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ABSTRACT 

Matthew Bayer:  Factors Affecting the Formation, Stability, and Expression of 
Unintegrated Lentiviral Vector Genomes 

 
(Under the direction of Tal Kafri, M.D, Ph.D) 

Lentiviral vectors present an attractive means of delivering therapeutic transgenes, 

as they deliver a relatively large, stably integrated and expressed genetic payload to both 

dividing and nondividing cells.  However, with the genotoxic hazard of integrating 

vectors tragically illustrated by recent clinical trials using simple retroviral vectors, the 

necessity of developing a lentivector with minimal risk of insertional mutagenesis is 

clear.  In fact, integrase-mutated lentivectors, which deliver only unintegrated, episomal 

vector genomes to target cells, have been in use for a number of years, and offer a means 

of stably expressing transgenes in nondividing cells.  However, the means by which the 

various types of episomes (linear, 1-LTR circular, 2-LTR circular, and mutant circular) 

are formed, and the extent to which they are transcriptionally active, have not been 

thoroughly characterized in vitro or in vivo.  This dissertation investigates the effect of 

cellular factors, such as DNA-repair proteins and cell-cycle status, vector factors, such as 

sequences in the vector’s U3 region and polypurine tract (PPT), and organismal factors, 

such as target organ and in vivo stability, on the formation, stability, and expression of 

lentivector episomes. 

Interestingly, transduction of cell lines mutant for genes in the 

homologous-recombination pathway of DSB repair showed no change in 1-LTR 
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circular-episome formation.  Similarly, cells arrested in G1 phase of the cell cycle, 

which does not support HR, displayed unaffected levels of 1-LTR circles.  Furthermore, 

vectors bearing a large deletion to the U3 region, which strongly increases episomal, 

though not integrated, transgene expression, saw no significant change in episome 

formation from that of a vector with a short U3 deletion.  Conversely, vectors with a 

deleted PPT exhibited a dramatic increase in the relative abundance of 1-LTR circles, 

leading to reduced integrase-mediated and integrase-independent integration.  F inally, 

examination of in vivo episome formation and expression indicated that the relative 

abundance of 1-LTR circular episomes increases over a three-week period in the liver, 

that episomes express trangenes stably for up to six months in the liver, and that episomes 

exhibit greater stringency of tissue-specific expression than integrated provirus.   
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Chapter 1 

INTRODUCTION 

 

HIV-1 

 Human immunodeficiency virus 1 (HIV-1), a human retrovirus of the lentivirus 

family, is the causative agent of acquired immune deficiency syndrome (AIDS).  HIV-1 

virion particles consist of a 9.2kb diploid RNA genome and structural (gag), enzymatic 

(pol), envelope (env) and accessory proteins wrapped inside an envelope derived from the 

lipid membrane of the host cell, with viral glycoproteins on the envelope surface to mediate 

target-cell entry 1 (Fig. 1).  Briefly, the HIV-1 genome includes a packaging sequence (ψ), 

two long terminal repeats, at the 5’ and 3’ ends of the viral genome that each encode 

promoter/enhancer elements and a polyadenylation sequence, and the gag genes (matrix, 

capsid, and nucleocapsid), pol genes (reverse transcriptase, integrase, and protease), env 

genes (surface glycoprotein and transmembrane protein), and accessory genes (tat, rev, 

nef, vif, vpr, and vpu) (Fig. 2). 

HIV-1 primarily infects human CD4+ T lymphocytes and macrophages 2.  When an 

HIV-1 virion enters a target cell and uncoats the structural proteins, reverse transcriptase 

converts its genome from single-stranded RNA to a double-stranded DNA molecule, 

which then enters the nucleus, where the viral integrase protein may mediate the viral 

genome’s integration into the host-cell chromatin 3.  Viral RNA, transcribed from either 

integrated or unintegrated lentiviral genomes, is then either packaged into a new virion as a 



full-length viral genome or serves as mRNA to translate viral proteins, with or without 

prior splicing of the viral genome 3 (Fig. 1).  Once the viral proteins are assembled in the 

infected cell’s cytoplasm, the HIV-1 particle’s env proteins fuse the viral membrane with 

the cellular membrane and the virus “buds” out of the cell 3.  The ability of HIV-1 to use its 

cell-derived envelope to evade a strong immune response, as well as its persistence in 

infected cells, made it attractive to researchers looking for a novel virus to adapt for 

gene-transfer applications. 

HIV-1-Derived Vectors 

 Human immunodeficiency virus-1 (HIV-1) was first adapted for use as a 

gene-therapy vector over 13 years ago 4,5, and the use of vectors derived from HIV-1, as 

well as other lentiviruses, has steadily increased in sophistication and popularity since then 

6.  Lentiviruses' large (~9kb) genetic payload, low immunogenicity, and ability to 

transduce nondividing cells make them an attractive vehicle for gene therapy 6.  To that 

end, researchers have modified lentiviruses to make them nonpathogenic and 

replication-incompetent.  In brief, they adapted the virus by deleting the accessory genes 

nef, vpr, and vif, which mediate such pathogenic activities as inducing cell death, inducing 

G2 cell-cycle arrest, and facilitating virus secretion, respectively7-9.  Also, researchers split 

the viral genome into at least three reading frames on separate plasmids, with the transgene 

and all necessary cis elements expressed from one plasmid and the packaging and envelope 

proteins expressed from two or more other plasmids 6.  Virus particles made by this method 

can transduce target cells, but do not contain the packaging and envelope RNA necessary 

to replicate in them 4,5,10,11 (Fig. 2).   

 Beyond the modifications necessary to make lentiviral gene-therapy vectors safe 
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for researchers and patients, researchers have modified lentiviral vectors to improve their 

transduction efficacy.  For instance, they have replaced the wild-type lentiviral envelope 

protein with one from a heterologous virus, such as the G protein of the vesicular stomatitis 

virus (VSV-G), which imparts on the vector broader tropism; whereas wild-type virus 

particles, as noted above, transduce primarily CD4+ T cells and macrophages, 

VSV-G-pseudotyped vector particles target cells bearing a ubiquitous phospholipid 

receptor 4,11 (Fig. 2).  Another modification to largely delete the vector's native promoter, 

located in the LTR, such that, after reverse transcription, only an engineered internal 

promoter remains to express RNA while full-length RNA expression is prevented; vectors 

with this modification are known as self-inactivating, or SIN 12.  Indeed, with 

modifications to prevent pathogenesis and replication 12-14, lentiviral vectors have 

demonstrated excellent biosafety, coupled with the ability to deliver a relatively large 

genetic payload to both dividing and nondividing cells.  Interestingly, research on 

wild-type HIV-1 has revealed viral sequences in the LTR that function to inhibit 

expression 15-18, and, therefore, when deleted from SIN vectors, may allow enhanced 

transgene expression from the internal promoter 19.  Furthermore, the ability of lentiviral 

vectors to insert their genomes into target-cell chromosomes gives lentivectors the 

advantage of mediating stable gene expression in dividing cells, but presents the risk of 

inducing insertional mutagenesis, which recent studies with retroviral vectors have shown 

to be a tragically real possibility 20,21.  Therefore, reducing the risk of oncogenic events, 

either by directing vector integration to predetermined “safe” chromosomal loci or by 

preventing integration itself, is a critical issue facing the field of gene therapy 22-24. 
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Generating Nonintegrating Lentiviral Vectors 

 Of the above-mentioned methods for minimizing insertional genotoxicity, 

eliminating integration is the best understood to date.  The simplest way to prevent 

lentiviruses from inserting their genomes into target-cell chromatin is by mutating the 

vector genome, either at the integrase binding sites, known as att sites, located at the 5' and 

3' ends of the vector genome 25, or at the integrase gene.  Indeed, several effective, 

nonpleiotropic integrase-disabling mutations have been identified at the D64, D116, or 

E152 residues of its catalytic-core domain 26-30, resulting in a virus that cannot integrate 

into target-cell chromosomes, but can still import its cDNA genome into the nucleus.  

Recent studies have shown that integrase mutations are more effective than att-site 

mutations in preventing integration, and that integrase-att-site double mutants do not 

reduce integration frequency below that of integrase mutations alone 31,32. 

 Though nonintegrating lentiviral vectors appear to reduce significantly the risk of 

retrovirus-mediated insertional mutagenesis, which was demonstrated in recent clinical 

trials 20,21,33,34 and replicated in vitro 23,35 and in vivo 36,37, they do not prevent integration 

completely.  Indeed, a relatively low level of integration (1 integrated copy per ~5 x 103-4 

x 105 transducing vector particles) is observed in transductions with integrase-defective 

viruses or vectors 29,38.  Due to the irregular nature of vector-chromosome junctions 

observed in these integration events, they are believed to be caused not by residual 

integrase activity, but by illegitimate integration, most likely through recombination or 

nonhomologus end-joining between linear unintegrated vector genomes and chromosomal 

DNA 32.  The genotoxic hazard of illegitimate integration, though seemingly slight, 

increases as the multiplicity of infection or as the scale of transduction increases, and so 
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any methodological advances to reduce the level of illegitimate integration would be a 

useful contribution to vector safety. 

Episome Formation 

While the formation and maintenance of integrated lentiviral provirus have been 

studied extensively, the factors affecting the formation of lentiviral episomes are not 

thoroughly understood.  Entering the nucleus as a linear molecule of DNA, the lentiviral 

genome would be expected to induce a cellular response to its open, double-stranded ends.  

Indeed, the DNA damage-sensing machinery of infected cells appears to interact with at 

least some linear unintegrated lentiviral genomes.  An earlier study has established that the 

nonhomologous end-joining (NHEJ) proteins Ligase IV and Xrcc4 are necessary for the 

formation of 2-LTR circular episomes 39 (Fig. 3), suggesting that NHEJ mediates 2-LTR 

circle formation by bringing together the ends of unintegrated linear viral genomes.  On the 

other hand, little is known about how linear unintegrated vector genomes, the most 

common episomal species 40, are maintained without inducing an apoptotic or arrest 

response to their double-stranded open ends, nor have the mechanisms governing the 

formation of mutant and 1-LTR circular episomes been fully elucidated.  Mutant circles 

appear to form either by intramolecular recombination or autointegration of linear 

unintegrated lentiviral cDNA molecules 41.  Importantly, 1-LTR circular episomes may 

form through homologous recombination (HR) between the LTRs 42, 43, 44-46 (Fig. 4), or as 

products of prematurely terminated reverse transcription 47-49 (Fig. 5).  The hypothesis that 

1-LTR circles are formed during reverse transcription was advanced in the early years of 

retrovirus research, when it was found that retroviruses incubated in a cell-free extract can 

form 1-LTR circles, suggesting that viral proteins, such as reverse transcriptase, are 
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sufficient for 1-LTR circle formation48.  Furthermore, another study found that, during 

retroviral infection, 1-LTR circles are found not only in the nucleus, where HR proteins are 

active, but in the cytoplasm, where reverse transciptase is active and HR factors are not 

active, again suggesting that reverse transciptase  mediates the formation of 1-LTR circles 

49. 

 However, more recent studies suggest that 1-LTR circles might, in fact, be 

generated by HR proteins.  One investigation showed that linear viral DNA genomes, after 

being purified from viral proteins and incubated in a cellular extract, form 1-LTR circles 

without viral factors 42.  Another group found that an siRNA-induced knockdown of the 

HR protein Rad52 reduced the formation of 1-LTR circles in HIV-infected cells, also 

suggesting that HR proteins are involved in 1-LTR circle formation 44.  Specifically, HR 

factors in the single-strand annealing (SSA) pathway of HR would be expected to play a 

role, as the SSA pathway, not requiring an unbroken template strand to effect 

recombination of the HIV genome's LTRs, would be the logical mechanism for 

HR-mediated 1-LTR circle formation 50-52. 

Episome Stability and Expression 

Lentiviral episomes were long considered a short-lived, transcriptionally inert 

product of reverse transcription 29,30,53,54, and only in recent years have they been shown to 

mediate significant, sustained transgene expression, both in the context of lentivirus 

26,28,55-61 and lentiviral vectors 32,62-67, in keeping with results obtained with other 

extrachromosomal gene-therapy vectors 68-72.  In one example, Saenz and colleagues 

showed that nonintegrating vectors, though diluted out of dividing cells, could stably 

transduce growth-arrested cells in vitro and could transduce postmitotic neurons at levels 
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comparable to those of integrating vectors66.  The significant expression of transgenes from 

lentiviral episomes was also demonstrated in a recent study using integrase-deficient 

lentivectors to deliver reprogramming factors to human fibroblasts, successfully inducing 

them to pluripotency 65. 

 Nondividing cells are an attractive target for nonintegrating vectors, as episomal 

vector genomes are not diluted out of the cell population.  However, various groups have 

arrived at conflicting results on the efficacy of integrase-positive or integrase-defective 

lentiviral transduction of postmitotic cells.  First, Kafri et al. transduced liver cells in vivo 

with an integrating lentiviral vector and demonstrated sustained gene expression 73.  

However, Park et al. similarly used an integrase-positive lentiviral vector to transduce liver 

cells in vivo and found that partially hepatectomized livers, which undergo several rounds 

of cell division, were more than 25-fold more efficiently transduced than 

non-hepatectomized, postmitotic livers74. On the other hand, a number of groups have 

subsequently shown robust and stable expression in nondividing cells in vivo 31 38,75-78.  

Finally, Yanez-Munoz indicated that nonintegrating vectors transduce postmitotic retinal 

and brain cells as efficiently as integrating vectors, demonstrating effective retinal 

transduction through the restoration of ocular function in mice deficient for Rpe6579.  

Taken together, these results suggest that nonintegrating lentiviral vectors can transduce 

nondividing cells as efficiently as integrating vectors, and while lentiviral transduction 

may be more efficient in dividing cells, transduction in nondividing cells can be efficient 

enough to achieve phenotype correction in vivo.   

Research Presented in the Dissertation 

 Integrated lentiviral genomes have been exhaustively characterized, but lentiviral 
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episomes are not thoroughly understood.  As nonintegrating lentivectors continue to gain 

popularity as a substrate for the delivery of therapeutic transgenes, it becomes increasingly 

important to study the means by which lentiviral episomes form, persist, and express in 

transduced cells.  Accordingly, the following studies examine the cellular, vector, and 

organismal factors affecting the formation, stability, and expression of unintegrated 

lentiviral vector genomes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8



Fig. 1.  Outline of the HIV life cycle.  Briefly, an HIV particle binds to a CD4+ 
cell (1), enters and uncoats its RNA genome (2), and undergoes reverse 
transcription (3, 4).  Reverse-transcribed, linear cDNA enters the nucleus (5), 
where it circularizes, is maintained as a linear episome, or integrates into the 
chromatin (7,8).  Full-length, unspliced RNA (9), or spliced RNA (10) is 
expressed by viral cDNA and exported into the cytoplasm, where the spliced 
RNA is translated into viral proteins (12) which form the viral particle (13), 
while  the full-length RNA is packaged into the viral particle.  Once packaged, 
the viral particle buds out of the infected cell.

http://www.thebody.com/niaid/hiv_lifecycle/virpage.html
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293T

transfer plasmid

packaging plasmid

envelope plasmid

lentiviral 
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CMV pAgag/pol revtat

VSV-GCMV pA

http://medstat.med.utah.edu/WebPath/
TUTORIAL/AIDS/AIDS004.html

wild-type HIV genome

vpu

Fig. 2.  Outline of the transient-transfection method of lentiviral vector 
production.  The wild-type HIV genome is split into  three plasmids, one 
encoding the HIV envelope gene or a heterologous substitute (envelope 
plasmid), one encoding the viral structural and enzymatic proteins (packaging 
plasmid), and one encoding the  transgene of interest, along with the vector 
sequences necessary to package and express the transgene (transfer 
plasmid).  Potentially pathogenic accessory genes are deleted.
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MRN complex

Ku

DNA-PKcs

Ligase IV

Xrcc4

Ku

MRN complex

ArtemisArtemis

Ligase IV

Xrcc4

Fig. 3.  Outline of the nonhomologous end-joining pathway of double-
strand DNA break repair.  In brief, a break is recognized by the MRN 
complex, which binds it and recruits the Ku proteins.  The Ku proteins stabilize 
the break and recruit DNA-PKcs, which, if necessary, phosporylates Artemis, 
enabling it to process overhang or hairpin structures at the break.  Finally, the 
Ligase IV/Xrcc4 complex brings together the broken DNA ends in a homology-
independent manner.

MRN complex

MRN complex
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sister chromatid pairing single strand annealing (SSA)
ATM, BRCA1,
MRN complex

ATR

RPA

Rad52

Ercc1/XPF

ATM, BRCA1,
MRN complex

ATR

RPA BRCA2

Xrcc2

Rad54Rad52

gap-filling, ligation

Holliday junction

junction resolution

Fig. 4.  Outline of the homologous-recombination pathway of double-
strand DNA break repair.  The DSB break is recognized by ATM, which 
recruits the MRN complex, which then mediates resection of the broken ends, 
creating single-stranded overhangs that are coated with RPA and protected by 
ATR.  Then, if a sister chromatid is available, the ssDNA utilizes BRCA1, 
BRCA2, Rad51, Xrcc2, and Rad52 to effect strand invasion, extension, ligation 
and resolution of the broken sequence (left) .  However, if no sister chromatid
is available, the two resected ends are annealed at a region of homology by 
Rad52 and the intervening, noncomplementary sequences are excised by the 
XPF/Ercc1 complex (right).
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Retroviruses
Coffin, John M.; Hughes, Stephen H.; Varmus, Harold E. 
Plainview (NY): Cold Spring Harbor Laboratory Press; c1997 

Fig. 5.  Outline of 1-LTR circle formation as a product of reverse 
transcription.  During reverse transcription, after plus-strand synthesis is 
initiated at the PPT and extends to the PBS, the plus-strand and minus-strand 
PBS elements associate, causing the vector to circularize.  Typically, the LTR 
region then dissociates, enabling completion of the full-length, linear RT 
product.  However, if the LTR failed to dissociate, then plus-strand synthesis 
could simply proceed around the circle, resulting in a 1-LTR circular RT 
product.
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provirus

host genome

unintegrated viral/vector 
DNA structures

integration

Nuclear import

Reverse transcription Nucleus

Cytoplasm

LTR

LTRLTR

LTRLTR

LTRLTR

LTRLTR

LTR
RNA

linear: > 70%

1-LTR circle: < 35%

2-LTR circle: < 10%

integrated: < 30%

LTR

mutant: < 10%

LTR

LTR   LTR

Fig. 6.  Outline of the steps involved in lentiviral vector transduction. 
When a lentivector particle enters a target cell and uncoats its genome from 
the structural proteins, reverse transcriptase converts the genome from single-
stranded RNA to a double-stranded DNA molecule, which then enters the 
nucleus, where the viral integrase protein may mediate the viral genome’s 
integration into the host-cell chromatin.  However, the majority of vector 
genomes are maintained as linear episomes, with a smaller percentage of 
genomes remaining as 1-LTR circular episomes and an even smaller 
percentage remaining as either 2-LTR circular or mutant circular episomes.
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Chapter 2 

CELLULAR FACTORS AFFECTING LENTIVECTOR EPISOME FORMATION 

 

Introduction 

In the course of lentiviral vector transduction, after the vector particle uncoats its 

RNA genome and reverse transcription converts the genome into a double-stranded linear 

DNA molecule, the vector genome presents a double-strand DNA break (DSB) to the cell 6 

(Fig. 6), which may then interact with the cellular DSB repair machinery.  However, the 

extent of the interaction has not been fully characterized.  What is understood is that 

lentivector episomes appear in four forms:  linear episomes, formed directly by reverse 

transcription (RT) 3; 2-LTR circular episomes, generated by cellular nonhomologous 

end-joining (NHEJ) DNA double-strand break (DSB) repair machinery 39; mutant circular 

episomes, formed, at least in part, by self-integration 41; and 1-LTR circular episomes, 

formed either by the host cell’s homologous recombination (HR) DSB repair pathway 

42,44,46 or as abortive RT products 47-49.   

Double-stranded DNA breaks (DSBs) are genetic lesions that can lead to apoptosis, 

cycle arrest, or genetic rearrangements resulting in oncogenesis 80.  Mammalian cells have 

NHEJ and HR pathways that process double-stranded DNA breaks.  Because it does not 

require a homologous template, the NHEJ pathway is potentially active in every phase of 

the cell cycle.  However, also due to its lack of a homologous-template requirement, NHEJ 



is an error-prone mechanism 81.  In the NHEJ pathway, the MRN complex recognizes 

DSBs and recruits Ku, which binds the break and recruits the rest of the Ku/DNA-PK 

protein kinase complex, which processes any overhang or hairpin structures at the DSB 81.  

Finally, the Lig. IV/Xrcc4 complex ligates the broken ends together in a 

homology-independent process (Fig. 3) 82. 

The HR pathway, unlike the NHEJ pathway, is active only in late S and G2 phases 

of the cell cycle 51, and requires recognition of DSBs by ATM, which recruits the MRN 

(Mre11/Rad50/NBS1) complex.  The MRN complex then mediates resection of the 

broken, double-stranded ends 81.  Resection creates single-stranded overhangs that are 

coated with RPA and protected by ATR 81.  Then, if a sister chromatid is available (i.e., in 

G2 phase), the ssDNA utilizes BRCA1, BRCA2, Rad51 and Rad52 to effect strand 

invasion at homologous sequences, followed by extension, ligation, and resolution of the 

broken sequence 80,81.  However, if no sister chromatid is available, the two resected ends 

are annealed at a region of homology by Rad52 and the intervening noncomplementary 

sequences are excised by the XPF/Ercc1 complex 83 (Fig. 4).  This variant of HR, known as 

single-strand annealing (SSA), is the most likely pathway to circularize linear lentiviral 

cDNA and form 1-LTR circles, because lentiviral RT products would not present a sister 

chromatid to the cellular DNA-repair machinery,.   

The relative contributions of the HR and RT pathways to 1-LTR circle formation 

have not been established. Accordingly, we attempted to establish further the contribution 

of HR to their formation.  To this end, we characterized episome formation in cells 

transduced with lentivectors (Fig. 7) under inconducive conditions for homologous 

recombination, which were achieved either with cell lines mutant for the HR factors 
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BRCA1 84, Xrcc2 85, ATM 51, or Ercc1 52,86, or with cells in G1 or G0 phase of the cell 

cycle, in which HR is not active 51,52.  To measure episome formation in these cells, we 

used two separate assays:  Southern-blot analysis of total DNA from transduced cells, and 

restriction analysis of vector clones Hirt-extracted from cells transduced with a shuttle 

vector. The data presented here demonstrated that transduced HR-deficient cell lines, 

mutated for either BRCA1, Xrcc2, ATM, or Ercc1 did not exhibit a reduction in 1-LTR 

circles relative to linear episomes, nor did transduced G1-arrested cells show a decrease.   

 

Materials and Methods 

Viral vector production.  All lentiviral vectors were prepared as previously described 87, 

transiently transfecting 107 293T cells with 15µg vector cassette, 10µg packaging cassette, 

and 5µg envelope cassette.  Integrating vectors were made using the packaging cassette 

∆NRF 87, which expresses functional integrase, while nonintegrating vectors were made 

using the packaging cassette pTK939, which was made by inserting the D64E-mutant 

integrase from pD64E into ∆NRF by standard cloning procedures.  All vectors were 

pseudotyped with the VSV-G envelope cassette.  For vectors constitutively expressing 

GFP, titers were assessed by serial dilution in 293T cells followed by visual analysis of 

GFP expression by fluorescence microscope.  For other vectors, concentrations were 

determined by p24gag ELISA.  The absence of replication-competent retroviruses was 

determined by three independent methods: tat transfer assay, vector rescue assay, and 

p24gag ELISA, as described previously 88. 

 

Cell culture. 293T cells were grown in Dulbecco's modified Eagle medium (Mediatech, 
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Herndon, VA) supplemented with 9% fetal bovine serum and 1% penicillin/streptomycin 

solution.  GM16147 (Coriell Institute for Medical Research, Camden, NJ) and CHO-K1 

cells (American Type Culture Collection, Manassas, VA) E1KO7-5 and ATStg cells (kind 

gifts from Rodney Nairn, University of Texas MD Anderson Cancer Center, Smithville, 

TX), Irs1 and Irs1 wt. cells (kind gifts from John Thacker, Medical Research Council, 

Harwell, United Kingdom) and AA8 cells (ATCC) were cultured in minimum essential 

medium alpha medium (Invitrogen, Carlsbad, CA) supplemented with 9% fetal bovine 

serum and 1% penicillin/streptomycin solution.  SUM149 cells (a kind gift from William 

Kaufmann, University of North Carolina, Chapel Hill, NC) were grown in HuMEC basal 

serum free medium (Invitrogen), supplemented with 5% fetal bovine serum, HuMEC 

supplement, 25mg bovine pituitary extract, and 1% penicillin/streptomycin solution.  

ME16C2 cells (a kind gift from William Kaufmann) were grown in HuMEC basal serum 

free medium (Invitrogen), supplemented with HuMEC supplement, 25mg bovine pituitary 

extract, and 1% penicillin/streptomycin solution.  GM09607 cells (Coriell) and human 

embryonic fibroblasts were grown in minimum essential media with 9% fetal bovine 

serum and 1% penicillin/streptomycin solution (Invitrogen). 

 

Shuttle-vector assay.  293T cells were transduced with integrating or nonintegrating 

vTK459 or vTK1054 (Fig. 8).  Transduced cells were harvested 16 hours posttransduction 

using 0.85mL Hirt lysis buffer (0.6% sodium dodecyl sulfate, 0.01M Tris/HCl pH 7.4, and 

0.1M ethylenediaminetetraacetate) and 0.25mL 5M NaCl per 10cm plate of transduced 

cells.  Episomal DNA was subsequently subjected to phenol/chloroform extraction and 

DpnI digestion and electroporated into bacteria.  Bacterial colonies were cultured 
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monoclonally, pelleted, and their episomes extracted by boiling in a hotprep buffer made 

with 2g sucrose, 0.4mL 0.5M Tris/EDTA solution, 40mL 10% Triton X-100 (Sigma, St. 

Louis, MO), 5mL 1M Tris/HCl pH 8.0 and water to 100mL.  125µL hotprep buffer and 

2.5µg RNase A (Sigma) were added to each bacterial pellet before boiling.  After boiling, 

samples were centrifuged at 14K for 10 minutes to dispose of cell debris.  Episomes were 

digested with NotI and SacII and electrophoresed in a 1% agarose gel to be characterized 

as 1-LTR, 2-LTR, or mutant circular episomes, according to predicted sizes for backbone 

and 1-LTR or 2-LTR insert fragments.  For every transduction, between 73 and 112 

episome-bearing bacterial colonies were characterized, using recA-mutant E. coli strains. 

 

Southern blot analysis.   Cells were harvested three days after transduction with vTK945 

and their total DNA was extracted as described previously 89.  10µg total DNA was 

digested with DpnI, EcoNI and PflMI, electrophoresed in a 1% gel, transferred to a nylon 

membrane (GE Healthcare), UV-crosslinked, and probed with the 1.6kb AfeI/EcoRV 

fragment of vTK945. 

 

RecBCD treatment.  Hirt-extracted, DpnI-treated DNA was treated with RecBCD 

(Epicentre Biotechnologies, Madison, WI), a bacterial exonuclease that degrades 

single-stranded and double-stranded linear DNA.  Reactions were incubated at37°C in a 

volume of 300µL, with 6µL RecBCD, 30µL 10X RecBCD reaction buffer, and 12µL 

25mM ATP. 

 

Results 
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Shuttle-vector assay results are not skewed by bacterial recombination. 

 Retroviral shuttle-vector assays have been a means of measuring retroviral episome 

formation for over 25 years 90.  Because a shuttle vector includes a bacterial origin of 

replication and an antibiotic resistance gene in its transcribed region, circular episomes 

formed in vector-transduced mammalian cells can be recovered through Hirt extraction 91, 

used to transform bacterial cells, and analyzed as individual bacterial clones (Fig. 8).  

However, as linear episomes are transformed into bacteria along with circular episomes, 

the possibility exists that linear episomes may be circularized in bacteria by bacterial 

recombinases, distorting observations of relative circular episome abundance in transduced 

mammalian cells.  To investigate the possibility that circularization of lentiviral 

shuttle-vector episomes occurs in bacteria, episomal DNA Hirt-extracted from shuttle 

vector-transduced cells was treated with the exonuclease RecBCD, which preferentially 

degrades linear DNA.  To verify the activity of RecBCD, populations of treated and 

untreated episomal DNA were analyzed by Southern blotting, which demonstrates that 

RecBCD treatment degrades the linear form, but left intact the circular forms (Fig. 9).  

Importantly, following electroporation of treated and untreated episomal DNA into 

bacteria and analysis of bacterial clones, the relative abundances of 1-LTR, 2-LTR, and 

mutant circular episomes (as measured by NotI/SacII restriction at sites flanking the LTRs 

to produce insert bands characteristic of 1-LTR or 2-LTR circles, as well as irregularly 

sized bands, designated mutant) were not significantly altered by RecBCD treatment (Fig. 

10).  These findings indicate that linear episomes are not subject to significant 

circularization in bacteria. 

The shuttle vector assay reproduces results of Southern-blotting analysis. 
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 Previous findings indicate that lentiviral 2-LTR circular episomes are formed by 

the process of nonhomologous end-joining (NHEJ) DNA repair, which circularizes linear 

reverse transcription products by ligating their ends together 39.  To verify these results, 

cells mutant and wild-type for the NHEJ factor Xrcc4 were transduced with a lentiviral 

vector and analyzed for episome formation by Southern-blot analysis.  As shown in Fig. 

11, the relative abundance of 2-LTR circles was significantly reduced in Xrcc4-deficient 

cells, which was in keeping with prior studies on 2-LTR circle formation 39.  Next, to 

determine the accuracy of the shuttle-vector system in our hands, the same wild-type and 

Xrcc4-mutant cell lines were analyzed for episome formation with the shuttle-vector assay.  

As Fig. 12 shows, the relative abundance of 2-LTR circles was observed to be significantly 

reduced in Xrcc4-mutant cells, which was in line with the Southern-blotting analysis and 

the findings of Li et al. 39.  These results indicate that the shuttle-vector system is able to 

replicate results obtained by this lab and others. 

1-LTR circle formation is unaffected by changes to the homologous-recombination 

status of lentivector-transduced cells. 

 As noted above, results obtained in this lab and others indicate that lentiviral 2-LTR 

circular episomes are formed by the process of nonhomologous end-joining (NHEJ) DNA 

double-strand break repair.  Given that lentiviral LTRs are complementary to each other, 

the possibility arises that 1-LTR circles are formed by the homologous recombination 

(HR) pathway of DNA double-strand break repair, with a lentiviral genome’s LTRs 

recombining with each other.  Indeed, previous studies demonstrated that linear HIV 

genomes, purified from viral proteins, are able to form 1-LTR circles when incubated in 

cytoplasmic extracts along with nucleoside triphosphates 42, indicating that 1-LTR circle 
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formation can be mediated exclusively by cellular factors.  Furthermore, a more recent 

study found that, when treated with siRNA against the HR factor Rad52, HIV-infected 

macrophages exhibited a specific reduction in 1-LTR circle formation, indicating that 

cellular HR factors play a role in forming 1-LTR circles 44.  To investigate the possibility 

that cellular DNA repair factors in the HR pathway generate 1-LTR circular episomes, we 

used a shuttle-vector assay to examine the formation of 1-LTR, 2-LTR, and mutant circular 

episomes in lentivector-transduced cells mutant for an array of homologous-recombination 

(HR) factors (Table 1).   

BRCA1 is a genome surveillance protein involved in coordinating the activities of 

DNA damage-sensing proteins and DNA repair proteins in the canonical, sister-chromatid 

version of homologous recombination 84 (Fig. 4).  To investigate the possibility that 

BRCA1-associated HR is involved in 1-LTR circle formation, we used the shuttle-vector 

assay to examine the episomes formed in the BRCA1-deficient cell line SUM149, along 

with the BRCA1-wild-type cell line ME16C2.  We found that a cellular deficiency in 

BRCA1 does not have a significant effect on 1-LTR circle formation (Fig. 13). 

Second, Xrcc2 is a Rad51C paralog, also involved in the sister-chromatid pathway 

of HR 85(Fig. 4).  To determine if Xrcc2 plays a role in 1-LTR circle formation, we 

measured episome formation in the Xrcc2-mutant cell line Irs1, along with the Irs1 wt. cell 

line, which is complemented with a copy of wild-type Xrcc2.  We found that a mutation to 

Xrcc2 did not notably reduce 1-LTR circle formation (Fig. 14). 

Third, ATM is a member of the phosphatidyl inositol 3-kinase-like kinase (PIKK) 

family involved in initiating responses to DNA damage both through the sister-chromatid 

and single-strand annealing pathways of HR 51(Fig. 4).  To examine the effect of ATM on 
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1-LTR circle formation, we measured episome formation in the ATM-deficient cell line 

GM09607, along with wild-type human embryonic fibroblasts (HEFs).  We found that the 

ATM mutation did not significantly decrease 1-LTR circle formation (Fig. 15). 

Fourth, Ercc1 is a protein that, in a complex with XPF, forms an endonuclease that 

specifically cleaves 3’ single-stranded DNA flaps of double-stranded DNA as a later step 

in the single-strand annealing pathway of HR 52 (Fig. 4).  To determine the role played by 

Ercc1 in 1-LTR circle formation, we examined the episomes formed in the Ercc1-deficient 

cell line E1KO7-5, along with the Ercc1-wild-type cell line ATStg.  We found that the 

Ercc1 mutation does not have a significant effect on 1-LTR circle formation (Fig. 16).   

Finally, previous findings indicate that HR does not occur in G1 phase of the cell 

cycle 52, 51.  To investigate the effect of G1 arrest on episome formation, we grew AA8 cells 

to confluency in 1% DMSO to achieve G1 arrest, as verified by PI staining (Fig. 17a) then 

transduced the cells, along with non-confluent, freely cycling cells, with a shuttle vector 

and measured relative episomal abundance with the shuttle-vector assay (Fig. 17b).  No 

reduction in 1-LTR circular episome formation was observed (Fig. 17).  Overall, we found 

that cellular deficiencies in the BRCA1, Xrcc2, ATM, and Ercc1 proteins and arrest in G1 

phase had no notable effect in decreasing the relative abundances of 1-LTR circular 

episomes in transduced cells.   

 

Discussion 

Earlier studies suggest that 1-LTR circles might be made by one or both of two 

independent pathways:  reverse transcription (RT) and HR 42,44,48,49.  Based on experiments 

performed on cells under conditions inconducive to HR, we provide here some indication 

23



that HR is not required for 1-LTR circle formation.  The data presented here demonstrate 

that transduced HR-deficient cell lines, mutated for either BRCA1, Xrcc2, ATM, or Ercc1, 

did not exhibit a reduction in the relative abundance of 1-LTR circle formation, nor did 

transduced G1-arrested cells show such a decrease.  This finding represents a notable 

discrepancy with prior reports concerning lentiviral episome formation, which found that 

cellular factors, specifically homologous-recombination proteins, were the source of 

1-LTR circle formation 42,44.  Differences in methodology may explain the discrepancy 

between previous findings and our own.  Specifically, the study by Farnet and colleagues 

examined the formation of 1-LTR circles from linear HIV cDNA genomes incubated in 

cytoplasmic extracts, which may not fully mimic the episome formation observed in our 

study of intact cells’ processing of vector-protein-associated linear lentiviral genomes 42.  

Also, while our study determined episome formation in cells transduced with lentiviral 

vectors, as measured by shuttle-vector assay and Southern-blot analysis, the episome 

formation data presented by Jacque and colleagues were derived from cells infected with 

wild-type HIV and measured by qPCR 44.  Furthermore, wild-type HIV, employed by 

Jacque et al., expresses a number of accessory proteins that lentiviral vectors do not.  

Indeed, given that measurement of 1-LTR circles by PCR has been shown to be 

problematic 92, and that the study presented by Jacque et al. was substantially rebutted 93, 

the divergence of their data from our findings is not unexpected. 

 The novelty of the shuttle-vector system employed here underscores the 

importance of demonstrating that the results generated by it are reproducible and not 

artifactual.  To verify that the shuttle-vector assay could replicate previously published 

results, we characterized 2-LTR circle formation in Xrcc4-deficient cells.  We found that 
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2-LTR circle formation is significantly reduced in an Xrcc4-mutant cell line, which agreed 

with prior findings 39 and our own Southern-blot analysis, and confirmed the utility of the 

shuttle-vector system.  Furthermore, the possibility that the relative abundances of episome 

in transduced cells is misrepresented by the shuttle-vector assay due to circularization of 

linear episomes in bacteria is ruled out by the current study, which showed that treatment 

of episomes with the exonuclease RecBCD prior to electroporation into bacteria did not 

influence the percentages of episomal forms reported by the assay.  Taken together, these 

results reinforce the reproducibility and reliability of the shuttle-vector system. 

  The present study indicates that the formation of 1-LTR circular episomes in cells 

transduced with lentiviral vectors is not affected by mutations of a variety of HR factors, 

nor by arrest of transduced cells in G1 phase of the cell cycle.  These results are, at first 

glance, not in line with earlier findings indicating that nonhomologous end-joining (NHEJ) 

factors are required for the formation of 2-LTR circles 39, as both double-strand break 

repair pathways could be expected to act on linear lentiviral episomes.  However, a 

subsequent study by the same group found that several HR proteins did not appear to play a 

role in 1-LTR circle formation 94, which indicates that other factors may account for the 

formation of 1-LTR circles.   Indeed, earlier studies on retroviral episome formation 

suggested that 1-LTR circles are formed as products of aberrant reverse transcription 48,49.  

These results stress the importance of a thorough investigation of vector factors, such as 

sequences associated with RT, that may affect episome formation. 
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Fig. 7.  Schematic of the vectors used in Chapter 2. vTK459 is a full-LTR 
shuttle vector, vTK1054 is a shuttle vector with a long U3 deletion, and 
vTK945 is a standard vector with a long U3 deletion.

CMV GFP vTK945U5R∆U3U5R∆U3

vTK459

vTK1054ampR oriCMV GFP U5R∆U3U5R∆U3

ampR oriCMV GFP U5RU3U5RU3
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cell line mutation status species characteristics

293T contains adeno and 
SV40 viral DNA human embryonic kidney-cell 

derived
CHO-K1 Xrcc4 wild-type hamster ovary-cell derived

GM16147 Xrcc4 mutant hamster ovary-cell derived

ME16C2 BRCA1 wild-type human breast tumor-derived

SUM149 BRCA1 mutant human breast tumor-derived

Irs1 wt. Xrcc2 wild-type hamster ovary-cell derived

Irs1 Xrcc2 mutant hamster ovary-cell derived

HEF ATM wild-type human fibroblast-derived

GM09607 ATM mutant human fibroblast-derived

ATStg Ercc1 wild-type hamster ovary-cell derived

E1KO7-5 Ercc1 mutant hamster ovary-cell derived

AA8 wild-type hamster ovary-cell derived

Table 1.  Cell lines used in Chapter 2.
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293T cells

Cell Nucleus

Vector particles

Transduction of target cells
Hirt extraction

Transformation of bacteria

Isolation of bacterial clones 
containing a single circular vector 
form, and restriction digest analysis

NotISacII

Fig. 8. Outline of the shuttle-vector assay for characterizing the relative
abundance of circular episomes..
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linear

1-LTR circle

2-LTR circle

Fig. 9.  Effect of RecBCD treatment on episome formation. DNA from 
293T cells transduced with vTK459/IN+ was Hirt-extracted, treated with 
RecBCD (left lane) or left untreated (right lane), and analyzed by Southern-
blot analysis.
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Fig. 10.  Effect of RecBCD treatment on episome formation.  DNA from 
293T cells transduced with vTK459/IN+ was Hirt-extracted, treated with 
RecBCD (blue) or left untreated (red), and used to transform bacteria, which 
were clonally amplified and analyzed by restriction digest.
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Fig. 11.  Effect of Xrcc4 deficiency on episome formation.  DNA from wild-
type (left lane) or Xrcc4-mutant (right lane) cells transduced with vTK459/IN+ 
was extracted and analyzed by Southern-blot analysis.
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Fig. 12.  Effect of Xrcc4 deficiency on episome formation.  DNA from 
wild-type (blue) or Xrcc4-mutant (red) cells transduced with vTK459/IN+ 
was analyzed by shuttle-vector assay.
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Fig. 13.  Effect of BRCA1 deficiency on episome formation.  DNA from 
wild-type (blue) or BRCA1-mutant (red) cells transduced with vTK459/IN+ 
were analyzed by shuttle-vector assay.

0

20

40

60

80

10

30

50

70

90

33



1-LTR 2-LTR mutant

C
irc

le
 P

er
ce

nt
ag

e

Circle Type

Xrcc2+/IN+
Xrcc2-/IN+

Fig. 14.  Effect of Xrcc2 deficiency on episome formation.  DNA from 
wild-type (blue) or Xrcc2-mutant (red) cells transduced with vTK459/IN+ 
were analyzed by shuttle-vector assay.
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Fig. 15.  Effect of ATM deficiency on episome formation.  DNA from 
wild-type (blue and tan) or ATM-mutant (red and green) cells transduced
with vTK459/IN+ were analyzed by shuttle-vector assay.
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Fig. 16.  Effect of Ercc1 deficiency on episome formation.  DNA from 
wild-type (blue) or Ercc1-mutant (red) cells transduced with vTK459/IN+ 
were analyzed by shuttle-vector assay.  Error = mean+SD, n=3.
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Fig. 17.  Effect of cycle arrest on episome formation.  DNA 
from cycling (blue) or G1-arrested (red) cells transduced with 
vTK1054/IN+ were analyzed by shuttle-vector assay.  Error = 
mean+SD, n=3.
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Chapter 3 

VECTOR FACTORS AFFECTING EPISOME FORMATION AND EXPRESSION 

 

A portion of the work in this chapter was published in Molecular Therapy 16(12): 1968-76. 

 

Introduction  

The large genetic payload, low immunogenicity, and ability to target nondividing 

cells of lentiviruses makes them an attractive vehicle for gene therapy.  To that end, 

researchers have made a number of modifications to lentiviruses to make them 

nonpathogenic and replication-incompetent, as summarized in Chapter 1 (see Fig. 2) 6, 95.   

 Beyond the modifications necessary to make lentiviral gene-therapy vectors safe 

for researchers and patients, researchers have made other changes to the vectors.  For 

instance, they have replaced the wild-type lentiviral envelope protein with the G protein of 

the vesicular stomatitis virus (VSV-G), which imparts broader tropism and the ability to 

withstand ultracentrifugation 96 (Fig. 2).  Another change was packaging lentiviral vectors 

using an integrase mutated at the D64, D116, or E152 residues of its catalytic-core 

domain4,67,97, resulting in a vector that cannot integrate into target-cell chromosomes, but 

can still import its cDNA genome into the nucleus.  A notable outcome of 

integrase-defective transductions is that the number of 2-LTR circles increases relative to 

the total number of episomes in target cells 98, which may be due to the extra vector 



genomes that would otherwise undergo integration, or may be because the mutant integrase 

does not cleave the episomes' LTRs, leaving them blunt and more amenable to NHEJ.  

Regardless of the mechanism for the change in relative abundance of episome forms, the 

possibility exists that other vector modifications could also cause changes in episome 

formation.  Furthermore, the significantly downregulated transgene expression generated 

by integrase-deficient lentivectors has been observed in a number of studies 26,66, indicating 

that vector modifications may influence episomal transgene expression levels.  For 

instance, previous studies indicate that the U3 region of HIV may harbor a transcriptionally 

repressive element 15-17. Furthermore, several studies suggest that RT mediates the 

formation of 1-LTR circular retroviral episomes48,49, suggesting that vector modifications 

may also influence episome formation..  Accordingly, expression and episomal formation 

by lentiviral vectors with largely truncated U3 sequences and with a complete deletion of 

the RT-associated PPT region were analyzed.  We saw that the U3 deletion increases 

episomal expression without significantly changing episome formation, while the PPT 

deletion does not notably modify episomal expression, but leads to the formation of 

predominantly 1-LTR circular episomes in lentivector-transduced cells, which has the 

effect of reducing both integrase-mediated and integrase-independent integration. 

 

Materials and Methods 

Lentiviral vector constructs.  The vector cassette pTK113 has been described previously 87 

and contains a U3 deletion extending from –7 to –141.  The vector cassette pTK945 bears a 

U3 deletion spanning –48 to –396, and is otherwise identical to pTK113.  The vector 

cassette pTK1125 bears a U3 deletion extending from –18 to –418, and is otherwise 
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identical to pTK113.  Shuttle vectors were derived from the vector plasmid pTK459 99, 

which includes a bacterial origin of replication and ampicillin-resistance gene in the 

transcribed region of the plasmid, as well as a full-length U3 (in pTK459), short-deletion 

U3 (pTK1055), or long-deletion U3 (pTK1054).  The vector cassettes pTK647 and 

pTK979 were constructed by inserting the U3 sequence from pTK113 and pTK945, 

respectively, into pTK646, which bears the liver-specific promoter hAAT and the firefly 

luciferase gene, by standard cloning procedures.  The Flp9 cell line was prepared as 

follows: pTK113 was cloned into Flp-In expression vector (Invitrogen, Carlsbad, CA) and 

the resulting plasmid was cotransfected with pOG44 (Flp recombinase) into the Flp-InTM 

host cell line, such that pTK113 integrated into the genomic FRT site (Invitrogen). The 

single-copy incorporation of the expression cassette per diploid genome was verified by 

Southern blot, following digestion of DNA isolated from Flp9 cells with AflII (New 

England Biolabs, Ipswich, MA, and all restriction enzymes to follow), which recognizes 2 

sites in the LTR of the expression vector, or XbaI, which recognizes a single site in each 

FRT sequence.   pTK1023 was generated by deleting an NheI fragment from vTK945, 

eliminating the PPT, then inserting an NheI fragment from vTK978, which replaced the U3 

sequence’s att site.  pTK1179 was constructed by deleting a PflMI/EcoRV fragment from 

pTK945 and replacing it with a PflMI/EcoRV fragment from pTK1074, which contains a 

precise PPT deletion.  pTK1074 was generated by performing two separate PCR 

experiments with two sets of primers, both using pTK459 as template: 

CCTGGTTGCTGTCTCTTTATGAGG (Fw) and 

GAATTAGCCCTTCCAGTAAAAAGTGGCTAAG (Rev), and 

CTTAGCCACTTTTTACTGGAAGGGCTAATTC (Fw) and 
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CAATGTCAACGCGTATATCTGGCCCG (Rev).  The resulting amplicons served as 

templates in a second PCR experiment, in which CCTGGTTGCTGTCTCTTTATGAGG 

(Fw) and CAATGTCAACGCGTATATCTGGCCCG (Rev) were the primers.  The 

resulting single amplicon was cloned into pTK459 with SacII/ApaI to create pTK1074.  

pTK1187 was created by cloning pTK529, a BSD-GFP-containing vector, into pTK945 

with AfeI/XhoI, while pTK1188 was made by cloning pTK529 into pTK1179 with 

AfeI/XhoI.  pTK1034 was generated by cloning pTK1023 into pTK464, a 

luciferase-containing vector, with KpnI/PmeI. 

 

Viral vector production.  All lentiviral vectors were prepared as previously described 87, 

transiently transfecting 107 293T cells with 15µg vector cassette, 10µg packaging cassette, 

and 5µg envelope cassette.  Integrating vectors were made using the packaging cassette 

∆NRF 87, which expresses functional integrase, while nonintegrating vectors were made 

using the packaging cassette pTK939, which was made by inserting the D64E-mutant 

integrase from pD64E into ∆NRF by standard cloning procedures.  All vectors were 

pseudotyped with the VSV-G envelope cassette.  For vectors constitutively expressing 

GFP, titers were assessed by serial dilution in 293T cells followed by visual analysis of 

GFP expression by fluorescence microscope.  For other vectors, concentrations were 

determined by p24gag ELISA.  The absence of replication-competent retroviruses was 

determined by three independent methods: tat transfer assay, vector rescue assay, and 

p24gag ELISA, as described previously 100. 

 

Cell culture.  293T cells were grown in Dulbecco's modified Eagle medium (Mediatech, 
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Herndon, VA) supplemented with 9% fetal bovine serum and 1% penicillin/streptomycin 

solution.  Jurkat cells were cultured in Roswell Park Memorial Institute medium 

(Mediatech) supplemented with 9% fetal bovine serum and 1% penicillin/streptomycin 

solution. 

 

FACScan analysis.  293T cells were transduced at an m.o.i. of 1. At 3-5 days (p0) and four 

passages (p4) posttransduction, cells were harvested, fixed in 1X phosphate-buffered 

saline (PBS)(HyClone, Waltham, MA) containing 2% formaldehyde/0.2% glutaraldehyde, 

and analyzed by FACscan as previously described 88.  For cell-cycle analysis, cycling and 

arrested cells were harvested, fixed in 70% ethanol (Pharmco-AAPER, Brookfield, CT), 

incubated in a solution containing 50µg/mL propidium iodide (Molecular Probes, Eugene, 

OR), 100 units/mL RNase A (Sigma), 100mg bovine serum albumin fraction V (Roche, 

Mannheim, Germany), and 10mL PBS. 

 

Northern blot analysis.  293T cells were transduced with the indicated vectors at an m.o.i. 

of 1. Total cell lysates were prepared 3-5 days posttransduction for RNA isolation using the 

PARISTM kit (Ambion, Austin, TX) or Rneasy® Plus Mini kit (Qiagen, Hilden, Germany).  

3µg of total RNA was denatured at 70°C and resolved on a 1.2% denaturing 

formaldehyde/agarose gel.  RNA was transferred to a Zeta-Probe GT® membrane (BioRad, 

Hercules, CA).  Hybridization was executed at 68°C for ~18 hours with a 32P-labeled probe 

comprising a 595-base region spanning the woodchuck hepatitis virus posttranscriptional 

regulatory element (WPRE) that was cut from pTK113 with ClaI. The Northern blot was 

imaged with BioMax MR film (Kodak, Rochester, NY). Relative quantification of RNA 
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species was obtained via a Storm phosphorimager (GE Healthcare, Chalfont St. Giles, UK) 

using ImageQuant 5.2 software (GE Healthcare). 

 

Southern blot analysis.   Cells were harvested three days and three passages after 

transduction and their total DNA was extracted using the Qiagen Blood and Cell Culture 

DNA Midi Kit (Qiagen) or as described previously (Kantor 2009)89.  10µg total DNA was 

digested with DpnI and either EcoNI and PflMI (for 293T cells) or NotI and PflMI (Jurkat 

cells), electrophoresed in a 1% gel, transferred to a nylon membrane (GE Healthcare), 

UV-crosslinked, and probed with the 1.4kb KasI/BamHI fragment of vTK945 or the 1.6kb 

AfeI/EcoRV fragment of vTK945.  Some membranes were also probed with a 731bp 

region of the endogenous gene BDNF, produced with the PCR primers 

5'CGTTTGACCAATCGAAGC3' (forward) and 5'TCCCCTCAGTCAGGACCCTCG3' 

(reverse).  Quantification of DNA density was achieved either using ImageJ software or on 

a Storm phosphorimager using ImageQuant 5.2 software. 

 

Shuttle-vector assay. 293T cells were transduced with integrating or nonintegrating 

vTK459, vTK1055, vTK1054, or vTK1074 (see above for construction details), and mouse 

livers were transduced with integrating or nonintegrating vTK1054.  Transduced cells were 

harvested 16 hours posttransduction using 0.85mL Hirt lysis buffer and 0.25mL 5M NaCl 

per 10cm plate of transduced cells, and livers were harvested one day or 21 days 

posttransduction using 14.56mL SDS-free Hirt lysis buffer, 0.92mL 10% SDS, and 

4.36mL 5M NaCl per liver.  Episomal DNA was subsequently subjected to 

phenol/chloroform extraction and DpnI digestion and electroporated into E. coli.  Bacterial 
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colonies were cultured monoclonally, pelleted, and their episomes extracted by boiling in a 

hotprep buffer made with 5g sucrose, 4mL 0.5M Tris/EDTA solution, 40mL 10% Triton 

X-100 (Sigma, St. Louis, MO), 5mL 1M Tris/HCl pH 8.0 and water to 100mL.  700µL 

hotprep buffer and 25µL lysozyme solution (10mg/mL lysozyme (Sigma) in 0.25M 

Tris/HCl pH 8.0) were added to each bacterial pellet, which was resuspended and placed 

on ice for 5-10 minutes before boiling for 1 minute.  After boiling, samples were 

centrifuged at 14K for 10 minutes to dispose of cell debris.  The supernatant was then 

mixed with 700µL isopropanol and centrifuged at 14K for 10 minutes, then the DNA pellet 

was washed with 70% ethanol, dried, and resuspended in 50-200µL water containing 

10µg/mL RNase A.  Episomal DNA clones were digested with NotI and SacII and 

electrophoresed in a 1% agarose gel to be characterized as 1-LTR, 2-LTR, or mutant 

circular episomes.  For every transduction, between 73 and 112 episome-bearing bacterial 

colonies were characterized. 

 

Luciferase assay.  48 hours posttransduction, target cells were lysed with cell culture lysis 

reagent (Promega, Madison, WI), harvested, and centrifuged to remove debris. Lysates 

were combined with luciferin reagent and luciferase expression was measured as relative 

light units (RLU), using a Victor3 multilabel counter (PerkinElmer, Waltham, MA). Each 

experiment was performed in quadruplicate. 

 

qPCR analysis.  48 hours posttransduction, total genomic DNA was extracted from 

transduced 293T cells and treated with DpnI (New England Biolabs, Ipswich, MA).  The 

cell-equivalent content of all genomic DNA preparation was calculated through PCR 
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amplification of the human β-globin gene, and the DNA equivalent of 330 cells was used 

for viral quantification.  To target the loading-control gene β-globin, the following primers 

were used:  5’-CAGAGCCATCTATTGCTTAC-3’(forward), 

5’-GCCTCACCACCAACTTCATC-3’(reverse).  To target the vector woodchuck 

hepatititis virus posttranscriptional regulatory element (WPRE), the following primers 

were used:  5'-ACGTCCTTCTGCTACGTCC-3' (forward), 5' 

AAAGGGAGATCCGACCGACTCGTC-3' (reverse).  A range of 1.5x 104 to 1 

cell-equivalent units was used in duplicate to establish the standard curve.  Reactions were 

labeled with SYBRÆ Green I (Cambrex, East Rutherford, NJ) and performed in triplicate 

on an iCycler iQ-Multicolor real time PCR detection system (BioRad, Hercules, CA).  

Genomic DNA from Flp9 cells was used as a standard.  Genomic DNA isolated from RT 

deficient-transduced cells, Flp-InTM cells, and uninfected 293T cells, and template-free 

reaction mix served as negative controls.  Reactions were analyzed using the BioRad 

Optical System software (version 3.1). 10µL of each PCR sample was subjected to gel 

electrophoresis and visualized by staining with ethidium bromide.  

 

Results 

Increased in vitro episomal expression from a vector with a large U3 deletion 

The first vector modification to be examined for its effect on episomal expression 

and episome formation was the U3 region of the LTR.  Several groups recently 

demonstrated notable in vitro and in vivo expression from nonintegrating, U3-truncated, 

self-inactivating (SIN) lentiviral vectors 31,38,66,77,79, 101.  These results are not in line with 

previous studies on integrase-deficient lentiviral vectors, which exhibited low to negligible 
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viral gene expression from genomes with full-length U3 regions 4,74,102.  The improved 

efficiency of episomal expression exhibited by SIN vectors suggests that cis-acting 

sequences in the U3 may negatively regulate expression. Indeed, a sequence element in the 

5’ U3 region has been shown to reduce both LTR-driven and internally promoted 

expression 16,17,19.  However, the level and efficiency of episomal lentiviral expression has 

not been rigorously characterized.  To investigate the possibility that a larger U3 deletion 

on a SIN vector could enhance its expression, two SIN vectors were made, one bearing a 

short U3 deletion (vTK113, deleted from –7 to –141, as in the vector described by Miyoshi 

et al. 14, and one containing a larger U3 deletion (vTK945, deleted from –48 to –396, thus 

retaining the TATA box)(Fig. 19a)(see Fig. 18 for a full list of vectors used for this study); 

both vectors were packaged with functional or deficient integrase and used to transduce 

293T cells (Fig. 19b).  To minimize the risk of expressing saturating quantities of GFP, 

thereby confounding subsequent GFP expression analysis, cells were transduced with 

decreasing amounts of vector, and target-cell populations exhibiting <60% transduction 

were analyzed by FACS analysis at five days posttransduction for GFP expression. As 

shown in Fig. 19b, a larger U3 deletion increased GFP fluorescence nearly threefold, from 

an MFI of 26.47 for the nonintegrating short-deletion vector vTK113/IN- to an MFI of 

69.96 for the nonintegrating long-deletion vector vTK945/IN-.  However, regardless of the 

length of the U3 deletion, integrating vectors expressed more GFP than either 

nonintegrating vector, and the difference between the levels of transgene expression 

exhibited by vTK113/IN+ and vTK945/IN+ was not significant.  Not surprisingly, after 

four passages GFP was not detected by FACS analysis in cells transduced with 
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nonintegrating vectors (Fig. 19b), and less than 0.1% of cells displayed GFP measurable by 

fluorescence microscopy (data not shown). 

To support further the possibility that U3 sequences inhibit transcription, a 

Northern-blot assay was employed to measure the effect of U3 deletion length on 

transcription in 293T cells. Cells were transduced as for FACS (see above paragraph) and 

RNA was harvested from nuclei, hybridized to a radiolabeled woodchuck hepatitis virus 

posttranscriptional regulatory element (WPRE)-specific probe, which recognizes 

transcripts both originating from the internal CMV promoter and LTR-derived transcripts, 

and quantified via a phosphorimager.  In keeping with FACS analysis, the Northern assay 

indicated that the larger U3 deletion enhanced episomal transcription nearly fourfold, that 

both integrating vectors produced significantly more RNA than either nonintegrating 

vector, and that short-deletion and long deletion integrating vectors generated comparable 

levels of RNA (Fig. 19c, Table 2).  Furthermore, full-length transcripts were not detected, 

indicating that vTK113 and vTK945 are SIN vectors, despite the presence of a TATA box 

in vTK945’s U3.  These findings are in line with a prior study that also failed to detect 

full-length transcription from SIN vectors with TATA-containing U3 sequences 12.  

However, mindful of the possibility that the TATA box in vTK945 may contribute to its 

increased episomal expression, we constructed a new vector (vTK1125, Figs. 17 and 18) 

containing a U3 deletion (from –18 to –418, as described in Zufferey et al.) that eliminates 

both the TATA box and 5’ U3 sequences, rendering it “state-of-the-art.”  Interestingly, 

extending the deletion in the U3 to include the TATA box did not improve episomal 

transgene expression beyond the levels obtained by vTK945 (Fig. 19).  Finally, the notion 

that the larger U3 deletion mediates increased episomal expression was further confirmed 
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by a qPCR-normalized luciferase assay comparing short-deletion (vTK464) and 

long-deletion (vTK993) vectors (Fig. 20).  

Relative abundances of episomal forms are unaffected by U3 deletion length 

These results were in line with earlier studies suggesting that the U3 sequence 

contains an expression-repressing element in its 5’ region 15-17,19.  However, we could not 

rule out the possibility that other factors account for the increase in expression associated 

with the long U3 deletion in vTK945. To date, there is no evidence either suggesting or 

contradicting the notion that the various episomal forms (2-LTR circular, 1-LTR circular, 

mutant, and linear) express transgenes with differing efficiencies.  Thus, the question 

remains of whether the increased episomal expression generated by nonintegrating long 

U3-deletion vectors is associated with a concomitant change in the relative abundance of 

episomal forms.  Similar to earlier studies characterizing the relative abundance of vector 

episomes and integrated provirus 32,39,94, Southern analysis was employed on DNA 

extracted from transduced Jurkat and 293T cells at three days posttransduction and 

following three passages (Fig. 21a). As shown in Fig. 21b and quantified in Table 3, the 

relative abundance of episomal forms in integrating and nonintegrating vectors was not 

changed significantly by the longer U3 deletion.  However, and in keeping with a prior 

study 98, differences in relative episomal abundance were caused by integrase status, with 

nonintegrating vectors producing significantly more 2-LTR circles than integrating 

vectors, and by cell type, with 293T cells exhibiting a notably greater proportion of linear 

episomes than Jurkat cells.  Interestingly, and differing from a recent report 32, the relative 

abundance of linear episomes was not dramatically increased by integrase deficiency (Fig. 

21b).  Under the condition of harvesting DNA three days posttransduction, linear episomes 
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were comparable to, and in some cases exceeded by, 1-LTR circles in terms of relative 

abundance (Table 3).  Furthermore, integrated provirus accounted for between 21 and 33% 

of all vector genomes, regardless of U3 deletion size (Fig. 21b). While Southern-blot 

analysis did not show significant changes in episome formation mediated by U3 length, 

cell line-specific changes were noted, with all vectors producing a greater share of linear 

episomes and a smaller proportion of 1-LTR circles in 293T cells than in Jurkat cells (Fig. 

21b).  Prior studies on simple retroviruses demonstrated the existence of autointegrated 

lentiviral episomes 41; however, the relative contribution of this unique episomal form to 

the total population of episomes in the context of lentiviral/retroviral vectors has not been 

elucidated, largely because autointegrated episomes, being variably sized, cannot be 

adequately detected by Southern blot.  To overcome this technical difficulty, we developed 

an HIV-1-derived shuttle vector containing a bacterial origin of replication and a 

drug-resistance gene within the vector’s transcribed region.  This vector configuration 

enables circular episomes produced in vector-transduced cells to be extracted by the Hirt 

protocol 91, and monoclonally isolated from bacteria (Fig. 8).  Simple restriction analysis 

allows individual episomal clones to be characterized either as 1-LTR, 2-LTR, or mutant 

(autointegrated or self-recombinant) circles, according to predicted backbone and insert 

sizes.  As shown in Fig. 21c (and in keeping with previous results 98,103, results of the 

shuttle-vector assay indicate that, in integrating-vector-transduced cells, 1-LTR circular 

episomes, 2-LTR circular episomes, and autointegrated circular episomes account for 

roughly 75%, 15%, and 10% of circular episomes, respectively, while in nonintegrating 

vector-transduced-cells, their relative amounts were 60%, 35%, and 5%, respectively.  

Shuttle vectors bearing a full-length LTR (vTK459, described in detail in Ma et al. 99), a 
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short U3 deletion (vTK1055), or a long U3 deletion (vTK1054) (Fig. 18c) were assayed, 

leading to the finding that U3 length did not affect the relative abundances of circular 

episomes, with the notable exception that vTK1054 demonstrated significantly more 

autointegrated episomes than vTK459 (p-value of 0.0005 by chi2 test)(Fig. 21c, Table 4).  

PPT-deleted vectors exhibit expression levels comparable to integrase-deficient 

lentivectors. 

Having determined the effect of one vector modification (the large U3 deletion) on 

episome formation and expression, we turned our attention to another vector modification 

with the potential to affect those vector functions.  Specifically, we investigated the effect 

of the polypurine tract (PPT) on episome formation and episomal expression.  Previous 

studies indicating that 1-LTR circular lentiviral episomes may be formed through reverse 

transcription 47-49, coupled with our finding that cellular homologous –recombination 

factors do not appear to mediate 1-LTR circle formation, raise the possibility that 

reverse-transcription-associated factors and sequences may affect 1-LTR circle formation.  

One such associated sequence is the PPT, which is involved in the plus-strand initiation 

step of reverse transcription and may influence the efficiency of strand displacement 

synthesis, which, when aberrant, may lead to 1-LTR circle formation 3.  We hypothesized 

that initiating plus-strand synthesis at a cryptic site distant from the viral 3’ LTR may 

reduce integration by increasing 1-LTR circular episome formation and thereby reducing 

the formation of linear episomes, which are the natural substrate for retroviral integrase 3.  

Accordingly, we deleted the 3’ polypurine tract (PPT), which borders the 3’LTR and 

serves as a primer for plus-strand synthesis (Fig. 22).  To examine the effect of deleting the 

PPT on vector expression and integration, we employed FACS analysis and quantitative 
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PCR to measure vector-derived GFP expression and vector-genome persistence, 

respectively. As shown in Fig. 23a, the integrase-proficient, PPT-deleted (PPT-/IN+, 

vTK1188 in Fig. 22) vector produced a notably low level of GFP expression, with a mean 

fluorescence intensity (MFI) of 40, which was typical of nonintegrating lentivectors and 

comparable to the GFP expression generated by the integrase-mutant vectors, which 

produced MFIs of 30 (PPT+/IN-) and 39 (PPT-IN-); conversely, the conventional, 

PPT-positive, integrase-proficient vector (vTK1187 in Fig. 22) exhibited a high level of 

GFP expression (MFI of 280)(Fig. 23a).  The low level of GFP expression, which is a 

hallmark of nonintegrating vectors, produced by the PPT-deleted vectors indicates 

indirectly that they fail to integrate efficiently.  The idea that PPT-deleted vectors integrate 

poorly was supported by the finding that only 2.4% of cells transduced with the PPT-/IN+ 

vector (out of 70% three days after transduction) still expressed GFP after four passages 

(p4), while more than a third of cells transduced with the conventional PPT+/IN+ 

(vTK1187) vector continued to express GFP at p4 (Fig. 23b), which is in line with 

previously measured levels of integrase-mediated integration 103.  Similar to earlier studies 

demonstrating minimal vector integration in the absence of integrase activity 25,32, 0.5% of 

cells transduced with integrase-deficient vectors, either with or without the PPT, were 

GFP-positive after four passages (compared to 50% GFP-positive cells at three days 

posttransduction).  This low level of GFP-positive cells, generated by illegitimate 

integration, which is near the level of background signal detected by FACS, constituted a 

technical limitation necessitating the use of a more sensitive, qPCR-based assay in order to 

characterize illegitimate integration more accurately.  Accordingly, qPCR analysis of 

integration efficiency was determined as the ratio of vector genome copies per cell 
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measured three days posttransduction to those detected after four passages.  Indeed, as 

shown in Fig. 23c, employing the qPCR assay showed that the integration efficiency of the 

PPT-deleted, integrase-proficient vector was 2.7%, in comparison to 27% for the 

PPT-positive, integrase-proficient vector, indicating that the PPT deletion alone causes a 

tenfold reduction in integration efficiency.  Indeed, these results are consistent with the 

results of the FACS analysis (Fig. 23a), which also suggest a roughly tenfold difference in 

integration between PPT-positive and PPT-deleted, integrase-competent vectors.  Most 

importantly, the qPCR assay provides direct evidence that the PPT deletion reduces 

illegitimate integration from integrase-deficient lentivectors.  As shown in Fig. 23c, the 

PPT-/IN- vector exhibited an integration level of 0.08%.  In comparison, the PPT+/IN- 

vector’s integration level was 0.2%, indicating that the PPT deletion reduces illegitimate 

integration 2.5-fold.  Clearly, these data indicate that the reduced levels of illegitimate 

integration generated by PPT-deleted, integrase-defective lentivectors render them more 

applicable to clinical settings, in which inadvertent integration events must be minimized.   

Deleting the PPT reduces lentivector integration and leads to the nearly exclusive 

formation of 1-LTR circular episomes. 

To determine the mechanism of the PPT deletion’s effect of reduced 

integrase-mediated and integrase-independent integration, we sought to elucidate the effect 

of the PPT deletion on episome formation.  To this end, 293T cells were transduced with 

either PPT-positive (vTK945) or PPT-deleted (vTK1179) lentivectors, packaged with or 

without functional integrase.  Employing Southern-blot analysis (Fig. 24) three days after 

transduction, we observed that the PPT deletion increased 1-LTR circle formation and 

reduced or eliminated linear episomal DNA formation (Fig. 25a).  This finding supports 
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the possibility that altering the process of reverse transcription can increase the formation 

of 1-LTR circles, reducing linear episomes and, consequently, decreasing the downstream 

products of linear episomes:  namely, 2-LTR circles and integrated proviruses.  Indeed, 

PPT-deleted vectors displayed minimal 2-LTR circle formation, consistent with the 

previously established notion that 2-LTR circles are formed from linear episomes by the 

process of NHEJ 39.  A novel PPT-deleted shuttle vector, containing a bacterial origin of 

replication and an ampicillin resistance gene, was developed to confirm these interesting 

results, using restriction digestion of individual vector clones rescued by Hirt extraction 

(Fig. 25c).  This assay corroborates the results of the Southern-blot analysis, demonstrating 

that the PPT deletion mediates a significant increase in 1-LTR circle formation and 

decrease in 2-LTR circle formation. 

 Encouraged by these results, we sought to explore the possibility that, by deleting 

the PPT, we could decrease linear-spisome formation and thereby inhibit 

integrase-mediated integration.  To test this hypothesis, 293T cells were transduced with 

either wild-type or PPT-deleted vectors, as shown above (Fig. 25a), and, after four 

passages, were analyzed by Southern blotting to determine the relative abundances of 

episomal and integrated vector genomes.  As shown in Fig. 25a, lanes 5-8, the PPT-deleted 

vectors generated an integrated-provirus signal that, even in the presence of functional 

integrase, was either nonexistent or below the threshold of detection by Southern-blot 

analysis, using a radiolabeled probe complementary to a sequence in the vector genome’s 

5’ region.  The nearly undetectable level of linear episomes in cells transduced with 

PPT-deleted vectors, as measured by Southern-blot analysis (Fig. 25a, lanes 1-4) were not 

fully in line with earlier studies characterizing illegitimate integration of plasmid DNA, 
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which indicated that linear DNA is 40-fold more efficient than circular DNA as a substrate 

for illegitimate integration 104.  This finding raised the possibility that not all linear 

episomes were accounted for by the Southern-blot analysis shown in Fig. 25a.  In that vein, 

we conjectured that the aberrant reverse transcription induced by the PPT deletion 

mediates plus-strand synthesis from several cryptic sites in the vector genome, producing 

linear episomes with a uniform 3’ end, but with sequence variation at the 5’ end (Fig. 26).  

This precludes the use of a molecular probe directed to the 5’ end of the vector genome as 

an efficient means of detecting linear episomes of various lengths.  To overcome this 

obstacle, we designed a probe complementary to the 3’ end of the vector genome as a 

means to detect all episomal forms (Fig. 24).  Indeed, Southern-blot analysis with a 3’ 

probe indicated that PPT-deleted vectors produce detectable levels of linear episomes, 

though at roughly a threefold lower level than PPT-positive vectors (Fig. 25b) (Table 5). 

 

Discussion 

 We present an examination of expression and episomal formation by lentiviral 

vectors with largely truncated U3 sequences and with the RT-associated PPT region 

deleted.  We observed that the U3 deletion increases episomal expression, but does not 

notably affect episome formation.  Conversely, the PPT deletion does not markedly modify 

episomal expression, but leads to the formation of predominantly 1-LTR circular episomes 

in lentivector-transduced cells, which has the effect of reducing both integrase-mediated 

and integrase-independent integration. 

 

Effect of U3 deletion length on episome formation and expression 
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We characterized episomally derived transgene expression and episome formation 

from SIN lentiviral vectors in vitro.  In general, while all vectors demonstrated measurable 

levels of transgene expression regardless of the SIN vector used, nonintegrating vectors 

exhibited significantly less transgene expression than their integrating counterparts.  This 

finding represents a notable discrepancy with recent reports concerning nonintegrating 

vectors, which do not indicate any major difficulty in obtaining robust expression from 

nonintegrating vectors 38,66.  Differences of methodology in quantifying expression may 

explain the discrepancy.  Specifically, in the present study efforts were made to evaluate 

the efficiency of expression by Northern analysis and direct measurement of transgene 

abundance, either by mean fluorescence intensity (MFI) or by relative light units (RLU); 

furthermore, to avoid saturation, transduction was carried out at a low m.o.i. and 

expression was normalized to vector copy number.  Conversely, previous reports measured 

the percentage of cells expressing a given transgene; this method does not measure the 

degree of expression in a transgene-positive cell.  Another methodological concern is that 

expression from integrating vectors, if measured shortly after transduction or from 

nondividing cells, is generated primarily from episomes, which account for 70-95% of 

vector genomes 18,40,103.  Therefore, early expression seen from cells transduced with 

integrating vectors may still be largely episome-derived and not as efficient, on average, as 

expression from exclusively integrated genomes, possibly leading to the undervaluation of 

expression generated from integrated provirus. However, the mechanism by which 

expression from unintegrated lentiviral genomes is repressed is not clear.  The fact that the 

first (non-SIN) lentiviral vectors to be developed exhibited the lowest level of episomal 

expression raised the possibility that a cis element in the U3 region may inhibit 
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transcription from lentiviral vectors, and, in fact, early studies on HIV-1 suggest the 

existence of such an element 15-17.  While the effect of the long U3 deletion on episomal 

expression implies that cis–acting elements in the lentiviral vector genome influence 

extrachromosomal transcriptional activity, the possibility exists that cell-specific 

trans-acting factors are also involved in the mechanism of downregulated transgene 

expression from lentiviral episomes.  In keeping with the concept of cell-specific factors 

influencing episomal expression, previous findings indicate varying levels of gene 

expression across a number of cell lines infected with nonintegrating lentivirus 58.  

Interestingly, transduction of murine dorsal root ganglia in culture by wild-type U3 or long 

U3-deletion integrating lentiviral vectors resulted in strong expression exclusively in 

neurons, or both neurons and stromal cells, respectively, further suggesting that the 

silencing mechanisms affecting integrating and nonintegrating retroviral vector expression 

bear cell-specific characteristics 19.  

The possibility that increased efficiency of expression from long U3-deletion 

vectors is due to differences in episome formation is ruled out by the present study, which 

indicates that no significant change in the relative abundances of episomal forms is 

associated with the large U3 deletion.  However, analysis of episome formation revealed 

discrepancies with published results.  In contrast to a prior report, the relative abundance of 

linear episomes did not increase in the absence of functional integrase 32.  In keeping with 

the findings of Svarovskaia et al. 98, the relative abundance of 2-LTR circular episomes 

increased in the absence of integrase activity.  Two putative mechanisms proposed earlier 

by Engelman et al. 28 to explain this phenomenon suggest either that blunt-ended, linear 

DNA, unprocessed by mutant integrase, is more amenable to circularization by 
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end-joining, or that more linear DNA is available for circularization in the absence of 

integrase activity.  Interestingly, the efficiency of integration in the present study, as 

measured by Southern blot, ranged from 23% to 35% of all integrase-functional vector 

genomes, which is higher than the 5-16% measured previously by PCR 103.  The present 

study employed a novel shuttle-vector assay to quantify the mutant circular episomal form 

produced by lentivectors, and observed that integrase-deficient vectors produced a 

measurable number of mutant circles, suggesting that they may be formed partly through 

integrase-independent self-recombination instead of self-integration.  Furthermore, 

integrating long U3-deletion vectors were found to produce notably more autointegrated 

circular episomes than did other vectors, implying that U3 sequences help prevent the 

formation of autointegrated circles.   

This study showed that a nonintegrating lentiviral vector with an extensively 

truncated U3 region can be an efficacious means of delivering transgenes to target cells.  

However, the fact that nonintegrating long-deletion lentiviral vectors still do not express 

transgenes as efficiently as their integrating counterparts indicates that an additional 

mechanism of episomal silencing may be involved, possibly one that is inherent to 

unintegrated retroviral genomes. The transcriptional downregulation of lentiviral 

episomes, combined with the reduced probability that they are influenced by the 

chromosomal transcriptional regulatory environment, indicate that the characteristics of 

integrated lentiviral genomes cannot be extrapolated to lentiviral episomes, and that further 

characterization of nonintegrating lentiviral vectors is required to optimize their use in 

basic research and gene therapy applications. 

Effect of PPT deletion on episome formation and expression 
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An investigation of the episomal expression and episome formation exhibited by 

PPT-deleted vectors demonstrated an intriguing reduction in illegitimate and 

integrase-mediated integration.  To date, efforts to reduce lentivector integration have 

focused on the integration step of the viral life cycle.  A number of well-characterized 

mutations to the integrase’s catalytic-core domain, at residues D64, D116, and E152, have 

demonstrated the ability to inhibit vector integration without affecting reverse transcription 

or nuclear import 29. These mutations have reduced integration to a baseline level of 

illegitimate integration, which was determined by our group to occur once per 5 x 102 to 2 

x 103 vector genomes (Fig. 23), and by others to occur at a rate of once per 4.59 x 103 to 7.5 

x 106 vector particles 105, 58, 38.   However, attempts to reduce illegtitimate integration by 

further targeting the integration pathway through mutating the vector’s att sites in 

combination with integrase mutations have not been successful 31,32.  In light of these 

results, minimizing illegitimate integration for safety purposes is an imperative for 

nonintegrating lentivectors, especially in applications that require the expression of 

potentially genotoxic genes, such as zinc-finger nucleases, which mediate site-specific 

double-strand breaks in genomic loci to stimulate homologous recombination with 

vector-borne sequences or nonhomologus end-joining within the genome, allowing the 

replacement, addition, editing, or disruption of host-cell genes 106,107.  Importantly, as 

zinc-finger nucleases have exhibited off-target activity, their expression must be transient 

to minimize the inadvertent disruption of untargeted genes 108.  Furthermore, the novel 

technology of inducing pluripotent stem cells from somatic cells 109,110 has employed 

lentiviral vectors as a vehicle for delivering reprogramming factors.  However, some 

reprogramming factors have exhibited oncogenic potential, which renders their integration 
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into host genomes highly undesirable 22,111,112.  In an attempt to alleviate this biohazard, 

Mali et al. explored the possibility of using nonintegrating lentivectors to deliver 

reprogramming factors, including SV40 large T antigen 65.  Although iPS colonies were 

generated via integrase-deficient HIV vectors, all tested colonies demonstrated unintended 

integration of the large T coding sequence, underscoringing the importance of minimizing 

illegitimate vector integration 65.  In a similar vein, applications in which transient 

transgene expression is desired, such as vector-mediated expression of antigens to elicit an 

immune response, could also benefit from minimized illegitimate integration 76,113.  To 

identify a novel, complementary approach to reduce the illegitimate integration exhibited 

by the currently used integrase-deficient vectors, we investigated the mechanisms 

underlying lentivector episome formation. 

Since linear genomes are the preferred substrate for integration, it was not 

surprising that 1-LTR circles, the putative result of an unproductive detour in the process of 

RT, were termed “dead-end byproducts of aborted infection” 3.  Intrigued by a previous 

study demonstrating that, when injected into mammalian nuclei, linear DNA is 40-fold 

more likely to integrate than supercoiled circular DNA 104, we sought to reduce illegitimate 

integration by making this natural detour in the process of reverse transcription (1-LTR 

circle formation) more prominent.  Our experiments were premised on the notion that the 

PPT deletion could alter the reverse transcription process, causing plus-strand synthesis 

initiation to a more 5’ location or location, lengthening the plus-strand DNA and possibly 

inhibiting the strand-dissociation synthesis step required to form full-length linear 

episomes, thereby resulting in an increase in the quantity of 1-LTR circles being made, 

with a concomitant decrease in linear episomes, the putative substrate for illegitimate 
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integration (Fig. 26).  Indeed, we determined that the PPT deletion caused a notable 

(threefold) decrease in linear episomes (Table 5), leading to a proportional reduction in 

illegitimate integration (Fig. 23c). Importantly, the various PPT-deleted vectors exhibited 

titers comparable to those of PPT-positive vectors (Table 6), indicating that the PPT 

deletion did not hinder their ability to transduce target cells.   Interestingly, other studies 

employing lentiviral vectors, in which the native PPT was either mutated or swapped for a 

heterologous PPT (rather than completely deleted, as in our study), have reported on 

reduced viral titer and increased irregularities at the LTR-LTR junction of 2-LTR circles 

114,115.  

 Overall, we show here that 1-LTR circles are the predominant episomal form 

generated by a novel, PPT-deleted lentivector.  This vector, packaged without functional 

integrase, exhibits a 2.5-fold lower level of illegitimate integration than currently used 

nonintegrating lentivectors.  Mechanistically, the findings presented here suggest that 

linear episomes are the main substrate for illegitimate integration.  Evidently, these novel 

PPT-deleted vector may offer a safer gene-therapy platform for clinical and research 

applications, especially ones requiring large doses of vector particles in vivo or transient 

expression of hazardous genes ex vivo. 
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Fig. 18.  Schematic  of vectors with short or long deletions in the U3 
region of the LTR.
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Fig. 19.  Comparative analysis of in vitro expression from lentiviral
vectors with various deletions in the U3 sequence. (a) Schematic of 
vectors with a short (vTK113), longer (vTK945), or nearly full-length 
(vTK1125) U3 deletions; deleted sequences are indicated by crosshatching. 
(b) FACS analysis of GFP expression generated by vTK113 (left), vTK945 
(center), or vTK1125 (right), with (upper) or without (middle and lower) 
functional integrase, in 293T cells. Mean fluorescence intensity (MFI) was 
measured 5 days posttransduction (p0) and after four passages (p4) (lower). 
(c) Northern-blot analysis of transcription mediated by vTK113 (lanes 1 and 
4), vTK945 (lanes 2 and 5) or vTK1125 (lanes 3 and 6), with (lanes 1, 2, and 
3) or without (lanes 4, 5, and 6) functional integrase, in 293T cells. RNA was 
harvested 5 days posttransduction. Equal loading of RNA was verified 
through ethidium bromide staining of ribosomal RNA (lower panel).
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Vector RNA band density

vTK113/IN+ 121

vTK945/IN+ 125

vTK113/IN- 7.7

vTK945/IN- 31

Table 2.  Quantification of Northern blot characterizing RNA produced 
by integrating and nonintegrating lentivectors in 293T cells.
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Fig. 20.  Comparative analysis of in vitro expression efficiency 
generated by vectors with long or short U3 deletions, as normalized to 
vector genome copy number by qPCR.  Error = mean+SD, n=4.
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Fig. 21.  Comparative analysis of episome formation in 293T cells and Jurkat cells. (a) 
To simultaneously analyze integrated and nonintegrated vector genomes, total DNA from 
transduced cells was cut at sites (EcoNI and PflMI) flanking the LTR(s), and a radiolabeled
probe complementary to a region spanning the EcoNI site was employed on vTK113 (left) and 
vTK945 (right) vector genomes. (b) Episome formation and integration efficiency was 
examined by Southern blot in Jurkat (upper) and 293T (lower) cells. Jurkat cells were 
transduced with vTK113, integrating (lanes 1 and 3) or nonintegrating (lanes 2 and 4), or with 
vTK945, integrating (lanes 5 and 7) or nonintegrating (lanes 6 and 8) and total DNA was 
extracted from transduced cells 3 days (no passages)(lanes 1–2 and 5–6) or ~14 days (3 
passages)(lanes 3–4 and 7–8) posttransduction, digested as shown in (a), and analyzed by 
Southern blot, and the same procedure was followed using 293T cells (lanes 9–16). Size 
markers are shown in red. (c) Episomes were harvested from 293T cells 16 hours 
posttransduction.  For (c), error = mean+SD, n=3.
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Vector and Cell Type

DNA
form

Jurkat
113
IN+a

Jurkat
113
IN-b

Jurkat
113
IN+

integ.c

Jurkat
945
IN+

Jurkat
945
IN-

Jurkat
945
IN+

integ.

293T
113
IN+

293T
113
IN-

293T
113
IN+

integ.

293T
945
IN+

293T
945
IN-

945
IN+

integ.

2-LTR 8.97% 16.29% 8.48% 17.69% 5.42% 19.58% 4.78% 15.76%

1-LTR 46.21% 43.50% 41.16% 41.26% 40.16% 26.77% 26.64% 30.42%

linear 44.82% 40.21% 50.36% 41.05% 54.41% 53.65% 68.58% 53.82%

integrated 35.04% 30.51 23.03% 29.76%

Table 3.  Quantification of relative amounts of integrated lentiviral
genomes and linear, 1-LTR, and 2-LTR episomal genomes produced by 
integrating and nonintegrating lentivectors in 293T and Jurkat cells.

a.  IN+ = vector packaged with wild-type integrase
b.  IN- = vector packaged with D64E-mutant integrase
c.  integ. = proportion of lentivector genomes remaining after three 

passages of transduced cells
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Circular Episomal DNA Type

Vector 1-LTR 2-LTR mutant

vTK459/IN+a 75.7+/-2.3%b 14.3+/-1.9% 10+/-2.5%

vTK1055/IN+ 73.6+/-5.8% 15.9+/-3.0% 10.5+/-4.8%

vTK1054/IN+ 61.5+/-2.3% 13+/-3.7% 24.5+/-3.5%

vTK459/IN-c 63.6+/-1.2% 34.1+/-2.6% 3.3+/-1.4%

vTK1055/IN- 58.9+/-2.6% 35+/-2.5% 6.1+/-2.2%

vTK1054/IN- 53.5+/-9.0% 39.8+/-5.9% 6.6+/-3.2%

Table 4.  Quantification of 1-LTR, 2-LTR, and autointegrated episomal
genomes produced by lentiviral shuttle vectors in 293T cells.

a.  IN+ = vector packaged with wild-type integrase
b.  error = mean+SD, n=3
c.  IN- = vector packaged with D64E-mutant integrase
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Fig. 22.  Schematic  of vectors with or without the PPT deletion.
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Fig. 23.  Comparative analysis of in vitro expression generated by 
PPT-positive and PPT-deleted vectors. Expression was measured by 
FACS analysis (a, b) and luciferase assay, normalized by qPCR (c).  For 
(c), error = mean+SD, n=3.
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Fig. 24.  Outline of the digest and probing scheme employed for the 
Southern-blot analysis of PPT-deleted vectors.
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Fig. 25.  Comparative analysis of episome formation and integration in 293T cell 
stransduced with PPT-positive or PPT-deleted vectors.  Episome formation and 
integration was assayed by Southern-blot analysis (a,b), and episome formation was 
analyzed by shuttle-vector assay (c).  (a) Cells were transduced with vTK945, integrating 
(lanes 1 and 5) or nonintegrating (lanes 3 and 7), or with vTK1179, integrating (lanes 2 
and 6) or nonintegrating (lanes 4 and 8) and total DNA was extracted from transduced
cells 3 days (no passages)(lanes 1–4) or ~14 days (4 passages)(lanes 5–8) 
posttransduction and analyzed by Southern blot, as shown in Fig. 24a.  (b) Cells were 
transduced with vTK945, integrating (lanes 1 and 5) or nonintegrating (lanes 2 and 6), or 
with vTK1179, integrating (lanes 3 and 7) or nonintegrating (lanes 4 and 8) and total DNA 
was extracted from transduced cells 3 days (no passages)(lanes 1–4) or ~14 days (4 
passages)(lanes 5–8) posttransduction and analyzed by Southern blot, as shown in Fig. 
24b.  For (c), error = mean+SD, n=3.
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Vector and Passage Number
p0
PPTa+/IN+b

p0
PPT+/IN-c

p0
PPT-d/IN+

p0
PPT-/IN-

p4
PPT+/IN+ integ.e

2-LTR circle 10.7% 8.5% 2.8% 2.8%

1-LTR circle 33.2% 36.6% 78.2% 79.2%

linear 56.1% 54.9% 19.0% 18.1%

integrated 22.8%

a.  PPT+ = vector with an intact polypurine tract
b.  IN+ = vector packaged with wild-type integrase
c.  IN- = vector packaged with D64E-mutant integrase
d.  PPT- = vector with a deleted polypurine tract
e.  integ. = proportion of lentivector genomes stably integrated after three      

passages of transduced cells

Table 5.  Quantification of relative amounts of integrated lentiviral 
genomes and linear, 1-LTR, and 2-LTR episomal genomes produced by 
PPT-positive, PPT-deleted, integrating, and nonintegrating lentivectors in 
293T cells.
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Vector PPTa vector titer (transducing units/mL)
IN+b IN-c

vTK945 + 6.70 + 0.46 x 107 4.83 + 0.31 x 107

vTK1179 - 7.83 + 0.80 x 107 5.23 + 0.31 x 107

vTK945 + 6.77 + 1.08 x 107 7.40 + 1.20 x 107

vTK1023 - 8.53 + 0.94 x 107 8.33 + 1.04 x 107

Table 6.  The effect of the PPT deletion on titers of lentivectors 
packaged with wild-type or mutant integrase.

a.  PPT = vector polypurine tract
b.  IN+ = vector packaged with wild-type integrase
c.  IN- = vector packaged with D64E-mutant integrase
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Chapter 4 

ORGANISMAL FACTORS AFFECTING LENTIVECTOR EPISOME FORMATION, 

STABILITY, AND EXPRESSION 

 

A portion of the work in this chapter was published in Molecular Therapy 16(12): 1968-76. 

 

Introduction  

Nondividing cells are a potentially advantageous target for nonintegrating vectors, 

as episomal vector genomes are not diluted out of them, potentially enabling the long-term 

expression of transgenes in postmitotic cells, which account for the majority of adult 

somatic tissue.  However, various groups arrived at conflicting results in early studies on 

the efficacy of integrase-positive or integrase-defective lentiviral transduction of 

nondividing cells.  Studies conducted with first-generation lentiviral vectors indicated that 

integrase deficiency nearly eliminated expression 4, 102.  Furthermore, Park et al. used an 

integrase-positive lentiviral vector to transduce liver cells in vivo and found that partially 

hepatectomized livers, which undergo several rounds of cell division, were more than 

25-fold more efficiently transduced than non-hepatectomized, postmitotic livers 74, 

indicating that lentiviral vectors could not efficaciously transduce nondividing cells in 

vivo.  However, Kafri et al. similarly transduced liver cells in vivo with an integrating 

lentiviral vector and demonstrated sustained gene expression 73.  In consonance with these 



results, another study showed that nonintegrating vectors transduce postmitotic retinal and 

brain cells as efficiently as integrating vectors, demonstrating effective retinal transduction 

through the restoration of ocular function in mice deficient for Rpe65 79.  Nonintegrating 

lentivectors have also been used to impart significant transgene expression in muscle and 

lymph nodes 31,101.  The discrepancy between early, negative findings from nonintegrating 

lentivectors and recent, positive results may be due to differences in promoter or transgene 

choice, which have been shown to affect in vivo transgene expression and stability 116,117.  

Taken together, these results suggest that nonintegrating lentiviral vectors can transduce 

nondividing cells efficiently, and while lentiviral transduction may be more efficient in 

dividing cells, transduction in nondividing cells can be efficient enough to achieve 

phenotype correction in vivo.   

Though lentivectors have generated robust transgene expression in certain 

nondividing cells in vivo, not all in vivo lentivector transductions produce identical results.  

Previous studies have demonstrated that HIV permissivity varies across cell lines 58, and 

several studies have arrived at diverging results on the ability of lentivectors to transduce 

cardiomyocytes in adult or neonatal animals 118, 119, 120.  Furthermore, one study found that 

different target organs may express unintegrated vector transgenes with varying degrees of 

efficiency 78.  These findings, along with the varying results observed in the mouse liver as 

outlined above, indicate that in vivo nonintegrating lentivector transductions may be 

subject to organismal factors that may affect episome formation, as well as episomal 

expression and stability.  However, none of the studies mentioned above thoroughly 

examines the types of episomes formed by nonintegrating lentiviral vectors in vivo.  The 

goal of this study was to elucidate the organismal factors affecting lentivector episome 
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formation, stability, and expression. 

 

Materials and Methods 

Vector construction.  The shuttle vector pTK1054 includes a bacterial origin of replication 

and ampicillin-resistance gene in the transcribed region of the plasmid.  The vector 

cassettes pTK1238 and pTK1239 were constructed by inserting the GFP-Cre sequence 

from pTK577 into pTK402 and pTK646, which bear the liver-specific human alpha-1 

antitrypsin (hAAT) promoter and the ubiquitous human elongation factor 1alpha (EF1α) 

promoter, respectively, by standard cloning procedures.  pTK113, pTK945, and pTK1023 

were described in Chapter 3. 

 

Cell culture.  293/lacZ cells (kind gift of Norman Sharpless, University of North Carolina) 

were grown in Dulbecco's modified Eagle medium (Mediatech, Herndon, VA) 

supplemented with 9% fetal bovine serum and 1% penicillin/streptomycin solution.   

 

Viral vector production. All lentiviral vectors were prepared as previously described 87, 

transiently transfecting 107 293T cells with 15µg vector cassette, 10µg packaging cassette, 

and 5µg envelope cassette.  Integrating vectors were made using the packaging cassette 

∆NRF 87, which expresses functional integrase, while nonintegrating vectors were made 

using the packaging cassette pTK939.  All vectors were pseudotyped with the VSV-G 

envelope cassette.  For vectors constitutively expressing GFP, titers were assessed by serial 

dilution in 293T cells followed by visual analysis of GFP expression by fluorescence 

microscope.  For other vectors, concentrations were determined by p24gag ELISA.  The 
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absence of replication-competent retroviruses was determined by three independent 

methods: tat transfer assay, vector rescue assay, and p24gag ELISA, as described 

previously 100. 

 

Tissue-specific expression assay.  293/lacZ (non-hepatic) cells were transduced with 

integrase-proficient and integrase-deficient vTK1238 (containing the ubiquitous EF1α 

promoter) and vTK1239 (containing the liver-specific hAAT promoter) at an m.o.i. of 0.5.  

Five days posttransduction, cells were rinsed twice with 100 mM sodium phosphate 

buffered saline (PBS), fixed in lacZ FIX buffer (2% formaldehyde and 0.2% 

gluteraldehyde in PBS) for 5 minutes, then washed twice more with PBS.  LacZ substrate 

buffer (5mM potassium ferricyanide, 5mM potassium ferrocyanide and 2mM magnesium 

chloride in PBS), mixed with X-Gal at a concentration of 0.3mg X-Gal/mL lacZ substrate 

buffer, was then incubated with the cells overnight at 37°C.  LacZ-positive cells were 

counted under direct light. 

 

In vivo experiments in rat brain.  All of the animals were pathogen-free male 

Sprague-Dawley rats obtained from Charles Rivers.  All care and procedures were in 

accordance with the Guide for the Care and Use of Laboratory Animals (DHHS 

Publication No. [NIH]85-23), and all procedures received prior approval by the University 

of North Carolina Institutional Animal Care and Usage Committee.  Virus vector infusions 

were performed as previously described 69.  Briefly, rats first were anesthetized with 50 

mg/kg pentobarbital and then placed into a stereotaxic frame.  Using a 32 gauge stainless 

steel injector and a Sage infusion pump, the rats received 1 µl (at 6 x 109 GFP transducing 
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units/mL) of the integrating and nonintegrating vTK113 and vTK945 vectors over a 10 

minute period into the striatum (1.0mm anterior to bregma, 3.0mm lateral, 5.5mm vertical) 

according to the atlas of Paxinos and Watson 121.  In all cases, the injector was left in place 

3 minutes postinfusion to allow diffusion from the injector. 

 

Immunohistochemistry.  Two weeks or 3 months after the vector infusion, rats received an 

overdose of pentobarbital (100 mg/kg pentobarbital, i.p.) and subsequently were perfused 

transcardially with ice-cold 100 mM sodium phosphate buffered saline (PBS) (pH=7.4), 

followed by 4% paraformaldehyde in 100 mM phosphate buffer (pH=7.4).  After overnight 

fixation in paraformaldehyde-phosphate buffer, vibratome sections (40 µm thick) were 

taken through the striatum and rinsed in PBS.  For immunohistochemistry, tissue sections 

were incubated in 10% normal goat serum and 0.1% Triton X-100 in PBS for 45 minutes.  

Next, sections were incubated with a primary antibody to NeuN (1:500, Chemicon, 

Temecula, CA) or glial fibrillary acidic protein (GFAP)(1:4,000, DAKO A/S, Denmark) 

overnight in 3% normal goat serum, 0.2 % Triton X-100 and PBS.  Tissue sections were 

then rinsed in PBS, incubated in blocking serum (10% normal goat serum, 0.1% Triton 

X-100, PBS) for 1hr. and then incubated with a secondary fluorescent antibody 

(Alexa-fluor 594 goat anti-mouse (NeuN), goat anti-rabbit (GFAP), (Molecular Probes, 

Eugene, OR) for 1 hour at 40C.  Following 3 rinses in PBS, the sections were mounted on 

slides and coverslipped with fluorescent mounting media.  eGFP fluorescence initially was 

visualized on an Olympus IX 71 fluorescence microscope (Olympus, Center Valley, PA), 

and digital pictures were taken.  In the cases where co-localization was to be determined, 

both the GFP and the Alexa 594 fluorescence was visualized with a Zeiss 510 Meta laser 
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scanning confocal microscope (Zeiss, Oberkochen, Germany).  Co-localization was 

determined by multiple scans through the Z axis of the sample. 

 

In vivo experiments in mouse liver.  All procedures received prior approval by the 

University of North Carolina Institutional Animal Care and Usage Committee.  

C57BL/6NHsd mice (Harlan Sprague Dawley, Indianapolis, IA) were injected 

intraperitoneally at eight weeks of age with 100µg p24 of lentivector.  At 10 days, 45 days, 

and 6 months postinjection mice were assayed for luciferase expression following luciferin 

(NanoLight, Pinetop, AZ) injection and using the Xenogen IVIS imaging system 

(Xenogen, Hopkinton, MA).  Balb/c mice (Jackson Laboratory, Bar Harbor, ME) were 

injected intraperitoneally at eight weeks of age with 40µg p24 of lentivector.  At one day 

and 21 days postinjection, livers were harvested, strained into single-cell suspensions, and 

subjected to shuttle-vector analysis. 

 

Results 

Sustained episomal expression in the brain and liver from a integrase-deficient 

vectors 

In accordance with the notion that lentiviral episome formation may vary across 

cell types, previous findings indicate that the level of episomal lentiviral gene expression 

may be cell type-specific 58.  These findings spurred an investigation into the ability of 

nonintegrating lentiviral vectors to transduce effectively a variety of cell types in vivo, 

including brain and liver cells.  Accordingly, rats were injected intracranially with 6 x 106 

transducing units of integrating and nonintegrating small-deletion (vTK113) and 
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long-deletion (vTK945) vectors.  Two weeks and three months after striatal infusion, brain 

tissues were harvested and imaged for GFP, as well as the neuron-specific marker NeuN 

and the astrocyte-specific marker GFAP.  As shown in Fig. 27a, the U3 deletion notably 

increased episomal GFP fluorescence in striatal tissue three months postinfusion.  

However, while nonintegrating vTK113 expressed GFP in both neurons and astrocytes, 

nonintegrating vTK945 appeared to transduce astrocytes to a significantly lesser degree 

(Fig. 27b).  Furthermore, while vTK945 expressed GFP strongly in the striatum, episomal 

expression of vTK945 in the corpus callosum was relatively weak (Fig. 27a).   

Intrigued by the long U3 deletion’s effect on episomal expression in the rat brain, 

we sought to replicate the vector’s efficacy in the slowly dividing tissue of the liver, which 

prior findings had found resistant to sustained episomal lentiviral transduction 74.  To that 

end, mice were injected intraperitoneally with 100 µg p24 of small-deletion (vTK647) or 

large-deletion (vTK979) vector expressing luciferase from the liver-specific promoter 

hAAT.  After imaging for luciferase activity at 10 days, 45 days, and 6 months 

postinjection, nonintegrating vTK979 was found to generate roughly fourfold more 

luciferase activity than nonintegrating vTK647, but still yielded approximately 40-fold less 

luciferase activity than integrating vTK647 (Fig. 27c and d).  Furthermore, in disagreement 

with a previous report, we found that transgene expression in the liver was largely stable 

over a six-month time course 122 (Fig. 27c and d).  Discrepancies may be due to differences 

in promoters and mouse strains employed.  Taken together, the results in Fig. 27 indicate 

that the U3 deletion improves episomal expression in several tissues in vivo, albeit with 

variation across tissues, and that the expression is sustained over time. 

PPT-deleted vectors exhibit sustained in vivo expression 
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The in vitro findings outlined in Chapter 3 suggest that PPT-deleted vectors exhibit 

reduced transgene expression, comparable to that of integrase-deficient vectors.  To 

investigate the possibility that the expression capacities of the vectors might be different in 

vivo, rats were injected intracranially with 1 x 106 transducing units of integrating and 

nonintegrating PPT-positive (vTK945) and PPT-deleted (vTK1023) vectors.  Two months 

after striatal infusion, brain tissues were harvested and imaged for GFP.  We found that 

both PPT-negative vectors expressed at approximately the same level as the PPT+/IN- 

vector, but at a considerably lower level than the PPT+/IN+ vector (Fig. 28). 

1-LTR vector circles increase over time in the mouse liver 

Previous findings have demonstrated that lentiviral vectors express transgenes 

stably in the mouse liver and other nondividing cell types 31,79.  However, the stability and 

relative abundances of episomes formed in transduced livers has not been thoroughly 

characterized.  To investigate the stability and formation of lentivector episomes in the 

mouse liver, we injected mice intraperitoneally with 40 µg p24 of integrase-proficient 

shuttle vectors and measured the relative abundances of 1-LTR, 2-LTR, and mutant 

circular episomal vector genomes Hirt-extracted from the liver at one day and 21 days 

posttransduction.  As shown in Fig. 29, day1 hepatocytes exhibited roughly 60% 1-LTR 

circles, 30% 2-LTR circles, and 10% mutant circles, while day 21 hepatocytes displayed 

approximately 90% 1-LTR circles, 5% 2-LTR circles, and 5% heterogenous circles.  

Importantly, these results indicate that circular lentivector episomes are stable enough in 

the liver to be recovered via bacterial rescue after 21 days.  Interestingly, the change in 

relative episomal abundance between day 1 and day 21 could indicate that delayed reverse 

transcription kinetics in slowly dividing heptocytes may slowly generate primarily 1-LTR 
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circular RT products after day 1, leading to an increase in relative abundance of 1-LTR 

circles at day 21.  Indeed, previous studies have indicated that the kinetics of reverse 

transcription are slowed in nondividing cells, taking 3 to 5 days to reach completion 123,124.  

On the other hand, the data could suggest that linear episomes are subject to degradation 

after day 1, leading to a decrease in relative abundance of linear episomes by day 21, which 

would cause a corresponding decrease in the relative abundance of 2-LTR circles.  Of 

course, the increase in relative abundance of 1-LTR circles may be due to a combination of 

both phenomena. 

Episomal expression is more tissue-specific than expression from integrated provirus 

The use of tissue-specific promoters in lentiviral vectors is a logical development, 

as tissue-specific promoters are less likely to be silenced in target cells or to induce an 

immune response in non-target cells 122,125.  However, given that lentiviral vectors 

preferentially integrate into actively transcribing genes 126,127, the question arises of 

whether active endogenous genes may have an enhancer effect on integrated vector 

cassettes. To investigate the notion that integrated, tissue-specific promoters may be 

subject to activation by adjacent genes, we examined the expression, in non-hepatic cells, 

of liver-specific promoters in integrase-proficient and integrase-deficient vectors. 

Specifically, we used integrating and nonintegrating lentivectors, expressing Cre 

recombinase from liver-specific and ubiquitous promoters, to transducer the 293/lacZ cell 

line, which consists of 293 cells containing a β–galactosidase gene bearing a stop codon 

flanked by loxP sequences (Fig. 30).  Given that only vectors expressing Cre could excise 

the stop codon and activate lacZ expression, we investigated whether putatively 

liver-specific promoters expressed Cre and induced lacZ expression in non-hepatic cells. 
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We found that integrating, liver-specific vectors mediated lacZ expression in 

approximately as many cells as either ubiquitous-promoter vector, but that the 

nonintegrating, liver-specific vector induced notably fewer lacZ-positive cells, indicating 

that liver specificity was significantly improved by expression from integrase-deficient 

vectors (Fig. 31). 

 

Discussion 

The goal of this study was to elucidate the organismal factors affecting lentivector 

episome formation, stability, and expression.  Specifically, we investigated episomal 

expression over time in the brain and liver, episome formation over time in the liver, and 

episomal expression as a means of improving tissue-specific expression.  We found that 

episomal expression was stable over time in vivo, that 1-LTR circular lentivector episomes 

increased in relative abundance over time in the liver, and that the tissue specificity of 

integrase-deficient vectors was superior to that of integrase-proficient vectors. 

The potentially variable nature of episomal expression and U3-mediated 

transcriptional repression across cell types, coupled with the clinical relevance of in vivo 

transduction, underscored the importance of measuring gene expression in a variety of cell 

types in vivo.  Here we show that the large U3 deletion had a pronounced effect on 

episomal expression in rat-brain striatal cells; however, this improvement in SIN vector 

design did not confer robust episomal expression in corpus callosum cells, suggesting that 

additional mechanistic elements contribute to the silencing of episomal expression. 

Prior studies administered nonintegrating vectors in vivo by direct injection into 

nondividing target organs, including eye, brain or muscle 31,38,79, thereby delivering 
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potentially saturating quantities of vector particles; however, the present study, for the first 

time, administered nonintegrating lentiviral vectors systemically to slowly dividing liver 

cells, which allowed testing of the vector’s efficacy in a condition of low concentration 

and, by extension, relatively low multiplicity of infection in the target organ.  Intriguingly, 

a long U3-deletion vector expressed four times more liver-specific luciferase than a short 

U3-deletion vector, in keeping with in vitro results and indicating that cells in the liver may 

express transcriptionally repressive factors binding to the 5’ U3 region eliminated from the 

large U3-deletion vector.  The significant, hepatocyte-specific luciferase expression noted 

by the present study contrasts with previous reports characterizing lentiviral expression in 

the liver as insignificant 74; discrepancies with the prior study may be due to differences in 

transgene and promoter employed, as well as LTR length. Furthermore, in divergence from 

prior findings suggesting that lentiviral vector transgene expression in the liver induces an 

effective immune response 122, the present study found no significant loss of transgene 

product activity in immunocompetent mice.  In fact, transgene expression from every 

vector assayed was sustained for at least six months after administration, in agreement with 

prior studies stably expressing transgenes episomally in the liver from adeno-associated 

viral vectors and plasmid DNA 70,71.  A slight (~15%) reduction over time of episomal 

expression in mouse livers observed in this study may be due to the slow division of liver 

cells, and could eventually necessitate readministration of alternately pseudotyped vector.   

In keeping with the results obtained with vTK113 and vTK945, the PPT-deleted 

vector vTK1023 was found to stably express GFP in the rat brain for up to two months, 

whether packaged with functional or defective integrase.  This finding indicates that, while 

the PPT deletion leads to increased 1-LTR circle formation and reduced linear-episome 
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and 2-LTR circle formation, the deletion does not appear to present deleterious long-term 

effects on episomal stability or expression in vivo, and that PPT-deleted vectors, therefore, 

may present a viable alternative to traditional nonintegrating lentivectors for the long-term 

expression of transgenes in nondividing cells and the short-term expression of transgenes 

in dividing cells. 

In keeping with the results obtained from vTK647 and vTK979, the shuttle vector 

vTK1054 formed episomes that were detectable in the mouse liver up to 21 days 

posttransduction, confirming that lentivector episomes are relatively stable in vivo.  

Importantly, shuttle-vector analysis of episomes harvested one day and 21 days 

posttransduction measured, for the first time, the relative abundances of episomal forms 

over time in vivo.  This study demonstrates that the relative abundance of 1-LTR circles 

increases between the two time points, implying that linear episomes are subject to 

degradation over time, and/or that 1-LTR circles are the preferential products of reverse 

transcription between day 1 and day 21.  These results are in line with previous results 

indicating that lentiviral episomes are stable in nondividing cells 56,59, as well as prior 

studies showing that reverse transcription takes up to five days to reach completion in 

nondividing cells 123,124. 

We used a non-hepatic reporter cell line to compare expression from liver-specfic 

and ubiquitous promoters in integrating and nonintegrating lentivectors.  We found that a 

liver-specific promoter in an integrating vector effects detectable transgene expression in 

as many reporter cells as a ubiquitous promoter in an integrating vector, though the reporter 

cells are not permissive for liver-specfic promoters. Although the reporter cell line requires 

only a small amount of vector transgene expression to activate an internal transgene with a 
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readily visible product, the leakiness of the putatively liver-specific promoter cannot be 

overlooked.  One possible explanation for the nonspecific expression is lentiviruses’ 

demonstrated preference for integrating in the coding regions of active genes 126,127, where 

the endogenous promoter and associated active chromatin may have an activating effect on 

the integrated liver-specfic promoter.  Interestingly, an integrase-deficient vector bearing a 

liver-specific promoter mediated transgen expression in considerably fewer reporter cells 

than its integrating counterpart, indicating that episomal expression cassettes are not 

subject to the same transcriptional-regulatory environment as integrated provirus. 

 The data presented here indicate that lentivector episomes are stable and capable of 

long-term expression in the mouse liver and rat brain, although their expression does not 

match that of integrated vector genomes.  Furthermore, this study indicates that episomal 

lentiviral genomes may be less prone than integrated vector genomes to “leaky,” 

non-tissue-specific expression from tissue-specific promoters.  These findings suggest that 

nonintegrating lentivectors are a potential source of stable therapeutic-transgene 

expression in nondividing cells, and while their expression levels are below those of 

integrating vectors, their expression (in a reporter cell line requiring only a low level of 

vector-mediated transgene expression to activate an integrated reporter gene) appears to be 

more tissue-specific, possibly because integrated provirus may associate with the 

transcription factors and chromatin-remodeling factors present near preferred lentiviral 

integration sites 126, 127.  Therefore, the improved tissue specificity of integrase-deficient 

vectors may make them less likely to express in non-targeted antigen-presenting cells and 

elicit an immune response to targeted cells. 
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Fig. 27.  Analysis of in vivo episomal expression from lentiviral vectors 
with short or large deletions in the U3 sequence.  (a) Tissue 
compartment-specific GFP expression mediated by short-deletion or long-
deletion vectors, with (top) or without (bottom) functional integrase, in the 
striatum and corpus callosum of the rat brain, measured three months after 
vector infusion. (b) Cell type-specific GFP expression mediated by short-
deletion (lower) and long-deletion (upper) nonintegrating vectors in neural 
(fluorescing with NeuN, left side) and glial (fluorescing with GFAP, right side) 
cells of the rat brain, measured three months after vector infusion.  A 20-
micron size bar appears in the 113/IN- GFAP/GFP merge panel.  (c) Long-
term luciferase expression produced by short-deletion or long-deletion 
vectors, with or without functional integrase, in the mouse liver.  Animals 
were imaged 10 days, 45 days, and 6 months after intraperitoneal injection of 
vector.  (d) Quantification of luciferase expression described in (c).  Error = 
mean+SD, n=3.
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Fig. 28.  Comparative analysis of in vivo expression generated by PPT-
positive and  PPT-deleted vectors, packaged with and without 
functional integrase.
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Fig. 29.  Comparative analysis of in vivo episome formation generated 
by a shuttle vector.  Mouse livers were harvested one day and 21 days 
postinjection and analyzed by shuttle-vector assay.  Error = mean+SD, n=3.
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Fig. 31.  Comparative analysis of expression exhibited by integrase-
proficient and integrase-deficient vectors bearing ubiquitous (EF1α) 
and liver-specific (hAAT) promoters.
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Chapter 5 

CONCLUSIONS 

 

 The results of the recent X-SCID gene-therapy trials in Europe have illustrated both 

the benefits and risks of retroviral vectors 20, 21.  Clearly, a different strategy for reducing 

the genotoxicity of retroviral and lentiviral vectors would make them more suitable for use 

in human trials. One such method is to mutate the vector genome or packaging cassette to 

render the vector integration-incompetent, but still capable of nuclear import and transgene 

expression from episomal vector genomes. In fact, preliminary studies have shown that 

such vectors can deliver genetic payloads efficiently and stably to a variety of nondividing 

cell types, both in vitro and in vivo 31,38,79,101.  However, the fact that lentivector episomes 

have not been examined as thoroughly as integrated lentivector genomes underscores the 

importance of understanding the factors mediating the formation, stability and expression 

of unintegrated lentivector genomes, especially if they are to be the sole substrate for the 

expression of therapeutic transgenes in potential gene-therapy applications.  Accordingly, 

these studies examined the cellular, vector, and organismal factors affecting the formation, 

stability, and expression of unintegrated lentiviral vector genomes, showing that HR 

deficiencies and U3 deletions did not affect episome formation, but that a PPT deletion 

significantly increased 1-LTR circle formation, and that 1-LTR circles (which correlate 

with reduced illegitimate integration) also became more relatively abundant over time in 



the mouse liver.  Furthermore, these experiments demonstrated that the U3 deletion 

increased episomal expression, while the PPT deletion had no effect on episomal 

expression, and in vivo transductions demonstrated robust and sustained episomal 

expression over time in the rat brain and mouse liver. 

 

Cellular Factors 

 The origin of 1-LTR circular episomes is one of the oldest questions facing the field 

retroviral and lentiviral vectors.  The most widely accepted explanation, and perhaps the 

most intuitive, is that 1-LTR circles are the products of homologous recombination (HR) 

between the LTRs at either end of linear, unintegrated vector genomes.  However, the 

evidence supporting this hypothesis is less than conclusive, based on the observation of 

linear lentiviral genomes circularizing into 1-LTR episomes in a virus-free cellular extract, 

and HIV infection yielding fewer 1-LTR circles in cells knocked down for the HR protein 

Rad52 42,44; furthermore, transduction of cells mutant for other HR factors did not result in 

reduced 1-LTR circle formation 94. Another possible explanation for 1-LTR circle 

formation, one dating back to the early days of retrovirology, is that they may form as 

byproducts of incomplete reverse transcription, as suggested by the findings that 1-LTR 

circles can form in the course of in vitro vector transduction, in the absence of cellular 

proteins, and that 1-LTR circles appear both in the nucleus of transduced cells, where HR 

proteins are active, and in the cytoplasm, where HR proteins are not active, but reverse 

transcriptase is 48,49. 

 To determine which mechanism is responsible to 1-LTR circle formation, a number 

of HR-deficient cell lines were transduced with lentivectors.  Surprisingly, none of the 
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mutant cell lines assayed had a significant effect on 1-LTR circle formation (Figs. 12-15).  

Furthermore, as HR has been shown to occur only in cells cycling through late S and G2 

phases of the cell cycle, cultured cells arrested in G1 phase were transduced with 

lentivectors, and also failed to show measurable reduction of 1-LTR circle formation (Fig. 

17).  These findings are at odds with previous results, and while the possibility exists that 

the HR genes analyzed were not needed for 1-LTR circle formation, or that they retained 

enough residual activity to form the circles, the fact that the G1-arrested cells showed 

undiminished 1-LTR circle formation indicates that HR does not mediate their formation.  

The possibility that vector factors, such as those involved in reverse transcription, catalyze 

the formation of 1-LTR circles was investigated in later experiments.  However, given that 

several proteins important to HR, including Rad52 and RPA, were not fully characterized, 

an intriguing future experiment would be to use shRNA-encoding lentiviral vectors to 

target RPA and Rad52 in wild-type cells, then analyze lentivector episome formation in the 

knocked-down cells. 

 

Vector Factors 

 Perhaps the most pressing issue facing the field of nonintegrating lentiviral vectors 

is their relatively low level of expression, compared to that of integrating vectors.  In fact, 

early nonintegrating lentiviruses and lentivectors were considered transcriptionally inert 

4,30,102, and only in recent years have advances in vector development led to significant 

episomal expression 31,38,79,101.  Given that, in the course of an integrase-proficient vector 

transduction, only 1-30% of vector genomes integrate and the rest remain episomal, the 

relative silence of this unintegrated majority suggests that cellular factors may act on 
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episomes to inhibit their expression.  In fact, previous studies in wild-type lentivirus 

suggest that a sequence in the viral LTR may be negatively regulated by cellular factors 

15,17.  Furthermore, recent study suggested that an LTR sequence may repress expression 

from an internal promoter 19.  Therefore, in the interest of increasing lentiviral episomal 

expression, a vector with a long U3 deletion was constructed and analyzed in vitro. 

 Transduction of cultured cells with the long U3-deletion vector revealed that, while 

the deletion had no significant effect on expression from an integrating vector, the long 

deletion increased vector expression from an integrase-mutated vector roughly threefold 

(Fig. 19), indicating that the U3 may contain negative regulatory sequences that, in turn, 

affect expression from the vector's internal promoter. An intriguing future experiment 

would be to perform a series of small (20-50bp) deletions to determine the location of the 

negative regulatory element, analyze the sequence to identify several candidate binding 

proteins, and performs ChIP analysis on the vector sequence in transduced cells to 

determine its enrichment for the proteins in question. 

 To determine if the increase in transgene expression generated by the long 

U3-deletion vector was associated with a change in the relative abundances of episomal 

forms present in transduced cells, episomes were analyzed by Southern blot and 

shuttle-vector assay.  No significant change in the relative abundances of episomes was 

observed between the short and long U3-deletion vectors, indicating that the increase in 

expression did not have a structural explanation (Fig. 21).  However, one exception was 

that the mutant-circular form was significantly upregulated in the case of the integrating 

long U3-deletion vector (Fig. 21d), suggesting that the deleted U3 region contains not only 

a negative regulatory element, but, possibly, a sequence capable of preventing the 
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autointegration that leads to the formation of some mutant episomes.  As mentioned above, 

an interesting experiment would be to perform a series to deletions to locate the sequence 

responsible for this phenomenon. 

 To investigate the possiblity that reverse transcription is the source of 1-LTR 

circles, and mindful of the role of the polypurine tract (PPT) in delineating the site of 

plus-strand synthesis initiation in the course of reverse transcription, a number of 

PPT-deleted vectors were constructed.  Transducing cultured cells with PPT-deleted 

vectors resulted in significant increases in 1-LTR circles, as well strong reductions in 

2-LTR circles, linear episomes, and integrated provirus (Fig. 25), indicating that the PPT, 

and, by extension, reverse transcription, affects 1-LTR circle formation, causing 1-LTR 

circles to be the primary product of reverse transcription instead of linear episomes, with a 

resulting reduction in linear episomes and the 2-LTR circles and integrated genomes 

derived from them.  A possible mechanism for the PPT-deletion-induced upregulation of 

1-LTR circles is that the absence of the PPT may force the RT to search for a cryptic 

plus-strand synthesis initiation site upstream of the LTR, and that the resulting plus strand, 

abnormally long, may be difficult to dissociate prior to the end of reverse transcription, 

thereby favoring an undissociated, incomplete reverse-transcription product in the form of 

a 1-LTR circle (Fig. 26).  To further illustrate this mechanism, it would be interesting to 

move the PPT various distances upstream from the LTR and possibly modulate the 

prevalence of 1-LTR circles as RT products, as well as to perform a series of upstream 

deletion in PPT-deleted vectors to attempt to locate the cryptic plus-strand synthesis 

initiation site. 

 To determine if the PPT-deleted vectors could transduce cells efficienctly, their 
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transgene expression was assayed on cultured cells as a function of both mean fluorescence 

intensity and relative light units per genome.  PPT-deleted vectors expressed at a 

considerably lower level than integrase-competent, PPT-bearing vectors, and, in fact, their 

expression was comparable to that of integrase-defective vectors (Fig. 23a), in keeping 

with the reduced levels of integration exhibited by PPT-deleted vectors (Fig. 23b).   

 The ability of the PPT deletion to singlehandedly reduce vector integration levels to 

those of integrase-mutant vectors, but still allow significant transgene expression, 

implicated it as a novel means of reducing vector genotoxicity by inhibiting integration.  

To determine if, when used in combination with a conventional integrase mutation, the 

PPT deletion could drive illegitimate integration levels below those seen with the integrase 

mutation alone, integration levels of wild-type, PPT-deleted, integrase-mutated, and 

PPT-deleted/integrase-mutated vectors were measured by qPCR.  In fact, as well as 

reducing integration from an integrase-competent vector tenfold, the PPT-deleted vector 

reduced illegitimate integration from an integrase-defective vector 2.5-fold (Fig. 23b).  

This finding is significant, because, in previous studies, the combination of att-site 

mutations and integrase mutations had failed to reduce the level of illegitimate integration 

below that produced by either mutation alone 31,32, indicating that the PPT deletion is an 

advance, albeit incremental, in the field of vector safety.  A possible future experiment in 

that vein, accordingly, would be to compare the genotoxicity of integrase-deficient, 

PPT-deleted vectors to those of conventional integrase-deficient vectors through an in vitro 

genotoxicity assay. 

 

Organismal Factors 
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 Determining the formation, stability, and expression of lentivector episomes in vivo 

is a necessary undertaking for gene-therapy researchers, because, regardless of how 

robustly and stably a vector expresses transgene in culture, organismal factors such as 

circulation, tissue-specific transduction and expression, and immune response may hinder 

in vivo vector efficacy 74,117,122.  Accordingly, we measured episome expression and 

formation mediated by several vectors over time in the rat brain and mouse liver. 

 To verify that the U3 deletion's effect on episomal expression was conserved in 

vivo, rat brains and mouse livers were transduced with short and long U3-deletion vectors.  

As seen in cultured cells, the long U3 deletion imparted threefold higher expression on 

nonintegrating vectors (Fig. 27c and d).  However, the effect in rat brain was cell-type- and 

tissue-compartment-specific, suggesting cell- and tissue-specific variability in the proteins 

interacting with lentivector episomes and, presumbably, mediating their chromatinization 

(Fig. 27a and b).  More importantly, every vector assayed imparted significant expression 

in mouse liver for up to six months, in contradiction to a number of studies suggesting that 

lentiviral vectors could not transduce the liver effectively 74,122 (Fig. 27c).  The discrepancy 

may be due to differences in promoter type and transgene used.  Similarly, analysis of in 

vivo expression generated by PPT-deleted vectors in the rat brain two months 

posttransduction also showed transgene expression comparable to that of 

integrase-mutated vectors (Fig. 28), reinforcing that nonintegrating lentivectors are 

capable of long-term expression, as has been demonstrated by other nonintegrating viral 

vectors 68,70. 

 To investigate the relative abundance of and stability of circular lentivector 

episomes in the mouse liver over a three-week period, mice were injected with lentiviral 
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vectors and episome formation in the liver was analyzed one day and 21 days after 

transduction.  1-LTR circles were found to increase in relative abundance between one and 

21 days, indicating that reverse transcription preferentially generates 1-LTR circles in the 

period between 1 and 21 days posttransduction, or that linear episomes or 2-LTR circles 

are subject to degradation over the three-week period in question (Fig. 29).  An intriguing 

future experiment on this subject would be to transduce mice with PPT-deleted vectors as 

well as PPT-positive vectors and harvest episomes after two and five days as well as one 

day and 21 days, measuring absolute episomal DNA levels by qPCR.  This experiment 

could determine the stability of PPT-deleted vector genomes in vivo, measure the relative 

stability (or continued production) of 1-LTR circles in vivo, and, with more time points, 

elucidate the kinetics of episome formation or degradation in vivo. 

 Some groups, when using an integrating, liver-specific vector, have reported 

problems with non-tissue-specific transduction of antigen-presenting cells, leading to the 

mounting of an immune response to the transgene and the liver cells that express it 117,122.  

Therefore, as tissue-specific promoters in unintegrated vector genomes may be less likely 

to be activated by chromosomal enhancer elements, we set out to test the tissue specificity 

of an integrase-deficient vector. Transducing a non-hepatic reporter cell line (Fig. 30) with 

integrating and nonintegrating vectors bearing ubiquitous and liver-specific promoters, we 

found that nonintegrating, liver-specific promoters mediated a low level of expression, as 

expected, but that integrating vectors with liver-specific promoters were surprisingly 

leaky, imparting measurable expression in as many cells as did the ubiquitous-promoter 

vectors (Fig. 31).  These data indicate that episomal vector transgenes are less prone to 

activation from active endogenous genes, which is not surprising, given that lentiviruses 
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have been shown to preferentially integrate into the coding regions of active genes 126,127.  

An interesting experiment suggested by these results would be to inject animals with the 

set of vectors outlined above to determine if the improved tissue specificity of 

nonintegrating lentivectors is replicated in vivo. 

Significance 

 In summary, this work has contributed to understanding the cellular, vector, and 

organismal factors affecting the formation, stability, and expression of unintegrated 

lentiviral vectors.  Specifically, the findings presented here indicate that 1-LTR circles are 

unaffected by HR deficiency and a long U3 deletion, but are significantly increased by a 

PPT deletion, and that, over a 21-day period, 1-LTR circles become more relatively 

abundant in the mouse liver.  Furthermore, these data suggest that nonintegrating 

lentivectors are capable of greater tissue specificity than integrating lentivectors.  These 

results provide a more detailed picture of lentiviral episome formation and maintenance in 

transduced cells.  Two of the primary challenges facing researchers employing 

nonintegrating lentiviral vectors are the vectors’ relatively low levels of trangene 

expression relative to those exhibited by integrating lentiviral vectors, and the 

phenomenon of illegitimate expression, which could lead to the deleteriously sustained 

expression of potentially genotoxic transgenes intended to be only transiently expressed in 

dividing cells; for example, in targeted-integration applications, the expression of 

zinc-finger nucleases would necessarily be short-term to avoid the accumulation of 

double-strand DNA breaks.  The results presented here suggest methods for improving 

episomal expression (in the case of the U3 deletion) and reducing illegitimate integration 

(in the instance of the PPT deletion), which may benefit future vector applications. 
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