99) and nominally 

associated (p<0.05) with levels of VLDL, LDL, Apolipoprotein C, HDL, and carotid artery 

disease (100-102). In recent years there has been considerable interest in the possibility that 

excessive tissue iron stores may contribute to the pathogenesis of both diabetes and ischemic 

heart disease (19). MAF, which encodes v-maf musculoaponeurotic fibrosarcoma oncogene 



30 

 

homolog, appears to be important in early development. Mutations in MAF have been reported to 

co-segregate with cerulean congenital cataracts (103) and juvenile-onset pulverulent cataract 

(104) in human pedigrees. We can find no evidence in the literature suggesting a direct 

connection between MAF and iron metabolism. However, there is some evidence of pleiotropy 

for iron metabolism and cataracts, namely hereditary hyperferritinemia cataract syndrome 

(HHCS), which is an inherited syndrome caused by a mutation within the L-ferritin gene and 

characterized by early-onset cataracts and elevated serum ferritin (105).  

A cluster of SNPs near GAB3 on chromosome X were significantly associated with ferritin 

(top SNP rs141555380, MAF=0.14, p=1.1x10
-8

) and nominally associated with SAT 

(rs141555380, p=0.037). Although no prior studies observed any connection between this gene 

and iron metabolism, another gene ~0.2 Mb upstream of GAB3, G6PD, plays a critical role in 

iron metabolism. G6PD deficiency may cause acute hemolysis or severe chronic non-spherocytic 

hemolytic anemia. Increases in serum ferritin levels have been observed in G6PD-deficient 

patients (106, 107), which is possibly due to both a shortened life-span and increased break down 

of erythrocytes in G6PD-deficient patients. A functional missense variant in G6PD, rs1050828 

(MAF=0.13, leading to a Val68Met amino acid substitution), was also associated with ferritin 

but narrowly missed genome-wide significance (p=9.1x10
-8

). Strong LD exists between this 

functional variant at G6PD and rs141555380 (R
2
=0.91, D’=1 in 1000 Genomes Project 

participants of African descent), and the association between rs141555380 and ferritin disappears 

after adjustment for rs1050828 (p = 0.55). Rs1050828 and nearby rs762516 (two SNPs in LD: 

R
2
=0.68, D’=1.0 in HapMap YRI) have been shown to be significantly associated with multiple 

erythrocyte traits in AAs, including hematocrit, hemoglobin, red blood cell (RBC) count, mean 

corpuscular volume (MCV), and red cell distribution width (RDW) in previous GWAS or 
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candidate gene studies (108, 109). In JHS, rs1050828 is significantly associated with MCV 

(p=1.7x10
-8

), RBC count (p=9.9x10
-16

), and RDW (p=8.9x10
-21

) and nominally associated with 

hematocrit (p=8.7x10
-7

) and hemoglobin (7.1x10
-8

). Ferritin levels are correlated with levels of 

hematocrit (r=0.25), hemoglobin (r=0.27), MCV (r=0.089), RBC (r=0.15) and RDW (r=-0.13). 

The associations for both hematocrit (p=2.9x10
-8

) and hemoglobin (p=4.3x10
-10

) both became 

genome-wide significant after additional covariate adjustment for ferritin. Similarly, the 

association between rs1050828 and ferritin also became genome-wide significant after 

adjustment for hematocrit (7.2x10
-9

) and hemoglobin (1.3x10
-9

), but evidence for association 

with ferritin decreased after covariate adjustment for MCV (1.1x10
-4

), RBC (5.2x10
-6

) and RDW 

(7.2x10
-3

).  Since G6DP has been reported to play an important role in hemolysis and affect the 

levels of erythrocyte traits, the signal we observed at this region may help explain the 

relationship between hemolysis and iron metabolism. This variant is also implicated in malaria 

resistance, and the A- form of G6PD deficiency in Africa is under strong natural selection from 

the preferential protection it provides to hemizygous males and homozygous females against life-

threatening malaria (110). This natural selection of G6PD deficiency in African descent may 

help explain the marked differences in iron measures among ethnic groups. 

In summary, we report that global genetic admixture is an important predictor of iron 

measures in AAs, further implicating the importance of unique genetic effect alleles in the AA 

population. We observed SNPs in or near three genes, TF, HDGFL1 and MAF, which were 

significantly associated with TIBC in JHS, and SNPs near GAB3 that were significantly 

associated with ferritin. We identified a novel second independently associated SNP in the TF 

region for TIBC that was only identified after conditioning on the top SNP in the region. The two 

TF and the GAB3 signals were replicated in a small independent AA sample from HANDLS. 
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Larger replication samples will be necessary to draw firm conclusions regarding the associations 

for the other loci.  The TF region is known to be associated with various serum iron-related 

measures in subjects of European descent; we now show similar associations in AA. While the 

G6DP-GAB3 region is known to be associated with multiple erythrocyte traits in AA, this is the 

first time it has been reported to be significantly associated with ferritin, a specific iron-related 

measure in AA. We have also nominally replicated four other established loci from other 

populations in our AA samples. Future fine-mapping studies, including rare and uncommon 

variants, and functional studies should be undertaken to better characterize these and other loci 

and ultimately to identify the functional variants directly influencing iron levels in AA. 
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Table 2.1 Descriptive statistics of JHS and HANDLS participants for the study of iron-related phenotypes 

  

JHS 

  

HANDLS 

 

 

Total Male Female Total Male Female 

Sample size 2347 1012 1335 329 189 140 

Age (years)   54.5 ± 12.6   53.0 ± 12.8   55.7 ± 12.4 49.4 ± 8.3 49.0 ± 8.7 49.9 ± 7.7 

BMI (kg/m2) 31.5 ± 6.9 29.9 ± 6.1 32.8 ± 7.3 28.8 ± 7.6 27.1 ± 5.4 31.2 ± 9.3 

Ferritin (ng/mL) 134.0 (74.0, 232.0) 177.5 (110.8, 286.0)    105 (58.0, 185.5)  107.5 (54.0, 201.0) 137.0 (76.0, 257.0)   71.0 (35.0, 113.0) 

Iron (μg/dL) 81.0 (67.0, 98.0)     86.0 (70.0, 104.0) 78.0 (64.0, 94.0)     83.0 (66.2, 103.8)   86.0 (70.0, 109.0) 81.0 (64.0, 98.0) 

SAT (%) 28.0 (23.0, 35.0)   30.0 (25.0, 37.0) 27.0 (22.0, 33.0) 25.0 (20.2, 31.1) 26.4 (20.8, 33.5) 23.7 (19.3, 27.3) 

TIBC (μg/dL) 284 (260.0, 314.0) 280.0 (256.0, 307.0) 288.0 (263.0, 319.0) 332.0 (306.0, 372.0) 326.0 (300.0, 368.0) 342.5 (316.8, 379.0) 

 

Data are mean±SE, median (25th, 75th percentiles) 

SAT: Transferrin saturation; TIBC: Total iron binding capacity 
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Table 2.2 Correlation between iron-related phenotypes 

 

TIBC log_ferritin log_iron log_sat 

TIBC 1.00 -0.32 0.20 -0.29 

log_ferritin 1.00 0.08 0.23 

log_iron 

  

1.00 0.88 

log_sat 

   

1.00 

 

  



 

36 

 

Table 2.3 Association between global African ancestry estimate and iron-related 

phenotypes 

 

Phenotypes β* SE P 

TIBC -13.90 6.80 0.04 

log_ferritin 0.13 0.13 0.32 

log_iron -0.20 0.05 2.4E-05 

log_SAT -0.15 0.05 0.0019 

 

* The predicted change in the iron measure for each one-percentage point increase in estimated 

global African ancestry. 
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Table 2.4 Top SNPs that significantly (p<5x10
-8

) associated with iron-related phenotypes in JHS and replication results from 

HANDLS. 

                  

      JHS HANDLS 

Trait Chr Nearest Gene SNP Pos(hg19) EA EAF N R2 β SE P EAF N R2 β SE P 

TIBC 3 TF rs8177253 133480192 T 0.24 2347 NA 19.86 1.34 1.8E-47 0.23 329 0.98 26.72 4.91 1.1E-07 

TIBC 3 TF rs9872999 133457514 T 0.62 2347 0.80 -6.55 1.34 1.1E-06 0.60 329 0.93 -14.19 4.33 0.0012 

TIBC 3 TF rs9872999* 133457514 T 0.62 2347 0.80 -11.72 1.28 5.4E-20 0.60 329 0.93 -19.11 4.16 6.2E-06 

TIBC 6 HDGFL1 rs115923437 22678302 C 0.06 2347 0.91 14.84 2.6 1.1E-08 0.05 329 0.96 -5.28 9.93 0.60 

TIBC 16 MAF-DYNLRB2 rs16951289 79790621 T 0.07 2347 0.91 13.38 2.38 2.0E-08 0.08 329 0.97 -15.95 7.92 0.04 

Log_ferritin X GAB3 rs141555380 153906012 T 0.14 2347 0.94 0.17 0.03 1.1E-08 0.13 329 0.98 0.24 0.08 0.0057 

 

*: β, SE, and P were reported for rs9872999 after adjusting for rs8177253. 

Chr: chromosome; Pos(hg19): physical position of the SNP according to human genome build version 19; EA: effect allele; EAF: 

effect allele frequency; :  coefficients representing the estimated change in the raw or transformed trait value associated with each 

additional copy of the effect allele; SE: standard error; R
2
: R

2
 represents the imputation quality provided by minimach. “NA” indicates 

that the actual genotype data from Affy 6.0 array were used in the analyses.  

 

 

 

 

 

 

 

 

 



 

 

 

3
8
 

Table 2.5 Top SNPs associated with TIBC at P<10
-6 

 

Chr Nearest Gene # of SNPs Most Significant SNP Pos(hg19) EA EAF β SE P Imputed (Y/N) R2 Function 

1 BAI2 1 rs182815963 32219928 T 0.00 -93.66 18.51 4.2E-07 Y 0.44 intronic 

2 SERTAD2-LOC400958 7 rs185183332 64967342 A 0.03 -20.46 4.01 3.3E-07 Y 0.69 intergenic 

2 RPRM-GALNT13 2 rs189855038 154428028 C 0.00 -90.97 17.96 4.1E-07 Y 0.31 intergenic 

3 LOC440970 1 3:84190898:A_AT 84190898 AT 0.02 37.67 7.59 6.9E-07 Y 0.36 intergenic 

3 TF 221 rs8177253 133480192 T 0.24 19.86 1.34 1.8E-47 N NA intronic 

4 DCK-SLC4A4 1 rs147549040 72028308 G 0.00 85.49 17.17 6.4E-07 Y 0.39 intergenic 

6 HDGFL1-NRSN1 10 rs115923437 22678302 C 0.06 14.84 2.60 1.1E-08 Y 0.91 intergenic 

6 MIR5695 1 rs112647290 126435741 T 0.03 23.52 4.67 4.7E-07 Y 0.58 intronic 

10 FRMD4A-MIR1265 1 rs59376103 14442418 T 0.04 -17.36 3.37 2.6E-07 Y 0.78 intergenic 

10 KCNMA1 2 rs71475649 79082679 C 0.01 70.63 13.65 2.3E-07 Y 0.33 intronic 

11 LUZP2 1 rs61877888 24602715 G 0.15 9.36 1.87 5.3E-07 Y 0.80 intronic 

13 SLITRK1 2 rs192989741 83958956 G 0.00 -76.76 15.20 4.4E-07 Y 0.38 intergenic 

13 ATP11A-MCF2L-AS1 1 rs114067519 113547283 C 0.04 22.38 4.48 5.9E-07 Y 0.41 intergenic 

16 IGFALS-HAGH 1 rs2256923 1844781 G 0.72 -9.98 2.04 9.9E-07 Y 0.41 intergenic 

16 SLX4-DNASE1 1 rs60860998 3690092 C 0.03 32.70 6.47 4.3E-07 Y 0.33 intergenic 

16 MAF-DYNLRB2 2 rs16951289 79790621 T 0.07 13.38 2.38 2.0E-08 Y 0.91 intergenic 

18 PTPN2-SEH1L 1 rs73407743 12943299 A 0.10 11.06 2.25 9.0E-07 Y 0.73 intergenic 

21 ADAMTS5-MIR5009 1 rs13052896 28481882 G 0.08 11.04 2.25 9.8E-07 Y 0.83 intergenic 

21 HUNK 1 21:33316076:CCTT_ 33316076 C 0.04 18.04 3.63 6.5E-07 Y 0.74 intronic 
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Table 2.6 Top SNPs associated with log_ferritin at P<10
-6 

 

Chr Nearest Gene # of SNPs Most Significant SNP Pos(hg19) EA EAF β SE P Imputed (Y/N) R2 Function 

1 RCC2-ARHGEF10L 1 rs2477740 17831605 A 0.82 0.19 0.04 3.9E-07 Y 0.65 intergenic 

3 FHIT 1 rs13074132 60321082 C 0.18 0.16 0.03 3.0E-07 Y 0.92 intronic 

10 RSU1 1 rs76969309 16824397 A 0.05 0.33 0.06 8.3E-08 Y 0.72 intronic 

10 ADRA2A-GPAM 1 rs17129425 113727270 G 0.19 -0.16 0.03 3.9E-07 Y 0.87 intergenic 

18 CEP192 1 rs1787009 13063889 A 0.13 -0.20 0.04 7.6E-07 Y 0.76 intronic 

19 C19orf18 4 rs192471137 58469524 A 0.00 1.72 0.32 1.2E-07 Y 0.40 intergenic 

X G6PD-GAB3 21 rs141555380 153906012 T 0.14 0.17 0.03 1.1E-08 Y 0.94 UTR-3 
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Table 2.7 Top SNPs associated with log_iron at P<10
-6 

 

Chr Nearest Gene # of SNPs Most Significant SNP Pos(hg19) EA EAF β SE P Imputed (Y/N) R2 Function 

2 ERBB4 5 rs139713297 212423072 A 0.00 0.74 0.14 1.6E-07 Y 0.33 intronic 

2 SPHKAP-PID1 1 rs1727563 229669613 T 0.31 -0.06 0.01 6.1E-07 Y 0.59 intergenic 

4 CC2D2A 1 rs188125026 15490175 C 0.00 1.61 0.32 5.2E-07 Y 0.37 intronic 

4 SLIT2 3 rs143034438 20560387 A 0.01 0.28 0.05 8.7E-08 Y 0.48 intronic 

4 HSP90AB3P-SPP1 1 rs143957415 88837386 T 0.03 0.15 0.03 2.1E-07 Y 0.65 intergenic 

8 EPHX2-CLU 5 rs79882106 27414335 C 0.00 0.80 0.15 8.0E-08 Y 0.32 intergenic 

8 EYA1-MSC 1 rs191222090 72718862 G 0.00 0.49 0.10 6.2E-07 Y 0.44 intergenic 

15 SPRED1 1 rs1522782 38544590 G 0.88 -0.08 0.02 3.8E-07 Y 0.63 intergenic 

15 LINC00052-NTRK3 1 rs139196658 88173631 T 0.00 1.50 0.31 8.6E-07 Y 0.36 intergenic 

16 RBFOX1 1 rs2109459 6440752 T 0.47 0.05 0.01 6.2E-07 Y 0.64 intronic 

16 ZCCHC14 1 16:87446849 87446849 C 0.00 0.82 0.16 2.3E-07 Y 0.37 intronic 

X HTATFS1-VGLL1 1 rs184017266 135612099 A 0.00 31.47 6.26 4.9E-07 Y 0.35 intergenic 

X SETP8 2 rs190571075 116387808 T 0.00 2.86 0.58 8.0E-07 Y 0.32 intergenic 

X HTR2C-IL13RA2 1 rs140631409 114166154 T 0.00 0.95 0.19 8.6E-07 Y 0.53 intergenic 
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Table 2.8 Top SNPs associated with log_SAT at P<10
-6 

 

Chr Nearest Gene # of SNPs Most significant SNP Pos(hg19) EA EAF β SE P Imputed (Y/N) R2 Function 

1 LOC100129138-PRMT6 1 rs113982601 106475276 A 0.10 0.09 0.02 9.4E-07 Y 0.56 intergenic 

2 SPHKAP-PID1 1 rs6756903 229646101 C 0.31 -0.06 0.01 6.5E-07 Y 0.64 intergenic 

2 NGEF 1 rs938575 233768788 A 0.10 -0.07 0.02 3.9E-07 Y 0.88 intronic 

3 TF 4 rs6762719 133480817 G 0.24 -0.05 0.01 5.1E-07 Y 1.00 intronic 

5 LSM11 1 rs145829393 157176316 T 0.02 0.25 0.05 7.8E-07 Y 0.44 intronic 

8 CSMD1-LOC100287015 1 rs140656346 5682652 G 0.00 0.55 0.11 6.1E-07 Y 0.34 intergenic 

8 MFHAS1-ERI1 1 rs115730735 8820986 T 0.05 0.13 0.03 8.7E-07 Y 0.60 intergenic 

10 RHOBTB1 9 rs112298642 62634356 T 0.00 0.39 0.07 2.1E-07 Y 0.60 intronic 

13 KLF12-LINC00381 1 rs67180317 74869018 G 0.27 0.06 0.01 2.9E-07 Y 0.67 intergenic 

14 ESRRB-VASH1 1 rs75838009 77065324 T 0.02 0.21 0.04 1.1E-07 Y 0.75 intergenic 

15 SPRED1 1 rs1522782 38544590 G 0.88 -0.08 0.02 4.8E-07 Y 0.63 intergenic 

15 CKMT1A-CATSPER2P1 1 rs150805357 44016403 C 0.01 -0.30 0.06 6.3E-07 Y 0.53 intergenic 

16 ZCCHC14 1 16:87446849 87446849 C 0.00 0.86 0.16 1.2E-07 Y 0.37 intronic 

17 ASIC2-CCL2 1 rs142195977 32540548 T 0.03 -0.18 0.04 6.1E-07 Y 0.46 intergenic 

19 SMARCA4 1 rs116337692 11107134 A 0.07 -0.10 0.02 6.2E-07 Y 0.63 intronic 
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Table 2.9 SNPs on Chromosome 3 that significantly (P<5x10
-8

) associated with TIBC after adjusting for the top variant 

rs8177253 

 
     Before adjusting for rs8177253 After adjusting for rs8177253    

Nearest Gene MARKER Pos(hg19) EA EAF β SE P β SE P Imputed(Y/N) R2 Function 

TOPBP1 rs112327474 133348668 A 0.03 23.15 4.87 1.96E-06 25.74 4.65 3.13E-08 Y 0.48 intronic 

TOPBP1 rs113969369 133348677 A 0.03 23.17 4.86 1.87E-06 25.78 4.65 2.90E-08 Y 0.48 intronic 

TOPBP1-TF rs79213250 133391145 A 0.03 22.77 4.75 1.62E-06 25.41 4.54 2.16E-08 Y 0.55 intergenic 

TOPBP1-TF rs6806769 133431627 A 0.10 9.56 2.31 3.58E-05 13.24 2.21 2.12E-09 Y 0.69 intergenic 

TOPBP1-TF rs9830001 133433470 G 0.31 7.05 1.28 4.34E-08 7.04 1.23 1.06E-08 N NA intergenic 

TOPBP1-TF rs4078166 133435979 A 0.66 -6.73 1.33 4.23E-07 -11.03 1.27 4.11E-18 Y 0.86 intergenic 

TOPBP1-TF rs6782434 133438834 G 0.66 -6.76 1.33 3.46E-07 -11.06 1.27 2.65E-18 Y 0.87 intergenic 

TOPBP1-TF rs4443173 133439378 G 0.74 -4.65 1.39 8.19E-04 -7.37 1.33 2.75E-08 Y 0.90 intergenic 

TOPBP1-TF rs9843635 133440977 T 0.65 -6.71 1.35 6.42E-07 -11.29 1.29 1.85E-18 Y 0.83 intergenic 

TOPBP1-TF rs11921527 133441167 A 0.52 -0.84 1.26 5.06E-01 -6.81 1.20 1.51E-08 Y 0.85 intergenic 

TOPBP1-TF rs13066859 133442939 G 0.58 -6.65 1.41 2.43E-06 -10.97 1.35 4.20E-16 Y 0.71 intergenic 

TOPBP1-TF rs145713832 133445820 C 0.51 -8.14 1.49 4.63E-08 -10.40 1.42 2.72E-13 Y 0.62 intergenic 

TOPBP1-TF rs6804904 133447231 G 0.62 -6.30 1.34 2.83E-06 -11.08 1.29 6.41E-18 Y 0.80 intergenic 

TOPBP1-TF rs6439432 133448242 A 0.56 -5.51 1.39 7.54E-05 -9.17 1.33 5.44E-12 Y 0.72 intergenic 

TOPBP1-TF rs9820225 133449189 G 0.66 -6.77 1.31 2.26E-07 -10.94 1.25 2.08E-18 Y 0.89 intergenic 

TOPBP1-TF rs6439434 133450371 G 0.66 -6.45 1.28 5.00E-07 -10.81 1.23 1.18E-18 Y 0.93 intergenic 

TOPBP1-TF rs9869311 133451613 T 0.66 -6.48 1.28 3.75E-07 -10.79 1.22 8.74E-19 Y 0.94 intergenic 

TOPBP1-TF rs6439436 133453779 T 0.36 4.67 1.23 1.57E-04 9.75 1.21 1.07E-15 N NA intergenic 
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TOPBP1-TF rs150431546 133455441 G 0.66 -6.69 1.29 2.05E-07 -11.01 1.23 3.96E-19 Y 0.92 intergenic 

TOPBP1-TF rs9872999 133457514 T 0.62 -6.55 1.34 9.97E-07 -11.72 1.28 5.44E-20 Y 0.80 intergenic 

TOPBP1-TF rs79354095 133458401 A 0.66 -6.82 1.31 1.99E-07 -11.29 1.25 2.30E-19 Y 0.89 intergenic 

TOPBP1-TF rs4854596 133459260 C 0.66 -6.81 1.31 2.02E-07 -11.08 1.25 9.02E-19 Y 0.89 intergenic 

TOPBP1-TF rs10935085 133459735 T 0.64 -4.86 1.28 1.51E-04 -9.54 1.23 6.50E-15 Y 0.91 intergenic 

TOPBP1-TF rs8177177 133463195 C 0.49 -0.21 1.18 8.61E-01 -6.74 1.20 1.95E-08 N NA intergenic 

TOPBP1-TF rs8177179 133463457 A 0.66 -6.88 1.29 9.62E-08 -11.12 1.23 1.78E-19 Y 0.92 intergenic 

TOPBP1-TF rs8177182 133464314 A 0.10 4.93 2.18 2.37E-02 11.54 2.09 3.19E-08 Y 0.80 intergenic 

TF rs1130459 133465283 G 0.66 -7.00 1.30 7.43E-08 -11.27 1.24 1.27E-19 Y 0.90 UTR-5 

TF rs148600419 133467945 T 0.10 5.11 2.23 2.21E-02 11.67 2.13 4.47E-08 Y 0.78 intronic 

TF rs8177235 133476083 A 0.06 -17.69 2.48 1.37E-12 -13.35 2.40 3.10E-08 N NA intronic 

TF rs8177237 133476421 G 0.35 0.62 1.32 6.41E-01 -7.49 1.27 3.28E-09 Y 0.86 intronic 

TF rs8177257 133480337 T 0.03 -26.19 3.76 3.33E-12 -19.73 3.60 4.06E-08 Y 0.82 intronic 

TF rs2715632 133485830 T 0.31 1.34 1.26 2.87E-01 9.48 1.29 2.64E-13 N NA intronic 

TF rs2718806 133486093 A 0.40 3.49 1.19 3.43E-03 7.15 1.14 3.59E-10 Y 0.97 intronic 

TF rs8649 133486958 C 0.31 1.57 1.25 2.10E-01 8.27 1.19 4.15E-12 Y 0.99 exonic 

TF rs1358022 133487621 G 0.31 1.51 1.26 2.31E-01 9.61 1.28 1.02E-13 N NA intronic 

TF rs1358021 133488877 C 0.54 12.21 1.21 6.62E-24 6.32 1.16 5.05E-08 Y 0.90 intronic 
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Table 2.10 Effect sizes and P values for top SNPs associated with log_ferritin (p<10
-7

) in JHS before and after adjusting for 

menopause status.  

 

       

Before Adjustment 

  

After Adjustment 

 

 

Chr SNP EA EAF RSQR β SE P β SE P 

 

X rs141555380 T 0.14 0.94 0.17 0.03 1.1E-08 0.16 0.03 1.4E-08 

 
X rs7885619 G 0.15 0.94 0.17 0.03 1.9E-08 0.16 0.03 2.1E-08 

 
X rs7063597 T 0.14 0.94 0.17 0.03 2.9E-08 0.16 0.03 3.1E-08 

 
X rs146474788 A 0.14 0.94 0.17 0.03 2.9E-08 0.16 0.03 3.2E-08 

 
X rs149621038 T 0.16 0.94 0.16 0.03 4.0E-08 0.15 0.03 5.7E-08 

 
X rs138941436 G 0.15 0.94 0.16 0.03 5.7E-08 0.15 0.03 8.8E-08 

 
X rs185814586 G 0.13 0.90 0.17 0.03 6.1E-08 0.17 0.03 6.5E-08 

 
X rs1050828 T 0.14 0.98 0.16 0.03 9.1E-08 0.15 0.03 9.3E-08 

 
10 rs76969309 A 0.05 0.72 0.33 0.06 8.3E-08 0.32 0.06 7.6E-08 

 

Note: menopause status was only available on 2136/2347 JHS 
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Table 2.11 Replication of signals established in prior GWAS of iron measures including Subjects of European descent 

 

Trait 

 

Chr 

 

Index SNP Result in JHS a 

 

Most Significant SNP in JHS b 

 

Nearest Gene 

Index SNP EA EAF β SE P Most Significant SNP EA EAF β SE P LD r2  
 

TIBC 3 rs3811647*(20) A 0.22 17.55 1.43 9.7E-35 rs8177253 T 0.24 19.86 1.34 1.8E-47 1 TF 

TIBC 3 rs1830084(20) T 0.16 16.84 1.60 2.2E-25 rs1830084 T 0.16 16.84 1.60 2.2E-25 1 TF 

log_ferritin 6 rs17342717*(82) T 0.02 0.24 0.10 0.02 rs78273613* G 0.02 0.26 0.10 0.01 0.88 SLC17A1 

log_iron 6 rs1799945*(83) G 0.04 0.08 0.03 7.8E-04 rs129128 C 0.03 0.09 0.02 1.0E-04 0.92 HFE 

log_iron 6 rs1800562(20) A 0.01 -0.03 0.04 0.37 rs1800562 A 0.01 -0.03 0.04 0.37 1 HFE 

log_ferritin 6 rs1800562(82) A 0.01 0.20 0.10 0.05 rs1800562 A 0.01 0.20 0.10 0.05 1 HFE 

TIBC 6 rs1800562(20) A 0.01 -24.63 5.13 1.7E-06 rs1800562 A 0.01 -24.63 5.13 1.7E-06 1 HFE 

log_sat 6 rs1800562(20) A 0.01 0.05 0.04 0.14 rs1800562 A 0.01 0.05 0.04 0.14 1 HFE 

log_sat 6 rs13194491*(20) T 0.02 0.02 0.05 0.75 rs35657082* T 0.01 0.25 0.11 0.02 0.91 HIST1H2BJ 

log_iron 22 rs855791*(22) G 0.83 0.03 0.01 0.08 rs2072860* A 0.73 0.03 0.01 7.7E-03 0.90 TMPRSS6 

log_sat 22 rs855791*(22) G 0.83 0.02 0.01 0.15 rs4820268* A 0.73 0.02 0.01 0.03 0.90 TMPRSS6 

log_iron 22 rs4820268*(83) A 0.73 0.03 0.01 8.4E-03 rs9610638* C 0.80 0.05 0.02 3.5E-03 0.83 TMPRSS6 

* Imputed;  

( ) besides “Index SNP” contains the citation to the initial association study for each individual variant 
a
 Index SNP: Index SNP that was reported to be significantly (P<5x10

-8
) associated with iron-traits in prior GWAS in European 

descents 
b
 Most significant SNP: The proxy for index SNP (LD r

2
>0.8 in CEU 1000G with the index SNP) with the smallest association P 

value in JHS 

LD r
2
 : r

2
 with index SNP  in CEU 1000G subjects 
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(A) 

 

(B) 
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(C) 

 

(D) 

Figure 2.1 The LOD score of genome-wide admixture scan for iron-related phenotypes (A) 

TIBC, (B) log_ferritin, (C) log_iron, and (D) log_SAT. The LOD score is defined as the log 

base 10 ratio of the maximum likelihood of the data under a local-ancestry-associated disease 

model divided by the likelihood of the data under null model. Both alternative and null model 

include covariate adjustment for global ancestry. Positive LOD scores show the association of 

increased African ancestry with higher levels of iron measures, while negative LOD scores show 

the association of increased African ancestry with lower level of iron measures.  
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(A) 

 

(B) 
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(C) 

 

(D) 

Figure 2.2 Manhattan plot of the -log10(P) values by chromosome for iron-related 

phenotypes (A) TIBC, (B) log_ferritin, (C) log_iron, and (D) log_SAT. 
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(A)      (B) 

 

(C)       (D) 

Figure 2.3. Quantile-Quantile (Q-Q) plots of the P-values across all genotyped SNPs tested 

for association with iron-related phenotypes (A)TIBC, (B) log_ferritin, (C) log_iron, and (D) 

log_SAT in models adjusting for age, gender, BMI, and 10 eigenvectors calculated from 

principal component analysis.  Horizontal and vertical lines represent expected P values under 

null distribution and observed P values, respectively. The straight line represents the expected 

distribution assuming no inflation of the statistics.  
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Figure 2.4 Regional plot of the -log10(P) values for the SNPs in the TF region for TIBC 

before and after adjusting for the top SNP rs8177253 in this region (upper and lower 

panels, respectively). The X axis shows the human genome build 19 coordinates (Mb) and the 

genes in the region. The Y axis shows the -log10 association P values of SNPs on the left, and 

recombination rates in cM per Mb on the right. Different colors of shading indicate the strength 

of linkage disequilibrium (LD) (r
2
) between the top SNP and the other SNPs tested in the region. 
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Figure 2.5 Regional plot of the -log10(P) values for the SNPs at the HDGFL1 risk locus for 

TIBC. 
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Figure 2.6 Regional plot of the -log10(P) values for the SNPs at the MAF risk locus for TIBC.
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Figure 2.7 Regional plot of the -log10(P) values for the SNPs in the GAB3 region for 

log_ferritin. 
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CHAPTER III: GENOME-WIDE AND EXOME-WIDE ASSOCIATION STUDY OF 

SERUM LIPOPROTEIN (A) IN THE JACKSON HEART STUDY 
2
 

 

Introduction 

    Lipoprotein (a) [Lp(a)] is an independent risk factor for cardiovascular disease(27, 28). 

Genetic variants in LPA are strongly associated with both an increased level of Lp(a) and an 

increased risk of coronary disease(36), suggesting a causal role of Lp(a) in coronary disease. 

Lp(a) is a low-density lipoprotein (LDL)-like particle that consists of an apolipoprotein(a) 

covalently linked to apolipoprotein B100 by a disulfide bond(26).  Genetic factors have a large 

impact on the variation of Lp(a) levels and approximately 70-90% of the total variance of Lp(a) 

can be attributed to variation within the LPA locus across worldwide populations(34, 35). In LPA, 

a copy-number variation (CNV) which encodes a Kringle(IV) type 2 domain and accounts for 

approximately half of variance explained by LPA locus(37, 38). Recent genome-wide association 

studies (GWAS) in subjects of European descent have identified multiple polymorphisms 

spanning 12.5 Mb on chromosome 6q26-27, which includes LPA, that are significantly 

associated with Lp(a) levels independent of each other and of the Kringle IV size polymorphism 

in LPA (p<5x10
-8

)(37).  A candidate gene study on multi-ethnic populations suggested both 

SNPs at 6q26-27 and the Kringle IV CNV were genomic determinants of Lp(a) level, and the  

proportion of total variance explained by each determinant differ across ethnic groups(39). Lp(a) 

levels in populations of African ancestry are much higher (2~4-fold) than in populations of 

European ancestry(111). A genome-wide admixture study on a population of African American 

                                                 
2
 This unpublished work is under review by the Journal of Human Genetics. 
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(AA) suggested local ancestry at 6q25.3 was significantly associated with Lp(a) after adjustment 

for the Kringle IV CNV(112). However, so far no genome-wide or exome-wide association 

studies of common and uncommon-coding variants, respectively, have been conducted in 

populations of African ancestry to assess the importance of other genomic regions on Lp(a) 

levels. 

Here we present a genome-wide and an exome-wide association study of Lp(a) among AAs 

participating in the Jackson Heart Study (JHS). We observed numerous SNPs at the well-

established LPA locus and a single SNP in APOE significantly associated with Lp(a) (p<5x10
-8

). 

A high burden of coding variants in LPA and APOE were also associated with higher Lp(a) 

levels.  

 

Materials and Methods 

Study subjects and phenotypes 

This study included 1106 AA male and 1789 AA female participants with measured Lp(a) levels 

and available genome-wide genotype data from the JHS, a longitudinal, population-based cohort 

from Jackson, MS(113). The design, recruitment and initial characterization of this study was 

described in details elsewhere(114). Serum Lp(a) levels (mg/dL) were measured using a Diasorin 

nephelometric assay on a Roche Cobas FARA analyzer (115). Fasting low-density lipoprotein 

(LDL), high-density lipoprotein (HDL), triglyceride (TG), and total cholesterol (TC) were 

measured as previously described(91). For each individual treated with lipid lowering therapies, 

the observed lipid value was multiplied by a correction factor (1.352 for LDL, 0.949 for HDL, 

1.210 for TG, and 1.271 for TC)(116). The study protocol was approved by the University of 

Mississippi Medical Center Institutional Review Board, and written informed consent was 
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obtained from all JHS participants. Descriptive characteristics of the JHS participants in this 

study were summarized in Table 3.1. 

 

Genome-Wide Genotype Data and Genotype Imputation 

A total of 3030 JHS participants were genotyped using the Affymetrix Genome-Wide Human 

SNP Array 6.0. Genotyping quality control was conducted using PLINK v1.07 (117). 874,712 

SNPs with a call rate greater than 0.95 and minor allele frequency (MAF) greater than 0.01 were 

included in the genotype imputation target panel. Thirty-eight million SNPs were imputed, using 

MACH 2.0 (118), based on a reference panel consisting of the complete sample of 1000 Genome 

Project participants (Nov 2010, Version 3); only SNPs with imputation quality of r
2
 greater than 

0.3 were included in further analysis. The Kringle IV CNV was not available in JHS participants. 

 

Exome Array 

A total of 2,790 JHS participants, including 2,448 with Affymetrix 6.0 genotype data, were 

genotyped using the Illumina Human Exome Beadchip (version 12v1_rev5), consisting 

of >200,000 putative functional variants selected from >12,000 individual exome and whole-

genome sequences across diverse populations and a range of common complex traits.  

 

Statistical analyses 

Association of local ancestry estimates  

Ethnic differences in Lp(a) levels have been observed between subjects of European and 

African descent, with some populations of African Americans having, on average, almost 4-fold 

higher Lp(a) levels than European Americans(111). To assess the impact of genetic admixture 
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within our AA population on Lp(a) levels, we first estimated the average, or global, African 

ancestry proportion across the genome for all subjects using the software ADMIXTURE (119) 

assuming K=2 contributing populations. We then tested whether this estimated proportion was 

associated with natural-log-transformed Lp(a) levels after adjusting for age, sex, and body mass 

index (BMI).  Next, ANCESTRYMAP (72)
 
was used to estimate local ancestry (probabilities of 

whether an individual has 0, 1, or 2 alleles of Caucasian ancestry) at 738,831 autosomal SNPs 

across the genome for each participant in JHS as previously described (91).  In brief, local 

ancestry was inferred using hidden Markov models based on the genotypes from a panel of 

densely spaced markers with highly differential allele frequencies between African and European 

populations. We performed admixture mapping across the whole genome by regressing natural-

log-transformed Lp(a) levels, adjusting for age, sex, BMI and global ancestry, on the local 

ancestry estimate at each SNP location. The LOD score for association, defined as the log-base-

10 ratio of the likelihood of the data under a model including local ancestry divided by the 

likelihood of the data under the model excluding local ancestry, was computed at each of these 

local ancestry informative marker locations across the genome. For regions showing association 

of increased African ancestry with higher levels of Lp(a), the LOD scores were assigned positive 

values, and for regions showing association of increased African ancestry with lower levels of 

Lp(a), the LOD scores were assigned negative values. LOD scores were plotted across the whole 

genome, and a LOD score of 5 was assumed to be the threshold of statistical significance(72). 

 

Genome-wide association analysis 

Lp(a) levels were natural log-transformed to approximate normality of residuals after accounting 

for age, sex and BMI. The association between Lp(a) and imputed SNPs were tested using 
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112.w1qqmultivariable linear regression models in MACH2QTL v.1.08 (118), adjusting for age, 

sex, BMI and the first 10 principal components generated from EIGENSOFT (120) based on a 

linkage disequilibrium pruned set of SNPs with minor allele frequency (MAF) > 0.05. An 

additive mode-of-inheritance model was assumed for genotype;  coefficients, representing the 

estimated change in transformed trait value associated with each additional copy of the effect 

allele, and there corresponding standard errors were reported 

Manhattan plots were made to illustrate the association results across the genome. 

Quantile-quantile (Q-Q) plots of observed versus expected -log10(P-values) were made to assess 

any systematic inflation of the regression test statistics across the genome before and after 

removing the SNPs in the 6q25.3 region widely reported to be significantly associated with Lp(a). 

The genomic inflation factor (λ), defined as observed median value of the chi-squared statistic 

divided by 0.456, was calculated excluding 6q25.3 SNP results.  The observed chi-square 

statistics were divided by λ to obtain the corrected chi-square statistics and corrected p-values. In 

regions with significant evidence for association, multivariable “conditional” regression models 

that included the imputed genotype data of the most strongly associated SNP as an additional 

covariate were performed to assess the evidence for multiple independently associated SNPs in 

the region. If a second signal also reached genome-wide significance after conditioning on the 

top variant, multivariable regression models were repeated to include the genotypes of both 

SNPs as covariates. Region-specific plots were made to show the magnitude of association 

between all SNPs and Lp(a) levels as well as the estimated linkage disequilibrium (LD) between 

each SNP in the region and the most strongly associated SNP. Finally, in order to control our 

association results for possible confounding due to ancestry, for any observed associated SNP we 

identified the genetic position of the most strongly associated SNP in the associated region, 
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selected the local ancestry estimate at the location closest to that SNP, and performed 

multivariable regression models as described above but now including estimated local ancestry 

proportion as an additional covariate.  

 

Identifying the most important 6q associated SNPs using LASSO-based resample model 

averaging 

 

          In order to identify the SNPs that most likely contribute to the observed association at 6q, 

we applied the LASSO local automatic regularization resample model averaging (LLARRMA) 

method, a method that combines LASSO variable shrinkage and selection with resample model 

averaging and multiple imputation (121), to estimate the probability of each SNP to be included 

in a multi-SNP model that best explains the Lp(a) outcome across alternative realizations of the 

data. We first extracted the genotypes for SNPs on the Affy 6.0 array that mapped within the 1 

Mb region centered around the top genotyped SNP (rs9457986) identified in the initial GWAS 

scan. Then we used fastPHASE (122) to impute the missing genotypes for SNPs in this region 

which failed genotyping on Affy 6.0. Finally, we fitted the LASSO models by regressing the 

residuals of Lp(a) adjusting for age, gender, BMI, 10 principle components and the local 

ancestry estimate of rs9457986 on the genotypes using the LLARRMA package in R, and 

calculated a resample model inclusion probability (RMIP) score for each SNP in this 1Mb region 

on chromosome 6. Linkage disequilibrium (LD) statistics (R
2
 and D’ based on 1000G YRI 

subjects) between variants with RMIP >0.75 were calculated using Gold(123) and plotted using 

Haploview(124).  

Haplotype analyses 

Haplotype analyses were conducted using the ‘haplo.stats’ R package(125), to examine 

specific combinations of allelic variants and whether the observed association signal is likely 
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attributable to a less common unmeasured genetic variant. Haplotypes were constructed among 

the five genotyped variants in the LPA gene with RMIP score >0.75. The ‘haplo.glm’ function 

implemented in the ‘haplo.stats’ R package was used to calculate effect coefficients (β), standard 

errors (SE) and P-values for each haplotype relative to the most common reference haplotype. 

The ‘haplo.score’ function was used to calculate the global score statistic to test the overall 

association between haplotypes and log-transformed Lp(a). The same set of covariates used in 

the genotype analyses were used in the haplotype analyses. 

Single variant and gene-based analysis of SNPs on  Exome Array 

Single variant and multivariant, gene-set or “gene-burden”, association analyses were performed 

for variants appearing on the Exome Array. Gene-burden tests performed included the Madsen-

Browning test(126) and the SKAT-Optimal (127) test, which picks the ‘best’ combination of the 

SKAT(128) and a Madsen-Browning(126) test for gene-based testing. We performed three levels 

of gene-based analyses: (Level 1) the combination of stop-loss, stop-gain, and splice-site 

regardless of MAF; (Level 2) the combination of SNPs in Level 1 and all variants which are 

predicted to be “damaging” using PolyPhen(129) and SIFT(130) regardless of MAF; (Level 3) 

the combination of stop-loss, stop-gain, splice-site and non-synonymous variants with MAF 

upper limits of 3%.  

To investigate how much common or rare SNPs associated with Lp(a) in the single-variant 

analysis could account for gene-based test, conditional analysis was performed by including the 

allele count at these lead SNPs as covariates. In order to control for the possible confounding of 

Lp(a) association results due to an association between both SNP and Lp(a) with other lipid traits 

(HDL, LDL, TG and TC), we performed general linear mixed model regression as described 

above but now including the lipid traits an additional covariate.  
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Statistical significance 

A significance threshold of P <5×10
−8

 was used to define genome-wide significance for all 

individual SNP results (both GWAS and Exome Array).  Test statistics for all individual SNP 

results, both GWAS and Exome-Chip, were adjusted by the genome inflation factor (λ) prior to 

calculating significance (p-values) to account for any possible systematic bias in results. A gene-

based association result was defined to be significant if P<0.05/number of genes. The number of 

genes for Level 1, Level 2, and Level 3 inclusion criteria were 4752, 13658, and 15963, resulting 

in significance thresholds of 1.1 x10
-5

, 3.7x10
-6

, and 3.1x10
-6

, respectively.   

 

Results 

      Descriptive statistics of the JHS participants in this study were summarized in Table 3.1. 

Admixture mapping for determinants of Lp(a)  

Consistent with observed higher levels of Lp(a) in AAs versus EAs, higher levels of 

estimated global, or average, African ancestry was significantly associated with higher levels of 

log-transformed Lp(a) (β=0.76, p=1.3x10
-9

). The estimated global proportion of African ancestry 

obtained from ADMIXTURE was highly correlated with the first principal component from 

EIGENSTRAT (correlation=0.998). Admixture mapping showed a highly significant association 

between increased African ancestry at chromosome 6q25.3 and increased Lp(a) levels (Figure 

3.1) after adjusting for the global proportion of African ancestry. The estimated global 

proportion of African ancestry became non-significant after including local ancestry at 6q25.3. 

SNP rs505000, upstream of SLC22A3 was the local ancestry informative SNP most strongly 

associated with Lp(a) levels (p= 8.2x10
-27

, LOD=24.95).   
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GWAS SNPs associated with Lp(a) at P<5x10
-8

 

Q-Q plots revealed evidence for systematic inflated association results likely due to left-

censoring of the Lp(a) measures in a subset of JHS participants. After excluding all the SNPs on 

chromosome 6, the distribution of the remaining P values across the genome still demonstrated 

inflation. After controlling for the genomic inflation factor (λ=1.14), Q-Q plots revealed no 

substantial evidence for inflation (Figure 3.2). The genomic inflation factor was applied to all 

individual SNP results. Only chromosome 6q region reached genome-wide significance for Lp(a) 

levels (Figure 3.3) after adjusting for the inflation factor. Overall, 804 SNPs reached genome-

wide significance (p<5x10
-8

) (all on chromosome 6), and the top SNPs that reached genome-

wide significance are listed in Table 3.2.  

Lp(a) GWAS Results on Chromosome 6 

All 804 significant SNPs on chromosome 6 mapped to the 6q region, spanning from 153,917,144 

to 163,745,411bp and containing more than 10 genes (Figure 3.4). The strongest signal 

(rs115848955, p=3.1x10
-55

, MAF=0.05) mapped to the LPA gene. LPA gene encodes a modified 

form of low density lipoprotein, in which a large glycoprotein (Apo(a)) is covalently bound to 

apolipoprotein B by a disulfide bridge(131), and structurally, the Apo(a) chain contains a region 

homologous with plasminogen, which gives Lp(a) anti-fibrinolysis activity by competing with 

plasminogen’s binding to fibrin. After adjusting for the top SNP (rs115848955), the top 

associated variant was rs9355814 (p=7.8x10
-21

) (Figure 3.4) and 469 SNPs in the 6q region 

spanning from 159,092,125- 163,745,411 bp remained genome-wide significant. However, after 

adjusting for the local ancestry informative marker closest to rs115848955 (i.e. rs6923917), only 

406 SNPs in a relatively narrow region spanning from 160,633,560 to 161,342,219 bp remained 

significant (p<5x10
-8

). The top SNP in the conditional analysis including local ancestry was 
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rs138429428 (p=4.2x10
-50

, Figure 3.4). The local ancestry estimate closest to rs115848955 

explained an estimated 4.4% of the total variation of Lp(a) after accounting for age, gender, BMI 

and the first 10 PCs. SNP rs115848955 explained an estimated 8.8% of the total variation of 

Lp(a) after accounting for age, gender, BMI, the first 10 PCs, and the local ancestry estimate 

nearest this location. 

Evidence for multiple associated SNPs in the LPA region on chromosome 6  

Fifteen directly genotyped SNPs in the 1Mb region surrounding the top associated SNP 

(rs9457986) on chromosome 6 were identified as having stable, independent associations with 

Lp(a) (RMIP score >0.75) in multivariant models using LLARRMA, as shown in Table 3.3. The 

LD estimates between these SNPs were not high, as shown in Figure 3.5. Five of the SNPs 

(rs6415084 [RMIP=0.93], rs3798221 [RMIP=1], rs9457986 [RMIP=1], rs1367211 [RMIP=0.97], 

and rs1406888 [RMIP=1]) were in the LPA gene. The five Lp(a) SNPs together explained an 

estimated 7.3% of the total variance of Lp(a) after accounting for age, gender, BMI, the first 10 

PCs, and local ancestry estimate at rs9457986. These 5 SNPs were used to construct haplotypes 

and to estimate the effect on Lp(a) levels for each additional copy of a particular haplotype, 

compared to the reference haplotype (Table 3.4). There was significant evidence for an overall 

association between haplotypes and Lp(a) (global P=1.12x10
-55

) ; 6 individual haplotypes were 

minimally nominally associated (p < 0.05) with Lp(a) levels. 

Single variant and gene-based analysis for Exome Array 

Seven SNPs on the Exome Array were associated (p<5x10
-8

) with Lp(a) (Table 3.5) after 

adjustment for the genomic inflation factor, six of them were in the chromosome 6q LPA region, 

and the other was the widely reported chromosome 19 APOE SNP rs7412. Five of the six 

associated chromosome 6q SNPs remained genome-wide significant after adjusting for top 



 

65 

 

GWAS SNP rs115848955 (Table 3.5). Five of the six SNPs (excepting rs41272114) were 

intronic or in intergenic regions. Of the seven SNPs, only rs7412 was not significant in the 

1000G imputed GWAS results. Rs7412 (p=3.3x10
-8

) was poorly imputed based on 1000G data 

and was not included in the original GWAS analyses. In the gene-based analyses, the LPA gene 

reached exome-wide significance for all three levels of SNP inclusion when using the Madsen-

Browning test, as well as for Level 2 and Level 3 SNPs in the SKAT-O test. The APOE gene 

reached exome-wide significance for Level 2 SNPs using the Madsen-Browning test (Table 3.6).  

Uncommon functional variants in LPA and APOE 

All splice-site, stop altering and non-synonymous SNPs in LPA and APOE on the Exome Array 

are listed in Table 3.7 and Table 3.8, respectively. The most significant individual SNP in LPA 

on the Exome Array was rs41272114 (p=6.5x10
-12

, MAF=0.01), which is a splicing-altering 

variant. LPA SNPs were significantly associated with Lp(a) levels in the gene-burden tests 

(p=1.2x10
-21

 for Level 3 SNPs using Madsen-Browning test). The Level 3 gene-based Madsen-

Browning test remained significant after removing the top two individual SNP results (i.e. 

rs41272114 and rs41272110) (Table 3.9). Only three APOE SNPs, including the aforementioned 

rs7412, were successfully genotyped and informative on the Exome Array. A second 

nonsynonymous APOE SNP (rs769455, MAF=0.02) that is specific to populations of African 

descent, demonstrated strong nominal results that were independent of rs7412 (p=2.0x10
-5

 before 

adjustment for rs7412 and p = 3.5x10
-5

after adjustment for rs7412). Together, rs7412 and 

rs769455 explain ~2.3% of the total variation of Lp(a) after adjusting for age, gender, BMI and 

the first 10 PCs. 

 Since APOE is a strong risk factor for lipid traits (LDL and TC), we next investigated 

whether the association between APOE and Lp(a) is attenuated when adjusting for lipid traits. 
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We re-tested the association between signal at APOE and Lp(a) adjusting for the untreated LDL 

and TC levels, and found that the evidence for association decreased, but the signal did not 

totally disappear (Table 3.8, P value for rs7412  dropped from 3.2x10
-8

 to 7.6x10
-4

).  

 

Discussion 

We conducted genome-wide and exome-wide association studies for Lp(a) in 2,896 AA 

participating in the Jackson Heart Study. Higher level of estimated global African ancestry was 

significantly associated with higher level of Lp(a), and this association of global ancestry was 

largely explained by the association between Lp(a) and local ancestry in the chromosome 6q25.3 

region. We observed significant (P<5x10
-8

) associations for hundreds of SNPs spanning ~10Mb 

region on 6q surrounding the LPA gene. Interestingly, after adjusting for local ancestry, the 

region containing significantly associated SNPs got much narrower and was centered over the 

LPA gene (<1Mb). Significant haplotypic effects were also detected in the LPA region that 

implicates numerous causal variants. A single APOE SNP, rs7412 on the Exome Array also 

reached genome-wide significance. Gene-burden tests found significant associations between 

Lp(a) and aggregate collections of SNPs in LPA and APOE. 

     Previously, Deo et al. performed a targeted study of the Lp(a) region, using haplotype tagging 

SNPs, in 4,464 JHS participants and 1,726 AA participants from the Dallas Heart Study.
11

  This 

study also performed a genome-wide admixture analyses based on a panel of 1,447 ancestry 

informative markers including subjects in the upper and lower quintile of the Lp(a) distribution.  

Herein, we dramatically expand the coverage of both common and rare variants across the entire 

LPA region; estimate local genetic admixture at 738,831 autosomal SNP locations and perform 

admixture mapping including all subjects with Lp(a) measures.  Eight-hundred-four SNPs in the 
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6q region (spanning ~10 Mb) were significantly associated with Lp(a) levels (P<5x10
-8

). After 

adjusting for the most strongly associated SNP rs115848955, multiple signals at 6q region 

spanning ~5 Mb remained significantly associated with Lp(a).  After adjusting for the local 

ancestry at 6q25.3, the region that harbors SNPs significantly associated with Lp(a) (p<5x10
-8

) 

became much narrower (from 9.8Mb to 0.7Mb) and was centered around the three genes 

SLC22A, LPL2 and LPA. This result suggests confounding between local ancestry and SNPs 

spanning the larger 6q region identified to be associated with Lp(a). Given the relatively recent 

admixture in the African American population, local ancestry can confound associations across a 

relatively large region surrounding the population-specific, or population-enriched, causal 

variant(s)(132, 133). The observation that the associations in and near LPA remains robust after 

adjustment for local ancestry at LPA while the evidence for association further away 

dramatically declines suggests that the ancestry-specific (or highly-enriched) causal risk variant(s) 

resides in or near LPA and that most, if not all, of the observed associations outside this narrower 

region are spurious associations. Interestingly, a similar extended region of association with Lp(a) 

surrounding LPA has been observed in more homogeneous European populations. An obvious 

candidate to explain some of the differences in association results between European and African 

populations is the Kringle IV polymorphism, which has not been measured in JHS participants. 

Deo et al. demonstrated that the Kringle IV polymorphism explains some of the ancestry effect 

differences, but noted that several associated common SNPs, with strong allele frequency 

differences between populations of African and European ancestry, in and around LPA explain 

the majority of the population differences in Lp(a) levels.
11

 

 A common non-synonymous variant at APOE on Exome Array, rs7412, was identified to 

be significantly associated with Lp(a) in single variant analysis (MAF=0.11, leading to an Arg to 
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Cyc substitution, p=3.2x10
-8

). Another low-frequency non-synonymous variant at APOE, 

rs769455, was also nominally associated with Lp(a) (MAF=0.02, leading to an Arg to Cyc 

substitution, p=2.0x10
-5

). Prior studies have investigated the relationship between APOE 

genotypes and Lp(a) levels, but the results were inconsistent. Some studies reported no impact of 

APOE genotypes on Lp(a) levels(134-138), while others reported significant associations 

between them(139-144). A recent study found that among African Americans, lower Lp(a) levels 

were observed in APOE ε2 carriers, and this association was only observed in subjects with large 

apoA size (defined as >26 Kringle IV repeats) but not in the subjects with small apoA size(145). 

Another study on Caucasian males also reported that the effect of APOE on Lp(a) levels was 

only observed in subjects of largest quartile of apoA size, but with lower Lp(a) levels for APOE 

ɛ4 carriers(141). In our study, APOE ε2 genotype was associated with lower Lp(a) levels, which 

is consistent with prior study on African Americans. 

In summary, we observed that local ancestry at 6q25.3 was an important risk factor for Lp(a) 

in AA, and that SNPs at the well-established LPA locus were significantly associated with Lp(a) 

(p<5x10
-8

) after adjusting for the local ancestry at 6q25.3. Prior to covariate adjustment for local 

ancestry at 6q25.3, the observed region containing associated SNPs spanned ~10 Mb. After 

covariate adjustment the associated region was only 700 kb. We also observed a significant 

association for a non-synonymous variant in APOE. Future large multi-ethnic studies which 

include high-coverage sequence data, and the Kringle IV polymorphism, would be ideally suited 

to better understand the complex genetic architecture of the LPA region that leads to strong 

population differences in Lp(a) levels. 
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Table 3.1 Descriptive statistics of JHS participants for the study of Lp(a) 

 Total Male female 

N 2896 1107 1789 

Age(years) 54.4 ± 12.9 53.8 ± 13.0 54.8 ± 12.8 

BMI 32.1 ± 7.5 30.0 ± 6.3 33.3 ± 7.9 

Lp(a) (mg/dL) 47 (25, 80) 42 (23,74) 50 (26, 84) 

LDL-c (mg/dL)
1
 128 (103, 153) 130 (106, 155) 127 (101, 151) 

HDL-c (mg/dL)
2
 49 (40, 59) 43 (37, 51) 52 (44, 62) 

TG (mg/dL)
3
 93 (66, 131) 98 (70, 139) 89 (62, 125) 

TC (mg/dL)
4
 199 (175, 229) 198 (175, 228) 200 (175, 230) 

 

Note:  

Data are mean ± SE, median (25th, 75th percentiles); lipid levels are untreated;  

1: LDL-c, low-density lipoprotein cholesterol;  

2: HDL-c, high-density lipoprotein cholesterol; 

3: TG, triglycerides; 

4: TC, total cholesterol 
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Table 3.2 Top SNPs that significantly (p<5x10
-8

) associated with Lp(a) after controlling for genomic inflation factor 

1: Chr, chromosome ;2: # of SNPs, number of SNPs that reached genome-wide significance at each locus;  3: Pos(hg19), physical 

position of the SNP according to human genome build version 19; 

4: EA, effect allele;  5: EAF, effect allele frequency; 6: RSQR, RSQR represents the imputation quality provided by MACH. SNPs 

with RSQR<0.3 were excluded from analyses;  

7: β, β coefficients representing the estimated change in the log-Lp(a) level associated with each additional copy of the effect allele;  8: 

SE, standard error; 9: P, p-value after genomic control 

Models were adjusted for age, gender, BMI, and 10 PCs. 

 

Chr1 # of 

SNPs2 

Most significant SNP Pos(hg19)3 EA4 EAF5 RSQR6 β7 SE8 P1 Nearest Gene Function 

6 5 rs9322428 153917946 A 0.85 0.95 0.19 0.03 1.3E-09 RGS17-OPRM1 intergenic 

6 6 rs17539620 154896235 T 0.05 0.85 -0.33 0.05 3.7E-10 CNKSR3-SCAF8-TIAM2 intergenic 

6 24 6:156789295:T_TAC 156789295 I 0.16 0.74 -0.22 0.03 4.7E-11 NOX3-ARID1B intergenic 

6 5 rs6909229 158572379 C 0.07 0.92 -0.27 0.04 3.7E-10 SYNJ2-SERAC1-GTF2H5-TULP4 intronic 

6 19 6:159106232:G_GTC 159106232 I 0.60 0.95 0.18 0.02 4.8E-15 SYTL3 intronic 

6 41 rs926657 159463452 T 0.42 0.99 0.14 0.02 4.6E-11 C6orf99-RSPH3-TAGAP-FNDC1-SOD2-PNLDC1-MAS1-

IGF2R 

intergenic 

6 261 rs149565105 160878078 A 0.02 0.97 0.78 0.06 1.7E-34 SLC22A1-SLC22A2-SLC22A3 intronic 

6 55 rs185414370 160889898 C 0.03 0.92 0.82 0.06 2.9E-40 LPL2 ncRNA_intronic 

6 177 rs115848955 161031660 T 0.05 0.90 0.79 0.05 1.3E-62 LPA intronic 

6 130 rs144788267 161181875 A 0.03 0.75 0.83 0.07 4.6E-30 PLG intergenic 

6 25 rs142799378 161305763 G 0.02 0.85 0.81 0.08 6.8E-23 MAP3K4 intergenic 

6 24 rs3757037 161697400 G 0.66 0.68 0.20 0.03 3.3E-13 AGPAT4 intergenic 

6 27 rs7769089 162147727 T 0.67 1.00 0.16 0.02 4.6E-12 PARK2 intronic 

6 5 rs6927207 163740089 A 0.22 0.75 -0.19 0.03 1.3E-11 PACRG-AS1 ncRNA_intronic 
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Table 3.3 LD statistics of 15 SNPs in the 1Mb hit region on chromosome 6 with RMIP>0.75 for Lp(a) 

Gene RMIP score SNP rs7757997 rs3850659 rs377551 rs2457576 rs7754188 rs6415084 rs3798221 rs9457986 rs1367211 rs1406888 rs9458005 rs783147 rs1406891 rs1247568 rs1247340 

SLC22A2 0.78 rs7757997 1.00 0.36 0.07 0.00 0.02 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 

SLC22A2 1 rs3850659 0.63 1.00 0.07 0.01 0.06 0.00 0.00 0.02 0.04 0.01 0.02 0.01 0.00 0.00 0.00 

SLC22A3 1 rs377551 0.58 0.55 1.00 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

SLC22A3 0.95 rs2457576 0.04 0.25 0.78 1.00 0.03 0.00 0.00 0.03 0.04 0.01 0.00 0.02 0.01 0.00 0.00 

LPAL2 0.98 rs7754188 0.21 0.32 0.06 0.47 1.00 0.00 0.05 0.02 0.03 0.00 0.01 0.01 0.00 0.00 0.00 

LPA 0.93 rs6415084 0.07 0.05 0.07 0.11 0.02 1.00 0.11 0.25 0.00 0.11 0.02 0.00 0.00 0.00 0.01 

LPA 1 rs3798221 0.01 0.23 0.11 0.05 0.36 0.99 1.00 0.03 0.00 0.00 0.02 0.04 0.00 0.00 0.00 

LPA 1 rs9457986 0.05 0.15 0.08 0.74 0.18 0.91 0.94 1.00 0.23 0.01 0.06 0.01 0.00 0.00 0.00 

LPA 0.97 rs1367211 0.23 0.39 0.02 0.39 0.27 0.04 0.10 1.00 1.00 0.20 0.01 0.07 0.01 0.00 0.00 

LPA 1 rs1406888 0.06 0.25 0.03 0.14 0.12 0.39 0.08 0.24 0.66 1.00 0.00 0.11 0.01 0.00 0.01 

PLG 0.89 rs9458005 0.11 0.13 0.12 0.17 0.10 0.22 0.62 0.26 0.24 0.02 1.00 0.00 0.00 0.01 0.00 

PLG 0.86 rs783147 0.27 0.43 0.04 0.13 0.21 0.00 0.25 0.47 0.51 0.44 0.23 1.00 0.01 0.06 0.00 

PLG 0.86 rs1406891 0.03 0.01 0.06 0.15 0.03 0.00 0.11 0.00 0.13 0.09 0.03 0.17 1.00 0.06 0.00 

PLG 0.98 rs1247568 0.04 0.03 0.04 0.17 0.03 0.01 0.21 0.06 0.01 0.10 0.08 0.82 0.32 1.00 0.00 

PLG 0.93 rs1247340 0.08 0.07 0.04 0.06 0.05 0.11 0.07 0.08 0.06 0.13 0.07 0.12 0.03 0.05 1.00 

 

Note: 

The lower left part showed the D’ and the upper right part showed the R
2
; 

RMIP score:  resample model inclusion probability score. 
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Table 3.4 Lp(a) association with haplotypes consisting of SNPs on LPA gene reprioritized 

by LLARRMMA 

 
Haplotype rs6415084 rs3798221 rs9457986 rs1367211 rs1406888 Freq β SE P 

A T G T T T 0.04 0.86 0.06 2.7E-45 

B T G T T C 0.12 0.27 0.04 1.2E-11 

C T G C T C 0.02 -0.12 0.07 0.10 

D T G C C T 0.17 0.17 0.04 1.2E-06 

E T G C C C 0.05 0.07 0.06 0.20 

F C T C T C 0.07 0.03 0.05 0.54 

G C T C C T 0.05 -0.17 0.05 1.7E-03 

H C G C T C 0.20 0.20 0.03 1.3E-09 

I C G C C T 0.06 0.23 0.06 7.0E-05 

Rare * * * * * 0.04 -0.05 0.07 0.45 

Base C G C C C 0.17    

 

Global score= 303.3, df=15, global p-value=1.1E-55 

Freq: Haplotype frequency  

Effect size(β), standard errors (SE), and P values were calculated for each haplotype compared 

with the reference haplotype.  

Significant associations (P<0.05) are in boldface. 

Models were adjusted for age, gender, BMI, 10 PCs, and local ancestry estimate at the top SNP 

rs9457986.  
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Table 3.5 SNPs on Exome-chip that significantly (p<5x10
-8

) associated with Lp(a) after controlling for genomic inflation factor 

Notes: 

1: Chr, chromosome; 2: Pos(hg19), physical position of the SNP according to human genome build version 19; 3: MAF, minor allele 

frequency; 

4: β, β coefficients representing the estimated change in the log-Lp(a) level associated with each additional copy of the minor allele;  

5: SE, standard error; 6: P, p-value after genomic control;  

7: β.adj, SE.adj, and P.adj were reported after adjusting for the lead SNP from GWAS signal, rs115848955; 

8: RSQR.in.GWAS, the imputation quality of the Exome-chip SNP in GWAS 1000G; 9: P.in.GWAS, the p-value after genomic 

control in GWAS; 

Models were adjusted for age, gender, BMI, and 10 PCs. 

 

 

 

 

         after adjusting for rs115848955   

Chr1 Gene Function SNP Pos(hg19)2 MAF3 β4 SE5 P6 β.adj7 SE.adj7 P.adj7 RSQR.in.GWAS8 P.in.GWAS9 

6 MIR1202-ARID1B intergenic rs9478712 156858484 0.14 -0.23 0.03 7.7E-11 -0.20 0.03 6.4E-09 0.99 1.3E-08 

6 SYTL3 intronic rs894124 159096121 0.39 -0.15 0.02 8.8E-10 -0.14 0.02 3.1E-09 0.99 7.1E-12 

6 LPA intronic rs6919346 160960359 0.03 -0.43 0.07 1.5E-09 -0.39 0.06 6.0E-09 0.99 2.1E-09 

6 LPA splicing rs41272114 161006077 0.01 -0.80 0.11 6.5E-12 -0.72 0.11 8.8E-11 0.55 3.2E-11 

6 LPA intronic rs1652507 161082461 0.08 -0.36 0.04 4.4E-16 -0.30 0.04 2.6E-12 0.99 6.3E-19 

6 PARK2 intronic rs6455767 162148335 0.28 -0.15 0.03 1.4E-08 -0.12 0.03 1.7E-06 0.94 5.2E-10 

19 APOE exonic;nonsynonymous rs7412 45412079 0.11 -0.21 0.04 3.3E-08 -0.21 0.04 3.3E-08 0.28 3.3E-03 
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Table 3.6 Genes on Exome-chip associated with Lp(a) in gene-based analysis  

 Madsen-Browning test  SKAT-O test 

 Gene P β SE cmafTotal
1
 cmafUsed

2
  Gene P cmafUsed

2
 # of SNPs 

level 1 LPA 7.4E-14 -0.76 0.10 0.01 0.01      

level 2 LPA 1.5E-13 -0.44 0.06 0.04 0.04  LPA 1.0E-06 0.04 14 

 APOE 1.1E-12 -0.24 0.03 0.13 0.13      

level 3 LPA 1.2E-21 -0.40 0.04 0.55 0.08  LPA 6.2E-17 0.08 24 

Note:  

Lp(a) levels were log transformed and residuals were adjusted for age, gender, BMI, 10 PCs, and family relatedness; 

Gene-based tests were carried out using Madsen-Browning test and SKAT-O test respectively; 

level 1 is the combination of stop-loss, stop-gain, and splice-site regardless of MAF; 

level 2 is the combination of SNPs in level 1 and all variants which are predicted to be “damaging” using PolyPhen regardless of MAF; 

level 3 is the combination of stop-loss, stop-gain, splice-site and non-synonymous variants with MAF upper limits of 3%; 

A gene-based association was defined to be significant if P<0.05/number of genes; 

Number of genes for level 1, level 2, and level 3 were 4752, 13658, and 15963, corresponding to a p value of 1.05 x10
-5

, 3.66x10
-6

, 

and 3.13x10
-6

;   

1: cmafTotal, cumulative MAF of total Exome-chip variants in the LPA gene; 

2: cmafUsed, cumulative MAF of Exome-chip variants in the LPA gene that were included in the  gene-based test. 
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Table 3.7 All stop-altering, splice-site and non-synonymous variants at LPA region 

 
SNP Pos(hg19) Gene MAF A1 A2 β SE Function LOF (level 1) Damaging (level 

2) 

P 

rs186413938 160952780 LPA 8.53E-04 T C -0.28 0.40 exonic;nonsynonymous FALSE FALSE 0.50 

rs41267807 160952816 LPA 1.49E-03 C T -0.34 0.30 exonic;nonsynonymous FALSE TRUE 0.29 

rs41267809 160953642 LPA 3.62E-03 G A -0.60 0.19 exonic;nonsynonymous FALSE FALSE 3.01E-03 

rs3798220 160961137 LPA 8.53E-03 C T 0.23 0.12 exonic;nonsynonymous FALSE TRUE 0.08 

rs139145675 160966559 LPA 9.81E-03 A G -0.47 0.12 exonic;nonsynonymous FALSE TRUE 1.35E-04 

rs144281871 160968889 LPA 5.12E-03 A C -0.02 0.16 exonic;nonsynonymous FALSE FALSE 0.89 

rs143431368 160969693 LPA 8.53E-04 C T -1.24 0.39 splicing TRUE TRUE 2.21E-03 

rs200099994 160998167 LPA 2.13E-04 T C -1.48 0.80 splicing TRUE TRUE 0.07 

rs41267813 160998199 LPA 4.26E-04 A G -1.41 0.57 exonic;nonsynonymous FALSE TRUE 1.64E-02 

rs140720828 160998277 LPA 1.71E-03 A G -0.67 0.28 exonic;nonsynonymous FALSE TRUE 2.11E-02 

rs41272114 161006077 LPA 1.07E-02 T C -0.80 0.11 splicing TRUE TRUE 6.52E-12 

rs76144756 161006084 LPA 8.53E-04 A G -0.90 0.43 exonic;nonsynonymous FALSE FALSE 4.25E-02 

rs41272112 161006105 LPA 0.05 T C -0.12 0.05 exonic;nonsynonymous FALSE FALSE 2.82E-02 

rs41272110 161006172 LPA 2.62E-02 G T -0.35 0.07 exonic;nonsynonymous FALSE FALSE 2.36E-06 

rs7765781 161007496 LPA 0.42 G C -0.08 0.02 exonic;nonsynonymous FALSE FALSE 8.88E-04 

rs41267817 161010615 LPA 2.13E-04 C T -0.62 0.80 exonic;nonsynonymous FALSE FALSE 0.45 

rs41267819 161011993 LPA 2.13E-04 A G -1.90 0.80 exonic;nonsynonymous FALSE FALSE 2.17E-02 

rs200561706 161015041 LPA 4.90E-03 A G -0.59 0.16 exonic;nonsynonymous FALSE TRUE 6.01E-04 

rs142720914 161016427 LPA 2.13E-04 A G 0.94 0.74 exonic;nonsynonymous FALSE TRUE 0.22 

rs199952286 161020632 LPA 4.26E-04 A G 0.10 0.57 exonic;stopgain TRUE TRUE 0.87 

rs113020022 161020641 LPA 6.40E-04 T G -0.37 0.46 exonic;nonsynonymous FALSE FALSE 0.44 

rs41259144 161022107 LPA 1.07E-03 T C 0.46 0.35 exonic;nonsynonymous FALSE TRUE 0.21 

rs201480327 161026077 LPA 4.26E-04 T C -0.06 0.49 splicing TRUE TRUE 0.91 

rs139937718 161026078 LPA 4.26E-04 A G 0.03 0.57 exonic;splicing;nonsynonymous TRUE TRUE 0.96 

rs200802664 161027512 LPA 6.40E-04 C G -0.68 0.46 exonic;nonsynonymous FALSE FALSE 0.16 

rs200163192 161027551 LPA 6.41E-04 A T -0.26 0.45 exonic;nonsynonymous FALSE FALSE 0.57 

LOF: loss of function, including stop-loss, stop-gain, and splice-site regardless of MAF; level 1 of gene-based analysis include SNPs 

with LOF=TRUE. 



 

 

 

7
7
 

Damaging: LOF variants plus non-synonymous variants which are predicted to be “damaging” using PolyPhen; Level 2 of gene-based 

analysis include SNPs with damaging=TRUE 

P: p-value after genomic control 
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Table 3.8 All stop-altering, splice-site and non-synonymous variants at APOE region  

           after adjusting for LDL after adjusting for log_TC 

SNP Gene Pos (hg19) Function amino acid MAF A1 A2 β SE P β SE P β SE P 

rs7412 APOE 45412079 exonic;nonsynonymous R>C 0.11 T C -0.21 0.04 3.2E-08 -0.13 0.04 7.6E-04 -0.15 0.04 2.0 E-04 

rs769455 APOE 45412040 exonic;nonsynonymous R>C 0.021 T C -0.36 0.08 2.0E-05 -0.27 0.08 1.0E-03 -0.31 0.08 2.3E-04 

chr19:45412056 APOE 45412056 exonic;nonsynonymous R>H 6.4E-04 A G 0.09 0.42 0.84 0.33 0.44 0.48 0.30 0.45 0.52 

P: p-value after genomic control 
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Table 3.9 Gene-based analysis in LPA region conditioning on the top two variants 

identified in single-variant analysis  

 
Gene P β SE nsnpsTotal nsnpsUsed   

LPA 1.2E-21 -0.40 0.04 45 24   

 2.1E-14 -0.34 0.04 44 23 after adjusting for rs41272114 

 5.7E-09 -0.33 0.06 43 22 after adjusting for rs41272114 and rs41272110 

 

Gene-based analysis is level 3 Madsen-Browning test (including stop-altering, splice-site, and 

non-synonymous variants with MAF <0.03); 

rs41272114: the strongest associated variant in LPA region identified in single-variant analysis, 

p=6.5E-12;  

rs41272110: the second strongest associated variant in LPA region identified in single-variant 

analysis, p=2.4E-06; 

nsnpsTotal: total number of Exome-chip variants in the LPA gene; 

nsnpsUsed: number of Exome-chip variants in the LPA gene that were included in the level 3 

Madsen-Browning test. 
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Figure 3.1 The LOD score of genome-wide admixture scan for Lp(a). The LOD score is 

defined as the log base 10 ratio of the maximum likelihood of the data under a local-ancestry-

associated disease model divided by the likelihood of the data under null model. Both alternative 

and null model include covariate adjustment for global ancestry. Positive LOD scores show the 

association of increased African ancestry with higher levels of Lp(a), while negative LOD scores 

show the association of increased African ancestry with lower level of Lp(a). 
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(A)       (B) 

 

(C)       (D) 

Figure 3.2 Quantile-Quantile (Q-Q) plots of the P-values tested for association with Lp(a) 
across (A) all SNPs, (B) all remaining SNPs after excluding SNPs on chromosome 6, (C) all 

SNPs after controlling for inflation factor λ, and (D) all remaining SNPs after excluding SNPs on 

chromosome 6 and after controlling for inflation factor λ.  
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Figure 3.3 Manhattan plot of the -log10(P) values by chromosome for Lp(a)  
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(A) 

 

(B) 
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(C) 

 

Figure 3.4 Regional plot of the -log10(P) values for the SNPs in the chromosome 6q region 

for Lp(a) (A) before adjusting for any SNPs, (B) after adjusting for the top SNP 

rs115848955 at this locus, and (C) after adjusting for the local ancestry estimate rs6923917. 
The X axis shows the human genome build 19 coordinates (Mb) and the genes in the region. The 

Y axis shows the -log10 association P values of SNPs on the left, and recombination rates in cM 

per Mb on the right. Different colors of shading indicate the strength of linkage disequilibrium 

(LD) (r
2
) between the top SNP and the other SNPs tested in the region. 
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Figure 3.5  Haploview screen showing an LD plot of 15 reprioritized SNPs (RMIP >0.75) in 

the 1 Mb hit region on chromosome 6. Each square displays the LD D’ value between a pair of 

SNPs. The strength of LD between two SNPs is displayed by the intensity of the color of a 

square.  Thick black triangles depict haplotype blocks by default definition used in Haploview. 

SNP rs6415084, rs3798221, rs9457986, rs1367211, and rs1406888 were on the LPA gene.  

 

 

 

 

 

 

 

 

 

 



 

86 

 

CHAPTER IV: A VARIANT NEAR FGF5 HAS STRONGER EFFECTS ON BLOOD 

PRESSURE IN CHINESE WITH A HIGHER BODY MASS INDEX 
3
 

 

Introduction 

Hypertension is an important risk factor for cardiovascular disease (CVD), the leading 

cause of mortality all over the globe (40). Hypertension is a worldwide problem(146) and its 

prevalence is increasing in China(147). According to the data from 2007-2008 China National 

Diabetes and Metabolic Disorders Study, 26.6% of Chinese adults have hypertension(147), 

causing considerable health and economic burden(148, 149).  

The etiology of high blood pressure involves the interplay among many factors. Risk 

factors include body mass index (BMI), tobacco use, salt and alcohol intake, and physical 

activity(46). An estimated 30-60% of blood pressure variation is explained by genetic factors(49). 

Many genetic variants have been identified by genome-wide association studies (GWAS) 

conducted in multiple populations. Blood pressure is a complex phenotype, and the effects of 

some variants may be stronger in individuals exposed to specific environmental factors. 

However, relatively few studies have investigated the possible interaction between genetic 

variants and environmental factors in affecting blood pressure.  

Several loci first identified in subjects of European descent, including ATP2B1 on 

chromosome 12q21.33, FGF5 on 4q21.21, CYP17A1 on 10q24.32 and CSK on 15q24.1 have 

been validated in East Asians(59, 150). In this study, we genotyped index variants from these

                                                 
3
 A version of this work was previously published as Li J et al. Am J Hypertens. 2015 Jan 23. pii: hpu263 [Epub 

ahead of print] 
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four candidate loci and examined whether the associations with systolic (SBP) and diastolic 

(DBP) blood pressure could be replicated in 7,319 adults (18 years and older) from 9 provinces 

in the China Health and Nutrition Survey (CHNS). We further tested whether the associations 

were influenced by environmental factors including age, sex and BMI. Finally, we attempted to 

replicate specific findings in 1,996 men from the Fangchenggang Area Male Health and 

Examination Survey (FAMHES). 

 

Materials and methods 

Study design 

The China Health and Nutrition Survey (CHNS) is a nationwide longitudinal survey 

designed to examine a series of economic, sociological, demographic, and health questions in the 

Chinese population. The design of CHNS has been described in detail elsewhere(151).  This 

study was conducted in nine provinces in China that vary significantly in terms of socioeconomic, 

health-related, and nutritional status. The sample from each province was drawn using a 

multistage, random cluster procedure, designed to select a stratified probability sample in each 

province, with selection of larger cities and smaller suburban and rural villages, from which 

households were randomly selected. Approximately 19,000 individuals from ~4,400 households 

participated in the overall survey. The first round of data was collected in 1989, followed by 

eight additional waves of data collected in 1991, 1993, 1997, 2000, 2004, 2006, 2009, and 2011. 

The study was approved by the ethics committee at the National Institute of Nutrition and Food 

Safety at the China Center for Disease Control and Prevention and the Institutional Review 

Board at the University of North Carolina at Chapel Hill. Written consent was obtained from 

subjects surveyed in 2009.  
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Data collection and phenotypes 

For this study, we used dietary, clinical, and anthropometric data collected from 

participants who were age 18 years or older and not pregnant at the time of the 2009 survey. 

Blood pressure was measured three consecutive times on the same day, with 10 minutes of 

seated rest before the first measurement and 3-5 minutes intervals between each measurement. 

SBP and DBP were determined by the first and fifth phase Korotkoff sounds(152), respectively. 

The average of the three measurements was used for analyses.  For participants who take 

antihypertensive medications, 10 and 5 mm Hg was added to the average SBP and DBP, 

respectively(153) (154). The smoking responses were dichotomized to define current smoking 

status.  Total salt intake (grams) was estimated based on a combination of three consecutive 24-

hour food recalls at the individual level and a food inventory at the household level(155).  

 

Genotyping 

Fasting venous blood was collected and stored at -80 °C, and DNA was extracted from 

buffy coat using the FlexiGene DNA kit (Qiagen, Valencia, CA, USA), according to the 

manufacturer’s instructions. Four candidate variants for blood pressure(150), including 

rs11105378 at ATP2B1, rs1458038 at FGF5, rs1004467 at CYP17A1, and rs1378942 at CSK-

CYP1A1, were genotyped using TaqMan chemistry (Applied Biosystems). TaqMan genotyping 

assays with probes labeled with the fluorophores FAM and VIC were purchased from Applied 

Biosystems. The Universal PCR Master Mix from Applied Biosystems was used in a 5 µl total 

reaction volume with 10 ng DNA per reaction. Allelic discrimination was measured 

automatically on ABI Prism 7900HT (Applied Biosystems) with Sequence Detection Systems. 

Among 8,221 individuals genotyped, the success rate for each variant was >98%. Genotype 
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distributions were consistent with Hardy-Weinberg equilibrium expectations (P > 0.05). The 

concordance rate between 301 duplicate pairs across all variants was >99.9%.  

 

Statistical analyses 

A total of 7,319 non-pregnant adults, age 18 years or older at the time of blood pressure 

measurement, with complete phenotype, covariate and genotype data were included in tests of 

association between variants and SBP or DBP. The distributions of SBP and DBP, after 

accounting for age, sex and BMI, showed no significant deviation from normality; 

untransformed traits were analyzed. Linear mixed-effects models(156), with a random effect for 

household to account for the unaccounted for correlation between blood pressure measurements 

from members in the same family, were used to test the variant additive genetic main effects. 

The base models included adjustment for covariates significantly (P < 0.05) associated with SBP 

or DBP, age, sex, province and BMI. Additional models also included covariate adjustment for 

current smoking status and total salt intake.  Each variant that showed evidence for a main effect 

association (P < 0.05) with either SBP or DBP was further analyzed for variant-by-environment 

interactions with age, sex, and BMI by including an interaction term to the above base linear 

mixed-effects model. Stratified analyses were performed for variants demonstrating evidence of 

a significant interaction (Pinteraction < 0.05) by categorizing participants according to quartiles of 

the environmental factor and testing main effects of the variants within each quartile.  

 

Follow-up sample 

 We followed up our genotype-by-BMI interaction finding at rs1458038 near FGF5 in 

1,996 men from the FAMHES study using linear regression models with covariate adjustment 
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for age and the main effects for genotype and BMI.  As with CHNS, we also performed stratified 

analyses for the main effects of rs1458038 on SBP and DBP in strata defined by BMI quartiles 

of the FAMHES participants. As described in Yang et al(157), the FAMHES project was 

conducted in Fangchenggang city, Guangxi, southern China in 2009. A total of 4,303 Chinese 

men ranged from age 17 to 88 years old were recruited(158). The subjects used in our current 

study were limited to men aged 20 to 69 years old (average age 37.5 ± 11.1 years) of self-

reported southern Chinese Han ethnicity. 50.8% of men were reported smokers and the average 

BMI was 23.1 ± 3.4 kg/m
2
). Written informed consent to participate in the study was provided 

by all participating men. The Illumina HumanOmni1-Quad BeadChip was used to perform 

genome-wide assay of all samples. Trained nurses obtained a single measure of blood pressure 

on each FAMHES participant by applying a mercury sphygmoma nometer to the right arm of the 

participants when they were seated in a comfortable sitting position after an at least 5-minute rest 

period. Participants were asked to avoid vigorous exercise, drinking, and smoking for at least 30 

minutes prior to the measurement. Medication history related to hypertension was not available. 

   

Results 

 Overall, 7,319 CHNS subjects (3,987 females and 3,332 males) with complete phenotype 

(average SBP and DBP), essential covariates (age, sex, BMI, province), and genotype data were 

included in the analyses (Table 4.1). Higher age, male sex, larger BMI, and current smoking 

were each associated with higher SBP and DBP (data not shown, P < .05). Higher salt intake was 

associated with higher DBP. Province was also associated with blood pressure levels. Blood 

pressure levels were higher in residents from Northern provinces than in residents from Southern 

provinces (Table 4.2), which is consistent with the north-south gradient in the prevalence of 
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hypertension in China observed in another cross-sectional survey(159). When all of these 

covariates were included in a single model, current smoking status and total salt intake no longer 

showed evidence for association with SBP or DBP. Current smoking status was missing on 4 

subjects and total salt intake was missing on 256 subjects. Thus our base model, Model 1, 

included covariates for age, sex, BMI and province while our secondary model, Model 2, had 

additional covariates for current smoking status and total salt intake. 

 Four candidate variants that were previously reported to be associated with SBP and/or 

DBP in prior studies (49) (59) (150) (160) (161) were tested for association with these traits in 

the CHNS study. Two variants (rs11105378 near ATP2B1 and rs1458038 near FGF5) were 

significantly associated (P < 0.00625 = 0.05/8) with both SBP and DBP (Table 4.3). Variant 

rs1378942 near CSK was nominally associated with SBP (P = 7.0x10
-3

).  The direction and 

effect size for all eight association tests were consistent with the previous reports.  Additional 

covariate adjustment for current smoking status and total salt intake resulted in very similar 

findings compared to the base model without these covariates (data not shown). 

 The three variants associated (P < 0.05) with SBP and two variants associated with DBP 

were tested for interaction with each of three environmental factors (age, sex, and BMI) that 

significantly affected blood pressure when controlling for all other covariates. Among the 15 

tests performed, four showed nominally significant results (Pinteraction < 0.05). The observed 

interaction between rs1458038 and BMI on SBP was significant (Pinteraction = 0.0018; β=0.25) 

after Bonferroni correction for multiple tests (Pinteraction < 0.0033, 0.05/15 tests). The interaction 

between rs1458038 and BMI was also nominally associated (Pinteraction = 0.049, β = 0.10) with 

DBP. The two remaining nominally significant interactions were between rs1378942 and sex on 

SBP (Pinteraction = 0.045, β = 1.54) and between rs11105378 and age on DBP (P = 0.026, β = 0.03).  



 

92 

 

Further analyses stratified by BMI levels were conducted in CHNS to interrogate the 

interactions between rs1458038 and BMI on SBP and DBP. We stratified the samples according 

to BMI quartiles and performed main-effects regression analyses of rs1458038 on SBP and DBP, 

adjusting for the secondary model covariates. The T allele of rs1458038 was significantly 

associated with higher SBP in the highest quartile of BMI (Q4: P = 1.9x10
-6

), but the association 

was not significant in lower quartiles (Q1: P = 0.69; Q2: P = 0.11; Q3: P = 5.7x10
-2

) (Table 4.4). 

The magnitude of the effect size estimates increased with BMI (Q1: β = 0.21; Q2: β = 0.88; Q3: 

β = 1.05; Q4: β = 2.93). A similar pattern of interaction of this variant with BMI was observed in 

its effects on DBP.  Here too, rs1458038 genotype had stronger main effects on DBP in 

individuals with the largest BMI (Q1: β = 0.33, P = 0.34; Q2: β = 0.12, P = 0.72; Q3: β = 0.80, P 

= 2.1x10
-2

; Q4: β = 1.23, P = 1.0x10
-3

; Table 4.4). 

In FAMHES, there was a trend (P ≤ 0.10) with consistent direction of effects to CHNS, 

for main effects of rs1458038 on both DBP (P = 0.058) and SBP (P = 0.10) (Table 4.5). The 

interaction effects between rs1458038 and BMI affecting SBP and DBP were in the same 

direction as CHNS but did not reach statistical significance in FAMHES (Pinteraction = 0.36 for 

DBP; Pinteraction = 0.62 for SBP).  Consistent with CHNS, the estimates of the main effects of 

rs1458038 on SBP (Q1: β = 1.10; Q2: β = 0.37; Q3: β = 1.02; Q4: β = 1.63) and DBP (Q1: β = 

0.44; Q2: β = 0.68; Q3: β = 0.49; Q4: β = 1.59) were strongest in men grouped in the highest 

quartile of BMI (Table 4.6). The association between rs1458038 and DBP was nominally 

significant (P = 0.034) only in the highest BMI quartile. Because FAMHES only contained 

males, we could not assess the interaction between rs1378942 and sex on SBP. Finally, due the 

absence of evidence for main effects at rs11105378 (P = 0.96), we did not assess the evidence 

for an interaction between this SNP and age on DBP in FAMHES. 
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Discussion 

In this study, we tested the association of four candidate variants with SBP and DBP in 

7,319 Chinese individuals, from nine provinces, participating in the CHNS and followed up our 

top findings in 1996 Chinese men from the province of Guangxi participating in FAMHES. 

Rs1458038, upstream of FGF5 on chromosome 4 and rs11105378, upstream of ATP2B1 on 

chromosome 12 were significantly associated with both SBP and DBP (P < 0.00625) in CHNS 

while rs1378942, an intronic variant in CSK, was nominally associated with SBP (P = 7.0x10
-3

). 

Most interestingly, in CHNS, we detected a significant interaction between rs1458038 and BMI 

affecting SBP and a nominally significant interaction between this same variant and BMI 

affecting DBP. Specifically, we showed that the effect of the rs1458038 risk genotype is 

considerably stronger in subjects in the heaviest quartile of the BMI distribution.  

Rs1458038, 5’ of FGF5, was identified in Europeans(160), and also confirmed in 

Japanese(150). Located at chr4:81164723, rs1458038 is ~23 kb upstream of the transcription 

staring site of FGF5 (chr4:81187742). The association of nearby variant rs16998073 

(chr4:81184341, LD r
2 

= 0.917 in CEU) was identified in East Asians(59) (162) (163) and 

Europeans(161). Rs11105378, an intronic variant in ATP2B1, was identified by the CHARGE 

and Global BPgen Consortia (49), and confirmed in Japanese (150). Several other variants that 

are in high LD with rs11105378 (r
2 

> 0.8 in CEU) were also identified in different ethnicities (49, 

59, 160, 164). Differences in ATP2B1 mRNA expression levels in umbilical artery smooth 

muscle cells were observed among different rs11105378 genotypes (150). To our knowledge, no 

study has provided any evidence that either rs1458038 or rs16998073 are in any promoter or 

enhancer regions. We replicated the associations of these two variants with both SBP and DBP, 
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reaffirming the importance of these variants on blood pressure in the Chinese population. 

Rs1378942, an intronic variant 2,306 bp from a splice site in CSK, was significantly associated 

with SBP and DBP in Europeans(160); however, only nominal association was observed in East 

Asians(59) and Japanese(150). In our study, we only replicate (P < 0.05) its association with 

SBP, although the effect size estimates for both SBP and DBP were similar in both direction and 

size to the previous study in Japanese. We failed to replicate blood pressure associations with 

rs1004467, an intronic variant 35 bp from a splice-site in CYP17A1. Here too, our directions of 

effect were consistent with the previous Japanese study. However, the size of the effects for DBP 

and SBP were about half of those reported previously for this variant.  

An interesting finding of this study is the evidence for interaction between rs1458038 5’ 

of FGF5 at 4q21 and BMI in affecting both SBP and DBP in CHNS. BMI is a strong risk factor 

that affects blood pressure; the prevalence of hypertension and mean levels of SBP and DBP 

increase as BMI increases(165, 166). While variants 5’ of FGF5 at 4q21 are associated with 

blood pressure in the Chinese population(162, 163), the interaction between these two risk 

factors on affecting blood pressure has not been previously reported. In our study, the increasing 

differences in blood pressure between rs1458038 TT, CT and CC carriers with increasing BMI 

support the hypothesis that larger BMI enhances the effects of the rs1458038 risk allele on 

increasing blood pressure. The strongest evidence for association between rs1458038 and the 

blood pressure measures in CHNS were observed in the highest quartile of BMI. In FAMHES, 

the strongest effects of rs14358038 for both blood pressure traits were also observed in the 

highest quartile of BMI. The observed main effects of rs14358038 in the highest BMI quartile of 

FAMHES men were ~50% larger than in any other quartile for SBP and more than twice as large 

as the estimated effects in any other quartile for DBP. While the tests of rs14358038-BMI 
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interaction on the blood pressure measures were not significant in FAMHES, they were 

directionally consistent with CHNS.  

When assessing the overall impact of the FAMHES results, some differences between 

CHNS and FAMHES are worth noting. FAMHES includes only males from the province of 

Guangxi, while CHNS includes both males and females from nine provinces, including Guangxi.  

The sample size of FAMHES (n=1,996) is considerably smaller than that of CHNS (n=7,319).  

FAMHES men were also younger, on average, than CHNS individuals (average age = 37.5 years 

of age in FAMHES and 50.8 years of age in CHNS). Both the average SBP and DBP measures 

were lower in FAMHES men compared to CHNS men; however, these results are consistent 

with the younger ages in FAMHES and the lower blood pressure values observed in CHNS men 

from Guangxi. SBP and DBP were measured only once in FAMHES compared to three 

measurements (we applied the average) in CHNS. Finally, no hypertensive medication history 

was available in FAMHES. In CHNS, 399 subjects were known to be on hypertensive 

medication and an offset was applied to the SBP and DPB measures in CHNS to account for 

medication use. 

An interaction between variants at 4q21 and BMI in affecting blood pressure is 

biologically plausible. Four genes including ANTXR2, PRDM8, FGF5, and C4orf22 are located 

near rs1458038. ANTXR2 encodes anthrax toxin receptor 2, a protein involved in 

angiogenesis(167). A recent functional study(168), using in vivo small interfering RNA (siRNA) 

silencing in mice, suggested ANTXR2 is the most likely causative gene in the 4q21 region that 

regulates individual differences in blood pressure in humans. The study proposed that the lower 

Antxr2 expression can lead to a decrease in the proliferation of endothelial cells, prevent the 

formation of capillary network, and result in microvascular rarefaction and increase of BP.  
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Many studies observed a developing microvascular rarefaction within skeletal muscle during the 

metabolic syndrome including obesity, insulin resistance/type II diabetes mellitus, dyslipidemia, 

and hypertension. (169, 170). Microvascular dysfunction is a potential mechanism in the 

pathogenesis of obesity-associated insulin resistance and hypertension(171, 172). In addition to 

ANTXR2, FGF5 is also possibly involved in the metabolic syndrome. FGF5 encodes fibroblast 

growth factor 5, a member of the fibroblast growth factor (FGF) family. Several members of the 

FGF family have been shown to affect obesity by regulating fatty acid oxidation and lipid 

metabolism. Treatment with exogenous recombinant human FGF21 protein via infusion or 

injection can lead to weight loss and improvement of lipid profiles in diet-induced obese (DIO) 

mice(173) and diabetic rhesus monkeys(174). Transgenic mice expressing human FGF19 

display increased metabolic rate and decreased adiposity(175). Although FGF5 has not yet been 

shown to have a direct effect on BMI, this member of the FGF family may also play a role in 

regulating metabolism and affecting obesity. The role of PRDM8 and C4orf22 in the 

pathogenesis of obesity and hypertension is not known.  

In conclusion, the association of rs11105378 near ATP2B1 and rs1458038 near FGF5 

with both SBP and DBP were replicated in CHNS. In addition, the magnitude of the associations 

between rs1458038, 5’ of FGF5, and blood pressure were modified by BMI in CHNS 

individuals. While we were unable to formally replicate the interaction in a second Chinese 

cohort, evidence from both studies implicate that the risk genotype at rs1458038 is particularly 

important in Chinese individuals with higher BMI. To our knowledge, this is the first reported 

interaction between a variant in or near FGF5 and BMI on blood pressure. Further studies in 

Chinese and other populations are needed to confirm this finding.  

 



 

97 

 

Conflicts of interest 

The authors stated no conflict of interest. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

9
8
 

Table 4.1 Characteristics of the China Health and Nutrition Survey participants analyzed 

 

Characteristics Female (n=3,987) Male (n=3,332) Total(n=7,319) 

 

mean ± SD median (range)  mean ± SD median (range) mean ± SD median (range) 

SBP (mm Hg) 124.3 ± 20.8 120.0 (76.7, 266.7) 126.8 ± 18.2 122.0 (80.0, 229.3) 125.4 ± 19.7 121.0 (76.7, 266.7) 

DBP (mm Hg)   79.4 ± 11.6   80.0 (44.0, 152.0)   82.5 ± 11.3   80.7 (50.0, 136.0)   80.8 ± 11.6   80.0 (44.0, 152.0) 

Age (years)   50.9 ± 15.0 51.1 (18.0, 98.9)   50.7 ± 15.1 51.0 (18.0, 92.3)   50.8 ± 15.0   51.0 (18.0, 98.9) 

BMI (kg/m
2
) 23.4 ± 3.5 23.0 (13.4, 38.8) 23.4 ± 3.4 23.2 (13.4, 37.2) 23.4 ± 3.5  23.1 (13.4, 38.8) 

Current smoker (%) 3.70% - 55.00% - 27.04% - 

Total salt intake (grams)   4.5 ± 2.6     3.9 (0.1, 22.2)   4.9 ± 2.7    4.3 (0.2, 21.3)   4.7 ± 2.6     4.1 (0.1, 22.2) 

 

Values are means ± SD, medians (range), or %. The average of the three measurements of SBP or DBP was used for analysis. Total 

salt intake was based on a combination of three consecutive 24-hour food recalls at the individual level and a food inventory at the 

household level. The sample size is 7,315 with data on current smoking status and 7,063 with data on total salt intake.  

SBP: systolic blood pressure; DBP: diastolic blood pressure; BMI: body mass index.  
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Table 4.2 Mean levels of SBP and DBP in residents from each province 

Province Number Female Male Total Sample Size Province 

Name 

Range of Latitude 

SBP (mm Hg)       

province=23 124.7 ± 21.2 127.3 ± 16.0 125.9 ± 19.0 768 Heilongjiang (43.2°, 53.3°) 

province=21 130.3 ± 21.7 131.0 ± 19.8 130.6 ± 20.9 719 Liaoning (38.4°, 43.3°) 

province=37 126.8 ± 16.2 130.8 ± 16.8 128.6 ± 16.6 835 Shandong (34.2°, 38.2°) 

province=41 122.8 ± 19.3 125.6 ± 17.3 124.0 ± 18.5 776 Henan (31.2°, 36.2°) 

province=32 125.2 ± 20.8 128.8 ± 18.5 126.9 ± 19.8 1004 Jiangsu (30.4°, 35.2°) 

province=42 122.9 ± 22.5 126.7 ± 18.6 124.6 ± 20.9 729 Hubei (29.0°, 33.2°) 

province=43 123.8 ± 23.9 124.5 ± 18.5 124.1 ± 21.6 969 Hunan (24.4°, 30.1°) 

province=52 119.8 ± 19.7 125.4 ± 19.7 122.3 ± 19.9 564 Guizhou (24.4°, 29.1°) 

province=45 121.7 ± 19.4 121.6 ± 16.7 121.7 ± 18.2 955 Guangxi (20.5°, 26.2°) 

DBP (mm Hg)       

province=23 82.9 ± 13.2 85.5 ± 11.4 84.1 ± 12.4 768 Heilongjiang (43.2°, 53.3°) 

province=21 83.5 ± 11.6 85.7 ± 11.3 84.5 ± 11.5 719 Liaoning (38.4°, 43.3°) 

province=37 81.3 ± 10.0 85.3 ± 10.5 83.1 ± 10.4 835 Shandong (34.2°, 38.2°) 

province=41 80.1 ± 11.1 83.8 ± 10.5 81.8 ± 11.0 776 Henan (31.2°, 36.2°) 

province=32 79.7 ± 11.0 83.5 ± 10.9 81.5 ± 11.1 1004 Jiangsu (30.4°, 35.2°) 

province=42 76.9 ± 11.8 80.0 ± 10.6 78.3 ± 11.4 729 Hubei (29.0°, 33.2°) 

province=43 76.8 ± 11.8 79.8 ± 11.8 78.2 ± 11.9 969 Hunan (24.4°, 30.1°) 

province=52 77.4 ± 11.4 81.1 ± 13.0 79.1 ± 12.3 564 Guizhou (24.4°, 29.1°) 

province=45 77.0 ± 10.6      78.7 ± 9.9 77.8 ± 10.3 955 Guangxi (20.5°, 26.2°) 

 

Values for SBP and DBP are mean ± SE. 
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Table 4.3 Main effect association of variants with SBP and DBP in CHNS 

      Model 1  Model 2 

Variant Chr Nearby Gene EA EAF Trait Sample β SE P Sample β SE P 

rs1458038 4 FGF5 T 0.42 SBP 7,272 1.29 0.28 2.8E-06 7,013 1.28 0.28 5.9E-06 

     DBP  0.70 0.17 5.2E-05  0.68 0.18 1.1E-04 

rs1004467 10 CYP17A1 A 0.65 SBP 7,308 0.37 0.29 0.20 7,048 0.44 0.29 0.13 

     DBP  0.11 0.18 0.54  0.13 0.18 0.49 

rs11105378 12 ATP2B1 C 0.66 SBP 7,187 1.22 0.29 3.3E-05 6,929 1.29 0.30 1.8E-05 

     DBP  0.73 0.18 6.9E-05  0.80 0.19 1.8E-05 

rs1378942 15 CSK C 0.84 SBP 7,276 1.02 0.38 7.0E-03 7,018 0.97 0.39 0.012 

     DBP  0.35 0.24 0.14  0.36 0.24 0.14 

 

 coefficients represent the estimated change in the level of blood pressure associated with each 

additional copy of the effect allele, designed as the blood pressure raising allele. Covariates for 

model 1 were age, gender, province, and BMI. Covariates for model 2 were age, gender, 

province, BMI, current smoking status, and total salt intake. 

EA: effect allele; EAF: effect allele frequency; SE: standard error 
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Table 4.4 Mean levels of SBP and DBP by rs1458038 genotype and BMI quartile in CHNS. 

 

  All participants CC CT TT N β (SE) P 

SBP 
       

Q1 118.9 ± 18.6 118.7 ± 18.3 118.7 ± 18.2 120.1 ± 20.0 1818 0.21 (0.54) 0.69 

Q2 122.8 ± 18.2 121.7 ± 17.4 123.0 ± 18.1 124.7 ± 20.2 1818 0.88 (0.55) 0.11 

Q3 127.1 ± 18.7 126.2 ± 18.6 127.2 ± 18.1 128.6 ± 20.4 1818 1.05 (0.55) 0.057 

Q4 132.8 ± 20.4 130.8 ± 19.2 133.4 ± 20.7 135.1 ± 21.6 1818 2.93 (0.61) 1.9E-06 

        
DBP 

       
Q1 76.4 ± 10.9 76.0 ± 10.6 76.4 ± 10.8 77.1 ± 11.6 1818 0.33 (0.34) 0.34 

Q2 78.9 ± 10.8 78.7 ± 10.8 79.1 ± 10.6 78.9 ± 11.4 1818 0.12 (0.34) 0.72 

Q3 82.2 ± 10.8 81.4 ± 11.0 82.5 ± 10.4 83.0 ± 11.3 1818 0.80 (0.34) 0.021 

Q4 85.7 ± 11.7 85.1 ± 11.7 85.6 ± 11.9 87.4 ± 11.2 1818 1.23 (0.38) 1.0E-03 

 

Q1-Q4: the lowest BMI quartile to the highest BMI quartile 

Q1: BMI <20.93; Q2: 20.93≤BMI<23.11; Q3: 23.11≤BMI<25.65; Q4: BMI≥25.65. Values for 

SBP and DBP are mean ± SE. 
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Table 4.5 Main effect association of rs1458038 with SBP and DBP in FAMHES 

Variant Chr. Nearest 

Gene 

EA EAF Trait Sample β SE P 

rs1458038 4 FGF5 T 0.42 SBP 1996 0.80 0.49 0.10 

     DBP 1996 0.62 0.33 0.058 
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Table 4.6 Mean levels of SBP and DBP by rs1458038 genotype and BMI quartile in 

FAMHES. 

 

  All participants CC CT TT β (SE) P 

SBP 
      

Q1 113.3 ± 13.2 112.7 ± 13.6 112.8 ± 13.1 115.1 ± 12.9 1.10 (0.82) 0.18 

Q2 116.6 ± 14.4 116.4 ± 15.7 116.6 ± 14.2 117.1 ± 12.2 0.37 (0.92) 0.69 

Q3 118.6 ± 14.8 117.7 ± 14.0 118.8 ± 14.8 119.7 ± 16.6 1.02 (0.94) 0.28 

Q4 124.3 ± 17.1 122.9 ± 15.8 124.8 ± 16.8 126.0 ± 20.6 1.63 (1.12) 0.15 

       
DBP 

      
Q1 73.5 ± 8.8 73.3 ± 9.3 73.2 ± 8.7 74.3 ± 8.6 0.44 (0.55) 0.43 

Q2 75.0 ± 9.3 74.2 ± 9.9 75.6 ± 9.4 75.3 ± 8.2 0.68 (0.60) 0.26 

Q3 77.5 ± 9.2 77.0 ± 9.1 77.8 ± 8.8 77.9 ± 10.4 0.49 (0.58) 0.40 

Q4 81.6 ± 11.5 80.1 ± 10.3 82.2 ± 11.3 83.0 ± 14.0 1.59 (0.75) 0.034 

 

Q1-Q4: the lowest BMI quartile to the highest BMI quartile 

Q1: BMI <20.80; Q2: 20.80≤BMI<23.04; Q3: 23.04≤BMI<25.50; Q4: BMI≥25.50. Values for 

SBP and DBP are mean ± SE. 
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CHAPTER V: USE OF SELECTIVE PHENOTYPING TO INCREASE POWER OF 

TWO-STAGE GENETIC ASSOCIATION STUDIES FOR BOTH GENOTYPED AND 

IMPUTED DATA 
4
 

 

Introduction 

        Genome-wide association studies (GWASs) are a powerful method for identifying common 

genetic variants contributing to human disease(176). GWASs require genotyping a large number 

of genetic markers on a large number of subjects. Cost-efficient sample selection for GWASs is 

often necessary due to budget limitations. In the past, the expense of genotyping has been the 

main cost constraint. Today, chip-based high-throughput technologies have dramatically 

decreased genotyping costs and, as a consequence, genotype data is routinely available on large 

numbers of potential study subjects. Much of the burden of expense has now shifted from the 

cost of genotyping to the cost of phenotyping new traits, especially when phenotyping involves 

mRNA abundance data obtained from microarray experiment, novel blood-based biomarkers or 

complex physiological and behavioral traits. Selective phenotyping can be a powerful approach 

for increasing the power of genetic association studies that are under trait-measurement-related 

sample size constraints (77). The approach utilizes available genetic information on the complete 

sample to select a subset of individuals for phenotyping that will improve statistical power for 

the markers of greatest interest. 

            Two-stage GWASs have been routinely applied during the past decade to increase 

statistical power and reduce genotyping costs. Herein, we describe a novel two-stage selective-

                                                 
4
 A version of this work will be submitted for publication. 
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phenotyping design that will increase the power for GWAS studies, with existing genetic data 

and to-be-measured newly quantitative traits. To date, selective-phenotyping designs have been 

proposed for single-stage genetic association studies, where the markers of greatest interest have 

already been determined. A GWAS is typically a discovery-based study, where the identification 

of the “interesting” markers is the overarching goal of the study. Thus, it stands to reason that 

before we can apply selective phenotyping in a meaningful way, we first have to identify which 

markers we should focus the phenotype selection on. This dynamic is a natural fit for a two-stage 

selective-phenotyping design, where in the first stage the investigators phenotype a random 

subset of subjects to identify the most promising markers and then in the second stage the 

investigators use their remaining resources to carefully select a fraction of the remaining subjects 

to phenotype based on their observed genotypes for these most promising markers. We show that 

combining the data from the two stages results in greater statistical power for discovery 

compared to the default method of simply selecting the same number of random subjects to 

phenotype for a single-stage association study. 

       Methods to maximize power using selective phenotyping have been described previously, 

albeit for considerably smaller studies than a GWAS (78-81). The common rationale behind 

these methods is to identify the subset of subjects who are as genetically dissimilar as possible 

with respect to distributions of marker genotype data across all markers of interest. If only a 

single marker is of interest, then selecting an equal number of homozygotes for the minor and 

major allele for that marker to phenotype would be the optimal strategy for most plausible 

inheritance models (i.e. if we ignore the possibility of overdominance). The maximization of 

genotypic diversity simultaneously across multiple markers is a complex optimization problem, 

as some subjects who have the less common homozygous genotype for some markers of interest 
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could also have the more common homozygous genotypes for other markers of interest. The 

computation complexity of the problem grows quickly as the number of target markers (e.g. 

those markers determined to be of interest for the phenotype-selection optimization) increases. 

            Simulated annealing (SA) is a computationally efficient algorithm for complex 

optimization problems, such as finding the global minimum or maximum of functions containing 

many variables (177, 178)
,
(179). In this study, we describe a selective-phenotyping method that 

uses SA to identify the optimal subset of subjects to be phenotyped in Stage 2 of a two-stage 

GWAS, based on their available directly genotyped or imputed dosage data across multiple 

markers of interest, as determined by the results from a subset of randomly phenotyped subjects 

used in Stage 1. We then combine the results from the two stages using a joint-analysis approach 

to assess the overall significance of all markers, including those not included in the Stage 2 

selection process, as all samples will have available phenotypic and genetic data on all available 

genotyped and imputed markers. Critical parameterization of the two-stage approach includes the 

proportion of available subjects to phenotype in Stages 1 versus Stage 2 and number of markers 

to include in the phenotype-selection process in Stage 2. To underscore this point, power is 

ideally optimized when the truly, and only truly, associated markers are selected for the Stage 2 

optimization process that is allowed to consider the largest possible sample of subjects available 

for phenotyping. The probability of the true markers being included in the Stage 2 selective-

phenotyping optimization can be increased by either increasing the proportion of subjects to be 

randomly phenotyped in Stage 1 or by increasing the number of markers included in the Stage 2 

selection algorithm, however, the trade-off is that either fewer samples are then available for the 

Stage 2 selection strategy or the proportion of true markers included in the optimization 

algorithm is likely diluted thereby reducing the benefits of the phenotype-selection algorithm. 
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Materials and methods 

Simulated-annealing algorithm for selective phenotyping 

In this study, we use a SA-based algorithm to maximize the leverage of specific targeted 

markers by selecting subjects to phenotype from the larger cohort pool that maximizes the 

average genotype dispersion across that set of targeted genotyped markers included in the 

selection process. For a targeted marker, increasing the dispersion, or variance, of the marker 

genotypes will result in greater expected precision of the regression coefficient that describes the 

relationship between the outcome measure and the marker, leading to greater statistical power to 

identify a significant association between the outcome and the marker when such a relationship 

exists.  For a given marker j, the dispersion = ∑          
  

    which we label as   , is the sum 

of the squared difference between each of the n subjects genotypes and the overall genotypic 

mean, where genotype is scored 0, 1 or 2 for each subject corresponding to the carried number of 

copies of the minor allele. We further define the average of    across m target markers as 

 = 
∑   

 
   

 
 = 

∑ ∑          
  

   
 
   

 
.  

Parameters in our simulated annealing algorithm include the function to be optimized 

 = 
∑   

 
   

 
 = 

∑ ∑          
  

   
 
   

 
, the initial temperature (  ), the rate of cooling ( ) and the 

convergence criteria ( ). We assume that we have access to genotype data on        subjects 

across   (=1,000,000) markers prior to phenotype sample selection, but we can only afford to 

measure the phenotypes of         subjects (                ) in total. We refer to 

          as the proportion of these         subjects to be phenotyped in Stage 1, so that 

                         subjects are phenotyped in Stage 1 and              
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                subjects are phenotyped in Stage 2. We refer to           as the 

proportion of markers to be used in the SA algorithm for selecting the    subjects, from the 

       –     possible subjects, to be phenotyped in Stage 2; thus, (                ) 

candidate markers are used in the SA algorithm to select subjects for phenotyping in Stage 2. We 

denote    as subject i,   as the set of    subjects in Stage 1 so that   ={     , …   },   
  as a 

set of    subjects selected in Stage 2 from the complete (         ) sample at iteration k so 

that   
 ={           , …      }. We denote      

 as a set of         subjects after 

combining the    subjects in Stage 1 and    subjects selected in Stage 2 at iteration k together, 

so that     
       

 . We denote   
  as the set of (            ) subjects left at 

iteration k so that   
 ={                 , …       }. Let    

    =   
       , where    is 

a subject a randomly selected from   
  and removed from   

  , and    is a subject b randomly 

selected from   
  and added to   

   . Thus,     
   =     

   . Let  
 
 =  

∑ ∑          
   

   
  
   

  
 for set 

of subjects i    
 , respectively. Our goal is to iteratively maximize   using simulated annealing. 

The iterative approach is as follows:  

1) Select a random    (Stage 1 samples) and to be removed from possible Stage 2 

samples.  

2) Set   , the starting temperature,  , the constant cooling rate, and  , the user-defined 

threshold for convergence. 

3)  Randomly select initial random Stage 2 sample   
 , and calculate  

 
based on   

 .  

4) Create   
  by randomly removing one subject from   

  and randomly adding one 

subject from   
 .  

5) Calculate  
 
based on   

 .  
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6) If  
 
   

 
, sample   

  is replaced by sample   
  as the new “best” sample. Else, 

sample   
  is replaced by sample   

  with probability = exp{  
 
  

 
    }.That is, 

always accept a favorable move and sometimes choose the less favorable move with 

decreasing probability as the system cools.  

7) Define         . 

8) Continue steps 8-10 iteratively until step 11 is satisfied, create sample   
    from 

sample   
  in a similar fashion, and calculate  

   
 and  

 
 based on   

    and   
 , 

respectively. 

9) If  
   

   
 
, sample   

  is replaced by sample   
    as the new “best” sample. Else, 

sample   
  is replaced by sample   

    with probability = exp{  
   

  
 
    }. 

10)            

11) Stop when       

 

The final sample of    at the last iteration is then selected as the optimal sample to be 

phenotyped in Stage 2.  

           The algorithm is programmed in R (version 2.11.0; www.r-project.org). The parameters 

used for the runs of the SA algorithm described herein were as follows:   =400,  =0.9999, 

 =0.000001. The impacts of values assigned to these parameters were explored during the course 

of the study. 

 

Data simulations  

Two-stage approach using genotyped data 

http://www.r-project.org/
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      We assumed a normally distributed trait with mean 0 and variance 1 that is associated, in an 

additive fashion, with an “index” marker (a SNP scored 0, 1 or 2 for number of copies of the 

minor allele). We considered a range of allele frequencies [see below] for the index marker. For 

each simulation condition, we assigned a minor allele frequency (MAF) for the index marker and 

a corresponding effect size β for the index marker given its’ MAF based on our assumption that 

the proportion of total variation explained by the associated index marker with respect to MAF is 

constant. We assumed that the MAFs for the remaining (    ) non-index markers (important 

for Stage 2) follow a uniform distribution within the range from 0.05 to 0.5 and that these 

markers are not associated with the trait. Genotype data for each genotyped marker was 

simulated using the binomial distribution given their corresponding MAF assuming marker 

genotypes follow Hardy-Weinberg equilibrium. The phenotype data were simulated, using 

random draws from a normal distribution, conditional on the genotype at the index marker and 

its corresponding β.  Statistical tests of significance (testing H0: β = 0 vs HA: β ≠ 0) were 

performed using t-tests implemented in R. 

        We performed 500 simulations for each model we tested. For each simulation, we first 

simulated the index marker data and trait, conditional on the index marker, on the    subjects 

phenotyped in Stage 1 and then assessed the significance of the index marker using a standard t-

test. If this p-value was less than          , we then we applied the SA-based approach to 

select    subjects to be phenotyped in Stage 2 from the remaining           subjects, so 

that  
∑ ∑          

   
   

  
   

  
 is maximized across the    Stage 2 selected markers; otherwise, we 

randomly selected    subjects to be phenotyped in Stage 2 from the remaining             

subjects (Stage 2 sample selection is assumed to be random with respect to the index marker if 
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that marker is not included in the SA optimization). Phenotypes were then simulated for the     

Stage 2 participants conditional on their genotype at the index marker. 

We considered two previously described alternative strategies for evaluating the 

significance of our two-stage findings (180), namely the “joint-analysis” and the “replication-

based analysis” approaches. For the joint-analysis approach, after selecting    Stage 2 subjects, 

the index marker genotype-phenotype data were combined across all subjects from Stages 1 and 

2 and we calculated the significance of the association between the trait and the index marker 

using the final sample of                 subjects. The overall power for the joint-

analysis design was defined by the proportion of simulations (out of 500) that achieve a p<5x10
-8 

(a standard GWAS significance threshold that is likely conservative in this setting of evaluating 

only directly genotyped markers). For the replication-based analysis design, power was defined 

as the proportion of simulations where 1) the index marker was selected for inclusion in Stage 2 

AND 2) the index marker achieved a p<0.05/   using only the    Stage 2 samples. Power for 

both approaches was compared to the power obtained from a single-stage study based on 

randomly selecting all       samples for phenotyping. To reduce random noise in the 

comparisons, for each simulation, the    samples in the joint-analysis, replication-based analysis 

and random sample approaches were the same    samples.  

        In order to investigate how the power of the two-stage designs depends on           

and          , and to determine good choices for           and           for index 

markers with different MAFs, we calculated the power for the different study designs using 

various combinations of parameters: MAFs [0.05, 0.1, 0.2, 0.4]             [0.00001, 

0.000025, 0.00005, 0.0001, 0.0002, 0.0005]             [0.375, 0.5, 0.625, 0.75, 0.875]. We 

assumed that                (combined # subjects phenotyped in Stage 1 and 2 / # number 
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of total subjects with genotype data) = 2,000/4,000 in all situations. We further assumed that the 

proportion of total variation explained by the associated index marker was independent of MAF 

and equal to a constant value of 2%. 

 

Two-stage approach using imputed genotype data 

             Genotype imputation is a widely used zero-genotyping-cost method that can increase 

both genomic coverage and power to detect genetic associations (181).  In addition to MAF and 

effect size, statistical power for an imputed index marker is also a function of the genotype 

imputation quality for the variant. Unlike standard power analyses for single variants, for our 

selective-phenotyping approach, the power for the index SNP is also a function of the MAF and 

imputation quality of the other m2-1 non-index Stage 2 selected markers, as these features will 

impact which samples are ultimately selected for phenotyping in Stage 2.  

             For the index marker, we calculated statistical power for the joint-analysis design (using 

significance criterion p<5x10
-8

), with different combinations of parameters: MAFs [0.05, 0.1, 0.2, 

0.4]             [0.625, 0.75, 0.875]   R
2
 [0.95, 0.80, 0.65, 0.50], and compared these results 

to what would be obtained using a random phenotype sample selection approach. We set the 

parameter           =0.00005 and, similar to the previous simulations for genotyped markers, 

assumed the true marker genotype explained 2% of the total trait variation. For the index marker, 

we generated probabilities                      of genotype AA, Aa, and aa, respectively, for each 

individual i using the Dirichlet distribution given the MAF and corresponding R
2
. We calculated 

allelic dosage for individual i at marker j as                  . For each subject, we 

randomly drew the true value of the index marker genotype, from the posterior probabilities for 
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the three possible genotypes (AA/Aa/aa), and simulated the phenotype data    using a normal 

distribution with the mean conditional on the assigned index marker genotype. 

           For all other markers included in the Stage 2 selection process, we did not assume values 

of MAF or R
2
 (imputation quality). Instead, we sampled these values from their approximate 

empirical distributions based on Hapmap Phase II imputed data from the Jackson Heart Study 

(JHS). We first made a histogram of the distribution of MAFs of HapMap Phase II imputed data 

from the JHS and fitted a high-ordered spline function (f) that reasonably fitted the observed 

distribution (Figure 5.2). We then sampled MAFs under f, using a Monte Carlo method, to 

obtain the MAFs for the non-index Stage 2 markers. To be specific, each time we drew a random 

number x from uniform distribution within the range from 0.005 to 0.5 (the range of MAF in 

JHS HapMap Phase II imputed data), and a random number y from the uniform distribution with 

bounds ranging from 0 to the maximum value that can be achieved by f. If the point (x,y) was 

above the spline of f, we rejected the marker; if the point (x,y) was under the spline, we accepted 

the marker in our sample.  

               Imputation quality varies as a function of MAF, with less common markers having 

poorer imputation quality on average than more common markers. We noted that the distribution 

of R
2
 appeared to follow a      distribution for markers within a given MAF range. To estimate 

this conditional      distribution, we estimated the mean (   and variance (   of the imputation 

quality R
2 

for a given MAF. To accomplish this, we created a fine grid of consecutive MAF bins 

and for each bin we obtained the mean and variance of R
2
 values within the bin. We then fitted 

higher-ordered splines to create functions of the mean and variance for a given MAF. We 

assumed, within each MAF bin, that R
2
 follows a      distribution with parameters a and b, and 

thus,       
 

   
 and       =

  

             
. By inverting the dependent and independent 
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variables in these two functions we solve for the parameters      
   

 
 

 

 
  and     

 

 
 

     
   

 
 

 

 
  for the corresponding Beta function. For a given selected marker we then 

randomly generated a R
2 

from the      distribution Beta (a,b) conditional on the marker’s MAF. 

To assess the overall fit of our      model, we overlayed the curve generated by the density 

function of the      distribution Beta (a,b) on the corresponding empirical density of R
2
 values 

(histograms) for a range of MAF bins (Figure 5.1). Based on these results, it appeared our model 

was reasonable 

………We then performed the Stage 2 SA sample selection model on allelic dosage     for the 

   Stage 2 markers to select the subset of subjects which maximizes the value of 

∑ ∑          
   

   
  
   

  
  The association p-value for the index marker j* was calculated by regressing 

the simulated phenotype    on the allelic dosage     .  

 

Example:  C-Reactive Protein (CRP) in the Jackson Heart Study (JHS) 

          We evaluated the performance of our two-stage selective-phenotyping approach in a study 

with real data. JHS is a longitudinal, population-based cohort study that aims to investigate 

cardiovascular disease risk factors in African Americans from Jackson, Mississippi(113). The 

design, recruitment and initial characterization of this study was described in detail 

elsewhere(114). We first performed a GWAS on a total of 2987 JHS subjects with available CRP 

phenotype data and genome-wide genotype data imputed based on 1000 Genome Project panel. 

The levels of CRP were naturally log-transformed to approximate normality of residuals after 

accounting for age, sex and BMI. Extreme values of CRP (>100) were removed as the extreme 

values suggested acute infection in those subjects. Thirty-eight million markers were imputed, 
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using MACH 2.0 (118), based on a reference panel consisting of the complete sample of the 

1000 Genome Project participants (Nov 2010, Version 3); only markers with MAF > 0.05 and 

estimated imputation quality of R
2
 > 0.3 were included in further analyses. The association 

between CRP and imputed markers were tested using multivariable linear regression models in 

MACH2QTL v.1.08 (118), adjusting for age, sex, BMI, smoking status (yes/no), and the first 10 

principal components generated from EIGENSOFT (120). An additive mode-of-inheritance 

model was assumed for genotype;  coefficients, representing the estimated change in 

transformed trait value associated with each additional copy of the effect allele, and the 

corresponding standard errors were reported. 

        We next considered the scenario where we could only afford to measure CRP in 1500 JHS 

subjects in total. Based on the results of simulated data, we used the parameters setting as 

          =0.75 and           =0.000025. Specifically, we first randomly selected 1125 

(=1500 0.75) subjects in stage 1 and performed a GWAS on this subset of subjects. Due to the 

high coverage of 1000 Genome Project panel and linkage disequilibrium (LD) structure among 

markers, we selected only the top marker from each of the top 25 loci instead of the top 25 

individual markers (i.e. we selected only one SNP at each locus, based on physical location, so 

that the final selected 25 markers were not likely to be in high LD with each other),identified in 

Stage 1, to be followed up and included in SA phenotype-selection process in Stage 2. In Stage 2, 

we identified the 375 subjects, from the remaining 1862 (=2987-1125) JHS subjects available for 

phenotyping, that maximized the average genotypic dispersion across these 25 selected markers. 

Next, we combined the imputed genotype and phenotype data from the 1125 subjects in Stage 1 

and the 375 subjects selected in Stage 2 to assess whether there was evidence of association for 

the same loci found at p<5x10
-8

 in the complete JHS sample. In comparison, we used the same 
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1125 subjects in Stage 1 combined with 375 randomly selected JHS subjects from Stage 2 and 

made the same assessments. We performed 100 different trials, each using a different random 

Stage 1 sample, and calculated the number of times each established GWAS signal reached a p-

value of 5x10
-8

, 5x10
-7

, and 5x10
-6 

using either of the two approaches.  

 

Results 

Two-stage design using directly genotyped markers 

  Our results showed we can get modestly increased power using a two-stage joint-analysis 

selective-phenotyping study over studies based on a random selection of subjects. In general, 

estimated power was greatest when including large samples in Stage 1 (                ) 

combined with higher selectivity of markers (lower          ) for inclusion in the Stage 2 SA 

phenotype-selection algorithm, where the relative increase in power approached 10% compared 

to using unselected samples. Power comparisons between our two-stage selective-phenotyping 

approach, using joint analyses, and the conventional single-stage random sample approach are 

shown in Figure 5.3 and Figure 5.4 across alternative values of           and          , 

respectively. The relationship between the relative increase in overall power [(overall power 

achieved by SA - overall power achieved by random selection)/overall power achieved by 

random selection] and           across different choices of index marker MAF and 

          are shown in Figure 5.5. In most scenarios, the maximum benefit in power gained 

by our two-stage joint-analysis approach over random selection was achieved using higher 

values of            0.75, 0.875). In most scenarios, the minimum benefit was achieved for 

markers with higher MAF (0.4). We also investigated the relationship between the relative 

increase in power and           for different scenarios of the index marker MAF and 
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          (Figure 5.6). No obvious pattern between relative increase in power and 

          was observed for lower           values, but a strong trend was observed when 

          was as high as 0.875 (a lesser trend was observed for           = 0.75) for lower 

power being associated with increasing values of          .  The power achieved by the two-

stage replication-based study design was considerably worse than both random sample selection 

and the two-stage joint-analysis design (data not shown), despite the phenotypic sample 

enrichment in Stage 2. Thus, we dropped the two-stage replication study design from further 

consideration. 

 

Two-stage replication study using imputed genotype data 

 Our results using imputed genotype data were consistent with the results from the directly 

genotyped results, showing we can achieve increased power using the two-stage joint-analysis 

study over studies based on random selection of subjects. Not surprisingly, the relative power of 

an imputed index marker is markedly lower than when using a directly genotyped index marker 

when the index marker has low imputation quality. However, the relative gains or our proposed 

approach compared to using randomly phenotyped samples still exists even for poorly imputed 

index markers. The overall power depending on           is shown in Figure 5.7. No obvious 

pattern between relative increase in power and           or MAF was observed, suggesting 

that our approach is not overly sensitive to parameter choices and that its performance using 

imputed data is robust across a wide range of alternative scenarios. 

C-Reactive Protein (CRP) in the Jackson Heart Study (JHS) 

The top markers that reached genome-wide significance in a total of 2987 JHS subjects 

are listed in Table 5.1.  Among the five signals, three of them (CRP, APOE, and HNF1A) were 
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established GWAS signals, and thus we tested how many times (out of 100 random trials) each 

of the three established GWAS signal reached a P value of 5x10
-8

, 5x10
-7

, 5x10
-6

, 5x10
-5

, and 

5x10
-4

 using our two-stage selective-phenotyping approach and a random phenotyping selection 

approach (Table 5.2) that included a total of n=1500 JHS participants. The CRP locus signal was 

detected at a genome-wide significance level (P<5x10
-8

) in all 100 trials using both approaches. 

The APOE signal was detected at genome-wide significance level in 29 out of 100 trials using 

the selective-phenotyping approach and only 10 times using the random selection approach. The 

HNF1A signal was detected using a genome-wide significance threshold only once using both 

approaches, and the performance of both approaches were similar when using less stringent 

significance levels.  

Discussion  

        Two-stage genetic association studies have played an important role in reducing the cost 

and increasing the power of genetic association studies. Historically, two-stage designs have 

involved genotyping a subset of phenotyped subjects (in Stage 1) on 100,000’s of markers 

contained on a large-scale genotyping array and then performing targeted genotyping on the 

remaining phenotyped subjects (in Stage 2) on a subset of the markers that demonstrated the 

greatest evidence for association in the Stage 1 participants.  Here, we proposed an alternative 

two-stage genetic association study design, where it is assumed that we have an unmeasured 

quantitative trait of interest but that all subjects have available directly measured or imputed 

genome-wide genotype data. We described a selective-phenotyping method that uses SA to 

identify the optimal subset of subjects to be phenotyped in Stage 2 of a two-stage GWAS based 

on their available directly genotyped and/or imputed dosage data across markers that had the 

strongest evidence for association in a subset of randomly selected, newly phenotyped, Stage 1 
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participants. The method is particularly designed for the scenario where cost, or other, 

constraints prohibit the phenotyping of the entire cohort of participants that have available 

genetic data. Through both simulations and a real example, we show that our two-stage selective-

phenotyping approach can increase the power to identify significant associations between newly 

measured quantitative-trait phenotypes and either directly or imputed genotyped markers 

compared to studies that randomly select subjects for phenotyping.  

             We proposed to use a computationally efficient method based on SA to find the maximal 

genotypic dissimilarity across multiple selected markers of interest, rather than simpler methods 

that only consider a single marker at a time. In comparison with other optimization algorithms, 

SA does not require calculation of derivatives and subsequent root finding, which can be 

intractable in many complicated settings. The SA optimization algorithm, as described, does not 

make any assumptions regarding Hardy-Weinberg equilibrium or marker independence and is 

remarkably flexible. While not described herein, weights can be readily included for certain 

markers, if desired, to increase the influence of these markers on sample selection. Along these 

lines, our two-stage approach could include prior information (e.g. force including a previously 

reported associated marker in the optimization scheme regardless of Stage 1 results) to influence 

phenotype selection in the remaining samples. We recommend considering LD pruning top 

markers prior to marker selection for Stage 2, as failure to do so will result in some regions 

having disproportionate influence on the phenotype selection procedure. An investigator might 

also choose to optimize alternative functions depending on their underlying hypothesis. For 

example, if an investigator wants to assume a rare-recessive mode-of-inheritance model then 

genotype could be rescored 0 (non-carrier) or 1 (carrier of at least on risk allele), rather than our 
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described values of 0, 1 and 2 based on assuming an additive inheritance model, prior to 

conducting the SA optimization. 

             We attempted to identify reasonable parameter choices for selecting samples, chosen 

from a larger cohort, for phenotyping (for both Stage 1 and Stage 2 samples) to provide greater 

power than a simple random sample selection for phenotyping.  The balance is between selecting 

a high enough proportion of subjects in Stage 1, so that the truly associated markers rise to the 

top of the results (so they can be included in sample selection in Stage 2), while leaving enough 

remaining subjects for phenotyping in Stage 2, where we can see some benefit of performing 

selective phenotyping for these markers. Interestingly, our approach was not overly sensitive to 

parameter choices and remained robust across a wide range of MAFs,          , and 

         . In general, though some benefit of increased power was observed across most 

combinations of          , and          , it appears that using a larger sample selection in 

Stage1 and a stricter marker inclusion in Stage 2 provides the best results. 

 Unlike more traditional two-stage genotyping designs, all markers analyzed initially in 

Stage1 will also be evaluated in the completed Stage 1 + Stage 2 samples when using our two-

stage selective-phenotyping approach. All Stage 1 + Stage 2 samples will have measured 

genotype and phenotype data available for analyses. For the markers not included in the Stage 2 

optimization procedure, there would be little expected impact on their respective parameter 

estimates or estimated power estimates compared to what would typically be obtained from 

using random sample phenotype selection for the remaining Stage 2 samples, assuming that these 

markers are reasonably independent of those markers included in the Stage 2 optimization. 

  The clear advantage of our approach is the increased power to detect novel associations 

compared to a random sampling design under the same fixed sample size constraint. It is 
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important to note that our sample procedure does not directly cause the effect (β) estimates to be 

biased. Unlike the extremes-of-phenotype selective-genotyping study design, our procedure does 

not inherently change the trajectory of the effect estimate under the alternative hypothesis, rather, 

our increase in power is obtained by increasing the precision (shrinking the variance) of the 

index marker effect estimator. However, the effect estimates of the best marker results (including 

many of the markers which would likely be used in the Stage 2 phenotype selection) using our 

approach would typically be inflated, per the winner’s curse phenomenon, just like they would 

be for any other large-scale discovery study, including studies that use random sample phenotype 

selection.  Finally, while we describe our approach for measuring a new quantitative trait, we 

note that the general two-stage selective phenotyping approach should also be considered when 

measuring new dichotomous traits, where the probabilities of the different outcomes are a 

function, under the alternative hypothesis, of the marker genotypes (e.g.. we would expect to 

increase the proportion of cases by selectively genotyping uncommon homozygotes for an index 

marker). 

          There are also some possible limitations in the proposed two-stage study design that 

warrant consideration. First, our two-stage phenotyping design requires additional time to 

phenotype samples (phenotyping is performed in two batches, with the second batch conditional 

on the association results from the first batch). Investigators will have to decide if time 

constraints are an important factor and if additional phenotyping costs occur due to the piecemeal 

approach. Second, phenotyping subjects in each stage under different situations may induce 

batch effects in the measures of phenotypes. Such batch effects could be remedied by the simple 

inclusion of an additional covariate for batch in the regression models or use of meta-analysis.  
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Table 5.1 Top markers that reached genome-wide significance (p<5x10
-8

) in 2987 subjects 

 
Chr # of Markers Most significant SNP Pos(hg19) EA EAF RSQR N β SE P Function Gene 

1 111 rs73024710 159689965 T 0.17 0.99 2978 0.44 0.04 1.19E-30 intergenic APCS-CRP-DUSP23 

19 10 rs10119 45406673 A 0.25 0.56 2978 -0.33 0.05 2.98E-13 UTR3 TOMM40-APOE 

7 1 rs12698712 68106789 G 0.10 1.00 2978 -0.27 0.05 2.30E-08 intergenic STAG3L4-AUTS2 

12 1 rs11047572 24836927 A 0.26 0.88 2978 0.19 0.04 3.38E-08 intergenic LINC00477-BCAT1 

12 1 rs1169284 121419926 C 0.25 0.90 2978 -0.19 0.04 3.61E-08 intronic HNF1A 
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Table 5.2 Times each of the 3 established GWAS signal (CRP, APOE, and HNF1A) reached 

a P value of 5x10
-8

, 5x10
-7

, 5x10
-6

, 5x10
-5

, and 5x10
-4

 using either approach (SA/random) 

 

Chr Gene SNP # P<5x10
-8

 # P<5x10
-7

  # P<5x10
-6

 # P<5x10
-5

 # P<5x10
-4

 

1 APCS-CRP-DUSP23 rs726640 100/100 100/100 100/100 100/100 100/100 

19 TOMM40-APOE rs1160985 29/10 44/34 65/60 90/90 100/100 

12 HNF1A rs1169284 1/1 8/4 16/16 41/42 74/69 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

124 

 

 

 
Figure 5.1: Histograms of R

2
 across the spectrum of MAF bins and the curve generated by 

density function of Beta distribution 
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Figure 5.2: Histogram of MAF of HapMap Phase II imputed data from the Jackson Heart 

Study 
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(a) 

 
(b) 

 
(c) 
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(d) 

 
(e) 

 
(f)  

Figure 5.3 Power of a two-stage GWAS with a subset of subjects randomly selected or 

selected based on SA to be phenotyped in Stage 2 depending on          . n.pheno=2000, 

n .geno=4000 a) pi.marker=0.000001. b) pi.marker=0.000025. c) pi.marker=0.00005. d) 

pi.marker=0.0001. e) pi.marker=0.0002. f) pi.marker=0.0005 
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(a) 

 
(b) 

 
(c) 
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(d) 

 
(e) 

Figure 5.4 Power of a two-stage GWAS with a subset of subjects randomly selected or 

selected based on SA to be phenotyped in Stage 2 depending on          . n.pheno=2000, 

n .geno=4000 a) pi.sample=0.375; b) pi.sample=0.5; c) pi.sample = 0.625; d) pi.sample = 0.75; e) 

pi.sample = 0.875 
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Figure 5.5 The relationship between relative power and           for different MAF. 
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Figure 5.6 The relationship between relative power and           for different MAF. 
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 5.7 Power of a two-stage GWAS with a subset of subjects randomly selected or 

selected based on SA to be phenotyped in Stage 2 from a total sample of subjects with 

available imputed genotype. n.pheno=2000, n .geno=4000, pi.marker=0.000050 a) Imputation 

quality R
2
=0.95; b) R

2
=0.80; c) R

2
=0.65; d) R

2
=0.50.  
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CHAPTER VI: DISCUSSION 

 

         In the preceding chapters, I described a collection of findings that further our 

understanding of genetic architecture of two CVD related biomarkers in AAs who have a higher 

prevalence of CVD than other ethnic groups in the United States, and blood pressure measures in 

a Chinese population. I first conducted a genome-wide association study for iron-related 

phenotypes including serum iron, serum ferritin, SAT, and TIBC in 2347 AAs participating in 

the JHS. I observed a novel region on chromosome 3, GAB3-G6PD, significantly associated with 

ferritin levels and identified the putative causal variant in this region. I also observed multiple 

independent SNPs associated with TIBC in the TF region using conditional analyses. The two 

independent associations for TIBC at TF and the association for ferritin at GAB3 were 

successfully replicated in HANDLS. Next, I conducted a genome-wide admixture and 

association study, and an exome-wide association study using Human Exome Beadchip for Lp(a) 

in 2895 AAs in JHS. I observed significant (P<5x10
-8

) associations for hundreds of SNPs 

spanning an ~10Mb region on 6q surrounding the LPA gene. Interestingly, after adjusting for 

local ancestry, the region containing significantly associated SNPs became much narrower and 

was centered over the LPA gene (<1Mb). Gene-burden tests found significant associations 

between Lp(a) and aggregate collections of SNPs in LPA and APOE. Next, I tested the 

interaction between several environmental factors and four candidate genes in affecting blood 

pressure measures in 7319 Chinese in CHNS. I observed that the signal at rs1458038 in the 

FGF5 region exhibited a significant genotype-by-BMI interaction affecting blood pressure, with 
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the strongest variant effects in those with the highest BMI. This pattern of interaction was also 

observed in an independent sample of men from FAMHES. Finally, I described a selective 

phenotyping method that uses a simulated annealing (SA) algorithm to identify the optimal 

subset of subjects to be phenotyped in Stage 2 of a two-stage GWAS based on their available 

directly genotyped and/or imputed dosage data across multiple SNPs of interest, and showed that 

increased power could be achieved using this method. 

            Several aspects of this work are worth highlighting because they illustrated novel 

findings of genetic architecture of certain traits and shed some light on future directions. In 

Chapter II, we observed the estimated average (“global”) proportion of African ancestry was 

significantly associated with lower levels of TIBC, serum iron, and SAT, and nominally 

associated with higher level of serum ferritin - which are entirely consistent with previous 

findings reporting lower levels of TIBC, iron and SAT and higher level of ferritin, on average, in 

AAs compared to European Americans (96, 97). In Chapter III, I observed that a higher level of 

estimated global African ancestry was significantly associated with higher levels of Lp(a), which 

is also consistent with previous findings which reported that Lp(a) levels in populations of 

African ancestry are much higher (2~4-fold) than in populations of European ancestry (111). 

Interestingly, the observed higher global African ancestry associated with higher Lp(a) levels 

was entirely explained by higher African local ancestry surrounding the LPA gene. These results 

implicate novel genetic risk factors in AAs and underscore the importance of studying this 

population for genetic risk factors that uniquely/disproportionately impact them. The Jackson 

Heart Study (JHS) provides a unique opportunity to study the genetic basis of complex CVD 

related traits in AAs. The JHS is a longitudinal, community-based, observational study designed 

to identify risk factors for the development of CVD in more than 5000 AAs recruited from non-
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institutionalized adults from urban and rural areas around the Jackson, Mississippi, metropolitan 

area (85). Jackson has the largest percentage (36.3%) of AAs in the United States, with the 

overall CVD mortality in AA men and women 12% and 22% higher, respectively, than in the 

rest of the nation.  As the largest single-site, prospective, epidemiologic investigation of 

cardiovascular disease among AAs ever undertaken, JHS will continue show its value in 

exploring the reasons for this disparity of CVD prevalence between AAs and EA and lead to new 

approaches to reduce it. 

           Typically after establishing a GWA signal, an important follow-up analysis is to 

determine whether of additional independent signals exist in the associated region. The 

identification of multiple signals at individual loci could explain additional phenotypic variance 

(‘missing heritability’) of common traits, and help identify the causal genes or regulatory 

mechanisms.  In my work from Chapter II, I identified a second significant independently 

associated SNP in the TF region for TIBC. Our report was the first to identify such a second 

signal. Interestingly, this second signal (index SNP rs9872999 which maps to an intergenic 

region approximately 10Kb proximal to TF) only became significant at the genome-wide level 

after conditioning on our top TF region SNP rs8177253. The allele associated with an increase in 

TIBC for rs8177253 is preferentially on the same haplotype with the allele associated with a 

decrease in TIBC for our top variant rs9872999. Thus, the mean effects for rs9872999 are shrunk 

towards the null when not factoring in genotype for rs8177253. The presence of multiple 

association signals at individual loci is an indicator of allelic heterogeneity, which is defined as 

the presence of multiple alleles that act through one gene to influence a trait. A recent study 

investigating the patterns of association consistent with allelic heterogeneity using cis gene 

expression phenotypes observed several patterns of association when analyzing single SNPs 
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compared with multiple SNPs at the same loci (182). The frequency with which trait raising 

alleles segregated on the same or opposite haplotypes affected the degree to which association 

statistics ‘fell’ or ‘jumped’ in multivariable compared with univariable analyses. If two trait 

raising alleles segregated on the same haplotype, the association statistics tend to ‘fall’ in 

multivariable analyses because multivariable analysis will adjust for the correlated effect of the 

other primary SNP on the secondary SNP. If two trait raising alleles segregate on the opposite 

haplotype (i.e. one trait associated raising allele and the other trait associated lowering allele 

segregate on the same haplotype), the association statistics tend to ‘jump’ because a 

multivariable analysis will adjust for the cancelling out effect of the other SNP. The distinction 

between two independent signals and one partially tagged signal is rather important when trying 

to use association results to identify causal genes, or when choosing SNPs for functional studies. 

        Another important follow-up analysis after establishing a GWA signal is to identify the 

actual causal variants and to determine the underlying functional mechanisms. Through a variety 

of approaches, my work identified both common and uncommon variants which are potentially 

causal to the variation of CVD related phenotypes. In Chapter II, I observed a functional 

missense variant in G6PD, rs1050828 (MAF=0.13, leading to a Val68Met amino acid 

substitution), which was associated with ferritin but narrowly missed genome-wide significance 

(p=9.1x10
-8

). This variant was imputed in the original GWAS data. The association between the 

top genome-wide significant variant, rs141555380, in this region and ferritin disappeared after 

adjustment for this functional variant (rs1050828) at G6PD (p = 0.55). This functional variant is 

implicated in malaria resistance, and the A- form of G6PD deficiency in Africa is under strong 

natural selection from the preferential protection it provides against life-threatening malaria 

(110). This is the first time G6PD-GAB3 region has been reported to be significantly associated 
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with ferritin, a specific iron-related measure in AA. In Chapter III, my work identified a splicing-

altering variant rs41272114 in the LPA gene, a nonsynonymous variant rs7412 in the APOE gene 

and a second independent nonsynonymous variant rs769455 in the APOE gene that were 

significantly associated with Lp(a) level using data from the Ilumina Human Exome Beadchip. 

Although exome- and whole-genome sequencing is becoming increasingly affordable, 

genotyping arrays still remain to be a cost-effective approach to investigate rare variants in the 

human genome. The goal of this Human Exome Beadchip array was to enable an intermediate 

experiment between current genotyping arrays, which focus on relatively common variants, and 

exome sequencing of very large numbers of samples, which focus on rare and low-frequency 

coding variants. The Exome BeadChip contains 247,870 variants discovered through exome 

sequencing in ~12,000 individuals that are mostly protein-altering (nonsynonymous coding, 

splice-site and stop gain or loss codons) (64). So far, it has enabled identification of several rare 

and functional variants associated with fasting glucose, insulin processing, and type 2 diabetes 

susceptibility (65) (66). My work suggested custom genotyping array like Exome BeadChip can 

provide new insights for previously genotyped cohorts and enable the identification of functional 

variants in future genetic association studies. By following up thousands of targeted SNPs with 

prior evidence of association with related traits, custom targeted genotyping arrays will continue 

making contributions to discovering biologically functional variants and understanding potential 

mechanisms of disease pathogenesis. 

            A hot topic of debate in the field of genetic association studies is the “missing heritability” 

not explained by GWAS. It is believed that human complex traits are influenced by the 

interaction among genetic and environmental factors, thus investigation of such interactions will 

help explain some of the missing heritability and provide better insight into pathway mechanisms 
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for complex diseases (67). In Chapter IV, I detected a significant interaction between rs1458038 

5’ of FGF5 gene at 4q21 and BMI in affecting blood pressure measures in a Chinese population. 

Specifically, the effect of the rs1458038 risk genotype is considerably stronger in subjects in the 

heaviest quartile of the BMI distribution. This study implicates that the risk genotype at 

rs1458038 is particularly important in Chinese individuals with higher BMI. Candidate gene 

studies, such as the work I presented, to investigate hypothesized gene-environment interactions 

are quite common in human genetic research. With the development of large-scale high-

throughput genotyping technologies, genome-wide association gene-gene interaction (GWAI) 

and genome-wide environmental interaction (GWEI) studies are beginning to emerge. GWAI 

studies have a number of challenges including high-dimensionality, computational complexity, 

the absence/presence of marginal effects, the high burden of multiple test correction, and genetic 

heterogeneity (183). Given the unavailability of sufficiently large sample sizes and the 

dramatically increased multiple testing burden, GWAI studies usually end with no statistically 

significant findings. Several statistical approaches have been proposed, including regression-

based approaches and model-free approaches such as machine learning and pattern recognition 

(184). In general, the advantages of regression-based approaches are the clear interpretation of 

the model and the parameters that relate genotypes to phenotype. However, they have huge 

computational burden for testing higher-order interactions. In comparison, machine learning 

approaches are an alternative strategy to detect high-dimensional non-linear interactions. These 

latter approaches generally do not estimate parameters, but rather they find combinations of 

SNPs that can best separate cases and controls by epistatic interactions or joint effects. Some 

model-free approaches collapse high dimensional data into two dimensions; some try to detect 

differentially inherited SNP modules by hierarchically clustering SNPs that could be 
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interactively associated with a disease; and some use a multi-locus Mann–Whitney statistic to 

evaluate the joint association of a SNP combination. All these machine-learning approaches do 

not have the problem of an increasing number of parameters when modeling high-order 

interactions, but it is often difficult to interpret how the detected SNP combinations affect a 

disease. Despite the abundance of statistical methods and tools for interaction analysis in recent 

years, only a few of them have demonstrated replicable results and there is a need for further 

development and extension of these methods to identify gene-gene and gene-environment 

interactions in the context of genome-wide association studies.  

          Another novel and interesting finding is the importance of adjustment for local ancestry 

when performing the genetic association analysis in admixed populations. Admixed populations, 

those that descended from more than one ancestral population, offer a unique opportunity for 

mapping disease genes that have large allele frequency differences between ancestral populations. 

In Chapter III, I observed significant (P<5x10
-8

) associations for hundreds of SNPs spanning 

~10Mb region on 6q surrounding the LPA gene after adjusting for global ancestry estimate. 

Interestingly, after adjusting for local ancestry at 6q25.3, the region containing significantly 

associated SNPs got much narrower (from 9.8Mb to 0.7Mb) and was centered on the three genes 

SLC22A, LPL2 and LPA. This result suggests confounding between local ancestry and SNPs 

spanning the larger 6q region identified to be associated with Lp(a). Given the relatively recent 

admixture in the AA population, local ancestry can confound associations across a relatively 

large region surrounding the population-specific, or population-enriched, causal variant(s) (132, 

133). The observation that the associations in and near LPA remains robust after adjustment for 

local ancestry at LPA while the evidence for association further away dramatically declines 

suggests that the ancestry-specific (or highly-enriched) causal risk variant(s) resides in or near 
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LPA and that most, if not all, of the observed associations outside this narrower region are 

spurious associations. My work suggested that formal genetic admixture analyses may point to 

the correct region containing the causal SNPs, but the region may not be precise enough for 

following up causal SNPs or even causal genes. In comparison, the local ancestry adjustment did 

control the background signals induced by association with local ancestry and effectively 

prevented false positive findings, which makes it a useful tool for fine mapping of regions 

identified from admixture mapping studies. Several association tests that adjust for local ancestry 

have been proposed. For example, one test is based on a conditional likelihood framework which 

models the distribution of the test SNP given disease status and flanking marker genotypes. This 

conditional likelihood makes it possible to explicitly model local ancestry differences among 

study subjects and thus it can eliminate the effect of population stratification at the test SNP. It is 

particularly useful when the directions of association are different in the ancestral populations. 

Another test, which is computationally simpler, is based on logistic regression, with adjustment 

for local ancestry proportion.  These association tests directly evaluate the correlation between a 

phenotype and a SNP genotype, and they directly compare the allele frequencies between cases 

and controls. In comparison, admixture mapping has substantially lower resolution than direct 

SNP association tests, as it does not make full use of the actual genotypes at each SNP and SNPs 

falling within the same extended ancestry block (which will be considerable larger than 

conventionally defined LD blocks due to the recent admixture events) will share similar 

admixture mapping signal. Future studies on association tests which can appropriately control for 

local ancestry is still needed as a general tool for genetic association studies in admixed 

populations.  
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             In addition to the application of genetic association studies for discovering risk factors 

for CVD related traits, my work also included investigation of the study design used to perform 

future genetic association studies. In Chapter V, I proposed a two-stage genetic association study 

design, where it is assumed that all subjects have available directly measured or imputed 

genome-wide genotype data but an unmeasured quantitative trait of interest. It is further assumed 

that cost constraints will limit the ability to measure the new phenotype on only a subset of study 

participants. I described a selective phenotyping method that uses simulated annealing (SA) to 

identify the optimal subset of subjects to be phenotyped in Stage 2 of a two-stage GWAS based 

on the identification of the most interesting SNPs from a GWAS study on a subset of unselected 

participants in Stage 1. Through both simulations and a real example, I showed that our SA 

algorithm-based two-stage approach achieves increased overall statistical power compared to a 

single stage study using a random selection approach for studies that have existing imputed or 

directly genotyped markers. While two-stage approaches are not novel for genetic association 

studies, the proposed two-stage phenotyping design is, to our knowledge, completely new. My 

study not only applied the SA-based two-stage phenotype selection approach to directly 

genotyped data, but to imputed dosage data as well. Since genotype imputation is widely used in 

GWAS, the extension of our approach to include these data is an important contribution to this 

two-stage study design. This approach was not sensitive to parameter choices and remained 

robust for a wide range of MAFs, proportional of markers to be followed up in Stage 2, and 

proportion of samples to be phenotyped in Stage 1. It is important to note that β estimates are 

unbiased by this procedure (other than winner’s curse which effects all large-scale discovery 

study designs, including random sample selection).  In fact, because our sampling design reduces 

variance of the estimates for the β’s, the estimates are actually more precise, on average, than 
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estimates based on random samples. The method would clearly benefit power and precision of 

estimated effects for markers included in the SA optimization in Stage 2, and it is important to 

note that there would be little impact on the parameter estimates or power for markers not 

included in the Stage 2 SA sample optimization versus what can be achieved from random 

sample selection, assuming that most non-included markers are independent of those used for 

optimization. 

               In general, the future of genetic studies of complex diseases will rely on a variety of 

statistical and biological approaches, including candidate gene studies, high-throughput high-

dimensional genotyping arrays, custom genotyping arrays targeting certain trait clusters (e.g. the 

Immunochip, the HumanCVD, MetaboChip), genome-wide gene-gene and gene-environment 

interaction analyses based on machine learning, whole-exome sequencing (WES) and whole-

genome sequencing (WGS), and replication of biological changes in animal models. In particular, 

as a result of the development of next-generation sequencing (NGS) technologies, WES and 

WGS have become considerably faster and more affordable over the past 5 years (62). In 

contrast to the first-generation sequencing, which was expensive in both time and money 

consuming to sequence the diploid human genome, NGS can now be used to sequence the same 

human genome within a few weeks for as little as US $4,000-5,000 (185). The prices and 

experimental time continue to decline, as the costs today for WGS are approaching $1,000 per 

sample. Common NGS applications include DNA-seq, RNA-seq, ChIP-seq, and methyl-seq 

(186). DNA-seq is to discover whether genomic variations including single nucleotide variants 

(SNVs), small DNA insertions or deletions (indels), copy number variations (CNVs), or other 

structural variants (SVs), are associated with human diseases. RNA-seq that measures gene 

expression changes is to discover new transcripts including noncoding RNAs and detect 
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transcript splicing or gene fusion events. ChIP-seq is to discover genome-wide transcription 

factor binding sites and chromatin-associated modifications. Methyl-seq is to discover various 

types of DNA methylation such as 5-methylcytosine and 5-hydroxymethylcytosine at single 

nucleotide resolution. These above common NGS applications may be adopted as mainstream 

tools for human genomics and routine procedures as part of the clinical laboratory for disease 

treatment in near future. Today, many analyses integrate information from multiple different 

sequencing applications (e.g. to assess whether rare DNA variants are associated with gene 

expression). These types of analyses will become for common in the near future and our ability 

to integrate these different types of data will likely lead to many new exciting discoveries.  

In conclusion, as CVD is the number one killer in the United States, understanding the 

contributing genetic risk factors as well as their interactions with environment risk factors is of 

critical importance for the prevention and treatment of the disease. The results of genetic 

association studies conducted in my dissertation further our understanding of the genetic 

architecture of several biomarkers related to CVD, and the two-stage phenotyping design 

provides a more powerful way to perform future GWAS studies when the cost of phenotyping 

prohibits the inclusion of all available subjects. 
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