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ABSTRACT

Liqiang Liu: Service Systems with Balking Based on Queueing Time

(Under the direction of Dr. Vidyadhar G. Kulkarni)

We consider service systems with balking based on queueing time, also called

queues with wait-based balking. An arriving customer joins the queue and stays until

served if and only if the queueing time is no more than some pre-specified threshold

at the time of arrival. We assume that the arrival process is a Poisson process.

We begin with the study of theM/G/1 system with a deterministic balking thresh-

old. We use level-crossing argument to derive an integral equation for the steady state

virtual queueing time (vqt) distribution. We describe a procedure to solve the equa-

tion for general distributions and we solve the equation explicitly for several special

cases of service time distributions, such as phase type, Erlang, exponential and de-

terministic service times. We give formulas for several performance criteria of general

interest, including average queueing time and balking rate. We illustrate the results

with numerical examples.

We then consider the first passage time problem in an M/PH/1 setting. We use

a fluid model where the buffer content changes at a rate determined by an external

stochastic process with finite state space. We derive systems of first-order linear

differential equations for both the mean and LST (Laplace-Stieltjes Transform) of

the busy period in the fluid model and solve them explicitly. We obtain the mean

and LST of the busy period in the M/PH/1 queue with wait-based balking as a

special limiting case of the fluid model. We illustrate the results with numerical

examples.
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Finally we extend the method used in the single server case to multi-server case.

We consider the vqt process in an M/G/s queue with wait-based balking. We con-

struct a single server system, analyze its operating characteristics, and use it to

approximate the multi-server system. The approximation is exact for the M/M/s

and M/G/1 system. We give both analytical results and numerical examples. We

conduct simulation to assess the accuracy of the approximation.
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Chapter 1

Introduction

1.1 Overview

A significant aspect in modeling call centers is customer impatience (cf. Koole and

Mandelbaum [27], Garnett et al. [15], Whitt [48]). Motivated by analyzing the call

center operations, we consider an M/G/s queueing system with impatient customers.

The customers arrive according to a Poisson process with rate λ, and request iid

(independent and identically distributed) service times with a general distribution.

There are s ≥ 1 servers in the system available to serve the customers. All servers are

identical and unit-rate, i.e., each server is capable of processing one unit of service

requirement per unit time.

Two common modes in which customers display their impatience are balking and

reneging. A call-in customer who cannot be helped immediately by a human server

might be told how long a wait he/she faces before an operator is available. Then

the customer might hang up (i.e. balk) or decide to hold. This is an example of the

balking behavior: a customer refuses to enter the queue if the wait is too long. We call

this wait-based balking to differentiate it from balking in a more conventional sense,

i.e., a customer refuses to enter the queue if the waiting line is too long. On the other

hand, a customer who is waiting for an operator might hang up (i.e. renege) before



getting served if the wait in line becomes too long. This is the reneging behavior. Of

course, there can be a combination of the two.

Queueing models with balking incorporate the characteristics of the customers’

impatience or a specific admission control policy in force at a service system. In a

typical queueing model with balking the service requirement of an arriving customer

may not be (completely) accepted if the system is “too congested” at the time of

its arrival. From the perspective of an arriving customer one natural measurement

of system congestion is the queueing time he/she faces to get service started. A no-

join decision based on this congestion measurement is the aforementioned wait-based

balking. The model considered in this thesis uses a wait-based balking rule. Before

stating the balking rule, we define the virtual queueing time (vqt) in the system. The

vqt at time t in the system, denoted by W (t), is the queueing time (i.e., time spent in

the system before commencing service) that would be experienced if a customer joins

the system at time t. The process {W (t), t ≥ 0} is referred as vqt process. We call a

queueing system with balking based on the vqt a wait-based balking queue. It works

as follows. We assume that each customer knows his/her exact queueing time at the

time of arrival. A customer arriving at time t joins the system if and only if W (t−)

is no more than a pre-specified threshold (possibly random). The balking customers

(i.e., customers who do not join) are lost forever. The entering customers wait in an

infinite capacity FCFS (first-come, first-served) queue until a server is available and

leave when the service completes.

Our justification of such a model proceeds as follows. Although the queueing time

information in call centers is not precise, this model incorporates the right charac-

teristics of the customer behavior. On the other hand, there are some systems, for

instance, some communication systems, where the information about queueing time

is always precisely available. What’s more, from the view of control problems, the

balking rule can be regarded as a threshold type of customer acceptance/rejection
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policy based on the system workload. Such a policy is shown to be optimal under

certain conditions by Johansen and Stidham [25]. This threshold type policy gener-

ates the model considered here. The usefulness of the wait-based balking model for

studying reneging systems will become clear in Chapter 4, where we reveal a close

relation between two models.

More complicated models involving balking and reneging behaviors can be found

in the research with a focus on the comparison of performances under different op-

erational characteristics presented in systems with customer impatience (cf. [1], [2],

[18], [47]). For example, delay information used to make a decision can have different

degrees of precision. Guo and Zipkin [18] explore the effects of different level of the in-

formation on the system performance by using a utility-based approach. The models

resulting from “no information” (all customers use long-term average queueing time,

a constant, as an estimate of their delays) and “full information” (customers know

their queueing times upon arrival) cases can be analyzed by using the method in this

thesis. Explicit results can be obtained in a more general settings than M/M/1. If

precise delay is not available at the time the customer arrives, then it can be pro-

vided as various estimates. Armony, Shimkin and Whitt [2] study the impact of

delay announcement based on two estimates, most recent observed delay and steady

state delay. The latter belongs to the class of models considered in this thesis. They

also show that such models with delay announcements can be well approximated by

the corresponding M/M/s models. Armony and Maglaras [1] study a multi-server

queueing system with a call-back option, which is modeled as a two-channel system.

They propose a scheme to estimate the delay which is asymptotically correct. They

find that offering call-back option and delay estimate to induce rational routing and

balking behaviors improves system performance substantially. These works typically

focus on overloaded regimes and use asymptotic analysis for systems with large num-

ber of servers. In principle, if the effective arrival rate depends on delays and does
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not depend on the number in the system, then the exact analysis of such models can

be done using the methods developed here.

The vqt process is also known as work-in-system, or virtual-delay process, which is

introduced by Beneš [6] and Takács [44]. See Heyman and Sobel [19] (pages 383–390)

for details. Many system performance measures of the queue can be derived from the

steady state distribution of the vqt process. The central topic of this thesis is the

steady state analysis of this process in several particular wait-based balking queues.

1.2 Single Sever Queues

Single server wait-based balking queues are studied under a variety of names in the

literature: “finite workload capacity”, “dams”, “workload-dependent arrival rates”,

or “queues with limited accessibility”. See Prabhu [42], Perry et al. [41], Perry and

Stadje [39], Bekker et al. [5] and Bekker [4]. Wait-based balking queues also have

found applications in the study of clearing models, see Boxma et al. [9].

Notice for single server systems with a FCFS service discipline, the vqt coincides

with the workload (work content) of the system, i.e., sum of the service times of

all customs in queue and the remaining service time of the customer in service (see

page 10 for an alternative definition). Therefore, we use two terms interchangeably

in the single server context.

1.2.1 Steady State Distribution

In Chapter 2 we deal with the steady state distribution of the workload process in

the M/G/1 queue with wait-based balking.

The single server case has been extensively studied in the literature. For example,

Hu and Zazanis [23], consider various types of restrictions on workload (i.e. balking

rules). They obtain the steady state distribution of the workload process for the sys-

4



tem with workload restrictions in terms of that of the corresponding queue without

restrictions. This requires the unrestricted system to be stable so as to solve the

restricted system. But clearly the system with workload restriction is always stable.

The inability to solve the restricted system when the corresponding unrestricted sys-

tem is unstable is inevitable due to the “cut and paste” technique they use, since the

basic idea of such a method is to obtain the steady state distribution of the limited

access queueing models in terms of known steady state distribution of simpler models

with no access constraints.

Level-crossing argument is an appropriate tool to analyze such queueing models.

Cohen [11] introduces Level-Crossing Theory (LCT) for regenerative processes of

the GI/G/1 type. Doshi [13] generalizes the theory to stationary dam process and

presents applications of level-crossing analysis to many queueing systems, especially to

single-server queues. Gavish and Schweitzer [16] use level-crossing analysis to study

an M/G/1 system where arrivals are rejected if their queueing plus service times

would exceed a fixed amount (note that the service time for each customer is known

upon arrival, which is different from the wait-based balking queue we consider here).

Hokstad [22] uses the method of level crossing method and computes explicitly the

steady state distribution in the M/D/1 queue with wait-based balking. Perry and

Asmussen [38] deal with the most general type of single server wait-based balking

models with several variations. They develop the integral equation for the steady

state distribution of the workload. The solution is given in terms of an infinite sum

of iterated convolution integrals. The authors give explicit solution for the M/M/1

queue, and mention that explicit solutions can be obtained for M/PH/1 queues, but

do not give the expressions. We have been unable to find the explicit expressions in

the literature.

In Chapter 2, we use level-crossing argument to derive an integral equation for the

steady state workload distribution. We describe a procedure to solve the equation for
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general distributions and we solve the equation explicitly for several special cases of

service time distributions, such as phase type, Erlang, exponential and deterministic

service times. For the M/PH/1 case we show that the integral equation can be

reduced to a differential equation with constant coefficients, and hence can be solved

by standard methods. We illustrate the results with several numerical examples.In

Chapter 2, we use level-crossing argument to derive an integral equation for the steady

state workload distribution. We describe a procedure to solve the equation for general

distributions and we solve the equation explicitly for several special cases of service

time distributions, such as phase type, Erlang, exponential and deterministic service

times. For the M/PH/1 case we show that the integral equation can be reduced to a

differential equation with constant coefficients, and hence can be solved by standard

methods. We illustrate the results with several numerical examples.

1.2.2 Busy Period

The busy period is the first passage time that the vqt process enters the state 0.

There are relatively few papers studying the busy period of the wait-based balking

systems. Perry and Asmussen [38] find the LST of the busy period for the M/M/1

system via differential equations and martingales. They further extend the results

to the case where b is an exponential random variable. Perry et al. [40] give closed-

form expression for the LST of the busy period for an M/G/1 queue with wait-based

balking as a function of the LSTs of certain stopping times. The paper also analyzes

the busy periods in G/M/1 queues by exploiting the duality between the M/G/1 and

G/M/1 queues.

In Chapter 3 we use an alternative method to analyze the first passage time

problem in an M/PH/1 setting. The method involves constructing a standard fluid

model so that the M/PH/1 wait-based balking model is a limiting case of this fluid

model. For a general discussion of fluid models we refer the readers to the survey
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paper by Kulkarni [30]. Various authors have studied the first passage times in

fluid models. See Asmussen and Bladt [3], Chen and Samalam [10], Kulkarni and

Narayanan [31], Boxma and Dumas [8] and Kulkarni and Tzenova [32]. In particular,

Kulkarni and Tzenova [32] developed a differential equation method which is more

suitable for numerical algorithms. We extend the method and use it to solve the first

passage time problem arising in wait-based balking queues. In Chapter 3 we begin by

considering a fluid model where the buffer content changes at a rate determined by

an external stochastic process with finite state space. We derive systems of first-order

linear different equations for both the mean and LST (Laplace-Stieltjes Transform)

of the busy period in this model and solve explicitly. We obtain the mean and LST of

the busy period in the M/PH/1 queue with wait-based balking as a special limiting

case of this fluid model. We illustrate the results with numerical examples.

1.3 Multi-Server Queues

In Chapter 4 we extend the method used in the single server case to the analysis of

the multi-server case.

The reneging version of the model we consider has been studied by Gnedenko

and Kovalenko [17] under the name “systems with limited waiting time”. They con-

sider exponential service times to obtain a multidimensional Markov process for the

number of busy servers and workload in each server. They derive a system of integro-

differential equations for the limiting joint distribution and give explicit solution.

They give formulas for the loss probability and average queueing time. They also

give the limiting distribution of the vqt process. However, as Boots and Tijms [7]

noted, the results in [17] are quite technical and not generally applicable. Instead,

they give an alternative formula for the loss probability as a function of the tail prob-

ability of the stationary vqt process in a corresponding queue with no impatience.

They prove that their formula is exact in the M/M/s case and can be used as a

7



heuristic for the M/G/s case. A severe restriction is that the formula is valid only

when the traffic intensity is less than 1, which is not required for the reneging queue

to be stable. The method we use in this thesis overcomes the preceding drawbacks

and can be easily extended to the general case. Although we are unable to give the

joint distribution for the workload and busy servers, we don’t lose much since many

common performance measures can be derived directly from the limiting distribution

of the vqt process.

Even in the absence of the balking behavior the M/G/s queueing system is no-

torious for its complexity which forbids analytical solutions. Analytical results are

available for only a few special cases, while a handful of approximations for the lim-

iting analysis have been proposed in the past decades (cf. Chapter 13, Heyman and

Sobel [19]). In this thesis we focus on system approximations, i.e. approximations

that take the results from an exact analysis of a simpler system as approximations of

the true operating characteristics of the original system. Although the approximate

methods vary by motivations and the techniques used, it turns out that all results can

be viewed as the so-called “systems interpolation”, i.e., some mixture of the known

analytical results for a few special cases, such as M/M/s, M/Ek/s, M/D/s, and

M/G/∞. See Kimura [26] for details. We cannot find any system approximations of

the M/G/s queueing system with impatient customers in the literature.

To develop a system approximation for the multi-server system with impatient

customers, we borrow a simple idea used by Lee and Longton [33], Takács [44] (page

160), Newell [36] (page 86), Hokstad [21], Nozaki and Ross [37], Tijms et al. [45], and

Miyazawa [34]. In brief, the idea is to treat the s-server system as an M/G/∞ system

(or M/G/s− 1 loss system) when some servers are idle and an M/G/1 system when

all servers are busy. Using such a system decomposition we construct a single server

system whose operating characteristics approximate those of the M/G/s queueing

system with wait-based balking. The approximation is exact when G = M , the

8



balking threshold is zero or s = 1. The exact analysis of the approximate system

follows the same line as Chapter 2, where we solve the s = 1 case. The approximation

is evaluated by comparing performance measures against simulations. The connection

between wait-based balking and reneging is discussed in Chapter 4, which reveals

that the analysis of the vqt process in this thesis is indeed a treatment to a queue

incorporating customer impatience, whether balking or reneging.
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Chapter 2

M/G/1 Queues with Wait-based

Balking: Steady State

Distributions

2.1 Introduction

In this chapter, we analyze a single server first-come first-served (FCFS) wait-based

balking system that operates as follows: an arriving customer joins the queue only

if he/she sees that the workload in the system is no more than a fixed amount b.

We assume the customer knows the exact amount of the workload in the system at

the time of arrival. We also assume that once a customer decides to join the queue,

he/she stays in the system until service completion.

The workload at time t is defined as the time it takes the server to empty the

system, provided there are no arrivals after t. Since the service discipline is FCFS,

from the perspective of an arriving customer, the workload at the time of arrival can

be also interpreted as the queueing time (the time he/she spends in the queue until

service starts) if he/she chooses to join the queue at all. The balking rule mentioned

above is very natural in situations where the customers are unwilling to wait longer



than b unit of time for start of service.

The assumption of FCFS discipline is not necessary if we do not require vqt to be

the same as workload. The analysis in this chapter proceeds identically without this

assumption since in general, the workload process is invariant under work-conserving

service disciplines. Here we assume FCFS in which case the work content also repre-

sents the queuing time, and hence the model represents customers balking in face of

long waits.

The rest of this chapter is organized as follows. Section 2.2 is a description of the

model. In Section 2.3, level-crossing argument is used to derived the integral equation

for the steady state distribution of the workload process. Section 2.4 deals with the

case when service time distribution has a rational Laplace transform (LT). In particu-

lar, if the service time has a phase type distribution, we show a method to reduce the

integral equation to a differential equation that can be solved by standard methods

and give explicit formulas for probability distribution and selected performance mea-

sures. Special cases, namely, exponential, phase type and hyper exponential service

time distributions are included. Section 2.5 deals with the M/D/1 case. We give

several numerical examples in Section 2.6. The chapter is concluded with a comment

on other performance measures and balking rules (Section 2.7).

2.2 An M/G/1 Queue with Balking

We begin with an M/G/1 system with Poisson arrivals with rate λ, and iid service

times. Let S be a generic service time random variable, and

Pr{S > x} = G(x), E(S) = τ, Var(S) = σ2. (2.1)

Thus, the traffic intensity is

ρ = λτ. (2.2)
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Let {W (t), t ≥ 0} be the workload or vqt process. The balking rule is characterized

by a constant b <∞ as follows: A customer arriving at time t joins the system (and

stays until service completion) if W (t−) ≤ b, else he/she leaves and is lost. A typical

sample path of W (t) is shown in Figure 2.1. The arriving times are denoted by Ti.

Note that the arrival at T4 balks since W (T4−) > b.

T0 T1 T2 T3 T4 T5
0

b

 t

 W(t)

Figure 2.1: A typical sample path of W (t)

It is known that the {W (t), t ≥ 0} process has a limiting distribution if E(S) <∞

(cf. [38]), which we will assume in this thesis. Let

F (x) = lim
t→∞

Pr{W (t) ≤ x},

W̄ = lim
t→∞

E(W (t)).

It is clear that the limiting distribution has a mass at 0, c = F (0), and a density f(x)

12



for x > 0. We focus on computing c, f(x)(x ≥ 0) and F (x)(x ≥ 0).

2.3 Equilibrium Distribution of Workload Process

In this section, we derive the equation for f(x) and c in Theorem 1. We describe a

procedure to find the solution in Theorem 2. We also discuss several limiting cases

of parameters b and ρ.

Theorem 1. The equilibrium probability density function (pdf) of the workload pro-

cess of the M/G/1 queue with balking satisfies:

f(x) = λ

∫ x∧b

0

f(u)G(x− u)du+ cλG(x), (2.3a)∫ ∞

0

f(x)dx+ c = 1, (2.3b)

where x ∧ b = min(x, b).

Proof. We prove this by level-crossing argument. Suppose the process {W (t), t ≥ 0}

is stationary. Then, during interval (t, t + h), the probability that the workload

down-crosses level x is:

[F (x+ h)− F (x)](1− λh). (2.4)

Thus this is also the expected number of down-crossings during (t, t+ h).

Similarly, the probability that the workload up-crosses level x is:

∫ x∧b

0

f(u)λhPr{S ≥ x− u}du+ Pr{W (∞) = 0}λhPr{S ≥ x}, (2.5)

which, using our notations yields

∫ x∧b

0

f(u)λhG(x− u)du+ cλhG(x). (2.6)

13



Thus this is also the expected number of up-crossings during (t, t+ h).

The level-crossing argument implies that (2.4) must equal to (2.6) (cf. [13]). Now

divide both side by h and let h→ 0. We get Equation (2.3a). Equation (2.3b) is the

normalizing equation.

Notice that the first term in the right hand side of Equation (2.3a) is just the

convolution of f(x) and G(x) multiplied by λ, when x∧ b is replaced by x. Let f1(x)

be the solution to

f1(x) = λ

∫ x

0

f1(u)G(x− u)du+G(x), x ≥ 0. (2.7)

Let

f2(x) = λ

∫ b

0

f1(u)G(x− u)du+G(x), x ≥ b (2.8)

The solution to Equation (2.3) is given in the following theorem.

Theorem 2. The solution to (2.3) is:

f(x) =

 cλf1(x) if 0 ≤ x ≤ b

cλf2(x) if x > b
(2.9)

where

c =

[
λ

∫ b

0

f1(x)dx+ λ

∫ ∞

b

f2(x)dx+ 1

]−1

. (2.10)

Proof. The solution is easy to verify by substitution.

From the above theorem it is clear that a possible procedure to obtain f(x) is

to find f1(x) first, then compute f2(x) by using Equation (2.8). By the normalizing

equation (2.3b), after computing the integral, we are able to compute c. This com-

pletes the computation of f(x). Obviously, one main step is to solve Equation (2.7)

for f1(x). One method is to use LT.
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Let G∗(s) be the LT of G(x). From (2.7) we get the LT of f1(x) (assuming its

existence):

f ∗1 (s) =
G∗(s)

1− λG∗(s)
. (2.11)

To continue our procedure, we need the inverse LT of f ∗1 (s). A close form inversion

is possible if G∗(s) is rational. However, in this case, there is an alternative method

to solve Equation (2.7). We demonstrate these in Section 2.4.

We can instantly obtain several interesting results from Theorem 2 under some

limiting values of b and λ. The first case is b → 0. Under this regime, the system

reduces to a normal M/G/1/1 queue. From Theorem 2, as b→ 0,

c→ 1

1 + ρ
, (2.12)

f(x) → λ

1 + ρ
G(x), x > 0 (2.13)

W̄ → λ

2(1 + ρ)
(σ2 + τ 2). (2.14)

It is easy to verify that the results above coincide with the results of an M/G/1/1

queueing system.

Next consider the limiting regime λ→∞. A sample path of workload is illustrated

in Figure 2.2. Obviously,

lim
λ→∞

f(x+ b) = lim
λ→∞

lim
b→0

f(x), x ≥ 0.
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T0 T1 T2 T3

b

 t

 W(t)

Figure 2.2: A sample path of W (t) when λ→∞

Using the fact above we get

f(x) → 0, when 0 ≤ x ≤ b, (2.15)

f(x) → 1

τ
G(x− b), when x > b, (2.16)

c→ 0, (2.17)

W̄ → b+
1

2τ
(σ2 + τ 2). (2.18)

When b→∞, in the limit the system reduces to a normal M/G/1 queue, which

16



is stable for ρ < 1. Notice that

∫ ∞

0

f1(x)dx = f ∗1 (0),

G∗(0) = τ,

W̄ = − df∗(s)

ds

∣∣∣∣
s=0

.

From Theorem 2 and Equation (2.11), we get the following limiting results which

are consistent with the usual M/G/1 results.

f(x) → cλf1(x), (2.19)

c→ 1− ρ, (2.20)

W̄ → λ(σ2 + τ 2)

2(1− ρ)
. (2.21)

In Section 2.4 and 2.5 we focus mainly on solving Equation (2.7) for several

specific service time distributions by transform or directly.

2.4 Rational G∗(s) and M/PH/1 Queue with Balk-

ing

Suppose G∗(s) is rational, i.e.,

G∗(s) =
N(s)

D(s)
, (2.22)

where D(s) is a p degree polynomial in s, N(s) is a polynomial in s whose degree is

less than p. Then

f ∗(s) =
N(s)

D(s)− λN(s)
. (2.23)
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Let θi, i = 1, 2, · · · , p, be the roots to

D(s)− λN(s) = 0. (2.24)

We assume they are distinct. Then from general method of computing inverse LT

(cf. [28]), we obtain a closed form expression for f1(x) as follows:

f1(x) =

p∑
i=1

Aie
θix, (2.25)

where

Ai = lim
s→θi

(s− θi)G
∗(s)

1− λG∗(s)
, i = 1, 2, · · · , p. (2.26)

Next, as a specific example, we apply our method to solve the M/PH/1 case (which

has a rational G∗(s)). In addition, we give results for Erlang, hyper exponential and

exponential distributions as three more special cases of the phase type distribution.

2.4.1 M/PH/1: Transform Method

For a common phase type distribution with parameter (α,M) (cf. [29]), the comple-

mentary cumulative distribution function (ccdf) G(x) is given by

G(x) = αeMx~1, (2.27)

where ~1 is a column vector with all coordinates equal to 1, α = (α1, α2, · · · , αn) is a

non-negative row vector and α~1 = 1, andM is an n by n sub-matrix of the generator of

an irreducible CTMC (continuous time Markov chain), with the following properties:

• M is invertible;

• M is diagonally dominant with all diagonal elements negative.
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It is well known that these properties imply that all eigenvalues of M have negative

real part. We need this condition in the computation of f2(x). In this case the LT of

G(x) is

G∗(s) = α(sI −M)−1~1, (2.28)

where I is an n by n identity matrix.

Following the procedure described in Section 2.3, we collect our results for the

M/PH/1 with wait-based balking in Theorem 3.

Theorem 3. Let the service time distribution be a common phase type distribution

with ccdf given by (2.27). The equilibrium pdf of the workload process of the M/PH/1

wait-based balking queue with threshold b is:

f(x) =


cλ

n∑
i=1

Aie
θix if 0 ≤ x ≤ b

cλα

[
eMx +

n∑
i=1

λAie
Mx(θiI −M)−1(e(θiI−M)b − I)

]
~1 if x > b

(2.29)

where θi, i = 1, 2, · · · , n, are n distinct roots to Equation (2.24). Ai, i = 1, 2, · · · , n,

are given by Equation (2.26), and G∗(s) is given by Equation (2.28).

The probability that the system is empty is:

c =

{ n∑
i=1

λ
Ai

θi

(eθib − 1)

− α
[ n∑

i=1

λ2AiM
−1eMb(θiI −M)−1(e(θiI−M)b − I)

]
~1

− λαM−1eMb~1 + 1

}−1

.

(2.30)

Proof. Use Equation 2.25 to take inverse LT of f ∗1 (s) and apply Theorem 2.

A straight forward computation yields the following corollaries.

Corollary 1 (cdf). The equilibrium cdf of the workload process of the M/PH/1 wait-
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based balking queue with threshold b is:

F (x) =



c+ cλ

n∑
i=1

Ai

θi
(eθix − 1), if 0 ≤ x ≤ b,

F (b) + cλαM−1(eMx − eMb)

×
[
I +

n∑
i=1

λAi(θiI −M)−1(e(θiI−M)b − I)

]
~1, if x > b.

Corollary 2 (Mean workload in equilibrium). The expected value of the workload in

steady state of the M/PH/1 wait-based balking queue with threshold b is:

W̄ = b− bc− cλ
n∑

i=1

Ai

θ2
i

(eθib − θib− 1)

+ cλαM−2eMb

[
I +

n∑
i=1

λAi(θiI −M)−1(e(θiI−M)b − I)

]
~1.

Remarks:

1. If we write Equation (2.24) as 1−λα(sI−M)−1~1 = 0, it is easy to see that when

ρ = 1, i.e.,−λαM−1~1 = 1, then θ1 = 0 is one of the roots. In this case, we replace

the zero-dividing terms which appear in our results by the limits. These terms

and the limits are: limθ1→0(e
θ1b−1)/θ1 = b and limθ1→0(e

θ1b−θ1b−1)/θ2
1 = b2/2.

Therefore, we do not give the results separately for the case when ρ = 1.

2. Computing c needs the integral
∫∞

b
eMx to converge. This is guaranteed by the

aforementioned fact that all eigenvalues of M have negative real part.

3. Notice that

E(S) = −αM−1~1 = τ, (2.31)

E(S2) = 2αM−2~1 = σ2 + τ 2. (2.32)
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It can be verified that the formulas above for limiting parameters b and ρ are

consistent with those given for general service time distribution in Section 2.3.

This is also illustrated by numerical examples in Section 2.6.

2.4.2 M/PH/1: Differential Equation Approach

In practice it can be hard to compute G∗(s), i.e., specifying the polynomials, for

a general phase type distribution. Therefore, we seek an alternative way to solve

Equation (2.7) directly. In order to solve for f(x), we first solve the integral equation

(2.3a) for the case x ≤ b by solving a derived differential equation. Then we compute

f(x) for the case x > b by the integral equation. We describe the method in Theorem

4.

First we introduce some notations that will be used in the statement and proof of

Theorem 4.

Let ai, i = 0, 1, · · · , n, be the coefficients of the characteristic polynomial of M ,

i.e. :

det(xI −M) =
n∑

j=0

ajx
j. (2.33)

Let

P (θ) =
n∑

i=0

[
α
(
aiI + λ

i∑
j=0

ajM
j−i−1

)
~1

]
θi (2.34)

be an n-th order polynomial in θ. We assume P (θ) has n distinct roots. Note that

if −αM−1~1 = 1/λ (i.e. traffic density ρ = −λαM−1~1 = 1), then θ1 = 0 is one of the

roots.

Let M0 = I, and define Mj, j ≥ 1 recursively by:

Mj = MMj−1 + λαMj−1
~1I. (2.35)
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Let

mi = αMi
~1, i = 0, 1, · · · , n− 1 and

m = (m0,m1, · · · ,mn−1)
T.

(2.36)

With these notations, we are ready to state the following theorem.

Theorem 4. The constants θi, i = 1, 2, · · · , n, in Theorem 3 are the roots of P (θ)

given in (2.34). The coefficient A = (A1, A2, · · · , An)T is uniquely determined by:

ΘA = m, (2.37)

where Θ is the Vandermonde matrix of θ1, θ2, · · · , θn, i.e.:

Θ =



1 1 · · · 1

θ1 θ2 · · · θn

θ2
1 θ2

2 · · · θ2
n

...
...

. . .
...

θn−1
1 θn−1

2 · · · θn−1
n


.

Proof. Plugging (2.27) in Equation (2.7) and simplifying, we get:

f1(x) = λαeMx

[∫ x

0

f1(u)e
−Mudu+ I/λ

]
~1. (2.38)

Taking repeated derivatives of the equation above with respect to x, we get (using
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f
(i)
1 (x) to denote the i-th order derivative of f1(x) with respect to x):

f
(0)
1 (x) = λα

[
M0eMx

(∫ x

0

f1(u)e
−Mudu+ I/λ

)]
~1,

f
(1)
1 (x) = λα

[
M1eMx

(∫ x

0

f1(u)e
−Mudu+ I/λ

)
+ f

(0)
1 (x)I

]
~1,

f
(2)
1 (x) = λα

[
M2eMx

(∫ x

0

f1(u)e
−Mudu+ I/λ

)
+Mf

(0)
1 (x) + f

(1)
1 (x)I

]
~1,

...

f
(n)
1 (x) = λα

[
MneMx

(∫ x

0

f1(u)e
−Mudu+ I/λ

)
+

n−1∑
j=0

M jf
(n−1−j)
1 (x)

]
~1.

(2.39)

Now multiply the i-th equation above by coefficient ai in the characteristic polynomial

of M as defined in (2.33) and add. We get:

n∑
i=0

aif
(i)
1 (x) = λα

[ n∑
i=0

aiM
ieMx

(∫ x

0

f1(u)e
−Mudu+I/λ

)
+

n∑
i=0

i−1∑
j=0

aiM
jf

(i−1−j)
1 (x)

]
~1.

(2.40)

By Cayley-Hamilton Theorem, we know

n∑
i=0

aiM
i = 0. (2.41)

Using this and doing algebraic manipulations, Equation (2.40) can be simplified and

rewritten as:
n∑

i=0

[
α
(
aiI + λ

i∑
j=0

ajM
j−i−1

)
~1

]
f

(i)
1 (x) = 0. (2.42)

This is simply an n-th order differential equation with constant coefficients. Using

standard methods of solving such equations (cf. [28]), we get the polynomial (2.34)

and the solution f1(x) =
∑n

i=1Aie
θix, where the constants Ai’s are to be determined

by using the initial conditions.
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The initial conditions can be found by plugging x = 0 in (2.39):

lim
x→0

f
(j)
1 (x) = mj, j = 0, 1, · · · , n− 1, (2.43)

where mj are as defined in (2.36). This yields (2.37). Since all θi are distinct by

assumption, Θ is invertible (cf. [20]) thus A is uniquely determined.

2.4.3 Special Cases

Next, we consider three special cases of service time distribution: Erlang, hyper-

exponential and exponential. These belong to the common phase type distribution

category, and have special parameters (α,M). For these cases we can, more or less,

simplify the results for a general phase type distribution.

Erlang

An Erlang distribution with parameter (n, µ) is simply a phase type distribution with

parameter:

α = (1, 0, · · · , 0)1×n,

M =



−µ µ

−µ µ

. . . . . .

−µ µ

−µ


n×n

(We display only the non-zero entries of M).

We solve f1(x) by transform. Using Equation (2.28), G∗(s) can be shown to be

G∗(s) =
(s+ µ)n − µn

(s+ µ)ns
. (2.44)
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Finding the roots to 1− λG∗(s) is equivalent to solving the following equation:

1

s
[(s− λ)(s+ µ)n + λµn] = 0. (2.45)

Note that the left hand side is actually an n degree polynomial in s. It can be proved

that there are exactly n distinct roots, θ1, θ2, · · · , θn. So, writing f ∗1 (s) as

f ∗1 (s) =
G∗(s)

1− λG∗(s)

=
1
s
[(s+ µ)n − µn]

1
s
[(s− λ)(s+ µ)n + λµn]

=
(s− λ)−1[

∏n
i=1(s− θi)−

∏n
i=1(λ− θi)]∏n

i=1(s− θi)
,

(2.46)

then computing Ai by Equation (2.26) yields

Ai =
∏
j 6=i

λ− θj

θi − θj

, i = 1, 2, · · · , n.

Next, we compute the matrix exponential explicitly and give the result in Theorem 5.

Before that, we introduce two more notations. We denote the well known incomplete

gamma function by:

Γ(n, x) =

∫ ∞

x

tn−1e−tdt = (n− 1)!e−x

n−1∑
k=0

xk

k!
.

Let

di =
µ

µ+ θi

, i = 1, 2, · · · , n.

Theorem 5. The equilibrium pdf of the workload process of the M/En/1 wait-based

balking queue with threshold b is:

f(x) = cλ

n∑
i=1

Aie
θix, if 0 ≤ x ≤ b,
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and

f(x) = cλ2

n∑
i=1

Ai

θi(n− 1)!

{
dn

i e
θix

[
Γ
(
n, (µ+ θi)x

)
− Γ

(
n, (µ+ θi)(x− b)

)]
+ eθibΓ

(
n, µ(x− b)

)
− Γ(n, µx)

}
+ cλ

Γ(n, µx)

(n− 1)!
, if x > b.

c−1 =λ
n∑

i=1

Ai

θi

(eθib − 1) +
λ

µ(n− 1)!
[Γ(n+ 1, µb)− µbΓ(n, µb)] + 1

+ λ2

n∑
i=1

Ai

µθ2
i (n− 1)!

{µ(1 + θib)Γ(n, µb)− µdn
i e

θibΓ
(
n, (µ+ θi)b

)
− θiΓ(n+ 1, µb) + θie

θibn!− µeθib(1− dn
i )(n− 1)!}

Hyper-exponential

If the service time S has a hyper-exponential distribution (cf. [29]), then

α = (α1, α2, · · · , αn)T ,

M =


−µ1

. . .

−µn

 .

In this case, f1(x) can be solved either by transform or directly. Here we only show

some results by using Theorem 4 to solve f1(x) directly.

The characteristic polynomial of M is:

n∑
i=0

aix
i =

n∏
i=1

(x+ µi).

Then the coefficients ai can be computed easily. It is possible to simplify P (θ) in
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Equation (2.34) in terms of the moments of S as follows:

P (θ) =
n∑

i=0

biθ
i,

where

bi = ai + λ

i+1∑
j=1

ai+1−j(−1)jE(Sj)

j!
.

Unfortunately, the initial conditions do not simplify, hence we keep the remaining

results in terms of m of (2.36) and A of (2.37).

Exponential

Exponential distribution is the most special case of phase type distribution. It is also

a special case of Erlang or hyper-exponential distributions. All matrices and vectors

we use in a common phase type distribution degenerate to scalars in an exponential

distribution. The parameters are simply α = (1) and M = (−µ). Using either

transform of direct method, the formulas are much simplified.

We give the simplified solution in the following theorem and skip the proof.

Theorem 6. The equilibrium pdf of the workload process of the M/M/1 wait-based

balking queue with threshold b is:

f(x) =

 cλe−(µ−λ)x if 0 ≤ x ≤ b

cλeλbe−µx if x > b
,

where

c =


1−ρ

1−ρ2e−(µ−λ)b if ρ 6= 1

1
2+µb

if ρ = 1
.
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2.5 An Example of Non-rational G∗(s): M/D/1

As we mentioned before, it can be difficult to find the inverse LT of f ∗1 (s) when G∗(s)

is not rational. In this case, we try to solve Equation (2.7) directly. Here we give the

solution when the service time is deterministic, i.e.,

G(x) =

 1 if 0 ≤ x < τ

0 if x ≥ τ
(2.47)

In this case, the LT of f1 is given by

f ∗1 (s) =
1− esτ

s− λ+ λe−sτ
. (2.48)

Computing its inverse is intractable. We show how we solve (2.7) directly in this case.

First we partition [0,+∞) into intervals of length τ : [0, τ), [τ, 2τ), · · · and denote

them as I0, I1, · · · respectively. Since G(x) is 1 when x ∈ I0 (or bx
τ
c = 0) and 0

elsewhere, we rewrite Equation (2.7) as follows:

λ

∫ x

0

f1(u)du+ 1 = f1(x), when x ∈ I0,

λ

∫ kτ

x−τ

f1(u)du+ λ

∫ x

kτ

f1(u)du = f1(x), when x ∈ Ik, k = 1, 2, · · · .
(2.49)

We solve these equations recursively and obtain f1(x) for each interval. That is, we

solve the first equation and get f1(x) = eλx when x ∈ I0. Plugging this in the second

equation, we are able solve for f1(x) when x ∈ I1, and so on. Suppose

f1(x) = Qk(x)e
λ(x−kτ), when x ∈ Ik, k = 0, 1, 2, · · · , (2.50)

where Qk(x) is a polynomial in x and Q0(x) = 1. Substituting (2.50) in (2.49) and
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take derivative with respect to x, we get

Q′
k(x) = −λQk−1(x− τ), k = 1, 2, · · · . (2.51)

Therefore, Qk(x) can be computed recursively as

Qk(x) = −λ
∫ x

0

Qk−1(u− τ)du+Bk, k = 1, 2, · · · . (2.52)

The constant Bk can be computed by the fact that f1(τ−) = f1(τ+) + 1 and f1(x) is

continuous at 2τ, 3τ, · · · . We get

B1 = eρ + ρ− 1,

Bk = Qk−1(kτ)e
ρ + λ

∫ kτ

0

Qk−1(u− τ)du, k = 2, 3, · · · .

In the special case when b < τ , the computation is fairly easy. We give the results

here.

f(x) =



cλeλx if 0 ≤ x ≤ b

cλeλb if b < x < τ

cλ(eλb − eλ(x−τ)) if τ ≤ x < b+ τ

0 elsewhere

(2.53)

In this case the probability that the system is empty is

c =
1

τλeλb + 1
. (2.54)

2.6 Numerical Examples

In this section, we illustrate our results with several numerical examples. We consider

three different service time distributions:
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1. Exponential (exp): µ = 1 (τ = 1, σ2 = 1);

2. 5-Erlang (erlang): µ = 5 (τ = 1, σ2 = 0.2);

3. Hyper-exponential (hyper): µ1 = 4, µ2 = 2, µ3 = 1, µ4 = 0.8, µ5 = 0.5, α1 =

· · · = α5 = 0.2 (τ = 1, σ2 = 1.75).

All of them have mean service time of one. The variances are different, with 5-Erlang

the smallest and hyper-exponential the largest.

The first set of figures, Figure 2.3, 2.4, 2.5 illustrate the shapes of f(x) for different

service time distributions, with ρ = 0.8, 1, 1.2 respectively and b = 5. Then, we pick

curves for exponential service time from Figure 2.3, 2.4, 2.5 and put them together

in Figure 2.6 to show how f(x) is affected by the traffic intensity. As ρ gets larger,

the turn at x = b becomes sharper. When ρ� 1 (in our experiment, ρ = 10 is large

enough), f(x) is almost 0 when x < b. Note that f(x) is a decreasing function of x

for x > b. However, for 0 < x < b, the density function can exhibit complex behavior.

It may be increasing, decreasing, constant or non-monotonic.

The second set of figures, Figure 2.7, 2.8, 2.9 and 2.10, are about the expected

workload in steady state (W̄ ). In Figure 2.7, we fix b = 5 and compare W̄ for dif-

ferent service time distributions against ρ (since τ = 1, ρ = λ). When ρ gets larger,

W̄ clearly converges to the levels as expected (see Equation (2.18)), to be specific, to

6, 5.6 and 6.375 for exponential, Erlang and hyper-exponential distributions, respec-

tively.

In Figure 2.8, 2.9 and 2.10, for each graph, we fix ρ and plot W̄ against b for

different service time distributions. At b = 0, W̄ starts from the value we expect (see

Equation (2.12) and (2.14)), and then it increases as b increases. When ρ = 0.8, the

convergence of W̄ to the theoretical level (i.e. normal M/G/1 queue) is again clearly

shown. On the other hand, W̄ increases rapidly in b when ρ ≥ 1 (ρ = 1, 1.2).
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Finally, Figure 2.11 shows the probability that the system is empty in steady

state. As expected, c is decreasing in arrival rate λ.

2.7 Concluding Remarks

It is possible to extend the method used in this chapter to handle more complicated

cases, e.g., models with load dependent service rates and vacations, or random balking

threshold. We do not cover those in order to emphasize a basic idea by relatively

simple models.

Although we focus on the steady state distribution of the workload process in

this chapter, typically several other system performance measures are of interest. For

example, the steady state rejection rate can be easily computed as 1 − F (b), where

F is the steady state cdf of the vqt process. Secondly, the expected busy period can

be computed from the standard regenerative analysis as (1− c)/(λc), where c is the

probability that the workload is zero in steady state. Similarly, the expected number

in the system can be computed by using Little’s law. However, the distribution of the

busy period would require further analysis. We shall study this topic in Chapter 3.

Also, since we have computed the steady state distribution of the workload, the

expected values of its functionals are easy to compute.

Two more types of the queue with restricted accessibility, where balking rules are

related to workload, are introduced by Perry and Asmussen (cf. [38], Model II and

Model III). If the service time is phase type distributed, then our method can be

applied to these models as well.
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Figure 2.3: f(x) for different service time distributions, ρ = 0.8, b = 5
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Figure 2.4: f(x) for different service time distributions, ρ = 1, b = 5
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Figure 2.5: f(x) for different service time distributions, ρ = 1.2, b = 5

Figure 2.6: f(x) for different ρ, exponential service time, b = 5
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Figure 2.7: W̄ vs. ρ for different service time distributions, b = 5

Figure 2.8: W̄ vs. b for different service time distributions, ρ = 0.8
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Figure 2.9: W̄ vs. b for different service time distributions, ρ = 1

Figure 2.10: W̄ vs. b for different service time distributions, ρ = 1.2
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Figure 2.11: c vs. λ for different service time distributions
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Chapter 3

M/PH/1 Queues with Wait-based

Balking: Busy Period Analysis

3.1 Introduction

Consider the M/PH/1 wait-based balking queue with a fixed balking threshold b, as

described in Chapter 2 (see page 18 for phase type distribution).

In this chapter, we are interested in the first passage time

B = min{t ≥ 0 : W (t) = 0}.

Specifically, we compute the mean

m(x) = E[B|W (0) = x] (3.1)

and the LST

ψ(s, x) = E[e−sB|W (0) = x]. (3.2)

Our method involves constructing a standard fluid model so that the M/PH/1

wait-based balking model is a limiting case of this fluid model. Kulkarni and Tzenova



[32] studied the first passage times in fluid models. They developed a differential

equation method which is more suitable for numerical algorithms. We slightly extend

the method so that it can be applied to the fluid model we construct, and obtain the

mean and LST of the first passage time. The precise formulation of our fluid model

is given in Section 3.2.

The rest of the chapter is organized as follows. We formulate the relevant fluid

model in Section 3.2 and give a general treatment of the first passage time problem

for this fluid model in Section 3.3. In Section 3.4, we consider a special case of the

fluid model and give the mean and LST in Theorems 10 and 11. In Section 3.5

we show that the balking model is a limiting case of the fluid model analyzed in

Section 3.4. Then we take the limits of the results given in Theorems 10 and 11

and obtain explicit formulas for the mean and LST of the first passage time for the

balking model in Theorems 12 and 13. In Section 3.6, we illustrate the usage of these

formulas to compute the first passage time in the M/M/1 case and verify several

known results. We present several numerical examples in Section 3.7.

3.2 The Fluid Model

Consider a fluid model with an infinite capacity buffer where the net flow rate is gov-

erned by a stochastic process {Z(t), t ≥ 0} with a finite state space S = {0, 1, · · · , n}

as follows: if Z(t) = i the buffer level changes at rate ri. For convenience, we as-

sume that ri 6= 0,∀i ∈ S. It will be clear later that this assumption is not a severe

restriction in the context of our application. Let S− = {i : ri < 0}, S+ = {i : ri > 0},

n− = |S−| and n+ = |S+|.

Let X(t) be the amount of fluid in the buffer at time t. The dynamics of the
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buffer content process X = {X(t), t ≥ 0} is given by:

dX(t)

dt
=

 ri if Z(t) = i,X(t) > 0,

max(ri, 0) if Z(t) = i,X(t) = 0.

TheX process is called a fluid input-output process driven by the Z process (cf. Kulka-

rni [30]). The driving process Z behaves as a CTMC whose infinitesimal generator

matrix Q(x) depends on the current buffer level x as follows:

Q(x) =

 Q if 0 ≤ x ≤ b,

Q̄ if x > b,

where Q = [qij] (Q̄ = [q̄ij]) is the generator of a CTMC. We assume that Q and Q̄

have exactly one irreducible class. Such CTMCs have unique limiting distributions

that are independent of their initial states.

A more general version of a such a model is studied by Scheinhardt et al. [43]

under the name “feedback fluid queue”.

Clearly the joint process {(X(t), Z(t)), t ≥ 0} is a Markov process which is char-

acterized by the matrices Q, Q̄ and R = diag(r0, r1, · · · , rn). Let p = [p0, p1, · · · , pn]

be the solution to

pQ = 0, p~1 = 1

and p̄ = [p̄0, p̄1, · · · , p̄n] be the solution to

p̄Q̄ = 0, p̄~1 = 1.

Let

d =
∑
i∈S

piri
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and

d̄ =
∑
i∈S

p̄iri.

It is easy to see that d̄ < 0 is a sufficient condition for the joint process to be stable

( Kulkarni [30]). We assume this condition holds, i.e., the joint process is stable.

3.3 First Passage Time: the Fluid Model

In this section, we compute the mean and LST of the first passage time

T = min{t ≥ 0 : X(t) = 0}.

Let

πi(x) = E[T |Z(0) = i,X(0) = x]

and denote

π(x) = [π0(x), π1(x), · · · , πn(x)]T.

Theorem 7. The vector π(x) satisfies the following system of differential equations

Rπ′(x) =

 −~1−Qπ(x), if 0 < x < b,

−~1− Q̄π(x), if x > b,
(3.3)

with boundary conditions:

πi(0) = 0, i ∈ S−,

π(b−) = π(b+).
(3.4)

Proof. For 0 < x < b, consider an infinitesimal time interval [0, h] and use first step

analysis to obtain:

πi(x) = h+ (1 + qiih)πi(x+ rih) +
∑
j 6=i

qijhπj(x+ rih), ∀i,
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or

πi(x− rih) = h+ (1 + qiih)πi(x) +
∑
j 6=i

qijhπj(x), ∀i.

Divide both sides by h and let h ↓ 0. After some algebra, we get:

−riπ
′
i(x) = 1 +

∑
j

qijπj(x). (3.5)

The system of differential equations is obtained by rearranging the terms and writing

the (n+ 1) equations in a matrix form. Same argument goes for the case x > b. The

boundary conditions are obvious.

Notice that Equation (3.5) shows that it is possible to eliminate an unknown πj(x)

if rj = 0. Hence assuming ri 6= 0, ∀i ∈ S is not a severe restriction.

Similar equations are derived and solved in Kulkarni and Tzenova [32] by using

well-known techniques. We slightly extend the method that is used in Theorem 3.3

in Kulkarni and Tzenova [32] and apply it to the problem we consider here. First we

state the following lemma.

Lemma 1. (From Theorem 11.5, Kulkarni [30]). Suppose Q̄ has exactly one irre-

ducible class. Then there are n+ 1 (possibly repeated) eigenvalues of −R−1Q̄. When

d̄ < 0, exactly n+ have positive real parts, one is zero, and n− − 1 have negative real

parts.

Order the eigenvalues θ̄i as follows:

Re(θ̄0) ≤ Re(θ̄1) ≤ · · · ≤ Re(θ̄n−−2) ≤ Re(θ̄n−−1) = 0 < Re(θ̄n−) ≤ · · · ≤ Re(θ̄n).

Let v̄i be the right eigenvector corresponding to eigenvalue θ̄i.

Similarly, we use the notation θi and vi (i = 0, 1, ..., n), respectively, for the

eigenvalues and right eigenvectors of −R−1Q. But we do not order θi in the same

fashion as θ̄i, and we do not assume d < 0.
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We give the main result in the following theorem. The proof is similar to that of

Theorem 3.3 in Kulkarni and Tzenova [32] and is omitted here.

Theorem 8. Let I be the (n + 1) × (n + 1) identity matrix. The solution to Equa-

tion (3.3) and (3.4) is given by:

π(x) =


∑n

j=0 ajvje
θjx − ~1x

d
+ c, if 0 ≤ x ≤ b,∑n−−1

j=0 āj v̄je
θ̄jx − ~1x

d̄
+ c̄, if x > b,

(3.6)

where c is any solution to the linear system

Qc = (R/d− I)~1,

c̄ is any solution to the linear system

Q̄c̄ = (R/d̄− I)~1,

and the coefficients {aj, 0 ≤ j ≤ n} and {āj : 0 ≤ j ≤ n− − 1} are obtained by using

the boundary conditions given in Equation (3.4).

Next, we compute the LST of the first passage time T :

φi(s, x) = E[e−sT |Z(0) = i,X(0) = x].

Let

φ(s, x) = [φ0(s, x), φ1(s, x), · · · , φn(s, x)]T.

The following theorem is analogous to Theorem 7.
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Theorem 9. The vector φ(s, x) satisfies the following system of differential equations

R
dφ(s, x)

dx
=

 (sI −Q)φ(s, x), if 0 < x < b,

(sI − Q̄)φ(s, x), if x > b,
(3.7)

with boundary conditions:

φi(s, 0) = 1, i ∈ S−,

φ(s, b−) = φ(s, b+).
(3.8)

Proof. For 0 < x < b, consider an infinitesimal time interval [0, h] and use first step

analysis to obtain:

φi(s, x) = e−sh(1 + qiih)φi(s, x+ rih) +
∑
j 6=i

e−shqijhφj(s, x+ rih), ∀i,

or

φi(s, x− rih) = e−sh(1 + qiih)φi(s, x) +
∑
j 6=i

e−shqijhφj(s, x), ∀i.

Divide both sides by h and let h ↓ 0. After some algebra, we get:

−ri
dφi(s, x)

dx
+ sφi(s, x) =

∑
j

qijφj(s, x), ∀i.

The system of differential equations is obtained by rearranging the terms and writing

the (n+ 1) equations in a matrix form. Same argument goes for the case x > b. The

boundary conditions are obvious.

It is more complicated to solve Equations (3.7) and (3.8). However, we shall see

in the next section that for some special cases, explicit solutions can be obtained.
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3.4 A Special Case of the Fluid Model

In this section we consider a special case of the fluid model whose R, Q and Q̄matrices

are as given below. As we shall see, this helps us solve the first passage time problem

for the balking model we have described at the beginning of this chapter. Let M and

α be the parameters of the phase type distribution as defined in Section 2.4.1 and λ

be the arrival rate. The fluid model is parameterized by a real number r > 0. Let

r0 = −1, ri = r > 0 for i = 1, 2, · · · , n,

R = diag(r0, r1, · · · , rn),
(3.9)

Q =

 −λ λα

−Mr~1 Mr

 , (3.10)

Q̄ =

 0 0

−Mr~1 Mr

 . (3.11)

To understand the motivation behind this model consider two cases.

Case 1: The buffer content is no more than b. Then the buffer content increases

at rate r as long as the Z process is in the set {1, 2, .., n} (we say it is “up”), and it

decreases at rate 1 when the Z process is in state 0 (we say it is “down”). The Z

process alternates between up and down periods. The down times are iid exp(λ) ran-

dom variables, and the up times are iid with phase type distribution with parameters

α and M .

Case 2: The buffer content is more than b. Then the buffer content increases at

rate r as long as the Z process is up, and it decreases at rate 1 when the Z process

is down. Once the Z process is down, it stays down until the buffer content drops

below b and we switch to case 1 above.

Let Xr(t) be the buffer content at time t in the fluid process described by the
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parameters Q, Q̄, R given above. A typical sample path of the {Xr(t), t ≥ 0}

process is shown in Figure 3.1.

 Xr(t)

 t

 b

Figure 3.1: A Typical Sample Path of Xr(t)

Now define some special notation for this special case as follows:

Tr = min{t ≥ 0 : Xr(t) = 0},

πi(x, r) = E[Tr|Z(0) = i,X(0) = x],

π(x, r) = [π0(x, r), π1(x, r), · · · , πn(x, r)]T,

φi(s, x, r) = E[e−sTr |Z(0) = i,X(0) = x],

φ(s, x, r) = [φ0(s, x, r), φ1(s, x, r), · · · , φn(s, x, r)]T,

A(s, r) = R−1(sI −Q) =

 −λ− s λα

M~1 −M + s
r
I

 ,
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and

Ā(s, r) = R−1(sI − Q̄) =

 −s 0

M~1 −M + s
r
I

 .
First we give an explicit formula for the mean first passage time π(x, r) in the

following theorem.

Theorem 10. With R, Q and Q̄ as specified in Equation (3.9), (3.10) and (3.11),

respectively, the solution to Equation (3.3) and (3.4) is

π(x, r) =

 eA(0,r)x(c−
∫ x

0
e−A(0,r)tR−1~1dt), if 0 ≤ x ≤ b,

(x− b)~1 + π(b, r), if x > b,

where

c =

 u1[
M~1,−M

]
eA(0,r)b


−1  0

(1 + 1/r)~1 +
[
M~1,−M

]
eA(0,r)b

∫ b

0
e−A(0,r)tR−1~1dt

 ,
and u1 is the first row of the identity matrix.

Proof. Substituting Q and Q̄ in Equation (3.3), we get:

dπ(x, r)

dx
= −R−1~1 + A(0, r)π(x, r), if 0 < x < b, (3.12a)

dπ(x, r)

dx
= −R−1~1 + Ā(0, r)π(x, r), if x > b. (3.12b)

It is well known (cf. Finizo and Ladas [14]) that the solution to Equation (3.12a) is

π(x, r) = eA(0,r)x(c−
∫ x

0

e−A(0,r)tR−1~1dt), 0 < x < b, (3.13)

where c is some constant vector to be determined. Notice that for x > b:

πi(x, r) = E[Tr|Z(0) = i,X(0) = x] = E[x−b+Tr|Z(0) = i,X(0) = b] = x−b+πi(b, r).
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Then

dπ(x, r)

dx
=

d[(x− b)~1 + π(b, r)]

dx
= ~1, x > b. (3.14)

Consider the value limx↓b
dπ(x,r)

dx
. From Equation (3.14) and (3.12b), use the fact

π(b−, r) = π(b+, r), we get:

−R−1~1 + Ā(0, r)π(b−, r) = ~1,

which reduces to:

[M~1,−M ]π(b−, r) = (1 + 1/r)~1.

Using Equation (3.13) for π(b−, r) we get:

[M~1,−M ]eA(0,r)b(c−
∫ b

0

e−A(0,r)tR−1~1dt) = (1 + 1/r)~1.

Since π0(0, r) = 0, the first component of c is 0. Writing this condition as an additional

row of the equation above, we get:

 u1[
M~1,−M

]
eA(0,r)b

 c =

 0

(1 + 1/r)~1 +
[
M~1,−M

]
eA(0,r)b

∫ b

0
e−A(0,r)tR−1~1dt

 .

Remark: Since A(0, r) is singular, it makes the computation of the integral∫ x

0
e−A(0,r)tdt tricky. There are several numerical methods for computing this integral.

The method we use in our computations is based on the following observation. Since

π(x, r) = dφ(s,x,r)
ds

|s=0, we have

∫ x

0

e−A(0,r)tdt = lim
s→0

∫ x

0

e−A(s,r)tdt = lim
s→0

A−1(s, r)(I − e−A(s,r)x).

Next we derive an explicit formula for the LST of the first passage time φ(s, x, r).
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First we need the following lemma.

Lemma 2. The matrix Ā(s, r) has an eigenvalue −s with geometric multiplicity 1

and the corresponding right eigenvector:

v̄0(r) =

 1

(M − s(1 + 1/r)I)−1M~1

 .
Proof. It is easy to verify that

(−sI − Ā(s, r))v̄0(r) = 0,

and the null space of sI + Ā(s, r) has dimension 1.

The explicit formula for φ(s, x, r) is given in the following theorem.

Theorem 11. With R, Q and Q̄ as specified in Equation (3.9), (3.10) and (3.11),

respectively, the solution to Equation (3.7) and (3.8) is

φ(s, x, r) =

 eA(s,r)xc if 0 ≤ x ≤ b,

e−s(x−b)eA(s,r)bc if x > b,

where

c = ke−A(s,r)bv̄0(r),

k is the scalar such that u1c = 1.

Proof. Substituting Q and Q̄ in Equation (3.3), we get:

dφ(s, x, r)

dx
= A(s, r)φ(s, x, r), if 0 < x < b, (3.15a)

dφ(s, x, r)

dx
= Ā(s, r)φ(s, x, r), if x > b. (3.15b)
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It is well known that the solution to Equation (3.15a) is

φ(s, x, r) = eA(s,r)xc, 0 < x < b, (3.16)

where c is some constant vector to be determined. Notice that for x > b

φi(s, x, r) = E[e−sTr |Z(0) = i,X(0) = x]

= E[e−s(x−b+Tr)|Z(0) = i,X(0) = b]

= e−s(x−b)φi(s, b, r).

Then

dφ(s, x, r)

dx
=

d[e−s(x−b)φ(s, b, r)]

dx
= −se−s(x−b)φ(s, b, r), x > b. (3.17)

Consider limx↓b
dφ(s,x,r)

dx
. From Equation (3.17) and (3.15b), using the fact φ(s, b−, r) =

φ(s, b+, r), we get:

Ā(s, r)φ(s, b−, r) = −sφ(s, b−, r).

Using Equation (3.16) for φ(s, b−, r) we get

Ā(s, r)eA(s,r)bc = −seA(s,r)bc,

which implies that eA(s,r)bc is a right eigenvector of Ā(s, r) corresponding to the eigen-

value −s, i.e.:

eA(s,r)bc = kv̄0(r),

due to Lemma 2. Finally, c is completely determined by the boundary condition that

φ0(s, 0, r) = 1.
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3.5 First Passage Time: the Balking Queueing Model

In this section, we compute the mean and LST of the first passage time for the balking

queuing model. First we give the following construction which shows that the balking

model is a limiting case of the fluid model we analyze in the previous section.

We construct the sample path of {W (t), t ≥ 0} in the balking model and the

sample path of {Xr(t), t ≥ 0} in the fluid model on a common probability space as

follows. Without loss of generality, assume the process {Xr(t), t ≥ 0} start in “down”

time.

Let {Ui, i ≥ 1} be iid random variables with phase type distribution with param-

eter α and M ; {Di, i ≥ 1} be iid random variables with exponential distribution with

parameter λ. We think of Ui as the service time of the i-th arriving customer (who

may or may not balk) and Di as the inter-arrival time between the i-th and (i+1)-st

arriving customer. Then the sample path of the {W (t), t ≥ 0} process in the balking

model is completely described by these two sequences and the parameter b. It is

shown in Figure 3.2. Note that the second customer (arriving at time D1 +D2) finds

the workload above b and hence balks.

Next we construct a sample path of the buffer content process {Xr(t), t ≥ 0} by

using the same two sequences {Ui, i ≥ 1} and {Di, i ≥ 1}. It is shown in Figure 3.3.

Here we use Di as the i-th down time, and Ui/r as the i-th up time. Note that if

the i-th down time finishes while the buffer content is above b, we do not use the

i-th uptime at all, and immediately start the next down time. This is equivalent to

having a null transition in the Z process from state 0 to 0. Such a transition occurs

in Figure 3.3 at time D1 + U1

r
+D2.

Then, clearly,

{Xr(t), t ≥ 0} a.s.→ {W (t), t ≥ 0} as r →∞.
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Figure 3.2: Construction of W (t)
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Figure 3.3: Construction of Xr(t)
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Recall that B = min{t ≥ 0 : W (t) = 0} and Tr = min{t ≥ 0 : Xr(t) = 0}. It

follows from the preceding construction that

Tr
a.s.→ B

as r →∞.

Let

A(s) = lim
r→∞

A(s, r) =

 −λ− s λα

M~1 −M

 ,

Ā(s) = lim
r→∞

Ā(s, r) =

 −s 0

M~1 −M

 ,
and

v̄0 = lim
r→∞

v̄0(r) =

 1

(M − sI)−1M~1

 .
It is clear that if we take the limit of the results given in Theorem 10 and 11,

then the first component of the vector is the first passage time for the balking model.

We summarize the results in Theorems 12 and 13. The proof is straightforward and

hence is omitted.

Theorem 12. The mean first passage time defined in Equation (3.1) is given by

m(x) =

 u1e
A(0)x(c+

∫ x

0
e−A(0)tuT

1 dt), if 0 ≤ x ≤ b,

(x− b) +m(b), if x > b,

where

c =

 u1[
M~1,−M

]
eA(0)b


−1  0

~1−
[
M~1,−M

]
eA(0)b

∫ b

0
e−A(0)tuT

1 dt

 ,
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and u1 is the first row of the identity matrix.

Theorem 13. The LST of the first passage time defined in Equation (3.2) is given

by

ψ(s, x) =

 u1e
A(s)xc if 0 ≤ x ≤ b,

u1e
−s(x−b)eA(s)bc if x > b,

where

c = ke−A(s)bv̄0,

k is the scalar such that u1c = 1.

Remark: Differential equations similar to (3.3) and (3.7) also hold for other first

passage times. For example, suppose T = min{t ≥ 0 : X(t) = 0 or X(t) = b}.

This case is actually easier since the constant vector in the solution to Equation (3.3)

is completely determined by the boundary conditions πi(0) = 0, i ∈ S− and πi(b) =

0, i ∈ S+. Similarly, the constant vector in the solution to Equation (3.7) is completely

determined by the boundary conditions φi(s, 0) = 1, i ∈ S− and φi(s, b) = 1, i ∈ S+.

3.6 Special Case: Exponential Service Times

In this section, we illustrate the results of the previous section with exponential service

time with rate µ, and verify the known results.

The exponential distribution is simply a phase type distribution with parameters:

M = [−µ], α = [1].

Thus we have

A(s) =

 −s− λ λ

−µ µ

 , Ā(s) =

 0 0

−µ µ

 , v̄0 =

 1

µ/(µ+ s)

 .
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Using Theorem 12, after tedious algebra, we get the following result for the mean

first passage times

m(x) =


1

(µ−λ)2
[µ(µ− λ)x− λ2

µ
e−(µ−λ)(b−x) + λ2

µ
e−(µ−λ)b], if 0 ≤ x ≤ b,

(x− b) +m(b), if x > b,
. (3.18)

Equation 3.18 is equivalent to the formula given in Proposition 3.1 in Perry and

Asmussen [38].

Using Theorem 13, after simplification, we get the following formula which is

consistent with Theorem 3.1 in Perry and Asmussen [38]:

ψ(s, x) =


γ1eθ1x−γ2eθ2x

γ1−γ2
if 0 ≤ x ≤ b,

e−s(x−b)ψ(s, b) if x > b,

(3.19)

where

θ1 =
(µ− s− λ) +

√
(s+ λ− µ)2 + 4µs

2
, (3.20)

θ2 =
(µ− s− λ)−

√
(s+ λ− µ)2 + 4µs

2
, (3.21)

are the eigenvalues of A(s) and

γi = (µ− θi −
λµ

s+ µ
)e−θib, i = 1, 2.

From Equation (3.18) and (3.19), by taking the limit b→∞, we obtain the mean

and LST of the first passage time for the classical M/M/1 queueing model:

lim
b→∞

m(x) =
µ

µ− λ
x, (3.22)
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lim
b→∞

ψ(s, x) = eθ2x. (3.23)

Equation (3.23) is exactly Equation (3.4) in Perry and Asmussen [38]. Inversion

of the LST given by Equation (3.23) yields identical result given in Theorem 8 in

Prabhu [42]. It is also worth noting that

− deθ2x

ds

∣∣∣∣
s=0

= − xeθ2x dθ2

ds

∣∣∣∣
s=0

=
µ

µ− λ
x,

which matches with Equation (3.22).

3.7 Numerical Results

In this section, we illustrate our results numerically. We consider three different

phase type service time distributions: exponential, Erlang and Hyper-exponential.

The parameters are the same as those used in Section 2.6 on page 29. The balking

threshold b is set to be 2.

In addition to the plots of the mean of B, we also include the plots of the cdf and

pdf of B which are defined as follows,

F (t, x) = Pr{B ≤ t|W (0) = x}, t ≥ x,

and

f(t, x) =
dF (t, x)

dt
, t > x.

Recall that ψ(s, x) = E[e−sB|W (0) = x], then F (t, x) and f(t, x) can be calculated

as the inverse Laplace transform of ψ(s, x)/s and ψ(s, x) respectively. Note that the

distribution of B has a mass at t = x, since

Pr{B = x|W (0) = x} = Pr{no arrival during [0, x]} = e−λx.
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We make different plots by varying the service time distributions, ρ or x as sum-

marized in Table 3.1.

ρ = 0.8 Figure 3.4
Mean: m(x) ρ = 1 exp, erlang, hyper Figure 3.5

ρ = 1.2 Figure 3.6
Mean: m(x) ρ = 0.8, 1, 1.2 exp Figure 3.7

ρ = 0.8 Figure 3.8
Distribution: F (t, x = 1, 2) ρ = 1 exp, erlang, hyper Figure 3.9

ρ = 1.2 Figure 3.10
Distribution: F (t, x = 1) ρ = 0.8, 1, 1.2 erlang Figure 3.11
Distribution: F (t, x = 1, 2, 3) ρ = 0.8 erlang Figure 3.12

ρ = 0.8 Figure 3.13
Density: f(t, x = 1, 2) ρ = 1 exp, erlang, hyper Figure 3.14

ρ = 1.2 Figure 3.15
Density: f(t, x = 1) ρ = 0.8, 1, 1.2 erlang Figure 3.16
Density: f(t, x = 1, 2, 3) ρ = 0.8 erlang Figure 3.17

Note:

1. Figure 3.8,3.9,3.10 3.13, 3.14 and 3.15 include two sets of three curves for x=1 and x=2.

2. b = 2.

Table 3.1: Plots Summary

From Theorem 12, we have m(x) = (x − b) +m(b) when x > b. The linearity is

illustrated in all mean plots. Also, from Theorem 13, we have ψ(s, x) = e−s(x−b)ψ(s, b)

when x > b. This is reflected as a shift of the pdf curve as shown in Figure 3.17.

Surprisingly, it is worth noting that as the variance of the service time becomes

smaller, the meanm(x) becomes larger. Figure 3.4, 3.5 and 3.6 indicate thatmhyper(x) <

mexp(x) < merlang(x), x > 0. Moreover, in Figure 3.8,3.9 and 3.10, it is easy to see

that Bhyper <st. Bexp <st. Berlang.

Let m(x, b) be the mean first passage time parameterized by the balking threshold

b. Figure 3.18 numerically verifies the following obvious identity:

m(x∗ + x, b) = m(x∗, b) +m(x, b− x∗), 0 ≤ x∗ ≤ b, x ≥ 0,
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by using the exponential service time and x∗ = 1, b = 3.

3.8 Concluding Remarks

In this chapter, we have developed an alternative method to study the first passage

time problem for the M/PH/1 queues with wait-based balking via fluid models. The

two models are connected by the construction illustrated in Section 3.5. We used

elementary techniques to analyze the first passage time problem for the fluid model

and obtained explicit solutions for the balking model. The method can also be applied

to the dam model where service requirement is truncated if the complete admission

of an arriving customer causes the workload to go beyond a given level.

Although the model we consider in this chapter is a single server one, it incorpo-

rates the right characteristics of the customer behavior and can be used in approxi-

mations of multi-server models.
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Figure 3.4: Mean Plot, b = 2, ρ = 0.8
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Figure 3.5: Mean Plot, b = 2, ρ = 1
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Figure 3.6: Mean Plot, b = 2, ρ = 1.2
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Figure 3.7: Mean Plot, Exponential Service Time, b = 2
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Figure 3.8: Distribution Plot, b = 2, ρ = 0.8 (two sets of three curves for x=1 and
x=2)
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Figure 3.9: Distribution Plot, b = 2, ρ = 1 (two sets of three curves for x=1 and x=2)
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Figure 3.10: Distribution Plot, b = 2, ρ = 1.2 (two sets of three curves for x=1 and
x=2)
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Figure 3.11: Distribution Plot, Erlang Service Time, b = 2, x = 1
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Figure 3.12: Distribution Plot, Erlang Service Time, b = 2, ρ = 0.8
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Figure 3.13: Density Plot, b = 2, ρ = 0.8, (two sets of three curves for x=1 and x=2)
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Figure 3.14: Density Plot, b = 2, ρ = 1 (two sets of three curves for x=1 and x=2)
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Figure 3.15: Density Plot, b = 2, ρ = 1.2 (two sets of three curves for x=1 and x=2)
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Figure 3.16: Density Plot, Erlang Service Time, b = 2, x = 1
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Figure 3.17: Density Plot, Erlang Service Time, b = 2, ρ = 0.8
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Figure 3.18: Mean Plot, Exponential Service Time, ρ = 0.8
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Chapter 4

Balking and Reneging in M/G/s

Systems: Exact Analysis and

Approximations

4.1 Introduction

In this chapter we consider the vqt process in an M/G/s queue with impatient cus-

tomers. Although the vqt process is introduced in Chapter 1 in the context of a

wait-based balking queue, this process also plays an essential role in the analysis of

the models with reneging customers. According to the definition of vqt, if the system

has customers who eventually will renege without being served, then the service times

for those customers are not included in the vqt. The model with reneging customers

can be analyzed via a closely related wait-based balking model. Such an idea appears

in Tijms [46] (pages 318–322). We shall discuss the connection between balking and

reneging in details in Section 4.4. In this chapter we focus on the wait-based balking

model and relate it to reneging behavior of impatient customers in terms of the steady

state distribution of the vqt process.

An exact analysis of the multi-server queue is too complicated, or in many cases,



intractable. Therefore, we develop a system approximation for the multi-server sys-

tem with impatient customers. The idea is to treat the s-server system as an M/G/∞

system (or M/G/s − 1 loss system) when some servers are idle and an M/G/1 sys-

tem when all servers are busy. Since balking and/or reneging can only happen when

all servers are busy, we can easily introduce the customer impatience to the M/G/1

system that approximates the original system during the period when all servers are

busy. Using this idea we construct a single-server system whose operating charac-

teristics approximates those of the M/G/s queueing system with wait-based balking.

The approximation is exact when G = M , b = 0 or s = 1. The exact analysis of the

approximate system follows the same line as Chapter 2, where we solve the s = 1 case.

We give both analytical results and numerical examples. We conduct simulation to

assess the accuracy of the approximation.

We begin with analyzing the G = M case in Section 4.2. In Section 4.3, we

consider general service times and propose an approximate system. We conclude

with numerical results (Section 4.6) following a discussion about the design of our

simulation experiments (Section 4.5).

4.2 The M/M/s Balking Model

In this section we consider the case where the service requirement has an exponential

distribution with mean 1/µ. The arrival process is Poisson with rate λ. This is an

M/M/s FCFS system with balking based on vqt. At the arrival epoch, an arriving

customer joins the queue if and only if he/she observes that the vqt is no more than

a fixed amount b.

Let N(t) be the number of customers in the system at time t. The definition of

W (t) implies that W (t) = 0 if and only if N(t) ≤ s − 1. If the N = {N(t), t ≥ 0}

process undergoes a transition from state s − 1 to s at time t, then there is a jump

in the W = {W (t), t ≥ 0} process at the same time. This is illustrated in Figure 4.1
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which shows the sample path of a 2-server system. Note that, in the sample path

shown there, the customer who arrives at time T3 balks. At time T1 (and T4), the

number of customer in the system increases from 1 to 2. At the same time, the

vqt jumps from 0 to a positive number. It is clear that the W process finishes a

regenerative cycle from T1 to T4. It is easy to see that the size of the jumps are iid

exp(sµ).

T0 T1 T2 T3 T4
0

1

2

3

 t

 N(t)

T0 T1 T2 T3 T4
0

b

 t

 W(t)

 I

Figure 4.1: A sample path of W (t) and N(t)

Let I be a generic random variable representing the idle period defined as the

interval of time during which W (t) = 0. In other words, let t1 be the service

completion epoch such that N(t1−) = s. Then I = min
t>0

{t : W (t1 + t) > 0} or

I = min
t>0

{t : N(t1 + t) = s}.
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Theorem 14. The expected length of I is given by

E(I) =
1− ps

sµps

, (4.1)

where

ps =
(λ/µ)s

s!
∑s

i=0
(λ/µ)i

i!

.

Proof. Consider a standard M/M/s/s system with arrival rate λ and mean service

times 1/µ. Obviously, the time between two consecutive periods when the system is

full has the same distribution as I. The expected length of each system-full period is

clearly 1/(sµ). From the theory of alternating renewal process (ARP), we get

1/(sµ)

1/(sµ) + E(I)
= ps,

where ps is the probability that the M/M/s/s system is full (cf. [29]). The identity

in the theorem follows.

Consider the regenerative cycle from T1 to T4 as shown in Figure 4.1. The cycle

consists of a busy period (where W (t) > 0) and an idle period (where W (t) = 0). It is

easy to see that the evolution of theW process during the busy period is stochastically

identical to that in a single-server balking system discussed in Chapter 2 with arrival

rate of λ and iid exp(sµ) service times. This observation motivates the following

single-server system with iid exp(sµ) service times. Let W̃ (t) be the vqt and Ñ(t) be

the number of customers at time t in this system. The same balking rule applies, i.e.,

a customer arriving at time t enters if and only if W̃ (t−) ≤ b. Customers arrive as a

Poisson process with arrival rate λ̃(t) depending on Ñ(t) as follows:

λ̃(t) =

 γ if Ñ(t) = 0

λ otherwise
,
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where γ is defined to be 1/E(I).

Denote the limiting cdf of the W process and the W̃ process as follows.

F (x) = lim
t→∞

Pr{W (t) ≤ x}, x ≥ 0;

F̃ (x) = lim
t→∞

Pr{W̃ (t) ≤ x}, x ≥ 0.

Let

F (0) = c, F̃ (0) = c̃.

Let

f(x) =
dF (x)

dx
, f̃(x) =

dF̃ (x)

dx
, x > 0,

be the pdf.

We apply the same method used in Chapter 2 and give the results in Theorem 15

and 16, omitting the proofs. Theorem 15 gives the balance equation and normalizing

equation satisfied by f̃(x). Theorem 16 gives the expression of f̃(x) explicitly by

solving the equations.

Theorem 15. The equilibrium pdf f̃(x) of the W̃ process satisfies:

f̃(x) = λ

∫ x∧b

0

f̃(u)e−sµ(x−u)du+ c̃γe−sµx, (4.2a)∫ ∞

0

f̃(x)dx+ c̃ = 1, (4.2b)

where x ∧ b = min(x, b).

Let ρ = λ
sµ

be the traffic intensity.

Theorem 16. The equilibrium pdf of the W̃ process is:

f̃(x) =

 c̃γe−(sµ−λ)x if 0 < x < b

c̃γeλbe−sµx if x ≥ b
. (4.3)
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where

c̃ =

 [γ( 1
sµ−λ

− e−(sµ−λ)b λ
(sµ−λ)sµ

) + 1]−1 if ρ 6= 1

λ
λ+γ+λγb

if ρ = 1
. (4.4)

The following theorem gives the limiting distribution of the W process via the

single-server system we construct.

Theorem 17. The W process and W̃ process have same limiting distribution, i.e.,

F (x) = F̃ (x), x ≥ 0.

Proof. Let B(t) = 1 ifW (t) > 0 and B(t) = 0 ifW (t) = 0. Then B = {B(t), t ≥ 0} is

an ARP. Define B̃(t) associated with W̃ (t) in the same fashion, then B̃ = {B̃(t), t ≥

0} is also an ARP. Since the expected up and down times in the B process and the

B̃ process are the same, we get

lim
t→∞

Pr{B(t) = i} = lim
t→∞

Pr{B̃(t) = i}, i = 0, 1.

It is easy to see that the sample paths of the W process and the W̃ process over the

busy periods are stochastically identical. Hence we get

lim
t→∞

Pr{W (t) ≤ x|B(t) = 1} = lim
t→∞

Pr{W̃ (t) ≤ x|B̃(t) = 1}.

Now

F (x) = lim
t→∞

Pr{W (t) ≤ x}

= lim
t→∞

Pr{W (t) ≤ x|B(t) = 1}Pr{B(t) = 1}+ lim
t→∞

Pr{B(t) = 0}

= lim
t→∞

Pr{W̃ (t) ≤ x|B̃(t) = 1}Pr{B̃(t) = 1}+ lim
t→∞

Pr{B̃(t) = 0}

= lim
t→∞

Pr{W̃ (t) ≤ x}

= F̃ (x)
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This proves the theorem.

Other performance measures of interest in the M/M/s balking system are com-

puted directly based on the results above. Let r be the probability that a customer

balks or the balking rate. Then

r =

∫ ∞

b

f(x)dx = cγ
e−(sµ−λ)b

sµ
.

Define the queueing time of any arriving customer to be the time from the arrival

epoch to the service starting epoch if he/she joins and 0 if he/she balks. Let w be

the long-run average queueing time for all customers. Then

w =

∫ b

0

xf(x)dx =


cγ[1−(sµ−λ)be−(sµ−λ)b−e−(sµ−λ)b]

(sµ−λ)2
if ρ 6= 1

cγb2

2
if ρ = 1

.

It is clear that the long-run average queueing time or the expected queueing time

for the entering customers is w′ = w/(1 − r). It can be verified by straightforward

algebra that the results given in this section are consistent with the corresponding

ones in [17] and [7] 1. However, unlike in [7], we do not need to assume that ρ < 1,

and our results are more explicit than those in [17].

4.3 The M/G/s Balking Model

In this section, we extend the M/M/s balking model in Section 4.2 to an M/G/s

balking model. All settings for the M/M/s balking model are unchanged except that

we assume the service times are iid with a general distribution with mean 1/µ and

ccdf G(x). We use the subscript G in our notations for the general service time case.

The definitions correspond to those for the exponential case and are omitted. In order

1The formula for p
(τ)
0 in [7] consists a term with inverted sign, which we believe is a typo.
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to follow the analysis in Section 4.2, we need E(IG) and the distribution of the size

of the jumps in the WG process.

To compute E(IG) we consider a standard M/G/s/s system with arrival rate λ

and mean service time 1/µ. At each departure epoch of a customer who leaves behind

s−1 customers in the system, the remaining service time in the busy servers may not

have the same joint distribution as that of the M/G/s system with balking. Ignoring

this fact, we use the expected length of the time between two consecutive periods

when the M/G/s/s system is full as an approximation of E(IG). We know that in

equilibrium, an arriving customer to the M/G/s/s system with s − 1 busy servers

sees the remaining service times in the busy servers as having iid distribution with

ccdf Ge(x), which is the associated complementary equilibrium distribution of G(x)

defined by

Ge(x) = µ

∫ ∞

x

G(u)du.

Then the length of the period during which the M/G/s/s system is full is

min{R1, R2, · · · , Rs−1, S},

where {Ri, i = 1, 2, · · · , s − 1} are iid random variables with ccdf Ge(x). Notice

that

dGe(x) = −µG(x)dx,

then the expected length of this period is

∫ ∞

0

Gs−1
e (x)G(x)dx =

1

sµ
. (4.5)

Using the same method in the proof of Theorem 14, we get that the expected
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duration of the interval during which the M/G/s/s system is not full is given by

1− ps

sµps

. (4.6)

This is the same as in the M/M/s/s system. We use this expression as an approxi-

mation for E(IG).

The distribution of the size of the jumps is more complicated in the system with

general service times. Suppose the k-th jump in theWG process occurs at time Tk. Let

Jk be the size of this jump. Unfortunately, {Ji, i = 1, 2, · · · } are neither independent

nor identically distributed in general and this makes the model intractable. In the

next paragraph we explain the source of this intractability and it can be skipped in

first reading without affecting the flow of the material.

The jump size Jk in the WG process at time Tk is the minimum of this customer’s

service time and the remaining service times of all other customers in service at

time Tk + WG(Tk) (when this customer begins the service). Thus the distribution

of the jump sizes are not even identical in general. Equivalently, let’s regard the

M/G/s system as s parallel single server queues that operate as follows. Denote

the workload at time t in the i-th queue as W ′
i (t), i = 1, 2, · · · , s, and let W ′(t) =

(W ′
1(t),W

′
2(t), · · · ,W ′

s(t)) (cf [12]). Every entering customer is routed to the queue

with the least workload. Then

WG(t) = min{W ′
1(t),W

′
2(t), · · · ,W ′

s(t)}. (4.7)

Suppose the customer who arrives at time Tk with service time S is routed to the i-th

server, which has the least workload, then

Jk = WG(Tk+)−WG(Tk−)

= min{W ′
1(Tk−), · · · ,W ′

i (Tk−) + S, · · · ,W ′
s(Tk−)} −W ′

i (Tk−).
(4.8)
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Clearly the distribution of Jk is determined by the distribution of W ′(Tk) and the

distribution of S. The dependence of Jk and W ′(Tk) causes great complexity in the

analysis of the model and makes it intractable.

As an approximation, we assume that {Ji : W (Ti−) > 0} are iid with J̇ being

the generic jump size and {Ji : W (Ti−) = 0} are iid with J̈ being the corresponding

generic jump size. One principle of choosing the distribution for J̇ and J̈ is to preserve

the traffic intensity, i.e., ρ = λ/(sµ). That is, keep the mean of J̇ and J̈ to be 1/(sµ).

We assume E(J̇) = E(J̈) = 1/(sµ) in the rest of this chapter. We consider two

possibilities. The first choice is S̄ = S/s. It is easy to see that E(S̄) = 1/(sµ) in this

case. The second choice is Ŝ = min{R1, R2, · · · , Rs−1, S}. This is motivated by the

renewal-theoretic result that in steady state the remaining services times in the busy

servers are independent random variables with common ccdf Ge (cf. [44], page 161).

From Equation (4.6), we see that E(Ŝ) = 1/(sµ).

Analogous to the exponential case, we consider the W̃G process of the following

single-server system. Customers arrive according to a Poisson process with arrival

rate λ̃(t) depending on ÑG(t) as follows:

λ̃(t) =

 γ if ÑG(t) = 0

λ otherwise
,

where γ is defined to be sµps/(1− ps), which is the approximation for 1/E(IG). Let

GJ̇(x) and GJ̈(x) be the ccdf of J̇ and J̈ respectively. Service times of the customers

who enter a non-empty system are iid with common ccdf GJ̇(x). Service times of the

customers who enter an empty system are iid with common ccdf GJ̈(x). A customer

arriving at time t enters if and only if W̃G(t−) ≤ b. We use the expression in (4.6)

as approximation of E(IG). We approximate the distributions of {Ji} by J̇ and J̈ .

Moreover, the conditions for Theorem 17 do not hold in general. Therefore, the vqt

process of the single server model we construct approximates that of the M/G/s
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balking model, i.e., FG(x) ≈ F̃G(x), x ≥ 0. It is worth noting that the approximation

is exact in the following three cases: a) the service times are exponential; or b) the

balking threshold b is zero (when the system reduces to an M/G/s/s system) and

J̈ = Ŝ; or c) s = 1.

The following theorem is the general service time version of Theorem 15. It dis-

tinguishes the two appearances of the jump size distribution in the balance equation.

The rest discussion in this section follows the same line as Chapter 2 (with modifica-

tions and new formulas).

Theorem 18. The steady state pdf f̃G(x) of the W̃G process satisfies:

f̃G(x) = λ

∫ x∧b

0

f̃G(u)GJ̇(x− u)du+ c̃GγGJ̈(x), (4.9a)∫ ∞

0

f̃G(x)dx+ c̃G = 1, (4.9b)

where x ∧ b = min(x, b).

Notice that the first term in the right hand side of Equation (4.9a) is just the

convolution of f̃G(x) and GJ̇(x) multiplied by λ, when x ∧ b is replaced by x. Let

f1(x) be the solution to

f1(x) = λ

∫ x

0

f1(u)GJ̇(x− u)du+GJ̈(x), x ≥ 0. (4.10)

Let

f2(x) = λ

∫ b

0

f1(u)GJ̇(x− u)du+GJ̈(x), x ≥ b (4.11)

The solution to Equation (4.9) is given in the following theorem.

Theorem 19. The solution to (4.9) is:

f̃G(x) =

 c̃Gγf1(x) if x < b

c̃Gγf2(x) if x ≥ b
(4.12)
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where

c̃G =

[
γ

∫ b

0

f1(x)dx+ γ

∫ ∞

b

f2(x)dx+ 1

]−1

. (4.13)

Proof. The solution is easy to verify by substitution.

From the above theorem, it is clear that a possible procedure to obtain f̃G(x) is

to find f1(x) first, then compute f2(x) by using Equation (4.11). By the normalizing

equation (4.9b), after computing the integral, we are able to compute c̃G. This

completes the computation of f̃G(x). Obviously, one main step is to solve Equation

(4.10) for f1(x). One method is to use LT.

Let G∗
J̇
(ξ) and G∗

J̈
(ξ) be the LT of GJ̇(x) and GJ̈(x) respectively, i.e.,

G∗
J̇
(ξ) =

∫ ∞

0

e−ξxGJ̇(x)dx,

G∗
J̈
(ξ) =

∫ ∞

0

e−ξxGJ̈(x)dx.

From (4.10), we get the LT of f1(x) (assuming its existence):

f ∗1 (ξ) =
G∗

J̈
(ξ)

1− λG∗
J̇
(ξ)

. (4.14)

To continue our procedure, we need the inverse LT of f ∗1 (ξ). A closed form inversion

is possible if f ∗1 (ξ) is rational.

We can instantly obtain two interesting results from the analysis above when

b → 0 and b → ∞. The first case is b → 0. In this case, the system reduces to a

normal M/G/s/s model. Our approximation is exact if J̈ = Ŝ. From Theorem 18,

as b→ 0,

f̃G(x) → c̃GγGJ̈(x), x ≥ 0,

c̃G → 1− ps.

Next we compute w̃G, the long-run average queueing time for all customers and c̃G,
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as b→∞. The LT is convenient in this case. Using

∫ ∞

0

f1(x)dx = f ∗1 (0),

G∗
J̇
(0) = E(J̇), G∗

J̈
(0) = E(J̈),

w̃G = − df̃ ∗G(ξ)

dξ

∣∣∣∣∣
ξ=0

,

Theorem 19 and Equation (4.14), we get

c̃G →
1− ρ

ν + 1− ρ
, (4.15)

w̃G →
γ[(1− ρ)E(J̈2) + ρE(J̇2)]

2(1− ρ)(ν + 1− ρ)
, (4.16)

where ν = γ/(sµ) = ps/(1− ps).

When b → ∞, the WG process becomes the vqt process in a normal M/G/s

system and rG → 0. For several non-exponential distributions (e.g. Erlang-k) of

service time, exact table of E(WG) (and other performance measures) are available

and can be compared with E(W̃G) to assess the accuracy of our approximation.

Depending on the expression of the service time distribution and the choice of

the distributions of J̇ and J̈ , the solution to Equation (4.9) can be obtained, in most

cases, by numerical methods. We have two options for J̇ or J̈ , namely S̄ = S/s and

Ŝ = min{R1, R2, · · · , Rs−1, S}. Let

GS̄(x) = Pr{S̄ ≥ x} = G(sx),

G∗
S̄(ξ) =

∫ ∞

0

e−ξxGS̄(x)dx =
1

s
G∗(ξ/s),

GŜ(x) = Pr{Ŝ ≥ x} = Gs−1
e (x)G(x),

G∗
Ŝ
(ξ) =

∫ ∞

0

e−ξxGŜ(x)dx = − 1

µ

∫ ∞

0

e−ξxGs−1
e (x)d[Ge(x)],
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where G∗(ξ) is the LT for G(x). The expression of GS̄(x) and G∗
S̄
(ξ) are very easy

to obtained once G(x) and G∗(ξ) are specified. But it is hard to compute GŜ(x) and

G∗
Ŝ
(ξ). Computing G∗

Ŝ
(ξ) is hard even for phase-type (except exponential) service

times. Since all jumps caused by the customers who see s−1 busy servers upon arrival

are iid distributed as Ŝ, we introduce the complexity with the hope of improving

accuracy. In the following sections, we consider two possibilities in choosing J̇ and J̈

and define Approximation I and II correspondingly.2

4.3.1 Approximation I: J̇ = J̈ = S̄.

The equilibrium distribution of the W process is approximated by the solution to the

following system of equations:

f̃G(x) = λ

∫ x∧b

0

f̃G(u)GS̄(x− u)du+ c̃GγGS̄(x), (4.17a)∫ ∞

0

f̃G(x)dx+ c̃G = 1, (4.17b)

When b → ∞, this approximation becomes a classical M/G/s system approxi-

mation which appears in [33]. It tells us that the system behaves as an M/G/s/s

system when the vqt is zero. For vqt greater than zero, the system behaves like a

busy M/G/1 system with service time S/s. See [44], [36], [37] and [19] for details.

Equation (4.16) becomes

w̃G →
γE(S2)

2s2(1− ρ)(ν + 1− ρ)
.

The most general case where explicit closed form solution to (4.17) is available is

the phase-type service time.

2The approximation obtained by using J̇ = J̈ = Ŝ is omitted since it is seen to be inferior
according to the results of our numerical experiments.
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Consider the phase type service time, i.e.,

G(x) = αeMx~1, (4.18)

where the n-dimensional row vector α and the matrix M are the parameter of the

phase type distribution, ~1 is a column vector with all component be 1. Then,

GS̄(x) = αesMx~1.

The results in Chapter 2 can be easily adapted to the case we consider here. The

following is the balance equation used in Chapter 2, Equation 2.3a.

f(x) = λ

∫ x∧b

0

f(u)G(x− u)du+ cλG(x),

where G(x) = αeMx~1. The balance equation we have for f̃(x) in this case is

f̃G(x) = λ

∫ x∧b

0

f̃G(u)GS̄(x− u)du+ c̃GγGS̄(x),

where GS̄(x) = αesMx~1. We list the equations along to highlight the similarity be-

tween them. The parameter M is scaled to sM . The coefficient cλ is changed to

c̃Gγ. We obtain the solution to Equation 4.17 directly from Theorem 4 by scaling

and substitution and give it in Theorem 20, skipping the proof.

First we redefined the notations used in the statement of Theorem 4 as follows.

Let a0, a1, · · · , an be the coefficients of the characteristic polynomial of the matrix

sM , i.e. :

det(xI − sM) =
n∑

j=0

ajx
j. (4.19)

Let

P (θ) =
n∑

i=0

[
α
(
aiI + λ

i∑
j=0

aj(sM)j−i−1
)
~1

]
θi (4.20)
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be an n-th order polynomial in θ. Let θ1, θ2, · · · , θn be the roots of P (θ). We assume

they are distinct.

Let Θ be the Vandermonde matrix of θ1, θ2, · · · , θn, i.e.:

Θ =



1 1 · · · 1

θ1 θ2 · · · θn

θ2
1 θ2

2 · · · θ2
n

...
...

. . .
...

θn−1
1 θn−1

2 · · · θn−1
n


.

Since all θi are distinct, Θ is invertible (cf. [20]).

Let M0 = I, and define Mj, j ≥ 1 recursively by:

Mj = sMMj−1 + λαMj−1
~1I. (4.21)

Let

mi = αMi
~1 (i = 0, 1, · · · , n− 1) and

m = (m0,m1, · · · ,mn−1)
T.

(4.22)

With these notations, we are ready to state the following theorem.

Theorem 20. Suppose the service time has a phase type distribution with ccdf given

by (4.18), and assume that the polynomial in (4.20) has n distinct roots, θ1, θ2, · · · , θn.

The equilibrium pdf of the W̃G process is given by

f̃G(x) =


c̃Gγ

n∑
i=1

Aie
θix if 0 < x < b

c̃Gγα

[
esMx +

n∑
i=1

λAie
sMx(θiI − sM)−1(e(θiI−sM)b − I)

]
~1 if x ≥ b

(4.23)
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where A = (A1, A2, · · · , An)T is given by:

ΘA = m. (4.24)

The probability that the vqt is zero is

c̃G =

{ n∑
i=1

γ
Ai

θi

(eθib − 1)

− α
[ n∑

i=1

λγAi(sM)−1esMb(θiI − sM)−1(e(θiI−sM)b − I)
]
~1

− γα(sM)−1esMb~1 + 1

}−1

.

. (4.25)

We also compute

rG ≈
∫ ∞

b

f̃G(x)dx = −c̃Gγα(sM)−1esMb

[
I +

n∑
i=1

λAi(θiI − sM)−1(e(θiI−sM)b − I)

]
~1,

and

wG ≈
∫ b

0

xf̃G(x)dx = c̃Gγ
n∑

i=1

Ai(1 + θibe
θib − eθib)

θ2
i

, w′G =
wG

1− rG

. (4.26)

Remark: We do not give formulas for the case ρ = 1. Notice that ρ = 1 implies

−α(sM)−1~1 = 1/λ. Then θ1 = 0 is one of the roots of (4.20). In this case, we replace

the zero-dividing terms in the formulas by the corresponding limits. These terms and

their limits are: limθ1→0(e
θ1b − 1)/θ1 = b and limθ1→0(1 + θ1be

θ1b − eθ1b)/θ2
1 = b2/2.

Also note that some of our computations require convergence of the integral
∫∞

b
esMx,

which is guaranteed by the fact that all eigenvalues of M have negative real part.
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4.3.2 Approximation II: J̇ = S̄, J̈ = Ŝ.

The equilibrium distribution of the W process is approximated by the solution to the

following system of equations:

f̃G(x) = λ

∫ x∧b

0

f̃G(u)GS̄(x− u)du+ c̃GγGŜ(x), (4.27a)∫ ∞

0

f̃G(x)dx+ c̃G = 1, (4.27b)

When b→∞, Equation (4.16) becomes

w̃G →
γ[(1− ρ)E(Ŝ2) + ρE(S̄2)]

2(1− ρ)(ν + 1− ρ)
. (4.28)

For phase-type service times, neither E(Ŝ2) nor the solution to Equation (4.27)

can be obtained analytically. We use numerical methods. Particularly, we use quadra-

ture method in solving Equation (4.27) where numerically solving Volterra Integral

Equation (VIE) of the second kind plays a key role (note that the balance equation

becomes a VIE of the second kind if x ∧ b is replaced by x). Meanwhile, numerically

solving VIE of the second kind alone is a deserving topic in applied mathematics (cf.

[35]). A fast and reliable method to solve VIE of the second kind can be found in

[24]. Of course, the numerical method used in solving Equation (4.27) can also be

used to solve Equation (4.17).

4.4 Connection Between Balking and Reneging

Reneging is also a common phenomenon in queueing systems. As balking, reneging

can be viewed as an indication of customers’ impatience. In this section, we address

the connection between the wait-based balking model and reneging model. We argue

that the wait-based balking rule we introduced in Section 4.1 in fact produces the
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same vqt process as the one corresponding to a particular reneging rule and vice versa.

Consider the following balking rule. An arriving customer joins the queue if and only if

he/she observes that the vqt is no more than B ≥ 0, which can be either deterministic

or random. The corresponding reneging rule is as follows. A customer waiting in

queue leaves after being kept in queue for B unit of time. Using the same service

times {Si} and inter-arrival time {Ui}, from the definition of vqt, the sample path

of the vqt process governed purely by the balking rule is identical to that governed

purely by the reneging rule. This is because in both cases, a jump in the vqt process

occurs only if the vqt at the arrival epoch is no more than B. Moreover, suppose

the vqt process evolves under a mixture of balking and reneging rules with threshold

B and R ≥ 0 (deterministic or random) respectively. This can be converted to a

pure balking or pure reneging model with threshold min{B,R}. Therefore, balking

and reneging can be viewed as two interpretations of the general concept of customer

impatience, and the vqt process unifies them. It is worth mentioning that although we

illustrate our method by deterministic balking threshold, our method is not restricted

to that. A random B is useful for the following reasons. First, we have a random B

when converting to a pure balking model if the reneging threshold is random. Second,

for pure balking interpretation, if the vqt information is not precisely available to the

arriving customer and is provided as an estimate instead, the randomness presented

by the estimate can not be eliminated.

The balking model and reneging model do differ in the number of customers and

workload in the system. The reneging behavior results in more number of customers

and workload in the system than balking behavior. It is possible to derive the relation-

ship between the performance measures of the original (pure reneging, or reneging and

balking) system and the vqt-equivalent pure balking model. For example, suppose

the arrival is PP(λ). Let nB,R and nB be the long-run average number of customers in

the balking-reneging model and the vqt-equivalent pure balking model respectively.
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Let wB,R and wB be the long-run average workload in the balking-reneging model

and the vqt-equivalent pure balking model respectively. Then by PASTA, it can be

shown that

nB,R = nB + prλE(R),

and

wB,R = wB + prλE(R)E(S),

where

pr = lim
t→∞

Pr{R ≤ WG(t) ≤ B}

is the fraction of reneging customers. From the economic point of view, the balking

rule saves system resources (waiting room, buffers etc.). For reneging rule, the reneg-

ing customers spend time waiting in the queue but do not get the desired service in

the end.

The balking interpretation is advantageous in analytical study. For example, the

previous sections actually solve the corresponding problems for the reneging model

with deterministic threshold, which is new and would be difficult to analyze if we

start from the reneging interpretation. The Erlang-A model, which is a pure reneging

model with an exponentially distributed threshold, can be easily solved as well with

slight modification of Equation (4.2). On the other hand, the reneging interpretation

is advantageous in simulation. To simulate the wait-based balking model, one needs to

keep track of the vqt, which involves keeping track of the workload in each queue of the

equivalent parallel queue (see Equation (4.7)). This can be very expensive, especially

when the number of servers is large. In fact, we use the reneging interpretation in

our simulation.
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4.5 Design of Simulation Experiments

The exact results for the M/G/s balking models are needed to assess the accuracy

of the approximations developed in Section 4.3. Since such exact results are lacking

except when G = M or s = 1, we develop a high precision, high confidence level

and high coverage simulation. Our objective is to estimate the performance measures

sufficiently accurately to serve as the references against which the approximations

can be judged. The simulation aims at constructing a 99% confidence interval whose

width is less than 1% of the estimate value and whose actual coverage is high. As an

illustration, we use the long-run average queueing time as the performance measure

of interest in carrying out the simulation.

The simulation performs independent replications until the desired precision is

achieved or the maximum number of replications is reached. At the end of each repli-

cation a 99% confidence interval is constructed. If the confidence interval is narrow

enough, the simulation stops. Otherwise, the simulation continues to perform another

independent replication. A confidence interval for k replications are constructed as

follows. We assume the means of the replications {Xj : 1 ≤ j ≤ k} constitute a

random sample of size k from a Normal distribution with mean µ and variance σ2.

Then the 100(1− α)% confidence interval for µ is

X̄ ± t1−α/2,k−1
Sk√
k
,

where X̄ = 1
k

∑k
j=1Xj is the sample mean, S2

k = 1
k−1

∑k
j=1(Xj − X̄)2 is the sample

variance and t1−α/2,k−1 is the (1 − α/2)-th quantile of the Student t-distribution

with k − 1 degrees of freedom. For α = 0.01, the simulation performs at most 150

replications since more replications does not help decreasing the half length of the

confidence interval significantly.

The actual coverage of the confidence interval relies on how precisely the assump-
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tion that {Xj : 1 ≤ j ≤ k} constitute a random sample of size k from a normal

distribution holds. We assume that the process obeys a Central Limit Theorem

(CLT) for dependent processes. In order to achieve a high actual coverage, a replica-

tion stops after each server on the average serves 1 million customers. We discard the

first 10% observations to ensure that the process reaches steady state and to avoid

initialization bias. To ensure the quality of randomness, we use a non-linear additive

feedback pseudo-random number generator provided by the standard C library. The

period of this pseudo-random number generator is approximately 16(231 − 1).

In order to reduce the computation load, we simulate the equivalent reneging

model. It is easy to translate or compute the performance measures for the balking

model from this reneging model. For example, the reneging fraction of the reneging

model is the balking fraction of the balking model; the average queueing time for all

customers in the balking model is the total queueing time for all served customers in

the reneging model divided by the total number of customers.

Note that the simulation cannot always achieve the preset goal. The relative width

of the confidence interval can be higher than 0.01 after 150 replications. According

to our experience, this happens when the quantity in estimation is very small (in the

range of 10−4 to 10−9), for example, the average queueing time of a low traffic intensity

(e.g. 0.1) system. Or the replications consistently return zero as the estimate. This

happens when the quantity in estimation is extremely small (in the degree of 10−12

or smaller), for example, the average queueing time of a low traffic intensity (e.g.

0.1) and large number of servers (e.g. 100) system. In such cases, numerical and/or

assumption errors become significant.

4.6 Numerical Results

In this section, we illustrate our numerical results. We consider the M/PH/s model

with wait-based balking and three different phase type service time distributions:
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exponential, Erlang and Hyper-exponential. The parameters are the same as those

used in Section 2.6 on page 29. The balking threshold b is set to be 2. For each

of the three service time distributions, we use s ∈ {3, 10, 100} and compute the

long-run average queueing time for all served customers (w′) and fraction of rejected

customers (r) for different values of ρ ∈ [0.1, 1.2] by using: a) Approximation I (using

analytic formulas for the solution to Equation (4.17)), b) Approximation II (using

numerical method to solve Equation (4.27)) , and c) simulation methods. Notice that

for exponential service time distribution, both Approximation I and Approximation

II are exact. This gives us a method to verify the accuracy of simulation which turned

out to be satisfactory in our experiments.

Figure 4.2 shows the long-run average queueing time for all served customers as a

function of ρ. The w′ values for exponential service times are exact. Others are from

simulation. It can be seen that for almost all given value of ρ, there is an ordering

of the queueing times for different service times according the order of the variances,

either w′hyper > w′exp > w′erlang or w′hyper < w′exp < w′erlang. The order reverses as ρ

increases beyond a critical region. Intuitively, the value w′ should converge to b = 2

as ρ approaches infinity. This trend is best illustrated by the set of curves for s = 100.

The more the servers, the faster these curves approach b. Moreover, as s increases,

the queueing time becomes more sensitive around the point ρ = 1 and the overall

difference of the queueing time between these service time distributions diminishes.

Figure 4.3 is the same as Figure 4.2 except that it shows the fraction of rejected

customers. We have similar observations as those for w′. Notice that for all given

ρ, rhyper > rexp > rerlang. The order reversion we observe from Figure 4.2 does not

happen here. In addition, the fraction of rejected customers is almost linear in ρ when

ρ ≥ 1.

Figure 4.4, 4.5 and 4.6 display the relative errors in computing the queuing times

using the two approximations compared to the simulation results. We truncated the
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part where the queueing time is extremely close to 0. In such a case, the relative error

of the simulation results to the unknown exact values can be so large that it is not

reasonable to use the simulation results to access the accuracy of the approximations

in a relative sense. The figures verify the fact that as ρ increases, Approximation

I and Approximation II become closer since the coefficient c̃Gγ in Equation (4.9a)

approaches 0. Overall, Approximation II is more accurate than Approximation I.

It is worth noting that the curves for Approximation II are flatter. This, in some

sense, indicates the robustness of Approximation II in comparison to Approximation

I. However, this advantage of Approximation II over Approximation I is balanced

by the fact that we need to use numerical methods to solve Equation (4.27). Both

approximations are, of course, far quicker than the simulation.

4.7 Concluding Remarks

In this chapter we have obtained exact analytical results for the limiting behavior

of an M/M/s system with wait-based balking. These results also yield analytical

results for the corresponding reneging case, which is more complicated if studied as

a reneging system. Using these results we have proposed two approximations for

the M/G/s system with wait-based balking. We have done extensive numerical and

simulation experiments to conclude that Approximation I is easier to compute than

Approximation II, but Approximation II is more accurate than Approximation I over

a wide parameter space.
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Figure 4.2: Long-run Average Queueing Time for All Served Customers

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.05

0.1

0.15

0.2

0.25

 !

 r

Rejection Rate:  b = 2

 

 

exp
erlang
hyper

 s = 3  s = 10  s = 100
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Figure 4.5: Relative Errors of Approximations: s = 10
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