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ABSTRACT 

Neha Joshi: Multi-Stage Adaptive Enrichment Trials 

(Under the direction of Anastasia Ivanova) 

 

We first consider the problem of estimating a biomarker-based subgroup and testing for 

treatment effect in the overall population and in the subgroup after the trial. We define the best 

subgroup as the subgroup that maximizes the power for comparing the experimental treatment 

with the control. In the case of continuous outcome and a single biomarker, both a non-parametric 

method of estimating the subgroup and a method based on fitting a linear model with treatment by 

biomarker interaction to the data perform well. Several procedures for testing for treatment effect 

in all and in the subgroup are discussed. Cross-validation with two cohorts is used to estimate the 

biomarker cut-off to determine the best subgroup and to test for treatment effect. An approach that 

combines the tests in all patients and in the subgroup using Hochberg’s method is recommended. 

This test performs well in the case when there is a subgroup with sizable treatment effect and in 

the case when the treatment is beneficial to everyone.    

We also consider the problem of estimating the best subgroup and testing for treatment 

effect prospectively in a clinical trial. We define the best subgroup as the subgroup that maximizes 

a utility function that reflects the trade-off between the subgroup size and the treatment effect. For 

subgroup estimation in trials with moderate effects sizes and sample sizes, simpler methods, such 

as linear regression, work better than more complex tree-based approaches. We propose a three-

stage enrichment design, where the subgroup is estimated at the first interim analysis and then 
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refined in the second interim analysis, along with a futility analysis. A weighted inverse normal 

combination test is used to test the hypothesis of no treatment effect across the three stages. 

Additionally, we consider a problem of subgroup estimation based on a multivariate 

outcome in both parallel group and crossover trials. We compare three methods of defining and 

estimating the best subgroup: a method based on the average and the maximum of the outcomes 

and the method based on the p-value for the treatment comparison.  
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CHAPTER 1: LITERATURE REVIEW 

We consider the problem of estimating the subset of subjects that benefit the most from a 

treatment and testing for treatment effect in this subgroup and overall in a randomized clinical 

trial. This can be done as a post hoc analysis or prospectively with adaptive enrichment. We define 

the best subgroup as the subgroup that maximizes a utility function that reflects the trade-off 

between the subgroup size and the treatment effect. As a result, methods incorporating adaptively 

determining the subgroup are gaining traction. Subgroup identification and population enrichment 

can increase the odds of showing that a new therapy is more effective than a control.  

1.1 Subgroup Estimation 

In many published methods (Song and Chi, 2007; Alosh and Huque, 2009; Jenkins, Stone 

and Jennison, 2011) the subgroup of interest is pre-specified before the trial.  The goal is to have 

an efficient procedure for testing the treatment effect that controls the overall type I error rate, 

when testing overall and in the subgroup. Some of the papers propose a method that tests a 

subgroup based on the significance of the overall test at a reduced level or use closed testing 

methods incorporating variable alpha allocation and correlation between all subjects and subgroup 

to achieve type I error control. A common design considered (Wang et al, 2007) enrolls subjects 

stratified on the subgroup status in stage 1 and performs an interim analysis to choose whether to 

enroll in all or in the subgroup in stage 2. A group sequential design was proposed by Magnusson 

and Turnbull (2013) with pre-defined subgroups. The selection of subgroups at the end of first 

stage is carried out in two ways: First, if the statistic for testing treatment effect is below a specified 
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threshold for any subgroup, it is dropped from the trial. Second, if the subgroups are ordered and 

a specific subgroup exceeds the threshold, all subgroups below it in hierarchy are dropped.  The 

rest of the subgroups are pooled and treated as one population in the rest of the trial.  

Lipkovich, Dmitrienko and D’Agostino (2017) extensively reviewed commonly used 

subgroup identification methods. Broadly speaking, they classified subgroup analysis into two 

categories based on the interaction between biomarkers and treatment effect. The first is called a 

qualitative interaction where the goal is to identify the right subject for a given treatment. It leads 

to the conclusion that the treatment is better than the control in a subgroup (identified based on 

biomarkers) and it is not better for those not in this subgroup (could be equivalent to control or 

worse). This is useful when the treatment is not effective overall but could help save the trial by 

determining a subgroup post-hoc where the treatment is effective. The second is a quantitative 

interaction where the goal is to identify the right treatment for the subject. Here, the treatment is 

better than the control within and outside a subgroup of subjects but with different benefits. This 

is useful when trying to find an optimal treatment regime for a given set of subjects. We are 

interested in the first classification. Methods that deal with it can be described as: modeling 

underlying outcome (numerous interactions terms between number of biomarkers and covariates 

are fit in a complex model - ‘black box’ - to determine treatment homogeneity based on potential 

outcomes), modeling underlying treatment effect (focuses on directly estimating the 

predictive/treatment effect or treatment contrast), and direct search for subgroups that benefit from 

the treatment (search for treatment-biomarker interactions and select specific regions with higher 

treatment effect). Methods for the second classification focus on predictive biomarkers with 

qualitative interactions including treatment assignment variable being considered as the outcome 

variable. For adaptive or post-hoc estimation of subgroups, we assume there are one or more 
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biomarkers available that can be used to identify a subset with greater effect in treatment vs. 

control.   

In the literature reviewed, there are three approaches to subgroup estimation. The first, a 

classical approach to identifying subgroups, uses the interaction terms between treatment and 

biomarkers, as described briefly in Kehl and Ulm (2006). This can be implemented when there is 

no significant difference between the treatments in a trial including all subjects. If the interaction 

term is significant and the coefficient is such that a predictive factor results in higher response in 

the treated group, then subjects with this factor are positive responders to the experimental 

treatment. If the coefficient shows that the predictive factor lowers the response in the treated 

group as compared to control, then subject with this factor are negative responders to the 

experimental treatment. Even though this is a simple method to implement, it has its disadvantages. 

Factors or mixture of factors have to be included in the interaction term to be considered predictive 

and necessary for defining subgroup; if the number of covariates is large, we could we potentially 

be looking at a lot on multi-way interaction terms and thus require larger sample size to detect all 

of them.  

The second approach involves choosing a subgroup based on a minimum treatment effect 

(Freidlin and Simon, 2005; Zhang 2018). We can either use pre-specified values or compute using 

the data available (Freidlin and Simon, (2005, 2010)). A subgroup defined this way can be claimed 

to be the one with the maximum treatment effect and can be easily interpreted. This subgroup does 

not take into account the subgroup size and thus the estimated subgroup could have a rather small 

prevalence. 

The third approach requires optimizing a utility that balances the trade-off between 

treatment effect and subgroup size (Lai, Lavori and Liao, 2014; Zhang, 2017).  This ensures that 
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the estimated subgroup is not either too small or too large in size. A disadvantage would be that 

since we do not control the magnitude of the treatment effect, we could potentially end up with a 

subgroup that has very small (~ 0) treatment effect. 

 For subgroup estimation, when dealing with multiple biomarkers, regression 

models may not be ideal to deal with higher order interactions or unknown forms of relationship 

between covariates and response. Loh, He and Man (2015) discussed tree-based regression that 

partition the biomarker space and thus can be used identify subgroups of subjects with higher 

treatment effect, which are essentially the terminal nodes of the trees. These subgroups identified 

are patients who are most likely to benefit from the treatment. These tree-based methods primarily 

use the principal of Classification and regression trees (CART) approach (Breiman et al., 1984) to 

develop and control the size of the decision tree. CART recursively splits the data into two disjoint 

parts or subsets by minimizing the heterogeneity of the outcome in each partition. The resulting 

model can be illustrated by a single decision tree and the terminal nodes of the tree can be 

interpreted as subgroups of heterogeneous outcome. CART tends to overfit and there is heavy 

dependence on the initial set used to train or develop the model. CART is also greedy and as a 

result is biased towards selecting variables that have more splits. To overcome the deficiencies of 

CART, Random Forests (RF) can be used (Breiman, 2001). RF is made up of several decision 

trees and results are averaged over this collection of trees. This aggregating of results leads to more 

reliable prediction using RF as compared to CART.  At each node, a random subset of covariates 

is used for splitting. Unlike a single decision tree, random forests cannot be interpreted and are 

considered as a ‘black box’. RFs also have the option of incorporating variable importance to avoid 

splitting on noise variables. A method called Interaction Trees (Su et al, 2009) builds a tree by 

using binary splits on all covariates and values assumed by the covariate (continuous variables are 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4491003/#R3
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converted to binary based on a pre-specified threshold). For each split, a regression model, with 

interaction between the treatment and the indicator variable associated with that split is fit and the 

split that minimizes the interaction p-value is chosen. Subgroup estimation is performed to 

determine how treatment effect varies across subgroups, after significance test using all is done. 

This method inherits the disadvantages associated with CART. The Virtual Twins (VT) (Foster, 

Taylor and Ruberg, 2011) method used RF to build a model to estimate treatment effect for each 

subject. A regression/classification tree is then built using these treatment effect and associated 

covariates associated to identify the subgroup. This method is developed for situations where the 

new treatment does not show improvement over control in all, but there are subgroups that show 

promise. Lipkovich et al. (2011) introduced a recursive partitioning method to identify subgroup(s) 

of interest, called SIDES (Subgroup Identification based on Differential Effect Search). The 

method considers multiple possible subgroups by identifying the five best splits at a node that 

optimize a pre-specified measure (e.g. split-by-treatment interaction). This procedure is then 

repeated for the child node. The method results in subgroups with large treatment effects and splits 

at each node on a variable not previously considered. A 2-stage extension of the SIDES method 

was developed in Lipkovich and Dmitrienko (2014). The first stage was used to reduce the number 

of biomarkers/covariates using a variable importance index and then the SIDES method was 

applied on the chosen few in the second stage. Another approach called Qualitative Interaction 

Tree (QUINT) by Dusseldorp and Van Mechelen (2013) splits each node to optimize a utility that 

allow simultaneous control of effect size and subgroup size. As in CART, QUINT finds the 

subgroups by searching over all covariates and all possible splits and thus suffers from selection 

bias.  



6 
 

Chen et al (2018) proposed another method for subgroup estimation for a continuous 

outcome when dealing with multiple biomarkers. This method aims to select a set of subjects that 

respond to treatment and treatment doesn’t have the same effect on all subjects. Before identifying 

the subgroup, a set of predictive biomarkers are identified by fitting a linear model with interaction 

between the biomarker and treatment indicator for each available biomarker. Those with 

significant interaction terms are considered predictive. The subgroup identification method is 

divided into two steps: First, a scoring model is used to convert a subjects’ biomarker values into 

a univariate score and second, a cutoff for the score is identified to divide subjects into biomarker 

positive and negative groups. Suppose there are r  predictive biomarkers. A scoring model is fit 

for the thi  subject for every predictive biomarker as i i j ij j i ijy t x t x   = + + +  where ijx  are the 

observed values of the thj  predictive biomarker for the 
thi  subject. Let jz  be the standardized test 

statistic for the test of interaction for the thj predictor.  A composite score for each subject is 

defined as .
r

i j ij

j i

s z x
=

=  A grid of candidate scores are considered and the best cutoff is chosen as 

the one that maximizes the log-likelihood of a changepoint model, based on this cutoff.  

1.2 Adaptive Designs 

Some papers outlined designs that include both the identification and validation of the 

subgroup in the same trial (Freidlin and Simon, 2005; Jiang, Freidlin and Simon, 2007; Freidlin, 

Jiang and Simon, 2010, Renfro et. al 2014, Zhang et. al, 2017,2018; Diao et. al, 2018).   

In their seminal paper, Freidlin and Simon (2005) introduced Adaptive Signature Designs 

(ASD), an all-comers single-stage design analyzed in 2-stages, developed for a binary outcome. 

The method is applicable to a phase III randomized trial comparing the experimental treatment 

with a control. If there is no predictive biomarker already identified or a large number of available 
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biomarkers that could determine a subgroup, then this method will both identify and validate the 

predictive biomarkers while defining the subgroup. The aim was to identify a subgroup with 

significant treatment effect, which is then tested along with a test in all to perform an overall test 

of significance in the trial. A total of n subjects are enrolled with stage 1 data (n1) used as the 

training set to develop a classifier, which is then applied to stage 2 data (n2) to classify subjects as 

belonging to the subgroup or not. Step 1 fits a logistic model with interaction terms between all 

available biomarkers and treatment to identify a subset of biomarkers provided that are significant 

(interaction coefficient) at a predetermined level. In step 2, a subject in stage 2 is classified as 

belonging to the subgroup if the odds ratio for experimental treatment vs. control exceeds a pre-

specified threshold for at least G of the biomarkers selected in step 1. The simulation studies used 

n=400, suggested n1=n2=n/2 as the size for each of the stages and assumed choosing 3, 10 or 20 

biomarkers in step 1. The test for treatment effect are carried out in all n subjects at level=0.04 and 

in the subgroup at level = 0.01, in order to preserve overall α = 0.05 using Bonferroni. If either of 

the test is significant, then the trial is considered successful. An extension of ASD, called Cross-

Validated ASD (CVASD) was proposed by Freidlin, Jiang and Simon (2010). The trial population 

is split into K cohorts of equal size with proposed K = 10. At the kth step, k = 1…, K, cohort k is 

used as a validation cohort and the rest of the subjects are part of the development cohort. Since 

each subject appears exactly in one of the validation cohorts, at the end of the cross-validation 

procedure, each subject is classified as being in the subgroup or not. The subgroup development 

is implemented in the same way as in Freidlin and Simon (2005). The cross-validated design is 

more powerful since all subjects are being used to develop the classifier. But testing for treatment 

effect in the subgroup will suffer from re-substitution bias and as a result permutation p-values 

were used (Jiang, Freidlin and Simon, 2007) to control type-I error. Subgroup selection, estimating 
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and testing treatment effect in ASDs was further discussed by Zhang et. al (2017). The goal was 

to estimate a subgroup with positive treatment effect, which could also include everyone.  

Subgroup of interest is identified by maximizing a utility function, based on multiple baseline 

covariates, instead of using a minimum threshold for treatment effect (Freidlin and Simon, 2005). 

The utility is defined as the product of the prevalence of the subgroup and the power of the 

subgroup such that the best subgroup could also include everyone. As a result, the test of treatment 

effect is proposed to be carried out only in the subgroup. Since the same set of subjects is being 

used to estimate the subgroup and test for treatment effect, there is re-substitution A cross-

validation method is used to estimate the treatment effect. 

 In Jiang, Freidlin and Simon (2007), the subgroup estimation method is developed by 

determining a threshold for a single continuous predictive biomarker, that results in strong 

evidence of treatment. A changepoint model is assumed to be true that is, it is assumed that there 

is no treatment effect below a cutoff. Two approaches for testing the treatment effect are 

considered. In the first, if a test of no treatment effect carried out in all at a reduced level 1  is 

significant, the testing ends. Otherwise, the test is carried out in a subgroup identified at level 
2  

where the overall type-I error 1 2  = + is controlled.  The test statistic in the first scenario is 

calculated as 
0.5 1
max ( )

c
T L c

 
=  where c  is the candidate cutoff for the biomarker and L  is the log-

likelihood ratio statistic based on the changepoint model for that cutoff. In the second approach, 

the test statistic is 
0 1

max( (0) ,max{ ( )}),
c

T L R L c
 

= +  where (0)L  is the log-likelihood ratio statistic 

for all and R  is a pre-specified constant. To test for treatment effect, a permutation test statistic is 

used. The test-statistic of interest, T, is computed for the original dataset and then permuted 

datasets are created by randomly permuting the treatment labels B times and the entire procedure 
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of cross-validation is repeated to get the permuted test-statistic 
*T . The p-value is computed as 

*1 #

1

T T

B

+ 

+
.  A threshold for the biomarker is estimated as the cutoff that maximizes the partial 

log-likelihood function based on the model only if the test for treatment effect in the subgroup is 

significant.  

 Adaptive enrichment trials adapt the entry criteria based on data observed in the trial so far 

to restrict enrollment to subjects in whom the experimental treatment is believed to work. 

Enriching the subject population in the trial can increase statistical power to detect a treatment 

effect if a new therapy only works in a subgroup of subjects. Additionally, it reduces the number 

of subjects in the trial who have no apparent benefit from the drug therefore not exposing them to 

potentially harmful side-effects. Simon and Simon (2013) proposed an adaptive enrichment 

method where the enrollment is modified at the interim to recruit only those in the subgroup. A 

testing methodology that controls type-I error is also discussed. A possible implementation as a 2-

stage design, with a single continuous biomarker is described as follows. A changepoint model for 

the outcome based on the biomarker, ,X   is considered such that there is treatment effect only 

above the true cut-off, 
*.x  X  is assumed to take values in the interval [0,1]. At interim, the 

loglikelihood of the data is computed for a grid of candidate cutoffs. The estimate for the cutoff, 

*x̂   is the one that maximizes the log-likelihood. If the corresponding log-likelihood, 

*ˆ( ) (1) 0.25,L x L + then the enrollment at stage 2 is restricted to subjects with biomarkers values 

greater than 
*x̂ , otherwise the trial is stopped. They however do not discuss how the treatment 

effect in the subgroup can be estimated. Simon and Simon (2017) covers the issues not touched 

upon earlier that is to determine the target population intending to use the drug and estimation of 

treatment effect in this subgroup. A group sequential method with multiple updates to the subgroup 
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criteria is implemented with the rule used for the last stage or one based on the entire trial data is 

considered as appropriate for future use. This was also explored in a 2-stage adaptive enrichment 

design by Zhang et al. (2018). The subgroup is estimated by applying a pre-specified function, Ψ 

(e.g. OR for experimental treatment vs. control being greater than a specified value), on stage 1 

data (n1 subjects) to yield a subgroup rule based on one or more biomarkers. The second stage 

enrolls n2 subjects that satisfy this rule. The treatment effect is estimated by using a weighted 

inverse normal statistic from the both the stages. Since stage 1 data is used to determine the 

subgroup, there is re-substitution bias. Bootstrap based methods were found to be more precise 

and less biased than cross-validation used by Freidlin, Jiang and Simon, (2010) or a naïve approach 

of using treatment difference. A 2-stage adaptive design, with an interim analysis, was proposed 

recently by Kimani et al (2018) to estimate the threshold of a single continuous biomarker. 

Monotonicity is assumed such that a higher biomarker value leads to a larger (smaller) treatment 

effect. Stage 1 data recruits from the full population and is partitioned into multiple candidate 

subgroups based on several pre-defined cut-off values. If the treatment effect in all these candidate 

subgroups are all below a specified futility threshold, the trial stops for futility, else the candidate 

subgroup with the largest treatment effect is chosen for enrollment in stage 2. A number of 

estimators for the treatment effect in the selected subgroup are compared and a hybrid estimator, 

conditional on the subgroup is recommended. 

Renfro et. al (2014) described a 2-stage adaptive design incorporating subgroup estimation, 

interim analysis with possible enrichment and testing for treatment effect at the end. A single 

continuous predictive biomarker is considered and higher values of the biomarker are assumed to 

correspond to better response. The biomarker is dichotomized based on a series of cut-points and 

for each of these cut-points, a regression model is fit with an interaction term between the 
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dichotomized biomarker and treatment. The best cutoff is the one with the smallest p-value for the 

interaction term which is below a certain pre-specified p-value. If the treatment effect is higher in 

the subjects with values above this cutoff (than those below), then the biomarker is considered 

promising.  For a promising biomarker, at interim, futility is tested in each of the biomarker low 

and high groups separately. The trial can stop for futility in both groups, or (a) continue enrollment 

in stage 2 only in biomarker high group (if futile in biomarker low group) or (b) continue 

unrestricted enrollment if futile in neither. If there is no promising biomarker, the futility is tested 

in all and the trial stops for futility or (c) enrollment in stage 2 is unrestricted. The test for treatment 

effect at the end is either only in (a) stage 2 biomarker high subjects, (b) union of stage 1 and stage 

2 biomarker high subjects or (c) in all. Sample sizes and pre-specified with caps on total and 

biomarker low enrollment. A recent 2-stage adaptive enrichment design was suggested by Diao et 

al. (2018) with two different methods for threshold estimation of a single biomarker based on the 

difference of treatment effects in the subgroup and outside the subgroup (  or X c X c  ).  The 

paper compares three scenarios for testing for treatment effect – only the stage 2 enriched data, 

biomarker positive subgroup from both stages and all data in both stages and conclude that using 

the biomarker positive subgroup, though the most powerful, leads to biased results of the treatment 

effect. They also briefly discuss subgroup estimation in case of non-monotonic relationship 

between biomarkers and treatment effect. 

Lai, Lavori and Liao (2014) proposed a three-stage group sequential design, with two 

planned interims, for an adaptive enrichment trial with a set of pre-defined subgroups based on 

two or more baseline biomarkers. Here, it is assumed that the treatment works only in a subgroup 

of patients, that is unknown at the outset. A utility function, equal to the Kullback–Leibler 

information number, is used to identify the best subgroup. Under the assumption of equal variances 
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of the treatment effect in all subgroups, maximizing this utility is the same as maximizing the 

square root of the prevalence of the subgroup multiplied by the treatment effect in the subgroup, 

and is the same as maximizing the power of the treatment comparison. This utility incorporates 

both the treatment effect and the subgroup size and is likely to estimate a more balanced subgroup 

such that we can avoid choosing a very small set with very high treatment effect.  Recruitment is 

unrestricted in stage 1 and in case of evidence of efficacy at interim 1, the best subgroup is chosen 

as everyone and the trial is stopped. If there is no evidence of either efficacy or futility, the 

unrestricted enrollment continues in Stage 2.  In case of futility in stage 1 population, the candidate 

subgroup, say S, that maximizes a specified utility is tested. If S exhibits futility as well, the trial 

is stopped no subgroup with enhanced treatment effect is found. In case of efficacy, the trial is 

stopped and S is concluded to be the best subgroup. But, if there is neither efficacy nor futility in 

S, enrollment is continued in it at the second stage. At the second interim, we again test for futility 

or efficacy in the chosen subgroup. If the subgroup enrolled in the second stage is everyone, we 

repeat earlier steps and either stop trial, continue unrestricted enrollment in everyone (in stage 3) 

or choose to continue enrolling in a subgroup S′ that maximizes the utility. If the enrollment in 

stage 2 was continued in S, we either stop for efficacy, futility or continue enrollment in S (in stage 

3) if neither is observed at interim 2. At the end, we stop for either futility of the trial and efficacy 

in the enrolled subgroup in stage 3.  

Chapter 2 considers the problem of estimating a biomarker-based subgroup in a post-hoc 

analysis of a single stage clinical trial for the case of continuous outcome and a single biomarker.   

The best subgroup is defined as the subgroup that maximizes a utility function that reflects the 

trade-off between the subgroup size and the treatment effect (Lai, Lavori, Liao, 2014; Zhang et al, 

2017). Several procedures for testing for treatment effect in all and in the subgroup are presented. 



13 
 

Both non-parametric and parametric methods are implemented to estimate the biomarker cut-off 

to determine the best subgroup. Cross-validation with two cohorts is used to improve the 

estimation of the subgroup and to test for treatment effect (Freidlin, Jiang and Simon, 2010).  A 

permutation test (Jiang, Freidlin and Simon, 2007) is considered to control re-substitution bias. 

Simulation show that an approach that combines the tests in all patients and in the subgroup using 

Hochberg’s method is recommended. In Chapter 3, multiple methods for subgroup estimation are 

discussed for 2 or more biomarkers. We propose a three-stage enrichment design (Lai, Lavori, 

Liao, 2014) where the subgroup is estimated at the first interim analysis and refined in the second 

interim analysis, for the case of a continuous outcome and multiple continuous biomarkers.  A 

weighted inverse normal combination test is used to test the hypothesis of no treatment effect 

across the three stages. Simulations compare different designs using the best method for subgroup 

estimation. Chapter 4 considers subgroup estimation is based on a multivariate outcome. We 

compared three methods of defining and estimating the best subgroup: a method based on the 

average and the maximum of the outcomes and the method based on the p-value for the treatment 

comparison. These methods are compared in the setting of both parallel and crossover trials. 

Chapter 5 discusses the limitations of methods discussed in Chapters 2-4 and outlines future 

direction of the work. 
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CHAPTER 2: POST-HOC SUBGROUP ESTIMATION AND TESTING 

2.1 Introduction 

Subgroup identification and population enrichment can increase the odds of showing that 

a new therapy is more effective than a control. In many published methods (Song and Chi, 2007; 

Alosh and Huque, 2009; Jenkins, Stone and Jennison, 2011) the subgroup of interest is already 

known before the trial. At an interim analysis, the decision to continue enrolling the same patient 

population or restricting enrollment to a subgroup is made. The goal is to have an efficient 

procedure for testing if the treatment effect is zero that controls the overall type I error rate. Other 

published methods are focused on estimating the subgroup with a high treatment effect. In the 

majority of the methods for identifying a subgroup based on multiple biomarkers (Kelh and Ulm, 

2006; Renfro et al., 2014) the biomarker cut-off is selected based on the interaction in a linear 

model between treatment and the biomarker. Recursive partitioning tree methods consider 

treatment-biomarker interaction when splitting the population of subjects (Su et al., 2009; 

Lipkovich et al., 2011; Foster, Taylor and Ruberg, 2011).  

Several authors proposed identifying and validating the subgroup within the same clinical 

trial (Freidlin and Simon, 2005; Jiang, Freidlin and Simon, 2007; Freidlin, Jiang and Simon, 2010). 

In these methods, treatment effect is often tested in all patients as well as in the subgroup. In the 

adaptive signature design (Freidlin and Simon, 2005), the subgroup is identified using the first 

stage data while the treatment effect is tested in the subgroup using the second stage data. The 

treatment effect is also tested in all patients based on data from both stages. A biomarker is 
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considered promising if the interaction with treatment is significant at a threshold based on stage 

1. Patients are included in the subgroup if the predicted treatment effect, by a model that includes 

all promising biomarkers, is higher than a certain value. Freidlin, Jiang and Simon (2010) extended 

the method in Freidlin and Simon (2005) by using cross validation for estimating the subgroup and 

testing the treatment effect. The trial population is split into K cohorts of equal size with K = 10. 

At the kth step, k = 1,…,K, cohort k is removed from the data set and the subgroup  is estimated 

from the remaining data, called the development cohort. Then patients in cohort k, that serves as a 

validation cohort in the kth step, are classified as being in the subgroup or not using the results of 

the estimation in the development cohort. Since each subject appears exactly in one of the 

validation cohorts, at the end of the cross-validation procedure, each subject is classified as being 

in the subgroup or not. The subgroup development is implemented in the same way as in Freidlin 

and Simon (2005). As in Jiang, Freidlin and Simon (2007), a permutation p-value is computed to 

test the treatment effect in the subgroup.  

Simon and Simon (2013) described a trial with adaptive enrichment with a single 

continuous biomarker and a binary outcome. The best subgroup is defined as a subgroup where 

the treatment effect is larger than a given value. Renfro et al. (2014) selected the biomarker cut-

off as the one with the smallest p-value for the interaction term between a single biomarker and 

treatment.  Diao et al. (2019) defined the subgroup based on the difference of treatment effects in 

the subgroup and outside the subgroup. Lai, Lavori and Liao (2014) defined the best cut-off for a 

single biomarker based subgroup as the one that maximizes a utility function. They proposed a 

utility function equal to the Kullback–Leibler information number. Under the assumption of equal 

variances of the treatment effect in all subgroups, maximizing this utility is the same as maximizing 

the squared root of the prevalence of the subgroup multiplied by the treatment effect in the 



16 
 

subgroup, and is the same as maximizing the power of the treatment comparison. Zhang et al. 

(2017) proposed a utility function where the power is additionally multiplied by the prevalence of 

the subgroup. Defining the best subgroup based on a utility function allows for a trade-off between 

the size of the subgroup and the treatment effect in the subgroup. For example, if a single 

biomarker and the treatment effect follow a change-point model, selecting the subgroup with the 

higher treatment effect, as considered in Jiang, Freidlin and Simon (2007), might not be the best 

choice. When the difference between the treatment effects below and above the change point is 

small, the whole population should be considered and not only the subgroup above the change 

point. The trade-off between the treatment effect and the subgroup size should be taken into 

account when selecting the best subgroup.  

2.2 Defining and estimating the subgroup 

2.2.1 Defining the subgroup based on utility 

Consider the case of a single continuous biomarker X, where a subgroup is defined as 

subjects with X > c, where c is a biomarker cut-off.  Let Y be the response to treatment. Patients 

are randomized between treatment (T = 1) and control (T = 0), where T is the treatment indicator. 

Let ( ) [ | , 1]T c E Y X c T =  =
 

be the treatment response in subjects with X > c receiving 

treatment and ( ) [ | , 0]C c E Y X c T =  =  the treatment response in subjects with X > c receiving 

control. Let T  be the mean treatment response in subjects randomized to treatment, and C  
be 

the mean treatment response in subjects randomized to control. The prevalence of the subgroup 

{X > c} is ( ) P[ ]c X c =  . One way to define the best subgroup is through the minimum value 

of the treatment effect (Freidlin and Simon, 2005; Jiang, Freidlin and Simon, 2007). When the 

value of the minimum treatment effect is not available, one can define the best subgroup based on 
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a utility function that reflects the trade-off between the prevalence of the subgroup and the 

treatment effect in the subgroup. A natural form of utility is  

 ( , ) ( ) ( ) ( )T CU c c c c   = − , 

as it provides a trade-off between the size of the subgroup and the magnitude of the treatment 

effect. The best subgroup is then defined as X > c*, where   * argmax ( ) ( ) ( )T Cc c c c  = − . 

Lai, Lavori and Liao (2014) considered  

 0.5

1( ) ( , 0.5) ( ) ( ) ( )T CU c U c c c c   = = = − . 

It is proportional to the power of treatment comparison or, equivalently, the non-centrality 

parameter in the test for the treatment effect.  Zhang et al. (2017) considered ( , 1.5)U c  = . This 

utility gives more weight to larger subgroups. As we show in the Appendix, ( , )U c   with γ ≥ 1 is 

not a good choice. In the change-point model the best subgroup corresponding to the utility ( , )U c   

with γ ≥ 1 has the prevalence of 1 regardless of the model parameters. Since it can be advantageous 

to select a subgroup of larger size, here, in addition to ( , 0.5)U c  =  we consider 

2( ) ( , 0.75)U c U c = = . 

2.2.2 Estimating the subgroup 

A number of methods can be used to estimate the cut-off that maximizes the utility. We 

propose a non-parametric approach to estimate the subgroup. In this non-parametric method, the 

only assumption regarding the biomarker-response relationship is that the treatment response is 

non-decreasing with biomarker. To estimate the cut-off, for each possible candidate cut-off c, we 

compute the test statistic for treatment effect in patients with X > c, then select the cut-off that 

maximizes the test statistic. When estimating the subgroup, it is helpful to consider subgroups with 

at least, say, 0.20 estimated prevalence to avoid estimated subgroups with very few subjects.  
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A frequently used method to estimate the subgroup from data is to fit a linear model with 

treatment and treatment by biomarker interaction. Then, the cutoff for the subgroup that maximizes 

the utility U1 or U2 can be obtained from the estimated coefficients in the linear model.  

Below, we describe several possible models for the data where the outcome Y is continuous 

and give formulas for c* for the best subgroup according to U1 and U2. The biomarker is distributed 

X ~ N(0, 1) in Models 1 and 2 and X ~ Uniform (0, 1) in Model 3. 

Model 1. The change-point model for a continuous outcome is defined as  

     2(, ~  , ,  [ ] )Y T X N E Y T X  ,  

   ( )0 0| ,E Y T X T I X c T  = + +  , 

with 0   and  0 0P X c =  . The cut-off 
*c  that maximizes power for treatment comparison 

might not coincide with 0c .  The best subgroup can include all subjects in which case  
*c = − .  

To determine if the best subgroup is defined as 0X c  or includes everyone, we compare the value 

of  1 0( )U c  with 1 )(U − . Similarly, for U2. For utility ( , )U c   with γ ≥ 1, the best subgroup for the 

change-point model always includes everyone (see Appendix), e.g. 
*c = − , and therefore, we do 

not believe it gives a good trade-off between the prevalence of the subgroup and the treatment 

effect.  

For this change-point model, let  00 P X c =   and 
* *P X c  =   , where *c is the cut-

off that maximizes a utility function. It is clear that U(c, γ) is maximized either at *c = −  or at 

*

0c c= . Utility U1 is maximized at *c = −  (corresponding subgroup prevalence is * 1 = ) when 

0 0  −  , otherwise it is maximized at *

0c c=  (corresponding prevalence *

0 = ). For U2, 

the best cut-off is *c = −  when ( ) 3/4

0 0    +  + , otherwise *

0c c= .  
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If 1   , the best cut off for the utility function U(c,γ) defined in Section 2.2.1 is *c = −  because   

 1

0 0 0( , 1) ( ) ( , 1)U U c      − = = +  + = = . 

 

Model 2. Here we assume a bivariate normal distribution for the biomarker and outcome 

in the treatment group and in the control group: 

22

~ , , ~ ,
0 0 11

T CT C C C CT T T

C CT T

Y Y
N N

X X

      

  

            
            

                
. 

Clearly, if there is no correlation between Y and X, 0C T = = , selecting subjects based on X does 

not change the treatment effect. Same is true if C C T T   =  (see Appendix for details). 

Otherwise, for U1 and 2U , if C C T T    , there is always a subgroup with the power higher than 

in the overall population.  

In this bivariate normal model, using standard formulas (Arnold et al., 1993)  

 
( )

| ( )
1 ( )

T C T C T T C C

c
E Y Y X c

c


     

 
−  = − + −  

− 
, 

2

2 2 2 2 2 2 ( ) ( )
( | ) ( )

1 ( ) 1 ( )
T C T C T T C C

c c
Var Y Y X c c

c c

 
     

    
−  = + − − −    

− −     

, 

where ϕ(c) is a normal density and Φ is normal cumulative distribution function. We maximize 

( | )

( | )

T C

T C

E Y Y X c

Var Y Y X c

− 

− 
 with γ = 1/2 if U1 is used or γ = 3/4 if U2 is used. There is no closed form 

formulae for the optimal cut-off.  

 

 Model 3.  The model with treatment by biomarker interaction is    
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 ( )2| , ~ ,Y T X N E Y 
, 

  0 1 2 3 ( )E Y T X g X T   = + + + , ( )  ag X X=  with a > 0. 

Without loss of generality we set 0 1 2 0  = = = , and 
3 0  .

 
Refer to the Appendix for how to 

find the best cutoff, 
*c , for U1 and U2. Table 1 shows effect sizes and subgroup prevalence for 

several values of a in   aE Y X T= . As expected, maximizing U2 yields a larger subgroup with a 

smaller effect size. For a ≥ 1, the effect size in the subgroup is much larger than the effect size in 

all patients. 

The mean and the variance in the overall population with size N are 

2
2 2 2

3 3 2
( ) ( )

(2 1)( 1)

a a
Var Y Var TX T

a a
   = + = +

+ +
, 

3( )
1

T CE Y Y
a


− =

+
, 

1

22 2 2

3

2
( )

/ 2 / 2 (2 1)( 1)
H T C

a
Var Y Y

N N a a

 +
− = +

+ +
, 

0

2 2

( )
/ 2

H T CVar Y Y
N

 +
− = . 

For the subgroup X > c with prevalence π we have 

1

3(1 )
( )

( 1)(1 )

a

T C

c
E Y Y

a c

 +−
− =

+ −
, 

1

2 2 2 1
2

3

1
( )

( / 4) (2 1)(1 )

a

H T C

c
Var Y Y

N a c

 




++ −
− = +

+ −
, 

0

2 2

( )
( / 4)

H T CVar Y Y
N

 



+
− = .

 

Then we maximize  
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( )
1

1

1

3

2
2 1 1

2 2

3

(1 )
1

( | ) (1 )( 1)

( |, ) (1 ) (1 )
2

(1 )(2 1) (1 )( 1)

a

H T C

a a
H T C

c
c

E Y Y X c c a

V Y Y X c c c

c a c a




 

+

+ +

−
−

−  − +


−    − − 
+ −  

− + − +   

, 

with γ = 1/2 if U1 is used and γ = 3/4 if U2 is used. 

2.3. Testing for the treatment effect 

In section 2.2, we discussed the estimation of the cut-off c* for the best subgroup. In this 

section we are interested in testing for the treatment effect in the estimated subgroup X > c*. 

Patients are randomized between treatment and control. The trial is run as a single stage trial, 

however, to estimate the cut-off, the study subjects are divided into two cohorts. The biomarker 

data from each cohort is then used to estimate the cut-off for the biomarker in the other cohort.  

We are interested in testing the equality of treatment effects in all subjects, 
0, C :   All TH  = , as 

well as the equality of treatment effects in the subgroup 
* *

0, : ( ) ( )S T CH c c = . We are also 

interested in testing the intersection hypothesis 
0, 0,: All SH H H  against the alternative hypothesis 

that there is a treatment effect in everyone or in the subgroup.   

To estimate the cut-off, we use the cross-validation approach from Freidlin, Jiang and 

Simon (2010). While Freidlin, Jiang and Simon (2010) used K = 10, we use K = 2 because we did 

not see any difference in performance among the values of K between 2 and 10. With K = 2 the 

sample is split into two cohorts. We estimate the cut-off from cohort 1 and use this estimated cut-

off to define the subgroup in cohort 2. Then, we estimate the cut-off from cohort 2 and use this 

estimated cut-off to define the subgroup in cohort 1. A non-parametric and a parametric method 

we used to estimate the cut-offs are described in section 2.4. Let 1̂c  be the cut-off estimated from 

cohort 2 data to define the subgroup in cohort 1. Similarly, let 2ĉ  be the cut-off estimated from 
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cohort 1 data to define the subgroup in cohort 2. Denote 
,i AllZ  and 

,i SZ
 
to be the test statistics to 

test 
0,AllH

 
and 

0,SH
 
based on data from cohort i. The test 

,i SZ
 
is based on cohort i data where the 

subgroup is defined as îX c . Consider the following test statistics: 

 

1, 2,0.5 0.5All All AllZ Z Z= + , 

, 1, 2,0.5 0.5All S All SZ Z Z= + , 

1, 2,0.5 0.5S S SZ Z Z= + . 

When the number of subjects in each cohort is equal, test AllZ  is equivalent to testing the 

treatment effect in the overall population in combined cohorts 1 and 2. The test 
,All SZ  uses data 

from all subjects in cohort 1 and subjects in the subgroup in cohort 2, and is a test of the null 

hypothesis that there is no treatment effect in all patients and in the subgroup. This test preserves 

the type I error rate since  
1,AllZ  and 

2,SZ  are independent. This test can be viewed as a test of any 

treatment effect, as it combines the test of the treatment effect in everyone with testing for 

treatment effect in a more promising subset of patients, the estimated subgroup. If the best 

subgroup does not coincide with the overall population, the power of this test is lower than when 

testing in the subgroup only. The test based on 
SZ  does not control type I error rate because the 

biomarker cut-off that defines the subgroup in cohort 1 is based on the estimate from cohort 2 data 

and vice versa. Our simulations show that the type I error rate can be as high as 0.062 for 
SZ (refer 

Table 2). Instead one can use a permutation-based test (Jiang, Freidlin and Simon, 2007; Freidlin, 

Jiang and Simon, 2010) to test 
0,SH  based on 

SZ . We refer to this test as SZ . The p-value for the 

permutation based test was defined as the proportion of permutations of treatment assignments 
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where the resulting test statistic is higher in the absolute value than the test corresponding to the 

original data. We used the Hochberg method to test H , rejecting both hypotheses if the larger of 

the two p-values is less than α or rejecting the intersection hypothesis with p-value smaller than 

α/2.   

2.4. Simulation study 

The goals of the simulation study were to compare the non-parametric and parametric 

methods for cut-off estimation, to illustrate subgroup selection based on utilities U1 and U2 and to 

see if the power of testing for treatment effect can be increased through finding the best subgroup 

in retrospective analysis of data. Data were generated from the three models described in section 

2.2.2. The total sample size was 500 in trials for Models 1 and 2 and between 50 and 250 for Model 

3. Simulations were performed in R with 5000 simulation runs in each scenario under alternative 

hypothesis, with 10000 simulations runs under the null hypothesis. When reporting the prevalence 

of the estimated subgroup, we computed the true prevalence corresponding to estimated cut-offs, 

1̂c  and 2ĉ , and reported the average    1 2
ˆ ˆ0.5 0.5P X c P X c +  . 

We performed simulations under the null (Table 2) and alternative hypotheses (Table 3). 

The type I error rate was as high as 0.063 for testing using the naïve approach with 
SZ (Table 2). 

After applying the permutation method to test the treatment effect in the subgroup, the type I error 

rate was well controlled for all models using the non-parametric methods, with slight inflation 

using the parametric method (Table 2).  

Table 3 contains simulation results where treatment outcomes were simulated from the 

change-point model, Model 1 in section 2.2.2 with 
2 1 = . Trial data were split into two cohorts 

of 250 subjects each to estimate the biomarker cut-off. We show the true cut-off c* and the 

theoretical power corresponding to c* to illustrate the amount of power loss when the cut-off was 
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not estimated precisely. As can be seen from Table 3, when the true model is a change-point model, 

neither the non-parametric approach nor the parametric approach of estimating c* yielded good 

estimates. This is unfortunate because we were expecting for the non-parametric method to do well 

and better compared to a linear model in this scenario. Improving the performance of a linear 

model in change-point model scenarios was the reason of investigating the non-parametric method 

for subgroup estimation. Both the non-parametric and parametric methods yielded lower power in 

the estimated subgroup compared to the true theoretical power when the best subgroup is known. 

As expected, U2 yields a larger subgroup than U1. In the setting of re-analysis of data considered 

here, defining the subgroup based on U1 is theoretically optimal. Despite U1 being optimal for 

power, the power was comparable to that in the subgroup that optimized for U2 compared to U1. 

Non-parametric method yielded slightly better power than the parametric method. 

Table 4 shows results for the bivariate normal model, Model 2 in section 2.2.2 with 2 1C =

. Overall the parametric method is better than the non-parametric method for both the estimation 

of the subgroup and power. As in the change-point model, U2 yields a larger subgroup than U1. 

Both U1 and U2 subgroups yielded similar power in the first scenario. When the best true subgroup 

had a prevalence of 1, U2 yielded higher power than U1, as expected, as it yields a larger estimated 

subgroup.   

Table 5 shows simulations for the linear model with treatment by biomarker interaction, 

Model 3 in section 2.2.2 with 
2 1 = . The model we fit in the parametric method coincides with 

the model we used to generate the data when a = 1. Therefore, the parametric approach is expected 

to perform well in that scenario. Interestingly, parametric and non-parametric approach performed 

similarly in this scenario. Overall both methods performed similarly with a slight advantage of the 

parametric method. 
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We compare the proposed non-parametric method with a method where the biomarker cut-

off for the subgroup is selected based on minimizing the p-value for testing the interaction between 

the continuous biomarker and treatment, in a linear model. For model 1, for example, the 

interaction method selects subgroups that are much smaller than expected and the power in the 

subgroup does not exceed the power in all (and is lower than the corresponding subgroup power 

using non-parametric method). 

The Hochberg approach that combines the tests of the subgroup and overall population is 

a robust test to detect any treatment effect (Tables 3, 4 and 5). It maintains good power in cases 

where the subgroup is estimated poorly, for example, when the parametric method is applied with 

U1 in scenario 2 (Table 3), or when the subgroup coincides with the overall population (scenario 

3, Table 3). Therefore, we recommend using this test instead of relying on the test of the subgroup 

only or using 
,All SZ .    

2.5. Example 

 We applied our methods to data from a phase 2 study of a novel treatment 1C4D4 to treat 

patients with metastatic pancreatic cancer (Wolpin et al., 2013). A total of 205 subjects were 

randomized in the ratio of 2:1 to Gemcitabine plus 1C4D4 and Gemcitabine alone. Among the 

randomized patients, 123 had adequate tumor tissue for immunohistochemistry (IHC) analysis of 

prostate stem cell antigen (PSCA). This was used as the analysis set. The primary outcome was 

overall survival. The median survival in the Gemcitabine+1C4D4 arm was 7.92 months and in the 

Gemcitabine alone arm was 5.52 months, yielding the logrank test p-value of 0.20. A continuous 

biomarker, prostate stem cell antigen expression measured by IHC, H-SCORE, with values from 

0 to 290, was believed to be a possible effect modifier for 1C4D4. We applied our non-parametric 

and parametric approaches to find the best subgroup based on H-SCORE by maximizing U1 and 
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U2 (Table 6). In the parametric approach, we fit the Cox-model with biomarker by treatment 

interaction. In the non-parametric approach, we used the logrank test. Table 6 shows the sizes of 

the estimated best subgroups and p-values. Selecting patients with higher values of H-SCORE did 

not result in a smaller p-value. Both non-parametric and parametric methods yielded similar results 

indicating that there might not be a subgroup defined by H-SCORE with better treatment effect 

than in the overall population. In fact, H-SCORE appears to have more of a prognostic rather than 

predictive effect. In a Cox model with H-SCORE dichotomized at the median H-SCORE = 120, 

the coefficient for H-SCORE is significant (p-value = 0.03) while the interaction term is close to 

0 with the p-value of 0.96.  

2.6. Conclusions 

For several true models of response to treatment and biomarker, such as a change-point 

model, a bivariate normal model and a linear model with interaction, we compared two methods 

of estimation of the best subgroup, non-parametric and model-based. In a model-based approach, 

we used the linear model with treatment by biomarker interaction, the model that is used frequently 

for subgroup estimation (Freidlin and Simon, 2005; Jiang, Freidlin and Simon, 2007; Freidlin, 

Jiang and Simon, 2010). Our conclusion is that the non-parametric method performed very 

similarly to fitting a linear model with interaction with slight advantage of a linear model. It is no 

surprise that fitting a linear model with interactions is a preferred method for subgroup estimation.   

We illustrated the use of a utility function to choose the best subgroup in a clinical trial. 

The best subgroup was defined through maximizing the non-centrality parameter, utility U1, or 

through maximizing utility U2 that gives more weight to larger subgroups. In the retrospective data 

analysis setting we considered, U1 is the optimal choice because it maximizes the power of 

treatment comparison. In our simulations both two approaches performed equally well. There is 
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no obvious method for selecting the best subgroup in adaptive enrichment trials where further 

patient enrollment is restricted to the selected subgroup. The class of utilities 

 ( , ) ( ) ( ) ( )T CU c c c c   = −  with 0 < γ < 1 can be useful for selecting a subgroup in adaptive 

enrichment trials.  

Using cross-validation as in Freidlin, Jiang and Simon (2010), we gain the advantage of 

utilizing all observations for both estimating the cut-off and testing for the treatment effect. 

Permutation test used after cross-validation controls type I error rate for the test in the subgroup 

well. To test for any treatment effect, the Hochberg method is a robust method to test the 

intersection hypothesis of the treatment effect in all and in the subgroup. It yields good power in 

both cases, when power is high in all subjects, but not in a subgroup and when power is only high 

in the subgroup. There might be more powerful alternatives to the Hochberg method that make a 

better use of the correlation between the tests.  

Our investigation shows that the subgroup can be estimated after the clinical trial with 

subsequent computation of a valid p-value for treatment effect in the subgroup. Power in some 

clinical trials can be increased by estimating the subgroup from collected data and testing for 

treatment effect in it if there is a subgroup of patients with a higher treatment effect.  
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CHAPTER 3: MULTI-STAGE ADAPTIVE ENRICHMENT DESIGN 

3.1 Introduction 

Adaptive enrichment trials adapt the entry criteria based on data observed in the trial so far 

to restrict enrollment to subjects in whom the experimental treatment is believed to work. 

Enriching the subject population in the trial can increase statistical power to detect a treatment 

effect if a new therapy only works in a subgroup of subjects. Additionally, it reduces the number 

of subjects in the trial who have no apparent benefit from the drug therefore not exposing them to 

potentially harmful side-effects. Adaptive enrichment literature can be divided into two categories: 

methods that adaptively enrich based on already pre-specified subgroups and methods where the 

subgroup is estimated during the trial. Most methods with predefined subgroups, specify a single 

subgroup (Jenkins, Stone and Jennison, 2011; Ondra et. al, 2016), while some allow predefining 

several candidate subgroups, usually up to three (Wang, Hung and O’Neill, 2009; Lai, Lavori and 

Liao, 2014; Lui et. al, 2010; Wassmer and Dragalin, 2015). Only a handful of publications describe 

clinical trial designs where the subgroup is estimated and the treatment effect is tested in the same 

trial (Friedlin and Simon, 2005; Jiang, Freidlin and Simon, 2007, 2010; Simon and Simon, 2013, 

2017; Zhang et. al, 2017, 2018; Diao et. al, 2019). 

Lipkovitch, Dmitrienko and D’Agostino (2017) recently reviewed methods for subgroup 

estimation. They categorized trials with subgroup estimation into two classes based on the 

objectives in enrichment. The first class is the enrichment trials where the goal is to find the ‘best 

subject’ for a given treatment. Subgroup in these methods is usually estimated by fitting a model 
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with interaction. The second class is trials with the goal of finding the optimal treatment rules for 

a given subject. Here our goal is the former, that is, to find the best subjects for a given treatment 

and to demonstrate that the treatment is better than control. For subgroup estimation, when dealing 

with multiple biomarkers, non-parametric tree-based regression methods may be more suited to 

deal with higher order interactions, or unknown forms of relationship between covariates and 

response (Loh, He and Man, 2014). 

In publications with methods where the subgroup is being estimated during the trial, several 

of these (Simon and Simon, 2013, 2017; Zhang et al.,2017; Diao et. al, 2019) considered a trial 

with adaptive enrichment. Simon and Simon (2013) described a multi-stage design with a single 

biomarker. The best cut-off for the single biomarker was defined as the one maximizing the 

interaction term. At each stage the best subgroup is estimated and the next stage enrolls patients 

from the best subgroup only. Zhang et al. (2018) considered a two-stage adaptive enrichment 

design with up to two predictive biomarkers where the second stage enrolls patients in the 

subgroup estimated using the first stage data. Diao et al. (2019) described a two-stage adaptive 

enrichment design with a single continuous predictive biomarker and time to event endpoint.  

The best subgroup is generally defined in one of two ways. The first way is to define the 

best subgroup as subjects within the biomarker subset where the treatment effect is equal to or 

higher than a minimally clinically relevant treatment effect (Friedlin and Simon, 2005; Renfro et. 

al, 2014). The second way to define the best subgroup is through a utility function (Lai, Lavori 

and Liao, 2014; Zhang et. al, 2017; Joshi et al., 2018). The utility function specifies the trade-off 

between the size of the subgroup and the treatment effect in the subgroup. An example of a utility 

function is the function equal to the square root of subgroup prevalence multiplied by the treatment 

effect in the subgroup (Lai, Lavori and Liao, 2014). Under the assumption of equal variances of 
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the treatment effect in all subgroups, maximizing this utility is the same as maximizing the square 

root of the prevalence of the subgroup multiplied by the treatment effect in the subgroup, and is 

the same as maximizing the power of the treatment comparison. The subgroup defined this way 

yields good power of treatment comparison in a post-hoc analysis on unenriched population when 

the subgroup is estimated and tested (Joshi et al., 2018). The advantage of the utility function 

approach is that there is no need to pre-specify the minimum treatment effect. 

  In this chapter, we evaluate a number of methods to estimate the subgroup in an adaptive 

enrichment trial with the goal of establishing an initial efficacy of a new treatment in any subgroup. 

We propose a three-stage design where the best subgroup is estimated after stage 1 and refined 

after stage 2. Lai, Lavori and Liao (2014) also considered a three-stage design but they worked 

with a pre-specified set of candidate subgroups rather than estimating the subgroup during the trial.  

In Section 3.2, we give the definition of the best subgroup and illustrate it on several true models 

for response to treatment as a function of biomarker and treatment. Testing for the treatment effect 

and the design of the trial is discussed in Section 3.3. In Section 3.4 we compare several methods 

of subgroup estimation via simulations. Conclusions are presented in Section 3.5. 

3.2 Subgroup Estimation Methods 

Let 1 2( , ,..., )MX X X=X  be a vector of continuous biomarkers measured at baseline. We 

work with mX  in [0,1], as biomarkers can be always rescaled. Subjects are randomized between 

active treatment (T = “Active”) and control (T = “Control”), where T is the treatment indicator. 

Let Y  be a continuous response variable such that higher values indicate improvement in the well-

being of the subject. Let, ( ) ( | , "Active")T E Y T = = =x X x  and ( ) ( | ,C E Y = =x X x

"Control")T =  be the expected responses of a subject at observed biomarker values, x , 

randomized to the active treatment and control respectively. For the 
thi  randomized subject with i 
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= 1…, n,
1( ,..., , , )i iM i ix x y t  represents the observed data, where 1...i iMx x  are the observed values of 

continuous biomarkers some or none of which are associated with response to treatment.  

To identify the best subgroup, i.e., a subset of the full population that is not too small and 

shows response to the treatment, we use a utility function to quantify the trade-off between the size 

of the subgroup and the magnitude of the treatment effect (Lai, Lavori and Liao, 2014; Zhang et. 

al, 2017). Let ( )S S X  be a subgroup based on the biomarker vector .X  A natural form of the 

utility is,  

 ( , ) ( ) ( ) ( )T CU S S S S   = − , 

where ( ) ( )S P S = X  is the prevalence of the subgroup and [0,1]   denotes the corresponding 

weight. Here ( )T S  and ( )C S  are the expected responses to the treatment and control in the 

subgroup. For a given value of γ, the best subgroup is then defined as *S  where

 * arg max ( ) [ ( ) ( )]T CS S S S  = − . 

Lai, Lavori and Liao (2014) considered  0.5

1 ( , 0.5) ( ) ( ) ( )T CU U S S S S   = = = − . This 

function is proportional to the power of treatment comparison or, equivalently, the non-centrality 

parameter in the test for the treatment effect. Joshi et al (2018) showed that for weights larger than 

1 the best subgroup always coincides with the whole population. They considered the utility 

0.75

2 ( , 0.75) ( ) [ ( ) ( )]T CU U S S S S   = = = −  that favors larger subgroups.  

Defining the subgroup through maximizing a utility allows comparing methods of 

estimation of the best subgroup using a single measure. We introduce a measure we refer to as 

%U . It is computed by taking the ratio of the value of the utility corresponding to the estimated 

subgroup to the value of the utility of the best theoretical subgroup for a given true model and then 

multiplying by 100%. If the best subgroup is estimated perfectly, the %U is equal to 100%. 
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Methods for subgroup estimation are usually compared using the sensitivity and specificity. Since 

methods with higher sensitivity usually have lower specificity, it is hard to compare estimation 

methods based on these two values. Using the new measure, %U, we evaluate several methods for 

subgroup estimation that have been discussed in the literature (Lipkovitch, Dmitrienko and 

D’Agostino, 2017).  

A common parametric approach to estimating the subgroup for continuous outcome is to 

consider a linear model (LM) with first order main effects for biomarker and all pairwise 

interaction terms between all available biomarkers and treatment. Let *T  be the treatment indicator 

with * 1T =  for subjects randomized to treatment and 
* 1T = −  for subjects on control, in the 

estimation models. We use T* here to distinguish it from the treatment indicator T = 1 or 0 more 

commonly used. We will use T = 1 or 0 later to define true models. Consider the model, 

1
* * *

1 1 1 1

( | , )
M M M M

m m m m lm l m

m m l m l

E Y T X X T X X T   
−

= = = = +

= + + +   X . 

Following Tian et. al (2014), consider also the model where the outcome is modified by 

multiplying the responses of subjects on control are by -1  

2 2
1

* * * * *

1 1 1 1

( | )
M M M M

m m m m lm l m

m m l m l

E T Y T X T X T X X T   
−

= = = = +

= + + +   X . 

Since T* = {-1, 1} with probability 0.5, we have  

1
*

1 1 1

( | )
M M M

m m lm l m

m l m l

E T Y X X X 
−

= = = +

= +  X .   (1) 

This is the model we fit to the data. After the coefficients are estimated from the data, we can 

compute the expected treatment response for ith, i = 1,…,n, subject with biomarker vector iX . Let 

vector 
1

ˆ ˆ( ,..., )ny y be the estimated treatment responses for the set of biomarker vectors 
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1 2{ , ,..., }nX X X  in the data set. For each predicted response ˆ
iy , we define the corresponding 

subgroup as the set of subjects with predicted response larger than ˆ
iy  or ˆ ˆ{ : }j j iy yX . Then, we 

compute the estimated prevalence, estimated treatment response and estimated utility of this 

subgroup. Denote the estimated treatment response for which the estimated utility is maximized 

by y*, * ˆ
iy y= , for some i, i = 1,…,n. The best subgroup *ˆ{ : }j jy yX includes subjects with the 

biomarker vector such that the predicted treatment response for that vector is higher than y*. We 

use this approach for all subgroup estimation methods we consider.  

Least Absolute Shrinkage and Selection Operator or LASSO (Tibshirani, 1996) is a 

shrinkage and variable selection method based on linear regression. The coefficients in a linear 

model (1) with covariates 
1 2{ , ,..., }MX X X   are estimated by minimizing sum of squared residuals, 

with a bound on the sum of absolute value of the coefficients. Alternatively, we minimize the sum 

of squared residuals plus a penalty term equal to the sum of with absolute values of the coefficients 

multiplied by  γ > 0 

min

2
1 1

*

1 1 1 1 1 1 1

| | | |
n M M M M M M

i i m im lm il im m lm

i m l m l m l m l

T Y X X X    
− −

= = = = + = = = +

   
− + + +   

   
       , 

Large values of γ puts a higher penalty and shrinks most coefficients to zero and lead to 

underfitting. Smaller values of γ results in LASSO shrinking coefficients of some covariates (if 

not considered important) to zero and can thus can help with variable selection by removing 

covariates that are not associated with the outcome. Yuan and Lin (2006) developed a group 

LASSO method where the covariates are considered together in non-overlapping groups. If a 

specific group is selected, then the coefficient estimates of all those in the group will be non-zero 

and zero if they belong to a group not selected. An advantage of forming groups is that we avoid 

choosing the interaction term if the corresponding main effects are not selected. A disadvantage 
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of using just grouped lasso is that it prevents model variables from belonging to multiple groups.  

Zeng and Breheny (2016) improved upon this by adding an overlap condition allowing for a 

model variable to belong to more than one group and thus have non-zero coefficient if any of the 

groups it belongs to is selected. Suppose, if a covariate, 1X  belongs to two groups G1 =

1 2 1 2{ , , }X X X X  and G2 = 1 3 1 3{ , , }X X X X  such that only G1 is truly related to the outcome. If we 

do not use overlapping group LASSO, then if G2 is not selected, the coefficient for 1X is set to 0, 

even though it is present in G1.We used the overlapping group LASSO (OGLASSO) of Zeng and 

Breheny (2016) in the simulations.  The linear model is re-formulated in terms of the group 

coefficients that are obtained by minimizing, 

min ( ) ( )* *

1

|| ||
G

T
g

g

g

T Y T Y K 
=

 
− − +  

 
Xθ Xθ . 

where, 1( ,..., )g g g

M =θ is the x1M  vector of coefficients corresponding to each original 

predictor in the thg  group, θ is the vector of all 
gθ , X  is the design matrix, G is the number of 

groups and gK  is the number of elements in the 
thg  group. When gθ is selected, all model variables 

in this group are selected, irrespective of whether they are present in another group. A tree-based 

method,  Classification And Regression Trees (CART) (Breiman et al., 1984), recursively  

partitions the data into two disjoint subsets by minimizing the heterogeneity of the outcome in 

each partition. The resulting prediction model can be illustrated by a single decision tree and the 

terminal nodes of the tree can be interpreted as subgroups.  In a tree-based method, Random Forests 

(RF) (Breiman, 2001) the predicted value is an average over a collection of trees rather than a 

single tree as in CART. Unlike a single decision tree in CART, random forests prediction model 

cannot be described as a set of rules as the CART model making it a ‘black box’ type prediction 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4491003/#R3
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model. Support Vector Machine (SVM) introduced by Cortes and Vapnik (1995) is used for both 

classification and regression problems. In case of a continuous outcome, it fits a hyperplane or a 

function such that all points on either side of this function are within a certain pre-defined distance 

from the function and there is a penalty for points falling outside the range. The regression method 

seeks to find a linear function which can be used to predict the outcome for each subject. We 

compare these four methods in the simulation study in Section 3.4 to give recommendation on the 

method to be used for subgroup estimation in a clinical trial.   

3.3 Adaptive design with enrichment  

We propose a three-stage enrichment design for a randomized trial comparing a new 

treatment with control. We enroll a total of n  subjects, n1 + n2 + n3 = n,  with kn  subjects enrolled 

in the thk stage, k = 1, 2, 3. At each stage, the subjects are equally likely to be randomized to  the 

experimental treatment or control. The dual objective of the trial is to demonstrate the efficacy of 

a new therapy in any subgroup and to estimate the best subgroup. The best subgroup is defined as 

the subgroup that maximizes the utility U1. We propose the following three-stage design: 

(1) In stage 1, 1n  subjects are enrolled from the full population. At the first interim 

analysis, using data from stage 1, the best subgroup is estimated based on maximizing 

utility U2.   

(2) In stage 2, subject population is fully enriched that is only subjects from the subgroup 

estimated at the end of stage 1 are enrolled. At the second interim analysis, we use 

data from n1 + n2 subjects enrolled so far to estimate the subgroup based on 

maximizing a utility U1.  

(3) In stage 3, only subjects from the subgroup estimated at the end of stage 2 are enrolled.  
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(4) At the end of the trial, let 
kZ
 
be the test statistic to test 

0H
 
based on stage k data, 

defined as  

, ,
ˆ ˆ

1 1
ˆ

0.5 0.5

T k C k

k

k

k k

Z

n n

 



−
=

+

, 

where 
,

ˆ
T k and 

,
ˆ

C k  are the estimated mean responses in treatment and control arms respectively 

and 2ˆ
k  is the estimated common variance for treatment and control groups at stage k, k = 1,2,3. 

Consider the test statistic: 

1 1 2 2 3 3/ / /Z n nZ n nZ n nZ= + + . 

A test based on Z  preserves the type I error rate since, conditional on the enrollment 

decision taken at the end of stages 1 and 2, the components Zk are independent. A similar approach 

for testing the hypothesis of no treatment effect was used in Simon and Simon (2013). Assuming 

that the response to the new treatment is not worse than control for any set of biomarkers, the test 

Z  is the test for any treatment effect 0 :  =0 T CH  − .   

In Stage 2, only patients from the estimated best subgroup are enrolled. This leads to 

oversampling of subjects in the best estimated subgroup in combined stage 1 and stage 2 sample.  

Hence, inverse probability weighting needs to be used when working with the combined stage1 

and 2 sample. Each subject in the estimated best subgroup, stage 2 population, regardless of the 

stage of enrollment, is assigned a weight of 
1 1

ˆ ˆ/ (1 ) +  where 1̂  is the estimated prevalence of 

the best estimated subgroup Stage 2 population was sampled from. Otherwise, the weight is 1. The 

weights are used after the model is fitted at the utility maximization step described in Section 2. 

To adjust the mean response, the set of subjects with predicted response less and greater than the 

predicted cutoff after stage 1 is weighed by the corresponding ‘true’ proportion. 
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In Section 3.4, we run simulations to optimize design parameter: choosing the utility to 

define the subgroup at the end of stage 1. The goal is to find a design that results in a good quality 

of estimation of the best subgroup by the end of stage 2 and, at the same time, yields a good power 

of treatment comparison. Though the best subgroup is defined based on U1, identifying a larger 

subgroup at the end of stage 1 might improve the subgroup estimation at the end of stage 2.   

As a new therapy might not work, we consider the possibility of stopping for futility at the 

end of stage 2. If a new therapy only works in a small subgroup of subjects, the observed treatment 

effect might be low after stage 1 when the new therapy is investigated in the full population. 

Therefore, stopping for futility is not considered at the end of stage 1. We use the method of He, 

Lai and Liao (2012) to test for futility with a one-sided test 1, ,1 2 ,1 2:  f T C fH   − −−  . We set the 

value 
f  equal to the alternative used for power calculations for the trial. Let ,1 2T − and ,1 2C −  be 

denote the expected responses in treatment and control groups for subjects enrolled up to the 

second interim. analysis. We compute  2

,1 2 ,1 2 1 2 1 2
ˆ ˆ ˆ( ) 1/ (0.5 ) 1/ (0.5 )f T C fZ n n   − − −

 = − − +  

where ,1 2
ˆ

T − and ,1 2
ˆ

C −  are the estimated responses in treatment and control groups and 2

1 2̂ −
 is the 

estimated pooled sample variance for data collected up to the second interim analysis. Values of 

fZ b   indicate that 
1, fH  is not true and the trial is stopped for futility. The futility stopping cut-

off, b , is computed to have 
1,(Reject ) 0.05

f fP H = ,  that is, the probability of stopping for futility 

when the treatment effect is equal to 
f  is equal to 0.05.    
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3.4. Simulation Study 

3.4.1 Comparison of subgroup estimation methods  

First, we compare the performance of the five subgroup estimation methods described in 

Section 3.2 for several true models via simulations. The best subgroup is defined as the subgroup 

that maximizes the utility U1. In the change-point models below, the best subgroup either includes 

everyone or is defined by the function of biomarkers in the indicator function of the model. To 

find whether it is the former or the latter, we compute U1 on both of these candidate subgroups and 

select the one with the larger value of U1. In more complex cases, for example in model 5, one can 

find the best subgroup by generating a large set of biomarker vectors, e.g., 100,000. The mean 

treatment response values are then computed for each of the vectors, the values are ordered to find 

the value of response y* such that the utility U1 is maximized for all the biomarker vectors that 

yield the values of treatment response larger than y*.  

In the models below ~ (0,1)mX U , m = 1 and 2, and ~ ( [ | , ],1)Y N E Y TX . The treatment 

indicator variable T is defined as T = 1 for an active treatment and T = 0 for control. Figure 1 shows 

the best subgroup for each of the examples. 

Model 1. Change-point model with a single biomarker with 

  ( )1 1| ,E Y T T I X c T = + X . 

When 0, =  0.4 =  and c1 = 0.5, the subgroup that maximizes U1 for this model is 

*

1{ 0.5}.S X=   For this best subgroup, the treatment effect is 0.4 = , the prevalence is 

1

* 0.5U P S   = = X  and the utility is 
11 0.28.UU = =  Note that another candidate for the 

best subgroup is the subgroup that includes all subjects. The corresponding utility is 0.2, lower 

than the utility for S*. 
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Model 2. Change-point model with two biomarkers with 

  1 1 2 2 (  and,   | )E Y T I X c c TT X   = +X . 

 When 0, =  0.4 = , c1 = c2 = 0.5, the subgroup that maximizes U1 for this model is 

*

1 2{ 0.5 and 0.5}.S X X=    For this best subgroup, the treatment effect is 0.3 = , the 

prevalence is 
1

* 0.25U P S   = = X  and the utility is 
11 0.20UU  = = .  

Model 3. Change-point model with two biomarkers with 

  1 1 2 2 1 1 2 2 1 1 2 2 [ ( )( ) ( )( ) ( )(, )| ]E Y T I X c X c I X c X c I X c X c T     = +  +X . 

When 0.4 = , c1 = 0.8 and c2 = 0.75, the best subgroup that maximizes U1 is *

1 2S S S=  where 

1 1 2{ 0.8 and 0.75}S X X=   , 
2 1 2{ 0.8 and 0.75}S X X=   . For the best subgroup, the 

treatment effect is 0.4 = , the prevalence is 
1

*[ 0 0] .4U P S == X  and the utility is 

11 0.25UU  = = . 

Model 4. Change-point model with two biomarkers with 

  1 2| ,  (( ) )I X X cE T TY T   + = +X . 

When 0, =  0.38 = , and c = 0.1, the best  subgroup that maximizes U1 for this model 

is *

1 2{(  ) 0.85}.S X X= +   For the best subgroup, the treatment difference is 0.38 = , the 

prevalence is 
1

* 0.5U P S   = = X  and the utility is 
11 0.3UU  = = .  

Model 5. A model with two biomarkers with 

  1 1 2 2(| | | |)| , X c X cE Y T e T − − + −=X . 
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The best subgroup *S  when 1.5 = , 6.5, =  c1 = 0.8 and c2 = 0.75 is shown in Figure 1. The 

average treatment effect in the best subgroup is 0.5 = , the prevalence is 
1

0.15U =  and the 

utility is 
11 0.19.UU = =  

Model 6. Change-point model with two biomarkers with 

  1 1 2 2(  and  | , ) .I X c XE Y T T c T   = +X  

When 0.25, =  0.35 = , c1 = c2 = 0.5, the subgroup includes everyone, 
1

1U = , with the 

treatment effect of 0.34 =  and utility of 
11 0.34UU  = = . First, we compare the performance 

of the five methods, LM, OGLASSO, CART, RF and SVM, by fitting the models using biomarkers 

X1 and X2. Predictions for LM, OGLASSO, CART, RF and SVM were obtained by using functions 

lm, grpregOverlap, rpart, randomForest, and svm in R with default parameters for all, except 

OGLASSO where 0.025 = .  

 Figure 2 shows the subgroups estimated using LM with unlimited sample size. Unlike 

CART, RF and SVM, with unlimited number of subjects, the linear model-based methods do not 

yield the perfect subgroup estimation. The corresponding %U in the six models for LM are 89, 79, 

78, 75, 69 and 99 while for OGLASSO with 0.025 =   they are 84, 64, 68, 70, 69 and 99. 

Interestingly, for large sample sizes, as we increase    , %U  decreases, with values of 79, 52, 63, 

66, 69 and 99 for 0.05 =   .   On the other hand, for small to moderate sample sizes, a linear 

model-based method yields good parameter estimates since the number of parameters to estimate 

is small. These can lead to better overall performance of the LM and OGLASSO for small and 

moderate sample sizes compared to more complex CART, RF and SVM. We simulated data based 

on the six models above for n = 400 subjects, 200 in treatment and 200 in control arm. Figure 3 

shows the box plots for the distribution of %U  based on 3000 simulation runs for methods LM, 



41 
 

OGLASSO, SVM, CART and RF. For models 2 and 4, the linear model performs the best followed 

by OGLASSO, SVM, CART and RF. In model 5, the approximation of the best subgroup by a 

linear model is poor, resulting in poor relative performance of the LM The OGLASSO method 

performs better than LM in models 5 and 6, and does similar to in models 1 and 3. Table 7 

compares the variable selection capability of the methods LM and OGLASSO with 2 biomarkers 

present in the prediction model. We see that LM always chooses all the biomarkers present in the 

model. Thus, adding a penalty in the OGLASSO method, ensures a better prediction in the 

presence of noise biomarkers. 

We conclude that linear model-based methods are the best to use for estimation of the 

subgroup based on two biomarkers both of which are associated with treatment response. The %U 

in all subjects generated from Models 1-6 are 71, 50, 63, 71, 67 and 100 respectively.  

3.4.2 Comparison of designs  

We consider a design that estimates the subgroup by maximizing U2 after stage 1, such that 

assignment in stage 2 is inside the subgroup. Stage 3 is enriched based on subgroup estimated at 

the second interim analysis that maximizes U1.  The total sample size in the trial is n = 360 subjects 

with stage-wise sample sizes of  
1 2 3 360 / 3 120n n n= = = = . 

We used some of the models from Section 3.4.1 to simulate the design results, models D1-

D5 below. In these change-point models, we use 0  to denote the prevalence of the biomarker 

space where the treatment effect is higher, than the average treatment effect in all comers, Δ, can 

be computed as 
0  = + . The prevalence of the best subgroup for U1 and U2 is shown in Table 

8.  

Model D1: Model 1 with 0.05, =  0.4 = , c1 = 0.4, yielding 0 0.6 =  and Δ = 0.29. 
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Model D2: Model 4 with 0.05, =  0.35 = , c = 0.85, yielding  
0 0.64 =  and Δ = 0.28. 

Model D3: Model 2 with 0.10, =  0.55 = , c1 = 0.65, c2 = 0.4, yielding 
0 0.21 =  and Δ = 0.21. 

Model D4: Model 2 with 0 = , 0.55 = , c1 = 0.32, c2 = 0.32, yielding
0 0.46 =  and Δ = 0.25. 

Model D5: Model 2 with 0, =  0.30 = , c1 = 0 and c2 = 0, yielding 
0 1.00 =  and Δ = 0.30. 

We use the linear model-based methods from Section 3.2 to estimate the subgroup as they 

performed better than other methods (Section 3.4.1). We used two biomarkers such that either one 

or both of them were effect modifying in all true models considered. The total sample size, n = 

360, were chosen to yield 80% - 90% power in the simulated trials. This corresponds to the average 

effect size of about 0.3. Because of enrichment, the average effect size in the patient population in 

our trial is higher than the average effect size in all patients. In the design, we consider futility 

stopping at the second interim analysis. The futility boundary 1.64b = −  was computed to yield 

the probability of stopping for futility of 0.05 if the true effect size is 0.3.   

Table 8 show the results for %U  and power for testing in an enriched population for the 

design using linear model-based methods, LM and OGLASSO. For OGLASSO, we used 0.05 =   

at interim 1 and 0.05 =  at interim 2.  

The design using LM as a method of subgroup estimation at interims 1 and 2 vs OGLASSO 

performs similarly in terms of %U and power for models D1-D3, with LM performing better in 

D4 and OGLASSO performing the best in D5. OGLASSO tends to choose a much larger subgroup 

as compared to LM. To understand what %U metric means, we computed this measure for the 

subgroup that includes all patients. For scenario D1-D5, %U in all subjects is equal to 83%, 85%, 

72%, 68% and 100% correspondingly. The median of the %U of the estimated subgroup is often 

not higher than the %U corresponding to the subgroup that includes all patients. However, the 

power in the estimated subgroup is much higher resulting in significant increase in power for 
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scenarios D1-D4 compared to a non-enriched trial. The estimation of the subgroup is satisfactory 

except for scenario D5, where there is no subgroup and the treatment effect is the same everywhere.  

%U for the estimated subgroup in this scenario for LM and OGLASSO is 87% and 95% implying 

that the median prevalence of the estimated subgroup is 75% and 91% correspondingly, lower than 

the true prevalence of 100%. The proposed design offers a reasonable balance between quality of 

subgroup estimation and power.  

With a futility look added at the second interim, the power of the design decreases about 

1%. The probability of stopping for futility, is in the range 4-11% under the alternative, while 

about 74% of trials are stopped for futility under the null hypothesis. Table 9 contains the type I 

error rates and the probability of stopping for futility under the null hypothesis.  

Two slight variations of the design were also considered – first that maximizes 
1U  at 

interim 1 and second that does not estimate a subgroup at interim 1, and enrolls everyone in stage 

2.  These designs did not perform very well compared our design (results are available from the 

authors).  

3.5. Discussion 

We considered the problem of estimating the best subgroup and testing for treatment effect 

in a clinical trial. The best subgroup was defined through maximizing the non-centrality parameter, 

utility  ( , ) ( ) ( ) ( )T CU c c c c   = − . We introduced a metric %U  to measure the quality of 

estimation of the subgroup. It is the % of the ratio of the utility in the estimated subgroup to the 

true utility of the underlying model. For several true models of response as a function of treatment 

and biomarkers, we compared four methods of estimation of the best subgroup, linear model, RF, 

CART and SVM. For moderate sample sizes, fitting a linear model-based method with main effect 

and first order pairwise interaction terms performed better that more complex methods such as RF, 
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CART and SVM. Using 0.05 = in the OGLASSO method at interim 1 chooses a large subgroup 

at stage 1, but provides variable selection. As a result, the subject enrolled at stage 2 are based only 

on the important variables. We 0.025 = at interim 2 to zero in on to the correct prevalence. 

We propose a multi-stage enrichment design where subgroup is estimated at both interims 

1 and 2. At the first interim analysis the subgroup is estimated by maximizing the utility U2. The 

three-stage design we proposed can be used for initial assessment of efficacy of treatment that is 

not believed to be efficacious in all patients but might be efficacious in a subgroup of patients. If 

such a treatment is investigated in a trial with all comers, the efficacy signal will be diluted and 

might be missed. Adaptive enrichment allows the signal detection, even when the subgroups of 

patients for whom the treatment is working has rather small prevalence.  
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CHAPTER 4: FINDING A SUBGROUP WITH DIFFERENTIAL TREATMENT 

EFFECT WITH MUTIVARIATE OUTCOME 

 

4.1 Introduction 

Various methods to identify subject subpopulations with better outcomes compared to 

other subjects have been proposed (Song and Chi, 2007; Lipkovich et al, 2011; Loh 2011; 

Renfro 2016; Zhang et al, 2017, 2018). Most of the methods are for studies with a single 

outcome, binary, continuous or time-to-event. In some clinical trials, multivariate outcome is 

considered to evaluate the efficacy of a treatment, for example, treatment effect is evaluated 

using a subject reported outcome as well as a clinical endpoint. This helps to maximize the 

information to answer the question is the treatment works. If a subgroup of subjects exists that 

yields better outcomes, considering multiple outcomes, or a multivariate outcome, can be more 

powerful than estimating the subgroup based on a single outcome.  

There are a handful of publications addressing the problem of finding the best subgroup 

based on multivariate outcome. Loh et al. (2016) extended a previously published method 

Generalized, Unbiased Interaction Detection and Estimation (GUIDE) (Loh et al., 2013) to 

multiple outcomes. GUIDE is a tree-based classification and regression method for subgroup 

estimation. It first tests each covariate for interaction with treatment and chooses the most 

significant covariate to split on by maximizing chi-squared test statistic. The spit that minimizes 

the sum of squares of residuals in the child node is chosen. In case of multiple outcomes GUIDE 
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is applied to each outcome at a time and the biomarker that maximized the sum of chi-squared 

values over all outcomes was chosen. In order to utilize potential correlation between the 

outcomes, Loh et al. (2016) suggested two approaches. In the first, the responses were replaced 

by their principal components or discriminant coordinates while choosing the biomarker to split 

on. The second method considered the fact that each outcome maybe on a different scale or are 

not all as equally important. In the former scenario, they were normalized and in the latter 

scenario, a weighted total sum of squares was used to search for best split of a covariate with 

user defined weights. Igor, Pu and Faltings (2018) considered a problem of finding the subgroup 

that reflects the tradeoff between favorable and unfavorable effects of a treatment. For example, 

two outcomes where the treatment improves the first outcome but worsens the second outcome. 

The best subgroup is defined as a set of subjects set who respond favorably as far as the first 

outcome without responding too poorly as far as the second outcome. The outcomes were 

assumed to follow a multivariate normal, and modeled given the baseline covariates, treatment 

and the cluster affiliation of a subject and incorporating the priors defined for the parameters 

involved. 

Most of the subgroup estimation methods have been developed for parallel group trials 

where subjects are randomized to either treatment or control. We consider estimation the 

subgroup in a parallel group trial and, additionally in a setting of a two-period two-sequence 

crossover. 

 In this chapter, we define the best subgroup is the subgroup that maximizes the power to 

detect the treatment effect with respect to the outcome(s). We propose several approaches to 

estimating the best subgroup in case of a multivariate outcome. The approaches are compared via 

simulations in both parallel group and crossover design settings.  
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4.2 Subgroup Estimation for Multiple Outcomes in a parallel group trial 

 

4.2.1 Setup 

 

In a parallel trial setting, each subject is equally randomized either to the active treatment 

(T = “Active Treatment”) or control (T = “Control”). Let 1 2( , ,..., )MX X X=X  be a vector of 

continuous biomarkers measured at baseline, scaled to [0,1]. We further assume that, as before, K 

continuous responses are measured on each subject, such that higher values indicate improvement 

in the well-being of a subject. Let 1( ,..., )KY Y=Y  be the outcome vector. For the thi  randomized 

subject, the vector 
1 1( ... , ... , )i iM i iK iyx x y t , 1...i n= , represents the observed data, where 1...i iMx x  are 

baseline biomarker values, 1...i iKy y  are K outcome values and it  is the treatment indicator. 

Subject’s response might depend on treatment as well as subject’s biomarkers with Lx1 mean 

vectors ( ) ( | ,T E T= = =μ x Y X x ”Active”) and ( ) ( | ,C E= =μ x Y X x "Control")T =  .   

4.2.2 Methodology 

 

 Let ( )S S X  is any subgroup defined using the values of the biomarker vector .X  We 

define the best subgroup, 
*S , as the one that maximizes the utility 

 ( , ) ( ) ( ) ( )T CU S S S S   = −  (defined earlier) over all possible subgroups S  (Lai, Lavori and 

Liao, 2014; Joshi, Fine, Chu and Ivanova, 2019). Here, ( ) ( )S P S = X  is the prevalence of the 

subgroup and ( )T S  and ( )C S  are the expected responses to the treatment and control in the 

subgroup.. In this Chapter, we will assume 0.5 =  and maximize 

 ( ,0.5) ( ) ( ) ( )T CU S S S S  = −  and denoted it by U.  This function is proportional to the power 

of treatment comparison or, equivalently, the non-centrality parameter in the test for the treatment 

effect.  
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We consider three methods of handling multiple outcomes in subgroup estimation for 

parallel groups. In the first method, for each subject, we define a single outcome 

1( ... ) ;  avg KW Y Y K= + +  as the average of all outcomes. In the second method, a single outcome 

for the subject is defined as  
max 1max( ,..., )KW Y Y= . Here we assume that all the outcomes are of 

the same type and have the same scale, e. g. the vector of endpoints is a multivariate normal and 

all outcomes have the same variance. After the problem with multiple outcomes is converted to 

the problem with a single outcome, W, the subgroup is estimated by one of the methods developed 

for subgroup estimation based on a single outcome. We will omit the subscript of W in the reminder 

of this section as the method described below can be applied to 
avgW   or 

maxW . Specifically, we fit 

a linear model with first order main effects for biomarker and all pairwise interaction terms 

between all available biomarkers. Let *T  be the treatment indicator with * 1T =  for subjects 

randomized to treatment and 
* 1T = −  for subjects on control. We use the observation by Tian et al 

(2014) that treatment does not have to be in the model if the model is fit to WT, that is, outcomes 

of subjects who received the control treatment are multiplied by -1. Multiplying the responses of 

subjects on control are by -1, 

2 2
1

* * * * *

1 1 1 1

( | )
M M M M

m m m m lm l m

m m l m l

E T W T X T X T X X T   
−

= = = = +

= + + +   X . 

Since T* = {-1, 1} with probability 0.5, we can fit a model without treatment: 

1
*

1 1 1

( | )
M M M

m m lm l m

m l m l

E T W X X X 
−

= = = +

= +  X .    (1) 

After the coefficients are estimated from the data, we can compute the expected treatment 

response for the 
thi  subject, 1...i n=  , with biomarker vector iX . Let vector 1

ˆ ˆ( ,..., )nw w  be the 

estimated treatment effects for the set of biomarker vectors 
1 2{ , ,..., }nX X X  in the data set with 
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maximum responses and average response respectively. The definition of the best subgroup is the 

same as in earlier chapters. For each predicted ˆ
iw , we define the corresponding subgroup as the 

set of subjects with predicted response larger than ˆ
iw  that is, { : }ˆ ˆ

jj iw wX  and { : }ˆ ˆ
jj iw wX . 

Then, we compute the estimated prevalence, estimated treatment response and estimated utility of 

this subgroup. Denote the estimated treatment response for which the estimated utility is 

maximized by *

maxw , * ˆ
iw w= , for some i, i = 1,…,n. The best subgroup using the maximum 

outcome *ˆ{ : }j jw wX  , includes subjects with the biomarker vector such that the predicted 

treatment response for that vector is higher than 
*w . We refer to the first method of subgroup 

estimation as avgLM and to the second as maxLM . 

The third method of subgroup estimation is based on the idea of covariate partitioning 

introduced by Guo, Ji and Catenacci (2016). A set of hyperplanes of the form: 

1 1 ... M Ma X a X c+ + =  with 2 2

1 ... 1Ma a+ + = divide the covariate space into two non-overlapping 

partitions. A set of pairs of partitions generated by the set of hyperplanes and the entire covariate 

space act as a candidate set of subgroups. We choose the one that minimizes the p-value for testing 

for the treatment effect in the subgroup based on K outcomes, or, equivalently, the one that 

maximizes power or maximizes U. The p-value is obtained using the method of choice to adjust 

for multiple comparisons. We refer to this method as the hyperplane method. A variation on the 

hyperplane method is also considered, incorporating variable selection in order to reduce the 

number of biomarkers used. This is based on least absolute shrinkage and selection operator 

method or LASSO (Tibshirani, 1996). 
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 Consider a linear model of the form defined earlier in (1). In LASSO, the parameter 

coefficients are estimated by minimizing the residual sum of squares with an additive penalty term 

applied to sum of absolute values of the coefficients i.e.  

1 1
* 2

1 1 1 1 1 1 1

( ) | | | |
n M M M M M M

i i m m lm l m m lm

i m l m l m l m l

T W X X X    
− −

= = = = + = = = +

 
− − + + 

 
       . 

We modify this slightly by putting a penalty based on whether a biomarker is included or 

not, rather than on its coefficient. That is, we propose minimizing  

p-value + 
1[ ( 0) ... ( 0)]MI a I a  + +  , such that (0,1)  . This small positive term adds a 

penalty if the hyperplane chosen to partition the covariate space includes more biomarkers. We 

refer to this method as the hyperplane with penalty method.   

4.3 Subgroup Estimation with Multiple Outcomes in a crossover trial 

 

Crossover designs are more efficient compared to parallel group trials with respect to 

power of the treatment comparison and subgroup estimation.  Consider a two-period two-

sequence crossover trial with possible sequences “TC” or “CT”. Here we assume that there is no 

carry over effect and that we are dealing with a chronic disease so that a subject cannot be cured 

in period 1. As before 1 2( , ,..., )MX X X=X  is a vector of continuous biomarkers. In order to 

simplify notation, we will use ijY  for the difference of the outcomes from the 
thi   subject on 

treatment and control 1... , 1...i n j K= =  . The only difference from the methods in section 4.2 is 

that we fit a model to outcome W defined above instead of multiplying the outcome by T. 

Alternatively, one can use the same model as in section 4.2 and additionally model the 

correlation between the outcomes from the same subject. The hyperplane methods described in 

section 4.2.2 is applied similarly in a crossover setting. 
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4.4 Simulations 

 

We compared the four subgroup estimation methods discussed in sections 2 and 3 in terms 

of %U for parallel and crossover trials. The metric %U was introduced in Joshi, Nguyen and 

Ivanova (2019) and is defined as the ratio of the value of the utility function in the estimated 

subgroup over the utility for the best subgroup. We use a sample size of n = 200 and n = 400 for 

crossover and parallel trials respectively and run 3000 simulated trials. We considered scenarios 

with three correlated continuous outcomes, K = 3. We consider two independent biomarkers 1X  

and 2X  with uniform (0,1) distribution. The means of all three outcomes in control group are set 

to 0, 0kC = , 1,2,3k = . The 2 x2K K  variance-covariance matrix is defined with 

1( , ) ,kt kCcorr y y = ' ' 2( , ) ( , )kT k T kC k Ccorr y y corr y y = = , 'k k  and 
' 3( , )lt l Ccorr y y = , 'k k  

and 
2  is the common, known variance. For the parallel group only non-zero entries for 

' ' 2( , ) ( , )kT k T kC k Ccorr y y corr y y = = . In the crossover trial, the 2 x2K K  variance-covariance 

matrix is defined with all non-zero correlations, 
' ' 2( , ) ( , )kT k T kC k Ccorr y y corr y y = = . We assume 

1 0.5 = , 2 0.3 = ,  
3 0.15 =  and 

2 1 = . In order to implement the hyperplane method, we 

consider a set of pre-specified candidate lines (Figure 4). We use a Hochberg step-up method to 

get the adjusted p-values and set the overall p-value for treatment effect to equal to the minimum 

adjusted p-value. 

The methods were compared using the following true models. In models 1, 4 and 7 all 

outcomes are associated with the treatment and have the same mean response. In models 2, 5 and 

8 only two of the outcomes are associated with the treatment with the same mean response. In 

models 3, 6 and 9, only one outcome is associated with the treatment. For each model, the best 
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true subgroup *S  is specified along with its prevalence, * , mean treatment difference, *  and 

the true utility, 
* *U  = . The scenarios for data generation are listed below and also 

described in Supplemental Table 1, along with the corresponding true subgroup definitions. 

The scenarios for data generation are listed below.  

Model 1: 
10.5 ( 0.35)kT I X =  ,  1,2,3k =  with *

1{ 0.35}S X=  , * 0.65 = , * 0.5 =  and 

0.4U = .  

Model 2: 
1 2 10.5 ( 0.35)T T I X = =  , 3 0T = . True subgroup values same as Model 1. 

Model 3: 
1 10.5 ( 0.35)T I X =  , 

2 3 0T T = = . True subgroup values same as Model 1. 

Model 4: 
10.5 ( 0.57)kT I X =  ,  1,2,3k =  with 

*

1{ 0.57}S X=  , 
* 0.43 = , 

* 0.5 =  and

0.33U =  .  

Model 5: 
1 2 10.5 ( 0.57)T T I X = =  , 3 0T = . True subgroup values same as Model 4. 

Model 6: 
1 10.5 ( 0.57)T I X =  , 

2 3 0T T = = . True subgroup values same as Model 4. 

Model 7 
1 20.5 ( 0.5 & 0.5)kT I X X =   ,  1,2,3k =  with 

*

1 2{ 0.5 & 0.5}S X X=   , * 0.25 =

, * 0.5 = , and U = 0.25. 

Model 8: 
1 2 1 20.5 ( 0.5 & 0.5)T T I X X = =   , 3 0T = . True subgroup values same as Model 

7. 

Model 9: 
1 1 20.5 ( 0.5 & 0.5)T I X X =   , 

2 3 0T T = = . True subgroup values same as Model 

7. 

Model 10: 0.3kT = , 1,2,3k =    with 
*

1 2{ 0 & 0}S X X=   , 
* 1.00 = , 

* 0.3 =  and 0.3U = . 

Model 11: 1 0.3T = , 
2 3 0T T = = . True subgroup values same as Model 10. 

Model 12: 1 0.3T = . True subgroup values same as Model 10. 
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For models 1, 2 and 3, the utility computed in all subjects, allU is 0.35. For models 4,5 and 6, allU

is 0.12, for models 7,8 and 9, allU  is 0.21 while for models 10,11 and 12 it is 0.3. The 

corresponding % allU  values are 87%, 48%, 64% and 100%. 

Table 10 (more detailed results are present in Supplemental table 2) compares the three 

methods of subgroup estimation, avgLM ,hyperplane and hyperplane with penalty based on %U for 

models 1-10 for a parallel trial with n = 400. For parallel trial, we do not run simulations for maxLM

, but only compare avgLM and the two hyperplane methods. Table 11 (more detailed results are 

present in Supplemental table 3) compares maxLM , avgLM  and hyperplane methods for a crossover 

trial setting with n = 100. We assume 
510 −= as the penalty.  

In Table 10, for models 1, 2 and 3, if the candidate lines coincide with the underlying 

subgroup, then the hyperplane methods do well, and are better compared to avgLM . When the 

candidate lines do not coincide with the best subgroup boundary, the avgLM does better as seen in 

models 4,5 and 6. Within the hyperplane and avgLM methods, as expected, the performance 

becomes worse as the number of outcomes associated with treatment reduce. That is, %U in 

model 1 is better than that in model 2, which is better than %U in model 3; same trend continues 

for models 4,5 and 6 and models 7, 8, and 9. This decrease is larger in avgLM than in hyperplane. 

When the best subgroup includes everyone, avgLM does better than the hyperplane method. The 

%X  column shows the percentage of trials where the hyperplane chosen uses the exact number 

of biomarkers used to define the true subgroup. For models 1-6, it is the % of times only 1X  was 

chosen to draw the hyperplane that minimizes the p-value; for models 7-9, %X has the % of 
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times both 1X and 2X  are used to draw the hyperplane chosen. For models 10-12, it reports the 

% of times the entire biomarker space is chosen. Between the two hyperplane methods, the one 

with the penalty does almost as good or better than the one without penalty in terms of %U for 

all models. The penalty method either is equivalent or improves the performance of the 

hyperplane method with respect to variable selection, except for models 1-2. 

We notice, in Table 11, the same trend when comparing avgLM and hyperplane methods, 

as well as within each method as in Table 10. For models 3, 7 and 9, we expect maxLM to do 

better than avgLM , but similar to the hyperplane method. But interestingly, the maxLM always 

estimates the best subgroup as everyone, which is unexpected and requires more investigation. 

4.5 Discussion 

 

In this chapter, we aim to establish a method for estimating a subgroup with higher 

treatment effect as compared to all, when there are multiple continuous correlated outcomes and 

multiple biomarkers available. We consider both a crossover and a parallel group trial setting. 

Based on our results, we conclude that in the case of multiple outcomes, drawing a single 

hyperplane to divide the covariate space performs better than prediction based on a linear model. 

The addition of penalty on the number of biomarkers used to define the hyperplane leads to 

better biomarker selection compared to the hyperplane method without penalty while keeping 

%U similar. Future work would involve using multiple outcomes of different data types. We 

could also consider more than one hyperplane for partitioning the subgroup in order to account 

for more complex underlying subgroup. These estimation methods can also be integrated into a 

design in order to develop an adaptive enrichment design. 
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CHAPTER 5: FUTURE RESEARCH 

 

In this dissertation, we considered subgroup estimation in a randomized clinical trial 

designs, performed both post-hoc and prospectively. We also considered enrichment designs to 

increase power of the trial by prospectively enriching patient population during the trial.  

In Chapter 2, we looked at how to estimate the subgroup and test for treatment effect in a 

post-hoc analysis of data from a clinical trial with a single predictive biomarker in all-comers. In 

Chapter 3, we compared several methods for subgroup estimation in the presence of multiple 

biomarkers and developed a three-stage design that enriches in the subgroup estimated at interim. 

Results showed that such a trial design will have higher power for testing for treatment effect, as 

compared to an all-comers trial. Chapter 4 considered the problem of subgroup estimation with 

multiple outcomes and multiple biomarkers available. Several approaches to handle multiple 

outcomes were compared for both parallel and crossover trial settings.  

5.1 Limitations 

 We define the subgroup as the subgroup that maximizes a utility function U . This 

approach provides for a trade-off between the size of the subgroup and the treatment effect in the 

subgroup. A limitation of this approach and, hence, the methods we have developed for this 

approach in Chapters 2-4, is that the treatment effect in the estimated subgroup can be lower than 

the clinically meaningful treatment effect. As illustrated in Chapter 3, subgroup estimation 

methods, including variable selection methods, require sample sizes much larger than those used 

in clinical trials. Therefore, subgroup estimation performed during the trial might not yield an 

accurate subgroup. This is a major limitation of prospective enrichment in a clinical trial. In 

Chapter 4, we proposed a subgroup estimation method that is based on the smallest p-value 
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across multiple outcomes. Since we are essentially looking for the best outcome among all 

available outcomes, the method is not appropriate in cases  if one of the treatments is harmful as 

measured by one or more of the outcomes and, at the same time, the treatment is rather 

efficacious as measured by one of the outcomes. That is, this method is not recommended in the 

case where multiple outcomes on a patient are negatively correlated.  

5.2 Future Work 

 We illustrated proposed methods by simulations with continuous biomarkers and 

continuous outcomes. For Chapter 2, simulations assuming a binary or time-to-event outcome 

could be run to confirm the conclusions seen for continuous outcome. In Chapter 3, we could 

consider binary outcome to evaluate the methods (logistic regression instead of linear regression 

model etc.). Time-to-event data is challenging in trial with prospective enrichment as in Chapter 

3 since the trial data may not have independent stage-wise data if the subjects have long follow-

up times. In addition, we can determine the sample size while planning a trial based on the 

enrichment design described in section 3.3. The test-statistic defined to test the hypothesis of 

interest is 1 1 2 2 3 3Z w Z w Z w Z= + + , where 1

1 2 3

k

n
w

n n n
=

+ +
, 1,2,3k = . For each stagewise 

statistic,
, ,

2 2

( )
~ ,1

k T k C k

k

k k

n
Z N

n n

 

 

 
− 

 
+ 

 

, where ,T k and ,C k are the mean response in the treated and 

control group respectively, at the 
thk  stage, kn is the stagewise sample size and 

2  is the 

common variance across treatment groups and stages. Since 
kZ ’s are conditionally independent,  
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we get 
, ,

2 2
1

( )
~ ,1

K
k T k C k

k

k k

w
Z N

n n

 

 =

 
− 

 
+ 

 

 , asymptotically. This can be used in the standard sample 

size formula. 

  For Chapter 4, one can develop a modification of the hyperplane method that estimates the best 

subgroup by maximizing the class of utilities U with various values of γ and not only γ = 0.5. 
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APPENDIX: FIGURES AND TABLES 

 

Figure 1: Best Subgroup for models 1-6 
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Figure 2: Large sample subgroup estimation for models 1-6 by linear model method with 

                two biomarkers for LM and OGLASSO 

 

 

 

  

Linear Model 
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Figure 3 : Comparison of the Linear Model (LM), Overlapping Group LASSO (OGLASSO), 

Support Vector Machines (SVM), Classification and Regression Trees (CART) and Random 

Forests (RF) for subgroup estimation in a clinical trial with 400 patients using box plots for the 

distribution of %U. Horizontal line represents %U in all subjects. 
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Figure 4: Candidate lines for subgroup estimation using the hyperplane method. 
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Table 1:
 
Effect size in all (ESall), effect size in the best subgroup (ESS) and the prevalence of the 

best subgroup, π*, corresponding to U1 and U2 for Model 3, E[Y] = XaT .
 

 

 

 

 

 

 

 

 

 

  

  
1U  2U  

a  
allES  SES

 
*  SES

 
*  

0.5 0.66 0.73 0.85 0.69 0.96 

1 0.49 0.66 0.65 0.58 0.84 

1.5 0.39 0.63 0.52 0.52 0.74 

2 0.33 0.62 0.43 0.47 0.68 
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Table 2: Type I error rate where the best subgroup is estimated by maximizing utilities U1 and U2 

with estimation by the non-parametric (NP) method and parametric (P) method based on linear 

model with interaction. The type I error rate is evaluated for tests AllZ , 
,All SZ , 

SZ , ZS, and for the 

Hochberg (HC) procedure applied to AllZ  and ZS. 
SZ  is a naïve test for the treatment effect in the 

subgroup that is not expected to preserve the type I error rate and ZS is a permutation test in 

subgroup. The total sample size in the trial is 500 and the number of simulation runs is 10000. 

 

 

 

 

 

  

Method 
AllZ

 ,All SZ
 SZ  ZS HC 

Null scenario with no biomarker ( X ) or treatment effect ~ (0,1)X N  

U1, NP 0.048 0.051 0.063 0.050 0.048 

U2, NP 0.048 0.051 0.062 0.050 0.047 

U1, P 0.048 0.050 0.059 0.052 0.048 

U2, P 0.048 0.049 0.058 0.051 0.045 

Null scenario with no biomarker ( X ) or treatment effect ~ (0,1)X U  

U1, NP 0.045 0.050 0.063 0.049 0.045 

U2, NP 0.045 0.050 0.063 0.050 0.046 

U1, P 0.050 0.049 0.053 0.049 0.047 

U2, P 0.050 0.051 0.053 0.053 0.047 
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Table 3: Change-point model with parameters δ, θ and π0. Best subgroup is estimated by 

maximizing utilities U1 and U2 with estimation by the non-parametric (NP) method and 

parametric (P) method based on linear model with interaction. Column * shows the median, 

25% and 75% for the prevalence of the estimated subgroup. Power is for tests AllZ , 
,All SZ , ZS, 

which is a permutation-based test of the treatment effect in the subgroup, and for the Hochberg 

(HC) procedure applied to AllZ  and ZS. The best power for each test ZAll,S, ZS, and HC in each 

scenario is in bold. 

    0  
Method *̂  AllZ

 ,All SZ
 SZ  HC 

0.10 0.28 0.40 True 
1

* 0.40U = , 
2

* 1U =  0.66 0.72(U1) 

0.66(U2) 

0.77(U1) 

0.66(U2) 

- 

   U1, NP 0.54 (0.40, 0.66) 0.66 0.66 0.63 0.69 

   U2, NP 0.67 (0.55, 0.80) 0.66 0.67 0.64 0.68 

   U1, P 0.63 (0.50, 0.81) 0.66 0.65 0.61 0.65 

   U2, P 0. 81 (0. 69, 0.91) 0.66 0.67 0.65 0.66 

0.03 0.35 0.50 True 
1

* 0.50U = , 

2

* 0.50U =  

0.63 0.75 0.85 - 

   U1, NP 0.52 (0.43, 0.64) 0.63 0.68 0.68 0.70 

   U2, NP 0.64 (0.53, 0. 75) 0.63 0.68 0.70 0.70 

   U1, P 0.58 (0.42, 0.74) 0.63 0.63 0.62 0.65 
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   U2, P 0.77 (0.65, 0.87) 0.63 0.68 0.68 0.67 

0.18 0.18 0.50 True 
1

* 1U = , 
2

* 1U =  0.85 0.85 0.85 - 

   U1, NP 0.65 (0.52,0.78) 0.85 0.81 0.74 0.83 

   U2, NP 0.79 (0.67, 0.91) 0.85 0.83 0.77 0.83 

   U1, P 0.79 (0.69, 0.72) 0.85 0.81 0.75 0.82 

   U2, P 0.90 (0.80, 0.97) 0.85 0.84 0.81 0.83 
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Table 4: Bivariate normal model with parameters δ, T , C , 2

T . Best subgroup is estimated by 

maximizing utilities U1 and U2 with estimation by the non-parametric (NP) method and 

parametric (P) method based on linear model with interaction. Column * shows the median, 

25% and 75% for the prevalence of the estimated subgroup. Power is for tests AllZ , 
,All SZ , ZS, 

which is a permutation based test of the treatment effect in the subgroup, and for the Hochberg 

(HC) procedure applied to AllZ  and ZS. The best power for each test ZAll,S, ZS, and HC in each 

scenario is in bold. 

  T  C  2

T  Method *  AllZ  ,All SZ  ZS HC 

0.25 0.25 0.10 2 True 
1

* 0.55U =

2

* 0.75U =  

0.63 0.74(U1) 

0.72(U2) 

0.84(U1) 

0.75(U2) 

- 

    U1, NP 0.51 (0.39, 0.62) 0.63 0.71 0.75 0.75 

    U2, NP 0.64 (0.53, 0.76) 0.63 0.72 0.76 0.74 

    U1, P 0.45 (0.30, 0.60) 0.63 0.68 0.72 0.73 

    U2, P 0.68 (0.58, 0.78) 0.63 0.72 0.77 0.75 

0.28 0 0 2 True 
1

* 1.00U =

2

* 1.00U =  

0.72 0.72 0.72 - 

    U1, NP 0.72 (0.59, 0.87) 0.72 0.63 0.52 0.65 

    U2, NP 0.85 (0.70, 0.94) 0.72 0.66 0.57 0.65 
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    U1, P 0.88 (0.66, 0.99) 0.72 0.67 0.59 0.66 

    U2, P 0.95 (0.84, 0.99) 0.72 0.69 0.64 0.67 

0.25 0.20 0.20 1 True 
1

* 1.00U =

2

* 1.00U =  

0.80 0.80 0.80 - 

    U1, NP 0.67 (0.54, 0.85) 0.80 0.72 0.60 0.75 

    U2, NP 0.84 (0.67, 0.94) 0.80 0.75 0.67 0.76 

    U1, P 0.89 (0.73, 0. 99) 0.80 0.74 0.68 0.74 

    U2, P 0.96 (0.87,0.99) 0.80 0.77 0.73 0.76 
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Table 5: A linear model with interaction   aE Y X T= , total sample size of N. Best subgroup is 

estimated by maximizing utilities U1 and U2 with estimation by the non-parametric (NP) method 

and parametric (P) method based on linear model with interaction. Column * shows the median, 

25% and 75% for the prevalence of the estimated subgroup. Power is for tests AllZ , 
,All SZ , ZS, 

which is a permutation based test of the treatment effect in the subgroup, and for the Hochberg 

(HC) procedure applied to AllZ  and ZS. The best power for each test ZAll,S, ZS, and HC in each 

scenario is in bold. 

a N  Method *  AllZ
 ,All SZ

 
ZS HC 

1 100 True 
1

* 0.66U =  

 
2

* 0.84U =  

0.70 0.74(U1) 

0.73(U2) 

0.77(U1) 

0.72(U2) 

- 

  U1, NP 0.67 (0.56, 0.76) 0.70 0.74 0.69 0.73 

  U2, NP 0.73 (0.63, 0.83) 0.70 0.74 0.69 0.72 

  U1, P 0.68 (0.56, 0.79) 0.70 0.73 0.70 0.73 

  U2, P 0.78 (0.69, 0.88) 0.70 0.74 0.72 0.73 

1.5 156 True 
1

* 0.53U =  

2

* 0.74U =  

0.70 0.76(U1)  

0.75(U2) 

0.83(U1) 

0.74(U2) 

- 

  U1, NP 0.54 (0.43, 0.66) 0.70 0.73 0.69 0.73 

  U2, NP 0.65 (0.54, 0.77) 0.70 0.73 0.70 0.72 
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  U1, P 0.58 (0.44, 0.71) 0.70 0.72 0.70 0.74 

  U2, P 0.74 (0.64, 0.84) 0.70 0.73 0.74 0.73 

2 228 True 
1

* 0.44U =  

2

* 0.68U =  

0.71 0.80(U1)  

0.77(U2) 

0.88(U1) 

0.76(U2) 

- 

  U1, NP 0.47 (0.36, 0.60) 0.71 0.76 0.76 0.78 

  U2, NP 0.61 (0.48, 0.73) 0.71 0.76 0.76 0.76 

  U1, P 0.51 (0.37, 0.64) 0.71 0.74 0.75 0.77 

  U2, P 0.71 (0.61, 0.80) 0.71 0.76 0.79 0.78 
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Table 6: Data analysis of a phase 2 study of 1C4D4 in patients with metastatic pancreatic cancer. 

Best subgroup is selected based on utilities U1 and U2 with estimation by the non-parametric 

(NP) approach using the logrank test and parametric approach (P) by fitting a Cox model with 

interaction. The adjusted Hochberg p-value is to test the intersection hypothesis of no treatment 

effect in all and in the subgroup.  

  

Method Cutoff 

 

Prevalence of 

the estimated 

subgroup 

with H-

SCORE > 

cutoff 

Median 

survival 

in 

1C4D4 

arm 

Median 

survival 

in 

control 

arm 

P-value 

in the 

subgroup 

Hochberg 

p-value 

U1, NP 0.5 0.78 8.08 5.03 0.50 0.38 

U2, NP 0.5 0.78 8.08 5.03 0.50 0.38 

U1, P 55.5 0.66 9.17 5.52 0.57 0.38 

U2, P 55.5 0.66 9.17 5.52 0.57 0.38 

All 

patients 

0 1 7.92 5.52 0.19 - 
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Table 7 : Proportion of times covariates were selected using the overlapping group LASSO method 

for Models 1-6 using 2-biomarkers. Predictive column is the proportion of trials where the right 

set of predictive biomarkers were selected. Subset is the proportion of trials when an exact subset 

of the right set of predictive biomarkers were selected. Noise is the proportion to trials when at 

least one noise biomarker was selected. No Biomarker is the proportion of trials where no 

biomarker (predictive or noise) was selected. 

Method Models 

Predictive 

Set   

Subset of 

the 

Predictive 

Set  

Noise No 

Biomarker 

LM 

 

1 0 - 1 0 

2 1 0 - 0 

3 1 0 - 0 

4 1 0 - 0 

5 1 0 - 0 

6 1 0 - 0 

OGLASS

O 

 

1 0.16 - 0.82 0.02 

2 0.81 0.15 - 0.04 

3 0.76 0.19 - 0.05 
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4 0.80 0.18 - 0.03 

5 0.69 0.23 - 0.07 

6 0.78 0.17 - 0.04 
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Table 8 : Results for comparing design 2 1U U using LM and OGLASSO for models D1-D5. 

Column  shows the true subgroup prevalence in the first row, and the median, 25% and 75% 

for the prevalence of the estimated subgroup at the second interim analysis for each of the 

designs. Column %U shows the median, 25% and 75% of the percentage of the true utility 

estimated in the design at the second interim analysis. Power is for tests AllZ , based on all 

subjects enrolled and Z  . The power incorporating the single futility look at the second interim 

analysis is given by .fZ   The proportion of trials stopped for futility is given by .fp  Total sample 

size used is n = 360.  The best power and %U  for the best method for each model is in bold.  

 

Model   %U  Z   fZ   
fp  

D1, 
1

0.60U = , 
2

0.60U = , AllZ = 0.78 

LM  0.70 (0.55, 0.83) 84 (77, 89) 0.87 0.87 0.04 

OGLASSO  0.80 (0.62, 0.99) 84 (81, 88) 0.88 0.87 0.04 

D2, 
1

0.64U = , 
2

0.64U = , AllZ = 0.73 

LM 0.69 (0.54, 0.82) 84 (74, 90) 0.82 0.82 0.05 

OGLASSO 0.81 (0.60, 0.99) 85 (80, 88) 0.81  0.80 0.06 

D3, 
1

0.21U = , 
2

1.00U = , AllZ = 0.53 

LM 0.58 (0.41, 0.74) 75 (71, 79) 0.66 0.65 0.10 

OGLASSO 0.67 (0.44, 0.94) 74 (71, 77) 0.68 0.67 0.11 
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D4, 
1

0.46U = , 
2

0.46U = , 
AllZ = 0.66 

LM 0.64 (0.48, 0.79) 75 (70, 80) 0.86 0.85 0.05 

OGLASSO 0.73 (0.54, 0.94) 73 (68, 79) 0.83 0.82 0.05 

D5, 
1

1.00U = , 
2

1.00U = , 
AllZ = 0.81 

LM 0.75 (0.57, 0.89) 87 (76, 94) 0.81 0.81 0.05 

OGLASSO 0.91 (0.69, 1.00) 95 (83, 100) 0.82 0.81 0.05 
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Table 9 : Type I error rate for the enrichment design for tests Z  and 
fZ  . The proportion of trials 

stopped for futility, 
fp are also presented.  Total sample size in the trial is n = 360.   

Z   fZ   
fp  

0.051 0.022 0.74 
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Table 10 :  Comparison for four methods: LMmax, LMavg, hyperplane and hyperplane with 

penalty in terms of %U, and estimated prevalence *̂  in a parallel trial. Median values are 

reported. %X  denotes the proportion of trials for which the right set of biomarkers were 

used to draw the hyperplane. The %X values for scenarios where the best subgroup is based 

both biomarkers is in ().   

 

 LMavg Hyperplane 

Hyperplane with  

penalty 

Model %U *̂  %U *̂  %X  %U *̂  %X  

1 89 0.66 91 0.65 68 88 0.65 61 

2 85 0.64 90 0.65 66 89 0.65 62 

3 74 0.52 89 0.65 62 88 0.65 60 

4 85 0.52 82 0.50 60 87 0.50 65 

5 79 0.50 81 0.50 60 83 0.50 63 

6 68 0.42 75 0.50 54 75 0.50 56 

7 78 0.35 70 0.35 (48) 70 0.35 (46) 

8 71 0.36 68 0.35 (45) 68 0.35 (44) 

9 58 0.33 61 0.35 (41) 61 0.35 (40) 

10 94 0.88 86 0.80 12 88 0.80 30 



78 
 

11 74 0.54 82 0.65 8 83 0.65 16 

12 89 0.79 82 0.65 8 83 0.65 15 
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Table 11 : Comparison for four methods: LMmax, LMavg, hyperplane and hyperplane with 

penalty in terms of %U, and estimated prevalence *̂  in a crossover trial. Median values are 

reported. %X  denotes the proportion of trials for which the right set of biomarkers were 

used to draw the hyperplane. The %X values for scenarios where the best subgroup is based 

both biomarkers is in ( ). 

 

 LMavg LMmax Hyperplane 

Hyperplane 

with penalty 

Model %U *̂  %U *̂  %U *̂  %X  %U *̂  %X  

1 89  0.66  82  0.98  90  0.65  66 89  0.65  62 

2 85  0.63  81  0.98  90  0.65  64 89  0.65  61 

3 73  0.53 81  0.99  88  0.65  60 88  0.65  60 

4 86  0.51 67  0.96  80  0.50  59 82  0.50  62 

5 79  0.50 67  0.98  76  0.50  56 80  0.50  59 

6 67  0.42 66  0.98  74  0.50  52 74  0.50  53 

7   79  0.34  51  0.97  69  0.35  (43) 69  0.35  (43) 

8 71 0.36  51  0.98  64  0.35  (41) 64  0.35  (40) 

9 58 0.33  51  0.98  60  0.35  (37) 60  0.35  (37) 

10 94 0.88  99  0.99  88  0.80  13 89  0.80  29 
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11 74  0.54  99  0.99  82  0.65  9 83  0.65  15 

12 88  0.78  88  0.78  82  0.65 9 82  0.65  15 
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Supplemental Table 1: Models used to generate data to compare the subgroup estimations 

methods. #Outcome represents the number of outcomes associated with the treatment and % allU  

is the %U  value including all subjects and. *S  is the true subgroup, *  is the true treatment 

difference and *  is the underlying prevalence of the subgroup. U  is the utility value in the 

model. 

 

Model #Outcome % allU  *S  *  *  U  

1 3 

87 1 0.35X   0.50 0.65 0.40 2 2 

3 1 

4 3 

48 1 0.57X   0.50 0.43 0.33 5 2 

6 1 

7 3 

64 1 20.50 & 0.50X X   0.50 0.25 0.25 8 2 

9 1 

10 3 

100 1 20 & 0X X   0.30 1.00 0.30 11 1 

12 1 
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Supplemental Table 2: Comparison for three methods LMavg , hyperplane and hyperplane 

with penalty in terms of %U, estimated prevalence *̂ and mean treatment difference *̂ in a 

parallel group trial. Median, 25th and 75th percentile reported. 

 

  LMavg   Hyperplane  

 %U *̂  
*̂  %U *̂  

*̂  

1 89 (85, 93) 0.66 (0.56, 0.77) 0.45 (0.40, 0.49) 91 (82, 100) 0.65 (0.65, 0.65) 0.49 (0.41, 0.50) 

2 85 (79, 89) 0.64 (0.51, 0.77) 0.43 (0.39, 0.49) 90 (82,100) 0.65 (0.65, 0.65) 0.49 (0.41, 0.50) 

3 74 (60, 82) 0.52 (0.35, 0.70) 0.40 (0.34, 0.49) 89 (80, 100) 0.65 (0.50, 0.65) 0.49 (0.40, 0.50) 

4 85 (79, 91) 0.52 (0.45, 0.67) 0.40 (0.34, 0.44) 82 (71, 91) 0.50 (0.35, 0.50) 0.42 (0.33, 0.48) 

5 79 (71, 87) 0.50 (0.39, 0.64) 0.38 (0.30, 0.45) 81 (70, 91) 0.50 (0.35, 0.50) 0.42 (0.32, 0.48) 

6 68 (54, 79) 0.42 (0.27, 0.60) 0.34 (0.24, 0.44) 75 (68, 91) 0.50 (0.35, 0.50) 0.42 (0.30, 0.47) 

7 78 (67, 85) 0.35 (0.26, 0.50) 0.33 (0.24, 0.44) 70 (59, 80) 0.35 (0.20, 0.50) 0.25 (0.19, 0.34) 

8 71 (59, 82) 0.36 (0.25, 0.54) 0.28 (0.19, 0.39) 68 (50, 79) 0.35 (0.20, 0.50) 0.25 (0.16, 0.34) 

9 58 (30, 73) 0.33 (0.22, 0.52) 0.21 (0.12, 0.33) 61 (35, 78) 0.35 (0.20, 0.50) 0.24 (0.12, 0.33) 

10 94 (88, 98) 0.88 (0.78, 0.97) 0.30 (0.30, 0.30) 86 (76, 90) 0.80 (0.65, 0.80) 0.30 (0.29, 0.30) 

11 74 (59, 85) 0.54 (0.35, 0.71) 0.30 (0.29, 0.31) 82 (70, 90) 0.65 (0.50, 0.80) 0.30 (0.29, 0.30) 

12 89 (81, 95) 0.79 (0.67, 0.90) 0.30 (0.30, 0.30) 82 (71, 90) 0.65 (0.50, 0.80) 0.30 (0.29, 0.30) 
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  Hyperplane with penalty  

Model %U *̂  
*̂  

1 88 (80, 100) 0.65 (0.65, 1.00) 0.49 (0.33, 0.50) 

2 89 (80, 100) 0.65 (0.65, 0.80) 0.50 (0.34, 0.50) 

3 88 (80, 100) 0.65 (0.65, 0.80) 0.49 (0.38, 0.50) 

4 87 (70, 92) 0.50 (0.35, 0.50) 0.43 (0.33, 0.49) 

5 83 (70, 91) 0.50 (0.35, 0.50) 0.42 (0.33, 0.49) 

6 75 (67, 91) 0.50 (0.35, 0.50) 0.42 (0.30, 0.48) 

7 70 (55, 79) 0.35 (0.20, 0.50) 0.25 (0.19, 0.34) 

8 68 (50, 79) 0.35 (0.20, 0.50) 0.25 (0.16, 0.34) 

9 61 (35, 77) 0.35 (0.20, 0.50) 0.24 (0.12, 0.33) 

10 88 (78, 98) 0.80 (0.65, 1.00) 0.30 (0.29, 0.30) 

11 83 (70, 91) 0.65 (0.50, 0.80) 0.30 (0.29, 0.30) 

12 83 (71, 91) 0.65 (0.50, 0.80) 0.30 (0.29, 0.30) 
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Supplemental Table 3: Comparison for four methods: LMmax, LMavg, the hyperplane method 

and the hyperplane with penalty in terms of %U, estimated prevalence *̂ and mean 

treatment difference *̂  in a crossover trial. Median, 25th and 75th percentile reported. 

 
 

  LMavg   LMmax  

 %U *̂  
*̂  %U *̂  

*̂   

1 89 (85, 92) 0.66 (0.56, 0.76) 0.45 (0.40, 0.49) 82 (81, 83) 0.98 (0.95, 0.99) 0.33 (0.33, 0.34) 

2 85 (79, 89) 0.63 (0.51, 0.76) 0.43 (0.38, 0.49) 81 (80, 83) 0.98 (0.96, 0.99) 0.33 (0.33, 0.34) 

3 73 (60, 82) 0.53 (0.36, 0.69) 0.40 (0.34, 0.49) 81 (80, 82) 0.99 (0.97, 0.99) 0.33 (0.32, 0.33) 

4 86 (79, 91) 0.51 (0.44, 0.61) 0.40 (0.34, 0.45) 67 (66, 69)  0.96 (0.91, 0.99) 0.22 (0.22, 0.33) 

5 79 (71, 88) 0.50 (0.39, 0.63) 0.38 (0.31, 0.45) 67 (65, 68) 0.98 (0.94, 0.99) 0.22 (0.21, 0.33) 

6 67 (54, 78) 0.42 (0.28, 0.49) 0.33 (0.25, 0.43) 66 (65, 67) 0.98 (0.96, 0.99) 0.22 (0.21, 0.22) 

7 79 (67, 85) 0.34 (0.26, 0.49) 0.34 (0.24, 0.41) 51 (50, 53) 0.97 (0.93, 0.99) 0.13 (0.12, 0.13) 

8 71 (58, 82) 0.36 (0.26, 0.55) 0.28 (0.19, 0.39) 51 (50, 52) 0.98 (0.95, 0.99) 0.13 (0.12, 0.13) 

9 58 (30, 73) 0.33 (0.24, 0.53) 0.20 (0.12, 0.33) 51 (49, 52) 0.98 (0.96, 0.99) 0.13 (0.12, 0.13) 

10 94 (88, 98) 0.88 (0.78, 0.96) 0.30 (0.30, 0.30) 99 (98, 100) 0.99 (0.98, 1.00) 0.30 (0.20, 0.30) 

11 74 (59, 84) 0.54 (0.35, 0.71) 0.30 (0.30, 0.30) 99 (98, 100) 0.99 (0.97, 0.99) 0.30 (0.30, 0.30) 

12 88 (81, 95) 0.78 (0.66, 0.89) 0.30 (0.30, 0.30) 88 (81, 95) 0.78 (0.66, 0.89) 0.30 (0.30, 0.30) 
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 Hyperplane   Hyperplane with 

penalty 

 

Model %U *̂  
*̂  %U *̂  

*̂  

1 90 (82, 100) 0.65 (0.65, 0.80) 0.50 (0.40, 0.50) 89 (81, 100) 0.65 (0.65, 0.80) 0.49 (0.33, 0.50) 

2 90 (82, 100) 0.65 (0.65, 0.80) 0.50 (0.40, 0.50) 89 (81, 100) 0.65 (0.65, 0.80) 0.49 (0.38, 0.50) 

3 88 (79, 100) 0.65 (0.50, 0.65) 0.49 (0.40, 0.50) 88 (79, 100) 0.65 (0.65, 0.80) 0.49 (0.38, 0.50) 

4 80 (71, 91) 0.50 (0.35, 0.65) 0.42 (0.32, 0.46) 82 (71, 91) 0.50 (0.35, 0.65) 0.42 (0.32, 0.48) 

5 76 (70, 91) 0.50 (0.35, 0.65) 0.42 (0.31, 0.46) 80 (69, 91) 0.50 (0.35, 0.65) 0.42 (0.31, 0.46) 

6 74 (67, 91) 0.50 (0.35, 0.65) 0.39 (0.29, 0.44) 74 (67, 91) 0.50 (0.35, 0.65) 0.39 (0.29, 0.45) 

7 69 (55, 79) 0.35 (0.20, 0.50) 0.25 (0.16, 0.34) 69 (66, 79) 0.35 (0.20, 0.50) 0.25 (0.17, 0.34) 

8 64 (48, 79) 0.35 (0.20, 0.50) 0.25 (0.15, 0.33) 64 (48, 79) 0.35 (0.20, 0.50) 0.25 (0.15, 0.33) 

9 60 (35, 74) 0.35 (0.20, 0.50) 0.24 (0.12, 0.27) 60 (34, 78) 0.35 (0.20, 0.50) 0.24 (0.12, 0.26) 

10 88 (78, 90) 0.80 (0.65, 0.80) 0.30 (0.30, 0.30) 89 (79, 98) 0.80 (0.65, 1.00) 0.30 (0.30, 0.30) 

11 82 (71, 90) 0.65 (0.50, 0.80) 0.30 (0.30, 0.30) 83 (71, 90) 0.65 (0.50, 0.80) 0.30 (0.30, 0.30) 

12 82 (71, 90) 0.65 (0.50, 0.80) 0.30 (0.30, 0.30) 82 (71, 90) 0.65 (0.50, 0.80) 0.30 (0.30, 0.30) 
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