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ABSTRACT 

Timothy Dennison Cupp: In vivo examination of the molecular mechanics underlying 
apical constriction’s initiation in C. elegans gastrulation 

(Under the direction of Bob Goldstein) 
 
 

One remarkable finding from research in developmental biology is that 

surprisingly few cellular behaviors are responsible for the wide variety of morphogenetic 

events common among all eukaryotes. Molecular mechanisms underlying cell shape 

changes during tissue restructuring can explain how morphogenesis proceeds in vivo. 

During apical constriction, contractile myosin movements become linked to apical 

junctions, resulting in junctional pulling that can change cell shape. The process by 

which this dynamic linkage is achieved remains unknown, though it occurs with strict 

developmental timing in at least two systems. Since timing and patterning information 

instruct enrichment of specific mRNAs in the cells that apically constrict in C. elegans, 

we targeted these genes in an RNAi screen, identifying candidates that have an 

involvement in apical constriction. Our data suggest that zyxin, an important Focal 

Adhesion protein, may mediate the connections between the actomyosin cortex and 

adherens junctions during the initiation of apical constriction.  
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CHAPTER 1: IN VIVO EXAMINATION OF APICAL CONSTRICTION.  
 
INTRODUCTION  
 

Apical constriction is a cell shape change that can drive tissue morphogenesis in 

nearly all metazoans3. Vertebrates utilize apical constriction to direct neural tube closure 

(Figure 1) and roughly 300,000 newborns suffer from neural tube closure defects 

worldwide annually14. During this developmentally regulated event, the tension arising 

from contractions within the actomyosin cortex is transmitted across cell junctions to pull 

on neighboring cells. The resulting change in cell shape ultimately drives tissue folding 

and invagination3,4. Identifying the key molecules involved and discerning how they 

behave during apical constriction is crucial to our understanding of this morphogenetic 

event. Our lab has identified a number of genes involved in apical constriction during C. 

elegans gastrulation, but the precise details of the mechanism are still murky8,17,21. The 

adhesive cadherin-catenin complex (CCC), containing alpha-catenin, beta-catenin, and 

E-cadherin, becomes apically enriched in E cells upon myosin activation and is required 

for apical constriction to proceed, somehow dynamically connecting to the tensile 

cytoskeleton with proper timing. The exact protein-protein interactions that facilitate 

force transduction between the cytoskeleton and the CCC has been under intense 

debate in recent years (Figure 4)30,31. Some camps hold that actin can directly bind to 

alpha-catenin under certain conditions, though these experiments typically carry 

caveats stemming from their in vitro methodologies32. Here, we consider potential 

interactions that enable protein binding in a developing organism.  
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In C. elegans, two endodermal precursor cells (E cells) originate at the surface of 

the embryo when the E cell progenitor divides. Gastrulation begins at the 26- to 28-cell 

stage as the E cells apically constrict and internalize (Figure 1, Figure 2B). C. elegans 

is well-suited for identifying and understanding the complex roles of candidate molecular 

triggers for apical constriction in vivo. Several factors make C. elegans an attractive 

candidate for this type of in vivo morphogenesis research. The organism’s genetic 

tractability allows for direct edits to the genome, making direct, specific mutagenesis 

and fluorescent protein fusions a relatively straightforward task15,16. C. elegans embryos 

are also transparent, permitting direct observation of fluorescently-tagged protein 

dynamics throughout development. Because of the animal’s short generation time, we 

can identify, tag, and image any protein of interest all within the span of a month. Since 

apical constriction progresses in such a spatiotemporally-stereotyped manner and 

because our model provides many in vivo experimental advantages, C. elegans is 

valuable for studying morphogenesis. 

Developmental patterning is integrated with spatial information in E cells, 

instructing their decision to undergo apical constriction at the 26-28 cell stage in the 

early C. elegans embryo with precise timing. Expression of the end-3 transcription factor 

confers an endodermal fate to these cells, which promotes the production and apical 

recruitment of the myosin light-chain kinase, MRCK-1, to apical contact-free cell 

surfaces17.  

MRCK-1’s apical recruitment in E cells results in phosphorylation of myosin’s 

regulatory light chain and its subsequent activation at the apical surface. The apical 

enrichment and activation of myosin provides the cortical tension that constriction 



 3 

requires to proceed. Previous hypotheses posited that this sudden increase in tension 

within cells would alone be sufficient to initiate constriction. While the activation and 

apical localization of myosin is absolutely required for constriction to proceed11,12, our 

lab has shown that these events are not themselves the immediate trigger of apical 

constriction in either Drosophila or C. elegans5. In fact, myosin’s apical enrichment and 

activation precede the initiation of constriction by several minutes. Myosin activity 

seems to stabilize the adhesive structures at apical surfaces of cell-cell junctions by 

preventing the sequestration/internalization of cadherin-catenin complexes, but does not 

directly initiate tissue rearrangement19,26. 

During this period of increased tension within E cells’ apical surfaces before the 

onset of apical constriction5,17 myosin puncta flow centripetally along the cell’s apical 

cortex without accompanying movement of associated cell membranes (Figure 3). We 

refer to this phenomenon as “slippage.” With precise timing, these myosin movements 

“couple” with the cell-cell junctions and apical constriction proceeds, suggesting that 

tension is transmitted through cell junctions to cytoskeleta of neighboring cells. During 

coupling, slippage is almost entirely eliminated. The precise mechanism of how myosin 

and membrane structures achieve this coupling with temporal accuracy remains a 

mystery.  

One hypothesis that can explain this event’s nature is the missing link model 

(Figure 4). In the missing link model, there is a disconnect between the actomyosin 

cortex and the cadherin-catenin complex of apical adherens junctions. According to this 

hypothesis, to establish a connection and accomplish apical constriction, some crucial 

protein (or set of proteins) is expressed, recruited, post-translationally modified, or 
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otherwise made available to interface between the actomyosin cortex and adherens 

junctions. The formation of this linkage results in force transmission between 

neighboring cells and constriction can occur.  

To test this hypothesis and determine which proteins might be involved in 

forming this developmentally-regulated linkage, we decided to perform an RNAi screen. 

A single-cell transcriptomic analysis of the early C. elegans embryo provided the basis 

of our candidate list9. In this analysis, expression levels of each transcript were 

measured in each individual cell through the 16-cell stage of development. With this 

information, we constructed a candidate list of genes most highly enriched in E cells (16 

cell stage) and their progenitor (8 cell stage). We hypothesized that at least one of the 

candidates in this list will be involved in forming a connection between adherens 

junctions and the contractile actomyosin network.  

To determine which proteins from our candidate list might be involved in apical 

constriction, we designed the screen to seek defects in C. elegans gastrulation 

(Gastrulation defective = Gad phenotype). We injected dsRNA constructs targeting the 

candidate gene’s mRNA into mature adult worm gonads. Injection of dsRNA leads to 

highly penetrant knockdown effects (as compared to RNAi feeding strategies)27. After 

knockdown, we established that an embryo is Gad if the E cells fail to fully internalize 

into the blastocoel before completing their first division. From our candidate list, we 

isolated a number of genetic targets that result in a Gad phenotype after knockdown in 

wild-type embryos. In particular, targeting zyxin (zyx-1) transcripts with dsRNAs resulted 

in a high incidence of Gad embryos in both wild-type and sensitized backgrounds. Due 
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to this phenotype and zyxin’s mRNA enrichment in E cells around the time of 

gastrulation, we sought to consider zyxin’s role in apical constriction.  

By filming embryos expressing fluorescently-tagged proteins, we were able to 

track the movements of myosin puncta in relation to cellular borders during apical 

constriction. We depleted these embryos of zyxin mRNAs to scrutinize these molecular 

dynamics. In constricting cells, myosin puncta flow centripetally along the apical 

surface, apparently supplying tension to the cortical network3,19,20. As shown in Figure 

3, wild-type E cells experience several minutes of slippage during which myosin flows 

without accompanying movement of the cell junctions. These cells then initiate 

constriction with precise timing and coupling occurs. After targeting zyxin for 

knockdown, we found that the slippage rate erroneously remained high during the latter 

stages of gastrulation. We speculate that this sustained slippage explains the Gad 

phenotype in zyxin-depleted embryos.  

Zyxin has long been appreciated for its role in focal adhesion maturation in cells 

crawling along rigid surfaces, acting as a mechano-sensitive adapter protein between 

the integrin-signaling and cytoskeletal layers10-13,18 We show here that zyxin is important 

even in the absence of a rigid substrate. Our data suggest that zyxin may have an 

additional role in strengthening the connections between the cytoskeleton and adherens 

junctions. Future experiments revealing zyxin’s expression level, timing, recruitment, 

and localization will be instrumental in confirming its function during apical constriction.  
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EXPERIMENTAL APPROACH and METHODS 
   
RNA interference  

 We injected 1 µg/µL of dsRNA in TE Buffer into the gonads of young adult 

worms. Each dsRNA construct was designed to target the first kilobase of each 

candidate gene’s exonic code. After 36 hours incubation at 20°C, we dissected out 

dsRNA-treated embryos and mounted them laterally on glass coverslips no later than 

the 8-cell stage. 

DIC and fluorescence microscopy 

We filmed each embryo under DIC illumination at one minute intervals for 1.5 

hours to measure its progression through gastrulation. In typical wild-type embryos, E 

cells don’t divide until they have internalized entirely into the blastocoel and are fully 

covered by their neighbors.  We consider an embryo to be Gad if this division occurs 

before the completion of E cell internalization. 

 Candidates with an apparent effect on gastrulation were further tested to 

establish any potential roles in apical constriction. DIC illumination of laterally mounted 

embryos can only tell us whether gastrulation has been successful (Figure 6), but does 

not directly reveal the movements of apical components. To reveal these movements, 

we mounted embryos on their ventral surface so that the apical surfaces of E cells are 

exposed to the glass coverslip and imaged the ventral surface. Spinning disk confocal 

microscopy allowed collection of images of the entire apical surface of the E cell (Figure 

7A,B). Utilizing worms expressing a myosin-GFP fusion plus a PH domain-mCherry 

fusion (see Strains and Worm Maintenance, below), we were able to track their 

movements of myosin and membrane (into which the PH domain embeds itself) with 
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high temporal resolution (1 image every 3 seconds for 5 minutes), in order to measure 

the slippage rate during early and late stages of gastrulation.  The MTrackJ plugin in 

ImageJ was used to track myosin and membrane movements and calculate their 

velocities.  

Strains and worm maintenance  

 Nematodes with cultured and handled as described28. The following reporter and 

mutant strains were used: MT4417 ced-5(n1812); SU348 sax-7(eq1); LP54 

mCherry::PH; NMY-2::GFP. Imaging was performed at 20°C – 23°C for all strains listed.    
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RESULTS 
 
Determining Candidate List for RNAi Screen  

 From the dozens of enriched transcripts in the E cells and the E cell progenitor, 

we considered three classes of genes: (1) genes whose predicted products are well-

characterized and might serve a mechanical purpose; (2) genes with only a few 

predicted domains; and (3) genes whose products are likely not involved in apical 

constriction at all.  We predict that products in the first class will either interact with the 

cytoskeleton directly or otherwise sense and transduce force via stretch-induced binding 

(perhaps revealing cryptic domains as in vinculin, talin) and signaling.  

The second class of products only have a few domains listed, merely hinting at 

prospective functions. Their conceivable involvements in apical constriction range from 

cell-cell adhesion (e.g. C-type lectin fold protein encoded by F25D7.2) to cell signaling 

(e.g. tyrosine kinase and phosphatase domains are common features among 

candidates). Though these proteins aren’t well-characterized, we can still offer simple 

hypotheses positing roles in gastrulation. 

The final class of genes encoded lysosomal proteins, glycosylation proteins, 

Argonaut proteins, etc. and will likely have little direct involvement in the progression of 

apical constriction since they do not have any proposed mechanical function. We 

decided to exclude this set of genes was excluded from the screen. The final non-

comprehensive list includes 28 candidate genes.   

After being targeted for depletion, several candidates display a Gad phenotype 

 After treating embryos with dsRNAs targeting the candidate genes, we assayed 

embryos for their ability to progress through gastrulation3,4. E cells and the neighboring 
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MS cells (mesodermal precursor cells) are born within one minute of each other. These 

MS cells divide into four daughters 25 minutes following their birth, followed shortly 

thereafter by E cell apical constriction and internalization. In untreated wild-type 

embryos, E cells fully internalized in 16.2 (+/- 2.0) minutes following MS cell divisions 

(Table 1, Figure 6). After completing internalization (when no part of either E cell is 

exposed to the embryo’s ventral surface), each E cell divided in 3.7 (+/- 1.7) minutes. 

We found that targeting certain genes for knockdown often led to delays in 

internalization. In some cases, E cells failed to completely internalize before undergoing 

division (Figure 7). This is nearly always due to a delay in internalization rather than a 

defect in cell division timing (Table 1, Figure 6).  

 From the candidates tested, we isolated several genes which have an effect on 

gastrulation in the wild-type background. In addition to severely delaying E cell 

internalization, treating early embryos with dsRNAs also led to a > 25% incidence of the 

Gad phenotype for 9/23 candidates tested in the wild-type background (See Table 1, 

Figure 6). To overcome potential genetic redundancies, we also targeted some 

candidates for knockdown in sensitized genetic backgrounds (See Experimental 

Approaches and Methods). Ced-5, which encodes a RacGEF38, acts redundantly with 

hmr-1 (encoding cadherin) during C. elegans gastrulation21. Treatment of dsRNAs in the 

ced-5  genetic null background led to a very high incidence of Gad phenotypes; 4/6 

candidates were Gad in more than half of the embryos. SAX-7 is a transmembrane cell 

adhesion receptor molecule29 that functions partially redundantly with cadherin during 

gastrulation37. 8 of the 13 candidates targeted for depletion in the sax-7 null background 

displayed Gad phenotype in > 25% of embryos.  We speculate that these candidates 
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function in a pathway with cadherin to allow its physical linkage to cytoskeletal 

elements.      

In comparison to earlier screening methods21, our screen yielded in a high 

number of promising candidates with highly penetrant effects on gastrulation.  Since 

these genes have an apparent effect on gastrulation, we wanted to uncover any direct 

roles in apical constriction. One promising candidate has been chosen for further 

analysis so far.  

Determining zyxin’s role in promoting completion of gastrulation  

 Knockdown of zyxin resulted in a noticeable phenotype in both wild-type and 

sensitized backgrounds. It has also been previously shown to have a role in mechano-

sensitive actions. Zyxin is mainly appreciated for its role in biomechanical feedback 

during focal adhesion maturation10,12, though recent evidence suggests it can also work 

at cell-cell contacts24.  

Zyxin is an attractive candidate for additional study for a number of reasons.  For 

one, zyxin’s expression pattern is among the most striking of all the candidates in terms 

of its E cell enrichment. These transcripts are 358 times more enriched in the E cell 

progenitor than in its neighbors (Table 1, Figure 5B). Additionally, the effect of zyxin 

targeting on the early embryo is among the strongest that we observed for well-

characterized proteins (Table 1). Zyxin’s known biomechanical function also offered a 

clear set of hypotheses detailing how it might function to initiate apical constriction. For 

these reasons, we predict that zyxin contributes to a developmentally-regulated 

assemblage that links actomyosin and adherens junctions. Loss of zyxin would weaken 
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this connection, thereby preventing membranes from moving in tangent with myosin 

puncta. 

Our gastrulation data raise the possibility that zyxin operates in apical 

constriction, but the screening method does not allow direct detection of this 

phenomenon. In our screen, we filmed laterally mounted embryos under DIC 

illumination. The apical surfaces of E cells face the embryo’s ventral surface, so lateral 

mounts, while quick and technically easy to perform, are good for screens but do not 

allow for direct observation of constricting apical membranes.  

High-speed fluorescent movies of ventrally mounted embryos allow us to 

measure myosin’s rate of flow as well the adjacent cell membrane’s rate of centripetal 

movement simultaneously. We define the difference in speeds as “slippage” between 

myosin and membrane. As in previous analyses, we define two stages of apical 

constriction for convenience: The early stage, a period spanning the 10 minutes 

following MS daughter division; and the subsequent late stage, when E cell apical 

surfaces actually constrict5. During the early stage, apical myosin flows centripetally 

without accompanying movement of associated membranes. In short, there is a high 

degree of slippage. As constriction begins, the membrane slowly begins to move at a 

similar rate as myosin. During this late stage, the slippage rate gradually falls to under 

0.5 µm/min in control embryos.  

 After treating embryos with dsRNAs targeting zyxin, we found that there was no 

change in myosin’s rate of centripetal apical flow in E cells during either the early stage 

or late stages. During the late stage, however, myosin movements fail to completely 

couple with membrane movements in each case. As a result, the average slippage rate 
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remained significantly high (Figure 8). We conclude that depletion of zyxin in the early 

C. elegans embryo prevents the tensile actomyosin cortex from linking to adhesive 

junctional components, leading to defects in apical constriction and thus in gastrulation. 

Zyxin’s expression pattern and timing suggest that it may be temporally regulated by 

expression timing, and together with these data, hints at a developmentally regulated 

role in tissue morphogenesis.  
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DISCUSSION 

 C. elegans embryos employ a basic cellular behavior to drive gastrulation. This 

behavior, apical constriction, drives tissue rearrangement in many different biological 

systems4,5. During apical constriction, myosin contractions elicit tension within the 

actomyosin cortex. In a constricting cell, this tensile network somehow becomes 

mechanically connected to cellular junctions, and neighboring cells are pulled over its 

apical surface, inducing its internalization. The progression of this event is highly 

stereotypical and appears to be under tight developmental regulation in worms4,6,17. 

However, we can disrupt this process if we deplete early embryos of certain genetic 

factors. One such gene which appears to be vital to the progression of apical 

constriction is zyxin.  

 Direct injection of dsRNAs into adult gonads (in favor of feeding, where 

knockdown is less effective) and the unique construction of the RNAi candidate list 

yielded more penetrant effects on gastrulation than previous screening efforts21. After 

targeting zyxin for knockdown with dsRNAs for 36 hours, many embryos demonstrated 

a Gad phenotype. These defects arose in both sensitized (sax-7 null, ced-5 null) and 

wild-type backgrounds. Knockdown of other cytoskeleton-related transcripts, including 

alpha-Catulin (ctn-1), girdin (grdn-1), and formin (cyk-1), also led to an increased 

incidence of Gad embryos (Table 1, Figure 6). Subsequent high temporal resolution 

imaging has allowed us to directly observe the molecular dynamics at play within 

constricting cells. These movies reveal that the Gad phenotype detected in zyxin-

knocked down embryos is likely due to a defect in membrane-cytoskeleton coupling, as 

hypothesized.  In these cases, slippage rates between myosin and membrane 
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movements remain high abnormally late in the process. That is, myosin contractile 

movements do not efficiently couple with the cellular junctions during the late stages of 

gastrulation as they should. We hypothesize that zyxin’s involvement in apical 

constriction is at the interface between the contractile cytoskeleton and components 

within adherens junctions at the apical surface.  

The classic literature on zyxin presents this protein as a mechano-sensitive 

element that is chiefly involved in tension sensing at integrin-based focal adhesions 

during cellular migration10,12. Its stretch-induced recruitment to focal adhesions is 

required for the subsequent recruitment of other cytoskeleton-associated proteins, such 

as Ena/VASP and testin11. The ultimate consequence of stretch and thus zyxin 

recruitment appears to be the strengthening actin cables’ attachment to adhesive 

structures on a rigid substrate. Recent evidence suggests that zyxin not only has a role 

in focal adhesions, but can also be found at the interface between two cells24. 

In a set of in vitro experiments24, Oldenberg et al. pharmacologically induced 

stretch and used super resolution microscopy to view several members of the focal 

adhesion complex. They found that stretch induction results in the formation of “Focal 

Adherens Junctions (FAJs)” between cell neighbors. These FAJs contain zyxin, which is 

only recruited to cell borders in response to increased cellular tension. Furthermore, 

Ena/VASP and testin are only recruited to these structures in cells that have not been 

depleted of zyxin. In control cells, the stretch-induced recruitment of zyxin (and thus 

Ena/VASP and testin), leads to cytoskeletal strengthening, wherein stress fibers 

become thicker and more abundant. When zyxin is depleted, FAJs do not form and the 

actin cytoskeleton fails to develop a robust network of stress fibers. Ena/VASP and 
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testin are not completely required for cytoskeletal strengthening to occur, but may make 

the network slightly more robust or mediate an indirect interaction between actin, zyxin, 

and alpha-catenin. We hypothesize that this in vitro zyxin-dependent actin stabilization 

is also at play in vivo during the initiation of apical constriction.  

We have previously shown that E cells receive developmental patterning 

information from cell intrinsic cues as well as signals from their neighbors. E cells 

integrate this information to prompt an increase in tension via MRCK-1 signaling at the 

apical surface17. Around this time, these cells also specifically expressing high levels of 

zyxin9. We believe that these events must align to properly regulate the timing of apical 

constriction initiation during C. elegans gastrulation.  

In our model (Figure 9), zyxin transcripts begin accumulating within E cells while 

MRCK-1 becomes apically enriched and begins activating myosin. While myosin 

activation produces tension within the apical cortex before constriction begins, zyxin is 

being translated and folded. The tensile cortex can then recruit folded zyxin to apical 

junctions. Once sufficient levels of zyxin have accumulated and integrated themselves 

into FAJs along with binding partners Ena/VASP and testin, apical constriction will 

begin. We believe this model can help explain the observed increase in slippage rate 

after zyxin for depletion in gastrulating embryos.  

Future Directions 

 The following proposed experiments will help address specific questions 

regarding zyxin’s role in apical constriction. One key question is whether zyxin directly 

physically acts to link the cytoskeleton to adhesive structures at cell junctions and how. 

What binding partners are necessary to allow zyxin to sense strain, move to cell 
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contacts, and form connections between components of clutch complex? We also aim 

to address the crucial question of how developmental regulation guides the progression 

of this event with temporal precision.  

In ascertaining the role of zyxin in apical constriction, we will rely on the 

CRISPR/Cas system to genetically mutate zyxin, add fluorescent tags, alter cell fate, 

and change expression pattern to test our model. By attaching a fluorescent tag to 

zyxin, we will be able to measure its levels while also tracking its movement throughout 

the embryo. Our expectation is that the timing of zyxin accumulation and junctional 

recruitment in E cells will be coordinated with the onset of apical constriction. Below we 

list several experiments that will test the hypotheses stemming from our model (Figure 

9).  

Genetic truncations and point mutations will reveal which domains are crucial to 

zyxin’s function. Zyxin’s N-terminus has been shown to interact with actin, while its C-

terminal LIM domains bind with partners like Ena/VASP and testin25. An N-terminal 

truncation should keep zyxin from interacting with tensile actin, thus preventing it from 

sensing stretch or strengthening the apical cortical meshwork. A C-terminal truncation 

would prevent binding with other cytoskeletal interactors, but likely has only a marginal 

effect on cytoskeletal strengthening. If these hypotheses hold true, embryos with zyxin 

N-terminal truncations will experience abnormally high myosin/membrane slippage 

during late stages of apical constriction, while embryos with the C-terminal truncation 

will look relatively normal.  

A crucial component of our model is that zyxin’s action, under strict 

developmental regulation, acts with precise timing. We propose that this is due to the 
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timing of its expression. To test this hypothesis, we will genetically encode zyxin’s 

expression to be under control of the med-1 promoter), resulting in premature zyxin 

expression. In this scenario, zyxin will accumulate in E cells several minutes before 

MRCK-1 is able to activate myosin at the apical surface. Once myosin activation occurs, 

however, we would expect the increase in apical tension to result in near-immediate 

recruitment of zyxin to cell junctions. In short, apical constriction would initiate several 

minutes early. These experiments will be crucial to explain how developmental 

regulation instructs the precise timing of gastrulation in C. elegans.  

Our model proposes a system in which we are able to comprehensively establish 

a connection between developmental patterning and the physical mechanics of early 

tissue morphogenesis. Forming this connection requires a set of experiments that will 

alter cell fates within the developing embryo. These experiments will utilize the CRISPR 

system to make MS cells express the E cell fate, for example. We hypothesize that 

these “ectopic E cells” will express zyxin around the time of gastrulation while also 

experiencing increased surface tension, ultimately undergoing apical constriction. These 

data would provide support to the idea that zyxin and its developmental regulation are 

the keystone to the initiation of apical constriction. It is alternatively possible that end-3 

expression is absolutely required to link spatial information and force generation and 

inform cells to constrict. If this is true, early expression of zyxin would not lead to 

premature apical constriction.    

If the proposed experiments are unable to substantiate zyxin’s participation in 

apical constriction, we still have many promising candidates from our screen to test. 

Alpha-catulin (CTN-1) has domains resembling parts of both alpha-catenin and vinculin. 
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Since alpha-catenin is an integral part of CCCs30 and vinculin has been implicated in 

FAJ formation33, this is an intriguing candidate for future study. HUM-8 is an 

unconventional myosin that resembles human Myosin 6. This motor protein is involved 

in epithelial morphogenesis via its interaction with vinculin at cell borders and allows 

cells to form cohesive contacts39. A formin-related protein, CYK-1, can assemble actin 

filaments34 and is directly involved in cytokinesis35,36. This direct mechanical action on 

the cytoskeleton makes it an attractive candidate. For many of our candidates, we only 

can distinguish a few protein domains. Proteins with kinase or phosphatase domains 

seem important, though their involvement in apical constriction, if any, is likely to be 

more indirect.    

There is no doubt that a number of experiments are still necessary to fully 

demonstrate how tensile cortical actin can mechanically effect a cell shape change with 

precise developmental timing in a living organism. Our data have begun to unravel the 

linkage between development and biomechanics at the cellular level in vivo. With 

single-cell transcriptomic data informing a genetic screen, and with the ability to watch 

molecular dynamics in vivo, we have provided evidence suggesting an important role for 

zyxin in apical constriction. We believe the experiments proposed above will further 

illuminate its role in connecting contractile actomyosin to adhesive structures at cell 

junctions. Zyxin likely acts with one or more partners throughout this process, and the 

results from our genetic screen will be a valuable source of information when 

deconstructing partial redundancies within the system. These data provide us with the 

beginnings to a course of research that will help us form a thorough understanding of 

the overlap between mechano- and developmental biology.   
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APPENDIX 1: TABLE 1 – RESULTS OF RNAi SCREEN RESULTS 

 

 

 

KD target 

 

Stage 

(cells) 

Enrichment 

(Mean 

RPKM in E 

over MS 

 

Proposed 

Function29 

 

Genetic 

Background 

MS 

div  

E 

intern

(min) 

MS 

div 

 E 

div 

(min) 

 

% Gad 

(n/n) 

Negative 

Control 

-- -- -- N2 (wild-

type) 

16.2

2.0 

19.9

1.7 

0 

(20/20) 

acp-2 16 878.64/0.2 acid phosphatase N2 (wild-

type) 

18.8

3.4 

19.3

1.6 

12.5 

(2/16) 

add-1 8 8.2/0.0 alpha-adducin: 

cytoskeleton 

signaling 

N2 (wild-

type) 

15.7

2.2 

20.5

3.8 

7.7 

(1/13) 

C46E10.8 8 108.94/0.0 zinc-finger protein N2 (wild-

type) 

16.5

5.7 

22.8

4.8 

50.0 

(6/12) 

C29F7.2 16 955.98/0.45 kinase-like domains N2 (wild-

type) 

19.1

4.8 

23.5

4.8 

27.3 

(3/11) 

C26F1.1 16 699.64/0.57 novel N2 (wild-

type) 

17.0

7.7 

18.7

4.8 

0 (0/9) 

ctn-1 8 48.48/0.05 alpha-catulin: 

cytoskeleton, 

adhesions 

N2 (wild-

type) 

20.0

8.4 

27.6

7.7 

20.0 

(2/10) 

cyk-1 8 1.08/12.3 formin, actin 

polymerization 

N2 (wild-

type) 

18.3

7.9 

18.8

4.5 

23.1 

(3/13) 

dve-1 16 857.9/0.0 CMP domain, RAS 

signaling 

N2 (wild-

type) 

13.8

1.7 

18.0

2.6 

0 (0/4) 

F25D7.5 8 40.93/0.07 C-type lectin fold N2 (wild-

type) 

14.6

2.9 

19.2

0.8 

0 (0/5) 

F49E10.4 8 134.5/0.42 mitochondria-eating 

protein 

N2 (wild-

type) 

20.5

4.5 

26.4

3.6 

0 (0/13) 

grdn-1 8 9.8/0.0 actin-associated  N2 (wild-

type) 

11.6

10.8 

19.6

7.0 

33.3 

(3/9) 

H24G06.1 8 45.86/0.0 mitogen-activated 

protein kinase 

binding protein 

N2 (wild-

type) 

15.0

3.6 

20.3

.7 

20.0 

(2/5) 

hum-8 16 26.48/0.0 unconventional 

myosin 

N2 (wild-

type) 

24.8

7.9 

20.6

1.7 

66.7 

(6/9) 

let-4 8 25.06/0.0 organizes ECM N2 (wild-

type) 

11.9

2.3 

19.6

4.0 

0 (0/17) 

pssy-1 8 137.97/1.94 phosphatidylserine 

synthase 

N2 (wild-

type) 

17.0

5.2 

23.6

2.4 

7.1 

(1/14) 

R05D3.2 16 32.49/0.2 LMBR1 human 

ortholog – Shh 

signaling 

N2 (wild-

type) 

23.4

7.7 

23.5

2.9 

51.3 

(7/13) 
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KD target 

 

Stage 

(cells) 

Enrichment 

(Mean 

RPKM  E / 

MS) 

 

Proposed 

Function29 

Genetic 

Background 

MS 

div  

E 

intern

(min) 

MS 

div 

 E 

div 

(min) 

 

% Gad 

(n/n) 

R06B10.2 8 6.19/.16 tyrosine 

phosphatase 

N2 (wild-

type) 

23.7

1.2 

22.6

5.6 

71.4 

(5/7) 

T14E8.1 8 13.7/0.0 tyrosine kinase  N2 (wild-

type) 

19.4

5.3 

21.3

1.6 

18.2 

(2/12) 

tnc-2 8 54.46/0.32 troponoin N2 (wild-

type) 

16.3

2.9 

19.3

1.0 

0 (0/9) 

Y53C10A.

10 

8 19.16/0.0 novel N2 (wild-

type) 

17.5

3.1 

22.4

2.1 

8.3 

(2/12) 

Y57G11C.

6 

8 32.48/0.18 tyrosine 

phosphatase 

N2 (wild-

type) 

18.2

2.6 

23.1

1.1 

30 

(3/10) 

zig-5 8 27.05/0.0 secreted 

immunoglobulin 

N2 (wild-

type) 

17.2

4.3 

23.0

4.1 

37.5 

(3/8) 

zyx-1 8 75.28/0.21 zyxin, focal 

adhesions 

N2 (wild-

type) 

18.6

4.0 

22.8

5.4 

25 

(5/20) 

Negative 

Control – 

sax-7 

(eq1) 

-- -- -- sax-7 (eq1) 16.7

2.3 

21.3 

1.8 

0 

(0/7) 

btb-15 16 132.4/1.9 zinc-finger protein sax-7 (eq1) 16.0

1.4 

19.5

1.3 

0 

C29F7.2 16 955.98/0.45 kinase-like domains sax-7 (eq1) 18.7

18.8 

21.6

6.7 

28.6 

(2/7) 

C26F1.1 16 699.64/0.57 novel sax-7 (eq1) 29.7

12.0 

23.8 66.7 

(4/6) 

cyk-1 8 1.08/12.3 formin, actin 

polymerization 

sax-7 (eq1) 23.0

12.8 

24.3

5.6 

73.3 

(11/15) 

acp-6 16 72.27/0.0 acid phosphatase sax-7 (eq1) 18.0

4.1 

22.2

1.6 

20.0 

(1/5) 

F49E10.4 8 134.5/0.42 mitochondria-eating 

protein 

sax-7 (eq1) 234 317 9.1 

(1/11) 

grdn-1 8 9.8/0.0 actin-associated sax-7 (eq1) 26.5

16.6 

24.3

5.6 

56.5 

(13/23) 

hex-5 16 220.17/0.0 hexosaminidase sax-7 (eq1) 23.9

3.4 

27.0

6.8 

33.3 

(3/9) 

kin-9 8 45.82/0.12 tyrosine kinase sax-7 (eq1) 18.7

1.2 

22.3

3.7 

50.0 

(2/4) 

let-4 8 25.06/0.0 organizes ECM sax-7 (eq1) 12.4

1.5 

18.0

1.0 

0 (0/4) 

tnc-2 8 54.46/0.32 troponin sax-7 (eq1) 20.5

3.5 

23.7

1.2 

33.3 

(1/3) 

zyx-1  8 75.28/0.21 zyxin, focal 

adhesions 

sax-7 (eq1) 24.4

11.2 

24.5

6.2 

66.7 

(10/15) 
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KD target 

 

Stage 

(cells) 

Enrichment 

(Mean 

RPKM  E / 

MS) 

 

Proposed 

Function29 

Genetic 

Background 

MS 

div  

E 

intern

(min) 

MS 

div 

 E 

div 

(min) 

 

% Gad 

(n/n) 

ZK1053.3 8 53.07/0.0 novel sax-7 (eq1) 23.7

11.6 

24.3

1.2 

33.3 

(1/3)       

 

Negative 

Control – 

ced-5 

(n1812) 

-- -- -- ced-5 

(n1812) 

17.4

1.9 

20.0 

2.2 

0 

(0/5) 

acp-2 8 878.64/0.2 acid phosphatase ced-5 

(n1812) 

33.7

9.8 

25.8

7.2 

69.2 

(9/13) 

btb-15 16 132.4/1.9 zinc-finger protein ced-5 

(n1812) 

22.6

3.3 

19.5

2.1 

40.0 

(2/5) 

F49E10.4 8 134.5/0.42 mitochondria-eating 

protein 

ced-5 

(n1812) 

23.7

6.4 

19.2

3.3 

83.3 

(5/6) 

grdn-1 8 9.8/0.0 actin-associated ced-5 

(n1812) 

16.8

5.7 

22.0

5.5 

0 (0/4) 

tnc-2 8 54.46/0.32 troponin ced-5 

(n1812) 

32.4

8.5 

22.9

5.8 

72.7 

(8/11) 

zyx-1 8 75.28/0.21 zyxin, focal 

adhesions 

ced-5 

(n1812) 

27.6

9.2 

22.2

3.0 

62.5 

(5/8) 

 

Table 1 – Results of RNAi screen. “KD target” column gives gene name or Cosmid ID 

for each targeted gene. “Enrichment” and “Stage” columns show data from Tintori et al9, 

comparing Reads Per Kilobase per Million (RPKM) between an E cell precursor/MS cell 

precursor pair (8 cell stage of embryogenesis) or an E cell/MS cell pair (16 cell stage). 

Three genetic backgrounds were used to avoid potential redundancies in the system. 

Sax-7 (eq1) is a null allele of a Cell Adhesion Molecule and Ced-5 (n1812) is a null 

allele of a cell engulfment protein involved in Ras signaling. The column “MS division  

E internalization” shows the time it takes an E cell to fully internalize (see text for 

definition) following MS division. +/- represents 95% confidence interval. The column 

“MS division  E division” displays how long after MS division E cells divide with +/- 

representing 95% confidence. The “% Gad” column shows the proportion of dsRNA-

treated embryos that were Gastrulation defective.  
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APPENDIX 2: FIGURES 
  
 

Figure 1. Apical constriction is a conserved process in C. elegans gastrulation 
as well as vertebrate neural tube formation. The cells highlighted in green are E 
cells in C. elegans and neural plate cells in vertebrates and undergo apical 
constriction. Myosin is enriched and activated (red) in the apical cortex of specific 
cells, eliciting tension3,8 Adapted from Bob Goldstein. 
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Figure 2. C. elegans embryos achieve gastrulation via apical constriction. 
(A) Apical constriction initiates when the tensile actomyosin network physically 
connects to apical adherens junctions. This connection appears to form with 
precise timing in gastrulating C. elegans embryos. (B) shows a ventral view of a 
gastrulation-stage embryo, with E cells (Ea, anterior; Ep, posterior) 
pseudocolored in green undergoing apical constriction. Adapted from Martin & 
Goldstein 2014 and Lee et al. 2006. 
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Figure 3. Pseudo-kymograph of apical myosin (green) and membrane (red) 
dynamics during apical constriction. (A) Apical membrane trace of an E cell in the 
“Early” Stage at 0 and +3 min. (A’) Apical membrane trace of an apically constricting 
E cell in the “Late” stage at 0 and +3 min. (B), (B’) show the molecular dynamics 
associated with (A) and (A’) respectively. Early (A, B), there is a large degree of 
slippage between myosin (green) and membrane (red). Late (A’, B’), there is a low 
degree of slippage, and constriction proceeds.  Adapted from Roh-Johnson et al. 
2012    
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Figure 4: The temporally-regulated link between adherens junctions and F-actin. 
The molecular link between the cadherin-catenin complex and F-actin in apically 
constricting cells remains a mystery, and continues to be a source of controversy. 
From Bob Goldstein 
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Figure 5. Choosing candidates based on expression profile in the early embryo. 
(A) Genes with transcriptional enrichment in a given cell (8-cell stage E cell progenitor 
here) are colored red. Candidates considered were chosen from within the circle. (B) 
Zyxin is highly enriched in the E cell progenitor cell at 80 RPKM at the 8-cell stage, 
compared to its low levels in all other neighboring cells. Adapted from Tintori et al. 
(2016)9.     
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Figure 6. Results of RNAi screen. Graphical Representation of data from Table 1. 
Refer to Table 1 legend for details. (A) Timing of E cell Internalization, corresponding 
to the “MS div > E intern (min)” Column. Red Bars represent a gastrulation defect 
incidence in >25% of tested embryos. (B) Timing of E cell division, corresponding to 
the “ MS div > E div (min)” Column.  
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Figure 7. E cells divide at ventral surface in Gad embryos. Lateral mounted 
embryos at the gastrulation stage. (A, A’) Wild-type progression of gastrulation where 
E cells (top, red outline) divide after fully internalizing. (B, B’) A Gad embryo after 
targeting zyxin for depletion, where an E cell daughter is born at the ventral surface. 
(A, B) 90 minutes after fertilization. (A’, B’) 120 minutes after fertilization.  
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Figure 8. Slippage Rate remains abnormally high after zyxin depletion. (A,B) 
Snapshot of ventrally mounted wild-type embryos in Early and Late stage, respectively. 
Yellow arrows represent myosin puncta movements in E cells. Red arrows represent 
movement of associated membrane.  (C) Myosin’s rate of centripetal flow does not 
change from Early to Late stage. The dsRNA treatment targeting zyxin does also not 
cause a change in myosin flow rate. (D) In both wild-type (blue circiles) and zyxin-
depleted (red squares) embryos, there is a high degree of slippage between myosin 
and membrane in Early Stage E cells. The slippage rate in Late Stage E cells zyxin-
depleted embryos remains high abnormally.  (E) The same embryos analyzed by 
kymography in C and D were independently measured using the ImageJ mTrackJ 
plugin in a double-blind study (credit: Terrance Wong). (C,D,E) n = 5 wild-type and 6 
zyx-1-targeted embryos.  
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Figure 9. Our model of zyxin’s action during apical constriction. In our model, an 
early increase in tension fails initiate constriction because the actomyosin network is 
not connected to the cadherin-catenin complex. Once zyxin has accumulated to 
sufficient levels, it forms a complex between actin, Ena/VASP (UNC-34), Testin (TES-
1), and the CCC at apical cell junctions, allowing constriction to proceed.  
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