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ABSTRACT 

Jessica Keppel Higgins: RAPID EVOLUTION AND POPULATION DIVERGENCE IN 
RESPONSE TO ENVIRONMENTAL CHANGE IN COLIAS BUTTERLIES 

(Under the direction of Joel Kingsolver) 
 
 

My dissertation focuses on how environmental change, specifically in temperature 

and host plants, can drive physiological and morphological differences. I took advantage 

of historical studies with the Colias system of butterflies to assess adaptation and 

plasticity in larval performance in response to climatic change and changing host plant 

abundance. I have found that changing temperatures have affected the adaptation of some 

larval traits but not others. Specifically, as temperature variability has increased in both 

California and Colorado populations of Colias, the larval feeding rate has shifted to 

correspond to the new environmental conditions. Next, I studied how two Colorado 

populations of Colias eriphyle cope with repeated exposures to sub-lethal high 

temperatures simulating multi-day heat waves. I found that the higher elevation 

population suffered less detrimental fitness effects than the lower elevation population in 

regards to both short term (heat shock gene expression) and long term (overall growth 

rate) fitness effects. Building on my interest of how temperature and temperature 

variation affects multiple life stages I studied the effects of temperature during the pupal 

life stage on survival, growth and the resultant adult wing morphology. Generally, high 

temperatures decreased pupal time and less melanic adult wings. Finally, I used the two 

populations of C. eriphyle to quantify thermal performance differences of fitness when 
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larvae consume different host plants at two temperatures. I found that cooler temperatures 

increased the difference in performance between populations consuming different host 

plants and that thermal performance differs between populations.  My research shows 

that temperature can affect fitness across many life stages and organisms have responded 

to these changes in temperature over time by adaptation. 
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CHAPTER 1: OVERVIEW 

Populations evolve traits that frequently yield a fitness advantage in their local 

environment, resulting in local adaptation (Williams 1966). Local adaptation to 

environmental conditions generates and maintains diversity among populations and 

species (Levene 1953). Organisms can be locally adapted to both abiotic factors such as 

climate and to biotic conditions such as competition, host plants, prey and/or natural 

enemies.  

 Temperature affects virtually all biological processes and systems in ectothermic 

organisms.  Populations of the same and closely related species are often adapted to the 

local climatic conditions that they experience, resulting in clines in many phenotypic and 

morphological traits along latitudinal and elevational gradients. Local adaptation can also 

be seen on small spatial scales along elevational gradients has many taxa for a variety of 

traits, including phenology (Hodkinson 2005), morphology (Roland 1978), body size, 

behavior (Dingle, Mousseau & Scott 1990), thermal performance, and thermal tolerance 

(Damme et al. 1989; Stevens 1992; Gaston & Chown 1999; Badyaev & Ghalambor 

2001). A major determinant of these local climates is temperature. In addition to 

temperature, insects can also be adapted to specific host plants or families of host plants. 

Local adaptation of insects to host plants is driven by aspects of host plant quality 

including abundance, plant defenses, and plant nutrient levels (Fox, Waddell & Mousseau 
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1994; Jongsma & Bolter 1997; Egan & Ott 2007).  Herbivore populations may utilize and 

adapt to novel host plants that are introduced into their range.  

Humans are changing the environment in many ways that are having interesting 

and diverse effects on organisms. As anthropogenic climate change increases both mean 

temperature as well as variability in climate and temperature, these novel conditions will 

present adaptation challenges for organisms (Easterling et al. 2000; IPCC 2007). For 

holometabolic organisms the effects of climate change may have both short and long-

term effects that affect each life stage differently (Kingsolver, Arthur Woods et al. 2011).  

Local adaptation of thermal optima is common across latitude and elevations 

(Huey & Kingsolver 1993; Cunningham & Read 2003; Sun & Friedmann 2005), 

however, ectotherms that were once adapted to their limited temperature range may now 

be experiencing fitness consequences as global mean temperature is increasing. The 

increasing temperatures along with the fact that upper thermal limits of performance in 

terrestrial ectotherms do not vary with elevation or latitude (Addo-Bediako, Chown & 

Gaston 2000; Sunday, Bates & Dulvy 2011) makes performance at temperatures above 

an organism’s current thermal optima and below their upper thermal limits particularly 

interesting to study.  

Human agriculture also changes the diversity and availability of host plants. 

Recent studies have demonstrated that evolutionary responses to novel host plants can 

occur quite rapidly, both for invasive plants (Harvey et al. 2010) and agricultural crops 

(Hare 1990; Gray et al. 2009). The interaction of temperature with other biotic factors 

such as availability and preference of certain foods can also affect local adaptation. 

Several herbivorous insects have demonstrated that host plant and rearing temperature 
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can interact to positively or negatively influence larval growth and development (Pelini et 

al. 2009; Diamond & Kingsolver 2012; Clissold, Coggan & Simpson 2013). 

For my dissertation I want to know how populations are adapting to 

environmental change specifically changes in climate, host plants, and the interaction 

both. Overall, temperature and host plant choice are extremely important factors in 

understanding and exploring fitness differences across different populations and by using 

the Colias butterfly system I am able to elucidate some of the ways that temperature, 

changes in temperature, the availability of host plants, and how temperature and host 

plants interact can influence population fitness.  

Colias butterflies have served as a model system for studying thermal adaptation 

for over 50 years (AE 1958; Hoffmann 1978). Colias adult butterflies and their thermal 

adaptation specifically regarding wing morphology is well characterized (Watt 1968; 

Kingsolver & Watt 1983; Kingsolver 1983; Ellers & Boggs 2002). However, little is 

known about Colias larvae and their local adaptation to climate (Sherman & Watt 1973). 

Additionally, Colias are generalists that feed on many plants in the Fabaceace family, 

however the distribution of genera is varied across their range. There is historical 

evidence suggesting that there is rapid local adaptation to host plant and local 

temperature (Sherman & Watt 1973; Tabashnik 1983) making the Colias system an 

attractive one to use to examine how thermal adaptation has changed due to climate 

change.  

Colias (sulphur) butterflies range from lowland to alpine habitats across North 

America. Colias eurytheme is commonly known as the orange or alfalfa sulphur and is 

ubiquitious across North America below 2000m. Colias eriphyle occurs in open habitats 
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in the western US, and in western Colorado it is found at elevations of 1,400-2,900m. 

The larvae for both species feed on plants in the Fabaceace family, particularly M. sativa 

(alfalfa), Vicia (vetch) spp., and Trifolium (clover) spp. They have five larval instars and 

undergo a facultative diapause during the 3rd instar depending on local climate 

conditions. In my dissertation work I used these two species of Colias from four 

populations across the United States. 

By using these species of Colias and the historical data available on local 

adaptation to temperature and host plants in larvae and plasticity in adults I am able to 

study changes local adaptation and plasticity over time. To do so in my dissertation I ask 

four major questions: 

1. Given the rate of climate change that has already occurred in the 

past 40 years, how has thermal local adaptation of Colias larval 

performance changed?  

2. What are the long and short-term fitness effects of repeated 

exposure to sub-lethal high temperatures in Colias eriphyle larvae? 

3. What are the effects of pupal temperature on pupal development 

and adult wing morphology in Colias eriphyle? 

4. What are the fitness effects of variable temperatures and the shift 

from a native host plant to an introduced host plant in Rocky 

Mountain Colias eriphyle? 
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CHAPTER 2: GEOGRAPHIC DIFFERENCES AND MICROEVOLUTIONARY 
CHANGES IN THERMAL SENSITIVITY OF BUTTERFLY (COLIAS) LARVAE 

IN RESPONSE TO CLIMATE  
 

Introduction 

Populations are often adapted to the local climatic conditions that they experience, 

resulting in clines in many phenotypic traits along latitudinal and elevational gradients.  

Local adaptation over small spatial scales along elevational gradients has been 

documented in many taxa for a variety of phenotypic traits, including phenology 

(Hodkinson 2005), morphology (Roland 1978), body size, behavior (Dingle, Mousseau, 

and Scott 1990), thermal performance, and thermal tolerance (Stevens 1992, Badyaev and 

Ghalambor et al 2001, Damme et al. 1989, Gaston and Chown 1999).  

 Adaptation to climate is of increasing importance given the recent changes to 

regional and global climates, which are predicted to continue in the coming century 

(Easterling et al 2000, IPCC 2007). California, Colorado and other western states have 

shown a significant increase in the number of warm days and nights (where the 

maximum/minimum temperature is above the 90th percentile recorded from 1961-1990) 

since 1950 (Booth, Byrne, & Johnson 2012).  The ecological consequences of recent 

climate change have been abundantly documented for many regions and taxa and include 

changes in seasonal timing, life history traits due to plasticity, geographic distribution and 

abundance, and extinction risks (Parmesan and Yohe 2003, Walther et al. 2002). In many 

cases, climate change is causing mismatches between local adaptation to past climates 
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and new climate conditions.  A natural question is whether evolutionary responses to 

recent climate change can reduce this mismatch. Recent studies have documented 

evolutionary changes in response to climate change in body size or phenology in birds  

(Charmantier et al. 2008), mammals (Reale et al. 2003), mosquitoes (Bradshaw and 

Holzapfel 2001), alpine plants (Anderson et al 2012), and herbivorous insects (van Asch 

et al. 2013). Some contend that evolution in response to seasonal cues rather than thermal 

adaptation will be most important for evolutionary responses to climate change 

(Bradshaw and Holzapfel 2007, Karell et al. 2011). To date, evidence for evolutionary 

responses in thermal physiology to recent climate change has been limited (Stillman 

2003, Huey, Patridge and Fowler 1991). Whether this is because such evolutionary 

changes are infrequent or unimportant or because there is a lack of appropriate historical 

data on physiological traits remains to be determined.  

 Colias butterflies have served as a model system for studying thermal adaptation 

for over 50 years (Ae 1958, Hoffman 1978). These butterflies range from lowland to 

alpine habitats across North America. Previous work, however, has largely focused on 

adult traits. In the Rocky Mountains of Colorado adult butterflies of C. eriphyle and 

closely related species demonstrate morphological adaptation to temperature in wing 

melanism and thorax fur thickness (Watt 1968, Kingsolver 1983a, Kingsolver 1983b).  

Little is known about Colias larvae and if they also display local adaptation to climate 

(Sherman and Watt 1973). Rates of larval feeding, growth, and development are essential 

to success, and are strongly temperature-dependent in most insects (Stamp and Casey 

1993). The primary function of the larval life stage is to assimilate nutrients, and larvae 

do this by near-constant feeding. Sherman and Watt (1973) measured short-term rates of 
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larval feeding in two Colias species:  C. eurytheme from the Sacramento Valley in 

California (19 m) and C. eriphyle from the Montrose Valley in Colorado (1,633 m). 

Colias eriphyle had lower optimal temperatures for feeding (23-25°C) than C. eurytheme  

(29-31°C), suggesting local adaptation to the differing thermal conditions in these areas. 

By re-measuring larval feeding in these populations today, we can examine whether the 

thermal sensitivity of larval feeding has shifted in response to climate change in these 

areas during the past 40 years.  

 Here, we examine two C. eurytheme and two C. eriphyle populations differing in 

elevation and physiological adaptation to temperature by quantifying thermal 

performance curves (TPCs) of short-term feeding rate. Our goal is to see how well 

physiological traits are adapted to local climate, specifically temperature. We predict that 

the TPCs for each population cover the range of temperatures experienced during the 

growing season. In addition, we compare our data on TPCs for two of these populations, 

C. eurytheme from the Sacramento Valley, CA and C. eriphyle from the Montrose 

Valley, CO, with historical data (Sherman and Watt 1973) collected in 1971. We expect 

changes in the TPC for feeding rate to reflect the changes in climate over the past 40 

years.  As warm temperatures have increased in these regions, we predict that the larvae 

will be able to continue feeding at these new higher temperatures. This would be 

indicated in the TPC by a rightward shift to a new higher optimum temperature (Topt) 

while retaining the same overall shape. Changes in TPC due to increased temperatures 

over the past 40 years could demonstrate how rapid evolution for a thermally important 

trait could potentially ameliorate the effects of climate change. 

Materials and Methods 
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Study System 

Colias eurytheme and C. eriphyle are sister species and occasionally hybridize in 

populations where they co-occur (Wheat and Watt 2008). The larvae for both species 

have five larval instars and C. eriphyle undergo a facultative diapause during the 3rd 

instar whereas C. eurytheme overwinter as quiescent larvae.  The larvae for both species 

feed on plants in the Fabaceace family, particularly M. sativa (alfalfa), Vicia (vetch) spp., 

and Trifolium (clover) spp.). Colias eurytheme is commonly known as the alfalfa 

butterfly and is ubiquitous across North America below 2000m.  Colias eriphyle occurs 

in open habitats in the western US, and in western Colorado it is found at elevations of 

1,400-2,900m.  

We collected Colias from four sites for these studies.  To allow historical 

comparisons with Sherman and Watt (1973), we sampled C. eriphyle females from alfalfa 

(Medicago sativa) fields located in the Montrose Valley, CO (N38.62, W108.02, 1,633 

m); and C. eurytheme females from alfalfa fields in the Sacramento Valley, CA (N38.44, 

W121.86, 19 m).  To expand the geographical and climate range of our study, we also 

considered an additional site for each species: C. eriphyle from a county park with 

meadows including vetch (Vicia) and clover (Trifolium) near Gunnison, CO (N38.56, 

W106.94, 2,347 m); and C. eurytheme from an organic farm in Chapel Hill, NC (N35.87, 

W79.20, 148 m).  In North Carolina C. eurytheme hybridizes with sympatric C. 

philodice. Hybrids often show mixed wing patterning and various levels of orange 

pigment on the ventral forewing (Gerould 1943, Hovanitz 1949). Based on emergence 

dates and wing morphology we classify our specimens from North Carolina as C. 
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eurytheme, however without DNA evidence to support this it is possible that we could 

have C. philodice and C. eurytheme hybrids.  

These four study sites have different growing seasons, which account for variation 

in larval development, adult flight time, and the number of generations per year 

(voltinism). In the Sacramento Valley, CA the growing season (defined as the time for 

larval development and adult flight time) is essentially continuous resulting in 8-9 

generations of C. eurytheme per year. In Chapel Hill, NC, the season starts in starts in 

March and ends in November resulting in 3-5 generations of C. eurytheme per year. In 

the Montrose Valley, CO the growing season can start as early as April and continue 

through October resulting in 3-5 generations of C. eriphyle per year. The shortest season 

is in Gunnison, CO, starting in June and continuing through September resulting in two 

generations of C. eriphyle per year.  

Measurements of feeding rates 

Adult female butterflies were collected from each site and shipped overnight to 

our laboratory at the University of North Carolina at Chapel Hill (butterflies from Chapel 

Hill, NC were driven to the laboratory). The female butterflies were kept in cages at 

greenhouse conditions (~26°C) under natural light. Females were fed 10% honey water 

solution by moistened sponge changed daily, and were allowed to oviposit on potted 

Vicia villosa in the greenhouse. Eggs were removed each day and placed in 

environmental chambers (Percival 36VL, Geneva Scientific, WI, USA) maintained at 

25°C on a 14L:10D photoperiod where larvae were given leaves of V. villosa ad libitum. 

Upon entering the 5th instar, larvae were starved for three hours and weighed. The larvae 

were then exposed to one of 5-10 different experimental temperatures between 15°C and 
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35°C and allowed to acclimate for 15 minutes before cut V. villosa leaves were added. 

Once the V. villosa was added the larvae were allowed to feed for 30 minutes. To ensure 

experimental temperatures above the optimal temperature for feeding were included, 

some populations were measured at several additional temperatures between 38°C and 

43°C.  

After the trial, larvae were removed from their temperature treatments, weighed 

again and placed back into the 25°C chamber and given V. villosa ad libitum until the 

next day. Each larva was tested at least twice at a different temperature for each feeding 

trial with occasional larvae going through the experiment a third time. Experimental 

temperature treatments were chosen and ordered randomly for each larva to avoid 

lumping potentially stressful temperatures at a certain larval age. Our sample sizes were 

as follows: for Sacramento Valley, CA N=90 larvae in 296 feeding trials, for Chapel Hill, 

NC N=92 larvae in 235 trials, Montrose Valley, CO N=168 larvae in 401 trials, and 

Gunnison, CO N=134 in 334 trials.  

 Our methods of assessing short-term feeding rate differed in two ways from the 

previous Sherman and Watt (1973) study. First, Sherman and Watt quantified feeding 

rate (mm2/s) by measuring the time required to consume a fixed surface area of leaf of V. 

villosa.  As a result, the length of the feeding trial varied with temperature. Because of 

the difficulties of accurately and repeatedly measuring surface areas for the highly 

divided Vicia leaves and leaflets, we instead measured feeding rate as larval mass gained, 

over a fixed (30 min) feeding trial. The larvae were starved prior to each trial, and there 

was no frass production during the 30 minute trial, thus mass gained directly reflects 

consumption.  Second, Sherman and Watt (1973) measured body temperature by 



 14

inserting thermistor probes into individual caterpillars and heating them under spot 

lamps. Caterpillars were measured multiple times, but the number of caterpillars included 

was not reported. Our current experiment was conducted in controlled environmental 

chambers at different constant temperatures, which were maintained throughout a given 

feeding trial.  By measuring each individual 2-4 times over a range of temperatures, we 

can estimate the magnitude of individual variation within populations.  These 

methodological differences will lead to quantitative differences in feeding rates 

(including maximal rates of feeding) in the two studies, but should not affect the position 

(e.g. optimal temperature) or shape (e.g. thermal breadth) of the TPCs (see below, and 

Discussion).   

Field temperature data 

We obtained daily minimum and maximum air temperatures for the appropriate 

growing season of each population (Sacramento Valley, CA: January-December, Chapel 

Hill, NC: March-November, Montrose Valley, CO: April-October, Gunnison, CO: May-

September) from 1961-1971 (Sacramento Valley, CA and Montrose, CO only) and 2001-

2011 (all sites) from weather stations within 25 km of our field sites (National Climate 

Data Center, Global Historical Climatology Network-Daily). We created a sawtooth 

linear curve between each daily minimum and maximum and evaluated the curve at each 

0.1 of a Julian day to estimate the temperature density for each population during the 

growing season.  

Analysis 

All data were analyzed using the R (15.1) statistical package. Feeding rate was 

defined as � �   
 ������	� 
	��/����	� 
	���

���� ����� �������
.  This represents the proportional rate of mass 
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gain of a larva.  Feeding rates were analyzed with linear mixed effects models using the 

nlme package. The model used for our feeding rate analysis was 

F~T+T2+T3+P+T:P+T2:P+T3:P, where F=feeding rate, T=temperature, P=population, and  

T2 and T3 signify temperature squared and cubed respectively.  Note that the population 

term indicates differences among populations in overall rate of feeding, and interaction 

terms indicate differences between populations in thermal sensitivity of feeding rate. 

Because individual larvae were measured multiple (2-4) times, family as well as 

individual within family was included as random effects in the model however these 

effects did not significantly affect the model outcome (family, σ= 0.012, individual 

within family, σ= 0.015). For the historical comparison the model used was 

F~T+P+Y+T2+T3+T:P+T:Y+T2:P+T2:Y+T3:P+T3:Y which included the Y=year term.  

To characterize the differences in feeding rates among populations, we estimated 

key parameters describing the mean thermal performance curve (TPC) for each 

population.  We used the TPC model proposed by Frazier, Huey, and Berrigan (2006), 

which is the product of a Gaussian function and a Gompertz function:  

F(T)= Fmax e
-e[ρ(T-To)-6]-σ(T-To)^2 

Where F(T) is the feeding rate at experimental temperature T, Fmax is the maximum 

feeding rate, To is the optimal temperature, and ρ and σ determine the thermal sensitivity 

of feeding at temperatures above and below To, respectively.  The parameters were 

estimated using the nls function in R for each population. Using these values, we also 

computed thermal breadth B80 as the temperature range for which the feeding rate is 80% 

of the maximal rate Fmax (Hertz, Huey, and Stevenson 1993; Bauwens et al. 1995).   

Results 
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Differences in thermal performance curves among current populations 

 Thermal performance curves (TPCs) for feeding rate differed substantially and 

significantly among populations (Figure 2.1, Table 2.1). There were significant 1st and 2nd 

order effects of temperature on feeding rate, reflecting the unimodal shape of the mean 

TPC for each population. Populations differed significantly in their overall rates of 

feeding across temperatures, as indicated by the significant population effect.  

Importantly, there were also significant interactions between population and temperature, 

indicating differences among populations in the shapes of their TPCs (Fig. 2.1).   

 These differences in TPCs can be characterized in terms of the key parameters 

(Frazier, Huey, and Berrigan, 2006) that describe thermal performance curves (Table 

2.2).  Comparing all four of the populations shows that the maximum feeding rate (Fmax) 

was lower for the Sacramento Valley (low elevation) population of C. eurytheme than for 

the other three populations.  When just looking at the within species comparisons, 

optimal temperature (Topt) was greater for Gunnison (high elevation) than the Montrose 

Valley (low elevation) population of C. eriphyle, and lowest for the Sacramento Valley 

population of C. eurytheme (see Table 2 for note about Chapel Hill). Conversely, thermal 

breadth (B80) was greatest for the Sacramento Valley (low elevation) population of C. 

eurytheme, and smallest for the Montrose Valley (low elevation) population of C. 

eriphyle. 

Patterns of field temperatures 

 Larvae from all populations except Montrose Valley fed at temperatures in the lab 

that exceed the climatic temperatures (Tair) they would normally experience in the field 

during their growing seasons (Fig. 2.2). The C. eurytheme populations experience longer 
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growing seasons (365 days and 275 days for Sacramento Valley and Chapel Hill 

populations, respectively) than the C. eriphyle populations (214 days and 122 days for 

Montrose Valley and Gunnison populations, respectively). The broad TPC of the 

Sacramento C. eurytheme population enables feeding at a substantial rate during both hot 

summer conditions and during the cooler conditions in spring and fall, however, our 

feeding rates were never directly measured in the field (Fig. 2.2, left panels).  Note that 

the Tair distributions in both the C. eurytheme sites, Sacramento Valley and Chapel Hill, 

have a single strong mode, especially in summer, reflecting the higher humidity and 

reduced diurnal temperature fluctuations at these sites.  In contrast Tair distributions in the 

two C. eriphyle populations were strongly bimodal (or multimodal), especially during the 

growing season, reflecting the greater diurnal temperature variation at these drier 

Colorado sites.  The TPCs of C. eriphyle suggest that these populations fed substantially 

only at temperatures in the higher mode:  they were capable of feeding at air temperatures 

during the day, but not at night.  This effect was particularly noticeable for the higher 

elevation (Gunnison) C. eriphyle population.  Interestingly, C. eurytheme at Sacramento 

Valley and C. eriphyle at Montrose Valley consistently experienced Tair near or above 

their optimal temperatures (Fig 2.2); the other two populations rarely experienced Tair 

close to their optima (but see Discussion).   

Historical comparison 

For two populations-- C. eurytheme from Sacramento Valley and C. eriphyle from 

Montrose Valley-- we compared the short-term rates of larval feeding previously reported 

by Sherman and Watt (1973) with our current results.  Thermal performance curves for 

feeding rate differed significantly between time periods (years) for each population, 
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although for Montrose Valley, CO the overall shape of the TPC remained constant as 

reflected by similarities in ρ and σ despite the curve shifting in response to increasing 

temperatures (Fig. 2.3, Table 2.3). The significant 1st and 2nd order temperature terms 

show differences in unimodal curvature. The interactions between the 2nd order 

temperature terms and year indicate significant differences in TPCs between the previous 

and current data (Table 2.3). Both populations have increased their capacity to feed at 

higher temperatures during the past 40 years (Fig. 2.3). In addition, during the past 40 

years, Topt increased by ~ 3°C in C. eriphyle at Montrose Valley, while for C. eurytheme 

it did not change, whereas, thermal breadth increased substantially in C. eurytheme at 

Sacramento Valley, with only a small increase at Montrose Valley (Table 2.2). The Fmax 

results are not directly comparable from 1972 to 2012 because feeding rate was measured 

using different metrics in the two experiments. These results indicate that the positions 

and shapes of TPCs for larval feeding have changed substantially in these populations 

during the past four decades. 

Air temperature data show that climate conditions have also changed during the 

past four decades at these sites (Fig. 2.3). While overall mean temperatures during the 

growing seasons show slight increase from the 1960s to the 2000s (18°C to 19.5°C in 

CA, and 13.5°C to 14.5°C in CO) and temperature variation has increased more 

dramatically, reflecting a change from unimodal to multimodal distributions at both sites.  

In addition, the frequency of higher temperatures has increased markedly at both sites.  

For example, the frequency of air temperatures above 28°C has increased from 8.8% to 

18.2% at Sacramento Valley and 4.4% to 20% at Montrose Valley.  As a result, climate 
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change has increased the frequency of exposure to high air temperatures by two- to four-

fold at these sites (Fig. 2.3).    

Discussion 

Population divergence and climate differences 

We evaluated larval local adaptation to climate and compared current and past 

thermal performance in relation to recent climate change. We concluded that overall 

maximum feeding rates and TPCs differed among Colias populations and species, 

suggesting local adaptation to thermal environment. Our results show population 

differences in TPCs that differ from those found by Sherman and Watt (1973) for two of 

the populations (Sacramento Valley, CA and Montrose Valley, CO). We expanded the 

experiment and included both higher elevation (Gunnison, CO) and variable season 

(Chapel Hill, NC) populations.  

Larvae from Sacramento Valley, CA exhibit different thermal adaptation as they 

had a much lower Fmax and Topt from the other populations. These larvae also had the 

largest B80 indicating that they are likely temperature generalists and can achieve high 

performance at a wide variety of temperatures.  Notably, one environmental difference 

between the Sacramento Valley and other populations is length of growing season. In 

contrast to the limited growing seasons for the other populations, which are punctuated 

by winter, the larvae from the Sacramento Valley are able to feed almost year-round 

thereby relaxing selective pressure on the shape of the TPC. Additionally, C. eurytheme 

from Sacramento Valley, CA are able to feed throughout the day and night unlike the 

other populations that are to feeding only during the day when temperature are high 

enough. As mentioned in the methods it is possible that the Chapel Hill, NC population 
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may include some C. philodice and C. eurytheme hybrids. However we did not see any 

detrimental fitness effects that could have been caused by hybridization. In addition, we 

were examining thermal sensitivity, which should not be affected by hybridization.   

Despite living in areas with cooler mean annual temperatures, the C. eriphyle 

populations had high Fmax and Topt values compared to the C. eurytheme. In addition the 

Topt was nearly as high as Tair or Montrose Valley and above Tair for the Gunnison, CO 

population indicating that the larvae are capable of feeding at higher temperatures than 

they typically experience. Due to shorter growing seasons and greater diurnal temperature 

variation, feeding is restricted to daytime during the summer months.  

Colias eriphyle larvae from Gunnison, CO are able to continue feeding at 

temperatures well past their Topt. These temperatures are generally considered stressful 

for Colias larvae (Sherman and Watt 1973). However, the negative effects may not have 

been measurable over the short exposure time. Other caterpillars have shown non-zero 

consumption rates past their thermal range as well. For example, Pieris rapae caterpillars 

from Seattle, Washington showed short-term (2-6 hours) maximal growth rates at 35°C 

despite optimal long-term growth occurring at 30.5°C (Kingsolver, 2000).   

The C. eriphyle larvae from Gunnison, CO have a Topt about 6°C higher than the 

larvae from Montrose Valley. This is contrary to other TPC studies showing that as 

elevation increased, Topt decreased in neo-tropical high elevation frogs (Navas 1996). One 

possibility is that populations at higher elevations are strongly limited by the length of the 

growth season, resulting in countergradient patterns of growth across the elevational 

gradient.  There is evidence of countergradient variation in growth across latitudes for 

some insects and other ectotherms (Arnett and Gotelli 1999, Van Doorslaer and Stokks 
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2005). For example, Conover and Present (1990) found that that high latitude Atlantic 

silverside fish (Menidia menidia) are adapted not to lower temperatures, but to rapid 

growth and consumption during the brief time of year when temperatures are high. A 

similar trend may be occurring in Gunnison, CO with the larvae adapted to feeding 

rapidly during shorter exposure to high temperatures rather than feeding slowly across a 

broader range of temperatures.  

It is also possible that the larvae in Gunnison, CO are actually experiencing 

warmer body temperatures than the larvae in other populations due to the higher 

elevation larvae receiving more solar radiation. Larval body temperature has not been 

measured in the field although temperatures for the adult butterflies have not shown any 

difference in body temperature between populations (Kingsolver 1983a). 

Climate changes and population responses 

Mean air temperatures at these study sites have moderately changed from 1961-

1971 to 2001-2011 however there has been a much larger increase in temperature 

variability. Previously, the temperature density at both Sacramento Valley, CA and 

Montrose Valley, CO was unimodal, but the current temperature data shows more 

variability. There has been an increase in the density of higher temperatures (above 28°C) 

from 2001-2011 versus from 1961-1971. The frequency of air temperatures above 28°C 

has increased two-fold in Sacramento Valley, CA and more than four-fold in Montrose 

Valley, CO. In general, the Rocky Mountains in Colorado are seeing a higher degree of 

climatic warming than other parts of the continental North America (Ray and Averyt, 

2008).  
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The temperatures recorded at each weather station are the maximum and 

minimum Tair for the day measured 2m above ground level. These temperatures may not 

represent the temperatures that larvae would experience while foraging on plants in the 

field. Adult Colias butterflies require a body temperature of 30-40°C to achieve flight 

and do so despite experiencing a much lower Tair (Kingsolver, 1983). Near ground 

temperatures can be warmer than Tair, particularly under the high radiative conditions 

found at higher elevations, and may account for some of the variation in Topt and 

temperature density.  

This greater incidence of warm temperatures may be leading to the increased 

feeding at higher temperatures. However, the response to hotter temperatures varies 

between populations. The C. eurytheme larvae from the Sacramento Valley, CA have 

broadened their TPC to include a new range of temperatures over which they can feed as 

seen by the increase in B80, whereas C. eriphyle from the Montrose Valley, CO have 

retained a similar TPC shape as seen by similarities in ρ and σ, despite increasing Topt and 

thereby shifting the entire TPC to account for the hotter temperatures (Huey and 

Kingsolver 1993).   

Methodological differences cannot explain all of the differences we saw in the 

past versus current experiments. Despite differences in how feeding rate was assessed 

between the past experiment and our own, we saw feeding in our experiment at both high 

and low temperatures where the previous feeding rate was zero. This underscores that 

despite some methodological differences, phenotypic changes in TPCs have occurred in 

these populations. In our current experiment the larvae were allowed to acclimate for 15 

minutes prior to the feeding trial. It is unclear if larvae in the previous experiment were 
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allowed to acclimate at their experimental temperature before feeding. Acclimation in 

theory could lead to higher feeding rates and a greater B80 at all temperatures. Indeed, we 

saw an increase in the B80 for the C. eurytheme larvae, however this effect was not 

universal, and we did not see the same effect with C. eriphyle. Therefore, it is not 

differences in our acclimation that affected the differing B80 and Topt between past to 

current experiments. 

 This study is among the first to show population changes in physiological 

performance in response to recent climate change, although previous theoretical work has 

predicted such changes (Visser 2008, Skelly et al. 2007, Hoffmann and Sgrò 2011). 

While previous work has highlighted adaptation to seasonal timing, specifically 

photoperiodic cues (Bradshaw and Holzapfel 2001), our work suggests that rapid 

adaptation to changing thermal regimes may also be an essential mechanism. Future work 

could explore whether similar shifts in thermal optima exist during egg and larval 

development and whether such adaptations will represent a general mechanism for rapid 

adaptation to climate change. 
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FIGURES 

 

Figure 2.1: The thermal performance curves for feeding rate (mean +/- SE of ln(final 
mass/initial mass)/time) between the four populations. See the methods for an 
explanation of how changes in mass reflect short term feeding rate versus growth. The 
curve is the fit of the Frazier (2006) TPC model. The dotted horizontal line is B80. The 
vertical line indicates Topt. The size of the points is proportional to the number of larvae 
measured at each temperature.  
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Figure 2.2: Feeding rate (solid line) and Tair during the growing season for each 
population. The temperature density is depicted for both the appropriate growing season 
(dashed) and the summer months (June 1-September 30, dotted). The growing season and 
summer months are the same for Gunnison, CO.  
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Figure 2.3: Historical comparison of larval feeding rate and temperature density during 
the growth season for C. eriphyle and C. eurytheme. The solid line designates data from 
the past and the dashed line is current data. The points are measured feeding rates in the 
Sherman and Watt 1972 experiment (mean +/- SE). Relative feeding rate is calculated by 
standardizing the highest feeding rate for each year to one. The vertical lines indicate 
mean temperature. 
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TABLES 

Table 2.1: Results of ANOVA for the effects of temperature (T) and population (P) on 
feeding rate in C. eriphyle and C. eurytheme.  
Note that the population term indicates differences among populations in overall rate of 
feeding, and interaction terms indicate differences between populations in thermal 
sensitivity of feeding rate. Standard deviation σ, for random effects are family=0.012 and 
individual within family= 0.015. 
 
 Parameter  D

F  
F-value p-value 

T  1 53.14 <.0001 
T2         1 130.16 <.0001 
T3          1 0.26 0.61 
P 3 9.39 0.0001 
T:P  3 15.19 <.0001 
T2:P 3 12.61 <.0001 
T3:P  3 1.60 0.19 
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Table 2.2: Parameter estimates for the thermal performance curve (+/- SE). 
Where Fmax is maximum feeding rate, Topt is optimal temperature, and ρ and σ determine 
the thermal sensitivity of feeding at temperatures above and below Topt, respectively.  We 
also computed thermal breadth B80 as the temperature range for which the feeding rate is 
80% of the maximal rate Fmax *Topt was given for the Chapel Hill, NC population in order 
for the model to converge.  This value was chosen by finding the lowest residual error. 
Note: Fmax for the 1972 experiment was measured as mm2 leaf eaten/sec whereas for the 
2012 experiment is was ln(final larvae mass/initial larvae mass)/time.  
 

 

 

 

 

 

Species  Population Fmax Topt ρ σ B80 

C. 
eurytheme 

Sacramento Valley, CA- 19m 0.13 +/- 0.01 27.8+/- 2.1 0.54+/- 0.12 0.002+/- 0.001 17.1 

C. 
eurytheme 

Chapel Hill, NC- 148m 0.17+/- 0.01 32.5* 1.87 +/- 0.22 0.003+/- 0.0008 10.6 

C. eriphyle Montrose Valley, CO-1633m 0.19 +/- 0.02 28.8 +/- 2.8 2.14 +/- 3.10 0.007 +/- 0.004 7.7 

C. eriphyle Gunnison, CO- 2347m 0.19 +/-0.01 35.0 +/- 1.5 0.67 +/- 0.16 0.003+/- 0.0006 15.2 

C. 
eurytheme 

Sacramento Valley, CA (1972) 0.27 +/- 0.01 28.6 +/- 0.6 2.06 +/- 0.47 0.011 +/- 0.003 6.6 

C. eriphyle Montrose Valley, CO (1972) 0.20 +/- 0.01 25.3 +/- 0.6 1.84 +/- 0.37 0.015 +/- 0.003 6.2 
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Table 2.3: Results of ANOVA for the effects of temperature (T), population (P), and 
year (Y) in the historical comparison between 1972 and 2012 of C. eriphyle and C. 
eurytheme feeding rates. 
 
 
Parameter Df F-value p-value 
T 1 0.07 0.79 
P 1 2.48 0.12 
Y 1 326.29 <2.20E-16 
T2 1 152.75 <2.20E-16 
T3 1 0.30 0.58 
T:P 1 2.70 0.10 
T:Y 1 13.31 0.0003 
T2:P 1 27.75 1.76E-07 
T2:Y 1 15.46 9.13E-05 
T3:P 1 0.96 0.33 
T3:Y 1 2.99 0.08 
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CHAPTER 3: GROWTH, DEVELOPMENTAL, AND STRESS RESPONSES OF 
COLIAS LARVAE TO REPEATED EXPOSURE TO HIGH, SUB-LETHAL 

TEMPERATURES  
 

The range of temperatures over which an organism can operate is often characterized by a 

thermal performance curve (TPC) (Huey & Stevenson 1979). Thermal performance 

curves have a particular shape with performance increasing gradually to the optimum and 

then rapidly decreasing at temperatures above the optimum. As the temperatures 

increases, ectothermic organisms reach their critical thermal maximum (CTmax) where the 

organism stops functioning and prolonged exposure can cause death. Upper thermal 

limits of terrestrial organisms do not vary consistently with latitude (Addo-Bediako, 

Chown & Gaston 2000; Sunday, Bates & Dulvy 2011) although thermal optima (Topt) 

generally decrease with increasing latitude (Huey & Kingsolver 1993; Cunningham & 

Read 2003; Sun & Friedmann 2005). These contrasting environmental patterns for upper 

thermal limits and thermal optima make performance at temperatures above the optimum 

but below between the thermal maximum of particular interest.  

 We know there are differences in how TPCs relate to physiological traits between 

temperate and tropical species and across latitude (Cunningham & Read 2003; Deutsch et 

al. 2008; Sunday et al. 2011; Nilsson-Örtman et al. 2012). However, we do not know 

much about how these differences in TPCs will affect growth and development across 

elevations or between populations (Berven 1982). To explore this we used the sulphur 

butterfly, Colias eriphyle, from two sites in Colorado that differ in elevation as well as 
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environmental temperature regimes. The C. eriphyle larvae from these populations also 

differ in their TPCs for feeding rate (Figure 3.1) (Higgins et al. 2013). Here we 

investigate how different TPCs for short term feeding rates can influence long-term 

growth and development and whether sub-lethal temperatures are sufficient to elicit heat 

stress responses.  

The heat shock response often determines the maximum temperatures of TPCs 

(Feder & Hofmann 1999), but we do not know at what temperatures this response 

initiates for many species, including C. eriphyle.  Heat shock proteins are small 

chaperones that prevent protein misfolding during stress, however their production comes 

at the cost of growth and other cellular processes (Krebs & Feder 1997). We measured 

the expression level of heat shock protein 70 (hsp70) before, during, and after the heat 

treatment to understand how expression changes with time. We also determine whether 

expression levels of hsp70 differ between the two populations. Previous studies with 

other organisms show differences in gene expression or protein levels for heat shock 

genes, including hsp70, across geographic gradients (White, Hightower & Schultz 1994; 

White et al. 1994; Tomanek & Somero 1999; Sagarin & Somero 2006).  

We predict that the heat treatments should be more stressful for the larvae from 

Montrose Valley because of their lower optimal temperatures and upper thermal limits. 

Specifically we expect both of our heat treatments (high 33°C and high 38°C) to be 

stressful for the Montrose Valley larvae as the temperatures correspond to a feeding rate 

of zero. The feeding rate for Gunnison larvae is maximal at ~35°C and declines above 

38°C. We predict that the Montrose Valley larvae will not be able to feed during the 

hottest parts of the three day heat treatments whereas the Gunnison larvae should be able 
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to continue feeding. Therefore we predict an overall decrease in the growth rate of 

Montrose larvae.  

The time scale used to measure CTmax and upper thermal limits varies between 

studies, and typically an experimental organism only experiences a single exposure to 

high temperature during development. In this study we use repeated exposure to high 

non-lethal temperatures in order to understand both the short and long term effects of 

potentially stressful temperatures during development. This simulates the effect of heat 

waves that occur with extreme highs over a series of days. To examine the long-term 

effects, we measure mass and development time at each instar and to pupation. Based on 

short term TPCs for feeding rate we are also able to estimate and predict growth rate to 

pupation and compare our prediction with our results for the two populations with 

different TPCs for feeding. To study the short-term effects of heat exposure we look at 

hsp70 expression levels before, during, and after the treatments. The fitness costs 

associated with the heat shock response may provide a partial explanation for some of the 

long-term fitness effects.  

Methods 

Study system 

Colias eriphyle occurs in open habitats in the western US, and occupies elevations 

between 1,400-2,900m in western Colorado. The larvae have five larval instars and 

undergo a facultative winter diapause during the 3rd instar.  The larvae feed on plants in 

the Fabaceace family, including M. sativa (alfalfa), Vicia (vetch) spp., and Trifolium 

(clover) spp.). We sampled C. eriphyle females from alfalfa (Medicago sativa) fields 

located in the Montrose Valley, CO (N38.62, W108.02, 1,633 m) and from a county park 
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with meadows including vetch (Vicia) and clover (Trifolium) near Gunnison, CO 

(N38.56, W106.94, 2,347 m). These two study sites have different growing seasons, 

which account for variation in larval development, adult flight time, and the number of 

generations per year (voltinism). In the Montrose Valley, CO the growing season can 

start as early as April and continue through October resulting in 3-5 generations of C. 

eriphyle per year whereas in Gunnison, CO, the growing season starts in June and 

continues through September, resulting in two generations of C. eriphyle per year 

(Higgins et al. 2013).  

Growth and development experiments 

Adult female butterflies were collected from each site and shipped overnight to 

the University of North Carolina at Chapel Hill. The female butterflies were kept in cages 

at greenhouse conditions (~26°C) under natural light. Females were fed 10% honey water 

solution by moistened sponge changed daily, and were allowed to oviposit on potted 

Vicia villosa in the greenhouse. Eggs were removed each day and placed in 

environmental chambers (Percival 36VL, Geneva Scientific, WI, USA) maintained at 21-

29°C (average of 25°C) on a 14L:10D photoperiod where larvae were given leaves of V. 

villosa ad libitum. Larvae were reared individually and scored daily for age and instar. 

Upon entering the second instar, approximately 60 larvae from each population (180 

larvae total from each population) were randomly placed into one of three temperature 

treatments: a medium heat treatment, 21-33°C, ramping from 21°C at 3:00 to 33°C at 

15:00, holding at 33°C for an hour and then ramping steadily back to 21°C at 3:00 the 

next day; a high heat treatment, 21-38°C ramping from 21°C at 3:00 to 38°C at 15:00, 

holding at 38°C for an hour and then ramping steadily back to 21°C at 3:00 the next day;  



 38

or the control group which went back into the rearing chamber  ramping from 21°C at 

3:00 to 29°C at 15:00, holding at 29°C for an hour and then ramping steadily back to 

21°C at 3:00 the next day.  These temperatures were chosen based on the differences in 

mean TPCs for larval feeding rates between the two populations (Higgins et al. 2013): in 

particular, the mean optimal temperature for feeding is lower for the Montrose Valley 

population (Topt = 28°C)  than for the Gunnison population (Topt = 35°C) (Fig 3.1). 

Because of these differences, we predicted that both the 33°C and 38°C treatments should 

be stressful for Montrose Valley, CO larvae. The Gunnison, CO larvae should not be 

stressed at 33°C and should face mild stress at 38°C.  However, neither treatment should 

be lethal or cause permanent damage to the larvae.  

Each larva was kept in their respective temperature treatment for three days and 

then returned to the control rearing conditions for the duration of the experiment. Age at 

each instar, mass at each instar beginning at the 3rd instar, overall growth rate to pupation, 

and development time were recorded. Development time, pupal mass, and growth rate 

were analyzed with population and temperature as fixed effects and sib-family (mom) as 

a random effect in linear mixed effects models using the nlme package (Pinheiro et al. 

2014).  

Expression of hsp70 

 RNA was extracted using Qiagen RNeasy kits (Qiagen, Valencia, CA) from 

whole larvae at four time points during the three-day heat treatments (10 biological 

replicates, with 3 technical replicates each) (at 0, 24, 72, and 96 hours) (Fig 3.2). 

Extracted RNA was reverse transcribed using the High Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems, Carlsbad, CA) with random primers. Manduca 
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sexta primers for hsp70 (F: 5’-GTGCTGACCAAGATGAAGGA- 3’, R: 5’- 

CGCTGTGAGTTGAAGTA-3’) and for 18S rRNA (F: 5’- 

CAGCACATCTTAGGGCATCAC-3’, R: 5’- CAACTCACTGGCGACGTATTA-3’), 

which was used to normalize the expression levels of hsp70, were used in the PCR of the 

cDNA. The PCR product was sequenced and Colias specific hsp70 (F: 5’- 

CCAGTAACAACCTTGGCAAAC-3’, R: 5’- CTGTGAGTCGTTGAAGTACG- 3’) and 

18S rRNA (F: 5’- CTCATCTCGTGCGGCT -3’, R: 5’- GTAATCAACTCACTGGCGA 

-3’) primers were designed and used for qPCR. The qPCR was conducted with the SYBR 

Green FastMix (Quanta Biosciences, Gaithersburg, MD) on a Biorad CFX96 

thermocycler (Bio-Rad, Hercules, CA). PCR was initiated with a Taq activation step 

performed at 95°C for 10 min followed by 40 amplification cycles of a 95°C denaturation 

step for 2 sec and a 72°C combined annealing-elongation step for 10 sec. The data was 

analyzed using the Pfaffl method (Pfaffl 2001). Expression of hsp70 was relative to 18S 

rRNA and calibrated to the control (high 29°C) larvae from Montrose Valley. Linear 

mixed effects models were used to analyze differences in relative expression ratio among 

treatments and time points with sib-family as a random effect and time, temperature, and 

population as fixed effects. RNA from the Gunnison larvae was only collected at 0 and 

96 hours due to a laboratory accident that destroyed many of the samples. All data were 

analyzed in R (v 3.1.1). 

Results 

Growth and development 

For both populations, the 33 and 38°C heat treatments decreased mean 

development time to 3rd, 4th, and 5th instars (Fig 3.3). However, there were no 
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significant effects of heat treatment (F(2,348)=1.76, p=0.17), population (F(1,23)=0.37, 

p=0.55) or their interaction on mean development time to pupation (F(2,348)=0.41, p=0.66) 

(Fig 3.4). This suggests that the heat treatments accelerated development during the 

middle (2nd - 4th) larval instars, but these effects disappeared by the end of larval 

development.  

For pupal mass, there were significant effects of treatment (F(2,330)=6.34, p=0.04) 

and population (F(1,22)=105.6, p<0.0001) as well as an interaction between treatment and 

population (F(2,330)=4.8, p=0.009) (Fig 4). Increasing treatment temperatures reduced 

mean pupal mass for the Montrose Valley population, but not for the Gunnison 

population (Fig 3.4). 

We also calculated growth rate to pupation and detected significant effects of 

population (F(1,22)=19.9, p=0.0002) and of the interaction between treatment and 

population (F(2,329)=1.0, p=0.37), but treatment alone was not significant (F(2,329)=1.0, 

p=0.35) (Fig 3.4). Relative to the control group, mean growth rate for the Montrose 

Valley population was slightly lower for the 33°C treatment and much lower for the 38°C 

treatment (Fig 3.4). In contrast for the Gunnison population, the mean growth rate 

increased in the 33°C treatment, but decreased in the 38°C treatment (Fig 3.4).  

hsp70 expression 

 For the Montrose Valley larvae, the relative expression levels of hsp70 were not 

affected by temperature (F(1,53)= 3.36, p=0.072), but did vary significantly over time 

(F(1,53)= 7.35, p=0.01), and there was no significant interaction of time and temperature 

treatment (F(1,53)= 2.20, p=0.144)  (Fig 3.5). The expression levels were highest 24 hours 
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after being placed into the treatment (106 hours since hatching) and then went back down 

to pre-exposure levels. 

 When comparing the relative expression levels of hsp70 between Montrose 

Valley and Gunnison before and 24 hours after the onset of the treatment (106 hours 

since hatching) there was a significant effect of population (F(1,8)= 6.9, p=0.03), but there 

was no significant effect of temperature (F(1,19)= 1.11, p=0.31), nor was there an 

interaction between the two (F(1,19)= 0.67, p=0.42). The expression levels of hsp70 at 0 

and 24 hours were higher in the larvae from Gunnison compared to those from Montrose 

Valley.  

Discussion 

We found that the effects of high sub-lethal temperatures on larval growth and 

development differ between Colias populations, such that the lower elevation Montrose 

Valley is more susceptible to the stress of the heat treatments than the higher elevation 

Gunnison. This may be due to the fact that Gunnison has a more variable climate overall, 

and therefore the larvae are able to deal with more stressful temperatures.  

Growth and development 

Previous work looking at ramping heat treatments during the egg stage of 

Manduca sexta showed that the high temperatures slowed down development in the early 

instars, but that effect was gone in the later instars and pupation (Potter, Davidowitz & 

Arthur Woods 2011). Conversely, we found the heat treatments decreased the age at each 

instar in the 2nd through 4th instars (speeding up development), but had no effect on 

overall development time to pupation (3.3). The substantially higher temperatures used in 
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the Potter, Davidowitz & Woods (2011) likely explains why they saw delayed 

development associated with a stress response where we saw accelerated development.  

Generally, higher temperatures during development cause rapid growth but a 

smaller adult body size. This is commonly known as the temperature size rule (TSR) 

(Atkinson 1994) and it has been shown in many ectothermic species (Sibly & Atkinson 

1994; Atkinson & Sibly 1997; Angilletta & Dunham 2003; Kingsolver & Huey 2008; 

Forster, Hirst & Atkinson 2011). In our experiments, the heat treatments sped up 

development time for both populations; however, the Montrose Valley larvae were 

smaller at each instar when exposed to the heat treatments relative to the control (Fig 

3.3). This could be simply the TSR in that faster development correlates with smaller 

size, however the smaller body size at each instar was not seen in Gunnison. Montrose 

Valley larvae may have experienced stressful times when the larvae did little to no 

feeding (or gaining of mass). The ontogenetic growth model suggests that there are 

tradeoffs between growth of new tissues and maintenance of existing tissues (West, 

Brown & Enquist 2001). Montrose Valley larvae facing high temperatures may have used 

their energy to protect the tissues they had by slight upregulation of hsp70 (Fig 3.5) 

versus continuing consumption and gaining mass.  

As predicted, the Montrose Valley larvae were significantly smaller as pupae 

when in the heat treatments relative to their control counterparts. Larvae experienced 

similar overall average temperatures despite three days of variable heat treatments. In the 

high 29°C treatment the mean temperature throughout development was 25°C, in the high 

33°C treatment the mean temperature was 25.4°C, and in the high 38°C treatment the 

mean was 25.9°C. These differences in mean temperatures are insufficient to account for 
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the large differences in pupal mass observed. This suggests that it was stress, not simply 

the TSR, reducing pupal masses in Montrose Valley. Starved damselflies exhibited 

compensatory growth by increasing development time and mass, but had a lower mass at 

emergence ((Stoks, Block & McPeek 2006)). Stress associated with the three heat 

treatment days had long term effects on overall fitness via reduced pupal size (Taylor, 

Anderson & Peckarsky 1998).   

hsp70 expression 

 Overall hsp70 expression was higher in Gunnison compared to Montrose Valley, 

even at 29°C. Gunnison is higher in elevation and overall experiences generally cooler 

yet more variable temperatures than Montrose Valley. In other systems hsp70 levels have 

been observed to decrease (Dahlhoff & Rank 2000; Garbuz et al. 2003) or remain 

constant (Karl et al. 2009) with elevation. However, Healy (2010) found that the cooler, 

northern populations of killifish did have higher expression of hsp70-2 and hsp90 than 

the warmer southern populations (Healy et al. 2010).  

 Heat treatment did not alter hsp70 expression in the Gunnison population. 

Gunnison larvae may have reached their maximum levels of expression for hsp70, 

however this seems unlikely as they do not exhibit common symptoms such as decreased 

growth and development (Krebs & Feder 1997). The larvae are able to continue feeding 

well past the temperatures used in the heat treatments (Higgins et al. 2013). Alternatively, 

the observed hsp70 expression in Gunnison larvae may represent basal levels if our heat 

treatments were insufficient to cause stress. Perhaps the overall variability of the 

temperatures experienced in the field lead to higher performance at extremes.  Examining 

hsp70 expression levels at much higher temperatures, specifically above 38°C where they 



 44

begin to decrease feeding, would help resolve these results. In Montrose Valley the 

expression levels increase at 24 hours in the heat treatment and then decrease to their pre-

heat treatment levels. This is consistent with other work highlighting the rapid induction 

of hsp70 during a heat stress and then a decrease of expression levels back to normal 

levels (Dahlgaard et al. 1998; Tomanek & Somero 1999; Tomanek & Sanford 2003).  

 Many of the studies looking at hsp70 expression use adults, whereas we measured 

expression levels in larvae. Hsp70 expression in Tenebrio molitor beetles was much 

lower in larvae compared to adults (Lardies et al. 2014). Even work examining hsp70 

expression throughout adult ages have concluded that expression decreases with age to 

adulthood (Sørensen & Loeschcke 2002), further highlighting that different life stages 

and ages have can have different heat stress responses. Colias adults differ from larvae in 

thermal tolerance (Watt 1968; Kingsolver & Watt 1983; Kingsolver 1983). It is thus 

likely that the levels and even the temperature at which induction of hsp70 occurs would 

be different in adults.  

 Exposure of C. eriphyle larvae to high sub-lethal temperatures early in 

development did not affect overall development time to pupation, but did cause 

differences in pupal mass and growth rate. The Gunnison population had higher hsp70 

expression levels overall compared to Montrose Valley, but the expression levels did not 

change before or during the heat treatment. This may signify that these heat treatments 

were not stressful enough to elicit a response, which does correlate with the TPC showing 

that Gunnison continues feeding past 38°C. Overall, we have shown that sub-lethal high 

temperatures have many varied effects on growth and development both in the short term 

and into adulthood, and that the effects can depend on population.  This work 



 45

demonstrates the importance of considering responses to thermal stress at multiple time 

scales and throughout the life cycle.  
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FIGURES 

 
Figure 3.1: Short term feeding rate of 5th instar Colias larvae from Montrose Valley 
and Gunnison, CO. These feeding rates were used to determine the heat treatment 
temperatures (dotted vertical lines). The rearing conditions are indicated by the 
horizontal bar above the x-axis. 
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Figure 3.2: Temperature regime for the control (29°C) and heat (33°C and 38°C) 
treatments. The heat treatments (shaded box) began at the onset of the 2nd instar 
(indicated by star), which starts at approximately 3 days after hatching. The vertical lines 
indicate when larvae were sacrificed for the hsp70 expression experiment.  
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Figure 3.3: Mass and age from the 3rd to 5th instar for larvae in the control (high 29°C) or 
heat (high 33 or 38°C) treatments. Heat treatments occurred for 3 days (72 hours) 
following the onset of the 2nd instar. 
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Figure 3.4: Development time to pupation, pupal mass growth rate for larvae from 
Montrose Valley (squares, dashed line) and Gunnison (circles, solid line). 
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Figure 3.5: Relative expression levels of hsp70 for larvae from Montrose Valley (solid 
shapes) and Gunnison (open shapes) at 33°C (solid line) and 38°C (dashed line). The 
shaded rectangle indicates the duration of the heat treatments. All expression levels were 
calibrated to the Montrose Valley control (high 29°C) levels. 
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CHAPTER 4: THERMAL SENSITIVITY OF PUPAL LIFE HISTORY AND 
PLASTICITY OF ADULT MORPHOLOGY IN COLIAS ERIPHYLE  

 

Introduction 

For ectotherms, temperature affects nearly all of life’s processes, and differing 

temperatures throughout development can have affect different fitness and performance 

traits. For insects that undergo pupation this sessile life stage can present unique thermal 

challenges (Kingsolver et al. 2011). Pupae cannot thermoregulate meaning they 

experience the temperature of their surrounding environment. Previous work looking at 

the thermal effects of pupation have shown that both high and low temperatures can 

cause decreases in survival and that temperature can also affect pupal development rate 

(Turnock, Lamb & Bodnaryk 1983; Lamb & Gerber 1985; Gotthard, Nylin & Wiklund 

1994; Krebs & Loeschcke 1995; Tarone et al. 2011; Telles-Romero et al. 2011). As 

temperatures increase pupal development speeds up and pupae can emerge sooner, this 

may be beneficial as it decreases the amount of time that an organism is completely 

susceptible to predation (Evans et al. 2013). However, early emergence may mean that 

there is a mismatch of resources and there is the possibility of experiencing cold 

temperatures again due to a false spring (Bale et al. 2002). During pupation organisms 

can only lose mass as they use their resources (Fischer et al. 2005). While higher 

temperatures speed up pupal development extremely high temperatures may have the 

detrimental effect of increasing mass lost during pupation due to consumption of 

resources. This may create smaller, less fit adults (Kingsolver & Huey 2008).  
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In addition to pupal life history traits, temperatures during pupation can also 

affect adult traits. Phenotypic plasticity allows organisms to adapt certain traits to a 

variable environment. Climate variation, predator regime, and critical photoperiod are all 

environmental variables to which some organisms, including butterflies, have shown 

plasticity (Nylin, Wickman & Wiklund 1989; Berwaerts et al. 1997; Nylin & Gotthard 

1998; Karlsson & Van Dyck 2005; Breuker, Brakefield & Gibbs 2007). This phenotypic 

plasticity is specifically called seasonal polymorphism when adults have different morphs 

that increase fitness during different seasons. The tropical butterfly Bicyclus anynana has 

two different wing patterning phenotypes, associated with different seasons (wet vs. dry) 

and predators during each season (Lyytinen et al. 2004). Phenotypic plasticity may be a 

way for organisms to mitigate the harmful effects of a changing climate (Przybylo, 

Sheldon & Merilä 2000; Réale et al. 2003; Charmantier et al. 2008) such as increasing 

temperatures, but only if the traits are sufficiently plastic and if the cues used in 

triggering plasticity are reliable.  

For Colias butterflies, adult wing melanin is a plastic trait that determines flight 

activity and ultimately fitness, as increased flight time leads to more egg laying in 

females (Kingsolver 1983; Buckley & Kingsolver 2012). We know that there are 

elevational patterns in the degree of wing melanin (Ellers & Boggs 2002a; Stamberger 

2006) but we have limited evidence on the degree to which this trait is plastic in regards 

to temperature. For the low elevation Colias eurytheme adult wing melanin is related to 

the photoperiod during pupation with longer light cycles leading to lighter wings 

(Hoffmann 1973; Hoffmann 1978). In his studies Hoffmann noticed that while C. 

eurytheme wing melanin was related to photoperiod, wing melanin in the higher elevation 
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C. eriphyle was not. Rather, wing melanin in C. eriphyle was related to the temperature 

experienced as a pupae, with higher temperatures producing butterflies with lighter wings 

(Hoffmann 1973; Hoffmann 1978). This is likely because temperature and photoperiod 

are not correlated in variable montane environments. Hoffmann’s (1973, 1978) studies 

showed that there is some effect of pupal temperature on adult wing melanin, but his 

study did not examine if temperatures during the larval and pupal stage could also affect 

other adult traits.  

In this chapter I focus on the effects of differing temperatures during pupation for 

two populations of Colias eriphyle. We know that there are differences in larval 

performance (feeding rate) between the two populations at different temperatures 

(Higgins et al. 2013), however at the adult stage there are no differences between 

populations in thermal sensitivity of adult flight (Watt 1968). This makes the pupal stage 

particularly interesting to study. Colias eriphyle pupate during the summer months 

attached to host plants. Unable to thermoregulate, they are subjected to the conditions on 

their host plant. I want to know how different pupal temperatures affect pupal survival, 

pupal duration, adult mass, and the plasticity of adult wing ventral hind wing melanin? I 

want to understand the effects of temperature on pupal life history traits in Colias 

eriphyle and I want to know whether these effects differ between two Colorado 

populations. Additionally, I aim to study if pupal and larval-pupal conditions affect adult 

plasticity in regards to wing melanin, and by comparing back to Hoffmann's (1973, 1978) 

work I want to know if that plasticity has changed over time.  

Methods 
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 Female adult C. eriphyle were shipped from the Montrose Valley and Gunnison, 

CO during the summers of 2011 and 2012. In 2011, females from Montrose Valley were 

caught in early July, and females from Gunnison were caught in early August. In 2012, 

females from Montrose Valley were caught in mid-July and females from Gunnison were 

caught in mid-May. The females were shipped overnight on ice to the University of 

North Carolina at Chapel Hill and placed in greenhouse conditions (~26°C, ambient 

light). Females were allowed to oviposit in the greenhouse on Vicia villosa and given 

~20% honey water ad libitum.  

Pupal life history traits- 2011 and 2012 

Every day, eggs were collected and placed into growth chambers (Percival) and 

reared at a constant 25°C, at 14L:10D. The larvae were kept on potted V. villosa plants by 

maternal family and reared together until pupation. Upon pupation, the pupae were 

placed into vented plastic cups with moistened filter paper to prevent desiccation and a 

wooden popsicle stick that created a perch for newly eclosed butterflies to dry their 

wings. The pupae were randomly assigned and placed into a new chamber at 15, 20, 25, 

or 30°C  (in 2011 20°C, 25°C, 30°C for both populations; in 2012 15°C, 20°C, 25°C, 

30°C for Gunnison and 15°C and 30°C for Montrose Valley) for the duration of pupation 

to eclosion. Pupal mass, pupal development time, adult mass, and survival were recorded 

for each individual.  All of the pupae were weighed 48 hours after pupation to prevent 

death from handling. Mass lost was calculated for each individual as pupal mass-eclosion 

mass. 

Plasticity of wing melanin- 2011 and 2012 

Pupal temperatures 
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The experimental set up was the same as in the pupal life history traits 

experiment. Upon eclosion, butterflies from all temperature treatments were frozen, 

dried, and kept at 0°C until spectrophotometer analysis.  

Larval-pupal temperatures 

After hatching the larvae were placed into chambers that ramped from 16-24°C 

(average 20°C) or 21-29°C (average 25°C) all under 14L:10D light/dark cycles. The 

larvae were reared individually on cut V. villosa in petri dishes and fed ad libitum. The 

larvae remained in their respective chambers for the duration of development (larval and 

pupal). Upon eclosion, butterflies from all temperature treatments were frozen until 

spectrophotometer analysis. 

Spectrophotometer analysis 

 Dried, frozen adult butterflies were mounted using Duco Cement onto 2x2 inch 

card stock square. Reflectance was measured at 650nm using a Field Spec Pro (Licor) 

spectroreflectometer by selecting a 2mm area for analysis below the discal spot (Watt 

1968; Hoffmann 1978) as a proxy for wing melanin. I used black flocking paper with a 

2mm window cut out to select only the area being studied. Reflectance was corrected by 

accounting for the background reflectance of the flocking paper. Three reflectance 

measurements were collected and averaged for each individual. Reflectance was then 

converted to absorbance (1-reflectance) to compare to historical results. Low absorbance 

shows a lighter wing melanin, high absorbance shows darker wing melanin.  

Statistics  

All analyses were conducted using the R (v3.1.1) statistical program. All of the 

data was analyzed separately for each year due to overall differences in 2011 and 2012. 
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Survival was analyzed using binomial generalized linear mixed effects models using the 

lme4 package with population, sex, and temperature as fixed effects and sib-family as a 

random effect (Bates et al. 2014). Pupal duration, mass lost, and wing absorbance were 

analyzed with population, temperature, and sex as fixed effects and sib-family (mom) as 

a random effect in linear mixed effects models using the nlme package (Pinheiro et al. 

2014).  

Results 

Pupal life history traits 

 Survival was high across all treatments for both years. Overall, survival in 2012 

was lower than survival in 2011. For survival in 2011, population (z= 0.14, p=0.89) and 

temperature (z= -0.54, p=0.59) were not significant nor was the interaction of population 

and temperature (z=0.002, p=0.10) (Figure 4.1). In 2012, population (z=0.24, p=0.81) 

and temperature (z=0.78, p=0.44) were also not significant, nor was the interaction (z= -

0.43, p=0.67) (Fig 4.1).  

 Generally, as the temperature increased the difference in the mean duration of the 

pupal stage between the Gunnison and the Montrose Valley pupae decreased until 30°C 

where their pupal duration was similar (Fig 4.2). High pupal temperatures decreased 

pupal duration in both 2011 (F1,108= 676.5, p<0.0001) and 2012 (F1,63= 300.6, p<0.0001). 

In 2011, population (F1,18= 12.7, p=0.002) was significant and the pupae from Gunnison 

spent more time as pupae than those from Montrose Valley (Fig 4.2A), however this 

effect was not found in 2012 (F1,16= 1.03, p=0.3). In 2011, there was no significant 

difference between the sexes (F1,108= 3.5, p=0.06), but in 2012 males spent less time as 

pupae than females (F1,63= 5.2, p=0.03). In 2011, there was a significant interaction of 
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population and sex (F1,08= 9.2, p=0.003), such that males from Gunnison spent more time 

as pupae than females from Montrose Valley, however there were no significant 

interactions in 2012 (Fig 4.2).  

For mass lost there was no significant difference between populations in 2011 

(F1,18= 0.08, p=0.78) nor 2012 (F1,15= 2.6, p=0.12) (Fig 4.3). In 2011, higher pupal 

temperatures led to more mass lost during pupation (F1,101= 6.5, p=0.01), this effect was 

not seen in 2012 (F1,61= 0.16, p=0.7). There was no difference between the sexes in 

regards to mass lost in 2011 (F1,101= 0.01, p=0.91), but in 2012 males loss more mass 

than females (F1,61= 4.7, p=0.03).   There were no significant interactions in 2011, but 

and there was an interaction of temperature and sex such that temperatures increased the 

mass lost for males increased, but the mass lost for females decreased (F1,15= 4.4, p=0.04) 

in 2012 (Fig 4.3B).  

Plasticity of wing melanin 

For wing absorbance at 650nm, females were darker than males in both 2011 

(F1,93= 29.3, p<0.0001) and 2012 (F1,54= 6.9, p=0.01). Temperature, population, and all 

interactions were not significant in 2011 (Fig 4.4A), but in 2012 higher temperatures led 

to lower wing absorbance (F1,54= 6.4, p=0.01), however there was no difference in 

absorbance between populations (F1,15= 1.0, p=0.34) (Fig 4.4B). In 2012, as temperatures 

increased absorbance increased for the females and decreased for the males (F1,54= 10.6, 

p=0.002). For Montrose Valley the females were darker than the males, but for Gunnison 

the males were darker than the females (F1,54= 12.1, p=0.001) (Fig 4.4B). The largest 

differences in absorbance are between the 15°C and 30°C temperature treatments.  

Changes in plasticity over time 
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 The absorbance at 650nm appears to be variable from year to year, especially 

when combining males and females (Fig 4.5). In 2012, the wing absorbance was higher 

than in 1978, which was about equal to the wing absorbance in 2011.  

Pupal temperatures versus larval-pupal temperatures 

 To compare the effects of the cycling treatment during larval and pupal period I 

looked at the 2011 Montrose Valley larvae reared at either a constant 25°C throughout 

larval and pupal development or a cycling 21-29°C temperature (average 25°C) for both 

larval and pupal development. I found that females were darker than males (F1,43= 19.94, 

p=0.0001) and the animals kept in constant temperatures were darker than animals kept 

under the ramping conditions (F1,43= 7.7, p=0.008) (Fig 4.6).  

When comparing the different ramping temperatures in 2011 Gunnison was 

measured at a ramping 20°C treatment and Montrose Valley at both a ramping 20°C (16-

24°C, average 20°C) and 25°C (21-29°C, average 25°C) treatment. Overall, the 

absorbance in 2012 was higher than in (Fig 4.7). In 2011, wing absorbance was higher at 

20°C compared to 25°C, (F1,64= 28.6, p<0.0001) and females were darker than males in 

both 2011 (F1,64= 11.3, p=0.001) and 2012 (F1,137= 37.8, p<0.0001) however there was no 

significant difference between populations in 2011 (F1,9= 0.04, p=0.95) nor in 2012 

(F1,18= 0.12, p=0.73). Additionally, the interaction of population and sex was not 

significant in 2011 (F1,64= 0.84, p=0.36) nor 2012 (F1,137= 1.6, p=0.21) (Fig 4.7).  

Discussion 

Pupal life history traits 

Similar to other life stages, temperatures during pupation have many variable 

effects on survival, body size, and development time. Survival was generally high 
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although the survival during 2012 was lower than in 2011. One of the key differences in 

rearing conditions between the years was that in 2012 the larvae were kept in Percival 

chambers that also contained Pieris rapae larvae (as part of a different experiment). 

Although each larva was reared independently in an individual, closed petri dish, and 

Pieris and Colias larvae were in separate sections of the chamber, this may have 

contributed to the greater mortality in 2012 due to viral disease being spread in the 

chamber (Fig 4.1).  The pupal temperatures used were not lethal or stressful as seen by 

the high survival. However it would be interesting to see the pattern of survival as 

temperatures increased further especially given the fact that the two populations have 

different thermal tolerances as larvae (Higgins et al. 2013).  

 The population differences in mean development time are largest at cold 

temperatures and disappear as temperature increases (Fig 4.2). This pattern was similarly 

seen in the Colias larvae when reared at two different temperatures (see Chapter 5). In 

2011 for Gunnison, the estimated developmental zero or the temperature at which 

development stops is 12.9°C, and the slope of the regression of the development rate over 

temperature is 0.012, which is also the rate of accumulation of degree days. In 2011 the 

developmental zero for Montrose Valley is 13.7°C and the rate of degree-day 

accumulation is 0.015. In 2012, for Gunnison the estimated developmental zero is 10.2°C 

and the rate of degree-day accumulation is 0.014. For Montrose Valley in 2012, the 

estimated developmental zero is 9.1°C and the rate of degree-day accumulation is 0.009. 

Gunnison typically has a longer pupal development time, but at 30°C the development 

times between the two populations are nearly identical. There appears to be a lower limit 
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on development time in that the pupae need at least 5-6 days, to complete pupal 

development.  

Mass loss during pupation increases with increasing temperature, as reported in 

other species  (Telles-Romero et al. 2011). In 2012 males lost more weight than females 

as temperature increased (Fig 4.3B). For Pararge aegeria, the speckled wood butterfly, 

males also tend to lose more mass during pupation despite having similar pupal 

development times (Gotthard et al. 1994).  

Wing melanin 

 In agreement with previous studies (Ellers and Boggs 2002), mean wing melanin 

(absorbance) was greater in females than in males. . This is likely a fitness advantage for 

females who initiate flight at higher body temperatures than males (Watt 1968).  The 

darker wings allow them to heat up and achieve flight at their higher required body 

temperatures. This could present future problems for C. eriphyle females as air 

temperatures increase due to climatic change they may be more likely to suffer the ill 

effects of overheating. It is interesting though that in my experiment I did not see an 

effect of pupal temperature on wing melanin in females from either 2011 and 2012. In 

females, body heating is adaptive for maturation of eggs as well as for flight (Ellers & 

Boggs 2002, 2004), however females with higher degrees of melanin on their ventral 

wings obtained less matings than females with less melanin (Ellers & Boggs 2003). All 

of these factors suggest that the level of wing melanization in C. eriphyle females is a 

complex trait controlled by many factors.   

Plasticity of wing melanin 
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In each variable measured I saw differences between the two years when I 

conducted the experiment. Although the mothers were caught during different times of 

the flight season, other studies have shown that maternal effects on wing melanin are 

negligible at best (Kingsolver & Wiernasz 1991; Ellers & Boggs 2002; Chaput-Bardy et 

al. 2014), suggesting that the differences I saw were likely due to the stressful conditions 

of viral disease. However, the disease in the chambers may have influenced wing 

melanin. Insect injury and infection triggers the phenoloxidase cascade (Cerenius & 

Söderhäll 2004) which can stimulate melanin pigment production and this may be the 

cause of the increased absorbance wing melanin from 2012 individuals. Freitak et al. 

(2005), found that Pieris brassicae given an immune challenge during pupation had 

darker and larger wing spots as adults. It is possible that the higher wing absorbance in 

2012 may be due to concurrent infections and disease from crowded rearing conditions.  

Historical changes in mean and plasticity of wing melanin 

 Ventral hindwing melanin does affect thermoregulation and flight performance of 

adult butterflies and there is a balance between having enough melanic scales to achieve a 

body temperature required for flight and having too many melanic scales and risking the 

detrimental effects of overheating (Watt 1968; Kingsolver & Watt 1983; Kingsolver 

1983). I did not see any difference in wing absorbance when comparing my data to 

Hoffmann’s previous work in the 1970s although field temperatures have changed in the 

past 40 years and we have seen differences in larval performance across temperatures 

(Higgins et al. 2013). This suggests that overall there have not been changes in the level 

of plasticity or the plastic response to temperature in these C. eriphyle populations.  

Pupal temperatures versus larval-pupal temperatures 
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None of the work done on Colias wing melanin so far has determined whether it 

is mean pupal temperature or a single exposure to temperatures that influence adult wing 

melanin. In my comparison of the Montrose Valley larvae and pupae reared at either a 

constant 25°C or an average 25°C (ramping from 21-29°C) I found that the animals 

exposed to the ramping conditions had an overall lower wing absorbance than those 

reared under a constant 25°C (Fig 4.6). Although the average temperatures were the 

same, this perhaps suggests that the daily exposure to higher temperatures may be driving 

the lower wing melanin in the ramping conditions.   

The effects of cycling temperatures (Fig 4.7) begin to elucidate this phenomenon, 

but more work comparing both constant and variable temperatures needs to be done. 

Additionally, there may be an undetected effect of larval temperature on wing melanin, 

however further studies in this area still need to be completed.  

 The highly variable nature of wing melanin also brings up many questions with 

temperature is a reliable versus just a good enough cue during pupation to predict future 

adult conditions. Further analysis of wing melanin levels in field caught bugs and 

correlation with temperatures experienced in the field could help elucidate this issue. 
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FIGURES 

 

Figure 4.1: Proportion of surviving pupae in each temperature treatment for each year for 
Gunnison (light grey) and Montrose Valley (dark grey). 
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Figure 4.2: Duration of pupation by temperature (+/-SE) Circles are pupae from 
Montrose Valley, squares are pupae from Gunnison 2011 (A) 2012 (B).  
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Figure 4.3: Mass loss during pupation (mg) =/-SE of male and female C. eriphyle for 
2011 (A) and 2012 (B) Gunnison is represented by squares and Montrose Valley by 
circles. 
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Figure 4.4: Wing absorbance at 650nm for males and females by year 2011 (A) and 2012 
(B) Gunnison is represented by squares and Montrose Valley by circles. 
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Figure 4.5: Wing absorbance at 650nm (+/-CI) comparing historical (1978, closed circle) 
and current (2011, open square), (2012, open circle).   
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Figure 4.6: Wing absorbance at 650nm (+/-SE) for 2011 Montrose Valley animals reared 
either at a constant 25°C or an average 25°C (ramping 21-29°C).    
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Figure 4.7: Wing absorbance at 650nm for females and males by year. Montrose Valley 
(circles) and Gunnison (squares). In 2011 Gunnison was only measured at 20°C and in 
2012 both Montrose Valley and Gunnison were only measured at 25°C. 
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CHAPTER 5: LOCAL ADAPTATION OF INSECT HERBIVORES TO HOST 
PLANTS DEPENDS ON TEMPERATURE  

 

Introduction: 

Many herbivorous insects are specialists that feed on a restricted set of host plant 

species within a single plant family. Across the geographic range of a single herbivore 

species, insect populations may become locally adapted to different host plant species 

(Fox & Morrow 1981; Dobler et al. 1996; Pelini et al. 2010). Local adaptation is driven 

by aspects of host plant quality including abundance, plant defenses, and plant nutrient 

levels (Fox, Waddell & Mousseau 1994; Jongsma & Bolter 1997; Egan & Ott 2007).  

Herbivore populations may utilize and adapt to novel host plants introduced into their 

range.  Recent studies have demonstrated that evolutionary responses to novel host plants 

can occur quite rapidly, both for invasive plants (Harvey et al. 2010) and agricultural 

crops (Hare 1990; Gray et al. 2009). 

Novel host plant species may be introduced or spread into only part of the 

geographic range of an herbivore species, such that different herbivore populations 

experience and adapt to different novel and native host plants.  If climate and other 

environmental factors vary across the range, then host plant use and climate may co-vary 

among herbivore populations. Several recent studies with herbivorous insects have 

demonstrated that host plant and rearing temperature can interact to influence larval 

growth and development (Angilletta 2009; Pelini et al. 2009; Diamond & Kingsolver 

2012; Clissold, Coggan & Simpson 2013). While rapid host plant shifts have been found 
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in other insects such as the soapberry bugs, which have adapted to feed on the fruits of 

introduced plants within the past 100 years (Carroll & Boyd 1992) the effects of 

environmental temperature on local adaptation to novel host plants have not been 

considered.  

The sulphur butterfly Colias eriphyle occurs in open habitats in the western US, 

and at elevations of 1,400-2,900m in western Colorado. The larvae feed on plants in the 

Fabaceace family, particularly Medicago sativa (alfalfa), Vicia (vetch) spp., and 

Trifolium (clover) spp. Agricultural alfalfa (M. sativa) was introduced to the Montrose 

Valley of Colorado during the early 1900s with the creation of the Gunnison Tunnel. This 

irrigation project diverted water from the Gunnison River into the Montrose Valley to 

enable agriculture (Page & Page 1907). Because of alfalfa’s economic value, it has 

largely overtaken the native vetch species that was previously abundant. In regions at 

higher elevations in Colorado, such as the Gunnison Valley, native vetch remains a 

commonly occurring plant because of poor conditions for agriculture including dry soil, 

short growing season, and harsh winters, although some alfalfa can be found.  

 (Tabashnik 1983) studied C. eriphyle’s response to the shift from native Vicia 

(vetch) and Lathyrus (sweet pea) to the introduced agricultural M. sativa (alfalfa). He 

used populations of C. eriphyle from Montrose Valley where M. sativa was present and 

from Gunnison where M. sativa was far less abundant. A common-garden study at a 

single rearing temperature suggested local adaptation to alfalfa in the Montrose Valley 

population, but not in the Gunnison population (Tabashnik 1982, 1983). In addition to 

host plant occurrence, the climatic conditions between the two sites are different and also 

changing due to climate change. 
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Climatic conditions differ between the Montrose (elevation 1.6km) and Gunnison 

(elevation 2.3km) regions:  the growing season is shorter and ambient temperatures lower 

in Gunnison than in Montrose Valley (Higgins et al. 2013). Additionally, climate in 

western Colorado has changed rapidly with the frequency of warm days and nights 

increasing over the past 40 years (Booth, Byrne & Johnson 2012). Over the same period 

of time, C. eriphyle larvae from Montrose Valley have adapted to feed at higher 

temperatures that have increased in frequency (Higgins et al. 2013). However, little is 

known about whether there have been changes in host plant adaptation over this time 

period. In addition, we extend (Tabashnik 1983) study by examining how temperature 

can affect the pattern of local adaptation to host plant (Diamond & Kingsolver 2012).  

In this study we measure survival, development time, and pupal mass of C. 

eriphyle larvae reared in the lab at two temperature regimes from both populations on 

native and introduced host plants. We predict to see evidence of local adaptation (high 

survival, shorter development time, larger pupal mass) of each population to its most 

abundant host plant. Additionally, we expect that the Montrose Valley population should 

have higher survival, shorter development time and larger pupal mass when reared under 

warmer conditions compared to the Gunnison population. We evaluated whether patterns 

of host plant adaptation have changed in these herbivore populations over the past 34 

years (120-200 generations).   

Methods 

Colias eriphyle were collected from two sites in Colorado. The Montrose Valley, 

CO (N38.62, W108.02, 1,633 m) population was collected in agricultural alfalfa (M. 

sativa) fields. Its growing season is from April through October resulting in 3-5 
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overlapping generations of C. eriphyle per year (Tabashnik 1980), and the mean summer 

temperature is 22.5°C. The other population was collected from a county park in 

Gunnison, CO (N38.56, W106.94, 2,347 m) with vetch (Vicia) and clover (Trifolium) as 

the primary host plants. This population has a growing season of June through September 

resulting in two distinct generations per year (Watt, Han & Tabashnik 1979), with a mean 

summer temperature of 16°C. The current populations were selected to be within 5km of 

previous collection sites for the historical studies. 

Adult female butterflies were shipped overnight to the laboratory at the University 

of North Carolina at Chapel Hill and kept in cages at greenhouse conditions (~26°C) 

under natural light. Females were fed 10% honey water solution by moistened sponge 

changed daily, and were allowed to oviposit on either potted vetch (Vicia villosa) or 

alfalfa (M. sativa).  Host plants were grown in the greenhouse from seeds (Johnny’s 

Select Seeds, Waterville, Maine) and were approximately three-four weeks old before 

being used in the treatment. Plants were watered daily and fertilized weekly. Broods were 

split so that larvae from each family were reared on both host plants. Eggs were removed 

daily and placed in environmental chambers (Percival 36VL, Geneva Scientific, WI, 

USA) with diurnally fluctuating temperature regimes of either 16-24°C (average 20°C) or 

21-29°C (average 25°C) and a 14L:10D photoperiod. The latter temperature regime was 

chosen to mimic the exact temperature protocol used by Tabashnik (1983).  The 

temperature regimes fluctuated as a sawtooth with the high and the low separated by 12 

hours. For logistical reasons, experiments at the two rearing temperatures were done at 

different times.  For the larvae reared in the average 25°C conditions there were 375 total 

larvae from 15 different families from Gunnison and 15 families from Montrose Valley 
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with 2-37 (mean: 12.5) larvae from each family. For the larvae reared at the average of 

20°C treatment there were 102 larvae total comprised of 7 families from Gunnison and 8 

families from Montrose Valley with 1-16 larvae (mean: 5.7) from each family. Larvae 

were raised individually in petri dishes, and fed cut vetch or alfalfa leaves ad. libitum. 

Survival to pupation, time to each instar (following the 3rd instar), mass at each instar 

(following the 3rd instar), and mass 48 hours after pupation were recorded. Our analyses 

focused on survival to pupation, development time to pupation and pupal mass as 

response variables.  All analyses were conducted using the R (3.0.2) statistical program 

with host plant and population as fixed effects and sib-family (mom) as a random effect. 

Survival data from 2012 was analyzed using binomial generalized linear mixed effects 

models using the lme4 package (Bates et al. 2014) with population and host plant as fully 

crossed fixed effects and family as a random effect. Development time and pupal mass 

data were analyzed using linear mixed effects models using the nlme package (Pinheiro et 

al. 2014) with population and host plant as full crossed fixed effects and family as a 

random effect. Data for the two rearing temperatures were analyzed separately because 

the two experiments were conducted at different times. 

Results 

Survival 

 Mean survival to pupation was highest for each population on its local host plant 

at both temperatures. The larvae from Montrose Valley had highest survival on alfalfa, 

whereas the larvae from Gunnison had highest survival on vetch at both temperatures 

(Figure 5.1). Both population (z= 2.68, p<0.01) and the interaction between host plant 
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and population (z=-4.41, p<0.001) were significant at 20°C. At 25°C there was no 

statistical difference in survival among host plants or populations.  

Days to Pupation 

 Both population (F1,8=175.5, p<0.0001) and host plant (F1,90=37.37, p<0.0001)  

significantly affected development time to pupation at 20°C, but there was no significant 

interaction between the two (F1,90=2.07, p=0.15). At 20°C, mean development time was 

10-15 days longer for the Gunnison than the Montrose Valley population on both host 

plants, and was longer on vetch than alfalfa for both populations (Fig 5.2). At 25°C, mean 

development times differed by less than a day for the two populations and host plants 

(Fig 5.2), and there was no significant effect of population (F1,19=0.08, p<0.78), host 

plant (F1,352=0.08, p<0.51), or their interaction (F1,352=3.14, p<0.08).  

Pupal mass 

 At 20°C pupal mass was significantly affected by population (F1,8=22.46, 

p<0.002) with the larvae from Gunnison taking longer to develop and by the interaction 

of population and host plant (F1,87=4.20, p=0.04), but not by host plant alone (F1,87=0.04, 

p=0.83). At 20°C the pupae from the Montrose Valley were larger than those from 

Gunnison, with a larger difference on vetch than on alfalfa (Fig 5.3). There was no 

significant effect of population (F1,19=0.03, p=0.87), or host plant (F1,348=3.2, p=0.08),  at 

25°C, but there was a significant interaction of population and host plant (F1,348=36.67, 

p<0.0001). At both rearing temperatures the interaction is in the opposite direction 

predicted by local adaptation: mean pupal mass was greater on vetch than on alfalfa for 

the Montrose Valley population, and larger on alfalfa than on vetch for the Gunnison 

population (Fig 5.3). 
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Comparison to historical data 

 Based on a common-garden study at 25°C (see Methods), Tabashnik (1983) 

found larvae from Gunnison took longer to develop on alfalfa than did the larvae from 

Montrose Valley (Fig 5.4A), however this effect was not seen in 2012 (Fig 5.4B). The 

historical study found no effect of population on pupation mass, whereas in 2012 there 

was a host plant and population interaction (Fig 5.4B). Pupal masses were larger in the 

1978 than in the 2012 study on both host plants. 

Discussion 

We examined the interactions between climate, specifically temperature, and host 

plant adaptation in two populations of Colias larvae that differ in the length of the 

growing season and annual number of generations. Tabashnik (1983) demonstrated that 

larvae in Montrose Valley had adapted to introduced alfalfa by showing a decreased 

development time when larvae were fed alfalfa. Our results suggest that this adaptation is 

still occurring, however it is occurring only in regards to survivorship.  

Host plant shifting to an introduced species is common for herbivores. Some of 

the effects of host plant shifting can be dramatic such as the hybridization of two 

Rhagoletis species following the introduction of the Lonicera (honeysuckle) plant 

(Schwarz et al. 2005). Additionally, the rapid radiation of Lepidoptera species is thought 

to be product of host plant expansion (Fordyce 2010). Host plant expansion can also have 

less drastic results. After the introduction of Plantago lanceolata, the Euphydryas editha 

butterfly began using it as a suitable host plant. The E. editha began to show oviposition 

preference for the introduced plant even though there was no difference in other fitness 

components when larvae were fed either P. lanceolata or the original host plant, 
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Collinsia parviflora (Thomas et al. 1987). This suggests that host plant shifting and 

expansion can begin gradually, and only affect specific fitness components. What we 

have shown in our study is that the effects of host plant adaptation are dynamic over time.  

We found that the thermal environment can alter differences in larval 

performance on host plants. When the larvae were reared at 25°C there was no difference 

in development time between the populations. However, when the larvae were reared at 

20°C the development time differences between populations and host plants were far 

more exaggerated.  At 20°C the larvae from both populations had longer development 

times, especially the larvae from Gunnison that took 10-15 days longer to develop.  The 

Montrose Valley pupae were larger despite the shorter development time. Paradoxically, 

at 20°C, the pupal masses were highest on the less abundant host plant for each 

population. The Gunnison pupae were largest on alfalfa and the Montrose Valley pupae 

were largest on vetch, despite development time being shorter on alfalfa for both 

populations.  

The lower temperatures used in our experiment were within the normal range of 

temperatures experienced by Colias in the field, but they did enhance the effects of the 

different host plants (i.e. longer development time on vetch) for each population. During 

their respective growing seasons, larvae in Montrose Valley spend slightly less time at 

20°C than do larvae in Gunnison. The larvae from Montrose Valley eat at about the same 

rate as those in Gunnison at 20°C (Higgins et al. 2013). However, these results are from 

short term (30 minute) feeding bouts so the long term effects of exposure to 20°C may 

not be evident. Tabashnik (1982) looked at mean mass and growth rate of 3rd instar C. 

eriphyle from Gunnison and Montrose Valley reared on vetch and alfalfa at 18°C (high 
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22°C; low 14°C). The larvae from both populations had larger masses on alfalfa as 

compared to vetch, but this omits the 5th instar when Colias larvae gain more mass than 

in any other instar. These data contrast with the present study, where larvae from 

Montrose Valley had larger pupal masses when fed on vetch at 20°C. Responses by other 

insects to host plants have been shown to vary with environmental temperatures. In 

translocation experiments using Papilio zelicaon, larvae from both core and periphery 

populations had higher survival and pupal mass when reared at the periphery (cooler) 

thermal conditions and showed differing host plant preferences for each rearing condition 

(Pelini et al. 2009).  

We know that climate has changed in the past 40 years in these sites particularly 

with increases in temperature variability (Higgins et al. 2013), however our final question 

was to see if larval performance and local adaptation to host plants has changed over the 

same amount of time.  In Tabashnik’s (1983) study, both populations had higher survival 

and larger pupal mass on alfalfa than on vetch.  His clearest evidence for local adaptation 

was that development time was much longer on alfalfa than on vetch for the Gunnison 

population, but not for the Montrose Valley population (Fig 5.4A).  In the present study, 

development times were similar for both populations on both host plants (at 25°C). 

However, it is worth noting that in both years development time that it was slightly 

(albeit not significantly) longer on alfalfa compared to on vetch in Montrose Valley (Fig 

5.4A).  

 Our survival data shows the local adaptation pattern that was expected: each 

population has the highest survival rate on the host plant that is most abundant. This 

pattern of local adaptation is particularly striking at the lower rearing temperature.  



 87

Both studies found differences in pupal mass. In the historic study, the larvae 

from Gunnison that took about 4 extra days to develop on alfalfa versus on vetch were 

approximately 10-15 mg larger as pupae. In the current study, Gunnison larvae that 

consumed alfalfa were ~15-20 mg larger as pupae than the larvae that consumed vetch 

despite similar development times.  The pattern of the Gunnison population having larger 

pupal masses on alfalfa versus vetch was evident in both years (Fig 5.4B). The relative 

difference of pupal size in the two studies suggests that alfalfa may be a more nutritious 

host plant despite it not being common in Gunnison. Additionally, Tabashnik (1982) 

reported that relative growth rates were significantly higher for both populations when 

they fed on alfalfa. In agricultural studies, alfalfa typically has a higher nitrogen 

concentration than vetch, but the difference is variable (Brady 1982, Badaruddin and 

Meyer 1990). Tabashnik (1983) found that females from both populations showed an 

oviposition preference for alfalfa, which may signal that the adults can recognize alfalfa 

as a more nutritious host plant than vetch. Additionally, we do not see evidence that the 

Montrose Valley population is losing its ability to consume vetch as it has a slightly 

higher pupal mass on vetch compared to alfalfa, which was reported by Tabashnik 

(1983). It is also possible that the different host plants cause for tradeoffs in life history 

parameters.  

In Tabashnik’s (1983) study the vetch used was cut from the field and alfalfa was 

grown in pots versus in our study where both host plants were grown in pots and 

fertilized weekly. These non-optimal rearing conditions may have selected for faster 

growing and bigger larvae more likely to survive, although we do not know about 

survival in the previous study. In the present study, survival was relatively high overall 
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for both host plants (Fig 5.1). The difference in rearing conditions could explain some of 

the differences seen in pupal size and development time between the two studies. In 

addition to rearing differences there may also be genetic differences between the plants 

used in our study compared to the historical study, however the relative comparison of 

each population on both host plants is still a worthwhile comparison. 

Our evidence of local adaptation to host plant is restricted to larval survival to 

pupation. This suggests that the mechanisms of adaptation (survival, development time, 

pupal mass) are dynamic over time. The changing of adaptation mechanisms including 

the loss of adaptation to one or another fitness metric is a unique finding and an 

interesting area for further study and research.  
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FIGURES 

 

 

 
Figure 5.1: C. eriphyle survival at 20 and 25°C in 2012 from Gunnison and Montrose 
Valley on alfalfa and vetch.  
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Figure 5.2: C. eriphyle days to pupation (+/- SE) on each host plant at 20°C  and 25°C 
for Gunnison (solid line, up filled triangles) and Montrose Valley (dotted line, down open 
triangles).  
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Figure 5.3: C. eriphyle pupal mass (+/- SE) on each host plant at 20°C and 25°C for 
Gunnison (solid line, up filled triangles) and Montrose Valley (dotted line, down open 
triangles).  
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Figure 5.4: C. eriphyle development time (+/- SE)  (A) and pupal mass (+/- SE)  (B) and 
for larvae reared at 25°C in 1978 and 2012 for Gunnison (solid line, filled up triangles) 
and Montrose Valley (dashed line, open down triangles). 
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