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ABSTRACT

Jeffrey Robert Piascik: Evaluation of Structure and Material Properties of RF Magnetron
Sputter-Deposited Yttria-Stabilized Zirconia Thin Films

(Under the direction of Dr. Jeffrey Y. Thompson and Dr. Brian R. Stoner)

Over the past several decades, research has focused on utilizing ceramic materials

in new technological applications. Their uses have been primarily in applications that

involve high temperatures or corrosive environments. Unfortunately, ceramic materials

have been limited especially since they can be brittle, failing in a sudden and catastrophic

manner. A strong emphasis on understanding mechanical properties of ceramics and

ways to improving their strength and toughness, has led to many new technologies.

The present work is part of a larger research initiative that is aimed at using RF

magnetron sputter deposition of yttria-stabilized zirconia to improve the fracture

toughness of brittle substrates (more specifically dental ceramics). Partially-stabilized

zirconia (PSZ) has been studied extensively, due to its high temperature stability and

stress-induced tetragonal to monoclinic (T⇒M) martensitic phase transformation. RF

magnetron sputtering was chosen as the deposition method because of its versatility,

especially the ability to deposit oxides at low temperatures.

Initial investigations focused on the development of process-structure-properties

of YSZ sputtered deposited thin films. The YSZ thin films were deposited over a range

of temperatures (22 - 300°C), pressures (5 – 25 mTorr), and gas compositions (Ar:O2

ratio). Initial studies characterized a select set of properties in relation to deposition
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parameters including: refractive index, structure, and film stress. X-ray Diffraction

(XRD) showed that the films are comprised of mainly monoclinic and tetragonal crystal

phases. The film refractive index determined by prism coupling, depends strongly on

deposition conditions and ranged from 1.959 to 2.223. Wafer bow measurements indicate

that the sputtered YSZ films can have initial stress ranging from 86 MPa tensile to 192

MPa compressive, depending on the deposition parameters. Exposure to ambient

conditions (25°C, 75 % relative humidity) led to large increase (~ 100 MPa) in the

compressive stress of the films. Environmental aging suggests the change in compressive

stress was related to water vapor absorption. These effects were then evaluated for films

formed under different deposition parameters with varying density (calculated packing

density) and crystal structure (XRD).

Based on the above results, it was determined to evaluate stress as a function of

substrate bias. It was shown that increasing substrate bias power disrupted columnar

grain growth and reduced the percent change in compressive stress when exposed to

ambient environments. TEM confirmed a reduction in inter-granular porosity for

substrate bias depositions, but an increase in lateral defects. It was hypothesized that

substrate bias would increase the film’s density, but after inspection of SEM and TEM

micrographs, it appeared that as bias was increased the density decreased.

This T⇒M phase transformation has been well documented for bulk PSZ, but

limited data exists for PSZ thin films. Data is presented that supports a stress-induced

T=>M transformation mechanism that occurs during sputter-deposition in the presence of

a substrate bias. Substrate bias (0 – 50W) was originally applied to increase film density,

modify microstructure, and vary film stress. The films were deposited using rf
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magnetron sputtering from a sintered yttria-stabilized zirconia (YSZ) target and

subsequently characterized using scanning (SEM) and transmission electron microscopy

(TEM), x-ray diffraction (XRD), and wafer bow measurement (for stress analysis). With

no substrate bias the films exhibited a columnar grain structure consistent with sputter-

deposited films, with a majority tetragonal phase as determined by XRD. Under higher

substrate bias, wafer bow measurements indicated a steady increase in compressive stress

as substrate bias increased (max. 310MPa at 50W bias), while XRD indicated a

corresponding increase in the percentage of monoclinic phase. Both SEM and TEM

analyses revealed a shift from a defect-free columnar structure to one consisting of lateral

intra-columnar or trans-granular defects for films deposited under substrate bias

conditions. It is believed that these defects form as a result of stress-relief in the growing

film via the transformation from tetragonal to monoclinic phase due to bias-induced

compressive stress. FEA modeling is used to confirm stress contours and defect

generation within the films.

The structure developed under substrate bias deposition is hypothesized to

provide beneficial strengthening mechanisms, similar to microcrack toughening, when

deposited on brittle substrates. This manuscript concludes with an analysis of YSZ thin

films deposited on an alternative substrate (soda-lime glass) that replicates a bio-inert

material.
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Chapter 1

Introduction

Over the past several decades, research has focused on utilizing ceramic materials

in new technological applications. Their uses have been primarily in applications that

involve high temperatures or corrosive environments. Unfortunately, ceramic materials

have been limited especially since they can be brittle, failing in a sudden and catastrophic

manner. A strong emphasis on understanding mechanical properties of ceramics and

ways to improving their strength and toughness, has led to many new technologies [1].

Ceramics, whether crystalline or non-crystalline, typically fail under mechanical

loading from structural defects. These defects include internal porosity, inclusions, and

surface flaws (or cracks) (Figure 1.1). These act as crack nucleation sites and once a

crack begins to propagate, there are no energy absorbing mechanisms to help prevent

further propagation. There are two classifications of brittle fracture in polycrystalline

materials: (1) trans-granular fracture and (2) inter-granular fracture [2]. In trans-granular

fracture, the crack travels through individual grains (or crystals) of the material. The

crack may change directions from grain to grain, depending on differing lattice

orientations of atoms in each grain. This mode of fracture only occurs in crystalline or

partially crystalline ceramics. Inter-granular fracture describes a crack that travels along

the grain boundaries and not through the actual grains. This is typical of a material when

the phase located in the grain boundaries is weak and brittle [1-2]. Ceramics with low
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crystalline volume fractions (glass-ceramics, porcelains) or completely amorphous

structures (glasses) are characterized by this mode of fracture.

For brittle materials, cracks are generally assumed to form by the cleavage of

atomic bonds in highly stressed regions. These stresses may be due to stress

concentrations or residual stress and they will be particularly effective in producing

cracks if weak interfaces are present. It has been stated that the presence of high stresses

is associated with the heterogeneous nature of the material at the microstructural level or

inelastic deformation at localized contacts. It is known that cracks can form at contact

events, voids produced during processing, and stresses formed due to temperature

changes. It is extremely useful to identify sources of high stress within the

microstructure. Areas of microstructural misfits or phase transformations can lead to

local regions of stress, which in turn lead to crack formation. Once a crack nucleates, it

may undergo further growth, especially if there is a localized stress field associated with

the nucleation process or if the growth is impeded by microstructural obstacles. In

Figure 1.1: Brittle materials contain various types of strength controlling flaws [1].

Inclusions
Pores

Surface Flaws

Size (Severity)

Frequency
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addition to having a variety of flaw populations that compete for crack initiation, the size

of cracks within a population will form a distribution. Therefore, the fracture stress of

brittle materials is considered a distribution rather than a finite value. Several types of

flaws can compete simultaneously making failure sources quite complex. This is why

failure has led to empirical statistical approaches in describing strength distributions [1].

Several techniques have been developed to decrease the likelihood of brittle

failure in ceramics ranging from annealing (removal of internal stresses and stress

gradients, or development of surface compression) to applying surface coatings [1]. One

such technique to applying a surface coating is to sputter a thin film on the surface of the

material. The modifying film can potentially passivate surface flaws, generate

compressive surface stresses, or act as an energy absorbing layer. Depending on the

composition and thickness, the thin film can provide a beneficial strengthening

mechanism.

One particular study showed a strengthening of up to 45% of borosilicate glass by

sputter depositing thin films of alumina and silicon carbide [3]. Another study

investigated the strengthening effects of sputtered gold, aluminum, and aluminum-nitride

thin films on dental porcelain [4]. It was determined that the metal films yielded a

significant increase in flexural strength, but the aluminum-nitride film had no effect.

One material of interest for generating a strengthening thin film is partially-stabilized

zirconia (PSZ). Ruddell et al. hypothesized that utilizing the transformation toughening

effect within yttria-stabilized zirconia (YSZ) would provide improvement in the

mechanical properties of a substrate. This transformation effect was not seen primarily

due to the columnar grain morphology [5]. It has been reported that for transformation



4

toughening to occur, the material must be several grains thick [6]. YSZ did show an

improvement in fracture strength in the modified substrates. These strengthening

mechanisms of the deposited films have been attributed to either bridging the flaws or

blunting the flaws, thereby decreasing their sharpness and susceptibility of crack

propagation, or generation of surface compressive stresses.

1.1 Statement of Purpose

The present work is part of a larger research initiative that is aimed at using RF

magnetron sputter deposition of yttria-stabilized zirconia to improve the fracture

toughness of brittle substrates (more specifically dental ceramics). Thompson et al.

reported that dental restorations typically fail due to critical flaws on the surface that is

cemented to the tooth and placed under tension during function. These surface flaws,

generated from manufacturing or handling preparation, are the primary reason of failure.

A proposed method to eliminate or passivate such flaws is to apply a thin film on the

surface. Teixeira et al. investigated the strengthening of dental porcelain as a function of

YSZ thin film thickness. The results showed that the strength of porcelain significantly

increased with deposition of a 3µm YSZ coating. A non-linear relationship was observed

between film thickness and strength. It was presumed that strengthening is due to

modification of surface flaws and/or surface residual stress by the applied thin film [7].

Mechanistically, several hypothesizes of strengthening have been addressed, but

other important parameters also need to be considered. Other parameters to consider

when fabricating an ideal thin film include; grain structure, film stress, crystal structure,

adhesion to the substrate, and optical properties (for certain applications). Film stress
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becomes important when discussing what type of stress is desired to provide optimum

strength. Whether it is tensile or compressive, its effects on the substrate need to be

evaluated and understood. When investigating phase transformation and subsequent

strengthening affects, it is important to deposit specific crystal structures in varying

percentages. Optical properties are dictated by end application, for dental esthetics, a

clear, transparent coating would be beneficial.

The purpose of this manuscript is to develop a process-structure-property

relationship of sputter-deposited 3mol% YSZ thin films. To utilize this material as a

strengthening layer for brittle substrates, YSZ thin film material properties must be

evaluated and tailored to obtain optimal strengthening. Other significant properties, such

as exposure to ambient environments, are investigated to thoroughly understand any

detrimental effects that could cause film degradation. Unlike bulk YSZ, the thin film

counterpart differs structurally, thus it has differing mechanical properties. As opposed

to micron sized grains, deposited films display nanometer sized grains. The uniqueness

of YSZ is the diffusionless phase transformation from tetragonal to monoclinic phase.

Currently, research has focused on the transformation in bulk and not within a thin film

construct. One focus of this work is to investigate possible phase transformation within

the nanometer grain sized film and subsequent effects on film properties. The mechanics

of deformation are not well understood in nanometer sized polycrystalline materials. By

creating specific film structures and understanding film properties, it should be possible

to create a thin film that will be able to maximize the strength, toughness, and fatigue

resistance of brittle substrates.
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Chapter 2

Literature Review and Fundamentals

This section will briefly detail the sputtering process, including how deposition

parameters can affect the microstructure of thin films. In addition, there is a discussion

on stresses within sputtered thin films and specific effects. Finally, there is a brief

discussion of the properties of zirconia (bulk) and a review of sputter deposition of

zirconia thin films.

2.1 Sputter Deposition

Early investigations of low pressure cathode ray tubes and plasmas revealed that

cathodes within tubes can react or disintegrate during operation [1, 2]. In 1877, Wright

was the first to report using this effect as a mechanism to deposit thin coatings to

platinize glass [3]. Later in 1891, Crookes described this effect for several different

metals [4]. It wasn’t until Thompson’s discovery of the electron, that this effect, what is

now termed sputtering, could accurately be explained based on atomic structure [5, 6].

Thus, the mechanisms of momentum transfer from plasma ions causes target material

(cathode) to be ejected into the gas phase and deposited on a nearby substrate (anode).

Since this time, much has been accomplished in the science of sputter-deposition of

various materials, ranging from metals to oxides, onto numerous substrates [7, 8]. The
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following discussion will detail the process of plasma vapor deposition (PVD) and more

specifically, radio frequency (RF) magnetron sputtering.

The versatility of sputtering processes often allows one to tailor film properties in

ways not viable through other deposition techniques. This versatility arises from the

many possible permutations and combinations of deposition process parameters. Several

authors have reviewed the technique of sputtering, where they have detailed target

kinetics, gas discharge phenomena, and sputtering equipment [8-11]. RF sputtering is

widely used in a variety of applications ranging from aerospace to semiconductor

industries. DC and RF-plasma techniques are the two most common forms of sputtering.

DC is relegated to deposition of metals; where RF sputtering can be performed on all

types of materials. One primary benefit of RF is the ability to deposit high melting point

oxides at relatively low substrate temperatures.

Sputtering process occurs by bombarding the surface of a sputtering target with

gaseous ions under high voltage acceleration. As the ions collide with the target, atoms

or occasionally entire target material molecules are ejected and thrust towards the

substrate where they coalesce and grow into a film (Figure 2-1). A typical plasma

discharge will use argon (or some other noble gas) as a gas source, which results in a

mixture of argon ions, electrons, and free neutral atoms. When a surface is bombarded

by energetic ions, there are numerous effects that occur [12]:

• Emission of neutral (sputtered) particles

• Emission of secondary electrons

• Emission of positive and/ or negative ions

• Reflection of incident particles
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• Desorption of gases

• Implantation of incident particles

• Heating

• Chemical dissociation

• Bulk diffusion

• Crystallographic changes

• Reflection of emitted species back to the target surface

This simple process allows for complex chemical compositions to be deposited on a wide

variety of shapes, sizes, and materials.

The manner in which sputtered atoms migrate, interact and nucleate on the

substrate surface is a function of many deposition process parameters; such as, substrate

temperature, sputtering power, sputtering gas, and background pressure. Petrov et al.

noted that film synthesis generally takes place far from thermodynamic equilibrium [13].

Film microstructure during deposition evolves in a competitive fashion and kinetic

Figure 2.1: Representation of sputtering technique. The impact of an atom or ion on a
surface produces sputtering from the surface as a result of the momentum transfer from
the in-coming particle.

\—Surface
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limitations (at low temperatures) allow for controlled growth. Two determinant factors in

the evolution of film growth during deposition are surface and bulk diffusion. These

processes, along with substrate temperature, are affected by the energetic particle

bombardment, which control adatom mobilities and nucleation rates. Essentially,

adatoms will diffuse around the substrate at a rate that depends on the energy at which

atoms arrive, interactions with substrate atoms, and temperature of the substrate. Defects

or surface permutations will act as energy sites for arriving atoms as they migrate across

a surface. Therefore, due to surface diffusion and nucleation processes, sputtering can be

used to preferentially coat or alter surfaces. In the absence of surface defects, the atoms

will diffuse randomly across the substrate surface until a stable cluster is formed. This

cluster acts as a nucleation site and subsequent grain growth occurs. Continual adatom

addition leads to the texture evolution of grain growth and final film growth structures.

Thornton detailed film-atom condensation as a three step process. First, incident

atoms transfer kinetic energy to the lattice and become loosely bonded adatoms.

Secondly, the adatoms diffuse over the surface and due to energy transfer, eventually are

desorbed or trapped at low-energy lattice sites. Thirdly, the incorporated atoms achieve

final positioning within the lattice via bulk diffusion. This process of atomic layering can

be broken down into four basic processes: (1) shadowing (interaction between surface

roughness and angle of incident of arriving atoms), (2) surface diffusion, (3) bulk

diffusion, and (4) desorption. These four processes can be expected to dominate over a

range of temperatures (T/TM), which dictates the structure of deposited thin film.

These interactions led to the development of the Thornton Diagram, which

describes film structure as a function of temperature (T/ TM) and pressure (Figure 2-2).
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The T/TM dependences results because the surface and bulk diffusion processes dictate

recovery and recrystallization. Here, pressure is a function of the collisions between the

sputtered atoms and the gas atoms at elevated pressures causing sputtered atoms to arrive

at the substrate at random directions, promoting self-shadowing. The following describes

each zone shown in Figure 2-2:

• Zone 1 is characterized by a structure of tapered, columnar crystallites

separated by open, voided grain boundaries. This structure is formed due to

shadowing caused by substrate surface roughness / angle of incidence, where

the peaks on the substrate surface will receive a higher flux of sputtered atoms

than the valleys.

Figure 2.2: Representation of the influence of substrate temperature and argon pressure
on the microstructure of sputter-deposited thin films [12].
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• Zone T regions have a dense, fibrous structure with smooth, highly reflective

surfaces. Generally, smooth films are grown at low T/ TM with the flux

normal to the substrate surface so the shadowing effects are limited. It should

be noted that films deposited within this zone typically display high intrinsic

stresses.

• Zone 2 is characterized as columnar grains that are separated by dense, inter-

crystalline boundaries and approaches a more equiaxed grain structure. The

evolutionary growth of this structure, where T/ TM > 0.30, is due to adatom

diffusion.

• Zone 3 structure is differentiated by bulk diffusion at T/ TM > 0.50, where

recrystallization and grain growth dominate. Grain shape tends to be more

equiaxed than columnar and is not influenced by substrate roughness.

Another important issue in thin film structure is the thickness dependence of

microstructure and especially the transition from the nucleation region to the fully

developed columnar grain structure. Thin film structure based on deposition parameters

was discussed above, but there are three commonly observed nucleation and growth types

that are related to the structure diagram reported by Thornton [8].

1. A three-dimensional island formation growth model, better known as the

Volmer-Weber model, where nucleation is heterogeneous and associated with

substrate defects and texture. Growth of the nuclei leads to island formation

and coalescence into a continuous film with either columnar or isotropic

microstructure (this is dependent on the deposition conditions previously

mentioned in the structure zone models).
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2. Frank-Van der Merwe growth model, where nucleation is homogeneous. The

arriving adatoms stick virtually anywhere on a uniform crystalline substrate.

The following adatoms complete the monolayer rather than clustering to form

islands. This type of growth leads to epitaxy.

3. Stranski-Krastanov growth, describes a higher advanced intermediate model

with continuous layers forming before island formation.

As described above, typical sputtered thin films, unless deposited at high

temperature (T/ TM > 0.50) or annealed, are columnar in nature. It has been reported that

bombarding the growing film with energetic particles (ions or neutrals), a more equiaxed

grain structure can be obtained at low deposition temperatures. One of the simplest

means of doing this in an RF-sputter system is to apply a negative substrate bias. This

will result in bombardment by ions from the plasma to create a highly dense, adherent

film.

Substrate biasing has been used to modify a broad range of film properties,

including film adhesion during initial stages of film growth, film density, film hardness,

film residual stress state (either tensile or compression), and film morphology [14].

Hakanssan et al. examined the effect of bias voltage on the microstructure of TiAlN thin

films [15]. As mentioned earlier, a film deposited without a substrate bias displayed a

columnar grain structure with a high number of voids. As a bias is applied there is a

gradual densification of the film due to ion impacts, known as ion-peening. At higher bias

voltages, the columnar grain structure becomes disrupted and the microstructure can be

termed more equiaxed. This is thought to be due to secondary nucleation within the

growing film caused by the high-energy particle bombardment. Petrov et al. reported
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that TiN films deposited at low temperatures and without substrate biasing were found to

be under-dense with voids at the grain boundaries as well as within the grains [13].

Increasing the bias voltage, led to a decrease in void fraction in the films and with a 200V

bias, a fully dense microstructure was evident. There have been many other reports on

the densification of films due to substrate biasing that detail similar results.

2.2 Stress in Sputter-Deposited Thin Films

Internal, or residual, stresses have been extensively studied over the years within

evaporated and sputtered thin films. Most of the current understanding in this area is

based on analysis of the deposition of metallic films. It is accepted that essentially all

metallic and inorganic thin films are in a state of stress. The internal stress is comprised

of two factors: thermal (σth) and intrinsic (σi) components [8]:

σf = σth + σI [Eqn. 2.1]

The thermal stress is due to the difference in thermal coefficients of expansion between

the substrate and deposited film. The intrinsic stress is due to the accumulation of

crystallographic flaws that develop during film growth.

This stress behavior, shown in Figure 2.3, can be quantified by using the Stoney

equation that equates bow or bend to internal stress magnitude. Figure 1(a) describes a

behavior where the growing film initially shrinks relative to the substrate. There can be a

multitude of reasons for this to happen, for example surface tension forces or lattice

mismatch during epitaxial growth. However, based on the constraints of the system, it

requires that the film and substrate have the same dimensions. Therefore, the film will
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stretch and substrate contract to accommodate the constraints. Here the tensile forces

within the film are balanced by the compressive forces in the substrate, which in an

Figure 2.3: Diagram describing (a) residual tensile stress and (b) residual compressive
stress in thin films [8].

unconstrained system would elastically bend to compensate the unbalanced moments.

Similarly residual compressive stress, where the film wants to be larger than the

substrate, would elastically bend the substrate, but in the opposite direction. The forces

created by films stresses can be sufficient enough to destroy the film-substrate composite.

For example, a tensile stress could cause the film to crack and/or fracture and

compressive stress could cause spalling and/or lose of adhesion. The following sections

will take a further look into thermal and intrinsic stresses with sputtered thin films.

2.2.1 Thermal Stresses

When applied to a film that has been deposited at elevated temperature and then

cooled, the film will be thermally stressed, especially if the substrate and film have large
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differences in coefficient of thermal expansions (CTE). For example, for a film

deposited at elevated temperatures where the CTE of the substrate is larger than the CTE

of the film, the film will be residually compressed. This stress can be described by the

following formula:

σth = (Ef /(1-νf)) (αf - αs) (Ts – Ta) [Eqn. 2.2]

where Ef is Young’s modulus, νf is Poisson’s ratio, αf and αs are the coefficients of

thermal expansion for the film and substrate, Ts is substrate temperature during

deposition and Ta is substrate temperature during measurement. At low T/TM, it is

intrinsic stress generally dominates over the thermal stress (Figure 2-4).

2.2.2 Intrinsic Stresses

It has been well documented that intrinsic stresses are indeed found within

sputtered thin films and the magnitude and direction (compressive or tensile) are

dependent on a deposition parameters. The parameters that are expected to influence film

stress are: (1) substrate temperature, (2) working gas species and pressure, (3) deposition

power, (4) angle of incidence, (5) apparatus geometry, (6) distance between cathode and

substrate, and (7) substrate bias. The production, energy, and path length of neutralized

gas atoms as a function of deposition parameters are important in the generation of

stresses [11, 16-21].

Pressure, or observed pressure (Pt), is an important deposition parameter where

there is a crossover from tensile to compressive stress [22, 23]. It is noted that at elevated

pressures, gas scattering of the sputtered material will approach the substrate in oblique

directions promoting a more open structure that yield a tensile stress. Below a system
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specific transition pressure, films are in compression, due to high reflectance and low

resistivities, and often contain trapped working gas.

Figure 2.4: Schematic representation of thermal and intrinsic stress contributions [16].

Deposition conditions of deposited films are critical variables when discussing a

film’s microstructure and subsequent intrinsic stress. Figure 2-2 is a representation of

how a film’s microstructure (surface topography and cross-sectional grain structure) is

directly related to substrate temperature and working gas pressure. Many have reported

that sputter-deposition involves atoms that depend on arrival directions and surface

roughness promoting self-shadowing, and then diffusing over the surface until satisfying

low energy sites and becoming incorporated into the growing film. The dependence of

substrate temperature and pressure can be generalized by the following: T/TM effects are

believed to be due to the surface diffusion processes, and pressure results in collisions

between sputtered atoms and working gas atoms at higher pressures creating a

randomized arrival that supports self-shadowing.

The mass of both the target species and sputtering gas used can result in varying

effects on film stress. It has been reported that the higher the atomic mass of the target
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material, then the higher the energy of the backscattered atoms [23]. High mass target

atoms have been reported to increase the transition pressure between tensile and

compressive stresses. Also, the mass of the gas species used can affect this transition

pressure. Although argon is the most commonly used gas, a lighter gas (i.e. Neon)

produces a higher transition pressure, while a heavier/larger gas (i.e. Xeon) lowers the

transition pressure.

Recovery has been reported as a mechanism where stresses in the film actually

house energy that acts as a thermodynamic driving force which can relax the stresses.

This is accomplished by vacancy, interstitial, or dislocation movement if the temperature

is such the T/TM is between 0-0.3. Another phenomenon, know as recrystallization, is

reported to take place at higher temperatures (T/TM 0.3-0.5), where stresses are relaxed

from the recrystallization of strained grains into new strain-free grains. Therefore, for

depositions at substrate temperatures greater than 0.2 T/TM, recovery and recrystallization

will relax intrinsic stresses within the film and also reduce the buildup of stresses during

growth.

Figure 2.5: Process of ion-peening: (a) an ion approaches the surface of a film with in-
grown voids, (b) the ion impacts the film, transferring energy to the film atoms, (c)
causing atoms to rearrange, filling in part of the defect, resulting in a denser film. [24].

Ar+ - 100eVt=0 t=1ps t=10ps
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The use of a substrate bias during deposition can make a drastic impact on the

stresses within a film. Ion energy bombardment during sputter deposition is commonly

used to increase film density. This bombardment would essentially tamp the growing

film, collapsing voids and producing re-coil implantation. Figure 2-5 is a representation

of the ion-peening process that describes the ion impact energy which transfers its energy

to growing film atoms, causing atomic rearrangement resulting in a denser film [24].

Thornton and Hoffman described what is termed re-coil implantation, which at higher

bias voltages will increase the energy reflected atomic species and ions passing to the

substrate (Figure 2-6). The impact at the substrate can cause re-coil implantation of a

surface atom and implantation of the working gas atom [23, 25].

Figure 2.6: Representation of the process responsible for producing compressive
stresses and entrapped working gas in sputter-deposited thin films [23].

2.3 Zirconia as a Material

Zirconia (ZrO2) and yttria-stabilized zirconia (YSZ) thin films, due to the unique

properties of the material, have long been investigated for everything from biomedical

applications [26] to sensor technologies [27] to thermal barriers [28]. Zirconia is a well

studied polymorph that at atmospheric pressure can exist in three distinct crystal
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structures: monoclinic (M) the low temperature phase and two high temperature phases,

tetragonal (T) and cubic (C). Figure 2-7 is the phase diagram for yttria-stabilized

zirconia [29]. A T⇒M transformation occurs when PSZ is cooled below a temperature of

approximately 1100°C. This phase transformation is associated with a volume expansion

Figure 2.7: ZrO2 rich sections of the phase diagrams for ZrO2 -Y2O3 [29].

of approximately 3-4% within the material structure. Stresses generated by the expansion

originate cracks in pure zirconia ceramics and may cause catastrophic failure when this

material is heated to elevated temperatures.

For the purposes of this thesis, the tetragonal and monoclinic phase structures are

of interest. The tetragonal phase is thermodynamically stable in bulk zirconia at
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(2) there is a displacement of columns of oxygen atoms along the c-axis leading to each

zirconium atom maintaining its 8-fold coordination of oxygen [30]. It is described by the

space group of the body-centered with a primitive unit cell of P42/nmc [31]. The

monoclinic phase is thermodynamically stable in bulk zirconia at temperatures below

1100°C. It can be described as a distorted cubic cell, and unlike the other phases each

zirconium atom is coordinated by 7 oxygen atoms. This structure is indexed with the

space group P21/c [32].

2.3.1 Phase Stabilization

It is well known that with the addition of stabilizing dopants’ such as CaO, MgO,

CeO2, Y2O3, will alter the stability of the above mentioned phases [30, 33-35]. This

allows for the transformation temperatures to be lowered and the tetragonal or cubic

phases may become metastable at room temperatures. The mechanism of stabilization is

generally associated with the presence of oxygen vacancies in the lattice [30]. These are

created for charge neutrality, balancing of the di- or trivalent cations which are

substituted in the Zr+4 sites. Other critical factors include the size of the stabilizing cation

and crystal structure of the dopant oxide [30, 33, 36]. All these mechanisms have been

investigated and reviewed extensively in the references cited.

2.3.2 Phase transformation (T⇒M)

Zirconia that is partially-stabilized (PSZ) contains a mixture of phases and has

been studied as an engineering material with high toughness [34]. This toughness has

been attributed to the metastable tetragonal phase transforming to a stable monoclinic

phase [30, 37]. Garvie et al. showed how to best utilize this transformation as a

toughening mechanism as an engineered material [38]. Experimental observation (Figure
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2.8) showed that finely dispersed tetragonal precipitates within a cubic matrix were

transformed to monoclinic phase when the constraint exerted on them by the matrix was

relieved by an advancing crack [37, 39]. This rapid transformation is also accompanied

by a 3-4% volumetric expansion, which can apply an opposing force on advancing cracks

Figure 2.8: Representation of stress-induce phase transformation (T⇒M) toughening
process. The energy of the advancing crack is dissipated in phase transformation and in
overcoming the matix constraint by transforming grains [37, 39].

and/or cause considerable cracking in the dense matrix. The nature of T⇒M

transformation is dominated by two factors: (1) a sharp change in volume and (2)

martensitic character. The change in volume essentially reduces the density which allows

stress to affect each phase’s thermodynamic stability. A compressive stress will

ultimately decrease the thermodynamic transformation temperature [30]. Secondly, the

rapid and displacive nature of the martensitic transformation means that the kinetics are

dominated by nucleation, which is also strongly affected by stress [34].
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2.3.3 Deposition of Zirconia

Multiple techniques of depositing YSZ thin films have been investigated; such as,

sol-gel processing [40], electron beam physical vapor deposition [41, 42], plasma spray

[27], and RF magnetron sputtering [43-49]. The focus of this research is the deposition

via RF magnetron sputtering. Amor et al. detailed a comprehensive investigation into the

properties of RF-magnetron sputtered zirconia thin films deposited from a pure (99.6%)

zirconia target. The authors studied the effect of sputtering parameters (RF power,

oxygen partial pressure, and total pressure) on the microstructure, optical properties of

the films, composition, and film stress.

Initial investigations described film growth rate as a function of deposition

parameters. Here, it is reported that deposition rate is dependent on RF power. As power

increases, the self-polarization potential increases, which leads to an increase in energy

for argon ions and electrons. This ultimately increases the ion density around the cathode

(target) and the sputtering yield increases. As a result, the deposition rate increases. It

was also noted that induction of oxygen into the sputtering gas decreases the rate. As

oxygen partial pressure increases, the average energy of the species bombarding the

target decreases, so the deposition rate is reduced. At high pressures, the mean free path

of the sputtered species is decreased, which also leads to a lower rate. When pressure is

lower, the ion density decreases and so does the amount of sputtered material.

Index of refraction data yielded an important relationship between film optical

and microstructural properties. By using the Bragg-Pippard model, a qualitative analysis

of packing density for each film was calculated which can be correlated to the film’s
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porosity [8]. A more defective film will have a lower refractive index, since voids (dry or

water filled) have a much lower index of refraction than fully dense zirconia.

All films were reported to display a compressive film stress, which originates

from the thermal and intrinsic components. A variation in magnitude was shown to

increase compressively with coating thickness. It was also noted that at low pressures,

due to the sputtered species and backscattered neutrals having sufficient energy to reach

the substrate with normal incident angle causing re-coil implantation, films displayed

high compressive stresses. Increasing pressure reduced the atomic bombardment

resulting in structural reorganization, decreasing the magnitude of compressive stresses.

Structural studies have investigated phase content as it is related to specific

parameters. Depositing with pure argon as the sputtering gas, the films crystallized in the

cubic phase. Since the cubic phase is stable at high temperature and deposition did not

exceed 140°C, the authors attributed the stabilization of cubic phase to the sub-

stoichiometric nature of the film. Reports have confirmed that cubic phase can be

stabilized by an increase in oxygen vacancies [30]. There was also a strong dependency

on pressure and crystallinity. At low sputtering pressures, films display a <200> texture

and as pressure is increased, a <111> texture. It was finally shown that at the highest

pressure the film became amorphous.

Ruddell et al. and Wang et al. studied phase structure characteristics of RF

sputtered zirconia thin films doped with Y2O3 [44, 45]. XRD revealed that varying

percentages of monoclinic to tetragonal phase films could be deposited. Depositions

without oxygen produced films with high amounts of tetragonal phase due to the

substoichiometric nature. Adding oxygen to the sputtering gas allowed for the
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monoclinic phase to be stabilized. Increasing the oxygen content decreases the film

growth rate, which allows the film more time to achieve the thermodynamically stable

configuration. Both studies used a simple method of evaluating the ratio of the volume

fraction of the monoclinic and tetragonal phases. This was done by comparing the

intensities of the M(111) and T(111) peaks according to the following equation [45]:

VM = 2.379 IM(111) / (IM(111) + IT(111)) [Eqn. 2.3]

Where IM(111) and IT(111) are the integrated intensities of the (111) monoclinic and (111)

tetragonal peaks, respectively, and 2.379 is a correction coefficient. This provides a

fitting way to calculate the percentages of each phase present.

Utilizing a substrate bias has been a technique that can alter the crystal structure

and microstructure of sputter-deposited YSZ thin films. Knoll et al. reported on sputter-

deposited zirconia films with varying percentage of yttria (3 to 15 mol%) with differing

powers of substrate bias [51]. It was shown that biasing did not affect crystal structure,

although film microstructure, stress, and crystallographic texture changed as bias voltage

increased. For the biased films, the grains were more densely packed and appeared more

strained in the TEM analysis. Although stress was not quantified, noticeable bowing

was reported on substrates with biased film. Another study by the same authors, reported

as negative bias increased, that film morphology changed from porous and columnar to

dense and deformed looking in correspondence to the increase in compressive stress in

the YSZ film [52]. In the low bias films, porosity ranged in scale from large inter-

columnar cracks to small inter-granular voids. Lattice defects produced by the ion

bombardment were thought to be the likely cause of higher compressive stress in the

biased YSZ films.
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As mentioned in the introduction (Chapter 1), research has started to investigate

developing transformation-toughened ceramic films. For a film to be of practical use, not

only must it contain a significant amount of tetragonal phase (t-ZrO2), but this phase must

also transform locally to the monoclinic phase (m- ZrO2) in response to an applied stress.

In bulk zirconia, with a dopant stabilizing the tetragonal phase, the T⇒M transition can

be auto-catalytic, resulting in widespread transformation of the parent phase [50]. One

group has reported on a transformation T⇒M in zirconia-alumina nanolaminates grown

by reactive sputter deposition. The authors did not incorporate any stress effects on the

transformation, but did note, unlike bulk zirconia, the martensitic transformation was

localized to nanosized regions [53-57].

This literature review is to provide some insight into the sputter-deposition

technique, zirconia as an engineering material, and a review of previously reported

studies on sputter-deposition of YSZ. Noted references provide more detailed

information into all the above mentioned topics. The following chapters will take a

further look into RF magnetron sputter-deposition of 3mol% YSZ and subsequent

material properties.
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Chapter 3

Experimental Procedures

This chapter focuses on the methodology for the synthesis of 3mol% yttria-stabilized

zirconia (YSZ) thin films by radio frequency sputter deposition. The sputter system

configuration is outlined below, highlighting specific process parameters unique and

critical to the study. Methods for film characterization are presented which were used to

help develop process-structure-property relationships for the deposited films.

3.1 Substrate Materials

Substrate materials used were single-side polished 4in. (10.2 cm) Silicon (Si) and

soda-lime glass wafers. Single crystal (100 orientation) Si substrates (Silicon Quest Int.,

Santa Clara, CA) were used for initial sputter-process film deposition. Specific substrate

properties are shown in Table 3.1. The polished side was used for deposition rate

determination, x-ray diffraction (XRD) studies, and index of refraction analysis.

Deposition on the un-polished side (Ra=0.4µm) was used to enhance film adhesion and

simulate end-application surface roughness. Film stress determination, XRD analysis,

and structural studies (SEM and TEM) were performed on these samples.

Soda-lime glass wafers (Mark Optics, Santa Ana, CA) were used to simulate a

low strength, inert, bio-material. The focus on strengthening brittle substrates extends to
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materials such as dental porcelain and due to cost and availability; soda-lime glass wafers

supplied the needed material properties to conclude this study. Depositions were

performed on the roughened side (Ra=0.4µm) for XRD analysis and structural studies

(SEM).

Substrate
Material

Diameter
(mm)

Thickness
(µm)

Coefficient of
thermal expansion

(α, x 10-6 C-1)

Modulus
(GPa)

Dielectric
Constant

Silicon 100 400 ±100 3.0 150 11.9

Soda-Lime 100 400 ±100 8.6 72 7.15

Table 3.1: Specific material properties for substrates used in this study.

3.2 Sputter Deposition Equipment/Parameters

The theory and flexibility of sputtering materials was discussed earlier, however it

is necessary to discuss specific attributes and parameters of the sputter deposition system

used in this study. Here, the deposition system and specific deposition parameters will be

introduced and discussed.

3.2.1 Deposition System

All YSZ thin film depositions were sputtered using a radio frequency magnetron

sputter system (CVC Model SC-400, Rochester, NY). The chamber achieves sufficient

vacuum through a roughing pump and a cryogenic high-vacuum pump. The system was

designed with four cathode locations, but for all deposition the center location was used.

Power was supplied to the cathodes via two RF power supplies and matching networks

(Advanced Energy Corp., Fort Collins, CO) with a maximum power output of 600W at a

frequency of 13.56MHz. A schematic of the sputter deposition system used for this study

is shown in Figure 3.1. For substrate bias depositions, a RF power supply generated the
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power to the cathode (positioned in the substrate heater) that was capacitively coupled to

the substrate holder. Since the chamber is grounded and the substrate holder (also much

smaller) is floating, the RF creates a field that attracts free electrons, and due to charge

neutrality and the fact that the gap between the heater and substrate holder acts as a

capacitor, an effective DC plasma below the substrate is formed attracting free ions. This

Figure 3.1: Representative schematic of sputter deposition system.

is where the ion-peening effect of substrate biasing occurs, which was described in

Chapter 2. Positioned above the substrate holder, was a resistive heater with a maximum

temperature of 600°C operated by a temperature (PID-loop) controller (West Corp.,
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Gurnee, IL). Argon and oxygen, two sputtering gases used in the study, were

independently controlled, and flowed into the chamber via two mass flow controllers

(MKS Instruments, Wilmington MA). By altering specific deposition parameters, the

likelihood of variation in thin film properties was increased. The next sections will

review specific parameters used to study the YSZ films.

3.2.2 Power

A power of 350W was selected based on earlier studies and the target

manufacturer’s recommendation. When the RF power increases, polarization potential

increases, which leads to an increase in electron and argon/oxygen ions kinetic energy.

The sputtering gas ion density around the target increases the sputtering yield,

consequently increasing the deposition rate. Earlier studies showed that deposition rates

did not vary greatly. However, higher power densities were shown to crack the target.

3.2.3 Substrate Bias

The term substrate bias refers to the purposeful bombardment of a growing film

by energetic ions. A substrate applied bias results in a sharp transition between low

compressive to very high compressive stress as bias is increased [1-4]. Thornton

reported that for both cases, the microstructure of a film changes from columnar grains

with inter-granular porosity to a more dense, equiaxed grain structure as stress transitions

from tensile to compressive [5]. It has been reported that at low energies (<100eV),

energetic ions essentially tamp atoms into the growing film [6]. As ion energy increases,

the secondary nucleation can take place, resulting in conversion from columnar to an

equiaxed grain structure [7]. For this study substrate bias was varied to achieve specific
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structures. A maximum power of 50W was used when depositing on silicon and 100W

for soda-lime glass.

3.2.4 Deposition Pressure (working)

Pressure is an important parameter that not only affects deposition rate, but has a

significant affect on film stress. The production, energy, and path length of sputtered

atoms, reflected neutrals, and ions are dependent on pressure. At low working pressures,

sputtered atoms and backscattered species will have sufficient energy to arrive with low

incident angle. The resulting interactions enhance diffusion of surface atoms and can

produce recoil implantation into the growing film, creating a compressive film stress.

Higher pressures will increase the scattering of neutrals, decreasing energy of the atoms

impacting the surface, effectively reducing the compressive film stress. It has been

reported that for sputter deposited thin films there is an observed pressure where there is

a sharp transition from tensile to compressive film stress [8, 9]. For the initial study on

sputter deposited YSZ thin films, deposition pressure was altered between 5, 15, and 25

mT.

3.2.5 Substrate Temperature

Initial studies examined a substrate temperature range between room temperature

(25°C) and 300°C. The temperature range was selected based on previous work and on

cooling of substrate materials post-deposition. The importance of deposition at higher

temperatures has been correlated to film properties (i.e. film stress, defect structure).

Thermal stress and its effects are discussed in Chapter 2. A higher substrate temperature

leads to an increase in size of the critical nucleus, which dictates how a film nucleates

and grows. As temperature increases, the adatoms arrive at the surface with energy, and
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are more likely to attain positions of equilibrium. This would translate into a film with

larger, more equiaxed grains. Furthermore, this structure promotes a denser film with

fewer defects.

3.2.6 Oxygen (sputtering gas)

When sputtering oxide materials (insulators), the addition of oxygen plays a

significant role. One drawback shown in Chapter 4 is the lowering of the deposition rate.

Since oxygen is volatile, oxygen species have sticking coefficient less that unity,

reducing the deposition rate of the film. Rates were shown (Table 4.1) to dramatically

decrease when adding oxygen. Without oxygen the rate was approximately 2.0µm/hr,

but when adding oxygen (30:1 and 15:1, Ar:O2) the rate decrease to 0.30µm/hr. This also

leads to oxygen substoichiometry if the deposition is not compensated with oxygen.

Additionally, optical properties (color and transparence) of the films could be altered

with the incorporation of varying oxygen concentrations.

3.2.7 Sputtering Target

The sputtering target material used in this study was 99.99% pure zirconia doped

with 3mol% yttria (SCI Engineering, Columbus, OH). Final form of the target was

machined from a sintered/hot iso-statically pressed (HIP) block and machined to a final

size of 3in. diameter by 0.125in. thick. The target was then silver-solder bonded to a 3in.

diameter copper backing plate with a 1in. magnetic keeper to secure the target to the

sputtering gun. Targets were subjected to an initial burn-in for approximately 15-20

hours at 50W in an argon atmosphere. In order to achieve specific crystal structures, the

amount of the dopant (yttria in this case) is important. The 3mol% yttria doped target

was selected based on its composition, which generates the highest percentage of
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tetragonal phase [9]. Based on bulk zirconia properties, a film with a high percentage of

tetragonal would benefit from a T⇒M phase transformation. In order to verify

dopant/structure relationships, some films were deposited using a 8mol% yttria doped

zirconia target. Figure 3.2 is a representative XRD diffraction pattern where only the

stabilized cubic phase is present.

Figure 3.2: X-Ray diffraction pattern of sputter deposited 8mol% yttria-stabilized
zirconia thin film.

3.3 Physical Characterization

Deposited thin films were characterized by various complimentary techniques to

analyze material properties. Wafer bow measurements (WBM) provide measurement

values of overall film stress. X-Ray diffraction (XRD) allows for phase identification

and extent of crystallinity. A prism coupler, utilizing advanced optical waveguide

techniques, is used to determine index of refraction and film thickness. Scanning
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electron microscopy (SEM) offers high magnification image analysis of grain

morphology and film/substrate interface. Transmission electron microscopy (TEM)

provides direct high resolution imaging of microstructure and electron diffraction data

with high spatial resolution.

3.3.1 Wafer Bow Measurement (WBM)

Thin-film stress measurements were performed on a Flexus (Tencor FLX-2320,

Milpitas, CA) instrument. It accurately measured the changes in the radius of curvature of

the substrate caused by the deposition of a stressed thin film on the substrate. The system

contained two solid-state lasers: a Class IIIA laser with 4mW power at 670nm

wavelength and a Class IIIB laser with 4mW power at 750nm wavelength. The laser

interferometer was used to measure the curvature of a wafer, which is used in the

calculation of the stress in the film deposited on the wafer. It is important to note that the

sample must have a reflective surface for accurate measurements. A PC for

measurements, data acquisition, and result calculations controlled the Flexus. Each

sample was measured before deposition (initial bow) and after deposition for thin film

stress calculations. The stress in the thin film was calculated from the radius of curvature

of the substrate using the Stoney equation [1,10]:

σf = - (Es ⋅ ts / 6(1 - νs) tf) ⋅ (1 / Ra – 1/ Rb) [Eqn. 3.1]

where Es/(1-νs) is the biaxial modulus of the substrate (1.8 GPa), ts and tf are the

thickness of the substrate and deposited film, and Ra and Rb are the substrate radius of

curvature measured before and after film deposition.
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3.3.2 X-Ray Diffraction (XRD)

XRD data scans were taken using a Bruker D5000 4-circle diffractometer (Bruker

AXS, Karlsruhe, Germany). It was fitted with a HighStar area detector and controlled by

GADDS v3.330 software. The system used a 0.8mm collimated Cu Kα x-ray beam for

measurements. The equipment allowed for a 2-D map of collected diffracted intensity,

where the horizontal axis is the 2θ Bragg angle, and the vertical direction is out of plane

tilt denoted by χ. By integrating counts over the χ direction, θ-2θ plots are generated.

Analysis of the θ-2θ plots gives the interplanar spacing, which when compared to

complied powder XRD data allowed for phase identification [11]. The volumetric

amount of monoclinic phase to tetragonal phase was calculated using the following

equation:

VM = 2.379 IM(111) / (2.379IM(111) + IT(111)) [Eqn. 3.2]

where IM(111) and IT(111) are the integrated intensities of the M and T (111) peaks in each

x-ray pattern [12]. The constant 2.379 is a correction coefficient derived from structure

factor calculations of zirconia monoclinic and tetragonal ion positions and pattern fitting

to determine theoretical I(hkl) diffraction lines [13].

3.3.3 Prism Coupler

The prism coupler (Model 2010 Prism Coupler, Metricon, Penninton, NJ) utilized

advanced optical wave-guiding techniques to rapidly and accurately measure both the

thickness and the refractive index/birefringence. For measurement, the sample was

brought into contact with the base of a prism (1.80-2.65) via a pneumatically operated

coupling head, creating a small air gap between the prism and film. A laser beam was

directed towards the base of the prism and is normally totally reflected at the prism base



40

onto a photo-detector. At specific discrete angles of the incident angle θ, called mode

angles, photons can tunnel across the air gap into the film and enter into a guided optical

propagation mode, causing a sharp drop in the intensity of light reaching the detector.

For a rough approximation, the angular location of the first mode determined film index,

while the angular difference between the modes determined the thickness, allowing

thickness and index to be measured completely independently. Measurements were made

using a computer-driven rotary table that varies the incident angle θ, and locates each of

the film propagation modes. As soon as two of the mode angles were found, film

thickness and index can be calculated. The entire measurement process was fully

automated and requires approximately twenty seconds. The number of modes supported

by a film of given index increased with film thickness. For most film/substrate

combinations, a thickness of 1000-2000 Å is required to support the first mode, while

films in the one-micron range can support as many as four or five modes. If the film is

thick enough to support two or more propagation modes (typically 3000- 4800 Å), the

Model 2010 calculates thickness and index for each pair of modes, and displays the

average and standard deviation of these multiple estimates. Here parameters were

selected based on know index of refraction values of zirconia, 1.50 – 2.50. The standard

deviation calculation, unique to the prism coupling technique, was an indication of

measurement self-consistency and a powerful means of confirming the validity of the

measurement.

3.3.4 Scanning Electron Microscopy

In scanning electron microscopy (SEM) an electron beam is focused into a small

probe and rastered across the surface of a specimen. Interactions with the sample result
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in the emission of electrons or photons as the electrons penetrate the surface. These

emitted particles can be collected with the appropriate detector to yield valuable

information about the material.

The instrument used in this study was a Hitachi S-4700 field emission SEM (FE-

SEM) (Hitachi, Ltd., Tokyo, Japan). The system’s electron source was a cold field

emission gun with a stated resolution of 1.5 nm at 15 kV, 12 mm working distance and

2.5 nm at 1 kV, 2.5 mm working distance. Magnification ranged from 30X to 500,000X.

Sample stage has a tilt capability of 45° at 12 mm working distance. To reduce charging

effects when imaging, the samples were pre-coated with a thin layer of gold-palladium

(Au-Pd) using a small desktop sputter coater (Desk II, Denton Vacuum, Moorestown,

NJ).

The SEM also equipped with Energy Dispersive X-ray Spectroscopy (EDS) and

Genesis microanalysis software (EDAX Ametek, Mahwah, NJ). EDS is an analytical

method where an electron or photon beam is aimed down into the sample to be

characterized. Initially, an atom within the sample contains ground state or unexcited

electrons situated in concentric shells around the nucleus. The incident beam excites an

electron in an inner shell, prompting its ejection and resulting in the formation of an

electron hole within the atom’s electronic structure. An electron from an outer, higher-

energy shell then fills the hole, and the excess energy of that electron is released in the

form of an x-ray. The release of x-rays creates spectral lines that are highly specific to

individual elements; thus, the x-ray emission data can be analyzed to characterize the

sample in question.
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3.3.5 Transmission Electron Microscopy (TEM)

Cross-sectional specimens were made using focus ion beam (FIB) processing.

This service was provided by Materials Analytical Services (Material Analytical

Services, Inc., Raleigh, NC). The FIB (FEI200, FEI Comp., Hillsboro, OR) produces a

beam of gallium (Ga) ions, from a liquid gallium metal ion source, which was accelerated

to an energy of 20-30 keV. The beam was then focused onto the sample by electrostatic

lenses to a sub-micron spot size (<10 nm). By controlling the location, beam size and

current density of the ion beam, material can be selectively removed from sub-micron

areas. Once the sample has been thinned to ~100 nm membrane of material, the sample

was then transferred to a standard (Mo) TEM grid.

TEM samples were imaged by a Topcon 002B 200 kV TEM (Topcon Corp.,

Tokyo, Japan) and a JEOL JEM 2010F-FasTEM (JEOL LTD., Tokyo, Japan) with a

Gatan (Gatan, Inc., Pleasanton, CA) energy filtering digital imaging system (GIF). The

Topcon TEM was better suited for imaging and diffraction of microstructures at

intermediate magnification. The JEOL TEM had higher resolution (point resolution of

0.23 nm and lattice resolution of 0.10 nm) and the digital imaging allowed for high

resolution (HRTEM) of planar spacing and lattice fringes [14]. For in depth analysis of

phase transformation and lattice determination, the JEOL TEM was better suited.

HRTEM and ImageJ (v1.37) fast Fourier Transform (FFT) diffractograms were

used for lattice determination and planar spacing [15]. This technique was also used in

determining areas of phase transformation within specific thin films [16].
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3.3.6 Finite Element Analysis (FEA)

The finite element analysis including simple probabilistic studies that allowed for

the evaluation of the relative impact of various design parameters such as the thickness of

the grains, the grain diameter, and the mechanical properties of the material was carried

out using the ANSYS 10.0 finite element analysis package (ANSYS Inc., Canonsburg,

PA). The primary advantage of computational modeling was basic visualization of the

stress distribution within films, in terms of either continuum layers of film deposited or

more locally within individual grains in a film that allowed the prediction of local stress

induced changes in phase which in turn affect the mechanical properties and crack

retarding effects of the thin film.

3.4 Experimental Summary

The processing methodology of PVD thin films outlined in this chapter allows for

YSZ deposition on varying substrates. YSZ thin films are sputter-deposited using

specialized deposition equipment and parameters allowing for a wide variance of YSZ

thin film material properties. Physical characterization techniques are outlined so that

process-structure-property relationships can be developed.
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Chapter 4

Processing-Structure-Property Relationships: Sputter-

deposited 3mol% YSZ Thin Films

In order to study specific film structures and properties, it was important to

develop a process space of varying deposition parameters to modify such material

characteristics. This section will look at specific material properties as a function of

deposition parameters.

Several groups have investigated deposition of YSZ thin films using r.f.

magnetron sputtering. Research has shown that using a zirconia target doped with

3mol% yttria produces varying percentages of tetragonal and monoclinic phases [1, 2].

Increasing the dopant percentage (from 3 to 8%) of the target has been shown to produce

a film with predominately cubic phase [3, 4]. Depending on the percentage of yttria in

the target, deposition parameters (pressure, power density, oxygen partial pressure,

temperature) will dictate the crystal structure of the film.

Depending on deposition parameters, the elemental composition of sputter-

deposited YSZ thin films can be altered. Wang et al investigated varying oxygen partial

pressure during deposition. It was reported that increasing oxygen flow from 0 to 13%

produced variations in the stoichiometery of the films. The O:Zr ratio in the deposited

films varied from 1.80 to 2.24 [5]. Another report stated that variation in the O:Zr ratio

appeared to be dependent on the amount of oxygen introduced into the sputtering gas [1].
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Here it was stated that recombination of atomic oxygen to molecular oxygen in the

plasma results in sub-stoichiometric films (oxygen deficient) when only sputtering with

argon.

Since sputtered films are generally classified as having a columnar grain structure,

there is usually porosity within the films. This characteristic is affected by specific

deposition parameters. A film with a high level of porosity is vulnerable to absorption of

water vapor [3, 6], especially when exposed to ambient conditions. Water absorption can

greatly impact the behavior of the deposited film, often in a deleterious manner (stress

corrosion for example) [7]. One interesting phenomenon that has been reported is a

dipole-dipole interaction of water molecules that have been absorbed/adsorbed in the

porous structure of the film, producing an increase in compressive stress in the deposited

film [8].

As previously stated, sputtered thin films have been shown to improve the

mechanical behavior of brittle substrates. Coupling this characteristic with the unique

properties of YSZ might prove to be beneficial in a broad array of applications. The

purpose of this section is to investigate the effects of variation in deposition parameters

(working pressure, temperature, and oxygen partial pressure) on film stress, crystal

structure, and optical properties of deposited YSZ thin films. In addition, films were

subjected to ambient environments to investigate possible film degradation.

4.1 Deposition of YSZ Thin Films

Chapter 3 describes the sputter deposition and radio frequency magnetron system

used throughout this entire study. A systematic parameter space was derived for films
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deposited of this part of the study using the design of experiments surface method model

(DOE PRO XL, Air Academy Assoc. LLC and Digital Computations Inc., Colorado

Springs, CO.). This model evaluated variation of three deposition parameters in a cube

configuration (Figure 4.1). All parameters defined by the corners and faces of the cube

were performed, and the center point was performed three separate times, as a check of

repeatability. Deposition parameters altered included; working pressure (5, 15, 25

mTorr), substrate temperature (25, 150, 300°C), and oxygen flow rate (0, 3, 6 sccm).

Oxygen input flow rate variation resulted in approximate Ar:O2 ratios of 100:0, 30:1, and

15:1. Sputtering times varied (1-20 hr) depending on desired thickness and parameter

space inputs.

Figure 4.1: Process cube describing deposition parameters (function of substrate
temperature, working pressure, and background oxygen). Center of process cube was
performed three separate depositions.

4.2 Physical Characterization

4.2.1 Film Stress

Film stresses were measured using a wafer bow measurement system (specific

details are covered in section 3.3.1). Each silicon wafer was measured before deposition

Pressure (5-25 mT)

Substrate
Temperature
(25-300ºC)

O2 (0-6 sccm)
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and then re-measured immediately upon removal from the vacuum chamber, post

deposition. This allowed the measurement system to determine bow offset caused by the

deposition of the film. Films that were analyzed had a thickness of approximately 5µm

and were deposited on the roughened side of the silicon wafer (Ra=0.4µm) to enhance

film adhesion to the substrate and simulate end application surface roughness.

No matter the deposition technique, thin films are generally found to be under a

state of stress; these stresses originate from thermal and intrinsic components. Thermal

stresses (σth) result from the mismatch between coefficients of thermal expansion (α) for

the substrate and thin film materials. If a mismatch exists, any additional heating or

cooling would cause stress states to be altered. The intrinsic stresses (σi) are primarily

due to incorporation of impurities, flaw accumulation during growth, and structural

reorganization [6, 10]. For the YSZ and silicon system, a one-dimensional

approximation was used to calculate the thermal stress [9]:

σth = Ef(1 - νf)
-1(αf - αs)(Ta – Ts) [Eqn. 4.1]

where the subscripts f and s refers respectively to the film and substrate; E, ν, α, and T

are Young’s modulus, Poisson ratio, coefficient of thermal expansion, and temperature.

The coefficient of thermal expansion values for silicon and YSZ were found to be 3.0 x

10-6 C-1 and 10 x 10-6 C-1.

Film stress measurements showed that the majority of deposited YSZ films

displayed compressive stress. The magnitude of calculated compressive stresses varied

from 27 to 193 MPa (Table 4.1). Sputtered films are typically under a compressive

stress, primarily due to incorporation of impurities, flaw accumulation during growth, and

structural reorganization [6, 10].
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Process Cube Bow Measurements (µm)
Calculated Stress

(MPa)
Intrinsic Stress

(MPa)
Volume %
Monoclinic

Deposition
Rate

Pressure
(mTorr)

Temp
(°C)

BG - O
(sccm)

W/out
Film

With
Film
(t=0)

With
Film

(t=720
hr.) t=0

t=720
hr. t=0

t=720
hr.

Post
Exposure µm/hr.

5 25 0 0.9 96.3 133.5 -181 -256 -181 -256 0.028 2.04

* 5 25 6 2.7 73.9 80.2 -164 -178 -164 -178 0.720 0.22

* 5 150 3 4.4 74.7 79 -175 -177 -350 -352 0.713 0.46

5 300 0 1.1 91.8 117.2 -148 -198 -533 -583 0.056 2.00

5 300 6 -0.3 54.4 87.1 -119 -196 -504 -571 0.711 0.25

15 25 3 0.9 112.5 141.3 -193 -286 -193 -286 0.571 0.22
15 150 0 0.7 -41.3 -25 86 53 -89 -122 0 2.05

15 150 3 3.1 51.5 96.8 -96 -181 -271 -356 0.564 0.22

15 150 3 -1.8 35.9 70.2 -62 -126 -237 -301 0.574 0.28

15 150 3 -7 43.8 84.7 -71 -155 -246 -330 0.531 0.28

15 150 6 -2.2 45.2 72.5 -87 -142 -262 -317 0.540 0.25

15 300 3 -11 35.3 66 -47 -110 -432 -495 0.506 0.30

25 25 0 -1.2 -18.6 -5.3 38 13 38 13 0 2.60

25 25 6 0.6 73.3 106.6 -130 -193 -130 -193 0.352 0.25

25 150 3 -0.8 25.4 62.2 -42 -116 -217 -291 0.393 0.31

25 300 0 -0.7 -54.5 -40.1 111 86 -274 -299 0 1.82

25 300 6 4 16.1 43.1 -27 -79 -412 -464 0.259 0.27

* Film de-bonded from substrate

Table 4.1: Wafer bow measurements and calculated film stress for the deposition parameter space: (-) designates compressive stress.
Calculated values for intrinsic stresses and volume % monoclinic are also shown.



51

Figure 4.2 displays contour plots of the relationship between film stress and

deposition parameters. Each deposition temperature is plotted as a function of working

pressure and background oxygen. This data shows that for the presented deposition

process space that film stress is tunable. Also, a transition from tensile to compressive

film stress is observed at each substrate temperature. Deposition parameters were shown

to have a dramatic effect on the magnitude and direction of measured film stress values.

At low working pressures, with oxygen incorporated in the sputtering gas, films exhibited

compressive stresses varying in magnitude. This is due to sputtering atoms and

backscattered species having sufficient energy to reach the surface of the substrate with a

low incident angle. The resulting interactions enhance diffusion of surface atoms and can

produce recoil implantation into the growing film, causing the film to display

compressive stress [6].

With the absence of oxygen in the background and at high total pressures, films

were shown to have a tensile stress. Higher working pressures increases the scattering of

neutrals within the plasma, increasing the energy of atoms impacting the surface of the

growing film, and effectively reducing the magnitude of compressive stress. Also, low

oxygen content will increase the volume fraction of vacancies and voids created in the

growing film. The formation of voids allows grains within the film to relax, producing a

tensile film stress [11].

After 720 hr. exposure to ambient conditions (25°C, 75 % relative humidity),

wafer bow measurements were again made. Calculated stress values increased in the

compressive direction (Table 4.1). In order to evaluate this phenomenon, stress was

measured incrementally on select specimens (1 per Ar/O2 gas ratio) as shown in Figure
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Figure 4.2: Contour plots of the relationship of film stress and deposition parameters.
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Figure 4.3: Calculated stress measurement for YSZ film deposited without an applied
bias.

Figure 4.4: Percent change in measured stress values as a function of several thermal
treatments. Stress was measured at set time intervals immediately after deposition and
thermal treatments (12 hr / 100° C / 5 x 10-6 torr).
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4.3. A model of water absorption into the defect structure of films is the proposed

mechanism of this increase. It has been reported that water molecules can penetrate the

defect structure of films and the resulting dipole-dipole interaction of molecules can

produce a compressive stress. To verify this, a random specimen was subjected to a

thermal treatment (100°C) under vacuum (5 x 10-6 torr) for a period of 12 hr. As shown

in Figure 4.4, the film returns to near its original stress state. This thermal treatment

should have removed most absorbed water vapor, but it is thought that some water

molecules may have chemisorbed, reacting with exposed surface within the defects. This

may be the reason the film stress of the examined specimen did not return to its as-

deposited value. As the film is exposed to ambient conditions, compressive stress

increases. The most significant increase was seen in the first 24 hr and the highest rate

was within the first two hours of exposure (shown in Figure 4.5).

Figure 4.5: Calculated stress measurements for first 2hr of exposure to ambient
conditions (25°C, 75% relative humidity).
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To further support this model, analysis of the Thornton Diagram led to the

conclusion that Zone I and Zone T can describe the films in this study (Figure 2.2) [11].

The lack of grain morphology variation is due to the temperature range examined in this

study. The maximum deposition temperature used was 300°C, which is only about 10%

of the melting temperature (TM) of YSZ (~2700°C). Zone I is characterized as a porous

structure that consists of tapered crystallites separated by voids, and Zone T is the

transition structure of densely packed grains, typically columnar in shape [12]. Both of

these structures can lead to absorption of water molecules into inter-granular defects in

the film. Gilmer et al. confirmed zone variations as a function of temperature and

pressure utilizing Monte Carlo simulations of competitive texture evolution [13].

4.2.2 Structural Analysis

SEM allowed for cross-sectional samples of deposited thin films to be visually

analyzed and compared to the Thornton Diagram. Figures 4.6 – 4.14 display

representative micrographs of 3mol% sputter-deposited YSZ thin films. The films show

a columnar grain structure that is expected for the films grown at temperatures which are

considerably lower than the YSZ melting temperature. Each figure shows varying

magnifications of the films. This is to show the adhesion of the film/substrate construct,

the structure of the film, and also a higher magnification to evaluate for inter-columnar

porosity. SEM micrograph analysis showed that all films had apparent good adhesion on

the polished and roughened side of the silicon wafers. At higher magnification, SEM

analysis showed that all films exhibited some level of porosity, which is especially

evident in between the columnar grains. Only two films were shown to buckle (spall-off)

and delaminate from the substrate. Both were deposited at 5mT with oxygen introduced
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into the background and it was determined that the intrinsic stress coupled with the film

microstructure caused the film to fail. Figure 4.14 shows SEM micrographs of a film

deposited at 5mT, 300°C and a Ar:O2 ratio of 30:1. The cleaved surface shows an

interrupted surface with lateral cracks perpendicular to film growth. The measured

intrinsic stress was compressive (571 MPa) which might lead to delamination and/or film

cracking. This structure is more than likely due to sputtering atoms and backscattered

species having sufficient energy to reach the surface of the substrate with a low incident

angle at the low pressures. This structure is similar to substrate bias films shown in

Chapters 5 and 6. A subsequent model of in-situ stress-induced phase transformation and

lateral defect generation is address later within Chapter 6.
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Figure 4.6: SEM micrographs for YSZ thin film with deposition parameters: working
pressure - 5mT, substrate temperature 300°C, and only Argon sputtering gas.
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Figure 4.7: SEM micrographs for YSZ thin film with deposition parameters: working
pressure - 15mT, substrate temperature 150°C, and Ar:O2 ratio of 15:1.
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Figure 4.8: SEM micrographs for YSZ thin film with deposition parameters: working
pressure - 25mT, substrate temperature 300°C, and Ar:O2 ratio of 30:1.
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Figure 4.9: SEM micrographs for YSZ thin film with deposition parameters: working
pressure - 25mT, substrate temperature 25°C, and Ar:O2 ratio of 30:1.
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Figure 4.10: SEM micrographs for YSZ thin film with deposition parameters: working
pressure - 5mT, substrate temperature 150°C, and Ar:O2 ratio of 15:1.

RTI xSfl.Qk 1 .OCum

Iff I: ii , ! T . It i J J' r Mjj! > ! *

h -i1 ' J"1, ' ff 1 - j ! .ft ' JL

J .

Ta»yj
Ijli mmmmm

* . ,

!f : *i. - V
r

‘*r-
V V

I I I I I I I I I I
RTI xS.OQk 5.0Cum



62

Figure 4.11: SEM micrographs for YSZ thin film with deposition parameters: working
pressure - 15mT, substrate temperature 150°C, and only Argon sputtering gas.
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Figure 4.12: SEM micrographs for YSZ thin film with deposition parameters: working
pressure - 25mT, substrate temperature 150°C, and Ar:O2 ratio of 15:1.
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Figure 4.13: SEM micrographs for YSZ thin film with deposition parameters: working
pressure - 15mT, substrate temperature 25°C, and only Argon sputtering gas.
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Figure 4.14: SEM micrographs for YSZ thin film with deposition parameters: working
pressure - 5mT, substrate temperature 300°C, and Ar:O2 ratio of 15:1.
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4.2.3 Crystal Structure Analysis

XRD patterns identified two distinct groups in regard to phase structure, one with

primarily 100% tetragonal phase and another with varying percentages of monoclinic and

tetragonal phases (Figure 4.15). Films with no background oxygen were found to be

predominantly tetragonal and have a sub-stiochiometric ratio of oxygen to zirconium [1].

Studies have theorized oxygen deficiency and the high number of defects present result in

the tetragonal phase being thermodynamically favorable [1,8].

Figure 4.15: Effect of deposition parameters on the percentage of monoclinic phase
formed. Depositions with no oxygen produced films ~100% tetragonal phase as oxygen
flow increases, monoclinic phase becomes more prevalent with higher percentages
produced at low working pressures.
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background pressure has a direct effect on the percentage of each phase. At low working

pressures the percentage of monoclinic phase is at its highest, and this percentage

decreases as working pressure is increased. At higher working pressures, collisions

within the plasma cause an increase in neutral gas temperature, which allows the

tetragonal phase to be more thermodynamically stable.

For films that had a mixture of two phases, stress values were lower in magnitude

than for films with a lower percentage of monoclinic phase. The magnitude of stress

increased compressively as the percentage of monoclinic phase increased. This is

possibly due to the relative amounts of the two phases. An increase in the amount of

monoclinic phase present, which has a larger unit cell (~ 4 vol. %), effectively increases

the volume of the film [14]. Table 4.1 shows the data of intrinsic stresses within the

films along with the calculated volume percent of monoclinic phase. It should be noted

that the higher the intrinsic stress, the higher percentage of monoclinic phase present. A

model for in-situ stress-induced phase transformation will be discussed later in Chapter 6.

Texturing was not investigated in this study, but preliminary analysis of the XRD

data showed that the majority of films displayed a dominant <111> texture. Figure 4.16

displays representative XRD scans for films with predominant <111> texturing.

However, this was not seen for columnar films deposited at low pressures and in pure

argon plasma where a dominant <200> growth direction was observed (Figure 4.17).

This is consistent with reports that low sputtering pressures yield a preferred texture

along the <200> axis for YSZ thin films [15]. In addition, as pressure is increased, the

intensity of the (200) peak decreases and the films are oriented in the <111> direction

[16]. This c-axis texturing becomes important when examining tetragonal to monoclinic
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Figure 4.16: Representative XRD scans for YSZ thin films displaying a predominant
<111> texture (deposition parameters are noted on the graph).

Figure 4.17: Representative XRD scans for YSZ thin films displaying a predominant
<200> texture (deposition parameters are noted on the graph).
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phase transformation, discussed later in Chapter 5 and 6. The <111> texturing suggests

an orientation relationship between the tetragonal and monoclinic lattices is such that

(100)M // (100)T and [001]M // [001]T [17]..

4.2.4 Index of Refraction

Index of refraction data (Table 4.2) varied throughout the parameter space (ranging

from 1.959 to 2.223). Films that were optically translucent or opaque, and were dark in

color, had the highest index of refraction values. These films were deposited at low

working pressures, and with no oxygen introduced in the sputtering gas. Since some

films can be described as oxygen deficient and were deposited at low pressure, it is

possible that free zirconium atoms form defect complexes in the growing film, either

interstitially or at grain boundaries, causing the film to have a dark appearance. X-ray

diffraction did not show the presence of phase separated zirconium supporting the

conclusion that defect complexes are formed in sub-stoichiometric films. Within the

same parameter space, it was seen that substrate temperature qualitatively decreased the

level of opacity. Higher temperature may lead to a more favorable thermodynamic

environment for zirconium atoms to be incorporated into the lattice. As working pressure

increased, refractive index decreased, and films were optically clear.

As stated earlier, previous research has hypothesized that condensation and

absorption of water molecules can take place in pores developed during the deposition

process. By applying the rule of mixtures, the packing density (porosity density) can be

calculated [9]:

nm = nsP + nv(1-P) [Eqn. 4.2]
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where nm is the measured index of refraction, ns is the known index of refraction of the

specific crystal phase structure, nv is the index of refraction of the void constituent (1.00

for air and 1.35 for water), and P is the packing density (porosity) of the material. By

analyzing the volumetric percentages of the crystal phases present in respective films, ns

was calculated using 2.16 for the tetragonal phase [18] and 2.24 for monoclinic phase

[19]. The index of refraction of each film was measured immediately upon removal from

vacuum and re-measured after exposure to ambient conditions. As shown in Figure 4.18,

the packing density of each film was calculated. Films deposited at low working pressure

have calculated packing densities close to 1. This coincides with a film that has a low

defect density. At low pressure, sputtering yield is high, and particles impact the film

surface with significant energy, increasing the mobility of sputtered adatoms. As

Figure 4.18: Packing density calculation (utilizing measured index of refraction).
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pressure is increased, gas-phase collisions increase, and atoms arrive at the substrate with

lower kinetic energy [9,11]. Therefore, sputtered atoms have less energy for surface

diffusion and the resulting film will contain a higher porosity.

Pressure
(mT)

Temp
(C)

BG - O
(sccm)

Index of
Refraction

Index
(t=720

hr.)
Color

* 5 22 0 n/a n/a Brown (metallic)
5 22 6 2.070 2.075 Clear

** 5 150 3 n/a n/a Clear (Whitish)
5 300 0 2.223 2.229 Tan
5 300 6 2.061 2.068 Clear (Whitish)
15 22 3 2.128 2.131 Clear
15 150 0 2.041 2.043 Clear
15 150 3 2.130 2.131 Clear
15 150 3 2.126 2.129 Clear
15 150 3 2.126 2.128 Clear
15 150 6 2.127 2.128 Clear
15 300 3 2.137 2.137 Clear (Whitish)
25 22 0 1.959 1.973 Clear
25 22 6 2.137 2.138 Clear
25 150 3 2.138 2.138 Clear
25 300 0 2.002 2.003 Clear (Whitish)
25 300 6 2.163 2.168 Clear

* Unable to obtain index of refraction measurement, ** Film de-bonded from substrate

Table 4.2: Index of refraction measurements for parameter space (measurements taken
upon removal from vacuum chamber and 720 hr after aging in ambient environments).
Color designates optical appearance of each film.

4.3 Summary – Process-Structure-Properties

YSZ thin films were deposited by r.f. magnetron sputtering, and it was

demonstrated that film characteristics are greatly dependent on deposition parameters

(working pressure, temperature, and gas composition). Resulting film stresses are

primarily compressive and are shown to increase in the compressive direction when

subjected to ambient conditions (25°C, 75 % relative humidity). It is hypothesized that
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increases in film stress are due to absorption of water molecules into the defect structure

of films. Using thermal treatment, films can be returned to near-post-deposition stress

states. This mechanism is important to understand the possible degradation and

mechanical behavior of the films when exposed to ambient or otherwise aggressive

environments.

Structural studies revealed that films deposited with no oxygen in the sputtering

gas contained primarily tetragonal phase. Introduction of oxygen and variation of total

working pressure led to varying percentages of monoclinic and tetragonal phases. The

parameter space explored has shown a clear relationship between specific film phase

structures and deposition parameters, allowing for the development of future YSZ films

characterized by phase structure.

Index of refraction measurements led to qualitative calculation of film packing

density as a function of deposition parameters. Index of refraction decreases as total

pressure is increased suggesting that resulting films have a high porosity density.

Key Findings: The above investigation led to several key findings that enable the

process-structure-properties relationship to be established, as well as, detailed novel

findings for further investigations to be discussed later.

• Film stress was shown to be dependent of process parameters – there was a

distinct transition from tensile to compressive and it was shown to be tunable.

• Percentages of monoclinic to tetragonal crystal phase were shown to be dependent

on process parameters (especially the induction of O2 into the sputtering gas).
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• Calculation of packing density as a function of index of refraction allowed for

qualitative analysis of the film’s structure or porosity.

• Novel relationship was developed linking water vapor absorption to the increase

of compressive stress within the YSZ films.
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Chapter 5

Stress Evolution as a Function of Substrate Bias

Data presented in Chapter 4 revealed that sputter-deposited YSZ thin films when

exposed to ambient conditions displayed modifications of film stress states in the

compressive direction. This section will address the water vapor mechanism and show

data on how to deposit a film that limits these affects.

In ambient conditions, effects of water absorption on film properties have been

reported to depend on microstructure and composition [1-5]. A porous film structure can

promote water vapor absorption in ambient conditions, which in turn can drastically

affect optical and mechanical properties. It has also been shown that within stressed

zones, water vapor may facilitate internal cracking by breaking metal-oxygen bonds [5].

Hirsch proposed a model of absorbed water vapor significantly altering stress states

within a film via dipole-dipole interactions [1]. In order for substantial stress increase to

occur, pores must be between 10-100Å in size (a smaller pore size leads to larger stress

increase). Sign and magnitude of film stress are dependent on characteristics of structural

defects and surface area of inter-granular pores [3].

Water vapor effects on yttria-stabilized zirconia (YSZ) thin films have yet to be

investigated thoroughly, most likely due to the prevalence of high temperature

applications where water vapor is not a factor. Researchers have investigated the

detrimental effects of water molecules on other similarly deposited oxide thin films.
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Several groups reported that a drift in stress in SiO2 films was due to the repulsion of

permanent dipole moments associated with water molecules that had absorbed on the

surfaces of pores within the films [2-4].

Chapter 4 reviewed deposition process parameter space and its effects on stress

for 3 mol% YSZ sputtered thin films. Film stress was shown to increase compressively

when films were exposed to ambient conditions. It was proposed at the time that this

increase was due to the incorporation of water vapor into grain boundary defects. It is

important to understand this mechanism as it applies to specific applications (i.e.

biomedical, low-temperature, etc.). Figure 5.1 show a representative model of water

vapor molecules absorbing into the inter-columnar porosity of YSZ thin films. Increase

of compressive stress is facilitated by the dipoles aligning, resulting in a repulsive force.

Two distinct ways to eliminate water vapor absorption have been reported: (1) create a

more dense film with limited inter-connected porosity (through the application of

substrate bias deposition) [6], and (2) use an encapsulation layer that impedes water

vapor absorption [7]. Here, YSZ thin films sputtered with varying substrate bias power

were exposed to ambient conditions and film stress was evaluated to investigate water

vapor effects.

5.1 Deposition of YSZ Thin Film

Chapter 3 describes the sputter deposition and RF magnetron system used

throughout this entire study. Substrates used were single crystal four-inch diameter (10.2

cm) silicon wafers (100 orientation). All depositions (n=2) were performed at a RF



Figure 5.1: Representation of water vapor absorption into inter-columnar porosity of deposited YSZ thins films. Resulting
interactions (dipole-dipole) induce compressive film stress.
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power of 350W, working pressure of 15mT, temperature of 150°C and Ar/O2 ratio of

15:1. For bias-assisted sputtering, a secondary RF power source was capacitively

coupled to the substrate and increased to a maximum of 50W (10, 25, 50W).

Wafer bow was measured before deposition and then again immediately upon

removal from the vacuum chamber, post deposition. Deposition times, regardless of

substrate bias power level, were adjusted so that all films had a thickness of

approximately 5µm. All films were deposited on the unpolished side of silicon wafer

substrates (average roughness (Ra) = 0.4 µm) to increase film adhesion. Samples were

stored in a typical ambient environment (75% relative humidity, 25°C) and wafer bow

was measured as a function of time to evaluate the effects of environmental exposure.

5.2 Physical Characterization

5.2.1 Film stress

Figure 4.3 displays percent change in compressive stress on films deposited

without substrate bias (refer to Chapter 2). Absolute stress values versus post deposition

times are shown in Table 5.1. The films were exposed to ambient conditions and stress

was measured as a function of time. The largest increase in stress occurred in the first 2

hr of exposure and film stress eventually reaches a steady-state after approximately 70

days. Films were then thermally treated (100°C, 5x10-6 torr, 12hr) and film stress re-

measured (Figure 4.4). Measured film stress decreased to near baseline, post-deposition

values, indicating that most water molecules are physisorbed within the porous structure

of the films. Thermal treatments employed in this study may not have been sufficient to

completely remove all species that may have chemisorbed onto exposed defect surfaces.
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Any remaining chemisorbed water molecules would still result in a non-recoverable

compressive stress.

Bias Power Stress (t = 0) Stress (t = 30d)
(W) (MPa) (MPa)

0 80 150
10 100 170
25 240 270
50 300 310

∗ Stress values are compressive

Table 5.1: Absolute stress values at post deposition times of 0 and 30 days.

Low ion energy bombardment during sputter deposition is commonly used to

increase film density (refer to Chapter 2). It was thus speculated that using substrate bias

would decrease permeability to water vapor and reduce the time-dependent variation in

stress. A series of films were deposited using increasing substrate bias power values (10,

25, and 50 W). The films were exposed to ambient conditions and stress measured as a

function of time, as with the unbiased films. Figure 5.2 shows measured stress values for

each film deposited at varying substrate bias powers at post-deposition and 30 days post-

deposition. Initial analysis shows that as bias was increased the percent change in

compressive stress was reduced.

The films deposited with the highest applied substrate bias displayed no significant

change in film stress upon exposure to ambient conditions for the first two hours

following deposition (Figure 5.3). This lack of change in film stress is partially a result

of increasing density and a corresponding decrease in inter-columnar porosity. Knoll et

al. noted that as applied bias during sputtering was increased from 0 to -100V, the

microstructure of deposited PSZ films changed from a columnar grain structure with
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prominent porosity between grains to a more dense film [8]. Additionally, it was

reported that for low applied bias deposited films, defect structure ranged in scale from

large inter-columnar cracks to small inter-columnar voids.

Figure 5.2: Compressive film stress measured for varying substrate bias YSZ films upon
removal from vacuum and post 30 days exposure to ambient conditions.

5.2.2 Structural Characterization

However, further analysis of these films suggests that the mechanism may be

more complicated then simple densification or elimination of pores. Preliminary analysis

via SEM and TEM confirms that a distinct physical difference can be discerned between

the biased and unbiased films. Figure 5.4 displays SEM micrographs from two films: (a)

no substrate bias and (b) substrate bias power of 50W. Films deposited without substrate

bias, display a typical uninterrupted columnar grain structure that would likely promote
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inter-columnar porosity enabling the absorption of water molecules. By applying a

substrate bias during deposition, the columnar grain growth is noticeably disrupted. This

apparent reduction in inter-columnar porosity is expected to limit water vapor absorption

Figure 5.3: Percentage change in measured film stress for a series of films deposited
with differing substrate bias power levels. Stress was measured incrementally for the
first 2hr of exposure to an ambient environment upon removal from vacuum.

Figure 5.4: Representative SEM micrographs of YSZ sputter-deposited thin films: (a)
film deposited without substrate bias and (b) film deposited with 50W power substrate
bias.
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and subsequently reduce the change in film stress upon exposure to ambient conditions.

Cross-sectional TEM images allowed for a more detailed analysis of the defect

structure. Figure 5.5 displays TEM cross-sectional views of films deposited under: (a) no

bias, (b) 25W substrate bias, and (c) 50W substrate bias. There is a distinct columnar

grain structure (Figure 5.5(a)) with inter-columnar pores for the non-bias film that would

enable the absorption of water into the structure. Voids between highly columnar grains

typically originate due to low-adatom mobility and self-shadowing during film growth

[26]. Figure 5.5(b) displays a film deposited with a 25W substrate bias. It still exhibits a

distinct columnar grain structure with some level of inter-columnar porosity, but there

also appears to be a large amount of lateral defects. Conversely, when a 50W substrate

bias was applied during film deposition, the grains became larger and more equiaxed with

limited inter-columnar porosity (Figure 5.5(c)). They also exhibit a regular array of

larger, lateral intra-columnar or trans-granular defects. This is an interesting

phenomenon whereby the absolute film density appears to have decreased as a result of

these micro-cracks; however the water absorption is almost eliminated. It is

hypothesized that the trans-granular micro-cracks form as a result of stress-relief in the

growing film and the transformation from tetragonal to monoclinic phase due to the bias-

induced compressive stress.

As mentioned earlier, the use of low energy ion bombardment during film growth

was expected to increase film density, reducing susceptibility to water vapor absorption.

As expected, the compressive stress increased and TEM analysis showed that the inter-

columnar porosity was reduced. However, there was also a commensurate increase in

trans-granular defects. These lateral defects actually suggest a decrease in overall film
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Figure 5.5: Representative cross-sectional TEM micrographs of YSZ sputter-deposited
thin films: (a) film deposited without substrate bias exhibits columnar grain structure
with inter-columnar porosity (arrows indicate inter-columnar porosity).
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Figure 5.5 (cont): Representative cross-sectional TEM micrographs of YSZ sputter-
deposited thin films: (b) film deposited with a 25W power substrate bias exhibits
columnar grain structure with inter-columnar porosity and presence of lateral defects
(arrows indicate inter-columnar porosity and lateral defects).
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Figure 5.5 (cont): Representative cross-sectional TEM micrographs of YSZ sputter-
deposited thin films: (c) film deposited with 50W power substrate bias shows signs of
equiaxed grain structure with limited inter-columnar porosity (arrows indicate lateral
defects).
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density. It is proposed here that these trans-granular defects, or micro-cracks, are a result

of a stress-induced phase transformation (T⇒M) that occurs during film deposition.

Garvie, and Garvie and Swain investigated the thermodynamics of martensitic

transformations for a constrained YSZ microcrystal with and without an applied stress

[9,10]. It was reported that there needs to be sufficient strain energy density produced

from an applied stress to overcome the necessary energies within the process zone for

such a phase transformation. According to the stress data presented in this research, the

compressive values for the biased films may be sufficiently high to induce a martensitic

transformation.

Figure 5.6: Volume % monoclinic phase versus differing bias powers. Graph represents
an increase in monoclinic as bias power increases.

By analyzing x-ray diffraction scans, volumetric percent of monoclinic versus

tetragonal was calculated [11]. It was found that as bias was increased, the percentage of

monoclinic phase increased (Figure 5.6). Since the predominantly c-axis textured,
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means of stress relief following phase transformation. Furthermore, in-situ martensitic

transformation (T⇒M) may explain the higher compressive stress measured in higher

biased sample, as a result of volumetric expansion of textured grains. This lateral

expansion closes the columnar intra-granular pores and this reduces the films

permeability to water vapor.

5.3 Summary – Substrate Bias Deposition

Film stress for RF magnetron sputtered YSZ thin films was investigated as a

function of exposure to ambient conditions. It was determined that film stress for films

deposited without substrate bias increased compressively due to the incorporation of

water molecules into the porous structure. It was verified that an increase in substrate

bias power facilitates a reduction in the percent change in compressive film stress upon

exposure to ambient conditions. Furthermore, the bias treatment is shown to result in the

formation of trans-granular defects that significantly alter the structure and properties of

the YSZ thin films. A novel mechanism is proposed whereby the compressive stress

increases as a result of ion bombardment. The stress then reaches a threshold for

tetragonal to monoclinic transformation; and a volumetric expansion of the constrained,

predominately c-axis textured film forces cracking in the z-direction accompanied by an

expansion in the x- and y-direction. The next chapter will address and model this

transformation mechanism as it relates with intrinsic stress.
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Key Findings: Within this section several findings pertaining to YSZ film structure were

presented.

• Revealed that sputter-deposited YSZ thin films when exposed to ambient

conditions displayed modifications of film stress states in the compressive

direction. This section will address the water vapor mechanism and show data on

how to deposit a film that limits these affects. Novel water vapor absorption

mechanism was shown to be reduced as the application of substrate bias was

increased.

• Films deposited with substrate bias had higher compressive film stress and higher

percentages of monoclinic phase.

• Lateral defects (or microcracks) were observed in bias films. This coupled with

intrinsic film stress was presented as a model of in-situ (T⇒M) phase

transformation.
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Chapter 6

Stress-induced Phase Transformation in YSZ Thin

Films

Earlier chapters have discussed the deposition of YSZ thin films and how the

material properties can be altered. Chapter 5 presents a model of an in-situ stress-

induced phase transformation within the films. This chapter focuses on specific

structures developed using substrate bias, and a detailed model of T⇒M phase

transformation using TEM and FEA techniques.

It has been well documented that phase transformation in PSZ can be induced

either thermally or mechanically within a crack-tip stress field, associated with a volume

strain (4-5%) and a large shear strain (~7%) [1]. Toughening of the material is due to

compressive stress generated around the advancing crack tip, which in turn helps absorb

crack advancement energies. Additionally, microcracking related to the microstructural

accommodation of the transformation shape helps reduce strains and increases toughness

by reducing stresses within the transformation zone [1-3]. Garvie presented the first

representation of T⇒M transformation entirely as a function of stress [4]. The Garvie

study introduced a model of an individual tetragonal grain subjected to iso-static forces

transforming into a monoclinic grain. Garvie concluded that energy supplied by external

stress could be thermodynamically linked to transformation.
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For a YSZ thin film to be useful as a strengthening coating, it is believed that a

majority of the film must consist of tetragonal phase, which could locally transform to

monoclinic phase under an applied stress. Discussed in Chapter 4, sputtered YSZ thin

films can be deposited in varying percentages of tetragonal phase and varying magnitudes

of film stress. Unlike bulk YSZ with micron sized grains, sputter-deposited YSZ thin

films have grain sizes in the nanometer range. Intrinsic and thermal stresses, produced

during deposition, provide possible transformation mechanisms that are not currently

understood. Thus, it is important to investigate transformation within the constraints of a

thin film system.

In this chapter, evidence of in-situ martensitic transformation (T⇒M) for YSZ

sputter-deposited thin films is presented. Our earlier work demonstrated that substrate

bias-assisted deposition resulted in higher film stress, increased monoclinic phase

content, and a series of lateral defects throughout the film structure. It is proposed here

that stresses generated during film growth were sufficient to induce a T⇒M phase

transformation. Lateral defects formed as a result of stress-relief along the columnar

grains which undergo rotational strain and volumetric expansion associated with the

martensitic transformation. Larger defects, spanning an entire grain, thus form, separating

transformed sections of the original columnar structure. Similarly, smaller microcracks

form, within a partially transformed zone, displayed a T⇒M parent-to-daughter phase

transition. Both defect structures are presented in this study with supporting analysis

from high resolution TEM and fast Fourier Transform (FFT) diffractograms.
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6.1 Deposition of YSZ Thin Films

All sputter depositions are outlined in Chapter 3. Substrates used were 10.2cm (4in)

single crystal silicon wafers (100 orientation), and films were deposited on the non-

polished side (Ra=0.4µm) to simulate end-application and increase film adhesion. All

depositions were performed at a power of 350 W, 15mT working pressure, 150°C, and an

Ar:O2 ratio of 30:1. For bias-assisted sputtering, a secondary RF power source was

capacitively coupled to the substrate and power incrementally increased to a maximum of

50 W.

Film stresses were determined by wafer bow measurements and crystal structure was

determined by XRD. Cross-sectional scanning electron microscopy (SEM) and

transmission electron microscopy (TEM) samples were prepared to analyze structural

differences and investigate martensitic transformations that occurred under bias

conditions.

6.2 Physical Characterization

Chapter 5 focused on investigating substrate bias effects on YSZ sputtered thin films.

The primary goal was to eliminate water vapor absorption into defects and exposed

porosity within the films. The development of unique bias-deposited structures led to

further in-depth investigation of observed microstructural defects.

6.2.1 Crystal Structure Analysis

XRD analysis showed that as substrate bias was increased, the amount of

monoclinic phase increased with respect to the tetragonal phase (Figure 6.1). A film

deposited without bias had approximately 56% monoclinic phase. As bias was increased
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the percent monoclinic phase increased to 75% and 83% for 25W and 50W bias

respectively. Furthermore, measured film stress increased compressively with higher

substrate bias; 310MPa for films deposited with 50W substrate bias.

Figure 6.1: Graph displays the relative amount of monoclinic phase present for YSZ
films deposited at 0W, 25W, and 50W substrate bias.

Texturing was not investigated, however XRD analysis showed that all films

displayed a strong c-axis <111> texture and SEM cross-sections depicted a highly

columnar microstructure. Bauer reported that for tetragonal zirconia the (111) is the most

densely packed plane and thermodynamically favorable to grow parallel to an amorphous

substrate [6]. Due to this texturing, it has been reported that there is a (100)M // (100)T

and [001]M // [001]T plane and direction relationship, and a corresponding ~9° tilt

between the (111)M and (111)T that occurs after phase transformation [3,7-8].
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Figure 6.2: XRD patterns for non-bias, 25W, and 50W bias sputtered films showing a
decrease in tetragonal phase and increase in monoclinic phase with increased bias power.

6.2.2 Structural Analysis

SEM analysis of YSZ sputtered films confirmed that when deposited without

substrate bias, films displayed a columnar grain structure (Figure 6.3(a)). Figure 6.3(b)

shows a cross-sectional micrograph of a film deposited with 50W substrate bias. The

columnar grain structure is noticeably disrupted and lateral defects can be discerned.

Cross-sectional TEM allowed for a more detailed analysis of film structure. It was

observed that films deposited with substrate bias had a more equiaxed microstructure, but

also exhibited a regular array of lateral defects (or trans-granular microcracks). It is

hypothesized that these lateral defects or trans-granular microcracks form as a result of

stress relief in the growing film due to the T⇒M transformation caused by bias-induced

compressive film stress.
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Figure 6.3: Representative SEM images for films deposited (a) without substrate bias
and (b) with substrate bias of 50W.

Garvie proposed a simple model based on a tetragonal ZrO2 microcrystal,

subjected to external constraints and a hydrostatic stress field [4]. It was reported that for

a T⇒M phase transformation within the system to occur there must be sufficient strain

energy density produced from the externally applied stress. Figure 6.4 is a simplified

schematic drawing of a constrained columnar grain of a PSZ sputtered thin film. The

model describes a tetragonal grain constrained by surrounding grains, subjected to a bi-

2µm
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axial external film stress. Earlier film stress measurements confirmed that stress values

for the biased films may be on the order of 300 MPa, which, based on Garvie’s work, is

sufficiently high to initiate a T⇒M transformation. If this transformation is complete,

then there would be a ~9° rotation about the a-axis between the tetragonal and monoclinic

(111) crystal planes. There is also an accompanied expansion along the c-axis, which

results in the volumetric expansion of ~4% within the material. It is thus proposed in this

thesis that intrinsic stresses produced during film growth will supply enough energy to

the system for phase transformation to occur. However, due to constraints of neighboring

columnar grains, there is not sufficient space to accommodate either full rotation or

volumetric expansion. Consequently, periodic micro-cracking allows sub-sections to

fully or partially transform within the constrained system (Figure 6.4(b)) while

minimizing the total film stress.

As described above, the tetragonal to monoclinic transformation is accompanied

by a lateral volumetric expansion for a c-axis textured film. The model we proposed is as

follows: As the film texture evolves into a columnar grain structure, the system reaches a

critical stress threshold supplying sufficient energy to elicit a phase transformation;

larger, trans-granular cracks are dispersed throughout the textured grains, bound by both

tetragonal and monoclinic phases; and since the transformation alone would result in a

further increase in compressive stress, it is believed that nucleation of these trans-

granular defects is driven by the need to relieve the overall stress of the system. The u-

shaped structure of the defects provides tensile relaxation that reduces the compressive

film stress.
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Figure 6.4: Schematic drawing of a constrained T-YSZ cylindrical grain transforming in
the presence of an applied film stress: (a) shows constrained columnar grains under an
applied stress and subsequent transformed grain at a 9° shift, (b) depicts the transformed
grain with lateral defects (or microcracks), and (c) is a low magnification TEM image
showing a columnar grain structure from a bias-assisted YSZ sputter deposited film.

As stated earlier, it is believed that larger defects separate areas of complete

transformation resulting in primarily monoclinic phase on one or both sides of the defect.

The smaller defect regions are also noteworthy: It is presumed that volumetric expansion

due to transformation would elicit microcracking and areas of tetragonal phase with a

transition to monoclinic phase would be evident. To further support this model, HRTEM

and fast Fourier Transform (FFT) diffractogram calculations of planar spacing were

performed in areas close to observed defects. Shown in Figure 6.5(a) is a TEM

micrograph of a cross-sectioned 50W substrate bias deposited film. Lateral defects and

smaller phase boundaries can be identified throughout the film. Figure 6.5(b) is a

HRTEM with boxed areas showing a tetragonal region, a region of transformation, and a

converted



99

(a)

100 nm

Growth Direction

(b)

T(111)

M(111)

~9° Shift
T,M(200)

T,M(200)

~56°
angle

Growth Direction

Lateral Micro-Crack

M(111)

T(111)

T,M(200)

(111)

(200)

(111)

(200)

Monoclinic

Tetragonal

* L

Figure 6.5: (a) Low magnification of 50W substrate bias deposited YSZ thin film. (b)
High resolution TEM of boxed area shown in (a). FFT diffractograms confirm T⇒M
transformation area.
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monoclinic phase region. Corresponding FFT diffractograms are shown with lattice

spacing confirming the transformation from tetragonal to monoclinic phase near a defect.

As reported in earlier studies, the c-axis of parent and daughter phases are parallel and the

(200) lattice fringes are invariant in spacing and have an angle of ~56° with both the

tetragonal and monoclinic regions [7, 9]. Based on dhkl spacing of bulk ZrO2, (111)T and

(111)M are 2.96A and 3.16A [10]. The measured planar spacings were 2.965A and 3.087

respectively. The measured inter-planar angle between the (111)T-(200)T was ~59°, and

(111)M-(200)M was distorted to ~63°. In the current study, the transformation region

displays ~10° tilt between the (111)T and (111)M confirming a T⇒M transformation that

involves an out-of-plane rotation of ~9° between the two planes. It is believed this 10°

tilt about the a-axis is enhanced due to transformation-induced volumetric expansion of

the material, and a result of stress-relief microcracking. Light and dark bands can be seen

in the transformed monoclinic area. Further investigation needs to be preformed to

differentiate between areas of residual strain as a result of the transformation, possible

twinning, or Moire fringes [7, 11].

Figure 6.6(a) is a low magnification TEM of an area close to the substrate/film

interface. Figure 6.6(b) depicts a high magnification area close to the interface and

below a large lateral defect. What is shown is an area of parent tetragonal phase and the

subsequent transformation zone, which has changed to monoclinic phase. FFT

diffractograms of the boxed areas confirmed the phase identification of both T and M

phases. Lattice measurements corresponded to previous measured values and are noted

within the figure. Tetragonal phase near the interface of the Si substrate was observed,

similar to previous reports [24]. During film growth, stress becomes a dynamic factor
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Figure 6.6: (a) Low magnification TEM of 50w substrate bias YSZ film showing lower
portion of the cross-sectional wedge - interface between film and substrate. (b) High
resolution TEM of transformation area.
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(thermodynamically) in supplying energy to the system, increasing the probability of

transformation.

Figure 6.7 is a representative TEM of a film deposited with a 50W substrate bias.

In Figure 6.7(b), is a HRTEM of the boxed are shown in (a) of one of the large u-shaped

defects. Noted earlier, it was hypothesized that these defects are areas of complete

transformation and should be bound by transformed monoclinic phase. Specific locations

surrounding the defect were selected for FFT analysis. The FFT diffractograms and

lattice spacing measurements confirmed that monoclinic phase binds the edges of the

defect. Lattice spacing measurements are noted on the diffractograms shown in Figure

6.7.

6.2.3 Finite Element Analysis (FEA)

The model of transformation assumed that the applied stress was bi-axial stress

and compressing the circumference of the columnar grains. The portion of the strain

energy density generated by the applied stress which is involved in the thermodynamics

of the transformation is designated Wa, and is related to interaction energies. To facilitate

analysis, the tetragonal metastable grains are assumed to be located within specific

process zones; these zones are described as a region where t-particles transform to m-

symmetry due to the influence of the applied stress via the interaction energy term Wa.

The thermodynamic description of the transformation is given by [Garvie]:

(∆F0/V) = ∆Fchem+∆Fdil+∆Fshr+ (6∑∆S/dc) +Wa < 0 [Eqn. 6-1]

where ∆F0 total change in free energy of the transformation, V is the volume, ∆Fchem is

the chemical (Helmholz) free energy, ∆Fdil is the strain energy density generated by the

volume expansion associated with transformation, ∆Fshr is the residual shear stress after
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transformation, ∑∆S is the sum of all the interfacial energy terms, and dc is the critical

diameter for which transformation occurs for a particular applied stress [Garvie no

stress]. Using these thermodynamic relationships established by Garvie, it was

determined that the overriding transformation strain within the system is solely dependent

on the applied bi-axial stress.

For brittle materials, cracks are generally assumed to form by the cleavage of

atomic bonds in highly stressed regions. These stresses may be due to stress

concentrations or residual stress and they will be particularly effective in producing

cracks if weak interfaces are present. It has been stated that the presence of high stresses

is associated with the heterogeneous nature of the material at the microstructural level or

inelastic deformation at localized contacts. It is known that cracks can form at contact

events, voids produced during processing, and stresses formed due to temperature

changes. It is extremely useful to identify sources of high stress within the

microstructure. Areas of microstructural misfits or phase transformations can lead to

microscopic areas of stress, which in turn leads to crack formation. Once a crack

nucleates, it may undergo further growth, especially if there is a localized stress field

associated with the nucleation process, or if growth is impeded by microstructural

obstacles [Green].

SEM and TEM micrographs showed that bias-assisted films displayed large

lateral defects (or microcracks) dispersed throughout the entire thickness of the films. It

was therefore hypothesized that the presence of the defects was a function of stress-relief

in the growing film induced by the T⇒M phase transformation. The model consisted of

evaluation of film stress and assuming a constrained system, that film stress reaches a
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transformation threshold, and that do to volumetric expansion, microcracking results as a

consequence of system stress-relief.

FEA allowed for the system to be modeled and stress contours (fields) to be

mapped to better understand the mechanisms of the model. The constraints for the

purpose of analysis (Figure 6-8) of a 50W substrate bias deposited film, is applying a

uniform pressure at all curved surfaces. The top surface is free of constraints and the

base is fixed to the substrate. The areas shown in red designate pressure or the applied

stress, the lower portion (blue region) displays the boundary conditions, and the arrows

(lower portion) describe the reaction on the substrate. Based on this model, the uniform

pressure means that the Poisson’s effect is seen along the c-axis.

Figure 6.8: Representation of the 3-D model using in evaluating stress in columnar
grains.

A compressive film stress (Figure 2.3) would provide a bi-axial stress on the outer

surfaces of the columnar grains by the surrounding grains. Also, the bottom of each grain

is constrained due to attachment to the substrate. The top portion (or addition of material

due to growth) would be unconstrained and not bound by external forces. Using

substrate bias during deposition alters the internal (or intrinsic) stresses within the

/

'/ III'1
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growing film. Mentioned in Chapter 2, substrate biasing is used to increase the density of

the film. This ion bombardment during film growth can increase intrinsic stress

(compressive) and produce crystallographic flaws; such as, interstitial defects and/or

entrapped species. A consequence of a high compressive intrinsic stress is that the grain

would literally want to expand out from its boundaries.

Figure 6.9: FEA analysis of 300 MPa film stress (Von Mises) on columnar grain.

It is proposed that the larger, u-shaped defects (Figure 6.6(a)) are areas of

complete phase transformation, resulting in monoclinic phase present around the edges of

the defect. Based on experimental measurements, film stress post-deposition was 300

MPa. The neighboring grains would then effectively press on each other, creating a

constrained system. Using the above parameters, a FEA model was created to map stress
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fields within a columnar grain (Figure 6-9). The FEA model showed that stress reaches a

maximum, creating domed shaped stress fields (contours) inside the grain. The apex of

the dome, described by a higher stress magnitude, would depict a nucleation site for

T⇒M transformation. The base radius was very critical because it was constrained and

subsequently causes an increase in stress. The smaller the radius, the lower the maximum

stress and sharper the stress contours.

Since the films are predominantly c-axis (<111>) texture, there is a (100)M //

(100)T and [001]M // [001]T plane and direction relationship, and a corresponding ~9° tilt

between the (111)M and (111)T that occurs after transformation. Also, there is an

accompanied expansion along the c-axis, which results in a volumetric expansion of ~4%

within the material. As the film texture evolves into a columnar grain structure, the

system reaches a critical stress threshold supplying sufficient energy to

Figure 6.10: Plot representing increase in film stress versus thickness. Stress reaches a
threshold (σT) designating phase transformation, spikes upward, and then relaxes.

elicit a phase transformation. This point of transformation was determined by the apex of

the domed stress field created inside the grain. Stress contours for a 300 MPa biaxial

stress were shown to reach a maximum of approximately 620 MPa, leading to the

Film Thickness

Stress

σT
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conclusion that there was sufficient energy for transformation. It is believed that once a

transformation event occurs, there is spike in stress as a result of volumetric expansion.

A subsequent microcrack is formed by the need to relieve the overall stress of the brittle

material system. Figure 6-10 is a proposed relationship for stress versus evolving film

thickness. It was presumed that as a film grows, the stress will increase and reach a

threshold for transformation (σT). At this point stress will increase further due to the

transformation-induced lateral and volumetric expansion. Once transformation is

complete and structural accommodations have occurred (or microcrack formation), then

there is a relaxation that relieves the intrinsic stress. As the film continues to grow, this

behavior of stress increase, followed by transformation, followed by defect introduction

will persist until film deposition termination.

Figure 6.11: (a) Representation of volumetric change due to Poisson’s effect (where Vo

is the original volume and V1 is the post transformation volume). (b) Dimensions of a u-
shaped defect bounded by transformation events.

The larger, u-shaped defects are believed to be areas of complete transformation

with edges bounded by the resultant monoclinic phase. It was suggested that once a

transformation event takes place, there is a lateral expansion complemented by a

longitudinal relaxation, or Poisson’s effect (Figure 6-11(a)). Since the film is c-axis

textured, the lateral and volumetric expansion would elicit this relaxation in the c-

V0

V1

∆x

Phase Transform

(b)(a)
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direction. A crack would initiate due to an increase in localized strain at the point on

transformation and the need to relieve stress within the grain. This crack initiation was

believed to happen since the film does not delaminate from the substrate. Based on

Poisson’s ratio and volumetric change, the deformation of the material can be calculated

using a simplified formula (only for small deformations):

(∆V/V) = (1 - 2ν) (∆L/L) [Eqn. 6-2]

where, V is material volume, ∆V is material volume change, ν is Poisson’s ratio, L is

original length (before stretch), and ∆L is the change in length (∆L=LOld – LNew). By

normalizing the dimensions of the basic crystal structure, it was determined that there

would be ~10% longitudinal reduction (c-axis) as a result of transformation. This

Figure 6.12: Schematic of defect generation as a function of intrinsic stress and
transformation events.

normalization allows for the approximation of 9-10% change in defect width shown in

Figure 6.11(b).

Phase Transformation event

///////
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Once this transformation occurs and a subsequent crack is formed, then stress

within the grain would be altered. The same boundaries would apply underneath the

crack, three sides fixed with neighboring grains supplying a bi-axial stress, but stress

states above the crack would be altered. As transformation and a crack are initiated there

is still sufficient strain within the system to elicit further transformation events. The

resulting transformation would supply additional strain, allowing the crack to grow. The

shape of the crack follows the direction of lower opposing stresses from neighboring

grains. The crack will allow the grain to relax inwards, toward the center, reducing the

external stresses produced by neighboring grains. It is hypothesized that the u-shaped

defects are formed rapidly and are terminated at the grain boundaries.

Partial phase transformations described in Figure 6.5 are randomly oriented small

lateral defects. These are generated due to localized XY shear strain caused by either

film growth and/or redistribution of intrinsic stresses caused by u-shape defect formation.

FEA modeled a columnar grain under the above noted constraints. Figure 6.13 describes

the XY localized shear stress due to a 300 MPa bi-axial film stress. Areas of shear stress

are shown to be random in orientation within the interior of the grain. The current model

does not account for larger u-shape defect formation, so exact prediction of specific areas

of localized stress was difficult. However, based on the model, it was determined that

during growth, intrinsic stresses would enhance the probability of induced partial phase

transformations.
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6.3 Summary – TEM and FEA Modeling of Phase Transformation

YSZ thin films deposited with an accompanying substrate bias displayed higher

compressive stresses and a larger percentages of monoclinic phase. In addition, cross-

sectional SEM and TEM showed that bias-assisted films had a large array of lateral

defects (microcracks) throughout the film structure. A model was derived to explain the

presence

Figure 6.13: Representation of XY shear stress within a columnar grain subjected to a
300 MPa uniform bi-axial stress.

of the defects as a function of stress-relief in the growing film during stress-induced

phase transformation from T⇒M. HRTEM and FFT diffractograms of suspected

transformation areas close to observed defects confirmed T⇒M transformation zones.

By evaluating film stress and assuming a constrained system, it is believed that film
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stress reaches a threshold for T⇒M transformation, and that due to transformation-

induced volumetric expansion, microcracking results as a consequence of stress relief.

The observed lateral defects create an interesting structure that could be useful in

increasing brittle substrate fracture toughness. Applying YSZ thin films with intrinsic

lateral defects may provide a useful structure when subjected to forces perpendicular to

the surface. This structure could promote crack-tip shielding better known as microcrack

toughening.

Utilizing FEA techniques allowed for development of a model of phase

transformation. As a uniform stress is applied to a columnar grain, stress fields within

the grain dome upward, away from the substrate until it reaches a maximum. Once

enough energy is supplied from intrinsic stresses, transformation will occur. Due to the

brittle nature of YSZ, sites of transformation create nucleation sites for microcracks (of

defects).

Key findings: The phase transformation within YSZ thin films had not been investigated

as thoroughly as bulk YSZ. Mainly due to the constraints bound by grain size and

analytical techniques.

1. HRTEM and FFT documented T⇒M phase transformation never seen before

in sputter-deposited YSZ thin films.

2. Novel model of stress-induced phase transformation and resultant lateral

defect generation due to system stress-relief mechanisms.

3. FEA supported model of transformation and defect generation.
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Chapter 7

Deposition of YSZ thin films on soda-lime glass

substrates

This work focused on understanding material properties of YSZ thin films as they

relate to deposition parameters. Previous chapters detail techniques, material properties,

and a unique structure created by depositing films with an applied substrate bias. It is

important to evaluate these properties to better understand what type of film could be

produced for end applications. This chapter will focus on describing replication of

specific structures on a different substrate (soda-lime glass) that has similar bulk

properties to a dental ceramic (porcelain).

Water vapor effects on YSZ thin films have not been investigated thoroughly, but

its importance for any biomedical application is potentially critical, and needs to be fully

understood. Chapter 5 details the effects of applying a substrate bias to alter film

structure, which ultimately changes YSZ film density, eliminating water vapor absorption

in the structure. In order to increase film density, low-energy ion bombardment

(substrate bias) is commonly used [1-3]. It was shown that by increasing substrate bias

power, the film stress increased compressively, and water vapor absorption was reduced.

A complete analysis of the films showed a more complicated mechanism was present

(Chapter 6). Intrinsic stresses, produced during deposition, provided sufficient energy to

elicit a T⇒M phase transformation. Instead of an expected increase in film density,
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substrate bias-assisted deposition resulted in higher film stress, increased monoclinic

phase content, and a series of lateral defects throughout the film structure. Chapter 6

describes that stresses generated during film growth induce a T⇒M phase transformation

and lateral defects form as a result of a stress-relief mechanism. It is hypothesized that

this structure may produce improved fracture toughness properties when applied to brittle

substrates, similar to microcrack toughening [4].

7.1 Deposition of YSZ thin films

Sputtering techniques are described in Chapter 3. Substrates used were 4in.

(10.2cm) single crystal silicon wafers (100 orientation) and soda-lime glass (Mark

Optics, Santa Ana, CA). Specific material properties are shown in Table 3.1. Films were

deposited on the non-polished (Ra=0.4µm) side to simulate end-application and increase

film adhesion. All depositions were performed at a power of 350W, 15mT working

pressure, 150°C, and an Ar:O2 ratio of 30:1. For bias assisted sputtering, a secondary

radio frequency (RF) power source was capacitively coupled to the substrate and power

increased to a maximum of 100 W. Film stress was determined by wafer bow

measurements, crystal structure was analyzed using a powder x-ray diffractometer

(XRD), and scanning electron microscopy (SEM) was used to analysis film structure.

7.2 Physical Characterization

7.2.1 Crystal Structure Analysis

XRD analysis showed that as substrate bias was increased, the amount of

monoclinic phase increased with respect to the tetragonal phase on both silicon and soda-
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lime glass substrates (Table 7.1). For silicon substrates, a deposited film had

approximately 56% monoclinic phase, and as bias was increased during deposition the

percent monoclinic increased to 75% and 83% for 25W and 50W bias, respectively. A

no bias film had approximately 49% monoclinic and 100 W was required to achieve a

Silicon Wafer Film Stress (MPa) Intrinsic Stress (MPa) Vol % Monoclinic
No Bias -80 -255 53

10W -100 -275 62
25W -240 -415 75
50W -300 -475 83

Glass Wafer
No Bias -177 -227 48

50W -244 -294 70
75W -345 -395 75
100W -477 -527 86

Table 7.1: Reported film stress values, calculated intrinsic stress, and volume percentage
of monoclinic phase for deposited YSZ thin films

monoclinic percentage of 86% on soda-lime glass (Table 7.1). Representative XRD

diffraction patterns of films deposited on soda-lime wafers are displayed in Figure 7.1.

These show a reduction in the T111 peak and an increase in the M111 as substrate bias was

increased. XRD diffraction patterns for depositions of varying substrate bias on silicon

are shown in Figure 6.2.

7.2.3 Film Stress

The internal stress is comprised of two factors: thermal (σth) and intrinsic (σi)

components (equation shown in Eqn. 2.1) [1]. The thermal stress is due to the difference

in thermal coefficients of expansion between the substrate and deposited film. The

intrinsic stress is due to the accumulation of crystallographic flaws that develop during

film growth [1, 5-6]. Using the coefficient of thermal expansion values shown in Table

3.1, the thermal stresses were calculated to be 175 MPa and 50 MPa for silicon and soda-
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lime glass, respectively. The direction of thermal stress was tensile due to the fact that

coefficient of thermal expansion values for both substrate materials are less than that for

YSZ. With the measured film stress and calculated thermal stress, the intrinsic stresses

for each film were calculated (Table 7.1). Data showed that higher substrate bias powers

were required to achieve similar intrinsic stresses and volume percent monoclinic for the

soda-lime versus silicon. This increase in bias can be attributed to the differing dielectric

properties between the two substrates. This difference in bias power is specifically due

to the physical setup of the deposition chamber used in this research. Silicon, being more

Figure 7.1: Representative XRD patterns for varying substrate bias YSZ deposited thin
films on soda-lime glass wafers.

conductive than the insulating soda-lime glass wafers, does not need high substrate

biasing power to produce significant ion-bombardment.
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7.2.3 Film Structure

Figures 7.2-7.6 are representative SEMs of YSZ thin films deposited on soda-lime

glass wafers at varying powers of substrate bias. As expected, films deposited without

substrate biasing displayed a columnar grain structure (shown in Figure 7.2) [5].

However, a 100W substrate bias was needed to achieve a similar structure seen for a 50W

bias film deposited on silicon. The structure appeared disrupted for the 50W and 75W

bias films, but the intrinsic stresses and physical structures were similar to the 10W and

25W films deposited on silicon. It is assumed that mechanistically, the films deposited

on soda-lime underwent similar growth and stress related transformations.

7.4 Summary

YSZ thin films deposited on silicon and soda-lime glass substrates showed similar

intrinsic stresses and monoclinic volume fractions, but at differing substrate bias powers.

The primary goal of this investigation was to produce similar YSZ film structures on

soda-lime glass substrates as those reported on silicon substrates. Stress data and XRD

showed that an increase in substrate bias power was needed to achieve such a film on

soda-lime glass. Based on the intrinsic stress values and visual inspection of SEM

micrographs, it is believed that the previously reported model of stress-induced

transformation with YSZ sputtered thin films would apply to the YSZ/soda-lime glass

system. This section confirms that the unique structure described previously can be

reproduced on differing substrates.

Key Findings: This study showed that depending on the substrates dielectric properties,

varying substrate bias powers are needed to replicate varying film structures.
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Figure 7.2: Representative SEM of film deposited without substrate bias on soda-lime
glass wafer (Deposition conditions 350W, 150°C, and 30:1 Ar:O2).
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Figure 7.3: Representative SEM of 50W substrate bias film deposited on soda-lime
glass wafer (Deposition conditions 350W, 150°C, and 30:1 Ar:O2).
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Figure 7.4: Representative SEM of 75W substrate bias film deposited on soda-lime
glass wafer (Deposition conditions 350W, 150°C, and 30:1 Ar:O2).
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Figure 7.5: Representative SEM of 100W substrate bias film deposited on soda-lime
glass wafer (Deposition conditions 350W, 150°C, and 30:1 Ar:O2).
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Chapter 8

Conclusion

Over the course of this study, the research goals evolved into more of an

investigation of specific material properties. The initial primary objective was to develop

a process-structure-property relationship of sputtered-deposited yttria-stabilized zirconia

thin films. The findings directed the research into areas not yet investigated for YSZ thin

films. The first being a novel water vapor absorption effect on film stress. Secondly, a

stress-induced phase transformation (T⇒M) never reported in nano-crystalline sputter-

deposited YSZ thin films.

The first goal was largely accomplished. The initial depositions described in

Chapter 4 showed the variation in film properties (crystal structure, film stress, and index

of refraction) that were possible by varying deposition conditions. The key findings are:

• Film stress is dependent of process parameters – there is a distinct transition

from tensile to compressive film stress, and this stress was shown to be

tunable.

• Percentages of monoclinic to tetragonal crystal phase are dependent on

process parameters (especially the induction of O2 into the sputtering gas).

• Calculation of packing density as a function of index of refraction allows for

qualitative analysis of film packing density or porosity.
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• A novel relationship regarding inter-granular porosity was developed linking

water vapor absorption to an increase of compressive stress within the YSZ

films.

Chapter 5 describes the behavior of sputter-deposited YSZ thin films when

exposed to ambient conditions. The films display modifications of film stress states in the

compressive direction when exposed to this environment. This section addresses the

water vapor mechanism and shows methods, which are validated with experimental data,

on how to deposit a film that limits these affects. Utilizing a substrate bias, film

structures can be tailored that limit water vapor absorption.

• Films deposited with substrate bias have higher compressive film stress and

higher percentages of monoclinic phase.

• Lateral defects (or microcracks) are observed in bias deposited films. This

coupled with intrinsic film stress is presented as a model of in-situ (T⇒M)

phase transformation.

The film structure and stress data acquired in Chapter 5 led to the hypothesis that

substrate bias deposition led to an in-situ stress-induced phase transformation (T⇒M).

Prepped TEM samples and FFT diffractograms confirmed areas of complete and partial

phase transformation in substrate bias films. This evaluation created a model of defect

generation that was supported with FEA. The observed lateral defects create an

interesting structure that could be useful in increasing brittle substrate fracture toughness.

Applying YSZ thin films with intrinsic lateral defects may provide a useful structure for

applications where the film is subjected to forces perpendicular to the growth direction
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(surface). This structure could promote crack-tip shielding, better known as microcrack

toughening.

FEA techniques allowed phase transformation to be modeled. As a uniform stress

is applied to a columnar grain, stress fields within the grain dome upward, away from the

substrate until it reaches a maximum. Once enough energy is supplied from the intrinsic

stresses, transformation occurs. Due to the brittle nature of YSZ, sites of transformation

create nucleation sites for microcracks (of defects).

The above study led to novel findings yet investigated in sputter-deposited YSZ

thin films. The T⇒M phase transformation in nano-sized grains coupled with intrinsic

stress had not been reported in the scientific literature to date. This model of

transformation and ability to tailor YSZ film properties, ultimately will allow better

understanding of YSZ thin film material properties and mechanics.

8.1 Suggested Future Work

Comparing thin film microstructure with its bulk counterpart is widely becoming

an area of interest. This study concentrated on developing basic knowledge of specific

material properties of YSZ thin films by relating them to bulk YSZ. Reports have

detailed a multitude of interesting material properties; such as, phase transformation, and

toughening mechanisms, for YSZ ceramic, and described potential applications. As the

world trends toward more of a nano-scale, it will be important to fully understand

benefits that thin films with nano-scaled ultra-structure have to offer.

Being that the overall goal of research program is to strengthen brittle substrates,

one question that arose from this study is whether a purely 100% tetragonal film is the
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optimal coating. It is hypothesized that under applied stress, a phase transformation will

offer a toughening mechanism similar to sintered, bulk YSZ. Due to water vapor

concerns and possible film degradation, a unique structure was produced. This structure,

with a higher fraction of monoclinic to tetragonal phase due to a phase transformation

during growth, could provide an alternative solution. Lateral defects, parallel to the

substrate surface and perpendicular to mechanical loading, could offer a material system

that is pre-toughened and deflect a propagating crack by microcrack toughening.

Ruddell et al. reported that YSZ deposited films on varying substrates did not

significantly improve the mechanical properties of the composite [1]. Structurally, the

film had columnar grains evolving upwards from the substrate which offer no means of

crack deflection. Actually this structure would promote crack propagation rather than

impeding it. Teixeira et al. investigated the strengthening of dental porcelain as a

function of YSZ thin film thickness [2]. The results showed that the strength of porcelain

significantly increased with deposition of a 3µm YSZ coating. A non-linear relationship

was observed between film thickness and strength. It was presumed that strengthening is

due to modification of surface flaws and/or surface residual stress by the applied thin

film. For the application of strengthening brittle substrates, the unique structures shown

within this thesis should be deposited and tested. This very well might answer the

question of whether phase transformation before mechanical loading could offer the best

solution.

Phase transformation in YSZ has been studied extensively in bulk materials and

can be reviewed in the following references [3-10]. A reported signature of T⇒M

transformation is the formation of slip or twinning, which has been reported in micro-size
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grain structures. This study did not concentrate on verifying twinning, but it is a topic

that should be investigated more thoroughly. This would ultimately help in

understanding transformation in nano-grain size materials.

Preliminary FEA modeled the generation of lateral defects with YSZ films

deposited with a substrate bias. As mentioned above, this film might offer a unique

structure for strengthening. Additional work is needed to fully understand multiple

defects within a single grain and also throughout the entire film. Also, it may be possible

to derive a model that would correlate effective toughness with defect distribution.

The culmination of this work has answered questions relating to YSZ thin films

material properties, but has also offered insight into the materials science of thin film

versus bulk physical and mechanical behavior.
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